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It is shown in three examples that future cosmological data may allow

us to constrain fundamental physics in interesting ways.

The first example illustrates that correlations in the polarization of the cosmic

microwave background may allow us to put the strongest limit yet on the mass

of a particle, the graviton, at a level of m . 10−30 eV.

In the second example, it is shown that observations of the correlations of tem-

perature anisotropies and polarization of the cosmic microwave background

may reveal hints for the realization of a class of string theoretic inflationary

models that go by the name of axion monodromy inflation, or, rule them out.

If the evidence for inflation strengthens substantially, just the requirement that

inflation occurred may be used to constrain models of fundamental physics.

The third example shows that a class of string compactifications that are com-

monly used in the context of string phenomenology cannot support inflation

and might thus be ruled out by cosmology.

For completeness, a review of the physics underlying the cosmic microwave

background radiation is included and some analytical results for the signa-

tures of primordial gravitational waves in the cosmic microwave background

are given.
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Chapter 1

Introduction

It might almost be viewed as one of the traits that make us human

that we try to understand where we, and the world around us, came from.

While the degree of sophistication may vary, most likely everyone has won-

dered about it at some point. Contemplating about this does not take up a

significant amount of time for most people. Theoretical high energy physi-

cists, however, spend a fair amount of their time thinking about these and

related issues and call the study of the origin and the evolution of the universe

cosmology.1 Until rather recently, very little experimental data had been avail-

able, and cosmology was considered by many to be closer to philosophy than

to science. The situation has changed quite dramatically over the course of

the past twenty years, and the measurement of the temperature of the cosmic

microwave background radiation by a satellite called the COsmic Background

Explorer, or COBE, is often regarded as the milestone marking the beginning

of what is sometimes called the era of precision cosmology. Since then a large

number of different experiments such as observations of distant supernovae,2

more detailed measurements of the cosmic microwave background radiation,

as well as galaxy surveys have been performed and have led us to a coherent

1It is amusing to note that even though the origin of the word is Greek, it seems to
have been used first by a German mathematician and philosopher, Christian Wolff, in his
Cosmologia Generalis in 1730.

2A supernova is the explosion of a star.
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picture of the early universe that is usually referred to as the standard or

concordance model of cosmology.

It seems fair to say that we still know nothing about the very beginning,

and we could not even disprove that it all began with a void,3 as Hesiod writes

in his Theogony. We are beginning, however, to understand the subsequent

evolution with some confidence, and it turns out to involve much less violence

and bloodshed than Hesiod’s version. But it is certainly no less interesting.

It now seems likely that the universe one way or another entered a pe-

riod of accelerated expansion called inflation. During this period the universe

grew or rather exploded in size by at least some thirty orders of magnitude in

as little as 10−34 seconds, explaining among other things why the universe we

see around us is so big. Quantum fluctuations during this era are believed to

be the seeds for the structures in the universe we see today such as stars and

galaxies. This period of inflation ends with a process called reheating during

which the standard model particles such as quarks, leptons, and gauge bosons,

as well as possibly others that we have not observed yet, were first created. By

the time this process was finished, the universe was filled with a very hot and

dense plasma. As the universe expanded, this plasma of elementary particles,

sometimes also referred to as the primordial soup, cooled down and every time

the temperature dropped below the mass of some species of particles, these

particles annihilated with their antiparticles and disappeared from the plasma.

Sometime after reheating but still before the end of an event known as the elec-

troweak phase transition, a slight asymmetry between matter and anti-matter

must have been produced leaving a tiny bit of matter behind when a species

3Hesiod talks about Xάoς, which is often translated as Chaos. The word originally
merely stands for a void or a chasm and does not imply any disorder or confusion.
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of particles annihilated, explaining why we, as well as stars and galaxies are

around. This is commonly referred to as baryogenesis. When the temperature

dropped below some 1012K, which happened some 100µs after the big bang,

protons and neutrons made their first appearance in the universe, and as the

universe continued to expand and cool, the energies dropped below the binding

energies of nuclei, and the light elements were created in the universe. This

era is referred to as nucleosynthesis and ended about three minutes after the

big bang. After its completion, the universe was filled with a plasma contain-

ing protons, helium nuclei, small traces of deuterium and lithium, electrons,

photons, neutrinos, and a component called dark matter as well as one called

dark energy must also have been present. The protons, helium nuclei, elec-

trons, and photons still interacted very efficiently with each other until the

temperature was low enough for atoms to form. At this point, which occurred

about 380,000 years after the big bang, the universe was filled by a neutral

gas of hydrogen and helium. The photons decoupled and have been travel-

ling freely throughout the universe since then. These photons, known as the

cosmic microwave background, can be detected and will play a central role in

this thesis. Some time not too long after this, the first stars must have formed

out of the gas of hydrogen and helium. Gravitational interactions caused the

original density fluctuations to grow, leading to regions that decoupled from

the Hubble expansion called minihaloes. At the centers of these minihaloes

the densities became high enough for fusion to set in, leading to the first stars.

These are thought to be very massive and short lived, and are thought to

collapse to a black hole or lead to a violent supernova explosion depending

on their masses. The explosions of the first generation of stars enriched the

medium with the heavier elements that were generated in their interiors, and

from this medium a second and third generation of stars formed. These are

3



the stars we see in the night-sky today.

While many details especially regarding star and galaxy formation still

need to be better understood, and it remains to unravel what the microphys-

ical origin of dark matter and dark energy are, most of the evolution of the

universe as described above that happened after nucleosynthesis is reasonably

well supported by experiment. The evolution of the universe before nucle-

osynthesis is more speculative and is obtained by extrapolating our theories

backwards in time using information we have obtained from experiments at

particle accelerator experiments.

In this work, the cosmic microwave background will play a central role.

It will be shown on examples that current and future observations of this radi-

ation may allow us to constrain fundamental physics in interesting ways. We

do not assume that the reader is familiar with the physics of the cosmic mi-

crowave background radiation, and give a brief review containing all relevant

formulas in Chapter 2.

It will become clear that a certain pattern in the polarization of the cosmic

microwave background called B-mode polarization is of particular interest be-

cause, at linear order in perturbation theory, it can only be generated by

gravitational waves. An observation of this pattern would thus be an indirect

measurement of gravitational radiation in the early universe. As explained

in Chapter 2, inflation predicts that a gravitational wave background should

be present, and may be large enough to be observed. The cosmic microwave

background may thus provide us with a chance to strengthen the evidence for

inflation and allow us to discriminate between different inflationary models.

In Chapter 3, we give analytical results for the prediction made for this signal

by inflation. To be specific, for now postponing a definition of the various
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quantities to Chapter 2, we give approximate formulas for the tensor contri-

butions to the multipole coefficients CTT,`, CTE,`, CEE,`, and CBB,` for large

multipole order `. These expressions are helpful for an understanding of the

dependence of these multipole coefficients on cosmological parameters.

In Chapter 4, it is shown that the observation of a B-mode signal consistent

with the prediction of inflation in Einstein gravity would severely constrain

modified gravity theories known as massive gravity. The result is that in the

case of a detection of a signal compatible with the inflationary prediction, the

graviton mass must be less than 10−30 eV . It applies for any such modification

that gives a mass to the transverse, traceless degrees of freedom of the metric.

In the context of brane inflation it has been established that no observable B-

mode signal could be generated. This was boldly extrapolated and claims were

made that an observation of a B-mode signal would rule out string theory. The

model treated in Chapter 5, axion monodromy inflation, is a counter example.

This scenario leads to an observable tensor signal and may furthermore lead to

periodic modulations in the temperature multipole coefficients CTT,`. These

modulations are constrained both by comparison to data and by studying the

microphysical constraints in this scenario. It is found that this class of models

may lead to periodic modulations observable by future experiments in both

two- and three-point functions.

In Chapter 6, different from the other chapters, there is no direct contact with

experiment. No-go theorems are derived that show that inflation cannot be

realized in certain compactifications of massive type IIA string theory to four

dimensions. If the evidence for inflation becomes stronger, this will be enough

to rule out this class of solutions. This is just a small class of models within

the vast landscape of solutions of string theory, and there is little doubt that

some solutions of the ten-dimensional equations of motion exist that do inflate,

5



but it may still help us narrow down the search somewhat.

This introduction was kept rather brief and contains no technical de-

tails. The reader interested in those will find more detailed introductions to

the various topics at the beginning of each chapter.
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Chapter 2

A Brief Review of CMB Physics

The cosmic microwave background radiation is most likely our best

piece of evidence that the universe was once in a very hot and dense state called

the Big Bang. The existence of this radiation had been predicted in a series of

papers in the late 1940s by Gamow, Alpher, and Herman [1], [2], [3], [4], [5], [6],

[5], [7], [8], [9], [10] as a consequence of their model of the formation of the

elements during a hot, dense phase of the universe. Presumably because tech-

nology at the time was not advanced enough to detect this radiation, because

the model had difficulties explaining the creation of elements heavier than

lithium, and because Gamow, Alpher, and Herman left the field, the predic-

tion soon passed out of people’s minds.

In 1965 Dicke, Peebles, Roll, and Wilkinson in Princeton finally began

to look for this remnant of the Big Bang, but it was first discovered somewhat

accidentally by Penzias and Wilson as noise in their antenna [11], [12]. Since

these first experiments, which observed the radiation to have the same intensity

everywhere in the sky, a two-digit number of experiments have been dedicated

to the study of the cosmic microwave background radiation. The first indica-

tion of a dipole isotropy due to the solar system’s motion with respect to the

cosmic microwave background was found in an experiment in the late 1960s by

Conklin [13] and confirmed in the early 1970s by Henry [14]. Anisotropies be-

yond the dipole pattern were expected to be present as they were necessary to

7



understand how structures like galaxies and clusters of galaxies formed. This

expectation was confirmed beautifully by the COsmic Background Explorer

(COBE) [15].

Soon after the discovery of the cosmic microwave background radiation

it was also predicted that this radiation should to some extent be polarized [16].

This prediction was confirmed by the DASI experiment [17], [18], [19]. Their

results were confirmed by CBI [20] and CAPMAP [21] as well as more recently

by Boomerang [22], [23], [24]. The experiments DASI, CBI, and Boomerang,

and of course WMAP also observed correlations between temperature per-

turbations and polarization. The data taken by these experiments as well

as supernova observations made by by the Supernova Search Team and the

Supernova Cosmology Project [25], [26], [27], [28] as well as large scale struc-

ture surveys such as 2dF [29], [30], [31], [32] and the Sloan Digital Sky Sur-

vey [33], [34],[35], [36] have led us to a very coherent picture for the history of

the universe from about one second after the Big Bang until the present, and

have even provided us with hints about the physics governing the evolution

of the universe as early as a mere 10−34 seconds after the beginning of the

universe as we know it.

The model that has emerged from all these experiments is a six-parameter

model known as the ΛCDM model. We now know that the geometry of our

universe on large scales is well approximated by a flat Friedman-Robertson-

Walker metric. With appropriately chosen coordinates (t,x), this metric is of

the form

g00 = −1 , (2.0.1)

g0i = 0 , (2.0.2)

gij = a2(t)δij , (2.0.3)

8



with corresponding line element

ds2 = −dt2 + a2(t)dx2 . (2.0.4)

The time evolution of the scale factor a(t) is governed by the Friedman equa-

tion (
ȧ

a

)2

= H2
0

[
ΩΛ + (Ωb + Ωc)

1

a3(t)
+ Ωr

1

a4(t)

]
. (2.0.5)

In the flat case, the absolute scale of a(t) has no physical meaning as it can

be changed by a coordinate transformation. In writing the Friedman equa-

tion in this form, we have chosen coordinates such that its current value is

set to unity, i.e. a(t0) = 1, where t0 denotes the present time. The dot de-

notes a derivative with respect to the time coordinate t. The Hubble constant

H0 measures the expansion rate of the universe at the present time and is

commonly parameterized as H0 = h × 100 km/s/Mpc; Ωb parameterizes the

current ratio between the energy density stored in baryons and the total en-

ergy density of the universe; Ωc parameterizes the ratio between the energy

density stored in dark matter and the total energy density. The current ratio

between the energy density stored in radiation, i.e. in photons and neutri-

nos, and the total energy density is denoted by Ωr and is not counted as a

parameters because Ωrh
2 is a function only of the temperature of the cosmic

microwave background radiation at the present time, which is well known ex-

perimentally. ΩΛ ≡ (1 − Ωc − Ωb − Ωr) parameterizes the ratio between the

energy density stored in vacuum energy and the total energy density of the

universe. The last parameter describing the background geometry is the opti-

cal depth of the medium to the surface at which the majority of the photons

experience their last interaction with the electrons in the baryonic plasma. It

is usually denoted τ . The fluctuations in the ΛCDM model are assumed to

9



be adiabatic, nearly scale invariant, Gaussian fluctuations.1 Their spectrum is

parameterized by the strength of these fluctuations ∆2
R and a scalar spectral

index that characterizes the deviation from scale invariance denoted ns. We

will define these quantities more carefully in subsections 2.4.2. Altogether,

the six parameters can then for example be taken as Ωbh
2, Ωch

2, H0, τ , ∆2
R,

and ns. This model is consistent with experimental data over a large range

of scales, and all parameters in this model are by now known at the per cent

level. The values derived from the five year WMAP data alone are given by2

Ωbh
2 = 0.02273± 0.00062 , (2.0.6)

Ωch
2 = 0.1099± 0.0062 , (2.0.7)

H0 = 71.9+2.6
−2.7 km/s/Mpc , (2.0.8)

τ = 0.087± 0.017 , (2.0.9)

∆2
R = (2.41± 0.11)× 10−9 , (2.0.10)

ns = 0.963+0.014
−0.015 . (2.0.11)

The quoted errors indicate 68% confidence level. The flatness of the universe,

which enters the model as an assumption, has also been confirmed experi-

mentally at the per cent level. Furthermore, it should be noted that there is

currently no evidence for other deviations from the ΛCDM model such as a

momentum dependence of the spectral index, non-Gaussianities, or departures

from adiabaticity.

The cosmic microwave background will play a central role throughout

this thesis and is what links the different topics together. To keep this work

1These properties will be introduced as we go along.
2As will be explained later, the quantity ∆2

R is momentum dependent. The value given
corresponds to a momentum of 0.002 Mpc−1.
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more or less self-contained, this chapter thus contains a brief review of the main

concepts that are important for an understanding of the cosmic microwave

background radiation. The discussion will be somewhat condensed. For the

reader looking for a more detailed treatment of the subject, reviews such as [37]

and references therein may be useful. The reference I will follow the closest is

naturally [38]. The interested reader will find many details and explanations

not only regarding the cosmic microwave background but also other topics in

cosmology in there.

The interested reader is also encouraged to take a look at the original

references. Linear theory of cosmological perturbations was first applied to

the CMB anisotropies in [39], [40] for a universe consisting of baryons and

photons. This was extended to include dark matter in [41], [42], [43]. The

theory for the study of the polarization of the cosmic microwave background

was developed in [44], [45], [41], [46], [43], [47], [48], [49], [50], [51], [52], [53],

[54], [55], [56], [57]

2.1 Observables – Intensity Matrix and Stokes Param-
eters

It will be convenient to think of the detector in an idealized fashion as

a device that simply counts the number of photons hitting it per unit of time

per receiving area, i.e. a device that measures the intensity of the radiation it

is exposed to. While this is certainly not the most accurate way to think about

radiometers, it is a rather good way to think about the bolometer detectors

used in ground based experiments such as QUAD and BICEP, balloon borne

experiments such as Boomerang, and the Planck-HFI instrument. To extract

as much information as possible from the cosmic microwave background radi-
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ation, we should not only measure its intensity but also its polarization. To

achieve this, imagine equipping the detector with a polarization filter whose

angle can be adjusted. One can then measure the intensity as a function of

this angle. We denote the measured intensity by

I(x, n̂, t, ν, γ) . (2.1.1)

It depends on the position in the universe x where the experiment takes place,

the direction in the sky n̂ the detector is pointing at, the time t at which the

data is taken, the frequency (band) ν the detector is sensitive to, and finally

the orientation of the polarization filter, which we will denote by γ.3

As was expected theoretically and beautifully confirmed experimentally

by the COBE satellite, the frequency dependence of the cosmic microwave

background radiation is the same as that of a black body with a tempera-

ture of T0 = 2.725K. In an ideal world, one would thus gain nothing by

making measurements in different frequency bands. There are, however, fore-

grounds, e.g. from synchrotron emission, thermal dust emission, or free-free

emission. These have a different frequency dependence and taking data in

multiple frequency bands (typically between tenths and hundreds of GHz) al-

lows these foregrounds to be subtracted rather efficiently. Understanding these

foregrounds and how to subtract them is one of the big challenges for future

experiments such as CMBPol and deserves detailed treatment, but we will for

now simply assume that this can be done and drop the frequency dependence

of the measured intensity from our discussion.

The measured intensity contains information both about the ensemble

of photons and about the detector. The two components can be disentangled

3To be specific, this angle γ is conventionally measured relative to the Galactic meridian.
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by noticing that it takes the form

I(x, n̂, t, γ) =
∑
i,j

Iij(x, n̂, t)ei(γ)e∗j(γ) , (2.1.2)

where Iij(x, n̂, t) is called the intensity matrix. It characterizes the ensemble

of photons, while the polarization vectors e(γ) characterize the orientation of

the polarization filter on the detector.

As we will use this quantity later, let us introduce a dimensionless

intensity matrix Jij as

a4(t)ργ(t)Jij(x,−n̂, t) ≡ Iij(x, n̂, t)− I ij(t) . (2.1.3)

Here a(t) denotes the Robertson-Walker scale factor, ργ(t) is the energy density

stored in photons, and I ij(t) is the unpolarized background contribution that

is independent of the position of the experiment and the direction in the sky.

To understand the dimensionless intensity matrix better, consider the special

case such that n̂ = ẑ, a coordinate system is chosen such that the position

at which the experiment takes place is x = 0, and the time at which it takes

place is t0. Since the intensity matrix is of second order in the electromagnetic

field, it contains two polarization vectors. Transversality of these polarization

vectors4 to the direction the photon propagates in together with the Hermitian

nature of the matrix as implied by the reality of the measured intensity then

guarantees that it must be possible to parameterize the dimensionless intensity

matrix as

Jij(0,−ẑ, t0) =
2

T0

 ∆T (ẑ) +Q(ẑ) U(ẑ)− iV (ẑ) 0
U(ẑ) + iV (ẑ) ∆T (ẑ)−Q(ẑ) 0

0 0 0

 . (2.1.4)

4For definiteness, we work in Coulomb gauge.
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Here ∆T (ẑ) is the deviation of the temperature in the ẑ-direction from the

background temperature T0 = 2.725K and except for the background tem-

perature itself is the most traditional observable. A convenient way to extract

it from the dimensionless density matrix is to take the trace, which experi-

mentally amounts to removing the polarization filter.5 The quantities Q(ẑ),

U(ẑ), and V (ẑ) are known as Stokes parameters and are the key quantities

in the study of the polarization of the cosmic microwave background. A nat-

ural choice for the polarization vector characterizing the orientation of the

polarization filter is

e(γ) = x̂ cos γ + ŷ sin γ . (2.1.5)

Using equation (2.1.2), the measured intensity and hence the current read out

on the instrument as a function of the orientation of the polarization filter is

then given by6

I(0, ẑ, t0, γ)− I(t0) ∝ ∆T +
√
Q2 + U2 cos

(
2γ − arctan

U

Q

)
. (2.1.6)

Especially for ground based experiments the polarization filter will often be

spinning at substantial rate to beat down the noise. The measured current

will then be sinusoidal in time with a phase and amplitude set by the Stokes

parameters Q and U , which allows them to be extracted rather directly. The

amplitude P ≡
√
Q2 + U2 is sometimes called the polarized intensity. The

angle that maximizes the polarization signal, i.e. 2γ = arctan U
Q

, is often

called the polarization direction. The Stokes parameter V disappeared from

5The factor four relating the trace of the intensity matrix to the temperature fluctua-
tion of course has to do with the fact that the intensity goes like the fourth power of the
temperature.

6In practice I(t0) is much larger than both temperature fluctuations and Stokes parame-
ters. Instead of an absolute measurement in a single direction it is thus common to perform
differential measurements for two different points in the sky such that I(t0) drops out.
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the formula, but it is not important. The polarization of the cosmic microwave

background is generated by the scattering of light by non-relativistic electrons

which does not lead to circularly polarized light. One thus expects Iij to be

real and V = 0.

Having introduced the temperature fluctuations and Stokes parameters

for one point in the sky ẑ, let us generalize the definition for arbitrary directions

n̂. We can conveniently define the temperature anisotropy via the trace of the

dimensionless intensity matrix as

∆T (n̂)

T0

=
1

4
Jii(0,−n̂, t0) . (2.1.7)

It has become traditional to represent the experimental results for the tem-

perature anisotropy in the form of color-coded sky maps. As example the

five-year WMAP temperature sky maps [58] are shown in Figure 2.1.

To define the Stokes parameters for an arbitrary direction n̂, it is con-

venient to notice that one has

Q(ẑ)± iU(ẑ) =
T0

2
e± i(ẑ)e± j(ẑ)Jij(0,−ẑ, t0) , (2.1.8)

where

e±(ẑ) =
1√
2

 1
±i
0

 , (2.1.9)

are the polarization vectors for a photon coming to us from the ẑ-direction. In

analogy, we can then define the Stokes parameters for an arbitrary direction

n̂ as

Q(n̂)± iU(n̂) =
T0

2
e± i(n̂)e± j(n̂)Jij(0,−n̂, t0) , (2.1.10)
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Figure 2.1: This figure shows the WMAP five-year temperature sky map (Moll-
weide projection in Galactic coordinates) in the W band (94 GHz) smoothed
with a 0.2◦ Gaussian beam.

where we define the polarization vectors for a photon coming to us from the

n̂ direction as

e±(n̂) =
1√
2
(θ̂ ± iφ̂) . (2.1.11)

To be explicit, for coordinates on the sphere such that

n̂ =

 sin θ cosφ
sin θ sinφ

cos θ

 , (2.1.12)

the unit vectors θ̂ and φ̂ are given by

θ̂ =

 cos θ cosφ
cos θ sinφ
− sin θ

 and φ̂ =

 − sinφ
cosφ

0

 . (2.1.13)
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Like the temperature anisotropy data, the polarization data is also commonly

represented in the form of color-coded sky maps. The different colors repre-

sent different values for the polarized intensity and the direction of maximal

polarization is indicated by a white bar. As an example we show the five-year

WMAP results on polarization [58] in Figure 2.2.

Figure 2.2: This figure shows the WMAP five-year polarization sky map (Moll-
weide projection in Galactic coordinates) in the K band (23 GHz) smoothed
to an effective Gaussian beam of 2.0◦ The color scale indicates polarized in-
tensity, P =

√
Q2 + U2, and the line segments indicate polarization direction

in pixels whose signal-to-noise ratio exceeds 1.

One should have in mind that this was a rather simplified discussion and

ignored many of the challenges that arise in experiments such as foreground

subtraction, understanding beam profiles, pointing abilities, etc., but it will

certainly be good enough for our present purposes.
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2.2 Comparison with Theory – The Multipole Coeffi-
cients

As explained in the last section, experimentally we have rather direct

access to the Stokes parameters, or equivalently the intensity matrix. These

quantities do depend, however, on the position in the universe the experiment

takes place. Equivalently, they depend on initial conditions which can not be

predicted theoretically. All we can predict theoretically are the probability

distributions these initial conditions obey. To an extent that we will make

more precise in what follows, the information about the early universe is then

encoded in the correlations between the temperature fluctuations and Stokes

parameters at various points in the sky. The obvious first step is to look

for correlations in these quantities at two different points in the sky, i.e. to

study two-point functions. It has become common practice to represent the

information contained in these two-point functions in the form of so-called

multipole coefficients which we shall introduce in detail below. Even though

there is already a large literature on the 3-point functions of the temperature

anisotropies, the study of these as well as higher n-point functions is still in its

infancy, to a large extent because the data only allows us to bound departures

from Gaussianity but not to detect them. As the quality of the data improves,

the way the information stored in 3- and higher n-point functions will certainly

have to be refined.

The most commonly studied two-point functions are

〈∆T (n̂)∆T (n̂′)〉 , (2.2.1)

〈∆T (n̂) [Q(n̂′) + iU(n̂′)]〉 , (2.2.2)

〈[Q(n̂) + iU(n̂)] [Q(n̂′) + iU(n̂′)]〉 , (2.2.3)

〈[Q(n̂) + iU(n̂)] [Q(n̂′)− iU(n̂′)]〉 . (2.2.4)
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In these formulas, we think of the temperature fluctuations and Stokes pa-

rameters not as the experimentally measured quantities, but rather as the

theoretical predictions for these for a given history, and the averages denote

an average over all possible histories in a given model. It has become cus-

tomary to represent the information contained in these two-point functions in

the form of multipole coefficients which we will briefly review now. The most

widely used ones are those corresponding to the temperature anisotropies. So

we will begin with these and define the others in analogy.

The temperature fluctuation ∆T (n̂) is a section of the normal bundle

of the two-sphere in R3, or, since this bundle is trivial, simply a function. We

know that functions on a sphere can be expanded in terms of the eigenfunctions

of the Laplacian on the sphere, the spherical harmonics. We will write this

expansion as

∆T (n̂) =
∑
`,m

aT,`mY
m
` (n̂) . (2.2.5)

Here Y m
` (n̂) are the spherical harmonics and aT,`m are the expansion coeffi-

cients and the subscript T indicates that we are dealing with the temperature

fluctuations. Using the orthonormality of the spherical harmonics, the expan-

sion coefficients can be extracted by integration

aT,`m =

∫
d2n̂ Y m

`
∗(n̂)∆T (n̂) . (2.2.6)

The spherical harmonics most widely used in the study of the cosmic microwave

background behave under complex conjugation as7

Y m
` (n̂)∗ = Y −m

` (n̂) . (2.2.7)

7These conventions are different from the ones used in most quantum mechanics books.
So we briefly summarize them in Appendix B.
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The reality of the temperature fluctuation, ∆T (n̂), then guarantees that the

expansion coefficients satisfy

a∗T,`m = aT,`−m . (2.2.8)

These expansion coefficients should be thought of as random variables that

obey a (possibly only very nearly) Gaussian probability distribution. It is

usually also assumed to respect rotational invariance. In this case, the two-

point functions of these coefficients have to be of the form〈
aT,`ma

∗
T,`′m′

〉
= CTT,`δ``′δmm′ . (2.2.9)

Using
∑
m

Y m
` (n̂)Y m ∗

` (n̂′) = (2`+1)/4πP`(n̂ · n̂′) with P`(x) the Legendre poly-

nomials, the correlation function (2.2.1) becomes

〈∆T (n̂)∆T (n̂′)〉 =
∑
`

CTT,`P`(n̂ · n̂′) , (2.2.10)

and we see that all the information about the two-point correlations of the

temperature fluctuations is contained in the coefficients CTT,`.

Different from the temperature fluctuation ∆T (n̂), the Stokes param-

eters are coefficients of a section in the symmetric product of two copies of

the tangent bundle of the two-sphere, or components of a symmetric tensor.

As a consequence, we should expand them in terms of eigensections of the

corresponding Laplacian. The expansion analogous to equation (2.2.17) then

takes the form

Q(n̂) + iU(n̂) =
∑
`,m

aP,`m2Y
m
` (n̂) , (2.2.11)

where 2Y
m
` (n̂) are the spin-2 spherical harmonics. Their basic properties are

reviewed in Appendix B. Using their orthonormality property, the expansion
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coefficients can again be extracted by integration

aP,`m =

∫
d2n̂ 2Y

m
`
∗(n̂) (Q(n̂) + iU(n̂)) . (2.2.12)

Since we are expanding a complex quantity, the new expansion coefficients do

not satisfy a simple reality condition like the coefficients aT,`m. It is convenient

to introduce two sets of coefficients that do

aE,`m ≡ −(aP,`m + a∗P,`−m)/2 and aB,`m ≡ i(aP,`m − a∗P,`−m)/2 .

(2.2.13)

The signs are chosen to match the conventions in [57]. The crucial differ-

ence between the new expansion coefficients aE,`m and aB,`m is their behavior

under space inversion. While aT,`m and aE,`m under a space inversion go to

(−1)`aT,`m and (−1)`aE,`m, respectively, aB,`m goes to −(−1)`aB,`m. The

subscripts E and B were chosen in analogy to static electric and magnetic

fields, as an E-mode, i.e. only aE,`m non-zero, corresponds to a curl-free po-

larization field while the B-mode , i.e. only aB,`m non-zero, corresponds to a

divergence-free polarization field.〈
aT,`ma

∗
E,`′m′

〉
= CTE,`δ``′δmm′ , (2.2.14)〈

aE,`ma
∗
E,`′m′

〉
= CEE,`δ``′δmm′ , (2.2.15)〈

aB,`ma
∗
B,`′m′

〉
= CBB,`δ``′δmm′ . (2.2.16)

If the distribution governing these coefficients respects parity, these are the

only non-vanishing coefficients and they contain all the information encoded

in the correlations of temperature fluctuations and Stokes parameters. In a

theory that violates parity, there will typically also be the analogously defined

CTB,` and CEB,` multipole coefficients, but there is currently no indication

that parity is violated, and we will ignore this possibility in this work. It
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follows from the reality conditions of the coefficients aT,`m, aE,`m, and aB,`m

that the multipole coefficients CTE,` are real while the multipole coefficients

CTT,`, CEE,`, and CBB,` are real and positive. Our conventions match those

of [57] and the multipole coefficients have units of square temperature.

One can write down expressions analogous to equation (2.2.10) to ex-

press the two-point functions (2.2.2), (2.2.3), (2.2.4) in terms of the multipole

coefficients CTE,`, CTE,`, and CBB,`, but these expressions are hardly used. So

we will not review them here.

If the distribution governing the expansion coefficients aT,`m, aE,`m,

and aB,`m is Gaussian, the multipole coefficients CTT,`, CTE,`, CEE,`, and CBB,`

contain everything there is to know about the cosmic microwave background

as the odd n-point functions vanish and the higher even n-point functions are

given in terms of sums of products of the two-point function. It is natural to

expect, however, that this distribution is in fact not exactly Gaussian and that

there are small non-Gaussianities. In this case, additional information would

be contained in the higher n-point functions. The simplest observable to test

for non-Gaussianities is, of course, the three-point function, but the sensitivity

of current experiments is not good enough for a detection [59]. Planck data

will possibly improve the situation.

So far the discussion has been rather theoretical involving stochastic

parameters and averages over all possible histories of bilinears of these pa-

rameters. In practice, we can neither average over all possible histories nor,

what would be equivalent by the ergodic theorem, over all positions in the

universe, and we have to content ourselves with a measurement of the cosmic

microwave background in the one universe we live in from within our solar

system. A natural question then is how these multipole coefficients can be
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extracted from such a measurement. We shall briefly describe how this is pos-

sible for an ideal scenario in which one has a noiseless full-sky map and refer

the reader to the literature for the more realistic case where noise has to be

taken into account and foregrounds limit us to parts of the sky. We will discuss

the temperature fluctuations first. The Stokes parameters can then again be

treated analogously.

Assuming the rather idealized situation that an experiment provides us

with a noiseless full-sky map, we can expand the temperature fluctuation as

∆T (n̂) =
∑
`m

aobs
T,`mY

m
` (n̂) . (2.2.17)

The expansion coefficients aobs
`m, obtained by integration from the temperature

map, are now simply complex numbers satisfying the same reality properties

as their theoretical counterparts corresponding to one particular history. We

can thus not take an average as we did before, but we can define what is called

an estimator for the temperature multipole coefficients as

Cobs
TT,` ≡

1

2`+ 1

∑
m

∣∣aobs
T,`m

∣∣2 (2.2.18)

This provides an unbiased estimate of the multipole coefficients CTT,` in the

sense that the average of the analogously defined quantity for the stochastic

parameters aT,`m satisfies〈
C̃obs
TT,`

〉
≡ 1

2`+ 1

〈∑
m

|aT,`m|2
〉

= CTT,` . (2.2.19)

However, since there are only 2` + 1 modes per `-value, even for an ideal

noiseless full-sky map this estimate of the multipole coefficients comes with an

uncertainty 〈(
C̃obs
TT,` − CTT,`

CTT,`

)2〉
=

2

2`+ 1
. (2.2.20)
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This is known as cosmic variance.

In a more realistic setting, noise and other sources of errors cause this

estimator to be biased. Furthermore, the data has to be masked near the

Galactic plane as foregrounds there cannot be subtracted reliably. The expan-

sion (2.2.17) then has to be modified to account for this, and more sophisticated

estimators have to be used. The current state of the art is to use a pixel-based

maximum likelihood estimator for low ` and a pseudo-C` estimator for higher

`. For details we refer the reader to [60] and references therein.

For the idealized scenario, similar estimators to the one in (2.2.18) for

CTT,` can be defined for the multipole coefficients CTE,`, CEE,`, and CBB,`

from the coefficients aobs
E,`m and aobs

B,`m extracted from the observed Stokes pa-

rameters. Just like for the temperature analysis, the state of the art is a

hybrid estimator using a pixel-based maximum likelihood estimator for low

multipole and a pseudo-C` estimator for higher multipoles. In addition to the

subtleties due to noise and sky cut already present in the analysis of tem-

perature fluctuations, in the case of polarization the sky cut introduces the

additional complication that the separation into E- and B-mode is no longer

unique. For the details on the polarization analysis, we refer the reader to [61]

and references therein.

2.3 Derivation of the Multipole Coefficients

As reviewed in Section 2.1, the observables that are most directly ac-

cessible to cosmic microwave background experiments are the temperature

anisotropies and the Stokes parameters Q and U . As explained in the pre-

vious section, these cannot directly be used to compare with theory because

they depend on initial conditions that cannot be predicted. What can be pre-
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dicted theoretically are the probability distributions that govern these initial

conditions. If these probability distributions are Gaussian, they can be com-

pletely specified through the multipole coefficients CTT,`, CTE,`, CEE,`, and

CBB,`. These can be extracted fairly efficiently from the sky maps of temper-

ature fluctuations and Stokes parameters and thus provide the main point of

contact between theory and experiment. To complete the picture, we will now

review how these multipole coefficients can be calculated for a given theory.

The key quantity in this will be the dimensionless intensity matrix in-

troduced in Section 2.1. We will calculate it for arbitrary initial conditions and

then evaluate the average over initial conditions of bilinears of the components

of the intensity matrix to obtain the multipole coefficients. The dimensionless

intensity matrix is closely related to the number density of photons in phase

space. Its time evolution in a given background is then governed by the Boltz-

mann equation for the ensemble of photons. This equation involves metric

perturbations whose dynamics is of course governed by the linearized Einstein

equations. We will thus briefly review linear perturbation theory around a

flat FRW background in subsection 2.3.1 before deriving the Boltzmann equa-

tions for photons in subsection 2.3.2 and those for neutrinos in 2.3.3. We will

put everything together and review the expressions for the multipole coeffi-

cients and the equations needed to calculate them in the ΛCDM model in

subsection 2.3.4. For definiteness, we will work in Coulomb gauge as far as

the photons are concerned and in a particular synchronous gauge that we will

define below as far as the metric perturbations are concerned.
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2.3.1 Linear perturbation theory in a flat FRW universe

In this subsection, we will summarize the linearized Einstein equations

as well as the equations that follow from the covariant conservation of the

stress-energy tensor at the linear level in a flat FRW universe. The back-

ground metric in such a universe is given by equations (2.0.1)-(2.0.3), and the

contributions of the various constituents to the background stress-energy ten-

sor are all of the perfect fluid form T µν = p gµν +(p+ρ)uµuν with the velocity

vector field uµ satisfying gµνuµuν = −1.8 In the rest frame of the fluid, ui = 0

and u0 = −1, leading to a stress-energy tensor of the form

T 00 = ρ , (2.3.1)

T 0i = 0 , (2.3.2)

T ij = a2(t)pδij . (2.3.3)

The Einstein equations for this background take the form9

3ȧ2

a2
= 8πGρ , (2.3.4)

and

ȧ2

a2
+

2ä

a
= −8πGp , (2.3.5)

where ρ and p stand for the total energy density and total pressure from all

constituents, respectively. As already briefly summarized at the beginning of

this chapter, for the ΛCDM model these are a cosmological constant, cold dark

matter, baryonic matter, as well as radiation. For the cosmological constant,

the pressure is related to the energy density as pΛ = −ρΛ. For the time periods

8It is conventional to use bars to indicate that we are dealing with background quantities.
9The first of these equations is often called the Friedmann equation.
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we are interested in, chiefly temperatures of 109K and lower, the baryonic

plasma consists of non-relativistic electrons and protons whose pressure is

negligible compared to their energy density, so that pb = 0. The cold dark

matter particles are assumed to be non-relativistic as well, so that pc = 0. For

the radiation component, i.e. the particles that remain relativistic at these

low temperatures, photons and neutrinos, the pressure is related to the energy

density as pr = ρr/3. The Einstein equations together with the equations

that follow from the covariant conservation of the stress energy tensor for the

various components can then be brought into the form of equation (2.0.5).

To incorporate fluctuations around this background, one considers a

metric of the form

gµν(t,x) = gµν(t) + hµν(t,x) . (2.3.6)

The fluctuations in the inverse metric hµν(t,x) ≡ gµν(t,x) − gµν(t) are given

in terms of these as hµν = −gµρgνσhρσ.

To obtain the perturbed stress-energy tensor, it is convenient to start

from that of a perfect fluid, and then include perturbations that parameterize

the deviation from the perfect fluid case. The stress-energy tensor for a perfect

fluid is of the form Tµν = p gµν + (p + ρ)uµuν , where the velocity vector field

uµ satisfies gµνuµuν = −1. If we decompose the velocity vector field as uµ =

uµ + δuµ, this implies δu0 = δu0 = h00/2. The first order perturbations to

the stress energy tensor of a perfect fluid, δTµν ≡ Tµν − T µν , can then be

parameterized as

δT00 = −ρh00 + δρ , (2.3.7)

δT0i = ph0i − (ρ+ p)δui , (2.3.8)

δTij = phij + a2δijδp . (2.3.9)
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In the study of linear perturbations around a flat FRW background, it is

convenient to make use of the symmetries of the background. The spatial slices

are simply R3 with the flat metric and are thus invariant under translations as

well as rotations. One can classify the perturbations around this background

according to their transformation properties with respect to rotations into

scalar modes, vector modes, and tensor modes. This decomposition is useful

because the symmetry ensures that these modes cannot mix at the linear level.

As far as the metric fluctuations are concerned, this leads to a param-

eterization of the fluctuations of the form10

h00(t,x) = −E(t,x) , (2.3.10)

h0i(t,x) = a [∂iF (t,x) +Gi(t,x)] , (2.3.11)

hij(t,x) = a2 [A(t,x)δij + ∂i∂jB(t,x)

+∂iCj(t,x) + ∂jCi(t,x) +Dij(t,x)] , (2.3.12)

where E, F , A, and B are scalar modes, Ci and Gi are vector modes, and

Dij are tensor modes or the graviton fluctuations. The vector fluctuations

are divergence-free, i.e. ∂iCi = ∂iGi = 0, and the tensor fluctuations are

divergence-free and traceless, i.e. ∂iDij = ∂iDji = 0 and Dii = 0, with all

repeated indices being summed over.

For the fluctuations of the stress energy tensor, the decomposition leads

10We will later work in synchronous gauge. These perturbations are related to the ones
commonly used in calculations in synchronous gauge by h = 3A+∇2B and η = −A/2. The
quantity α = −Ḃ/2 is also sometimes used.
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to the following parameterization

δT00 = −ρ h00 + δρ , (2.3.13)

δT0i = p h0i − (ρ+ p)
(
∂iδu+ δuVi

)
, (2.3.14)

δTij = p hij + a2
(
δijδp+ ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

)
, (2.3.15)

where the metric fluctuations are those of equations (2.3.10)-(2.3.12), and we

have decomposed δui into a scalar velocity potential, δu, and a divergenceless

vector δuVi . Furthermore, we have introduced the anisotropic inertia πS, the

divergenceless πVi vector anisotropic inertia, and the divergenceless, traceless

tensor anisotropic inertia, πTij. It is sometimes more convenient to work with

the perturbations of the stress energy tensor with one upper and one lower

index. These are given by

δT 0
0 = −δρ , (2.3.16)

δT 0
i = (ρ+ p)

(
∂iδu+ δuVi

)
, (2.3.17)

δT ij = δijδp+ ∂i∂jπ
S + ∂iπ

V
j + ∂jπ

V
i + πTij . (2.3.18)

For this ansatz the Einstein tensor in a general gauge is of the form

δG00 = −∇
2

a2
A+ 3

ȧ

a
Ȧ+

ȧ

a
∇2Ḃ − 2ȧ

a2
∇2F , (2.3.19)

δG0i = ∂i

(
ȧ

a
E − Ȧ−

(
ȧ2

a2
+ 2

ä

a

)
aF

)
−
(
ȧ2

a2
+

2ä

a

)
aGi −

1

2

∇2

a2
aGi +

1

2
∇2Ċi , (2.3.20)

δGij = δij

(
ȧ2E + 2aäE +

1

2
∇2E + aȧĖ (2.3.21)

−(ȧ2 + 2aä)A+
1

2
∇2A− a2Ä− 3aȧȦ

−1

2
a2∇2B̈ − 3

2
aȧ∇2Ḃ + 2ȧ∇2F + a∇2Ḟ

)
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+∂i∂j

(
−1

2
E − 1

2
A− (ȧ2 + 2aä)B

+
1

2
a2B̈ +

3

2
aȧḂ − 2ȧF − aḞ

)
−ȧ (∂iGj + ∂jGi)−

1

2
a
(
∂iĠj + ∂jĠi

)
−
(
ȧ2 + 2aä

)
(∂iCj + ∂jCi) +

1

2
a2
(
∂iC̈j + ∂jC̈i

)
+

3

2
aȧ
(
∂iĊj + ∂jĊi

)
+

1

2
a2D̈ij +

3

2
aȧḊij −

1

2
∇2Dij − (ȧ2 + 2aä)Dij .

With these expressions at hand, we can write down the linearized Einstein

equations in a flat FRW background. They give rise to four equations gov-

erning the evolution of the scalar modes. The first arises from the 00-Einstein

equations and in synchronous gauge, i.e. a gauge in which h00 = h0i = 0,

takes the form

−∇
2

a2
A+ 3

ȧ

a
Ȧ+

ȧ

a
∇2Ḃ = 8πGδρ . (2.3.22)

The second equation arises from the part of the 0i-Einstein equation propor-

tional to ∂i and in synchronous becomes

Ȧ = 8πG(ρ+ p)δu . (2.3.23)

The third and fourth equations arise from the parts of the ij-Einstein equation

proportional to δij and ∂i∂j, respectively. They take the form

1

2

∇2

a2
A− Ä− 3

ȧ

a
Ȧ− 1

2
∇2B̈ − 3

2

ȧ

a
∇2Ḃ = 8πGδp , (2.3.24)

and

−A+ a2B̈ + 3aȧḂ = 16πGa2πS . (2.3.25)
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In writing these equations we have used the ij-Einstein equation for the flat

FRW background (2.3.5)

The Einstein equations give rise to two equations governing the time

evolution of the vector modes. The first arises from the divergenceless part of

the 0i-Einstein equation. In synchronous gauge it is of the form

∇2Ċi = −16πG(ρ+ p)δuVi . (2.3.26)

The second one arises from the ij-Einstein equation and, using equations of

motion for the background, in synchronous gauge can be written as

C̈i + 3
ȧ

a
Ċi = 16πGπVi . (2.3.27)

Finally, the equation governing the time evolution of the tensor modes arises

from the divergenceless, traceless part of the ij-Einstein equations. It takes

the form

D̈ij + 3
ȧ

a
Ḋij −

∇2

a2
Dij = 16πGπTij . (2.3.28)

In addition to the Einstein equation, the equations obtained from lin-

earizing the covariant conservation of the stress-energy tensor, ∇µT
µ
ν will

also be useful. These give rise to two equations for the scalar modes. Energy

conservation gives

δ̇ρ+
3ȧ

a
(δρ+ δp) +

∇2

a2

[
(ρ+ p)δu+ aȧπS

]
+

1

2
(ρ+ p)

(
3Ȧ+∇2Ḃ

)
= 0 . (2.3.29)

The part of the equation corresponding to momentum conservation propor-

tional to ∂i gives the equation

δp+∇2πS +
1

a3

∂

∂t

[
a3(ρ+ p)δu

]
= 0 . (2.3.30)
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Finally, covariant conservation of the stress-energy tensor leads to an equation

for the vector modes of the form

∇2πVi +
1

a3

∂

∂t

[
a3(ρ+ p)δuVi

]
= 0 . (2.3.31)

If there are several non-interacting fluids, these equations have to be

obeyed individually for each of the fluids. This is, of course, stronger than the

condition that the total stress energy tensor be covariantly conserved, which

is what follows from the Einstein equations.

From equations (2.3.27) and (2.3.31), we see that in the absence of

anisotropic stress, the vector modes decay rapidly with time. So as long as

they are not continuously being generated, these will be negligible and we

will drop them from our analysis in the remainder of this work. One should,

however, have in mind that these are important in the study of models with

textures or strings.

We thus see that the time evolution of the fluctuations is governed

by systems of coupled partial differential equations. To simplify the solution

of this system of equations, it is convenient to make use of the translational

invariance of the system and look for a solution in Fourier space, i.e. we look

for a solution in the form of a superposition of plane waves eiq·x. The time

evolution of the coefficients of eiq·x is then governed by a system of coupled

linear ordinary differential equations. The general solution of such a system

of differential equations can be written as a superposition of several linearly

independent solutions, which can be labeled by a discrete label n. Rotational

invariance of the background ensures that the equations can only depend on the

magnitude q ≡ q but not its direction, and the basis set of linearly independent

solutions can then also be chosen to depend only on the magnitude q and not
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the direction. The only directional dependence then arises through the initial

conditions, i.e. the coefficients of these solutions.

For concreteness, let us first consider scalar perturbations and then

turn to the tensor perturbations. If we collectively denote the scalar modes by

a vector X(t,x) whose components are the scalar perturbations δρ, δp, etc.,

then the general solution can be written in the form

X(t,x) =
∑
n

∫
d3q αn(q)Xn q(t)e

iq·x . (2.3.32)

The coefficients αn(q) should be thought of as stochastic parameters governed

by a Gaussian probability distribution. They of course underly the expansion

coefficients aT,`m, aE,`m, and aB,`m that appeared in Section 2.3.4. Again, the

information about the probability distribution they obey is entirely contained

in the two-point function of these. Assuming that the probability distribution

respects translational and rotational invariance, this two-point function must

be of the form

〈αn(q)α∗m(q′)〉 = Pnm(q)δ (q− q′) . (2.3.33)

It follows from this expression that the matrix Pnm(q) must be hermitian.

Only a combination of this matrix and the normalization of the basis set of

linearly independent solutions is, of course, meaningful, and one could choose

a basis such that

〈α̃n(q)α̃∗m(q′)〉 = δnmδ (q− q′) , (2.3.34)

One of the assumptions of the ΛCDM model is that only the adiabatic

mode is excited. This mode is characterized by the property that the quantity

Rq ≡ Aq/2 + Hδuq approaches a constant, Ro
q, in the limit q/a � H. It
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furthermore has the property that the perturbation for any scalar perturbation

s(t,x) like the energy density of the various fluids, ρ(t,x), their pressures,

p(t,x), etc. are given by

δsq(t) = −
Ro
qṡ(t)

a(t)

∫ t

a(t′) dt′ , (2.3.35)

and the perturbation to the velocity potential is given by

δuq(t) =
Ro
q

a(t)

∫ t

a(t′) dt′ . (2.3.36)

There is also a second adiabatic mode with Ro
q = 0, but it decays with time

and can be ignored in models in which the perturbations are generated early.

This constancy in Rq has been used in special cases for a long time [62],

[63] but proofs that such a mode must exist under rather general circumstances

have only been given more recently for the linear case [64], [65], [66] as well as

the non-linear case [67], [68], [69], [70].

As we will see in 2.4, the perturbations generated in single field inflation

are necessarily adiabatic. Deviations from adiabaticity are of course looked for

as they would be an indication for physics beyond the ΛCDM model, but at this

point there is no real indication that other modes, often called entropic modes

or more commonly isocurvature perturbations, are excited. In the adiabatic

case, the solution can then be chosen such that

〈α(q)α∗(q′)〉 = δ (q− q′) , (2.3.37)

and the solution for X(t,x) reduces to

X(t,x) =

∫
d3q α(q)Xq(t)e

iq·x , (2.3.38)

with Xq(t) denoting the solutions for the scalar perturbations corresponding

to the adiabatic mode, and the amplitude of all of its components is of course
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set by Ro
q. We will from now on only consider the adiabatic case and assume

isocurvature perturbations are absent.

The discussion for the tensor modes is very similar. On the one hand

it is slightly more complicated because of the index structure on the tensor

perturbations, on the other hand it is simpler because there are only two

independent modes. The solution to equation (2.3.28) can be written in the

form

Dij(t,x) =
∑
N,λ

∫
d3q βN(q, λ) eij(q̂, λ)DN q(t)e

iq·x . (2.3.39)

Here λ denotes the helicity of the mode, the index N labels the two linearly

independent modes, β(q,±2) and the polarization tensor eij(q̂,±2) are the

stochastic parameter and polarization tensor for helicity λ = ±2, normalized

so that11

〈βN(q, λ) β∗N ′(q′, λ′)〉 = δNN ′δλλ′δ
3(q− q′) , (2.3.40)

and for q̂ in the 3-direction

e11(q̂,±2) = −e22(q̂,±2) = 1/
√

2 , e12(q̂,±2) = e21(q̂,±2) = ±i/
√

2 .

(2.3.41)

In writing equation (2.3.40), we have assumed not only that the distribution

obeys translational invariance and rotational invariance but also that it re-

spects parity. If this were not the case, the two different helicity states could

have different powers. With an ansatz for the anisotropic stress of the same

form

πTij(t,x) =
∑
Nλ

∫
d3q βN(q, λ) eij(q̂, λ)πTN q(t)e

iq·x , (2.3.42)

11We should caution the reader that other normalizations frequently occur in the litera-
ture.
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the equation for the tensor modes becomes

D̈N q + 3
ȧ

a
ḊN q +

q2

a2
DN q = 16πGπTN q (2.3.43)

In the absence of anisotropic inertia and for q/a� H, i.e. outside the horizon,

it is easy to see that one of the solutions is a constant, which we will denote

Do
q with the superscript o indicating that it is the value outside the horizon.

This mode plays the same role for the tensor perturbations the adiabatic mode

plays for the scalars. The other mode decays like
∫
dt a(t)−3, and is negligible

in any scenario where the fluctuations get generated early, e.g. in inflation.

The tensor perturbation of the metric can then be written as

Dij(t,x) =
∑
λ

∫
d3q β(q, λ) eij(q̂, λ)Dq(t)e

iq·x . (2.3.44)

To make further progress in solving these equations, one has to specify

a model. We will return to this in the next subsection after introducing the

Boltzmann equations for neutrinos and photons.

2.3.2 The Boltzmann equation for photons

We can now turn to the Boltzmann equation that governs the time

evolution of an ensemble of photons. We treat the photons as a gas of point

particles that interact with the non-relativistic electrons through Thompson

scattering. We will start by reviewing the collisionless Boltzmann equation for

a gas of scalar particles and then generalize this to the case of photons.

Consider a map X : R −→ M embedding the worldline of a scalar

particle into the spacetime (M, g) with coordinates (t, xi). The world line

action can be then written in the form

S =
1

2

∫
dτe(τ)gµν(X(τ))ẊµẊν , (2.3.45)
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where τ is an affine parameter parameterizing the worldline of the particle,

e(τ) is an einbein that can be thought of as a Lagrange multiplier whose

equation of motion enforces that the particle be on-shell, gµν is the metric

on spacetime, and Xµ are the compositions of the embedding X with the

coordinate functions, so that gµν(X(τ))ẊµẊν is the pullback of the metric on

spacetime to the worldline of the particle. Varying with respect to the metric,

fixing a gauge for the affine parameter such that e(τ) = 1, and performing

the integral over τ , we find that the stress energy tensor for a massless scalar

particle is given by

Tµν =
1√
−g

δ(x− x(t))
pµ(t)pν(t)

p0(x,p, t)
, (2.3.46)

where we have introduced pµ(t) ≡ gµνẊ
ν , used the notation p0(x,p, t) =√

gij(t,x)pipj, and denoted the vector with components X i(t) by x(t). For

a gas of non-interacting massless scalar particles, the stress energy tensor is

simply the sum of the stress energy tensors of the individual particles in the

gas and one has

Tµν =
1√
−g
∑
r

δ(x− xr(t))
prµ(t)p

r
ν(t)

p0
r(t)

=
1√
−g

∫
d3p

∑
r

δ(x− xr(t))δ(p− pr(t))
pµpν
p0

=
1√
−g

∫
d3p n(x,p, t)

pµpν
p0

, (2.3.47)

where r labels the different particles, and we have defined the phase space

density

n(x,p, t) ≡
∑
r

δ(x− xr(t))δ(p− pr(t)) . (2.3.48)
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To be specific, the components of x are xi and those of p are pi. This will be

useful in its own right as we can describe the free-streaming neutrinos in this

way, but we will for now move on to photons and return to neutrinos later.

In the case of an ensemble of photons, in addition to keeping track of

the particles positions and momenta, we would also like to keep track of their

polarizations. Instead of the phase space density we can then define a phase

space density matrix

nij(x,p, t) ≡
∑
r,λ

δ(x− xr(t))δ(p− pr(t))×

Pr(λ)ei(pr(t), λ)ej ∗(pr(t), λ) . (2.3.49)

In this equation Pr(λ) is the probability that the photon r has polarization

λ, and the vectors e(p, λ) are the polarization vectors for a photon travelling

with three-momentum p and polarization λ, and of course satisfy pie
i = 0 and

gije
i(p, λ)ej ∗(p, λ′) = δλλ′ .

Since we will need this for the Einstein equations, let us also give the

stress-energy tensor for the ensemble of photons in terms of the phase space

density matrix. It is given by

Tµν =
1√
−g

∫
d3p gijn

ij(x,p, t)
pµpν
p0

. (2.3.50)

In the collisionless case, the time evolution of this density matrix can be

worked out simply by taking its derivative with respect to time and collecting

all the terms. This requires knowledge of the time derivatives of x(t), p(t), and

e(pr(t), λ). The first of these can be taken from the definition of pi written in

the form

dX i

dt
=
pi

p0
. (2.3.51)
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where we have raised the index using pi ≡ gijpj. The second one can be taken

from the geodesic equation in the form

dpi
dt

=
pkpl

2p0

∂gkl
∂xi

. (2.3.52)

The time dependence of the polarization vector is somewhat more involved

but can be obtained by parallel transporting the polarization vector along

the worldline of the photon. Using pie
i = 0 and gije

i(λ)ej ∗(λ′) = δλλ′ and

decomposing ėi into pi and the polarization vectors ei(p, λ), one can choose a

basis of polarization vectors such that

∂ei

∂t
= −em p

kplpi

2(p0)3

∂gkl
∂xm

− 1

2

(
ġkl +

pm

p0

∂gkl
xm

)
ek
(
gli − plpi

(p0)2

)
, (2.3.53)

The Boltzmann equation for the density matrix then becomes

∂nij

∂t
+
pk

p0

∂nij

∂xk
+

1

2

pkpl

p0

∂gkl

∂xm

(
∂nij

∂pm
+

pj

(p0)2
nmi +

pi

(p0)2
nmj
)

+
1

2

(
ġkl +

pm

p0

∂gkl
xm

)[(
gli − plpi

(p0)2

)
nkj +

(
glj − plpj

(p0)2

)
nki
]

= Cij ,

(2.3.54)

where Cij is the collision term. In our case it incorporates the interactions of

the photons with the non-relativistic electrons in the plasma. Its derivation

would lead us too far away from the main line of thought and we will content

ourselves by quoting the result. The interested reader is referred to Appendix

H of [38] for a derivation.

Let us at this point also specialize to the study of the evolution of the

fluctuations of the density matrix around its equilibrium value rather than the

full density matrix. To this end, let us write the density matrix as

nij(x,p, t) =
1

2
nγ(a(t)p

0)

(
gij − pipj

(p0)2

)
+ δnij(x,p, t) . (2.3.55)
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The equation governing the time evolution of δnij is then given by

∂δnij

∂t
+
p̂m
a

∂δnij

∂xm
+ 2

ȧ

a
δnij

− 1

4a2
pn′γ p̂kp̂l

∂

∂t

(
hkl
a2

)(
δij − p̂ip̂j

)
= δCij . (2.3.56)

Here we have introduced the notation p =
√
pipi, p̂ = p/p and the linearized

collision term on the right hand side is given by

δCij(x,p, t) = −ωc(t)δnij +
3ωc(t)

8π

∫
d2p̂1

[
δnij(x, |p|p̂1, t)

−p̂ip̂kδnkj(x, |p|p̂1, t)− p̂j p̂kδn
ik(x, |p|p̂1, t)

+p̂ip̂j p̂kp̂lδn
kl(x, |p|p̂1, t)

]
− ωc(t)

2a3(t)
(pkδuk)n

′
γ(p)

(
δij − p̂ip̂j

)
. (2.3.57)

where ωc(t) is the collision rate of a photon with the electrons of the plasma.

It is given by ωc(t) = ne(t)σT , where ne(t) is the number density of electrons

in the baryonic plasma12 and σT is the Thompson cross section given by13

σT =
8π

3

α2

m2
. (2.3.58)

For the linearized Einstein equations, it will be useful to know how the

perturbations in the stress energy tensor are related to the fluctuations of the

density matrix. A straightforward but somewhat tedious calculation shows

12This number density requires knowledge of the ionized fraction of hydrogen and helium
during recombination and later during reionization. The derivation is full of interesting
physics, but it would take us too far away from the main line of thought in our review. The
interested reader is invited to read about it in [38], but for practical purposes the reader
need not know the derivation and can use the publicly available recfast code [71], [72].

13See e.g. [73] for a derivation.
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that the first order perturbations of (2.3.50) are given by

δT 0
0 = − 1

a4

∫
d3p a2δnkk(x,p, t)p , (2.3.59)

δT 0
i =

1

a3

∫
d3p a2δnkk(x,p, t)pi , (2.3.60)

δT ij =
1

a4

∫
d3p a2δnkk(x,p, t)

pipj
p

. (2.3.61)

The dimensionless intensity matrix is related to the fluctuations in the density

matrix according to

a4(t)ργ(t)Jij(x, p̂, t) = a2(t)

∞∫
0

4πp3 dp δnij(x, |p|p̂, t) , (2.3.62)

At this point it will be convenient to continue separately for the scalar

and tensor modes, but since this will be needed later, let us first briefly give

the perturbations in the stress-energy tensor in terms of Jij. They are given

by

δT 0
0 = −ργ(t)

∫
d2p̂

4π
Jkk(x, p̂, t) , (2.3.63)

δT 0
i = a(t)ργ(t)

∫
d2p̂

4π
Jkk(x, p̂, t)p̂i , (2.3.64)

δT ij = ργ(t)

∫
d2p̂

4π
Jkk(x, p̂, t)p̂ip̂j . (2.3.65)

2.3.2.1 Scalar modes

Introducing the Fourier transforms of the intensity matrix

Jij(x, p̂, t) =

∫
d3q Jij(q, p̂, t)e

iq·x , (2.3.66)

and of the velocity potential

δui(t,x) =

∫
d3q δui(t,q)eiq·x , (2.3.67)
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we can then use equations (2.3.56) and (2.3.57) to derive an equation for the

dimensionless intensity matrix. For the scalar modes this equation becomes

∂Jij
∂t

+ i
p̂ · q
a(t)

Jij + α(q)
[
Ȧq − (q · p̂)2Ḃq

]
(δij − p̂ip̂j) =

−ωc(t)Jij +
3ωc(t)

8π

∫
d2p̂1 [Jij(q, p̂1, t)− p̂ip̂kJkj(q, p̂1, t)

−p̂j p̂kJik(q, p̂1, t) + p̂ip̂j p̂kp̂lJkl(q, p̂1, t)]

+
2ωc(t)

a(t)
(p̂kδuk(t,q))

(
δij − p̂ip̂j

)
. (2.3.68)

We have dropped the arguments, but Jij stands for the Fourier transform of

the dimensionless intensity matrix. Remember also that we work under the

assumption that only the adiabatic mode is excited, implying that there is only

a single stochastic parameter α(q). Except for a trivial overall dependence

on α(q), there is no preferred direction in the problem. This allows for the

commonly used decomposition of the dimensionless intensity matrix of the

form

Jij(q, p̂, t) = α(q)

{
1

2

(
∆

(S)
T (q, q̂ · p̂, t)−∆

(S)
P (q, q̂ · p̂, t)

)
(δij − p̂ip̂j)

+ ∆
(S)
P (q, q̂ · p̂, t)

[
(q̂i − (q̂ · p̂)p̂i) (q̂j − (q̂ · p̂)p̂j)

1− (p̂ · q̂)2

]}
. (2.3.69)

Here the superscripts (S) indicate that we are dealing with the scalar modes,

the subscript T stands for temperature and the subscript P for polarization.

The coefficients are chosen such that the temperature fluctuations are pro-

portional to ∆
(S)
T and the polarization is proportional to ∆

(S)
P If we further

introduce so called source functions Φ(q, t) and Π(q, t) via∫
d2p̂

4π
Jij(q, p̂, t) = α(q)

[
δijΦ(q, t) +

1

2
q̂iq̂jΠ(q, t)

]
, (2.3.70)
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and use the notation µ = q̂ · p̂, we are lead to two coupled Boltzmann equations

for the quantities ∆
(S)
T and ∆

(S)
P of the form

∆̇
(S)
P (q, µ, t) + i

qµ

a(t)
∆

(S)
P (q, µ, t) =

−ωc(t)∆(S)
P (q, µ, t) +

3

4
ωc(t)(1− µ2)Π(q, t) ,(2.3.71)

∆̇
(S)
T (q, µ, t) + i

qµ

a(t)
∆

(S)
T (q, µ, t) = −ωc(t)∆(S)

T (q, µ, t)

+
3

4
ωc(t)(1− µ2)Π(q, t) + 3ωc(t)Φ(q, t)

+
4iqµ

a(t)
ωc(t)δuB q(t)− 2Ȧq(t) + 2q2µ2Ḃq(t) . (2.3.72)

One way to solve this system of equations is by decomposing ∆
(S)
T and ∆

(S)
P

into multipole moments as

∆
(S)
T (q, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)∆
(S)
T,`(q, t) , (2.3.73)

∆
(S)
P (q, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)∆
(S)
P,`(q, t) . (2.3.74)

In terms of these, the Boltzmann equations for ∆
(S)
T and ∆

(S)
P give rise to the

Boltzmann hierarchy for ∆
(S)
T,` and ∆

(S)
P,`

∆̇
(S)
P,`(q, t) +

q

a(2`+ 1)

[
(`+ 1)∆

(S)
P,`+1(q, t)− `∆

(S)
P,`−1(q, t)

]
= −ωc(t)∆(S)

P,`(q, t) +
1

2
ωc(t)Π(q, t) (δ`,0 + δ`,2) , (2.3.75)

∆̇
(S)
T,`(q, t) +

q

a(2`+ 1)

[
(`+ 1)∆

(S)
T,`+1(q, t)− `∆

(S)
T,`−1(q, t)

]
= −ωc(t)∆(S)

T,`(q, t)− 2Ȧqδ`,0 + 2q2Ḃq

(
1

3
δ`,0 −

2

15
δ`,2

)
+ωc

(
3Φ +

1

2
Π

)
δ`,0 +

1

2
ωcΠδ`,2 −

4

3

q

a
ωcδuB qδ`,1 . (2.3.76)
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The source functions Φ and Π can also be expressed in terms of these multipole

coefficients

Φ =
1

6

[
2∆

(S)
T,0 −∆

(S)
T,2 −∆

(S)
P,0 −∆

(S)
P,2

]
, (2.3.77)

Π = ∆
(S)
P,0 + ∆

(S)
T,2 + ∆

(S)
P,2 . (2.3.78)

To turn this into a closed system, one thus only needs to know the metric

components appearing in these equations as well as the velocity potential.

Their time evolution is of course governed by the Einstein equations, and we

give the complete system of equations in the next subsection. To do this, we

will also need to know the components of the stress-energy tensor in terms of

the multipole moments. Using equations (2.3.16), (2.3.32), and (2.3.69), one

finds

δργ q = ργ∆
(S)
T,0 , (2.3.79)

δpγ q =
ργ
3

(
∆

(S)
T,0 + ∆

(S)
T,2

)
, (2.3.80)

δuγ q = −3

4

a

q
∆

(S)
T,1 , (2.3.81)

q2πSγ q = ργ∆
(S)
T,2 . (2.3.82)

Another way to find a somewhat formal solution to the coupled Boltz-

mann equations for ∆
(S)
T and ∆

(S)
P is to treat the system as an inhomogeneous

system of ordinary differential equations and solve it as if the sources were

known. This solution is commonly referred to as integrating the equations
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along the line of sight [74] and takes the form

∆
(S)
T (q, µ, t0) =

t0∫
t1

dt exp [−iqr(t)µ]P (t)

×
[
3Φ(q, t) +

4iµq

a(t)
δuq(t) +

3

4
(1− µ2)Π(q, t)

]

+

t0∫
t1

dt exp

[
−iqr(t)µ−

∫ t0

t

ωc(t
′)dt′

]
×
(
−2Ȧq(t) + 2µ2q2Ḃq(t)

)
, (2.3.83)

∆
(S)
P (q, µ, t0) =

3

4
(1− µ2)

t0∫
t1

dt exp [−iqr(t)µ] P (t)Π(q, t) . (2.3.84)

In these equations, t1 is any time taken early enough before recombination

so that any photon present at time t1 would have collided many times before

the present, r(t) =
∫ t0
t
dt′/a(t′) is the co-moving radial coordinate of a source

from which light emitted at time t would reach us at the origin at the present

time t0, and we have introduced the probability distribution of last scattering

P (t) = ωc(t) exp[−
∫ t0
t
dt′ ωc(t

′)]. It is convenient to rewrite ∆
(S)
T slightly.

Using the identity

exp [−iqr(t)µ]µ2q2Ḃq(t) =

− exp [−iqr(t)µ]
d

dt

[
a2B̈q(t) + aȧḂq(t)

]
+
d

dt

{
exp [−iqr(t)µ]

[
a2B̈q(t) + aȧḂq(t) + iaqµḂq(t)

]}
, (2.3.85)

and integrating by parts. This yields

∆
(S)
T (q, µ, t0) =

t0∫
t1

dt exp [−iqr(t)µ]P (t)
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×
[
3Φ(q, t)− 2a2(t)B̈q(t)− 2a(t)ȧ(t)Ḃq(t)

+4iµq
(
δuq(t)/a(t) + a(t)Ḃq(t)/2

)
+

3

4
(1− µ2)Π(q, t)

]

−
t0∫
t1

dt exp

[
−iqr(t)µ−

∫ t0

t

ωc(t
′)dt′

]

× d

dt

(
2Aq(t) + 2a2(t)B̈q(t) + 2a(t)ȧ(t)Ḃq(t)

)
, (2.3.86)

∆
(S)
P (q, µ, t0) =

3

4
(1− µ2)

t0∫
t1

dt exp [−iqr(t)µ] P (t)Π(q, t) . (2.3.87)

Notice that the integrand of the first contribution to ∆
(S)
T as well as the inte-

grand in ∆
(S)
P are proportional to P (t) implying that they only receive contri-

butions when free electrons are present, i.e. around the time of last scattering

and once the universe has become reionized. In contrast, the last term in the

temperature amplitude is not proportional to P (t) and receives contributions

from all times. This contribution is referred to as the integrated Sachs-Wolfe

contribution. It is dominated by the period when the vacuum energy becomes

important, and contributes significantly only for ` . 20.

The beauty of these equations is that once the time evolution of the

sources, the metric fluctuations, and the velocity potential are known, they can

be used to calculate ∆
(S)
T,` and ∆

(S)
P,` for arbitrary `. Also, notice that the source

functions as well as the Einstein equations only require knowledge of ∆
(S)
T,` and

∆
(S)
P,` up to ` = 2. An efficient way to calculate ∆

(S)
T,` and ∆

(S)
P,` then is to use

a truncation of the Boltzmann hierarchy at a value of ` that is high enough

so that ∆
(S)
T,` and ∆

(S)
P,` are known to the desired accuracy up to ` = 2, and

then use the line of sight integrals to evaluate the higher `-values [74]. To be

specific, the default setting in CMBfast for the value at which the Boltzmann
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hierarchy for the photons is truncated is ` = 12 for the scalar modes.

2.3.2.2 Tensor modes

Using an ansatz for the dimensionless intensity matrix of the form

Jij(x, p̂, t) =
∑
λ=±2

∫
d3q β(q, λ)Jij(q, p̂, t, λ)eiq·x , (2.3.88)

we can again use equation (2.3.56) to derive an equation for Jij(q, p̂, t, λ). For

the tensor mode this equation becomes

∂Jij
∂t

+ i
p̂ · q
a(t)

Jij + p̂kp̂lekl(q̂, λ)Ḋq(t)(δij − p̂ip̂j) =

−ωc(t)Jij +
3ωc(t)

8π

∫
d2p̂1 [Jij(q, p̂1, t, λ)− p̂ip̂kJkj(q, p̂1, t, λ)

−p̂j p̂kJik(q, p̂1, t, λ) + p̂ip̂j p̂kp̂lJkl(q, p̂1, t, λ)] . (2.3.89)

We can again introduce a source function. Rotational invariance ensures that

the integrals ∫
d2p̂1

4π
Jij(q, p̂1, t, λ) , (2.3.90)

must be proportional to eij(q̂, λ) times some source function of q and time.

This source function is commonly defined as∫
d2p̂1

4π
Jij(q, p̂1, t, λ) = −2

3
eij(q̂, λ)Ψ(q, t) . (2.3.91)

Furthermore, in the tensor case, we can decompose the dimensionless intensity

matrix as

Jij(q, p̂, t, λ) =

1

2
(δij − p̂ip̂j) p̂kp̂l ekl(q̂, λ)

(
∆̃

(T )
T (q, p̂ · q̂, t) + ∆̃

(T )
P (q, p̂ · q̂, t)

)
+
(
eij(q̂, λ)− p̂ip̂kekj(q̂, λ)− p̂j p̂keik(q̂, λ) + p̂ip̂j p̂kp̂l ekl(q̂, λ)

)
×∆̃

(T )
P (q, p̂ · q̂, t) . (2.3.92)
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The superscript (T ) indicates that we are dealing with the tensor modes,

the subscripts T and P stand for temperature and polarization, respectively.

Again, the coefficients are chosen such that the temperature fluctuations are

proportional to ∆̃
(T )
T and the polarization is proportional to ∆̃

(T )
P . This de-

composition leads to two coupled Boltzmann equations for ∆̃
(T )
T and ∆̃

(T )
P . In

the tensor case, these are of the form

˙̃∆
(T )
T (q, µ, t) + i

qµ

a(t)
∆̃

(T )
T (q, µ, t) =

− ωc(t)∆̃
(T )
T (q, µ, t)− 2Ḋq(t) + ωc(t)Ψ(q, t) , (2.3.93)

and

˙̃∆
(T )
P (q, µ, t) + i

qµ

a(t)
∆̃

(T )
P (q, µ, t) =

− ωc(t)∆̃
(T )
P (q, µ, t)− ωc(t)Ψ(q, t) . (2.3.94)

Traditionally, this system of equations is again solved by decomposing ∆̃
(T )
T

and ∆̃
(T )
P into multipole moments as

∆̃
(T )
T (q, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)∆̃
(T )
T,` (q, t) , (2.3.95)

∆̃
(T )
P (q, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)∆̃
(T )
P,` (q, t) . (2.3.96)

This leads to the Boltzmann hierarchy

˙̃∆
(T )
T,` (q, t) +

q

a(2`+ 1)

[
(`+ 1)∆̃

(T )
T,`+1(q, t)− `∆̃

(T )
T,`−1(q, t)

]
=
(
−2Ḋq(t) + ωc(t)Ψ(q, t)

)
δ`,0 − ωc(t)∆̃

(T )
T,` (q, t) , (2.3.97)

˙̃∆
(T )
P,` (q, t) +

q

a(2`+ 1)

[
(`+ 1)∆̃

(T )
P,`+1(q, t)− `∆̃

(T )
P,`−1(q, t)

]
= −ωc(t)Ψ(q, t) δ`,0 − ωc(t)∆̃

(T )
P,` (q, t) , (2.3.98)
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with the source function Ψ(q, t) given in terms of these multipole moments as

Ψ(q, t) =
1

10
∆̃

(T )
T,0(q, t) +

1

7
∆̃

(T )
T,2(q, t) +

3

70
∆̃

(T )
T,4(q, t)

− 3

5
∆̃

(T )
P,0(q, t) +

6

7
∆̃

(T )
P,2(q, t)−

3

70
∆̃

(T )
P,4(q, t) . (2.3.99)

To write down the linearized Einstein equations for the tensor mode, we also

need to know the anisotropic stress in terms of the multipole moments. It is

given by

πTγ q(t) = 2ργ(t)

[
1

15
∆̃

(T )
T,0(q, t) +

2

21
∆̃

(T )
T,2(q, t) +

1

35
∆̃

(T )
T,4(q, t)

]
. (2.3.100)

Again a formal solution to the coupled Boltzmann equations for ∆̃
(T )
T

and ∆̃
(T )
P can be found by treating the system as an inhomogeneous system of

ordinary differential equations and solve it as if the sources were known. The

line of sight solution for the tensor modes takes the form

∆̃
(T )
T (q, µ, t0) = −∆̃

(T )
P (q, µ, t0)

−2

t0∫
t1

dt exp

[
−iqµ

∫ t0

t

dt′

a(t′)

]
exp

[
−
∫ t0

t

ωc(t
′)dt′

]
Ḋq(t) , (2.3.101)

∆̃
(T )
P (q, µ, t0) = −

t0∫
t1

dt exp

[
−iqµ

∫ t0

t

dt′

a(t′)

]
P (t)Ψ(q, t) , (2.3.102)

where t1 is again any time taken early enough before recombination so that

any photon present at time t1 would have collided many times before the

present, and P (t) = ωc(t) exp[−
∫ t0
t
dt′ ωc(t

′)] is the probability distribution of

last scattering. Notice that the integrand in ∆̃
(T )
P is again proportional to P (t)

so that the polarization amplitude only receives contributions from a period

around the time of last scattering and once the universe has become reionized

while the temperature amplitude again receives contributions from all times.
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In the tensor case the source function as well as the Einstein equations

require knowledge of ∆̃
(T )
T,` and ∆̃

(T )
P,` up to ` = 4. These can again be calculated

using a truncation of the Boltzmann hierarchy. Once these are known, the line

of sight solution can again be used to evaluate the higher `-values. The default

setting in CMBfast for the value at which the Boltzmann hierarchy is truncated

is ` = 10 in the case of the tensor modes.

One can also use the line of sight integral as an alternative of the trun-

cated Boltzmann hierarchy altogether. One can derive an integral equation

for the source function by integrating equation (2.3.92) over p̂ and equating

coefficients of eij. The resulting integral equation is [75], [76]

Ψ(q, t) =
3

2

∫ t

t1

dt′ exp

[
−
∫ t

t′
ωc(t

′′) dt′′
]

×

[
− 2Ḋq(t

′)K

(
q

∫ t

t′

dt′′

a(t′′)

)
+ ωc(t

′)F

(
q

∫ t

t′

dt′′

a(t′′)

)
Ψ(q, t′)

]
, (2.3.103)

where K(v) and F (v) are the functions

K(v) ≡ j2(v)/v
2 and F (v) ≡ j0(v)− 2j1(v)/v + 2j2(v)/v

2 , (2.3.104)

with j`(v) the spherical Bessel functions.

A similar approach for the calculation of the source functions could

be taken for the scalar modes, but the equations there become somewhat

long, and the combination of truncated Boltzmann hierarchy and line of sight

integration seems easier to implement efficiently.

2.3.3 The Boltzmann equation for neutrinos

We can now return to the neutrino contribution and review their Boltz-

mann equations. Even though at least two species of neutrinos are known to
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have a mass (see e.g. [77]), we will treat them as if they were massless14 and

refer the interested reader to [79], [80], and [81]. We are far from observing a

cosmic neutrino background and do not care about the intensity fluctuations

in neutrinos directly, but it turns out to be convenient to use the same for-

malism as for the photons. The evolution of the neutrinos can conveniently

be described with a phase space density as in equation (2.3.48). The Boltz-

mann equation governing its time evolution can be derived simply by taking

the derivative with respect to time using

dX i

dt
=
pi

p0
and

dpi
dt

=
pkpl

2p0

∂gkl
∂xi

. (2.3.105)

One finds

∂n

∂t
+
pk

p0

∂n

∂xk
+

1

2

pkpl

p0

∂gkl

∂xm
∂n

∂pm
= 0 . (2.3.106)

The temperatures we are interested in are too low for neutrinos to interact

efficiently and they can be treated as free-streaming. The collision term is

thus absent. It is convenient to define the fluctuations by

n(x,p, t) = n
(
a(t)p0(x,p, t)

)
+ δn(x,p, t) , (2.3.107)

where the equilibrium density n is given by

n(p) =
1

(2π)3

1

exp[p/kBa(t)T (t)]
, (2.3.108)

where T (t) is the neutrino temperature which, after electrons and positrons

have annihilated, and is lower than the one of photons. It scales like a−1(t) so

that n(p) is constant. The fluctuations satisfy the Boltzmann equation

∂δn

∂t
+
p̂m
a

∂δn

∂xm
− 1

2
pn′γ p̂kp̂l

∂

∂t

(
hkl
a2

)
= 0 . (2.3.109)

14This is a good approximation when it comes to the cosmic microwave background, but
cosmology is starting to put meaningful bounds on their masses [78].

51



The perturbations in the stress-energy tensor in terms of these are given by

δT 0
0 = − 1

a4

∫
d3p δn(x,p, t)p , (2.3.110)

δT 0
i =

1

a3

∫
d3p δn(x,p, t)pi , (2.3.111)

δT ij =
1

a4

∫
d3p δn(x,p, t)

pipj
p

. (2.3.112)

In analogy with the treatment of the photons, one can introduce a dimension-

less density perturbation according to

a4(t)ρν(t)J(x, p̂, t) = Nν

∞∫
0

4πp3 dp δn(x, |p|p̂, t) . (2.3.113)

In terms of it, the perturbations in the stress-energy tensor are of the form

δT 0
0 = −ρν(t)

∫
d2p̂

4π
J(x, p̂, t) , (2.3.114)

δT 0
i = a(t)ρν(t)

∫
d2p̂

4π
J(x, p̂, t)p̂i , (2.3.115)

δT ij = ρν(t)

∫
d2p̂

4π
J(x, p̂, t)p̂ip̂j . (2.3.116)

Let us now again continue the discussion separately for scalar and tensor

modes.

2.3.3.1 Scalar modes

The Fourier components of J(x, p̂, t), for the scalar case defined via

J(x, p̂, t) =

∫
d3q α(q)∆(S)

ν (q, q̂ · p̂)eiq·x , (2.3.117)

satisfy a Boltzmann equation of the form

∆̇(S)
ν (q, µ, t) + i

qµ

a(t)
∆(S)
ν (q, µ, t) = −2Ȧq(t) + 2q2µ2Ḃq(t) . (2.3.118)
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Just like the Boltzmann equations for the photons, it is useful to decompose

∆
(S)
ν (q, µ, t) into multipole moments according to

∆(S)
ν (q, µ, t) =

∞∑
`=0

(−i)`(2`+ 1)P`(µ)∆
(S)
ν,` (q, t) . (2.3.119)

In terms of these, the Boltzmann equation for ∆
(S)
ν gives rise to the Boltzmann

hierarchy for ∆
(S)
ν,`

∆̇
(S)
ν,` (q, t) +

q

a(2`+ 1)

[
(`+ 1)∆

(S)
ν,`+1(q, t)− `∆

(S)
ν,`−1(q, t)

]
=

− 2Ȧqδ`,0 + 2q2Ḃq

(
1

3
δ`,0 −

2

15
δ`,2

)
. (2.3.120)

To write down the Einstein equations, we will again need the fluctuations of

the stress-energy tensor in terms of the multipole moments. For the neutrinos,

they are given by

δρν q = ρν∆
(S)
ν,0 , (2.3.121)

δpν q =
ρν
3

(
∆

(S)
ν,0 + ∆

(S)
ν,2

)
, (2.3.122)

δuν q = −3

4

a

q
∆

(S)
ν,1 , (2.3.123)

q2πSν q = ρν∆
(S)
ν,2 . (2.3.124)

For the neutrinos, we only need the low multipole moments. The truncation

of the Boltzmann hierarchy is thus sufficient, and no line of sight integral is

needed to calculate the higher multipole moments. This is what is done in the

numerical codes like CMBfast [82]15 and CAMB [83].16

One can in this case, however use the line of sight solution instead of

the Boltzmann hierarchy. This was used in some codes used to generate results

15http://www.cfa.harvard.edu/~mzaldarr/CMBFAST/cmbfast.html
16http://camb.info/.
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for later chapters in the case of the tensor modes and we will have to say more

about it there. For the scalar modes, we have not made use of it and will

simply refer the interested reader to [38].

2.3.3.2 Tensor modes

For the tensor modes, we can define the Fourier components of J(x, p̂, t) as

J(x, p̂, t) =
∑
λ=±2

∫
d3q eiq·xβ(q, λ) eij(q̂, λ)p̂ip̂j∆

(T )
ν (q, p̂ · q̂, t) . (2.3.125)

The quantity ∆
(T )
ν (q, p̂ · q̂, t) satisfies a Boltzmann equation

∆̇(T )
ν (q, µ, t) +

iqµ

a(t)
∆(T )
ν (q, µ, t) = −2Ḋq(t) , (2.3.126)

that can again be solved by decomposing ∆
(T )
ν (q, µ, t) into multipole moments

∆
(T )
ν,` (q, t) according to

∆(T )
ν (q, µ, t) =

∑
`

(−i)`(2`+ 1)P`(µ)∆
(T )
ν,` (q, t) . (2.3.127)

The time evolution of the multipole moments ∆
(T )
ν,` (q, t) is governed by the

Boltzmann hierarchy

∆̇
(T )
ν,` +

q

a(2`+ 1)

[
(`+ 1)∆

(T )
ν,`+1 − `∆

(T )
ν,`−1

]
= −2Ḋq(t) δ`0 . (2.3.128)

Together with the expression for the anisotropic stress in terms of the multipole

coefficients

πTν q(t) = 2ρ̄ν(t)
[ 1

15
∆

(T )
ν,0 (q, t) +

2

21
∆

(T )
ν,2 (q, t) +

1

35
∆

(T )
ν,4 (q, t)

]
, (2.3.129)

the truncation of the Boltzmann hierarchy is again sufficient and no line of

sight integration is needed to calculate the higher multipole moments.
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In the case of the tensor mode, however, using the line of sight integral

to avoid the Boltzmann hierarchy completely is also possible. The line of sight

solution is simply given by

∆(T )
ν (q, µ, t) = −2

∫ t

t1

dt′ exp

(
−iqµ

∫ t

t′

dt′′

a(t′′)

)
Ḋq(t

′) . (2.3.130)

This allows us to write the anisotropic stress due to neutrinos as [84]

πTν q(t) = −4

∫ t

t1

dt′K

(
−iq

∫ t

t′

dt′′

a(t′′)

)
Ḋq(t

′) , (2.3.131)

where the function K(v) is given by

K(v) ≡ j2(v)/v
2 = −sin v

v3
− 3 cos v

v4
+

3 sin v

v5
, (2.3.132)

and the functions j`(v) are spherical Bessel functions.

2.3.4 The Multipole Coefficients

We now have all the ingredients that are necessary to give explicit

expressions for the multipole coefficients in a given model, specifically the

ΛCDM model. We will content ourselves with giving the expressions for the

multipole coefficients and a summary of the system of equations that has to

be solved to calculate them. A lot of progress can be made in solving these

equations analytically and obtaining analytic expressions for the multipole

coefficients, but we will not review this here. We refer the interested reader

to [85], [38] and references therein.

It is convenient to use the definition of the multipole coefficients in the

form

CXY,` =
1

2`+ 1

∑
m

〈
aX,`ma

∗
Y,`m

〉
, (2.3.133)
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where X and Y stand for T , E, and B. Using the definition of the expan-

sion coefficients aT,`m and aP,`m, equations (2.2.6), (2.2.12) as well as the

expressions (2.1.7), (2.1.8) relating the temperature fluctuations and Stokes

parameters to the dimensionless intensity matrix, one finds

aT,`m =
T0

4

∫
d2n̂ Y m

`
∗(n̂) Jii(0,−n̂, t0) , (2.3.134)

aP,`m =
T0

2

∫
d2n̂ 2Y

m
`
∗(n̂) e+ i(n̂)e+ j(n̂)Jij(0,−n̂, t0) . (2.3.135)

Using the decomposition of the dimensionless intensity matrix (2.3.69), (2.3.92)

together with the line of sight solutions (2.3.86), (2.3.87), (2.3.101), and (2.3.102),

we will now work out expressions for the expansion coefficients and, by taking

the average (2.3.133), the multipole coefficients.

2.3.4.1 Scalar modes

Using equation (2.3.69), one finds that the trace of the intensity matrix for

the scalar modes is given by

Jii(0,−n̂, t0) =

∫
d3q α(q)∆

(S)
T (q,−q̂ · n̂, t0) , (2.3.136)

while

e+ i(n̂)e+ j(n̂)Jij(0,−n̂, t0) =∫
d3q α(q)

(e+ · q̂)2

1− (q̂ · n̂)2 ∆
(S)
P (q,−q̂ · n̂, t0) , (2.3.137)

so that

a
(S)
T,`m =

T0

4

∫
d3q α(q)

∫
d2n̂ Y m

`
∗(n̂)∆

(S)
T (q,−q̂ · n̂, t0) , (2.3.138)

a
(S)
P,`m =

T0

2

∫
d3q α(q)

∫
d2n̂ 2Y

m
`
∗(n̂)

(e+ · q̂)2

1− (q̂ · n̂)2 ∆
(S)
P (q,−q̂ · n̂, t0) . (2.3.139)
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Though somewhat tedious, using the line of sight solutions (2.3.86), (2.3.87)

for ∆
(S)
T (q,−q̂ · n̂, t0) and ∆

(S)
P (q,−q̂ · n̂, t0),the integrals over n̂ can be done

analytically. One finds the following expressions for the coefficients a
(S)
T,`m and

a
(S)
P,`m:

a
(S)
T,`m = πT0i

`

∫
d3q α(q)Y m

`
∗(q̂)∆

(S)
T,`(q, t0) , (2.3.140)

a
(S)
P,`m = −πT0i

`

∫
d3q α(q)Y m

`
∗(q̂)∆

(S)
E,`(q, t0) . (2.3.141)

(2.3.142)

The quantities ∆
(S)
T,`(q, t0) and ∆

(S)
E,`(q, t0) are sometimes referred to as transfer

functions and are given by

∆
(S)
T,`(q, t0) =

t0∫
t1

dt P (t)

×
{[

3Φ(q, t)− 2a(t)
d

dt

(
a(t)Ḃq(t)

)
+

3

4
Π(q, t)

]
j`(qr(t))

−4q
[
δuq(t)/a(t) + a(t)Ḃq(t)/2

]
j′`(qr(t)) +

3

4
Π(q, t)j′′` (qr(t))

}

−
t0∫
t1

dt exp

[
−
∫ t0

t

ωc(t
′)dt′

]

× d

dt

[
2Aq(t) + 2a(t)

d

dt

(
a(t)Ḃq(t)

)]
j`(qr(t)) , (2.3.143)

∆
(S)
E,`(q, t0) =

3

4

√
(`+ 2)!

(`− 2)!

t0∫
t1

dt
P (t)Π(q, t)

q2r2(t)
j`(qr(t)) . (2.3.144)

For vanishing Stokes parameter V , the dimensionless intensity matrix is real.

Together with the definition of the sources functions (2.3.70), the product of

stochastic parameters and ∆
(S)
E,`(q, t0) then satisfies

α(q)∗∆
(S)
E,`(q, t0)

∗ = α(−q)∆
(S)
E,`(q, t0) . (2.3.145)
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Combined with the behavior of the spherical harmonics under space inversion

Y m
` (q̂) = (−1)`Y −m ∗

` (−q̂), this implies a∗P,`m = aP,`−m, or equivalently

a
(S)
E,`m = −a(S)

P,`m and aB,`m = 0 . (2.3.146)

Using equation (2.3.133), the non-vanishing contributions of the scalar modes

to the multipole coefficients are then given by

C
(S)
TT,` = π2T 2

0

∫
q2dq

∣∣∣∆(S)
T,`(q, t0)

∣∣∣2 , (2.3.147)

C
(S)
TE,` = π2T 2

0

∫
q2dq ∆

(S)
T,`(q, t0)∆

(S)
E,`(q, t0) , (2.3.148)

C
(S)
EE,` = π2T 2

0

∫
q2dq

∣∣∣∆(S)
E,`(q, t0)

∣∣∣2 . (2.3.149)

At linear order, the scalar modes thus only contribute to the multipole coef-

ficients, CTT,`, CTE,`, and CEE,`, but not to CBB,`, so that a B-mode signal

would present evidence for vector or tensor modes. There is good evidence

from the observed CTE,` that perturbations are generated early [86], so that

the vector modes would have decayed by now, and a detection of a B-mode

signal would be an indirect detection of gravitational waves. This is somewhat

oversimplified as in the presence of an E-mode signal gravitational lensing will

lead to a B-mode signal. This is an important effect, and at least for ` & 100

is expected to be the dominant contribution. Lensing is reasonably well un-

derstood, and it seems to be possible to extract a primordial B-mode signal as

long as the tensor to scalar ratio, which will be introduced in subsections 2.4.2

and 2.4.3, is large enough, roughly r & 0.001− 0.01. We will return to this in

subsection 2.4.3 and explain more carefully what could be learned from such

an observation.

Once the transfer functions are known, we thus know how to obtain

the multipole coefficients. What remains is to give the equations governing
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the time dependence of the quantities that enter in the calculation of the

transfer functions. The source functions, metric perturbations, and velocity

potential are obtained by integrating the truncated Boltzmann hierarchies for

photons, equations (2.3.76) and (2.3.76) and neutrinos, equations (2.3.120)

along with two conveniently chosen linear combinations of equations (2.3.22),

(2.3.23), (2.3.24) and (2.3.25) for the metric components. Where they ap-

pear, the fluctuations in the energy density, pressure, velocity potential, and

the anisotropic stress for the photons are expressed in terms of the multipole

coefficients using equations (2.3.79), (2.3.80), (2.3.81), and (2.3.82); those for

neutrinos are expressed in terms of the corresponding multipole coefficients

using equations (2.3.121), (2.3.122), (2.3.123), and (2.3.124). The fluctuations

in energy density, pressure, velocity potential, and anisotropic inertia for the

remaining constituents are determined from their equations of motion. To

be specific, for the ΛCDM model, the missing equations are those governing

the evolution of the baryons and the dark matter particles. In the particular

synchronous gauge in which the velocity potential for the cold dark matter

vanishes, energy conservation for the cold dark matter perturbations takes the

form

δρ̇c q +
3ȧ

a
δρc q +

1

2
ρc q

(
3Ȧq − q2Ḃq

)
= 0 , (2.3.150)

while energy conservation for the baryons gives

δρ̇b q +
3ȧ

a
δρb q −

q2

a2
ρbδub q +

1

2
ρb

(
3Ȧq − q2Ḃq

)
= 0 . (2.3.151)

While the exchange of energy between the baryons and the photons due to

scattering is negligible and energy is conserved separately for baryons and

photons, momentum is exchanged efficiently between electrons and photons.
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The equation corresponding to momentum conservation in the plasma is17

δu̇b q +
4

3

ργ
ρb
ωc(t)

(
δub q +

3

4

a

q
∆

(S)
T,1(q, t)

)
= 0 , (2.3.152)

where we have used equations (2.3.80), (2.3.82), and (2.3.81) to write the

perturbations in the pressure and velocity potential for the photons as well as

the anisotropic stress in terms of the multipole coefficients, equation (2.3.76)

for ` = 1 to eliminate ∆̇
(S)
T,1(q, t). Finally, we can use equations (2.3.22) and

(2.3.23) for the metric components. For the ΛCDM model, these are

q2

a2
Aq+

ȧ

a

(
3Ȧq − q2Ḃq

)
= 8πG

(
δρq b + δρq c + ργ∆

(S)
T,0 + ρν∆

(S)
ν,0

)
, (2.3.153)

and

Ȧq = 8πG

(
ρbδub q −

a

q
ργ∆

(S)
T,1(q, t)−

a

q
ρν∆

(S)
ν,1 (q, t)

)
. (2.3.154)

These equations of motion are a closed set and can be solved numeri-

cally for any choice of initial conditions. What remains is to specify the initial

conditions for adiabatic perturbations. They can be found by solving this sys-

tem of equations far outside the horizon in the radiation dominated era. At

early times, Thomson scattering is very efficient, and it can be seen from the

Boltzmann hierarchy (2.3.76), (2.3.76) that it drives the temperature multi-

pole moments ∆
(S)
T,`(q, t) for ` ≥ 2 as well as all polarization multipole moments

∆
(S)
P,`(q, t) to zero. In this limit, one can look for a solution of the remaining

system of equations of the form

∆
(S)
T,0 = ∆

(S)
ν,0 =

4

3

δρc
ρc

=
4

3

δρb
ρb

≡ ∆
(S)
0 , (2.3.155)

17We have dropped the perturbation in the baryon pressure as in [38]. This term is kept
in CMBfast and CAMB, but turns out to be negligible for wavelengths observable in the
CMB. It is important at shorter scales and should be included for an accurate calculation
of the matter power spectrum.
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and

∆
(S)
ν,1 ∝ ∆

(S)
T,1 = −4

3

q

a
δub q ≡ ∆

(S)
1 . (2.3.156)

Choosing the normalization such that the quantity Rq outside the horizon

approaches the constant Ro
q the initial conditions for the growing adiabatic

mode to leading order in q/aH are given by

∆
(S)
0 (q, t) =

4

3

q2t2

a2(t)
Ro
q , (2.3.157)

∆
(S)
1 (q, t) =

8

27

q3t3

a3(t)
Ro
q , (2.3.158)

∆
(S)
ν,2 (q, t) = − 16

3(15 + 4fν)

q2t2

a2(t)
Ro
q , (2.3.159)

Aq(t) =

(
2− 2

3

5 + 4fν
15 + 4fν

q2t2

a2(t)

)
Ro
q , (2.3.160)

q2Ḃq(t) =
20

15 + 4fν

q2t

a2(t)
Ro
q , (2.3.161)

(2.3.162)

where fν is the fraction of the radiation energy density stored in neutrinos

fν =
ρν

(ργ + ρν)
=

Nν(7/8) (4/11)4/3

1 +Nν(7/8) (4/11)4/3
, (2.3.163)

with Nν the number of light neutrino species, which we take to be Nν = 3 in

agreement with particle physics, and ∆
(S)
ν,1 is related to ∆

(S)
1 by

∆
(S)
ν,1 (q, t) =

23 + 4fν
15 + 4fν

∆
(S)
1 (q, t) . (2.3.164)

The higher neutrino multipole moments are not being driven to zero, but they

are higher order in q/aH and can be set to zero initially.

In practice, it may be advantageous not to start the integration too

far in the radiation dominated era to keep the integration time as short as
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possible. In that case the initial conditions should be corrected to account for

the presence of dark matter and baryons. To do this, it is convenient to work

with the variable y = a(Ωb + Ωc)/Ωr.

For a numerical treatment, rather than using equations (2.3.143) as

they stand, it may be more convenient to eliminate the derivatives acting

on the spherical Bessel functions by integration by parts so only the Bessel

functions but not their derivatives have to be evaluated or stored. It may also

be somewhat more convenient for numerical purposes to work with conformal

time, τ =
∫ t
t1

1/a(t).

We have now reviewed how to calculate the contribution of the adiabatic

mode to the multipole coefficients C
(S)
TT,`, C

(S)
TE,`, and C

(S)
EE,` for an arbitrary

choice of Ro
q. To calculate the multipole coefficients and compare them to

experiment, we have to make an assumption about the momentum dependence

of Ro
q. This is commonly done by specifying the quantity

∆2
R(q) = 4π

∣∣Ro
q

∣∣2 q3 . (2.3.165)

In the ΛCDM model the perturbations are assumed to be nearly scale invari-

ant, which translates into a momentum dependence of ∆2
R(q) of the form

∆2
R(q) = ∆2

R(q∗)

(
q

q∗

)ns−1

, (2.3.166)

where ns is referred to as the scalar spectral index and ∆2
R(q∗) is the scalar

amplitude at the pivot scale q∗. For ns = 1 all decades in momentum contribute

the same amount to the variance of R(t,x), so that this case is known as a

scale invariant spectrum.

The theoretical predictions for the contributions of the scalar modes to

the multipoles in the ΛCDM model with cosmological parameters as derived
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from the five-year WMAP data alone (2.0.6)-(2.0.11) obtained by integrating

the equations discussed in this section numerically are shown in Figure 2.3.
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Figure 2.3: This plot shows the theoretical prediction for the scalar contribu-
tions multipole coefficients C

(S)
TT,`, C

(S)
TE,` and C

(S)
EE,` for the ΛCDM model with

parameters as in equations (2.0.6)-(2.0.11).

The experimental results for the temperature multipole coefficients as

well as the temperature polarization cross correlation from [86] are shown in

Figure 2.4 along with the best-fit ΛCDM model.

What remains to be understood is what mechanism generated these

adiabatic, Gaussian, perturbations with a nearly scale invariant spectrum in

the first place. The leading paradigm is inflation and we will review the cal-

culation of the power spectrum for this case in subsection 2.4.2.
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Figure 2.4: The left plot shows the five year WMAP results for the TT mul-
tipole coefficients along with results from the ACBAR [87], Boomerang [88],
and CBI [89] experiments. The right plot shows the five year WMAP 5-year
results for the TE multipole coefficients. The solid curves represent the best-fit
ΛCDM model to the WMAP data.

2.3.4.2 Tensor modes

For the tensor modes, equation (2.3.92) implies that the trace of the dimen-

sionless intensity matrix is of the form

Jii(0,−n̂, t0) =
∑
λ=±2

∫
d3q β(q, λ)n̂in̂jeij(q̂, λ)∆̃

(T )
T (q,−q̂ · n̂, t0) ,(2.3.167)

while

e+ i(n̂)e+ j(n̂)Jij(0,−n̂, t0) =∑
λ=±2

∫
d3q β(q, λ)e+ i(n̂)e+ j(n̂)eij(q̂, λ)∆̃

(T )
P (q,−q̂ · n̂, t0) , (2.3.168)

leading to

a
(T )
T,`m =

T0

4

∑
λ=±2

∫
d3q β(q, λ)

∫
d2n̂ Y m

`
∗(n̂)

×n̂in̂jeij(q̂, λ)∆̃
(T )
T (q,−q̂ · n̂, t0) , (2.3.169)

64



a
(T )
P,`m =

T0

2

∑
λ=±2

∫
d3q β(q, λ)

∫
d2n̂ 2Y

m
`
∗(n̂)

×e+ i(n̂)e+ j(n̂)eij(q̂, λ)∆̃
(T )
P (q,−q̂ · n̂, t0) . (2.3.170)

Using the line of sight solutions (2.3.101), (2.3.102) for ∆
(T )
T (q,−q̂ · n̂, t0) and

∆
(T )
P (q,−q̂ · n̂, t0), the integrals over n̂ can again be done analytically. The

expressions for the coefficients a
(T )
T,`m and a

(T )
P,`m can be written in the form

a
(T )
T,`m = πT0i

` 1√
2

∑
±

∫
d3q β(q,±2)∓2Y

m
`
∗(q̂)∆

(T )
T,` (q, t0) , (2.3.171)

a
(T )
P,`m = −πT0i

` 1√
2

∑
±

∫
d3q β(q,±2)∓2Y

m
`
∗(q̂)

×
(
∆

(T )
E,`(q, t0)± i∆

(T )
B,`(q, t0)

)
, (2.3.172)

where ∆
(T )
T,` (q, t0), ∆

(T )
E,`(q, t0), and ∆

(T )
B,`(q, t0) are given by

∆
(T )
T,` (q, t0) =

√
(`+ 2)!

(`− 2)!

t0∫
t1

dt exp

[
−
∫ t0

t

ωc(t
′)dt′

]

×
(
2Ḋq(t)− ωc(t)Ψ(q, t)

) j`(qr(t))
q2r2(t)

, (2.3.173)

∆
(T )
E,`(q, t0) = −

t0∫
t1

dt P (t)Ψ(q, t)

×
(

12 + 8ρ
∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

)
j`(ρ)

ρ2

∣∣∣∣
ρ=qr(t)

, (2.3.174)

∆
(T )
B,`(q, t0) =

t0∫
t1

dt P (t)Ψ(q, t)

(
8ρ+ 2ρ2 ∂

∂ρ

)
j`(ρ)

ρ2

∣∣∣∣
ρ=qr(t)

. (2.3.175)

With the reality property for the stochastic parameter β(q, λ)∗ = β(−q, λ) and

the property of the tensor spherical harmonics under space inversion λY
m
` (q̂) =
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(−1)`λY
−m ∗
` (−q̂), one finds

a
(T )
E,`m = πT0i

` 1√
2

∑
±

∫
d3q β(q,±2)∓2Y

m
`
∗(q̂)∆

(T )
E,`(q, t0) , (2.3.176)

a
(T )
B,`m = πT0i

` 1√
2

∑
±

∫
d3q β(q,±2)∓2Y

m
`
∗(q̂)∆

(T )
B,`(q, t0)λ/2 . (2.3.177)

The contributions of the tensor modes to the multipole coefficients can then

be calculated using (2.3.133)

C
(T )
TT,` = π2T 2

0

∫
q2dq

∣∣∣∆(T )
T,` (q, t0)

∣∣∣2 , (2.3.178)

C
(T )
TE,` = π2T 2

0

∫
q2dq ∆

(T )
T,` (q, t0)∆

(T )
E,`(q, t0) , (2.3.179)

C
(T )
EE,` = π2T 2

0

∫
q2dq

∣∣∣∆(T )
E,`(q, t0)

∣∣∣2 , (2.3.180)

C
(T )
BB,` = π2T 2

0

∫
q2dq

∣∣∣∆(T )
B,`(q, t0)

∣∣∣2 . (2.3.181)

Notice that the multipole coefficients C
(T )
EB,` and C

(T )
TB,` vanish because the con-

tributions of positive and negative helicity gravitons are equal and opposite

and cancel in the sum. In a parity violating theory, the power in positive and

negative helicity modes may be different, so that a cancellation will no longer

occur and these coefficients will generically be non-zero. There is no indication

that the probability distribution obeyed by the stochastic parameters β(q, λ)

violates parity at this point.

The source function and metric perturbation are obtained by inte-

grating the truncated Boltzmann hierarchy for photons, equations (2.3.97)

and (2.3.98), along with the equation of motion for the tensor mode (2.3.28).

For the ΛCDM model, the anisotropic stress receives contributions from pho-

tons and neutrinos. For the anisotropic stress of the photons, equation (2.3.100)

is used. To calculate the anisotropic stress due to neutrinos, one either uses
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a truncation of the Boltzmann hierarchy for the neutrinos (2.3.128) together

with the expression for the anisotropic stress (2.3.129), or formula (2.3.131).

As briefly discussed earlier, one of the solutions of this system will be constant

outside the horizon, and we will give the initial conditions for this mode for

the case where the truncated Boltzmann hierarchy is used for both photons

and neutrinos. They can be obtained by solving the system of equations deep

in the radiation dominated era and far outside the horizon. At these early

times, Thomson scattering is highly efficient and drives all temperature and

polarization multipole moments to zero, implying that these can be set to zero

during this period. Choosing the normalization such that Dq approaches the

constant Do
q in the limit of vanishing q/aH, the solution for the remaining

system of equations then takes the form

Dq(t) =

(
1− 10

15 + 4fν

q2t2

a2(t)

)
Do
q , (2.3.182)

∆
(T )
ν,0 (q, t) =

20

15 + 4fν

q2t2

a2(t)
Do
q . (2.3.183)

The remaining multipole moments for the neutrinos are higher order in q/aH,

and can be set to zero initially.

It may again be more convenient for numerical calculations to eliminate

the derivatives acting on the spherical Bessel functions in equations (2.3.173)

by integration by parts and/or work with conformal time or y = aΩM/ΩR as

independent variable.

We have now reviewed how to calculate the tensor contribution to the

multipole coefficients for an arbitrary choice of Do
q . To calculate the multipole

coefficients, we have to make an assumption about the momentum dependence

of Do
q . This can be done by specifying the quantity

∆2
D(q) = 16π

∣∣Do
q

∣∣2 q3 . (2.3.184)
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Since the scalar perturbations are observed to be nearly scale invariant, it is

natural to assume that the tensor perturbations will be as well. The following

parameterization of the primordial power spectrum for the tensor modes is

commonly used

∆2
D(q) = ∆2

D(q∗)

(
q

q∗

)nt

, (2.3.185)

where nt is referred to as the tensor spectral index and ∆D(q) is the tensor

amplitude. In this case a scale invariant spectrum corresponds to nt = 0.
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Figure 2.5: This plot shows the theoretical prediction for the tensor contribu-
tion to the multipole coefficients C

(T )
TT,`, C

(T )
TE,`, C

(T )
EE,`, and C

(T )
BB,` for the ΛCDM

model with parameters as in equations (2.0.6)-(2.0.11), as well as nt = 0 and
r = 1. Other values of r can be obtained by rescaling appropriately.

The theoretical predictions for the contributions of the tensor modes
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to the multipole coefficients for a ΛCDM model with cosmological parame-

ters given by equations (2.0.6)-(2.0.11) obtained by integrating the equations

discussed in this section numerically are shown in Figure 2.5.

Inflation predicts a that primordial gravitational waves with a nearly

scale invariant spectrum should have been produced and we will review the

calculation of the power spectrum for this case in subsection 2.4.3. The de-

tection of these primordial gravitational waves through the observation of a

B-mode signal in the CMB is sometimes referred to as the smoking gun for

inflation.

2.4 Inflation and the Primordial Power Spectrum

We have so far simply made the assumption that some small perturba-

tions away from the FRW geometry are present, and worked out the predictions

for the cosmic microwave background for adiabatic, Gaussian perturbations.

It remains to be understood how these fluctuations were generated.

It was thought for some time that the perturbations we observe might

have been seeded by defects such as cosmic strings or textures, but we now

know experimentally that this cannot be the dominant mechanism. The most

promising idea at present is that the fluctuations that lead to the structures

we see around us arose as quantum fluctuations during a phase of exponential

expansion of the universe called inflation.18 The spectrum of perturbations

from inflation were first calculated by Mukhanov and Chibisov for Starobin-

sky’s model [90], [91] and independently by Hawking [92], Guth and Pi [93],

18It is hard to put into words how violent this expansion must have been. The universe
is thought to have expanded in size by a factor of 1026 in some 10−34 seconds.
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Steinhardt, and Starobinsky [94], Bardeen and Turner [95], as well as Fischler,

Ratra and Susskind [96]. As we will see, the predictions made by inflation

are in remarkable agreement with experiment. This agreement certainly is the

most convincing evidence that such a phase may indeed have occurred, but it

should be noted that the existence of such a phase had not been postulated to

fit the data but rather as a solution to three problems with the standard Big

Bang theory. These problems are

• The monopole problem: There are some indications from the running

of the gauge couplings as well as the observed particle content that the

SU(3)c×SU(2)L×U(1)Y gauge group of the standard model of particle

physics might be part of some larger gauge group. When this larger,

grand unified gauge group gets broken to the standard model gauge

group, one generically expects about one monopole per causal region

at the time to be generated. No monopoles or other defects have been

observed. This is known as the monopole problem.

• The flatness problem: The universe is now known to be spatially flat

to within about one per cent. For the universe to be so close to being

spatially flat today, it must have been spatially flat at early times to

extremely high precision. This is known as the flatness problem.

• The horizon problem: The cosmic microwave radiation has been observed

to have the same temperature in all directions to about one part in 105.

In a universe containing only matter and radiation, it is impossible for

regions we see in different parts of the sky to have been in causal contact,

and it is impossible for these different regions to have thermalized. This

is known as the horizon problem.
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It was first pointed out by Guth [97] that inflating the universe by about

a factor 1030 = e69, or 69 e-folds, can solve the horizon as well as the flatness

problem. As already pointed out by Guth in his original paper, the model

suffered from a serious flaw called the graceful exit problem. The universe was

supposed to inflate while a scalar field was stuck in a false vacuum. To end

inflation, the scalar field had to tunnel to the true vacuum. For any period of

inflation long enough to solve these problems, this would lead to the forma-

tion of bubbles that would not coalesce, leaving the universe in an extremely

inhomogeneous state. This problem was solved independently by Linde [98]

as well as Albrecht and Steinhardt [99] and the model had become viable. It

should also be mentioned that an inflating universe without a graceful exit

problem had already been studied earlier by Starobinsky [100]. His model was

technically somewhat more involved and he had a very different motivation

from Guth’s that did not manage to get people’s attention at the time.

After some historic remarks, some cautionary ones may be in order

before discussing the physics of inflation. It may be that there simply is no

grand unified gauge group that needs to be broken down to the standard model

gauge group and neither need other gauge groups exist that get broken and

leave relics behind. Even if such a grand unified group exists, the universe

may never have been hot enough to undergo the phase transition that would

leave monopoles behind. While we do have good evidence that the universe

was once very dense and hot, this evidence comes from the existence of the

cosmic microwave background as well as the success of nucleosynthesis. Both

of them probe energy scales many orders of magnitudes lower than the energy

scales associated with grand unified theories.

It is often stated that a flat FRW universe is unstable. As the absence
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of instabilities in our review of perturbations around a flat FRW universe

demonstrates, this statement is incorrect, and an FRW universe that is flat

will remain so at all times. It might thus be that the universe is observed

to be nearly flat today simply because it is flat rather than because some

mechanism drove a spatially curved universe to a solution that is flat to a very

good approximation, but one might then, of course, ask what was responsible

for the universe to be exactly flat in the first place.

Finally, it should be mentioned that it is not completely understood

whether it is correct to assert that inflation solves the horizon problem. Sev-

eral studies seem to indicate that the universe is required to be homogeneous

over a few times the horizon size to successfully enter an extended period of

inflation [101], [102], [103], [104], [105], [106], [107], [108]. Even though this

is several orders of magnitude better than the requirement that the universe

be homogeneous over 105 causal regions as would be needed in the absence of

inflation, acausal physics would still be required if these conclusions hold up,

and a form of the horizon problem would persist. There is, however, also a

numerical study that comes to the conclusion that it may be possible to have

successful inflation despite significant inhomogeneities [109]. It seems more

detailed numerical studies are in order to settle this. To end this paragraph

on a positive note, one might mention, that inflation would explain why the

universe we see is so large, and so close to being homogeneous and isotropic

as well as several other puzzles [110].

Let us now give a very brief review of the physics of inflation starting

from the action we will be working with for the rest of the section. It is that

of a single scalar field minimally coupled to Einstein gravity

S =
1

16πG

∫
d4x

√
−g R−

∫
d4x

√
−g

(
1

2
gµν∂µφ∂νφ+ V (φ)

)
. (2.4.1)
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Since we will need it in the next to subsections, let us mention that the stress

energy tensor for the scalar field that follows from this action is of the ideal

fluid form, i.e. Tµν = p gµν + (p + ρ)uµuν , with energy density ρ, pressure p,

and uµ given by

ρ = −1

2
gµν∂µφ∂νφ+ V (φ) , (2.4.2)

p = −1

2
gµν∂µφ∂νφ+ V (φ) , (2.4.3)

uµ = − ∂µφ√
−gρσ∂ρφ∂σφ

. (2.4.4)

At the two-derivative level the action (2.4.1) is the most general action for a

single scalar field minimally coupled to Einstein gravity, and is the simplest

system that gives rise to an inflationary cosmology. Many modifications and

extensions are possible, such as allowing for a non-minimal coupling, consider-

ing modifications of gravity, non-canonical kinetic terms, or allowing multiple

scalar fields to participate in the inflationary dynamics. Since data is currently

consistent with the most naive single field model, we will focus on this simplest

case and refer the interested reader to the reviews [111], [110], as well as [38]

for more sophisticated possibilities as well as a more detailed treatment of the

single field case.

Conditions under which we know that the universe will enter an infla-

tionary phase are that the scalar field can be treated as some time dependent

background φ(t) plus small spacetime dependent perturbations δφ(t,x), i.e.

φ(t,x) = φ(t) + δφ(t,x) , (2.4.5)

that the geometry be close to an FRW geometry, and that the background

scalar field take a value so that its energy density is dominated by the po-

tential energy. In this case, as long as the potential energy in the scalar field
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is positive, it will have an effect similar to a cosmological constant and lead

to a nearly exponential expansion. We will briefly summarize the background

dynamics in subsection 2.4.1 and then turn to the calculation of the spec-

trum of scalar and tensor fluctuations generated in an inflationary universe in

subsections 2.4.2 and 2.4.3.

2.4.1 The Background Evolution

During inflation, the flat FRW background is an attractor, and the

spatial curvature rapidly becomes negligible. We will thus work with a flat

FRW metric with corresponding line element

ds2 = −dt2 + a2(t)dx2 (2.4.6)

The Friedmann equation and the equation of motion for the scalar field for

the background fields then take the form

ȧ2

a2
=

8πG

3

(
1

2
φ̇

2

+ V (φ)

)
, (2.4.7)

and

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0 . (2.4.8)

For the universe to undergo a period of nearly exponential expansion, the

Hubble expansion rate

H =
ȧ

a
, (2.4.9)

should be nearly constant. This will be the case provided that the fractional

rate of change of the expansion rate is small compared to the rate of expansion

of the universe, i.e. as long as

ε ≡ − Ḣ

H2
� 1 . (2.4.10)
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Using the relation

Ḣ = −4πGφ̇
2

, (2.4.11)

which can be derived by taking the derivative of the Hubble rate (2.4.7) and

using the equation of motion for the scalar field, equation (2.4.8), it is easy to

see that this will be the case provided

φ̇
2

� V (φ) . (2.4.12)

The kinetic energy of the field should thus be negligible compared to the

potential energy, or put differently, the scalar field should be rolling slowly.

To what extent this is the case is measured by the quantity ε, explaining why

it is usually referred to as slow-roll parameter. Since an extended period of

inflation is required to address the horizon problem, we have to require that

the kinetic energy remain small for an extended period of time. To ensure this,

the fractional rate of change of the time derivative of the field should be small

compared to the rate of expansion of the universe, i.e. the absolute value of

the quantity19

δ ≡ φ̈

Hφ̇
, (2.4.13)

should satisfy |δ| � 1. This implies that the first term in the equation of

motion of the field, equation (2.4.8), is negligible compared to the second one.

If it is also negligible compared to the last term, it can be dropped from the

equation, and the dynamics of the scalar field is approximately given by

φ̇ ≈ −V
′(φ)

3H
. (2.4.14)

19We will come across this quantity again written as δ = Ḧ
2ḢH

. Using equation (2.4.11),
it is easy to see that they are identical. Another commonly used quantity is η = ε̇

εH .
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This approximation is commonly referred to as the slow-roll approximation.

Combining equations (2.4.11), (2.4.9), (2.4.7),and (2.4.14), the slow-roll pa-

rameter ε in this approximation can be written as

ε ≈ 1

16πG

(
V ′(φ)

V (φ)

)2

, (2.4.15)

while δ becomes

δ ≈ 1

16πG

(
V ′(φ)

V (φ)

)2

− 1

8πG

V ′′(φ)

V (φ)
. (2.4.16)

The conditions necessary for slow roll can thus be thought of as flatness con-

ditions on the potential requiring that the quantities

εV ≡
1

16πG

(
V ′(φ)

V (φ)

)2

, (2.4.17)

and

ηV =
1

8πG

V ′′(φ)

V (φ)
, (2.4.18)

should satisfy εV � 1 and |ηV | � 1. As long as these conditions hold and the

potential is positive, the universe will undergo a rapidly accelerated expansion.

The amount of expansion can easily be related to the motion of the field using

equations (2.4.7) and (2.4.14). One finds

a(te)

a(ti)
= exp

− φe∫
φi

dφ
8πGV (φ)

V ′(φ)

 . (2.4.19)

The potential decreases as the field moves from its initial value φi to its final

value φe, implying that the integrand is positive and the universe grows by

some number Ne of e-foldings given by

Ne ≡ ln
a(te)

a(ti)
= −

φe∫
φi

dφ
8πGV (φ)

V ′(φ)
�
√

4πG|φe − φi| , (2.4.20)
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where the inequality follows from the condition εV � 1. The universe will

thus expand by a large number of e-foldings as long as the field travels over a

distance of 1/
√

4πG =
√

2MP or larger. One should stress that this does not

mean that the classical description of gravity will break down as the energy

density in the field may well be far below the Planck scale throughout the

field’s motion. It does, however, imply that the potential needs to be flat over

large distances in field space and that the inflationary dynamics may provide

a probe of physics at very high energy scales.

At some point this period of accelerated expansion of the universe has

to come to an end and the energy stored in the scalar field must be transferred

to the standard model fields. This is referred to as reheating. Even though

this is of crucial importance for a successful model of inflation, we will skip

a discussion of reheating and now turn to the calculation of the spectrum

of fluctuations during this period. The reader is encouraged to consult the

review [112], as well as [38] and references therein for a discussion of reheating

and further details and examples for the background evolution of single field

inflation.

2.4.2 Primordial spectrum for scalar modes

After this brief review of the evolution of the background geometry in

single field inflation, we will now turn to the quantization of the perturbations

in the scalar field around such a background with the goal to extract the quan-

tity Ro
q that enters the calculation of the multipole coefficients as explained

in the last section. We will be working in the Heisenberg picture through-

out, meaning that the states will be time independent and the operators carry

all the time dependence. For the quantization of the scalar field, it will be
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convenient to work in Newtonian gauge, i.e. perform an infinitesimal diffeo-

morphism to set the metric components B and F to zero. The perturbations

of the stress energy tensor in this gauge are given by

δρ = φ̇δφ̇+ V ′(φ)δφ− 1

2
Eφ̇

2

, (2.4.21)

δp = φ̇δφ̇− V ′(φ)δφ− 1

2
Eφ̇

2

, (2.4.22)

δu = − δφ√
φ̇

2
, (2.4.23)

while πS, πVi , and πTij all vanish. As can be seen from equation (2.3.21), the

equation following from the part of the Einstein equations proportional to ∂i∂j

then implies E = −A ≡ 2Ψ. It will be convenient to use the following linear

combinations of the constraints

Ψ̇ +HΨ = 4πGφ̇δφ , (2.4.24)

and

ḢΨ− ∇2

a2
Ψ = 4πG

(
φ̈δφ− φ̇δφ̇

)
, (2.4.25)

and use the equation governing the time evolution of the scalar field pertur-

bation

δφ̈+ 3Hδφ̇− ∇2

a2
δφ+ V ′′(φ)δφ = 4Ψ̇φ̇− 2ΨV ′(φ) . (2.4.26)

Translational invariance implies that it will be useful to look for a solution of

the form

δφ(t,x) =

∫
d3q

[
δφq(t)e

iq·xα(q) + h.c.
]
, (2.4.27)

Ψ(t,x) =

∫
d3q

[
δΨq(t)e

iq·xα(q) + h.c.
]
, (2.4.28)
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where q is again the comoving momentum of the mode. The functions δφq(t)

and Ψq(t) then satisfy the above equations with ∇2 replaced by −q2.

During inflation, the scale factor a grows very rapidly while the Hub-

ble rate H is nearly constant. This implies that for any value of comoving

momentum the terms proportional to q2/a2 will dominate as we go back far

enough in time because the scale factor becomes small. At these early times

the modes oscillated so rapidly that they seized to feel the effects of the ex-

panding universe and behaved essentially like in Minkowski space. The metric

perturbation Ψ becomes negligible in this limit and so does the friction term.

One can then look for a WKB solution to this system of equation. Normalizing

the solution such that α(q) and α∗(q) satisfy canonical commutation relations,

the positive frequency solution at early times takes the form

δφq(t) =
1

(2π)3/2a(t)
√

2q
exp

−iq t∫
t∗

dt′

a(t′)

 , (2.4.29)

Ψq(t) =
4πiGφ̇

(2π)3/2q
√

2q
exp

−iq t∫
t∗

dt′

a(t′)

 . (2.4.30)

The subsequent evolution of the field and the metric perturbation can then

be obtained by integrating the above system of equations with these initial

conditions. What remains is to choose the state the system should be in.

The standard assumption is that the universe at these early times is in what

one might call the in-vacuum, in this context usually called the Bunch-Davies

vacuum, defined by the requirement that it be annihilated by α(q), i.e.

α(q) |0〉 = 0 . (2.4.31)

No completely convincing argument for why this should be the correct state

has been given so far, and other possibilities have been considered such as so
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called truncated α-vacua or thermal states. The study of modifications of this

state is sometimes referred to collectively as trans-Planckian physics. We will

see a well motivated modification in Chapter 5; a spectrum derived using the

Bunch-Davies vacuum in a background with a modulated potential turns out

to be indistinguishable from the spectrum for an excited state in a universe

without these modulations.

The natural observables in this system are correlation functions of the

fluctuations at different points in spacetime evaluated in this state of the form

〈0| δφ(t,x)δφ(t,y) |0〉 , (2.4.32)

〈0|Ψ(t,x)δφ(t,y) |0〉 , (2.4.33)

and so on. We are currently working at the linear level so that the theory

is Gaussian and all higher n-point functions either vanish for n odd, or are

given in terms of sums of products of these two-point functions if n is even.

To make contact with our previous discussions where averages corresponded

to ensemble averages one important ingredient is missing. Decoherence must

set in and turn the quantum state into one particular classical state of an

ensemble whose ensemble averages are the same as these quantum averages.

How this occurs is not understood in detail.

Let us now proceed on our way towards a calculation of the quantity

R(t,x) = −Ψ(t,x) − Hδφ(t,x)/φ̇. In analogy with the expansions (2.4.27),

(2.4.28) we will also expand R(t,x) as

R(t,x) =

∫
d3q

[
Rq(t)e

iq·xα(q) + h.c.
]
. (2.4.34)

We are interested in the value Rq(t) approaches outside the horizon, i.e. when

the terms proportional to q2/a2 become negligible. One could evolve the equa-

tions for Ψ and δφ and evaluate R in this limit, but it turns out to be more
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convenient to derive an equation for R directly. This equation is known as the

Mukhanov-Sasaki equation [113], [114]. To derive it, it is convenient to choose

a gauge such that δφ = 0 and B = 0. Using

H2 =
8πG

3

(
1

2
φ̇

2

+ V (φ)

)
, (2.4.35)

Ḣ = −4πGφ̇
2

, (2.4.36)

the perturbations in the stress energy tensor in this gauge can be brought into

the form

δT00 =
1

8πG
E
(
Ḣ + 3H2

)
, (2.4.37)

δT0i =
1

8πG
a∂iF

(
−2Ḣ − 3H2

)
, (2.4.38)

δTij =
1

8πG
a2δij

(
−4RḢ − 6RH2 + EḢ

)
. (2.4.39)

It is convenient to use the Hamiltonian and momentum constraint as well as

the equation following from the part of the ij equations proportional to ∂i∂j.

These take the form

ḢE + 3H2E − 6HṘ+ 2
∇2

a2
R+ 2H

∇2

a2
aF = 0 , (2.4.40)

HE − 2Ṙ = 0 , (2.4.41)

1

2
E +R+ 2aHF + aḞ = 0 . (2.4.42)

The last two equations can be used to eliminate E and F from the first one,

which then leads to the equation governing the time evolution of the Fourier

components of R. It can be brought into the form

d2Rq

dτ 2
+

2

z

dz

dτ

dRq

dτ
+ q2Rq = 0 , (2.4.43)

where τ =
∫ t
t∗
dt′ 1/a(t) is the conformal time and

z =
1

H

dφ

dτ
. (2.4.44)
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Alternatively, it can be written as

d2Rq

dτ 2
+ 2aH (1 + δ + ε)

dRq

dτ
+ q2Rq = 0 , (2.4.45)

where ε = −Ḣ/H2 is the slow roll parameter defined in the last subsection

and we will now use δ in the form

δ =
Ḧ

2ḢH
. (2.4.46)

It is immediately clear from the Mukhanov-Sasaki equation (2.4.45) that there

will be a solution that approaches a constant far outside the horizon, i.e. when

term proportional to q2 can be neglected.

What remains is to give the initial conditions for Rq(τ). These are

determined by equations (2.4.29) and (2.4.30) together with

Rq = −Ψq −Hδφq/φ̇ , (2.4.47)

and are given by

Rq(τ) = − 1

(2π)3/2
√

2qz(τ)
e−iqτ . (2.4.48)

So far this has been exact, and one could simply integrate this numeri-

cally in a straightforward way.20 This would however limit us to a case by case

study. To understand the generic prediction for the momentum dependence of

Rq made by inflation, it is helpful to make further progress analytically. One

possibility is to consider specific potentials such as the exponential potential

for which the equation can be solved exactly. We will not pursue this and refer

the interested reader to [38]. Another option is to solve the equation in the

20To this end it is convenient to split the equation up into two, one for the real part of
Rq and one for the imaginary part.
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slow-roll approximation, i.e. for ε� 1, δ � 1 as well as δ̇ � 1.21 We will turn

to this now, and we will find that in this approximation single field inflation

with a canonical kinetic term minimally coupled to gravity predicts just the

nearly scale-invariant spectrum needed to explain experiments.

To obtain the Mukhanov-Sasaki equation in the slow-roll approximation

note that

daH

dτ
= a2H2(1− ε) , (2.4.49)

To leading order in the slow-roll parameter ε one thus has aH = −(1 + ε)/τ .

Together with

1

z

dz

dτ
= aH (1 + δ + ε) ≈ −(1 + δ + 2ε)

τ
, (2.4.50)

the equation (2.4.45) in the slow-roll approximation can then be brought into

the form

d2Rq

dτ 2
+

2 (1 + δ + 2ε)

τ

dRq

dτ
+ q2Rq = 0 . (2.4.51)

It can easily be checked that the solution to this equation with initial conditions

satisfying (2.4.45) to leading order in slow roll parameters takes the form

Rq(τ) = −(−qτ)−ν+1/2

4π
√

2qz(τ)
eiπν/2+iπ/4(−qτ)νH(1)

ν (−qτ) , (2.4.52)

with ν = 3
2

+ 2ε + δ, and H
(1)
ν denotes the Hankel function of the first kind.

The solution is written in this somewhat peculiar way because z(τ) ∝ τ−ν+1/2,

as can be seen from equation (2.4.50), so that the fraction is in fact a constant.

Using the limiting behavior of the Hankel functions for x�
√
ν + 1

H(1)
ν (x) → −iΓ(ν)2νx−ν/π , (2.4.53)

21The time derivative of ε is automatically higher order in slow roll parameters. A case
in which the time derivative of δ plays an interesting role will appear in Chapter 5.
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we find that Ro
q in the slow-roll approximation takes the form

Ro
q = i

(−τ)−ν+1/2Γ(ν)

2
√
π(2π)3/2z(τ)

eiπν/2+iπ/42ν
1

qν
. (2.4.54)

implying in particular Ro
q ∝ q−ν . In terms of the somewhat more conventional

quantity ∆2
R(q) = 4π

∣∣Ro
q

∣∣2 q3 this implies22

∆2
R(q) = ∆2

R(q∗)

(
q

q∗

)−4ε−2δ

. (2.4.55)

Comparison with equation (2.3.166) then shows that single field slow-roll in-

flation predicts a nearly scale invariant spectrum with scalar spectral index

ns = 1− 4ε− 2δ . (2.4.56)

At times it will also be useful to have an expression for the scalar spectral

index in terms of the slow roll parameters εV and ηV rather than ε and δ. In

the slow-roll approximation, δ = εV − ηV , and one finds

ns = 1− 6εV + 2ηV . (2.4.57)

What remains is to give a nice form for the amplitude of the fluctuations. To

do this one recalls that Ro
q is a constant, and can thus be evaluated at any

time that is convenient. It will be convenient to evaluate it at the time at

which a given mode exits the horizon defined by

q

a(tq)
= H(tq) . (2.4.58)

22Notice that the factors are chosen to give the variance of R a simple form. One has〈
R(t∗, 0)2

〉
=
∫

d ln q ∆2
R(q), where t∗ is chosen so that the modes of interest are outside

the horizon and Rq(t∗) = Ro
q.

84



Using z(τ) = ±a(τ)
√
ε(τ)/

√
4πG, and setting ν = 3/2 in the argument of the

Γ-function, the exponent of 2, and the phase, one finds

Ro
q = ∓i

√
8πGH(tq)

2(2π)3/2
√
ε(tq)

1

q3/2
(2.4.59)

so that

∆2
R(q) =

1

8π2

8πGH2(tq)

ε(tq)
, (2.4.60)

or equivalently

∆2
R(q) = ∆2

R(q∗)

(
q

q∗

)ns−1

, (2.4.61)

with

∆2
R(q∗) =

1

8π2

8πGH2(tq∗)

ε(tq∗)
and ns = 1− 4ε(tq∗)− 2δ(tq∗) . (2.4.62)

We have now calculated the spectrum of primordial scalar perturbations in

slow roll inflation. As we have seen, the modes become constant once outside

the horizon so that the power spectrum stays the same during the remaining

period of inflation. However, inflation ends at some point, and physics that

we do not understand, such as reheating, the electroweak phase transition, the

QCD phase transition, etc., occurs between the period when the modes we

observe in the CMB exit the horizon, and the period we begin our integration

of the Boltzmann hierarchy. One might thus worry that the spectrum we

calculated will get modified during this intervening period. However, it can be

shown that whatever the contents of the universe are, this adiabatic mode is

conserved outside the horizon [64]. This remarkable property thus gives us a

chance to learn about the universe at a very early time through the study of the

cosmic microwave background. The adiabatic mode still exists for multifield
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inflation, but in that case it will generically not be the only one that is excited

so that the quantity Rq will change outside the horizon and we cannot hope to

learn much about the details of inflation in that case. How much can still be

learned has not been conclusively answered and requires more careful study.

The results for single field inflation to leading order in slow roll parameters

were first given by [115]. For an extension of these results to higher orders in

the slow-roll parameters we refer the reader to [116].

2.4.3 Primordial spectrum for tensor modes

We can now turn to the the calculation of the spectrum of gravitational

waves generated during inflation. To this end, we will have to quantize the

transverse, traceless perturbation of the metric in the same way we quantized

the scalar field in the last subsection. After using the equations of motion for

the background, the action for these modes takes the form

S =
1

16πG

∫
dtd3x a3(t)

[
1

4
ḊijḊij +

1

4
Dij∇2Dij

]
, (2.4.63)

where repeated indices are summed over. The equation governing the time

evolution of the tensor perturbations is then simply

D̈ij + 3
ȧ

a
Ḋij −

∇2

a2
Dij = 0 . (2.4.64)

It will again be helpful to look for a solution of the form

Dij(t,x) =
∑
λ

∫
d3q

[
β(q, λ) eij(q̂, λ)Dq(t)e

iq·x + h.c.
]
. (2.4.65)

Equation (2.4.64) then becomes an ordinary differential equation governing

the time evolution of the mode function Dq(t). Using conformal time as inde-

pendent variable, it takes the form

d2Dq

dτ 2
+ 2aH

dDq

dτ
+ q2Dq = 0 . (2.4.66)
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This is the analogue of the Mukhanov-Sasaki equation, and it is again clear

that it will have a solution that approaches a constant outside the horizon.

Since the scale factor grows rapidly during inflation, if we go back in time far

enough any mode will eventually be far inside the horizon, and the friction

term will become negligible. In this limit, we can look for a WKB solution.

To determine the normalization of the mode such that β(q, λ) and β∗(q, λ)

satisfy canonical commutation relations

[β(q, λ), β∗(q′, λ′)] = δλλ′δ(q− q′) , (2.4.67)

it is useful to notice that the action that follows for the two helicity modes of

the graviton from (2.4.63), using eij(q̂, λ)e∗ij(q̂, λ
′) = 2δλλ′ , is the same as that

for the Fourier components of two free, massless, minimally coupled scalar

fields. One finds that for the modes to be canonically normalized, we should

rescale Dij by a factor
√

16πG. The initial conditions for Dq should thus be the

same as those of δφq given in equation (2.4.29) multiplied by a factor
√

16πG,

i.e.

Dq(τ) =

√
16πG

(2π)3/2
√

2qa
e−iqτ . (2.4.68)

Just like for the scalar modes, we will assume that the universe is in a state

satisfying

β(q, λ) |0〉 = 0 . (2.4.69)

The equation (2.4.66) with initial conditions (2.4.68) could then simply be

solved numerically for any given model, but it will again be interesting to look

for an analytic solution in the slow-roll approximation. Using aH ≈ −(1+ε)/τ ,

the equation (2.4.66) becomes

d2Dq

dτ 2
+ 2

1 + ε

τ

dDq

dτ
+ q2Dq = 0 . (2.4.70)
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To leading order in the slow-roll parameter ε, the solution to this equation

with initial conditions as in equation (2.4.68) is given by

Dq(τ) =

√
16πG(−qτ)−µ+1/2

4π
√

2qa
eiπµ/2+iπ/4(−qτ)µH(1)

µ (−qτ) , (2.4.71)

where µ ≡ 3
2

+ ε, and the expression is again written such that the fraction

is constant in time.23 Using the asymptotic behavior for H
(1)
µ (x) in the limit

x�
√
µ+ 1 we obtain the value of Do

q

Do
q = −i

√
16πG(−τ)−µ+1/2Γ(µ)

2
√
π(2π)3/2a(τ)

eiπµ/2+iπ/42µ
1

qµ
, (2.4.72)

implying that Do
q ∝ q−µ. In terms of the quantity ∆2

D(q) = 16π
∣∣Do

q

∣∣2 q3 this

implies24

∆2
D(q) = ∆2

D(q∗)

(
q

q∗

)−2ε

, (2.4.73)

so that single field slow-roll inflation predicts a nearly scale invariant spectrum

of gravitational waves with tensor spectral index

nt = −2ε . (2.4.74)

Notice that the slow roll parameter ε is positive definite as long as the null

energy condition holds. An observation of what is sometimes referred to as

a blue spectrum, nt > 0, would thus require a violation of the null energy

condition and in principle rule out single field slow-roll inflation. In practice,

23It follows from 1
a

da
dτ = aH ≈ −µ−1/2

τ that a ∝ τ−µ+ 1
2 .

24Notice the factor of 4 relative to the scalar case. In the tensor case, the numerical factors
are chosen so that 〈Dij(t∗, 0)Dij(t∗, 0)〉 =

∫
d ln q ∆2

D(q), where t∗ is a chosen so that the
modes of interest are outside the horizon and Dq(t∗) = Do

q . The factor 4 thus arises as a
factor 2 from eij(q̂, λ)e∗ij(q̂, λ

′) = 2δλλ′ , and another factor 2 for the 2 helicity modes of the
graviton.
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it seems unlikely that this parameter will be measured sufficiently well to do

so with confidence.

The amplitude can again be written nicely if we evaluate the expression

at the time of horizon crossing.

Do
q = i

√
8πGH(tq)

(2π)3/2

1

q3/2
, (2.4.75)

so that

∆2
D(q) =

2

π2
8πGH2(tq) , (2.4.76)

or equivalently

∆2
D(q) = ∆2

D(q∗)

(
q

q∗

)nt

, (2.4.77)

with

∆2
D(q∗) =

2

π2
8πGH2(tq∗) and nt = −2ε(tq∗) . (2.4.78)

Notice that the detection of a tensor signal and the measurement of its ampli-

tude would directly tell us about the Hubble rate during inflation, or equiv-

alently, about the energy scale of inflation. An important quantity in this

context is the tensor to scalar ratio r. It is simply defined as

r(q) ≡ ∆2
D(q)

∆2
R(q)

= 16ε(tq) . (2.4.79)

Strictly speaking this ratio has a momentum dependence, but this dependence

is expected to be rather mild, and it is quite common to ignore this and simply

evaluate it at the pivot scale.

One can also use this expression to eliminate ε from the expression for

the tensor spectral index. This leads to the slow-roll consistency condition

nt = −r
8
, (2.4.80)
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that directly relates two observable quantities and could in principle be used

to test single field slow-roll inflation. Once again, in practice it seems unlikely

that we will know these quantities well enough to use this as a conclusive test.

For a mission like CMBPol, ∆nt = 0.072 for a tensor-to-scalar ratio of r =

0.01 in the absence of foregrounds and substantially worse in the presence of

foregrounds. [117]. In theories with non-standard kinetic terms this expression

gets modified by the speed of sound.

As was first noticed in [118] and studied more carefully in [119], [120],

the tensor-to-scalar contains information about the distance traveled by the

inflaton field during inflation. It so happens, that if a tensor signal is observ-

able, the inflaton must have traversed a distance of order the Planck mass or

larger. A naive way to see this is to treat εV = (V ′/V )2/16πG as roughly

constant in equation (2.4.20). The number of e-folds of inflation N is then

related to the distance traveled by the field ∆φ as

N = −
φe∫
φi

dφ
8πGV (φ)

V ′(φ)
≈
√

4πG∆φ
√
εV

, (2.4.81)

implying

∆φ = N
(r

8

)1/2

MP . (2.4.82)

The number of e-folds required in a given model depend on the details of

reheating. Using a conservative bound of N & 30, this becomes25

∆φ & 1.06
( r

0.01

)1/2

MP . (2.4.83)

25Strictly speaking we only know that the field was slowly rolling during the period when
the modes we observe in the cosmic microwave background exited the horizon. At the very
least this corresponds to ∆N ≈ 5, which gives a result that is smaller by a factor of

√
6, but

does not change the qualitative conclusion.
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A somewhat more careful analysis in [119] comes to the conclusion that models

with a scalar spectral index in the range 0.92 < ns < 1.06 in fact satisfy the

stronger bound26

∆φ ≈ 10
( r

0.01

)1/4

MP . (2.4.84)

This implies that the scalar field should have traversed a distance larger than

MP for a tensor-to-scalar ratio r > 0.001. This happens to be just what might

be observable by a mission like CMBPol [117]. Furthermore, equation (2.4.62)

implies

Vinf =
3π2

2
∆2
R(q∗)rM

4
P . (2.4.85)

Together with the value of the scalar amplitude derived from the five-year

WMAP data, (2.0.10), this yields

V
1/4
inf = 1.06× 1016GeV

( r

0.01

)1/4

, (2.4.86)

so that a measurement of the tensor amplitude, or equivalently the tensor-to-

scalar ratio would immediately tell us about the energy scale of inflation.

The best bounds on the tensor-to-scalar ratio are currently derived from

a combination of the WMAP data together with baryon acoustic oscillations

observed in galaxy surveys and supernova data. The strongest constraint in

this case arises from the tensor contribution to the temperature multipole co-

efficients at low multipole coefficients. The bound on the tensor-to-scalar ratio

derived from the five-year WMAP data alone is r < 0.43 at 95% confidence

level. The bound from WMAP as well as baryon acoustic oscillations and

supernova data is r < 0.22 at 95% confidence level. The results of [78] are

shown in Figure (2.6).

26Reference [119] give their result in terms of the Planck mass. We use the reduced Planck
mass throughout and converted their bound accordingly.
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Figure 2.6: The left plot shows the one-dimensional marginalized distribution
of r, showing the limit derived from WMAP alone, r < 0.43 (95% CL), and
WMAP combined with baryon acoustic oscillations and supernova data, r <
0.22 (95% CL). The plot in the middle shows the two-dimensional marginalized
distribution (68% and 95% CL), showing a strong degeneracy between ns and
r. The right plot shows a degeneracy between ns and Ωmh

2. In all panels
the results derived from WMAP alone are shown in blue, those for WMAP
combined with baryon acoustic oscillations and supernovae in red.

The degeneracy between r and ns can be understood from the fact

that the main constraint on the tensor-to-scalar ratio comes from the low-`

TT spectrum, where the tensor signal has a plateau (see e.g. Figure 2.5).

Raising ns lowers the power in the scalar spectrum at low ` thus allowing

for larger r. On the other hand raising ns becomes possible only because of a

degeneracy between Ωmh
2 and ns so that adding the data from baryon acoustic

oscillations and supernovae, which break the degeneracy between Ωmh
2 and

ns, significantly strengthens the bound. The degeneracy will disappear as soon

as the main constraint comes from the polarization data. A first competitive

result from the B-mode alone is r < 0.73 at 95% confidence level from the

BICEP experiment [121].

Already at the present stage these results put meaningful constraints

on inflationary models. Assuming that the potential is a power law V ∝ φp,
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the tensor-to-scalar ratio and the scalar spectral index are given by

r =
4p

N
and ns = 1− p+ 2

2N
. (2.4.87)

In particular, for the once popular λφ4 potential this implies r = 0.32 and

ns = 0.94 if we use N = 50, or r = 0.27 and ns = 0.95 for N = 60. Both

of these are far from the 95% confidence level contour in Figure 2.6, and the

model is ruled out at more than 99% confidence level.

Depending on foregrounds, a mission like CMBPol would be sensitive

roughly to r > 0.001, and could conclusively distinguish between small field

models of inflation with ∆φ � MP and large field models with ∆φ & MP .

While these experiments may not provide a huge amount of detail even in the

case of a detection of a tensor signal, they would still provide some information

about physics at these high energy scales that seem far out of reach for any

other experiment.
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Chapter 3

Tensor Microwave Background Fluctuations

for Large Multipole Order

We now present approximate formulas for the tensor BB, EE, TT, and

TE multipole coefficients for large multipole order `. The error in using the

approximate formula for the BB multipole coefficients is less than cosmic vari-

ance for ` > 10. These approximate formulas make various qualitative prop-

erties of the calculated multipole coefficients transparent: specifically, they

show that, whatever values are chosen for cosmological parameters, the tensor

EE multipole coefficients will always be larger than the BB coefficients for

all ` > 15, and that these coefficients will approach each other for ` � 100.

These approximations also make clear how these multipole coefficients depend

on cosmological parameters. These approximations were the subject of [122].

As explained in subsection 2.4.3, tensor fluctuations are a prime target

for future observations of the cosmic microwave background, because if de-

tected they can provide a conclusive verification of the theory of inflation and

a unique tool for exploring the details of this theory. The contribution of these

fluctuations to the correlations of temperature and polarization correlations is

well known and was reviewed in subsection 2.3.4.2. Their contributions to the
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multipole coefficients are given by1

C
(T )
EE,` = π2T 2

0

∫ ∞

0

q2 dq (3.0.1)

×

∣∣∣∣∣
∫ t0

t1

dt P (t) Ψ(q, t)

{[
12 + 8ρ

∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

]
j`(ρ)

ρ2

}
ρ=q r(t)

∣∣∣∣∣
2

,

C
(T )
BB,` = π2T 2

0

∫ ∞

0

q2 dq (3.0.2)

×

∣∣∣∣∣
∫ t0

t1

dt P (t) Ψ(q, t)

{[
8ρ+ 2ρ2 ∂

∂ρ

]
j`(ρ)

ρ2

}
ρ=q r(t)

∣∣∣∣∣
2

,

C
(T )
TE,` = −2π2T 2

0

√
(`+ 2)!

(`− 2)!

∫ ∞

0

q2 dq (3.0.3)

×
∫ t0

t1

dt P (t)Ψ(q, t)

{[
12 + 8ρ

∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

]
j`(ρ)

ρ2

}
ρ=q r(t)

×
∫ t0

t1

dt′ d(q, t′)

j`
(
qr(t′)

)
q2r2(t′)

 ,

C
(T )
TT,` =

4π2(`+ 2)!T 2
0

(`− 2)!

∫ ∞

0

q2 dq

∣∣∣∣∣∣
∫ t0

t1

dt d(q, t)
j`

(
qr(t)

)
q2r2(t)

∣∣∣∣∣∣
2

. (3.0.4)

Once again: T0 is the microwave background temperature at the present time

t0; P (t) = ωc(t) exp[−
∫ t0
t
ωc(t

′) dt′] is the probability distribution of last scat-

tering, with ωc(t) the photon collision frequency; t1 is any time taken early

enough before recombination so that any photon present at t1 would have

collided many times before the present; r(t) =
∫ t0
t
dt′/a(t′) is the co-moving

radial coordinate of a source from which light emitted at time t would reach

1These formulas are equivalent to those of Zaldarriaga and Seljak [57] (See also [82].
An equivalent analysis was given in [123],[56]). Their gravitational wave amplitude h and
power spectral function Ph(k) are related to our gravitational wave amplitude Dq(t) by
h
√

Ph = D/2. In consequence, their function Ψ
√

Ph is 1/4 times our source function Ψ.
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us at the origin at the present time t0; and Ψ(q, t) is the “source function,”

which is customarily calculated from a hierarchy of equations for partial-wave

amplitudes, equations (2.3.97) and (2.3.98) derived originally in [46], [124].

The quantity d(q, t) is given by

d(q, t) ≡ exp

[
−
∫ t0

t

dt′ ωc(t
′)

] (
Ḋq(t)−

1

2
ωc(t)Ψ(q, t)

)
, (3.0.5)

whereDq(t) is the gravitational wave amplitude defined through equations (2.3.12)

and (2.3.44).

Aside from the treatment of the tensor mode as a first-order perturba-

tion, and the assumption of purely elastic Thomson scattering, Eqs. (3.0.1)–

(3.0.4) may be regarded as exact. They serve as the basis of computer pro-

grams such as CMBfast and CAMB, that are used to compare observations of

microwave background polarization and temperature fluctuations with models

that predict values for the gravitational wave amplitude Dq(t). But they are

not very transparent.

For one thing, as shown in Figure 3.1, computer calculations using

Eqs. (3.0.1) and (3.0.2) yield results for C
(T )
EE,` and C

(T )
BB,` that are of the same

order of magnitude, and nearly equal for ` < 100, while C
(T )
EE,` > C

(T )
BB,` for all

` > 15.

Of course computer calculations can only show this for specific choices

of cosmological parameters.2 It would be impossible to conclude just by in-

spection of Eqs. (3.0.1) and (3.0.2) that these are general properties of the

multipole coefficients, independent of the choice of cosmological parameters.

2We will use the parameters derived from the five-year WMAP data alone, i.e. those of
equations (2.0.6)-(2.0.11), except that reionization is ignored and τ set to zero. The tensor
to scalar ratio is taken to be r = 1, and the tensor spectral index is set to nt = 0.
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Figure 3.1: Comparison of C
(T )
EE,` and C

(T )
BB,`, in (µK)2.

In this paper we present successive approximations that make these properties

apparent, and that, at the cost of only a small additional loss in accuracy, also

clarify how the multipole coefficients depend on various cosmological parame-

ters.

3.1 The Large-` Approximation

We can approximate Eqs. (3.0.1)–(3.0.4) by much simpler and more

transparent formulas, by using an asymptotic formula [125] for the spherical
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Bessel functions 3:

j`(ρ) →

 cos b cos

[
ν(tan b−b)−π/4

]
ν
√

sin b
ρ > ν

0 ρ < ν

, (3.1.1)

where ν ≡ ` + 1/2, and cos b ≡ ν/ρ, with 0 ≤ b ≤ π/2. This approximation

is valid for |ν2 − ρ2| � ν4/3. Hence for ` � 1, this formula can be used over

most of the ranges of integration in Eqs. (3.0.1)–(3.0.4). Furthermore, for

ρ > ν � 1 the phase ν(tan b − b) in Eq. (3.1.1) is a very rapidly increasing

function of ρ, so the derivatives in Eqs. (3.0.1)–(3.0.3) can be taken to act

chiefly on this phase:[
12 + 8ρ

∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

]
j`(ρ)

ρ2
→ −j`(ρ) + j′′` (ρ) (3.1.2)

→ −(1 + sin2 b) cos b

ν
√

sin b
cos
[
ν(tan b− b)− π/4

]
[
8ρ+ 2ρ2 ∂

∂ρ

]
j`(ρ)

ρ2
→ 2j′`(ρ) (3.1.3)

→ −2
√

sin b cos b

ν
sin
[
ν(tan b− b)− π/4

]
3The same approximation is used by J. R. Pritchard and M. Kamionkowski, [126]. How-

ever, after making this approximation they make further approximations that are quite
different from ours, and that lead to a divergence in the integral over wave number, which
must be dealt with by an arbitrary cut-off. The error introduced by their approximation
is comparable to the one introduced by our last approximation given by Eqs. (3.2.2) and
(3.2.3). Another approximation that consists in averaging over the rapid oscillations in
the square of the Bessel functions leading to results similar to our last approximation was
proposed by M. Zaldarriaga and D. D. Harari, [54]. An analytic expression for the contribu-
tion of the tensor modes to the temperature multipole coefficients approximately valid for
1 � ` < 50 obtained using a similar average was given by A. A. Starobinsky, [127]
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Then Eqs. (3.0.1)–(3.0.4) become, for ν = `+ 1/2 � 1,

`(`+ 1)C
(T )
EE,` → π2T 2

0

∫ ∞

0

q2 dq (3.1.4)

×
∣∣∣∣∫
r(t)>ν/q

dt P (t) Ψ(q, t)

×
{

(1 + sin2 b) cos b√
sin b

cos
[
ν(tan b− b)− π/4

]}
cos b=ν/q r(t)

∣∣∣∣∣
2

,

`(`+ 1)C
(T )
BB,` → π2T 2

0

∫ ∞

0

q2 dq (3.1.5)

×
∣∣∣∣∫
r(t)>ν/q

dt P (t) Ψ(q, t)

×
{

2
√

sin b cos b sin
[
ν(tan b− b)− π/4

]}
cos b=ν/q r(t)

∣∣∣∣2 ,
`(`+ 1)C

(T )
TE,` → −2π2T 2

0

∫ ∞

0

q2 dq (3.1.6)

×
∫
r(t)>ν/q

dt P (t)Ψ(q, t)

×
{

(1 + sin2 b) cos b√
sin b

cos
[
ν(tan b− b)− π/4

]}
cos b=ν/q r(t)

×
∫
r(t′)>ν/q

dt′ d(q, t′)

{
cos3 b√

sin b
cos
[
ν(tan b− b)− π/4

]}
cos b=ν/q r(t′)

,

`(`+ 1)C
(T )
TT,` → 4π2T 2

0

∫ ∞

0

q2 dq (3.1.7)

×

∣∣∣∣∣
∫
r(t)>ν/q

dt d(q, t)

{
cos3 b√

sin b
cos
[
ν(tan b− b)− π/4

]}
cos b=ν/q r(t)

∣∣∣∣∣
2

.

In evaluating both the exact and approximate expressions, instead of

calculating the source function Ψ(q, t) by truncating the Boltzmann hierarchy

(2.3.97), (2.3.98), we use the integral equation (2.3.103) derived in [75],[76]
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Ψ(q, t) =
3

2

∫ t

t1

dt′ exp

[
−
∫ t

t′
ωc(t

′′) dt′′
]

(3.1.8)

×

[
− 2Ḋq(t

′)K

(
q

∫ t

t′

dt′′

a(t′′)

)
+ ωc(t

′)F

(
q

∫ t

t′

dt′′

a(t′′)

)
Ψ(q, t′)

]
,

where K(v) and F (v) are the functions

K(v) ≡ j2(v)/v
2 , F (v) ≡ j0(v)− 2j1(v)/v + 2j2(v)/v

2 . (3.1.9)

(This is not an approximation; in principle it should give the same results as

the truncated Boltzmann hierarchy used by CMBfast and CAMB, aside from

the supposedly small errors produced by the truncation. In fact, our method

gives results that differ by a few percent from both CMBfast and CAMB,

but CMBfast and CAMB give results for both CT
EE,` and CT

BB,` that differ by

similar amounts from each other, especially for large `. At this point we are

not able to tell which of the three methods is the most reliable.) The specific

cosmological model chosen for this and all other numerical calculations in this

chapter is again the ΛCDM model with the values for the parameters derived

from the five-year WMAP data (2.0.6)-(2.0.11). In calculating the photon

collsion frequency, we use the recfast recombination code [71],[72], with helium

abundance Y = 0.24. The gravitational field amplitude outside the horizon is

taken as

|Dq|2 = 4.79× 10−11 q−3

corresponding to nT = 0, ∆2
R(q∗ = 0.002Mpc−1) = 2.41 × 10−9, and a ten-

sor/scalar ratio r = 1. The gravitational wave amplitude Dq(t) is calculated

including the damping due to neutrino anisotropic inertia, as in [84]; the ef-

fects of photon anisotropic inertia are negligible. Reionization is ignored and
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the optical depth set to τ = 0. To take into account a finite optical depth τ of

the reionized plasma or a different value of r, for ` & 15 it is only necessary to

multiply the multipole coefficients given here by r exp(−2τ). The approximate

results obtained in this way from Eqs. (3.1.4)–(3.1.7) are compared with the

exact formulas (3.0.1)–(3.0.4) in Figures 3.2–3.5.

We can gain further simplicity and transparency in the formulas for

the EE and BB multipole coefficients by using another approximation that

actually leads to improved accuracy for CT
BB,`. The last-scattering probability

distribution P (t) is concentrated around a time tL, corresponding to a redshift

zL ' 1088. For any q of the same order of magnitude as ν/r(tL), the quantity

b ≡ cos−1
(
ν/qr(t)

)
does not vary appreciably for t within the range in which

P (t) is appreciable. Hence we can set r(t) equal to rL everywhere except in

the phase ν(tan b − b), which for ν � 1 does vary over a wide range in this

interval. Furthermore, because ν(tan b− b) varies over a wide range for ν � 1,

the difference between cos[ν(tan b − b) − π/4] and sin[ν(tan b − b) − π/4] is

immaterial, and we can replace both with cos[ν(tan b − b)]. Making these

replacements in Eqs. (3.1.4) and (3.1.5) gives

`(`+ 1)C
(T )
EE,` → π2T 2

0

∫ ∞

ν/rL

q2 dq {(1 + sin2 bL)2 cos2 bL}cos bL=ν/qrL

×

∣∣∣∣∣∣∣
∫
r(t)>ν/q

dt P (t) Ψ(q, t)

cos
[
ν(tan b− b)

]
√

sin b


cos b=ν/q r(t)

∣∣∣∣∣∣∣
2

,

(3.1.10)

`(`+ 1)C
(T )
BB,` → π2T 2

0

∫ ∞

ν/rL

q2 dq {4 sin2 bL cos2 bL}cos bL=ν/q rL

×

∣∣∣∣∣∣∣
∫
r(t)>ν/q

dt P (t) Ψ(q, t)

cos
[
ν(tan b− b)

]
√

sin b


cos b=ν/q r(t)

∣∣∣∣∣∣∣
2

.(3.1.11)
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(We have not set b = bL in the factors 1/
√

sin b in both integrals over

t, in order to avoid a divergence in the integration over q at q = ν/rL. This

factor does not introduce a divergence in the integrals over time, because

dt ∝ sin b db.)

These approximate formulas are compared with results of the exact

formulas (3.0.1) and (3.0.2) in Figures 3.6 and 3.7. The approximate result

(3.1.11) for CT
BB,` agrees with the exact result (3.0.2) to about 1% for all

` > 10, which is better than cosmic variance. The approximate result (3.1.10)

for CT
EE,` is not quite as accurate; it agrees with the exact result (3.0.1) to

better than about 14% for all ` > 10. These approximations are evidently

accurate enough for us to draw qualitative conclusions about the EE and BB

multipole coefficients.

One immediate consequence is that, since (1 + sin2 bL)2 ≥ 4 sin2 bL for

all real bL, we expect that C
(T )
EE,` ≥ C

(T )
BB,` for all ` large enough to justify

our approximations. Also, since Ψ(q, tL) falls off for wave lengths that come

into the horizon before matter-radiation equality, we expect that for relatively

small ` (say, ` < 100) the integrals over q are dominated by values for which

cos bL is small, so that (1 + sin2 bL)2 ' 4 sin2 bL, and hence C
(T )
EE,` ' C

(T )
BB,` for

such `. As mentioned in Section I, and shown in Figure 3.1, both properties

are observed in the output of numerical calculations based on the accurate

formulas (3.0.1) and (3.0.2).
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3.2 Parameter-Dependence of the EE and BB Correla-
tions

With one further approximation, we can find reasonably accurate for-

mulas for C
(T )
EE,` and C

(T )
BB,` that reveal the way that these coefficients depend

on various cosmological parameters. We write the squared time integrals in

Eqs. (3.1.10) and (3.1.11) as double integrals over times t and t′, and write

cos
[
ν(tan b− b)

]
cos
[
ν(tan b′ − b′)

]
=

1

2

[
cos
[
ν(tan b− b)− ν(tan b′ − b′)

]
+ cos

[
ν(tan b− b) + ν(tan b′ − b′)

]]
,

(3.2.1)

where cos b = ν/q r(t) and cos b′ = ν/q r(t′). For ν � 1, and q r(t) and q r(t′)

both of order ν, the second term on the right oscillates very rapidly, and hence

may be neglected in the integral over t and t′. On the other hand, because

P (t) and P (t′) are sharply peaked around the same time tL, the argument of

the first cosine on the right is small where P (t) and P (t′) are appreciable, so

this cosine may be replaced with unity. Then (now dropping the distinction

between ν and `), Eqs. (3.1.10) and (3.1.11) become

`(`+ 1)C
(T )
EE,` →

π2T 2
0

2

∫ ∞

`/rL

q2 dq {(1 + sin2 bL)2 cos2 bL}cos bL=`/qrL

×

∣∣∣∣∣
∫
r(t)>`/q

dt P (t) Ψ(q, t)

(
1− `2

q2 r2(t)

)−1/4
∣∣∣∣∣
2

, (3.2.2)

`(`+ 1)C
(T )
BB,` →

π2T 2
0

2

∫ ∞

`/rL

q2 dq {4 sin2 bL cos2 bL}cos bL=`/qrL

×

∣∣∣∣∣
∫
r(t)>`/q

dt P (t) Ψ(q, t)

(
1− `2

q2 r2(t)

)−1/4
∣∣∣∣∣
2

. (3.2.3)
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This approximation is compared with the results of the exact formulas

(3.0.1) and (3.0.2) in Figures 3.8 and 3.9. As shown there, the fractional error

here is less than about 20% for 10 < ` < 600, but it becomes larger for larger

values of `, where the multipole coefficients become quite small.

Eqs. (3.2.2) and (3.2.3) are useful in revealing the parameter depen-

dence of these multipole coefficients. Where the last-scattering probability

distribution P (t) is appreciable, the only cosmological parameters on which

either P (t) or the source function Ψ(q, t) depend are the baryonic and matter

density parameters ΩBh
2 and ΩMh

2, as well as the present microwave back-

ground temperature T0. All dependence of the multipole coefficients on H0 or

the curvature ΩKh
2 or the vacuum energy ΩΛh

2 is contained in the function

r(t). But Eqs. (3.2.2) and (3.2.3) show that r(t) and ` enter in the multipole

coefficients only in the combination r(t)/`. Hence, with ΩBh
2, ΩMh

2, and T0

fixed, to a good approximation C
(T )
EE,` and C

(T )
BB,` depend on H0, ΩKh

2, and

ΩΛh
2 only through their effect on the scale of the `-dependence of C

(T )
EE,` and

C
(T )
BB,`. Furthermore, since P (t) is sharply peaked at the time of last scatter-

ing, just as for scalar modes there is a high degree of degeneracy here: for

` > 10 the coefficients C
(T )
EE,` and C

(T )
BB,` depend on H0, ΩKh

2, and ΩΛh
2 only

through a single parameter, the radius r(tL) of the surface of last acatttering.

Of course, the degeneracy here is not as important as it is for scalar modes,

because tensor modes when discovered will be studied primarily for the pur-

pose of measuring the tensor/scalar ratio r and the tensor slope nT , rather

than other cosmological parameters.
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Figure 3.2: Comparison of formulas for CT
EE,`. The solid line is the result of

using the exact expression (3.0.1); the dashed line is the result of using the
approximation (3.1.4). Figures 2–5 show the degree of accuracy of the large-`
approximation by itself, without further approximations. In this and all other
figures, all calculations are done using the cosmological parameters given in
Section II, and the units of the vertical axis are square microKelvins.
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Figure 3.3: Comparison of formulas for CT
BB,`. The solid line is the result of

using the exact expression (3.0.2); the dashed line is the result of using the
approximation (3.1.5).
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Figure 3.4: Comparison of formulas for CT
TE,`. The solid line is the result of

using the exact expression (3.0.3); the dashed line is the result of using the
approximation (3.1.6).
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Figure 3.5: Comparison of formulas for CT
TT,`. The solid line is the result of

using the exact expression (3.0.4); the dashed line is the result of using the
approximation (3.1.7).
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Figure 3.6: Comparison of formulas for CT
EE,`. The solid line is the result of

using the exact expression (3.0.1); the dashed line is the result of using the
approximation (3.1.10). Figures 6 and 7 show the degree of accuracy of the
combined approximations that we use to show analytically that CT

EE,` > CT
BB,`.
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Figure 3.7: Comparison of formulas for CT
BB,`. The solid line is the result of

using the exact expression (3.0.2); the dashed line is the result of using the
approximation (3.1.11). This is our best approximation for CT

BB,`
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Figure 3.8: Comparison of formulas for CT
EE,`. The solid line is the result of

using the exact expression (3.0.1); the dashed line is the result of using the
approximation (3.2.2). This figure shows the degree of accuracy of the further
approximations used to explore the parameter-dependence of CT

EE,`.
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Figure 3.9: Comparison of formulas for CT
BB,`. The solid line is the result of

using the exact expression (3.0.2); the dashed line is the result of using the
approximation (3.2.3). This figure shows the degree of accuracy of the further
approximations used to explore the parameter-dependence of CT

BB,`.
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Chapter 4

Signatures of a Graviton Mass in the Cosmic

Microwave Background

There exist consistent low energy effective field theories describing grav-

ity in the Higgs phase that allow the coexistence of massive gravitons and the

conventional 1/r potential of gravity. In an effort to constrain the value of

the graviton mass in these theories, in this chapter, we study the tensor con-

tribution to the CMB temperature anisotropy and polarization spectra in the

presence of a non-vanishing graviton mass. The conclusion is that the observa-

tion of a B-mode signal consistent with the spectrum predicted by inflationary

models would provide the strongest limit yet on the mass of an elementary

particle – a graviton – at a level of m . 10−30 eV≈ (10 Mpc)−1. We also find

that a graviton mass in the range between (10 Mpc)−1 and (10 kpc)−1 leads

to interesting modifications of the polarization spectrum. The characteristic

signature of a graviton mass in this range would be a plateau in the B-mode

spectrum up to angular multipoles of ` ∼ 100. For even larger values of the

graviton mass the tensor contribution to the CMB spectra becomes strongly

suppressed.

The possibility of a non-zero graviton mass is intriguing and has at-

tracted the attention of theorists for a long time, see e.g. [128],[129],[130],[131],[132],[133]

(see [134] for a recent review). Massive gravitons have a number of pecu-

liar properties, such as the van Dam-Veltman-Zakharov (vDVZ) discontinu-
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ity [129],[130], ghost instabilities [132] and strong coupling effects at unaccept-

ably low energy scales [133] which complicate the construction of a sensible

theory. However, in light of the cosmological constant problem and coincidence

problems between baryonic matter, dark matter, and dark energy, there has

been increased interest in massive gravity theories, and it was found that mod-

els of modified gravity with Lorentz-violating graviton mass terms may avoid

all of these problems [135], [136], [137]. The effective field theories remain valid

up to reasonably large energy scales provided a large enough subgroup of the

full diffeomorphism group is left unbroken by the graviton mass.

From a phenomenological point of view, the class of models character-

ized by the residual local symmetry xi → xi + ξi(t) is of particular interest.

Among the possible choices of residual subgroups required by consistency, this

is the only choice giving rise to massive gravitational waves [137]. 1 Some phe-

nomenological and cosmological consequences of these models were studied in

Refs. [138], [139], [140],[141]. In particular, late time cosmological attractors

have been found where an additional dilatation symmetry t→ λt, xi → λ−γxi

gets restored, where γ is a real constant. The main properties of the system

in the vicinity of these attractors can be summarized as follows.

(i) The evolution of the background cosmology is described by the usual

Friedmann equation. For suitable choices of the Lagrangian in the sym-

metry breaking sector that leads to the graviton mass there will be an

additional “dark energy” component that may contribute to the observed

accelerated expansion of the universe.

1Note that in the Lorentz-violating theories a presence of graviton mass terms does not
yet imply that the tensor modes are massive. For instance, the graviton mass term m2

00h
2
00

just fixes the gauge h00 = 0.
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(ii) The equations describing the evolution of the scalar and vector fluctua-

tions coincide with those of General Relativity.

(iii) The equation describing the evolution of the tensor fluctuations is mod-

ified by the presence of a mass term. In other words, the dispersion

relation for gravitational waves takes the form ω2 = p2 +m2
g.

As a consequence of (i) and (ii), the strongest bounds on the graviton

mass, mg, in this class of models come from direct or indirect observations

of gravitational waves. Since these observations are very limited so far, this

opens up the possibility for mg to be quite large. The best constraint on the

graviton mass in these models currently comes from indirect evidence for the

emission of gravitational waves from binary pulsars timing [142] yielding an

upper limit of

mg . 104 pc−1 ≈ 3× 10−15 cm−1 ≈ 6× 10−20 eV. (4.0.1)

Relatively large graviton masses mg & 0.1 pc−1 could be detected

by observing the characteristic signature of a large graviton mass, a strong

monochromatic signal in gravitational wave detectors due to relic gravitons at

a frequency equal to the graviton mass [138]. This signal might be observed

either by LISA or using millisecond pulsar timing data.

Graviton masses close to the bound (4.0.1) can also be found by using

higher frequency gravitational wave detectors to measure a time delay between

optical and gravitational wave signals from a distant source.

Finally, these theories may give rise to non-universality of high multi-

poles of the galactic black hole metric. If present, these may be detected by

LISA [141].

115



The characteristic energy scale Λ of the symmetry breaking sector that

leads to a massive graviton is of order Λ ∼
√
MPlmg. This scale is of the

same order as the energy density scale of the Universe now if mg ∼ H0 where

H0 ≈ 0.7 × (3 Gpc)−1 is the current Hubble constant. In other words, if the

observed acceleration of the Universe were due to some modification of gravity

that gives rise to a graviton mass, one would expect the mass to be of order H0,

far below the reach of the experiments mentioned above. This motivates us

to look for signatures that are sensitive to much smaller values of the graviton

mass.

One expects that a small graviton mass will leave an imprint in the tem-

perature anisotropy and polarization spectra of the cosmic microwave back-

ground (CMB). We study the contribution of tensor perturbations to the CMB

spectra in a modified gravity theory with the properties outlined above and

show that this is indeed the case. We treat the graviton mass as a phenomeno-

logical parameter. Our results will therefore be valid for any theory in which

a modification of gravity amounts to massive gravitational waves with the

ΛCDM cosmological background being unchanged.

The chapter is organized as follows. After a summary of the basic equa-

tions, we start with an analytic discussion of the CMB spectrum in a massive

gravity theory in subsection 4.2.1. After an analytic discussion of the general

properties of the B-mode spectrum, we analytically calculate the contribution

to the CMB B-type polarization for low multipole coefficients ignoring the

effects of reionization and show that the characteristic feature in the low `

range is a plateau. For a range of masses above the Hubble rate at the time

of recombination this contribution even dominates over the contribution from

reionization and is a good approximation to the full numerical spectrum for
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low multipole coefficients. We then calculate the contributions to the CMB

temperature anisotropy and polarization from a spatially homogeneous tensor

mode. The existence of such a contribution is a very unusual property of mas-

sive gravity theories. In the massless case, tensor modes are frozen as long as

their wavelength is larger than the Hubble scale H−1 where H(t) ≡ a−1(da/dt)

and a(t) is the scale factor of an isotropic Friedmann-Robertson-Walker (FRW)

cosmological model. Since temperature anisotropies get generated only by a

time varying tensor mode, this implies that very long wavelengths cannot con-

tribute.2 If the graviton is massive, however, when the expansion rate of the

universe drops below the graviton mass, these modes acquire an oscillatory

time dependence with a frequency set by the graviton mass, and a decreasing

amplitude due to Hubble friction. As a consequence, long wavelength modes

in a massive gravity theory will generate a temperature anisotropy quadrupole

that will get converted into a polarization quadrupole during recombination if

the mass is in the right range and more efficiently once the universe becomes

reionized. The zero mode does not contribute to the B-mode spectrum, but

does contribute to the temperature T , polarization E-mode and TE cross-

correlation quadrupoles.

We then proceed to a numerical treatment in subsection 4.2.2. The

most interesting result is that a graviton mass would strongly modify the

shape of the B-mode spectrum for ` < 100. If such modifications are observed

in experiments such as CMBPol, it would provide strong support for massive

gravity theories. If on the other hand the observed spectrum is consistent

with General Relativity, this would imply an upper bound on the graviton

2The solution of the zero mode equation that does not decay at late times is in fact even
a pure gauge mode in the massless case.
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mass of mg < (10Mpc)−1 ≈ 10−30eV . We conclude with a brief summary of

the signatures of a graviton mass in the CMB in Section 4.3. This chapter is

largely based on [143].

4.1 Tensor Contribution to the CMB for a Massive Gravi-
ton

As explained in Chapter 2, the properties of the early universe are en-

coded in correlations of the temperature anisotropies and polarization patterns

at different points in the sky. The quantities most commonly used to represent

the two-point correlations are the TT as well as the TE, EE, and BB multipole

coefficients. The contribution of the tensor fluctuations to them is given by

equations (2.3.178)-(2.3.181). To be explicit, in this chapter we use them in

the form

C
(T )
BB,` = π2T 2

0

∫ ∞

0

q2 dq (4.1.1)

×

∣∣∣∣∣
∫ τ0

τ1

dτ P (τ) Ψ(q, τ)

{[
8ρ+ 2ρ2 ∂

∂ρ

]
j`(ρ)

ρ2

}
ρ=q(τ0−τ))

∣∣∣∣∣
2

,

C
(T )
EE,` = π2T 2

0

∫ ∞

0

q2 dq (4.1.2)

×

∣∣∣∣∣
∫ τ0

τ1

dτ P (τ) Ψ(q, τ)

{[
12 + 8ρ

∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

]
j`(ρ)

ρ2

}
ρ=q(τ0−τ))

∣∣∣∣∣
2

,

C
(T )
TE,` = −2π2T 2

0

√
(`+ 2)!

(`− 2)!

∫ ∞

0

q2 dq (4.1.3)

×
∫ τ0

τ1

dτ P (τ)Ψ(q, τ)

{[
12 + 8ρ

∂

∂ρ
− ρ2 + ρ2 ∂

2

∂ρ2

]
j`(ρ)

ρ2

}
ρ=q(τ0−τ)
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×
∫ τ0

τ1

dτ ′ d(q, τ ′)

j`
(
q(τ0 − τ ′)

)
q2(τ0 − τ ′)2

 ,

C
(T )
TT,` =

4π2(`+ 2)!T 2
0

(`− 2)!

∫ ∞

0

q2 dq

∣∣∣∣∣∣
∫ τ0

τ1

dτ d(q, τ)
j`

(
q(τ0 − τ)

)
q2(τ0 − τ)2

∣∣∣∣∣∣
2

. (4.1.4)

These formulas are equivalent to those of Zaldarriaga and Seljak [82]

up to integration by parts.3 While this makes no difference in the massless

case, in the massive case the formulas as written here are better suited for

numerical calculations.

In these equations, q = pa(t) is the comoving momentum; τ =
∫
dt/a(t)

is the conformal time; T0 = 2.725K is the microwave background temperature

at the present conformal time τ0; P (τ) = κ̇ exp[−
∫ τ0
τ
κ̇(τ ′) dτ ′] is the probabil-

ity distribution of last scattering (or visibility function), with κ̇(τ) the photon

collision frequency (or differential optical depth); τ1 is any time taken early

enough before recombination so that any photon present at τ1 would have col-

lided many times before the present; and Ψ(q, τ) is the source function, which

is customarily calculated from a hierarchy of equations for partial-wave am-

plitudes (2.3.97) and (2.3.98) derived originally in [46], [124]. With conformal

time as independent variable, it takes the form (The dot denotes the derivative

with respect to τ)

˙̃∆
(T )
T,` (q, τ) +

q

(2`+ 1)

(
(`+ 1)∆̃

(T )
T,`+1(q, τ)− `∆̃

(T )
T,`−1(q, τ)

)
=
(
− 2Ḋq(τ) + κ̇(τ)Ψ(q, τ)

)
δ`,0 − κ̇(τ)∆̃

(T )
T,` (q, τ) , (4.1.5)

3We also use slightly different conventions. Their gravitational wave amplitude h and
power spectral function Ph(k) are related to our gravitational wave amplitude Dq(τ) by
h
√

Ph = D/2. In consequence, their function Ψ
√

Ph is 1/4 times our source function Ψ.
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˙̃∆
(T )
P,` (q, τ) +

q

(2`+ 1)

(
(`+ 1)∆̃

(T )
P,`+1(q, τ)− `∆̃

(T )
P,`−1(q, τ)

)
= −κ̇(τ)Ψ(q, τ) δ`,0 − κ̇(τ)∆̃

(T )
P,` (q, τ) , (4.1.6)

with

Ψ(q, τ) =
1

10
∆̃

(T )
T,0(q, τ) +

1

7
∆̃

(T )
T,2(q, τ) +

3

70
∆̃

(T )
T,4(q, τ)−

3

5
∆̃

(T )
P,0(q, τ)

+
6

7
∆̃

(T )
P,2(q, τ)−

3

70
∆̃

(T )
P,4(q, τ) . (4.1.7)

Alternatively, the source function can be calculated from the integral equa-

tion (2.3.103) derived in [75],[76]. We have used both approaches.

The quantity d(q, τ) is given by

d(q, τ) ≡ exp

[
−
∫ τ0

τ

dτ ′ κ̇(τ ′)

] (
Ḋq(τ)−

1

2
κ̇(τ)Ψ(q, τ)

)
, (4.1.8)

whereDq(t) is the gravitational wave amplitude defined through equations (2.3.12)

and (2.3.44).

In massive gravity, the evolution of the gravitational wave amplitude

is described by the solution to the equation for a minimally coupled massive

scalar field [138], [139]4

D̈q(τ) + 2
ȧ

a
Ḋq(τ) + (q2 +m2

ga
2)Dq(τ) = 0 . (4.1.9)

In conventional cosmological perturbation theory, the solution of Eq. (4.1.9)

which remains finite for a → 0 and has a wavelength larger than the Hub-

ble scale H−1 is not observable locally and does not contribute to the CMB

anisotropy and polarization spectra. On the other hand, the other, decaying

4In writing this equation, we drop contributions on the right hand side due to anisotropic
stress generated by neutrinos and photons [144], [84]. This is done merely for simplicity and
we will include these effects in our calculations.
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graviton mode produces locally measurable effects even in the k → 0 limit.

Since it does decay, it is usually assumed to be negligible by the time of re-

combination.

In the massive gravity case, Eq. (4.1.9) implies that a homogeneous

metric perturbation starts to oscillate with a frequency equal to mg when the

expansion rate H drops below the graviton mass mg. This is completely anal-

ogous to what happens for light scalar fields (e.g. axion, moduli, . . . ). An im-

portant difference, however, is that in the case of the graviton these oscillations

may directly affect the CMB spectra (or, if the mass mg is high enough, may

be observed by gravitational wave detectors), similar to a super-Hubble decay-

ing mode or a generic sub-Hubble tensor perturbation in the massless limit.

Indeed, the presence of a zero mode implies that, superimposed upon a con-

ventional Hubble expansion, spatial metric components experience anisotropic

(but homogeneous) high frequency oscillations with a small amplitude. The

effect of such oscillations on the CMB spectra can easily be understood ana-

lytically and we will return to this at the end of subsection 2.1.

4.1.1 Analytic results for low multipole coefficients

Before presenting the results of the numerical calculations in the next

subsection, let us start with a brief analytic discussion of the spectrum. For

the most part, we will limit ourselves to the contribution to the spectrum

generated during recombination and ignore the effects of reionization. In the

massless case, the effects of reionization give the dominant contribution to

the spectrum for ` . 20 but leave the higher multipole coefficients unchanged

(or rather change them trivially by an overall rescaling by e−2τreion , where

τreion = 0.087 ± 0.017 is the optical depth of the medium due to reionization
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and despite the clash of notation should not be confused with conformal time),

so that ignoring the effects of reionization is good as long as one is interested

in ` > 20. In the massive case, our numerical results indicate that for a

range of masses above the Hubble rate at recombination the contribution from

recombination provides a good approximation to the spectrum even at low `

providing additional motivation for this simplifying assumption.

We will focus on the B-mode spectrum because it is the most interesting

one from an experimental point of view. The discussion could be straightfor-

wardly extended to include the TT, TE, and EE spectra, but we limit ourselves

to the contribution of the zero mode to those.

Depending on their comoving momentum, the modes fall into one of

two classes or one of three classes depending on whether the mass is smaller

than the Hubble rate at recombination or larger than that.

For masses below the Hubble rate at recombination, the first possibility

is that modes are relativistic at the time they enter the horizon. In this case

they will still be relativistic during recombination. These modes are essentially

unaffected by the graviton mass, and the spectrum for the values of ` these

modes contribute to is expected to agree with the one in the massless case. The

second possibility is that the modes enter the horizon when they are already

non-relativistic. The multipole coefficients these modes contribute to will be

different from the ones for the massless case and we will discuss those in more

detail below.

For masses above the Hubble rate at recombination there is a third

option. The modes can be relativistic as they enter the horizon but become

non-relativistic by the time of recombination.
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Figure 4.1: This plot summarizes the different behaviors of modes and which
range of multipole coefficients they contribute to. Class I corresponds to modes
that are relativistic at recombination. Class II corresponds to modes that are
non-relativistic as they enter the horizon and during their subsequent evolu-
tion. Class III corresponds to modes that enter the horizon when they are
relativistic but become non-relativistic before recombination.

The results are summarized in terms of the range of multipole coeffi-

cients the different classes affect for a given mass in Figure 4.1.

Let us now discuss these regimes in more detail. Both for masses be-

low and above the expansion rate during recombination, the short-wavelength

modes that are in the relativistic regime during recombination,

q

a(τr)
> mg , (4.1.10)

are not affected by the graviton mass and will lead to the same spectrum as

in the massless case. In terms of the multipole number ` ≈ q(τ0 − τrec) this
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transition to the massless regime corresponds to

`� `0 ≡ mga(τr)(τ0 − τr)

≈ mg

H0

(1 + zr)
−1

∫ 1

(1+zr)−1

dx√
ΩΛx4 + Ωmx+ Ωr

≈ 3.3(1 + zr)
−1mg

H0

, (4.1.11)

where zr ≈ 1088 is the redshift at recombination, and we have used the five-

year WMAP values for the cosmological parameters [78]. In particular, equa-

tion (4.1.11) implies that, ignoring the contribution generated during reioniza-

tion, the B-mode spectrum is not modified for masses smaller than ∼ 300H0,

which is the scale corresponding to the size of the visible patch of the Universe

during recombination.

For larger masses, but still smaller than the expansion rate at re-

combination, mg < H(τr) ≈ 2× 104H0, the modes that are affected by the

graviton mass are superhorizon during recombination because they satisfy

q
a(τr)

. mg < H(τr). As a consequence these modes do not oscillate during

recombination. Nevertheless, just like in the massless case, the corresponding

source term Ḋq in (4.1.5) is non-zero (though small) and some amount of po-

larization is being generated. In contrast to the massless case, however, where

the value of Ḋq at recombination is determined by the value of q alone, and

goes to zero as q → 0, in the massive case Ḋq depends on (q2 +m2
ga(τr)

2) and

is independent of q for long wavelength modes leading to an enhancement of

the spectrum for ` < `0.

For values of the graviton mass larger than the Hubble rate at recom-

bination, mg & H(τr), all modes start to oscillate before recombination. The

modes with long wavelengths start to oscillate as soon as the expansion rate

of the universe drops below the graviton mass, i.e. at a time τm < τr, such
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that

H(τm) = mg . (4.1.12)

In particular,

Dq ' Dq0
sinmgt

mgt
(4.1.13)

for (q/a)2 � mgH at the matter dominated stage, where t ∝ τ 3. Shorter

modes start to oscillate when they enter the horizon just like in the massless

case. The transition between these two regimes happens at qm = mga(τm).

To a good approximation, all modes with momenta smaller than qm

have the same evolution–they are frozen until τm, and oscillate afterwards

with a frequency set by the mass. This value of comoving momentum, qm,

corresponding to the transition between class II and III translates to a value

in `-space of

`m = 3.3(1 + zm)−1mg

H0

. (4.1.14)

Here zm is the redshift corresponding to τm and is determined by condition

(4.1.12) which can be written more explicitly as

H0

√
Ωm(1 + zm)3 + Ωr(1 + zm)4 = mg . (4.1.15)

At mg = H(τr) the multipole number `m coincides with `0 and takes a value of

around `m ∼ 65. At higher masses these two scale are different. According to

(4.1.11) `0 grows linearly with mass. On the other hand, `m grows more slowly,

`m ∝ m
1/3
g for masses that become relevant during matter domination (i.e.,

for mg . 1.5× 105H0), and `m ∝ m
1/2
g at higher mg. For masses much larger

than this, all modes oscillate rapidly during recombination. As a consequence

the polarization signal gets averaged out and becomes strongly suppressed.
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Modes corresponding to angular scales between `m and `0 enter the

horizon when they are still relativistic, but become non-relativistic before re-

combination. As a result, they are still expected to exhibit the conventional

oscillation pattern in the angular spectrum, but the phase of oscillations is

different because the oscillations at late times are driven by the mass rather

than the spatial momentum.

After this discussion of various regimes, let us take a more detailed

look at the spectrum. As discussed, for the modes referred to as class I in

Figure 4.1 that are relativistic during recombination the spectrum to a good

approximation agrees with the one in the massless case. While a number of

analytic results for the temperature anisotropy and polarization have been

found for this case, we will not review those here and refer the interested

reader to the literature [54, 145], [126], [122].

As can be seen by inspection of equation (4.1.9), for the modes referred

to as class II in Figure 4.1 the dependence of the gravitational wave ampli-

tude on comoving momentum is trivially given by that of the power spectrum

because they are frozen as long as they are outside the horizon and the mass

already dominates by the time they enter. This does not in general guarantee

that the same is true for the source function as it will generically develop its

own q-dependence. To a good approximation the momentum dependence of

the source function during recombination is the same as that of the gravita-

tional wave amplitude provided the comoving momentum of the mode is less

than the duration of recombination in conformal time, i.e. q∆τrec � 1. This

is satisfied for all modes in class II for the range of masses we are interested

in and hence does not provide an additional constraint.

For modes in class II, the dependence of the gravitational wave ampli-
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tude and that of the source function on comoving momentum are then trivially

given by that of the power spectrum, implying e.g. for a standard inflationary

scenario that Ψ(q, τ)q
3
2
−nT

2 is q-independent. This allows us to evaluate the

expression for C
(T )
BB,` given by equation (4.1.1) analytically. Conventionally,

one first evaluates the integrals over conformal time and then integrates over

momentum. For us it will be more convenient to perform the integral over

momentum first. This is possible by rewriting the square of the integral over

time as an integral in a plane and using the identity:(
8ρ+ 2ρ2 ∂

∂ρ

)
j`(ρ)

ρ2
=

√
2π

ρ
3
2

(
(2 + `)J`+ 1

2
(ρ)− ρJ`+ 3

2
(ρ)
)
, (4.1.16)

where Jν(ρ) is the Bessel function of the first kind. The resulting four inte-

grals over q can then be done exactly using an integral known as the Weber-

Schafheitlin integral (see e.g. [146]). Dropping terms of order〈
(τ − τL)2

τL2

〉
≡

τ0∫
τ1

dτ P (τ)Ψ(q, τ)q
3
2
−nT

2
(τ − τL)2

τL2
, (4.1.17)

and higher in the terms in the integrals over conformal time arising from the

integral over comoving momentum, and setting nT = 0 for simplicity, one finds

the following expression for the power spectrum:

`(`+ 1)

2π
C

(T )
BB,` =

2(`(`+ 1) + 16)

3(`+ 2)(`− 1)
I2 . (4.1.18)

The `-dependence is now explicit and it is easy to see that for ` & 10 this

becomes independent of `. The `-independent quantity I is defined as5

I =

√
π

2
T0

τ0∫
τ1

dτ P (τ)Ψ(q, τ)q3/2 , (4.1.19)

5Recall that T0 = 2.725 K is the CMB temperature at the present time.
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and it encodes the dependence of the spectrum on the mass through the de-

pendence of the source function on the mass. The quantity I2 as a function

of mass is shown in Figure 4.2 for a scalar amplitude of ∆2
R = 2.41× 10−9, a

tensor-to-scalar ratio r = 1.

The oscillatory features seen in the plot can be understood from the

fact that the tensor perturbations of the metric take the form given in equa-

tion (4.1.13). In particular, they are regular in the limit t→ 0 and the “decay-

ing” mode, which diverges in this limit, is absent. In turn, this property (which

also takes place for larger values of q, (q/a)2 ≥ mgH) is a consequence of local

isotropy of the Universe at very early times. We assume the latter to be pro-

duced by inflation and use the inflationary prediction for the primordial power

spectrum, but the existence of the oscillations in I, as well as the existence

of oscillations in the multipole power spectra of polarization and temperature

anisotropy seen in Figures 4.3 and 4.4 below (”primordial peaks”, similar to

the well known acoustics peaks produced by scalar perturbations but with ap-

proximately twice less asymptotic period in `, T` = π(τ0− τr)/τr ≈ 140 [147]),

is a more general phenomenon not depending on how this early time isotropy

was achieved.

As we will derive shortly, what enters into the source function in a

crucial way is the tensor perturbation of the metric evaluated at the time

of recombination. This quantity viewed as a function of the graviton mass

oscillates around zero, implying that the integral does, too. After squaring,

this will give rise just to what is seen in Figure 4.2.

Ignoring terms higher order in the quantity (4.1.17) is typically only a

good approximation for ` . 30, but our numerical calculations show that the

plateau persists to higher values of `. For the values of masses where I is close
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Figure 4.2: This plot shows the quantity I2 in (µK)2 as a function of mass for
a scalar amplitude of ∆2

R = 2.41× 10−9, a tensor-to-scalar ratio of r = 1, and
a tensor spectral index nT = 0.

to zero, the higher order terms in this expansion give the leading contribution

and have to be included even for low `. Furthermore, for these ranges of masses

the effects of reionization become important. Especially for masses below the

expansion rate at recombination, reionization is important as it will increase

the sensitivity of polarization measurements for masses near the low end of

the accessible mass range mg ∼ 300H0 by about one order of magnitude to

mg ∼ 30H0.

After discussing the B-mode signal in a massive gravity theory, let us

briefly discuss another unusual feature in these theories, a contribution of

modes of extremely long wavelength to the TT, EE, and TE quadrupoles.

In the limit of vanishing momentum, the Boltzmann hierarchy, i.e. equa-
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tions (4.1.5), (4.1.6) become very simple. Only ∆̃
(T )
T,0(q, τ) and ∆̃

(T )
P,0(q, τ) get

generated while all others remain zero. Similar equations were considered in

Ref. [44], where CMB polarization and anisotropy in the Kasner universe were

studied. To calculate the contribution to the CMB temperature anisotropy and

polarization in this limit, it is convenient to write equations (4.1.5), (4.1.6) as

d

dτ

(
e−κ(τ)∆̃

(T )
T,0(τ)

)
= −2d(τ) , (4.1.20)

d

dτ

(
e−κ(τ)∆̃

(T )
P,0(τ)

)
= −P (τ)Ψ(τ) , (4.1.21)

where we have defined the integral optical depth κ(τ) as

κ(τ) =

∫ τ0

τ

dτ ′ κ̇(τ ′) .

From equations (4.1.2),(4.1.3), and (4.1.4) we see that the contribution

of the zero mode to the TT, EE, and TE quadrupoles is thus given by

C
(T )
TT,2 =

2π

75
T0

2∆̃
(T )
T,0(τ0)

2 , (4.1.22)

C
(T )
EE,2 =

4π

25
T0

2∆̃
(T )
P,0(τ0)

2 , (4.1.23)

and

C
(T )
TE,2 = −2π

25

√
2

3
T0

2∆̃
(T )
T,0(τ0)∆̃

(T )
P,0(τ0). (4.1.24)

It is straightforward to solve equations (4.1.5) and (4.1.6) for ∆̃
(T )
T,0(τ0) and

∆̃
(T )
P,0(τ0) in this simple case. The result is

∆̃
(T )
T,0(τ0) = −6I1

7
− I2

7
, (4.1.25)

∆̃
(T )
P,0(τ0) = −I1

7
+
I2
7
, (4.1.26)
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where I1 and I2 are the following integrals

I1 = 2

∫ τ0

0

dτ e−κ(τ)Ḋ(τ) , (4.1.27)

I2 = 2

∫ τ0

0

dτ e−
3
10
κ(τ)Ḋ(τ) . (4.1.28)

It is convenient to discuss the behavior of the integrals (4.1.27), (4.1.28)

first neglecting the contribution from the reionization epoch. In the absence of

reionization, the functions e−κ(τ), e−
3
10
κ(τ) have a step-like shape and change

their values from 0 to 1 at the time of recombination, τ = τr. Let a(τr)∆τ ∼
35 kpc be the characteristic width of these step functions (or the duration

of the recombination epoch). The relevant parameter which determines the

behavior of integrals (4.1.27), (4.1.28) is then

δ = mga(τr)∆τ .

For small masses, such that δ � 1 (but, of course, assuming mg > H0) one

has

I1 = I2 = −2D(τr) . (4.1.29)

Consequently, in this case polarization is negligible, while ∆̃
(T )
T,0(τ0) = 2D(τr)

gives the temperature anisotropy quadrupole. Note that for a fixed initial

amplitude of the metric perturbation, the anisotropy is smaller for larger mg.

For large masses, δ � 1, the mode oscillates rapidly even during recombina-

tion. As a result, both integrals I1 and I2 are very small (∝ e−δ) and both

temperature and polarization quadrupoles are negligible.

The largest amount of polarization is generated for δ ∼ 1. In this case

recombination cannot be treated as instantaneous, so that there is no cancel-

lation between the two terms in the expression for the polarization ∆̃
(T )
P,0(τ0).
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On the other hand, metric oscillations during recombination do not wash out

the whole effect yet, and one gets comparable contributions to polarization

and temperature anisotropy.

Finally, let us include the effect of reionization. In the presence of

reionization Eq. (4.1.29) does not hold even for small masses. Instead, one

has6

I1 = −2e−τreionD(τr) , (4.1.30)

I2 = −2e−
3
10
τreionD(τr) , (4.1.31)

(4.1.32)

where τreion is again the optical depth of the medium due to reionization. As

a result, both integrals get somewhat suppressed. On the other hand, the two

terms in Eq. (4.1.26) no longer cancel, and the contributions to polarization

and temperature anisotropy can be of the same order.

4.1.2 Numerical results

To calculate the angular power spectra for values of ` > 50, we use

CMBfast [82]7 with the evolution equation for the tensor perturbations mod-

ified according to Eq. (4.1.9). For the low multipole coefficients, ` ≤ 50, we

use the CMBfast source function, but perform the line of sight integration

in Mathematica using equations (4.1.1), (4.1.2), (4.1.3), and (4.1.4) because

the CMBfast results become unreliable for ` ≤ 50 at least for large graviton

masses.

6We assume that the graviton mass is still large enough, mg � H0, so that the graviton
oscillates rapidly during the reionization.

7Available at http://www.cfa.harvard.edu/ mzaldarr/CMBFAST/cmbfast.html
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The issue arises because of rapid oscillations of the source function for

all values of comoving momentum. After the integration by parts as imple-

mented in CMBfast, eq. (29) of [74] involves second derivatives of the source

function, which are unpleasant to deal with numerically. As a result, the line

of sight integration, as implemented in CMBfast, produces unreliable results.

The problem exists for the BB spectrum as well but is especially severe for

the low-` parts of the EE and TE spectra, where it appears at masses of order

mg ∼ 3000H0.

Using independent Mathematica code, we also checked that the source

function as produced by the modified CMBfast is reliable. We assume a scale-

invariant power spectrum for the tensor perturbations, nT = 0. The results

for a range of masses are shown in Figure 4.3.

In all the plots we drop the quadrupole, because its value depends on

the IR cutoff at low momenta, as follows from the discussion in section 4.1.1

(see also section 4.2 for more details). We have used ∆2
R = 2.41 × 10−9 and

have set the tensor-to-scalar ratio, r, to unity.

In agreement with our estimates, the effect of the mass is rather mild

for masses much below the Hubble rate during recombination and is present

only for very low `.

For masses approaching the Hubble rate during recombination, the

spectrum is significantly modified up to ` ∼ 100, and at mg = 3 × 104H0 the

characteristic plateau at ` . 100 is fully developed. As we increase the mass

further, the height of the plateau increases up to values of µ ≡ mg

3000H0
≈ 25 but

starts to decrease beyond that in agreement with the oscillations we saw in

our semi-analytic result in Figure 4.2. The origin of the oscillations is that de-

pending on the mass the metric perturbation enters recombination in different
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Figure 4.3: These plots show the C
(T )
BB,` multipole coefficients for the range

of masses that lead to the most interesting signal in the CMB. The masses
are given by mg = µ × 3000H0, where µ is given in the legend. Longer
dashes correspond to larger mass. All plots are for a scalar amplitude ∆2

R =
2.41×10−9, a tensor-to-scalar ratio, r = 1, and a tensor spectral index nT = 0.
For the remaining cosmological parameters parameterizing the background, we
use the five-year WMAP values [78].

phase.

In agreement with our qualitative arguments summarized in Figure 4.1,

for masses µ & 10 we see that a transition region appears between the multi-

pole moment `m where the plateau ends and the multipole moment `0 where

the massless spectrum is approached.

We are not showing the spectra at higher masses, because the polariza-

tion signal becomes strongly suppressed for µ� 150 because of rapid oscilla-
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Figure 4.4: This plot shows T (upper left panel), E (lower left), TE (upper
right) and B (lower right) spectra for the massive case with µ = 10 (solid line)
and for the massless case (dashed line).

tions of the metric during recombination in agreement with Figure 4.2.

So far we have only shown the C
(T )
BB,` multipole coefficients as they are

the most interesting from a phenomenological point of view. In Figure 4.4, we

show a comparison of all four CMB spectra (temperature anisotropy, E- and

B-type polarization and TE cross-correlations) for µ = 10 and the massless

case.

We see that the mass affects both E- and B-type polarization in a

rather similar way. The effect of the mass on the temperature anisotropy is

rather mild and the shape of the spectrum for massive gravity is very similar

to the massless case. Unlike polarization, the temperature anisotropy receives
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contributions not only from recombination and reionization, but from all times.

As a result, the contribution at horizon crossing dominates and one obtains a

plateau reflecting the flatness of the primordial spectrum in both the massive

and the massless case (see [145] for the analytic expression describing this

plateau in the massless case which, as is seen from the upper left plot in

Figure 4.4, produces a good approximation to the massive case, too). While

the polarization spectra look rather different from the ones in the massless

case, one should have in mind that we only show the tensor contribution to

the signal. The main component for the temperature anisotropy as well as the

TE and EE spectra comes from the scalar perturbations which are identical to

the ones in general relativity. One may still wonder how large a tensor signal

one could tolerate in the massive case given the existing data and what has

already been ruled out. To this end, we perform a Markov chain Monte Carlo

study for a single value of mass mg = 3× 104H0, or equivalently µ = 10.

We use the publicly available CosmoMC code [148]8 to sample the pa-

rameter space together with CAMB [83]9 to generate the spectra for a given

set of cosmological parameters, and we use a modified version of the WMAP

likelihood code that is now available on the LAMBDA website10 to evaluate

the likelihood function for a given spectrum.

In addition to varying the six parameters of the ΛCDM model and

marginalizing over the Sunyaev-Zeldovich amplitude, we allow the tensor-to-

scalar ratio to vary but keep the mass and the tensor spectral index fixed. We

do not implement the slow-roll consistency condition but set nT = 0 as one

8CosmoMC is available online at http://cosmologist.info/cosmomc/
9The code is available online at http://camb.info/

10http://lambda.gsfc.nasa.gov/product/map/current/likelihood get.cfm
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Figure 4.5: These plots show marginalized likelihood plots obtained from a
Markov chain Monte Carlo study of a massive gravity model with a mass
mg = 3 × 104H0, or equivalently µ = 10 using the five-year WMAP data.
The dark and light blue contours correspond to 68% and 95% confidence level,
respectively.

may expect the consistency condition to be modified in these theories, but this

does not significantly change the results.

We find that the tensor-to-scalar ratio for this value of mass is con-

strained to r < 0.11 at 95% confidence level by the five-year WMAP data

alone. The results are shown in Figure 4.5.

Different from the massless case [78], where adding additional data

sets like BBN, supernovae, or baryon acoustic oscillations significantly lowers

the allowed tensor-to-scalar ratio, the results do not change much for the

massive case. In the massless case, the reason for the significant strengthening

of the bound is that additional data sets constraining the baryon or dark

matter abundance break a chain of degeneracies. The main constraint on the

tensor-to-scalar signal in the massless case currently comes from the low-` TT

spectrum, where the tensor signal has a plateau as can be seen e.g in Figure 4.4.

Raising nS lowers the power in the scalar spectrum at low ` thus allowing for

larger r. On the other hand raising nS becomes possible only because of a
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degeneracy between ΩB and nS so that adding the BBN priors on the baryon

abundance eliminates this possibility and substantially lowers the bound on the

tensor-to-scalar ratio in the massless case. In the massive case, however, the

polarization data is starting to constrain the model, eliminating the degeneracy

in a different way. Including a BBN prior then does not significantly lower the

bound in this case and all in all the bound is roughly a factor of two stronger

for mg = 3× 104H0 than it is in the massless case. As one might expect from

looking at the spectra in the massive case, there is now a degeneracy between

the tensor-to-scalar ratio and the optical depth, however. This is shown in

Figure 4.5. We interpret these results as telling us that the model is not in

conflict with present data but not much more. In a more serious analysis, the

mass should certainly not be taken as fixed but be thought of as an unknown

parameter that has to be extracted from the data. We leave a more systematic

study for when more data becomes available.

4.2 Summary

To summarize, we see that a detection of the CMB B-mode signal either

with Planck or with next generation CMB measurements such as CMBPol [117],

in addition of opening a new observational window on inflation, will also pro-

vide a sensitive probe of the graviton mass. We showed that the most inter-

esting consequence of the graviton mass for the cosmic microwave background

is probably the characteristic plateau in the B-mode spectrum for multipoles

with ` . 100. This plateau is most pronounced for masses a few times the

Hubble rate at recombination, but in principle CMB polarization measure-

ments are capable of constraining the graviton mass down to m−1
g ∼ 10 Mpc.

Taking into account that large graviton masses m−1
g � 10 kpc lead to a strong
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suppression of the tensor contribution to the CMB spectra, we conclude that

the observation of B-mode with the conventional inflationary spectrum would

provide by far the tightest bound on the mass of an elementary particle – a

graviton – at a level of mg . 10−30 eV.

Of course, even more exciting would be to find out that a graviton mass

is actually non-zero. It is worth stressing that gravitational waves after being

produced during inflation remain practically undisturbed throughout the later

evolution of the Universe [100] and secondary sources of the B mode, such

as the weak lensing contribution, are negligibly small at ` < 100 [149]. It

also appears extremely hard to mock up the effect of the mass by modifying

an inflationary model or invoking another mechanism generating gravitational

waves such as cosmic strings. Consequently, the detection of a B-mode signal

with the shape discussed above would provide an unambiguous signal of a

graviton mass.

We have also seen that in a massive gravity theory superhorizon tensor

perturbations are physical and contribute to the quadrupole of TT, EE, and

TE spectra. As a consequence, the amplitude of these quadrupoles are IR

sensitive and can be significantly enhanced over the rest of the spectrum. The

ratio between the quadrupole and the rest of the spectrum is model dependent.

It provides a probe of the total duration of the inflation provided the tensor

perturbations are naturally set to zero at early times in a given model. This is

the case, for instance, if the graviton mass is not constant during inflation and

in the beginning is bigger than the expansion rate. One way this possibility

may be realized is if the dilatation symmetry t→ λt, xi → λ−γxi is not present

in the full theory, but only gets restored during inflation as one approaches

a cosmological attractor discussed in [139]. In this particular scenario, the
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quadrupoles measure the number of e-folds during the period for which the

graviton is lighter than the Hubble rate.
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Chapter 5

Oscillations in the CMB from Axion

Monodromy Inflation

In this chapter, we study the CMB observables in axion monodromy

inflation. These well-motivated scenarios for inflation in string theory have

monomial potentials over super-Planckian field ranges, with superimposed si-

nusoidal modulations from instanton effects. Such periodic modulations of

the potential can drive resonant enhancements of the correlation functions of

cosmological perturbations, with characteristic modulations of the amplitude

as a function of wavenumber. We give an analytical result for the scalar power

spectrum in this class of models, and we determine the limits that present data

places on the amplitude and frequency of modulations. Then, incorporating

an improved understanding of the realization of axion monodromy inflation in

string theory, we perform a careful study of microphysical constraints in this

scenario. We find that detectable modulations of the scalar power spectrum

are commonplace in well-controlled examples, while resonant contributions to

the bispectrum are undetectable in some classes of examples and detectable

in others. We conclude that resonant contributions to the spectrum and bis-

pectrum are a characteristic signature of axion monodromy inflation that, in

favorable cases, could be detected in near-future experiments.

As explained in section 2.4, inflation is a successful paradigm for de-

scribing the early universe, but it is sensitive to the physics of the ultraviolet
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completion of gravity. This motivates pursuing realizations of inflation in

string theory, a candidate theory of quantum gravity. Considerable progress

has been made on this problem in recent years, so much so that the most

pressing task, particularly in view of upcoming CMB experiments, is to learn

how to distinguish various incarnations of inflation in string theory from each

other and from related models constructed directly in quantum field theory.

Fortunately, the additional constraints inherent in realizing inflation

in an ultraviolet-complete framework can leave imprints in the low-energy

Lagrangian, and hence ultimately in the cosmological observables. In favorable

cases, a given class of models may make distinctive predictions for a variety

of correlated observables, allowing one to exclude this class of models given

adequate data.

One decisive observable for probing inflation is the tensor-to-scalar ra-

tio, r. A promising class of string inflation models producing a detectable

tensor signature are those involving monodromy [150], in which the poten-

tial energy is not periodic under transport around an angular direction in

the configuration space. The first examples [150] involved monodromy under

transport of a wrapped D-brane in a nilmanifold, and a subsequent class of

examples invoked monodromy in the direction of a closed string axion [151].

The axion monodromy inflation scenario of [151] is falsifiable on the

basis of its tensor signature, r ≈ 0.07. However, primordial tensor perturba-

tions have not been detected at present, while the temperature anisotropies

arising from scalar perturbations have been mapped in great detail [78]. One

could therefore hope to constrain axion monodromy inflation more effectively

by understanding the signatures that it produces in the scalar power spectrum

and bispectrum. Characterizing these signatures is the subject of this chapter.
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As we shall explain, the potential in axion monodromy inflation is ap-

proximately linear, but periodically modulated: each circuit of the loop in con-

figuration space can provide a bump on top of the otherwise linear potential.

Modulations of the inflaton potential with suitable frequency and amplitude

can yield two striking signatures: periodic undulations in the spectrum of the

scalar perturbations, and resonant enhancement [152] of the bispectrum. Let

us stress that the presence of some degree of modulations of the potential is

automatic, and is an example of the situation described above in which traces

of ultraviolet physics remain in the low-energy Lagrangian. We do not intro-

duce modulations in order to make the scalar perturbations more interesting.

However, it is important to examine the typical amplitude and frequency of

modulations in models that are under good microphysical control, in order

to ascertain whether well-motivated models produce signatures that can be

detected in practice.

To achieve this, we first investigate in detail the realization of axion

monodromy inflation in string theory. We compute the axion decay constants

in terms of compactification data, we assess the importance of higher-derivative

terms, and we estimate the amplitude of modulations for the case of Euclidean

D1-brane contributions to the Kähler potential. We also identify a potentially-

important contribution to the inflaton potential, arising from backreaction in

the compact space, and we present a model-building solution that suppresses

this contribution.

We find that detectable modulations of the scalar power spectrum and

bispectrum are possible in models that are consistent with all current data

and that are under good microphysical control. In fact, we find substantial

parameter ranges that are excluded not by microphysics, but by observational
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constraints on modulations of the scalar power spectrum.

The organization of this chapter is as follows. We begin with a very

brief review of axion monodromy inflation in section 5.1. In section 5.2 we

describe the classical evolution of the homogeneous background in axion mon-

odromy inflation with a modulated linear potential. We then solve, in sec-

tion 5.3, the Mukhanov-Sasaki equation governing the evolution of scalar per-

turbations, giving an analytical result for the spectrum in terms of the fre-

quency and amplitude of the modulations of the potential. Next, we briefly

discuss the bispectrum and express the amplitude of the non-Gaussianity in

terms of the model parameters. We then present, in section 5.4, an analy-

sis of the constraints imposed on axion monodromy inflation by the WMAP5

data (for prior work constraining similar oscillatory power spectra, see e.g.

[153],[154],[155],[156],[157],[158],[159]). In sections 5.5 and 5.6, we present a

comprehensive analysis of the constraints imposed by the requirements of com-

putability and of microphysical consistency, including validity of the string loop

and α′ perturbation expansions, successful moduli stabilization, and bounds

on higher-derivative terms. In section 5.7 we combine the observational and

theoretical constraints, with results presented in figure 5.7.

The chapter is based on [160].

5.1 Review of axion monodromy inflation

In this section we will briefly review the motivation for axion mon-

odromy inflation, as well as the most salient phenomenological features. We

will postpone until section 5.5 a more comprehensive discussion of the realiza-

tion of this model in string theory.

Inflation is sensitive to Planck-scale physics: contributions to the ef-
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fective action arising from integrating out degrees of freedom with masses as

large as the Planck scale play a critical role in determining the background

evolution, and hence the observable spectrum of perturbations (see [161] for

a review of this issue). A central problem in inflationary model-building is

establishing knowledge of Planck-suppressed terms in the effective action with

accuracy sufficient for making predictions. The most elegant solution to this

problem is to provide a symmetry that forbids such Planck-suppressed contri-

butions. Because invoking such a symmetry amounts to forbidding couplings

of the inflaton to Planck-scale degrees of freedom, it is important to understand

this issue in an ultraviolet-complete theory, such as string theory.

One promising mechanism for inflation in string theory involves the

shift symmetry of an axion. Axions are numerous in string compactifications

and generally enjoy continuous shift symmetries a → a + constant that are

valid to all orders in perturbation theory, but are broken by nonperturbative

effects to discrete shifts a→ a+ 1. As noted in [151], the shift symmetries of

axions descending from two-forms are also broken by suitable space-filling five-

branes (D5-branes or NS5-branes) wrapping two-cycles in the compact space.

In axion monodromy inflation [151], an NS5-brane wrapped on a two-

cycle Σ breaks the shift symmetry of the Ramond-Ramond two-form potential

C2, inducing a potential that is asymptotically linear in the corresponding

canonically normalized field φ,

V = µ3φ , (5.1.1)

with µ a constant mass scale. Inflation begins with a large expectation value

for the inflaton, φ ∝
∫

Σ
C2 � 1, and proceeds as this expectation value dimin-

ishes; note that the NS5-brane, like any D-branes that may be present in the
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compactification, remains fixed in place during inflation. As argued in [151],

this gives rise to a natural model of inflation, with the residual shift symmetry

of the axion protecting the potential from problematic corrections that are

endemic in string inflation scenarios.

In this chapter we perform a careful analysis of the consequences of

nonperturbative effects for the axion monodromy scenario. Such effects are

generically present: specifically, Euclidean D-branes make periodic contribu-

tions to the potential in most realizations of axion monodromy inflation. How-

ever, the size of these contributions is model-dependent. It was shown in [151]

that there exist classes of examples in which nonperturbative effects are prac-

tically negligible, but we expect – as explained in detail in section 5.6.5 – that

in generic configurations, periodic terms in the potential make small, but not

necessarily negligible, contributions to the slow roll parameters.

Therefore, it is of interest to understand the consequences of small pe-

riodic modulations of the inflaton potential in axion monodromy inflation. In

this chapter we address this question in two ways: first, in subsections 5.2-5.4,

by studying a phenomenological potential that captures the essential effects;

and second, in section 5.5 and section 5.6, by investigating the ranges of the

phenomenological parameters that satisfy all known microphysical consistency

requirements dictated by the structure of string compactifications in which ax-

ion monodromy inflation can be realized.

In the absence of oscillations, axion monodromy gives rise to a model

of large field inflation with a linear potential that is easily studied using the

slow roll expansion. The slow roll parameters εV and ηV are given by

εV =
1

2φ2
and ηV = 0 , (5.1.2)
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so that the tensor-to-scalar ratio and the scalar spectral index are

r =
8

φ2
and ns = 1− 3

φ2
. (5.1.3)

Assuming that the pivot scale left the horizon 60 e-foldings before the

end of inflation, we should evaluate these at φ = φ∗ ' 11Mpl. This leads

to a tensor-to-scalar ratio r ' 0.07 and a scalar spectral index ns ' 0.975.

After determining µ from the observed value of the scalar amplitude, one finds

that the energy scale of inflation around the time when the modes we observe

in the CMB exit the horizon is given by V 1/4 ' 7 × 10−3Mpl ' 1.7 × 1016

GeV. For completeness, the Hubble constant during inflation is then H '

2.8× 10−5Mpl ' 6.8× 1013 GeV.

5.2 Background Evolution

In this section we will study the background evolution of the inflaton

in the presence of small periodic modulations of the potential. We will focus

on modulations in axion monodromy inflation with a linear potential, but our

derivations are easily modified to account for other models with a modulated

potential. We will denote the size of the modulation by Λ4, and write our

potential as in [151],

V (φ) = µ3φ+ Λ4 cos

(
φ

f

)
= µ3

[
φ+ bf cos

(
φ

f

)]
, (5.2.1)

147



where we defined the parameter b ≡ Λ4

µ3f
. The equation of motion for the

inflaton is then1

φ̈+ 3Hφ̇+ µ3 − µ3b sin

(
φ

f

)
= 0 . (5.2.2)

To solve (5.2.2), we begin with two approximations. Monotonicity of the

potential requires2 b < 1, and as we will see in section 5.4, for the case b < 1

observational constraints in fact imply b � 1. This suggests treating the

oscillatory term in the potential as a perturbation. Furthermore, the COBE

normalization implies that φ � Mp during the era when the modes that are

observable in the cosmic microwave background exit the horizon. This allows

us to drop terms of higher order in Mp/φ.

Under these conditions, it is straightforward to solve for the evolution

of the homogeneous background. Expanding the field as φ = φ0 + bφ1 +O(b2),

the equations of motion of zeroth and first order in b become

φ̇0 = −

√
µ3

3φ0

, (5.2.3)

φ̈1 +
√

3µ3φ0φ̇1 −
µ3

2φ0

φ1 = µ3 sin

(
φ0

f

)
, (5.2.4)

1In section 2.4, we denoted the background field by φ. In this chapter we will always
work in a gauge such that δφ = 0, so that φ = φ. We will thus drop the bar and use φ to
denote the background scalar field.

2The case of non-monotonic potentials may also be interesting. On the one hand, for
sufficiently large b > 1, it may be possible to realize chain inflation [162],[163],[164] in our
model. In this scenario, the inflaton would tunnel from minimum to minimum, with the
universe expanding by less than one third of an e-fold per tunneling event. This requires
a more careful analysis, and we will leave this for future studies. On the other hand, for
b & 1 the model essentially turns into a small-field model of inflation because the inflaton
gets trapped at the peaks for a large number of e-folds. It seems hard to distinguish this
from other models of small field inflation, but it may be interesting to take a closer look at
this as well.
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where we have neglected terms of higher order in Mp/φ and we have made use

of the slow roll approximation for φ0.
3 Using equation (5.2.3), we can rewrite

equation (5.2.4) with φ0 as an independent variable instead of t, yielding

φ′′1 − 3φ0φ
′
1 −

3

2
φ1 = 3φ0 sin

(
φ0

f

)
. (5.2.5)

where primes denote derivatives with respect to φ0. For the period of interest,

in which the modes now visible in the CMB exit the horizon, it is a good

approximation to neglect the motion of φ0 everywhere except in the driving

term. The inhomogeneous solution is then given by

φ1(t) = f
6fφ∗

(2 + 3f 2)2 + 36f 2φ∗
2×[

−(2 + 3f 2) sin

(
φ0(t)

f

)
+ 6fφ∗ cos

(
φ0(t)

f

)]
, (5.2.6)

where φ∗ denotes the value of the field φ0 at the time at which the pivot

scale k∗ exits the horizon. Assuming 60 e-foldings of inflation, this happens

around φ∗ ' 11Mpl. For decay constants f obeying f & Mp/10, there is less

than one oscillation in the range of modes that are observable in the cosmic

microwave background, leading to an uninteresting modulation with very long

wavelength. We will thus make the additional assumption that f � Mp.

Assuming that φ0 � Mp and f � 1, using the slow roll approximation for

φ0(t), and working to first order in b, the solution thus becomes

φ(t) = φ0(t) + bφ1(t)

= φ0(t) + bf
3fφ∗

1 + (3fφ∗)2

[
− sin

(
φ0(t)

f

)
+ 3fφ∗ cos

(
φ0(t)

f

)]
, (5.2.7)

3In approximating sin (φ/f) ' sin (φ0/f) on the right hand side of (5.2.4), we have as-
sumed not only that b � 1 but also that bφ1/f � 1. As we will see from the solution (5.2.7),
φ1 is of order f2φ∗. Hence the mild assumption bfφ∗ � 1 justifies this approximation.
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with φ0(t) given by

φ0(t) =

[
φ3/2
∗ −

√
3

2
µ3/2(t− t∗)

]2/3

. (5.2.8)

5.3 Spectrum of Scalar Perturbations

Having understood the background evolution, we are now in a position

to calculate the power spectrum in axion monodromy inflation. One might

be tempted to do this by brute-force numerical calculation, but we find it

more instructive to have an analytic result. We will show that under the same

assumptions made in calculating the background evolution, i.e. slow roll for

φ0(t), φ0 �Mp, f �Mp, and to first order in b, the scalar power spectrum is

of the form

∆2
R(q) = ∆2

R(q∗)

(
q

q∗

)ns−1 [
1 + δns cos

(
φq
f

)]
≈ ∆2

R

(
q

q∗

)ns−1+ δns
ln(q/q∗)

cos
“

φq
f

”
, (5.3.1)

where the quantity ∆2
R(q∗) parameterizes the strength of the scalar pertur-

bations and will be introduced in detail in the next subsection. The second

equality is valid as long as δns � 1, and δns is given by

δns =
12b√

(1 + (3fφ∗)2)

√
π

8
coth

(
π

2fφ∗

)
fφ∗ , (5.3.2)

where

φq =
√
φ2
∗ − 2 ln q/q∗ ' φ∗ −

ln q/q∗
φ∗

(5.3.3)

is the value of the scalar field at the time when the mode with comoving

momentum q exits the horizon.
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In subsection 5.3.1 we will give a derivation of this result that makes no

further approximations. In subsection 5.3.2, we will present another deriva-

tions of (5.3.1) that is valid only as long as fφ∗ � 1 but that leads to a

better understanding of the relevant physical effects behind the power spec-

trum (5.3.1). Let us at this point briefly summarize the scales that will be

relevant for our discussion in the next subsections.

Given the potential (5.2.1), the time frequency of the oscillations of the

inflaton is ω = φ̇/f . This is also the time frequency of the oscillations of the

background. Perturbations around this background can be quantized in terms

of the solutions of the Mukhanov-Sasaki equation, assuming an asymptotic

Bunch-Davies vacuum. Every perturbation mode with comoving momentum

q oscillates with a time frequency q/a that is redshifted by the expansion of

the universe until the mode exits the horizon and freezes when q = aH.

Then, if H < ω < Mpl, every mode will at a certain time resonate with

the background, as stressed by Chen, Easther, and Lim in [152]. Using the

slow roll equation of motion and the COBE normalization,

3Hφ̇ ' −V ′(φ) , φ̇2 ' 2

3
εV , V ' 5× 10−7 εM4

pl , (5.3.4)

the requirement H < ω < Mpl can be re-expressed as

ω

H
'

M2
pl

φf
'
√

2ε
Mpl

f
> 1 , (5.3.5)

ω

Mpl

'
√

2εV

3

1

fMpl

< 1 , (5.3.6)

hence defining a range of values for the axion decay constant f for which

resonances occur. Using
√

2ε ' Mpl/φ∗ ' .09, we obtain 2.4 × 10−6 < f
Mpl

<

0.09. We will show in section 5.5 and section 5.6 that f falls in this range in

a class of microphysically well-controlled examples.
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Going beyond our approximations, the model also predicts a small

amount of running of the scalar spectral index, of order 10−4, from terms

of higher order in the Mp/φ expansion. Furthermore, δns develops a very mild

momentum dependence. We will neglect these effects because these will most

likely not be observable in current or near-future CMB experiments.

5.3.1 Analytic solution of the Mukhanov-Sasaki equation

We begin our study of the spectrum by choosing a gauge such that the

scalar field is unperturbed, δφ(x, t) = 0, and the scalar perturbations in the

spatial part of the metric take the form

δgij(x, t) = 2a(t)2R(x, t)δij . (5.3.7)

The quantity R(x, t) is a gauge-invariant quantity and in the case of single-

field inflation is conserved outside the horizon. It is closely related to the

scalar curvature of the spatial slices, but we will not need its precise geometric

interpretation at this point.

The translational invariance of the background and thus the equations

of motion governing the time evolution of the perturbations make it convenient

to look for solutions of the linearized Einstein equations in Fourier space. As

explained in Chapter 2, one defines

R(x, t) =

∫
d3q

(2π)3/2

[
Rq(t)e

iq·xα(q) +Rq(t)
∗e−iq·xα∗(q)

]
, (5.3.8)

where q is the comoving momentum, and q is its magnitude. The rotational

invariance of the background ensures that Rq(t) can depend only on the mag-

nitude of the comoving momentum but not on its direction. Directional de-

pendence can only be contained in the stochastic parameter α(q) that param-
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eterizes the initial conditions and is normalized so that

〈α(q)α∗(q′)〉 = δ(q− q′) , (5.3.9)

where the average denotes the average over all possible histories. With this

ansatz, the Einstein equations turn into an ordinary differential equation, the

Mukhanov-Sasaki equation, governing the time evolution of Rq(t). We will

use it in the form

d2Rq

dx2
− 2(1 + 2ε+ δ)

x

dRq

dx
+Rq = 0 , (5.3.10)

where x ≡ −qτ , with the conformal time τ given as usual by τ ≡
∫ t dt′

a(t′)
. To

evaluate Ro
q, it will again turn out to be sufficient to solve to first order in b.

We therefore expand the slow roll parameters,

ε = ε0 + ε1 +O(b2) , (5.3.11)

δ = δ0 + δ1 +O(b2) . (5.3.12)

For the background solution (5.2.7), the first-order terms are given by

ε1 = − 3bf

φ∗[1 + (3fφ∗)2]

[
cos

(
φ0

f

)
+ (3fφ∗) sin

(
φ0

f

)]
, (5.3.13)

δ1 = − 3b

[1 + (3fφ∗)2]

[
sin

(
φ0

f

)
− (3fφ∗) cos

(
φ0

f

)]
. (5.3.14)

We now consider an ansatz of the form

Rq = R(o)
q,0

[
i

√
π

2
xν0H(1)

ν0
(x) + g(x)

]
. (5.3.15)

Here the index ν0 on the Hankel function, H
(1)
ν0 (x), is given by ν0 = 3

2
+2ε0+δ0,

g(x) is a perturbation of order b, and R(o)
q,0 is the value of Rq(t) outside the

153



horizon in the absence of modulations, i.e. for b = 0. To be explicit, it is given

by4

R(o)
q,0 = ∓i

√
µ3φ3

q

6

1

q3/2
, (5.3.16)

where φq ≈ φ∗− ln q/q∗
φ∗

once again is the value of the scalar field at the time the

mode with comoving momentum q exits the horizon. The quantity of interest

to first order in b is then∣∣R(o)
q

∣∣2 =
∣∣∣R(o)

q,0

∣∣∣2 [1 + 2 Re g(0)
]
≈
∣∣∣R(o)

q,0

∣∣∣2 e2Re g(0) =
∣∣∣R(o)

q,0

∣∣∣2( q

q∗

) 2 Re g(0)
ln(q/q∗)

.(5.3.17)

Our ansatz automatically solves the equation of order b0. To first order in b

and in the slow roll parameters, the Mukhanov-Sasaki equation leads to an

equation for g(x) of the form

d2g

dx2
− 2

x

dg

dx
+ g = 2eix(2ε1 + δ1) . (5.3.18)

In writing this equation, we have dropped terms of order O(bε0, bδ0), which

amounts to setting ν0 = 3/2. Next, we notice that ε1 is suppressed relative to

δ1 by a factor f
φ∗

. Since we are interested in the regime f
φ∗
� 1, we can thus

drop the term proportional to ε1 on the right hand side of equation (5.3.18).

Furthermore, it turns out to be convenient to rewrite δ1 using trigonometric

identities. Ignoring an unimportant phase, one finds

δ1 = − 3b√
1 + (3fφ∗)2

cos

(
φ0

f

)
. (5.3.19)

It will be convenient to write φ0(x) as φ0(x) = φ∗ − ln(q/q∗)
φ∗

+ lnx
φ∗

= φq + lnx
φ∗

.

Introducing r(x) ≡ Re (g(x)), equation (5.3.18) becomes

d2r

dx2
− 2

x

dr

dx
+ r = − 6b√

1 + (3fφ∗)2
cos(x) cos

(
φq
f

+
lnx

fφ∗

)
. (5.3.20)

4As mentioned earlier, we will ignore the running of the scalar spectral index, but it may
be worth pointing out that the information about the running is contained in this formula.
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The solution to this equation can be found e.g. using Green’s functions. We

are particularly interested in the inhomogeneous solution at late times, i.e. in

the limit of vanishing x. Using more trigonometric identities, we find that the

solution in this limit can be brought into the form

r(0) =
6b|I(fφ∗)|√
1 + (3fφ∗)2

cos

(
φq
f

+ β(fφ∗)

)
, (5.3.21)

where β(fφ∗) is an unimportant phase that we will ignore, and I is the integral

I(fφ∗) =
π

2

∫ ∞

0

dxJ 3
2
(x)J− 1

2
(x)x

i
fφ∗ . (5.3.22)

Written in this form, the integral can be recognized as a Weber-Schafheitlin

integral and can be done analytically (see e.g. [146]). One finds

|I| =

√
π

8
coth

(
π

2fφ∗

)
fφ∗ . (5.3.23)

Combining equations (5.3.17), (5.3.21) and (5.3.23), we finally obtain an ex-

pression for δns,

δns =
2r(0)

cos
(
φq

f

) =
12b√

1 + (3fφ∗)2

√
π

8
coth

(
π

2fφ∗

)
fφ∗ . (5.3.24)

Once again, this derivation is valid to first order in b and assumes slow roll for

φ0(t), φ0 � Mp, and f � Mp. In particular, it makes no use of an fφ∗ � 1

expansion, although this approximation will be needed in the derivation in

subsection 5.3.2. A comparison between our analytical result for δns as a

function of fφ∗ for a fixed value of b and the result of a numerical calculation

using a slight modification of the code described in [165] is shown in Figure 5.1.
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Figure 5.1: The solid line is the analytical result for δns as a function of f , for
b = 0.08, while the dots are the numerical result obtained from an adaptation
of the code used in [165].

5.3.2 Saddle-point approximation

As we have seen in the last subsection, it is possible to calculate the

power spectrum analytically to first order in b, assuming slow roll for φ0(t),

φ0 � Mp, and f � Mp, but the derivation sheds little light on the physics

behind the results. To get a better understanding, it is instructive to look

at the integral (5.3.22) more explicitly. For this purpose, it is convenient to

separate I into its real and imaginary parts, I = Ic + iIs, with

Ic =

∫ ∞

0

dx
(sinx− x cosx) cos x

x2
cos

(
lnx

fφ∗

)
, (5.3.25)

Is =

∫ ∞

0

dx
(sinx− x cosx) cos x

x2
sin

(
lnx

fφ∗

)
. (5.3.26)

For ranges of the axion decay constant such that fφ∗ � 1, these integrals can

be done in a stationary phase approximation. Using trigonometric identities

to rewrite the products of trigonometric functions appearing in the integrands
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into sums of trigonometric functions with combined arguments, one finds that

the stationary phase occurs at x̄ = 1
2fφ∗

. Expanding around the stationary

point and performing the integral as usual, one finds to leading order in fφ∗

Ic =

√
π

8
fφ∗ sin

[
1 + ln(2fφ∗)

fφ∗
− π

4

]
, (5.3.27)

Is =

√
π

8
fφ∗ cos

[
1 + ln(2fφ∗)

fφ∗
− π

4

]
, (5.3.28)

which leads to

|I| =
√
Ic2 + Is2 =

√
π

8
fφ∗ . (5.3.29)

This agrees with our previous result, equation (5.3.23), as long as fφ∗ � 1.

We have not only reproduced our earlier results, however: we also learn that

at least for small fφ∗, the integral is dominated by a period of time around

τ̄ = − 1
2qfφ∗

. Up to the factor of two in the denominator, this corresponds to

the period when the frequency of the oscillations of the scalar field background

equals the frequency of the oscillations of a mode with comoving momentum

q.5 The stationary phase approximation thus captures a resonance between

the oscillations of the background and the oscillations of the fluctuations, and

is good as long as fφ∗ � 1, i.e. as long as the resonance occurs while the

mode is still well inside the horizon. One might suspect that this has an

interpretation in terms of particle production, and we shall make this more

precise in what follows.

Recall that our ansatz for Rq was given in (5.3.15), where g(x) is the

solution of the equation

d2g

dx2
− 2

x

dg

dx
+ g = 2eixδ1 , (5.3.30)

5This factor of two can be understood from momentum conservation.
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with δ1 again given by

δ1 = − 3b√
1 + (3fφ∗)2

cos

(
φq
f

+
lnx

fφ∗

)
, (5.3.31)

and initial conditions given by lim
x→∞

g(x) = 0 and lim
x→∞

g′(x) = 0. As we

have just learned, the effect of the driving term can be ignored long after the

resonance has occurred, i.e. for x � 1
2fφ∗

.6 This implies that at late times,

g(x) must be a solution of the homogeneous equation which can be written as

g(x) = c(+)
q

(
i

√
π

2
x

3
2H

(1)
3/2(x)

)
+ c(−)

q

(
−i
√
π

2
x

3
2H

(2)
3/2(x)

)
, (5.3.32)

where c
(±)
q are momentum dependent coefficients. The solution for equa-

tion (5.3.30) can also be written explicitly as

g(x) = (x cosx− sin x)

∞∫
x

2eiy(cos y + y sin y)

y2
δ1

+ (cos x+ x sin x)

∞∫
x

2eiy(sin y − y cos y)

y2
δ1 . (5.3.33)

For x� 1
2fφ∗

we can take the lower limit in the integrals to zero and this can

be brought into the form

g(x) =
1

2
(I2 + iI1)

(
i

√
π

2
x

3
2H

(1)
3/2(x)

)
+

1

2
(I2 − iI1)

(
−i
√
π

2
x

3
2H

(2)
3/2(x)

)
, (5.3.34)

6One should note that this is not because the driving term goes to zero, but because its
frequency becomes too high for the system to keep up with it.
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where the integrals I1 and I2 are given by

I1 = − 6b√
1 + (3fφ∗)2

∞∫
0

eiy(cos y + y sin y)

y2
cos

(
φq
f

+
lnx

fφ∗

)
,(5.3.35)

I2 = − 6b√
1 + (3fφ∗)2

∞∫
0

eiy(sin y − y cos y)

y2
cos

(
φq
f

+
lnx

fφ∗

)
.(5.3.36)

In the saddle point approximation these evaluate to

I1 = iI2 = − 6b√
(1 + (3fφ∗)2)

√
π

8
fφ∗e

−i
“

φq
f
− 1+ln 2fφ∗

fφ∗
+π

4

”
. (5.3.37)

Combining equations (5.3.15), (5.3.34), and (5.3.37), we finally find that the

curvature perturbation for x� 1
2fφ∗

takes the form

Rq = R(o)
q,0

(
i

√
π

2
xν0H(1)

ν0
(x)− c(−)

q i

√
π

2
xν0H(2)

ν0
(x)

)
, (5.3.38)

with c
(−)
q given, up to an unimportant momentum-independent overall phase,

by

c(−)
q =

6b√
(1 + (3fφ∗)2)

√
π

8
fφ∗e

−i
“

φq
f

”
. (5.3.39)

One might now interpret the coefficient c
(−)
q of the negative frequency mode

as a Bogoliubov coefficient that measures the amount of particles with co-

moving momentum q being produced while this mode is in resonance with

the background. It seems hard to make this precise as one really is comparing

mode solutions of different backgrounds rather than mode solutions of different

asymptotically Minkowski regions in the same background.

Equation (5.3.38) also shows that instead of starting in the Bunch-

Davies state and then following the mode through the resonance, one may
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start the evolution after the resonance has occurred but use a state that is

different from the Bunch-Davies state, which is similar to what is considered

in [166],[167],[153],[154],[155]. The departure from the Bunch-Davies state is

of course quantified by c
(−)
q .

5.3.3 Bispectrum of scalar perturbations

We start by reviewing how resonance can drive the production of large

non-Gaussianity during inflation, as proposed in [152]. We then present an

estimate for the size of the non-Gaussianity for the model (5.2.1).

The three-point function can be calculated as [67]

〈R(τ,q1)R(τ,q2)R(τ,q3)〉 =

− i

∫ τ

τ0

〈[R(τ,q1)R(τ,q2)R(τ,q3), HI(τ
′)]〉 a dτ ′ , (5.3.40)

where HI is the interacting part of the Hamiltonian. HI was calculated for

a generic potential (see e.g. [67],[152]) at cubic order in the perturbations; it

takes the form

HI = −
∫
d3x
[
aε2RR′2 + aε2R(∂R)2 − 2εR′(∂R)(∂χ) (5.3.41)

+
a

2
εη′R2R′ +

ε

2a
(∂R)(∂χ)(∂2χ) +

ε

4a
(∂2R)(∂χ)2

]
,

where ∂ denote space derivatives,

χ ≡ a2ε∂−2Ṙ , (5.3.42)

and we used the Hubble slow-roll parameter η ≡ ε̇/(εH) = 2(ε + δ) because

formulas in this subsection are simpler in terms of η than in terms of δ.

We would like to stress that (5.3.41) is exact for arbitrary values of the

slow roll parameters ε and η. Substituting HI into (5.3.40) produces six terms,
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plus an additional term coming from a field redefinition. For the modulated

linear potential (5.2.1), ε is small, as in standard slow roll inflation. On the

other hand, contrary to the standard slow-roll approximation, η̇ can be much

larger than ε2. This suggests that the leading term comes from the εη̇ term in

the Hamiltonian.7 Hence we have [156],[152]

〈R(t,q1)R(t,q2)R(t,q3)〉 ' i

(∏
i

ui(τend)

)
×∫ τend

−∞
dτεη′a2

(
u∗1(τ)u

∗
2(τ)

d

dτ
u∗3(τ) + sym

)
δ3(K)(2π)3 + c.c. . (5.3.44)

As in [152], we parameterize the non-Gaussianity as

〈R(τ,q1)R(τ,q2)R(τ,q3)〉 ≡
G(q1, q2, q3)

(q1q2q3)3
δ3(K) ∆4

R(2π)7 , (5.3.45)

where K = q1 + q2 + q3. We take as an ansatz for the shape of the non-

Gaussianity for our modulated linear potential

G(q1, q2, q3)

q1q2q3
= fres sin

(
2

φf
lnK + phase

)
(5.3.46)

Following [152] and comparing (5.3.44), (5.3.45) and (5.3.46), we obtain the

estimate

fres '
3 η̇1

8H
√
φf

, (5.3.47)

7In (3.9) of [67] this term was written as

φ̇2

ρ̇2
e3ρṘR2 d

dt

(
φ̈

2φ̇ρ̇
+

φ̇2

4ρ̇2

)
, (5.3.43)

which can be reduced to the term in (5.3.41) using H ′ = −φ̇2/2.
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where we have again used the notation η = η0+bη1+. . . . Using the background

solution obtained in section 5.2, it is straightforward to find

η̇1 ' 2δ̇1 ' −

√
µ3

3φ∗

6b

f [1 + (3fφ∗)2]

[
cos

(
φ0

f

)
+ (3fφ∗) sin

(
φ0

f

)]
.(5.3.48)

It is not hard to convince oneself that in the region of parameter space where

fres > 1 and b � 1, the second term in (5.3.48) is always negligible, i.e.

3fφ� 1. Hence our estimate for the non-Gaussianity is

fres '
9b

4(fφ)3/2
=

9

4
b
( ω
H

)3/2

. (5.3.49)

where we remind the reader that ω = φ̇/f . As we will often refer to this

equation, let us pause and comment on it. The resonant non-Gaussianity

vanishes when the modulation is switched off, i.e. for b = 0. It is inversely

proportional to some power of f (depending on which quantity is held fixed).

Hence the smaller the axion decay constant f , the larger the non-Gaussianity.

On the other hand, as we will see in section 5.5, there are theoretical lower (as

well as upper) bounds on f , so that the non-Gaussian signal cannot be made

arbitrarily large.

No complete analysis of the observational constraints on resonant non-

Gaussianity has been performed to date (however, see [168]), and such an

analysis is beyond the scope of the present work. Based on a rough comparison

with known shapes of non-Gaussianity, we estimate that fres & 200 might be

at the borderline of being excluded by the current data, while fres . 1 would

be difficult to detect in the next generation of experiments. A comprehensive

analysis of the detectability of resonant non-Gaussianity is a very interesting

topic for future research.
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5.4 Observational Constraints

In the last section, we derived the theoretical predictions of axion mon-

odromy inflation for the primordial power spectrum. We will now use these

predictions to compare the model with the five-year WMAP data [78]. While

the data in principle allows for a variety of statistics to be extracted, we will

limit ourselves to the most fundamental one, the angular power spectrum. The

reason for this is that the data is not now adequate for the polarization data

or the three-point correlations to place meaningful additional constraints on

the model. This will change as soon as the Planck data becomes available,

and will be an interesting problem especially given the unusual shape of the

non-Gaussianities the model predicts.

We work on a grid of model parameters. For each point on the grid, we

compute the theoretical angular power spectrum with the publicly-available

CAMB code [83]8, using the primordial power spectrum derived in the previous

section in the form

∆2
R(q) = ∆2

R(q∗)

(
q

q∗

)ns−1+ δns
ln(q/q∗)

cos
“

φq
f

+∆ϕ
”
. (5.4.1)

The likelihood for a given theoretical power spectrum is calculated with a

modified version of the WMAP five-year likelihood code that is now available

on the LAMBDA webpage.9 The power spectrum in our model contains ad-

ditional parameters beyond those of the WMAP five-year ΛCDM fit (namely,

{Ωbh
2,Ωch

2,ΩΛ, τ, ns,∆
2
R} and the marginalization parameter {ASZ}). The

additional parameters are δns, f and a phase ∆ϕ. This phase parameterizes

8The code is available at http://camb.info/. Of course, we modify it to calculate all
the multipole coefficients rather than calculating some and interpolating.

9http://lambda.gsfc.nasa.gov/product/map/dr3/likelihood get.cfm

163



both our uncertainty in the number of e-folds needed, which originates in our

poor understanding of reheating, and a microscopically determined phase off-

set in the sinusoidal modulation of the scalar potential arising in the string

theory construction.

We fix the value of the scalar spectral index ns = 0.975. As in any

model of large-field inflation, the spectral index is a prediction of the model

that depends only on the physics of reheating and, correspondingly, on the

total amount of inflation since the observable modes exited the horizon. The

value we choose corresponds to the situation in which the pivot scale exits the

horizon 60 e-folds before the end of inflation. The results turn out to be fairly

independent of the precise value chosen for the scalar spectral index and we

could have chosen the value corresponding to any number of e-folds between

50 and 60. We fix {Ωch
2,ΩΛ, τ, ASZ} to the WMAP five-year best-fit values

for the ΛCDM fit. We allow f, δns,Ωbh
2,∆ϕ to vary on the grid, and we also

marginalize over the scalar amplitude {∆2
R} in the likelihood code. To obtain

Figure 5.2, we thus marginalize over {Ωbh
2,∆2

R} and over the unknown phase

∆ϕ, while we fix {Ωch
2,ΩΛ, τ, ASZ}, as we expect at most mild degeneracies

between these parameters and the primordial ones.

The grid consists of 16 equidistantly spaced points in Ωbh
2 between

Ωbh
2 ≈ 0.0212 and Ωbh

2 ≈ 0.0266, 128 equidistantly spaced points in δns

between δns = 0 and δns = 0.44, 512 logarithmically spaced points in the

axion decay constant f between f = 9×10−5 and f = 10−1, as well as 32 points

for the phase ∆ϕ between ∆ϕ = −π and ∆ϕ = π. This leads to a grid with a

total of 33,554,432 points. The analysis was run on 64 of the compute nodes

of the Ranger supercomputer at the Texas Advanced Computing Center. The

compute nodes are SunBlade x6420 blades, and each of the nodes provides four
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AMD Opteron Quad-Core 64-bit processors with a core frequency of 2.3 GHz.

The resulting 68% and 95% contours in the δns− f plane are shown in

the left plot of Figure 5.2. To convert the resulting observational constraints

on δns as a function of f into constraints on the microscopic parameter bf as

a function of f , we make use of equation (5.3.24). The resulting 68% and 95%

contours in the bf -f plane are shown in the right plot of Figure 5.2. Roughly,

the results can be summarized as bf . 10−4 for f . 0.01 at 95% confidence

level. Our best fit point is at a rather small value of the axion decay constant,

f = 6.67× 10−4, and a rather large amplitude for the oscillations, δns = 0.17.

The fit improves by ∆χ2 ' 11 over the fit in the absence of oscillations. The

corresponding angular power spectrum is shown in Figure 5.3.
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Figure 5.2: This plot shows the 68% and 95% likelihood contours in the δns-
f , and bf -log10 f plane, respectively, from the five-year WMAP data on the
temperature angular power spectrum.

The improvement can be traced to a better fit to the data around the

first peak. We would like to stress, however, that we do not take this as an indi-

cation of oscillations in the observed angular power spectrum. Similar spikes
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Figure 5.3: The left plot shows the angular power spectrum for the best fit
point f = 6.67×10−4, and δns = 0.17. The right plot shows the angular power
spectrum for the best fit point together with the unbinned WMAP five-year
data.

in the likelihood function occur quite generally when fitting an oscillatory

model to toy data generated with the conventional power spectrum without

any oscillations, because the oscillations fit some features in the noise. The

polarization data could provide a cross check, but we find that it is presently

not good enough to do so in a meaningful way.

Let us say a few words motivating the necessity of marginalizing over

Ωbh
2 and ∆ϕ. There is a known degeneracy in the angular power spectrum

between Ωbh
2 and ns, as changing Ωbh

2 changes the ratio of the power in

the first and second acoustic peaks, which to some extent can be undone by

changing the spectral tilt ns. In our case we do not vary ns, but we add a

sinusoidal contribution to the standard power spectrum. It is intuitively clear

that by doing so we can change the ratio of power in the first and second

acoustic peak by choosing the right oscillation frequency (controlled by f) and

phase ∆ϕ, leading to a degeneracy between Ωbh
2 and δns at least for a certain

range of f .

The most straightforward way to demonstrate this degeneracy between
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Ωbh
2 and δns arising for certain ‘resonant’ values of f is to present a likelihood

plot in the Ωb-δns plane for a value of f for which the degeneracy is clearly

visible. An example is shown in the plot on the left side of Figure 5.4. It shows

that marginalizing over Ωbh
2 is necessary to obtain correct exclusion contours

on δns and f . That marginalization over the phase is necessary can easily be

0.042 0.043 0.044 0.045 0.046
ΩB

0

0.01

0.02

0.03

0.04

δ n
s

f=3 10 - 2

 - 3  - 2  - 1 0 1 2 3
Δϕ

0

0.01

0.02

0.03

0.04

0.05

0.06

δ n
s

f=1.5 10 - 2

Figure 5.4: These plots show the 68% and 95% likelihood contours for the
five-year WMAP data on the temperature angular power spectrum in the δns
- Ωbh

2 plane and δns - ∆φ plane for an axion decay constant of f = 3× 10−2

and f = 1.5× 10−2, respectively.

seen from a likelihood plot in the δns-∆ϕ plane. This is shown in the plot on

the right side of Figure 5.4.

We have also performed a Markov chain Monte Carlo analysis for the

model using the publicly available CosmoMC code [148].10 While the Monte

Carlo has the advantage that it is less computationally intensive than a grid

10http://cosmologist.info/cosmomc/
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when varying all cosmological parameters, the likelihood function for oscilla-

tory models turns out to be rather spiky, making the Monte Carlo hard to set

up, because the chains tend to get trapped in the spikes.
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Figure 5.5: This figure shows a triangle plot for some of the parameters that
were sampled in a Markov chain Monte Carlo for an axion decay constant of
f = 10−2. The contours again represent 68% and 95% confidence levels.

To some extent this can be overcome by taking out the problematic re-
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gions or increasing the temperature of the Monte Carlo. When run on parts of

the parameter space where the Monte Carlo runs reliably, we found agreement

with the grid-based results shown above.

The most problematic direction to sample is that of the axion de-

cay constant, f . We show the result of one of our chains for f = 0.01 in

Figure 5.5. The plot shows marginalized one-dimensional distributions and

two-dimensional 68% and 95% confidence level limits for the most important

ΛCDM parameters as well as δns and ∆φ. In the Monte Carlo, we sampled the

parameters δns, ∆φ, all parameters of the ΛCDM except the scalar spectral

index, as well as the Sunyaev-Zel’dovich amplitude.

5.5 Microphysics of Axion Monodromy Inflation

In section 5.1 we briefly reviewed the properties of axion monodromy

inflation, focusing on the description in effective field theory. For a general

characterization of the signatures of the scenario, the phenomenological model

of section 5.1 was sufficient. However, the phenomenological parameters f, µ,Λ

are in principle derivable from the data of a string compactification, and as

such they obey nontrivial microscopic constraints: the ranges and correlations

of these parameters are restricted by microphysics.

We should therefore determine the values of the phenomenological pa-

rameters allowed in consistent, computable string compactifications. We will

begin by reviewing the string theory origin of axion monodromy inflation, both

to set notation and to highlight the properties most relevant in constraining

the parameters f, µ,Λ. For concreteness we will restrict our attention to a spe-

cific realization of the scenario, in O3-O7 orientifolds of type IIB string theory,

with the Kähler moduli stabilized by nonperturbative effects. Our considera-
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tions could be generalized to other compactifications, but the numerical results

would differ.

5.5.1 Axions in string theory

Let us first review the origin of the relevant axions. Our conventions

and notation are summarized in appendix A.1. Consider type IIB string theory

compactified on an orientifold of a Calabi-Yau threefoldX. Let the forms ωI be

a basis of the cohomologyH2(X,Z), normalized such that
∫

ΣI
ωJ = δ J

I (2π)2α′,

where ΣI are a basis of the dual homology H2(X,Z). The RR two-form C2

gives rise to a four-dimensional axion via the ansatz11

C2 =
1

2π
cI(x)ω

I , (5.5.1)

where x is a four-dimensional spacetime coordinate. The ten-dimensional

Einstein-frame action [169] that follows is∫
d10x

gs
√
−gE

2(2π)7α4
|dC2|2 =

∫
d10x

gs
√
−gE

12(2π)9α4
gµνE ∂µcI∂νcJω

I
ijω

J
i′j′g

ii′

E g
jj′

E .(5.5.2)

Notice that the axions only have derivative couplings, and hence enjoy a con-

tinuous shift symmetry at the level of the classical action. In subsection 5.5.2.3

we will recall the origin of this symmetry and explain how it persists to all

orders in perturbation theory and is broken by nonperturbative effects.

Upon dimensional reduction, one finds a relation between the four-

dimensional reduced Planck mass Mpl and α,

αM2
pl =

VE
π
, (5.5.3)

11The factor of 2π is introduced so that the four-dimensional axions cI have periodicity 2π,
as can be seen via S-duality from the world-sheet coupling i

∫
B2/(2πα). Notice that in our

conventions C2 and ωI have the dimensions of length-squared, while cI are dimensionless.
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where VE is the Einstein-frame (dimensionless) volume of the Calabi-Yau X

measured in units of ls ≡ 2π
√
α. The decay constant of the canonically nor-

malized axion is then

f 2

M2
pl

=
gs

48π2VE

[∫
ω ∧ ∗ω

(2π)6α3

]
. (5.5.4)

The present definition of the axion decay constant differs by a factor of 2π

from that in [151], i.e. fhere = 2πf there. As a consequence our canonically

normalized axion has periodicity 2πf , consistent with (5.2.1).

5.5.2 Dimensional reduction and moduli stabilization

5.5.2.1 Four-dimensional data of O3-O7 orientifolds

Now we consider how to stabilize the compactification in a setup that

will allow inflation. We focus on the KKLT scenario for moduli stabiliza-

tion [170]. We assume that the complex structure moduli, the dilaton, and

any open string moduli have been stabilized at a higher scale, and we con-

centrate on the remaining closed string moduli (specifically, the remaining

moduli are those descending from hypermultiplets). The N = 1 supersym-

metric four-dimensional theory resulting from dimensional reduction of type

IIB orientifolds was worked out in detail in [171]. We are interested in ori-

entifold actions under which the holomorphic three-form Ω of the Calabi-Yau

manifold is odd, so that the fixed-point loci are O3-planes and O7-planes. The

cohomology decomposes into eigenspaces of the orientifold action,

H(r,s) = Hr,s
+ ⊕Hr,s

− . (5.5.5)

We therefore divide the basis ωA, A = 1, . . . , h1,1 into ωα, α = 1, . . . h1,1
+ and

ωa, a = 1, . . . h1,1
− . Working out the sign of the orientifold action on the physical
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fields, one finds that the two-forms C2 and B2 are odd, and should be expanded

in terms of the ωa. Grimm and Louis [171] have derived the Kähler coordinates

on the corresponding moduli space, i.e. the proper complex combinations of

fields that appear as the lowest components of chiral multiplets:12

Ga ≡ 1

2π

(
ca − i

ba

gs

)
(5.5.6)

Tα ≡ iρα +
1

2
cαβγv

βvγ +
gs
4
cαbcG

b(G− Ḡ)c (5.5.7)

where ρα comes from the RR four-form C4 integrated over some orientifold-

even four-cycle Σα, with α = 1, . . . , h1,1
+ ; and ca and ba come from the RR and

NS-NS two-forms C2 and B2 integrated over some orientifold odd two-cycle

Σa with a = 1, . . . , h1,1
− . The tree-level Kähler potential is given by13

K = log
(gs

2

)
− 2 logVE (5.5.8)

where the (dimensionless) Einstein-frame volume VE of the Calabi-Yau man-

ifold is defined in (A.1.4). The dependence of this Kähler potential on the

multiplets (5.5.6) and (5.5.7) cannot be written down explicitly for a generic

choice of the intersection numbers cIJK . The implicit dependence is given by

writing the (Einstein-frame) volume in terms of two-cycle volumes vα

K = log
(gs

2

)
− 2 log

[
1

6
cαβγv

α(T,G)vβ(T,G)vγ(T,G)

]
. (5.5.9)

Then one has to solve (5.5.7) for vα and substitute the result into the above

Kähler potential. The Kähler potential is a function of VE, and hence is a

12We use the same notation as [171] with two exceptions: we rescale Tα as There
α =

(2/3)T there
α , and we add a factor of (2π)−1 in the definition of Ga such that the fields ca

and ba have periodicity 2π. See appendix A.1 for more details on our conventions.
13We assume that the axio-dilaton τ = C0+ie−φ is already stabilized by fluxes at τ = i/gs

and we write down the dilaton-dependent part of the Kähler potential only to keep track of
factors of gs.
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function of vα, and in turn of τα ≡ ReTα and ImG, but does not depend on

ReG and ImTα (as can be seen by taking the real part of (5.5.7)). One might

be tempted to conclude that c enjoys a shift symmetry but that b does not,

but, as we will explain in subsection 5.5.2.3, both fields have shift symmetries.

The tree-level superpotential W0 does not depend on the multiplets

(5.5.6) and (5.5.7). In fact it depends on the complex structure moduli and

the dilaton, which we assume have already been stabilized by fluxes. Therefore

we will take W0 to be a discretely tunable constant.

5.5.2.2 Nonperturbative stabilization of the Kähler moduli

Let us now proceed to consider nonperturbative effects. We follow

the KKLT strategy [170] for the construction of a de Sitter vacuum. We

assume that each four-cycle Tα is wrapped either by a Euclidean D3-brane

or by a stack of D7-branes giving rise to a four-dimensional gauge theory

that undergoes gaugino condensation.14 This results in the following four-

dimensional superpotential:

W = W0 +

h1,1
+∑

α=1

Aαe
−aαTα , (5.5.10)

where Aα will be treated as constants, as they depend on the complex structure

moduli, which we have assumed to be stabilized; aα ≡ 2π/Nα, with Nα the

number of D7-branes in the stack; and Nα = 1 for the case of a Euclidean D3-

brane. We can find a supersymmetric minimum by solving for the vanishing

14In general, Euclidean D3-branes or D7-branes will wrap some linear combinations T̃α of
the cycles appearing in (5.5.7), rather than the basis cycles Tα themselves, but for simplicity
we will suppress this issue.
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of all the F-terms: for the h1,1
+ even Kähler moduli via

0 = DαW ≡ ∂TαW +W∂TαK = −Aαaαe−aαTα − 2W
∂TαVE
VE

= −Aαaαe−aαTα −W
vα

2VE
, (5.5.11)

and for the h1,1
− odd moduli via

0 = DaW ≡ ∂GaW +W∂GaK = −iW cαacv
αbc

4πVE
(5.5.12)

where in both cases in the last step we used the chain rule and the definitions

of Ga and Tα in terms of two-cycle volumes vα. The condition (5.5.11) is

simplified if we first solve for ImTα, which gives

aαImTα = θAα − θW0 + kαπ , kα ∈ Z . (5.5.13)

Then we are left with the set of real equations for each α,

(±1)α|Aα|aαe−aατα = ∂TαK

(
|W0|+

∑
β

(±1)α|Aβ|e−aβτβ

)
, (5.5.14)

where (±1) depends on the value of k in (5.5.13). As long as the orientifold-

even four-cycle Kähler moduli are defined as in (5.5.7), then

∂TαK = −vα/(2VE) < 0 , (5.5.15)

for every α. Now we prove that in (5.5.14) the minus sign has to be chosen

for every α in order to have a supersymmetric solution. First we notice that

the sign of the right hand side does not depend on α, so kα and hence (±1)α

have to be the same for every α. If we choose the positive sign in (5.5.14),

the quantity in brackets in the right hand side is manifestly positive. Then

the two sides of the equation have opposite signs and no (compact) solution
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exists. To summarize, the minimization of ImTα boils down to taking all Aα

real and negative and W0 real and positive or the other way around.15

Concerning (5.5.12), an obvious solution is given by ba = 0 for every a.

As argued in [151], an inflationary model with a b-type axion as the inflaton

will generically suffer from an eta problem, and we will therefore focus on a

c-type axion.

5.5.2.3 Nonperturbative breaking of axionic shift symmetries

Axionic shift symmetries are central to this chapter, so we will now

explain how they originate and how they are ultimately broken by nonper-

turbative effects. First, let us recall the classic result [172],[173] establishing

the shift symmetry to all orders in perturbation theory. Consider the axion

b =
∫

Σ
B/(2πα), where B is the NS-NS two-form potential and Σ is a two-cycle

in the Calabi-Yau manifold. The vertex operator representing the coupling of

b to the string worldsheet is [172]

V (k) =
1

2πα′

∫
Σ

d2ξ exp
(
ik ·X(ξ)

)
εαβ∂αX

µ∂βX
νBµν(X) . (5.5.16)

At zero momentum, this coupling is seen to be a total derivative in the world-

sheet theory. Therefore, the axion b can only have derivative couplings (which

vanish at zero momentum), to any order in sigma-model perturbation theory.

Notice that the genus of the worldsheet did not enter in this argument, so the

axion shift symmetry is also valid to all orders in string perturbation theory.

15We notice that if one chooses as Kähler variable a linear combination of the Tα defined in
(5.5.7), as is done e.g. in the large volume scenario with Swiss-cheese Calabi-Yau manifolds,
then the sign of ∂Tα

K can depend on α. In this case, the minimization of Im Tα boils down
to taking W0 real and positive and Aα real with Sign(Aα) = Sign(∂Tα

K), up to multiplying
W by an overall phase.
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This argument fails in the presence of worldsheet boundaries (i.e., D-

branes), and also fails once worldsheet instantons, or D-brane instantons, are

included. In axion monodromy inflation, both sorts of breaking play an im-

portant role, as we shall now explain.

First, the introduction of an NS5-brane wrapping a curve Σa creates

a monodromy for the axion ca, spoiling its shift symmetry and inducing an

asymptotically linear potential [151]. Specifically, the potential induced by the

Born-Infeld action of the NS5-brane (obtained by S-dualizing the Born-Infeld

action of a D5-brane) is

V (ca) =
ε

gs(2π)5α2

√
`4 + (2πgsca)2 , (5.5.17)

where `
√
α is the size of Σa and ε captures the possibility of suppression due

to warping. For ca � 1, this potential is linear in ca, or in the corresponding

canonically normalized field, which we denoted by φ in the preceding sections.

Let us remark that the square root form of the potential can be important at

the end of inflation and also makes a small change in the number of e-foldings

produced for given parameter values, so that in a model that includes a specific

scenario for reheating, the square root structure should be incorporated as

well. As we have not invoked a concrete reheating scenario, for our purposes

the linear potential suffices, but one must still bear in mind that this form is

not valid for small φ.

As we will explain in detail, the D-brane instantons involved in moduli

stabilization introduce sinusoidal modulations to the linear potential. We will

work exclusively in a regime in which the breaking by wrapped branes domi-

nates over the nonperturbative breaking, although we remark in passing that

the complementary regime might be interesting for realizing models involving

repeated tunneling.
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The breaking of the b shift symmetry by Euclidean D-branes (or by

gaugino condensation on D7-branes) is slightly subtle, so we will address it

briefly. As we remarked above, b appears quadratically in the classical Kähler

potential, which seems to contradict the statement that it enjoys a shift sym-

metry at the perturbative level in the absence of boundaries. However, there is

no contradiction: the shift symmetry of b is true at constant two-cycle volumes

v and not at constant four-cycle volumes T . To see this, suppose that there is

a single Kähler modulus T , so that the superpotential is of the form (5.5.10)

with h1,1
+ = 1. The Kähler potential is then [171]

K = −3M2
p log (T + T̄ − d b2) , (5.5.18)

with d a constant. In the absence of a nonperturbative superpotential, a

suitable simultaneous shift of T + T̄ and b is a symmetry of the scalar potential

of this system; under such a shift, the two-cycle volumes v are invariant.

However, this symmetry is spoiled by the nonperturbative term in W , because

the superpotential and the scalar potential are no longer invariant. Therefore,

in a scenario in which the four-cycle volumes are stabilized nonperturbatively,

the b axion receives a mass in a stabilized vacuum.

At this stage the mass-squared m2
b of b is proportional to the vacuum

energy and hence is negative in the supersymmetric AdS minimum. The min-

imum of the potential will be the final point of the inflationary dynamics, and

hence we would like it to have a very small positive cosmological constant to

be consistent with the current accelerated expansion of the universe. Thus, we

need to include an uplifting term. In the uplifted minimum, m2
b ∝ VdS > 0.

This relation is the origin of the eta problem that was found in [151] choosing
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b as an axion: for a generic uplifting,16 V ′′(b) ∼ V (b), so that η ∼ O(1) and

slow roll inflation does not take place. This is completely analogous to the eta

problem of D-brane inflation found in [175] and can be intuitively understood

in the same way. Here we will take b = 0 as the stabilized value 17 of b and

concentrate on c as a candidate inflaton.

Let us now turn to consider c, which does not appear in the Kähler

potential or superpotential at any order in perturbation theory. To assess c as

an inflaton, one should determine the leading nonperturbative effects, either

in the superpotential or in the Kähler potential, that do introduce a poten-

tial for c, i.e. one should identify the leading breaking of the shift symmetry.

Euclidean D3-branes carrying vanishing D1-brane charge do not induce a po-

tential for c, but Euclidean D3-branes supporting worldvolume fluxes (and

hence nonvanishing D1-brane charge) give rise to a dependence on c, via the

Chern-Simons coupling
∫
F2 ∧ C2. As observed in [151], it follows that when

the Kähler moduli are stabilized by Euclidean D3-branes, c receives a mass in

the stabilized vacuum: one must sum over Euclidean D-brane contributions to

the superpotential, including summing over the amount n =
∫
F2 of magneti-

zation, and this generically introduces an eta problem for c. The solution, as

explained in [151], is to stabilize the Kähler moduli via gaugino condensation

on D7-branes, which leads to an exponentially smaller (and hence negligible)

mass for c.

16Notice that the proportionality constant in m2
b ∝ VdS depends on the volume-

dependence of the uplifting term and could be made small for particular choices of the
latter as proposed in [174].

17It is easy to check that b = 0 is still the stabilized value after the inclusion of nonper-
turbative corrections to the Kähler potential, cf. subsection 5.6.5.
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5.5.3 Axion decay constants in string theory

We now turn to the important task of expressing the axion decay con-

stant, f , in terms of the data of a compactification. As we reviewed in sub-

section 5.5.1, the decay constant of an axion C2 = c(x)ω/(2π) is given by

f 2

M2
pl

=
gs

48π2VE

[∫
ω ∧ ∗ω

(2π)6α3

]
, (5.5.19)

so that the primary task is to compute the norm
∫
ω ∧ ∗ω. (This problem

has been studied in a wide range of examples in [176].) We will first recall,

in subsubsection 5.5.3.1, how to express the axion kinetic term, and hence

also the axion decay constant, in terms of N = 1 data. This will lead us to a

simple expression for the decay constant in terms of intersection numbers of the

Calabi-Yau. We will then propose a class of models in which the decay constant

is rather small, motivated by the fact that with other parameters held fixed,

decreasing f increases the amplitude of the resonant non-Gaussianity. Next,

in subsubsection 5.5.3.2, we will present a concrete example that illustrates

the geometry of a configuration that leads to small f .

5.5.3.1 Decay constants in terms of N = 1 data

In subsubsection 5.5.2.1 we have reviewed, following [171], the four-

dimensional N = 1 description of Type IIB O3-O7 orientifolds. The multiplets

relevant for us are the orientifold-odd chiral multiplets Ga and the orientifold-

even chiral multiplets Tα. The tree-level Kähler potential given in (5.5.9)

determines the kinetic terms for Ga and hence the decay constants of the

axions ba and ca. First let us notice that the Kähler metric in the space of the

chiral multiplets Tα and Ga factorizes in two blocks, KTαT̄β
and KGaḠb . The

reason is that off-diagonal terms such as KTαḠa are proportional to intersection
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numbers cαβa with one odd index and two even indices, which are forbidden

by the orientifold action [171]. We are interested in one particular mode from

among the Ga, which we will denote by G−; Σ− is then the orientifold-odd

two-cycle that supports our candidate inflaton c−. We now choose a basis for

Ga such that KGaḠb is block diagonal with a 1× 1 block KG−Ḡ− . The kinetic

term for c− is then given by

−1

2
f 2
(
∂c−

)2
= M2

plKG−Ḡ−
1

(2π)2

(
∂c−

)2 ⊂M2
plKG−Ḡ−

∣∣∂G−∣∣2 , (5.5.20)

where

KG−Ḡ− =
∂2K(G, T )

∂G−∂Ḡ− = −gs
cα−−v

α

4VE
, (5.5.21)

and we used

cαβγv
βvγ = 2τα + gs cαbc ImGb ImGc . (5.5.22)

Hence we can express the decay constant of the axion c− as

f 2

M2
pl

=
gs
8π2

cα−−v
α

VE
. (5.5.23)

As promised, we have expressed the norm
∫
ω∧∗ω in terms of the intersection

numbers ∫
ω ∧ ∗ω

(2π)6α3
=

2

3
cα−−v

α . (5.5.24)

In subsection 5.6.4 we will discuss the constraints that follow from the re-

sult (5.5.23). First, in the following subsection we provide some geometrical

intuition for (5.5.23).
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5.5.3.2 An example: a complex plane of fixed points

An instructive example arises from considering an orbifold that is lo-

cally C2/Z2×C, i.e. an Eguchi-Hanson space fibered over a base Σ of complex

dimension one. Let ω be the two-form dual to the blowup cycle of the orb-

ifold, and let Σ be the two-manifold of fixed points, i.e. the base over which

the Eguchi-Hanson space is fibered.18 We are interested in the decay constant

of the axion C2 = 1
2π
c(x)ω, so we must compute

∫
ω ∧ ∗ω. In the local ap-

proximation, this is straightforward, as we shall see. However, far from the

fixed-point locus, the fiber may deviate substantially from the Eguchi-Hanson

geometry, in a complicated and model-dependent way, and moreover the fixed-

point locus Σ may be embedded in the compact space in a nontrivial manner.

Happily, the integral
∫
ω ∧ ∗ω has its primary support near the fixed-point

locus, where the local approximation is excellent.

We recall, following the useful summary in Appendix B of [177], that

the Eguchi-Hanson space has a unique homology two-cycle of radius a/2, where

r = a defines the location of the coordinate singularity; here r is the standard

radial coordinate. The two-form ω corresponding to this cycle may be written

ω = 2πα
a2

r2

(dr
r
∧ dψ + cos θ

dr

r
∧ dφ+

1

2
sin θ dθ ∧ dφ

)
(5.5.25)

in terms of r and the angular coordinates ψ, θ, φ. By observing that ∗4ω = −ω
and that

∫
ω ∧ ω = −(2π)4α2/2, one finds∫

EH
ω ∧ ∗4ω

(2π)4α2
=

1

2
. (5.5.26)

18Concretely, we are imagining that Σ extends into a warped throat region, and that an
NS5-brane wraps the blowup cycle at a particular location in the throat. The warping is
invoked in order to suppress the energy density of the wrapped NS5-brane. See [151] for
further details, and for an example of a suitable orbifold action in a Klebanov-Strassler
throat.
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Clearly, given the form of ω, this integral has its support in a region a ≤ r .

few × a. This justifies the local approximation as long as the compact space

has a radius that is large compared to a. Next, we observe that∫
ω ∧ ∗6ω

(2π)6α3
=

∫
EH

d4xω ∧ ∗4ω

(2π)4α2
×
∫

Σ

√
g

(2π)2α
=

1

2
Vol(Σ) (5.5.27)

Substituting this in (5.5.19), we recover the parametric scaling of subsubsection

5.5.3.1.

5.6 Microscopic Constraints

We now turn to determining the ranges of our phenomenological pa-

rameters that are allowed in a consistent and computable microphysical model.

Let us first remark that, as usual in string theory model building, com-

putability imposes stringent constraints on the compactification parameters.

Because large-field inflation involves substantial energy densities and requires

correspondingly steep moduli barriers, the compact space needs to be reason-

ably small, so that the Kaluza-Klein scale and the (necessarily lower) scale

of moduli masses can be large enough to prevent runaway moduli evolution.

Clearly, one must then carefully check that the compactification is still large

enough for the supergravity approximation to be valid; furthermore, back-

reaction of the inflationary energy on the compact space is a serious issue,

particularly when this space is not large in string units. Incorporating these

requirements then leads to severe restrictions on the allowed values of the

decay constant f .

We will begin in subsection 5.6.1 by considering the constraints from

computability, then give, in subsection 5.6.2, a qualitative description of the
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constraints from backreaction, deferring details to appendix B. Next, in sub-

section 5.6.3, we will verify that a two-derivative action suffices to describe

this system. This is not obvious, as rapid oscillations in the potential could

enhance the importance of generic higher-derivative terms; however, we will

show that the specific terms emerging from string theory are negligible in our

solution. We then apply these constraints in subsection 5.6.4 to determine

the range of the decay constant f . Finally, we estimate the size bf of the

modulations; as this is rather model-dependent, in subsection 5.6.5, we will

restrict our attention to a specific example in which a periodic contribution is

generated by Euclidean D1-brane corrections to the Kähler potential.

5.6.1 Constraints from computability

In this subsection we will list several constraints coming from the consis-

tency of the string theory setup. We will first require the validity of the string

and α perturbation expansions, and the validity of neglecting higher-order cor-

rections to the nonperturbative superpotential, and then we will require that

the inflaton potential does not destabilize the compactification.

First of all we require the validity of string perturbation theory, i.e.

we require gs � 1. We must also ensure the validity of the α expansion.

To do this including a reasonable estimate of numerical factors such as 2π,

it is convenient to use worldsheet instantons as a proxy for perturbative α

corrections, because the normalization is easily determined. To get the correct

coefficient, we start from the string-frame ten-dimensional metric gstring and

impose that the worldsheet instanton action obeys e−SWS . e−2, or

1

2πα′

∫
√
gstring & 2 , (5.6.1)
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which using gstring = gEinstein
√
gs is converted to Einstein frame

2 <

√
gs

2πα

∫
Σα

J =
√
gsv

α2π ⇒ vα >
1

π
√
gs
, (5.6.2)

and we used that
∫

Σα ω
β = (2π)2αδ β

α .

As we invoked nonperturbative corrections to the superpotential, we

must also require that any further superpotential corrections, e.g. from multi-

instantons, are negligible. For this purpose it suffices to impose

e−aαTα < e−2 � 1 ⇒ τα >
Nα

π
. (5.6.3)

Additional constraints come from the moduli stabilization process. To use the

single-field inflationary analysis we have developed in section 5.2 and section

5.3, we need to require that the uplifted minimum is only slightly perturbed

by the inflationary dynamics. In particular, the linear potential that we have

represented as µ3φ actually depends on the compactification volume, and hence

shifts the minimized value of the volume. In four-dimensional Einstein frame,

the leading term in the inflaton potential is

V (φ,VE) ≈
(
〈VE〉
VE

)2

µ3φ (5.6.4)

where 〈VE〉 is the expectation value of the volume. To ensure that the resulting

contribution to the potential for the volume is unimportant, we will insist that

the inflaton potential induced by the NS5-brane, V (φ), is smaller than the

moduli potential Umod.

At the supersymmetric minimum we have

VAdS = −gs
2

3|W |2

V2
E

. (5.6.5)
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Without specifying the details of the uplifting mechanism, we assume that an

uplifting to a small and positive cosmological constant is possible, and that the

height of the potential barrier Umod that separates the uplifted minimum from

decompactification is of the same order as Umod ∼ |VAdS|. Now, the COBE

normalization tells us that

V (φCMB) = ε ( 0.027Mpl)
4 ' 2.4× 10−9M4

pl . (5.6.6)

Hence we obtain the constraint

gs
2

3|W |2

V2
E

= |VAdS| ' Umod � 2.4× 10−9M4
pl . (5.6.7)

To extract a useful form of the above constraints, let us substitute for

W the solution of any of the equations (5.5.11)

W = +|Aα|aα e−aατα
2VE
vα

, (5.6.8)

with no sum over α. We will also assume |Aα| ∼ 1 (see [151] for a discussion

of this point). After some manipulations we find

τα � −Nα

2π
log

(
Nα10−5 vα

π
√
gs

)
, (5.6.9)

again with no summation over α. Finally, we should limit the number of D7-

branes in each stack; although there plausibly exist examples with Nα quite

large, we will impose Nα ≤ 50. This gives us

τα � 73− 8 log

(
vαπ

√
gs

2gs

)
. (5.6.10)

We notice that vα(π
√
gs) > 1 was the condition in (5.6.2) that enabled us to

neglect α corrections, so that as long as gs 6 0.5 the second term on the right

hand side of (5.6.10) is negative.
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5.6.2 Constraints from backreaction on the geometry

Another important constraint comes from the requirement that the

backreaction of the inflationary energy density on the compact space is small.

In this section we will give a qualitative description of the problem and will

briefly sketch a model-building solution; the interested reader is referred to

appendix B for a more complete treatment.

At the time that the CMB perturbations are produced, the inflaton has

a large vev in Planck units, φ ∼ 11Mpl, corresponding to a configuration of

the two-form potential threading the two-cycle Σ− of the form

1

(2π)2α′

∫
Σ−

C2 ≡ Nw =
φ

2πf
� 1 (5.6.11)

In the absence of an NS5-brane wrapping Σ, there would be no energy stored

in this configuration, as C2 enjoys a shift symmetry. However, inflation is

driven by the substantial energy stored in this system by the Born-Infeld

action of the wrapped NS5-brane. Moreover, there is a corresponding D3-

brane charge induced by the Chern-Simons coupling
∫
C2 ∧C4. Note that the

net induced D3-brane charge in the total compactification is zero, as required

by Gauss’s law, because we have arranged for an additional, tadpole-canceling

NS5-brane that wraps a distant cycle Σ′
− homologous to Σ−, but does so with

opposite orientation. Therefore, the Chern-Simons coupling induces a dipole

configuration of D3-brane charge, with F5 flux lines stretching from Σ− to Σ′
−.

It is essential to ensure that the inflationary energy, which is effectively

localized in the compact space in the vicinity of the wrapped NS5-brane, does

not substantially correct the remainder of the compact geometry. Heuristically,

one can imagine that the increased tension of the NS5-brane, as well as the

induced charge, is represented by Nw D3-branes dissolved in the NS5-brane.
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We must therefore estimate the effect of Nw D3-branes in a warped throat

(recall that we have situated each wrapped NS5-brane in a warped region in

order to suppress its energy density below the string scale, as required e.g. by

the COBE normalization). Clearly, this backreaction will be reasonably small

if Nw � N , with N the D3-brane charge of the background throat.

However, we must be careful about the effect of even a modest dis-

tortion of the geometry on the moduli stabilization and therefore on the four-

dimensional potential. Let us first recall that in scenarios of D3-brane inflation

in nonperturbatively-stabilized vacua, even a single D3-brane moving slowly

in a throat can affect the warp factor, and correspondingly the warped vol-

umes of four-cycles bearing nonperturbative effects, to such a degree that this

interaction is the leading contribution to the inflaton potential [178],[179].

This sensitivity originates in two facts: first, D3-branes perturb the

warped metric in a manner that is not suppressed by the background warp

factor at the location of the D3-branes, because D3-branes are BPS with re-

spect to a throat generated by D3-brane charge, and hence their contributions

to the metric may simply be superposed on the background. Second, nonper-

turbative effects on a four-cycle are exponentially sensitive to changes in the

four-cycle volume. Both these facts appear threatening for a situation such

as ours in which the moduli are stabilized nonperturbatively and substantial

D3-brane charge is induced in a throat: one can anticipate that as inflation

proceeds and the D3-brane charge diminishes, the four-cycle volume changes,

leading to an unanticipated, and possibly steep, contribution to the inflaton

potential.

To understand this concretely, we will first consider a simpler system:

an anti-D3-brane in a warped throat generated byN D3-branes, or equivalently
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a warped throat generated byN−1 D3-branes, together with a brane-antibrane

pair. Furthermore, from the result of [180] one learns that at long distances,

the effect of the brane-antibrane pair on the supergravity solution is strongly

suppressed by the warp factor at the location of the pair, i.e. at the tip of

the throat. In contrast, the effects of D3-branes are not suppressed in this

manner. Therefore, for the purpose of computing perturbations to the bulk

compact space, we may replace an anti-D3-brane in a warped throat generated

by N D3-branes with a warped throat generated by N − 1 D3-branes, up to

exponentially small corrections.

Equipped with this approximation, we may represent the configuration

of interest as follows: two warped throats, carrying the charge of N1, N2 D3-

branes respectively, are perturbed to N1 + Nw, N2 − Nw by the inclusion of

the NS5-brane in (say) the first throat, and the anti-NS5-brane in the sec-

ond throat. Here we are ignoring the warping-suppressed correction indicated

above, and we are approximating the NS5-branes by the D3-brane charge and

tension that they carry, which is an excellent approximation for Nw � 1.

Other effects due to the NS5-brane that do not depend on its induced D3-

brane charge, i.e. on its world-volume flux, are independent of the inflaton

and hence do not correct its potential. One can now easily see that the volume

of a four-cycle at a generic location in the compact space will be corrected by

the inclusion of the NS5-branes. If the four-cycle happens to enter one or

both throats, the change in the volume is easily computed, and is seen to be

substantial (cf. appendix B).

To control this problem, we situate the NS5-brane and the anti-NS5-

brane, together with the family of homologous cycles connecting them, in a

single warped region. The idea is that from the bulk of the compact space, the
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NS5-brane configuration will appear to be a distant dipole whose net effect,

integrated over a four-cycle, averages out to be small. This setup allows us

to parametrically suppress the backreaction by a small factor given by the

ratio of the dipole length, i.e. the distance between two NS5-branes, to the

distance between the NS5-branes and the four-cycle in question. This small

factor comes in addition to the suppression by the small ratio Nw/N .19

In appendix C we give more details about the above setup. We show,

through two explicit models of increasing complexity, the robustness of the

above suppression mechanism.

5.6.3 Constraints from higher-derivative terms

The analysis presented thus far has used the two-derivative action,

which is an approximation with a limited range of validity. In general, one

expects an infinite series of higher-derivative terms, possibly including mul-

tiple derivatives as well as powers of the first derivative. Our background

solution involves rapid oscillations, so it is reasonable to ask whether these

high frequencies enhance the role of higher-derivative terms and render the

two-derivative approximation invalid. To check this, one should evaluate the

higher-derivative terms on the solution and compare to the two-derivative ac-

tion. We will now show that the two-derivative approximation is valid in the

scalar sector; analogous considerations apply to the gravitational action.

Rather than write down the most general higher-derivative corrections

to the scalar sector, we give here the terms that end up being present in the

19A further suppression can be achieved with a carefully-chosen embedding of the four-
cycle, e.g. one that is symmetric with respect to the two NS5-branes. However, this requires
fine-tuning, whereas the dipole suppression on which we have focused is parametric.
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string theory examples. In string theory, we can directly compute the leading

higher-derivative terms in the action for b, extending the result to c using

S-duality. To get the leading terms, one considers the α′3 corrections to the

effective action due to Gross and Sloan [181] (at the four-point level) and

Kehagias and Partouche [182] (up to the eight-point level). These corrections

are of the same lineage as the famous Riemann4 term, but involve NS-NS

three-form flux. This yields corrections to the axion kinetic terms. Following

[182], the ten-dimensional Einstein-frame action including the leading (α′3)

corrections is

S10D,E =
1

(2π)7α′4

∫
d10x

√
gE

(
RE −

1

12gs
HKMNH

KMN

+
ζ(3)

3× 26
g−3/2
s α′3R̄4 + . . .

)
. (5.6.12)

where

R̄ PQ
MN = R PQ

MN +
1

2
g−1/2
s ∇[MH

PQ
N ] − 1

4
g−1
s H

C[P
[M H

Q]
N ]C + . . .(5.6.13)

and the square brackets are defined without the combinatorial factor 1/2 in

front. Hence, the terms that are relevant for our axion at order α′3 are propor-

tional to H8 and (∇H)4. To estimate the importance of these terms, we will

consider a special case in which the internal space is a T 2×T 4, with the NS-NS

two-form field only along the T 2 directions 8 and 9, i.e. B89 = −B98 = b. Fur-

thermore, since the background dynamics involves large frequencies but not

large spatial gradients, we are primarily interested in terms containing only

time derivatives, and can therefore take b to be homogeneous in the noncom-

pact spatial directions. In this special case, making use of (2.13) in [181], and

using S-duality to determine the action for c from that for b, we find that after
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dimensional reduction the corrected action for c is

S4D =

∫
d4x

[
−M2

p

gs
2
ċ2g88g99

+
ζ(3)

26g
3/2
s

V3
E

π3M4
p

(
1

2
ċ8g4

s(g
88g99)4 +

1

24
c̈4g2

s(g
88g99)2

)]
(5.6.14)

Now we use φ = cf to make the kinetic term canonical, yielding the action in

terms of φ,

S4D =

∫
d4x

[
−1

2
φ̇2 +

ζ(3)

26g
3/2
s

V3
E

π3

(
1

2

φ̇8

M12
p

+
1

24

φ̈4

M8
p

)]

≡
∫
d4x

[
−1

2
φ̇2 +

φ̇8

M12
I

+
φ̈4

M8
II

]
, (5.6.15)

where we can now calculate the scale of the higher derivative terms MI and

MII to be

MI = Mp
g

1/8
s

V1/4
E

(
π327

ζ(3)

)1/12

(5.6.16)

and

MII = Mp
g

3/16
s

V3/8
E

(
π3210

ζ(3)

)1/8

(5.6.17)

To determine whether these higher-derivative terms will become important, we

compute the dimensionless quantity ω
MI,II

, where ω = φ̇
f

(5.3.5) is the physical

frequency of oscillations; we obtain

ω

MI

' 5× 10−3

(
f

10−3

)−1 ( gs
0.2

)−1/8
(
VE
120

)1/4

, (5.6.18)

ω

MII

' 6× 10−3

(
f

10−3

)−1 ( gs
0.2

)−3/16
(
VE
120

)3/8

. (5.6.19)
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For the ranges of f and VE that will be of interest to us (cf. section 5.7), the

higher-derivative terms are not important and our two-derivative approxima-

tion is justified.

5.6.4 Constraints on the axion decay constant

In this subsection, we discuss direct constraints on the axion decay con-

stant f . We first recall a rather general (conjectured) upper bound f < Mpl

[183], and we then describe and incorporate a novel lower bound, specific to

our setup, that arises from combining the requirements that α perturbation

theory should be valid and that the inflationary energy should not drive de-

compactification.

Despite many attempts, at the time of writing there is no known, con-

trollable string theory construction that provides f > Mpl. In particular, the

authors of [183] have scanned several classes of string theory models and found

sub-Planckian axion decay constants in every case. However, this upper bound

on f is of relatively little importance for the phenomenological signatures we

are considering in this chapter.

On the other hand, a potential lower bound on f is of considerable

importance for our analysis. Considering oscillations in the CMB spectrum,

in the regime f � Mpl one can easily find models that range from being ob-

servationally excluded to giving undetectably small modifications, depending

on the amplitude of the ripples in the inflationary potential. Furthermore, the

resonant non-Gaussianity becomes large only for small f (e.g. we will find

that f < 3 × 10−3 is a necessary condition to give a reasonable prospect of

detectability). Hence we will move on to consider possible lower bounds on f .

As discussed in [151] and in the preceding section, a direct lower bound
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on f comes from the requirement of small backreaction. In particular, the

radius of curvature induced by the energy localized on the wrapped NS5-

brane should be smaller than the smallest radius of curvature R⊥ in a direction

transverse to the NS5-brane in the compactification. This requires

Nw �
R4
⊥X

4πgs
⇒ f

Mpl

� 2φgs
R4
⊥X

, (5.6.20)

where we have defined X ≡ Vol(X5)/π
3, with X5 the base of the cone forming

the warped throat. We remark that X ≤ 1, as S5 is the Sasaki-Einstein

manifold with the largest volume, in the sense defined above. We can estimate

R⊥ as being comparable to the AdS radius R of the throat containing the

NS5-brane. Given that the volume20 V of the Calabi-Yau has to be larger

than the volume of any throat it includes, one finds that

V > Vthroat =
π3

2
XR6 , (5.6.21)

where for simplicity we have assumed that the UV cutoff of the throat is at

r ∼ R where the warp factor becomes of order unity. Putting together (5.6.20)

and (5.6.21), we find

f

Mpl

>
π221/3φgs
X1/3V2/3

' 137gs
X1/3V2/3

=
0.09

X1/3V2/3
E

. (5.6.22)

Although the above constraint substantially restricts our parameter

space, an even stronger constraint comes from demanding the validity of α

perturbation theory: using (5.5.23) for f and combining this with the lower

bound on two-cycle volumes given in (5.6.2), we obtain

f 2

M2
pl

=

√
gs

(2π)3VE
(cα−−v

α√gsπ) >

√
gs

(2π)3VE
, (5.6.23)

20We always refer to the warped volume, calculated with the whole warped metric.
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where we have assumed that cα−− ≥ 1. (5.6.23) turns out to give the strongest

microphysical lower bound on f . An upper bound is harder to determine

from this formula. Assuming again that cα−− ≥ 1, assuming that no precise

cancellations occur, and using (5.6.2), we find

f

Mpl

< gs

√
3

2
. (5.6.24)

5.6.5 Constraints on the amplitude of the modulations

So far we have seen that with the Kähler potential and superpotential

given in (5.5.9) and (5.5.10), the axion c persists as a flat direction after moduli

stabilization.21 As explained in [151], the presence of an NS5-brane wrapping

the two-cycle that defines c introduces a monodromy and results, for large c, in

the linear potential in (5.5.17). In this subsection we will consider further non-

perturbative corrections that will in general induce small modulations of this

linear potential. These are precisely the modulations whose phenomenology

we have studied in the first part of this chapter.

Nonperturbative corrections could appear both in the Kähler potential

and in the superpotential. We focus on the first possibility and comment at the

end of this section on the second. Consider the type IIB orientifolds with O3-

planes and O7-planes. As we have remarked, the RR two-form C2 is odd under

the orientifold projection and therefore a four-dimensional axion that survives

projection comes from integrating C2 over an odd two-cycle v−. Such an odd

cycle can be thought of as v− = v1 − v2, where v1 and v2 represent two two-

cycles in the parent Calabi-Yau manifold that are mapped into each other by

21As we have remarked, the axion b has its flat direction lifted by nonperturbative stabi-
lization of the Kähler moduli.
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the orientifold action. Now consider a Euclidean D1-brane wrapping the even

cycle v+ = v1 + v2. Such an instanton feels the local N = 1 supersymmetry

of the orientifolded theory, and it breaks this supersymmetry completely.22

Hence this is a non-BPS instanton with four universal fermionic zero modes,

namely the goldstini of the broken N = 1 supersymmetry. If the Euclidean

D1-brane wraps a minimum-volume cycle in the homology class v+ then it

has the right total number of fermionic zero modes (four) to contribute to a

D-term and in particular to the Kähler potential.

More specifically, in [185] it was argued that nonperturbative contribu-

tions from worldsheet instantons and their SL(2,Z) images, Euclidean (p, q)

strings, give rise to corrections to the prepotential of the N = 2 theory of

the parent Calabi-Yau compactification. Such corrections are most naturally

expressed inside the logarithm of the Kähler potential,

K = −2 log
[
VE + g(G, Ḡ)

]
, (5.6.25)

where g is an appropriate function. Invariance under SL(2,Z), or more gen-

erally under a subgroup Γ ⊂ SL(2,Z), is naturally achieved if g is the sum of

some individual correction g̃ over an orbit of Γ.

At the time of writing, the nonperturbative correction g is not known

explicitly, but a modular-invariant result has been conjectured in [186]. In-

spired by the structure of this result (which we will not reproduce here), we

will make a simple educated guess based on the following criteria: the non-

perturbative correction should go to zero exponentially for large two-cycle

22To see this, note that (cf. [184]) the instanton action depends on a two-cycle volume,
but the proper Kähler coordinates are four-cycle volumes. Therefore, the instanton action
cannot be holomorphic, so the instanton cannot contribute to a superpotential, and must
instead be non-BPS.
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volume v+; it should break the continuous shift-symmetry of c to a discrete

shift-symmetry c → c + 2π; and it should be invariant under whatever dis-

crete subgroup Γ ⊂ SL(2,Z) of the ten-dimensional SL(2,Z) symmetry is

preserved by the compactification. The subgroup Γ may well be trivial, and

we will assume this for simplicity; note, however, that one can plausibly obtain

a more constrained result when some or all of the symmetry is preserved, as in

[186]. Moreover, notice that along the orbits of Γ, the instanton action gener-

ally increases compared to that of a single worldsheet instanton or Euclidean

D1-brane; thus, when the volume v+ is not too small, only a few terms make

an important contribution, with the remainder enjoying further exponential

suppression.

A reasonable guess satisfying these criteria, for Γ trivial, is

K = −2 log
[
VE + e−SED1 cos(c)

]
= −2 log

[
VE + e

− 2πv+
√

gs cos(c)

]
. (5.6.26)

In light of this corrected Kähler potential, we should revisit the moduli

stabilization before proceeding to calculate the size b of the periodic contribu-

tion to the scalar potential.

We begin by noticing the following implication
DTαW = O

(
e−2SED1

)
DGaW = O

(
e−SED1

)
WGa = 0

 −→


∂TαV = 0 +O

(
e−2SED1

)
∂GaV = −2 eK |W |2KGa

+O
(
e−2SED1

)
 (5.6.27)

which can be verified by direct computation. This allows us to use the F-

flatness condition to find the minimum in the Tα-directions even when one of

the F-terms, namely DG−W , does not vanish. Equipped with this knowledge

we repeat, mutatis mutandis, the steps of section 5.5.

First, the phases of the Tα are stabilized as in (5.5.13), with k being

odd as explained below (5.5.14). The reason is that the sign of ∂TαK is not
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changed by the small nonperturbative correction e−SED1 . Second, ImG is again

stabilized at 0. Given (5.6.27), the equation one needs to solve is DGaW = 0,

which reduces to

0 = W∂GaK ∝ ∂GaVE − e−SED1

[
π sin(c) + cos(c)

2π
√
gs
∂Gav+

]
= 0 ,(5.6.28)

where we made use of (5.5.6) to perform the derivative on c. Since VE and v+

only depend on ImG implicitly as in (5.5.22), we can take the imaginary part

of (5.6.28),

1

2
(∂ImG−v

α)cαβγv
βvγ − e−SED1 cos(c)

2π
√
gs
∂ImG−v

+ = 0 . (5.6.29)

But from (5.5.22) we know that

cαβγ(∂ImG−v
β)vγ = gscαa−ImGa , (5.6.30)

which means that ImGa = 0 (for every a) is a solution to (5.6.29). The

real part of (5.6.28) is nonvanishing and of order e−SED1 . Again because of

(5.6.27), the minimization in the τα is obtained by imposing DTαW = 0. These

equations depend on the inflaton c, appearing explicitly in (5.6.26), and hence

the minimum in the Tα directions will be a function of c. Integrating out the

Tα leads to a contribution in the effective potential V [T (c), c] for c which is

of the same order as the contribution coming from the explicit c-dependence

in the Kähler potential. Therefore this effect cannot be neglected. To take it

into account, we solve the DTαW = 0 equations perturbatively in e−SED1 .

We define the coefficients of the minimum in the τα directions in a

perturbative expansion in e−SED1 by

τα,min ≡ τα,(0) + cos(c) e−Sτα,(1) + . . . , (5.6.31)
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and so on for all other variables. The zeroth-order equations are

(DTαW )(0) = (∂TαW )(0) +W(0)(∂TαK)(0) = 0 , (5.6.32)

which can be solved numerically once the model is specified. The first-order

equations are

(DTαW )(1) = (∂TαW )(1) +W(1)(∂TαK)(0) +W(0)(∂TαK)(1) = 0 , (5.6.33)

which again can be solved numerically using the solutions of (5.6.32). We turn

now to estimate the parameter b defined in (5.2.1). One finds

bf ≡ V(1)µ
−3e−SED1 =

Umod φ
µ3φ

e−SED1

(
K(1) + 2Re

W(1)

W(0)

)
, (5.6.34)

where we have defined Umod as the moduli stabilization barrier at zeroth order

in e−SED1 , i.e.

Umod =
gs
2

(
3|W |2

V2
E

)
(0)

. (5.6.35)

More explicitly, using (5.6.26) and (5.5.10),

bf =
Umod φ

2.4× 10−9M4
pl

e−SED1

[
8π
√
gs

(∂ταv
+)(0)

vα(0)
− 2aατα,(1) −

2vα(1)
vα(0)

]

=
Umod φ

2.4× 10−9M4
pl

2e−SED1

[∑
β(∂Tβ

W )(0)τβ,(1)

W(0)

−
VE,(1) + 1

VE,(0)

]
,(5.6.36)

where the first line is valid for any α and the second line (obtained using

(5.6.33)) shows that the expression for b is independent of α. Notice that

∂Tαv
+ = 1

2
∂ταv

+ is given implicitly by

cαβγ(∂τρv
γ)vβ = ∂τρτα = δ ρ

α . (5.6.37)

Some comments are in order. The size of the ripples in the potential is propor-

tional to the ratio of the moduli stabilization barrier to the scale of inflation,
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which has to be large for the self-consistency of the estimate. We have used the

value of the potential at the would-be AdS minimum to estimate the moduli

stabilization barrier once an uplifting term is included. Due to the exponential

suppression e−SED1 , the size of bf is extremely sensitive to gs and v+.

An upper bound can be derived from (5.6.36) using the following con-

siderations. In the KKLT construction, perturbative corrections to the Kähler

potential can be neglected as long as W0 � 1, and generically W ∼ W0. For

larger values of W0, perturbative corrections have to be included, as in the

large volume scenario [187]. In the present work, we focused on the former

setup and we leave an investigation of the latter for the future. The expo-

nential suppression in (5.6.36) can be bounded by (5.6.2). Finally, we denote

the model-dependent term in square brackets in (5.6.36) by c0. Putting things

together leads to the bound

bf < 2c0 × 107 gs
V2
E

e−2/gs

(
W

0.1

)2

. (5.6.38)

Even imposing all the model-independent constraints we have described

in the previous sections, one can still have bf > 10−4, which, as shown in sec-

tion 5.4, is roughly the upper bound imposed by measurements of the scalar

power spectrum. Therefore, in certain parameter ranges the primary con-

straint on modulations of the potential comes from the data, not from micro-

physics.

5.7 Combined Theoretical and Observational Constraints

We now summarize our results, combining the observational constraints

from section 5.4 with the theoretical constraints from section 5.6. As an aid to

the reader, we will now briefly recall the qualitative properties of those results.
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Axion monodromy can produce characteristic signatures in the CMB:

the oscillations in the axion potential generated by nonperturbative effects

source resonant contributions to the scalar power spectrum and bispectrum.

The amplitude and frequency of the oscillations in the potential can therefore

be bounded by comparison to observations. We recall from section 5.4 that the

observational constraints take the form of exclusion contours in the space of

the phenomenological parameters, after marginalization over additional model

parameters that have important degeneracies with those displayed. For con-

venience, we have chosen to display constraints in terms of the parameters f

and bf defined in (5.2.1), marginalizing over the phase ∆φ and over Ωbh
2.

The first new step is to combine the exclusion contours based on the

temperature two-point function with estimates of constraints from the three-

point function. Based on the rough estimates described in section 5.3.3, we

present, in figure 5.6, three contours at fres = 200, 20, 2, with the expectation

that the gray region (fres > 200) might plausibly be excluded, while the col-

ored, lighter regions (20 < fres < 200 and 2 < fres < 20, respectively) are

possibly within detectability. A careful study of the constraints on resonant

non-Gaussianity would be a worthwhile topic for future research.

Next, we recall that in section 5.6, we found that the requirements

of consistency and computability in the string compactifications giving rise

to axion monodromy models led to constraints on the parameters f and bf .

Let us remark that as these constraints are not rooted in deep principles of

string theory or of quantum field theory, but rather originate in practical

limitations in our present ability to construct computable models, they may

well be loosened in further work. As such, the theoretical constraints we

present here should be understood as designating included rather than excluded
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Figure 5.6: We show the (one- and two-sigma) likelihood contours for the
temperature two-point function together with three contours that characterize
the amplitude of the three point function, for fres = 200, 20, 2.
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Figure 5.7: We superimpose the theoretical constraints, summarized in (5.7.1)
and (5.7.2), on the constraints imposed by observations, which are shown in
figure 5.6. The orange overlay indicates regions of the parameter space that
are difficult to reach in the class of models considered in the present work.
The theoretical constraints are shown for gs = 0.12, 0.5 and VE = 100, 900.
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regions: in contrast to experimental contours, theoretical contours of this sort

may expand rather than contract given improved understanding.

Because the parameter b measures the amplitude of a nonperturbative

effect, it is exponential in the natural input parameters, and can therefore be

made small without substantial fine-tuning. We therefore do not present a

lower bound on b. However, we found the theoretical upper bound (5.6.38)23

bf < 2c0 × 109M4
pl

gs
V2
E

e−2/gs , (5.7.1)

with a model-dependent constant c0 that can be estimated in explicit examples,

and which we find to be typically of order 10−2.

Next, we obtained a lower bound for f in (5.6.23).24 A precise upper

bound, however, is highly model-dependent. We estimate an upper limit by

assuming that the intersection numbers are of order one25 and that no pre-

cise cancellations occur. From (5.6.23) and (5.6.24), the complement of the

theoretically excluded range for f is then

g
1/4
s

(2π)3/2
√
VE

< f < gs

√
3

2
. (5.7.2)

Notice that the theoretical constraints depend mainly on two quanti-

ties: the string coupling gs and the volume VE of the compactification. The

former appears in the exponential suppression of the nonperturbative effect

23We stress that this ‘bound’ is not universal and depends on the assumptions enumerated
in section 5.6. We include it here as a representative example of the constraints that arise
in particular scenarios.

24The constraint from the backreaction described in subsection 5.6.2 is weaker than
(5.6.23).

25Larger intersection numbers are an interesting possibility that we will not investigate
here.
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generating the modulations of the potential. Hence, gs . 0.1 suppresses any

possible signature of the modulations. For gs & 0.1, there is always a theo-

retically allowed region in which the oscillations in the inflaton potential lead

to observable ripples in the two-point function of the CMB. On the other

hand, the size of the non-Gaussianity depends critically on VE as well. As-

suming gs & 0.1, larger VE allows for a larger range of f and therefore larger

non-Gaussianity (see (5.7.2)). A way to quantify this is to use the estimate

obtained in section 5.3.3,

fres '
9

4

b

(φf)3/2
, (5.7.3)

and the lower bound in (5.7.2). The result is

VE > 170
( gs

0.2

)1/2
(
fres
10

)4/5(
10−4

bf

)4/5

. (5.7.4)

We now combine the theoretical and observational constraints, present-

ing them in the plane {log10 f, log10 b}. We choose as boundaries 10−4 < f �
Mpl and 10−4 < b � 1 based on the following considerations. The number of

oscillations per e-folding is roughly 10−2Mpl/f . Hence for f & 0.1Mpl there

is less than one oscillation in the whole range of scales probed by the CMB,

and the signal from modulations becomes degenerate with the overall ampli-

tude. Furthermore, in section 5.3, we systematically used the expansion b� 1,

where b = 1 divides monotonic from non-monotonic potentials. Finally, the

lower boundaries 10−4 < f and 10−4 < b exclude regions that are relatively

uninteresting in the present context: smaller values of b lead to an unobserv-

ably small signal, while smaller values of f are rather difficult to obtain in

the class of string theory constructions we considered. In the {log10 f, log10 b}
plane, the theoretically allowed region looks like an interval in f , whose size is

determined by VE, with an upper cut effectively determined by gs as in (5.7.1).
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Figure 5.8: The blue dot represents the explicit numerical example presented
in appendix E. It represents a case in which upcoming experiments could
detect the signatures of modulations in both the two-point function and the
three-point function.

Finally, in figure 5.8 we show where a particular numerical toy example,

with specific choices of the intersection numbers, lies in the {log10 f, log10 b}

plane.

5.8 Summary

The goal of this investigation was to characterize the predictions of

axion monodromy inflation for the CMB temperature anisotropies. Nonper-

turbative effects in these models generically introduce sinusoidal modulations

of the inflaton potential, which in turn lead to resonantly-enhanced modula-

tions of the scalar spectrum and bispectrum.

We have provided a simple analytic result for the modulated scalar
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power spectrum in this class of models. We also presented an alternative

derivation focussing on a resonance between a mode inside the horizon and

the driving force of the oscillatory background evolution. We then determined

in detail the constraints that the five-year WMAP data places on models with

modulations of this sort.

Next, after reviewing the realization of axion monodromy inflation in

string theory, we performed a comprehensive study of the parameter con-

straints implied by the requirements of microphysical consistency and com-

putability. The resulting allowed parameter regions are very plausibly realiz-

able in sensible string theory constructions.

We also identified a new contribution to the inflaton potential in ax-

ion monodromy inflation: the backreaction of the inflationary energy on the

compact space can source an important correction to the potential by correct-

ing the volumes of four-cycles and hence affecting the scale of nonperturbative

moduli-stabilizing effects. We then presented a model-building solution to this

problem, in which the NS5-brane and anti-NS5-brane driving inflation are in

the same warped region, or more generally are distant from the four-cycles of

interest.

Finally, we combined the observational and theoretical constraints, in

order to ascertain whether detectable modulations of the scalar spectrum

and/or bispectrum are possible, consistent with current observational bounds

and known theoretical restrictions. Our conclusion is that both sorts of mod-

ulations are possible, and in fact in many cases the strongest bound on the

amplitude of the modulations comes from data, not from microphysics. More-

over, even though observational limits on the amplitude and frequency of

modulations in the scalar power spectrum provide a strong constraint on the
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parameter space of axion monodromy models, and even though microphysi-

cal constraints sharply restrict the allowed frequencies, detectably-large non-

Gaussianity can indeed be produced in a class of controllable models. Such

models enjoy three nontrivial signatures: detectable tensors with r ≈ 0.07, a

modulated scalar power spectrum, and resonant non-Gaussianity.

Let us remark that even in the absence of non-Gaussianity, this class

of models is eminently testable: axion monodromy inflation unambiguously

predicts a large tensor signal, and the parameters of the models are already

strongly constrained by limits on modulations in the scalar power spectrum.

There are several interesting directions for future work. First, we have

not analyzed the constraints on the model from the three-point function; more

generally, understanding the prospects for constraining or detecting resonant

non-Gaussianity is an important task. Moreover, it would be instructive to

construct an explicit model in which the many theoretical constraints we have

checked can be combined in a coordinated way. In addition, it would be

interesting to determine whether chain inflation can be realized in this context.

It is intriguing that the modulated power spectrum we have found is

very similar in form to that proposed in the context of modifications of the

initial state, as in e.g. [166],[167],[153],[154],[155]. In light of our calculation

of the power spectrum in the saddle point approximation in subsection 5.3.2,

this coincidence is not entirely surprising, and could be made more transparent

by repeating the derivation in the interaction picture. In that case, the driv-

ing force of the oscillating background eventually generates an excited state,

even if one begins in the Bunch-Davies vacuum. We leave a more systematic

exploration of this connection for the future.

Finally, it would be most valuable to develop a broader understanding
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of the connection, if any, between symmetries and signatures in models of

large-field inflation.
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Chapter 6

On Slow-Roll Moduli Inflation in Massive IIA

Supergravity with Metric Fluxes

In this chapter, we derive several no-go theorems in the context of

massive type IIA string theory compactified to four dimensions in a way that,

in the absence of fluxes, preserves N = 1 supersymmetry. The derivation is

based on the dilaton, Kähler and complex structure moduli dependence of the

potential of the four-dimensional effective field theory, that is generated by the

presence of D6-branes, O6-planes, RR fluxes, NSNS 3-form flux, and geometric

fluxes. To demonstrate the usefulness of our theorems, we apply them to the

most commonly studied class of toroidal orientifolds. We show that for all but

two of the models in this class the slow-roll parameter ε is bounded from below

by numbers of order unity as long as the fluxes satisfy the Bianchi identities,

ruling out slow-roll inflation and even the existence of de Sitter extrema in

these models. For the two cases that avoid the no-go theorems, we provide

some details of our numerical studies, demonstrating that small ε can indeed

be achieved. We stress that there seems to be an η-problem, suggesting that

none of the models in this class are viable from a cosmological point view

at least at large volume, small string coupling, and at leading order in the

α′-expansion.

The increasing precision of cosmological data collected over the past

two decades has strengthened the case for inflation as the paradigm for early
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universe cosmology. Not only is the universe observed to be flat to within one

per cent, the density perturbations are also found to be nearly scale-invariant,

Gaussian, and adiabatic, just as predicted by inflation. Conclusive evidence for

inflation has not yet been found, but future experiments may well strengthen

the case for inflation further.

The UV sensitivity of inflation has sparked work by many people aim-

ing toward an understanding of what string theory predicts in this regard,

as well as work toward an understanding of the reliability of the approxima-

tions made to derive these predictions. Given that we do not understand why

space-time has four large dimensions, the best we can do is to take this as an

input and construct a reliable four dimensional effective theory, with stabilized

moduli, that produces inflation consistent with current observations in a way

that allows us to control the corrections. Most of the modern approaches are

based on flux compactifications. As explained in [188], one constructs a string

inflation model by specifying the compactification manifold, its dimensional-

ity and topology, the location of orientifold planes and D-branes, the type

and amount of fluxes that are turned on and through which cycle. The size

of the corrections will depend, among other things, on the value of gs, which

controls the loop expansion, α′, which sets the scale of the string modes, and

the volume of the compactification manifold, which determines the mass scale

for the Kaluza-Klein modes.

Since the ground breaking work of KKLT [170], which provided a mech-

anism to stabilize all moduli in the context of type IIB string theory, a lot of

work has been done toward understanding inflation in string theory setups

that are under control [189], [190], [191], [192], [193], [194], [188]. This effort

has uncovered a variety of potential mechanisms for inflation which are usu-
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ally broadly classified according to the origin of the inflaton field into moduli

inflation or D-brane inflation. A lot of progress has been made in the context

of type IIB string theory; type IIA on the other hand still remains much less

explored.

In type IIA, work by DeWolfe et al. [195] gave an explicit construction

for moduli stabilization relying on perturbative effects alone, thus making it

more reliable as far as calculability is concerned and allowing for more explicit

constructions than in type IIB. All is not good, however, since the presence of

orientifolds in these compactifications may invalidate the usual effective field

theory treatment as pointed out by Banks and van den Broek [196]. Although,

we lack a good argument to appease those concerned by the latter point, in

this work we will continue to ignore the backreaction of the orientifold plane

in our search for inflation in massive type IIA, following Hertzberg et al. [197],

[198]. The concerned reader may view our work as an attempt to derive

some expertise and insight into the analysis of inflation in models with a large

number of fields and fluxes that may also be useful in other contexts.

Generically, the various moduli fields are coupled to each other, and one

has to search for slow-rolling regions in the typically rather high-dimensional

moduli space. Because of the large number of fields and the complexity that

comes with it, the existence of a slow-roll path will typically either be ex-

cluded by analytical methods (no-go theorems) or will have to be confirmed

by numerical analysis.

The original work of HTKSÖ [197] studied three simple orientifolds of

T 6 [195], [199], [200] in the hope to find inflation, only to be disappointed, and

HKTT [198] extended this work and proved a no-go theorem that applies to

compactifications of IIA string theory on general Calabi-Yau manifolds with
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standard NSNS fluxes, RR fluxes, D6-branes, and O6-planes at large volume

and small string coupling. This no-go theorem shows that the slow-roll pa-

rameter ε is bounded from below by some positive number independent of the

choice of fluxes, implying that ε cannot be made small enough to allow for

slow-roll inflation. This illustrates that even an infinite number of vacua does

not guarantee that one of them will inflate.

As with any no-go theorem, the most important information contained

in the theorem are the assumptions that went into its derivation. Beyond the

usual assumptions of large volume, small string coupling, and leading order

in the α′-expansion, an important assumption in the case of HKTT was that

the models did not include geometric or non-geometric fluxes. In this work we

allow for geometric fluxes, but otherwise use the same assumptions as [198].

In addition, we assume that there is a hierarchy between the mass scales cor-

responding to the twisted and blow-up modes and the modes of the untwisted

sector that we keep. For those D6-branes whose backreaction cannot be ig-

nored, we limit ourselves to rigid embeddings, making a hierarchy between

the open string modes and the modes we keep plausible so that they can be

integrated out.1 For branes that can consistently be treated as probes, this

limitation does not apply. Under these assumptions, we derive several new

no-go theorems, and, to demonstrate their usefulness, apply them to toroidal

orientifolds with abelian orbifold groups generated by rotations and reflections,

that, in the absence of fluxes and after orientifolding, preserve N = 1 super-

symmetry. We show that in all these models except for the two Z2×Z2 cases,

even in the presence of geometric fluxes, the slow-roll parameter ε is bounded

1Phrased differently, the hierarchy guarantees that the branes will relax to their static
configurations on time scales much shorter than the time scales we are interested in so that
their dynamics can be ignored.
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from below by numbers of order unity as long as the fluxes satisfy the Bianchi

identities. For these two special cases, we numerically succeed in identifying

regions in moduli space with arbitrarily small ε, but all these regions seem to

have too short a period of inflation. In other words, there is an η-problem

similar to the one that has already appeared in many of the type IIB com-

pactifications, with the additional feature that at least one of these directions

always turns out to be not only steep but also tachyonic.

While the original work of HKTT [198] was based exclusively on the

dependence of the potential on the dilaton and volume moduli field our work

is based on the dependence of the potential on the dilaton, volume as well as

the Kähler and complex structure moduli. No-go theorems of this kind are

useful because they sharpen our understanding of the ingredients necessary for

successful slow-roll inflation and allow us to exclude entire regions in the large

landscape of solutions of string theory. The analysis of HKTT shows that

localized sources such as NS5-branes or geometric or non-geometric fluxes are

a necessary condition for slow-roll in type IIA string theory, we show that

geometric fluxes alone are not generally sufficient.

There have by now been other studies of type IIA compactifications

that have successfully identified regions of slow-roll inflation or found de Sitter

vacua.

In [201], Silverstein constructed de Sitter solutions based on compacti-

fications of type IIA on a product of two Nil-manifolds with orientifold planes,

fivebranes, fractional Chern-Simons forms, and fluxes. As was shown by Sil-

verstein and Westphal [150], in these setups it is not only possible to realize

successful slow-roll inflation, but even to realize large-field inflation in a con-

trolled way thus generating an observable tensor signal [150], making these the
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most exciting solutions in type IIA from a cosmological point of view so far.

While these vacua are presumably much closer to what one might ex-

pect a generic vacuum to look like, and one might argue that these are a

natural place to start looking for inflation, they clearly are also somewhat less

explicit and hence less controlled. So it seems worthwhile asking what the

minimal set of ingredients for successful inflation or de Sitter solutions in type

IIA is. Our studies are very much in this spirit, and it is also in this spirit that

Haque et al. [202] studied compactifications on a product of two maximally

symmetric hyperbolic spaces. Another possible approach to evading the no-go

theorem of [198], complementary to the work here, is to appeal to corrections

to the tree-level effective action. This is the direction pursued by the authors

of [203].

Very recently, compactifications of type IIA on orientifolds of SU(3)-

structure manifolds with non-vanishing geometric fluxes were studied in [204].

Some of the models were ruled out in [204] based on our results, for others

numerical studies indicate that there are regions in moduli space with small

ε. However, the same η-problem seems to make an appearance, ruling these

out from a cosmological perspective as well. This seems natural because the

models studied there are in fact close cousins of the models that lead to small

ε and an η-problem for us.

The organization of the chapter is as follows. In section 2.1 and 2.2,

we review in some detail the low energy effective theory in the presence of

both geometric and non-geometric fluxes. In section 2.3, we write explicit

expressions for the slow-roll parameters ε and η as functions of the moduli

and the fluxes. In section 3, we derive several no-go theorems based on the

dependence of the effective potential on the dilaton, as well as Kähler and
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complex structure moduli. In section 4, we present a classification of the

possible orientifolds of T 6 as well as the possible constraints on the fluxes,

Bianchi identities and tadpoles conditions. In section 5, we apply the no-

go theorems to the toroidal orientifolds discussed in section 4 and show that

most of them cannot have small ε, ruling out both slow-roll inflation and the

existence of de Sitter extrema. In section 6, we present some details of our

numerical studies for the models for which we found small ε. We note that

there seems to be an η problem, implying that none of the models in this class

can accommodate extended periods of inflation as seems to be required by

observations. We conclude in section 7. Appendix A contains a summary of

our conventions.

This chapter is based on [205]

6.1 Low Energy Theory

6.1.1 Metric and non-geometric fluxes

As mentioned above, recent work [198] has shown that type IIA string

theory with only ordinary fluxes (H-flux and RR fluxes) is not sufficient to

allow for slow-roll inflation. For this reason we would like to include some extra

ingredients in an effort to overcome this obstacle. There are many objects that

one could add, and arguments that generically their presence will allow for de

Sitter extrema [201], but we would like to look instead for a minimal set of

additional ingredients, and we will focus on one particular class of ingredients

which are known as generalized NSNS fluxes. Our motivation is that T-duality

guarantees that these fluxes can appear (they should be on the same footing

as ordinary H-flux), and T-duality also shows us how they must appear for

consistency.
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It is well-known that by T-dualizing a circle that is threaded by H-flux

(that is if the circle isometry contracted with H is non-zero), one obtains a

new solution in which some components of H-flux have been exchanged for

some non-constant metric components, whose effect can be thought of as a

twist of the circle over the rest of the geometry. These twists can be encoded

in components f ijk, analogous to the individual components Hijk of the H-

flux. By performing an explicit Kaluza-Klein reduction from ten dimensions,

one can learn how such objects appear in the low-energy theory in four dimen-

sions [206], [207], [208]. It turns out that these objects, which are usually called

metric fluxes (or sometimes geometric fluxes) because of the analogy with H,

appear in the low-energy theory in much the same way that H does. If we

started with an underlying space preserving N = 1, such as a Calabi-Yau ori-

entifold of IIA, then the objects appear as parameters in the four-dimensional

superpotential and the tadpole constraints. It turns out that metric fluxes

can also have the effect of giving a charge to some of the fields (fields that

were RR axions before fluxes were turned on) under the four-dimensional vec-

tor multiplets, with the result that they can also appear in D-terms in four

dimensions [209], [210].

Sometimes there are further T-dualities one can perform, converting

the metric flux components f ijk into new objects Qij
k known as non-geometric

fluxes. In the presence of these, the six-dimensional compact space is not a

geometric manifold anymore, but rather it has the structure of a torus fiber

glued over a base with transition functions that sit inside the full T-duality

group [211], [212]. In fact, from a four-dimensional perspective, it is quite

reasonable to expect a full set of these objects, Hijk, f
i
jk, Q

ij
k , as well as

objects labeled Rijk, but not all of these have been explicitly constructed
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from a ten-dimensional string theory. However, that doesn’t necessarily stop

us from discussing how they would appear in the low-energy theory, since

that is determined by symmetry considerations [213], [214], [215], [209], [210].

For a review of these constructions, the reader is encouraged to refer to the

review [216], and references therein.

Here, we will be satisfied to include a few more comments about metric

fluxes. Consider the case of T 6 in particular (this will be the starting point for

all of our explicit constructions later). In the presence of f ijk, the underlying

geometry changes from a torus to a twisted torus, and the globally defined

one-forms are no longer the closed forms dxi, but rather forms ηi that satisfy

dηi = −1

2
f ijkη

j ∧ ηk. (6.1.1)

Simply demanding that d2 = 0 gives us some constraints,

f ij[kf
j
`m] = 0. (6.1.2)

Similarly, if we now expand H in this basis, H = 1
6
Hijkη

i ∧ ηj ∧ ηk, then the

usual condition that H be closed gives

f i[jkH`m]i = 0. (6.1.3)

These two sets of equations will be referred to as Bianchi identities, and the flux

components we turn on must satisfy them for reasons of consistency. Finally,

it turns out to be much more convenient to express our fluxes instead using

a basis of forms that, in the absence of metric fluxes, would be the harmonic

forms of the underlying space (see Appendix A.2 for our conventions),

H = pKb
K , dωa = −raKbK , dµα = −r̂Kα aK . (6.1.4)
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Here pK , raK , and r̂Kα are linear combinations of Hijk and f ijk. More details

can be found in section 6.3.2.

Throughout this work we will only turn on H-flux and metric fluxes,

and not any of the non-geometric fluxes, since we generically expect that in the

presence of non-geometric fluxes, some volume moduli will be stuck near the

string scale (since the transition functions involve T-dualities that include vol-

ume inversions). However, it will be useful to keep the non-geometric fluxes in

our minds when thinking about using T-dualities to convert one configuration

of fluxes into a more useful configuration, as discussed in section 6.3.3.

6.1.2 Effective potential

Our starting point is a Calabi-Yau orientifold of type IIA string theory.

We will add RR fluxes, as well as H-flux and metric flux from the NSNS sector.

Our conventions are listed in Appendix A.2.

These ingredients then lead to an effective N = 1 supergravity theory

in four dimensions. To describe this effective theory, and particularly the

effective potential for the complex scalar fields ta and NK , we must provide

the Kähler potential K, the holomorphic superpotential W , the holomorphic

gauge kinetic couplings fαβ, and the gauge transformations of the scalar fields

under the different Umod(1) gauge groups arising from the four-dimensional

vectors (i.e. we must give the electric and magnetic charges of the scalar

fields). Then the effective action for the scalars is

S = −
∫ {

Kab̄dt
a ∧ ∗dtb +KIJ̄dN

I ∧ ∗dNJ + V ∗ 1
}
, (6.1.5)
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where the scalar potential is

V = eK
(
Kab̄DaWDbW +KIJ̄DIWDJW − 3|W |2

)
+

1

2
(Re f)−1αβDαDβ. (6.1.6)

Here, ∗ is the four-dimensional Hodge star, Kab̄ = ∂
∂ta

∂

∂tb
K, Kab̄ is its (trans-

pose) inverse, DaW = ∂
∂ta
W + ( ∂

∂ta
K)W , and similarly for the NK , and the

D-terms are

Dα =
i

W

(
∂αt

aDaW + ∂αN
KDKW

)
= i

(
∂αt

a∂aK + ∂αN
K∂KK

)
+ i

∂αW

W
, (6.1.7)

where λα∂αφ is the variation of the field φ under an infinitesimal gauge trans-

formation Aα → Aα + dλα. One can also discuss D-terms arising from the

magnetic gauge groups, but the details are similar.

For the IIA orientifolds at hand, we can provide this information [217]. The

Kähler potential is given by2

K = 4D − ln

(
4

3

(
κv3
))

. (6.1.8)

In the sector of Kähler moduli, this leads to

∂aK =
3i

2

(κv2)a
(κv3)

, (6.1.9)

and

Kab̄ =
9

4

(
κv3
)−2 (

κv2
)
a

(
κv2
)
b
− 3

2

(
κv3
)−1

(κv)ab , (6.1.10)

2Here and in some formulae below we will sometimes drop certain indices in cases where
the contractions are obvious. For instance, (κv3) will be short hand for κabcv

avbvc. We
hope that this does not cause the reader too much difficulty.
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with inverse

Kab̄ = −2

3

(
κv3
)
(κv)−1 ab + 2vavb. (6.1.11)

Note that there is a no-scale condition

Kab̄∂aK∂bK = 3. (6.1.12)

In the complex structure sector, our moduli are defined by NK = 1
2
ξK +

ie−DZK , where D is the four-dimensional dilaton and the ZK come from the

expansion of the holomorphic three-form Ω. These ZK are not all independent

(there are h2,1 + 1 of them which are functions of the h2,1 complex structure

moduli), and in fact they satisfy a relation which can always be written as

pn(Z) = 1, (6.1.13)

where pn(Z) is a homogeneous polynomial of degree n = h2,1 + 1 in the ZK .

In terms of this polynomial (which of course plays the role of a prepotential)

we can then write

FK = − i

2n

∂

∂ZK
pn(Z), (6.1.14)

and

D = − 1

n
ln [pn(I)] , (6.1.15)

where IK = ImNK = e−DZK . It then follows that

∂

∂NJ
K =

2i

n

∂Jpn(I)

pn(I)
=

2i

n
eD∂Jpn(Z) = −4eDFJ , (6.1.16)

KJK̄ =
1

n
e2D [∂Jpn(Z)∂Kpn(Z)− ∂J∂Kpn(Z)] . (6.1.17)
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It can be useful to pull out the dilaton dependence here and define

K̂JK = e−2DKJK̄ =
1

n
[∂Jpn(Z)∂Kpn(Z)− ∂J∂Kpn(Z)] . (6.1.18)

The inverse of K̂JK will simply be denoted by K̂KL, so that KKL = e−2DK̂KL.

With these results it is easy to verify the identities

K̂JKZK = 2iFJ , K̂JKFK = − i
2
ZJ , (6.1.19)

ZKFK = − i
2
, K̂JKFJFK = −1

4
, K̂JKZJZK = 1, (6.1.20)

and the no-scale-type condition

KJK̄∂JK∂KK = 4. (6.1.21)

The gauge kinetic couplings are

fαβ = i (κ̂t)αβ , (6.1.22)

with

(Re f)−1 = − (κ̂v)−1 . (6.1.23)

The corresponding D-terms are

Dα = 2ieD (r̂F)α , (6.1.24)

so that the D-term contribution to the potential is

VD =
1

2
(Re f)−1αβDαDβ = 2e2D (κ̂v)−1 (r̂F)2. (6.1.25)

Unlike the Kähler potential, the superpotential depends on the fluxes,

W = e0 + te+
1

2
κt2m+

1

6
m̃
(
κt3
)

+ 2Np+ 2Nrt. (6.1.26)
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The covariant derivatives of W are

DaW = ea + (κmt)a +
1

2
m̃
(
κt2
)
a
+ 2 (Nr)a +

3i

2

(κv2)a
(κv3)

W,

DKW = 2pK + 2 (rt)K − 4eDFKW. (6.1.27)

We will also mention that there are tadpole conditions which the generalized

fluxes should satisfy,

−
√

2 (pKm̃− raKm
a) = 2N

(O6)
K −N

(D6)
K . (6.1.28)

where the right hand side represents the contribution of localized sources, both

O6-planes and D6-branes.

6.1.3 Slow-roll parameters

As discussed in [197], we can express the slow-roll parameters ε and η

in terms of the scalar potential and Kähler metric.

The expression for ε is

ε = V −2

{
Kab̄ ∂

∂ta
V
∂

∂t̄b̄
V +KIJ̄ ∂

∂N I
V

∂

∂N̄ J̄
V

}
(6.1.29)

=
1

4
V −2

{
Kab̄

(
∂

∂va
V

∂

∂vb
V +

∂

∂ua
V

∂

∂ub
V

)
+KIJ̄

(
∂

∂ ReN I
V

∂

∂ ReNJ
V +

∂

∂ ImN I
V

∂

∂ ImNJ
V

)}
.

If we further define va = ργa, where

κabcγ
aγbγc = 6, (6.1.30)

so that the over-all volume is V6 = ρ3, and use the expressions for the Kähler
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metric above, then we can further simplify this to

ε = V −2

{
1

3
ρ2

(
∂V

∂ρ

)2

+
1

4

(
∂V

∂D

)2

(6.1.31)

+

[
− (κγ)−1 ab +

1

6
γaγb

]
∂V

∂γa
∂V

∂γb
+

1

4

[
K̂JK −ZJZK

] ∂V
∂ZJ

∂V

∂ZK

+ρ2

[
− (κγ)−1 ab +

1

2
γaγb

]
∂V

∂ua
∂V

∂ub
+ e−2DK̂JK ∂V

∂ξJ
∂V

∂ξK

}
.

This expression splits ε into six non-negative pieces. The first line involves the

overall volume modulus ρ and the four-dimensional dilaton D. In this class of

models, the potential V can always be written as a polynomial in ρ and eD,

so this line is often very easy to compute. The no-go theorems of [198] have

been derived by focussing only on this line.

The second line involves the angular Kähler moduli, γa and the complex

structure moduli ZJ . Both these sets of variables are constrained (κγ3 = 6,

K̂Z2 = 1), so there is no unique way of writing the potential in terms of them.

However, the metrics which appear in the expression above are such that ε

doesn’t depend on these choices. For example, if a κγ3 appears anywhere in

V , then when the derivative with respect to γa hits it we get a contribution

proportional to κabcγ
bγc, but this is annihilated by the term in square brackets

above. Finally the third line contains the axions ua and ξJ .

The expression for η is slightly more complicated. First we must define

a canonical metric gij on the moduli space of real fields, given by

1

2
gijdφ

idφj = KAB̄dΦ
AdΦB. (6.1.32)

Here we are using the indices i and j to run over all real valued fields, while A

and B run over all complex-valued fields, from both the complex structure and
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Kähler sectors of the theory. From this metric we can then compute Christoffel

symbols Γijk, and then we have

η = minimum eigenvalue of

{
gik
(
∂k∂jV − Γ`kj∂`V

)
V

}
. (6.1.33)

6.1.4 Scalar potential with metric fluxes

The full expression for the scalar potential in this case is given by

V =
3

(κv3)
e2D

{
K̂IJ (pI + raIu

a)
(
pJ + rbJu

b
)

+K̂IJraIrbJv
avb − 2

(
ZKraKv

a
)2 − 2

3

(
κv3
)
(κv)−1 abZIZJraIrbJ

}
+2e2D (κ̂v)−1αβ (r̂IαFI) (r̂JβFJ)+ 2e3DZK (m̃pK − raKm

a)

+
3

4 (κv3)
e4D

{[
−2

3

(
κv3
)
(κv)−1 ab + 2vavb

]
×
(
ξIraI + ea + (κmu)a +

1

2
m̃
(
κu2
)
a

)
×
(
ξJrbJ + eb + (κmu)b +

1

2
m̃
(
κu2
)
b

)
+4

[
ξK (pK + raKu

a) + ẽ+ (eu) +
1

2

(
κmu2

)
+

1

6
m̃
(
κu3
)]2

+

[
−2

3

(
κv3
)
(κv)ab +

(
κv2
)
a

(
κv2
)
b

]
(ma + m̃ua)

(
mb + m̃ub

)
+

1

9
m̃2
(
κv3
)2}

. (6.1.34)

6.2 No-Go Theorems

In this section we will prove a series of no-go theorems. Each one will

show that, given some restrictions on the model, the slow-roll parameter is

bounded below by some positive number of order unity, thus ruling out both

224



slow-roll inflation and the existence of de Sitter extrema. There will be two

types of restrictions that we will consider. We might impose conditions on the

intersection numbers of the model, as encoded by the polynomials κabc, κ̂aαβ

and the polynomial pn, and we will further restrict which fluxes can be turned

on.

6.2.1 General manifolds

Consider first the case where no restrictions are assumed on the inter-

section numbers of the model, that is κ, κ̂ and pn are unconstrained.

Here we will demonstrate two no-go theorems. The first was shown

by [198] and pertains to the case of no metric fluxes, that is raK = r̂Kα = 0. In

this case the scalar potential simplifies to

V =
1

2
ρ−3e2DK̂IJpIpJ + 2m̃e3DZKpK (6.2.1)

+
1

8
ρ−3e4D

{
4ρ2

[
− (κγ)−1 ab +

1

2
γaγb

]
×
(
ea + (κmu)a +

1

2
m̃
(
κu2
)
a

)(
eb + (κmu)b +

1

2
m̃
(
κu2
)
b

)
+

[
ξKpK + ẽ+ (eu) +

1

2

(
κmu2

)
+

1

6
m̃
(
κu3
)]2

+ρ4
[
−4 (κγ)ab +

(
κγ2
)
a

(
κγ2
)
b

]
(ma + m̃ua)

(
mb + m̃ub

)
+ 4m̃2ρ6

}
.

Note that the metrics [−(κγ)−1 ab + 1
2
γaγb] and [−4(κγ)ab + (κγ2)a(κγ

2)b] are

both positive definite since they are equal to 1
4
ρ−2Kab̄ and 16ρ2Kab̄ respectively,

so that the only term in the potential which can be negative is the second term

on the first line above.

From this we can easily check that

3∂DV − ρ∂ρV ≥ 9V. (6.2.2)
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Finally, if we also have V > 0, then we can write

ε ≥ V −2

[
1

3
ρ2 (∂ρV )2 +

1

4
(∂DV )2

]
= V −2

[
1

39
(3∂DV − ρ∂ρV )2 +

1

52
(∂D + 4ρ∂ρV )2

]
≥ 27

13
. (6.2.3)

Let us consider another example of possible interest, where we allow metric

fluxes, but don’t allow a Romans mass parameter, that is we take m̃ = 0. This

would be the models one would look at if one wished to have a straightforward

lift to M-theory, for example. In this case one can easily check that there is

another no-go theorem. Indeed, we have

∂DV − ρ∂ρV ≥ 3V, (6.2.4)

and so

ε ≥ V −2

[
1

7
(∂DV − ρ∂ρV )2 +

1

84
(3∂DV + 4ρ∂ρV )2

]
≥ 9

7
. (6.2.5)

Thus in both these cases there is no possibility of slow-roll inflation, and no

possibility of finding a de Sitter extremum of the potential anywhere in field

space (such a point would have ε = 0, of course). For this reason we will assume

that m̃ 6= 0 in subsequent sections, and we will focus on cases in which some

metric fluxes are non-zero. The observation that a non-zero m̃ is necessary for

the existence of de Sitter vacua was made independently in [202].

6.2.2 Factorization in the Kähler sector

Now consider a more restricted class of models, in which there is one

distinguished Kähler modulus v0, such that the only non-zero intersections are

κ0ij = Xij, κ̂0αβ = X̂αβ, (6.2.6)
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and their permutations, where i and j run over the remaining Kähler moduli.

When considering general Calabi-Yau orientifolds, this is a very unnatural

condition. However, frequently one is interested in orientifolds of T 6 and there

is a hierarchy between the moduli of the untwisted sector and those of the

twisted sectors. In such a case one typically truncates to the untwisted moduli,

and in this sector the constraints above on the intersection numbers are not

uncommon; they correspond to the presence of a T 2 factor in the T 6 which is

preserved by the orientifold group.

In the general case, we found it profitable to split the Kähler moduli

into an overall volume variable ρ and a set of angular variables γa. In the

factorized case it is more useful to take v0 and then split the remaining moduli

by defining vi = σχi, where the angular variables χi are constrained by

Xijχ
iχj = 2. (6.2.7)

Then, for instance, the volume of the space is V6 = v0σ2. With these conven-

tions we find that the Kähler metric and its inverse have the form

Kab̄ =

( 1
4(v0)2

0

0 1
4σ2

[
(Xχ)i (Xχ)j −Xij

]) , (6.2.8)

Kab̄ =

(
4 (v0)

2
0

0 4σ2 [−X−1 ij + χiχj]

)
. (6.2.9)

The combinations that appear in the expression for ε are

1

4
Kab̄ ∂V

∂va
∂V

∂vb
=
(
v0
)2( ∂V

∂v0

)2

+
1

2
σ2

(
∂V

∂σ

)2

+

[
−X−1 ij +

1

2
χiχj

]
∂V

∂χi
∂V

∂χj
. (6.2.10)

227



We can now look for no-go theorems involving the three variables D, v0, and

σ. For example, suppose r0K = 0, but we allow non-zero riK and r̂Kα , then

V =
1

2v0σ2
e2D

{
K̂IJ

(
pI + riIu

i
) (
pJ + rjJu

j
)

+σ2K̂IJriIrjJχ
iχj − 4σ2ZIZJX−1 ijriIrjJ

}
+2
(
v0
)−1

e2DX̂−1αβ
(
r̂IαFI

) (
r̂JβFJ

)
+ 2e3DZK

(
m̃pK − riKm

i
)

+
1

2v0σ2
e4D

{(
v0
)2(

e0 +Xijm
iuj +

1

2
m̃Xiju

iuj
)2

+σ2
[
−X−1 ij + χiχj

] (
ξIriI + ei +m0Xiku

k + u0Xikm
k + m̃u0Xiku

k
)

×
(
ξJrjJ + ej +m0Xjlu

l + u0Xjlm
l + m̃u0Xjlu

l
)

+

[
ξK
(
pK + riKu

i
)

+ ẽ+ e0u
0 + eiu

i

+
1

2

(
m0 + m̃u0

)
Xiju

iuj + u0Xijm
iuj
]2

+σ4
(
m0 + m̃u0

)2
+
(
v0
)2
σ2
[
−Xij +XikXjlχ

kχl
] (
mi + m̃ui

) (
mj + m̃uj

)
+m̃2

(
v0
)2
σ4

}
.

(6.2.11)

In this case it is easy to check that

∂DV − v0∂v0V ≥ 3V, (6.2.12)

so that

ε ≥ V −2

[
1

5

(
∂DV − v0∂v0V

)2
+

1

20

(
∂DV + 4v0∂v0V

)2] ≥ 9

5
. (6.2.13)

Similarly, if riK = r̂Kα = 0, but we have arbitrary r0K , the potential has the
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form

V =
1

2v0σ2
e2D

{
K̂IJ

(
pI + r0Iu

0
) (
pJ + r0Ju

0
)

+
(
v0
)2
K̂IJr0Ir0J

}
+2e3DZK

(
m̃pK − r0Km

0
)

+
1

2v0σ2
e4D

{(
v0
)2(

ξKr0K + e0 +Xijm
iuj +

1

2
m̃Xiju

iuj
)2

+σ2
[
−X−1 ij + χiχj

] (
ei +m0Xiku

k + u0Xikm
k + m̃u0Xiku

k
)

×
(
ej +m0Xjlu

l + u0Xjlm
l + m̃u0Xjlu

l
)

+

[
ξK
(
pK + r0Ku

0
)

+ ẽ+ e0u
0 + eiu

i

+
1

2

(
m0 + m̃u0

)
Xiju

iuj + u0Xijm
iuj
]2

+σ4
(
m0 + m̃u0

)2
+
(
v0
)2
σ2
[
−Xij +XikXjlχ

kχl
] (
mi + m̃ui

) (
mj + m̃uj

)
+m̃2

(
v0
)2
σ4

}
, (6.2.14)

and one can check that

2∂DV − σ∂σV ≥ 6V, (6.2.15)

giving

ε ≥ V −2

[
1

18
(2∂DV − σ∂σV )2 +

1

36
(∂DV + 4σ∂σV )2

]
≥ 2. (6.2.16)

Thus in order to get slow-roll inflation, we must have non-zero metric fluxes

both with a 0 index and without, where by fluxes without a 0 index we mean

either riK or r̂Kα .
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6.2.3 Factorization in the complex structure sector

It is possible to find a similar sort of factorization in the complex struc-

ture sector. Recall that the computations of the Kähler potential in this

sector was determined by a polynomial pn which is homogeneous of degree

n = h2,1 + 1 in n variables. We defined the usual dilaton D by writing

IK = Im(NK) = e−DZK , where the ZK were constrained by pn(Z) = 1,

or alternatively, pn(I) = e−nD.

Now suppose that we can divide the IK into two sets, IA(1) and IP(2) (we

will use letters from different parts of the alphabet for the different sets), and

that the polynomial pn factorizes as

pn(I) = p(1)
n1

(I(1)) · p(2)
n2

(I(2)), (6.2.17)

where n1 and n2 are the degrees of the polynomials and satisfy n1 + n2 = n.3

In this case we can define two dilatons, D1 and D2 by

e−n1D1 = p(1)
n1

(I(1)), e−n2D2 = p(2)
n2

(I(2)), (6.2.18)

and we can define two sets of Z by ZA
(1) = eD1IA(1) and ZP

(2) = eD2IP(2). Each

of these sets will be constrained, since 1 = p
(1)
n1 (Z(1)) = p

(2)
n2 (Z(2)). The Kähler

potential in this sector is now given by

K = − 4

n
ln [pn(I)] = 4

(n1

n
D1 +

n2

n
D2

)
. (6.2.19)

3Note that the degrees n1 and n2 do not have to correspond to the cardinality of the sets
IA
(1) and IP

(2).
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The Kähler metric will then be block diagonal, with non-zero entries

KAB̄ = e2D1K̂(1)AB

= e2D1
1

n

[
∂Ap

(1)
n1

(Z(1))∂Bp
(1)
n1

(Z(1))− ∂A∂Bp
(1)
n1

(Z(1))
]
,(6.2.20)

KPQ̄ = e2D2K̂(2)PQ

= e2D2
1

n

[
∂Pp

(2)
n2

(Z(2))∂Qp
(2)
n2

(Z(2))− ∂P∂Qp
(2)
n2

(Z(2))
]
.(6.2.21)

Furthermore, in ε we will find the combination

1

4
KJK̄ ∂V

∂IJ
∂V

∂IK
=

n

4n1

(
∂V

∂D1

)2

+
n

4n2

(
∂V

∂D2

)2

+
1

4

[
K̂AB

(1) −
n

n1

ZA
(1)ZB

(1)

]
∂V

∂ZA
(1)

∂V

∂ZB
(1)

+
1

4

[
K̂PQ

(2) −
n

n2

ZP
(2)Z

Q
(2)

]
∂V

∂ZP
(2)

∂V

∂ZQ
(2)

. (6.2.22)

We can now try to concoct more no-go theorems working with the variables

D1, D2, and ρ. However, it turns out that we only gain an advantage over

the general case if the non-zero flux contributions to the six-brane tadpoles

come from only one of the subsets above, say only the subset labeled (1). In

other words, we need to demand that m̃pP = raPm
a (so that the tadpole

contributions with a P -index vanish), while we allow m̃pA − raAm
a 6= 0. In

this case, and under certain extra conditions on the fluxes, we can find no-go

theorems. We present three examples, but the list is not exhaustive.

If raP = r̂Aα = 0 and n1 ≥ n2, then we can show that ∂D2V ≥ 4n2

n
V ,

which gives ε ≥ 4n2

n
. Note in this case that combining raP = 0 with our

assumptions about the tadpoles forces pP = 0.

If raA = r̂Pα = 0 then we have a family of inequalities of the form

3∂D1V +x∂D2V −ρ∂ρV ≥ 9n1+(4x−3)n2

n
V , where x is any real number satisfying
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inequalities

x ≤ 2, x ≤ 5

2
− n1

2n2

, x >
3

4
− 9n1

4n2

. (6.2.23)

There are always solutions for x and ε turns out to always be maximized by

taking x at the top of the allowed interval, which leads to

ε ≥ 49n2

n1+28n2
, n1 ≥ n2,

ε ≥ (9n1+5n2)2

n(39n1+19n2)
, n1 ≤ n2.

(6.2.24)

Similarly, if raK = 0 (i.e. both raA and raP vanish, and hence so also

does pP ) then we can show that 3∂D1V +x∂D2V −ρ∂ρV ≥ 9n1+(4x−3)n2

n
V , where

now x is a real number satisfying

x >
3

4
− 9n1

4n2

, x ≤ 5

2
− n1

2n2

, (n1 − n2)x ≥ 4n1 − 2n2. (6.2.25)

In this case there are solutions only when 5n2 > 9n1, in which case the

strongest bound is

ε ≥ (9n1 − 5n2)
2

39n2
1 − 50n1n2 + 19n2

2

. (6.2.26)

6.2.4 Factorization in both sectors

Now, finally, let us briefly consider the case where there is factorization

in both the Kähler and complex structure sectors of the theory, with the

notation of the previous two sections. There are many possible no-go theorems

which can be derived in various situations. One situation is relevant for our

analysis below, so we present the derivation here.

This case occurs when we have r0K = 0 (that is both r0A = r0P = 0)

and riP = pP = r̂A = 0, but allow non-zero riA, pA, and r̂P . Here we find a
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family of inequalities, ∂D1V +x∂D2V −v0∂v0V ≥ 3n1+(4x−1)n2

n
V , where the real

number x must satisfy

x >
1

4
− 3n1

4n2

, (n1 − n2)x ≥ n1 − n2. (6.2.27)

These always admit solutions for x, and the corresponding bound on ε is given

by

ε ≥ 9n1+5n2

5n1+n2
, n1 ≥ n2,

ε ≥ 9
5
, n1 < n2.

(6.2.28)

6.3 Toroidal Orientifolds

For a generic Calabi-Yau three-fold, it is not presently understood ex-

actly how to consistently include metric fluxes or non-geometric fluxes. When

the manifold is at a point in its moduli space that admits a description as an

orbifold of T 6, however, we can identify a subset of these generalized fluxes

which can be turned on simply by twisting the torus construction. In this case

we can derive the full set of consistency conditions which must be satisfied,

and it is for this reason that toroidal orbifolds and orientifolds are the most

well-studied compactifications with generalized fluxes.

What will follow in the next section is a (partial) classification of ori-

entifolds of T 6 which preserve N = 1 supersymmetry in four dimensions (see

also a related classification in [218]). The goal is simply to generate a list of

examples in which to look for slow-roll inflation or to test the utility of our

no-go theorems.

6.3.1 Classification of orientifolds

There is a well-known classification of abelian orbifold groups which act

on T 6 without shifts and which preserve N = 2 supersymmetry [219], [220],
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Table 6.1: Cyclic orbifold groups
Group ZN Generator 1

N
(n1, n2, n3)

Z3
1
3
(1, 1, 1)

Z4
1
4
(1, 1, 2)

Z6−I
1
6
(1, 1, 4)

Z6−II
1
6
(1, 2, 3)

Z7
1
7
(1, 2, 4)

Z8−I
1
8
(1, 2, 5)

Z8−II
1
8
(1, 3, 4)

Z12−I
1
12

(1, 4, 7)
Z12−II

1
12

(1, 5, 6)

[221]. We will not be too concerned with the explicit action on the lattice,

except in some specific cases in section 6.5. As we will see, the action on

the lattice only enters the story for us once we attempt to derive the correct

quantization conditions on the generalized fluxes, but there is a great deal

of information which can be obtained without these details. With this in

mind, then, we have nine different cyclic groups and eight more products of

cyclic groups which can occur as lattice-preserving subgroups of SU(3), and

hence give rise to N = 2 orbifolds of T 6. Moreover, this list exhausts the

possibilities for abelian orbifold groups, up to isomorphism. These groups are

listed in tables 6.1 and 6.2. In each table, the generator of the orbifold action

is written as 1
N

(n1, n2, n3), which is shorthand for

(z1, z2, z3) 7→
(
e2πin1/Nz1, e

2πin2/Nz2, e
2πin3/Nz3

)
. (6.3.1)

Let us now classify the supersymmetric orientifolds of these models.

An orientifold will be a Z2 extension Ĝ of the orbifold group G,

1 −→ G −→ Ĝ −→ Z2 −→ 1, (6.3.2)
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Table 6.2: ZN × ZM orbifold groups
Group ZN × ZM Generator 1 1

N
(n1, n2, n3) Generator 2 1

M
(m1,m2,m3)

Z2 × Z2
1
2
(1, 0, 1) 1

2
(0, 1, 1)

Z2 × Z4
1
2
(1, 0, 1) 1

4
(0, 1, 3)

Z2 × Z6
1
2
(1, 0, 1) 1

6
(0, 1, 5)

Z2 × Z′6 1
2
(1, 0, 1) 1

6
(1, 1, 4)

Z3 × Z3
1
3
(1, 0, 2) 1

3
(0, 1, 2)

Z3 × Z6
1
3
(1, 0, 2) 1

6
(0, 1, 5)

Z4 × Z4
1
4
(1, 0, 3) 1

4
(0, 1, 3)

Z6 × Z6
1
6
(1, 0, 5) 1

6
(0, 1, 5)

where each element of Ĝ which is not in the image of G (or equivalently not

in the kernel of the map to Z2) must be accompanied by orientation reversal

Ω and (−1)F . In order to preserve N = 1 supersymmetry in type IIA, we

also require not only that the elements of G act as linear holomorphic maps,

G ⊂ SU(3), but we also demand that the orientation-reversing elements of Ĝ

act as linear antiholomorphic maps. Thus for our classification we would like to

find, for each of the orbifold group actions in the list above, all Z2 extensions,

where the extension acts antiholomorphically. To be more explicit, we want

to find an antiholomorphic linear map σ such that for every element g in the

orbifold group G, we have gσgσ ∈ G. As a set then, Ĝ = G ∪ σG. In given

holomorphic coordinates z1, z2, z3, we can write each element as a three-by-

three complex matrix with entries gij, σ
ı̄
j, and then the condition above is

gikσ̄
k

¯̀ḡ
¯̀
m̄σ

m̄
j = (g′)

i
j, (6.3.3)

for some g′ ∈ G.

In all of the examples we will consider, the elements ofG are all diagonal

with entries gij = ∂ij exp[iθi] (for instance see the generators in tables 6.1
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and 6.2), so we have ∑
k̄

ei(θi−θk)σ̄ik̄σ
k̄
j = ∂ije

iθ′i , (6.3.4)

with no sum over i.

We will now consider different cases.

First consider the cases of cyclic groups whose generators have θ1, θ2,

θ3 all distinct (the last six cases in table 6.1). In this case we can show that

(6.3.4) requires σ̄ik̄σ
k̄
j = 0 for all k̄ (no sum on k̄ here) and all i 6= j. These

equations can be shown to imply that only three entries of σ are non-zero;

either σ is diagonal, or it is block diagonal with a one-by-one block and a

two-by-two block with zeros on the diagonal. In the diagonal case, we can

apply phase changes to our holomorphic coordinates in order to transform σ

into the three-by-three identity matrix, so that it acts by simple conjugation,

zi 7→ z̄i. It turns out that this choice for σ will be valid for each of our orbifold

groups, and so we will denote it as the standard orientifold for each case. These

are summarized in table 6.3. In the non-diagonal cases, we can again use a

phase rotation to set the one-by-one block to one, and we can set one of the

non-zero entries of the two-by-two block to one. Then demanding that (6.3.4)

be satisfied for each element of the orbifold group restricts the possibilities.

We find that there are no allowed non-standard orientifolds for Z6−II and Z7,

one choice for each of the Z8 groups, and two choices each for the Z12 groups,

where to correctly count the number of independent choices, we should also

recall that we can relabel our element σ as σ′ = gσ, for any g ∈ G, and then

drop the prime.

Next let us consider Z4 and Z6−I . In this case we can easily show that

σ must be block diagonal with a two-by-two block for z1 and z2, and a one-by-
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Table 6.3: Standard N = 1 Orientifolds (zi 7→ z̄i)

Group h1,1
− untw h1,1

+ untw h2,1
untw

Z3 6 3 0
Z4 4 1 1

Z6−I 4 1 0
Z6−II 3 0 1

Z7 3 0 0
Z8−I 3 0 0
Z8−II 3 0 1
Z12−I 3 0 0
Z12−II 3 0 1

Z2 × Z2 3 0 3
Z2 × Z4 3 0 1
Z2 × Z6 3 0 1
Z2 × Z′6 3 0 0
Z3 × Z3 3 0 0
Z3 × Z6 3 0 0
Z4 × Z4 3 0 0
Z6 × Z6 3 0 0
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one block for z3. A phase rotation can be used to set the latter entry to one

(i.e. σ · z3 = z̄3), but we have quite a bit more symmetries at our disposal in

the two-by-two block, since any GL(2,C) matrix commutes with the orbifold

group. It turns out that solving the constraints and then using the symmetries

allows us to put σ into one of two canonical forms. Either we can set the two-

by-two block to the identity, giving the standard orientifold, or we can set it

to be the canonical antisymmetric matrix, so that σ · (z1, z2) = (z̄2,−z̄1).

In the case of Z3, we have θ1 = θ2 = θ3 = 2πi/3. Here (6.3.4) is the

least restrictive, but we also have the most symmetry, since the full GL(3,C)

commutes with the orbifold group. Here we can use this symmetry to always

convert to the standard case.

We move on now to the product groups of table 6.2. As in the case

of the cyclic groups with distinct angles, we can show that σ must be either

diagonal, leading to the standard case, or block diagonal, with the two-by-

two block having vanishing diagonal entries. Finally, by carefully examining

the remaining constraints and symmetries we are able to find the independent

non-standard orientifolds in each case. All of the non-standard orientifolds are

summarized in table 6.4.

6.3.2 Turning on NSNS fluxes

Now for each of the orientifolds discussed in the last subsection, we

would like to understand which generalized fluxes can be turned on consis-

tently. The discussion will be very brief, and we will refer the interested

reader to [209], [210] for a more careful discussion of our approach.

As explained in section 6.1.1, theH-flux and metric fluxes we would like

to turn on can be thought of in terms of their components Hijk and f ijk, where
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Table 6.4: Non-Standard N = 1 Orientifolds
Group σ · (z1, z2, z3) h1,1

− untw h1,1
+ untw h2,1

untw

Z4 (z̄2,−z̄1, z̄3) 2 3 1
Z6−I (z̄2,−z̄1, z̄3) 2 3 0
Z8−I (z̄3, z̄2, z̄1) 2 1 0
Z8−II (z̄2, z̄1, z̄3) 2 1 1

Z12−I
(z̄3, z̄2, z̄1) 2 1 0
(z̄3, z̄2, iz̄1) 2 1 0

Z12−II
(z̄2, z̄1, z̄3) 2 1 1(
z̄2, e

πi/3z̄1, z̄3

)
2 1 1

Z2 × Z2 (z̄1, z̄3, z̄2) 2 1 3

Z2 × Z4
(z̄1, z̄3, z̄2) 2 1 1
(z̄1, z̄3, iz̄2) 2 1 1

Z2 × Z6 (z̄1, z̄3, z̄2) 2 1 1

Z2 × Z′6
(z̄1, z̄3, z̄2) 2 1 0
(z̄2, z̄1, z̄3) 2 1 0

Z3 × Z3 (z̄1, z̄3, z̄2) 2 1 0

Z3 × Z6
(z̄1, z̄3, z̄2) 2 1 0

(z̄1, z̄3,−z̄2) 2 1 0
Z4 × Z4 (z̄1, z̄3, z̄2) 2 1 0
Z6 × Z6 (z̄1, z̄3, z̄2) 2 1 0
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the indices run over the six legs of the torus. For each toroidal orientifold,

we need these objects to transform correctly under the quotient group. This

means that both Hijk and f ijk must be invariant under the orbifold group, and

Hijk should be odd under the action of σ, while f ijk should be even.

Next, we must also impose the Bianchi identities, which in this case

take the form

Hi[jkf
i
`m] = 0, f ij[kf

j
`m] = 0. (6.3.5)

In terms of the geometry of the underlying twisted torus, the latter equation

is simply that the exterior derivative is nilpotent (d2 = 0), and the former

condition is simply that H is a closed three-form (dH = 0). In section 6.4 we

will tabulate the fluxes that can be turned on and all solutions to the Bianchi

identities for each of our models. In principle one could violate the Bianchi

identities by including localized NSNS sources [222], but we will not include

such objects in this work.

Once we have found the set of independent fluxes which survive the

orientifold quotient, it turns out to be more convenient, for the purposes of

the low-energy theory, to refer not to the components Hijk and f ijk, but instead

to certain coefficients pK , raK , and r̂Kα , given by

H = pKb
K , dωa = −raKbK , dµα = −r̂Kα aK , (6.3.6)

where aK , bK , ωa, and µα are forms which descend from the untwisted coho-

mology of the torus without fluxes. There is an invertible linear map between

the pK and the independent components Hijk. Similarly, the coefficients raK

and r̂Kα are always given by linear combinations of the independent f ijk, but

in this case the map is not always invertible; there can be more independent
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f ijk than raK and r̂Kα . In these cases, the extra metric fluxes do appear in the

Bianchi identities, and should be taken into account when classifying the solu-

tions, but the scalar potential and the tadpole constraints (see below) depend

only on raK and r̂Kα .

The Ramond-Ramond tadpoles are given by4

−
√

2 (pKm̃− raKm
a) = 2N

(O6)
K −N

(D6)
K , (6.3.7)

where the right hand side of the equation above represents the contribution

from localized sources, both O6-planes, which sit at the fixed points of the ori-

entation reversing elements of the orientifold group, and the D6-branes which

we allow to be added anywhere. We will not really be viewing these tadpoles

as constraints in the present work, taking the attitude that D6-branes can be

added as needed. Clearly, for a detailed analysis of any given model, one would

have to proceed more carefully, taking into account RR quantization as well

as the action of the orientifold on the open string sector.

From the perspective of the low-energy effective theory, these seem to

be the only constraints that need to be obeyed. Indeed, we will find that for

most models, these constraints are already enough for us to be able to apply

our no-go theorems and rule out slow-roll inflation and de Sitter extrema from

the corresponding scalar potential. However, we would like to understand ex-

actly which models can be constructed consistently from a ten-dimensional

perspective. There are at least two approaches to this problem, via the coset

4This expression is actually not exactly correct. Rather, this is a cohomological condition
(in the sense of the cohomology of the torus without metric fluxes). There is an exact tadpole
constraint of the schematic form DF = J , where D is the generalized derivative (d + H on
the twisted torus), F is the formal sum of the RR fluxes, and J is a delta function form
describing the configuration of O6-planes and D6-branes.

241



constructions of [223], [224], [225], and the base-fiber twisted torus construc-

tions of [209], which are inspired by [211], [212] and others. In the present

work we will focus mainly on the latter approach when we want explicit con-

structions, so we will now briefly review it.

For a given orientifold of T 6, we first pick a division of the torus into

a base and a fiber, in such a way so that the orientifold group does not mix

the two. More precisely, we require the tangent spaces of the base and fiber

to be invariant subspaces of the orientifold action on the tangent space of the

T 6. Once this splitting has been chosen, then for each direction in the base,

labeled by an index i = 1, . . . , n, we will choose a matrix Mi ∈ so(6−n, 6−n).

The entries of these matrices will correspond to the components of our fluxes,

(Mi) =

(
−f bia Hiab

−Qab
i faib

)
. (6.3.8)

Here a and b are indices in the fiber directions. Qab
i are non-geometric fluxes

which we don’t want to turn on in this work, so the matrices in our examples

will be upper-block-diagonal. Note that using these constructions we can only

turn on sets of fluxes that have one lower index lying along the base, and the

other two indices (upper or lower) lying along the fiber.

Using this language, it is straightforward to restrict to matrices that are

compatible with the orientifold group. The Bianchi identities are reproduced

simply by demanding that Mi and Mj commute for all i and j. Finally,

quantization conditions for the generalized fluxes become simply the condition

exp
[
~λ · ~M

]
∈ SO(6, 6; Z), ~λ ∈ Λ ∼= Z6 (6.3.9)

where Λ ∼= Z6 is the lattice of torus identifications embedded in the tangent

space of T 6, and where we identify the Mi with a Lie algebra valued cotangent
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vector. One of the great values of the base-fiber construction is that it enables

one to identify the correct quantization conditions on the generalized fluxes,

something that is not apparent from considerations of the low energy theory

alone. And, in fact, there can be cases where the quantization conditions

forbid us from turning on certain components of metric fluxes, for instance.

These constructions are slightly generalized and formulated more precisely in

[226].

6.3.3 Residual symmetries

Each of the no-go theorems we derived requires certain assumptions

about which fluxes can be non-vanishing. Sometimes a solution of the Bianchi

identities will automatically satisfy the assumptions for one of our theorems,

but there will also be cases which do not appear to fall into one of these cases,

but which we found numerically to still satisfy a bound on ε. In almost all of

these cases we were able to find a symmetry (that is a field redefinition that

preserved the form of the potential while simply changing which fluxes were

turned on) that mapped us into a configuration for which the no-go theorems

apply. For this reason, it is important to identify the group of symmetries

which can act in this way.

This turns out to be fairly straightforward. Recall that type IIA on

T 6 has a group of T-duality symmetries SO(6, 6; Z), or, somewhat more pre-

cisely, we should use the double cover, Spin(6, 6; Z). This group includes large

diffeomorphisms of the torus (living in a GL(6; Z) subgroup), shifts of the B-

field, and also non-geometric symmetries such as performing a T-duality on

a T 2 ⊂ T 6. In fact, the orientifold group Ĝ by which we are to quotient can

also be considered as a subgroup of this T-duality group. The orbifold group
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G sits inside SU(3) ⊂ GL(6; Z), while the orientation-reversing elements of Ĝ

sit inside of a Z2 extension of GL(6; Z) in Spin(6, 6; Z) [209]. The resulting

space will still have a group of duality symmetries given by the elements h of

the full T-duality group which satisfy

hĜh−1 = Ĝ. (6.3.10)

All of the fields and fluxes (here we should include the full set of non-

geometric fluxes), as well as the Bianchi identities and tadpole constraints,

will transform as representations of these residual symmetries. We will find

situations where we can use these symmetries to map one set of fluxes which

solves the Bianchi identities, to a new set of fluxes which still solves the Bianchi

identities, but also satisfy the assumptions of one of our no-go theorems. The

resulting bound on ε will apply to both configurations of fluxes (since we have

simply performed a field redefinition).

6.4 Application of the No-Go Theorems to Toroidal Ori-
entifolds

In this section we will apply our no-go theorems to the toroidal orien-

tifold models discussed above. Since we are restricting to the untwisted sector

we have eleven different models that are uniquely determined by their triple

intersection numbers (A.2.2) and the prepotential in the complex structure

sector (6.1.13). These models are summarized in table 6.5. Note that for all

but the Z3 quotient we have a factorization in the Kähler sector and for all

models with h2,1 > 0 we have a factorization in the complex structure sector.

For the benefit of the reader primarily interested in the results rather

than how they arise, we summarize the weakest bounds on the slow-roll pa-
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] κ, κ̂ pn(Z) (= 1) Group

I κ123 = 1 2Z1

Z7,Z8−I ,Z12−I ,
Z2 × Z6′ ,Z3 × Z3,
Z3 × Z6,Z4 × Z4,

Z6 × Z6

II κ122 = 1, κ̂111 = −1 2Z1

Z8−I , Z12−I ,
Z2 × Z6′ ,Z3 × Z3,
Z3 × Z6,Z4 × Z4,

Z6 × Z6

III
κ123 = 1, κ144 = −1,

κ̂111 = −1
2Z1 Z6−I

IV
κ122 = 1, κ̂1αα = −1,

α ∈ {1, 2, 3} 2Z1 Z6−I

V

κ123 = 1, κ456 = −2,
κ144 = κ255 = κ366 = −2,
κ̂111 = κ̂222 = κ̂333 = −1,
κ̂423 = κ̂513 = κ̂612 = 1,

2Z1 Z3

VI κ123 = 1 22Z1Z2 Z6−II ,Z8−II ,Z12−II ,
Z2 × Z4,Z2 × Z6

VII κ122 = 1, κ̂111 = −1 22Z1Z2 Z8−II , Z12−II ,
Z2 × Z4,Z2 × Z6

VIII
κ123 = 1, κ144 = −1,

κ̂111 = −1
22Z1Z2 Z4

IX
κ122 = 1, κ̂1αα = −1,

α ∈ {1, 2, 3} 22Z1Z2 Z4

X κ123 = 1 24Z1Z2Z3Z4 Z2 × Z2

XI κ122 = 1, κ̂111 = −1 24(Z1)2(Z2Z3 − (Z4)2) Z2 × Z2

Table 6.5: This table summarizes the models we are considering. It contains
the number of invariant forms and the non-vanishing triple intersection num-
bers (A.2.2) together with the prepotential for the complex structure sector
(6.1.13).

rameter ε for the various cases in table 6.6. There are several special cases

that can be shown to satisfy stronger bounds. These are omitted from table
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Case I,II,III,IV,V VII I’,II’, VI, VIII, IX X, XI
ε ≥ 27

13
2 9

5
0

Table 6.6: This table presents a summary of the weakest bounds on the slow-
roll parameter ε for the various cases. The Z8−I-quotient turns out to be
special for both case I and II, and we denote it by I’ and II’.

6.6, but they are discussed in some detail below.

We will now discuss the solutions to the Bianchi identities for all of

these cases and check which of our no-go theorems can be applied. We have

also minimized ε numerically by allowing the moduli and fluxes to vary. We

found generically that the bound given by the no-go theorem can be attained

which proves that it is impossible to derive a stronger no-go theorem. For

the two models X and XI we will find solutions to the Bianchi identities that

escape all of our no-go theorems. In these cases it is possible to get vanishing

ε and we will discuss this in detail in the next section.

6.4.1 Case I

There are two special quotients Z7 and Z8−I in this first case. Both of

these have extra metric fluxes that are not contained in the matrix raK .

The generic solution to the Bianchi identities for all models in case I has only

one of the three entries in the r vector non-zero. (For Z7 and Z8−I the extra

metric fluxes are zero.) For these solutions there is an SL(2,R) subgroup of

the residual T-duality symmetries (see section 6.3.3) under which p1 and the

nonvanishing r-flux transform as a doublet. This symmetry can be used to set

the r-flux to zero (note that if other components of r were nonzero, then these

T-dualities would mix them with nongeometric fluxes). A more pedestrian

way to see this is that a shift in one of the B-axions allows us to set p1 = 0.
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A T-duality then takes us to a configuration that has no metric flux, and we

find the bound ε ≥ 27
13

.

For Z8−I there is one more solution to the Bianchi identities due to the extra

metric fluxes, which we call f1 and f2. It reads r21 = 0, r11r31 = −f 2
1 = −f 2

2 .

The factorization in the Kähler sector allows us to apply our no-go theorem

since r21 = ”r01” = 0, and we obtain ε ≥ 9
5
.

6.4.2 Case II

As before, Z8−I is special because it has two extra metric fluxes f1, f2

that are not contained in the r matrix.

The solution to the Bianchi identities common to all quotients forces r21 =

r̂1
1 = 0, (f1 = f2 = 0) so that we are again left with only one single metric flux

that can be mapped to H-flux just as discussed in case I, and we again find

ε ≥ 27
13

.

For Z8−I there is one more solution to the Bianchi identities r11 = r21 = p1 = 0,

r̂1
1 = f 2

1 + f 2
2 .

From the factorization in the Kähler sector and using r11 = ”r0K” = 0 we find

ε ≥ 9
5
.

6.4.3 Case III

This case has two solutions to the Bianchi identities r21 = r31 = r41 =

r̂1
1 = 0 and r11 = 2r21r31 − r2

41 = r̂1
1 = 0. The second case can be brought into

a form where only one of the r21, r31, r41 is non-zero using field redefinitions

as described in subsection 6.3.3. To see this, note that the potential has an

SO(2, 1) symmetry under which r21, r31, and r41 transform as the components

of a null vector. This means we can boost to a configuration that has only
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r21 or r31 non-zero. After shifting one of the B-axions to absorb p1, both

configurations can be T-dualized to a case with only H-flux resulting in ε ≥ 27
13

.

6.4.4 Case IV

This case again has only one non-vanishing entry in the r matrix since

the Bianchi identities are r21 = r̂1
α = 0, ∀α ∈ {1, 2, 3}. Using a shift in

one of the axions together with a T-duality transformation, we see that the

configuration is equivalent to one with H-flux and no metric flux. Therefore,

we find ε ≥ 27
13

.

6.4.5 Case V

The Bianchi identities are r̂1
α = 0, 2r11r41 + r51r61 = 2r21r51 + r41r61 =

2r31r61 + r41r51 = 0, 4r11r21 − r2
61 = 4r11r31 − r2

51 = 4r21r31 − r2
41 = 0. These

have two classes of solutions.

The first class is characterized by the vanishing of two of the fluxes

r41, r51, and r61. With the others being related to this by symmetries, let

us consider r51 = r61 = 0, for definiteness. The remaining Bianchi identities

then are r11r21 = 0, r11r31 = 0, and 4r21r31 − r2
41 = 0. One obvious solution

is r21 = r31 = r41 = 0, but this is equivalent by symmetries to a special

case of the solution r11 = 0, and 4r21r31 − r2
41 = 0, so let us focus on the

latter solution. The potential has a manifest SO(2, 1) symmetry under which

r21, r31, r41 transform as the components of a vector. The Bianchi identity

enforces this vector to be null. We can perform a boost such that only r21 or

r31 is non-zero. At least locally, we can also redefine one of the B-axions to

set p1 = 0. It is then easy to see that the remaining configuration is T-dual to

a configuration with H-flux but no metric fluxes, which implies ε ≥ 27
13

.
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A naively inequivalent class of solutions has r41, r51, and r61 non-zero.

The Bianchi identities then determine r11, r21, r31 in terms of these as r11 =

−r51r61/2r41, r21 = −r41r61/2r51, r31 = −r51r61/2r41. This class turns out to

be related by symmetries to the first class, and consequently also obeys ε ≥ 27
13

.

To see this, we can pick our favorite among r11, r21, and r31, which, without

loss of generality, we will take to be r21. Let us make use of another SO(2, 1)

symmetry of the potential under which r21 transforms as a scalar, r11, r31, and

r51 as the components of a vector, and r41 and r61 as the components of a

spinor. We can use the SO(2) subgroup of SO(2, 1) to set one component of

the spinor to zero, say, r61. The Bianchi identities together with the invariance

of r21 guarantee that as we take r61 to zero, because r41 remains finite, r51 must

vanish such that r41r61/r51 remains constant. With r51 and r61 zero, we are

back to the first class of solutions, and a boost of our earlier SO(2, 1) group

followed by a field redefinition of one of the axions and a T-duality again takes

us to a configuration without metric flux implying ε ≥ 27
13

.

6.4.6 Case VI

The Z6−II quotient is special because it allows for one extra metric flux

we denote f1 that is not contained in the r matrix.

We can exclude all solutions by using our two no-go theorems that rely on the

factorization in the Kähler sector. There are two solutions up to permutation

of the a ∈ {1, 2, 3} index, that are common to all models (and for which the

extra flux f1 vanishes). The first has r2K = r3K = 0, ∀K ∈ {1, 2} and our

no-go theorem gives ε ≥ 2. The other solution reads r1K = r21r32 + r22r31 =

0, ∀K ∈ {1, 2} and we find ε ≥ 9
5
.

Finally, for Z6−II we have one more solution for which the extra metric flux is
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non-vanishing: r1K = 0, ∀K ∈ {1, 2}, r2L = r3M = 0, r2Mr3L = f 2
1 , L 6= M,

L,M ∈ {1, 2}. We again find ε ≥ 9
5
.

6.4.7 Case VII

Here we have four different solutions to the Bianchi identities that can

be dealt with using four different no-go theorems.

The first solution is r̂K = r1K = 0, ∀K ∈ {1, 2} and r21 or r22 = 0. We are

left with one single entry in the r matrix. A field redefinition relates this to a

configuration with only H-flux and we again have ε ≥ 27
13

.

Another solution is r̂K = r2K = 0, ∀K ∈ {1, 2} and our no-go theorem for

factorization in the Kähler sector gives ε ≥ 2.

The third solution is r2K = 0, ∀K ∈ {1, 2}, r̂L = pM = r1M = 0, L 6= M,

L,M ∈ {1, 2}. Here we can use the factorization in pn(Z) and apply one of

our no-go theorem for n1 = n2 = 1 and find ε ≥ 4n2

n1+n2
= 2.

Using the factorization in both complex and Kähler sector we can show that

the last solution r1K = 0, ∀K ∈ {1, 2}, r̂L = pM = r2M = 0, L 6= M,

L,M ∈ {1, 2} has ε ≥ 9n1+5n2

5n1+n2
= 7

3
, where we used n1 = n2 = 1.

6.4.8 Case VIII

This case has six different solutions to the Bianchi identities. Three of

those are

• r1K = r̂K1 = 0, ∀K ∈ {1, 2}, r21r32 + r22r31 − r41r42 = 0

• r1K = r4K = pK r̂
K
1 = r2K r̂

K
1 = r3K r̂

K
1 = 0, ∀K ∈ {1, 2}, 2r2Lr3L +

(r̂M1 )2 = εLMpLr2M = 0, 2r2Lr3M − r̂1
1 r̂

2
1 = 0, εLMpLr3M = 0, L 6= M ,

L,M ∈ {1, 2}
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• r1K = pK r̂
K
1 = raK r̂

K
1 = 0, ∀K ∈ {1, 2}, 2r2Lr3L − (r4L)2 + (r̂M1 )2 =

0, εLMpLraM = 0, 2r2Lr3M − r41r42 − r̂1
1 r̂

2
1 = 0, εLMr4LraM = 0, L 6=

M, L,M ∈ {1, 2}

These all have r1K = 0 and we can use the factorization in the Kähler sector

to show that ε ≥ 9
5
.

The next solution r̂K1 = r2K = r3K = r4K = 0, ∀K ∈ {1, 2} has ε ≥ 2 again

due to the factorization in the Kähler sector.

The fifth solution r2K = r3K = r4K = 0,∀K ∈ {1, 2}, r̂L1 = pM = r1M = 0,

L 6= M, L,M ∈ {1, 2} has ε ≥ 4n2

n1+n2
= 2. This follows from the no-go theorem

that relies on the factorization of the complex structure sector and we have

used n1 = n2 = 1.

The last case r1K = 0, ∀K ∈ {1, 2} r̂L1 = pM = r2M = r3M = r4M = 0, L 6=
M, L,M ∈ {1, 2}, can be dealt with using the no-go theorem that relies on

the factorization in both complex and Kähler sector and has ε ≥ 9n1+5n2

5n1+n2
= 7

3

since n1 = n2 = 1.

6.4.9 Case IX

In this case we again need several different no-go theorems.

The first class of solutions r1K = r̂Kα = 0,∀K ∈ {1, 2}, ∀α ∈ {1, 2, 3} and

r21 = 0 or r22 = 0 has only one non-vanishing metric flux, and the configuration

is dual to one with only H-flux, so we find ε ≥ 27
13

.

The next solution r2K = r̂Kα = 0,∀K ∈ {1, 2}, ∀α ∈ {1, 2, 3} gives ε ≥ 2 due

to the factorization in the Kähler sector.

From the factorization in the complex structure sector we find ε ≥ 4n2

n1+n2
= 2

for n1 = n2 = 1 for the third solution r2K = 0, ∀K ∈ {1, 2} and r̂L1 = pM =

r2M = 0, L 6= M, L,M ∈ {1, 2}.
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The next solution raK = pK =
∑

α r̂
1
αr̂

2
α = 0, ∀a,K ∈ {1, 2} satisfies the

condition for our no-go based on the factorization in the Kähler sector and we

find ε ≥ 9
5
.

Using the factorization in both complex and Kähler sector we can show that

the last solution r1K = 0, ∀K ∈ {1, 2}, r̂Lα = pM = r2M = 0, ∀α ∈ {1, 2, 3},

L 6= M, L,M ∈ {1, 2} has ε ≥ 9n1+5n2

5n1+n2
= 7

3
, where we used n1 = n2 = 1.

6.4.10 Case X

Here the solutions to the Bianchi identities can be grouped into five

different classes.

The first class of solutions has two of the three rows in the r matrix equal

to zero. The third one is arbitrary and can be identified with ”r0K” and our

no-go theorem that relies on the factorization of the Kähler sector can be used

to obtain ε ≥ 2.

The next case has partially non-vanishing entries in two rows and at least two

columns. The entire third row is zero so that we have this time ”r0K = 0” and

ε ≥ 9
5
.

The third class encompasses four solutions that each have only three non-

vanishing entries with one in each row. The non-vanishing r components for

the four different cases are 1) r11, r24, r33 6= 0, 2) r12, r23, r34 6= 0, 3) r13, r22, r31 6=

0, 4) r14, r21, r32 6= 0. Each of these cases leads numerically to ε ≈ 1.57721. We

leave it up to the interested reader to try to find a no-go theorem that gives

this value using the residual symmetries and factorization in both Kähler and

complex structure sector.

The fourth class of solutions has one of the four columns of the r matrix non-

vanishing and arbitrary. Numerically one obtains ε ≈ 4
3

and we leave it again
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to the interested reader to find the corresponding no-go theorem.

The last class has two, three, or all four columns non-zero. The non-zero met-

ric fluxes are not all independent but have to satisfy constraints that result

from the Bianchi identities. The most generic case has all twelve entries in

the r matrix non-zero. There are six constraints so that we are left with six

independent metric fluxes. For this class there cannot be a bound on ε from

a no-go theorem since one can find numerically solutions that have ε ≈ 0. We

will discuss an explicit example in more detail in subsection 6.5.1.

6.4.11 Case XI

The solutions to the Bianchi identities can be again grouped into five

classes.

The first class has r11 = r21 = p1 = r̂2
1 = r̂3

1 = r̂4
1 = 0 and 2r13r22 + 2r12r23 −

r14r24 = 0. From the factorization in the complex sector we find ε ≥ 4n2

n1+n2
= 2,

where now n1 = n2 = 2.

The next class has r1K = 0,∀K ∈ {1, 2, 3, 4}. The remaining NSNS fluxes

r2K , r̂
K
1 , pK are constrained by the remaining Bianchi identities. We can use

the factorization in the Kähler moduli sector since r1K = ”r0K” = 0 to obtain

ε ≥ 9
5
.

The third class has r21 = r̂1
1 = 0 and r11 6= 0. The Bianchi identities then

reduce to pK r̂
K
1 = r1K r̂

K
1 = 0 and r22 =

−r14r̂31−2r12r̂41
2r11

, r23 =
r14r̂21+2r13r̂41

2r11
,

r24 =
r12r̂21−r13r̂31

r11
. None of the no-go theorems apply and numerically one finds

ε ≈ 0. We will discuss this class and the next two that all allow for extremal

points with very small ε in subsection 6.5.2 in greater detail.

The next class has r11 = r21 = r̂1
1 = 0. The remaining fluxes are again con-

strained by the Bianchi identities. Numerically we find vanishing ε in the limit
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where we have r̂K1 ≈ 0,∀K ∈ {1, 2, 3, 4}. In this limit the only Bianchi identity

that constrains the non-vanishing NSNS fluxes is 2r13r22 +2r12r23−r14r24 = 0.

The last class of solutions has r11 = 0 but r21 6= 0. Again there are sev-

eral Bianchi identities that constrain the remaining fluxes. Nevertheless, it is

generically possible to obtain small ε so that there cannot be a no-go theorem.

We will present some of the details of our numerical studies of this case in the

next section.

6.5 Examples with Small ε

In the previous section, we have shown that our no-go theorems rule

out slow-roll inflation and de Sitter vacua in large classes of models. However,

there were solutions to the Bianchi identities for the two Z2×Z2 orbifold mod-

els that escaped all no-go theorems. In this section we give explicit examples

for the models that have regions in moduli space with (very) small ε that likely

correspond to de Sitter extrema.5 Since we are now presenting explicit solu-

tions rather than no-go theorems some words of caution are in order. “Adding

metric fluxes” to an existing geometry only leads to a well-defined compact

space if the fluxes are properly quantized. One way to explicitly construct

a space with metric fluxes is the base-fiber splitting framework [211], [212],

[209]. This framework also allows to derive the quantization conditions for all

the NSNS fluxes. We will therefore check whether we can explicitly construct

the compact spaces that lead to de Sitter extrema or whether the base-fiber

approach is not compatible with the solutions to the Bianchi identities that

5Since the analysis is purely numerical, it is impossible to tell whether these are extrema
with all derivatives of the potential vanishing. All we know is that the values we find are
compatible with zero to within our working precision, but they might just be very shallow.
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gave small ε. Further constraints on these models arise from the quantization

of the RR fluxes and the tadpole cancellation condition. To ensure the validity

of the supergravity approximation, one also has to check that the volume of

the internal space is large in string units and that the string coupling is small.

Since we always find at least one tachyonic direction for the extremal points

with vanishing ε we will only consider the restrictions from the base-fiber con-

structions in the subsections below.

6.5.1 Standard orientifold of Z2 × Z2

The solutions to the Bianchi identities that allow for vanishing ε have

at least non-vanishing entries in two columns and all three rows. For simplicity

we take the case where ra3 = ra4 = 0, ∀ a ∈ {1, 2, 3}. Assuming that r22 6= 0 we

can solve the remaining Bianchi identities and find r11 = − r12r21
r22

, r31 = r21r32
r22

.

Minimizing ε by letting all the moduli and remaining fluxes vary, we find

ε ≈ 10−21 for the following values6 of the fluxes and moduli7

m̃ ≈ −.2026, m1 = m2 = m3 ≈ .6990, e1 = e2 = e3 ≈ −1.076, e0 = 0,

p1 = p2 = 0, p3 = p4 ≈ −1.310, r12 ≈ .6215, r21 ≈ .5004, r22 ≈ −.02231,

r32 ≈ −.1930, ξ1 ≈ −.1504, ξ2 ≈ 2.682, ξ3 + ξ4 ≈ −2.573,

u1 = u2 = u3 ≈ 1.336, eD ≈ .3481, Z1 ≈ .1845, Z2 ≈ 2.333, Z3 = Z4 ≈ .3810,

v1 ≈ 2.202, v2 ≈ 18.73, v3 ≈ 4.023.

6For cosmetic reasons, the following values are rounded to four digits and give ε ≈ 10−4.
7The C3 axions ξK appear in the potential only through the linear combinations pKξK

and raKξK . Since in this simple case r has rank two we can stabilize only three linear
combinations of them. In particular ξ3− ξ4 is a flat direction. By allowing for at least three
non-vanishing columns in the r matrix one finds examples without flat directions.
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Since we have ε ≈ 0 this corresponds to a de Sitter extremum. Calculating

the η parameter for this solution we find η ≈ −3.7. So this solution is not a

minimum but rather a saddle point. From the mass matrix for the moduli one

sees that there is exactly one tachyonic direction that is a mixture of several

moduli including the axions. We have looked at several extremal points for

this model but always found at least one tachyonic direction with η . −2.4.

We did not pursue this model further since it is not compatible with the base-

fiber construction mentioned above. Splitting the compact space into a base

and a fiber always results in an r matrix that has one row equal to zero. Due

to the factorization in the Kähler sector we therefore find ε ≥ 9
5

for all models

that can be obtained from the base-fiber construction. In a related work [204]

the authors searched for slow-roll inflation and de Sitter vacua in coset spaces

[223], [224], [225]. They found that for an orientifold of SU(2)×SU(2) one

can obtain de Sitter extrema with one tachyonic direction. This orientifold of

SU(2)×SU(2) can be thought of as a Z2×Z2 quotient of T 6 with metric fluxes

as was discussed in [215]. This means that at least a subset of the compact

spaces exists although it is not possible to obtain them from the base-fiber

construction. The authors of [204] also checked whether the no-go theorems

related to the η parameter [227], [228] can be applied to their SU(2)×SU(2)

orientifold but found that this is not the case. It would be interesting to study

this model further to verify whether all solutions to the Bianchi identities that

give small ε have a corresponding compact space and whether it is possible to

find de Sitter vacua that have no tachyonic directions.
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6.5.2 Non-standard orientifold of Z2 × Z2

For the non-standard orientifold projection we can explicitly construct

solutions to the Bianchi identities that lead to vanishing ε. The two interesting

cases have the 2 dimensional submanifolds spanned by the 3 and 5 or 4 and

6 directions as base and the other four transverse directions as fiber. The

first case leads to p1, p4, r11, r14, r23, r̂
2
1 fluxes with all other NSNS fluxes equal

to zero. The non-zero fluxes have to satisfy the Bianchi identity 2r11r23 −

r14r̂
2
1 = 0. The second case with the 4 and 6 direction as base allows for

p1, p4, r11, r14, r22, r̂
3
1 fluxes with all other NSNS fluxes equal to zero. The non-

zero fluxes have to satisfy the Bianchi identity 2r11r22 − r14r̂
3
1 = 0. This case

is related to the first one by symmetry so we will only focus on the first case

with the 3 and 5 direction as base. In the first case we can solve the remaining

Bianchi identity 2r11r23 = r14r̂
2
1 by setting one of the metric fluxes appearing

on either side to zero. If we have r23 = r̂2
1 = 0 or r11 = r14 = 0 our no-go

theorems based on the factorization in the Kähler sector give ε ≥ 2 and ε ≥ 9
5
,

respectively. The other two possibilities r11 = r̂2 = 0 and r23 = r14 = 0 give

numerically ε ≈ 4
3

and ε ≈ .2, so that we focus on solutions that have 2r11r23 =

r14r̂
2
1 6= 0. For 2r11r23 = r14r̂

2
1 < 0 we find numerically that ε ≥ .2 where the

lower bound is attained in the limit where r23 = r14 ≈ 0. So the only solution

to the Bianchi identities that leads to vanishing ε is 2r11r23 = r14r̂
2
1 > 0. The

quantization condition in this case forces 2r11r23 = r14r̂
2
1 = n2π2, n ∈ Z. There

are two different solutions. For n = 2k even we find

r14 =
n1

n2

r11, r̂
2
1 =

4k2π2n2

n1r11

, r23 =
2k2π2

r11
,

p1 = n2

(
12
√

2 +
p4

n1

)
, k, n1, n2 ∈ Z. (6.5.1)
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For n = 2k + 1 odd we find

r14 = ±r11, r̂
2
1 = ±(2k + 1)2π2

r11
, r23 =

(2k + 1)2π2

2r11
,

p1 = 6
(√

2n1 + n2r11

)
, p4 = ∓6

(√
2n1 − n2r11

)
, k, n1, n2 ∈ Z. (6.5.2)

Note that not all metric fluxes are quantized. r11 can take arbitrary values.

Both solutions respect the symmetry arising from shifting the B field and H

flux. Under a shift of u1 → u1 +a1 we have p1 → r11a
1 and p4 → r14a

1 so that

we can set one of p1 and p4 equal to zero. We will set p4 = 0 and minimize ε

numerically for integers k, n1, n2 ∈ Z. One particular solution for n = 2k even

with ε ≈ 10−19 is8

m̃ ≈ −3.74854, m1 ≈ −32.5482, m2 ≈ −22.5086,

e1 ≈ 2.76717, e2 ≈ −2.92192, e0 ≈ −.251057,

k = 1, n1 = −3, n2 = −1, r11 ≈ −1.62809,

ξ1 ≈ −6.39013, ξ2 ≈ unstabilized, ξ3 ≈ −1.66584, ξ4 ≈ −15.7204,

u1 ≈ −2.49321, u2 ≈ 3.16322, v1 ≈ 3.32339, v2 ≈ 11.6507,

eD ≈ .0745145, Z1 ≈ .413947, Z2 ≈ 38.0222, Z3 ≈ .360619, Z4 ≈ 3.65332.

This particular solution has one tachyonic direction and η ≈ −2.5. The

tachyon is a mixture of several moduli including the axions. We have scanned

over ranges where the flux quanta n1, n2, k are of order 1 for both n even and

odd and found dozens of solutions. All of these solutions had at least one

8The following values are rounded to six digits and give ε ≈ 10−4. Note also, that
similar to the previous case, the C3 axions ξK appear in the potential only through the
linear combinations pKξK and raKξK . Since for this model r has two rows we can stabilize
only three linear combinations of them. In particular for p4 = 0 we can stabilize p1ξ

1,
r11ξ

1 + r14ξ
4 and r23ξ

3. This means that ξ2 remains unstabilized.
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tachyonic direction that generically is a mixture of all moduli. We generically

found that η . −2.4 and solutions close to that bound have only one single

tachyonic directions. The no-go theorems of [227], [228] cannot be applied to

this particular model since we have D-terms. It would be very interesting to

understand this tachyonic direction that appears in both of the models in this

section better. We, of course, cannot rule out that there are solutions corre-

sponding to metastable de Sitter vacua since we only did a numerical study

but due to the large number of solutions that all have this tachyonic direction

with roughly the same value for η that furthermore is independent of fluxes,

we suspect that this model has no metastable de Sitter vacua. We have ex-

amined the vicinity of our extrema in which ε is still small to see whether this

enables us to find small |η| to satisfy the conditions for slow-roll inflation, but

we found that η changes at most by a factor of two in this region. We have

also minimized ε with constraints ensuring small |η|, but have not been able to

find small ε in this case. We take this as a strong indication that these models

are incompatible with slow-roll inflation. However, we do not have an analytic

proof of this, and it would be very interesting to investigate this further. We

will leave this for future research.

6.6 Summary

We have explored the possibility of slow-roll inflation and de Sitter

vacua in type IIA compactifications that include standard NSNS 3-form fluxes,

RR fluxes, D6-branes and O6-planes as well as metric fluxes. We have derived a

set of no-go theorems based on the dependence of the potential on the dilaton,

volume, Kähler and complex structure moduli, extending previous work by

HKTT [198]. Theorems of this kind are valuable because they specify the
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minimal set of ingredients required to have slow-roll inflation or de Sitter

vacua in this type of compactifications, or put differently they rule out entire

regions in the vast landscape of solutions of string theory. To demonstrate

their usefulness, we applied these no-go theorems to toroidal orientifolds with

abelian orbifold groups generated by rotations and reflections, that, in the

absence of fluxes and after orientifolding, preserve N = 1 supersymmetry. As

we showed, the application of the no-go theorems is straightforward in some

cases while in others T-dualities and field redefinitions play a crucial role. We

find that under the assumptions made in deriving the no-go theorems, the

slow-roll parameter ε is bounded from below in all models of this class except

the two Z2 ×Z2 cases. In those cases, we have succeeded in finding regions of

parameter space where the slow-roll parameter ε is very small numerically, but

unfortunately η turns out to be such that inflation is much too short, making

these compactifications uninteresting from a cosmological perspective.

While it would be more satisfying and insightful to have no-go theorems

for ε and η simultaneously, the ones obtained in this work are exclusively for

ε. Our exploration of the range of η has always been numerical. We either

computed η where ε had already been found to be small or have failed to find

a small value for ε when we restricted the minimization procedure to keeping

η small. Thus, although we are confident of our results we lack the insight as

to why the necessary conditions for small η are not compatible with those for

small ε.

There are several effects we have not considered. We have ignored

twisted sector modes and blow-up modes. We have also ignored more general

brane configurations such as backreacting D6-branes that do not wrap rigid

cycles and are far from their static configuration, coisotropic branes, or NSNS
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sources. Even though this is by no means guaranteed, all of these ingredients

might render the no-go theorems invalid and may be interesting to investigate

further. We leave this for future work.

There is an orthogonal line of research pursued in [229] that comes to

similar conclusions. While we have not had the chance to do so, we think it

would be interesting to understand if there is a relation between the two.
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Chapter 7

Conclusions

Since its discovery almost half a century ago, the cosmic microwave

background radiation has greatly improved our understanding of the very

early universe. With the help of current and future experiments this trend

is likely to continue. The detection of a B-mode signal would provide valuable

information that may allow us to verify and maybe even explore the details of

inflation. As explained in Section 2.4, it would teach us about the distance the

field must have traveled, about the energy scale of inflation, and as we saw in

Chapter 3, it would imply that the graviton has a mass of less than 10−30 eV .

Though slightly less exciting, even in the case that no primordial B-mode sig-

nal is observed, one can still draw a valuable conclusion: the simplest models

of inflation, a minimally coupled scalar with monomial potential, such as the

linear potential studied in Chapter 5, the popular m2φ2 potential, as well as

all other models of large field inflation are ruled out. Searching for departures

from Gaussianity will provide another useful tool to learn about the early

universe. A detection of non-Gaussianities of the so-called local shape would

for instance allow us to rule out all single field slow-roll inflationary models.

Once non-Gaussianities are seen, studying their shape would contain a large

amount of information and strongly constrain possible models. Another possi-

bility is that isocurvature modes are discovered, ruling out single field models

of inflation altogether. It may also be, however, that an explanation of the
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experimental results necessitates nothing but a small field model of a single

slowly rolling scalar field. In this case it seems very hard to make further

progress.

The situation is rather similar to that in particle physics, where the

Large Hadron Collider will start taking data soon. We are guaranteed to learn

about electroweak symmetry breaking, we may discover supersymmetry, large

extra dimensions, new strongly coupled sectors, and we may learn about the

nature of dark matter by observing it in the form of missing energy and con-

firming its properties in direct detection experiments. While the experiment

could provide us with a huge amount of information, it is equally possibly that

we will discover a Higgs and nothing else, in which case further progress will

also become difficult.

Both in cosmology and in particle physics, we are guaranteed to make

some progress in learning about fundamental physics over the course of the

next decade or two, but to see how much progress we can make, we have to be

patient and await the experimental results. Whatever the final conclusion may

be, the next years promise to be interesting both in cosmology and particle

physics.
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Appendix A

Conventions and Notations

A.1 Conventions for IIB

In this appendix we review our conventions, emphasizing differences

with the existing literature.

A good starting point is the ten-dimensional string-frame action1 [169]

S10 =
1

(2π)7α4

∫
d10x

√
gstring

(
e−2ΦRstring −

1

2
|dC2|2

)
(A.1.1)

which after the rescaling to the ten-dimensional Einstein-frame metric e−Φ/2gstring,MN =

gE,MN becomes

S10 =
1

(2π)7α4

∫
d10x

√
gE

(
RE −

1

2
gs|dC2|2

)
, (A.1.2)

where we assumed that the axio-dilaton is τ = i/gs. Upon compactifying on

a six-dimensional manifold Y , the resulting four-dimensional reduced Planck

mass is

M2
pl =

∫
Y

√
gE

(2π)6α3

1

απ
≡ VE
απ

, (A.1.3)

where VE is the (dimensionless) Einstein volume of Y measured in units of

2π
√
α. When Y is (conformally equal to) a Calabi-Yau space, we have

VE =
1

6

∫
J ∧ J ∧ J
(2π)6α3

=
1

6
vIvJvK

∫
ωI ∧ ωJ ∧ ωK

(2π)6α3
≡ 1

6
vIvJvKcIJK , (A.1.4)

1Remember that 2κ2
10 = (2π)7α4.
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where ωI for I = 1, . . . , h1,1 are a basis of the cohomology H2(Y,Z) normalized

such that ∫
ΣI

ωJ = (2π)2αδ I
J (A.1.5)

for a basis ΣI of the dual homology H2(Y,Z). With the ansatz for the ten-

dimensional RR two-form

C2 =
1

2π
c(x)ω , (A.1.6)

for some base two-cycle ω, we get a four-dimensional axion c(x) with peri-

odicity2 2π, as can be seen e.g. via S-duality starting from the world-sheet

coupling
∫
B/(2πα). The axion decay constant of c is

f 2

M2
pl

=
gs

12VE(2π)2

[∫
ω ∧ ∗ω

(2π)6α3

]
. (A.1.7)

The four-dimensional N = 1 Kähler potential for the Kähler moduli is

K = −2 logVE . (A.1.8)

A.2 Conventions for IIA

Our conventions largely follow [217].

Consider type IIA string theory on a Calabi-Yau three-foldX, equipped

with a Z2 orientifold action which includes an anti-holomorphic involution

σ. The cohomology of X then splits into even and odd parts, depending

upon the behavior of each class under σ. We will take the following basis of

representative forms:

2Note that this choice differs from that in [151], where the axion periodicity was (2π)2.
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• The zero-form 1,

• a set of odd two-forms ωa, a = 1, . . . , h1,1
− ,

• a set of even two-forms µα, α = 1, . . . , h1,1
+ ,

• a set of even four-forms ω̃a, a = 1, . . . , h1,1
− ,

• a set of odd four-forms µ̃α, α = 1, . . . , h1,1
+ ,

• a six form ϕ, odd under σ,

• a set of even three-forms aK , K = 1, . . . , h2,1 + 1,

• and a set of odd three-forms bK , K = 1, . . . , h2,1 + 1.

Additionally, it turns out that we can always choose the aK and bK to form a

symplectic basis such that the only non-vanishing intersections are∫
X

aK ∧ bJ = ∂JK . (A.2.1)

Similarly, we can take the even-degree forms to obey∫
X

ϕ = 1,

∫
X

ωa ∧ ωb ∧ ωc = κabc,

∫
X

ωa ∧ µα ∧ µβ = κ̂aαβ,

(A.2.2)

∫
X

ωa ∧ ω̃b = ∂ba,

∫
X

µα ∧ µ̃β = ∂βα. (A.2.3)

Now let us describe the four-dimensional fields of this class of compact-

ifications, restricting ourselves, for simplicity, to the bosonic sector. First we

267



have the Kähler moduli, parametrized by complex scalar fields ta = ua + iva

coming from the expansion

B + iJ = Jc = taωa, (A.2.4)

where the complexified Kähler form Jc must be odd under σ. Note that

the Kähler form J = vaωa determines the compactification volume (in string

frame) via

V6 =
1

3!

∫
X

J ∧ J ∧ J =
1

6
κabcv

avbvc. (A.2.5)

To describe the complex moduli, let us write the holomorphic three-

form as

Ω = ZKaK −FKbK . (A.2.6)

We will use conventions in which

i

∫
X

Ω ∧ Ω = 1, σ∗Ω = Ω, (A.2.7)

so that the ZK are real functions of the complex moduli and FK are pure

imaginary, and together they satisfy the constraint ZKFK = −i/2. We can

now define a complexified version [217]

Ωc = C3 + 2ie−D Re Ω =
(
ξK + 2ie−DZK

)
aK , (A.2.8)

where e−D = V1/2
6 e−φ contains the dilaton and we expand the periods of C3

(which must be even under σ in order to survive the orientifold projection)

as C3 = ξKaK . Note that we abuse notation somewhat here as we ignore

other pieces which contribute to the ten-dimensional RR three-form potential

C3, namely pieces that give rise to four-dimensional vectors and (local) pieces
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that give the four-form RR flux, both of which will be discussed below. The

complex moduli NK = 1
2
ξK + ie−DZK are then simply given by the expansion

Ωc = 2NKaK , (A.2.9)

and include the complex structure moduli of the metric, the dilaton, and the

RR three-form periods.

There are also h1,1
+ four-dimensional vectors from the decomposition of

the RR three-form potential, which includes a contribution

C3 = Aα ∧ µα. (A.2.10)

We can now consider turning on fluxes. In the RR sector, this leads us

to include

F0 = m̃, F2 = maωa, F4 = eaω̃
a, F6 = ẽϕ. (A.2.11)

From the NSNS sector, we can include the usual H-flux,

H = pKb
K , (A.2.12)

but we can also consider generalized metric fluxes. For more details, please

refer to sections 6.1.1 and 6.3.2, but for completeness we list the definitions of

our parameters raK and r̂Kα ,

dωa = −raKbK , dµα = −r̂Kα aK . (A.2.13)
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Appendix B

Phase Conventions for Spherical Harmonics

Consider an irreducible representation of the group of rotations in three

dimensions on a 2`+1-dimensional vector space with a basis |`,m〉 chosen such

that

L2 |`,m〉 = `(`+ 1) |`,m〉 , (B.0.1)

L3 |`,m〉 = m |`,m〉 , (B.0.2)

where L2 = L2
1 +L2

2 +L2
3 is the quadratic casimir operator, and the Li are the

generators of rotations satisfying

[Li, Lj] = iεijkLk . (B.0.3)

The action of the raising and lowering operators, L± ≡ L1 ± iL2, is a priori

only defined up to a phase:

L±|`,m〉 = eiφ±(`,m)
√
`(`+ 1)−m(m± 1)|`,m± 1〉 . (B.0.4)

In quantum mechanics this phase is usually fixed such that:

L±|`,m〉 =
√
`(`+ 1)−m(m± 1)|`,m± 1〉 . (B.0.5)

This convention leads to the standard representation of rotation matrices and

to spherical harmonics that behave under complex conjugation as:

Y m
` (n̂)∗ = (−1)mY −m

` (n̂) . (B.0.6)
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The spherical harmonics that behave under complex conjugation as:

Y m
` (n̂)∗ = Y −m

` (n̂) (B.0.7)

do not transform according to this standard representation of rotations but

according to a representation that is equivalent to this standard one.

One choice of phase in equation (B.0.4) that leads to spherical harmon-

ics with the desired reality property is the following:

L±|`,m〉 = i(−1)m
√
`(`+ 1)−m(m± 1)|`,m± 1〉 . (B.0.8)

Together with the usual action of L3 on the state vectors:

L3|`,m〉 = m|`,m〉 (B.0.9)

this completely determines the representation and the only non-trivial rotation

we need, namely the one about the 2-axis by an angle θ, in this representation

takes the form:

D
(`)
mm′

(
e−iθL2

)
= im

2−m′2

√
(`+m)!(`−m)!

(`+m′)!(`−m′)!
sin2`

(
θ

2

)
∑
r

(−1)`+m−r
(
`+m′

r

)(
`−m′

r −m−m′

)
cot2r−m−m′

(
θ

2

)
(B.0.10)

As usual we define the spherical harmonics as Y m
` (n̂) = 〈n̂|`,m〉. Using:

|n̂〉 = D(S(n̂))|ẑ〉 (B.0.11)

it then follows that:

Y m
` (n̂)∗ = D

(`)
mm′(S(n̂))Y m′

` (ẑ)∗ =

√
2`+ 1

4π
D

(`)
m0(S(n̂)) (B.0.12)
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or equivalently that:

Y m
` (n̂) =

√
2`+ 1

4π
D

(`)
m0(S(n̂))∗ . (B.0.13)

Together with the explicit form of the rotation matrix given in equation

(B.0.10) equation (B.0.13) gives the following formula for the spherical har-

monics:

Y m
` (n̂) = (−i)m2

eimφ
√

2`+ 1

4π

√
(`+m)!(`−m)!

`!2
sin2`

(
θ

2

)
∑
r

(−1)`+m−r
(
`

r

)(
`

r −m

)
cot2r−m

(
θ

2

)
. (B.0.14)

This expression can easily be checked to have the desired reality property:

Y m
` (n̂)∗ = Y −m

` (n̂) , (B.0.15)

and clearly they transform under rotations according to:

Y m
` (Rn̂) =

∑
m

D
(`)
mm′(R)∗Y m′

` (n̂) . (B.0.16)

For some applications it is convenient to rewrite this in terms of associated

Legendre polynomials:

Y m
` (n̂) = (−i)m2

√
2`+ 1

4π

√
(`−m)!

(`+m)!
eimφPm

` (cos θ) , (B.0.17)

where:

Pm
` (cos θ) =

(`+m)!

`!
sin2`

(
θ

2

)∑
r

(−1)`+m−r
(
`

r

)(
`

r −m

)
cot2r−m

(
θ

2

)
(B.0.18)

272



are the associated Legendre polynomials and satisfy

P−m
` (µ) = (−1)m

(`−m)!

(`+m)!
Pm
` (µ) . (B.0.19)

A useful property is the orthonormality condition∫
d2n̂ Y m

` (n̂)Y m′ ∗
`′ (n̂) = δ``′δmm′ . (B.0.20)

In a way similar to how we defined the ordinary spherical harmonics

we can define the spin-weighted spherical harmonics as:

sY
m
` (n̂)∗ =

√
2`+ 1

4π
D

(`)
m−s(S(n̂)) . (B.0.21)

This leads to an explicit expression for 2Y
m
` (n̂) of the form:

2Y
m
` (n̂) = (−i)m2

eimφ
√

2`+ 1

4π

√
(`+m)!(`−m)!

(`+ 2)!(`− 2)!
sin2`

(
θ

2

)
∑
r

(−1)`+m−r
(
`− 2

r

)(
`+ 2

r + 2−m

)
cot2r+2−m

(
θ

2

)
. (B.0.22)

It is again useful to have expressions for the spherical harmonics of spin 2 in

terms of associated Legendre polynomials rather than sums. One has

2Y
m
` (n̂) = (−i)m2

eimφ
√

2`+ 1

4π

√
(`−m)!(`− 2)!

(`+m)!(`+ 2)!(
−`(`+ 1)Pm

` (µ) +
2(m+ µ)(m− `µ)

1− µ2
Pm
` (µ) +

2(m+ µ)(`+m)

1− µ2
Pm
`−1(µ)

)
,

(B.0.23)

where as usual µ = cos θ. They again satisfy an orthonormality condition∫
d2n̂ 2Y

m
` (n̂)2Y

m′ ∗
`′ (n̂) = δ``′δmm′ . (B.0.24)
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Appendix C

Induced Shift of the Four-Cycle Volume

In this appendix we address the issue raised in subsection 5.6.2: the

inflationary energy can correct the warped volumes of four-cycles in the com-

pact space, leading to corrections to the moduli potential, and hence inducing

new terms in the inflaton potential itself.

More specifically, if an NS5-brane wraps some cycle Σ, then a nonvan-

ishing integral
∫

Σ
C2 6= 0 leads to the presence of energy that is localized near

Σ in the compact space; this energy corresponds to the increased tension of

the NS5-brane. Moreover, there is a corresponding induced D3-brane charge

via the coupling
∫
C2 ∧ C4. The increased tension creates a backreaction on

the metric (and in particular, on the warp factor) of the compact space, while

the induced charge sources five-form flux. We must determine whether these

effects substantially correct the nonperturbative effects that are responsible,

in our KKLT-like scenario, for stabilization of the Kähler moduli.

Whether the nonperturbative superpotential arises from gaugino con-

densation on D7-branes or from Euclidean D3-branes, it is exponentially sen-

sitive to the warped volume of the four-cycle wrapped by these D-branes.

Therefore, we will carefully consider the possibility of an inflaton-dependent

shift of the warped volume of various four-cycles.

Concretely, we will consider a fivebrane/anti-fivebrane pair wrapping

two homologous cycles, and will compute the leading correction to the volume
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of a particular four-cycle in the same throat region as the fivebranes. This will

serve as a conservative upper bound on the effect of the worldvolume flux, as

more distant four-cycles would be more weakly affected.

It would be very interesting to perform a systematic study of this back-

reaction in the four-dimensional effective theory and in ten-dimensional su-

pergravity/string theory. We leave this task for future investigation. In what

follows, we simply show that the effect described above can be ameliorated by

choosing an appropriate configuration.

The are two mechanisms to suppress the backreaction on a given four-

cycle volume. A first improvement comes from choosing a setup in which the

leading backreaction is due to a dipole as opposed to a monopole potential.

This allows for a parametric suppression. The second improvement can be

achieved by a carefully chosen geometry of the four-cycle under consideration.

In general, this latter mechanism requires fine tuning.

The problem of estimating the backreaction from two-form flux on an

NS5-brane pair may be simplified by a series of approximations. First, the

inflaton-dependent backreaction is generated by the increased tension and the

induced D3-brane charge of the NS5-branes, which may be understood as

corresponding to some number of D3-branes (or anti-D3-branes) dissolved in

the NS5-branes. In practice, it is much simpler to study the effect of the D3-

branes themselves; this captures the leading inflaton-dependent contributions.

The configuration of interest involves an NS5-brane wrapping Σ, with

1

(2π)2α′

∫
Σ

C2 ≡ Nw , (C.0.1)

as well as a distant NS5-brane wrapping a homologous cycle Σ′, but with

opposite orientation. (We will refer to the latter object as the anti-NS5-brane.)
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Next, we recall that the COBE normalization requires each fivebrane to be in

a warped region. Let us denote by N/2 the amount of D3-brane charge that

creates the background warping for each of the fivebranes.1

In light of the above discussion, we may approximate the fivebrane by

a stack of Nw D3-branes and the anti-fivebrane by a stack of Nw anti-D3-

branes. Combining this with the background D3-brane charge, we conclude

that a convenient proxy for our system consists of two stacks of D3-branes,

which we call A and B respectively. The first consists of N/2 +Nw D3-branes

and the second of N/2 D3-branes and Nw anti-D3-branes, which we may more

conveniently represent as N/2−Nw D3-branes and Nw brane-antibrane pairs.

Next, using the results of [180], we recognize that the leading backre-

action effect comes from the total D3-brane charge on each stack, while the

brane-antibrane pairs lead to subleading effects that are suppressed by powers

of the warp factor. Thus, we can simplify even further, so that at last we

are considering a supersymmetric system involving two stacks that contain

N/2 +Nw and N/2−Nw D3-branes, respectively.

Equipped with this much simpler system, we may now estimate the

inflaton-dependent backreaction, by computing how the presence of the stacks

A and B leads to a Nw-dependent change in the warped volume of some four-

cycle.

We choose the usual D3-brane ansatz

ds2
6 =

√
H−1(y)ds2

4 +
√
H(y)ds2

6 (C.0.2)

F̃5 = (1 + ∗)dH−1 ∧ Vol4 , Φ = const . (C.0.3)

1More generally, one could consider different degrees of warping for each fivebrane; ex-
tending our considerations to this case is straightforward.
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The resulting equation of motion is linear in H(y). Therefore we may simply

add the solutions obtained in the presence of either of the two individual stacks.

Once the resulting warp factor is used to compute the volume of a four-cycle,

theNw dependence of the result gives us an estimate of the inflaton-dependence

of the nonperturbative superpotential.

We tackle the problem in two steps of increasing complexity. First,

in C.0.1 we give a very simple, (conformally) flat toy example in which the

calculations are easy. This already shows the relevant features of the more

complicated solution. The inflaton-dependent shift of the volume can be sup-

pressed by having the distance between A and B much smaller than the dis-

tance between the four-cycle and either of A and B. This corresponds to a

configuration in which the leading interaction is via a dipole. In addition, one

can fine-tune the four-cycle embedding so that the Nw-dependent correction

to its volume actually cancels.2

Then, in C.0.2, C.0.2.1 and C.0.3, we describe the case of a resolved

conifold using the solution of [230],[231]. We consider a particular holomorphic

embedding of a four-cycle and compute numerically the inflaton-dependence

of its warped volume.

C.0.1 A simple illustration of the suppression mechanism

Consider two stacks of N/2 ± Nw D3-branes, called A and B, respec-

tively, in conformally flat space M4×R6. The A stack is located at the origin

2Although suppression from symmetry of the embedding appears unappealing because
of the fine-tuning required, one should keep in mind that it could conceivably be enforced
by a discrete symmetry of the compactification.
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B

A

θ

Figure C.1: This diagram illustrates the positions of the A and B stacks of
D3-branes in R6, the choice of the angular coordinate θ, and, in blue, a (topo-
logically trivial) four-cycle.
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of R6 and the B stack is located at some position (u, 0, 0, 0, 0, 0) for3 u ∈ R+,

where we have chosen spherical coordinates (see figure C.0.1) with the metric

ds2
6 = dr2 + r2

(
dθ2 + sin2 θdΩ2

4

)
, (C.0.4)

where dΩ4 is the volume form of S4. With the usual D3-brane ansatz (C.0.2)

one finds the solution

H = 1 +
R4
A

r4
+

R4
B

(r2 + u2 − 2ru cos θ)2
, (C.0.5)

RA,B = 4πgsα
′2
(
N

2
±Nw

)
. (C.0.6)

Let us consider a (topologically trivial) four-cycle Σ4 defined by4 r = µ and

θ = θ̄, whose unwarped volume is V4 = 8π2

3
r̄4 sin4 θ̄. The warped volume is∫

Σ4

H(r, θ) sin4 θdΩ4 = V4H(µ, θ̄) (C.0.7)

= V4

[
1 +

R4

µ4

(
1 +O

(
u

µ

))
−Nw

u

µ

(
4 cos θ̄ − 2

u

µ
+O

(
u2

µ2

))]
.

From this result, one can see that a fine-tuning of the embedding can suppress

the backreaction, i.e. if cos θ̄ ' u/(2µ). On the other hand, a parametric

suppression is also clearly visible. Both the factorsNw/N and u/µ can be made

small by construction. The former must be small in order for the background

geometry to be at all trustworthy. The latter can be made small by arranging

for all the four-cycles bearing nonperturbative effects to be far away in units

3We choose the letter u in analogy with the setup of the next subsections, where the
distance between the A and the B stack is given by the resolution parameter of the resolved
conifold.

4We choose the letter µ in analogy with the (usually complex) parameter appearing in
other known embeddings of four-cycles in the conifold [232, 233].
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of the separation of the fivebranes. Physically, this means that the four-cycle

is sensitive only to the dipole field generated by the A and B stacks.

C.0.2 The conifold and its resolution

In the following we review some relevant definitions and conventions

regarding the resolved conifold. The treatment is based on [234],[231]. The

(singular) conifold is a cone over T 1,1 (the coset space SU(2) × SU(2)/U(1),

which is topologically S2 × S3). It is defined as the hyperspace in C4 that is

a solution of the complex constraint

detW ≡ det

(
X U
V Y

)
= XY − V U = 0 (C.0.8)

where (X,U, V, Y ) are coordinates on C4. The resolved conifold can be defined

as the zero locus in C4 × CP1 of the two linear complex equations(
X U
V Y

)(
λ1

λ2

)
= 0 (C.0.9)

where (λ1, λ2) are complex coordinates on CP1, i.e. they are identified by

(λ1, λ2) ' (αλ1, αλ2), for every α ∈ C∗. For every W 6= 0 (C.0.8) and (C.0.9)

are equivalent, but when W = 0, i.e. at the tip, (λ1, λ2) are arbitrary and

(C.0.9) defines a CP1 ' S2. The radial direction is defined by

TrW †W = r2 . (C.0.10)

One can check that the resolved conifold is an O(−1)⊕O(−1) bundle

over CP1 with fiber C2. If we define λ ≡ λ2/λ1, then we can choose coordinates

on a patch H+ ≡ {λ 6= 0} of the resolved conifold using the following solution

of (C.0.9):

W =

(
−λU U
−λY Y

)
. (C.0.11)
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Defining λ̃ ≡ λ1/λ2, one can find coordinates on a complementary patch H− ≡
{λ̃ 6= 0} using the following solution:

W =

(
X −λ̃X
V −λ̃V

)
. (C.0.12)

The complex structure is given by

Ω = dU ∧ dY ∧ dλ = dV ∧ dX ∧ dλ̃ . (C.0.13)

For later use, we introduce a parametrization of the resolved conifold in terms

of real coordinates and give the explicit Kähler metric. We start by noting

that a particular solution of (C.0.9) is given by

W0 =

(
0 r
0 0

)
,

(
λ0

0

)
⇒ λ = 0 . (C.0.14)

The base of the resolved conifold with respect to r can be obtained by acting

on this solution with two SU(2) transformations, L1 and L2,

Li =

(
cos θi

2
e

i
2
(ψi+φi) − sin θi

2
e−

i
2
(ψi−φi)

sin θi

2
e

i
2
(ψi−φi) cos θi

2
e−

i
2
(ψi+φi)

)
, i = 1, 2 (C.0.15)

written in terms of Euler angles. This gives

W = L1W0L
†
2 ,

(
λ1

λ2

)
= L2

(
λ0

0

)
(C.0.16)

which depends only on the combination ψ ≡ ψ1 +ψ2. A Kähler metric on the

resolved conifold with resolution parameter u is given by [231]

ds2
6 = κ−1(ρ)dρ2 +

1

9
κ(ρ)ρ2e2ψ

+
1

6
ρ2(e2θ1 + e2φ1

) +
1

6

(
ρ2 + 6u2

)
(e2θ2 + e2φ2

) , (C.0.17)

where

κ(ρ) =
ρ2 + 9u2

ρ2 + 6u2
. (C.0.18)
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Here, following [231], we have defined a new radial coordinate ρ by

r4 =
4

9
ρ4

(
2

3
ρ2 + 6u2

)
, (C.0.19)

The explicit expression for the e’s is

eψ = dψ +
2∑
i=1

cos θidφi , eθi
= dθi , eφi

= sin θidφi . (C.0.20)

C.0.2.1 The λUY embedding

In this subsection, we consider a particular holomorphic embedding of

a four-cycle. A simple embedding would be λ = µ because this is trivial to

solve for in real coordinates, tan θ2 = µ and φ2 = 0 for µ ∈ R. The trouble is

that this embedding reaches the tip, and in fact r is unconstrained. This can

also be seen from

r2 =
(
1 + |λ|2

) (
|U |2 + |Y |2

)
. (C.0.21)

As a result, this embedding does not give us the dipole suppression factor anal-

ogous to the (u/µ) of appendix C.0.1. The next-simplest embedding (whose

defining equation depends on r) is

λUY = µ3 , µ ∈ R , (C.0.22)

which in real coordinates gives

ψ = 0 , sin(θ2) sin(θ1) = 4
µ3

r2
∼ µ3

ρ3
for large r . (C.0.23)

After some algebra (in particular, expressing dθ2 as a function of dθ1

and dr) one finds the metric in terms of dρ, dθ2, dφ1 and dφ2. Its determinant
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gind4 is independent of φ1,2 and reads

gind4 =
ρ2 csc4(θ2)

20736 (9u2 + ρ2)3 (ρ4(9u2 + ρ2) sin2(θ2)− 54µ6
) × (C.0.24)( (

6u2 + ρ2
) (

9u2ρ+ ρ3
)2

cos (4θ2)

−4 cos (2θ2)
(
486u6ρ2 + 189u4ρ4 + u2

(
24ρ6 − 324µ6

)
− 27µ6ρ2 + ρ8

)
+3
(
54ρ2

(
9u6 + 2µ6

)
+ 189u4ρ4 + 864u2µ6 + 24u2ρ6 + ρ8

) )2

.

We see that there is a boundary beyond which the sign of the de-

terminant becomes negative, which thus defines the integration boundary in

ρ, θ2-space:

ρmin(θ2) =
√

3µ

√
A− u2

µ2
·
(

1− u2

µ2

1

A

)
(C.0.25)

with

A =
3

√√√√√− csc2(θ2)

(
2
u6

µ6
− csc2(θ2)

)
− u6

µ6
+ csc2(θ2) . (C.0.26)

In the limit u
µ
� 1 one thus has

ρmin(θ2) →
√

3 · 21/3 µ csc1/3(θ2) (C.0.27)

C.0.3 The shift of the four-cycle volume

The solution with the branes smeared over the S2 was obtained in [231].

Later, the solutions with pointlike sources were given in [230]. If the D3-brane

stacks are at the north and south pole of the resolution S2, respectively, i.e.

283



θA2 = π − θB2 = 0, then one finds

H =
∑
l

(2l + 1)Hl(ρ)
[
L4
APl(cos(θ2)) (C.0.28)

+L4
BPl(cos(θ2))(−1)l

]
, (C.0.29)

Hl =
2

9u2

Cβ
ρ2+2β 2F1

(
β, 1 + β, 1 + 2β,−9u2

ρ2

)
, (C.0.30)

Cβ =
(3u)2βΓ(1 + β)2

Γ(1 + 2β)
β =

√
1 + (3/2)l(l + 1) , (C.0.31)

LA,B =
27

16
4πgs(α

′)2(N ∓Nw) , (C.0.32)

where 2F1 is a hypergeometric function. We want to integrate this warp factor

on some supersymmetric four-cycle Σ4. This gives us an estimate of the infla-

ton dependence of the gauge kinetic function of a stack of D7-branes wrapping

Σ4.

Using this information and (C.0.29) and (C.0.30) we can now calculate

the integral

Vwarped =

∫
Σ4

dρ dθ2 dφ1 dφ2

√
−gind4 H(ρ, θ2)

= 4π2

∫
Σ4

dρ dθ2

√
−gind4 H(ρ, θ2) (C.0.33)

numerically, as a function of µ. To facilitate this we will expand (C.0.29) up

to ` = 1, the dipole term, and take the large ρ limit

H(ρ, θ2) =
L4

2ρ4

[
1 + 3(2`+ 1)

Nw

N

u2

ρ2
P`(cos θ2)

∣∣∣∣
`=1

]
= H`=0(ρ) + δH`=1(ρ, θ2) . (C.0.34)

We can now calculate
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Figure C.2: 1st row: Plot of V(0)
warped and δVwarped(δθ2) as functions of µ at

constant u = 0.01. 2nd row: Plot of V(0)
warped and δVwarped(δθ2) as functions of

u at constant µ = 0.1. The leading ` = 0 term scales as u0µ0 = const. while
the ` = 1 dipole term scales as (u/µ)2. Note that the ` = 0 scaling ensues
only in the strictly noncompact limit (i.e. when the integration goes all the
way ρ→∞), while for a finite cutoff, resembling a crude approximation to a
compact setting, there remains a weak dependence of the ` = 0 term on µ, of
the form (u/µ)δ, where δ → 0 for ρbulk →∞. For the example we have chosen
ε ≡ Nw/N = 0.1.

V(0)
warped = 4π2

∫ π

0

dθ2

∫ ρR

ρmin(θ2)

dρ
√
−gind4 H`=0(ρ) (C.0.35)

δV`=1
warped(δθ2) = 4π2

∫ π

0

dθ2

∫ ρR

ρmin(θ2)

dρ (C.0.36)√
−gind4 δH`=1(ρ, θ2 + δθ2)(C.0.37)

where ρR � 1 denotes a UV cutoff to compactify the resolved conifold geom-

etry for the purpose of integration, and δθ2 denotes the angular misalignment

of the D3-brane dipole configuration with respect to the four-cycle symmetry

axis at θ2 = π/2.
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As
√
gind4 is a symmetric function with respect to θ2 = π/2 and δH`=1(ρ, θ2)

is anti-symmetric with respect to θ2 = π2, we immediately find δVwarped(δθ2 =

0) = 0. So by fine-tuning a Z2-symmetric configuration we can forbid the

` = 1 term in the warped volume, whose corrections in this case start with the

` = 2 quadrupole terms.

We will now display the numerical results for the case δθ2 = −π/4

in which the ` = 1 term will not vanish under the integral, and compare the

scaling with µ between δVwarped(δθ2) and V(0)
warped. This is displayed in Fig. C.2.

We see clearly that the leading ` = 0 term scales as u0µ0 = const. while the

` = 1 dipole term scales as (u/µ)2. Therefore, the ` = 1 dipole term has

a parametric suppression (u/µ)2 relative to the leading ` = 0 term, and can

therefore be made parametrically small (even in the non-Z2-symmetric general

situation) in the limit where the four-cycle recedes far from the resolution S2

(i.e. in the limit of large µ/u).

Let us finally note that this relative suppression of the ` = 1 term with

(u/µ)2 might have been guessed without any integration, as the integration

boundary tells us that ρmin(θ2) ≥ ρmin(π/2), which corresponds to r > 2µ3/2

or ρ & µ, and thus the relative scaling u2/ρ2 should be replaced by the scaling

u2/µ2.
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Appendix D

The Kaluza-Klein Spectrum

In this appendix we obtain the (5+1)-dimensional effective action for a

D5-brane wrapped on a two-cycle with
∫
B 6= 0. We show how a Kaluza-Klein

reduction to four dimensions leads to masses that are suppressed with respect

to the fluxless case. We then comment on the consequences of these light KK

modes for axion monodromy inflation.

D.1 The effective theory

The DBI action for a D5-brane is

S = T5

∫
d4x dy dz

√
−det

(
Gind
ab + Fab

)
, (D.1.1)

where y, z are two coordinates in the internal space, which we take to be

toroidal for the purpose of this derivation. The indices are defined as follows:

worldvolume indices are a, b = 0, . . . , 5; spacetime indices are µ, ν = 0, . . . , 3 as

usual; ten-dimensional indices are M,N = 0, . . . , 9; six-dimensional compact

indices are m,n = 4, . . . , 9; and indices transverse to the D5-brane are i, j =

6, . . . , 9. We first expand the square root using

√
det(M0 + δM) =

√
detM0

{
1 +

1

2
Tr(M−1

0 δM)

+
1

8
[Tr(M−1

0 δM)]2 − 1

4
Tr(M−1

0 δMM−1
0 δM) + . . .

}
. (D.1.2)
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We will consider a background with two-form flux on the two-cycle∫
F =

∫
B =

∫
dy ∧ dzByz(x, y, z) = b(x) = b , (D.1.3)

i.e. the four-dimensional axion field b(x) has a homogeneous expectation value

that is approximately constant, up to terms suppressed by the slow-roll pa-

rameters. So the background is given by

BMN = bδMyδNz − bδMzδNy , Fab = 0 , (D.1.4)

ds2
10 = gµνdx

µν + gyydy
2 + gzzdz

2 + 2gyzdydz + gijdy
idyj . (D.1.5)

Hence

(M0)ab =

 gµν
gyy gyz + b

gzy − b gzz

 . (D.1.6)

The perturbations are

(δM)ab = ∂aX
i∂bX

j(gij +Bij) + Fab + δBab . (D.1.7)

The calculation is simplified by the block-diagonal form of the background M0.

The 2 × 2 block is the sum of a symmetric and an antisymmetric piece that

we call S and A respectively. We have that

det(A+ S) = det(A) + det(S) , (D.1.8)

(S + A)−1 = S−1 det(S)

det(A) + det(S)
+ A−1 det(A)

det(A) + det(S)
, (D.1.9)

which substantially simplifies the calculation. Using (D.1.2) we get at leading

order

S = T5

∫
d4x dy dz

√
−g4

√
g2 + b2

[
1 +

1

2
∂µX

i∂µXi (D.1.10)

+
1

2

g2

g2 + b2
(
∂yX

i∂yXi + ∂zX
i∂zXi

)
(D.1.11)

+
1

2

2b

g2 + b2
(
∂yX

i∂zX
jδBij + Fyz + δByz

) ]
+ . . . , (D.1.12)
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where g2 ≡ gyygzz − g2
yz. After a KK reduction one finds the four-dimensional

kinetic and potential terms, in the first line, as well as the Kaluza-Klein mass

terms, in the second line. The Kaluza-Klein masses in the presence of fluxes

are

m2
bKK =

g2

g2 + b2
m2
KK , (D.1.13)

where mKK are the Kaluza-Klein masses in the absence of fluxes. This leads

to the central point of this appendix: for b� 1, the Kaluza-Klein masses are

suppressed by a factor of
√
g2/b ' L2/b� 1.1 This phenomenon is intuitively

understood in the T-dual picture in which flux becomes the angle of the D-

brane. A large flux means that the T-dual brane winds around the torus many

times, and thus becomes quite long. The Kaluza-Klein reduction of the fields

living on the worldvolume of the T-dual brane therefore produces b-suppressed

Kaluza-Klein masses.

D.2 Effects of the light Kaluza-Klein modes

Throughout this paper we have been careful to work in parameter

ranges for which the typical Kaluza-Klein mass scale mKK obeys mKK � H,

as required for a consistent four-dimensional analysis of inflation. However,

from (D.1.13) we learn that a subclass of Kaluza-Klein modes, namely those as-

sociated with transverse excitations of the fivebrane, have considerably smaller

masses, mbKK � mKK . For the numerical examples we have considered, we

find that, very roughly, mbKK ∼ (fc/f)H, where fc is a fiducial value of the

1We have assumed for simplicity that the internal space is isotropic, with typical size
L
√

α.
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decay constant, fc ∼ 10−2Mpl. Therefore, for constructions with small values

of f , the transverse excitations of the fivebrane can be lighter than H.

We leave a comprehensive study of this constraint for future work, as a

proper implementation plausibly requires a more explicit compact model that

we have been able to present in this work. In particular, one should carefully

compute the Kaluza-Klein mass, incorporating anisotropy in the geometry,

warping, and, as we have explained above, the effect of worldvolume two-

forms. To accomplish this, one needs a reasonably explicit construction of the

warped throat region, of the two-cycle within the throat, and of the gluing of

the throat into the compact space, which are beyond the scope of this work.

In this appendix, we will restrict ourselves to some qualitative state-

ments that explain how our inflationary analysis can be consistent even in

parameter regimes for which mbKK is slightly smaller than H. Broadly speak-

ing, one might worry about corrections to the inflationary Lagrangian, and

about new contributions to the cosmological perturbations. Concerning the

first point, we remark that the excitations of the fivebrane depend on the in-

flaton expectation value only through their masses. Therefore, the primary

correction to the background evolution from these light modes would come if

large numbers of Kaluza-Klein particles were produced by the time-dependent

background. In practice, the particle production is negligible, as can be seen

by computing the adiabatic parameter ṁbKK/m
2
bKK and substituting the con-

straints on the volume, and hence on the Kaluza-Klein mass, from §5.6.

More generally, let us stress that only a small subclass of the Kaluza-

Klein modes (a small portion of the tower of excitations of the fivebrane) have

masses smaller than H. From the viewpoint of the inflationary analysis, these

fields constitute a small number of harmless spectators. These light fields
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will fluctuate, absorbing energy, but this yields a very small correction unless

the number of fields approaches (Mpl/H)2. Moreover, any entropy perturba-

tions produced by these fields can turn into visible isocurvature perturbations

only if their decays are distinct from that of the inflaton. Although we have

not specified a concrete reheating mechanism, one can argue that the most

straightforward scenario involves visible sector degrees of freedom that are

well-separated in the compact space from the inflationary fivebranes. Thus,

we expect that excitations of the fivebranes will not give visible isocurvature

perturbations, because they must first decay [235],[236] to degrees of freedom

localized in the inflationary throat, just as the inflaton does, and will plau-

sibly do so with rather similar couplings, as the modes correspond to small

excitations of the NS5-brane that drives inflation.
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Appendix E

Numerical Examples

In this appendix, we specify two different sets of intersection numbers

and show the relevant formulas for the volumes. For these two toy models,

we explicitly performed the moduli stabilization outlined in §5.6.5, finding

numerical values leading to the dot in figure 5.8.

E.1 Intersection numbers: set I

We consider as a toy-model a manifold withH1,1
+ = span(ωL, ω+) for the

orientifold-even homology two-cycles and H1,1
− = span(ω−) for the orientifold-

odd homology two-cycles. We assume the following simple set of intersection

numbers1

cLLL = cLL+ = c+−− = 1 , (E.1.1)

with all the others vanishing. We believe that, although very simplistic, the

above toy model captures the relevant features of more realistic constructions.

Notice that the intersection numbers in a basis for the homology of the covering

space of the orbifold, i.e. without a definite parity with respect to the orbifold

projection, are just linear combinations of those given above.

1As they stand they do not correspond to a Calabi-Yau manifold, but we do not expect
this to affect the results.
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Using the standard relations

VE =
1

6
cαβγv

αvβvγ , τα = ∂vαVE =
1

2
cαβγv

βvγ , (E.1.2)

one finds

vL =
√

2τ+, v+ =
τL − τ+√

2τ+
. (E.1.3)

and

VE =

√
2τ+
2

τL −
√

2

6
τ

3/2
+ . (E.1.4)

E.2 Intersection numbers: set II

Again assumingH1,1
+ = span(ωL, ω+) andH1,1

− = span(ω−), we consider

the intersection numbers

cLLL = cL++ = c+−− = 1 , (E.2.1)

with all the others vanishing. We find

vL =
1√
2

(
(τL + τ+)1/2 + (τL − τ+)1/2

)
, v+ =

1√
2

(
(τL + τ+)1/2 − (τL − τ+)1/2

)
,(E.2.2)

and

VE =
1

3
√

2

(
(τL + τ+)3/2 + (τL − τ+)3/2

)
. (E.2.3)
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