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Processing Design 
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Co-Supervisors: Andreas Gerstlauer and Michael Orshansky 

 

As semiconductor technology continues to scale, energy-efficiency and power 

consumption have become the dominant design limitations, especially, for embedded and 

portable systems. Conventional worst-case design is highly inefficient from an energy 

perspective. In this dissertation, we propose techniques for adaptivity at the architecture 

and circuit levels in order to remove some of these inefficiencies. Specifically, this 

dissertation focuses on research contributions in two areas: 1) the development of SRAM 

models and circuitry to enable an intra-array voltage island approach for dealing with 

large random process variation; and 2) the development of low-energy digital signal 

processing (DSP) techniques based on controlled timing error acceptance. 

In the presence of increased process variation, which characterizes nanometer 

scale CMOS technology, traditional design strategies result in designs that are overly 

conservative in terms of area, power consumption, and design effort. Memory arrays, 

such as SRAM-based cache, are especially vulnerable to process variation, where the 

penalty is a power and bit-cell increase needed to satisfy a variety of noise margins. To 

improve yield and reduce power consumption in large SRAM arrays, we propose an 

intra-array voltage island technique and develop circuits that allow for a cost-effective 

deployment of this technique to reduce the impact of process variation. The voltage 
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tuning architecture makes it possible to obtain, on average, power consumption reduction 

of 24% iso-area in the active mode, and the leakage power reduction up to 52%, and, on 

average, of 44% iso-area in the sleep mode. Alternatively, bitcell area can be reduced up 

to 50% iso-power compared to the existing design strategy.   

In many portable and embedded systems, signal processing (SP) applications are 

dominant energy consumers. In this dissertation we investigate the potential of error-

permissive design strategies to reduce energy consumption in such SP applications. 

Conventional design strategies are aimed at guaranteeing timing correctness for the input 

data that triggers the worst-case delay, even if such data occurs infrequently. We notice 

that an intrinsic notion of quality floor characterizes SP applications. This provides the 

opportunity to significantly reduce energy consumption in exchange for a limited signal 

quality reduction by strategically accepting small and infrequent timing errors. We 

propose both design-time and run-time techniques to carefully control the quality-energy 

tradeoff under scaled VDD. The basic philosophy is to prevent signal quality from severe 

degradation, on average, by using data statistics. We introduce techniques for: 1) static 

and dynamic adjustment of datapath bitwidths, 2) design-time and run-time reordering of 

computations, 3) protection of important algorithm steps, and 4) exploiting the specific 

patterns of errors for low-cost post-processing to minimize signal quality degradation. 

We demonstrate the effectiveness of the proposed techniques on a 2D-IDCT/DCT design, 

as well as several digital filters for audio and image processing applications. The designs 

were synthesized using a 45nm standard cell library with energy and delay evaluated 

using NanoSim and VCS. Experiments show that the introduced techniques enable 

40~70% energy savings while only adding less than 6% area overhead when applied to 

image processing and filtering applications.  
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Chapter 1: Introduction 

Energy efficiency is one of the paramount concerns in the design of embedded 

and portable system. Conventional worst-case design strategies are highly inefficient in 

terms of energy consumption. Hence, we propose adaptivity at both the architecture and 

circuit levels as a means to remove some of these inefficiencies. Specifically, this 

dissertation deals with two types of adaptivity: 1) adaptivity to process variations in 

SRAM design; 2) adaptivity to input data variations while giving up on timing 

correctness in DSP design.  

In the following discussions, we will first review the background knowledge and the 

previous works of low energy techniques in SRAM and DSP. Details of our low-energy 

design techniques will be introduced in subsequent chapters.  

1.1 ADAPTIVITY IN SRAM  

In nanometer technologies, the increase of process variation significantly impacts 

circuit yield. The impact of variability on the design of large SRAM arrays is especially 

severe. Some patterns of variability are highly systematic, such as those in 

photolithography and chemical-mechanical polishing. Among the random variability 

patterns, the threshold voltage variation due to random dopant placement is paramount. 

SRAM cells are typically sized to be of minimum area, because of the tight layout 

requirements for large arrays. Because the variance of threshold voltage variation is 

inversely proportional to the transistor area, the Vth variance of small size transistors is 

large and is growing as reported in Figure 1.1 [1].  
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Figure 1.1: Dependence of threshold voltage standard deviation on transistor area.  

SRAM cell design is driven by the need to satisfy static noise margin, write 

margin and read current margin over all cells in the array and these constraints determine 

both the minimum cell size and supply voltage. Increasing cell area and supply voltage 

can ensure that the noise margins are met. The requirement to meet noise margin 

constraints sets the limit on the smallest possible cell size and also on the minimum 

usable supply voltage VDD for the array, commonly known as Vmin. Because threshold 

voltage variation impacting the cells in the SRAM array is independent, the margin 

specification needs to be met at very high sigma corners, five or six sigma, in order to 

reach acceptable yield, requiring significant cell upsizing and increased Vmin. SRAM cell 

area is an important metric of the success of technology scaling, and variability makes 

such traditional scaling hard to sustain. Thus, reducing the negative impact of random Vth 

variability on SRAM area is an important goal. 

One effective strategy for dealing with variability is post-silicon adaptivity. 

Adaptive circuit-level solutions, such as adaptive supply voltage and adaptive body bias 

have been employed in order to increase frequency, reduce standby leakage, and reduce 

switching power in logic circuits. For example, the approach of [2] is based on applying 
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high VDD and forward body bias for slow dies and low VDD and reverse body bias for 

high power, thus shrinking the yield violation region. In techniques not directly 

addressing variability, multiple adaptive strategies for SRAM arrays have been explored 

to save leakage power or enhance cell stability. In [3], in order to achieve adequate 

SRAM cell stability, the authors use different VDDs for read and write operation. In this 

case, assigning VDD in a row-based manner is not suitable because there could be 

simultaneous read/write operations in the same row. In [4], the author uses dynamic 

voltage in a row-by-row manner and unaccessed rows are set to low VDD to reduce 

leakage.  

Earlier work has addressed the techniques for mitigating the impact of global die-

to-die variation on the operation of SRAM arrays. In [5] adaptive body bias has been 

employed to increase SRAM yield. The high rate of read/hold failures at low Vth corners 

has been reduced by employing reverse body bias and at high Vth corners forward body 

bias has been used to reduce the write/access failures. In [6] the concept of column-based 

voltage assignment to reduce voltage overhead was described. However, the work has not 

developed the theoretical models that would be needed to guide adaptive design at 

specific levels of variability and for reduced bitcell area. 

The key contribution of our work is that we propose a new architecture to reduce 

the overhead of high-sigma margin design on VDD and cell area by employing an 

adaptive voltage scheme in a partitioned SRAM array. The key idea is to be able to shift 

empirical distributions (realizations) of the design margins in a partition to meet the 

target specification. Because the partition is smaller than the whole array, the tail of the 

Gumbel distribution is significantly reduced. For the partitions whose worst margin 

violates the specification, a higher voltage is selected to gain yield, otherwise voltage is 

reduced for power reduction.  
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Figure 1.2: The design specification increases due to long tail of Gumbel distribution for 
high number of cells 

The central intuition we introduce is the possibility of smaller bit cell area design 

due to the use of adaptive techniques which enable reducing the pessimism in selection of 

design-time optimal solutions. Our basic argument is that accepting a larger single-cell 

spread, due to sizing-down the cell, and compensating it by post-silicon adjustment of the 

empirical realization of margins in the partition allows solutions that are area- and 

energy-superior to the traditional ones. In the sleep mode operation, the voltage of SRAM 

arrays is often reduced to a voltage level that guarantees that cell content will not be 

destroyed. Only SNM is relevant in the sleep mode. The key factor that determines the 

amount of power reduction in sleep mode is how low can the voltage, known as data 

retention voltage (DRV), be. The data retention voltage of an SRAM is determined by the 

worst-case tail of the DRV distribution of all the cells in the SRAM [7]. Under the 

normally distributed within-die threshold voltage variation, the 6σ tail of the DRV 

distribution is almost 3X of the mean value. On the other hand, leakage power has 

exponential dependence on VDD: a small amount of reduction of VDD can lead to 

significant reduction of leakage power. Therefore, if we can reduce the mean value of 
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DRV of a SRAM in sleep mode using tuning, we can achieve significant leakage power 

saving. 

Given the importance of minimum area design, the impact of post-silicon tuning 

must therefore be rigorously taken into account in order to size the cell optimally. This 

requires taking into account the underlying distribution of the process parameters in the 

device optimization to produce power-area Pareto analysis. We develop models to 

quantitatively predict the statistics of noise margins depending on the partitioning 

strategy. The ultimate objective of the model is to guide SRAM design for minimum area 

and minimum equivalent (mean) power superior to traditional design. The model predicts 

the benefits for the given cost. First, the models we derive include the realistic constraint 

that only a small finite number of voltage levels are available to be assigned to partitions. 

Second, the analysis is cognizant of the cost of the tuning architecture due to the need to 

assign different voltages to partitions depending on the realization. The cost includes the 

cost of generating additional voltage levels, creating extra routing, and control logic. Our 

solution for avoiding the prohibitive cost of continuous voltage adjustment is to provide a 

choice of several discrete but optimized voltage levels chosen at manufacture time. This 

drastically reduces the cost of adaptivity. While the cost of this adaptivity is quite low, 

even with only 2-4 voltage levels, as we demonstrate, our architecture allows a 

significant cell area reduction. 

We use the framework of two-stage stochastic optimization for capturing the 

interaction between the design-time sizing and adaptivity. The analytical models for 

design margins are based on the extreme-value statistics. They allow to express yield as a 

function of supply voltage and size. We consider cases of continuously adaptable voltage 

and discrete adaptable voltage and express the yield as a function of tuning architecture 

parameters (partition size, range of continuous adaptable voltage or the values of discrete 
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adaptive voltages). In this dissertation, we provide a framework to handle multiple design 

margins taking into account the mutual correlation. Furthermore, we allow more general 

class of objective functions which allow minimization of power or a linear combination 

of mean and standard deviation of adaptive supply voltage. The method is based on 

application of stochastic dynamic programming [8] and exploits the recursive structure of 

the objective function. 

1.2 ADAPTIVIY IN IMAGE PROCESSING SYSTEM 

Nowadays, the gap between the limited battery life and the need to support more 

complex functionality of embedded systems is growing. Mitigating this gap requires 

continued advances in low energy design. To solve this problem, we propose to exploit 

error-tolerance of certain signal processing circuits to reduce their energy consumption. 

Our strategy focuses on circuit-level Timing ERRor Acceptance (TERRA) as a way to 

reduce energy. In a conventional design methodology, driven by static timing analysis, 

timing correctness of all operations is guaranteed by construction. The design 

methodology guarantees that every circuit path regardless of its likelihood of excitation 

must meet timing. Traditional design strategies do not consider the possibility of 

accepting timing errors. When VDD is scaled even slightly, large timing errors occur and 

rapidly degrade the output signal quality. This rapid quality loss under voltage scaling 

significantly reduces the potential for energy reduction. In this dissertation, we will show 

how the above quality-energy tradeoff can be dramatically improved. We achieve this by 

identifying the sources of early and, from the quality loss point-of-view, worst timing 

errors and modify the circuit such that the overall tradeoff between quality and energy is 

improved. 
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Several efforts in the past have explored the possibility of trading quality in DSP 

systems for lower energy. In [9, 10], energy is reduced by discarding algorithm steps or 

iterations that contribute less to the final quality. In [11], adaptive precision of the 

arithmetic unit output is used to save energy. In [12, 13], energy reduction is enabled by 

using lower voltage on a main computing block and employing a simpler error-correcting 

block that runs at a higher voltage and is thus, error-free, to improve the results impacted 

by timing errors of the main block. In [14], a low-power DCT core is implemented by 

identifying and skipping the unnecessary computations. In [15], power is reduced by 

applying aggressive voltage scaling to the memory of a multimedia system, and then 

filtering out the resulting memory faults. The most similar approach to ours is described 

in [16, 17, 18]. In this work, combinational logic blocks are restructured to enable 

utilization of intermediate results, which are arranged such that the more important ones, 

from the quality point of view, are obtained first.  

An important distinction between prior work and our TERRA strategy is that in 

other work, the results produced by blocks subject to timing errors are not directly 

accepted. From the point of view of gate-level design, such techniques still guarantee 

timing correctness of all digital operations. In [12, 13], an estimated value of the result is 

used in downstream computation in case of timing errors. In [16, 17], computation is 

terminated early and intermediate results impacted by timing errors are ignored entirely. 

In contrast, our strategy allows using the erroneous results directly, providing, of course, 

that the magnitude of error is carefully controlled. As a result, we are able to achieve 

large energy savings in the low range of quality loss.  

The available data from literature suggests that our design is effective. The energy 

savings achieved are higher than in earlier work: for example, the saving are 55% in [14], 

40% in [16], and 62.8% in [18]. Because an exact comparison is difficult for designs in 
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different technologies, we implemented one of the prior designs (the CSHM-based DCT 

design described in [18]) and compared it with a DCT design based on our techniques. 

The results show that TERRA techniques can achieve substantially lower energy for an 

image quality of about 30dB.  

We also anticipate that our strategy is extendable to a larger class of algorithms. 

Our approach does not require changing the algorithm itself, e.g. to allow for early 

termination. Instead, we directly re-design the implementation to tolerate timing errors. 

Another difference with [16, 17] is that their approach only allows a discrete set of 

quality-energy points. By contrast, our technique enables a range of trade-offs along a 

continuous quality-energy profile. 

The proposed TERRA strategy is based on a statistical treatment of errors: while 

we give up on guaranteeing the worst-case timing, we have to satisfy timing requirements 

on average to keep global signal quality from severe degradation. Here we considerably 

extend earlier work by: (a) substantially extending formal analysis of the design choices 

that need to be made in implementing the timing-error accepting strategy, and (b) 

presenting novel post-processing techniques to improve the perceptive quality of the 

image produced by the error-accepting circuits. The new post-filtering techniques are 

motivated by our search for further ways to reduce the degradation of perceived image 

quality.  

Experiments suggest that two images may have similar values of PSNR but be 

assessed as being of different quality by a human subject. It turns out that an image with 

fewer localized errors is more acceptable to human perception: the PSNR metric captures 

only the overall average signal quality, but does not capture well the local quality. MSB 

errors tend to cause significant local quality degradation. Thus, we have to ensure that if 
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timing errors occur, they are limited to the LSBs as much as possible. The introduced 

post-processing techniques aim to do that. 

A widely used post-processing technique is filtering, such as a 2-D median filter. 

In [19], median filtering is used to remove noise. In this dissertation, we implement a 

simplified median filter that can quickly estimate the median of an array of pixels, such 

that the computational complexity is reduced and a low-energy design is achieved. 

Another existing approach for error reduction is to identify the erroneous results and then 

replace them with an approximated one [12]. We propose an image filter with error 

limiting that performs a partial substitution on the output pixel instead of replacing all of 

its bits. This significantly simplifies the error checking and correction logic. In contrast to 

previous work, our focus is on energy minimization under performance constraints 

instead of pure performance or throughput optimization [19]. 

We advance architecture-level techniques that significantly reduce algorithm 

quality loss under VDD scaling, as compared to direct VDD reduction. This leads to a 

superior quality-energy tradeoff profile. Fundamentally, this is enabled by (i) reducing 

the occurrence of early timing errors with large impact on quality, (ii) using control and 

data flow analysis to disallow errors that are spread and get amplified as they propagate 

through the algorithm, and (iii) applying post-processing techniques to reduce localized 

large magnitude errors that significantly degrade local image quality.   

To address the first goal, we specifically focus on the behavior of timing errors in 

addition as a fundamental building block of most signal and image processing algorithms. 

Simple analysis shows that the magnitude of timing errors depends on the values of 

operands. A specific important class of operands leading to early and large-magnitude 

timing errors is the addition of small numbers with opposing signs. We develop two 

distinct techniques at two levels of granularity - one at the operation and one at the block 
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level - to reduce such errors. Note that depending on knowledge about data statistics, both 

techniques can be applied at design or at run time. For the design chosen in this 

dissertation, however, we limit discussions to static operation-level and dynamic block-

level optimizations. 

Targeting the first two goals, we present four quality-energy (Q-E) optimizations 

at the operation, block, algorithm and system levels. Techniques are introduced and 

demonstrated on the designs of an Inverse Discrete Cosine Transform (IDCT) and a 

Discrete Cosine Transform (DCT) as widely used image and video processing kernels. 

Specifically, the key contributions for architecture Q-E profile shaping are: 

1) Controlling large-magnitude timing errors in operations by exploiting the 

knowledge of statistics of operands. In many cases, we have knowledge of data 

distributions that can be exploited at design or at run time. Specifically, in the IDCT/DCT 

algorithm, high-frequency coefficients tend to have small magnitude values, often of 

opposite sign. And such components tend to cause early and large quality loss (See 

Figure 3.3 (c) and Figure 3.19). Our technique is based on the realization that an adder 

with reduced bitwidth can be used to process such operands. Two objectives are achieved 

by using such adders: the magnitude of quality loss is reduced and its onset is delayed. In 

the IDCT/DCT algorithm, the classification can be done at design time, with higher-

frequency components being processed in reduced-width adders while the rest of the 

matrix components are processed on the regular-width adder. 

2) Controlling the frequency of error-generating additions by dynamically re-

arranging the sequence of operations, e.g. in accumulation. Similar to the previous 

technique, this strategy aims at reducing the quality loss in addition stemming from 

processing of small-valued opposite-sign numbers, but at a level higher than that for a 

single addition. Specifically, it is targeted at reducing the cumulative quality loss 
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resulting from multiple additions. Such multi-operand addition occurs, for example, in 

accumulation, which is a key component of many DSP algorithms, and, specifically, of 

IDCT/DCT.   

3) Preventing occurrence of errors which can spread and get amplified throughout 

the algorithm. An important aspect of a design methodology that allows some timing 

errors is controlling the impact of these errors on output quality from the perspective of 

the entire algorithm. Specifically, a result impacted by timing errors early in the 

algorithm can have a dramatic impact on the overall quality by affecting downstream 

computations through repeated reuse of incorrect data. Therefore, we can not afford to 

allow errors in certain critical steps, and we propose a technique to avoid such errors 

based on rescheduling of the algorithm. 

4) Post-processing to mitigate the effects of errors that do occur and to assist the 

aforementioned Q-E optimizations. In the pixel domain, timing errors appear as 

discontinuous outliers and MSB errors that significantly degrade perceived image quality. 

Such errors can be effectively detected and mitigated via median filtering or error 

limiting. A straightforward implementation of median filtering requires several full-

bitwidth comparators, resulting in large energy and area overhead. Instead, we propose a 

low-cost scheme which computes an approximation of the median by using only two 

MSBs to perform the comparisons which reduces the overhead. Alternatively, in the 2D-

IDCT algorithm, the average pixel value can be computed accurately even under scaled 

VDD just from the DC component. Furthermore, in order for a block of pixels to have 

MSBs that are different from the average, it has to either have large AC coefficients or an 

average which is closed to 2N, N here is any integer greater than 0. Hence, we can 

compute an error-free average and maximal range for each pixel.  For each input block, 

we check the AC and DC components to determine the maximum possible difference 
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between pixel and average. If there are pixels for which the actual difference is smaller, 

we set their MSBs to their average value in order to limit possible errors in pixel MSBs. 

1.3 ADAPTIVITY IN DIGITAL FILTER 

Digital filter is another important DSP application which is heavily used in 

multimedia tasks such as speech, image, and video processing. Such tasks are often 

responsible for much of energy consumption on portable electronic devices. Extending 

battery time requires continued innovation in low-power methods for such multimedia 

applications. To enable a low-power digital filter design, we propose techniques based on 

timing error tolerance to significantly reduce energy consumption in digital filter circuits, 

which are an important building block of many such applications. 

Because of their importance, much work has been done in the area of low-power 

implementation of digital filtering circuits over the previous decades. In general, finite-

impulse response (FIR) filters tend to be more power-consuming than infinite-impulse 

response (IIR) ones [20]. A very incomplete list of approaches to reduce power 

consumption in FIR filters at the architectural level includes techniques such as multirate 

filtering, subfilter approaches and multiplierless architectures [20]. At the circuit level, 

optimal selections of filter bitwidth and realizations of adders and multipliers to reduce 

power consumption have been done either in a static [21] or dynamic [22] fashion.  

Furthermore, optimally choosing filter parameters for given target metrics such as gain, 

phase linearity, bandwidth, pass-band ripple or stop-band attenuation for low power has 

also been investigated [23]. 

It is widely recognized that voltage scaling is one of the most effective ways to 

reduce power consumption of any digital system. In [24, 11], this is exploited by 

implementing the filter using fastest possible filter structures and then using generated 
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timing slack to reduce power via voltage scaling. In the traditional paradigm of VDD 

scaling, scaling is limited by the worst-case delay through any combinational logic. In 

other words, a conventional methodology guarantees timing correctness of all operations 

by construction. In this dissertation, we describe techniques that allow pushing VDD 

scaling beyond this point and achieving further energy savings. In traditional approaches, 

scaling of VDD beyond the point of worst-case delays immediately leads to large timing 

errors and rapidly degrades the output signal quality. This rapid quality drop eliminates 

the possibility of an efficient tradeoff between quality and energy. In this dissertation, we 

show how to achieve a graceful degradation of filter quality under scaled VDD. We 

achieve this by identifying the sources of early and worst timing errors and designing 

filtering architecture to eliminate such errors. 

In developing this approach we work in the wider framework of error-tolerant 

low-power design. In previous publications, techniques for trading quality for energy in 

digital filtering and digital signal processing (DSP) applications have been studied at 

varying levels of abstraction.  In [10], the authors propose a technique that dynamically 

minimizes the order of a digital filter to reduce the switched capacitance and hence the 

total energy.  In [25], the authors restructure the filter computations such that voltage 

scaling affects less important filter taps first. 

Finally, in [26], energy is saved by using lower voltage on the main computing 

block and running a simplified estimating block at higher voltages to correct timing 

errors in the main block. 

The common feature of prior work is that results produced by blocks subject to 

timing errors are not directly accepted. By contrast, our strategy allows using the 

erroneous results, provided, of course, that the frequency and magnitude of errors is 

carefully controlled. In this dissertation, we propose the concept of controlled timing 
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error acceptance for low energy DSP applications, and demonstrate a significantly 

improved quality-energy tradeoff for a 2D-IDCT block. And then we adapt and 

generalize this approach to develop an architecture and design strategy for low-power, 

timing error accepting digital filters with applications in a wide range of DSP systems. 

We specifically propose two architecture-level techniques aimed at selectively 

accepting and controlling timing errors in the datapath of filters: 1) dynamic bitwidth 

adjustment to control the occurrence of large magnitude errors in small operand additions 

at run time, and (2) static filter tap reordering to control, at design time, the frequency of 

small valued operations leading to large errors. Fundamentally, both techniques are based 

on the observation that the largest and earliest timing errors stem from processing small 

inputs in the adder of the multiply-accumulate (MAC) units. By controlling the frequency 

and magnitude of such errors, we can allow for larger VDD scaling while maintaining a 

high output signal quality. 
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Chapter 2: Low-power techniques in SRAM 

2.1 ADAPTIVE FRAMEWORK IN SRAM 

The SRAM yield is set by the need to satisfy three noise margins: read current 

margin (RCM), write margin (WRM), and static noise margin (SNM). The SNM is 

defined as the minimum voltage noise required to flip the state of the cell. WRM is 

required to perform successful write in the period during which the word line is turned 

on. RCM is needed to ensure that there is enough time to build sufficient bit line voltage 

difference for the sense amplifier during the cell read. Thus, RCM can be captured as cell 

read delay time. For RCM, an upper limit will be imposed on the maximal cell read time 

over all cells. For the SNM and WRM, we have a lower bound on the minimal value of 

these margins over all cells. By negating SNM and WRM, we can assume without loss of 

generality that we have an upper bound on the maximal value of noise margins among all 

cells. The sizing of the SRAM cell transistors must be carefully adjusted in order to meet 

the conflicting requirements of the three margins. The total array yield is determined by 

the probability that the worst margin meets the target specification.  

The satisfaction of noise margins is driven by the maximum of the cell margins in an 

array. Stochastically, the maximum over a large number of random variables follows 

extreme order statistics. For a typical SRAM consisting of a large number of cells, the 

worst case margins are asymptotically distributed according to a Gumbel distribution, 

which is characterized by long tails (Figure 1.2 in the introduction section). This requires 

that each cell's margins must be sufficiently high at high sigma corners in order to 

achieve the target yield.  

Our adaptive framework for SRAM relies on partitioning the SRAM array into a set 

of tunable blocks which can be set to different supply voltages. Due to the smaller 
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number of cells in each block, the realization of the worst margin is significantly smaller 

(indeed, exponentially smaller [27]). As shown in Figure 2.1, because each partition 

contains only a sub-set of all cells in the array, there will be many partitions in which the 

worst realizations among the cells will still have margins which are less than the margin 

upper bound. Partition-based voltage assignment means that the entire set of realized 

bitcell margins in a partition is shifted. That ability allows us to accomplish one of two 

things: (1) for fixed cell area, we are able to reduce supply voltage in partitions whose 

worst realizations are below the relevant constraint, and thus reduce the average supply 

voltage; or (2) to reduce cell size which results in the larger spread in Vth, but which can 

now be tolerated because of the presence of tunability.  

dtarget  

Figure 2.1: Adjustment of a partition's VDD shifts access times of all cells in a partition to 
fix violations or save power 
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Figure 2.2: SRAM architecture using row-based multiple voltage control. 

We now describe the SRAM architecture organization to implement our scheme. The 

array is partitioned in a row-by-row manner, as shown in Figure 2.2. The partitions are 

sets of rows that can be set at a distinct voltage. The supply voltage of all the bitcells in 

the partition and the corresponding wordlines can be set to one of the allowed voltage 

levels. The voltage levels between partitions can be different. The bitline voltages are 

fixed. There are two reasons why we choose the row-by-row partitioning strategy for the 

array: (1) If partitioning is done in a column-by-column way, the voltage for each 

partition is determined by the slowest cell in the column, but since SRAM is accessed in 

a row-by-row manner, for most of the read/write operations, it would waste power; (2) 

we fix the bitline voltages, while if the voltage island is partitioned in a column-by-

column manner, the bitcell supply voltage would be different between the wordline 

voltage and bitline voltage. That would make it hard to achieve high SNM and WRM.  

In Figure 2.1, each partition contains only a sub-set of all cells in the array. There 

will be many partitions in which the worst realizations among the cells will still have 

margins which are less than the margin upper bound. Partition-based voltage assignment 

means that the entire set of realized bitcell margins in a partition is shifted. That ability 
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allows us to accomplish one of two things: (1) for fixed cell area, we are able to reduce 

supply voltage in partitions whose worst realizations are below the relevant constraint, 

and thus reduce the average supply voltage; or (2) to reduce cell size which results in the 

larger spread in Vth, but which can now be tolerated because of the presence of 

tunability.  

The voltages are generated by the on-chip voltage regulators. The area and power 

overhead associated with generation of additional voltage levels is estimated and is 

reported in Chapter 2.2. A PMOS switch network is used to carry the selected voltage to 

each partition, as shown in Figure 2.3.  
VDD1 VDD2 VDD3

Sel1
Sel2

Sel4

VDD

VDD4

Sel3
Control 
Logic

 

Figure 2.3: PMOS switch network for a partition selects one of available voltages. 

After the SRAM is manufactured, the RCM (or read time), SNM and WRM of each 

partition are measured. Based on the worst-case partition margins, a voltage is selected 

for that particular partition. The measurement of the RCM and WRM has been addressed 

in the work in [28], and the measurement of SNM has been addressed in [29]. 

We now develop an optimization framework for optimally designing, and 

understanding the impact of, a small number of distinct supply voltage levels that can be 

adjusted in independently tunable blocks of cells. As discussed in the previous chapter, 

the goal is to mitigate the impact of selecting parameters based on expected or realized 

worst-case randomness over a very large block of cells, as is required in order to satisfy 
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the margins described above. We show that allowing independent process parameters 

across a larger number but smaller blocks allows a more energy- and area-efficient 

design. Specifically, we want to study the reduction of area and power resulting from 

allowing different numbers of distinct, and optimized, voltage levels. 

To choose the optimal cell size, voltage levels and partition numbers for the 

partitioned SRAM, we formalize the problem for SRAM operating in active mode as 

follows: 

MINW, VDD :  Pmean(W, VDD)          (1) 

s.t. : Yield ≥ Yieldtarget 

We now describe the formulation, if we allow independent VDD tuning for p tunable 

blocks of m cells each (so that p·m = n). At design time, a single value of supply Vnominal 

is set. Let the t size vector block_marginnom
i denote the worst case margins of a tunable 

block i in the absence of adaptive voltage. The tunable voltage is used to adjust the 

untuned margins of block i. The voltage for block i is modified to Vnominal 

+ΔVadapt,i(block_marginnom
i ) in the post-silicon tuning phase. In this initial idealized 

treatment, the exact value of ΔVadapt,i is different for each block but its distribution can be 

quantitatively captured based upon our tuning policy which we describe later. The 

expected yield expression becomes: 

Yield = Pr(min1≤i≤p block_margini(W, Vnominal + ΔVadapt, i) ≥ margintarget) 

The power minimization problem can be re-formulated as: (Pmean is the expected 

value of single cell mean power under Vth variability and below its expected value is 

taken over variability of ΔVadapt.) 

, nominal adapt: [ ( , )]
adaptW V meanMIN E P W V V+ Δ  

target. . :s t Yield Yield≥  
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In the above, Pmean and Yield are monotonic increasing functions of tunable 

voltage. Thus in the adjustable post-silicon tuning, the tuning policy is determined by the 

worst-case margin vectors over each tuning block, and chosen to meet the margin target 

vector, margintarget. If the worst-case margins for a tunable block are above the margin 

target margintarget even for a single component among the t margins, then we increase 

VDD until all the margin components are safely below margintarget. This allows us to meet 

yield constraints, although at the cost of a power penalty. If the worst-case margins are 

lower in all components with respect to margintarget, we can reduce VDD as long as worst 

case margins continue to be lower than the margin targets in order to reduce power. After 

developing the above model, we need to set up experiments to extract necessary 

coefficients for the models and evaluate the effectiveness of our proposed framework. 

2. 2. EXPERIMENT 

The following SRAM array organization, shown in Figure 2.4, is used for 

experimentation and for the extraction of power models. The array size is 1Mb and is 

divided into 16 banks. The word width of 32 bits is used, so that each access activates 

one row in a bank but only 32 out of 256 bitcells of the row are used. Each bitline has 

256 bitcells. Sense amplifiers are used to recover the full-swing signals at the bitlines.  

For the on-chip voltage distributing network, we note that in our earlier work [30] 

the models assumed an on-chip low-dropout voltage regulator to generate the voltage 

values because we focused on the array running only in the active mode, without the need 

to generate a lower voltage for the standby mode. Since we study both the active and 

sleep modes, the voltage may need to change by up to 70%, making low-dropout voltage 

regulator impossible. To resolve this problem and for the purpose of modeling and 

analysis, we assume that two off-chip voltage supply lines are available and the on-chip 
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voltage scheme generates all the intermediate voltages based on the two off-chip 

supplies. The on-chip voltage generating scheme utilizes the PMOS supply control 

network introduced in [31], as shown in Figure 2.5.  

The advantages of using PMOS supply control scheme are: it does not require any 

on-chip passive components, resulting in a smaller area footprint; the output voltage 

values are digitally controlled, resulting in higher accuracy and can be easily interfaced 

with other digital logic; it directly uses the off-chip voltages, which is more stable 

because off-chip voltage regulator uses bigger capacitors and inductors to reduce power-

line noise; it is passive and can support both active and sleep modes, while other types of 

on-chip voltage regulators would waste a lot of power in the sleep mode because it is 

almost impossible to bring down the voltage of the biasing circuits in these voltage 

regulator. The downside of the supply control is that it requires one extra external 

voltage, we assume this is acceptable in the SRAM design. Finally, we also note that we 

assumed a bank size of 256×256. 

 

Figure 2.4: SRAM bank architecture 
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Figure 2.5: SRAM voltage delivery architecture. 

Using the SRAM architecture and voltage generating circuits described above, we 

set up the models for evaluation of the design. We run experiments using the developed 

model to quantify the ability of the proposed scheme to reduce the impact of randomness 

on SRAM array. As mentioned before, the SRAM array needs to operate in active mode 

and sleep mode with VDD lowered to minimize leakage. In these two modes, the SRAM 

has different design margins to meet. In the active mode, the SRAM bitcells can be read, 

written or stay in hold. Hence, the SRAM design needs to satisfy the read margin, write 

margin, and static noise margin. In sleep mode, the supply voltage is lowered to a level 

above the voltage when the SRAM bitcells may flip, since the bitcells stay idle, only 

leakage power is consumed. The SRAM has only static noise margin to satisfy. We 

evaluate separately in these two modes the possible power and area reductions enabled by 

our tuning strategy. 

The evaluation of the cost of tuning circuitry needs to be accounted for and here 

we provide the details of the additional circuitry to enable tunability. The sizes of the 

PMOS transistors in the switch network are determined by the maximum active current 

of the bitcell during the read and write operations plus the leakage current. The maximum 

current happens during the write operation because the bitcell may flip and draw current 
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from the power line. During a write operation, one word (32 bitcells) of a row is written, 

while the rest of the bitcells in the same row are being read. The maximum current from 

the on-chip voltage dividing network is drawn when the wordline driver is activated to 

drive one row and all the bitcells in that row flip. We characterize this current using 

HSPICE. In order to estimate the overhead of PMOS switch area, we relate it to the 

normalized width of the bitcell. The current across the PMOS linearly depends on the 

voltage and the width. Therefore, the size of the PMOS can be calculated as 

WP = Imax / (io·VDD) 

where io is the current conducted by the unit width PMOS transistor under a given VDD. 

We also need to include the area and power cost of generating distinct voltages. The 

passsive voltage generating network needs only to supply the current for the bitcell and 

wordline, which is a relatively small current compared to the current consumed by 

precharge circuitry and row/column decoder: based on our simulation, when activity 

factor equals to 0.2, the precharge circuitry consumes about 79.2 μW and the 

corresponding bitcells consume about 1.1 μW power. Here the precharge circuitry power 

consists of the power used to charge/discharge the 256 bitlines in one bank. And the 

bitcells power consists of only the 32 bitcells' dyanmic power during read/write. 

Although the on-chip voltage distributing network does not provide power to the 

precharge circuitry, the tuning which happens on the on-chip voltage network can help 

reducing the precharge power. This is because the partition and tuning techniques reduce 

the average voltage on the SRAM cell (including the pass transistor) and the bitcell size, 

it leads to less discharge current and smaller load on the bitlines, and hence reduces the 

precharge power.  
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We model the overall area overhead as given by a function of the number of 

partitions (s), the number of distinct voltage levels (v), and the normalized bitcell width 

(w): 

AO = c0·s·v·w + c1·(v-1)·w 

where c0 is the area of the PMOS switch when w=1, c1 is the area of the voltage dividing 

network when w=1, and c0=1.8 and c1=3.5. We assume that two of the voltages are 

generated externally. The estimated area overheads are shown in Table 2.1 for different 

partition complexities. 

Table 2.1: On-chip voltage scheme area overhead estimation. 

Array size s v w Area Overhead Relative overhead(%) 

1Mb 1024 4 1 7393.8 0.7% 

1Mb 512 4 1 3707.4 0.4% 

1Mb 256 4 1 1864.2 0.2% 

In the active mode, we model the total power using the following formula: 

Ptot = α·(0.5·Pread + 0.5·Pwrite) + (1 - α)·Pleak 

where α is the activity factor, 0.2 activity is used in the experiment. Pread is the read 

power, and as mentioned before, we assume that the SRAM array is divided into banks 

which have a size of 256×256, during read operation, only one row in a certain bank is 

being accessed, the rest of the banks consume only leakage power. Therefore, the read 

power consists of the bitline power which is consumed when charging and discharging 

the bitline, the power consumed when driving the wordline, the cell power of the bank 

being accessed, together with the leakage power of the rest of the banks:  

Pread = Pbitline + Pwordline + Pcell + Pl 
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Similarly, for the write power Pwrite, it consists of the bitline power, wordline power, 

cell power, and active leakage power.  

Pwrite = Pbitline + Pwordline + Pcell + Pl 

The activity factor of 0.5 means that read and write operations take 50% of the time 

respectively. Pleak here is the leakage power in the active mode. In contrast to the leakage 

power in the sleep mode, active leakage power is consumed when VDD is around 1V.  

We now describe the experiments conducted using the aforementioned architecture 

and cost models. In this dissertation we use multiple constraints. The multiple constraints 

used are: the bitcell delay which defines the RCM, SNM, WRM in the active mode, and 

SNM in the sleep mode. 

The closed-form expressions for above design margins, power and leakage models in 

the active mode and the sleep mode were fitted to SPICE simulations of a cell designed in 

the 32nm process using the PTM BSIM model. The mean fitting error of the models for 

all the design margins was below 3%. Besides the fitted model of each single margin, we 

also model the covariance between any two distinct margins to characterize the 

correlation between them.  

The fitted models for each constraint, power and leakage are as follows: 
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We use polynomial functions to model the power, delay and noise margins, and the 

coefficients of the functions are generated by least-square fitting. We first run HSPICE 

simulation to obtain power and margin data points at discrete sets of W, VDD. Based on 

such, we run into a recursive procedure to determine the fitted model of power and noise 

margins in terms of W and VDD. The strategy we use is to start from the model which 

consists of only 1st order terms: W and VDD, and then we keep adding higher order terms 

to reduce the fitting error. Also, we remove terms whose coefficients are close to zero 

while adding new terms. Finally, the procedure terminates when the fitted error is less 

than 5%.  

The delay and leakage power can not be modeled using polynomial function directly. 

Instead, we model the inverse of delay and the logarithmic of leakage to bound fitted 

errors under the 5% of the HSPICE simulation results.  

The circuit setup for noise margins characterization is as follows: For the SNM, there 

are two cases: one is the read SNM, and the other is the hold SNM. To measure read 

SNM, the pass transistor is turned on and we use the method introduced in [29]. For other 

margins like WRM, and RCM, we measure the write delay and the read delay of the 

SRAM cells. All the measurements are performed in the form of Monte Carlo simulation. 

Finally we compute the mean, deviation, and the covariance of all noise margins.  

Similarly, we build the fitted models in sleep mode, as follows: 
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The E[SNM] expression represents the mean value for SNM. Since all mutual 

covariance expressions Σmutual(W, VDD) can use the same fitting formula but different 

fitting parameters, we use a common mutual covariance expression above to represent the 

covariance between any two constraints. e.g. read delay and SNM, write margin and 

SNM, etc. 

Because the model already includes the correlation between any two margins, the 

optimization process automatically handles the case when two margins are conflicting. 

For example, increasing SNM may reduce WRM, the dynamic programming we use will 

search a balance point between these two margins according to the covariance matrix and 

guarantee that both margins are satisfied. The size of the SRAM array is fixed to be 1Mb. 

The nominal VDD is 1V for the active mode and 0.4V for the sleep mode. Adaptive 

voltage is limited to 20% of the nominal value. The ratio of transistor widths in the 6T 

cell is kept constant. The area changes are produced by varying the normalized width (w), 

which uniformly sizes all transistors in the cell. The yield constraint of 90% was used. 

Using dynamic programming, we can solve the optimization problem (1). And based 

on the output of the optimization problem, we obtain the tradeoff curve between power 

and cell area, shown in Figure 2.6. In Figure 2.6, the experiment result shows that by 

applying the partition technique, we can achieve power saving and area saving. In the 

figure, v is voltage complexity, which is the number of voltages available for selection, 

and s is the switching complexity, which is number of partitions in the SRAM array.  
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Figure 2.6: Expected power vs. bitcell area Pareto curves for different voltage and switch 
complexities in active mode. 

In Figure 2.6, one important question we sought to answer is the dependence of 

improvements in area and expected power on the number of voltage levels (v) available. 

We find that when no spatial partitioning is available (switch complexity s=1), there is 

little improvement with higher v. However, once spatial partitioning is available 

(s=1024), area savings are larger for a higher number of voltage levels. Yet, the 

difference between v=4 and v=2 is not dramatic, which indicates that even a small 

number of different voltage levels can be effective in tuning circuits. 

Similarly, for SRAM operating sleep mode, based on the same principle we use for 

the active mode optimization, we derive the optimal voltage selection for different 

partition sizes and cell sizes, and we explore the area reduction under different switching 

complexity, the experiment result is shown in Figure 2.7. 
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Figure 2.7: Expected leakage vs. bitcell area Pareto curves for different voltage and 
switch complexities in sleep mode. 

Figure 2.7 shows that by using larger partition size, for all values of switching 

complexity, the average leakage saving of 44% can be achieved.  

 Overall, we propose an SRAM tuning strategy for reducing intra-array 

randomness through shifting empirical distributions (realizations) of RCM, WRM, and 

SNM in a partition to meet the target. We develop quantitative models that for the first 

time allow rigorous design of adaptive SRAM arrays with large intra-array randomness. 

To verify the effectiveness of our partition technique SRAM on saving power 

while keeping all noise margins, we run Monte Carlo simulations on the SRAM block. In 

these simulations, without partitioning, the SRAM has to run at the highest voltage to 

satisfy a high yield target. With partitioning, only a few partitions have to run at the 

highest voltage to satisfy the margins. The results are shown from Figure 2.8 to Figure 

2.11. Each of Figure 2.8~2.11 shows three cases: 1) No partition with nominal VDD; 2) 

No partition with the highest VDD; 3) 1024 partitions with four different VDDS. 
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Figure 2.8: Monte Carlo simulation for SNM in active mode. 
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Figure 2.9: Monte Carlo simulation for SNM in sleep mode.  
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Figure 2.10: Monte Carlo simulation for RCM. 
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Figure 2.11:. Monte Carlo simulation for WRM in active mode. 

2.3 SUMMARY 

In this chapter, we propose an SRAM tuning strategy for reducing intra-array 

randomness through shifting empirical distributions (realizations) of RCM, WRM, and 

SNM in a partition to meet the target. We develop quantitative models that for the first 

time allow rigorous design of adaptive SRAM arrays with large intra-array randomness. 
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Chapter 3: Timing Error Acceptance in Image Processing 

The 2D-IDCT and 2D-DCT computations can be represented by I = CT·A·C and I 

= C·A·CT, respectively, where C is the orthogonal type-II DCT matrix and A is the 

spectrum coefficient matrix. It is customary to implement the 2D-IDCT/DCT as a 

sequence of two 1D-IDCT/DCTs. For each 1D-IDCT/DCT, the core algorithm is a 

matrix-vector dot product. For IDCT, the transformation is: 
1

0

( ) (2 1)( ) ( ) cos[ ]
2 2

N

n

c k k nT k x n
N

π
−

=

+
= ⋅∑  

18, (0) , ( ) 1, 0 1
2

N c c n k N= = = ≤ ≤ −  

where x(n) is the data being processed. The DCT is very similar, except that the 

coefficient matrix is transposed. The following discussions will focus on a 2D-IDCT. 

Application to a corresponding 2D-DCT will be discussed later. 

3.1 ERROR CONTROL THROUGH KNOWLEDGE OF OPERAND STATISTICS 

When VDD is scaled down, large magnitude timing errors are very likely to 

happen in additions of small numbers with opposing sign. Such additions lead to long 

carry chains and are the timing-critical paths in the adder. The worst case for carry 

propagation occurs in the addition of -1 and 1. In 2's complement representation, this 

operation triggers the longest possible carry chain and, thus, experiences timing errors 

first. Crucially, when a timing error occurs, the apparent result will also have a very large 

possible numerical error due to carry propagation into the MSBs leading to a large 

magnitude mismatch compared to the error-free result. For example, in an 8-bit 

computation, the error magnitude can be up to 64. This analysis and this problem is, of 

course, specific to the 2's complement representation of signed numbers. However, our 

techniques can also be used in sign-magnitude representation. As will be detailed later, in 
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sign-magnitude arithmetic, subtractions or opposing-sign additions are internally 

computed using 1's or 2's complement logic. This results in similar timing error behavior 

and our techniques remain effective.  

200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

Fr
eq

ue
nc

y

DC Component Magnitude
-300 -200 -100 0 100 200 300 400

0

50

100

150

200

250

300

350

400

450

Fr
eq

ue
nc

y
Coeff(1, 1) Magnitude

-200 -100 0 100 200
0

50
100
150
200
250
300
350
400
450
500
550

Fr
eq

ue
nc

y

Coeff(3, 3) Magnitude
-80 -60 -40 -20 0 20 40 60 80

0

50

100

150

200

250

300

350

400
Fr

eq
ue

nc
y

Coeff(5, 5) Magnitude  

Figure 3.1: Frequency distribution of IDCT coefficients for sample image. 
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Figure 3.2: Partitioning of input matrix. 
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(a) Energy and quality loss in Adder 1. 
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(b) Energy and quality loss in Adder 2. 
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(c) Quality loss vs. component classification. 

Figure 3.3: Quality-energy tradeoffs in Adder 1 and Adder 2. 
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In the 2D-IDCT algorithm, the additions that involve small-valued, opposite-sign 

operands occur in the processing of high-frequency components. This is because the first 

20 low-frequency components contain about 85% or more of the image energy [18]. 

Hence, the magnitude of high-frequency components tends to be small, and coefficients 

follow a Laplace distribution with high probability densities concentrated in a narrow 

range [32], as shown in Figure 3.1. Furthermore, the Laplace distributions are zero-

centered, which implies that high frequency components also tend to have opposing 

signs. As such, a significant amount of quality loss at scaled VDD can be attributed to 

additions involving such components. The first specific technique we employ is based on 

the realization that an adder with a bitwidth smaller than required by other considerations 

can be used to process such operands. Two objectives are achieved by using such adders: 

the magnitude of quality loss is reduced and its onset is delayed. Large-valued operands, 

of course, require a regular-width adder. Note that in an actual implementation it is 

possible to utilize a single adder with variable bitwidth.  

In the IDCT algorithm, the classification of matrix elements can be done at design 

time.  This raises the question of (a) how to best perform this classification; and (b) how 

to identify the optimal bitwidth of the reduced-width adder. In the following, we develop 

a model to enable such a design optimization. We define Adder 1 as the regular-width 

adder and Adder 2 as the reduced-width adder. In classifying the components, we seek to 

find the boundary, within the data matrix, between the upper-left low-frequency 

components and the lower-right high-frequency components. We therefore define the 

following parameters of our model:  

x:  Boundary between high-/low-frequency coefficients (Figure 3.2). 

D1: Worst-case delay of Adder 1. 

D2: Worst-case delay of Adder 2. 
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T1: Timing budget of Adder 1.  

T2: Timing budget of Adder 2. 

We assume throughout this discussion that T2=D2, i.e. that no timing errors are 

allowed to occur in Adder 2. Furthermore, we assume that T1=T2, which implies that both 

adders are affected by VDD scaling in an identical manner.  

Based on this notation, we can study the Q-E characteristics of the two adders 

under scaled VDD. By exploring adder characteristics, we are able to identify the optimal 

partitioning strategy from the point of view of achieving a globally optimal Q-E result. 

For simplicity, we substitute in this analysis the equivalent notion of timing budget for 

the value of VDD.  

We first study the Q-E relation for the regular width adder, shown in Figure 3.3 

(a).  The right axis shows the energy value at different timing budgets T1. As expected, 

allotting a smaller timing budget, which entails an equivalent lowering of VDD, results in 

a reduction of energy. Increasing the number of matrix components processed in the 

reduced-width adder, i.e. increasing x, results in fewer additions performed by Adder 1, 

and thus a lower energy at the same timing budget. The quality loss (shown on the left 

axis) is initially low when the allotted timing budget is high and few computations 

experience error. As T1 is reduced, however, we begin to observe that the quality loss is 

smaller for larger x. This corresponds to the scenario in which fewer operations are 

performed by Adder 1, and thus there is less opportunity for timing errors to occur. 

The Q-E behavior of the reduced-width adder is shown in Figure 3.3 (b). We are 

specifically interested in finding the Q-E behavior as a function of the bitwidth. Note that 

because no timing errors are allowed in Adder 2, an exploration with respect to timing 

budget, as shown for Adder 1 above, would have no purpose. We see that for large 

bitwidths of Adder 2, there is no quality loss. A significant reduction in quality occurs 
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with the onset of overflow errors when the magnitude of data being processed is larger 

than the available adder width.  
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Figure 3.4: Energy vs. quality loss Pareto front - comparison. 

The analysis of the system Q-E behavior combines the behavior of Adder 1 and 

Adder 2. This enables exploration of the x, D2, W2, and T1 design space in order to find an 

optimal Q-E solution.  The primary trade-off involves the choice of x. From Figure 3.3 

(c), we can see that the total quality loss reaches a minimum when x is around 4. For 

larger values, the quality loss due to Adder 2 becomes excessive. For smaller values, the 

quality loss is dominated by errors from Adder 1. However, the optimal choice of x also 

depends on both the total timing budget available as well as the bit-width of Adder 2. The 

set of optimal design decisions is best represented as a Pareto curve in the energy-quality 

space as shown in Figure 3.4. The figure shows the Pareto points, i.e. min(Q | E), that are 

generated by different choices of x and W2 at different T1. 

To understand the behavior of Pareto points in Figure 3.4 and trace the 

dependence of the optimal x on T1 and W2, we first study the simple case when D2 ≤ T1. 

Then, we relax the constraint to allow D2 > T1, and we adjust x and W2 under a fixed T1 to 

determine the new optimal set of x and W2 under the relaxed constraint.  
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Under the constraint that D2 ≤ T1, we can observe: 1) the optimal x is set by the 

overflow boundary (xof); and 2) the optimal Adder 2 width is the maximum Adder 2 

width (W2max), which is set by T1. The xof here is defined as the maximum possible x for a 

given W2 without having overflows in Adder 2, as shown in Figure 3.5 (a).  
Overflow boundary xof

Overflows when 
adder width is W2

No overflows when 
adder width is W2

Zone I
Adder 1   W1

Zone II Zone III

Adder 1    Adder 2
W1 W2'

Adder 2  W2 W2'

x'   x

 

   (a) D2 ≤ T1   (b) D2 > T1 

Figure 3.5: DCT coefficient partitioning. 

For a given timing budget T1 and D2 ≤ T1, there must not be any timing errors and 

we can define a maximum Adder 2 width as W2max. Since the onset of overflow 

immediately leads to large errors (Figure 3.3 (b)), W2max also sets a maximum x of xof at 

the boundary at which overflows appear. At the same time, we always aim to send as 

much data as possible to the error-free reduced-width adder (Adder 2), so as to reduce 

timing errors in the full-width adder (Adder 1). Hence, we choose x to be at its maximum 

limit (xof) to allow as much data as possible being processed in Adder 2. 

To further explore the design space beyond the point for which no timing errors 

are allowed in Adder 2, we state a theorem, and present its complete proof in Section 2.5: 

Theorem1: In the absence of overflows, the output timing error in a wide adder is 

greater than or equal to the error in a smaller-width adder when both adders process the 

same operands. 
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According to this theorem, sending more data to Adder 2, i.e. increasing x, will 

make it possible to further reduce the quality loss, even in the presence of timing errors in 

both adders. However, in order to avoid exceeding the overflow boundary with its large 

quality loss, we also have to increase W2 and hence xof, relaxing the timing constraint for 

Adder 2 to D2 > T1. As shown in Figure 3.5 (b), data in Zone I and Zone II is originally 

processed by Adder 1 using width W1. Data in Zone III is processed by Adder 2 using 

width W2.  After increasing x, data in Zone II is processed by Adder 2 using width W2', 

s.t. W2 < W2' < W1. The quality loss in Zone II is reduced while the quality loss in Zone 

III increases according to Theorem 1.  Since increasing x, i.e. sending more data to 

Adder 2, can reduce timing errors in Adder 1, but increasing W2 leads to more timing 

errors in Adder 2, there exists an x (and W2) with maximum quality loss reduction. These 

points correspond to the Pareto front of the dashed line in Figure 3.4.   

In the implementation, the reduced-width addition is actually realized using the 

truncated result of a regular-width adder sharing the same core logic. The combined 

adder architecture is shown in Figure 3.6. The indexes of the frequency coefficients are 

used by the control logic to determine whether to feed them into a full-width or reduced-

width addition. The control logic compares the index of the matrix component currently 

being processed with the predetermined classification constant x.  The output of this 

comparison is used to activate a truncation logic. The truncation logic takes a reduced 

number of LSBs from the full-width adder output according to the pre-designed Adder 2 

width, and sign extends them back to the full width and feeds the result back into the 

destination accumulator. 
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(a) Technique abstraction (b) Implementation 

Figure 3.6: Reduced width adder. 

3.2 ERROR CONTROL BY DYNAMIC REORDERING OF ACCUMULATIONS 

The technique introduced in Section 3.1 is able to delay the onset of large-

magnitude errors in individual two-operand additions.  The second technique presented 

in this section is based on reduction of the cumulative quality loss resulting from multiple 

additions, such as accumulations, which are a key component of many DSP algorithms, 

and, specifically, of IDCT. The key observation is that if positive and negative operands 

are accumulated separately, and added only in the last step, the number of error-

producing operations is reduced to one last addition that involves operands with opposite 

sign. At the same time, the operands involved in this last addition are guaranteed to be 

larger in absolute value than any individual opposite-sign operands involved in the 

original sequence of additions. This guarantees that the reordered accumulation will 

result in a smaller quality loss under scaled timing. 

Let us illustrate how the order of operations in accumulation affects the timing 

errors occurring at a given timing budget. The difference between optimized and un-
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optimized sequences is significant. As an example, consider four numbers (-1, 1, -1, 1) 

being accumulated. There are three possible sequences of accumulation: 

Case 1: 11111111+00000001+11111111+00000001 

Case 2: 11111111+11111111+00000001+00000001 

Case 3: (11111111+11111111)+(00000001+00000001)  

For Case 1, the 1st and the 3rd additions have large delay, each with a carry chain 

length of 8. For Case 2, the 3rd addition has large delay with a carry chain of 8. For Case 

3, only the addition outside the brackets has large delay with a carry length of 7. The total 

timing budget in Case 3 is roughly half of that of Case 1. Thus, we observe that the order 

of accumulation can significantly affect the frequency of worst-case delay as well as the 

length of the longest carry chain. 

Using the observation that additions of small numbers with opposite sign tend to 

cause large-magnitude errors, we now show how the sequence of additions can be 

changed to reduce overall error. As described above, we propose a strategy in which we 

first group operands with the same sign. Then, the operands in each group are 

accumulated and finally the results of two group-accumulations are added. This is akin to 

the strategy that Case 3 illustrates. Because the best grouping of operands cannot be 

known at design time, this technique is dynamic and is based on execution-time 

observation of operand values. 

The proposed implementation uses the sign bits in the MSB to separate the 

positive and negative operands when loading data. The implementation is shown in 

Figure 3.7. The control logic checks the sign bits and accumulates positive and negative 

numbers in separate accumulation registers. Then, in a final step, the results are added 

together. This final addition can in turn be protected against timing errors using either 

one of the techniques presented in Section 3.1 or 3.3. 
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Compared to the original implementation, the reordered accumulation carries 

extra overhead for the reordering logic and duplicate accumulation registers. 

Nevertheless, simulation results show (Section 3.5) that the technique can significantly 

improve the quality-energy profile under scaled timing. 

+
+

+

+
+

+

+
 

(a) Technique abstraction (b) Implementation 

Figure 3.7: Accumulation reordering architecture. 

3.3 PREVENTING ERROR SPREAD AND AMPLIFICATION 

In previous sections, we presented techniques for targeting individual error 

sources at the operation and block level. With knowledge of the application, we now 

further focus on control of sources of errors that have the potential to be spread and 

amplified at the algorithm level. More specifically, we propose a technique using 

algorithm-level retiming to explicitly prevent errors in critical steps that may have a large 

impact on downstream results and hence overall quality. 

For the 2D-IDCT algorithm, analysis of control and data flow is relatively simple 

because it consists of two nearly-identical steps: 
TT C A= ⋅  
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I T C= ⋅  

We address the problem of a timing error in Step 1. Such an error can generate 

multiple output errors in I because each element of T is used in multiple computations of 

Step 2. We can model this behavior by introducing an error matrix E, which is added to T 

such that the two algorithm steps become: 
'T T E= +  

'I T C E= ⋅ +  

Here, E'=E · C is the final error. Although E may have only one non-zero entry, 

the matrix product results in up to size(A) errors vertically or horizontally in E'. As a 

result, the noise in the decoded image of an unmodified IDCT has a stripe pattern (see 

Figure 3.19 in Section 3.5). 

Thus, to avoid such wide-spread quality loss, we need to ensure that no errors 

occur in Step 1. We assume an architecture in which supply voltage can only be scaled 

uniformly. If timing budgets are allocated to steps based on worst-case analysis, any 

reduction in VDD would lead to a reduced timing slack in Step 1 and hence un-allowable 

levels of errors being generated there. We therefore propose a strategy to allocate extra 

timing margins to critical steps, such as Step 1. Importantly, given overall latency 

constraints for the design, as is the case for many real-time image or video coding 

applications, end-to-end algorithm timing must remain constant and performance must 

not be degraded. Thus, an important element of protecting the early algorithm steps is a 

re-allocation strategy that shifts timing budgets between steps. Maintaining a constant 

total time, we show how to borrow computing time from non-critical algorithm steps in 

order to increase timing margins in critical ones, all while reducing overall quality loss. 

To implement such a strategy, we make the timing budget in each step adjustable. 

The original minimum error-free timing budget for each step is: 
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1 1step clkT N T= ×  

2 2step clkT N T= ×  

Where Tclk is the clock period, and N1 and N2 are the number of cycles in each 

step. In the original 2D-IDCT implementation, steps are identical and N1=N2=N. To 

adjust the budget, we need to divide it into multiple parts. A division factor M (M is 

greater than 1, and it is an integer) is used to make Tstep1=NM×Tclk/M, and Tstep2=N× 

Tclk/M. VDD is then scaled down, increasing the propagation delays. Consequently, Tclk is 

scaled to Tclk
' such that 2N×Tclk is equal to NM×Tclk

'/M+N×Tclk
'/M, i.e. 

Tclk
'=2Tclk/(1+1/M). Hence, the new clock frequency is:  

'
' 2

(( 1) )
clk

clk
clk

T
f

M M T
= =

+
 

Since the total budget is fixed, we disproportionally shift timing budgets under 

scaled VDD from Step 2 to Step 1. Note, however, that the factor M cannot become too 

large. Otherwise, the clock frequency would be too high and timing errors would not 

remain restricted to the adder in Step 2. 

 

(a) Technique abstraction (b) Implementation 

Figure 3.8: Rescheduling of algorithm steps. 

 The implementation includes logic to allocate different timing budgets to each 

step (Figure 3.8). We empirically choose M to be 2 and increase clock frequency 



 45

accordingly. The control logic includes a 1-bit counter to keep track of the cycle counts 

for each step. In Step 1, each operation is assigned 2 cycles, while each operation in Step 

2 is assigned 1 cycle. 

3.4 REDUCING RESIDUAL IMAGE ARTIFACTS THROUGH POST-PROCESSING 

Techniques discussed so far have dealt with preventing or minimizing errors in 

the output image. While the described techniques significantly reduce energy at an 

acceptable PSNR, they result in some undesired localized visual artifacts. The reason is 

that good PSNR alone is not a guarantee of acceptable visual quality of the image.  

In the following, we develop energy-efficient means of reducing such image 

artifacts for the 2D-IDCT design. Artifacts can be divided into two categories: salt-and-

pepper noise and stripe artifacts. Salt-and-pepper noise is a pattern of randomly occurring 

white and black pixels. In our 2D-IDCT system, this type of artifact is caused by timing 

errors in step 2 (Figure 3.8 (a)). By contrast, stripe artifacts are error patterns appearing as 

black and white lines of pixels, and are produced when timing errors happen in step 1 of 

the IDCT: errors in step 1 are amplified through the matrix multiplication in step 2, 

resulting in a stripe shape.  Depending on the multiplication order, the stripe can be 

vertical or horizontal. In our algorithm, we perform an operation T·D, where errors in the 

intermediate matrix T spread across different rows in the final output, resulting in a 

vertical stripe. If the order of two steps is reversed, artifact stripes would be horizontal. 

This property will affect the implementation of post-processing techniques. 

Importantly, because the logic for post-processing is quite simple we are able to 

guarantee that its delay is less than the adder delay. In this way, we are certain that post-

processing logic is free of timing-induced errors. 
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To reduce the artifacts, we propose two separate filtering techniques. These two 

techniques can be implemented individually, or combined together. In this dissertation, 

we demonstrate how to implement them separately. The first technique is median 

filtering. The algorithm uses a sliding window to replace each entry with the median of 

its neighboring entries. While preserving edges, a median filter is effective at removing 

localized high-frequency image artifacts, such as the aforementioned salt-and-pepper and 

stripe distortions, when the noise level is low [33]. Compared to other filters, it is also 

less complex and only requires comparisons. Therefore, the hardware implementation of 

a median filter can be made simpler and more energy-efficient. 

In our implementation, median filtering is performed on the converted output 

stream, and is applied to the entire image. In the design without median filtering, the 

output image is stored in memory and then sent out after each 8×8 block IDCT 

computation is done. With median filtering, each pixel is filtered when being sent out. As 

discussed before, stripe-shaped artifacts manifest themselves as single vertical lines.  

We therefore perform horizontal median filtering, which limits and localizes artifacts in 

the filter window. To minimize hardware overhead and maximize energy savings, we use 

the simplest possible 1-D median filter with window length 3. The filter checks a current 

pixel and all other pixels within the window to determine which one should be outputted. 

Hence the buffer needed for a length-3 median filter window is of size 2. However, in our 

experiments, the implementation of such a filter still results in up to 60% area overhead. 

To further reduce complexity, we can develop an approximate median filter.  The most 

visible artifacts are usually due to errors in MSBs of pixels.  Hence, we can apply 

median filtering by comparing pixel MSBs only. Experiments show that the two most 

significant bits are sufficient to generate an output with only 0.3dB PSNR degradation 
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compared to the case when all bits are used for median filtering. However, the area 

overhead is reduced to 6%. 

 

 

Figure 3.9: Images with/without median filtering. 

  A drawback of a conventional median filter is that it will produce a modified 

output even in the absence of timing errors (Figure 3.9). To reduce this effect, we modify 

the median filtering algorithm as follows: if the MSB of the median is the same as that of 

the unfiltered pixel, the filter will output the original pixel instead of the median.  As 

such, if there is no or only a small timing error, the unfiltered output will be passed 

through. This modification is based on the observation that median filtering is effective at 

removing large single pixel outliers. Hence, if the MSB of the median is different from 

that of the unfiltered pixel, an outlier is likely detected and the filtered pixel is used to 

remove it. Otherwise, it means that there is no large outlier, and the unfiltered pixel is 

used. In this way, we can expect that with very high probability, both the LSB errors 

introduced by median filtering as well as the outliers can be reduced. Such modification 

can significantly improve the image quality at all energy levels. For error-free images at 

(a) With conventional 
median filtering: 
PSNR=17.4dB 

(b) With modified 
median filtering: 
PSNR=29.7dB 
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high energy levels, the drop in PSNR due to median filtering is reduced from 14dB to 

5dB. The modified technique also significantly reduces the distortions caused by 

conventional median filtering. In the absence of timing errors, as seen in Figure 3.9, the 

conventional median filter leads to the loss of vertical lines. By contrast, our modified 

median filter preserves them.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Modified median filtering algorithm, window length 3. 

Another drawback in conventional median filtering is the boundary issue. Pixels 

at the boundary of each 8×8 block can not be filtered because the data in the filter 

m1=D1[7:6], m2=D2[7:6], m3=D3[7:6].  
if m1 ≥ m2 & m1 ≥ m3 & m2 ≥ m3  
      out = D_2;   
else if m1 ≥ m2 & m1 ≥ m3 & m3 ≥ m3  
   if D3[7] = D2[7] 
      out = D2;  
   else    
      out = D3;  
else if m2 ≥ m1 & m2 ≥ m3 & m1 ≥ m3  
   if D1[7] = D2[7] 
      out = D2;  
   else    
      out = D1;  
else if m2 ≥ m1 & m2 ≥ m3 & m3 ≥ m1  
   if D3[7] = D2[7] 
      out = D2;  
   else    
      out = D3; 
else if m3 ≥ m1 & m3 ≥ m2 & m1 ≥ m2  
   if D1[7] = D2[7] 
      out = D2;  
   else    
      out = D1;  
else if m3 ≥ m2 & m3 ≥ m1 & m2 ≥ m1  
      out = D2;   
end 
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window is insufficient. To solve this problem, we use the following strategy to generate a 

window for the boundary pixels. Let us assume that the pixel row being filtered is D0, D1, 

D2, D3...., where D0 sits at the left block boundary. We use the same window (D0, D1, D2) 

for computing both D0 and D1. The problem with this windowing strategy is that for both 

D0 and D1, the filtered output is the same. This can cause visible vertical stripe patterns at 

the 8×8 image block boundaries. However, such patterns are automatically mitigated by 

the previous technique, in which the filter, in most cases, will output the original pixel 

instead of the filtered one. 

The complete modified median filtering algorithm is shown in Figure 3.10. In this 

algorithm, we assume that the input is (D1, D2, D3) and the output is out (without 

filtering, the output out would be D2). 

Our second proposed post-processing technique uses error limiting. It relies on the 

observation that typical images have low local spatial variations. Hence, pixels within 

each block are likely to have the same MSBs. In the frequency domain, this manifests 

itself as a large DC and small AC components. Based on this observation, each pixel in a 

8×8 block can be represented as the sum of a baseline and a deviation. The baseline value 

is derived directly from the DC component. It is the same for all pixels in a block, and is 

the average over all 8×8 pixel values. The deviation is obtained from the AC 

components, and it differs from pixel to pixel.   

In typical smooth image regions, deviations will be small and pixel values are 

likely to have similar values, i.e. the same MSBs as the baseline average. Under scaled 

VDD, the baseline can be easily obtained without errors. In a 8×8 2D-IDCT, it is simply 

1/8 of the DC value, i.e. it can be computed by shifting the DC component by 3 bits. At 

the same time, pixels tend to have timing errors in their MSBs first. Therefore, if there 

are only small local deviations, we can substitute the pixel MSBs (which may be affected 
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by timing errors) with the error-free baseline MSBs, limiting the impact of any timing 

errors. Because error checking incurs area and energy overhead, we want to perform such 

substitution blindly. To do so and not introduce additional errors, we have to ensure that 

baseline MSBs are a correct predictor of error-free pixel MSBs, i.e. that Pixel[N:i] = 

Baseline[N:i]. The question therefore becomes 1) when this equality holds, and 2) if it 

holds, for what values of i. 

We address these questions by looking at a pixel representation as follows: 

MSBs LSBs

Pixel Baseline
Baseline Baseline

= + Δ
= + + Δ

 

where BaselineMSBs and BaselineLSBs represent zero-padded splits of Baseline at the ith bit 

position, and Δ represents the deviation, see Figure 3.11. We call BaselineLSBs + Δ the 

residue term.  

To guarantee Pixel[N:i] = Baseline[N:i] for a given i, we need to ensure that the 

MSBs (bits N:i) of the residue term are zero, i.e. that 0≤BaselineLSBs+Δ≤2i. We can 

rewrite this inequality as: 

2i
LSBsBaseline−Δ ≤ ≤ − Δ             (3.1) 

To find the i that satisfies inequality (3.1), we need to know both BaselineLSBs and 

Δ. We now show how to estimate both terms for the 2D-IDCT algorithm. 

 

Figure 3.11: Bitmap for all components. 
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To determine Δ, we can rewrite the 2D-IDCT algorithm, plug in the coefficients 

and separate the baseline and deviation terms: 
1 1
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The first term is the baseline: 
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=
 

From this, we can see that the baseline value can be simply computed by shifting 

the DC component (X0,0). 

The deviation Δ becomes: 
7 7

, ,
0 0
0 0

1 cos[ (2 1)]cos[ (2 1)]
4 16 16i j u v

v u
if u if v

u vC i j Xπ π
≠ ≠
= =

Δ = + +∑ ∑  

Let t represent the upper bound of |Xu,v|, i.e.: 

,| |u vX t≤         (3.3) 

and 

| | C tΔ ≤ ⋅        (3.4) 

where C is the following constant: 
7 7

, ,
0 0

1max (| cos[ (2 1)]cos[ (2 1)] |)
4 16 16i j i j

u v

u vC C i jπ π
= =

= + +∑∑  

We now rewrite (3.1) as: 

LSBsC t Baseline−Δ ≤ ⋅ ≤  

2 2i i
LSBsBaseline C t≤ − ⋅ ≤ − Δ  

To derive a tighter bound for BaselineLSBs: 
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2i
LSBsC t Baseline C t⋅ ≤ ≤ − ⋅         (3.5) 

Again, this is the inequality that needs to be satisfied to guarantee that Pixel[N:i] 

= Baseline[N:i]. 

Based on inequalities (3.3) and (3.5), we can perform error limiting. We first 

partition t into five regions and pre-calculate the corresponding values of C·t and 2i-C·t 

for different i. At runtime, we check the AC components Xu,v of the 8×8 input block to 

determine a smallest upper bound t. Using the pre-computed bounds for the given t and 

the Baseline computed from the DC component, we then find the smallest i for which 

(3.5) holds. If there is such an i, we replace pixel bits [N:i] with their baseline 

equivalents. Otherwise, no substitution is performed.   

To further improve the error limiting technique, we can reduce the upper bound t 

to allow more bits to be substituted. In practice, the deviation only reaches the upper 

bound when all |Xu,v|s equal to t and their signs are the same as the corresponding 2D-

IDCT algorithm coefficients. This rarely happens. Therefore, we can choose a smaller t. 

Such tweaking may lead to mis-substitution, but it removes other severe timing errors. 

We can empirically determine a practical value of t to use. 

Another way to improve the performance of error limiting is to introduce an 

allowed and forbidden state: when (3.4) is violated, we still have some knowledge about 

what the MSBs of the pixels ought to be. For example, if the first three MSBs of the 

baseline value are binary 100, and if (3.4) is violated, but the value of C·t is still below a 

certain level, then the correct pixel MSBs can be 011 or 101, but definitely not 000 or 

111. In such cases, we can remove the MSBs error by defining 000 and 111 as forbidden 

states, and use control logic to change these two states to either 100 or 011. Assuming the 

minimum difference between the allowed state and the forbidden state is D, we introduce 

another bound t': 
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t' = D/C 

where C is the constant mentioned before. If all AC components Xu,v are less than t', we 

know that the MSBs within a certain 8×8 block cannot take any value in the forbidden 

state. In our implementation, we use this concept to prevent the case when a white pixel 

becomes black and vice versa. We pick two sets of baseline MSBs values (100 and 001, 

which are found to be most likely to have significant errors) and determines the 

corresponding forbidden states for them. At run-time, we check whether the output MSBs 

fall into the forbidden states. If so, the MSBs will be substituted with the baseline MSBs. 

To determine which filtering method to use for a given application, we apply each 

of them to multiple images. The simulation results are shown in Figure 3.12. Figure 3.12 

shows that median filtering results in images with lower maximum quality. However, it 

outperforms error-limiting in the low-energy region. The cross-over point between the 

two techniques depends on the image, and we define the lowest cross-over point as a 

threshold. The threshold needs to be determined through simulations of representative 

images under scaled voltage. The quality required by a specific application scenario 

determines the technique to be employed. 
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Figure 3.12: Comparison between median filtering and error limiting. 
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3.5 EXPERIMENTAL RESULTS 

We applied our techniques to folded and unfolded 2D-IDCT and 2D-DCT 

realizations. In a folded architecture [34], each 1D-IDCT/DCT shares the same physical, 

pipelined multiplier-accumulator (MAC) unit containing an adder and a multiplier, which 

minimizes the area of the whole design. As shown for a 2D-IDCT in Figure 3.13, the first 

1D-IDCT computes intermediate results using the arithmetic unit and stores data in 

memory. The next 1D-IDCT then uses data from memory and the same arithmetic unit to 

compute the final result. In order to compare the effectiveness of our techniques on 

different architectures, we also implemented both a similar, folded DCT as well as an 

unfolded, pipelined 2D-IDCT. 

 

Figure 3.13: 2D-IDCT design architecture. 

The IDCT data and coefficient matrices A and C have 16-bit and 8-bit resolution, 

respectively. By contrast, in the DCT case, both data and coefficient matrices have 8-bit 

resolution while the output resolution is 16-bit. The multiplier in the arithmetic unit is 

pipelined and has a width of 8×16 bits. The adder has a width of 24 bits and it operates as 

an accumulator in the IDCT/DCT process. The error control techniques we introduce can 

be applied to various types of adders, and we realized them on a ripple-carry adder, a 

carry-select adder and a carry-lookahead adder. We conduct most of our experiments 

using a ripple-carry adder because it has better Q-E tradeoff at low energy compared to a 
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tree adder, as we will demonstrate below. Such a design restricts the timing errors 

entirely to the adder. As our results will show, however, our implementation of a scaled 

slow adder requires less energy than a balanced design that uses a fast adder to achieve 

the same quality and performance. The test images are from the USC-SIPI image 

database [35]. Only the Y signal of each Y:Cb:Cr format image is used. 

The 2D-IDCT/DCT is implemented in Verilog-HDL and synthesized using 

Design Complier with the OSU 45nm PDK. And we use Synopsys Hercules to translate 

the RTL code into a SPICE netlist. Then, we build a NanoSim + VCS testbench to enable 

both RTL-level and SPICE-level simulations to obtain final output images and energy-

delay results, respectively. IDCT and DCT follow the same computational process. Other 

than using different coefficients and reversing the partitioning of computations along 

output instead of input matrices, the same circuit and timing error control can be applied 

in both cases. In the following, unless otherwise specified, we first show results for the 

2D-IDCT case and then extend those to a 2D-DCT. 

A 2D-IDCT block is usually used in an image decompression system in which 

input data is quantized. We therefore added a quantization step before the IDCT block to 

generate realistic 8×8 input data. The quantization table is taken directly from the JPEG 

standard (Table K.1). We experimented with different compression ratios to test the 

effectiveness of proposed techniques; the results are in Figure 3.14. In these experiments, 

the ratio is defined as the total number of bits required for the original images divided by 

the total number of bits required for quantized DCT data. A high compression ratio 

means that the numbers in the quantization table are large and more high frequency 

components are reduced to zero. At low compression ratio of 2, the impact of 

quantization on the effectiveness of proposed techniques is not noticeable. At 

compression ratio of 40, the initial quality is lower, as is expected. However, the rate of 
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quality degradation is also lower. This is because aggressive quantization leads to many 

high-frequency DCT coefficients becoming zero, which reduces the likelihood of timing 

errors due to addition of small opposing-sign operands. Despite this intrinsic benefit of 

quantization, the proposed techniques are effective even at high compression ratios. This 

is because there are still many non-zero entries left in the DCT matrix.  

The experiments show that the proposed techniques with quantized data achieve 

about 60% to 80% energy savings for various levels of quantized data. In the following 

discussions, we use quantized data with a compression ratio of 40 to measure the 

achieved energy savings. 
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Figure 3.14: Q-E tradeoff under different compression ratios. 
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(a) Reduced-width adder 
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(b) Accumulation reordering 
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(c) Re-budgeting of two cycles to step 1 

Figure 3.15: Individual PSNR vs. energy profiles. 
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Table 3.1: Energy Saving and Area of IDCT. 

 VDD Energy saving Area μm2 Delay@1.1V 

Original 1.1 0% 149949.39 3.87ns 

Adder 0.95 49.1% 150482.45 3.90ns 

Reorder 0.95 32.1% 154611.35 3.90ns 

Step1&2 0.95 42.1% 150073.69 3.87ns 

All three 0.90 63.1% 155175.45 3.91ns 

Table 3.1 shows the energy savings for each technique and their combination.  

Energy savings are computed at PSNR = 30dB with the processing rate being a constant 

11ms per 256×256 frame. The resulting PSNR vs. energy profiles for each technique are 

shown in Figure 3.15. 

Table 3.2: Energy under different combinations. 

Component 0 1 2 3 4 5 

Energy (μJ) 570 440 329 344 354 365

Individual techniques can be combined to achieve maximum energy savings. 

However, since the described techniques all have varying impact on the different 

frequency components, their optimal combination is not obvious. Using the technique of 

Section 3.3, a larger timing budget is given to the earlier algorithm step. This change 

impacts all frequency components.  On the other hand, the technique of Section 3.1 

impacts mainly the high-frequency components (since they are the components that 

involve small-valued operands). Finally, the technique of Section 3.2 impacts operands 

with opposing sign, no matter if they are low- or high-frequency components. 

Based on these observations, we devised the following strategy for selectively 

applying techniques to different algorithm steps and frequency components: (1) In Step 1, 
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we allocate more cycles only to the low-frequency components while using dynamic 

reordering and a reduced-width adder to process the high-frequency components; (2) In 

Step 2, timing errors are not propagated into later steps, so only the reduced-width adder 

and dynamic reordering are applied. In this combination, the total number of clock cycles 

needed in Step 1 is smaller than what the technique introduced in Section 3.3 would 

require to achieve the same quality level. Hence, under a fixed total time, the adjusted 

clock period Tclk
' is larger and there exists more timing slack for energy savings.   

The key problem is to determine which low-frequency components in Step 1 

require more cycles for their processing after applying techniques from Sections 3.1 and 

3.2. Since the size of the frequency coefficient matrix in a 2D-IDCT is small, we can do a 

brute-force exploration to determine the best assignment. Table 3.2 shows the results of 

such simulations. Results indicate that the smallest energy is obtained when allocating 

more time (two cycles in our implementation) to the computation of the first two low-

frequency components. 
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Figure 3.16: Combined PSNR vs. energy profile. 

The PSNR vs. energy curve for the combination of techniques is shown in Figure 

3.16. A significantly improved trade-off curve is generated by a non-trivial combination 
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of individual techniques. Finally, a set of sample images under scaled VDD is shown in 

Figure 3.19. Note that achieving a similar energy reduction by conventional VDD scaling 

would result in unacceptable degradation of image quality (Figure 3.19(b)). To further 

demonstrate the effectiveness of our TERRA techniques, we test the 2D-IDCT design 

with various images [35], and the Q-E tradeoff curves are shown in Figure 3.17. As 

shown in the figure, for all the test images, our design can significantly reduce the 

probability of large timing errors, and thus improve PSNR at smaller energy values.  
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Figure 3.17: Q-E curve for various images with/without our techniques. 

Figure 3.18 shows the effectiveness of techniques at the level of individual bits. 

Originally, when no design optimizations are applied, the output image of the 2D-IDCT 

has severe MSBs errors (Figure 3.18 (a)). After applying the three optimizations (Figure 

3.18 (b)), both MSB and LSB errors are reduced. However, MSB errors are reduced 

much more significantly than LSB errors. 
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Figure 3.18: Frequency of errors in individual bit positions. 
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Figure 3.19: Image quality under different energy budgets. 

To better quantify the effectiveness of this work, we compare the achieved energy 

savings with those produced by alternative approaches to approximate implementations 

of image processing circuits. For that, we also applied the TERRA techniques described 

in this dissertation to a 2D-DCT design. We also implemented an approximate, folded 

2D-DCT design using the optimized computation sharing multiplication technique 

(a) Nominal: 
Energy=570 μJ 
PSNR=31.6dB 

(b) Nominal: 
Energy=137 μJ 
PSNR=16.5dB

(c) TERRA: 
Energy=143 μJ 
PSNR=31.2dB 

(d) TERRA: 
Energy=98.5 μJ 
PSNR=28.3dB



 63

(CSHM) described in [18]. Both designs use the same folded architecture described 

before, while the CSHM-based 2D-DCT replaces the pipelined MAC unit with a CSHM 

arithmetic unit. The two designs are synthesized using the same 45nm OSU library, and 

they are compared at identical performance. Results in Figure 3.20 show that the initial 

quality allowed by the CSHM design is slightly lower than in our implementation. This is 

due to the coefficient restructuring performed in CSHM. Under scaled voltage, the 

CSHM design discards long but less important paths, i.e., the ones for high frequency 

components. Since the DCT data in our experiments is quantized, many high frequency 

components are already zero (which equals to discarding them). As a result, we can see 

that the quality difference between the CSHM-based design, which computes all 8×8 

entries and the design which computes only the top-left (5×5) entries is negligible.  

Results suggest that the energy savings with the CSHM technique are about 50% at a 

quality of around 29dB, while using our TERRA techniques on a 2D-DCT can save about 

71% energy. At lower quality, however, the CHSM design performs slightly better. 
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Figure 3.20: Approximate 2D-DCT design: comparison of this work and CSHM. 

We also implemented an unfolded 2D-IDCT system with our techniques. In this 

design, there are physically separate MAC units for step 1 and step 2. At the expense of 
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roughly doubling the area, this allows the two steps to be pipelined. Simulation results for 

the unfolded IDCT are shown in Figure 3.21. 

The energy saving is 68% in the unfolded design after using TERRA techniques. 

These results suggest that the techniques are effective on both folded and unfolded 

realizations. Due to the higher base area and hence energy of an unfolded system, 

achievable energy savings are higher than in the folded case under the same performance. 
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Figure 3.21: An unfolded IDCT design. 

In the discussion so far, TERRA techniques have been implemented using 2's 

complement data representation. Experiments demonstrate that they are also effective in 

systems based on sign-magnitude representation. We implemented three sign-magnitude 

2D-IDCT systems using the same folded architecture with a single pipelined MAC unit 

as described before. The MAC units in these three implementations are designed based 

on different methods for performing sign-magnitude opposing-sign addition [36]: (1) 

translating sign-magnitude data to a 2's complement representation and using a regular 

adder to perform operations; (2) using a separate subtractor to handle opposing-sign 

additions, which internally are realized in 2's complement logic; and (3) employing a 1's 

complement subtractor to add opposing-sign numbers. Simulation results are shown in 
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Figure 3.22. Experiments show that by applying TERRA techniques about 50% energy 

saving can be achieved at a quality of 30dB. This is because even in sign-magnitude 

representation, additions of small opposite-sign numbers trigger the longest carry or 

borrow propagation in the adder or subtractor, respectively. Furthermore, due to the 

hardware overhead for conversion, sign-bit logic and additional subtractors, the base 

energy of sign-magnitude systems is higher. 
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Figure 3.22: An IDCT design using sign-magnitude representation. 

In earlier work, a widely used energy-saving technique has been used to reduce 

the internal data precision through quantization. To compare the effectiveness of different 

strategies, we implemented a 20-bit, folded 2D-IDCT design and compared its energy 

efficiency with our original 24-bit 2D-IDCT. In the 20-bit design, we employed a single 

MAC unit with 20-bit bitwidth, the input data and coefficients are 16-bit and 8-bit, 

respectively, while internal operations are truncated to 20 bits. Simulation results are 

shown in Figure 3.23. Our optimizations are independent of the selection of a particular 

precision and we applied them to both designs. Results show that by using our 

techniques, about 60% energy savings can be achieved for a 20-bit design. Importantly, 
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we find that the 24-bit TERRA design has uniformly better quality and energy than the 

reduced-precision implementation. 
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Figure 3.23: An IDCT design using 20 bits vs. 24 bits. 
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Figure 3.24: Q-E tradeoff using various adder architectures. 
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Figure 3.25: Reduced-width CLA adder. 

The experiments so far relied on a ripple-carry adder. We now compare the error-

energy behavior of different adder architectures, specifically, of a ripple-carry adder 

(RCA), carry-select adder (CSA) and carry-lookahead adder (CLA), see Figure 3.24. We 

find that the 2D-IDCT designs using CLA, and to a lesser extent CSA, have smaller base 

energy if timing errors are not permitted. Since CLA and CSA have shorter critical paths, 

their initial energy advantages are due to our ability to reduce voltage more significantly 

without causing timing errors. Under scaled voltages, our techniques also enable 

significant energy savings of 48% and 56%, respectively, for CLA and CSA based 

designs. Our techniques are applicable because timing errors are still primarily caused by 

small operands. This is confirmed by the effectiveness of solely applying a reduced-width 

adder to such operands in a CLA-based design, as shown in Figure 3.25. From Figure 

3.24 we observe that the magnitude of energy reduction is largest for a RCA. As a result, 

while a RCA has a higher base energy, once timing errors are allowed, RCA has lower 

energy than CLA and CSA under equivalent performance and quality. We hypothesize 

that the reason is due to the narrower, more balanced distribution of timing paths in the 
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CLA or CSA compared to RCA. This appears to be an example of the known behavior 

that an overly optimized design is less resilient to errors. 

Our design so far relied on a fast pipelined multiplier that is paired with a slow 

adder, where the latter is overscaled using TERRA techniques to control timing errors 

under a common timing budget. By contrast, in a traditional balanced design, a fast, 

pipelined multiplier would either be paired with a fast adder such as a CLA (balanced 

design 1), or a slow adder, such as a RCA, would be combined with a slower, non-

pipelined multiplier (balanced design 2) to meet a certain performance goal. To compare 

the different design philosophies, we implemented both balanced approaches. The 

resulting Q-E tradeoffs are shown in Figure 3.26. Balanced designs have a lower timing-

error free base energy. This is because we can exploit timing slack for additional energy 

savings. However, under a timing error acceptance strategy, the unbalanced design can be 

scaled even further while maintaining almost perfect quality. As already indicated above 

(Figure 3.24), at least in some cases, a slower RCA scaled to the same performance 

achieves a lower energy than a design that balances slack by using a multiplier with a fast 

adder.  
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Figure 3.26: QE tradeoff for balanced/unbalanced design. 
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Nevertheless, remaining errors lead to visually noticeable salt-and-pepper and 

stripe artifacts. In section II-D, we proposed two types of post-processing techniques for 

2D-IDCT to filter out such artifacts. The combination of post-processing with error 

shaping optimizations is straightforward.  For the median filtering technique, output 

data is buffered in memories with a size equal to the filtering window length and the 

approximate median of one data window is selected as the filtered result. This process 

operates directly on the output data and is independent from the error shaping techniques.  

Figure 3.18 (d) shows the bit-level error count of a whole image after using median 

filtering. Compared to Figure 3.18 (a), we can see that median filtering is effective in 

further reducing the MSB errors in the output image. However, it also leads to a slight 

increase in LSB errors.  

Post-processing via error limiting involves both input and output data. Input data 

is analyzed to determine whether value limiting should be applied and how many MSBs 

should be affected. Output MSBs are subsequently overwritten if the control logic on the 

input side triggers the substitution. This technique is also independent of core error 

shaping techniques. As shown in Figure 3.18(c), error limiting reduces MSB errors 

without increasing errors in the LSBs.  

Area, energy and image quality of the post filtering techniques are shown in Table 

3.3, where energy and quality is measured at the same voltage level as in Figure 3.19 (d) 

(PSNR of around 32dB). Corresponding images after post-processing are shown in 

Figure 3.29 (a) and Figure 3.29 (b).  Both filtering techniques introduce a slight area and 

energy overhead. However, their 3 to 5dB PSNR improvement is larger than what simple 

scaling of voltages to the same energy level would deliver in an unfiltered design. Figure 

3.27 shows the PSNR vs. energy profile of post-filtering techniques. Although image 

quality is generally improved, we can note that at high energy levels, the PSNR curve for 
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median filtering is worse than the unfiltered case. Yet, even at such high energy levels, 

the median filtered image looks as good as, if not better, than the unfiltered one. 

Furthermore, in intermediate regions, the PSNR metric is highly non-monotonic, which 

makes it difficult to fairly evaluate energy-quality tradeoffs.  Therefore, we utilize an 

alternative multi-scale structural similarity (MS-SSIM) [37] metric, which is designed to 

accurately assess humanly perceived image quality.  The MS-SSIM curve of different 

techniques under varying energy levels is shown in Figure 3.28. MS-SSIM results 

confirm that, compared to the original case, both post processing techniques improve the 

perceived image quality over the whole energy range. This coincides with the visual 

appearance of the images (Figure 3.29), which have less salt-and-pepper noise and look 

better. In addition, in MS-SSIM profiles, quality drops off at lower energy levels.  As 

such, further energy savings can be achieved while maintaining an overall excellent 

image quality with an MS-SSIM > 0.90. Figure 3.29 (c) and Figure 3.29 (d) show 

resulting test images and energy levels.  

As discussed previously (Section 3.4, Figure 3.12), there is a quality-energy 

tradeoff and cross-over point for choosing between different filtering techniques. At high 

energy levels, median filtering introduces intrinsic errors and the error limiting technique 

is better in terms of PSNR.  But median filtering has a slightly lower area overhead and 

outperforms error limiting when energy levels begin to drop. This effect is more 

pronounced when looking at MS-SSIM profiles, where perceptual base quality is less 

affected by the intrinsic smoothing introduced through median filtering. Overall, based 

on such tradeoffs, designers can select which post-processing technique to use depending 

on desired quality levels and energy budgets. 
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Figure 3.27: PSNR curve for filtered and unfiltered image. 
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Figure 3.28: MS-SSIM curve for filtered and unfiltered image. 

Table 3.3: Area/energy of IDCT with post processing. 

Type All three Error Limiting Median Filtering 

Energy (μJ) 143 108 100 

Area (μm2) 155175.45 159166.38 159009.63 

PSNR (dB) 31.2 30.7 30.0 

MS-SSIM 0.9856 0.9844 0.9873 
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Figure 3.29: Image quality after post-processing. 

 

(a) Test image with error 

limiting: Energy=158.0μJ 

PSNR=32.8dB MS-

SSIM=0.9844 

(b) Test image with median 

filtering: Energy=143.0μJ 

PSNR=31.7dB MS-

SSIM=0.9873 

(c) Test image with error 

limiting: Energy=108μJ 

PSNR=30.7dB MS-

SSIM=0.9844 

(d) Test image with median 

filtering: Energy=100μJ 

PSNR=30.0dB MS-

SSIM=0.9873 
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Figure 3.30. Comparison between median filtering and error limiting using quantized 
data. 

3.6 TIMING ERRORS IN BIG ADDER AND SMALL ADDERS 

In this section, we will prove the following theorem for 2'complement number 

additions.  

Theorem 3.1. In the absence of overflows, the output timing error in a wide adder 

is greater than or equal to the error in a smaller-width adder when both adders process the 

same operands. 

We make the following definitions and assumptions: 

1) There are two adders, Adder 1 and Adder 2. Adder 1 has a width of N1 bits and 

Adder 2 has a width of N2 bits, with N2 > 1 and N1 > N2. Adder 2 is sign-extended to N1 

bits, as shown in Figure 3.31; 

2) The output of Adder 1 is r1 with an error of e1, and the output of Adder 2 is r2 

with an error of e2. Assuming that the correct result of an addition is r, r = r1 + e1 = r2 + 

e2; 

3) Adder 1 and Adder 2's N2 LSBs are the same; 

4) No overflow in Adder 1 and Adder 2. 

The objective is to prove: |e1| ≥ |e2| 
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We use a divide-and-conquer strategy to prove the above inequality. In the 

absence of overflows (assumption 4), the correct result $r$ can be represented using N2 

bits, i.e.: 

2 21 12 2 1N Nr− −− ≤ ≤ −  

This can be rewritten as 2 1| | 2Nr −< . Similarly, since Adder 2 only has N2 bits, 
2 1

2| | 2Nr −<  and e2 = r - r2. Therefore, |e2|<|r|+|r2| and we can bound e2 as 

2 1
2| | 2Ne −<  

There are four cases for r1 and r2: 

C0: r1 = r2; 

C1: r1 ≠ r2, r1 is correct, r2 is incorrect; 

C2: r1 ≠ r2, r1 is incorrect, r2 is incorrect; 

C3: r1 ≠ r2, r1 is incorrect, r2 is correct; 

We need to prove that the condition |e1| ≥ |e2| holds for all four cases. 

For C0, |e1| = |e2|, i.e. it is trivially satisfied. 

For C1, r1 is correct and it follows that bits [N2:N1] in r1 are all the same. 

Likewise, bits [N2:N1] in r2 are sign extended and must always be the same. Hence, r1's 

[N2:N1] bits must be equal to r2's [N2:N1] bits, and r1 = r2. Intuitively, if there are no 

overflows and no timing errors in r1, then r2 in the smaller adder must also be correct. 

This contradicts r1 ≠ r2. Hence, C1 never happens.  

Case C2 can be subdivided into four subcases according to the N1th bit of r1 and 

r2, as shown in Figure3.32. 
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Figure 3.31: The bitmap for adder 1 and adder 2. 

 

Figure 3.32: The four subcases for C2. 

In subcase C2.0, both r1 and r2 are positive and r1 = r2+d with 2 12Nd +≥ . In 

subcase C2.1, r1 > 0 and r2 < 0 with r1 = r2+d and 2 12Nd +≥ . In subcase C2.2, r1 < 0 and 

r2 ≥0 with r2 = r1+d and 2 12Nd +≥ . Finally, in subcase C2.3, r1 < 0 and r2 < 0 with r2 = 

r1+d=r2 and 2 12Nd +≥ . For subcases C2.0 and C2.1, from assumption 2 it follows that 

r2+d+e1 = r2+e2, i.e. |e1| = |e2 - d| ≥ |d| - |e2| ≥ 2 12N + - |e2|. Similarly, for subcases C2.2 

and C2.3, r1 + e1 = r1 + d + e2, i.e. |e1| = |e2 + d| ≥ |d| - |e2| ≥ 2 12N + - |e2|. Since |e2| 

≤ 22 1N − , it follows that |e1|≥ 2 12N + - |e2| ≥ 2 12N + - ( 22 1N − )≥ 22N +1≥ max|e2|. Therefore, 

|e1| ≥ |e2| for all four subcases.  
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Finally, for case C3, |e2| = 0, i.e. |e1| > |e2|. The above proof relies only on the 

arithmetic of addition, and it does not depend on hardware implementation of the adder. 

Hence it is valid to various types of adders. 

3.7 SUMMARY 

This chapter presented techniques that enable architecture-level shaping of the 

quality-energy tradeoff under aggressively scaled VDD through controlled timing error 

acceptance. We demonstrated the implementation of these techniques on a design of a 

folded 2D-IDCT/DCT architecture. Results show that significant energy savings can be 

achieved while maintaining a constant performance and good image PSNR. To further 

improve the visual quality, filtering techniques can be implemented to reduce visual 

image artifacts. 
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Chapter 4: Digital filtering 

This chapter focuses on developing modifications for digital filter 

implementations to allow them to tolerate timing errors. Any digital filter implements an 

affine function of the input signal and recorded output signals: 

0 1

( ) ( ) ( )
N N

i j
i j

y n b x n i a y n j
= =

= ⋅ − + ⋅ −∑ ∑     (4.1) 

where x(i) is the input sequence, y(n-j) is the recorded output signal and aj, bi are the 

designable filter coefficients. These coefficients and their ordering can determine the 

timing error magnitude and frequency during the filtering operations. In the later 

discussion, we will show how to manipulate aj and bi to reduce the quality loss.  

4.1 ERROR CONTROL THROUGH BITWIDTH ADJUSTMENT 

We first present a technique that exploits the properties of operand statistics to 

achieve energy savings. We demonstrate this technique on a digital filter represented in 

direct Form II in Figure 4.1. The digital filtering process basically involves two types of 

operations: addition and multiplication. We implement the digital filter based on an 

industry-standard low overhead, low-power design in which the core multiply accumulate 

(MAC) operations are realized using a multiplier and adder [23] that are chained to 

operate in one clock cycle. In such architecture, the critical path is defined by the 

multiplier-adder chain, where under timing starvation, the addition at the end of the chain 

will experience timing errors first. Note that other components in the architecture are not 

on the critical path and can be treated as timing-error free for the amount of slack and 

range of voltage scaling considered in our experiments. We focus techniques in this 

dissertation on controlling timing errors in the adder. 
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Figure 4.1: Digital filter in direct form II. 

When VDD begins to scale down, timing errors impact the results of computation 

as data moves through the datapath. Timing errors impacting the highly significant bits 

cause the largest signal quality degradation. Therefore, the objective of the techniques we 

introduce is to prevent such errors as much as possible. It has been demonstrated before 

that the early-onset MSB errors are caused largely by processing small opposing-sign 

additions as discussed in the previous chapter. This is because in 2's complement code, 

the higher significance bits of small operands are filled with extended sign bits. As a 

result, in opposing-sign addition of small operands, the carry propagation chain tends to 

be long and requires longer time to settle. And because the actual operands are small, an 

early termination of the carry propagation results in large errors.  

In previous chapter a method to dramatically reduce the incidence and impact of 

such timing errors has been introduced. The idea is to utilize a reduced-width adder for 

small operands to reduce the length of the longest carry. The necessary condition, of 

course, is that the bitwidth of a reduced-width adder is large enough to represent the 

accurate result and avoid overflow. In filters, the input data and coefficient bitwidths are 

determined by the dynamic range specification, while the bitwidth of the datapath is 
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determined by the gain of the transfer function. The core of the technique we now 

develop is allowing a dynamic reduction in the bitwidth of the adders used in a filter 

implementation. We exploit the fact that common applications of digital filters operate on 

data characterized by distributions of a specific type. It is well-known, for example, that 

speech and music data usually follows a Laplacian distribution [38], as shown in the 

Figure 4.2 for audio data sample. 
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Figure 4.2: Distribution of input data in an audio application. 

The key property of this distribution is that most values are close to zero. 

Nevertheless, in the traditional design paradigm in which timing errors are not allowed, 

the datapath bitwidth has to be designed to be able to process the largest possible inputs, 

which in fact occur very rarely.  

The proposed architecture a filter that uses a dynamic-width adder is shown in 

Figure 4.3. The idea is to adjust adder bitwidth dynamically with the purpose of 

eliminating the early and large timing errors. The architecture requires checking the 

magnitude of the input data and processing the operands on an adder with bitwidth 

sufficient for the particular inputs. To allow the results produced by the dynamic-width 

adder to be used for downstream computation, we perform sign extension on the results 
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to match the full bitwidth. An actual implementation does not require the bitwidth to be 

continuously adjustable: according to our experiment, just two bitwidth values are 

sufficient to enable a significant quality-energy tradeoff.  

Operand magnitude-checking logic is activated on each addition. The checking 

logic checks whether MSBs in both operands are either all 1s or all 0s. If so, the checking 

logic asserts that the bitwidth of both operands are less than or equal to the reduced 

width, and then the operands are processed by Adder 2, otherwise the operands are 

processed by Adder 1.  

The dynamic-width adder architecture is shown in Figure 4.3. In the figure, it is 

assumed that only one physical adder is used. The inputs are first sent to the magnitude-

checking logic block, which can be implemented compactly. The checking logic uses 

AND gates to determine whether a specified number of higher-significance bits of the 

inputs are all zeros or all ones. If the condition is true, then a reduced-width adder should 

be used and the checking logic activates the width-control logic to perform truncation and 

sign-extension on the adder output. In essence, each time the magnitude-checking logic 

initiates a reduced-width addition, a smaller effective adder is used for that particular 

computation. Otherwise, a full-width adder is used. 

The overhead of implementing the described technique includes delay, energy and 

area costs. The magnitude-checking block operates on 5 to 15 bits with a maximum delay 

of about log2(15) gate equivalents. Since it runs in parallel to and is faster than the MAC 

unit, no overall delay overhead is incurred. The truncation and sign extension logic adds a 

multiplexer with one gate delay on the critical path. Note that the critical path is defined 

when operating in full-bitwidth mode, where sign extension is disabled and the 

multiplexer is in pass-through configuration. For the range of voltage scaling considered, 

truncation and sign extension logic, which is active only in reduced-width mode, is free 
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of timing errors and otherwise only contributes to the load on the adder. Overall energy 

and area overhead includes the magnitude-checking block, MUX gates and sign extension 

logic, which we quantify in the experimental section. Energy overhead also comes from 

the cost of switching the dynamic-width adder. Switching between a full-width and a 

reduced-width adder needs to occur on a per-sample basis. The frequency of switchings 

depends on the statistics of input operands. Experiments show that the incurred energy 

overhead is, in the end, justified because the entire technique enables significantly higher 

energy savings through an increased potential for voltage scaling. 

 

Figure 4.3: Dynamic-width adder architecture. 

Because the dynamic-width adder has only a discrete number (two) of allowed 

bitwidths, we need to address the question of how to find the optimal bitwidth for the 

smaller adder. We investigate this question on a practical digital filter design, which 

implements a 5th order FIR filter based on the single MAC architecture. We define 

Adder 1 as the full-width adder and Adder 2 as the reduced-width adder. The widths of 

Adder 1 and Adder 2 are W1 and W2 separately. Formally, the goal is to find the W2 which 

leads to the least quality loss at a given energy budget. We define the following 

parameters: D1: the worst-case delay of Adder 1; D2: the worst-case delay of Adder 2; T: 

the timing budget of Adder 1 and Adder 2. We assume in this discussion that T < D2 ≤ 

D1, so timing errors may occur in both Adder 1 and 2.  
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Figure 4.4: Quality loss in two adders vs. Adder 2 bitwidth. Behavior for several values 
of timing budget is shown. 
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Figure 4.5: Total quality loss as a function of Adder 2 bitwidth. 

Through simulation we obtain quality-energy profiles for both adders 

individually, Figure 4.4, and then jointly, Figure 4.5. From Figure 4.4 we see that as W2 

increases, quality loss in Adder 2 increases while quality loss in Adder 1 decreases. As a 

result, we see in Figure 4.5 that there exists a width Wopt that results in minimal total 

quality loss. The optimal width value appears to be largely insensitive of the allotted 

timing budget. When Adder 2 width is greater than Wopt, the overall quality loss grows 

because errors in Adder 2 increase and dominate. Conversely, if Adder 2 width is below 



 83

Wopt, a larger fraction of the input data is now processed by Adder 1. The result is that 

more small operands are processed by the full-width adder leading to more frequent and 

larger errors. 

So far, our discussion assumed that we realize a dynamic-width adder with only 

two possible bitwidths. In principle, it is possible to have a larger number of bitwidths 

available. We find, however, that increasing the number of bitwidths available does not 

substantially improve the quality-energy tradeoff. A simulation-based experiment show 

in Figure 4.6 suggests that quality loss can be significantly reduced by having two 

bitwidth values. However, a further increase in dynamic-adder complexity to enable a 

number of bitwidth levels beyond does not improve quality appreciably. 
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Figure 4.6: Quality loss vs. adder number. 

Further, we investigate dependence of the optimal dynamic-width adder 

parameters on operand statistics, specifically, on the variance of the operand distribution. 

Quality loss at different W2 is shown in Figure 4.7 for several values of operand variance. 
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Figure 4.7: Dependence of optimal Adder 2 width on input data variance. 

We observe that the optimal Adder 2 width changes notably as the variance of the 

input data changes. For smaller variance, a larger fraction of data has values that are 

small, and it is advantageous to make the width of Adder 2 (W2) smaller.  
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Figure 4.8: Quality loss and average adder width. 

To better understand the dependence of optimal dynamic-adder features on input 

data statistics, we develop an analytical model that allows an estimation of the optimal 

design parameters. Having an analytical model also removes the need to rely on time 

consuming simulation-based analysis such as presented above. Recall that the maximum 
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error in each adder is proportional to the width of that adder. Thus, the model is based on 

the intuition that the bitwidth of Adder 2 (W2) that minimizes quality loss at any given 

level of variance also minimizes the average effective adder width. We define average 

effective adder width as Wavg = W1 × p1 + W2 × p2, where p1 and p2 are the probabilities of 

using Adder 1 or Adder 2 respectively. As Figure 4.8 shows, we observe that quality loss 

and Wavg track well as W2 is swept and that their minima coincide to a good degree. 

Relying on the tracking of the two metrics established above, we formulate the 

search for the optimum W2 via a minimization problem for Wavg. The model assumes that 

input data distribution is given by the Laplacian distribution. We consider the case with 

only two bitwidths available. Let d1 and d2 be the two input operands to the adder, and x 

be the magnitude threshold for determining whether a larger (Adder 1) or a smaller adder 

(Adder 2) is used for processing the operands. Then, the problem of minimizing Wavg is 

given as: 
1 2 2

1 2 1

min : (| | , | | )
[1 (| | , | | )]

x P d x d x W
P d x d x W

< < ⋅

+ − < < ⋅
 

We make the simplifying assumption that the operands are independent which 

allows us to re-write the minimization problem as: 
1 2 2

1 2 1

min : (| | ) (| | )
[1 (| | ) (| | )]

x P d x P d x W
P d x P d x W

< ⋅ < ⋅

+ − < ⋅ < ⋅
 

The probabilities in the above expression can be evaluated under the assumption 

that the inputs follow the Laplacian distribution. We further assume that distribution is 

zero-centered, i.e., μ=0, which is true of many practical instances. The probability density 

function is given by: 
| |1( | , )

2

t
bf t b e

b

μ

μ
−

−
=  
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where b is the scale parameter related to variance as σ2 = 2b2. The sought probability can 

be computed by 
| |

1
1(| | )
2

t
x

b
x

P d x e dt
b

−

−

⎛ ⎞
< = ⎜ ⎟

⎝ ⎠
∫  

Substituting this probability into the minimization problem, we have: 
2 2| | | |

2 1
1 1log 1
2 2

t t
x x

b b
x x

e dt x e dt W
b b

− −

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥+ −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫ ∫  

Finally, this function being minimized can be reduced to a simple form: 
2

1 1 2( log )(1 )
x
bW W x e

−
− − −        (4.2) 

The minimum of function (4.2) can be computed by setting its 1st derivative to 

zero and solving the equation. The resulting equation is: 
2

1 2
1 2(1 ) ( log )(1 ) 0

ln 2

x x x
b b be e W x e

x b
− − −

− + − − =
⋅

 

We find that the model provides good matching to the simulation-based 

exploration that we performed earlier. For example, in Figure 4.5, which is generated by 

gate-level simulation, the optimal values of bitwidth for Adder 2 that minimize quality 

loss are 44, 42, and 39 for three levels of input data variance. For the same values of 

variance, the analytical model described above predicts optimal W2 to be 46, 43 and 40.  

To further test the effectiveness of the model, we compare the simulated optimal 

W2 and the model-predicted W2 under different W1, and the results are plotted in Figure 

4.9. Overall, we can see that our model and simulated results match well at inputs with 

low variance, which are typical in music and speech (with typical values < 0.01). 
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Figure 4.9: Predicted W2 and simulated W2 under different W1. 

4.2 ERROR CONTROL THROUGH REORDERING 

In the previous section, we discussed how the onset of large timing errors can be 

controlled by using a reduced-width adder for small operands. Since errors for large 

operands are unavoidable, such an approach is most effective if the relative fraction of 

small operand additions is increased. In this section, we introduce techniques to 

manipulate the input data distribution of intermediate MAC operations by reordering of 

filter taps. In a traditional single MAC unit design, the width of the MAC unit is 

determined by the maximal bitwidth over all taps, which is generally independent of any 

intermediate reordering. However, under a timing error acceptance philosophy, such 

techniques will allow us to statically apply adders of different width to different taps in 

order to reduce timing errors. Furthermore, in combination with dynamic bitwidth 

adjustment (Section 4.1), reordering can, on average, reduce the magnitude of data in 

intermediate operations and hence increase the effectiveness of this technique.  

From the filter expression (4.1), we can see that in computing the final output 

y(n), the filter needs to generate a set of intermediate results, which correspond to a set of 

intermediate transfer functions denoted as H0-H2N in Figure 4.1. These transfer functions 
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determine the maximum possible gain over all frequencies at intermediate nodes and, 

hence, the minimum required bitwidth for each intermediate result in the datapath. 

Without affecting the transfer function at the output of the filter, intermediate transfer 

functions vary when the order of filter taps is changed. As such, we can reduce 

intermediate gains and hence the bitwidth of intermediate operations by optimally 

reordering the taps.  Such a reordering can be done at design time. It allows us to apply 

an adder of smaller width to intermediate taps in order to reduce the timing errors under 

voltage scaling. 

To optimize the order of filter taps, we discuss the cases for finite impulse 

response (FIR) and infinite impulse response (IIR) filters separately. For a simpler FIR 

filter, the filtering expression (4.1) reduces to: 

0

0 1

( ) ( )

(0) (1) ... ( )

N

i
i

N

y n b x i

b x b x b x N
=

= ⋅

= + + +

∑  

where intermediate transfer functions can be expressed as: 

0 0H b=  
1

1 0 1H b b z−= + ⋅  

... 
1

0 1 ... N
N NH b b z b z− −= + ⋅ + + ⋅  

and the maximum gain Gi over all inputs at intermediate nodes is determined by:  

1 0| |G b=  

2 0 1| | | |G b b= +  

... 

0 1| | | | ... | |N NG b b b= + + +  
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Therefore, minimizing gains is achieved by processing of filter taps in ascending 

order of absolute filter coefficient values (b0, b1, ..., bN). After reordering, the filter 

expression becomes: 

0 10 1( ) ( ) ( ) ... ( )
Ni i i Ny n b x i b x i b x i= + + +  

where i0 … iN denote the reordered mapping of indices. 

For IIR filters, obtaining the optimized order of filter taps requires exhaustively 

search for all the possible orders, which is extremely inefficient. In practice, we divide 

the IIR filter coefficients into feedforward and feedback sections. For the feedforward 

and feedback sections, the coefficient sets (b0, b1, ..., bN) and (a1, a2, ..., aN) represent the 

coefficients of the denominator and numerator of the filter transfer function, respectively. 

We reorder the two coefficient sections separately based on the aforementioned FIR filter 

optimization method. 

The implementation of the reordering technique involves changing the order of 

arithmetic operations and applying a smaller adder to each tap depending on intermediate 

filter gains Gi. For a single MAC architecture, the abstraction of this reordering technique 

is shown in Figure 4.10. In the implementation, the tap control logic changes the order in 

which data and coefficient pairs are fed into the MAC unit. Furthermore, the tap control 

also truncates and sign-extends results for taps whose gains are small. Note, however, 

that reordering can not achieve a smaller gain for intermediate transfer functions in all 

cases. For example, if taps are already optimally ordered or if all coefficients are the 

same (as is the case in FIR filters using rectangle windows), no further optimizations are 

possible, but reduced adder widths may still be applicable.  
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Figure 4.10: Technique abstraction of arithmetic reordering. 

4.3 Experiments and Results 
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Figure 4.11: Single MAC filtering architecture. 

4.3 EXPERIMENT 

We base our implementation of a digital filtering architecture with timing error 

control on a single MAC unit design as shown in Figure 4.11. In this architecture, data is 

processed using a fixed-point format. Coefficients are represented in a Qint2.frac2 

format, i.e. with int2 integer and frac2 fractional bits. Similarly, input, output and 

intermediate data is assumed to be in Qint1.frac1, Qint4.frac4 and Qint3.frac3 format, 

respectively. By changing coefficients and data precisions, such a generic architecture 

can be used in different filtering applications. 
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We have applied our approach to several filtering examples in audio, speech and 

image processing. For audio and speech applications, we designed both FIR and IIR filter 

implementations. Filter coefficients were obtained using MATLAB's fdatool. In all cases, 

we excited unoptimized and optimized versions of each filter with the same 4 seconds of 

input data. The quality of the filtered output signals is measured using a segmental SNR 

(SSNR) metric, which is known to be a better estimator of perceived audio quality than 

regular SNR [39]. SSNR is measured by dividing the output signals into 20ms segments 

and averaging over the regular SNR values computed for each segment. 

For image processing applications, we designed a 2-D sharpening filter based on 

our proposed filtering architecture. The filter kernel is generated using default settings of 

MATLAB's fspecial function for sharpening images. The quality of filtered output 

images is measured using a standard peak signal-to-noise ratio (PSNR) metric.  

All designs are implemented in Verilog-HDL and synthesized using Design 

Complier with the OSU 45nm PDK. Timing and energy values are obtained through 

Spice-level simulations using NanoSim and VCS. In all cases, the nominal voltage of the 

filters is 1.1V. Energy savings and area overheads of implementing a combination of our 

techniques for each of the filter designs are summarized in Table 4.1 and Table 4.2. 

Energy levels are measured at commonly accepted good quality levels of around 120dB 

SSNR and 23dB PSNR, respectively.  
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Table 4.1: Energy and area overhead 

 Energy Overhead Area Overhead 

 Width Reorder Comb. Width Reorder Comb. 

FIR 0.5% 0.7% 0.9% 1.6% 1.1% 1.7% 

IIR 0.5% 0.3% 0.7% 1.1% 1.0% 1.2% 

Sharpen 0.5% 0.4% 0.9% 1.4% 1.1% 2.1% 

 

Table 4.2: Energy savings and performance. 

 VDD SSNR/PSNR Energy Saving Speed 

FIR 0.75V 119.7dB 58.8% 207.5Mhz 

IIR 0.75V 121.7dB 58.1% 207.9Mhz 

Sharpen 0.70V 23.3dB 69.7% 303.0Mhz 

4.3.1 FIR filter for audio processing 

The FIR implemented is a typical 5th-order low-pass filter based on a least-

squares design method. The sampling frequency is 22kHz, the pass band ends at 6kHz, 

and the stop band starts at 7.5kHz. The coefficients are b=(-0.1145, 0.0558, 0.5177, 

0.5177, 0.0558, -0.1145). The format for coefficients, input data, intermediate results and 

final outputs is Q1.21, Q3.29, Q4.50, and Q3.29, respectively. As such, the full adder 

width is 54 bits, while the reduced-width adder has a precision of 39 bits.  
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(a) Dynamic bitwidth adjustment 
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(b) Filter tap reordering 

2 3 4 5 6 7 8
70

80

90

100

110

120

Se
gm

en
ta

l S
N

R
 (d

B
)

Energy (μJ)

 Unoptimized
 Dynamic width adder
 Dyanmic width adder + reorder

5 μJ

35 dB

 

(c) Combined techniques 

Figure 4.12: Individual SSNR vs. energy profiles in FIR filters. 
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 The simulation results for the FIR filter are shown in Figure 4.12. Figure 4.12 

shows that the dynamic bitwidth adjustment can significantly delay the onset of timing 

errors when the voltage is scaled down. Furthermore, both dynamic adjustment as well as 

static reordering (Figure 4.12 (b)) improve the shape of the quality-energy profile, 

achieving a graceful quality degradation over a wide energy range. Combined (Figure 

4.12 (b)), significant energy savings can be obtained while maintaining almost perfect 

signal quality. To further test the effectiveness of reordering, we applied the technique to 

a range of FIR filters with orders ranging from N=15 to N=63. Resulting quality 

improvements at an energy budget of 45μJ are shown in Figure 4.13. In this experiment, 

we tested 7 different FIR filters. The Figure 4.13 shows that for most FIR cases, the 

reordering technique can have more than 10dB quality gain compared to the original 

case.  
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Figure 4.13: FIR filters using reorder technique. 

We also tested the sensitivity of the dynamic bitwidth adjustment technique to 

different types of input data. Figure 4.14 shows the results of feeding jazz, pop and 

classical music as well as speech audio files into a 63rd-order FIR filter. Results suggest 

that specifics of speech data trigger worse timing error behavior than in music. This is 
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due to longer segments of silence, which are characterized by small-valued operands 

triggering early and large timing errors. In all cases, dynamic bitwidth adjustment 

significantly improves quality-energy behavior, maintaining close to perfect quality over 

a large energy range. With dynamic adjustment, variations in data magnitudes and their 

effects on timing errors can be transparently evened out across different characteristics of 

input data. 
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Figure 4.14: FIR filter for different input data with dynamic bitwidth optimization. 

4.3.2 IIR filter for audio processing 

We also implemented a 3rd-order low-pass type II Chebyshev filter as a typical 

IIR filter example. The sampling frequency is 22kHz and the cutoff frequency is 8kHz. 

The coefficient sets are b=(0.2282, 0.5612, 0.5612, 0.2282) and a=(-0.1652, -0.3835, -

0.0300). The formats for coefficients, input data, intermediate results and final output are 

Q1.21, Q3.29, Q4.50, and Q3.29. The full-width and reduced-width adders in this case 

have 54 and 38 bits, respectively. 
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(a) Dynamic bitwidth adjustment 
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(b) Filter tap reordering 
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(c) Combined techniques 

Figure 4.15: Individual SSNR vs. energy profiles in IIR filters. 
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Results for the IIR filter are shown in Figure 4.15. Figure 4.15 (a) and Figure 

4.15(b) show the quality-energy profiles when applying dynamic bitwidth adjustment 

Both techniques can delay the onset of timing errors, but in the IIR case, dynamic 

bitwidth adjustment is far more effective than reordering. Furthermore, once errors start 

to happen, quality drops are overall more severe than in the FIR case. This is due to the 

feedback loop in the IIR filter, which leads to erroneous results being reused and 

propagating into subsequent computations. Nevertheless, as shown in Figure 4.15 (c), the 

combination of techniques is very effective in improving the timing error behavior of the 

system. 

4. 3. 3 Image sharpening filter 

Sharpening of images is used to increase the contrast between bright and dark 

regions by applying a high-pass FIR filter. The following array represents the coefficient 

kernel we generated in MATLAB: 
0.1667 0.6667 0.1667
0.6667 4.3333 0.6667
0.1667 0.6667 0.1667

h
− − −

= − −
− − −

 

The filter is usually realized as a 2-D convolution of each pixel with this kernel 

(except for the boundaries). We implement a 1-D version on our architecture using the 

following algorithm: 
9

1
( , ) ( , ) ( , )

k
P m n h i j I m i n j

=

= ⋅ + +∑ , 
3
ki ⎡ ⎤= ⎢ ⎥⎢ ⎥

, %3 1j k= +  

where I(m, n) and P(m, n) are the original and filtered pixel, at location (m, n), 

respectively. 
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Figure 4.16: Image quality under different energy budgets. 

(a) Original (b) Sharpened: 
Energy=2.19 μJ 
PSNR=23.9dB 

(c) Unoptimized: 
Energy=1.27 μJ 
PSNR=19.6dB 

(d) Dynamic width 
adder: Energy=1.27 μJ 

PSNR=23.0dB

(e) Reorder: 
Energy=1.27 μJ 
PSNR=23.0dB 

(f) Combined: 
Energy=1.27 μJ 
PSNR=23.2dB
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This represents a 9th-order FIR filter, where the format for coefficients, input 

data, intermediate results and final output is Q4.12, Q8.0, Q12.12, and Q8.0. The full and 

reduced width adders in this case have 24 and 20 bits, respectively. Sample images after 

applying the sharpening filter with and without our error control are shown in Figure 

4.16. From Figure 4.16 (c) we can see that, compared to a sharpened image at nominal 

voltage (Figure 4.16 (b)), voltage scaling without error control causes a lot of visually 

noticeable salt-and-pepper artifacts. By contrast, using our techniques (Figure 4.16 (f)), 

such noise is significantly reduced and resulting images exhibit good perceived quality at 

the same reduced energy.  

4. 4 SUMMARY 

This chapter presented techniques that enable architecture-level shaping of the 

quality-energy tradeoff under aggressively scale VDD through controlled timing error 

acceptance. The implementation of these techniques is demonstrated on the general 

digital filtering architecture. Results show that significant energy saving can be achieved 

while maintaining a constant performance and good SNR/PSNR. This dissertation 

presented techniques that enable architecture-level shaping of the quality-energy tradeoff 

under aggressively scale VDD through controlled timing error acceptance. The 

implementation of these techniques is demonstrated on the general digital filtering 

architecture. Results show that significant energy saving can be achieved while 

maintaining a constant performance and good SNR/PSNR. 
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Chapter 5: Conclusion 

The limited battery life has become a bottleneck for embedded system. To 

prolong the battery life, we develop low-energy techniques in this dissertation. Since the 

typical building blocks in an embedded systems consists of a memory system and a DSP 

system. Our techniques are specifically designed for these two systems.  

In memories systems, such as SRAM arrays, the increase of process variation 

significantly impacts circuit yield. Some patterns of variability are highly systematic, 

such as those in photolithography and chemical-mechanical polishing. Such variability 

has severe impact on the design of large SRAM arrays. This is because SRAM cells are 

typically sized to be of minimum possible area. And SRAM also needs to satisfy noise 

margin constraints over all cells in the array and these constraints determine both the 

minimum cell size and supply voltage. Increasing cell area and supply voltage can ensure 

that the noise margins are met. The requirement to meet noise margin constraints sets the 

limit on the smallest possible cell size and also on the minimum usable supply voltage 

VDD for the array. Because threshold voltage variation impacting the cells in the SRAM 

array is independent, the margin specification needs to be met at very high sigma corners, 

five or six sigma, in order to reach acceptable yield, requiring significant cell upsizing 

and increased VDD. SRAM cell area is an important metric of the success of technology 

scaling, and variability makes such traditional scaling hard to sustain. We introduce 

adaptive circuit scheme on optimization methods to allow low-power SRAM design 

under high-sigma constraints. The key contributions of this dissertation for the SRAM 

part is: (i) developing quantitative theoretical models for guiding the adaptive tuning for 

intra-array randomness; (ii) proposing a new architecture to reduce the overhead of high-

sigma margin design on VDD and cell area by employing an adaptive voltage scheme in 
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the SRAM array. Result show that proposed technique can achieve significant power 

savings in both active and sleep mode, meanwhile the technique can also reduce the 

SRAM array size.  

In embedded DSP systems, quality is set by a signal-to-noise ratio (SNR) floor. 

Conventional digital design strategies guarantee timing correctness of all operations, 

which leaves large quality margins in practical systems and sacrifices energy efficiency. 

In this dissertation, we present techniques to significantly improve energy efficiency by 

shaping the quality-energy tradeoff achievable via VDD scaling. In an unoptimized design, 

such scaling leads to rapid loss of quality due to the onset of timing errors. We proposed 

techniques that modify the behavior of the early and worst timing error offenders to allow 

for larger VDD reduction. The key contribution for the DSP part is: (i) developing both 

design-time and run-time techniques to reduce the occurrence of early timing errors with 

large impact on quality; (ii) using control and data flow analysis to disallow errors that 

are spread and get amplified as they propagate through the algorithm; (iii) developing 

low-cost post-processing techniques to improve signal quality. The experimental results 

on image processing and digital filter applications demonstrate that significant energy 

saving can be achieve using our techniques.  
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