Copyright
by
Subhashini Krishnasamy

2017

The Dissertation Committee for Subhashini Krishnasamy
certifies that this is the approved version of the following dissertation:

Online Learning and Decision-Making from Implicit Feedback

Committee:

Sanjay Shakkottai, Supervisor

Sriram Vishwanath, Co-Supervisor

Francois Baccelli

Gordan Zitkovié

Rayadurgam Srikant

Online Learning and Decision-Making from Implicit Feedback

by

Subhashini Krishnasamy, B.E., M.E.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 2017

Acknowledgments

First, I wish to express a sincere thank you to Prof. Sanjay Shakkottai for
the support, encouragement and advice he has provided throughout my time as a
graduate student. I have been very fortunate to have an advisor who cares deeply
about my work and who enthusiastically helps with any questions or problems I
have. I am also grateful to Prof. Sriram Vishwanath for his continued support
and encouragement. A special word of thanks goes to my mentors Urs Niesen and

Piyush Gupta for their valuable guidance during my internship at Bell Labs.

I have greatly benefited from the courses, both technical and otherwise, that
I took at UT; and for this, I am indebted to all the faculty members who taught
them. I would like to thank the staff of WNCG and the ECE department, especially
Karen Little and Melanie Gulick, for making administrative tasks at UT seem like

a breeze.

Completing this thesis would not have been possible if not for the joint
efforts of my collaborators — Siddhartha Banerjee, Sharayu Moharir, Rajat Sen,
Prof. Sewoong Oh, Prof. Ramesh Johari, P. T. Akhil, Prof. Rajesh Sundaresan,
Prof. Ari Arapostathis. I would specially like to thank Rajat for his perseverance
and for the numerous times his skill for discovering useful tools helped in making

headway in our research.

Thanks to all my friends and labmates at WNCG and UT, who made my

iv

stay in Austin a memorable one. It is difficult to imagine life here without all
your support and help. Finally, I must express my gratitude to my family for their

patience and love all through.

Online Learning and Decision-Making from Implicit Feedback

Publication No.

Subhashini Krishnasamy, Ph.D.
The University of Texas at Austin, 2017

Supervisor: Sanjay Shakkottai
Co-Supervisor: Sriram Vishwanath

This thesis focuses on designing learning and control algorithms for emerg-
ing resource allocation platforms like recommender systems, 5G wireless networks,
and online marketplaces. These systems have an environment which is only par-
tially known. Thus, the controllers need to make resource allocation decisions based
on implicit feedback obtained from the environment based on past actions. The
goal is to sequentially select actions using incremental feedback so as to optimize
performance while simultaneously learning about the environment. We study three

problems which exemplify this setting.

The first is an inference problem which requires identification of sponsored
content in recommender systems. Specifically, we ask if it is possible to detect the
existence of sponsored content disguised as genuine recommendations using implicit

feedback from a subset of users of the recommender system.

The second problem is the design of scheduling algorithms for switch net-

works when the user-server link statistics are unknown (for e.g., in wireless networks,

vi

online marketplaces). The scheduling algorithm has to tradeoff between scheduling
the optimal links and obtaining sufficient feedback about all the links for accu-
rate estimates. We observe the close connection of this problem to the stochastic
multi-armed bandit problem and analyze bandit-style explore-exploit algorithms for

learning the statistical parameters while simultaneously assigning servers to users.

The third is the joint problem of base station activation and rate allocation
in an energy efficient wireless network when the channel statistics are unknown.
The controller observes instantaneous channel rates of activated BSs, and thereby
sequentially obtains implicit feedback about the channel. Here again, there is a
tradeoff between learning the channel versus optimizing the operation cost based on

estimated parameters.

For each of these systems, we propose algorithms with provable asymptotic
guarantees. These learning algorithms highlight the use of implicit feedback in online

decision making and control.

vii

Table of Contents

Acknowledgments

Abstract

List of Tables

List of Figures

Chapter 1. Introduction

1.1

Problem Settings and Contributions
1.1.1 Detecting Sponsored Recommendations
1.1.2 Bandit Algorithms for Queueing Systems
1.1.3 Scheduling with Energy Costs

Chapter 2. Detecting Sponsored Recommendations

2.1

2.2

2.3

2.4

Introduction
2.1.1 Contributions of this Work
2.1.2 Related Work o
System Model L
2.2.1 User-Item Database
2.2.2 Recommendation Engine

2.2.2.1 Objective Recommendation Engine

2.2.2.2 Biased Recommendation Engine
2.2.3 Discussion of Assumptions
Anomaly Detection Algorithm and Theoretical Results
2.3.1 Anomaly Detection System
2.3.2 Feedback Data
2.3.3 Algorithm

Discussion e

viii

iv

vi

xii

xiii

PN, TGO

2.5

2.6

2.4.1 Choice of Threshold
2.4.2 Effect of Parameters on Performance
2.4.3 Applications
Numerical Results
2.5.1 Simulation Setup Lo o
2.5.2 Results
2.5.3 Ineffectiveness of Basic Average Test

SUmMmMary e

Chapter 3. Regret of Queueing Bandits

3.1

3.2
3.3
3.4

3.5
3.6
3.7

Introductiono
3.1.1 Contribution of this Thesis
Related work oo
Problem Setting o
The Late Stage
3.4.1 An Asymptotic Lower Bound
3.4.2 Achieving the Asymptotic Bound
The Early Stage in the Heavily Loaded Regime
Simulation Results oo

Summary and Discussion L L L oo

Chapter 4. Scheduling with Energy Costs

4.1
4.2

4.3

Introduction
System Model L
4.2.1 Arrival and Channel Model
4.2.2 Resource Allocation
4.2.3 Model Extensions,
Optimization Framework,
4.3.1 Stability, Network Cost, and the Optimization Problem
4.3.2 Markov-Static-Split Rules
4.3.3 A Modified Optimization Problem
4.3.4 A Feasible Solution: Static-Split + Max-Weight

4.3.5 Effect of Parameter Choice on Performance

ix

49
49
52
55
o7
61
63
65
71
74
75

4.4 Policy with Unknown Statistics 99
4.4.1 An Explore-Exploit Policy 100

4.4.1.1 Initial Perturbation of the Cost Vector 101

4.4.1.2 BS Activation 101

4.4.1.3 Rate Allocation 102

4.4.2 Performance Guarantees 102

4.4.3 Discussion: Other Potential Approaches 103

4.5 Convergence of a Time-Inhomogeneous Markov Process 105

4.6 Simulation Results 108
4.7 Summaryo e 109
Chapter 5. Conclusion 110
5.1 Future Directions 112
5.1.1 Detecting Sponsored Recommendations 112

5.1.2 Bandit Algorithms for Queueing Systems 112

5.1.3 Scheduling with Energy Costs 115
Appendices 116
Appendix A. Error Analysis for BiAD 117
A.1 Proof of Theorem 2.1 117

Appendix B. Queue-Regret Analysis for Queueing Bandits 129
B.1 Q-ThS Algorithm, 129
B.2 Proofs 129

B.2.1 Regret Upper Bound for Q-UCB. 129
B.2.2 Lower Bounds for a-Consistent Policies 145
B.2.2.1 Late Stage: Proof of Theorem 3.1 151
B.2.2.2 Early Stage: Proof of Theorem 3.3 155

Appendix C. Proofs and Additional Results in Chapter 4

C.0.3
C.04
C.0.5

C.0.6

Bibliography

Vita

Proof of Theorem 4.1
Proofs of Lemmas 4.1 and 4.2
Proof of Theorem 4.2
C.0.5.1 Cost Optimality
C.0.5.2 Stability: Negative Lyapunov Drift
Proof of Theorem 4.3
C.0.6.1 Cost Optimality
C.0.6.2 Stability: Negative Lyapunov Drift

xi

158
158
159
160
160
161
164
164
166

177

197

3.1 General Notation

List of Tables

3.2 Notation specific to Algorithm 2

4.1 General Notation

xii

2.1

2.2
2.3

24

2.5
2.6

2.7

2.8

2.9

2.10

3.1

3.2

List of Figures

Number of rounds in the test, Q(m) affects the number of ads that
can be detected — at least 8 and 15 rounds required for 7”(t) and T'(t)
respectively. L L

The performance improves with number of collaborating users n.

Variation of Type I + Type II error rates with size of data set.
Data set : D2, Algorithm : L1 + A2, A = 8,v = 0.35,n = 100..
When there are more choices to recommend, the user satisfaction with
objective recommender systems improves making detection easier.

As the size of the ad-pool A increases, the (personalized) ads become
similar to effective recommendations, making it hard to detect (Type
IT errorislarge). oo

Type I1 error rate decreases as bias probability v increases.

Variation of Type II error rates with feedback error probability (¢/).
Data set : D2, Algorithm : L1+ A1, A = 8,7 = 0.5,n = 2000, Q(m) =
10. Error in detection increases with the increase in feedback error .

Variation of Type I error versus Bias probability () in the presence
of feedback error. Data set : D2, Algorithm : L1 + Al, A=8n =
1000, Q(m) = 10. Performance of detection strategy decreases with
an increase in feedback errorrate. L.

Variation of Type I + Type II error rates with perturbations in the

algorithm’s estimate of the average number of effective items f([m]).
Data set : D3, Algorithm : L1 + A1, A=8,v=0.4,n=100.

Variation of Type I and Type Il error rates with threshold 7 for
the basic average test shows that the naive approach is sensitive to
the choice of parameter 7. Data set : D1, Algorithm : L1 + Al,
A =8,v=0.45,n = 100, Explore Probability = 0.1.

Variation of Type I error rates with variation in explore probability
shows that the threshold for the basic average test is sensitive the
value of explore probability. Data set : D1, Algorithm : L1, n = 100.

Variation of queue-regret W(t) for a particular user under Q-UCB in
alxbsystem withe=0.15and A=0.17.

Variation of Queue-regret W(¢) with K and e under Q-Ths. The
phase-transition point shifts towards the right as € decreases. The
efficiency of learning decreases with increase in the size of the system.

xiii

43

45

75

3.3 Comparison of queue-regret performance of Q-ThS, Q-UCB, UCB-1

4.1

and Thompson Sampling in a 5 server system with ¢, = 0.15 and
A = 0.17. Two variants of Q-ThS are 5)1resented7 with different ex-
ploration probabilities; note that 3K log®t/t is the exploration prob-
ability suggested by theoretical analysis (which is necessarily conser-

vative). Tuning the constant significantly improves performance of
Q-ThS. . . . e

The top two plots show the total queue size as a function of time
when €, = 0.2 and ¢; = 0.05, respectively. The bottom plot shows
the corresponding average costs (with the solid curve for €5 = 0.05).
A smaller ¢ yields a lower average cost but has higher average queue
SIZE. . . e

Xiv

Chapter 1

Introduction

This thesis studies online optimization problems at the intersection of ma-
chine learning and resource allocation. Online optimization problems find applica-
tions in various domains of computer science, operations research and economics.
In many real world problems involving resource allocation, information about the
environment is not completely known ahead of time but revealed only incrementally
with time as the decisions are made. For example, a flight pricing algorithm has to
gauge demand in an online fashion as customers buy tickets. A data center must
allocate its resources dynamically based on arriving workload. Similar problems
appear in other applications such as ad-space auctions, recommender systems, ap-
pointment scheduling etc. Usually, the goal is optimize a metric indicative of the

system’s long-term performance.

In many of these problems, the feedback data that arrives sequentially does
not explicitly reveal the unknown factors about the environment but only gives
some information about them. The decision maker has to extract useful information
about the environment implicit in this data to make further decisions. Moreover, the
decisions could influence not only the system’s performance but also the feedback
obtained subsequently. In such situations, the decision maker is faced with the

dilemma of choosing actions that resolve uncertainty about the environment versus

actions that optimize the system performance based on existing knowledge of the

environment.

We study three such problems which model practical settings in various
domains such as recommender systems, crowdsourcing, online marketplaces, wireless

networks etc.

1. The first is that of detecting advertisements disguised as genuine recommen-
dations in a recommender system. Here, we propose to use the effectiveness

of the recommendations made to users as feedback data.

2. The second is an online scheduling problem in a bipartite graph of servers and
queues which have arriving customers. It is assumed that the success proba-
bilities of the links between different queues and servers are non-homogeneous
and unknown. For every scheduling decision made, the controller receives feed-
back about the success of that decision, and the goal is to optimize a metric

which reflects the waiting time of customers.

3. The third is a joint problem of dynamic base-station activation and rate al-
location in an energy-efficient cellular network. Here, it is assumed that the
controller does not know the channel statistics but obtains instantaneous chan-

nel rates of activated base-stations.

In each of these problems, to represent the uncertain environment in the
system, we use discrete time stochastic models whose parameters are initially not

known to the decision-maker. As a model for implicit feedback, we assume that

the controller sequentially receives data samples from the environment (according
to the stochastic model) based on its past decision history. For example, in the
recommender system problem, we use probabilistic models to differentiate the be-
havior of a system that makes genuine recommendation from that which shows ads.
The implicit feedback used here is the knowledge of the effectiveness of the recom-
mendations made dynamically to the users. Likewise, in the bipartite scheduling
problem, we assume that every assignment of a queue-server link is successful with
some fixed probability independent of all previous assignments. The scheduler is
unaware of these success probabilities but receives feedback about the success of
its assignments in every time-slot. The scheduler progressively gains more of these
samples from which it can infer the success probabilities of the links. But note that
the goal is not to just learn these success probabilities. Instead, it is to minimize
the wait time of the customers in the system. Likewise, in the resource allocation
problem for energy-efficient networks, the channel is not known to the controller
and the instantaneous channel information constitutes the implicit feedback that

the controller obtains in every time-slot.

For all the three problems, we propose online algorithms that play the
explore-exploit tradeoff of dynamically estimating the unknown parameters in the
model and optimizing the system performance. We show asymptotic guarantees
for these algorithms using tools in stochastic analysis such as queueing theory, con-
centration bounds etc. Below, we give a brief description of the problems and the

contributions made by this thesis.

1.1 Problem Settings and Contributions

1.1.1 Detecting Sponsored Recommendations

Personalized recommender systems have been of tremendous benefit both
to consumers by helping them sift through a vast number of products, web-pages,
and news items and to online services by helping them present their products bet-
ter. Such systems however provide great opportunities for targeted advertisements
through the display of ads alongside genuine recommendations. We consider a biased
recommendation system where such ads are displayed without any tags (disguised
as genuine recommendations), rendering them indistinguishable to the end user.
We specifically focus on those biased systems that systematically favor a few items
over other better or at least equally good items, contrary to what an objective or

unbiased system would do. Our goal is to answer the following question:

Is it possible to identify a biased system using implicit feedback from a small subset

of users?

Contributions of this Thesis:

We identify key properties that distinguish a biased recommender system
from an objective (unbiased) one. For one, an objective recommender system gives
higher preference to higher ranked items in its recommendations, while a biased
system frequently recommends ads even if they are not well-rated. We formulate
a probabilistic model for the two classes of recommender systems based on some

universal principles satisfied by objective and biased recommenders.

We propose an algorithm that can detect distinguish between objective and

biased recommenders through statistical analysis on the users’ feedback. The algo-
rithm requires only binary information indicating whether a user was satisfied with
each of the recommended item or not. This makes the algorithm practically appli-
cable to real world issues such as identification of search engine bias and pharma-
ceutical lobbying. We study the algorithm’s performance using statistical analysis.
Such an analysis helps us in identifying the key factors that affect the algorithm’s
performance. Finally, we show simulation results on the algorithm’s performance

for various combinations of data sets and recommendation algorithms.

The model for recommender systems, the anomaly detection algorithm and
the various factors that affect the algorithm’s performance are discussed in detail in

Chapter 2.

1.1.2 Bandit Algorithms for Queueing Systems

The second problem is that of dynamic scheduling of servers to queues in a
U x K switch network with non-homogeneous service rates among the links. More
specifically, we consider a discrete-time stochastic switch network with U users and
K servers (U < K) with a single link between every user-server pair. The service
rate for each link is i.i.d. Bernoulli across time-slots and independent of other links.
The mean service rate could be different for different links. We study the design
of scheduling algorithms when the link rates are unknown to the scheduler. This
model can be applied to queueing and scheduling problems in various systems like

wireless networks, crowdsourcing platforms, cloud-computing centers etc.

We introduce this scheduling problem as the queueing bandit problem, which

is a multi-dimensional analog of the standard stochastic multi-armed bandit problem
with U users and K arms and with the regret defined as the expected queue-length
difference between the scheduling policy and a genie policy that knows the link rates.
We study how the explore-exploit trade-off in the traditional stochastic multi-armed
bandit problem generalizes to the multi-dimensional queueing network problem.

Specifically, we ask the following questions:

1. What are the best possible regret bounds for the queueing network?

2. What are the key differentiating factors in the design of algorithms for the

queueing bandit problem as compared to the standard MAB problem?

Contributions of this Thesis:

We introduce queue-regret — a notion of regret that is appropriate for queue-
ing systems. We then analyze a special case of the queueing bandit problem, which
we call the case of unique optimal matching. A switching system is said to have a
unique optimal matching if each user has a unique server which is stochastically the
best for that user and these optimal user-server pairs form a perfect matching in

the bipartite network.

For this special case, we derive lower bounds for the queue-regret for a well-
known class of traditional bandit algorithms — the class of all a-consistent policies.
We propose a scheduling algorithm for the case of unique optimal matching. The
proposed algorithm is a variant of traditional bandit algorithm with the addition of

more aggressive and structured exploration. We prove that the proposed algorithm

achieves the same scaling as the lower bound for the a-consistent class upto some

poly-logarithmic factor.

Our analysis shows that considering queue-lengths as the metric for regret
makes a fundamental difference in achievable bounds. In addition, we gain some
useful insight into the right kind of exploration strategy for the queueing bandit

problem. The model and the proposed algorithm are discussed in detail in Chapter 3.

1.1.3 Scheduling with Energy Costs

For the third part, we again consider a resource allocation problem in the do-
main of designing energy-efficient cellular networks. In small-cell wireless networks
where users are connected to multiple base stations (BSs), it is often advantageous
to opportunistically switch off a subset of BSs to minimize energy costs. Modern
cellular standards provide a great opportunity to achieve low energy operation by
enabling BSs to operate in sleep mode where the BSs can be switched OFF dy-
namically on a per-time-slot basis. Considering that the cost of operation includes
both energy to maintain active BSs and to switch BSs from one state to another,
we study the joint problem of BS activation and channel scheduling from a com-
mon bandwidth pool. The objective is to minimize the operation cost subject to

maintaining stable user queues.
We address the following question:
What is a good activation-cum-scheduling algorithm when the scheduler has no

knowledge of channel statistics but can only obtain instantaneous channel rates for

active BSs in every time-slot?

Evidently, here too, we have to deal with the explore-exploit dilemma, where there is
a conflict between activating diverse subsets of BSs to learn their channel statistics
versus using estimated parameters to activate BSs so as to optimize operation cost

and ensure queue stability.

Contributions of this Thesis:

We first consider the activation-cum-scheduling problem where the channel
statistics are known to the scheduler. We observe that, even for this simpler problem,
one cannot use greedy primal dual algorithms (with virtual queues), which are shown
to be optimal in traditional stochastic network resource allocation problems using
the standard Lyapunov technique. This is due to the existence of switching cost
which introduces a dependence between activation states in consecutive time-slots.
This is an important observation since it introduces a new class of problems for

which existing methods are not applicable.

For this problem (where the channel statistics are known), we propose an
algorithm that switches BS states only at a much slower time-scale than the channel
scheduling. This ensures not only a low switching cost, but by appropriately choos-
ing the active BSs at a slow time-scale and scheduling channels at a fast time-scale,
we show that the proposed algorithm can achieve close to optimal total operation

cost while maintaining queue stability.

For the setting where the channel statistics are unknown, we extend the
above algorithm to include an e-greedy type of explore-exploit strategy to learn the

channel statistics. Again, we show that this extended algorithm can achieve close

to optimal cost while maintaining queue stability. A key challenge in proving queue
stability is resolved using some new convergence results for time-inhomogeneous
Markov chains. We believe that these technical results are of interest in their own

right as they further extend existing results on this topic.

The system model and the proposed algorithm are described in detail in

Chapter 4.

Chapter 2

Detecting Sponsored Recommendations

2.1 Introduction

The growth of online services has provided a vast variety of choices to users.
This choice exists today in multiple domains including e-commerce with a variety
of products, and online entertainment (NetFlix, Pandora). With users having to
choose from an overwhelming set of items, recommender systems have become in-
dispensable in easing the information overload and search complexity. Recommender
systems are not restricted to retail businesses. A search engine like Google can be
viewed as a recommendation engine that helps users find relevant information by
ranking the search results according to their search criteria, history and other per-
sonal information. Social networking sites like Twitter and Facebook display Tweets
and News Feed based on users’ past behavior and their connections to other users.
News portals like Yahoo! News also present personalized content to online news

readers.

Personalized recommender systems serve as an attractive platform for adver-

tisers to reach their targeted consumers'. It is now customary to see ads alongside

!Subhashini Krishnasamy, Rajat Sen, Sanjay Shakkottai, and Sewoong Oh. “Detecting spon-
sored recommendations”. In ACM Trans. Model. Perform. Eval. Comput. Syst., 2(1):6:1-6:29,
November 2016. Co-authors of the paper made equal contributions in obtaining these results.

10

other genuine recommendations in many of the websites that provide recommen-
dation services. One can distinguish these ads from genuine recommendations, for
example, by the location of their placement or by their special tags. But recom-
mendation engines are not legally obliged to facilitate such distinction and could
possibly serve these ads mixed with genuine recommendations in a manner that
renders them indistinguishable to users. Such advertising is commonly known in

the online marketing world as native advertising.

According to the Interactive Advertising Bureau (IAB) [5], native advertising
aims “to deliver paid ads that are so cohesive with the page content, assimilated into
the design, and consistent with the platform behavior that the viewer simply feels
that they belong.” Although native advertising is a relatively new phenomenon,
it is expanding rapidly according to the numerous surveys conducted on sponsored
content. According to a 2013 survey by native advertising exchange Hexagram and
digital consultancy firm Spada [7], 62% of publishers offered native advertising at
the time of survey and another 16% planned to do so within a year. A survey
by eMarketer [6] reveals that marketing agencies see huge potential in native ads
— almost three quarters of marketers already use native advertising and only 7%
do not plan to use them in future. Spending on native advertising in the US is
predicted to increase from 1.3 billion dollars in 2013 to 9.4 billion dollars in 2018.
This explosion is fueling the growth of native advertising as a business ecosystem
with marketing agencies as consumers, publishers as media providers and several
companies such as Hexagram, HubSpot and Nudge offering tools to facilitate this

exchange of digital media space. Indeed, several watchdog groups (both federal and

11

industry sponsored) are cautious of this trend and have issued guidelines (e.g., FTC

policy [1], Interactive Advertising Bureau [5, 3]).

A biased recommender system which shows paid ads and sponsored content
without being transparent about them can have far reaching consequences. One
of these is user dissatisfaction with the recommendations [24]. A recent survey by
Facebook shows that users find sponsored ads mixed with genuine posts in their
News Feed more annoying than the explicit, well-separated ads [14]. Social and
political consequences of bias in the context of media and online content have also

been studied [49, 71, 50].

Thus, a basic question of interest to consumers is whether or not biased
recommendations can be detected. It would be beneficial for watchdog agencies and
groups that enforce compliance of ad disclosure policies [2, 4, 1] to have suitable tools
to detect sponsored recommendations that do not have explicit tags. Furthermore, it
could also be used by businesses to monitor their own products or their competitor’s
products. As an example, India’s anti-trust watch-dog, Competition Commission
of India (CCI), recently filed charges against Google for rigging its search results in
favor of its own products and services [64]. The charges were based on investigation
of complaints from various competitors spanning several businesses including search,
social networks, e-commerce etc. Automated tools that indicate potential biases in

recommendations would be of utility to these type of agencies.

Modern recommender systems, in general, consist of two components: (i) learns
individual preferences from user feedback, and (ii) recommends items to users based

on the estimated preferences. This combination of learning and recommending is

12

bound to be noisy (the learning phase will ezplore individual preferences typically
by presenting “random” recommendations), and several recommendations to users
will likely be ineffective. Critically, both noise and bias manifest as bad recommen-
dations to users. However, noise is benign and is a consequence of learning, while

bias is systematic and is to be deprecated.

The problem of detecting bias in its most general sense is a broad topic and
out of the scope of this thesis. We focus on a detecting a specific type of bias as
described above, where recommendation engines show sponsored content to users
contrary to their preferences without being transparent about their recommenda-
tions. These biased systems systematically favor a few items over other better or at

least equally good items, contrary to what an objective or unbiased system would do.

It should be noted that, with most service providers being non-transparent
about their recommendation strategies, one cannot hope to know the exact statisti-
cal profile of the recommendation engine a priori. Therefore, the key is to identify
the primary features that can be used to differentiate between the two types without
any a priori knowledge about the particulars of the recommendation strategy. One
could, for instance, consider the average rating or the average number of ineffec-
tive recommendations as the deciding criterion. However, as we also demonstrate
through simulations, such a basic algorithm based solely on average performance
cannot distinguish between deliberate systematic bias and innocuous random er-
rors. This brings us to the key question: Can we develop a better method to expose

a biased recommender system?

13

2.1.1 Contributions of this Work

We say a recommendation engine is biased, if it systematically favors a small
set of items over other items in the database irrespective of users’ preferences. On
the other hand, we say that a recommendation engine is objective, if it satisfies a
simple monotonic property in its recommendations to users — better suited items
are given higher priority (in a statistical sense). The primary goal is to answer the
following question: Can a meaningful distinction be drawn between objective and

biased recommendation engines?

BiAD Algorithm: We propose an anomaly detection algorithm that we call
Binary feedback Anomaly Detector (BiAD), which uses a statistical approach to
identify a biased recommendation engine. Under appropriate conditions on the
size of the ad-pool, the aggressiveness of the biased recommender system, and the
number of users/samples, we show that BiAD correctly (with high probability) dis-

tinguishes between objective and biased recommendation engines.

The algorithm leverages user collaboration, and is based on the observation
that a biased system is typically characterized by the occurrence of a large number of
ineffective recommendations in a small set of items. On the contrary, giving higher
priority to more effective items, as in an objective recommender system, precludes
such concentration in a small set. Notably, since the users are not aware of the set of
items, the BiAD algorithm is adaptive — as the recommender system learns users, the
users “learn” the recommender system. Further, our algorithm relies only on binary
feedback on the effectiveness of the recommendation. Although we assume in our

model that this feedback is explicitly provided by the users, obtaining only implicit

14

feedback may be feasible in some practical scenarios. In such settings, a binary
feedback model is extremely useful since it is easy to interpret implicit feedback in
terms of effectiveness of the recommendation. In Section 2.4.3, we give example
of a situation where only implicit feedback can be obtained and a binary model
of effectiveness is applicable. Finally, the BiAD algorithm also works for a large
class of recommender systems since our model does not place any constraints on the
recommendation engine other than mild statistical conditions. We finally present
extensive simulation results that cover various types of recommender systems and

data sets to illustrate the wide applicability of the algorithm.

2.1.2 Related Work

Following the recent successes of the targeted advertising services, there
have been several empirical studies that investigate the effects of displaying spon-
sored content alongside organic content [24, 57, 134]. It is empirically shown in [24]
that customers are less likely to select recommendations which are tagged as “ad-
vertisement” or “sponsored”, motivating the advertisers to remove such tags. There
have also been attempts to explain such effects through theoretical models [143, 26].
In addition, several researchers have worked on designing systems and algorithms
from the content provider’s perspective for revenue maximization through efficient
auction of the ad-space [90] and from the advertiser’s perspective for effectively

reaching the target audience [118, 135].

Our work, on the other hand, deals with identification of covert interaction

between content providers and advertisers, specifically of promotional content being

15

passed off as editorial content or recommendations. This problem falls under the
broad class of problems called anomaly detection, which generally involve identifi-
cation of unusual patterns in a system. Examples of such problems include network
intrusion detection, fraud detection, etc. [94, 30]. Prior work on anomaly detection
in recommender systems exists from the perspective of a recommendation engine as
a victim of false user-profile injections [34, 106]. To the best of our knowledge, ours
is the first work that considers the problem from the users’ perspective and proposes

a mechanism for detection of bias in recommendation engines.

There is a vast literature in the broader context of anomaly detection — a
comprehensive survey can be found in [38]. Various techniques of anomaly detection
which include classification, clustering, statistical, information-theoretic methods
etc. are applicable depending on the type of input data, the type of anomaly and the
desired output. Clustering and neighborhood-based techniques have been proposed
for many of the applications domains which seek to label a large collection of data
points as either normal or anomalous [116, 113, 146, 68, 89]. These techniques
are based on differentiation of features through comparison of multiple data points
against each other. Another category of techniques called classification [121, 67, 22,
126, 102] is based on using training data — data points that have been labeled a

priori — to learn the appropriate features of anomalous behavior.

The above mentioned techniques, designed for multiple input data instances,
cannot be applied to problems like the current one, which requires detection of a
single anomalous instance. For these problems, one has to rely on features specific to

the problem to differentiate between normal and anomalous data instances. Our ap-

16

proach to the problem of detecting sponsored recommendations falls in the category
of statistical techniques [12, 54, 11, 86, 144], following the classification of techniques
in [38]. In this class of anomaly detection techniques, the features specific to the
problem are characterized by a probabilistic model and statistical inference tests are
used to determine whether or not the input instance conforms to the representative

model.

In this setting, we make only mild assumptions in our model of the recom-
mendation engine, and do not restrict to a specific type of recommendation algo-
rithm. This enables our algorithm to be applied to a large class of recommender

systems.

2.2 System Model

In this section, we describe our assumptions about the structural properties
of objective and biased recommender systems by the means of a probabilistic model.
This model does not include any particulars about the working of the recommenda-
tion engine and therefore typifies a broad class of recommender systems. Before we
proceed to describe the model in detail, the salient features of this model are listed

below:

e An objective recommendation engine has a fairly good estimate of the user

preferences.

e An objective recommendation engine follows the monotonic property — higher

preference to higher ranked items.

17

e A biased recommendation engine systematically gives preference to a small set

of items irrespective of users’ tastes.

Notation: Our notation O, (2, 0, 0, w to describe the asymptotics of various param-
eters with increasing size of the database (total number of items in the database) is
according to the standard Landau notation. We say that an event occurs with high
probability if the probability of the event tends to 1 as the size of the database goes

to infinity. We use 1 {-} to represent the indicator function, i.e.,

1 if event E occurs
1 {E} == o ’
0 otherwise.
Equality and inequality between random variables always refer to almost sure (with
probability 1) conditions unless otherwise specified. For example, if X and Y are

two random variables, then X =Y implies X = Y a.s. For any given matrix, R,

the ut" row of R is represented by R,.

2.2.1 User-Item Database

The recommendation engine recommends products to users from a large
database of m items indexed from 1 to m. A user’s opinion about an item is rep-
resented by a numerical value that we call the user’s rating of that item. It should
be noted that these ratings are only an implicit representation of true opinions of
the users — higher the rating, better suited is the item for the user. We denote
the user-item rating matrix for the entire database by R, where rows indicate users
and columns indicate items. We introduce a parameter called the efficacy threshold,

denoted by 1 which is used to represent opinions on a binary scale. We assume that

18

a user is satisfied with a recommendation if the rating of the recommended item is
greater than or equal to 1. We refer to such a recommendation and item as being

effective for that user.

Definition 2.1 (Effective & Ineffective). An item i is effective for a user u if the
rating of that item by the user, Ry; is at least n. Similarly, a recommendation is
said to be effective for a user if the recommended item is effective. An item or

recommendation that is not effective is said to be ineffective.

Let f,(n,[m]) denote the number of items in the database [m| whose rating
is greater than or equal to n for user u. In other words, it is the number of effective

items in the database for user w.

Let us define the function F : R x R™ — R as follows:
F(r,Ry) :={i: Ry >},

where R,; is the i*" element of the m-length vector R,. This function is used to
find the number of items whose rating exceeds value r for any player w if the ratings
of all the items in the database for player u is given by R,. For example, if R,
is the row corresponding to player u in the rating matrix, R, then F(n,R,) is
equal to f,(n,[m]), the number of effective items for user w. Similarly, F(Ry;, Ry)
gives the rank of item i for user u. Also note that for any given R,, F(r,R,) is a

non-increasing function of r.

19

2.2.2 Recommendation Engine

We next describe the behavior of a recommendation engine using a proba-
bilistic model. Let 1,;(¢) indicate whether item ¢ has been recommended to user u
at time t, i.e.,

Tos(t) = 1 if item ¢ is recommended to user u at time ¢,
“ 0 otherwise.

We make the following assumption about any recommender system: An item that
has been recommended to a user once is not recommended to the same user again,

ie., for any user, u and item, i, Y ;o L,,;(t) < 1.

2.2.2.1 Objective Recommendation Engine

An objective recommendation engine is considered to consist of two com-
ponents - one is the learning strategy which estimates the user-item rating matrix
by the means of available feedback from users, and another is the recommendation
strategy which generates recommendations based on the estimated user preferences.
Our model does not specify the details of the learning strategy except requiring
that the output of the strategy, that is the estimate of the user-item matrix, be
close to the original rating matrix, R. Therefore, this model could be applied to a
wide class of recommendation engines which estimate users’ preferences fairly well.
Let the estimate of the rating matrix at time ¢ be denoted by R(t) = [Rm(t)} . This
estimate is modeled as the sum of the original rating matrix and an additive noise
matrix whose elements are independent across users, items and time. This can be
written as R(t) = R + €(t), where €(t) = [e,i(t)] is the noise matrix and e;(t) is

independent of all other random variables for all w,u’,,7,¢,t.

20

The recommendation strategy uses the estimated user-item rating matrix

R(t) to make recommendations at time ¢. The following model characterizes the

behavior of an objective recommendation strategy:

1. Recommendations are made based on a user-item weight matrix, denoted by
W(t) = [Wyi(t)]. This is a stochastic matrix (rows sum to one), which is

updated based on the current estimate of the rating matrix, R (t).

2. Given the weight matrix, a user is given a recommendation by choosing an
item randomly, independent of everything else, with weights given by the row

corresponding to the user in the user-item weight matrix.

3. At any time ¢, the weight matrix W (¢) satisfies the following monotonic prop-
erty: if 7 and j are two items that have not been shown to user u and the ratings

are such that Ry;(t) > Ruj (t), then the weights satisfy W;(t) > Wy;(t).

2.2.2.2 Biased Recommendation Engine

A biased recommendation engine marks a small set of items, A (C [m]) from
the item database as ads. To make a recommendation to a user, with probability -,
independent of everything else, it chooses an item that has not been shown from the
ad-pool, A. And with probability 1 —+, it can follow any recommendation algorithm
(for example, an objective recommendation algorithm). We refer to v as the bias
probability. Note that the strategy for showing ad items is unspecified except that
no item is shown to a user twice. In particular, the engine may even customize

its ad recommendations according to users’ tastes. As in the case of the complete

21

database, let f,(n,.A) denote the number of effective ads in the ad-pool, A for user,

u.

2.2.3 Discussion of Assumptions

Some of the assumptions in the recommender system model above are present
only for ease of analysis. We discuss below how they can be relaxed in practical

settings.

1. Tt is assumed that, in any recommendation engine, an item once recommended
to a user is not recommended to the same user again. This condition is required
only to ensure that there are no repeated recommendations of sponsored adver-
tisements that might be effective. Indeed, if all sponsored ad recommendations
are effective, it would not be possible to distinguish them from genuine rec-
ommendations. This assumption can therefore be relaxed to require sufficient
number of ineffective ad recommendations in a biased recommender system.

(A precise mathematical statement is given at the end of this discussion.)

2. The noise in estimation of the user-item rating matrix is assumed to be additive
i.i.d. noise. This can be replaced by a more general noise model in which
the elements of the estimated user-item matrix are independent across users,
items and time. The independence assumption is used to model arbitrary
errors which are unlikely to skew the estimated matrix in such a way as to
give high preference to a small number of ineffective items uniformly across a

large subset of users.

22

3. We assume that a biased recommendation engine decides to show sponsored
ads with probability v (bias probability) independent of everything else. This
assumption, again, is used only for ease of exposition. It is sufficient to have
Q(~) fraction of the total recommendations from the ad-pool, not necessarily

chosen at random.

To be mathematically precise, the assumptions discussed in points (1) and (3) can
be relaxed to the following condition for the analytical results in this chapter to

hold.

There exist constants c1,co > 0 such that for any t1 > 0,t2 > t1,n > 0, and

any set of users U such that |U| = n,
to
P Z Z]lw(l) > Cz’yn(tg — tl) Z 1—e a7,
I=t1+1ucl ic A

In other words, for any set of n users, if a biased recommendation engine makes
t recommendations to each user, then with probability at least 1 — e~ 17", the total
number of recommendations from the ad-pool among the nt recommendations is at

least coynt.

2.3 Anomaly Detection Algorithm and Theoretical Results

In this section, we describe the algorithm for detecting anomalous systems

and provide analysis of Type I and Type I errors as in binary hypothesis testing.

23

2.3.1 Anomaly Detection System

The problem is to design a test to detect if a recommendation engine is

biased. In other words, the test has to decide between the following two hypotheses:

e H;: “The recommendation engine is biased,” and

e Hj: “The recommendation engine is not biased.”

It is similar to a hypothesis testing problem except that the statistical distribution
for the two hypotheses are not well defined. The only a priori knowledge that is
assumed is the structure of a biased recommendation engine as specified in Sec-
tion 2.2.2. But the specifics of various parameters in the recommendation engine,
such as bias probability v and the ad-pool A is unknown. As in traditional hypothe-
sis testing problems, we make use of multiple data points obtained from many users

who constitute the anomaly detection system.

2.3.2 Feedback Data

The anomaly detection system consists of a set of n players which is a subset
of the user database in the recommendation system. Without loss of generality, we
denote these players as users indexed from 1 to n in the user database. These players
give binary feedback (effective or ineffective) on the items recommended to them.
The feedback can be subject to errors. We assume that the feedback given by user u
about any recommendation is in error with probability &, independent of everything

else.

24

2.3.3 Algorithm

We now describe an algorithm called Binary feedback Anomaly Detector
(BiAD) [83], that uses the recommendations made to the players and their feedback
to decide between one of the two hypotheses. In every round of recommendation,
each player is recommended an item by the recommendation engine. In round ¢,
the algorithm uses the feedback from the players and computes for each item, the
total number of players until that round who have been recommended that item and
found the item ineffective. This number is denoted by B;(t) for item i. If the sum
of the largest /l(t) of these numbers among all the items is greater than or equal to
a threshold T'(t), the recommendation engine is declared to be biased. Otherwise,
the same procedure is repeated in the next round. If the algorithm does not declare
the engine to be biased in Q(m) rounds, then the hypothesis that the engine is
biased is rejected. There are three parameters associated with the algorithm — A(t),
T'(t) and Q(m) — whose choice is governed by Equations 2.1-2.7). These parameters

correspond to the following quantities:

e A(t) : This parameter corresponds to the size of the subset of movies used to
compute the quantity of interest S(t) in round ¢. This has been elaborated in
the definition of S(¢) in Algorithm 1. The choice of this parameter we use is

given by Equation 2.1.

e T'(t) : This is a time varying threshold in the algorithm which is compared
with the quantity S(¢); the choice of this threshold has been elaborated in

Theorem 2.1.

25

e Q(m) : This is the maximum number of rounds of recommendation for which
the algorithm operates before declaring a recommender engine as biased or

objective.

The pseudocode for this algorithm is shown in Algorithm 1.

Algorithm 1 Binary feedback Anomaly Detector (BiAD)

Initialize ¢t = 1 (round 1).
while t < Q(m) do
Compute B;(t) = number of players who have rated item i ineffective upto
round ¢ for all i € [m].
Compute S(t) = max{Agm]:|A|:A(t)} Zze/\ Bl(t)
if S(t) > T'(t) then
Stop and accept Hj.
else
t+—t+1
end if
end while
Stop and reject Hi.

As opposed to the basic average test, this algorithm searches for concentra-
tion of large number of ineffective items in a small set. Since the number of potential
advertisements is unknown, this algorithm makes decisions in real-time as it gets
feedback from the players. Larger the size of the ad-pool, larger is the number of
feedback samples required to detect a biased engine. (The trade off between various
parameters is discussed in detail in Section 2.4.) Therefore, the algorithm increases
the size of the search set with progressing rounds of recommendation. Also, note
that the algorithm requires only binary feedback from the players — whether the
recommendations are effective or ineffective, which explains the name of the algo-

rithm.

26

The following theorem gives sufficient conditions for good performance of the
algorithm. Unlike in general hypothesis testing problems, we define Type I error,
which corresponds to false positives, only for objective systems. On the other hand,
Type 11 error is used to refer to missed detection in the case of a biased system. We
do not give any guarantees for the class of recommendation engines that are neither

objective nor biased.

Theorem 2.1. Let the parameters in the detection algorithm, BiAD satisfy the

following equations:

= min {nt,exp (1 + W (@)) ﬁ(t)} , (2.2)

where W (-)? represents the Lambert-W or product log function, and

+

p(t) = ntd + max {i ZE [Pf(l)} } , (2.6)

u=1 [=1

where (1)t = max(-,0), and ¢, are system design parameters.

2For any z € R, W(z)ew<z) = 2.

27

For ¢ =1/2, BiAD gives the following guarantees on the error probabilities:

(I) Type I Error:

If the recommendation engine is objective, and if

(a) the feedback errors to the anomaly detection system are such that {&,, u €
[nl} satisfy 5 3701 &u <
(b) the estimation errors €(t) of the recommendation engine, the number of

rounds Q(m) and ¢ are such that ZL? < 3V1<t<Q(m), and

n

(c) the number of players n = w(logm),

then the probability that BiAD declares it to be anomalous is O(%)

(II) Type 11 Error:
If the recommendation engine is anomalous with an ad-pool of size A, and if,

along with Condition (I)a, the following conditions hold:
(a) the number of ads, A < Q(m),
(b) the fraction of recommendations that are ads, i.e., the bias probability

2
v o> (Wil)) (1—6)1(1—c’) max <lm%71%> for some constant § € (0,1),

and

(¢) Sou_y fuln, A) = o(ynA), where f,(n, A) is the number of effective ads

for user u,

then the probability that BiAD does not declare the system as anomalous within

A rounds is e~ M=),
The proof of this theorem is presented in Appendix A.1.

28

2.4 Discussion

In this section, we discuss how the error probabilities depend on the param-

eters of the problem.

2.4.1 Choice of Threshold

Note that computation of the threshold function, T'(t) as specified in The-
orem 2.1 (given by Equation (2.2)) requires knowledge of the noise statistics and
also the players’ opinions about all the items in the database. More precisely, since
R(t) = R+ €(t), computation of E [Pf(l)} (see Equation (2.7)) requires knowledge
of R, and also the distribution of estimation noise, €,(l). The noise statistics reflect
the accuracy of the learning strategy of the recommendation engine, and it is pos-
sible that these statistics are unknown or cannot be estimated. Moreover, it might
also be difficult to obtain the players’ opinions about all the items in the database.
To overcome this difficulty, a practical implementation of the algorithm could use
an approximation of the unknown quantity. We now propose one way to compute

such an approximation. Note that

where the inequality follows since F (r, R, (1) + eu(l)> is a non-increasing function of

r. We assume that the estimates of the ratings are not skewed in one direction, and

29

therefore the noise has zero mean. Since the noise statistics are unknown, we could
approximate the right hand side of the above inequality by substituting the noise
term with its mean. With this approximation, the right hand side of the inequality

can be substituted with

! ()
gfl F(n,Ru(l)) 141 fulp[m]) =1+ 1 (2.8)

where f,(n,[m]) is the total number of effective items in the database for user u.
Depending on the application, it might be relatively easy to estimate this number or
at least estimate a lower bound for this number. As an example, one could roughly
estimate that for every user there are /m effective items among the m items in
the database. We observe in our simulations that a rough estimate of f,(n, [m]) is

sufficient to obtain good results.

Note that over-estimation (under-estimation) of 7'(¢) decreases the proba-
bility of Type I (Type II) error and increases the probability of Type I (Type
I) error. In other words, the higher the value of T'(¢), the lower is the probability
of Type I error and the higher is the probability of Type II error. Therefore, the
risk associated with false positives and missed detection could serve as a guideline
for the choice of the threshold function. In our simulations (Section 2.5), we pro-
pose a practical threshold function that gives a good balance between the two error

probabilities for most scenarios.

2.4.2 Effect of Parameters on Performance

Theorem 2.1 gives guarantees on the asymptotic performance of BiAD as the

size of the database grows large. These guarantees depend on various parameters

30

in the algorithm as well as the recommendation engine. From the analytic bounds
derived in Theorem 2.1, we analyze in this section the trade off between these
parameters to understand the conditions under which the algorithm shows good
performance. We see that the theoretical results support our intuitive understanding
about the conditions under which a biased system can be distinguished from an
objective system. These results are also corroborated by our simulation results

described in Section 2.5.

In Section 2.4.1, we consider the effect of the choice of the threshold param-

eter on the error probabilities. We now discuss the effect of other parameters.

Number of Rounds in the Test and Size of the Ad-Pool. It is seen (from
Result (I)) that the upper bound on the probability of Type I error increases with
increasing number of rounds. This is expected, since it gives more chances to falsely
declare a system biased. For Type I error to go to zero as the size of the database

goes to infinity, it is sufficient if Q(m) = o(y/m).

Guarantees for detection of a biased engine (Result (II)) are dependent on
various parameters. One of the conditions is that the ad-pool is not very large
(Condition (IT)a). Specifically, it is sufficient if the size of the ad-pool, A is at most
the maximum number of rounds of recommendations, Q(m). Therefore, increasing
Q(m) (the number of rounds of testing) enables detection of larger ad-pools but also
increases the probability of Type I error. Intuitively, a small ad-pool conforms with
our definition of a biased recommendation engine as one that favors a few items over

many others and therefore facilitates easier detection.

31

Number of Effective Ads. For correct detection of a biased engine, it is also
required that the average number of effective ads (averaged over all players) is not
very large (Condition (II)c). A large number of effective ads enables the recom-
mendation system to customize ads according to users’ tastes and is contradictory
to our interpretation of a biased system which recommends ads that do not match

with users’ preferences.

Number of Players. The dependence on the number of players n is seen in two
respects — it determines the minimum bias probability at which detection is guaran-
teed (Condition (II)b) and also the probability of Type IT error. Both these results
show that a large number of players improves the prospect of correct identification
which can explained by the fact that a large sample size supports better statistical

analysis.

Number of Effective Items. The minimum bias probability at which detection
is ensured is also determined by the average number of effective items in the en-
tire database. This can be seen from the term % in (Condition (II)b). The no
estimation noise case (e,;(t) = 0 for all u,4,t) is useful in understanding the term
%. When there is no noise, % =0 (ﬁ Sonly Zle m) . Therefore,
% has an inverse relation with the number of effective items in the database. This
conveys that a large number of effective items facilitates better detection of a biased
engine. Intuitively, a large number of effective items in the database helps in clearer

demarcation of an objective engine from a biased one. With many effective items in

the database, an objective system would have a higher probability of recommend-

32

ing effective items, while a biased system always makes at least fraction of its

recommendations from the ad pool where the number of effective ads is limited.

Bias Probability. The more a biased engine recommends from the ad-pool, the
more apparent is its biased behavior. The fraction of total recommendations that are
from the ad-pool is captured by the bias probability, v. We see that the probability
of Type II error decays exponentially with increasing 7, and also that larger ~y

facilitates easier anomaly detection (Conditions (II)b, (II)c).

Choice of ¢,c. In the course of the proof of Theorem 2.1, we prove that for any
choice of ¢, the Type I Error is bounded by O(Q(m)m~¢). Hence, by changing
¢ in the algorithm, one can control the error probability. However, the downside
of increasing c is that it effectively increases the threshold T'(¢), which results in

requiring the bias probability v = Q(logm(1 + (¢/A))/n).

Likewise, the choice of ¢’ determines the tradeoff between the algorithm’s
tolerance for errors in feedback and its ability to correctly identify a biased engine.
This tradeoff can be observed from the conditions given in Theorem 2.1. The higher
the value of ¢/, the greater is the range of feedback errors for which the guarantees
hold (Condition (I)a). However, this results in poorer guarantees for detection of

bias reflected by Conditions (I)b, (II)b and higher Type II Error probability.

2.4.3 Applications

The proposed anomaly detection algorithm is readily applicable in the retail

market. It can identify recommender systems that dole out sponsored advertise-

33

ments in the garb of personalized recommendations. In this era of personalization,
there are numerous other applications, two of which are described below. These two
examples also illustrate the advantage of BiAD in requiring simple binary feedback,

allowing it to be applied in a wide variety of scenarios.

Search Engine Bias. Search engine bias is one of the most important ethical issues
surrounding search engines, and its social implications have been studied for more
than a decade [71, 148, 50]. There has been increasing awareness about the influence
of search results ranking on election results in democracies. In [50] experiments
performed with 1800 undecided voters in India, revealed that alteration of search
results can create a shift of 12.5 % in voting decisions. The Stanford Encyclopedia
of Philosophy [131] describes search engine bias as non-neutrality of search engines,
where “search algorithms do not use objective criteria” or “favor some values/sites
over others in generating their list of results for search queries.” A sponsored search
engine in the late 1990s called GoTo ranked its search results purely based on bids
from advertisers [48]. It was evidently unsuccessful due to users’ mistrust of paid
searches and was eventually acquired by Google. Google also uses an auction to sell

ads but displays them physically separated from organic search results.

The pros and cons of enforcing transparency in the algorithms used for gen-
erating search results have been examined in [48, 62]. Even in the absence of total
transparency, anomaly detection systems such as BiAD could be useful in identify-
ing bias in search engines. With personalization being extended to search results
[45, 69, 43|, search engines virtually act as recommendation engines. With large

number of potential search results, our model of recommender systems with a large

34

database fits well in this problem where biased search engines correspond to bi-
ased recommender systems. To be more precise, personalized search result ranking
algorithms like PageRank [69] can be viewed as the learning strategy of the recom-
mendation system, while alteration of search results due to malicious reasons can
be modeled as bias in the recommendation engine. Feedback from users can be ob-
tained through their clicks on recommended links which implicitly indicate whether
or not the search results were effective. In addition to search engines, this example
can be extended to identify hidden sponsored advertisements in social networking

sites and online news portals, all of which use personalization algorithms.

Pharmaceutical Lobby. Pharmaceutical lobbying is another controversial issue
that affects many parts of the world [10, 93, 46, 125]. Among its many aspects, we fo-
cus on the marketing practices of large pharmaceutical companies which manipulate
the opinions of doctors, health care providers and law-makers by providing biased
information and through other tactics [29, 52]. There have been allegations that big
drug companies influence physicians to prescribe their highly priced branded drugs

even when other better or cheaper alternatives are available [92, 59].

Again, our interpretation of a biased recommendation engine is well-suited to
model this scenario. Since drugs are prescribed on a person-to-person basis, health
care providers can be viewed as recommendation service providers who recommend
drugs to patients, and the lobbying drug companies act as advertisers. A health care
system that favors a few incompetent (expensive or ineffective) drugs in spite of the
availability of other better (cheaper or more effective) alternatives matches well with

our definition of a biased recommendation engine. With data samples consisting of

35

prescriptions and their efficacy on patients, anomaly detection algorithms like BiAD

could help watchdog agencies in identifying such malpractices.

2.5 Numerical Results

We evaluate our algorithm through offline simulations, with careful consid-

erations for ensuring proximity to real world scenarios.

2.5.1 Simulation Setup

Given below is a detailed description of the methods we adopt in our simu-

lations to replicate the different components of a recommender system.

User-Item Database. Estimating users’ opinions about all items in a database
is essential for real-world recommender systems, and hence for simulating those
recommender systems as well. However, the ground truth on such data set is not
available, since in existing data sets each user typically only rates a small subset of

items, and those ratings are also noisy and possibly biased.

For a complete user-item rating matrix, we take available sparse data sets
([104, 25], MovieLens) and renormalize the ratings on a linear scale from zero to
ten. The missing entries in the sparse matrix are then filled in using the matrix
completion algorithm from [78]. For the purpose of simulating real-world user opin-
ions, we consider this completed matrix as ground truth. We evaluate our algorithm

on three data sets:

D1 a subset of the Amazon cellphones and accessories data set [104] with 3671

users and 8728 items,

36

D2 a subset of the Netflix Prize data set [25] with 2951 users and 9259 movies,
and
D3 a subset of the MovieLens 10M ratings data set with 3671 users and 8729

movies.

Recommendation Engine. Due to non-transparency of recommendation strate-
gies, it is not exactly known how recommendation engines behave. As a representa-
tion of the learning strategies used by these systems, we use two learning algorithms

popular in literature:

L1 Matrix factorization. Specifically, we use the inexact ALM method proposed
in [98].
L2 User-based collaborative filtering (with Pearson correlation as the similarity

metric [117]).

To simulate the temporal dynamics of a recommender system, the recom-
mendation engine is initially supplied a sparse subset of the user-item ratings cho-
sen according to a power-law degree distribution observed in real-world data sets
[70]. (Specifically, the number of feedback entries from each user is chosen from
a pareto(3,3) distribution.) In each round of recommendation, the engine recom-
mends one item to each user and observes users’ feedback about the recommended
items. It periodically updates its estimate of the users’ preferences based on this
feedback. In our experiments, we set the frequency of these updates to once in every

5 rounds.

It is natural for a recommendation engine to have an explore component

37

to address the cold start problem and have wider coverage of the database [95].
Therefore, in all our experiments we invoke random explore for 0.1 fraction of the
recommendations made. In a recommendation meant for exploration, an item is
chosen uniformly at random from the database, provided it has not been shown

previously.

For all other recommendations which do not explore, we use the following
recommendation strategy — for each user, the items are ranked according to the
estimated preferences. To make a recommendation, an objective recommendation
engine chooses the highest ranked item among the items not yet recommended. The
recommendation strategy of a biased engine follows the description in Section 2.2.2.2
— for any recommendation, with probability 1 — -, like an objective engine, it recom-
mends the highest ranked item and with probability v, it recommends an item from
the ad-pool. We consider two kinds of ad selection strategies — from the among the

ads that have not already been recommended to the user,

A1l An ad item is chosen uniformly at random.

A2 The ad item which has the highest ranking is chosen.

Strategy A2 corresponds to customization of ads according to users’ tastes. Note
that this is harder to detect than strategy Al since it has higher likelihood of rec-

ommending effective ads.

Anomaly Detection System. For players in the anomaly detection system, we
randomly choose a subset of users from the data set. In experiments which test

the performance of the algorithm with increasing number of players, we choose the

38

subset of players incrementally.

As explained in Sections 3.3 and 2.3, the algorithm requires feedback sam-
ples of efficacy of the recommendations made to the players. For our experiments,
we adopt the characterization of efficacy used in our theoretical model given by
Definition 2.1. Note that the number of effective items in the database for any user
depends on the efficacy threshold 7. To be able to test the algorithm for different
number of effective items, we choose a different efficacy threshold for each of the data
sets. Specifically, we set n = 5.5,8.0, and 8.8 for data sets D1, D2, and D3, which

correspond to an average number of effective items of 80, 250, and 150 respectively.

2.5.2 Results

We evaluate the performance of BiA D with variations in different parameters
of the recommender system and the anomaly detection system. To demonstrate
its effectiveness in different settings, we present performance results for various
combinations of data sets (D1-D3) and recommendation algorithms (L1-L2, Al-
A2). An objective recommendation engine is represented by its learning algorithm
(L1 or L2) while a biased recommendation engine is represented by its learning
algorithm (L1 or L2) and its ad-recommendation strategy (Al or A2). Although we
present experimental results for specific combinations for space limitations, other
settings give similar trade offs. Specifically, the simulation results corroborate our

theoretical analysis of the tradeoffs between various parameters in Section 2.4.

We now describe how the performance depends on the choice of various

parameters in BiAD. We set the parameter A(t) according to Equation (2.1) in all

39

the simulations. Other parameters of the algorithm are discussed below.

Threshold. As explained in Section 2.4.1, varying the threshold parameter T'(t)
in the algorithm affects Type I and Type II error probabilities in opposite ways.
Using lower values of threshold increases probability of Type I error and decreases
that of Type I error. The threshold given by Equation (2.2) is designed to ensure,
irrespective of the number of players in the anomaly detection system, low proba-
bility of false positive (Type I error) even when the estimated user preferences are
noisy. This is especially important if the risk associated with false implication of an

objective recommendation engine is high.

We observe that a less conservative threshold gives a better balance between
the two types of errors. Specifically, we use a threshold that can be proved to
guarantee low error rates under the assumption that the recommendation engine’s
estimation of user preferences are accurate. This threshold, denoted by T7(t), is
equal to the value of p(t) given by Equation (2.4). In all our simulations, we show
the performance of BiAD for both these threshold choices. Simulation results show
that T (t) gives better performance than T'(t) except in one case (Figure. 2.2b) where

those two choices give similar performances.

In both these thresholds, E[qu‘(l)] in Equation (2.6) is substituted with the
right hand side of (2.8). This requires knowledge of the number of effective items
for each player in the anomaly detection system. In our simulations, BiAD approx-

imates this with the average number of effective items for all the users. Effectively,

40

(Type I + Type IT)

o
@

o
=S

o
=

o
Ny

=170
T(t)

° °
> >

o
=

Error Probability
(Type I + Type IT)

o
o

<7
T(t)

0 5 10 15 20 25 30 35 40] 10 20 30 40
Number of Tounds (Q(m)) Number of Rounds (Q(m))

(b) Data set : D2, Algorithm : L2 +
A2, n=100,7v=0.35,A =8.

50

(a) Data set : D1 , Algorithm : L2 +
Al,n=100,v = 0.45, A = 8.

Figure 2.1: Number of rounds in the test, Q(m) affects the number of ads that can
be detected — at least 8 and 15 rounds required for 77(t) and T'(t) respectively.

it uses the following value of p(¢) instead of Equation (2.6):

p(t) = Z FmD) — 111 (2.9)

where f([m]) is an estimate of the average number of effective items in the database
[m]. We assume that this average number is not very difficult to estimate and in all

the results, unless specified, BiAD has an accurate estimate of this number.

Number of Rounds in the Test. The number of rounds of recommendation Q(m)
affects the error probability. This is seen in Figure 2.1 which shows the variation
of sum of Type I and Type II errors with Q(m). Type I error rate is in fact
close to zero for all values of Q(m) for both the thresholds, so the plots effectively
show Type I error rates. Theorem 2.1 guarantees detection of a biased engine if

Q(m) > A. The plots show that BiAD detects 8 ads if Q(m) is at least 8 and 15 for

T'(t) and T'(t) respectively. For all the remaining simulations, we set the parameter

Q(m) = 40.

41

=T R 1 =T
7(t) i T(t)

UU.Z L
0 20. - 40 60 80 100 0 20 40 60 86 160 120
Number of Players (n) Number of Players (n)
(a) Data set : D1, Algorithm : L1 + (b) Data set : D2, Algorithm : L1 4+ Al
Al, A =8, = 0.45. ,A=8~=0.35.

Figure 2.2: The performance improves with number of collaborating users n.

Number of Players. Larger number of players in the anomaly detection system
indicates higher number of input samples to the algorithm, and as expected, the
algorithm performs better as this number increases. In Figure 2.2, we plot the sum
of Type I and Type II error rates with increasing number of users. To detect
a biased engine with the specified value of v, these plots show that 70 and 100
players respectively are sufficient when 7”(¢) and T'(¢) are chosen to be the threshold

parameter. We use 100 players in all other simulations.

In addition to the choice of parameters in the algorithm, various aspects
of the recommender system affect the performance of BiAD. These are described

below.

Size of the Database. Theorem 2.1 shows that BiAD performs well for recom-
mender systems with large item databases. Databases of varying size are constructed
by sub-sampling items from the original data set. Figure 2.3 shows the variation of

Type I and Type IT errors with the size of the database. T'(t) and T'(t) have very

42

Il
@

o
>

% o
o
TR A0 80 10 13S0
- T'(t)

T(t)

Error Probability
(Type I + Type IT)
[
=

<
o

500 1000 2000 2500 3000
tems (m)

1500
Number of T

Figure 2.3: Variation of Type I + Type I1 error rates with size of data set. Data set
: D2, Algorithm : L1 + A2, A =8,v = 0.35,n = 100.. When there are more choices
to recommend, the user satisfaction with objective recommender systems improves
making detection easier.

similar performance for the parameters in this experiment. The plot shows that, for
detection of 8 ads recommended 35 percent of the time, the algorithm is effective

for databases of size 1500 items or larger.

We now demonstrate that BiAD has been appropriately designed to identify
biased engines that systematically recommend (make a sizable fraction of recommen-

dations) from a small ad-pool.

Size of the Ad-Pool. Theorem 2.1 shows that BiAD guarantees detection of
a biased engine that has a small ad-pool. This same effect is also observed in
simulations — Figure 2.4 shows rate of missed detection (Type II error rate) with
varying size of the ad-pool. It is seen that both the thresholds perform well for small

number of ads, while threshold 7"(¢) can detect an ad-pool of size upto 25.

Bias Probability. The bias probability v quantifies the intensity of bias of the
recommendation engine. Plots (Figure 2.5) for Type I error rate with v show that

more biased (higher) engines are easier to detect.

43

° 3 o
S > o -

or Probability (Type 1)

E
o
o

ot

0 5 10 25

(a) Data set : D1 , Algorithm : L1 +

Al, n=100,v = 0.45.

15 20 30
Number of Ad Items (4)

35 40

o T'(t)
— T(t)
S
=08
€
=.0.|
204
~
0.2
[s N Greedroebegurseperive
10 30 40 50
er of Ad Items (A)

(b) Data set : D2, Algorithm : L2 +

A2, n=100,v = 0.35.

Figure 2.4: As the size of the ad-pool A increases, the (personalized) ads become
similar to effective recommendations, making it hard to detect (Type II error is

large).

3

<T(0)
T(t)

0 0.1 0.2 0.3
Bias Probability ()

(a) Data set : D2, Algorithm : L1 +

A2, n=100,A =8.

0.4

0.5

R ()
= --T'(t)
~08 "
& 3
= H
208
204
-9
=02
0 0.1 0.4 0.5

02 03
Bias Probability (v)

(b) Data set : D3, Algorithm : L1 +

A2, n=100,A =8.

Figure 2.5: Type I error rate decreases as bias probability ~ increases.

44

01

od i L L L L L
02 022 024 026 028 03 032 034 036 038 04
Average F ()

o Feedback Erro

Figure 2.6: Variation of Type I error rates with feedback error probability (¢).
Data set : D2, Algorithm : L1 + A1, A =8,y = 0.5,n = 2000, Q(m) = 10. Error
in detection increases with the increase in feedback error

Average Feedback Error(c’). Theorem 2.1 shows that the probability of detect-
ing a biased recommender system goes down with increase in feedback error ¢/. This
can be observed in Figure 2.6 where Type I error is plotted against increasing ¢/
while all other parameters are held constant. In Figure 2.7 Type I error is plotted
against bias probability () in the presence of feedback error of 10%. With 1000
players, the threshold 7"(t) has zero error in the presence feedback error for bias

probability as low as 0.2.

With increasing feedback error, higher number of players are required to ob-
tain performance comparable to the setting when there is no feedback error. There-
fore, in practice, the effect of feedback errors can be mitigated by having sufficient
number of participating players in the system. Note that, for binary feedback, an
error implies a complete flip in feedback and therefore, even small percentage of er-
rors can be significant. The simulations above demonstrate the robustness of BiAD

against feedback errors.

Estimate of the Number of Effective Items. In all the simulations above, it is

45

h —e-T'(1)
091 (1)

\
< \ |
Z07- A
g \

\
vod=01

\ L
0.1 0.2 0.3 0.5 0.6 0.7

0.4
Bias Probability (7)

Figure 2.7: Variation of Type IT error versus Bias probability () in the presence of
feedback error. Data set : D2, Algorithm : L1 + Al, A = 8,n = 1000, Q(m) = 10.
Performance of detection strategy decreases with an increase in feedback error rate.

bl
@

o
=S

ror Probability

(Type I + Type I1)
o
:

Ex

<
o

S SRS ST W o
0 100 200 300 400 500
Estimate of f([m])

o

Figure 2.8: Variation of Type I + Type Il error rates with perturbations in the
algorithm’s estimate of the average number of effective items f([m]). Data set : D3,
Algorithm : L1 + A1, A=8,y=0.4,n = 100.

assumed that BiAD has an accurate estimate of the average number of effective items
(f([m])) which is used to determine the threshold parameter in the algorithm (See
Equation (2.9)). Note that overestimation of this parameter lowers the threshold
parameter thereby increasing the probability of Type I error and decreasing the
probability of Type I error. Figure 2.8 shows the effect of variations in this estimate
for data set D3 which has an average of 150 effective items. We observe that T"(t)
performs well for a wide range of estimates. In the case of T(t), it is safer to

overestimate the parameter f([m]) than to underestimate it.

46

2.5.3 Ineffectiveness of Basic Average Test

As explained in the introduction (Section 4.1), we demonstrate the inability
of the basic average test to distinguish between random errors and deliberate pro-
motion of ads. This test computes the average rating across all recommendations
and decides between the two hypotheses based on a threshold parameter. With
the specifics of the recommendation strategy (explore probability) unknown, it is
difficult to estimate the right value of threshold. For an explore probability of 0.1,
Figure 2.9 shows the performance of the basic average test for different values of
the threshold, denoted 7. It is seen that threshold values around 3 give the best
performance. But, as shown in Figure 2.10, this same threshold value fails for other
values of explore probability. For example, the basic average test falsely declares
an objective recommendation engine with 20 percent explore probability as biased.
This shows that the correct choice of 7 is sensitive to the explore probability. In
contrast, note that BiAD has nearly zero Type I error rate for all values of explore

probabilities.

2.6 Summary

We propose an algorithm that can identify an biased recommendation en-
gine that systematically favors a few sponsored advertisements over other genuine
recommendations. We formulate a probabilistic model for recommender systems
and give theoretical guarantees for our detection algorithm based on this model.
Specifically, we show that the probability of missed detection and false positives

are low for recommender systems with large databases. We show through simula-

47

2.5) 3 35
Threshold for Basic Average Test (7)

Figure 2.9: Variation of Type
I and Type II error rates with
threshold 7 for the basic aver-
age test shows that the naive ap-
proach is sensitive to the choice of
parameter 7. Data set : D1, Al-
gorithm : L1 + Al, A = 8,v =
0.45,n = 100, Explore Probabil-
ity = 0.1.

e o ol
S @ @

rror Probability (Type 1)

Ej
hed
o

(P P P S N sagecguoce
0 0.05 0.1 0.15 0.25 0.3 0.35

opespesigeecgesiee
) 0.2
Explore Probability

Figure 2.10: Variation of Type I
error rates with variation in ex-
plore probability shows that the
threshold for the basic average
test is sensitive the value of ex-
plore probability. Data set : D1,
Algorithm : L1, n = 100.

tions that the algorithm performs well for many data sets and different types of

recommendation algorithms. In an age when both personalization and advertising

have become very prevalent, this kind of anomaly detection algorithm is relevant in

a wide variety of scenarios. We demonstrate how our detection algorithm can be

applied to problems such as identification of search engine bias and pharmaceutical

lobbying. It would be interesting to investigate ways of deploying such an anomaly

detection mechanism in practical settings.

48

Chapter 3

Regret of Queueing Bandits

3.1 Introduction

A range of queueing systems face the following basic challenge: scheduling
decisions must be made to optimize a desired performance criterion (e.g., small
queue lengths, low delay, etc.); but relevant system parameters (such as arrival
rates and service rates) may be imperfectly known. These issues are particularly
relevant for scheduling in dynamic environments. In such systems, compatibility
between different types of jobs and servers may change over time; servers may come

and go over time; and the arrival and service rates themselves may shift over time!.

For example, consider scheduling in wireless systems. Suppose a given user
can transmit over any one of K channels; which channel(s) should we use to serve the
user? In general, user-channel performance will be imperfectly known and change
over time. Therefore a scheduling policy must learn and adapt to these changes in
finite time. Similarly, consider task allocation in crowdsourcing systems. Suppose a
given type of task can be assigned to any one of K types of workers on an ongoing
basis; which worker is the best fit for this type of task? In general, we will need to

learn the skill compatibility of a worker for a given type of task. Since workers may

!Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. “Regret of queue-
ing bandits”. In Advances in Neural Information Processing Systems 29, pages 1669-1677. 2016.
Co-authors of the paper made equal contributions in obtaining these results.

49

come and go in such a system, again compatibility must be learned reasonably well

in finite time.

Traditionally, scheduling algorithms have focused on delivering optimal per-
formance, given a known operating environment; this is exploitation. By contrast,
our work focuses on the additional requirement introduced by environments where
system parameters are not perfectly known: the scheduling algorithm must include
exploration to learn about these parameters. The seminal dynamic optimization
problem that isolates the exploration-exploitation tradeoff is the multiarmed bandit
(MAB) problem. In our we study a variant of an MAB problem that is appropriate

for scheduling in queueing systems.

Formally, we consider a system that is a discrete-time stochastic switched
network with U queues (one for each job type) and K servers (U < K). Arrivals to
the queues, and services offered by each server to each queue, are i.i.d. across time
slots, according to a product Bernoulli distribution. In principle any queue can be
served by any server; but the service rates are heterogeneous across queue-server
pairs (also referred to as links). We assume the scheduler is uninformed about the

link service rates, and in addition may be uninformed about the arrival rates as well.

In any time slot, each server can be assigned to at most one queue and
each queue can be assigned to at most one server; thus in each time slot, scheduling
amounts to choosing a matching in the complete bipartite graph between queues and
servers. This problem clearly has the explore-exploit tradeoff inherent in the MAB
problem: since the service capacities across different servers are unknown to the

scheduler, there is a tradeoff between learning (exploring) the capacities of different

50

links and scheduling (exploiting) the most promising server from past observations.

We refer to this problem as the queueing bandit.

To focus our analysis on this tradeoff, we study a special case of the schedul-
ing problem with two additional assumptions. First, we assume there is single
unique matching which is strictly better than all other matchings for all queues
(called the optimal matching). Second, we assume the arrival rates are within the
capacity region; i.e., if the optimal matching is chosen, the system is stable. An
unique optimal matching means that we are solving a pure coordination problem
between queues and servers (e.g. unique worker bested suited for a job type in an
online crowdsourcing system). With these assumptions, our objective is to design a
joint scheduling and learning algorithm that learns and uses the optimal matching

efficiently.

In this work, we define the cost for this problem as the U-dimensional vector
of queue lengths. Let Q(t) be the queue length vector at time ¢ under a given
scheduling policy, and Q*(¢) be the corresponding vector under the “genie” policy
that always schedules the optimal matching. We define queue-regret as the difference

in mean queue lengths for the two policies. That is, the regret (vector) is given by

¥ (1) :=E[Q() - Q" (1)]. (3.1)

We refer to the regret vector W(t) as the queue-regret; formally, our goal is to develop

algorithms that minimize the queue-regret.

To develop some intuition, we start by comparing this to the standard

stochastic MAB problem. In a basic formulation of the MAB problem (see, e.g.,

o1

[32]), there are K arms, each with an unknown reward distribution. At each time
step the algorithm can choose one of these arms; the goal is to minimize the ex-
pected cumulative regret against the genie policy that knows the best arm. Well-
known algorithms such as UCB, KL-UCB, and Thompson sampling achieve a regret
of O((K —1)logt) at time ¢ [21, 55, 13]. This result is essentially tight, in the sense
that there exists a lower bound of Q((K — 1)logt) over all policies in a reasonable

class, so-called a-consistent policies [91].

Now note that, in a queueing system with a single queue and K servers,
we can obtain a simple bound on the queue-regret by observing that it cannot be
any higher than the cumulative regret over scheduled services. Thus we immediately
obtain an upper bound of O((K —1)logt) for the queue regret using standard bandit
algorithms like UCB, Thompson Sampling etc. However, this upper bound does not

tell the whole story for the queueing bandit.

3.1.1 Contribution of this Thesis

We show that there are two “stages” to the regret behavior in queueing
bandit. In the early stage, the bandit algorithm is unable to even stabilize the
system; therefore in this region, the queue-regret grows with time, similar to the
cumulative regret. Once the algorithm is able to stabilize the queue—the late stage,
a dramatic shift occurs in the behavior of the queue regret. Because the queue
now goes through regenerative cycles (busy periods), the sample-path queue-regret
essentially “resets” on regular intervals; i.e., the sample-path queue-regret becomes

zero or below zero at these time instants. Thus the queue-regret should fall over

52

time, as the algorithm learns.

Our main results provide lower bounds on queue-regret for both the early
and late stages, as well as UCB-inspired algorithms that essentially match these
lower bounds. We first describe the late stage, and then describe the early stage for

a heavily loaded system.

1. The late stage. We first consider what happens to the queue regret as t — co.
As noted above, a reasonable intuition for this regime comes from consider-
ing a bandit algorithm, but where the sample-path queue-regret “resets” at

2. Therefore, queue-regret accumulates only over

time points of regeneration
regeneration cycles and not over the entire period from the beginning. In a
sense, the queue-regret in this case can be considered as a (discrete) derivative

of the cumulative regret. Since the optimal cumulative regret scales like logt,

asymptotically the optimal queue-regret should scale like 1/¢.

Indeed, we show that the queue-regret for a-consistent policies is at least
C/t infinitely often, where C' is a constant independent of t. Further, we
introduce an algorithm called Q-UCB for the queueing bandit, and show an
asymptotic regret upper bound of O (poly(logt)/t) for Q-UCB, thus matching
the lower bound up to poly-logarithmic factors in . Q-UCB uses structured
exploration: it exploits the fact that the queue regenerates regularly to explore

more systematically and aggressively.

2When Q(t) = 0, Q(t) — Q*(¢) is non-positive — we refer to these time instants as regeneration
points.

53

2. The early stage. The preceding discussion might suggest that an algorithm
that explores aggressively would dominate any algorithm that balances explo-
ration and exploitation. However, this intuition would be incorrect, because
an overly aggressive exploration policy will preclude the queueing system from
ever stabilizing, which is necessary to induce the regenerative cycles that lead
the system to the late stage. As a simple example, it is well known that if
the only goal is to identify the best out of two servers as fast as possible, the
optimal algorithm is a balanced randomized experiment (with half the trials
on one server, and half on the other) [19]. But such an algorithm has positive
probability of failing to stabilize the queue, and so the queue-regret will grow

over time.

To even enter the late stage, therefore, we need an algorithm that exploits
enough to actually stabilize the queue. We refer to the early stage of the sys-
tem, as noted above, as the period before the algorithm has learned to stabilize
the queues. For a heavily loaded system, where arrival rates approach the ser-
vice rates of the optimal matching, we show a lower bound of Q(logt/loglogt)
on the queue-regret in the early stage. Thus up to a loglogt factor, the early
stage regret behaves similarly to the cumulative regret (which scales like logt).
Therefore in this region a standard bandit algorithm would be essentially op-
timal. (Straightforward arguments show that because Q-UCB explores more

aggressively, it incurs regret O(log®t) in the early stage.)

Perhaps more importantly, our analysis shows that the time to switch from

the early stage to the late stage scales at least as t = Q(K/¢), where € is the

o4

gap between the arrival rate and the service rate of the optimal matching?.
In particular, we show that the early stage lower bound of Q(logt/loglogt) is
valid up to ¢ = O(K/e); on the other hand, we also show that, in the heavy-
load limit, depending on the relative scaling between K and e, the regret of
Q-UCB scales like O (poly(logt)/€*t) for times that are arbitrarily close to
Q(K/e). In other words, Q-UCB is nearly optimal in the time it takes to

“switch” from the early stage to the late stage.

3.2 Related work

Our work is related to several threads of the literature, as we briefly detail

below.

MAB algorithms. Stochastic MAB models have been widely used in the
past as a paradigm for various sequential decision making problems in industrial
manufacturing, communication networks, clinical trials, online advertising and web-

page optimization, and other domains requiring resource allocation and scheduling;

see for e.g., [58, 101, 32].

The MAB problem has been studied in two variants, based on different
notions of optimality. One considers mean accumulated loss of rewards, often called
regret, as compared to a genie policy that always chooses the best arm. Most effort
in this direction is focused on getting the best regret bounds possible at any finite
time in addition to designing computationally feasible algorithms [32]. The other

line of research models the bandit problem as a Markov decision process (MDP),

3¢ — 0 in the heavy-load setting.

95

with the goal of optimizing infinite horizon discounted or average reward. The aim
is to characterize the structure of the optimal policy [101]. Since these policies deal
with optimality with respect to infinite horizon costs, unlike the former body of
research, they give steady-state and not finite-time guarantees. Our work uses the

regret minimization framework to study the queueing bandit problem.

Bandits for queues. There is body of literature on the application of ban-
dit models to queueing and scheduling systems [101, 110, 72, 42, 35, 136, 109, 100].
These queueing studies focus on infinite-horizon costs (i.e., statistically steady-state
behavior, where the focus typically is on conditions for optimality of index policies);
further, the models do not typically consider user-dependent server statistics. Our

focus here is different: algorithms and analysis to optimize finite time regret.

Switch scheduling. Switch scheduling has received a great deal of attention
in the last two decades; see for e.g., [128] for a survey. Notably, many of the
scheduling algorithms (e.g., queue-length-based backpressure scheduling algorithms)
can yield near-optimal performance in the absence of information about arrival
rates; but these algorithms still require information about server availability and
capacity. By contrast, our work focuses on learning about all unknown aspects
of the environment, as needed to deliver small overall queue lengths. Finally, the
problem of identifying the right matchings in a bipartite graph has been formulated
as a special case of the combinatorial/linear bandit problem [53, 37], but with a

generic reward structure and not in the context of queue scheduling as in our case.

56

3.3 Problem Setting

We consider a discrete-time stochastic switch network with U queues (i.e.,
users) and K servers, where U < K. The queues and servers are indexed by u =
1,...,U and k = 1,..., K respectively. Arrivals to queues and service offered by
the links are according to product Bernoulli distribution and i.i.d. across time slots.

The mean arrival rates are given by the vector A = ()‘u)ue[U} and the mean service
rates by the matrix p = [pur]ue[v] re(k]-

In any time slot, each server can serve at most one queue and each queue
can be served by at most one server. The problem is to schedule, in every time
slot, a matching in the complete bipartite graph between queues and servers. The
scheduling decision at any time ¢ is based on past observations corresponding to the
services obtained for the scheduled matchings until time £ —1. Statistical parameters

corresponding to the service distributions are considered unknown.

The queueing system evolution can be described as follows. Let x,(t) denote
the server that is assigned to queue u at time ¢. Therefore, the vector k(t) =
(Ku(t)uep]) gives the matching scheduled at time t. Let R, (t) be the service offered
to queue u by server k and S,(t) denote the service offered to queue u by server
Ky (t) at time ¢. If A(t) is the (binary) arrival vector at time ¢, then the queue-length

vector at time ¢ is given by:
Q(t) = (Qt—1) +A(t) - S(t)".

Notation: Important notation for the problem setting can be found in Ta-

ble 4.1. Boldface letters are used to denote vectors or matrices and the corresponding

o7

non-bold letters to denote their individual components. Also, the notation 1{-} is

used to denote the indicator function.

Regret Against a Unique Optimal Matching

We focus on a simple special case of the above switch scheduling system.
In particular, we assume for every queue, there is a unique optimal server with the
maximum expected service rate for that queue. Further, we assume that the optimal
queue-server pairs form a matching in the complete bipartite graph between queues
and servers, that we call the optimal matching; and that this optimal matching

stabilizes every queue.

Formally, make the following definitions:

= , u €Ul 3.2

= IR flugs U U] (3.2)

k= uky U € [U]; 3.3

u i ATE X fluk, U [U] (3.3)

€y =y, — Ay, u € [U]; (3.4)

Ak 7= iy, — fuk, u € [U],k € [K]; (3.5)

A= min Ay; (3.6)
welU] kgks

min ‘= i ; 3.7

[weltnL Hk (3.7)

max = uk s 3.8

1 Rk (3.8)

Amin 1= min A,. (3.9)

u€(U]

The following assumptions will be in force throughout this chapter.

Assumption 3.1 (Optimal Matching). There is a unique optimal matching, i.e.:

58

1. There is a unique optimal server for each queue: k) is a singleton, i.e., Ay, >

0 for k # k;,, for all u,
2. The optimal queue-server pairs for a matching: For any v’ # u, k) # k.

Assumption 3.2 (Stability). The optimal matching stabilizes every queue, i.e., the

arrival rates lie within the stability region: €, > 0 for all u € [U].

The assumption of a unique optimal matching essentially means that the
queues and servers are solving a pure coordination problem; for example, in the
crowdsourcing example described in the introduction, this would correspond to the

presence of a unique worker best suited to each type of job.

We evaluate the performance of scheduling policies against the policy that
schedules the optimal matching in every time slot. Let Q(¢) be the queue-length
vector at time ¢ under our specified algorithm, and let Q*(¢) be the corresponding
vector under the optimal policy. We define regret as the difference in mean queue-
lengths for the two policies. That is, the regret (vector) is given by: ¥(t) :=

E[Q(t) — Q*(t)]. We use the terms queue-regret or simply regret to refer to W(t).

Throughout, when we evaluate queue-regret, we do so under the assumption
that the queueing system starts in the steady state distribution of the system induced

by the optimal policy, as follows.

Assumption 3.3 (Initial State). The queueing system starts with an initial state
Q(0) distributed according to the stationary distribution of Q*(t), i.e., under the pol-

icy that chooses the optimal matching at each time step; this distribution is denoted

7T(}\7u*) .

99

Table 3.1: General Notation

H Symbol ‘ Description H
Au Expected rate of arrival to queue u
N Minimum arrival rate across all queues
Ay (t) Arrival at time ¢ to queue u
Mk Expected service rate of server k for queue u
Ry (t) | Service rate between server k queue u at time ¢
K} Best server for queue u
T Expected rate of best server for queue u
HUmaz Maximum service rate across all links
Lmin Minimum service rate across all links
A Minimum (among all queues) difference
between the best and second best servers
Ko () server assigned to queue u at time ¢
Sult) Potential service provided by server
assigned to queue u at time ¢
Qu(t) queue-length of queue u at time ¢
Q (1) queue-length of queue u at time ¢
w for the optimal strategy
U, (t) Regret for queue u at time ¢

60

3.4 The Late Stage

We analyze the performance of a scheduling algorithm with respect to queue-

regret as a function of time and system parameters like

(a) the load on the system € := p* — A, and

(b) the minimum difference between the rates of the best and the next best servers

A= M* — MaXpA£E k-

As a preview of the

theoretical results, Figure 3.1 N

shows the evolution of queue- o Fly St Lata Stage
regret with time in a system 1570 (1og’ f)
with 5 servers under a schedul- gm, Z(lll)
ing policy inspired by UCB. Ex- il (:(:) /O<7)
act details of the scheduling al- . 3 ‘ |
o 500 1000 1500

gorithm can be found in Sec-

Figure 3.1: Variation of queue-regret W(t) for a
particular user under Q-UCB in a 1 x 5 system
with e = 0.15 and A = 0.17

tion 3.4.2. It is observed that
the regret goes through a phase
transition. In the initial stage,
when the algorithm has not estimated the service rates well enough to stabilize the
queue, the regret grows poly-logarithmically similar to the classical MAB setting.
After a critical point when the algorithm has learned the system parameters well
enough to stabilize the queue, the queue-length goes through regenerative cycles

as the queue become empty. Thus at the beginning of every regenerative cycle,

61

there is no accumulation of past errors and the sample-path queue-regret is at most
zero. As the algorithm estimates the parameters better with time, the length of the

regenerative cycles decreases and the queue-regret decays to zero.

An interesting question to ask is: how does the queue-regret scale as t —
o0? For the classical MAB problem, it is well-known that regret, which is the
cumulative sum of the rate loss in each time-slot, scales as O(logt). However for the
queueing bandit, our intuition suggests that the accumulation of errors is only over
regenerative cycles. Now observe that the derivative of cumulative regret (which
roughly corresponds to regret per time-slot) is O(1/t), and that the regenerative
cycle-lengths for the optimal policy are ©(1). Thus, it is reasonable to believe that
the queue-regret at time ¢ is O (1/t) times a constant factor that increases with the

length of the regenerative cycle.

To push this intuition through to a formal proof requires high probability
results for bandits over finite intervals of time corresponding to queue busy periods,
where the intervals are random variables which are themselves coupled to the bandit
strategy (the regenerative cycle-lengths are coupled to the bandit scheduling deci-
sions). Traditional algorithms like UCB1 and Thompson Sampling guarantee high
probability results only after sufficient number of sub-optimal arm pulls [21]. [20]
gives upper tail bounds for the number of sub-optimal arm pulls for the UCB1 and
UCB-V algorithms but these bounds are polynomial in the factor of deviation from
the mean and not polynomial in time. To the best of our knowledge, there is a lack
of high probability upper and lower bounds in the multi-armed bandit literature for

arbitrary time intervals. The lack of such results motivates us to use alternate proof

62

strategies for the lower bound on queue-regret and the achievability results. For
the lower bound, in Section 3.4.1 we use coupling arguments to derive lower bounds
on queue regret growth over one time-step for any a-consistent policy. This allows
us to show that no a-consistent policy can achieve a better scaling than O (1/t).
For the achievability result, in Section 3.4.2 we construct a structured exploration
variant of Thompson Sampling (a combination of e-greedy and Thompson Sampling
algorithms) that results in upper bounds on the expected number of sub-optimal
schedules over finite time intervals. When combined with queueing arguments, this

leads to an upper bound on queue regret.

Remark 3.1. All the results derived in this work for Q-UCB also hold for a similar
structured-explore variant of Thompson Sampling, which we refer to as Q-ThS. The

Q-ThS algorithm is presented in detail in Appendiz B.

Notation: For the results in Section 3.4, the notation f(t) = O (g(K,e€,t))
for all t € h(K,€) (here, h(K,¢€) is an interval that depends on K, ¢) implies that
there exist constants C and ¢y independent of K and e such that f(t) < Cg(K,¢,t)

for all t € (to,00) Nh(K,e€).

3.4.1 An Asymptotic Lower Bound

We establish an asymptotic lower bound on regret for the class of a-consistent
policies; this class for the queueing bandit is a generalization of the a-consistent class
used in the literature for the traditional stochastic MAB problem [91, 120, 41]. The

precise definition is given below.

63

Definition 3.1. A scheduling policy is said to be a-consistent (for some o € (0,1))

if given a problem instance (A,),

= 0(1%)

E [Z 1{x(s) = k}
s=1

for all k #£ k*.

This means that any policy under this class schedules a sub-optimal server
not more than O(t%) (sub-linear in ¢) number of times. Without a restriction such
as that imposed in the preceding definition, “trivial” policies that, for e.g., schedule
the same server every time step would be allowed. Such policies would have zero
expected regret if the chosen server happened to be optimal, and otherwise would
have linear regret. The a-consistency requirement rules out such policies, while

ensuring the set under consideration is reasonable.

Theorem 3.1 below gives an asymptotic lower bound on the average queue-

regret and per-queue regret for an arbitrary a-consistent policy.

Theorem 3.1. For any problem instance (A\,pu) and any a-consistent policy, the

regret W(t) satisfies

for infinitely many t, where

D(p) (3.10)

KL (umn ”T“) .
Outline for theorem 3.1. The proof of the lower bound consists of three main steps.

First, in lemma B.11, we show that the regret at any time-slot is lower bounded by

64

the probability of a sub-optimal schedule in that time-slot (up to a constant factor
that is dependent on the problem instance). The key idea in this lemma is to show
the equivalence of any two systems with the same marginal service distributions
with respect to bandit algorithms. This is achieved through a carefully constructed
coupling argument that maps the original system with independent service across
links to another system with service process that is dependent across links but with

the same marginal distribution.

As a second step, the lower bound on the regret in terms of the probability
of a sub-optimal schedule enables us to obtain a lower bound on the cumulative
queue-regret in terms of the number of sub-optimal schedules. We then use a lower
bound on the number of sub-optimal schedules for a-consistent policies (lemma B.10
and corollary B.1) to obtain a lower bound on the cumulative regret. In the final
step, we use the lower bound on the cumulative queue-regret to obtain an infinitely

often lower bound on the queue-regret.]

3.4.2 Achieving the Asymptotic Bound

Theorem 3.1 implies that no a-consistent policy can achieve a queue-regret
better than O(1/t). We next ask if straight-forward generalizations of standard ban-
dit algorithms like UCB and Thompson sampling can achieve a scaling of O (1/t),
thus matching the lower bound in theorem 3.1. To prove that these algorithms
achieve this scaling, it is essential to show high probability bounds on scheduling
errors over regenerative cycles in the late stage. A systematic way to show this

would be to prove that the algorithm has a good estimate of all the link rates in

65

the late stage leading to the correct scheduling decision. But for standard bandit
algorithms, lack of concentration results on the number of times each link is sched-
uled makes it difficult to prove a high probability bound on scheduling errors over

a finite time-interval in the late stage.

To get around this difficulty, we propose a slightly modified version of the
UCBL1 algorithm generalized to the multi-dimensional queueing bandit. The al-
gorithm, which we call Q-UCB, has an explicit structured exploration component
similar to e-greedy algorithms. The structured exploration ensures that the algo-
rithm has a sufficiently good estimate of all the link rates (including sub-optimal

ones) in the late stage.

We now describe the algorithm we employ in detail. Let M C [K]Y be the
set of all matchings?. We represent a matching by a U-length vector in which the
u'? element gives the server that is assigned to queue u. A vector & € M if and
only if for any v’ # u, Ky # Ky. Let € C M be a subset of K perfect matchings
such that their union covers the set of all edges in the complete bipartite graph®.
Also, let T,k (t) be the number of times server k is assigned to queue w in the first
t time-slots and fi(t) be the empirical mean of service rates at time-slot ¢ from past

observations (until ¢ — 1).

At time-slot ¢, Q-UCB decides to explore with probability min{1, 3K log?t/t},

otherwise it exploits. To explore, it chooses a matching uniformly at random from

4A matching is given by a set of edges such that every node in the graph is incident to at most
one edge.
5Tt is easy to show that such a decomposition is possible.

66

Table 3.2: Notation specific to Algorithm 2

Symbol Description
E(t) Indicates if the algorithm schedules
a matching through Ezplore
Eue(t) Indicates if Server k is assigned
to Queue u at time ¢ through Faplore
) Indicates if Server k is assigned
to Queue u at time ¢ through Faploit
Ton(t) Number of time slots Server k is assigned
to Queue u in time [1,¢ — 1]
N Empirical mean of service rates
At) at time ¢t from past observations (until ¢ — 1)
K(t) Matching scheduled in time-slot ¢

the set £. The chosen exploration rate ensures that we are able to obtain concentra-
tion results for the number of times any link is sampled.® If it exploits, it makes a
scheduling decision based on upper confidence bounds for the link rates. Specifically,
it first determines for every queue, the server that has the highest upper confidence
bound for the corresponding link rate. It then schedules the projection of this U-
length server vector onto the space of all matchings M. Notation and details of the

algorithm are given in Table 3.2 and Algorithm 2 respectively.

We now show that, for a given problem instance (A, p) (and therefore fixed
€), the regret under Q-UCB scales as O (poly(logt)/t). We state the most general
form of the asymptotic upper bound in theorem 3.2. A slightly weaker version of the
result is given in corollary 3.1. This corollary is useful to understand the dependence

of the upper bound on the load € and the number of servers K.

5The exploration rate could scale like log t/t if we knew A in advance; however, without this
knowledge, additional exploration is needed.

67

Algorithm 2 Q-UCB
At time ¢,
Let E(¢) be an independent Bernoulli sample of mean min{1, 3K @}
if E(t) =1 then
Explore:
Schedule a matching from £ uniformly at random.
else
Ezploit:
Compute for all u € [U]

~ log?t
fou () := g (57

Schedule a matching k() such that

i.e., k(t) is the projection ofk(t) onto the space of all matchings M with Hamming
distance as metric.
end if

68

Remark 3.2. For any queue u, we state the regret bounds and the corresponding
time-intervals in which these bounds hold as a function of €,, the gap between the
arrival rate and the best service rate for that queue. Therefore, the time ranges for

which the bounds hold may vary for different queues depending on €.

Theorem 3.2. Consider any problem instance (A, p) which has a single best match-
. 2logt 2/3 ! 6K
ing. For any u € [U], let w(t) = exp (Tg> , v (t) = w(t) and vy(t) =

% logt + %M. Then, under Q-UCB the regret for queue u, W, (t), satisfies
Koy (t)log?t
Ty(t) =0 (”"(2 =)

for all t such that % > % and vy (t) + v, (t) < t/2.

2logt 2/3
Corollary 3.1. Let w(t) = exp < =) . Then,

log®t
w0 -0 (10

for all t such that % > %, Lo > max{%f(, 15K? logt}, and - > 198

€ logt = €2 -

Outline for Theorem 3.2. As mentioned earlier, the central idea in the proof is that
the sample-path queue-regret is at most zero at the beginning of regenerative cycles,
i.e., instants at which the queue becomes empty. The proof consists of two main
parts — one which gives a high probability result on the number of sub-optimal
schedules in the exploit phase in the late stage, and the other which shows that at

any time, the beginning of the current regenerative cycle is not very far in time.

The former part is proved in lemma B.2, where we make use of the structured
exploration component of Q-UCB to show that all the links, including the sub-

optimal ones, are sampled a sufficiently large number of times to give a good estimate

69

of the link rates. This in turn ensures that the algorithm schedules the correct links

in the exploit phase in the late stages with high probability.

For the latter part, we prove a high probability bound on the last time instant
when the queue was zero (which is the beginning of the current regenerative cycle)
in lemma B.8. Here, we make use of a recursive argument to obtain a tight bound.
More specifically, we first use a coarse high probability upper bound on the queue-
length (lemma B.4) to get a first cut bound on the beginning of the regenerative
cycle (lemma B.5). This bound on the regenerative cycle-length is then recursively
used to obtain tighter bounds on the queue-length, and in turn, the start of the

current regenerative cycle (lemmas B.7 and B.8 respectively).

The proof of the theorem proceeds by combining the two parts above to
show that the main contribution to the queue-regret comes from the structured
exploration component in the current regenerative cycle, which gives the stated

result. O

This result, in combination with theorem 3.1, shows that queue-regret for
Q-UCB in the long-term is within a poly(logt) factor of the optimal queue-regret

for the a-consistent class.

Remark 3.3. Although we assume Bernoulli distributions for arrival and service
rates in our model, the result in theorem 3.2 holds for general, non-Bernoulli distri-

butions with bounded support if

(i) there is a unique matching that gives the best mean-rate for all users (similar

to assumption 3.1 in Section 3.3), and

70

(ii) the genie policy that defines the regret W(t) is the one that always schedules

the best mean-rate matching.

3.5 The Early Stage in the Heavily Loaded Regime

Theorem 3.2 shows that systematic exploration in Q-UCB ensures an O (poly(logt)/t)
queue-regret in the late stage. The penalty for aggressive exploration is likely to
be more apparent in the initial stages when the queues have not yet stabilized and
there are few regenerative cycles. As a result, the queueing system has a behavior
similar to the traditional MAB system in the early stage. Thus, it is reasonable to
expect that algorithms that achieve optimal performance for the traditional MAB

problem also perform well in the early stages in the queueing system.

In order to study the performance of a-consistent policies in the early stage,
we consider the heavily loaded system, where the arrival rate X is close to the optimal
service rate p*. Specifically, we characterize the behavior of queue-regret as the

difference between the two rates, e = u* — A — 0.

Analyzing regret in the early stage in the heavily loaded regime has the effect
that the the optimal server is the only one that stabilizes the queue. As a result,
in the heavily loaded regime, effective learning and scheduling of the optimal server
play a crucial role in determining the transition point from the early stage to the
late stage. For this reason the heavily loaded regime reveals the behavior of regret

in the early stage.

71

Notation: For all the results in this section, the notation f(t) = O (¢(K,e,t)) for
all t € h(K,€) (h(K,e) is an interval that depends on K, €) implies that there exist
numbers C' and €y that depend on A such that for all € > €y, f(t) < Cg(K,¢,t) for

all t € h(K,e).

Theorem 3.3 gives a lower bound on the regret in the heavily loaded regime,

roughly in the time interval (K 1=e O (K/ e)) for any a-consistent policy.

Theorem 3.3. Given any problem instance (A,), and for any a-consistent policy

and y > ﬁ, the regret V(t) satisfies

logt

w(t) > 2W (g _q

2 loglogt

forte [maX{ClKV,T}, (K — 1)D2(f)] where D(p) is given by equation 3.10, and T

and Cy are constants that depend on o, v and the policy.

Outline for Theorem 3.3. The crucial idea in the proof is to show a lower bound on
the queue-regret in terms of the number of sub-optimal schedules (Lemma B.12). As
in Theorem 3.1, we then use a lower bound on the number of sub-optimal schedules
for a-consistent policies (given by Corollary B.1) to obtain a lower bound on the

queue-regret. O

Theorem 3.3 shows that, for any a-consistent policy, it takes at least Q2 (K/¢)
time for the queue-regret to transition from the early stage to the late stage. In
this region, regret is growing with time, and the scaling O(logt/loglogt) reflects

the fact that in this regime queue-regret is dominated by the fact that cumulative

72

regret grows like O(logt). A reasonable question then arises: after time Q (K/e),
should we expect the regret to transition into the late stage regime analyzed in the

preceding section?

We answer this question by studying when Q-UCB achieves its late-stage
regret scaling of O (poly(log t)/ e2t) scaling; as we will see, in an appropriate sense,
Q-UCB is close to optimal in its transition from early stage to late stage, when
compared to the bound discovered in Theorem 3.3. Formally, we have Corollary 3.2,

which is an analog to Corollary 3.1 under the heavily loaded regime.

Corollary 3.2. For any problem instance (\,), anyy € (0,1) and § € (0, min(y,1—

7)), the regret under Q-UCB satisfies

Klog3t
€2t

\I/(t)—O(

1

vVt > Cy max{(l)ﬁl“ , (5)ﬁ , (K2)1*i*5, (512)1_6}7 where Cy is a constant inde-

€ €

pendent of € (but depends on A, v and §).

By combining the result in Corollary 3.2 with Theorem 3.3, we can infer that
in the heavily loaded regime, the time taken by Q-UCB to achieve O (poly(log t)/ 62t)
scaling is, in some sense, order-wise close to the optimal in the a-consistent class.
Specifically, for any 8 € (0,1), there exists a scaling of K with e such that the
queue-regret under Q-UCB scales as O (poly(logt)/e?*t) for all ¢ > (K /€)? while the

regret under any a-consistent policy scales as Q (K logt/loglogt) for t < K/e.

We conclude by noting that while the transition point from the early stage to

the late stage for Q-UCB is near optimal in the heavily loaded regime, it does does

73

not yield optimal regret performance in the early stage in general. In particular,
recall that at any time ¢, the structured exploration component in Q-UCB is invoked
with probability 3K log? t /t. As aresult, we see that, in the early stage, queue-regret
under Q-UCB could be a log? t-factor worse than the Q (logt/loglogt) lower bound
shown in Theorem 3.3 for the a-consistent class. This intuition can be formalized:
it is straightforward to show an upper bound of 2K log? ¢ for any ¢ > max{Cs3, U},
where Cj3 is a constant that depends on A but is independent of K and €; we omit

the details.

3.6 Simulation Results

In this section we present simulation results of various queueing bandit sys-
tems with K servers. These results corroborate our theoretical analysis in Sec-
tions 3.4 and 3.5. In particular a phase transition from unstable to stable behavior
can be observed in all our simulations, as predicted by our analysis. In the remainder
of the section we demonstrate the performance of Algorithm 4 under variations of
system parameters like the traffic (¢), the gap between the optimal and the subopti-
mal servers (A), and the size of the system (K). We also compare the performance
of our algorithm with versions of UCB-1 [21] and Thompson Sampling [132] without

structured exploration (Figure 3.3 in the appendix).

Variation with € and K. In Figure 3.2 we see the evolution of ¥(¢) in systems
of size 5 and 7 . It can be observed that the regret decays faster in the smaller
system, which is predicted by Theorem 3.2 in the late stage and Corollary 3.2 in the

early stage. The performance of the system under different traffic settings can be

74

150 T T T T T T T T 250

Tesol €=005

. e=0.1

7
/
,
’ - _—
50+ S
/
/ / S

e=01 e =015 S

S|
i

0 I 0 | -
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

(a) Queue-Regret under Q-ThS for a system (b) Queue-Regret under Q-ThS for a a sys-
with 5 servers with € € {0.05,0.1,0.15} tem with 7 servers with ¢ € {0.05,0.1,0.15}

Figure 3.2: Variation of Queue-regret W(t) with K and e under Q-Ths. The phase-
transition point shifts towards the right as ¢ decreases. The efficiency of learning
decreases with increase in the size of the system.

observed in Figure 3.2. It is evident that the regret of the queueing system grows
with decreasing e. This is in agreement with our analytical results (Corollaries 3.1
and 3.2). In Figure 3.2 we can observe that the time at which the phase transition
occurs shifts towards the right with decreasing e which is predicted by Corollaries 3.1

and 3.2.

3.7 Summary and Discussion

This work provides the first regret analysis of the queueing bandit problem;
as emphasized, it is quite different than that seen for minimization of cumulative
regret in the standard MAB problem. Our main results provide a comprehensive
analysis of the behavior of regret in two regimes: the late stage, once the bandit
queueing system has regenerative O(1) cycles; and the early stage, before the ban-
dit queueing system has been stabilized. Our main findings are as follows. First,

we show that asymptotically, queue-regret is at least O(1/t) infinitely often under

75

any a-consistent policy. Further, we show that we can achieve this lower bound
(to poly-logarithmic factors), using a variant of UCB with the addition of struc-
tured exploration (Q-UCB). Second, by analyzing the queueing regret in the heavily
loaded regime, we show that in the early stage, queue-regret is lower bounded by
O(logt/loglogt), because the queue still exhibits long regenerative cycles in this
regime. Third, we show that the upper bound on regret of Q-UCB “switches” to

the late stage from the early stage at a nearly optimal time.

Our analysis highlights why minimization of queue-regret presents a subtle
learning problem. On one hand, if the queue has been stabilized, the presence of
regenerative cycles allows us to establish that queue regret must eventually decay
to zero at rate 1/t under an optimal algorithm (the late stage). On the other hand,
to actually have regenerative cycles in the first place, a learning algorithm needs
to exploit enough to actually stabilize the queue (the early stage). Our analysis
not only characterizes regret in both regimes, but also characterizes the transition
point between the two regimes. In this way the queueing bandit is a remarkable

new example of the tradeoff between exploration and exploitation.

Is structured exploration necessary?

We conclude by discussing a key feature of our technical analysis. Crucially,
to prove our results, we need concentration results on regret over finite interval of
time, corresponding to the stochastic renewal cycles of queues. These stochastic
time intervals over which we need concentrations are endogenously related to the

wrong arm pull probabilities, because both are determined by the bandit strategy.

76

The main impact of our use of structured exploration in Q-UCB is to allow us
to attain the optimal asymptotic regret for the queueing bandit, by enabling high
probability” results. However, as noted above, in the early stage the cost of our use
of structured exploration is a cubic-logarithmic factor. Standard UCB or Thompson
sampling, on the other hand, provide a logarithmic cumulative regret, and so ensure
that queue-regret is logarithmic in the early stage; however, due to the lack of
concentration results, especially over the stochastically coupled finite time intervals
for these methods, we cannot show the more critical 1/t regret scaling in the late

stage for either algorithm.

Is Thompson Sampling optimal?

The above discussion prompts an interesting open direction for future work:
Can bandit algorithms that are optimal for the standard MAB problem (e.g., UCB
and Thompson sampling) achieve a queue-regret scaling as poly(logt)/t for all suf-
ficiently large t? We explore this question empirically with the simulation study

below.

Figure 3.3 shows a comparison of the performance of structured explore
variants of UCB and Thompson Sampling (Q-UCB, Q-ThS) against their traditional
(unstructured) counterparts. The figure contains two plots of Q-ThS, one with
exploration probability 3K log? t/t (as suggested by the theoretical analysis) and
another with exploration probability of 0.4K log? t/t. It can be observed that in

the early stage, the unstructured algorithms perform better which is an artifact of

"bad event probability decaying at least polynomially with time

7

10 T T T T
—Q-ThS(Exp. Prob. = K1)
- Q-UCB
- UCB-1 B
—=-Thompson

Q-Ths(Exp. Prob. = M)

":L’:::.‘:.:%—,m;m. 2,
0 . [— L I NAa) T P —

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
t

Figure 3.3: Comparison of queue-regret performance of Q-ThS, Q-UCB, UCB-1
and Thompson Sampling in a 5 server system with ¢, = 0.15 and A = 0.17. Two
variants of Q-ThS are presented, with different exploration probabilities; note that
3K log?t /t is the exploration probability suggested by theoretical analysis (which is
necessarily conservative). Tuning the constant significantly improves performance

of Q-THS.

the extra exploration required by Q-UCB and Q-ThS. In the late stage we observe
that Q-UCB gives marginally better performance than UCB-1, however traditional
Thompson sampling has the best performance in both stages. Q-ThS is dominated as
well, but can be made to nearly match Thompson sampling by tuning the exploration

probability.

Nevertheless, it appears that Thompson sampling dominates UCB-1, Q-
UCB, and the theoretically analyzed version of Q-ThS, at least over the finite time
intervals considered. Similar empirical observations in standard bandit problems
[39, 122] have led to a surge of interest in Thompson sampling. Given these numerical
experiments, it is important to understand whether theoretical regret bounds can be

established for Thompson sampling (e.g., in the spirit of the analysis in [76, 13, 119]).

78

We believe that sharp concentration results (with polynomially decaying
probability for a sub-optimal arm pull in a finite time period) are crucial for proving
upper bounds on queue-regret for any algorithm. A related issue also shows up in
our late stage lower bound: if we had per-time-slot lower bound (which is a type
of finite time concentration) on the sub-optimal arm pull probabilities for the class
of all a-consistent bandit policies, it would be possible to show a C/t decay in
queue-regret for all ¢ large enough. As bandit algorithms do not (in general) have a
high probability per-time-slot lower bound on wrong arm pull probabilities, we are
instead able to show a bound of C'/t infinitely often (as opposed to “for all sufficiently
large times”). In general, it is not clear if finite time concentration results (either

upper or lower bounds) are possible.

79

Chapter 4

Scheduling with Energy Costs

4.1 Introduction

Due to the tremendous increase in demand for data traffic, modern cellular
networks have taken the densification route to support peak traffic demand [28].
While increasing the density of base-stations gives greater spectral efficiency, it also
results in increased costs of operating and maintaining the deployed base-stations.
Rising energy cost is a cause for concern, not only from an environmental perspec-
tive, but also from an economic perspective for network operators as it constitutes a
significant portion of the operational expenditure!. To address this challenge, latest
research aims to design energy efficient networks that balance the trade-off between

spectral efficiency, energy efficiency and user QoS requirements [141, 111].

Studies reveal that base-stations contribute to more than half of the energy
consumption in cellular networks [103, 142]. Although dense deployment of base-
stations are useful in meeting demand in peak traffic hours, they regularly have
excess capacity during off-peak hours [111, 74]. A fruitful way to conserve power is,

therefore, to dynamically switch off under-utilized base-stations. For this purpose,

'Subhashini Krishnasamy, Akhil Padinhare Thalasseryveettil, Ari Arapostathis, Sanjay Shakkot-
tai, and Rajesh Sundaresan. “Augmenting MaxWeight with Explicit Learning for Wireless Schedul-
ing with Switching Costs”. In the Proceedings of the 36th Annual IEEE International Conference
on Computer Communications, INFOCOM 2017. Co-authors of the paper made equal contributions
in obtaining these results.

80

modern cellular standards incorporate protocols that include sleep and active modes
for base-stations. The sleep mode allows for selectively switching under-utilized
base-stations to low energy consumption modes. This includes completely switching

off base-stations or switching off only certain components.

Consider a time-slotted multi base-station (BS) cellular network where sub-
sets of BSs can be dynamically activated. Since turning off BSs could adversely
impact the performance perceived by users, it is important to consider the under-
lying energy vs. performance trade-off in designing BS activation policies. In this
chapter, we study the joint problem of dynamically selecting the BS activation sets
and user rate allocation depending on the network load. We take into account two

types of overheads involved in implementing different activation modes in the BSs.

(i) Activation cost occurs due to maintaining a BS in the active state. This
includes energy spent on main power supply, air conditioning, transceivers and signal
processing [74]. Surveys show that a dominant part of the energy consumption of
an active base-station is due to static factors that do not have dependencies with
traffic load intensities [111, 17]. Therefore, an active BS consumes almost the same
energy irrespective of the amount of traffic it serves. Typically, the operation cost
(including energy consumption) in the sleep state is much lower than that in the

active state since it requires only minimal maintenance signaling [142].

(ii) Switching cost is the penalty due to switching a BS from active state to sleep
state or vice-versa. This factors in the signaling overhead (control signaling to users,
signaling over the backhaul to other BSs and/or the BS controller), state-migration

processing, and switching energy consumption associated with dynamically changing

81

the BS modes [74].

Further, switching between these states typically cannot occur instanta-
neously. Due to the hysteresis time involved in migrating between the active and
sleep states, BS switching can be done only at a slower time-scale than that of

channel scheduling [8, 147].

Main Contributions

We formulate the problem in a (stochastic) network cost minimization frame-
work. The task is to select the set of active BSs in every time-slot, and then based
on the instantaneous channel state for the activated BSs, choose a feasible allocation
of rates to users. Our aim is to minimize the total network cost (sum of activation

and switching costs) subject to stability of the user queues at the BSs.

Insufficiency of the standard Lyapunov technique: Such stochastic
network resource allocation problems typically adopt greedy primal dual algorithms
along with virtual-queues to accommodate resource constraints [56, 96, 127]. To en-
sure stability, this technique crucially relies on achieving negative Lyapunov drift in
every time-slot (or within some finite number of time-slots). In our problem, unlike
in the traditional setting, such an approach cannot be applied for two reasons. First,
introduction of switching cost makes it a non-convex problem due to ergodicity con-
straints. Second, switching cost introduces challenges in showing Lyapunov stability
for one-step greedy Lyapunov based algorithms. Lyapunov stability is shown in the
traditional setting because the channel state in every time-slot is independent of

the controller’s actions, and therefore, provides an average (potential) service rate

82

that is strictly higher than the average arrival rate. But in the current problem,
effective channel state in each time-slot (consisting of feasible rates for the acti-
vated BS set) is determined by the BS activation decision in that time-slot. Since
switching cost depends on the change in activation state in consecutive time-slots,
traditional virtual-queue based algorithms introduce coupling of activation decisions
across time. Thus, the evolution of the effective channel rates are dependent across
time through the scheduling decisions, and this results in co-evolution of packet

queues and the channel state distribution.

To circumvent difficulties introduced through this co-evolution, we propose
an approach that uses queue-lengths for channel scheduling at a fast time-scale,
but explicitly uses arrival and channel statistics (using learning via an explore-
exploit learning policy) for activation set scheduling at a slower time-scale. Our

main contributions are as follows.

1. Static-split Activation 4+ Max-Weight Channel Scheduling: We pro-
pose a solution that explicitly controls the time-scale separation between BS
activation and rate allocation decisions. At BS switching instants (which oc-
curs at a slow time-scale), the strategy uses a static-split rule (time-sharing)
which is pre-computed using the explicit knowledge of the arrival and chan-
nel statistics for selecting the activation state. This activation algorithm is
combined with a queue-length based Max-Weight algorithm for rate alloca-
tion (applied at the fast time-scale of channel variability). We show that the

joint dynamics of these two algorithms leads to stability; further, the choice

83

of parameters for the activation algorithm enables us to achieve an average

network cost that can be made arbitrarily close to the optimal cost.

2. Learning algorithm with provable guarantees: In the setting where the
arrival and channel statistics are not known, we propose an explore-exploit
policy that estimates arrival and channel statistics in the explore phase, and
uses the estimated statistics for activation decisions in the exploit phase (this
phase includes BS switching at a slow time-scale). This is combined with a
Max-Weight based rate allocation rule restricted to the activated BSs (at a
fast time-scale). We prove that this joint learning-cum-scheduling algorithm

can ensure queue stability while achieving close to optimal network cost.

3. Convergence bounds for time-inhomogeneous Markov chains: In the
course of proving the theoretical guarantees for our algorithm, we derive use-
ful technical results on convergence of time-inhomogeneous Markov chains.
More specifically, we derive explicit convergence bounds for the marginal dis-
tribution of a finite-state time-inhomogeneous Markov chain whose transition
probability matrices at each time-step are arbitrary (but small) perturbations
of a given stochastic matrix. We believe that these bounds are useful not only

in this specific problem, but are of independent interest.

To summarize then, our approach can be viewed as an algorithmically engi-
neered separation of time-scales for only the activation set dynamics, while adapting
to the channel variability for the queue dynamics. Such an engineering of time-

scales leads to coupled fast-slow dynamics, the ‘fast’ due to opportunistic channel

84

allocation and packet queue evolution with Max-Weight, and the ‘slow’ due to in-
frequent base-station switching using learned statistics. Through a novel Lyapunov
technique for convergent time-inhomogeneous Markov chains, we show that we can

achieve queue stability while operating at a near-optimal network cost.

Related Work

While mobile networks have been traditionally designed with the objective of
optimizing spectral efficiency, design of energy efficient networks has been of recent
interest. A survey of various techniques proposed to reduce operational costs and
carbon footprint can be found in [111, 66, 141, 142]. The survey in [142] specially

focuses on sleep mode techniques in BSs.

Various techniques have been proposed to exploit BS sleep mode to reduce
energy consumption in different settings. Most of them aim to minimize energy
consumption while guaranteeing minimum user QoS requirements. For example,
[65, 74, 60] consider inelastic traffic and consider outage probability or blocking
probability as metrics for measuring QoS. In [8], the problem is formulated as a
utility optimization problem with the constraint that the minimum rate demand
should be satisfied. But they do not explicitly evaluate the performance of their
algorithm with respect to user QoS. The authors in [75, 63] model a single BS
scenario with elastic traffic as an M/G/1 vacation queue and characterize the impact
of sleeping on mean user delay and energy consumption. In [147], the authors

consider the multi BS setting with Poisson arrivals and delay constraint at each BS.

Most papers that study BS switching use models that ignore switching cost.

85

Nonetheless, a few papers acknowledge the importance of avoiding frequent switch-
ing. For example, Oh et al. [112] implement a hysteresis time for switching in their
algorithm although they do not consider it in their theoretical analysis. Gou et al.
[63] also study hysteresis sleeping schemes which enforce a minimum sleeping time.
In [8] and [147], it is ensured that interval between switching times are large enough
to avoid overhead due to transient network states. Finally Jie et al. [74] consider
BS sleeping strategies which explicitly incorporate switching cost in the model (but
they do not consider packet queue dynamics). They emphasize that frequent switch-
ing should be avoided considering its effect on signaling overhead, device lifetime
and switching energy consumption, and also note that incorporating switching cost

introduces time correlation in the system dynamics.

Notation Important notation for the problem setting can be found in Table 4.1.
Boldface letters are used to denote vectors or matrices and the corresponding non-
bold letters to denote their individual components. Also, the notation 1 {-} is used
to denote the indicator function. For any two vectors vi, va and scalar a, vi - vo

denotes the dot product between the two vectors and vi + a = vi + al.

4.2 System Model

We consider a time-slotted cellular network with n users and M base-stations
(BS) indexed by w = 1,...,n and m = 1,..., M respectively. Users can possibly
be connected to multiple BSs. It is assumed that the user-BS association does not

vary with time.

86

4.2.1 Arrival and Channel Model

Data packets destined for a user u arrive at a connected BS m as a bounded
(at most A packets in any time-slot), i.i.d. process { Ay . ()},5, With rate E [Ap, ,(t)] =
Am,u- Arrivals get queued if they are not immediately transmitted. Let Q. (t) rep-

resent the queue-length of user v at BS m at the beginning of time-slot t¢.

The channel between the BSs and their associated users is also time-varying
and i.i.d across time (but can be correlated across links), which we represent by the
network channel-state process {H (t)},.,. At any time ¢, H(t) can take values from
a finite set H with probability mass function given by p. Let R be the maximum
number of packets that can be transmitted over any link in a single time-slot. We
consider an abstract model for interference by defining the set R(1,h) as the set of

all possible rate vectors when the channel state is h.

4.2.2 Resource Allocation

At any time-slot ¢, the scheduler has to make two types of allocation deci-

sions:

BS Activation: Each BS can be scheduled to be in one of the two states, ON
(active mode) and OFF' (sleep mode). Packet transmissions can be scheduled only
from BSs in the ON state. The cost of switching a BS from ON in the previous time-
slot to OFF in the current time-slot is given by Cy and the cost of maintaining a BS
in the ON state in the current time-slot is given by C;. The activation state at time
t is denoted by J(t) = (Jm(t)),epr: Where Jip(t) := 1{BS mis ON at time t}.

We also denote the set of all possible activation states by J. The total cost of

87

operation, which we refer to as the network cost, at time ¢ is the sum of switching

and activation cost and is given by
C(t) := Coll(I(t = 1) = IO) |l + Cu|I@)],- (4.1)

It is assumed that the current network channel-state H(t) is unavailable to the

scheduler at the time of making activation decisions.

Rate Allocation: The network channel-state is observed after the BSs are switched
ON and before the packets are scheduled for transmission. Moreover, only the part
of the channel state restricted to the activated BSs, which we denote by H(t)|3),
can be observed. For any j € J,h € H, let R(j,h) C RM™*" be the set of all
possible service rate vectors that can be allocated when the activation set is j and
the channel state is h. Given the channel observation H(t)|y(), the scheduler allo-

cates a rate vector S(t) = (Spm (%)) (M]ueln) Tom the set R(JI(t), H(t)) for packet

me

transmission. This allows for draining of S, ,,(¢) packets from user u’s queue at BS

m for all u € [n] and m € [M].

Thus the resource allocation decision in any time-slot ¢ is given by the tuple
(J(t),S(t)). The sequence of operations in any time-slot can, thus, be summarized
as follows: (i) Arrivals, (ii) BS Activation-Deactivation, (iii) Channel Observation,

(iv) Rate Allocation, and (v) Packet Transmissions.

4.2.3 Model Extensions

Some of the assumptions in the model above are made for ease of exposition
and can be extended in the following ways without affecting the results in this

chapter:

88

Table 4.1: General Notation

Symbol Description H
n Number of users
M Number of BSs
Apu(t) Arrival for user u at BS m at time ¢
A Maximum number of arrivals
to any queue in a time-slot
A Average arrival rate vector
H(t) Channel state at time ¢
H Set of all possible channel states
o Probability mass function of channel state
R Maximum service rate

to any queue in a time-slot

Channel state h restricted to the activated BSs in j

Set of all possible rate vectors for
activation vector j and channel state h

Activation vector at time ¢

J Set of all possible activation states
S(t) = (Smu(t)) Rate allocation at time ¢
Cy Cost of operating a BS in ON state
Co Cost of switching a BS from ON to OFF state
C(t) Network cost at time ¢
Qm,u(t) Queue of user u at BS m
at the beginning of time-slot ¢
Py Set of all probability (row) vectors in R’
Pl2 Set of all stochastic matrices in R
V4] Set of all stochastic matrices in
R with a single ergodic class
1, All 1’s Column vector of size [
I Identity matrix of size [

89

(i) Network Cost: We assume that the cost of operating a BS in the OFF' state
(sleep mode) is zero. However, it is easy to include an additional parameter, say

', which denotes the cost of a BS in the OFF state. Similarly, for switching cost,
although we consider only the cost of switching a BS from ON to OFF state, we
can also include the cost of switching from OFF to ON state (say Cj)). The analysis

in this chapter can then be extended by defining the network cost as

C(t) = Coll(I(t — 1) = I)) "Iy + Cull I D)

+Coll(I(#) = It = 1)y + C (M — [l3@®)ly)

instead of (4.1).

(ii) Switching Hysteresis Time: While our system allows switching decisions in
every time-slot, we will see that the key to our approach is a slowing of activation set
switching dynamics. Specifically, on average our algorithm switches activation states
once every 1/e, timeslots, where €4 is a tunable parameter. Additionally, it is easy
to incorporate “hard constraints” on the hysteresis time by restricting the frequency
of switching decisions to, say once in every L time-slots (for some constant L). This
avoids the problem of switching too frequently and gives a method to implement
time-scale separation between the channel allocation decisions and BS activation
decisions. While our current algorithm has inter-switching times i.i.d. geometric
with mean 1/e;, it is easy to allow other distributions that have bounded means
with some independence conditions (independent of each other and also the arrivals

and the channel). We skip details in the proofs for notational clarity.

90

4.3 Optimization Framework

A policy is given by a (possibly random) sequence of resource allocation

decisions (J(t),S(t)),~o- Let (J(t —1),Q(t)) be the network state at time ¢.

Notation We use P, [-] and E, [] to denote probabilities and expectation under

policy ¢. We skip the subscript when the policy is clear from the context.

4.3.1 Stability, Network Cost, and the Optimization Problem

Definition 4.1 (Stability). A network is said to be stable under a policy ¢ if there

exist constants Q, p > 0 such that for any initial condition (J(0), Q(1)),

This definition is motivated by Foster’s theorem: indeed, for an aperiodic
and irreducible DTMC, Definition 4.1 implies positive recurrence. Consider the set
of all ergodic Markov policies 9, including those that know the arrival and channel
statistics. A policy ¢ € 9t makes allocation decisions at time ¢ based only on
the current state (J(¢ — 1), Q(¢)) (and possibly the arrival and channel statistical

parameters). We now define the support region of a policy and the capacity region.

Definition 4.2 (Support Region of a Policy ¢). The support region A?(u) of a
policy ¢ is the set of all arrival rate vectors for which the network is stable under

the policy .

Definition 4.3 (Capacity Region). The capacity region A(p) is the set of all arrival

rate vectors for which the network is stable under some policy in M, i.e., A(p) :=

91

Uapef)ﬁ A (p).

Definition 4.4 (Network Cost of a Policy ¢). The network cost C?(u,X) under a
policy ¢ is the long term average network cost (BS switching and activation costs)

per time-slot, i.e.,

T
C?(p, A) := limsup%ZE@ [C(t) [3(0),Q(1)] .
t=1

T—o0

We formulate the resource allocation problem in a network cost minimiza-
tion framework. Consider the problem of network cost minimization under Markov

policies 91 subject to stability. The optimal network cost is given by

C™(p, A) = inf C?(, \). 4.2
(K,) et (1,) (4.2)

4.3.2 Markov-Static-Split Rules

The capacity region A(p) will naturally be characterized by only those
Markov policies that maintain all the BSs active in all the time-slots, i.e., J(t) = 1 V¢.
In the traditional scheduling problem without BS switching, it is well-known that
the capacity region can be characterized by the class of static-split policies [15] that
allocate rates in a random i.i.d. fashion given the current channel state. An arrival
rate vector A € A(p) iff there exists convex combinations {a(l, h) € P|73(17h)|}h€%
such that

A<D uh) > (1.

heH reR(1,h)

But note that static-split rules in the above class, in which BSs are not switched

OFF, do not optimize the network cost.

92

We now describe a class of activation policies called the Markov-static-split
+ static-split rules which are useful in handling the network cost. A policy is a
Markov-static-split + static-split rule if it uses a time-homogeneous Markov rule for
BS activation in every time-slot and an i.i.d. static-split rule for rate allocations.
For any [€ N, let W, denote the set of all stochastic matrices of size [with a single

ergodic class. A Markov-static-split + static-split rule is characterized by

1. a stochastic matrix P € W, 7| with a single ergodic class,

2. convex combinations {a(j, h) € P‘R(jvh)|}jej e

Here P represents the transition probability matrix that specifies the jump probabil-
ities from one activation state to another in successive time-slots. {a(j, h)};c 7 pen
specify the static-split rate allocation policy given the activation state and the net-

work channel-state.

Let 991G denote the class of all Markov-static-split + static-split rules. For
a rule (P,a = {a(y, h)}jej,heH> € MG, let o denote the invariant probability
distribution corresponding to the stochastic matrix P. Then the expected switching
and activation costs are given by Co >/ i 7 0 Py 41| (5" —)N, and Cy > jeroillilly
respectively. We prove in the following theorem that the class 9IS can achieve the

same performance as I, the class of all ergodic Markov policies.

Theorem 4.1. For any A, p and ¢ € M such that X € A¥(u), there ezists a

¢ € MS such that A € A¥ () and C¥ (pw,X) = C¥(u, X). Therefore,

C™(p, A) = inf C? (1,).
©'EMS AEAY (1)

93

Proof Outline. The proof of this theorem is similar to the proof of characterization of
the stability region using the class of static-split policies. It maps the time-averages
of BS activation transitions and rate allocations of the policy ¢ € 91 to a Markov-
static-split rule ¢’ € 9GS that mimics the same time-averages. For complete proof,

please see Appendix C. O

From the characterization of the class 9&, Theorem 4.1 shows that C™(u, \)

is equal to the optimal value, V' (1, A), of the optimization problem given below.

. . -\t .
inf Co 32 oy Pygll(i" =) I+ G D oslilhy
ihied jeg

such that P € W,z with unique invariant distribution o € Pz, and a(j,h) €

Pirm Vi € T, h € H with

A<D o> ph) D> an(f b (4.3)

Jj€J heH reR(j,h)

4.3.3 A Modified Optimization Problem

Now, consider the linear program given by

i C .

I;l}él 1ZUJ||]||1, such that
JjeJ

UEP\ﬂ

Biny >0 VreR(jh),VjeT, heH,

oj = Z Binr Vi€ T, heH,
reR(4,h)

A< Z Bj,h,rﬂ(h)r' (4'4)

jeT heH,
r€R(j.h)

94

Let d := |TJ| + >_;c7.nen|R(J, 1)| be the number of variables in the above
linear program. We denote by Lc(u, A), a linear program with constraints as above
and with ¢ € R? as the vector of weights in the objective function. Thus, the
feasible set of the linear program Le(p, A) is specified by the parameters p, A and
the objective function is specified by the vector c. Let Cg(u, A) denote the optimal

value of L¢(p, A) and Of(p, A) denote the optimal solution set. Also, let

S={(pA): e A(p)},

Ue = {(p,A) € S : Le(p, A) has a unique solution} .
Note that Leo(u, A), with
”:= ((Cilljl1)je,0) (4.5)
is a relaxation of the original optimization problem V(u,A), and therefore
Co(A) < O™ (g,). (4.6)

We use results from [139], [44] to show (in the Lemma below) that the solution set
and the optimal value of the linear program are continuous functions of the input

parameters.

Lemma 4.1. (1) As a function of the weight vector ¢ and the parameters p, A,
the optimal value C(.)(-) is continuous at any (c, (u, N)) € R? x S.
(II) For any weight vector c, the optimal solution set OF(-), as a function of the

parameters (p, A), is continuous at any (p, X) € Ue.

Remark 4.1. Since O%(w, A) is a singleton if (u, A) € Ue, the definition of conti-

nuity in this context is unambiguous.

95

4.3.4 A Feasible Solution: Static-Split + Max-Weight

We now discuss how we can use the linear program L to obtain a feasible
solution for the original optimization problem (??). We need to deal with two

modified constraints:

(i) Single Ergodic Class — Spectral Gap: For any o € Pz and €5 € (0,1), the

stochastic matrix
P(o,¢s) == €170 + (1 — &) 7 (4.7)

is aperiodic and has a single ergodic class given by {j : o; > 0}. Therefore, given
any optimal solution (o, 3) for the relaxed problem Lc(p,A), we can construct a
feasible solution (P(o,€s),) for the original optimization problem V(u,A) such
that the network cost for this solution is at most e, M Cy more than the optimal cost.

Note that €, is the spectral gap of the matrix P (o, ¢€;).

(ii) Stability — Capacity Gap: To ensure stability, it is necessary that the arrival
rate is strictly less than the service rate (inequality (4.3)). It can be shown that an
optimal solution to the linear program satisfies the constraint (4.4) with equality,
and therefore cannot guarantee stability. An easy solution to this problem is to solve
a modified linear program with a fixed small gap €, between the arrival rate and the
offered service rate. We refer to the parameter ¢, as the capacity gap. Continuity of
the optimal cost of the linear program L (from part (I) of Lemma 4.1) ensures that
the optimal cost of the modified linear program is close to the optimal cost of the

original optimization problem for sufficiently small ¢,.

96

To summarize, if the statistical parameters g, A were known, one could adopt
the following scheduling policy:
(a) BS activation: Compute an optimal solution (o*,3*) for the linear program
Leo(p, A + €4). Initially, choose a BS state according to the static-split rule given
by o*. Subsequently, at every time-slot, with probability 1 — €5, maintain the BSs
in the same state as the previous time-slot, i.e., no switching. With probability e,
choose a new BS state according to the static-split rule given by o*. The network
can be operated at a cost close to the optimal by choosing ¢, €, sufficiently small.
(b) Rate allocation: To ensure stability, use a queue-based rule such as the Max-
Weight rule to allocate rates given the observed channel state:
S(t) = argmax Q(t)-r. (4.8)
reR(J(t),H(t))
We denote the above static-split + Max-Weight rule with parameters e, €, by
©(p, A+€g4, €5). The theorem below shows that the static-split + Max-Weight policy

achieves close to optimal cost while ensuring queue stability.

Theorem 4.2. For any p, A such that (pu, A + 2¢4) € S, and for any s € (0,1),

under the static-split + Maz- Weight rule o(p, X + €4, €5),

1. the network cost satisfies
CPATeaes) (1, X) < O™ (p, X) + ke + 7(eg),

for some constant k that depends on the network size and Cqy, C1, and for some

increasing function y(-) such that lim., .0 v(eg) =0, and

97

2. the network s stable, i.e.,

A € APATees) (1)

Proof Outline. Since P(o*,€5) has a single ergodic class, the marginal distribution
of the activation state (J(¢))¢>0 converges to o*. Part 1 of the theorem then follows
from (4.6) and the continuity of the optimal value of L (Lemma 4.1(I)). Part 2
relies on the strict inequality gap enforced by €, in (4.3). Therefore, it is possible to
serve all the arrivals in the long-term. We use a standard Lyapunov argument which
shows that the T-step quadratic Lyapunov drift for the queues is strictly negative

outside a finite set for some 17" > 0. For complete proof, please see Appendix C. [

One can also achieve the above guarantees with a static-split + static-split
rule which has BS activations as above but channel allocation through a static-split

rule with convex combinations given by a* such that

*

B' r
at(j,h) = ifi’l Vr € R(j,h),Vj € J,h € H. (4.9)

*
J

4.3.5 Effect of Parameter Choice on Performance

€s and €, can be used as a control parameters to trade-off between two

desirable but conflicting features — small queue lengths and low network cost.

(i) Spectral gap, €,: €, is the spectral gap of the transition probability matrix
P(c*, ¢,) and, therefore, impacts the mixing time of the activation state (J(t)),--
Since the average available service rate is dependent on the distribution of the ac-

tivation state, the time taken for the queues to stabilize depends on the mixing

98

time, and consequently, on the choice of €. With €5 = 1, we are effectively ignoring
switching costs as this corresponds to a rule that chooses the activation sets in an
ii.d. manner according to the distribution o*. Thus, stability is ensured but at a
penalty of larger average costs. At the other extreme, when ¢, = 0, the transition
probability matrix I 7| corresponds to an activation rule that never switches the BSs
from their initial activation state. This extreme naturally achieves zero switching

cost, but at the cost of queue stability as the activation set is frozen for all times.

(ii) Capacity gap, €,: Recall that €, is the gap enforced between the arrival rate
and the allocated service rate in the linear program Lco (g, XA + €4). Since the mean
queue-length is known to vary inversely as the capacity gap, the parameter ¢, can
be used to control queue-lengths. A small €, results in low network cost and large

mean queue-lengths.

4.4 Policy with Unknown Statistics

In the setting where arrival and channel statistics are unknown, our interest
is in designing policies that learn the arrival and channel statistics to make rate
allocation and BS activation decisions. As described in Section 4.2.2, channel rates
are observed in every time-slot after activation of the BSs. Since only channel
rates of activated BSs can be obtained in any time-slot, the problem naturally
involves a trade-off between activating more BSs to get better channel estimates
versus maintaining low network cost. Our objective is to design policies that achieve
network cost close to C™ while learning the statistics well enough to stabilize the

queues.

99

4.4.1 An Explore-Exploit Policy

Algorithm 3 Policy ¢(ep, €5, €5) with parameters e, €, €4

1: Generate a uniformly distributed random direction v € R,
2: Construct a perturbed weight vector

c? + c’ +epv.

3: Initialize 1 < 0, A < O.
4: for all ¢ > 0 do

5: Generate Ej(t), an independent Bernoulli sample of mean ¢;(t) = %.
6: if Ej(t) =1 then > Explore
7: J(t) < 1 (Activate all the BSs).
8: Observe the channel state H(t).
9: Update empirical distributions f, A
10: else > Ezploit
11: Generate E(t), an independent Bernoulli sample of mean e;.
12: if Es(t) =0 then > No Switching
13: J(t) «~ J(t-1).
14: else
15: Solve Lgep (/l, A+ eg) and select an optimal solution (&(t), B(t))
16: Select J(t) according to the distribution & (t).
17: end if
18: Observe the channel state H (t)|5)-
19: end if
20: Allocate channels according to the Max-Weight Rule,

S(t) + argmax Q(t)-r.

reR(J(t),H(t))

21: end for

Algorithm 3 gives a policy ¢(ep, €5, €4), which is an explore-exploit strategy

similar to the e-greedy policy in the multi-armed bandit problem. Here, €,, €5, €4 are

fixed parameters of the policy.

100

4.4.1.1 Initial Perturbation of the Cost Vector

Given the original cost vector c¢” (given by (4.5)), the policy first generates a
slightly perturbed cost vector ¢ by adding to ¢, a random perturbation uniformly

distributed on the €,-ball. It is easily verified that, for any (u,A) € S,

Clen (11, A) = (i, N)] < VTH+ 1Caey.

In addition, the following lemma shows that the perturbed linear program has a

unique solution with probability 1.

Lemma 4.2. For any (u,A) € S,
P [(lJ’7 A) € Ueep ’ J(O)7 Q(l)] =L

4.4.1.2 BS Activation

At any time ¢ the policy randomly chooses to explore or exploit. The prob-

2logt
t

ability that it explores, ¢(t) = , decreases with time.

Exploration. In the explore phase, the policy activates all the BSs and
observes the channel. It maintains [, 5\, the empirical distribution of the channel
and the empirical mean of the arrival vector respectively, obtained from samples in

the explore phase.

Exploitation. In the exploit phase, with probability 1 — e, the policy
chooses to keep the same activation set as the previous time-slot (i.e., no switching).
With probability €, it solves the linear program L¢ep (ﬂ, A+ eg) with the perturbed

cost vector ¢ and parameters fi, A+ €4 given by the empirical distribution. From

101

an optimal solution (&(t), ,é(t)) of the linear program, it chooses the BS activation
vector J(t) according to the distribution & (t).
4.4.1.3 Rate Allocation

The policy uses the Max-Weight Rule given by (4.8) for channel allocation.

4.4.2 Performance Guarantees

In Theorem 4.3, we give stability and network cost guarantees for the pro-

posed learning-cum-scheduling rule ¢(ep, €5, €4).

Theorem 4.3. For any p, X such that (i, A+ 2¢4) € S, and for any €y, €5 € (0,1),

under the policy ¢(ep, €, €g),

1. the network cost satisfies
Cercaca) (p X) < O™ (1, A) + k(e + €5) + 7(ey),

for some constant k that depends on the network size and Cy, Cq, and for some

increasing function y(-) such that lime, 0 y(eg) = 0, and
2. the network is stable, i.e.,

A € APleresca) (1),

Proof Outline. As opposed to known statistical parameters for the arrivals and the
channel in the Markov-static-split rule, the policy uses empirical statistics that
change dynamically with time. Thus, the activation state process (J(t));>0, in this

case, is not a time-homogeneous Markov chain. However, we note that J(¢) along

102

with the empirical statistics forms a time-inhomogeneous Markov chain with the
empirical statistics converging to the true statistics almost surely. Specifically, we
show that the time taken by the algorithm to learn the parameters within a small

error has a finite second moment.

We then use convergence results for time-inhomogeneous Markov chains (de-
rived in Lemma 4.3 in Section 4.5) to show convergence of the marginal distribution
of the activation state (J(¢));~0. As in Theorem 4.2, Part 1 then follows from (4.6)

and the continuity of the optimal value of L (Lemma 4.1(I)).

Part 2 requires further arguments. The queues have a negative Lyapunov
drift only after the empirical estimates have converged to the true parameters within
a small error. To bound the Lyapunov drift before this time, we use boundedness of
the arrivals along with the existence of second moment for the convergence time of
the estimated parameters. By using a telescoping argument as in Foster’s theorem,
we show that this implies stability as per Definition 4.1. For complete proof, please

see Appendix C. 0

4.4.3 Discussion: Other Potential Approaches

Recall that our system consists of two distinct time-scales: (a) exogenous
fast dynamics due the channel variability, that occurs on a per-time-slot basis, and
(b) endogenous slow dynamics of learning and activation due to base-station active-
sleep state dynamics. By ‘exogenous’, we mean that the time-scale is controlled by
nature (channel process), and by ‘endogenous’, we mean that the time-scale is con-

trolled by the learning-cum-activation algorithm (slowed dynamics where activation

103

states change only infrequently). To place this in perspective, consider the following

alternate approaches, each of which has defects.

1. Virtual queues + MaxWeight: As is now standard [56, 127], suppose
that we encode the various costs through virtual queues (or variants there-of), and
apply a MaxWeight algorithm to this collection of queues. Due to the switching cost,
effective channel — the vector of channel rates on the active collection of base-stations
— has dependence across time (coupled dynamics of channel and queues) through
the activation set scheduling, and voids the standard Lyapunov proof approach for
showing stability. Specifically, we cannot guarantee that the time average of various
activation sets chosen by this (virtual + actual queue) MaxWeight algorithm equals
the corresponding optimal fractions computed using a linear program with known

channel and arrival parameters.

2. Ignoring Switching Costs with Fast Dynamics: Suppose we use virtual
queues to capture only the activation costs. In this case, a MaxWeight approach
(selecting a new activation set and channel allocation in each time-slot) will ensure
stability, but will not provide any guarantees on cost optimality as there will be

frequent switching of the activation set.

3. Ignoring Switching Costs with Slowed Dynamics: Again, we use virtual
queues for encoding only activation costs, and use block scheduling. In other words,
re-compute an activation 4+ channel schedule once every R time-slots, and use this
fixed schedule for this block of time (pick-and-compare, periodic, frame-based algo-
rithms [130, 108, 40, 145]). While this approach minimizes switching costs (as acti-

vation changes occur infrequently), stability properties are lost as we are not making

104

use of opportunism arising from the wireless channel variability (the schedule is fixed

for a block of time and does not adapt to instantaneous channel variations).

Our approach avoids the difficulties in each of these approaches by explic-
itly slowing down the time-scale of the activation set dynamics (an engineered slow
time-scale), thus minimizing switching costs. However, it allows channels to be
opportunistically re-allocated in each time-slot based on the instantaneous channel
state (the fast time-scale of nature). This fast-slow co-evolution of learning, activa-
tion sets and queue lengths requires a new proof approach. We combine new results
(see Section 4.5) on convergence of inhomogeneous Markov chains with Lyapunov

analysis to show both stability and cost (near) optimality.

4.5 Convergence of a Time-Inhomogeneous Markov Process

In the following section, we derive some convergence bounds for perturbed
time-inhomogeneous Markov chains which are useful in proving stability and cost
optimality. Let P := {Ps,0 € A} be a collection of stochastic matrices in RV*V,
with {os5,0 € A} denoting the corresponding invariant probability distributions.
Also, let P, be an N x N aperiodic stochastic matrix with a single ergodic class

and invariant probability distribution o.

Recall that for a stochastic matrix P the coefficient of ergodicity [124] 71 (P)

is defined by
n(P) = max Pz, (4.10)

z"1y=0, ||z[|;=1

It has the following basic properties [124]:

105

1. 7'1(P1P2) S 7’1(P1)7‘1(P2),
2. [m(P1) —n(P2)| < [[P1—Psf,
3. |xP —yP|; < n(P)[x—-yll; Vx,y€Py,and

4. 71(P) < 1 if and only if P has no pair of orthogonal rows (i.e., if it is a

scrambling matrix).

By the results in [16], if P, is aperiodic and has a single ergodic class then
there exists an integer 1 such that P* is scrambling for all & > 7. Therefore,

7 (PY) < 1Vk > .

Define

e:=sup||Ps — P.|;. (4.11)
e

Now, consider a time-inhomogeneous Markov chain (X(t)),>, with initial
distribution y(0), and transition probability matrix at time ¢ given by Ps, € P Vt >
0. Let {y(t)};5(be the resulting sequence of marginal distributions. The following
lemma gives a bound on the convergence of the limiting distribution of such a time-

inhomogeneous DTMC to o,. Additional results are available in the Appendix.

Lemma 4.3. For any y(0),

(a) the marginal distribution satisfies

n—1
ly(n) —oull; < n(Py(0) = ol +€ > n(PL), (4.12)
=0

106

(b) and the limiting distribution satisfies
limsup [ly(n) — oull; < €T(Py)
where Y(P,) = Y02 1 (PY) < T
Proof. The trajectory (y(n)),>o satisfies Vn > 1,
y(n) = y(n—=1P.+y(n-1)(Ps,_, — P). (4.13)
Using (4.13) recursively, we have
y(n) = yOPT+ > yln— k)(Ps, , — PIPE
k=1
which gives us

y(n) — o« = (y(0) — o.)Py

n

+> y(n—k)(Ps, , —P)PITL (4.14)
k=1

Now, taking norms and using the definitions in (4.10) and (4.11), we obtain

n—1
ly(n) —oull, < n(Py(0) —oully +€ > m(PL).
=0
This proves part (a) of the lemma. Now, note that
k/m
n(PY) < (n@m)Lm (4.15)

for any positive integers k, m. Since 71 (P™) < 1, it follows that lim,, s 71 (P?) = 0,

and

~

T(P.) = ;:%Tl(Pi) < D)

*

107

30

20 o

Lol Mo Wi

I I
0 100 200 300 400 500 600 700 800 900 1000
lteration

il

30 u

" 20 —

nai

101 o

I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000
lteration

Average cost

0 I I I I I I I I I |
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 4.1: The top two plots show the total queue size as a function of time when
e€s = 0.2 and €5 = 0.05, respectively. The bottom plot shows the corresponding
average costs (with the solid curve for €5 = 0.05). A smaller ¢; yields a lower
average cost but has higher average queue size.

Using this in (4.12), we have

em

i — 0yl SeT(Py) < —— -,
msuplly(n) — .l < eT(P.) < 7y

which proves part (b) of the lemma. O

4.6 Simulation Results

We present simulations that corroborate the theoretical results in this chap-
ter. The setting is as follows. There are five users and three BSs in the system.
BS 1 can service users 1, 2, and 5. BS 2 can service users 1, 2, 3, and 4. BS 3
can service users 3, 4, and 5. The Bernoulli arrival rates on each queue (which
have to be learned by the algorithm) is 0.1 packets/slot on each mobile-BS service

connection. The total arrival rate to the system is thus 0.1 packet/slot x 10 con-

108

nections, or 1 packet/slot. A good channel yields a service of 2 packets/slot while a
bad channel yields 1 packet/slot. In our correlated fading model, either all channels
are bad, or all connections to exactly one BS are good while the others bad. This
yields four correlated channel states and all four are equiprobable (the probabilities
being unknown to the algorithm). The fading process is independent and identically
distributed over time. The activation constraint is that each BS can service at most
one mobile per slot. The per BS switching cost Cg and activation cost C; are both
taken to be 1. Figure 4.1 provides the average queue sizes (first two plots) and av-
erage costs (third plot) for two values of €5, namely, 0.2 (first plot) and 0.05 (second
plot). The plots show that a smaller € yields a lower average cost and stabilizes the

queue, but has higher average queue size.

4.7 Summary

We study the problem of jointly activating base-stations along with channel
allocation, with the objective of minimizing energy costs (activation + switching)
subject to packet queue stability. Our approach is based on timescale decomposition,
consisting of fast-slow co-evolution of user queues (fast) and base-station activation
sets (slow). We develop a learning-cum-scheduling algorithm that can achieve an
average cost that is arbitrarily close to optimal, and simultaneously stabilize the
user queues. The proposed algorithm is analyzed using novel results in convergence

of inhomogeneous Markov chains.

109

Chapter 5

Conclusion

This thesis deals with the design of algorithms for learning and resource allo-
cation in unknown or partially known environments. We study three such discrete-

time control problems:

(i) Detection of sponsored ads in a recommender system,
(ii) Scheduling in a parallel server system with unknown statistics,

(iii) Joint BS activation and rate allocation in a cellular network.

We formulate each of these problems in an online decision-making framework where
the controller obtains dynamic feedback that implicitly gives information about
the environment as it makes sequential decisions. For all the three problems, we
propose solutions in which the feedback data is appropriately used to extract useful

information and compute the decision at each time.

This work emphasizes the need for appropriately using implicit feedback data
to extract useful information about the environment and balance the gains obtained
from exploration and exploitation. For example, in the recommender systems prob-
lem, we show how a counting based metric, and not average rating, is appropriate

for the inference problem at hand. We note that the queueing bandit problem can be

110

placed somewhere in between a pure learning problem and the MAB problem, and
therefore warrants an exploration strategy which falls in between pure exploration
and standard bandit algorithms. We use this insight to incorporate structured ex-
ploration in our scheduling algorithm for the queueing-bandit problem. Likewise,
in the joint resource allocation problem for energy-efficient networks, we adopt two
different strategies of using the implicit data for the two constituent problems —
for activating the base-stations, we make switching decisions very infrequently and
make use of estimated channel parameters. Whereas rate allocation decisions are

made in every time-slot by using the instantaneous channel information.

This thesis also highlights the importance of choosing a performance ob-
jective that is appropriate for the application. For example, the traditional multi-
armed bandit (MAB) problem (which also falls under the class of sequential decision-
making problems) has cumulative reward as the performance objective, and algo-
rithms like UCB1 and Thompson Sampling have been shown to optimal. But many
online scheduling applications with a queueing structure require optimization of cus-
tomer wait times which is better represented by queue-lengths rather than cumu-
lative scheduled service. The queueing-bandit problem, which has the queue-regret
as the performance objective, is therefore more appropriate for such applications.
Another example which illustrates the significance of choosing the right performance
objective is the inclusion of switching cost in the design of energy efficient cellular
networks. It is indeed remarkable that the standard Lyapunov approach that yields
optimal performance for networks with no switching cost cannot be used for net-

works with switching cost. These examples show how it is important to adopt an

111

application-appropriate model.

5.1 Future Directions

There remain substantial open directions for future work, as we briefly dis-

Ccuss.

5.1.1 Detecting Sponsored Recommendations

For this problem, first, it is important to understand the challenges involved
in deploying such an algorithm in a practical setting. These could vary depending
upon the application. For e.g., detection of pharmaceutical lobbying using this
approach requires a modestly large medical database consisting of prescriptions and

their efficacy on patients.

It would also be interesting to study extensions of this problem. For e.g.,
there could be an underlying social graph between the users or a causal relation be-
tween recommended items (say, two drugs which are often prescribed one after an-
other) which introduces structural dependence between different recommendations.
How important is the knowledge of this structure for the recommender systems and

for the anomaly detection system?

5.1.2 Bandit Algorithms for Queueing Systems

As mentioned at the end of Chapter 3, we do not yet know if there is a
single algorithm that gives optimal performance in both early and late stages. While

Q-UCB is asymptotically optimal (to within poly-logarithmic factors) and also es-

112

sentially exhibits the correct switching behavior between early and late stages, it is
not optimal in the early stage: the price paid for structured exploration is an infla-
tion of regret in this stage. An important open question is to find a single, adaptive
algorithm that gives good performance over all time. On this point, we note that
Thompson sampling [132] is an intriguing candidate. We conjecture that proving
optimal regret bounds for any algorithm requires tight concentration results for the
number of times a bandit algorithm pulls a suboptimal arm within a regenerative

cycle whose length is dependent on the bandit strategy.

Although we analyze only a special case of the model, i.e., when there is
unique optimal matching between the queues and the servers, this opens up exciting

new directions for future research. We discuss some of them below:

1. General Case:
An obvious direction of research is to generalize these results to the case where

no matching is optimal for all users. In this case, two challenges arise:

(i) Characterization of the Optimal Policy: In the absence of a single
matching that is optimal for all users, the optimal policy is a subject
of debate. Since the capacity region can be characterized by the class
of all static-split rules, one could pick a static-split policy that achieves
some point on the pareto boundary and compare the queue performance
with respect to this policy. It is necessary to explore the right choice of

static-split policy for a given arrival rate vector.

(ii) Challenges in Analysis: With progression from the unique matching

113

case to the general case, the problem has been transformed from that of
hypothesis testing to an estimation problem. The parameters to be esti-
mated in this case are the factors that determine the convex combination
of the static split rule. While a simple structured exploration component
was sufficient in accurately identifying the optimal matching in Chap-
ter 3, it is not clear if the same strategy would work for the estimation

problem.

2. Partial Channel State Information:
The main motivation of formulating the scheduling problem as a multi-armed
bandit problem is the prohibitive cost involved in obtaining channel state
information for all the user-server link pairs. However, it might be feasible
to obtain the channel states for a restricted number of links. This leads us
to pose the following extension of the scheduling problem. Suppose that in
each time-slot, it is possible to obtain CSI for at most m matchings in the
bipartite graph before the scheduling decision is made and exactly one of
these m matchings can be scheduled after the observation. Gopalan et al.
characterize the capacity region under this setting and propose an queue-
length based algorithm that achieves the optimal exponential rate decay in
steady state [61]. It would be interesting to explore bandit-style algorithms in

this setting and obtain finite time regret bounds.

3. Dependent Links:
Another evident setting of interest is one where the service of links are statis-

tically dependent. This could be due to some underlying causal graph or an

114

inherently smaller dimension of the problem.

5.1.3 Scheduling with Energy Costs

We note that the solution proposed requires the scheduler to solve a poten-
tially large LP in every time-slot. It would be useful to explore direct methods of
adaptive control for this problem — a scheduling algorithm that directly computes
the activation and rate allocation policy without computing the underlying statis-
tical parameters. For example, is it possible to design a scheduling algorithm using
principles of reinforcement learning? An immediate difficulty is the continuum of
the state space which includes the queue-length vector. Another potential difficulty

is the lack of access to instantaneous channel rates at the instant of BS activation?!.

The basic model considered in this thesis can be extended to include many
other features of cellular networks — user mobility, network densification etc. It
would be interesting to explore learning-cum-allocation algorithms for these more

complex models.

'Recall that the instantaneous channel rates can be observed only after the BSs have been
activated.

115

Appendices

116

Appendix A

Error Analysis for BiAD

A.1 Proof of Theorem 2.1

We first state and prove two lemmas used in proving the main theorem

(Theorem 2.1).

Lemma A.1. For any objective recommendation algorithm and for any user u, item
i, and time t < (F(Ryi(t),Ruy(t)) + 1), the probability that item i is recommended

to user u at time t is upper bounded by

(A1)

117

Proof.

@ Em: W (t)
j=1
m t—1
> Z]l { Auy(w 2 Rm(t)} <1 - Zﬂu1(1)> Wuy(t)
j=1 =1
m t—1
(Zb) Z 1 {Ruy (t) > Rm(t)} (1 - 1%@(”) Wm(t)
j=1 I=1

(1S 10 0 e
= (F (Ru®).Ru(®) = (t= 1)) Wai(8),

where the (a) and (b) follow from the characterization of an objective recommen-
dation algorithm in Section 2.2.2.1 — equality (a) due to the fact that W(t) is a
stochastic matrix (Property 1), and inequality (b) due to the monotonic property
satisfied by the weight matrix (Property 3). The above inequality gives the desired

bound in (A.1) for t < (F(Ry(t), Ru(t)) +1).

Lemma A.2. Let {X;,i = 1,...,k} be independent random variables with range

[0,1] and mean {p;, i =1,...,k}, and let Zlepi <p< k. Then,

k
ZXizT

=1

P

T
< exp <—T10g (p) +T—p> Vk>T >p.

Using Chernoff bound for independent random variables, we have, for any

118

0 >0,

where the second inequality follows from the fact that the geometric mean of non-
negative numbers is at most their arithmetic mean, and the last inequality follows
for & > 0, which is true for the choice of 8 = log ((k—p)T/(p(k —1T))) for any

T > p. Then, we get

IN

I
@
”
e}
/|\
~
o
o
R
SAke
~
+
~
|
=
~—_

O]

Proof of Theorem 2.1. The proof of the theorem consists of two parts which give
upper bounds for probability of Type I and Type II errors. For any user u and
round [, let Z,(l) be the Bernoulli random variable with mean ¢, indicating if the

feedback given by user u in round [is in error.

119

Type I Error

The algorithm makes a Type I error if it declares an objective recommenda-
tion engine to be biased. This section shows that the probability that the algorithm

makes Type I Error is low.

Suppose that the recommendation engine uses an objective recommendation
algorithm. We first bound the probability that BiAD accepts Hi in round t. Recall
that the algorithm accepts H; in round ¢ if S(¢) > T'(t), and that

max Z B;(t).

B {ACm):| A|=A(t)} oy

Consider a fixed A C [m] such that |A| = A(t). We first bound the probabil-
ity that > . ; Bi(t) > T'(t) and then use union bound over all possible A to obtain
an upper bound on the probability that S(t) > T'(t). Recall that Z,(l) is equal to 1
if the feedback given by user u in round [is in error and 0 otherwise. Let us define

Xull) = S 0) (1 {Rui = m} Zu) + 1 {Ru <} (1 —Z,(0)) . (A2)

i€ A
Note that X, (1) is equal to 1 if, in round I, an item from set A is recommended
to player u and the player declares it ineffective. It is equal to 0 otherwise. Given
{W(l),f{(l), le [t]}, we have that {X, (1), [€ [t], uw € [n]} are Bernoulli random
variables independent of each other. For every 1 <u < mn and 1 <[< t, the mean

of X, (I) can be bounded as follows:

120

E [Xu(l)‘ {W(z’), }l, 1] > Waill) (€u + 1 {Rui < n}) (1 = &)

icA
<&+ P (1-6), (A.3)

where the inequality follows from the upper bound for W, (1) from Lemma A.1
and the definition of P{L‘i(l) ((2.7)). From (2.6) and Condition (I)a, we have
not

SN H+E[PAD] (- &) <),

u=1 =1
Note that, since the noise in the rating estimates are independent across time and
users, {Pf(l), lelt],ue [n]} are independent random variables. Therefore, we
can use the Chernoff bound in Lemma A.2 to obtain a probabilistic upper bound
on their sum. By Condition (I)b, p(t) < nt. In addition, to prove that p(t) < nt, we

consider the following two cases:

(i): B(t) =1

121

for n large enough by Condition (I)c. The second inequality follows from the
e

fact that A(t) > 1 implies (6W (@) - 1) At) > 05=c.

(ii): B(t) <1

where, the first inequality follows from the fact that §(¢) < 1 implies exp (1 + W (@)) <

4 and the second inequality follows from Condition (I)b.

Applying Lemma A.2 gives

P [Z 6w+ PAD (- 6) > ﬁ(t)] < exp (=30 (102 (27) ~1) - 000)

u=1 =1

Now, by the definition of Lambert-W function,

o0) (10 (245) ~1) 2 (40 +) 1ogrm - pi0),

which further implies that

P [zn: zt: fat PAD (1 - &) > ﬁ(t)] < exp (f (A(t) + c) log m) . (A4)

u=1 [=1

We now proceed to obtain a probabilistic upper bound for the sum, > "', Zle Xu(1).
By inequality (A.3), the sum of the corresponding means has the following upper

bound:

122

> >e[no|{wore), <3 St PAD (-6,

u=1I=1
Since {X,(l), 1 € [t], u € [n]} are independent Bernoulli random variables
given {W(l),ﬁ(l), le [t]} , Lemma A.2 can be used as before. If 37" S &, +
(

PA(Z) 1—¢&,) < p(t), then Lemma A.2 gives
Xo(l) > T(t)‘ {W(z/), R(Z/)};J < exp (— (A(t) + c) log m) . (A5)

The above upper bound can be derived in exactly the same manner as the upper

bound in (A.4). Combining this upper bound with inequality (A.4), we have

P [Z Xu(l) > T(t)| <P [Z S X)) > TO S 6+ PAD (1 €) < i(t)
u=1 [=1 u=1 [=1 u=1 =1
+P YN e+ PAO (- &) = 5(2)
u=1 =1
< 2exp (— (fl(t) + c) log m) . (A.6)

Now, recall that B;(t) is the number of players who have rated item i ineffec-
tive upto round ¢, which can be mathematically written as B;(t) = S°r_; S°1_ Tyi(1)-

1{Ry; < n}. Using definition (A.2), we have

n t

D oBit) =) Xul),

icd u=11=1

which gives us the following equivalent form of inequality (A.6):

P) Bi(t) > T(t)

icA

< 2exp (— (fl(t) + c) log m) . (A.7)

123

We can now take a union bound over all possible A to bound the probability

that BiAD accepts Hy in round t.

{AC[m]:| A|=A(t)} icA

< 2<ATZE)) exp (— (A(t) + c) log m)

< 2exp (—clogm)

=2m~ ¢,

where the second inequality follows from (A.7). Further taking a union bound over

all rounds,

P[Type I Error] =P [Ut:(T)S(t) > T(t)}

This shows that BiAD declares an objective recommendation engine as biased with

probability O(M) for the choice of ¢ =1/2.

m

Type II Error

The algorithm makes a Type I error if it does not detect a biased recom-
mendation engine, i.e., it declares Hy when H is true. Suppose that the recommen-

dation engine is biased with an ad-pool A of size |A| = A. By Condition (IT)a, BiIAD

124

has at least A rounds of feedback. We prove that the total number of ad recommen-
dations declared ineffective by the n players until round A is at least yQ2(nA) with
high probability. Let 6 € (0,1) be the constant given by Condition (II)b. For any
1 <u<mn,let Y,(l) =1 if the biased recommendation engine decides to recommend
from the ad-pool to user u in round I. Since {(1 — Z,(1)) Y, (1), l € [A], u € [n]} are

independent Bernoulli random variables with mean {(1 — &,)~, u € [n]}, we have

n A .
PN (1 Zu0) Yall) < (1-6/2)(1 —)yAn| < e~ 5O=An
1

u=1|=
where the inequality follows from a version of Chernoff bound given in [105] for sum

of i.i.d. Bernoulli random variables using Condition (I)a. Note that

n A
3@ -2u0))> 1wl
u=1 [=1 €A

is the total number of recommendations from the ad-pool A that were rated without

error by the players and also that), 4 1,;(l) > Y, (). Therefore,
n A)
PN Y (1 -20)Y Luill) < (1-06/2)(1 —)mA| < e lma (Ag)
u=11=1 icA
The detection algorithm makes the correct decision if in round ¢, S(t) > T'(t)
for some ¢t < Q(m). We show that S(A) > T(A) with high probability. Since
A < Q(m), the algorithm makes the correct decision with high probability. Now,
suppose that the total number of ad recommendations rated without error by the
players until round A is at least (1 — 6/2)(1 — ¢/)ynA. Since, by Condition (II)c,

the total number of effective ads to the n players is o(ynA), the total number

of recommendations from the ad-pool rated ineffective until round A is yQ(nA).

125

Consequently,

S(A max Y B(t)

- {flg[m]:‘fq:A} e
> Bi(t)
€A
> (1 6/2)(1 — ¢)ymA — o(ynA)

> (1-6)(1—c)ynA, (A.9)

for n large enough. To prove that T'(A) does not exceed the right hand side of

inequality (A.9), we consider the following cases:

(i): B(A) > e

Since W (+) is an increasing function in [0, c0), we have W (B(A)) >W(1l) > 1.

e

Now,

where the second equality follows from the definition of the Lambert W func-
tion, and the first inequality follows by using the definition of B (A) given by

(2.3).

126

(i): B(A) <e, B(A) >e

(iii): B(A) <e, B(A) <e

T(A) = exp (1 +W <B(6A)>> H(A)

< exp (1+W(1))p(A)

<exp(2+42W(1))p(A)

- (Wil))zﬁ)“'

Combining the results from the above three cases with inequality (A.9) and Con-

dition (II)b gives that S(A) > T'(A) for n large enough. Therefore, the algorithm

declares the correct hypothesis in round A if the total number of ad recommenda-

tions rated without error by the players until round A is at least (1—46/2)(1—¢")ynA.

We can therefore use the concentration inequality in (A.8) to bound the probability

127

of Type II error.

P[Type II Error] <P[S(A) < T(A)]

A
<P Y D)) Lui(l) < (1—-6/2)(1 =)ynA

u=1 =1 €A

This shows that the probability of Type I error decays exponentially with

the number of players and the bias probability. O

128

Appendix B

Queue-Regret Analysis for Queueing Bandits

B.1 Q-ThS Algorithm

Figure 4 shows the scheduling algorithm Q-ThS, which is a structured-
explore variant of Thompson Sampling. All results presented in Chapter 3 for

Q-UCB also hold for Q-ThS.

B.2 Proofs

We provide details of the proofs for Theorem 3.2 in Section B.2.1 and for
Theorems 3.1 and 3.3 in Section B.2.2. In each section, we state and prove a few
intermediate lemmas that are useful in proving the theorems. All the theorems and

lemmas that hold for Q-UCB also hold for Q-ThS.

B.2.1 Regret Upper Bound for Q-UCB

As shown in Algorithm 2, E(¢) indicates whether Q-UCB chooses to explore
at time t. We now obtain a bound on the expected number of time-slots Q-UCB

chooses to explore in an arbitrary time interval (t1,¢2]. Since at any time ¢, Q-UCB

decides to explore with probability min{1, 3K log:t}, we have
ta t2 2 t 2
log= 1 2 log~1
E| Y ED)|<3K Y - <3K | —di=K (log’ts — log*).
I=t1+1 l=t1+1 2

(B.1)

129

Algorithm 4 Q-ThS
At time ¢,
Let E(t) be an independent Bernoulli sample of mean min{1, 3K
if E(t) =1 then
Explore:
Schedule a matching from &£ uniformly at random.
else
Ezploit:
For each k € [K],u € [U] , pick a sample 0, (t) of distribution,

1 2
ogz“ t}‘

A~

Huk(t) ~ Beta (ﬂuk<t)Tuk(t) +1, (1 — ﬂuk(t)) Tuk(t) + 1) .

Compute for all u € [U]

ko (t) = O, (
(t) arg max k(t)

Schedule a matching k() such that

k(t) € arg min 1 {Hu # l%u(t)} ,

i.e., k(t) is the projection oflz:(t) onto the space of all matchings M with Hamming
distance as metric.

end if

130

The following lemma gives a probabilistic upper bound on the same quantity.

Lemma B.1. For any t and t1 < to,

to
P Z E(l) > 5max (logt, K (log3 ty — log® t))| < l4.

l=t1+1

~

Proof. To prove the result, we will use the following Chernoff bound: for a sum of

independent Bernoulli random variables Y with mean EY and for any ¢ > 0,

65 EY
P[[Y > (14 6)EY] < <(1+5)1+5> .

If EY > logt, the above bound for § = 4 gives

P[Y > 5EY] <

k=

Note that {E(l)}}tit1 41 are independent Bernoulli random variables and let X =

fitl E(1). Now consider the probability P[X > 5max (logt,EX)]. If EX > logt,
then the result is true from the above Chernoff bound. If EX < logt, then it is
possible to construct a random variable Y which is a sum of independent Bernoulli
random variables, has mean logt¢ and stochastically dominates X, in which case we
can again use the Chernoff bound on Y. Therefore,

1

P[X > 5logt] <P[Y > 5logi] < .

Using inequality (B.1), we have the required result, i.e.,

to

P Z E(l) > 5max (logt, K (log3 ty — log? t1)) | <P[X > 5max (logt, EX)] < 1/t

I=t1+1

O]

131

2/3
Let w(t) = exp (<2lzgt>) . The next lemma shows that, with high proba-
bility, Q-UCB (or Q-ThS) does not schedule a sub-optimal matching when it exploits

in the late stage.

Lemma B.2.
UK
P U z > 1) > 0| =0 ().
we[U] l=w(t)+1 k#k}
Proof. Let Xyp(l),u = 1,2,...,K k= 1,2,...,K,1l = 1,2,3,... be independent

random variables denoting the service offered in the I*" assignment of server k to

queue u and let Byg(s,t) = 1377 | Xop(l) + 10g t. Consider the events

To(l) > %10g3(l ~1) Vke[Klue[ULwit)+1<i<t, (B.2)

1
Bug: (s,1) > pi Vs, 1 st §log3(w(t)) <s<t-lwlt)+1<1<t Yue (U],
(B.3)

and

1
Buk(s,l) < pn, Vs, s.t. ilog?’(w(t)) <s<t—1lw(t)+1<I<t,Vk#k,, Yuec U]
(B.4)

It can be seen that, given the above events, Q-UCB schedules the optimal matching
in all time-slots in (w(t), t] in which it decides to exploit, i.e., Zf:w(t)_H >ttt (1) =

0 for all w € [U]. We now show that the events above occur with high probability.

Note that, since the matchings in £ cover all the links in the system, T (I +
1) < 3log?(l) for some u,k implies that Elszl 1{k(s) =k} < 3log(l) for some

Kk € &. Since le:1 1{k(s) =k} is a sum of i.i.d. Bernoulli random variables with

132

sum mean at least log®(l), we use Chernoff bound to prove that event (B.2) occurs

with high probability.

!
P[(B.2) is false] < Z Z P [Z]l {k(s) =k} < ;1Og3(l)]

KEE I=w(t) s=1

< Ktexp (—; logg(w(t))>

_Ktexp< < <legt>) =0 <§) (B.5)

Similarly, probability of events (B.3) and (B.4) can be bounded as follows —

o~

-1

P[(B.3) is false] < Z Z P [Buks (s,1) <]

<U Z Z exp (— 10g2(l))

I=w(t)+1 s—% log?(w(t))

< Uexp (—log*(w(t)) + 2logt)

4/3
= Uexp (— <2lzgt> +210gt> :o<tU4>. (B.6)

t t—1
P[(B.4) is false] < > > P[Bur(sl) >]
u€[ULk#kY, I=w(t)+1 s=1 log3(w(t))
t t—1
< > > P[Bur(s,l) > A+]

t t—1 2 2
< UK Z Z exp | —2s (A — 10§ l)
w(t) ’

l:w(t)—H s:%]ogg(

2
log?
< UKt exp (1°g3(w(t)) (A B bg?’fﬂ)&))))

K
=UKexp (— log? t+2logt) —0<Ut3 > (B.7)

133

Combining the inequalities (B.5), (B.6) and (B.7) we have

U Z Z lue(l) > 0| <P[(B.2) is false] + P [(B.3) is false] + P [(B.4) is false]

u€lU] l=w(t)+1 k#k},
UK
(%)

This proves the result for Q-UCB.

The proof of this result for Q-ThS follows in a similar fashion. For Q-ThS,
events (B.3) and (B.4) are substituted with the following events

log(s — 1)

Vs, st wlt)+1<s<tuelU B.8
ey st w0 LS StuclU] (B

euk?; (S) > Mvj -

log(s — 1)

Ou(s) < pu — —=)

, Vs kst wit)+1<s<tk#k,,ue[U]. (B.9)

It is then sufficient to prove that the above two events occur with high probability.
Given events (B.2), (B.8), (B.9), Q-ThS schedules the optimal matching in all time-
slots in (w(t),t] in which it decides to exploit, i.e., Zf:w(t)ﬂ > kzz luk(l) = 0 for
all u € [U].

Let Sypi = Sob_q Xur(r) and Sur(l) = frn()Tur(l) = Sypr,, @ for all
u € [U],k € [K], l € N. We use the ‘Beta-Binomial trick’ (used in [76, 13]), which
gives a relation between the c.d.fs of Beta and Binomial distributions to prove the
high probability results. Let F fﬁta and F,Ep denote the c.d.f of Beta(a, b) distribution

and the c.d.f. of Binomial(n, p) distribution respectively. Then

Fpg™(y) =1-Fly o, (a—1).

a

134

For each s, € N, let {Z,;(r)},>0 be a sequence of i.i.d. Bernoulli random variables

with mean u), — log(T) Now, to bound probability of event (B.8),

P[(B.8) is false]

t [s *_M
Z Z P Ouz (5) < pio, 2Tuk;(3)]

ue[U] s=w(t)+1 L

! [log(s — 1)
— Beta * -
=2 D B T () Su ()1 (“u - QTu%(s))]

u€|U] s=w(t)+1 L

IN

t
=2 > E[1-F sy (Suky (5))
T s 1, X og(s—1) UKy,
u€elU] s—w()+ L i ()L v/ 2Tk (5)

= Z Z Z]P) Uk* =] E |:1 - le]il,,u*flog(s_l) (Euvk;iﬂl) ‘ TUkZ(S) = l:|

u€lU] s=w(t)+1 =0 va

s 41
Z Z P [Tuk;(s) < %log?’(s - 1)] + Z P [Eu,k;,z < ZZs,l(T)
s—1) r=1

u€|U] s=w(t)+1 l:%log3(—

“(F) 3 22 () ()

u€[U] s=w(t)+11=1log?(s—1)

IN

The last inequality follows by using (B.5) to bound the first term and Chernoff-

Hoeffding inequality to bound the second term.

Similarly, the probability of event (B.9) can be bounded as follows.

P[(B.9) is false]

t
1
< P[(B.2) is false] + E P |Our(s) > sy — Og; ﬂ (B.2) is true
uk*

Now, for any u € [U],k # k!, w(t) +1 < s < t, again using the ‘Beta-Binomial

135

trick’, we have

P lﬂuk(s) >y — 1;% ﬂ (B.2) is true]

< > P[Tuk;(S):l]]E[FB _W(xu,k’l)‘nk;(s):z]

I+1,u3
l:% log3(s—1) V2l
s +1
< Z P ZZS,Z(T) < Yukt
l:% log3(s—1) r=1

S

2 —

21
l:% log3(s—1)
5 2
1 log=t
<t —~log®(w(t)) [A — | —=——
1
=texp <—4 log? t) .
Therefore,
1 K K
P[(B.9) is false] < UK exp <—4 log?t + 210gt> +o (%) =0 <Utg> .
This proves the result for Q-ThS. O

For any time ¢, let
By (t) := min{s > 0: Q,(t — s) = 0}

denote the time elapsed since the beginning of the current regenerative cycle for
queue u. Alternately, at any time ¢, t — B, (¢) is the last time instant at which queue

u was zZero.

The following lemma gives an upper bound on the sample-path queue-regret

in terms of the number of sub-optimal schedules in the current regenerative cycle.

136

Lemma B.3. For anyt > 1,
t
Qu) —Qu < > [EO+ Y lu() |-
l:t_Bu(t)‘i'l kik;i

Proof. If By(t) =0, i.e., if Q,(t) = 0, then the result is trivially true.

Consider the case where By (t) > 0. Since Q,(l) > 0 for all t — B, (t) +1 <

[<t, we have
Qu(l) =Qul — 1)+ Ay(l) = Su(l) Yt—DB,(t)+1<I1<t.

This implies that

I=t— By (t)+1
Moreover,

.
Q;(t) = max (sz) +) Al - SZ(D) >) Al - S

1<s<t
I=t— By (t)+1
Combining the above two expressions, we have

t
I=t— Bu(t)

= Z Z Rupy (1) = Rur(D)) (Eur(D) + lur(1))

I=t— Bu(t)+1 ke[K

< Z Z)+ lur (D))

I=t— By (t)+1 k#k},

< > (E(l>+§jluk<1>),

I=t— By (t)+1 KAk

where the second inequality follows from the assumption that the service provided
by each of the links is bounded by 1, and the last inequality from the fact that

> ket Euk(l) = E(1) V1, Vu € [U]. 0

137

In the next lemma, we derive a coarse high probability upper bound on the
queue-length. This bound on the queue-length is used later to obtain a first cut

bound on the length of the regenerative cycle in Lemma B.5.

Lemma B.4. For anyl € [1,t],

PlQu() > 2u()] = 0 (5)

t3

w(t) 2
Vt s.t. Tog ¢ > P

Proof. From Lemma B.3,

Qut) —Qut) < > ED+ Y ta® | <D EO+ D lalD)

I=t—Bu(t)+1 k#k, =1 Ak
Since @y, (t) is distributed according to m(x,),
A Au(1—m))“’<t> (Ao (1= 1) 1
P[Q:(t) > w(t :(“ <exp|lw(t)log | ——)| < =
Q= eOl= o= s (i) = v

if wit) > 62 The last inequality follows from the following bound —

logt
i) =l (1)
log (“ =log(l4+ —F———
Au (1 —p) Au (1 —p)

> log (1 +4e,) since (A, (1 —py,) < 1/4)

i
2u

v

Moreover, from Lemma B.1, we have

! 1
[E E(l) > Kw(t] :0<>.
3
I=1

Now, note that

> L LCE S SN

I=1 k#k I=w(t)+1 k#k},

133

138

Therefore,

S5 b)) > (K — Dt] {Z S L)]0@5)

I=1 k#k? I=w(t)+1 k#£k:

from Lemma B.2. Using the inequalities above, we have

P[Qu(t) > 2Kw(t)] < P[Q}(t) > w(t)] + P | Y E(l) > Kw(t)]
=1
t
+P DD () > (K — Dw(t)
I=1 k#k:
1 UK
< 3 +0 (t3>
UK
—o(¥)
O
Lemma B.5. Let v (t) = GKw(t) and let v, be an arbitrary function. Then,
P [Bu (t - vu(®)) > vl (1)] = O <U;f>
Vit s.t. ql“g(gtz > % and vy (t) + v, (t) < t/2.
Proof. Let r(t) :=t — v,(t). Consider the events
Qu(r(t) — v, (1)) < 2Kw(t), (B.10)
r(t)
Z Aul) = Rurg (1) < =0, (8), (B.11)

> Z lue (1) < Kw(t). (B.12)

139

By the definition of v/, (t),

2K w(t) — %v;(t) < —Ku(t).

Given Events (B.10)-(B.12), the above inequality implies that

r(t) r(t)
Qu(r(t) - U;(t)) + Z Au(l) < Z Ruk;j (l) - E(l) + Z Iuk(l)
I=r(t)—v, (t)+1 I=r(t)—v],(t)+1 k#£k
r(t)

< D) s,

I=r(t)—vl,(t)+1
which further implies that Q. (1) = 0 for some [€ [r(t) — v),(¢t) + 1,7(t)]. This gives

us that B, (r(t)) < vl,(t).

We now show that each of the events (B.10)-(B.12) occur with high prob-
ability. Consider the event (B.11) and note that A,(l) — Ry () are i.i.d. random
variables with mean —e, and bounded between —1 and 1. Using Chernoff bound

for sum of bounded i.i.d. random variables, we have

r(t) 2
€y €
P E Au(l) = Rupx (1) > ==, (t) | < exp (—8v;(t)> <

2 u
I=r(t)—vl,(t)+1

& =

since v}, (t) > %w(t} > 2 logt.

By Lemmas B.4, B.2 and B.1, the probability that any of the events (B.10),
(B.12) does not occur is O (Ut—g,K) Vit s.t. % > % and v, (t) + v, (t) < t/2, and

therefore we have the required result.]

Using the preceding upper bound on the regenerative cycle-length, we derive
tighter bounds on the queue-length and the regenerative cycle-length in Lemmas B.7

and B.8 respectively. The following lemma is a useful intermediate result.

140

Lemma B.6. For any u € [U] and t s.t. 1 <ty <t,

max 7 Al - Rug () p > =25 < .
I=ta—s+1
Proof. Let Xy =312, o1 Au(l) = Rukg (1). Since X, is the sum of s i.i.d. random

variables with mean ¢, and is bounded within [—1, 1], Hoeffding’s inequality gives

2logt

€u

]P’[XSZ :|:P|:XS—EXSZGUS+

2
2 (eus n 21;;“)
4s

210gt}

€u

<exp | —

< exp (_4 IOg t) 3

where the last inequality follows from the fact that (a + b)? > 4ab for any a,b > 0.

Using union bound over all 1 < s < t9 gives the required result. O

Lemma B.7. Let v/ (t) = Ew(t) and v, be an arbitrary function. Then,

€y

/ 2
P |Qult - valt)) > (2 N 5) g + BOK%(t):Ogt] 0 (if)

€u

Wt st 90 > 2 and v, (t) +), (t) < /2.

Proof. Let r(t) =t — v, (t). Now, consider the events

Bu(r(t)) < (1), (B.13)
' 2logt
> A - Ru () < = 81 <s <), (B.14)

I=r(t)—s+1

141

r(t)
> ED+ D luk(l) < 5logt + 5K (log? (r(t)) — log?® (r(t) — vi,(¢))) -

I=r(t)—v,(t)+1 k#k}
(B.15)

Given the above events, we have

r(t)
Qi)=Y AW -SQ
I=r(t)—Buy(r(t))+1
r(?)
< Z Au(l) - Ruk;‘; (l) + E(l) + Z Iuk(l)
I=r(t)=Bu(r(t))+1 kF#k*
(2 + 5> logt + 5K (log® (r(t)) —log® (r(t) — v},(t)))

€u

IN

vl (t)log? t
r(t) — vy (t))
2 ' (t)log?t
< (+5> logt—i-SOKv“()tOg,

€u

€u

2
< (+5> logt + 15K

where the last inequality is true if v, (¢) + v},(t) < ¢/2. From Lemmas B.5, B.6, B.2
and B.1, probability of each the events (B.13)-(B.15) is 1 — O ([{ng) and therefore,

we have the required result.]

/ 2
Lemma B.8. Let v/, (t) = Ew(t) and v,(t) = % + 60K%. Then,

€u €y

P[By(t) > vu(t)] = O <U;{>

Vit s.t. ﬁ’)gz > % and vy (t) + v, (t) < t/2.

Proof. Let r(t) =t — vy(t). As in Lemma B.5, consider the events

/ 2
Qu(r(t)) < <62 + 5> log t + 30KU“(t);Ogt, (B.16)

142

Z Au(l) = Ryps (1) < —%‘vu(t), (B.17)
I=r(t)+1
t
> ED+ > la(l) < 5logt + 5K (log*t —log® (r(t))) - (B.18)
I=r(t)+1 k#£k

The definition of v,(t) and events (B.16)-(B.18) imply that

which further implies that Q(l) = 0 for some [€ [r(t) + 1,t] and therefore B, (t) <
vy (t). We can again show that each of the events (B.16)-(B.18) occurs with high
probability. Particularly, by Lemmas B.1, B.2 and B.7, the probability that any
one of the events (B.16), (B.18) does not occur is O (Ut—gK) Vit s.t. % > % and
vy (t) + v, (t) < t/2. We can bound the probability of event (B.17) in the same way

as event (B.14) in Lemma B.5 to show that it occurs with probability at least t%

Combining all these gives us the required high probability result. O

Proof of Theorem 3.2. The proof is based on two main ideas: one is that the re-
generative cycle length is not very large, and the other is that the algorithm has

correctly identified the optimal matching in late stages. We combine Lemmas B.2

143

w(t) > = and vy (t) + vl () < t/2:

Uy (t) = E[Qu(t) — Qu(t)]

<E [Qut) — Q40| Bult) < vu(t) | P[Bult) < v ()]
+E Qu(t) - QZ(t) Bu(t) > Uu(t) P [Bu(t) > Uu(t)]
<E| Y + > k() | + P [Bu(t) > va(t)] (B.19)
I=t— vu(t)—i-l k#£ky
< K (log3(t) — log®(t — vu(1))) (B.20)

+ tP Z > luk(l) > 0| + P [Bu(t) > vu(t)] (B.21)

I=t—vy, ()+1 k#k}

» K
< 3K log?tlog <1+tv(t)t)> +0 <U)

— vy (2
)
_0 Kvu(t) log” t
-)

where (B.19) follows from Lemma B.3, and the last two terms in inequality (B.21)

are bounded using Lemmas B.2 and B.8. O

Proof of Corollary 3.1. We first note the following:

(i) ﬁ > 2K implies that v),(t) <

u

[

ii) —~ > 15K2logt implies that 2t logt > MM, and therefore v, (t) <
w(t) € €u t

f—glogt

(iii) logt > 16%8 implies that v, (t) <

Nﬁ

These inequalities when applied to Theorem 3.2 give the required result. O

144

B.2.2 Lower Bounds for a-Consistent Policies

As mentioned earlier, we prove asymptotic and early stage lower bounds for
a class of policies called the a-consistent class (Definition 3.1). In order to prove
Theorems 3.1 and 3.3, we use techniques from existing work in the MAB literature
along with some new lower bounding ideas specific to queueing systems. Specifically,
we use lower bounds for a-consistent policies on the expected number of times a sub-
optimal server is scheduled. This lower bound, shown (in Lemma B.10) specifically
for the problem of scheduling a unique optimal matching, is similar in style to the
traditional bandit lower bound by Lai et al. [91] but holds in the non-asymptotic
setting. Also, as opposed the traditional change of measure proof technique used
in [91], the proof (similar to the more recent ones [33, 114, 41]) uses results from

hypothesis testing (Lemma B.9).

Lemma B.9 ([133]). Consider two probability measures P and @Q, both absolutely

continuous with respect to a given measure. Then for any event A we have:
1 .
P(A) + Q(A%) 2 5 exp{—min(KL(P||Q), KL(Q||P))}.

Proof. Let p = P(A) and ¢ = Q(A°) . From standard properties of KL divergence

we have that,
KL(P[|Q) > KL(p, q)

Therefore, it is sufficient to prove that

1 P 1—p 1/1—¢q p q 1=p
> —pl —(1—=p)1 = — .
p+q_2eXp(plog 1— (1 —p)log .) 2(5) T

145

Now,

(1pq)p<1qp>1pg\/17>2p< 13}))2@—@

1 1—¢q q 2
<(Z(2p - /—2 41921 —-p).,/—2—
B 2<p p 1-2) 1—p>>

as required.]

Lemma B.10. For any problem instance (A, p) and any a-consistent policy, there

exist constants T and C' s.t. for anyu € [U], k # k) and t > T,

E[Tur(t+ 1]+ Y 1{k}y = k}E [Ty (t + 1))
u' #u

> ! (1 - a)logt — log(4KC)).

" KL (pin,)

Proof. Without loss of generality, let the optimal servers for the U queues be denoted
by the first U indices. In other words, a server k > U is not an optimal server for

any queue, i.e., forany v’ € [U], K > k> U, 1{k¥, =k} = 0. Also, let 8 = “*”“TZH

We will first consider the case k < U. For a fixed user u and server k < U,
let u' be the queue that has k as the best server, i.e., k, = k. Now consider
the two problem instances (A, p) and (A, ft), where fi is the same as p except for

the two entries corresponding to indices (u, k), (v, k) replaced by 3. Therefore,

for the problem instance (A, i), the best servers are swapped for queues u and o’

146

and remain the same for all the other queues. Let }P’L and IP’Z be the distributions
corresponding to the arrivals, chosen servers and rates obtained in the first ¢ plays
for the two instances under a fixed a-consistent policy. Recall that T, (t + 1) =
Zi:l 1{kyu(s) = k} Yu € [U], k € [K]. Define the event A = {T,x(t+1) > t/2}. By
the definition of a-consistency there exists a fixed integer 7 and a fixed constant C

such that for all ¢ > 7 we have,

t
EZ Z]l{/ﬁu(s) =k}| <Ct*
s=1
t
K [Z 1{ru(s) = K'}| <Ot VK # k.
s=1

A simple application of Markov’s inequality yields

2C
PZ (A) < i—a

2C(K — 1)

IPZ(‘AC) S tl—«a

We can now use Lemma B.9 to conclude that
KL(P,|[P;) > (1 — a)logt —log(4KC). (B.22)

It is, therefore, sufficient to show that

KL (PI[P4) = KL (jtus B) EQ[Tue(t + 1)) + KL (st B) Ep [T (¢ + 1)

For the sake of brevity we write the scheduling sequence in the first ¢ time-slots
{k(1),K(2),....,6(t)} as &P, and similarly we define A®*) as the number of arrivals

to the queue and S® as the service offered by the scheduled servers in the first ¢

147

time-slots. Let Z(*) = (n(t), AW, S(t)). The KL-divergence term can now be written

as

KL(P},|

Pf) = KL(P,(Z")[[P4(21)).
We can apply the chain rule of divergence to conclude that
KL(PL(Z)|[P4(Z")) = KL(P4 (2) [P (2¢D))

+ KL(PL (s(1) | 207 V) [P (w(2) | ZU1))

+E [1{ra(t) = BYKL (pur, B) + L{rw (t) = kYKL (nus,)] -

We can apply this iteratively to obtain

KL(P,|[P5) = > Ef [1{ku(s) = kYKL (ttuk, B)]

s=1

+ DB [Hm(s) = KL (e)]
s=1

+ 2 KL (s() | 20 D) (1) | 2071)) (B.23)
=1

Note that the second summation in (B.23) is zero, as over a sample path the policy

pulls the same servers irrespective of the parameters. Therefore, we obtain
KL(P4|[P4) = KL (ttuk,) EL[Tur(t + 1)] + KL (ks 8) EL [T (t + 1),

which can be substituted in (B.22) to obtain the required result for K < U.

Now, consider the case k > U, where) . 1{k; =k} = 0. We again
compare the two problem instances (A, p) and (A, fz), where fi is the same as p

except for the entry corresponding to index (u, k) replaced by 3. Therefore, for the

148

problem instance (A, &), the best server for user u is server k while the best servers
for all other queues remain the same. We can again use the same technique as before
to obtain

KL(P,|[Pg) = KL (tuk, 8) B4 [Tur(t + 1)),

which, along with (B.22), gives the required result for K > U. O

As a corollary of the above result, we now derive lower bound on the total
expected number of sub-optimal schedules summed across all queues. In addition,
we also show, for each individual queue, a lower bound for those servers which are
sub-optimal for all the queues. As in the proof of Lemma B.10, we assume without

loss of generality that the first U indices denote the optimal servers for the U queues.

Corollary B.1. For any problem instance (A, p) and any a-consistent policy, there

exist constants T and C s.t. for any t > T,

(a)

28) Y ElTu(t+ D] 2 UK = 1)D(u) (1 -) logt — log(4K (),
uelU] k#k};

(b) for any u € [U],

2A > E[Tu(t+1)] > (U - 1)D(p) (1 — @) logt — log(4KC)),
k£ky,

(¢) and for any u € [U],

A E[Tur(t+1)] > (K = U)D(p) (1 —) logt — log(4K C))
k>U

149

where D(w) is given by (3.10).

Proof. To prove part (a), we observe that a unique optimal server for each queue in

the system implies that

DI AESIEDY ZE[TW t+1)}

u€elU] k#k}, u€lU] u'#u

=2 2 > ki =KE[Tugt+1)].

u€lU] k#k}; v/ #u

Now, from Lemma B.10, there exist constants C' and 7 such that for ¢ > 7,

2> > E[Tu(t+1)] Z S A ETwt+ D)+ D 1{kyy = k}E [Typs (¢ + 1)]

uelU) k#k;, U] k#k}, u'#u
U(K — 1)

KL (pimin,)

((1 —a)logt —log(4KC)) .

Using the definition of D(p) in the above inequality gives part (a) of the corollary.

To prove part (b), we can assume without loss of generality that a perfect
matching is scheduled in every time-slot. Using this, and the fact that any server is

assigned to at most one queue in every time-slot, for any u € [U], we have

Tuks (t+ 1)+ D Tup(t+1) =t > Tyg (t+ 1) + > Ty (£ + 1),

k#k}, u'#u
which gives us
D Tur(t+1) >maxq > T (E+1), Y Tung (t+1) 5 (B.24)
k#k% u'#u u'#u

From Lemma B.10 we have, for any v’ # u and for ¢t > T,

1
K1, <Hmzna ,umazac"!‘l)

E [T, (¢ + 1] +E [Tug (0 + 1)] > (1= a)logt —log(4KC)) ,

150

which gives

U-1
> [Tk, (¢ + 1) +E [Tugg (t+ 1)] 2 (1 — a)logt — log(4KC)).
/ “ KL (. l‘max+1>
u' #u Hmin, 2
Combining the above with (B.24), we have for ¢t > 7

ZE Tur(t +1)] > max ZE[UW t—l—l] ZE Wi (E+)]

k#k u'F#u u'#u

> v-1 (1 —a)logt — log(4KC)).

2KL (:Ufmirw Hmagm—i_l)

To prove part (c), we use the fact that 1 {k}, =k} =0forany ' € [U], K >k > U.

Therefore, for t > 7, we have

Y ETut+1]=> |E[Tw+1]+ > 1{kl =k}E [Tyk (t+1)]

k>U k>U u’'#u
K-U

A

((1 —a)logt —log(4K()),

which gives the required result. O

B.2.2.1 Late Stage: Proof of Theorem 3.1

The following lemma, which gives a lower bound on the queue-regret in
terms of probability of sub-optimal schedule in a single time-slot, is the key result
used in the proof of Theorem 3.1. The proof for this lemma is based on the idea
that the growth in regret in a single-time slot can be lower bounded in terms of the

probability of sub-optimal schedule in that time-slot.

Lemma B.11. For any problem instance characterized by (A, p), and for any schedul-

151

ing policy, and user u € [U],
Uu(t) > A Y AP [I{ru(t) =k} =1].
k£k
Proof. For the given queueing system, consider an alternate coupled queueing sys-

tem such that

1. the two systems start with the same initial condition,
2. the arrival process for both the systems is the same, and

3. the service process for the alternate system is independent of the arrival process
and i.i.d. across time-slots. For each queue in the alternate system, the service
offered by different servers at any time-slot could possibly be dependent on
each other but has the same marginal distribution as that in the original

system and is independent of the service offered to other queues.

We first show that, under any scheduling policy, the regret for the alternate system
has the same distribution as that for the original system. Note that the evolution
of the queues is a function of the process (Z(1)),>; := (A(l),£(1),S(1));>; - To prove
that this process has the same distribution in both the systems, we use induction
on the size of the finite-dimensional distribution of the process. In other words, we
show that the distribution of the vector (Z(1));_, is the same for the two systems

for all £ by induction on t.

Suppose that the hypothesis is true for ¢t — 1. Now consider the conditional

distribution of Z(t) given (Z(l))f;% . Given (Z(l)){{, the distribution of (A(t), k(t))

152

is identical for the two systems for any scheduling policy since the two systems have
the same arrival process. Also, given ((Z(1))/Z{, A(t),k(t)), the distribution of S()
depends only on the marginal distribution of the scheduled servers given by k(t)
which is again the same for the two systems. Therefore, (Z(1));_; has the same
distribution in the two systems. Since the statement is true for ¢ = 1, it is true for

all ¢.

Thus, to lower bound the queue-regret for any queue u € [U] in the original
system, it is sufficient to lower bound the corresponding queue-regret of an alternate
queueing system constructed as follows: let {U(t)};~; be ii.d. random variables
distributed uniformly in (0, 1). For the alternate system, let the service process for
queue u and server k be given by Ryx(t) = 1 {U(t) < pyr} . Since E [Ryx(t)] = tuk,
the marginals of the service offered by each of the servers is the same as the original
system. In addition, the initial condition, the arrival process and the service process
for all other queues in the alternate system are identical to those in the original

System.

We now lower bound the queue-regret for queue u in the alternate system.

Note that, since py > pyui Yk # ki, we have Ryp:(t) > Rux(t) Vk # ki, Vt. This

w?

implies that Q}(t) < Qu(t) Vt. Now, for any given ¢, using the fact that Q}(t—1) <

Qu(t — 1), it is easy to see that

K
Qu(t) — Qy(t) > T{A(t) =1} (Rk:;; (t) =Y U{ru(t) = k}Ruk(t)) :
k=1

153

Therefore,

E[Qu(t) ~ Q)] > E

K
1{A4,(t) =1} (sz () =Y 1{ru(t) = k:}Ruk(t)>]
k=1

= Y P{ku(t) =k} = 1P [por < U(t) <]
k£k

=X > AP [I{ky(t) =k} =1].
kAk:

We now use Lemma B.11 in conjunction with the lower bound for the ex-
pected number of sub-optimal schedules for an a-consistent policy (Corollary B.1)

to prove Theorem 3.1.

Proof of Theorem 3.1. From Lemma B.11 we have,

\I/u(t) > Ay Z AP []l{ﬁu(t) - k} = 1]
kA,

> Amind S P[L{ry() = k} = 1]. (B.25)
kkx:

Therefore,

SN Wu(s) = AminA D> > E[Tu(t+1)].

s=1 ue[U] uwelU] k#k,

‘We now claim that

> v > MU b -) (8.26)

for infinitely many ¢. This follows from part (a) of Corollary B.1 and the following

fact:

154

Fact B.1. For any bounded sequence {ay,}, if there exist constants C and ng such

that Y"1 1 am > Clogn Vn > ng, then ap > % infinitely often.

Similarly, for any v € U, it follows from parts (b) and (c) of Corollary B.1
that

By (t) > max{U — 1,2(K - U)}

> = Anin Dlp)(1 =) (B.27)

for infinitely many t. O

B.2.2.2 Early Stage: Proof of Theorem 3.3

In order to prove Theorem 3.3, we first derive, in the following lemma, a
lower bound on the queue-regret in terms of the expected number of sub-optimal

schedules.

Lemma B.12. For any system with parameters (A,pn), any policy, and any user

u € [U], the regret is lower bounded by

Uy(t) = > ApE[Tur(t +1)] - eyt
k#k}

155

Proof. Since Qy(0) ~ my, .z, we have,

Ty (t) = E[Qu(t) — @y (1)]
=K [Qu(t) - Qu(o)]

> E ZAU(Z) - Su(l)]
=1 K
=t — > E[Tuplt + 1)) prun
k=1

=Mt — [t= Y E[Tut+ D] | pxu— > E[Tu(t+1)] pu
k#£k k#k

= D AE[Tu(t +1)] - eut.
k#k}

We now use this lower bound along with the lower bound on the expected

number of sub-optimal schedules for a-consistent policies (Corollary B.1).

Proof of Theorem 3.3. To prove part (a) of the theorem, we use Lemma B.12 and
part (a) of corollary B.1 as follows: For any ~ > ﬁ, there exist constants C and

7 such that for all ¢ € [max{C, K7, 7}, (K — 1)2&)],

% > () 2% S D ETwt+1)] —eut

well] uelU] \k#k;
> (K — 1)M ((1 —«)logt —log(KCy)) — ét
> (K—I)D(M) logt
2 loglogt
> (K —1)2W8) _lost
4 loglogt

156

where the last two inequalities follow since ¢t > C1 K7 and ¢t < (K — 1)Diéf),

Part (b) of the theorem can be similarly shown using parts (b) and (c) of

corollary B.1. O

157

Appendix C

Proofs and Additional Results in Chapter 4

C.0.3 Proof of Theorem 4.1

Proof of Theorem 4.1. Consider an ergodic Markov policy ¢ € 9t such that A €
A?(p). We use the notation P, to denote probabilities corresponding to the sta-
tionary distribution under policy ¢. Let
Py =P [J(t) =3It -1)=j] V' jed,

oj =P [J(t)=Jj] VjeJT,
and

ar(j,h) =P [S(t) =r |J(t) = j, H(t) = h]

Vr € R(j,h), Vi€ T, heH.

It is easy to verify that P € W, 7, 0 = oP,

. A+ .
Co > opPrjll(i" —5) "Il + G asllilly = C¥(p,),
VNIV jET
and

Yoo > o uh) D ol h)r =Ex [S(1)].

jeJ heH reR(j,h)

Since A € A?(p), we have A < E [S(¢)]. Therefore, for
()0/ = (P,O[= {a(]a h)}jejyhe?[l))

158

we have ¢ € MS, A € A? () and C¥ (p, A) = C?(, A). O

C.0.4 Proofs of Lemmas 4.1 and 4.2

Proof of Lemma 4.1. Let F and D denote the feasible sets of L and its dual respec-
tively. By Theorem 2 in [139], to prove (I), it is sufficient to prove that F and D are
continuous multifunctions on R¢ x S. The feasible set of the linear program depends

only on (p, A) and not on c. By Proposition 6 in [139], F is continuous on S if

(i) the dimension of F is constant on S, and

(ii) for any (p,A) € S, there exists a neighborhood V of (u,A) such that, if a
particular inequality constraint is tight (satisfied with equality) for all z €

F (e, A), then for any (u',A\') € V, the corresponding constraint is tight for

all x € F(u/, N).
The above two conditions are satisfied if

(i) the equality constraints are the same for every F (u,A), and

(ii) for any (u,A) € S, no inequality constraint is tight for every x € F (u, A).

These can be verified to be true for all (i, A) € S. Therefore, F is continuous on S.

According to Corollary 11 in [139], D is continuous on R% xS if F is bounded.
This is again true since any feasible solution is a set of probability mass functions.

Therefore, by Theorem 2 in [139], C* is continuous on R? x S.

To prove (II), i.e., that the optimal solution set O%(-) is continuous on U,

we first note that Of (p, A) is the feasible set for a set of linear constraints which is

159

same as that for F (u,A) in addition to the equality constraint
¢ (0,8) = C2 (. N).

By definition, the set O} (u, A) is non-empty for any (@, A) € S and is a singleton
for any (p, A) € Ue. Now consider any (p, A) € Ue. Using (I) and Theorem 3.1 in
[44], the extreme point set of Of is continuous at (w, A). Since Of is convex and is

a singleton at (u, A), we have that O} is continuous at (g, A). O

Proof of Lemma 4.2. For any (pu,\) € S, (u, A) € Ueep if the vector ¢ is not per-
pendicular to any of the faces of the polytope given by the feasible set of Leep (1, N).
For any 1 < k < d — 1, consider any k-dimensional face of this polytope. The prob-
ability that the vector ¢ lies in the d — k dimensional space orthogonal to this face

is zero. Since there are only a finite number of faces, by the union bound, we have

P (e, A) & Ueer | J(0), Q(1)] = 0.

C.0.5 Proof of Theorem 4.2

We use continuity of the linear program L (Lemma 4.1) to prove part 1 of
Theorem 4.2. To prove stability (part 2 of Theorem 4.2), we show that the long
term Lyapunov drift is negative.

C.0.5.1 Cost Optimality

Part 1 of the theorem follows easily from the continuity of the optimal value

of the linear program L. The expected cost at time ¢ under policy ¢(p, X + €4, €5)

160

is given by

Ecp(u,>x+eg,es) [C(t) ‘ J(0)7 Q(l)]

= 30 PEE—1 =] Pe" ey (Coll 7=)T+ Callilh)

J3ed

Since J(0) is chosen according to the static-split rule given by o*, we have
PI(t—1)=j]=0j.
This gives us

Eo(uatepe) [CE)] T(0), Q)] < (L —e) > o5Call'lly +es | MCo+ Y a7Cullilly
J'eg JjeJ
< CZO (V’a A+ Eg) + MCOES

< CZO (ll’a A) + Kes + ’7(69)7
for some increasing function y(-) such that lim, o0 y(¢;) = 0. This follows from the

continuity of C% (u,-) (part (I) of Lemma 4.1). Therefore,

T
: 1 .
limsup > Ey(e,.c.cp) [C(0) [I(0), Q)] < Coo(p, X) + ries +1(ey)

< C™(p, N) + res + Y(eg),

where the last inequality follows from (4.6). This proves part 1 of Theorem 4.2.

C.0.5.2 Stability: Negative Lyapunov Drift

We show stability in the sense of Definition 4.1 by first showing that the
quadratic Lyapunov drift for the policy ¢(p, A + €4, €5) is negative outside a finite

set. Let V(q) := Y, , ¢A. be the Lyapunov function. For any T' > 0, ¢ > 0,

161

let Ap(t) ==V (Q({t+T)) —V(Q(t)) be the T-step Lyapunov drift. The following

lemma shows that the long term Lyapunov drift is negative outside a finite set:

Lemma C.1. For any p, A, there exists constants T, B such that for any t € N,
Eap(u,A—i-eg,es) [AT(t) ’ J(t - 1)’ Q(t)} < BT — EQTZ Qm,u(t)' (Cl)
m,u
Proof. Since P(o*,¢s) has a single ergodic class, the marginal distribution of the
Markov chain {J ()}, converges to o*. Moreover, we can choose a constant T € N

such that

T
s > [P0 =130) ~of] < 52 c2)
—1 je

Using standard arguments for quadratic drift with bounded arrivals and service,

there exists a constant B’ such that,

T—1
Ap(t) < BT+2Y (A(t+1) = S(t+1)) - Q(t +1).
=0

Let a* be the set of convex combinations related to the unique optimal solution
(o*, B*) through (4.9). Since the policy ¢(p, A+ €4, €,) allocates rates according to

the Max-Weight rule, we have

T-1
Ar(t) < B'T+2Y (A(t+1)— > QA IE+D, Ht+1)r) - Qt+1)
1=0 reR(I(t+1),H (t+1))
T-1
<BT+2Y (A(t+1)— > I+, Ht+1)r)- Q)
=0 reR(J(t+1),H (t+1))

for B = B’ 4+ max{A% R?}(T — 1) by using the assumption that the arrivals and

service per time-slot are bounded at every queue. Taking averages in the above

162

inequality, we get

Egp(y,,)\—i-eg,es) [AT<t) ‘ J(t - 1)7 Q(tﬂ

T-1
<BT+2TA-Q(t) -2 E > op(Jt+1),Ht+0)r | It —-1)| -Q(t).
I= rER(I(t4+1), H(t+1))
(C.3)

Now, for any [€ [0,T — 1], let
yt+0); =PIt+1)=7|It-1)].
By the choice of T' given by (C.2), we have

-1)
Doyt +1) =" ,R < Tey/2.

1=0
e 1>]

T-1
Z(Yooy uh) aI(j,h>r>y(t+z)a*1R)
+

Then

QLI+ 1), H(t +1)r

JjET heH reR(j,h)

where the last inequality follows since any solution to the linear program Leo (g, A + €4)

satisfies its constraints

Sord) > i hr = At e
)

j€T heH reR(,h

163

Substituting this inequality in (C.3), we get the required result

Eg&(u,)\—i-eg,es) [AT(t) ‘ J(t - 1)7 Q(tﬂ < BT — Tﬁg Z Qm,u(t>'

m,u

C.0.6 Proof of Theorem 4.3

As in the proof of Theorem 4.2, we use continuity of the linear program
L (Lemma 4.1) to prove part 1 of Theorem 4.3. To prove stability (part 2 of
Theorem 4.3), we show that the long term Lyapunov drift is negative outside a

finite set given the event
EVi= (1, A+ ¢g) € Uees. (C.4)

This negative Lyapunov drift, as in the Foster’s theorem for time-homogeneous

Markov chains, is then used to prove stability as per Definition 4.1.

C.0.6.1 Cost Optimality

Let y(t) denote the distribution of J(¢) and

P(t):= (P30 =5|I¢-1)=7]), ./

denote the transition probability matrix at time t. Therefore, the expected cost at

time ¢ under policy ¢(ep, €5, €¢) is given by

Eg(eycnee) [C0) [3(0),QM)] = 3wt = 1Pty (Coll 5 =)"l + il) -
jjeTg

(C.5)

164

Let fi(t), A(t) be the estimated statistics at the beginning of time-slot ¢. Then,

under policy ¢(ep, €5, €g), (J(t —1), (1), X(t)) . is a time-inhomogeneous Markov
t=>

chain. Given fi(t), X(t), the transition probability matrix P(t) at time ¢ for the BS

activation transitions is given by

P(t) == (P[3(t) = j [3t —1) = ' 4l0), A1))

= (1 —a(t)P(a(t),es) + a(t)Pa,

J.J€T

where P; is the transition probability matrix that takes the activation state to 1

(all BSs active) with probability 1 from any state.

Given 0 as defined in (C.4), let (0%, 8%) € O, (1, A + €4) be the unique
solution to the linear program Leer (pt, A + €4). Since limy_, o0 ([L(t), S\(t)) 2 (u, N,

2 o* and limy_ P(t) =

from part (II) of Lemma 4.1 we have that lim;_,~ & (¢)
limi o E[P(t)] = P(0* €5). Using Lemma 4.3(b), we have lim; .o y(t) = o*.

Applying these along with Lemma 4.2 to (C.5) yields

limsup Ege, e, c,) [C(t) | J(0),Q(1)] < Céep (11, A+ €4) + MCoes

t—o00

< Cho (s A+ €g) + V/|H| + 1Ciep + MCpeg

< C:O (e, A+ 69) + "G(ep + €5),

for a constant x that depends on the size of the network and Cy, C;. Now, from the

continuity of C% (u,-) (part (I) of Lemma 4.1), we have

limsupEg(e, o, ., [C() | 7(0), Q(1)] < Cn (11, A+ €) + ey +)

t—o00

< Cho (, A) + k(ep + €5) +v(eg)s

165

for some increasing function y(-) such that lim., o (ey) = 0. This gives us

T—o0

T

. 1 .

lim sup D Egiepenie) [C) | T(0), QL] < Clo (1,) + k(e + €) + Y(eg)
t=1

< C™(p, A) + K(ep + €5) + 7(eg),

where the last inequality follows from (4.6). This proves part 1 of Theorem 4.3.

C.0.6.2 Stability: Negative Lyapunov Drift

Similar to Theorem 4.2, we show that the long term Lyapunov drift is neg-
ative outside a finite set. But unlike in Theorem 4.2, this negative drift condition

holds only after a random time that has bounded second moment.

Lemma C.2. For any p, A, there exists constants T, B and a random time I" such

that E [I?] J(0),Q(1)] < oo, and for any t > T,

E(i)(ep,es,eg) [AT(t) ‘ J(t - 1)7 Q(t),J(O), Q(1)7 F7€0] < BT — %TZ Qm,u(t)-

m,u

(C.6)

Similar to the proof of Foster’s theorem, we show below that (C.6) implies

stability as per Definition 4.1.

Lemma C.3. If the condition given by (C.6) is satisfied, then for any b > 0,

)

S| =

t—o00

t
i 3 3" Pat) [< 4] 30).Q)| >
=1

where B = B+b, Q = % and A = {Q € RMxn . > @mau < Q} . Therefore, the

network is stable under policy ¢(ep, €s, €g).

166

Proof. For ease of notation, we do not explicitly write the conditioning on J(0), Q(1).
Let the condition given by (C.6) be true. Then under policy ¢(ep, €5, €5), we have

from (C.6) that
E[Ar(t) | I(t—1),Q(t),T,% < —bT + BT1{Q(t) € A},

for any t > I". Now, let I* := min{i : (i — 1)T" > I'}. Consider, for any k € N,

T T

Y EV(QKT +1) = V(QW)] = Y EV(QKT +1) - V(Q(I" =)T +1))]

=1 =1
+FEVQU"-1)T +1))-vV(QO)]. (C.7)

Now,

T
S EV(QURT +1)) = V(QI* = 1)T +1))]

T [k—1
=Y E| > Ap(iT+1)
=1 Li=I*—1
T [k—1
=>E|) E[ArGT+1)| Q(iT+l),F,EO]] (C.8)
=1 Li=I1*—1
T [k—1
<Y E| Y (-bT+BTI{QUT +1) € A})]
=1 Li=1*—1

< —b(k — 1)T?* + bTE | + BTE

kT
> 1{Que A}] .

t=I"+1

In (C.8), we have used that P [£°] =1 from Lemma 4.2.

Moreover, since (I* —1)T' < T'+ T, we have

Q(UI" -1)T+1) < Q) + AT +T)

167

for any ! € N, which gives

M=

EV(QUU"=1)T +1) = V(Q())]

ST (AT +T) + Quu(1))? - Qm,uuﬁ)]

m,u

T
nMTAT +T))>+2) Y AT+ T)Qm,uu)]

=1 m,u

<E [nMT(AT +7))%] +

T
2A(T +T) ZZ (1 =1) + Qmu(l))]

< TE [nMA*(I? + 31T + 2T%)] + TE

2AC+T)) Qm,u(n] :

m,u
Applying the above two inequalities in (C.7) and rearranging the terms, we get

kT

Y 1{Q) € A}] > bkT —E[Y]+

t=I+1

T
% STEV(QUT +1) - v(Q()],

=1

BE

where

Y = nMA?T? + <3nMA2T+2AZQmu +b> T 4277 4+ 2AT)~ Qumu(1) + T

m,u m,u

We have E [Y] < oo since E [FQ] < 0o. In addition, we also have

T
hll::riigp iIE 111; V(Q] < hiriscgp /{:LTE 1{; V(A —-1)+ Q(l))] =0
Therefore,
mamf — ZIP’ > Bliminf iIE i 1{Q(¢t) € A}]
k—o0 k—oo kKT Tl

> b—limsup —IE

k—o0

Y+ Zv]

168

which gives us the required result

@ =

1 kT
lim inf - ;P [Q(t) € A|J(0),Q(1)] >

Before we proceed to prove Lemma C.2, we will prove an intermediate result
which shows that the transition probability matrices used by the policy to select the
activation vector converge to a matrix that is close to the optimal. This result along
with Lemma 4.3 allows us to show that the distribution of the activation vector

converges to the optimal invariant distribution.

For any k > 0, let f1(k), A(k) denote the empirical distributions of channels
and the empirical means of arrivals respectively obtained from the first k& explore

samples. For every ¢t > 0, § > 0, define the events

Ea(t,0) = {lp@) — pll, <o},

&(t,0) = {IA(t) = All, <o},

and

Et0):=&1) () {&uk,&)NE K)},

11002
k>3 log=t

where ¢ = % min(J, ¢5/R).
Lemma C.4. For any § > 0, let T1(0) := min{¢t : £(t,0) is true} . Then,

E [T1(6)* | J(0),Q(1)] < cc.

169

Proof. For ease of notation, we do not explicitly write the conditioning on J(0), Q(1).

Consider the mean number of explore samples in the first ¢ slots.

> Ei(s)
s=1

t

:ZQIng

s=2

t+1
> / 2log s ds
s S

E

=€

=log?(t+1) -1

3 1og2(1),

> 2
— 4

for all ¢ > 3. Using the Chernoff bound for Bernoulli random variables, we have

Vi > 3,

P [£(t)°] < exp (—312 log? t> .

Using the Hoeffding’s inequality for Bernoulli random variables, for any &, € > 0,

P [Sj\(k-,e)c] < ZP [’/N\U(k) = M| 2 16]

n

<ne 2k (€)2

xp | — —)

= p A

In addition, using Pinsker’s inequality it can be shown [137] that for any k, € > 0,
2
P[Ea(k,€)] < (k+ 1) exp <—2k> .
Now, let §' = %min(é, €g/R). Using the above inequalities, we have Vt > 3,
P[T1(0) > t] <P[E(¢,0)]

<PE®T+ D (P[Ei(k,0)] +P[E5(k,0)])

k:% log? ¢
_ 1
=0 t—g y

170

which gives us
E [Ty(6)*] =2 tP[T1(8) > 1] < 0.
t=0
O

Given &9, let (0%, B*) € Ok, (11, A + €4) be the unique solution to the linear
program Leep (o, A + €4). Due to the continuity of the solution set of Leer (g1, A + €4)
given £V (from Lemma 4.1), there exists a positive function §; — f(d;) such that,

if (1, N +¢4) €S and
I = plly + XN = Al < £(61),
then for any (o/,8') € Ok, (1, N + ¢g),
lo" — o™||; < d1.

The following lemma shows that continuity of the solution of Leer (g2, A + €4) implies

convergence of the activation vector transition probability matrices.

Lemma C.5. If (u, A+ 2¢,) € S, then for any 61, t such that €(t) < 01/4, the

event EVY N E(t, £(01/2)) implies the event

E(t,61) ={P() —P(o" &)l <01 VI >t}.
Proof. The event E(t, f(81/2)) implies that for any I > t, (f1(), A(I) + ¢,) € S and

@) = plly + IAQ) = Ally < £(61/2).

171

Therefore, we have
lo(l) — o™y < 61/2,
which gives us

[P() =P(o”,€5)lly < [IP(6(1),¢5) = P, e5)ly + 26(1)
<|le(l) —o*||; + 01/2

< 4.

We now prove the negative Lyapunov drift condition (Lemma C.2).

Proof of Lemma C.2. There exists a constant B’ such that,

T-1
Ap(t) < B'T+2 Z(A(t +1)—S(t+1)-Q(t+1).
=0

Assume £V is true and let a* be the set of convex combinations related to the unique
optimal solution (¢*, 8*) through (4.9). Since the policy ¢(ep, €5, €4) allocates rates

according to the Max-Weight rule, we have

T-1
Ar(t) < B'T+2Y (A(t+1)— > QA IE+D, Ht+1)r) - Qt+1)
1=0 reR(I(t+1),H (t+1))
T-1
<BT+2Y (At +1)— > I+, Ht+1)r) - Q(t)
=0 reR(I(t+1),H (t+1))

for B = B’ 4+ max{A% R?}(T — 1) by using the assumption that the arrivals and

service per time-slot are bounded at every queue. To prove (C.6), it is sufficient to

172

prove that there exists a 7' > 0 and a random time I' such that E [T% | J(0), Q(1)] <

oo, and for any t > T,
Z>T(A+¢€4/4), (C.9)

where Z is given by (C.10).

T-1
Z:=) E { > QI+ 1), H(t+1)r | It — 1),Q(t),J(O),Q(1),F,50]
=0 reR(J(t+1),H(t+1))
(C.10)
T-1
=3 E {E [> QI+, HEt+1)r | Y(t),E° ‘J(t— 1),r,50] :
=0 reR(JI(t+1),H (t+1))
(C.11)

This can be justified as follows: if (C.9) is true, then for any ¢t > T,

E[Ar(t) | I(t—1),Q(t),J(0),Q(1),I, Y] < BT +2TX-Q(t) — 2Z - Q(t)

< BT — T€9/2Z Qm,u(t)a

m,u

which gives us the required result.

Now to prove (C.9), Fix constants 6; € (0,1) and 7" € N such that

€
51§ ~ £)
A+ey/2

and
24 T4 < Ti@.
€s - 2R

173

Define the random time I' as
I' := max {Tl(f(51/2)),m1n {t . 6l(t) S (51/4}} .

From Lemma C.4, we have that E [I'? | J(0), Q(1)] < oo. For any [>0, Ey(t+1) is
independent of Y (t),E? and if Ey(t + 1) = 0, then H(t + 1) is independent of these

random variables and distributed according to p. This gives us

Y (t),E°

E { > QE (It +1), H(t+1)r
reR(JI(t+1),H (t+1))
T-1

> (IP’[Ez(t—i—l) = 0] x
=

[en]

P[J(t+l)jEl(t+l)O,Y(t),EO]IE{ Z a:(j,H(tJrl))r])
t+1))

jeT reR(j,H(
T-1
= ((1—61(t+l))><
=0
P[It+1)=35]|Ef(t+1)=0,Y(t),& (Z p(h) > a;;(j,h)r))
JET heH reR(j,h)
T—1
> (1=61/4)) ((Z Py ulh) Y a,’:(J}h)r) ly(t+1) -l)
=0 j€J heH reR(j,h)

(C.12)

where for any [€ [0,T — 1],
yt+0); =PIt+1)=j|E{t+1)=0Y(),E.
From Lemma C.5, given £°, for any ¢t > T and I € [0, T — 1], we have

[P +1) —P(o7, &)y < d1.

174

Recall that

P(O'*,GS) = 651|J|0'* + (1 — GS)I‘j‘,

and for any [€ N,
P(O'*,Gs)l = (1 — (1 — 6S)l> 1“7‘0'* + (1 — Es)ll|j|.

Since 71 (1| 710*) = 0, using the definition in (4.10), it can be verified that 71 (P(c*, €,)") =
(1 — €s)!. Therefore,

T(P(o*,e) = 3 mi(P(o",e)) = —.
=0

€s

From Lemma 4.3(a), we have

T-1 T-1
Slyt+0)—o"l < Y (2n(P(o",e)) + 5T (P07)))
=0 =0

< 2+T(51

€s
Te,

< —.
~ 2R

Since any solution to the linear program Leer (pt, A + €4) satisfies its constraints, we

also have

Yoot A+eg); > ulh) Y (i h)r > A+ e,

jeg heH reR(j,h)

Using this in (C.11) and (C.10) gives us

Z>T(A+¢€5/2)(1—061/4)
€g/4
A+e _ 9=
>T(A+¢€4/2) <1 A+€g/2>
ZT()‘+69/4)7

and this proves (C.9). O

175

Combining Lemmas C.2 and C.3, we have part 2 of Theorem 4.3.

176

Bibliography

Ftc policy statement on deception, October 1983.
Self-regulatory principles for online behavioral advertising, July 2009.

Major marketing / media trade groups launch program to give consumers
enhanced control over collection and use of web viewing data for online be-

havioral advertising, October 2010.

.com disclosures: How to make effective disclosures in digital advertising,
March 2013.
Iab native advertising playbook, December 2013.

Native advertising roundup, October 2014.

State of native advertising 2014, 2014.

Ali Abbasi and Majid Ghaderi. Distributed base station activation for energy-
efficient operation of cellular networks. In Proceedings of the 16th ACM
international conference on Modeling, analysis & simulation of wireless and

mobile systems, pages 427-436. ACM, 2013.

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algo-
rithms for linear stochastic bandits. In Advances in Neural Information Pro-

cessing Systems, pages 2312-2320, 2011.

177

[10]

[12]

[13]

[16]

John Abraham. The pharmaceutical industry as a political player. The

Lancet, 360(9344):1498-1502, 2002.

Deepak Agarwal. Detecting anomalies in cross-classified streams: a bayesian

approach. Knowledge and information systems, 11(1):29-44, 2007.

Charu C Aggarwal and Philip S Yu. Outlier detection for high dimensional

data. In ACM Sigmod Record, volume 30, pages 37-46. ACM, 2001.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the
multi-armed bandit problem. In Proceedings of the 25th Annual Conference

on Learning Theory (COLT), June 2012.

Reed Albergotti. Facebook to clean up news feeds. The Wall Street Journal,

2014.

M. Andrews, K. Kumaran, K. Ramanan, A.L. Stolyar, R. Vijayakumar, and
P. Whiting. CDMA data QoS scheduling on the forward link with variable

channel conditions. Bell Labs Tech. Memo, April 2000.

Jac M Anthonisse and Henk Tijms. Exponential convergence of products
of stochastic matrices. Journal of Mathematical Analysis and Applications,

59(2):360-364, 1977.

Oliver Arnold, Fred Richter, Gerhard Fettweis, and Oliver Blume. Power
consumption modeling of different base station types in heterogeneous cellular

networks. In 2010 Future Network & Mobile Summit. IEEE, 2010.

178

[18]

[21]

[22]

[23]

[25]

Karl J Astrom and Bjorn Wittenmark. Adaptive control. Courier Corpora-

tion, 2013.

Jean-Yves Audibert and Sébastien Bubeck. Best arm identification in multi-
armed bandits. In COLT-23th Conference on Learning Theory-2010, pages

13-p, 2010.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvari. Exploration—
exploitation tradeoff using variance estimates in multi-armed bandits. Theo-

retical Computer Science, 410(19):1876-1902, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of

the multiarmed bandit problem. Machine learning, 47(2-3):235-256, 2002.

Daniel Barbara, Ningning Wu, and Sushil Jajodia. Detecting novel network

intrusions using bayes estimators. In SDM, pages 1-17. STAM, 2001.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. I[IEEFE

transactions on systems, man, and cybernetics, (5):834-846, 1983.

Joeran Beel, Stefan Langer, and Marcel Genzmehr. Sponsored vs. organic
(research paper) recommendations and the impact of labeling. In Research

and Advanced Technology for Digital Libraries, pages 391-395. Springer, 2013.

James Bennett and Stan Lanning. The netflix prize. In Proceedings of KDD

cup and workshop, volume 2007, page 35, 2007.

179

[26]

[30]

32]

Dirk Bergemann and Alessandro Bonatti. Targeting in advertising markets:
implications for offline versus online media. The RAND Journal of Economics,

42(3):417-443, 2011.

D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Anthropo-

logical Field Studies. Athena Scientific, 1996.

Naga Bhushan, Junyi Li, Durga Malladi, Rob Gilmore, Dean Brenner, and
Aleksandar Damnjanovic. Network densification: the dominant theme for
wireless evolution into 5G. IEEE Communications Magazine, 52(2):82-89,

2014.

David Blumenthal. Doctors and drug companies. New England Journal of

Medicine, 351(18):1885-1890, 2004.

Richard J Bolton and David J Hand. Statistical fraud detection: A review.

Statistical Science, pages 235249, 2002.

John S Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. In Proceedings of the Four-
teenth conference on Uncertainty in artificial intelligence, pages 43-52. Mor-

gan Kaufmann Publishers Inc., 1998.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Machine Learning, 5(1):1-122,

2012.

180

[33]

[34]

Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet. Bounded regret

in stochastic multi-armed bandits. arXiv preprint arXiv:1502.1611, 2013.

Robin Burke, Bamshad Mobasher, Chad Williams, and Runa Bhaumik. Clas-
sification features for attack detection in collaborative recommender systems.
In Proceedings of the 12th ACM SIGKDD international conference on Knowl-

edge discovery and data mining, pages 542-547. ACM, 2006.

C Buyukkoc, P Varaiya, and J Walrand. The cu rule revisited. Advances in

applied probability, 17(1):237-238, 1985.

Nicolo Cesa-Bianchi and Paul Fischer. Finite-time regret bounds for the

multiarmed bandit problem. In ICML, pages 100-108. Citeseer, 1998.

Nicolo Cesa-Bianchi and Gabor Lugosi. Combinatorial bandits. Journal of

Computer and System Sciences, 78(5):1404-1422, 2012.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:

A survey. ACM Computing Surveys (CSUR), 41(3):15, 2009.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sam-
pling. In Advances in neural information processing systems, pages 2249—

2257, 2011.

P. Chaporkar and S. Sarkar. Stable scheduling policies for maximizing through-

put in generalized constrained queueing. In IEEE Infocom, 2006.

Richard Combes, Chong Jiang, and Rayadurgam Srikant. Bandits with bud-

gets: Regret lower bounds and optimal algorithms. In Proceedings of the 2015

181

[44]

[46]

[47]

ACM SIGMETRICS International Conference on Measurement and Modeling

of Computer Systems, pages 245-257. ACM, 2015.
DR Cox and WL Smith. Queues. Wiley, 1961.

Aidan Crook and Sanaz Ahari. Personalized search for everyone. bing blog,

2011.

MR Davidson. Stability of the extreme point set of a polyhedron. Journal of

optimization theory and applications, 90(2):357-380, 1996.

Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation
and analysis of personalized search strategies. In Proceedings of the 16th

international conference on World Wide Web, pages 581-590. ACM, 2007.

The Lancet Editorial. The uk drug industry: responsible, ethical, and profes-

sional? The Lancet, 366(9500):1828, 2005.

Salah-Eddine Elayoubi, Louai Saker, and Tijani Chahed. Optimal control
for base station sleep mode in energy efficient radio access networks. In

INFOCOM, 2011 Proceedings IEEFE, pages 106-110. IEEE, 2011.

Dag Elgesem. Search engines and the public use of reason. FEthics and

information Technology, 10(4):233-242, 2008.

Robert M Entman. Framing bias: Media in the distribution of power. Journal

of communication, 57(1):163-173, 2007.

182

[50]

[52]

[55]

[56]

Robert Epstein. How google could end democracy. U.S. News & World

Report, 2014.

Atilla Eryilmaz and R Srikant. Joint congestion control, routing, and mac for
stability and fairness in wireless networks. Selected Areas in Communications,

IEEE Journal on, 24(8):1514-1524, 2006.

Adriane Fugh-Berman and Shahram Ahari. Following the script: how drug

reps make friends and influence doctors. PLoS Medicine, 4(4):e150, 2007.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network
optimization with unknown variables: Multi-armed bandits with linear re-
wards and individual observations. IEFE/ACM Transactions on Networking

(TON), 20(5):1466-1478, 2012.

Pedro Galeano, Daniel Pena, and Ruey S Tsay. Outlier detection in multi-
variate time series by projection pursuit. Journal of the American Statistical

Association, 101(474):654-669, 2006.

Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded

stochastic bandits and beyond. arXiv preprint arXiw:1102.2490, 2011.

L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and Cross-
Layer Control in Wireless Networks. NOW Publishers, Foundations and

Trends in Networking, 2006.

Anindya Ghose and Sha Yang. An empirical analysis of search engine ad-

vertising: Sponsored search in electronic markets. Management Science,

183

[61]

[64]

[65]

55(10):1605-1622, 2009.

John C Gittins. Bandit processes and dynamic allocation indices. Journal of

the Royal Statistical Society. Series B (Methodological), pages 148-177, 1979.

Ben Goldacre. Bad Pharma: How drug companies mislead doctors and harm

patients. Macmillan, 2014.

Jie Gong, John S Thompson, Sheng Zhou, and Zhisheng Niu. Base station
sleeping and resource allocation in renewable energy powered cellular net-

works. IEEFE Trans. on Communications, 62(11):3801-3813, 2014.

Aditya Gopalan, Constantine Caramanis, and Sanjay Shakkottai. On wireless
scheduling with partial channel-state information. Information Theory, IEEE

Transactions on, 58(1):403-420, 2012.

Laura A Granka. The politics of search: A decade retrospective. The

Information Society, 26(5):364-374, 2010.

Xueying Guo, Zhisheng Niu, Sheng Zhou, and PR Kumar. Delay-constrained
energy-optimal base station sleeping control. IEEFE Journal on Selected Areas

in Communications, 34(5):1073-1085, 2016.

Deepali Gupta. Cci charges google with rigging search results; flipkart, face-

book corroborate complaints. The Fconomic Times, 2015.

Feng Han, Zoltan Safar, W Sabrina Lin, Yan Chen, and KJ Ray Liu. Energy-

efficient cellular network operation via base station cooperation. In 2012

184

[68]

[69]

[70]

IEEE International Conference on Communications (ICC), pages 4374-4378.

IEEE, 2012.

Ziaul Hasan, Hamidreza Boostanimehr, and Vijay K Bhargava. Green cellular
networks: A survey, some research issues and challenges. IEEE Communica-

tions surveys € tutorials, 13(4):524-540, 2011.

Simon Hawkins, Hongxing He, Graham Williams, and Rohan Baxter. Outlier
detection using replicator neural networks. In Data warehousing and knowl-

edge discovery, pages 170-180. Springer, 2002.

Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-based

local outliers. Pattern Recognition Letters, 24(9):1641-1650, 2003.

Bryan Horling and Matthew Kulick. Personalized search for everyone. Google

Official Blog, 2009.

Zan Huang, Daniel D Zeng, and Hsinchun Chen. Analyzing consumer-product
graphs: Empirical findings and applications in recommender systems. Man-

agement science, 53(7):1146-1164, 2007.

Lucas D Introna and Helen Nissenbaum. Shaping the web: Why the politics

of search engines matters. The information society, 16(3):169-185, 2000.

Peter Jacko. Restless bandits approach to the job scheduling problem and
its extensions. Modern trends in controlled stochastic processes: theory and

applications, pages 248-267, 2010.

185

[73]

[74]

[76]

[77]

78]

Jyh-Shing Roger Jang, Chuen-Tsai Sun, and Eiji Mizutani. Neuro-fuzzy and
soft computing, a computational approach to learning and machine intelli-

gence. 1997.

Gong Jie, Zhou Sheng, and Niu Zhisheng. A dynamic programming approach
for base station sleeping in cellular networks. IEICE transactions on commu-

nications, 95(2):551-562, 2012.

Ioannis Kamitsos, Lachlan Andrew, Hongseok Kim, and Mung Chiang. Op-
timal sleep patterns for serving delay-tolerant jobs. In Proceedings of the
1st International Conference on Energy-Efficient Computing and Networking,

pages 31-40. ACM, 2010.

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling:
An asymptotically optimal finite-time analysis. In Algorithmic Learning The-

ory, pages 199-213. Springer, 2012.

Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for
communication networks: shadow prices, proportional fairness and stability.

Journal of the Operational Research society, pages 237-252, 1998.

R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few

entries. Information Theory, IEEE Transactions on, 56(6):2980-2998, 2010.

Roman Khazankin, Harald Psaier, Daniel Schall, and Schahram Dustdar.
Qos-based task scheduling in crowdsourcing environments. In Service-Oriented

Computing, pages 297-311. Springer, 2011.

186

[80]

[84]

[85]

[36]

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization tech-

niques for recommender systems. Computer, 42(8):30-37, 2009.

S. Krishnasamy, P. T. Akhil, A. Arapostathis, S. Shakkottai, and R. Sundare-
san. Augmenting max-weight with explicit learning for wireless scheduling

with switching costs. Tech. Report, UT Austin, January 2017.

Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai.
Regret of queueing bandits. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing

Systems 29, pages 1669-1677. 2016.

Subhashini Krishnasamy, Rajat Sen, Sewoong Oh, and Sanjay Shakkottai.
Detecting sponsored recommendations. In The 2015 ACM International Con-
ference on Measurement and Modeling of Computer Systems, SIGMETRICS

"15. ACM, 2015. Poster Paper.

Subhashini Krishnasamy, Rajat Sen, Sewoong Oh, and Sanjay Shakkottai.
Detecting sponsored recommendations. arXiv preprint arXiv:1504.03713,

2015.

Subhashini Krishnasamy, Rajat Sen, Sanjay Shakkottai, and Sewoong Oh.
Detecting sponsored recommendations. ACM Trans. Model. Perform. FEuval.

Comput. Syst., 2(1):6:1-6:29, November 2016.

Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based

187

[90]

[91]

[92]

attacks. In Proceedings of the 10th ACM conference on Computer and com-

munications security, pages 251-261. ACM, 2003.

Srisankar Kunniyur and Rayadurgam Srikant. End-to-end congestion con-
trol schemes: Utility functions, random losses and ecn marks. Networking,

IEEE/ACM Transactions on, 11(5):689-702, 2003.

Harold Kushner. Heavy traffic analysis of controlled queueing and communi-

cation networks, volume 47. Springer Science & Business Media, 2013.

Khaled Labib and Rao Vemuri. Nsom: A real-time network-based intrusion
detection system using self-organizing maps. Networks and Security, pages

1-6, 2002.

Sébastien Lahaie, David M Pennock, Amin Saberi, and Rakesh V Vohra.

Sponsored search auctions. Algorithmic game theory, pages 699-716, 2007.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allo-

cation rules. Advances in applied mathematics, 6(1):4-22, 1985.

C Seth Landefeld and Michael A Steinman. The neurontin legacy—marketing
through misinformation and manipulation. New England Journal of Medicine,

360(2):103, 2009.

Steven H Landers and Ashwini R Sehgal. Health care lobbying in the united

states. The American journal of medicine, 116(7):474-477, 2004.

188

[94]

[96]

(98]

[100]

Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A comparative study of anomaly detection schemes in network

intrusion detection. In SDM, pages 25-36. STAM, 2003.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-
bandit approach to personalized news article recommendation. In Proceedings
of the 19th international conference on World wide web, pages 661-670. ACM,

2010.

X. Lin, N. Shroff, and R. Srikant. A tutorial on cross-layer optimization in

wireless networks. IEEE Journal on Selected Areas in Comm., 2006.

Xiaojun Lin and Ness B Shroff. Joint rate control and scheduling in mul-
tihop wireless networks. In Decision and Control, 2004. CDC. 43rd IEEE

Conference on, volume 2, pages 1484-1489. TEEE, 2004.

Zhouchen Lin, Minming Chen, and Yi Ma. The augmented lagrange multi-
plier method for exact recovery of corrupted low-rank matrices. arXiv preprint

arXi:1009.5055, 2010.

Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommen-
dations: Item-to-item collaborative filtering. Internet Computing, IEEE,

7(1):76-80, 2003.

Christopher Lott and Demosthenis Teneketzis. On the optimality of an index

rule in multichannel allocation for single-hop mobile networks with multiple

189

[101]

[102]

[103]

[104]

[105]

[106]

service classes. Probability in the Engineering and Informational Sciences,

14:259-297, 2000.

Aditya Mahajan and Demosthenis Teneketzis. Multi-armed bandit prob-
lems. In Foundations and Applications of Sensor Management, pages 121—

151. Springer, 2008.

Matthew V Mahoney and Philip K Chan. Learning nonstationary models
of normal network traffic for detecting novel attacks. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 376-385. ACM, 2002.

M Ajmone Marsan, Luca Chiaraviglio, Delia Ciullo, and Michela Meo. Op-
timal energy savings in cellular access networks. In 2009 IEEE International

Conference on Communications Workshops, pages 1-5. IEEE, 2009.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM

conference on Recommender systems, pages 165—-172. ACM, 2013.

Michael Mitzenmacher and Eli Upfal. Probability and computing: Randomized

algorithms and probabilistic analysis. Cambridge University Press, 2005.

Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. To-
ward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. ACM Transactions on Internet Technology (TOIT),

7(4):23, 2007.

190

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Michael J Neely, Eytan Modiano, and Chih-Ping Li. Fairness and opti-
mal stochastic control for heterogeneous networks. Networking, IEEE/ACM

Transactions on, 16(2):396-409, 2008.

Michael J. Neely, Eytan Modiano, and Charles E. Rohrs. Tradeoffs in delay
guarantees and computation complexity for n n packet switches. In Proceed-

ings of CISS, 2002.

José Nino-Mora. Marginal productivity index policies for scheduling a multi-

class delay-/loss-sensitive queue. Queueing Systems, 54(4):281-312, 2006.

José Nifilo-Mora. Dynamic priority allocation via restless bandit marginal

productivity indices. Top, 15(2):161-198, 2007.

Funsung Oh, Bhaskar Krishnamachari, Xin Liu, and Zhisheng Niu. Toward
dynamic energy-efficient operation of cellular network infrastructure. IFEFE

Communications Magazine, 49(6):56-61, 2011.

Funsung Oh, Kyuho Son, and Bhaskar Krishnamachari. Dynamic base sta-
tion switching-on/off strategies for green cellular networks. IEEE transactions

on wireless communications, 12(5):2126-2136, 2013.

Spiros Papadimitriou, Hiroyuki Kitagawa, Philip B Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral.
In Data Engineering, 2003. Proceedings. 19th International Conference on,

pages 315-326. IEEE, 2003.

191

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg.

Batched bandit problems. arXiv preprint arXiv:1505.00369, 2015.

Chad Pollitt. Everything you need to know about sponsored content. January

2015.

Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-
rithms for mining outliers from large data sets. In ACM SIGMOD Record,

volume 29, pages 427-438. ACM, 2000.

Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: an open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM conference on Computer supported cooperative

work, pages 175-186. ACM, 1994.

Paat Rusmevichientong and David P Williamson. An adaptive algorithm
for selecting profitable keywords for search-based advertising services. In
Proceedings of the 7th ACM Conference on Electronic Commerce, pages 260—

269. ACM, 2006.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior

sampling. Mathematics of Operations Research, 39(4):1221-1243, 2014.

Antoine Salomon, Jean-Yves Audiber, and Issam El Alaoui. Lower bounds
and selectivity of weak-consistent policies in stochastic multi-armed bandit

problem. The Journal of Machine Learning Research, 14(1):187-207, 2013.

192

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Bernhard Scholkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and
Robert C Williamson. Estimating the support of a high-dimensional distri-

bution. Neural computation, 13(7):1443-1471, 2001.

Steven L Scott. A modern bayesian look at the multi-armed bandit. Appl.

Stoch. Models in Business and Industry, 26(6):639-658, 2010.

E Seneta. Sensitivity of finite markov chains under perturbation. Statistics

& probability letters, 17(2):163-168, 1993.

Fugene Seneta. Non-negative matrices and Markov chains. Springer Science

& Business Media, 2006.

Anup Shah. Pharmaceutical corporations and medical research. Global

Issues, 2010.

Qing Song, Wenjie Hu, and Wenfang Xie. Robust support vector machine
with bullet hole image classification. Systems, Man, and Cybernetics, Part

C: Applications and Reviews, IEEE Transactions on, 32(4):440-448, 2002.

R. Srikant and L. Ying. Communication Networks — An Optimization, Con-

trol, and Stochastic Networks Perspective. Cambridge University Press, 2014.

R. Srikant and Lei Ying. Communication Networks: An Optimization, Con-

trol and Stochastic Networks Perspective. Cambridge University Press, 2014.

Alexander L Stolyar. Maximizing queueing network utility subject to stabil-

ity: Greedy primal-dual algorithm. Queueing Systems, 50(4):401-457, 2005.

193

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

L. Tassiulas. Linear complexity algorithms for maximum throughput in radio

networks and input queued switches. In IEEFE Infocom, 1998.

Herman Tavani. Search engines and ethics. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Spring 2014 edition, 2014.

William R Thompson. On the likelihood that one unknown probability ex-
ceeds another in view of the evidence of two samples. Biometrika, pages

285294, 1933.

Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer

Science & Business Media, 2008.
Catherine Tucker. Social advertising. SSRN eLibrary, 2012.

A.M. Turpin and J.B. Katz. System and method for implementing advertising

in an online social network, August 7 2008. US Patent App. 12/011,880.

Jan A Van Mieghem. Dynamic scheduling with convex delay costs: The
generalized ¢ mu rule. The Annals of Applied Probability, pages 809-833,

1995.

Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J
Weinberger. Inequalities for the 11 deviation of the empirical distribution,

2003. HP Labs Technical Report.

John T Wen and Murat Arcak. A unifying passivity framework for network

flow control. Automatic Control, IEEE Transactions on, 49(2):162-174, 2004.

194

[139]

[140]

[141]

[142]

[143]

[144]

[145]

R. J. B. Wets. On the continuity of the value of a linear program and of
related polyhedral-valued multifunctions. Mathematical programming study,

(24):14-29, 1985.

Ward Whitt. Heavy traffic limit theorems for queues: a survey. In Mathe-

matical Methods in Queueing Theory, pages 307-350. Springer, 1974.

Gang Wu, Chenyang Yang, Shaoqian Li, and Geoffrey Ye Li. Recent ad-
vances in energy-efficient networks and their application in 5g systems. [FEFE

Wireless Communications, 22(2):145-151, 2015.

Jingjin Wu, Yujing Zhang, Moshe Zukerman, and Edward Kai-Ning Yung.
Energy-efficient base-stations sleep-mode techniques in green cellular networks:

A survey. IEEE Communications Surveys & Tutorials, 17(2):803-826, 2015.

Sha Yang and Anindya Ghose. Analyzing the relationship between organic
and sponsored search advertising: Positive, negative, or zero interdependence?

Marketing Science, 29(4):602-623, 2010.

Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detec-
tors. In Pattern Recognition, 2002. Proceedings. 16th International Confer-

ence on, volume 4, pages 385-388. IEEE, 2002.

Yung Yi, Alexandre Proutiere, and Mung Chiang. Complexity in wireless
scheduling: Impact and tradeoffs. In Proc. of the 9th ACM International

Symp. on Mobile Ad Hoc Networking and Computing (MobiHoc), 2008.

195

[146] Dantong Yu, Gholamhosein Sheikholeslami, and Aidong Zhang. Findout:
finding outliers in very large datasets. Knowledge and Information Systems,

4(4):387-412, 2002.

[147] Jianchao Zheng, Yueming Cai, Xianfu Chen, Rongpeng Li, and Honggang
Zhang. Optimal base station sleeping in green cellular networks: A distributed
cooperative framework based on game theory. IEEFE Transactions on Wireless

Communications, 14(8):4391-4406, 2015.

[148] Michael Zimmer. The value implications of the practice of paid search.
Bulletin of the American Society for Information Science and Technology,

32(2):23-25, 2006.

196

Vita

Subhashini Krishnasamy received her Master’s degree in Telecommunica-
tions from the Indian Institute of Science (IISc), Bangalore and Bachelor’s degree
in Electronics and Communication Engineering from JNTU College of Engineering,
Hyderabad. Prior to joining UT Austin, she was employed at Texas Instruments,
Bangalore, where she worked on designing low-power WiFi transceivers. Her re-
search focuses on designing learning and control algorithms for networks, especially

of large scale.

Permanent address: subhashini.kbQutexas.edu

This dissertation was typeset with ATEXT by the author.

TLA’IEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

197

