
Copyright

by

Cagdas Yelen

2017

The Thesis Committee for Cagdas Yelen
certifies that this is the approved version of the following thesis:

Backward-Korat: Improving Korat Search to Enable

Backward Input Space Exploration

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Christine L. Julien

Backward-Korat: Improving Korat Search to Enable

Backward Input Space Exploration

by

Cagdas Yelen, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

Dedicated to my dear parents, Gulhan and Ismail Yelen,

and my beloved sister, Elif.

Acknowledgments

I would like to express the deepest appreciation to my supervisor Dr.

Sarfraz Khurshid, who continuously supported and encouraged me in working

on this thesis with great patience and extensive knowledge. Without his guid-

ance and help, this thesis would not have been possible. Also, a thank you to

Nima Dini for his great support and being a great coworker. Further, I would

like to thank Dr. Christine Julien for reviewing this work and contributing

with valuable feedback.

In addition, I would like to thank The University of Texas at Austin

Cockrell School of Engineering and for their encouragement and support.

This work was funded in part by the National Science Foundation (NSF

Grant Nos. CCF-1319688 and CNS-1239498).

v

Backward-Korat: Improving Korat Search to Enable

Backward Input Space Exploration

Cagdas Yelen, M.S.E.

The University of Texas at Austin, 2017

Supervisor: Sarfraz Khurshid

Automated test input generation plays an important role in increasing

software quality. Exhaustively testing a program for all test inputs within a

given bound helps check many corner cases that are easy to miss otherwise.

Korat is a constraint solver and an automated testing framework for bounded

exhaustive testing of Java programs. Korat uses a predicate method that

describes desired inputs and a finitization bound to explore the space of all

candidate inputs and generates the desired ones. Korat performs a systematic

backtracking search for input space exploration based on pruning and isomor-

phism breaking. The Korat search gains part of its efficiency by monitoring

executions of the given predicate on candidate inputs and creating new candi-

dates based on the object fields accessed by the predicate during its execution.

The Korat search has a default order for exploring the candidate inputs –

the search always performs the same exploration for the same predicate and

finitization.

vi

Our thesis is that a different search order for the Korat search can

enhance the efficacy of Korat. Specifically, we introduce the backward Korat,

a novel approach to enable Korat to go backward in the search space. Our

technique is built on the core of the traditional Korat search. The backward

Korat can be applied to a variety of existing techniques including constraint-

based data structure repair, parallel Korat, etc. We evaluate our approach

using a standard suite of data structures. The experimental results show that

the backward search works well and generates the same test inputs as the

traditional search produces even though it performs slower compared to the

forward search. Using the backward search and the traditional Korat search

in tandem enables a new set of possible applications.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xii

Chapter 1. Introduction 1

Chapter 2. Traditional Korat Example 5
2.1 Valid candidate search . 8
2.2 Search completeness . 8

Chapter 3. Technique 11
3.1 Forward Korat search . 11
3.2 Backward Korat search . 16

3.2.1 Multi-stage backtracking 16
3.2.2 Implementation . 20
3.2.3 Fast-forwarding for Korat 21
3.2.4 Command-line options 24

Chapter 4. Evaluation 25
4.1 Study . 25

4.1.1 Execution platform . 26
4.2 Results . 26
4.3 Answers to research questions 34

4.3.1 RQ1. What is the cost of fast-forwarding to the last can-
didate? . 34

viii

4.3.2 RQ2. How does backward Korat search performs com-
pared to forward search? 34

4.3.3 RQ3. How effective fast-forwarding is compared to for-
ward search? . 35

Chapter 5. Potential Applications 36
5.1 Improved constraint-based data structure repair 36
5.2 Infeasible range construction 38
5.3 Neighborhood search . 40

Chapter 6. Related Work 44

Chapter 7. Conclusion 47

Appendices 48

Appendix A. Evaluation Appendix 49

Bibliography 54

Vita 61

ix

List of Tables

3.1 Backward-Korat command-line options 24

4.1 Subjects used in the study . 26
4.2 Fast-forwarding vs. forward search: Total explored. 27
4.3 Fast-forwarding vs. forward search: Execution time. 27
4.4 Fast-forwarding vs. forward search: Total explored. 29
4.5 Fast-forwarding vs. forward search: Execution time. 29
4.6 The forward search vs the backward search for various finitiza-

tions. 30
4.7 The forward search vs the backward search for finitizations 6,

8, 10. 31
4.8 The cost of the fast forwarding for various finitizations. 33
4.9 The cost of the fast forwarding for finitizations 6, 8, 10. 33

A.1 BinaryTree forward vs. backward search for finitization 12. . . 49
A.2 BinomialHeap forward vs. backward search for finitization 9. . 49
A.3 DoublyLinkedList forward vs. backward search for finitization 11. 50
A.4 HeapArray forward vs. backward search for finitization 9. . . . 50
A.5 RedBlackTree forward vs. backward search for finitization 10. . 50
A.6 SinglyLinkedList forward vs. backward search for finitization 11. 50
A.7 SearchTree forward vs. backward search for finitization 9. . . . 50
A.8 BinaryTree forward vs. backward Korat search for finitizations

6, 8, 10. 51
A.9 BinomialHeap forward vs. backward Korat search for finitiza-

tions 6, 8, 10. 51
A.10 DoublyLinkedList forward vs. backward Korat search for finiti-

zations 6, 8, 10. 52
A.11 HeapArray forward vs. backward Korat search for finitizations

6, 8, 10. 52

x

A.12 RedBlackTree forward vs. backward Korat search for finitiza-
tions 6, 8, 10. 52

A.13 SinglyLinkedList forward vs. backward Korat search for finiti-
zations 6, 8, 10. 53

A.14 SearchTree forward vs. backward Korat search for finitizations
6, 8, 10. 53

xi

List of Figures

2.1 BinaryTree example. 5
2.2 Predicate method repOK for the BinaryTree example. 6
2.3 Finitization description for the BinaryTree example. 6
2.4 Valid binary trees with 3 nodes 7
2.5 Candidates explored for finBinaryTree(3) 9

3.1 An example candidate vector with its corresponding tree struc-
ture, and the field domains for finitization 3. 12

3.2 BinaryTree objects that are isomorphic to each other 13
3.3 An example showing the non-isomorphism pruning 14
3.4 Forward Korat search algorithm pseudocode [3]. 15
3.5 An example showing multi-stage backtracking 17
3.6 Backward Korat search algorithm pseudocode. 19
3.7 nonIsoMax function for the backward Korat search 21
3.8 Fast-forwarding for Korat search pseudocode. 22
3.9 Candidates explored in fast-forwarding mode for finBinaryTree(3) 23

5.1 Candidate vectors representing constraint-based data structure
repair for finBinaryTree(3) . 37

5.2 constructInfeasibleRange function for constracting an infeasible
range . 39

5.3 Constructed infeasible range by going forward and backward in
the search space for finBinaryTree(3). 40

5.4 neighborhoodSearch function for finding n valid candidates within
the neighborhood of an initial candidate. 41

5.5 Neighborhood search with n=4 starting from the candidate vec-
tor 30 for finBinaryTree(3). 42

xii

Chapter 1

Introduction

Software Testing is a technique for validating and verifying that a soft-

ware or an application meets the requirements. It is usually a manual process

that accounts for more than half of the total development and maintenance

cost. Therefore, automated testing has been an interesting area for researchers.

Korat is a constraint solver and a framework for constraint-based generation

of structurally complex test inputs for Java programs, where the constraints

are written as imperative predicates that characterize the desired properties of

the generated test inputs [4, 23].

The foundation of our work is the Korat search for test input gen-

eration and constraint solving. Korat uses an imperative predicate, termed

repOK [20], that specifies the desired properties of test inputs and a finitization

that sets a bound to the input space [18]. Korat generates all non-isomorphic

predicate inputs within the given finitization for which the repOK returns

true. To perform the input generation, Korat searches the predicate’s input

space by exploring all non-isomorphic candidates (Section 3.1 will provide

more details on how the traditional Korat search works and non-isomorphic

data structures).

1

For the exploration of the input state space, Korat maps each test input

to a candidate vector which consists of integers. The search starts with the

first candidate vector and explores the search space until it invokes repOK on

all non-isomorphic candidate vectors [4]. Korat explores the candidate vectors

in a specific order for the repeated execution of the same input structure and

size, which we call forward Korat search. The candidate vectors are lexico-

graphically ordered based on the order of the values in the field domain and

the repOK executions. The fact that the search is only able to run forward

restricts Korat from being powerful in some applications. For example, in the

context of data structure repair [7], the traditional Korat search fails to find

a valid candidate if the search start from an invalid candidate that drops into

the last infeasible range (Range of consecutive infeasible candidates) of the

state space.

Our thesis is that the traditional Korat search can be improved to

deliver the most efficient or desired results in some applications using bidirec-

tional searching capabilities. We introduce the idea of backward Korat search,

which improves Korat’s state space exploration capability. The backward Ko-

rat search starts from a given candidate and explores the state space in the

reverse order of the original Korat search, such that for any two consecutive

candidates c1 and c2, such that in the original Korat search c2 comes after

c1, the backward Korat would explore them in reverse order. A full backward

search starts from the last candidate the original Korat would explore, and

terminates at a candidate vector with all elements equal to zero, i.e., the can-

2

didate at which the original full Korat search would start. It uses a similar

backtracking approach as the traditional Korat search to find the previous

candidate vector at every step.

We make the following contributions:

• Backward Korat search. We introduce a novel approach for Korat

to go backwards in the state space so that Korat is able to explore the

candidates in the reverse direction and has an improved search capability

as it gains bidirectional searching ability. Using the backward search and

the traditional Korat search in tandem opens a whole new set of possible

applications including improved constraint-based data structure repair,

infeasible range construction and neighborhood search.

• Technique. We introduce multi-stage backtracking approach based on

the traditional forward Korat search [4].

• Evaluation. We use a set of data structures to compare the back-

ward search and the forward search. Evaluation results show that the

backward Korat search generates the same test inputs as the traditional

search produces although the cost of going backward is higher than going

forward.

• Potential applications.

– Improved constraint-based data structure repair. We en-

hance previous work [7] on data structure repair using Korat.

3

– Infeasible range construction. We utilize both the forward and

the backward search to grow an infeasible range from a given infea-

sible candidate for pruning the state space exploration for the next

execution of Korat [26].

– Neighborhood search. We introduce the idea of a neighborhood

search using Korat. Given the number of valid structures to be

found n, Korat starts from an initial candidate vector and explores

the candidates in both directions until it finds n valid structures.

4

Chapter 2

Traditional Korat Example

In this chapter, we will explain a simple example which is taken from

Korat’s source code1 and present the motivation of the backward Korat search.

1 public class BinaryTree {
2 public static class Node {
3 Node left;
4 Node right;
5 }
6 private Node root;
7 private int size;
8 }

Figure 2.1: BinaryTree example.

Figure 2.1 shows the class declaration for binary tree example. Korat

requires a predicate method, also called repOK, to check the validity of the

generated structures and a finitization to define how to bound the input space.

The sample repOK and finitization methods for the binary tree example are

shown in Figures 2.2 and 2.3. For instance, to generate all non-isomorphic

binary tree structures of size 3, we run Korat with finitization 3. For a given

finBinaryTree(3), Korat considers 63 candidate vectors and creates 5 valid

ones in Figure 2.4.

1https://korat.svn.sourceforge.net/svnroot/korat/trunk

5

1 public boolean repOK() {
2 if (root == null)
3 return size == 0;
4 // checks that tree has no cycle
5 Set visited = new HashSet();
6 visited.add(root);
7 LinkedList workList = new LinkedList();
8 workList.add(root);
9 while (!workList.isEmpty()) {

10 Node current = (Node) workList.removeFirst();
11 if (current.left != null) {
12 if (!visited.add(current.left))
13 return false;
14 workList.add(current.left);
15 }
16 if (current.right != null) {
17 if (!visited.add(current.right))
18 return false;
19 workList.add(current.right);
20 }
21 }
22 // checks that size is consistent
23 return (visited.size() == size);
24 }

Figure 2.2: Predicate method repOK for the BinaryTree example.

1 public static IFinitization finBinaryTree(int nodesNum, int
minSize,

2 int maxSize) {
3 IFinitization f = FinitizationFactory.create(BinaryTree.class)

;
4 IObjSet nodes = f.createObjSet(Node.class, nodesNum, true);
5 f.set("root", nodes);
6 f.set("Node.left", nodes);
7 f.set("Node.right", nodes);
8 IIntSet sizes = f.createIntSet(minSize, maxSize);
9 f.set("size", sizes);

10 return f;
11 }

Figure 2.3: Finitization description for the BinaryTree example.

6

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1

N2

N0

N1 N2

Figure 2.4: Valid binary trees with 3 nodes

For the binary tree example with 3 nodes, Korat creates the candidate

vectors by mapping structures to an integer array by indexing their class fields

in the following order: T0.root, T0.size, N0.left, N0.right, N1.left, N1.right,

N2.left, N2.right. The search starts from the candidate vector set to all zeros,

which is the first candidate based on the ordering of the field domain values,

and Korat invokes the predicate method repOK to every candidate vector

during the exploration. The fields accessed by the repOK invocation is moni-

tored by Korat to find the next candidate by backtracking on the last accessed

fields. The whole state space explored by Korat is shown in Figure 2.5 for bi-

nary tree of size 3. Candidate vectors and the field indexes accessed by repOK

are shown in the figure for every candidate explored during the search. Valid

structures that are generated by Korat are marked with *** and highlighted

with green color. The direction of the exploration is from candidate vector 1,

(0, 0, 0, 0, 0, 0, 0, 0), to candidate vector 63, (1, 0, 2, 3, 3, 0, 0, 0), which we

call the forward Korat search.

We introduce the concept of the backward Korat search, which per-

forms the search in the reverse direction. The backward Korat search makes

7

it possible to start from any candidate that would be explored by the original

Korat search within the search space and explore the state space backward.

For example, if the backward Korat search start from candidate vector 34, (1,

0, 2, 0, 0, 3, 1, 0), the next candidate that Korat considers is candidate vector

33, (1, 0, 2, 0, 0, 3, 0, 3) and the search continues until it is terminated. The

backward search stops when Korat reaches to the end candidate. The end

candidate is the candidate vector set to all zeros unless it is specified by the

user.

2.1 Valid candidate search

Korat supports bounding the search to specific start and end candidate

vectors [23]. Given a Java predicate, a finitization, and an invalid candidate for

which !repOK() holds, Korat starts the state space exploration until it finds

a valid candidate, if any, within the finitization bound and it stops. However,

in some certain cases, the backward search becomes more computationally ef-

ficient compared to the traditional Korat search. For example, if the search

starts from the candidate 17 in Figure 2.5, Korat needs to consider 13 candi-

dates to be able to find a valid one by going forward. On the other hand, going

backward would decrease this number to only 1 candidate to be considered.

2.2 Search completeness

The valid candidate search problem becomes more than an inefficiency

and a performance issue for some cases. Dini [7] used this approach in the

8

Candidate vector : : Index of fields accessed in repOK
tabsizetabsize tabsize1 0 0 0 0 0 0 0 0 :: 0 1
tabsizetabsize tabsize2 1 0 0 0 0 0 0 0 :: 0 2 3 1
tabsizetabsize tabsize3 1 0 0 1 0 0 0 0 :: 0 2 3
tabsizetabsize tabsize4 1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize5 1 0 0 2 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize6 1 0 0 2 0 2 0 0 :: 0 2 3 4 5
showtabsshowtabs showtabs7 1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize8 1 0 0 2 0 3 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize9 1 0 0 2 0 3 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize10 1 0 0 2 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize11 1 0 0 2 0 3 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize12 1 0 0 2 0 3 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize13 1 0 0 2 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize14 1 0 0 2 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize15 1 0 0 2 2 0 0 0 :: 0 2 3 4
showtabsshowtabs showtabs16 1 0 0 2 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize17 1 0 0 2 3 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize18 1 0 0 2 3 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize19 1 0 0 2 3 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize20 1 0 0 2 3 0 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize21 1 0 0 2 3 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize22 1 0 0 2 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize23 1 0 0 2 3 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize24 1 0 0 2 3 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize25 1 0 0 2 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize26 1 0 1 0 0 0 0 0 :: 0 2
tabsizetabsize tabsize27 1 0 2 0 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize28 1 0 2 0 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize29 1 0 2 0 0 2 0 0 :: 0 2 3 4 5
showtabsshowtabs showtabs30 1 0 2 0 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize31 1 0 2 0 0 3 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize32 1 0 2 0 0 3 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize33 1 0 2 0 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize34 1 0 2 0 0 3 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize35 1 0 2 0 0 3 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize36 1 0 2 0 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize37 1 0 2 0 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize38 1 0 2 0 2 0 0 0 :: 0 2 3 4
showtabsshowtabs showtabs39 1 0 2 0 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize40 1 0 2 0 3 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize41 1 0 2 0 3 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize42 1 0 2 0 3 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize43 1 0 2 0 3 0 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize44 1 0 2 0 3 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize45 1 0 2 0 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize46 1 0 2 0 3 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize47 1 0 2 0 3 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize48 1 0 2 0 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize49 1 0 2 1 0 0 0 0 :: 0 2 3
tabsizetabsize tabsize50 1 0 2 2 0 0 0 0 :: 0 2 3
showtabsshowtabs showtabs51 1 0 2 3 0 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize52 1 0 2 3 0 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize53 1 0 2 3 0 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize54 1 0 2 3 0 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize55 1 0 2 3 0 0 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize56 1 0 2 3 0 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize57 1 0 2 3 0 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize58 1 0 2 3 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize59 1 0 2 3 0 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize60 1 0 2 3 0 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize61 1 0 2 3 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize62 1 0 2 3 2 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize63 1 0 2 3 3 0 0 0 :: 0 2 3 4

Figure 2.5: Candidates explored for finBinaryTree(3)

9

context of data structure repair. Given a faulty structure, Korat starts from

the corresponding candidate vector and runs the forward search until it finds a

valid structure. However, finding a valid candidate becomes impossible if the

faulty structure drops to the last infeasible range, which is the range containing

candidates [52, 63) in Figure 2.5. In scenarios similar to this, the backward

search comes into play and becomes an essential feature for Korat as it enables

Korat to perform the search in both directions.

10

Chapter 3

Technique

In this chapter, first of all, we will take a deeper look into the traditional

Korat search (Forward Korat search) and how Korat backtracks using the field

accesses of the predicate method. Thereafter, we will explain the backward

Korat search algorithm and discuss how it differs from the forward search.

Further, a fast-forwarding technique for the traditional Korat search and how

the backward search benefits from the fast-forwarding will be discussed.

3.1 Forward Korat search

As it is stated in the previous chapters, Korat uses a predicate method

and finitization to generate all non-isomorphic test inputs for which the pred-

icate returns true. In this section, we will illustrate the forward Korat search

algorithm in more detail.

Korat requires a finitization to be able to generate a bounded set of

test inputs. In this way, Korat knows the set of values to be considered for a

specific field of the target class. If we continue using the same example from

chapter 2, there are two sets Korat considers for the BinaryTree of size 3 as

they are shown in Figure 3.1.

11

fd(BinaryTree.root) = [null, N0, N1, N2]

fd(Node.right) = fd(Node.left) = fd(BinaryTree.root)
fd(BinaryTree.size) = [3]

1 0 2 3 0 0 0 0

T
0.

ro
ot

T
0.

si
ze

N
0.

le
ft

N
0.

ri
gh

t

N
1.

le
ft

N
1.

ri
gh

t

N
2.

le
ft

N
2.

ri
gh

t

N0

N1 N2

Figure 3.1: An example candidate vector with its corresponding tree structure,
and the field domains for finitization 3.

These set of values for the corresponding fields are called field domains.

A candidate vector is formed by using the index of an instance in its field

domain for every field. In our example, the candidate vector has eight fields:

the BinaryTree object has two fields, root and size, and each of the three Node

objects have two fields, left and right. The field domain for the root field of the

BinaryTree object and the both left and right fields of the Node object has four

elements: null, N0, N1, N2. On the other hand, the field domain for the size

field of the BinaryTree object has only one element, which is 3. The state space

of all potential candidates consists of 4 · 1 · (4 · 4)3 = 214 candidates. Figure 3.1

shows one of the candidate vectors with its corresponding tree structure.

The exploration of the state space starts with the candidate vector set

to all zeros. Korat sets the fields of the objects by mapping the values in vector

to the corresponding elements. For every candidate, Korat invokes repOK to

12

check if the current candidate is valid, or not. Korat monitors the fields that

repOK accesses during the execution. These fields are ordered based on the

order that repOK accesses them. In Figure 2.5, the right side of the figure

shows the indices of fields accessed during repOK execution in an ordered

manner.

After the execution of repOK is completed for the current candidate,

Korat generates the next candidate by backtracking on the accessed fields

during the previous execution. The basic idea is that Korat tries to increment

the last accessed field to be able to generate the next candidate. If the domain

index of the last accessed field exceeds the maximum domain index, Korat

resets that index to zero and backtracks to the previous field in the ordered

fields. This is repeated until the next candidate is found or the search is

completed. Thanks to using backtracking, Korat prunes a huge portion of the

state space. For example, for BinaryTree of size 3, Korat only considers 63

candidates instead of all 214 possible candidates.

N0

N1

N2

N1

N0

N2

Figure 3.2: BinaryTree objects that are isomorphic to each other

13

Candidate vector : : Index of fields accessed in repOK

showtabsshowtabs showtabs25 1 0 0 2 3 3 0 0 :: 0 2 3 4 5

showtabsshowtabs showtabs1 0 0 3 0 0 0 0 :: 0 2 3 6 7 1
showtabsshowtabs showtabs1 0 0 3 0 0 0 1 :: 0 2 3 6 7
showtabsshowtabs showtabs1 0 0 3 0 0 0 2 :: 0 2 3 6 7 4 5 1 ***
showtabsshowtabs showtabs1 0 0 3 0 1 0 2 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 0 2 0 2 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 0 3 0 2 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 1 0 0 2 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 2 0 0 2 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 3 0 0 2 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 0 0 0 3 :: 0 2 3 6 7
showtabsshowtabs showtabs1 0 0 3 0 0 1 0 :: 0 2 3 6
showtabsshowtabs showtabs1 0 0 3 0 0 2 0 :: 0 2 3 6 7 4 5 1 ***
showtabsshowtabs showtabs1 0 0 3 0 1 2 0 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 0 2 2 0 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 0 3 2 0 :: 0 2 3 6 7 4 5
showtabsshowtabs showtabs1 0 0 3 1 0 2 0 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 2 0 2 0 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 3 0 2 0 :: 0 2 3 6 7 4
showtabsshowtabs showtabs1 0 0 3 0 0 2 1 :: 0 2 3 6 7
showtabsshowtabs showtabs1 0 0 3 0 0 2 2 :: 0 2 3 6 7
showtabsshowtabs showtabs1 0 0 3 0 0 2 3 :: 0 2 3 6 7
showtabsshowtabs showtabs1 0 0 3 0 0 3 0 :: 0 2 3 6



A
vo

id
ed

is
om

or
p
h
ic

co
p
ie

s

showtabsshowtabs showtabs26 1 0 1 0 0 0 0 0 :: 0 2

Figure 3.3: An example showing the non-isomorphism pruning

The search is optimized further by eliminating candidates that are iso-

morphic to each other. Figure 3.2 shows two isomorphic BinaryTree objects.

Korat avoids generating isomorphic structures like these by applying non-

isomorphism breaking. The detailed description of how Korat defines non-

isomorphism and handles isomorphic candidates is given elsewhere [4]. Korat

would explore 364 candidates for BinaryTree of size 3 if non-isomorphism

breaking is disabled. However, the search only considers 63 candidates as

shown in Figure 2.5. If we consider the 25th and 26th in that figure, there

14

are 22 more candidates that Korat avoids to consider. Figure 3.3 illustrates

avoided isomorphic copies between these two candidate vectors.

Pseudo-code for the forward Korat search algorithm is provided in Fig-

ure 3.4 [3]. The search starts with initVector, which is the candidate vector

set to all zero, and continues until the whole state space is explored. Based

on the repOK execution, backtracking on the accessed fields determine the

next candidate. The algorithm shows how Korat exhaustively explores the

search space of the predicate in an efficient way by pruning large portions of

the search space and generating only non-isomorphic structures.

tabsizetabsize tabsize1 function forwardKorat(){
tabsizetabsize tabsize2
tabsizetabsize tabsize3 int [] current = initVector;
tabsizetabsize tabsize4 Stack accessedFields = new Stack();
tabsizetabsize tabsize5 boolean isRepOK;
tabsizetabsize tabsize6
tabsizetabsize tabsize7 do{
tabsizetabsize tabsize8 (isRepOK, accessedFields) = current.repOK();
tabsizetabsize tabsize9
tabsizetabsize tabsize10 if(isRepOK){
tabsizetabsize tabsize11 reportValidCandidate(current);
tabsizetabsize tabsize12 }
tabsizetabsize tabsize13
tabsizetabsize tabsize14 int lastAccessedField = accessedFields.pop();
tabsizetabsize tabsize15 while(!accessedFields.isEmpty()
tabsizetabsize tabsize16 && current[lastAccessedField] >=
tabsizetabsize tabsize17 nonIsoMax(current,accessedFields,lastAccessedField)){
tabsizetabsize tabsize18 current[lastAccessedField] = 0;
tabsizetabsize tabsize19 lastAccessedField = accessedFields.pop();
tabsizetabsize tabsize20 }
tabsizetabsize tabsize21
tabsizetabsize tabsize22 if(!accessedFields.isEmpty()){
tabsizetabsize tabsize23 current[lastAccessedField]++;
tabsizetabsize tabsize24 }
tabsizetabsize tabsize25 } while(current != lastVector && !accessedFields.isEmpty())
tabsizetabsize tabsize26 }

Figure 3.4: Forward Korat search algorithm pseudocode [3].

15

3.2 Backward Korat search

This section presents the backward Korat search, a novel approach for

Korat to exhaustively explore the search space in the reverse direction. We

introduce multi-stage backtracking, which is the foundation of the backward

search and is inspired by backtracking that Korat uses for the traditional

forward search. The main motivation of going in the reverse direction is to

enable Korat to have a bidirectional search capability. Thus, Korat can be used

in a more powerful way for some certain applications such as constraint-driven

data structure repair [7] and distributed test input generation [23].

3.2.1 Multi-stage backtracking

We previously explained how Korat uses backtracking to exhaustively

explore the search space for the traditional search algorithm in the forward

direction. As it is also explained in the related paper [4], forward Korat back-

tracks on the accessed fields of the previous candidate to be able to find the

next candidate. On the other hand, the backward Korat applies backtracking

multiple times on the accessed fields of the previous candidate and the inter-

mediate candidates, which are used for the intermediate steps of the algorithm,

to generate the next candidate.

Figure 3.5 presents step by step how the next candidate is found by

using multi-stage backtracking. To be consistent with the previous examples,

we use the same data structure, a BinaryTree with 3 nodes, for the illustration

of the approach. In the figure, candidate vector numbering is kept consistent

16

Se
ar
ch

di
re
ct
io
n

Candidate vector : : Index of accessed fields

showtabsshowtabs showtabs26 1 0 1 0 0 0 0 0 :: 0 2

showtabsshowtabs showtabs1 0 0 0 0 0 0 0 :: 0 2 3 1
showtabsshowtabs showtabs1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1
showtabsshowtabs showtabs1 0 0 2 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***



In
te

rm
ed

ia
te

ca
n
d
id

at
e

ve
ct

or
s

showtabsshowtabs showtabs25 1 0 0 2 3 3 0 0 :: 0 2 3 4 5

showtabsshowtabs showtabs
showtabsshowtabs showtabsNo intermediate candidate vectors

showtabsshowtabs showtabs24 1 0 0 2 3 2 0 0 :: 0 2 3 4 5

Figure 3.5: An example showing multi-stage backtracking

with the forward search space exploration. That is to say, Korat goes backward

in the search space when it starts from the 26th candidate and finds the 25th

and 24th candidate vectors respectively.

The reason why it is called multi-stage backtracking is that there are

intermediate candidates involved in the search. Therefore, Korat invokes the

repOK and does backtracking on the fields repOK access to find the next

candidate in the search space. In some cases, the next candidate is found

without having any intermediate candidate. The difference between having

intermediate candidates and not having them will be clear once we explain the

example in Figure 3.5.

The basic idea behind the backward search is decrementing the last field

17

access of the current candidate and incrementally setting the next field access

of the intermediate candidates to its max value if they exist (By considering

isomorphism breaking to avoid the isomorphic candidates). This is repeated

until the next candidate is found based on the termination condition which will

be explained later in this section. Once Korat decrements the last accessed field

of the current candidate vector, it invokes the repOK on the new candidate.

If the last accessed field of the new candidate is the same as the last accessed

field of the previous candidate, then the next candidate is found. Otherwise,

the new candidate is called an intermediate candidate since the termination

condition is not satisfied for finding the next candidate. In this case, Korat

sets the next accessed field of the intermediate candidate to its max value in

accordance with the isomorphism breaking.

Figure 3.5 illustrates both cases of the backward search. If the search

starts from the 26th candidate, its last accessed field index is 2, which is col-

ored with blue. Since the last accessed field is non-zero, the second field of the

current candidate vector is decremented by one and the resulting candidate

vector becomes (1, 0, 0, 0, 0, 0, 0, 0). Since the repOK execution on the

resulting candidate touches more fields compared to the previous candidate,

the resulting candidate is an intermediate candidate. The termination con-

dition for finding the next candidate in the search space is that the accessed

fields of the resulting candidate should be the same as the previous candidate.

However, this is not the case for (1, 0, 0, 0, 0, 0, 0, 0) as it has more fields that

are accessed after indices 0 and 2. Consequently, Korat sets the next accessed

18

tabsizetabsize tabsize1 function backwardKorat(){
tabsizetabsize tabsize2
tabsizetabsize tabsize3 int [] current = initVector;
tabsizetabsize tabsize4 List accessedFields = new ArrayList();
tabsizetabsize tabsize5 boolean isRepOK;
tabsizetabsize tabsize6
tabsizetabsize tabsize7 do{
tabsizetabsize tabsize8 (isRepOK, accessedFields) = current.repOK();
tabsizetabsize tabsize9
tabsizetabsize tabsize10 if(isRepOK){
tabsizetabsize tabsize11 reportValidCandidate(current);
tabsizetabsize tabsize12 }
tabsizetabsize tabsize13
tabsizetabsize tabsize14 currentFieldIndex = accessedFields.removeLast();
tabsizetabsize tabsize15 while(!accessedFields.isEmpty()
tabsizetabsize tabsize16 && current[currentFieldIndex] == 0){
tabsizetabsize tabsize17 currentFieldIndex = accessedFields.removeLast();
tabsizetabsize tabsize18 }
tabsizetabsize tabsize19
tabsizetabsize tabsize20 if(accessedFields.isEmpty()){
tabsizetabsize tabsize21 break;
tabsizetabsize tabsize22 }
tabsizetabsize tabsize23
tabsizetabsize tabsize24 int lastAccessedField = accessedFields.getLast();
tabsizetabsize tabsize25 current[lastAccessedField]--;
tabsizetabsize tabsize26
tabsizetabsize tabsize27 int numberOfAccessedFields = accessedFields.size();
tabsizetabsize tabsize28 while(true){
tabsizetabsize tabsize29 accessedFields = current.repOK();
tabsizetabsize tabsize30
tabsizetabsize tabsize31 if(numberOfAccessedFields == accessedFields.size()){
tabsizetabsize tabsize32 break;
tabsizetabsize tabsize33 }
tabsizetabsize tabsize34
tabsizetabsize tabsize35 int accessedFieldIndex = acessedFields.get(numberOfAccessedFields);
tabsizetabsize tabsize36 current[accessedFieldIndex] =
tabsizetabsize tabsize37 nonIsoMax(current,accessedFields,accessedFieldIndex);
tabsizetabsize tabsize38 numberOfAccessedFields++;
tabsizetabsize tabsize39 }
tabsizetabsize tabsize40 } while(current != lastVector && !accessedFields.isEmpty())
tabsizetabsize tabsize41 }

Figure 3.6: Backward Korat search algorithm pseudocode.

19

field of this candidate, which is index 3, to its max value. This process is

repeated until (1, 0, 0, 2, 3, 3, 0, 0), the 25th candidate, is found as it satisfies

the termination condition. On the other hand, the search does not involve any

intermediate candidates when it goes from the 25th to the 24th candidate. This

is because the resulting candidate satisfies the termination condition after the

last accessed field of the 25th candidate is decremented. The number of repOK

calls for going from the 26th candidate to 25th candidate is 4 while this number

is only 1 for going from the 25th candidate to 24th candidate vector.

3.2.2 Implementation

Figure 3.6 shows the core algorithm of the backward Korat search.

Within the while loop at line 7, Korat searches the candidates until it finds the

end candidate. The algorithm is similar to the forward Korat search algorithm

until line 25. At this point, Korat decrements the last accessed field and the

multi-stage backtracking process begins. Since this procedure is explained in

the previous section, we will not go into the details.

When the backward search encounters an intermediate candidate, Ko-

rat sets the next accessed field to its max value according to the isomorphism

breaking to generate only non-isomorphic structures. This is operation is

shown at line 36 of the same figure and nonIsoMax is the function that de-

termines the max value for the accessed field to be set. The algorithm for this

function is provided in Figure 3.7. The function checks all of the previously

accessed fields to find the maximum of those that are from the same field do-

20

tabsizetabsize tabsize1 function nonIsoMax(currentCandidate, accessedFields, accessedFieldIndex){
tabsizetabsize tabsize2
tabsizetabsize tabsize3 int maxInstanceIndex = accessedFieldIndex.getFieldDomain().size() - 1;
tabsizetabsize tabsize4
tabsizetabsize tabsize5 int nonIsoMaxInstanceIndex = 0;
tabsizetabsize tabsize6 for(int i=0; i< accessedFields.indexOf(accessedFieldIndex); i++){
tabsizetabsize tabsize7 int currentAccessedFieldIndex = accessedFields.get(i);
tabsizetabsize tabsize8 int activeInstanceIndex = currentCandidate[currentAccessedFieldIndex];
tabsizetabsize tabsize9
tabsizetabsize tabsize10 if (nonIsoMaxInstanceIndex < activeInstanceIndex){
tabsizetabsize tabsize11 nonIsoMaxInstanceIndex = activeInstanceIndex;
tabsizetabsize tabsize12 }
tabsizetabsize tabsize13 }
tabsizetabsize tabsize14
tabsizetabsize tabsize15 if(nonIsoMaxInstanceIndex < maxInstanceIndex){
tabsizetabsize tabsize16 return nonIsoMaxInstanceIndex + 1;
tabsizetabsize tabsize17 }
tabsizetabsize tabsize18 else{
tabsizetabsize tabsize19 return maxInstanceIndex;
tabsizetabsize tabsize20 }
tabsizetabsize tabsize21 }

Figure 3.7: nonIsoMax function for the backward Korat search

main with the current accessed field. If the maximum instance index of the

previously accessed fields (nonIsoMaxInstanceIndex) is smaller than the

maximum instance index of the field domain (maxInstanceIndex), the function

returns nonIsoMaxInstanceIndex + 1. Otherwise, it returns the maxi-

mum instance index of the field domain. In this way, Korat avoids generating

test inputs that are isomorphic to each other by keeping the difference less

than 1 for the fields that belong to the same domain and setting them to the

next instance in the field domain.

3.2.3 Fast-forwarding for Korat

The traditional forward Korat search starts exploring the search space

from the candidate vector set to all zeros. In addition, the programmer op-

21

tionally can provide a start candidate if the search needs to be started from

a specific candidate vector. On the other hand, the backward Korat search

requires a start candidate to begin the search as we do not have information

about the state space prior to the exploration. For a complete exploration of

the search space, the start candidate for the backward search should be the

last candidate of the forward search. Thus, we need to execute a full forward

search to get the next candidate so that we can run the backward search by

using it as the start candidate. However, this approach is not feasible as we

already have a full exploration of the search space when we go forward.

tabsizetabsize tabsize1 function fastForwardKorat(){
tabsizetabsize tabsize2
tabsizetabsize tabsize3 int [] current = initVector;
tabsizetabsize tabsize4 Stack accessedFields = new Stack();
tabsizetabsize tabsize5
tabsizetabsize tabsize6 do{
tabsizetabsize tabsize7 accessedFields = current.repOK();
tabsizetabsize tabsize8
tabsizetabsize tabsize9 int lastAccessedField = accessedFields.pop();
tabsizetabsize tabsize10 while(!accessedFields.isEmpty()
tabsizetabsize tabsize11 && current[lastAccessedField] >=
tabsizetabsize tabsize12 nonIsoMax(current, lastAccessedField)){
tabsizetabsize tabsize13 current[lastAccessedField] = 0;
tabsizetabsize tabsize14 lastAccessedField = accessedFields.pop();
tabsizetabsize tabsize15 }
tabsizetabsize tabsize16
tabsizetabsize tabsize17 if(!accessedFields.isEmpty()){
tabsizetabsize tabsize18 current[lastAccessedField]=nonIsoMax(current, lastAccessedField);
tabsizetabsize tabsize19 }
tabsizetabsize tabsize20 } while(current != lastVector && !accessedFields.isEmpty())
tabsizetabsize tabsize21 }

Figure 3.8: Fast-forwarding for Korat search pseudocode.

We introduce fast-forwarding for Korat, which is a novel approach to

solve this problem. The algorithm pseudo-code is shown in Figure 3.8. The

22

core of the algorithm is setting the last accessed field to its nonIsoMax value

instead of incrementing it as the forward Korat search does. The rest of the

algorithm is the same as the forward Korat search algorithm. Our approach

targets to find the last candidate of the search space. The fast-forwarding

provides huge amount of speedup over the execution cost of the forward search

as it skips a lot of candidates that the forward search would explore since we

are only interested in finding the last candidate.

Figure 3.9 show the state space exploration for BinaryTree of size 3

in fast-forwarding mode. As we can see from the figure, the fast-forwarding

explores almost three times less candidates to find the last candidate as the

search considers only 23 candidates compared to full forward search which

considers 63 candidates for this specific subject.

Candidate vector : : Index of fields accessed in repOK
tabsizetabsize tabsize1 0 0 0 0 0 0 0 0 :: 0 1
tabsizetabsize tabsize2 1 0 0 0 0 0 0 0 :: 0 2 3 1
tabsizetabsize tabsize3 1 0 0 2 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize4 1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize5 1 0 0 2 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize6 1 0 0 2 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize7 1 0 0 2 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize8 1 0 0 2 3 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize9 1 0 0 2 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize10 1 0 0 2 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize11 1 0 2 0 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize12 1 0 2 0 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize13 1 0 2 0 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize14 1 0 2 0 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize15 1 0 2 0 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize16 1 0 2 0 3 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize17 1 0 2 0 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize18 1 0 2 0 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize19 1 0 2 3 0 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize20 1 0 2 3 0 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize21 1 0 2 3 0 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize22 1 0 2 3 0 3 0 0 :: 0 2 3 4 5
showtabsshowtabs showtabs23 1 0 2 3 3 0 0 0 :: 0 2 3 4

Figure 3.9: Candidates explored in fast-forwarding mode for finBinaryTree(3)

23

3.2.4 Command-line options

The command-line options that are added to Korat for the backward

search and fast-forwarding are shown in Table 3.1. --back allows Korat to

execute the search in the backward direction. This option requires a start

candidate, --cvStart1, which is not mandatory for the forward Korat search.

--findEnd activates the fast-forwarding mode for Korat and it does not re-

quire any other command-line options. It can only be used for the traditional

forward Korat search.

Option Description

--back Backward Korat search mode
--findEnd Fast-forwarding mode

Table 3.1: Backward-Korat command-line options

1http://korat.sourceforge.net/manual.html

24

Chapter 4

Evaluation

We evaluate the effectiveness of fast-forwarding for Korat and perfor-

mance of the backward Korat search compared to the forward search on a suite

of standard subjects that are chosen from Korat’s default examples. This sec-

tion describes the experiment procedure we designed to answer the following

research questions:

RQ1. What is the cost of fast-forwarding to the last candidate?

RQ2. How does backward Korat search performs compared to forward search?

RQ3. How effective fast-forwarding is compared to forward search?

4.1 Study

We used seven subjects that are taken from Korat’s open-source repos-

itory 1 as shown in Table 4.1. Some former studies on Korat used the same

set of subjects in their evaluation [4, 7, 23, 31]. For each subject, we used the

largest finitization for which the execution of forward Korat search is termi-

nated within 30 seconds to create the tables that we show in this chapter.

1https://korat.svn.sourceforge.net/svnroot/korat/trunk

25

These tables present an illustrative subset of our experimental results. We

also provide another set of experiments with all subjects for finitizations 6, 8,

and 10 to compare the results for different finitizations.

Subject(fin)

BinaryTree (BT)
BinomialHeap (BH)
DoublyLinkedList (DLL)
HeapArray (HA)
RedBlackTree (RBT)
SearchTree (ST)
SinglyLinkedList (SLL)

Table 4.1: Subjects used in the study

4.1.1 Execution platform

We run all the experiments on a machine with 2-cores, Intel R© CoreTM

i5-4278U CPU at 2.60GHz, with 8GB of RAM, running OS X 10.11.6. We

used Java 1.8.0 121 from Oracle R©.

4.2 Results

Recall from Section 3.2.3 that the design goal of the fast-forwarding

for Korat is to find the last candidate of the search space in order to execute

backward Korat search. Tables 4.2 and 4.3 show the experiment results that

compares fast-forwarding and forward Korat search in terms of the total num-

ber of candidates explored and the execution time by using the finitizations

26

for which the forward Korat execution terminated within 30 seconds. In both

cases, the search start from the candidate vector set to all zeros and stops

when the last candidate of the search space is found. There are several points

that are inferred from these tables:

Fast-forwarding Forward search

S
u
b
je
ct
(fi
n
)

BinaryTree(12) 1,033,412 12,284,830
BinomialHeap(9) 41 11,778,107

DoublyLinkedList(11) 5 3,535,294
HeapArray(9) 22 51,460,480

RedBlackTree(10) 7 7,530,712
SinglyLinkedList(11) 26 10,639,556

SearchTree(9) 43,162 20,086,300

Table 4.2: Fast-forwarding vs. forward search: Total explored.

Fast-forwarding Forward search

S
u
b
je
ct
(fi
n
)

BinaryTree(12) 1.343 8.492
BinomialHeap(9) 0.19 15.48

DoublyLinkedList(11) 0.154 5.424
HeapArray(9) 0.186 10.906

RedBlackTree(10) 0.205 9.709
SinglyLinkedList(11) 0.148 6.298

SearchTree(9) 0.327 13.281

Table 4.3: Fast-forwarding vs. forward search: Execution time.

27

• The amount of pruning that the fast-forwarding provides over the tra-

ditional forward Korat search is highly dependent on the subject type.

For example, the fast-forwarding provides 12X reduction in terms of the

total number of candidates explored for BinaryTree subject while the

reduction is over 1,000,000X for RedBlackTree. The same thing can be

stated for the execution time as the amount of speedup varies by subject.

• Given the execution times for fast-forwarding and forward search, the

minimum speedup is more than 6X. Also, execution time reduction is

proportional to the reduction in the number of candidates explored.

Tables 4.4 and 4.5 show the same set of experiments conducted with

different finitizations. This time, the same subjects with finitizations 6, 8, and

10 are used for comparing the fast-forwarding (ff) and the forward search (fw)

to see how the approach scales. The resulting key points from these tables:

• The fast-forwarding scales perfectly for some subjects, such as Dou-

blyLinkedList and RedBlackTree as the total number of candidates ex-

plored stays the same for different finitizations.

• The amount of reduction in terms of total explored candidates increases

as the finitization gets larger. For instance, the reduction is around

137X for SinglyLinkedList of size 6 while it is more than 70,000X for

finitization 10.

28

Finitization
6 8 10

ff fw ff fw ff fw

BT 626 3,653 6,918 54,418 82,500 815,100
BH 28 42,815 36 1,323,194 44 150,727,471
DLL 5 776 5 17,166 5 562,823
HA 16 64,533 20 5,231,385 24 583,317,405
RBT 7 16,487 7 322,806 7 7,530,712
SLL 16 2,194 20 52,567 24 1,702,171
ST 1,154 45,233 12,638 2,606,968 149,684 155,455,872

Table 4.4: Fast-forwarding vs. forward search: Total explored.

Finitization
6 8 10

ff fw ff fw ff fw

BinaryTree 0.146 0.287 0.175 0.457 0.46 1.024
BinomialHeap 0.19 0.389 0.187 1.805 0.184 202.499

DoublyLinkedList 0.154 0.189 0.154 0.273 0.198 0.953
HeapArray 0.131 0.326 0.131 1.583 0.133 106.742

RedBlackTree 0.197 0.435 0.249 1.314 0.205 9.709
SinglyLinkedList 0.212 0.403 0.15 0.367 0.155 1.437

SearchTree 0.182 0.311 0.221 1.807 0.443 103.353

Table 4.5: Fast-forwarding vs. forward search: Execution time.

• For small finitizations, the execution time does not differ much as the in-

ternal Korat overhead becomes comparable to the state space exploration

time. But, we can clearly see speedup when the finitizations increase.

29

Execution time Total explored New found
S
u
b
je
ct
(fi
n
)

BinaryTree(12) fw 8.492 12,284,830 208,012bw 15.132 13,608,740

BinomialHeap(9) fw 15.48 11,778,107 8,746,120bw 26.412 13,218,171

DoublyLinkedList(11) fw 5.424 3,535,294 3,535,027bw 9.916 4,213,909

HeapArray(9) fw 10.906 51,460,480 10,391,382bw 26.856 56,606,518

RedBlackTree(10) fw 9.709 7,530,712 260bw 16.013 11,750,872

SinglyLinkedList(11) fw 6.298 10,639,556 678,570bw 10.958 12,423,950

SearchTree(9) fw 13.281 20,086,300 4,862bw 20.966 22,601,403

Table 4.6: The forward search vs the backward search for various finitizations.

Tables 4.6 and 4.7 shows the experiment results for comparing the tra-

ditional forward Korat search (fw) with the backward Korat search (bw) in

terms of execution time, the total number of candidates explored and the new

valid instances found. Similar to the fast-forwarding experiments, we used

the finitizations for which forward Korat terminated within 30 seconds for Ta-

ble 4.6 so that the internal overhead does not have a major impact on the

execution time. On the other side, Table 4.7 shows the results of the exper-

iments that are conducted by using finitizations 6, 8 and 10 with the same

30

Finitization
6 8 10

fw bw fw bw fw bw

E
xe
cu
tio

n
tim

e BT 0.287 0.247 0.457 0.602 1.024 1.671
BH 0.389 0.453 1.805 3.224 202.499 332.218
DLL 0.189 0.181 0.273 0.618 0.953 1.731
HA 0.326 0.47 1.583 4.42 106.742 281.781
RBT 0.435 0.377 1.314 1.336 9.709 16.013
SLL 0.403 0.256 0.367 0.485 1.437 2.274
ST 0.311 0.341 1.807 3.545 103.353 175.56

To
ta
le

xp
lo
re
d

BT 3,653 4,468 54,418 63,382 815,100 921,302
BH 42,815 50,454 1,323,194 1,502,625 150,727,471 167,364,609
DLL 776 1,004 17,166 21,339 562,823 678,839
HA 64,533 73,745 5,231,385 5,812,641 583,317,405 636,346,249
RBT 16,487 23,015 322,806 472,346 7,530,712 11,750,872
SLL 2,194 2,828 52,567 64,315 1,702,171 2,013,450
ST 45,233 54,364 2,606,968 2,980,582 155,455,872 172,744,382

N
ew

fo
un

d

BT 132 1,430 16,796
BH 7,602 603,744 117,157,172
DLL 674 17,007 562,595
HA 13,139 1,005,075 111,511,015
RBT 20 64 260
SLL 203 4,140 115,975
ST 132 1,430 16,796

Table 4.7: The forward search vs the backward search for finitizations 6, 8, 10.

31

set of subjects. For all experiments, the Total explored numbers are higher

for backward search since we included the intermediate candidates for these

counts. There are several points to discuss about these two tables:

• In all cases, the forward search and the backward search both find the

same number of valid structures (New found), which proves the sound-

ness of the backward search.

• The backward search is usually 2X slower than the forward search. This

number gets close to 3X in some rare cases such as HeapArray of size

9. The slowdown is mostly caused by the fact that the backward Ko-

rat search explores more candidates than the forward search due to the

intermediate candidates. Another important factor is that the number

of fields considered during backtracking and non-isomorphism checking

which is explained in Section 3.2.2.

• The amount of slowdown of the backward search over the forward search

depends on the subject type and the finitization. The slowdown increases

as the finitization becomes larger. This is an expected result and stems

from the exhaustive bounded nature of Korat since the search space

grows exponentially as the finitization increases.

32

Fast-forwarding cost

S
u
b
je
ct
(fi
n
)

BinaryTree(12) 1.343
BinomialHeap(9) 0.19

DoublyLinkedList(11) 0.154
HeapArray(9) 0.186

RedBlackTree(10) 0.205
SinglyLinkedList(11) 0.148

SearchTree(9) 0.327

Table 4.8: The cost of the fast forwarding for various finitizations.

Finitization
6 8 10

S
u
b
je
ct

BinaryTree 0.146 0.175 0.46
BinomialHeap 0.19 0.187 0.184

DoublyLinkedList 0.154 0.154 0.198
HeapArray 0.131 0.131 0.133

RedBlackTree 0.197 0.249 0.205
SinglyLinkedList 0.212 0.15 0.155

SearchTree 0.182 0.221 0.443

Table 4.9: The cost of the fast forwarding for finitizations 6, 8, 10.

33

Since the backward Korat needs the last candidate of the search space

for a full exploration, we separately illustrate the cost of fast-forwarding to the

last candidate. Tables 4.9 and 4.8 shows the results in seconds for our both

experiment cases. By looking at these tables:

• The fast-forwarding to the last candidate of the search space takes less

than 0.5 seconds except BinaryTree of finitization 12.

• Compared to the corresponding backward Korat search execution tim-

ings, the fast-forwarding cost becomes more insignificant as the finitiza-

tion increases.

4.3 Answers to research questions
4.3.1 RQ1. What is the cost of fast-forwarding to the last candi-

date?

The overall cost of fast-forwarding technique is insignificant to a large extent
compared to the execution time of the backward Korat search. It becomes
even more insignificant as the finitization increases.

4.3.2 RQ2. How does backward Korat search performs compared
to forward search?

The backward Korat search performs slower than the traditional forward Korat
search as we expected due to the fact that it explores more candidates and
performs more field accesses. The amount of slowdown is usually less than 2X
while this number can go up to 3X for some cases.

34

4.3.3 RQ3. How effective fast-forwarding is compared to forward
search?

The fast-forwarding technique has shown that it provides reduction over the
forward Korat search in terms of the total number of candidates explored and
the execution time to find the last candidate vector.

35

Chapter 5

Potential Applications

It is shown in Sections 2.1 and 2.2 that how the backward search im-

proves the valid candidate search problem and enables Korat to perform the

search in both directions. This chapter presents three potential applications

that benefits from these improvements.

5.1 Improved constraint-based data structure repair

Data structure repair is a technique for recovering faulty data structures

to enable the programs to execute successfully [5–8, 13, 16, 24–26]. Constrain-

based data structure repair utilizes logical constraints to recover the faulty

program state [5, 6]. Juzi tool [8, 9] introduced the idea of using a predicate

method for repairing faulty structures during the program execution. Another

prior work, MKorat, improved on this idea by memoizing infeasible ranges and

repaired structure in the case of repeated repair scenarios [7].

Both Juzi and MKorat are based on the traditional forward Korat

search as to find the next valid structure in the search space to repair the

faulty structure. However, these approaches fail or perform in an inefficient

way for some cases. Figure 5.1 illustrates how the backward search can improve

36

Candidate vector : : Index of accessed fields

tabsizetabsize tabsize35 1 0 2 0 0 3 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize36 1 0 2 0 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize37 1 0 2 0 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize38 1 0 2 0 2 0 0 0 :: 0 2 3 4

showtabsshowtabs showtabs39 1 0 2 0 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***

tabsizetabsize tabsize40 1 0 2 0 3 0 0 1 :: 0 2 3 4 5 6 7

showtabsshowtabs showtabs41 1 0 2 0 3 0 0 2 :: 0 2 3 4 5 6 7

tabsizetabsize tabsize42 1 0 2 0 3 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize43 1 0 2 0 3 0 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize44 1 0 2 0 3 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize45 1 0 2 0 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize46 1 0 2 0 3 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize47 1 0 2 0 3 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize48 1 0 2 0 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize49 1 0 2 1 0 0 0 0 :: 0 2 3
tabsizetabsize tabsize50 1 0 2 2 0 0 0 0 :: 0 2 3

showtabsshowtabs showtabs51 1 0 2 3 0 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize52 1 0 2 3 0 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize53 1 0 2 3 0 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize54 1 0 2 3 0 0 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize55 1 0 2 3 0 0 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize56 1 0 2 3 0 0 2 0 :: 0 2 3 4 5 6

showtabsshowtabs showtabs57 1 0 2 3 0 0 3 0 :: 0 2 3 4 5 6

tabsizetabsize tabsize58 1 0 2 3 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize59 1 0 2 3 0 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize60 1 0 2 3 0 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize61 1 0 2 3 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize62 1 0 2 3 2 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize63 1 0 2 3 3 0 0 0 :: 0 2 3 4

Figure 5.1: Candidate vectors representing constraint-based data structure
repair for finBinaryTree(3)

37

these cases. Given the data structures that are canonicalized with respect to

repOK, the yellow candidate vectors represent the faulty structures that ap-

pear during the program execution and need to be repaired. For the 41st

candidate, the traditional repair algorithm runs the forward search and con-

siders 10 candidate vectors until it finds a valid structure. On the other hand,

the backward Korat only considers 2 candidates to provide a valid structure.

Moreover, a candidate that is closer to the faulty structure in the search space

will have a better approximation to the original structure and the repair pro-

cess will have a higher chance of success. The situation is even worse when

the faulty structure appears in the last infeasible range of the search space.

For instance, the forward search is not able to find any valid structures if the

erroneous data structure is canonicalized to the 57th candidate since it falls in

to the last infeasible range. The backward Korat search becomes very useful

to solve cases similar to these.

5.2 Infeasible range construction

An infeasible range is a range of consecutive infeasible candidates in

the search space [7] as mentioned in the previous chapters. Prior studies

showed that the concept of infeasible ranges can be useful for some set of

applications that is built on Korat [7, 25, 26]. With the introduction of the

backward Korat search, an infeasible range can be constructed by starting a

bidirectional search, which is running Korat in the both directions, until the

search encounters valid candidates (or it finds the first/last candidate vector)

38

in the both directions.

showtabsshowtabs showtabs24 function constructInfeasibleRange(startCandidate, predicate, fin){
showtabsshowtabs showtabs25
showtabsshowtabs showtabs26 /* startCandidate is already a valid candidate, return */
showtabsshowtabs showtabs27 if(predicate.invoke(startCandidate))
showtabsshowtabs showtabs28 return;
showtabsshowtabs showtabs29
showtabsshowtabs showtabs30 IKoratSearchStrategy stateSpaceExplorer = new StateSpaceExplorer(fin);
showtabsshowtabs showtabs31 Object testCase = null;
showtabsshowtabs showtabs32
showtabsshowtabs showtabs33 /* Going forward in the search space starting from the startCandidate */
showtabsshowtabs showtabs34
showtabsshowtabs showtabs35 boolean isRepOK = false;
showtabsshowtabs showtabs36 stateSpaceExplorer.initStartCV(startCandidate);
showtabsshowtabs showtabs37 while(!isRepOK && !testCase.isLastCandidate()){
showtabsshowtabs showtabs38 testCase = stateSpaceExplorer.getNextCandidate();
showtabsshowtabs showtabs39 isRepOK = predicate.invoke(testCase);
showtabsshowtabs showtabs40 if(isRepOK)
showtabsshowtabs showtabs41 stateSpaceExplorer.reportCurrentAsValid();
showtabsshowtabs showtabs42 }
showtabsshowtabs showtabs43
showtabsshowtabs showtabs44
showtabsshowtabs showtabs45 /* Going backward in the search space starting from the startCandidate */
showtabsshowtabs showtabs46
showtabsshowtabs showtabs47 isRepOK = false;
showtabsshowtabs showtabs48 stateSpaceExplorer.initStartCV(startCandidate);
showtabsshowtabs showtabs49 while(!isRepOK && !testCase.isFirstCandidate()){
showtabsshowtabs showtabs50 testCase = stateSpaceExplorer.getPrevCandidate();
showtabsshowtabs showtabs51 isRepOK = predicate.invoke(testCase);
showtabsshowtabs showtabs52 if(isRepOK)
showtabsshowtabs showtabs53 stateSpaceExplorer.reportCurrentAsValid();
showtabsshowtabs showtabs54 }
showtabsshowtabs showtabs55 }

Figure 5.2: constructInfeasibleRange function for constracting an infeasible
range

The algorithm pseudo-code is shown in Figure 5.2. Given an infeasi-

ble start candidate, constructInfeasibleRange function performs both

forward and backward search to find all consecutive infeasible candidates. Fig-

ure 5.3 shows a visual example of the procedure. Assume that the start candi-

date is 20th candidate, which is highlighted with yellow color. Forward search

39

Se
ar
ch

di
re
ct
io
n

Candidate vector : : Index of accessed fields

showtabsshowtabs showtabs16 1 0 0 2 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize17 1 0 0 2 3 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize18 1 0 0 2 3 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize19 1 0 0 2 3 0 0 3 :: 0 2 3 4 5 6 7

showtabsshowtabs showtabs20 1 0 0 2 3 0 1 0 :: 0 2 3 4 5 6

tabsizetabsize tabsize21 1 0 0 2 3 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize22 1 0 0 2 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize23 1 0 0 2 3 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize24 1 0 0 2 3 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize25 1 0 0 2 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize26 1 0 1 0 0 0 0 0 :: 0 2
tabsizetabsize tabsize27 1 0 2 0 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize28 1 0 2 0 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize29 1 0 2 0 0 2 0 0 :: 0 2 3 4 5

showtabsshowtabs showtabs30 1 0 2 0 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***

Figure 5.3: Constructed infeasible range by going forward and backward in
the search space for finBinaryTree(3).

and backward search stop when they hit 16th and 30th candidates, respec-

tively. In this way, Korat can start from any infeasible candidate and find the

boundaries of the corresponding infeasible range.

5.3 Neighborhood search

We talked about constraint-based data structure repair and how the

backward Korat search improves on it in Section 5.1. Replacing an erroneous

data structure with the next or previous valid candidate in the search space

does not guarantee that it is the data structure that the program expects.

Even though the repaired data structure is a valid candidate with respect

to the repOK specification, the structure that the program expects can be

different. This can cause a further faulty state in the program execution.

40

showtabsshowtabs showtabs16 function neighborhoodSearch(n, startCandidate, predicate, fin){
showtabsshowtabs showtabs17
showtabsshowtabs showtabs18 if(n <= 0)
showtabsshowtabs showtabs19 return;
showtabsshowtabs showtabs20
showtabsshowtabs showtabs21 IKoratSearchStrategy stateSpaceExplorerFw = new StateSpaceExplorer(fin);
showtabsshowtabs showtabs22 IKoratSearchStrategy stateSpaceExplorerBw = new StateSpaceExplorer(fin);
showtabsshowtabs showtabs23
showtabsshowtabs showtabs24 Object testCase = null;
showtabsshowtabs showtabs25 int count = 0;
showtabsshowtabs showtabs26 boolean isRepOK = false;
showtabsshowtabs showtabs27
showtabsshowtabs showtabs28 stateSpaceExplorerFw.initStartCV(startCandidate);
showtabsshowtabs showtabs29 stateSpaceExplorerBw.initStartCV(startCandidate);
showtabsshowtabs showtabs30
showtabsshowtabs showtabs31 while(true){
showtabsshowtabs showtabs32
showtabsshowtabs showtabs33 /* Forward search checks the next candidate */
showtabsshowtabs showtabs34
showtabsshowtabs showtabs35 testCase = stateSpaceExplorerFw.getNextCandidate();
showtabsshowtabs showtabs36 isRepOK = predicate.invoke(testCase);
showtabsshowtabs showtabs37 if(isRepOK){
showtabsshowtabs showtabs38 count++;
showtabsshowtabs showtabs39 stateSpaceExplorerFw.reportCurrentAsValid();
showtabsshowtabs showtabs40 if(count >= n || testCase.isLastCandidate())
showtabsshowtabs showtabs41 break;
showtabsshowtabs showtabs42 }
showtabsshowtabs showtabs43
showtabsshowtabs showtabs44 /* Backward search checks the previous candidate */
showtabsshowtabs showtabs45
showtabsshowtabs showtabs46 testCase = stateSpaceExplorerBw.getNextCandidate();
showtabsshowtabs showtabs47 isRepOK = predicate.invoke(testCase);
showtabsshowtabs showtabs48 if(isRepOK){
showtabsshowtabs showtabs49 count++;
showtabsshowtabs showtabs50 stateSpaceExplorerBw.reportCurrentAsValid();
showtabsshowtabs showtabs51 if(count >= n || testCase.isFirstCandidate())
showtabsshowtabs showtabs52 break;
showtabsshowtabs showtabs53 }
showtabsshowtabs showtabs54 }
showtabsshowtabs showtabs55 }

Figure 5.4: neighborhoodSearch function for finding n valid candidates within
the neighborhood of an initial candidate.

41

Se
ar
ch

di
re
ct
io
n

Candidate vector : : Index of accessed fields

showtabsshowtabs showtabs7 1 0 0 2 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize8 1 0 0 2 0 3 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize9 1 0 0 2 0 3 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize10 1 0 0 2 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize11 1 0 0 2 0 3 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize12 1 0 0 2 0 3 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize13 1 0 0 2 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize14 1 0 0 2 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize15 1 0 0 2 2 0 0 0 :: 0 2 3 4

tabsizetabsize tabsize8 1 0 0 2 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize17 1 0 0 2 3 0 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize18 1 0 0 2 3 0 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize19 1 0 0 2 3 0 0 3 :: 0 2 3 4 5 6 7

showtabsshowtabs showtabs20 1 0 0 2 3 0 1 0 :: 0 2 3 4 5 6

tabsizetabsize tabsize21 1 0 0 2 3 0 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize22 1 0 0 2 3 0 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize23 1 0 0 2 3 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize24 1 0 0 2 3 2 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize25 1 0 0 2 3 3 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize26 1 0 1 0 0 0 0 0 :: 0 2
tabsizetabsize tabsize27 1 0 2 0 0 0 0 0 :: 0 2 3 4 5 1
tabsizetabsize tabsize28 1 0 2 0 0 1 0 0 :: 0 2 3 4 5
tabsizetabsize tabsize29 1 0 2 0 0 2 0 0 :: 0 2 3 4 5

showtabsshowtabs showtabs30 1 0 2 0 0 3 0 0 :: 0 2 3 4 5 6 7 1 ***
tabsizetabsize tabsize31 1 0 2 0 0 3 0 1 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize32 1 0 2 0 0 3 0 2 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize33 1 0 2 0 0 3 0 3 :: 0 2 3 4 5 6 7
tabsizetabsize tabsize34 1 0 2 0 0 3 1 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize35 1 0 2 0 0 3 2 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize36 1 0 2 0 0 3 3 0 :: 0 2 3 4 5 6
tabsizetabsize tabsize37 1 0 2 0 1 0 0 0 :: 0 2 3 4
tabsizetabsize tabsize38 1 0 2 0 2 0 0 0 :: 0 2 3 4

showtabsshowtabs showtabs39 1 0 2 0 3 0 0 0 :: 0 2 3 4 5 6 7 1 ***

Figure 5.5: Neighborhood search with n=4 starting from the candidate vector
30 for finBinaryTree(3).

One solution can be providing n different valid candidates to the pro-

gram instead of one and let the program try all possibilities. In this way, the

chance that the program terminates successfully becomes higher. This type

42

of repair is achieved by performing a neighborhood search starting from the

canonicalized invalid structure until n valid candidates are found. Figure 5.4

shows the algorithm pseudo-code. The neighborhoodSearch function ap-

plies the valid candidate search in both directions, forward and backward,

and it terminates the search when n valid candidates are found. Figure 5.5

illustrates an example neighborhood search exploration for BinaryTree of size

3 with n = 4. In this example, the faulty structure corresponds to the 20th

candidate vector. The bi-directional search stops when it encounters 7th and

39th candidate vectors as the search is looking to find 4 valid structures.

43

Chapter 6

Related Work

Parallel Korat [23] introduced the first approach for parallel test gen-

eration and execution using Korat. Parallel Korat performs a sequential run

of the complete search to create equi-distant candidate vectors, which allow

creation of ranged problems that can be solved by independent workers in the

future when the Korat search needs to be performed for the same search prob-

lem as before. PKorat [31] introduced an alternative parallel approach based

on a work list that consists of work items that Korat search must explore. Dini

et al. [7, 26] built on Parallel Korat [23] and introduced infeasible ranges that

allow the re-execution of the Korat search to skip known ranges of consecutive

invalid candidates to further optimize re-execution. The backward search can

improve the way that Korat is run in distributed setting by letting individual

workers start from the same candidate and execute the search in the reverse

direction.

Generation of complex data structures has received much atten-

tion for bounded-exhaustive testing. TestEra [21] was among the first to gen-

erate tests up to the given bound based on declarative predicates written in Al-

loy. Korat [4] enabled a user to write (declarative) predicates in an imperative

44

language. UDITA [10] supports predicates written in mixed-style (declarative

and imperative). More recently, Kuraj et al. [19] introduced SciFe that uses an

algebra of enumerators to make the generation incremental and parallelizable.

The backward search enables Korat to have more flexible search capabilities

based on user and domain needs.

Data structure repair is a technique for error recovery for errors

in memory or persistent storage [1, 2, 13, 24]. While traditional techniques

used dedicated repair routines, Demsky and Rinard [5] introduced the idea

of using data structure integrity constraints as a basis for repair. The Juzi

framework [16] introduced the use of imperative predicates as constraints for

data structure repair using generalized symbolic execution [17] for systematic

search. DSDSR [14] used dynamic symbolic (or concolic) execution [12, 28]

for data structure repair. Tarmeem [36] and PBnJ [27] leveraged the SAT-

based Alloy tool-set [15] to enable repair with respect to richer specifications.

While rich post conditions allow more accurate repairs (than just repOKmeth-

ods), they require check-pointing pre-states and generally admit less scalable

solutions due to the higher complexity of the underlying constraint solving

problem. Our application of Korat follows the spirit of Juzi but differs in that

Korat does not require building or solving path conditions that are required

in symbolic execution. Moreover, it further improves the repair efficiency and

solves some corner cases with the introduction of backward search.

Fast-forwarding for Korat is a technique to explore the search space

without considering all candidates. Misailovic et al. proposed fast-forwarding

45

for PAR-OFF, to find a number of initial candidates for workers to run Ko-

rat in a distributed setting [23]. Our work differs in terms of the purpose

of fast-forwarding and the technique that is used. While fast-forwarding for

PAR-OFF targets to find random initial candidates for the workers to start

individual executions, our algorithm’s design goal is to find the end candidate.

On the other part, their algorithm uses a random number of normal Korat

steps and randomly truncates the field-access stack to find required number

of candidates. Our algorithm does not involve any randomness and determin-

istically prunes a large number of candidates to find the last candidate vector

of the search space.

46

Chapter 7

Conclusion

We presented the backward Korat, a novel approach to enable Korat to

have an improved state space exploration capability. Our technique is built on

the traditional forward Korat search by applying the backtracking approach in

multiple stages to explore the search space in the reverse direction. The back-

ward Korat can be used in a variety of applications including constraint-based

data structure repair, PKorat, etc. We evaluated our algorithms, including

the fast-forwarding approach in two different experimental settings. First, we

compared the backward search with the traditional forward search to see the

slowdown which is caused caused by intermediate candidates and additional

field accesses that the backward search needs. Second, we evaluated the fast-

forwarding algorithm to observe the cost of finding the last candidate of the

search space. Our results showed that the backward search generates the same

test inputs as the traditional search produces even though it is 2-3X slower

compared to the forward search due to the reason we discussed.

47

Appendices

48

Appendix A

Evaluation Appendix

Execution time Total explored New found

BinaryTree(12) fw 8.492 12,284,830 208,012bw 15.132 13,608,740

Table A.1: BinaryTree forward vs. backward search for finitization 12.

Execution time Total explored New found

BinomialHeap(9) fw 15.48 11,778,107 8,746,120bw 26.412 13,218,171

Table A.2: BinomialHeap forward vs. backward search for finitization 9.

49

Execution time Total explored New found

DoublyLinkedList(11) fw 5.424 3,535,294 3,535,027bw 9.916 4,213,909

Table A.3: DoublyLinkedList forward vs. backward search for finitization 11.

Execution time Total explored New found

HeapArray(9) fw 10.906 51,460,480 10,391,382bw 26.856 56,606,518

Table A.4: HeapArray forward vs. backward search for finitization 9.

Execution time Total explored New found

RedBlackTree(10) fw 9.709 7,530,712 260bw 16.013 11,750,872

Table A.5: RedBlackTree forward vs. backward search for finitization 10.

Execution time Total explored New found

SinglyLinkedList(11) fw 6.298 10,639,556 678,570bw 10.958 12,423,950

Table A.6: SinglyLinkedList forward vs. backward search for finitization 11.

Execution time Total explored New found

SearchTree(9) fw 13.281 20,086,300 4,862bw 20.966 22,601,403

Table A.7: SearchTree forward vs. backward search for finitization 9.

50

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.287 0.247 0.457 0.602 1.024 1.671
Total explored 3,653 4,468 54,418 63,382 815,100 921,302
New found 132 1,430 16,796

Table A.8: BinaryTree forward vs. backward Korat search for finitizations 6,
8, 10.

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.389 0.453 1.805 3.224 202.499 332.218
Total explored 42,815 50,454 1,323,194 1,502,625 150,727,471 167,364,609
New found 7,602 603,744 117,157,172

Table A.9: BinomialHeap forward vs. backward Korat search for finitizations
6, 8, 10.

51

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.189 0.181 0.273 0.618 0.953 1.731
Total explored 776 1,004 17,166 21,339 562,823 678,839
New found 674 17,007 562,595

Table A.10: DoublyLinkedList forward vs. backward Korat search for finitiza-
tions 6, 8, 10.

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.326 0.47 1.583 4.42 106.742 281.781
Total explored 64,533 73,745 5,231,385 5,812,641 583,317,405 636,346,249
New found 13,139 1,005,075 111,511,015

Table A.11: HeapArray forward vs. backward Korat search for finitizations 6,
8, 10.

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.435 0.377 1.314 1.336 9.709 16.013
Total explored 16,487 23,015 322,806 472,346 7,530,712 11,750,872
New found 20 64 260

Table A.12: RedBlackTree forward vs. backward Korat search for finitizations
6, 8, 10.

52

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.403 0.256 0.367 0.485 1.437 2.274
Total explored 2,194 2,828 52,567 64,315 1,702,171 2,013,450
New found 203 4,140 115,975

Table A.13: SinglyLinkedList forward vs. backward Korat search for finitiza-
tions 6, 8, 10.

Finitization
6 8 10

fw bw fw bw fw bw

Execution time 0.311 0.341 1.807 3.545 103.353 175.56
Total explored 45,233 54,364 2,606,968 2,980,582 155,455,872 172,744,382
New found 132 1,430 16,796

Table A.14: SearchTree forward vs. backward Korat search for finitizations 6,
8, 10.

53

Bibliography

[1] Ext2 fsck manual page. http://e2fsprogs.sourceforge.net.

[2] Microsoft chkdsk manual page.

[3] Nazareno M. Aguirre, Valeria S. Bengolea, Marcelo F. Frias, and Juan P.

Galeotti. Incorporating coverage criteria in bounded exhaustive black

box test generation of structural inputs. In Proceedings of the 5th Inter-

national Conference on Tests and Proofs, pages 15–32, Berlin, Heidelberg,

2011. Springer-Verlag.

[4] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat:

Automated testing based on Java predicates. In ISSTA, pages 123–133,

2002.

[5] Brian Demsky and Martin C. Rinard. Automatic detection and repair

of errors in data structures. In Proceedings of the 2003 ACM SIG-

PLAN Conference on Object-Oriented Programming Systems, Languages

and Applications, OOPSLA 2003, October 26-30, 2003, Anaheim, CA,

USA, pages 78–95, 2003.

[6] Brian Demsky and Martin C. Rinard. Data structure repair using goal-

directed reasoning. In 27th International Conference on Software Engi-

54

neering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages

176–185, 2005.

[7] Nima Dini. MKorat: A novel approach for memoizing the korat search

and some potential applications, 2016.

[8] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.

Assertion-based repair of complex data structures. In 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007),

November 5-9, 2007, Atlanta, Georgia, USA, pages 64–73, 2007.

[9] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: A tool for repairing

complex data structures. In Proceedings of the 30th International Con-

ference on Software Engineering, ICSE ’08, pages 855–858, New York,

NY, USA, 2008. ACM.

[10] Milos Gligoric, Tihomir Gvero, Vilas Jagannath, Sarfraz Khurshid, Vik-

tor Kuncak, and Darko Marinov. Test generation through programming

in UDITA. In Proceedings of the 32nd ACM/IEEE International Confer-

ence on Software Engineering - Volume 1, ICSE 2010, Cape Town, South

Africa, 1-8 May 2010, pages 225–234, 2010.

[11] Patrice Godefroid. Model checking for programming languages using

verisoft. In Conference Record of POPL’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, Papers

Presented at the Symposium, Paris, France, 15-17 January 1997, pages

174–186, 1997.

55

[12] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed

automated random testing. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago,

IL, USA, June 12-15, 2005, pages 213–223, 2005.

[13] G. Haugk, F. M. Lax, R. D. Royer, and J. R. Williams. The 5ess switching

system: Maintenance capabilities. AT T Technical Journal, pages 1385–

1416, 1985.

[14] Ishtiaque Hussain and Christoph Csallner. Dynamic symbolic data struc-

ture repair. In International Conference on Software Engineering, pages

215–218, New York, NY, USA, 2010. ACM.

[15] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.

The MIT Press, Cambridge, MA, 2006.

[16] Sarfraz Khurshid, Iván García, and Yuk Lai Suen. Repairing structurally

complex data. In Model Checking Software, 12th International SPIN

Workshop, San Francisco, CA, USA, August 22-24, 2005, Proceedings,

pages 123–138, 2005.

[17] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized

symbolic execution for model checking and testing. In Tools and Algo-

rithms for the Construction and Analysis of Systems, 9th International

Conference, TACAS 2003, Held as Part of the Joint European Confer-

ences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland,

April 7-11, 2003, Proceedings, pages 553–568, 2003.

56

[18] Korat home page. http://korat.sourceforge.net/index.html.

[19] Ivan Kuraj, Viktor Kuncak, and Daniel Jackson. Programming with enu-

merable sets of structures. In Conference on Object-oriented Programing,

Systems, Languages, and Applications, pages 37–56, New York, NY, USA,

2015. ACM.

[20] Barbara Liskov and John Guttag. Program Development in Java: Ab-

straction, Specification, and Object-Oriented Design. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[21] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for

automated testing of Java programs. In 16th IEEE International Confer-

ence on Automated Software Engineering (ASE 2001), 26-29 November

2001, Coronado Island, San Diego, CA, USA, page 22, 2001.

[22] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid. Korat: A tool

for generating structurally complex test inputs. In 29th International

Conference on Software Engineering, pages 771–774, Washington, DC,

USA, May 2007. IEEE Computer Society.

[23] Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khur-

shid, and Darko Marinov. Parallel test generation and execution with

Korat. In Proceedings of the 6th joint meeting of the European Software

Engineering Conference and the ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,

September 3-7, 2007, pages 135–144, 2007.

57

[24] Samiha Mourad and Dorothy Andrews. On the reliability of the IBM

MVS/XA operating. IEEE Trans. Software Eng., pages 1135–1139,

1987.

[25] Milos Gligoric Sarfraz Khurshid Nima Dini, Cagdas Yelen. Incrementally

solving imperative predicates using memoization. Under submission,

2017.

[26] Sarfraz Khurshid Nima Dini, Cagdas Yelen. Optimizing parallel korat

using invalid ranges. In The 24th International SPIN Symposium on

Model Checking of Software, 2017.

[27] Hesam Samimi, Ei Darli Aung, and Todd Millstein. Falling back on

executable specifications. In European Conference on Object-oriented

Programming, pages 552–576, Berlin, Heidelberg, 2010. Springer-Verlag.

[28] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit test-

ing engine for C. In International Symposium on Foundations of Software

Engineering, pages 263–272, New York, NY, USA, 2005. ACM.

[29] J. H. Siddiqui and S. Khurshid. ParSym: Parallel symbolic execution.

pages V1–405–V1–409, Oct.

[30] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic exe-

cution using ranged analysis. In Proceedings of the 27th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-

58

guages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson,

AZ, USA, October 21-25, 2012, OOPSLA ’12, pages 523–536.

[31] Junaid Haroon Siddiqui and Sarfraz Khurshid. PKorat: Parallel genera-

tion of structurally complex test inputs. In Second International Confer-

ence on Software Testing Verification and Validation, ICST 2009, Denver,

Colorado, USA, April 1-4, 2009, pages 250–259, 2009.

[32] Ulrich Stern and David L. Dill. Parallelizing the murphi verifier. Formal

Methods in System Design, pages 117–129, 2001.

[33] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park.

Model checking programs. In The Fifteenth IEEE International Confer-

ence on Automated Software Engineering, ASE 2000, Grenoble, France,

September 11-15, 2000, pages 3–12, 2000.

[34] Tao Xie, Darko Marinov, and David Notkin. Rostra: A framework for

detecting redundant object-oriented unit tests. In Automated Software

Engineering, 2004. Proceedings. 19th International Conference on, pages

196–205, 2004.

[35] Guowei Yang, Corina S. Pasareanu, and Sarfraz Khurshid. Memoized

symbolic execution. In International Symposium on Software Testing

and Analysis, ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012,

pages 144–154, 2012.

59

[36] Razieh Nokhbeh Zaeem and Sarfraz Khurshid. Contract-based data

structure repair using Alloy. In European Conference on Object-Oriented

Programming, pages 577–598, Berlin, Heidelberg, Jun 2010. Springer-

Verlag.

60

Vita

Cagdas Yelen was born in Turkey. He received the Bachelor of Science

degree in Electrical and Electrionics Engineering from Bogazici University. He

applied to The University of Texas at Austin graduate program and started

his graduate studies in Software Engineering in Fall 2015.

Email address: cagdasyelen@gmail.com

This thesis was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

61

