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Exciton dynamics in semiconductor nanostructures are dominated by

the effects of many-body physics. The application of coherent spectroscopic

tools, such as two-dimensional Fourier transform spectroscopy (2dFTS), to

the study of these systems can reveal signatures of these effects, and in com-

bination with sophisticated theoretical modeling, can lead to more complete

understanding of the behaviour of these systems.

2dFTS has previously been applied to the study of GaAs quantum well

samples. In this thesis, we outline a precis of the technique before describing

our own experiments using 2dFTS in a partially collinear geometry. This

geometry has previously been used to study chemical systems, but we believe

these experiments to be the first such performed on semiconductor samples.

We extend this technique to a reflection mode 2dFTS experiment, which we

believe to be the first such measurement.

In order to extend the techniques of coherent spectroscopy to structured

systems, we construct an experimental apparatus that permits us to control

vi



the beam geometry used to perform four-wave mixing reflection measurements.

To isolate extremely weak signals from intense background fields, we extend

a conventional lock-in detection scheme to one that treats the optical fields

exciting the sample on an unequal footing. To the best of our knowledge, these

measurements represent a novel spectroscopic tool that has not previously been

described.
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Chapter 1

Introduction

We develop nonlinear optical spectroscopic tools to study semiconduc-

tor nanostructures. This thesis is divided into several sections, which we note

here.

In the first chapter, a basic history of condensed matter physics is pre-

sented, with emphasis on those points relevant to the nonlinear optical spec-

troscopy of semiconductors. A review of energy bandstructure is presented

first. The conduction and valence bands of states are then approximated as

discrete levels near the band edge, developing a model of optical excitation.

Linear absorption is considered, first neglecting the interaction of the con-

stituent carriers. Including the residual Coulomb interaction between holes

and electrons, the hydrogenic exciton picture is used. Phonons are briefly con-

sidered, due to the significance of scattering by the acoustic phonon population

at low temperatures. The modified behaviour of the electronic states is then

considered in the context of discrete nanostructures, viz. quantum wells.

A review of the basics of light-matter coupling is provided in the second

chapter of this thesis. A classical analysis is used to study the Lorentz model

of atomic absorption. While this simply model has some surprising predictrive
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value, it is considered first in order to develop an intuitive understanding of

light absorption, emission, and the relaxation of excited states. A correspond-

ing quantum mechanical model is described, then used to consider a system’s

nonlinear optical response. The utility and validity of the desntiy operator as

a tool to study nonlinear optical processes is considered, and the geometric

Feynman-Bloch vizualisation model is described due to its frequent use in the

study of photon echoes and other nonlinear optical effects.

The third chapter contains a selected history of exciton optics, first

considering the analogous spectroscopic tools developed in nuclear resonance.

Spin echoes, four-wave mixing, and transient gratings are described. Four-wave

mixing optical experiments are then described. The use of self-diffracted four-

wave mixing measurements to extract dephasing times is explained. Reflection

geometry measurements are noted, and the results of some simple three-pulse

four-wave mixing measurements are provided. Time-resolved four-wave mixing

results are presented. An analysis of these prevoius results recounts the failure

of a simple, non-interacting density matrix model to describe these systems.

The fourth chapter provides some background on three-pulse four-wave

mixing measurements and the previous studies of coupling and interaciton

among excitons optically created in semiconductor quantum wells. We then

outline the basic principles of two-dimensional Fourier transform spectroscopy,

a powerful experimental method that provides more conclusive results than

prior, simpler four-wave mixing measurements. Various experimental and tech-

nical details are considered. We present some results obtained in our group
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using two-dimensional Fourier transform spectroscopy to study the coupling of

excitons, before turning our attention to another implementation of this tech-

nique, using a different phase-matching geometry. We consider the various

issues relevant to performing two-dimensional Fourier transform spectroscopy

in this geometry, before presenting data collected in both a conventional trans-

mission and novel reflection geometry. We consider the benefits of performing

this measurement in the partially collinear geometry.

The fifth chapter describes a novel, three-pulse, four-wave mixing spec-

troscopic method we developed. We hope to eventually apply this method

to the study of complicated, structured samples not conducive to study with

simpler four-wave mixing techniques. This technique makes use of a three-

frequency modulation scheme that permits the phase-sensitive detection of the

signal of interest necessary to implement two-dimensional Fourier transform

spectroscopy or other sophisticated coherent techniques.
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Chapter 2

Elementary condensed matter physics

2.1 Bloch theory and the band structure of solid state
matter

The motion of electrons in a solid, even a periodic material, is ex-

tremely complicated in its full analysis. From this point, we assume that the

Born-Oppenheimer approximation has been made to allow us to separate nu-

clear and electronic dynamics, due to the vastly differing time scales in which

those effects occur. This reduces the complexity of the problem, which can be

expressed with a simplified Hamiltonian

H =
∑ p2

i

2m
+

1

2

∑
i 6=j

e2

|ri − rj|
+
∑
n,i

Vn(ri −Rn)

containing kinetic energy, electron-electron Coulomb interaction, and a

periodic crystal potential [77]. Even with this simplification, the behaviour of

this system as presented is still an intractable many-body problem.

If we also assume the validity of the Hartree approximation we may

then approximate the many-body electron-electron interaction problem with

an effective mean field theory description that simplifies the physics to a sin-

gle electron’s interaction with a fictitious potential approximating the actual
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interaction (see, for example, [17]. The specific form of this interaction is

considered elsewhere; for now we consider the effect of the interaction of that

single electron with the ionic crystal lattice.

The interaction between that electron and those ionic cores is embedded

in the crystal potential, here simply V (r), which necessarily exhibits the same

periodicity as the crystal lattice it describes. The problem of understanding

that interaction can be expressed with the simplest Schrodinger equation

[
−

~2

2m
∇2 + V (r)

]
ψ (r) = Eψ (r)

where strictly speaking, the potential is an operator and should take

a carat to denote that fact. We have omitted this particular proper notation

as it is familiar to all students of quantum mechanics. The only assumption

made thus far is that the potential is periodic.

If the crystal potential arises due to a periodic lattice of ions that ex-

hibits all the symmetry of the ideal crystal structure, it is a relatively straight-

forward matter to decompose that potential using a Fourier series, making use

of the reciprocal lattice vectors {G}

V (r) = V (r + R) =
∑
G

cGe
iG·r

where the first equality obtains trivially due to the symmetry of the

crystal under translation by any real space lattice vector R, and the cG are
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simply the coefficients of the Fourier decomposition of the crystal potential.

Without specifying the exact form of the eigenfunction ψ (r), we may decom-

pose it in a similar fashion,

ψ (r) =
∑
q

aqe
iq·r

The exact form of the coefficients aq will depend on how precisely we

define the boundary conditions and Fourier transform from the real to the

reciprocal space. These details are not important to our current goal, which is

to develop an intuitive understanding of how electrons propagate in crystals

(or indeed, how any single particle Schrodinger equation may be solved for a

periodic, non-pathological potential).

If that Fourier series is re-written so that every wave vector q is ex-

pressed instead as the sum of some reciprocal lattice vector G added to

a wavevector restricted to take on values only in the first Brillouin zone,

q = k + G, the resulting ansatz may be substituted into the Schrodinger

equation along with the decomposition of the crystal potential to yield, after

some algebra, the secular equation

(
~2 |k + G|

2m
− E

)
ak+G +

∑
G′

ak+G′cG−G′ = 0

which, for any given wave vector k defines a set of equations, with

the sets members enumerated by the Fourier component G in the Fourier

decomposition of the wavefunction ψ (r). Thus,
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ψk (r) =
∑
G

ak+Ge
i(k+G)·r = eik·r

∑
G

ak+Ge
iG·r = eik·ruk (r)

This shows that the wavefunction that provides a solution to this Schrodinger’s

equation is a plane wave with momentum k, modulated by a function uk that

inherits the periodicity of the crystal. In developing this solution, note, we

restricted the allowed values of the wave vector k to the first Brillouin zone,

i.e. the Wigner-Seitz cell of the reciprocal lattice (e.g., for a simple cubic lat-

tice with lattice constant a, that amounts to restricting the wave vector to

{−π/a, π/a} (we note in passing that another equivalent formulation of the

Bloch problem would result in a Brillouin zone of identical size, but which

would run from m 0 to π/a)).

It is relatively straightforward conceptually to calculate a solution to

the Schrodinger equation for an arbitrary periodic crystal potential at this

point. Nontrivial solutions may be found by setting the determinant of the

matrix of coefficients of ak+G to zero,

∥∥∥∥∥
(
~2 |k + G|2

2m
− E

)
δG,G′ + cG,G′

∥∥∥∥∥ = 0

Though in actual practice, band structures will most often be calculated

using other algorithms. The true importance of this result is that it provides

us with useful information regarding the form that the eigenfunctions will

take subject to a periodic crystal potential. We also learn that restricting our
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analysis to the first Brillouin zone does not neglect any physically significant

solutions, since those within our scope already are a complete basis set. Any

wavefunction – not necessarily an eigenfunction of the Hamiltonian – may be

decomposed using this basis.

We note that by finding momentum eigenstates in the Bloch analysis,

we have, as a result, developed a set of eigenfunctions that are completely

delocalized in real space, due to the Heisenberg uncertainty principle. Any

localization that may occur in a physically realizable system – due to breaking

of the infinitely spatially extending, perfect crystal symmetry, for example –

will require the formation of wave-packets out of these Bloch basis functions.

Depending on the degree of localization that occurs, then – or, stated another

way, depending on how many momentum eigenstates must be summed in

order to approximate the behaviour of a particle exhibiting a certain degree of

localization in real space – the Bloch solutions permit a particle to effectively

sample a certain extended volume in real space. For perfect crystal systems

where particle lifetimes are infinite, the Bloch eigenfunctions are themselves

accurate descriptions of the particle’s behaviour, and that particle will sample

all of the space. If a particle is localized to only a single atomic site, a very large

number of these eigenfunctions will necessarily be coherently added in order

to approximate its distribution in real space. The delocalized Bloch functions

would propagate perfectly through an ideal crystal; it is only deviation from

the periodicity of this mathematical construct that results in scattering and

particle localization.
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Solution of the Bloch problem yields a single electron dispersion rela-

tionship, relating the energy of an electron to its momenta in the reciprocal

lattice space defined by the Fourier transform of the real space crystal lattice.

Often, this relationship, En (k), where the label n denotes any other pertinent

quantum numbers needed to distinguish the electron state, is referred to itself

as the band structure of the material. A substantial fraction of the information

necessary to understand the behaviour of carriers in a material is encoded in

the band structure.

Typically, we do not need to consider the full band structure of a semi-

conductor material in order to understand the optical response of the system.

When using laser excitation near or below the band gap energy of a direct

gap semiconductor, it is usually possible to simply consider the bottom of the

conduction band and the maxima of the valence bands. In Gallium Arsenide,

we only concentrate on the nearly parabolic band extrema centered on the

|k| ∼ 0 region of the dispersion relation.

2.2 Optical electronic and excitonic excitation

The discussion presented here depends heavily upon[17], [270], and

[307], and [5].

There is of course significant general interest in studying the optical

properties of a semiconductor for their potential application or development.

In our own experimental program, however, instead exploit use those proper-

ties of these bulk or structured materials (in the case of semiconductor quan-
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Calculated band structure for GaAs (a), reproduced from 
Chelikowsky and Cohen, Phys. Rev. Lett. 32:674 (1974), and a 
cartoon sketch of the band extrema near the bad gap (b). The third 
conduction band in the calculation is not reproduced in the cartoon 
because it is sufficiently separated in energy and is thus neglected.!
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Figure 2.1: GaAs band structure
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tum nanostructures) to determine how the constituent particles and excita-

tions that comprise the sample interact with light, themselves, and the bulk

material.

We know that the colour and transparency of a material is related

to its electronic properties. Light absorption and emission is related to the

imaginary part of the susceptibility. The most significant parameter necessary

to describe the opto-electronic properties of a semiconductor is its bandgap,

but this alone cannot explain the complexity of the spectral features that

such materials exhibit in the neighbourhood of that energy. The electron

dynamics of carriers are closely connected to these optical properties, and a

discussion of the interaction of light with electrons, holes, and electron-hole

pairs is necessary to understand the means by which these processes give rise

to observable, macroscopic effects.

The linear absorption spectrum of a semiconductor near its bandgap is

dominated by two features: a set of discrete, sharp lines at lower energies, and

an essentially smooth continuum at higher photon energies. One of the most

significant absorption processes to occur is the destruction of a photon, the

quantum of light, the destruction of an electron in a valence band state, the

creation of a hole in the corresponding state, and the creation of an electron

in the conduction band. The sharp, well-defined feature (or features, as in

some semiconductor materials only one such peak can be differentiated from

the nearby continuum feature) is due to the presence of an exciton.

An exciton is a hydrogenic, bound electron-hole pair. Given that one
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of its constituent particles is, in fact, a quasi-particle, the exciton itself is ipso

facto a quasi-particle. Also, since the hole itself is used to simplify the many-

body physics of an electron promoted into an excited state interacting with all

those other electrons in a solid that remain in the ground state, the exciton

itself is actually a scheme used to simplify many-body physics in a material.

A description of the infrared spectra of semiconductors, which may be

related to phonon processes in IR optically active materials, is reasonably well

approximated by models that assume a more or less instantaneous response

of the system to an optical field. Since light at that frequency couples effec-

tively to the lattice vibration modes, and since nuclear motion often tends to

so be sufficiently slow that a classical description of such processes does not

introduce enormous errors, a simple treatment of IR processes using classical

equations of motion is an excellent starting point. As the frequency of electro-

magnetic oscillation approaches the visible portion of the spectrum, however,

one may no longer assume an instantaneous system response to the electro-

magnetic field. Significant dispersion and absorption are exhibited by the

electronic polarizability of materials under such conditions. The effect of the

light on a semiconductor crystal is mediated by the interatomic interactions

that will occur in the solid – the result is an electric polarization field that

may propagate through the material. Exciton may be viewed as quasi-particles

used to model such a system [271].

13



2.2.1 Linear absorption

We will consider first the case of photons with sufficient energy to cre-

ate free carriers in a semiconductor. The absorption of a photon with en-

ergy greater the bandgap of a semiconductor results in the annihilation of an

electron in the filled valence band, the creation of an electron in the empty

conduction band, and the creation of a hole in one of the hole bands. We are

being careful here in our exact nomenclature: it would not be correct to say

that the hole is created in the vacancy left in the electron valence band – the

hole is a free carrier in the material, and thus it would only be logical to label

the relevant band a conduction band. The confusion over the labeling seems to

this author to arise from a casual use of two different paradigms for discussing

phenomena in condensed matter systems. The language we have used here is

that of the second quantization formalism, where we describe these physical

processes at creation and annihilation events. We chose to do so because, as

a matter of fact, all the particles discussed are in fact quasi-particles, and not

truly physically substantial in the same way that an isolated particle would be

– even the electron, in any band in any material, is not really an electron, but

an unfortunately named quasi-particle. The distinction lies in the fact that

we frequently treat its behaviour as an isolated particle with a different mass

than the bare electron have; therefore, even in our single electron wavefunc-

tions (for example) we are implicitly using a quasi-particle description of the
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processes that are occurring in a many-body system1. The second possible

way to describe these processes is to refer to an electron being excited from

one state to another, as we would in a simple atomic system with far fewer

degrees of freedom – but strictly speaking, in that case there is no reason to

refer to the creation of a hole. It is the casual mixing of these two different

descriptions that leads to confusion. But we digress.

The electron and hole in their respective bands are attracted to each

other via the Coulomb interaction. These Coulomb effects affect the resulting

band-edge absorption and result in the formation of excitons, to be treated

somewhat later. Although the simplification of the many-body dynamics that

is gained in going to an electron-hole picture of the system are designed to

obviate the further consideration of interaction among the constituent particles

of an excited solid, the residual Coulomb interactions (and indeed, other effects

that give rise to excitonic nonlinearities) are found to be of great significance

in predicting the system’s physical behaviour.

To understand these effects, we first consider the treatment of linear

optical properties, specifically band-edge absorption, related to the creation

of free electron-hole pair but neglecting the Coulomb interaction. We do not

1For further see, for example, [159], or [372] with its now endearing insistence on adhering
to the 1947 Congress of the International Union of Physicists proclamation that electrons
and positrons were henceforth to be known as ’negatons’ and ’positons,’ respectively, and
that the two were both taxonomically ’electrons.’ Our current difficulties with hole band
names is in essence no different; though not physically significant, it is a problem of some
confusion in scientific correspondence. More troubling is the consistent mis-plotting of hole
energy bands – these should be the additive inverse of the electron energy bands that are
usually mislabelled as hole bands [307].
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expect these results to closely mimic the real spectrum, which we already

know exhibits the effects of Coulomb interaction in the fingerprint of excitonic

absorption lines – and, though we may not be aware of it so immediately, in

the changed shape of the continuum absorption feature – but this analysis

does serve as a starting point for understanding these physical processes.

2.2.2 Linear absorption without Coulomb interaction

Optical effects of semiconductors depend greatly upon the band struc-

ture of the material in question. The division into direct band gap semi-

conductors, such as GaAs, GaSb, GaN, InP, for example, and indirect gap

semiconductors, such as diamond, Si, Germanium, or AlGaP, for example,

is significant for optical interactions. Photon emission and absorption pro-

cesses require the simultaneous conservation of momentum and energy. In a

transition in a direct gap material, then,

Ei + ~ωi = Ef

~ki + ~q = ~kf

where the wave vector q of the photon will typically be small compared

to the wave vectors of the electron. It is generally sufficiently small that it can

be neglected in the analysis of momentum conserving transitions [270]. As a

result, in a direct gap material it is necessary only to ensure that energy is

conserved and that the initial and final momenta of the electron are equal.
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In the absence of Coulomb interaction, a semiconductor should be

transparent to light that does not have sufficient energy to promote an electron

to the conduction band. Optical transitions in direct band gap semiconductors

should connect states that are vertically aligned in the plot of the dispersion

relation. The absorption coefficient for photons with more than the bandgap

energy can be very high in direct gap materials, from 104 to 105 cm−1 – thus

only a few microns of material typically suffices for a sample to be opaque

[270].

Transitions that occur in indirect gap materials will typically satisfy

the momentum and energy conservation requirements with the involvement

of another quasi-particle, most frequently a phonon. It is possible to have a

direct transition occur in a semiconductor if the photon involved is sufficiently

energetic to lift a photon from its initial state to one with equal momentum

at a higher energy than the conduction band minimum.

We use a semiclassical approach to describe the absorption process,

where the optical field will be represented without quantization, but a quantum

mechanical analysis will be used to describe the behaviour of matter. This

suffices to describe many optical processes, but cannot reproduce the effects

that depend upon the quantum mechanical nature of the electric field, such

as the spontaneous emission rate. We are interested in the behaviour of the

system in the linear regime, where the material response to the optical field is

independent of the intensity of the incident field.

Starting with a prototypical Hamiltonian for the interaction of a charged
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particle with an electromagnetic field

Ĥ =
1

2m0

(
p− e

c
A
)2

+ +eφ+ Vcrystal (r)

[206] , [270], [195], [142]) where the electron momentum is p =meffectivev

(i.e. not the crystal momentum but the actual momentum of the electron), A

is the vector potential of the electromagnetic field and φ is the electric poten-

tial. The quantity Vcrystal is simply referred to as a periodic potential energy

function, but if we consider our previous discussions it is apparent that in this

single electron Hamiltonian this potential necessarily contains the interaction

between the electron and the crystal lattice as well as an effective mean field

potential to account for the interaction with all the other electrons in the

material. In the appropriate gauge, this Hamiltonian simplifies to

Ĥ =
p2

2m0

+ Vcrystal (r)− e

m0c
A ·p +

e2

2m0c
A2 ∼ p2

2m0

+ Vcrystal (r)− e

m0c
A ·p

where the last term may typically be neglected in the linear regime

(typically for intensities less than 106 Wcm−2 [270]. This leaves only one term

describing the coupling between the light and matter, the last term on the

righthand side of the equation. It is generally more amenable to calculate in

the coordinate space rather than the momentum space; it may be shown that

the interaction Hamiltonian is written in that space as

Ĥint = −µ · E
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(see, for example, [406], [40], [95]). From this interaction Hamiltonian it

is a relatively straightforward process to calculate a transition rate via Fermi’s

golden rule. The absorption coefficient that is derived from this transition rate

is

α (ω) =
~ω
πnc
|〈ϕc| er · E |ϕv〉|2

∞̂

0

dωcvg (ωcv) δ (~ωcv − ~ω)

where the integrand contains the density of states g (ωcv) and the Dirac

delta function ensures conservation of energy. The index of refraction n enters

from the time-averaged Poynting vector, which is used in this calculation to

relate incident power of the beam to the strength of its electric field while

propagating through a dielectric medium.

In the case of a direct transition, such as we are most interested in

for our studies of GaAs semiconductor materials, we have assumed that the

conservation of momentum is essentially automatically satisfied and ignore

the momentum of the photon. Near the Γ point in the Brillouin zone, the

absorption coefficient may be shown to be

α =
2

nc
|〈ϕc| er · E |ϕv〉|2

(
2mreduced

~2

)3/2 {
θ (~ω − Eg) (~ω − Eg)1/2

}
where the reduced mass term refers to the reduced mass of the electron-

hole pair. Of significance to spectral analysis are the terms in the curly braces.
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Note that there is hard ’turn-on’ of absorption occurring, as expected, when

the photon energy exceed the band gap of the semiconductor. From that point,

the absorption should increase smoothly in intensity as the square root of the

photon energy increase. The interband transition matrix element will depend

on the specifics of the material under consideration and the electric field.

We are less concerned with indirect transitions, since our studies have

concentrated on a direct band gap semiconductor. Nonetheless, due to the

manner in which phonons contribute to the excitonic transition properties of

direct gap semiconductors under certain conditions, it behooves us to briefly

mention an analogous result for indirect gap semiconductors.

In such a material, the momenta of the highest occupied states, at the

top of the valence band, is substantially different from the momenta of the

lowest unoccupied states in the conduction band. This difference cannot be

discounted, as in direct gap materials, and transitions cannot occur unless

mediated by another quasi-particle with well-defined momentum that permits

satisfaction of momentum-energy conservation requirements. Generally, tran-

sitions between the two bands at the lowest possible photon energy will require

the emission or absorption of a phonon. This process is by definition a second

order quantum mechanical process, involving two quanta of different fields. As

a result, such a process is typically several orders of magnitude weaker than

the transition rates exhibited by direct bandgap semiconductors. This differ-

ence essentially lies at the heart of the preference for direct gap materials in

optoelectronic applications.
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Since the photon absorption process may be mediated by either the

absorption or emission of a phonon, it is necessary to calculate an absorption

coefficient for each of those two possible mechanisms. The result is

α = A′

{
(~ω − Eg + }Ω)2

e~Ω/kBT − 1
+

(~ω − Eg − ~Ω)2

1− e−~Ω/kBT

}
θ (~ω − Eg ± ~Ω)

[270]. Again, we see a hard ’turn-on’ of the phonon-mediated absorption

process, although here there are two different effects that contribute and which

occur at two different photon energy – if phonon absorption occurs, the energy

of the phonon contributes to the optical transition and lowers the energy from

the band gap. If phonon emission occurs, the extra energy must come from

the optical field, and so only photons with that excess in addition to the band

gap can cause transitions to occur. The coefficient A’ contains the quantum

mechanical parameters related to the transition matrix elements for photon

and phonon processes. Note that the predicted functional form for phonon-

mediated indirect gap absorption is quadratic in photon energy – a significant

difference from the square-root energy dependence of direct gap absorption.

As noted above, however, both of these models for absorption neglect

the Coulomb interaction between the created hole and electron pair. This in-

teraction actually leads to the most dominant band edge absorption features,

and significantly alters the functional form of the continuum absorption fea-

ture. An interesting historical note is that the residual Coulomb attraction
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between the hole and electron, once accounted for with the excitonic descrip-

tion of optical transitions in semiconductors, still fails to capture the full de-

tail of the system’s dynamics – further attention must be paid to the residual

Coulomb interaction among excitons. Other physical processes will also affect

the nonlinear spectrum, certainly, but the residual Coulomb coupling between

excitons is one of the most significant effects.

2.2.3 The exciton quasi-particle and optical absorption

The Coulomb interactions among electrons and holes significantly af-

fects the optical response of a crystal at photon energies near the bandgap.

It lowers the energy at which stops being transparent and begins to absorb

photons. A full analysis of optical transitions at energies near the bandgap

requires consideration of the Coulomb interaction between the electron and

hole quasiparticles.

The most significant result of the Coulomb interaction is the formation

of an exciton, another quasiparticle. The exciton is a hydrogenic system,

with a positively charged particle (hole) and a negatively charged particle

(electron) bound by an attractive potential. Many of the results from the

analysis of the hydrogen atom are almost directly applicable to the study

and understanding of the exciton, with only certain specific changes in the

constants used (to the mass, to the dielectric constant, etc). The exciton is

an electrically neutral particle, and can move easily through the crystal, as

an atom would move through free space. We note that this is consistent with
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the language we have used thus far, in which a quasi-particle in a solid has

a well-defined wave vector associated with its propagation. The departures

from that quasi-particle propagation behaviour occur due to physical defects

(crystal defects such as impurities, vacancies, or dislocations [399], and even

the finite size of a crystal) in the materials that can actually be realized in

a laboratory environment. In addition to the by now many-body complexity

of the real crystals, even the zero point motion of the sample’s constituent

particles would complicate the nature of the system, even in the ideal limit of

a perfect crystal sample of infinite size [92].

As we recall from our high school chemistry, bonding processes result in

the liberation of energy, while the dissolution of a bond requires the addition of

extra energy from outside the system. In the context of the exciton, the ’final’

product (the bound, hydrogenic electron-hole system) is a lower energy state

than the ’initial’ product, the unbound electron and hole. We feel compelled

to use the scare quotes to indicate that we need not think of exciton formation

as a process that takes time – it is not necessary to create a free electron-hole

pair and wait for those two quasi-particles to dissipate some energy, relaxing

into a bound state. Instead, it is possible for the exciton to be formed directly

by absorption of a photon. This allows absorption of photons with less energy

than the material’s bandgap to when the conservation of energy permits the

formation of an exciton.

The concept of the exciton was first proposed Yakov (sometimes translit-

erated as from the Russian as Jacov) Frenkel in 1931. His work was aimed at
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showing that the absorption of light by an isolated atom was not an accurate

picture of the actual process as it occurred in a solid, but rather that the ab-

sorption would be possible via excitation waves that he viewed as similar to

those acoustic used to describe thermal motion in the crystal. He describes this

excitation as a superposition of degenerate states wherein only one member of

a set of atoms (or molecules) would move from its ground to excited state, and

notes that a number of such N-fold degenerate states [92] could be summed

together to produces an excitation packet – what we might call a wave packet

– that, which is in essence, an exciton. While in an isolated atom a resonant

external field would result in the mixing of two different quantum states – for

example, the coupling of an s- and p-orbital. The extent of that coupling is

determined by the detuning of the driving radiation field from resonance with

the energy difference between the two states, as well as by the strength of

the interaction of the light with the electron of interest (in a single-electron

picture) and the interplay of interaction with those other charged particles in

the atom; after the external perturbation is removed, the atom would oscillate,

with the frequency of the polarization oscillation determined by the energy dif-

ference of the two states. If instead of an isolated atom, however, an atom in

a crystal lattice were similarly perturbed, the degeneracy of its atomic energy

levels with those of the other constituent atoms would allow the excitation to

propagate from one atom to another through the material [271].

Perhaps because of his interest in thermal processes, which Frenkel

seems to see as intimately tied to the absorption process (in his time the
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ultrafast experiments that permit the study of any but the very long-time be-

haviours of a population of excitons would be, of course, quite impossible) he

notes that the coupling of excitons to phonons would allow the dissipation of

absorbed light by heating of the material, via a radiationless transition. Dis-

counting in his model the possibility of strong coupling among adjacent atoms,

Frenkel restricts his treatment to non-metals, and calculates some transition

probabilities for the radiationless decay of excitations [127]. The characteristic

energy needed to create such an exciton can be shown to roughly scale with

the energy needed to excite a free atom of the species present in the crystal,

which is somewhat intuitive in the conception of the Frenkel exciton as a ’zero-

radius’ limit for excitation, which does not substantially sample the crystal as

a whole and is instead a phenomenon largely contained within a single crystal

unit cell at a time [92], though it is not permanently localized to that point in

the lattice.

This original exciton idea is indeed a fairly accurate description of the

fundamental aspects of an exciton – but only in systems with small dielectric

constants. In such a material, the Bohr radius of the resulting exciton (q.v.

sub) will be small, and the exciton will tend to be well-localized to a single site

in the crystal at any instant, though it can propagate relatively freely from

site to site. In the limit of molecular excitations this species of exciton is,

of course, bound to a single molecule. Frenkel excitons possess much greater

binding energies than those which arise in materials with large dielectric con-

stants. Those are known as Wannier excitons, or sometimes Wannier-Mott
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excitons. These are a more accurate model for the excitons we see in the ma-

terials we study. In such materials, the atoms that comprise the crystal are

no longer sufficiently dilute that one may neglect the extension of the atomic

wavefunctions into neighbouring sites, and, as a result, an effective dielectric

medium exists that will mediate the interaction between an electron and the

hole it vacates (or indeed, any other charged particle Coulomb interaction)

[92].

In 1937 Gregory Wannier describes the other end of the exciton spec-

trum, considering the excitation of a crystal with a large dielectric constant.

In his analysis, the band gap energy acts as the ionization potential for a se-

ries of bound states that occur when an electron is excited out of its band

but cannot escape the Coulomb interaction of its hole. These states form a

discrete spectrum analogous to an atomic or molecular system [381].

In 1937 Gregory Wannier developed another theory of the exciton;

along with the formulation developed by Frenkel, this new analysis effectively

forms the range of possible exciton quasi-particles. Wannier proceeds in a sur-

prisingly simple but modern analysis to develop three consistent basis sets for

the electron wave functions in a crystal and shows how to transform among

the three in order to use the most convenient set for a particular calculation.

With the preferred basis set he calculates the energy for the degenerate first

excited state and shows that the only novel aspect of the system’s behaviour

is caused by those matrix elements that arise from the Coulomb interaction

between the electron and the hole created by its promotion, and which (the
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matrix elements) depend only upon the relative motion of the two particles

but not upon their absolute position in space. This allows him to separate

the center-of-mass motion from the relative, quantized motion of the electron

and hole. Since the center-of-mass motion is completely uncoupled from the

Coulomb interaction Hamiltonian, the electron-hole pair can be treated as a

neutral particle that propagates as a free particle through the crystal. This

agrees well with our repeated insistence that quasi-particles be characterized

by a well defined wave vector [381].

Noting that the Coulomb interaction, as it is attractive, can only result

in the lowering of any electron state’s energy, and therefore will not result in

the presence of any discrete states formed above the Bloch conduction band,

Wannier then shows that the equation for relative motion between the elec-

tron and hole is of the exact form as the simple Schrodinger equation for the

Hydrogen atom. He notes the existence of a discrete, hydrogenic spectrum

for the exciton, as well as the presence of an unbound continuum of states,

which simply form the conduction band from the Bloch analysis of the crystal.

The discrete states cannot carry a current, though it would be possible for the

continuum states to do so [381] under application of a potential.

Wannier also reiterates Frenkel’s observation that momentum conser-

vation must hold for the excitation induced by absorption of a photon, and the

resulting creation or annihilation of a phonon necessary to allow the process.

He notes that the essentially ’electronic’ part of the spectrum (that part where

the phonon interaction will be minimized and thus not blur the discrete state
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into a band broadened by the energy of the phonon) will occur when consid-

ering transitions occurring with an exciton wave vector of zero. The result is

a set of hydrogenic discrete states occurring below the continuum [381].

The assumption that only a single electron is excited in the crystal

greatly simplifies the analysis, but it can be relaxed somewhat. So long as the

number of photo-excited electrons is small compared to the number of crystal

unit cells, the optical response of the material should be qualitatively similar

to that predicted by the Wannier exciton, but when the exciton gas is no

longer dilute substantial changes are to be expected. Wannier’s analysis also

notes the possibility of other weak transitions that violate the Franck-Condon2

principle [381].

Perhaps the most significant difference in these two results is that the

Wannier model of the exciton concentrates on its hydrogenic features. In fact,

the model of the more tightly localized excitation described by Frenkel occurs

in materials with lower dielectric constants, where the Coulomb attraction is

not so substantially diminished and the resulting Bohr radius of the exciton

is greatly reduced. In contrast, the Wannier exciton accurately describes the

behaviour of excitons in high dielectric materials, where the Bohr radius be-

comes large compared to the lattice unit cell, and the electron-hole pair now

simultaneously sample the potentials of a relatively large number of lattice

sites. This is characteristic of many III-V semiconductor materials. Frenkel

2The original paper mispells the name ’Frank.’

28



excitons, on the other hand, have a Bohr radius that is typically small or com-

parable to the lattice unit cell, and the exciton tends to experience only one

local cell’s potential at a given instant [92]. These excitons are found often in

wide gap semiconductors, or in organic molecules.

Frenkel Exciton! Wannier Exciton!

The Frenkel exciton is almost like a single excited ion, acting 
as a point-defect in the crystal, while the Wannier exciton is 
bound only very weakly, with an average Bohr radius – in 
GaAs, 11.2 nm – greater than the lattice spacing.!

Figure 2.3: Sketch of Wannier-Frankel excitons

Experimental observation of tightly bound Frenkel excitons was sug-

gested by [14], [16], [15], [168] where studies of the migration of energy through

excited ionic crystals indicated the presence of an intermediate step whereby

some of the collected photoelectrons were not immediately emitted, but in-

stead that the energy propagated with a wavelike nature through the crystal

medium. Other contemporaneous studies [150], [13] suggest experimental ob-
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servation of weakly bound Wannier excitons [186].

At zero temperature, no excitons will be thermally excited, and the

Fermi level of an idealized semiconductor should sit in the middle of its

bandgap. As we approximate that limit experimentally with cryogenic cooling

techniques, we may use those conditions as a starting point to understand the

behaviour of the systems we investigate.

The treatment presented here is a relatively simple quantum mechanical

description that relies on the underlying electronic band structure of a crystal

to develop many of its results. The actual excitation of a crystal with light

may result in a coupled photon-exciton mode, known as a polariton. We

discuss this hybridization in passing in our survey of nonlinear optical studies

of excitons in semiconductor crystals, and at greater length in the chapter

on novel spectroscopic techniques developed to study the coupling of various

different excitation modes.

2.2.3.1 The Wannier Equation

Wannier’s approach to studying excitons approaches the lowest possible

excitation the system can support, analyzing a single electron-hole pair in order

to understand the effect the Coulomb interaction will have on the optical

properties of the material. The effects of the crystal lattice are treated by

using an effective mass approximation to describe the motion of the electron

and hole; this approximation is most useful in the vicinity of the extrema, such

as at the Γ point in a direct gap semiconductor like GaAs.

30



Consider the exciton wave function. In our direct gap material, the

exciton wave function may be expressed as a wave packet, using a linear com-

bination of the electron and hole Bloch wavefunctions

ψ (re, rh) =
∑
ke,kh

Φ (ke,kh)ϕcke (re)ϕvkh (rh)

=
∑
ke,kh

Φ (ke,kh)ucke (re) e
ike·reuvkh (rh) e

ikh·rh

where function Φ is a coefficient for the expansion of the exciton wave

function onto the bilinear form of the product of the electron conduction band

Bloch functions and the hole valence band Bloch functions. Typically the

atomic part of the Bloch functions (the u terms) vary slowly as functions of ke

and kh, and as a result for states near the band extrema at the center of the

Brillouin zone the atomic part (the u functions) of the Bloch wave functions

can be approximated as the atomic part for ke = kh = 0. Then

Ψ(re, rh) w uc0uv0

∑
ke,kh

Φ(ke,kh)e
ike·reeikh·rh ' uc0uv0Φ(re, rh)

since ei(0) = 1, the exponential functions describing the plane wave

portion of the Bloch functions are, in this approximation, set equal to unity.

In this approximation, then, the coefficient in the expansion of the wave packet

is now treated as the exciton envelope wave function,
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Φ(re, rh) =
∑
ke,kh

Φ(ke,kh)e
ike·reeikh·rh

The total exciton wave function Ψ, therefore, can be understood as

an envelope function Φ (re, rh) modulated with the periodicity of the atomic

lattice by the atomic part of the Bloch functions for the electron and hole

[270]. The envelope function, as Wannier conceived it, describes the spatially

extended, relative motion of the electron and hole [381], while the periodic

modulation of that probability distribution arises due to the periodic crystal

potential. Note that this expression for Ψ does not explicitly contain here

a dependence on the center of mass motion of the electron-hole pair; that

dependence will be introduced by a subsequent change of variables in later

analysis.

The envelope function obeys a two-particle Schrodinger equation

(
− ~2

2me

∇2
e −

~2

2mh

∇2
h −

e2

εbkgnd |re − rh|

)
Φ = εΦ

where the energy ε is now defined relative the the bandgap energy Eg.

Here is is clear that this equation for the relative motion involves only the

Coulomb coupling described by Wannier: the third term on the left hand side

is the attractive coulomb potential (the electron has charge -e, the hole has

charge +e), we the denominator is proportional to the background dielectric

constant for the bulk semiconductor material, as this affects the strength of

the interaction and thus determines how tightly bound the hydrogenic wave
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function will be. This equation is mathematically identical to the Schrodinger

equation for the Hydrogen atom (discounting those higher order corrections

leading to the fine and hyperfine structure, etc), and the solutions to that

well-known problem directly apply to this system.

By separation of variables one may split the Hamiltonian into two sepa-

rate operators acting upon independent wave functions that depend explicitly

either on the relative displacements of the electron and hole – effectively the

internal energy of the exciton, or upon the center of mass displacement, which

may be understood as the kinetic energy of the quasi-particle [92]. The center

of mass equation − ~2

2mR
∇2

R = εRg(R) leads to an expression for the center-of-

mass wave function g(R) = eiKC ·R with the parabolic, free particle dispersion

relation between momentum and energy K2 = 2MεR
~2 .

The hydrogenic part of the problem, meanwhile

(
− ~2

2mreduced

∇2
r −

e2

εbkgndr

)
φ(r) = εrϕ(r)

takes its straightforward solution using the example of the hydrogen

atom, with the only changes made being the use of the effective mass used

to calculate the reduced electron-hole mass, instead of the electron-proton ef-

fective mass, as well as the previously noted change in the dielectric constant

[270], [92]. This is known as the Wannier equation, and describes only the

relative motion of the electron and the hole. These exciton energy levels will

occur inside the electronic bandgap of a semiconductor, as the Coulomb inter-
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action permits states to occur that the previous analysis found to be forbidden.

Studying the hydrogen Schrodinger equation solutions, one may note that ex-

citon binding energy is inversely proportional to the exciton Bohr radius – the

more tightly bound the electron and hole are, the more energy is liberated

in the formation of the exciton, and thus the lower the total energy of the

system. Also, exciton binding energy is inversely proportional to the square

of the background dielectric constant of the semiconductor. Since larger gap

semiconductors tend to have smaller background dielectric constants, excitons

created in these materials will possess a higher binding energy. In our own

work we have considered the appeal of working with semiconductors near the

telecom wavelengths, but frequently discount such ideas due to the difficulties

that would arise in these smaller gapped materials.

The free-particle dispersion relation for the center of mass motion shows

the exciton moves through the material as a free particle through a vacuum.

This is true for either Frenkel or Wannier excitons, as it is not necessary for

there to be significant wavefunction overlap for effective exciton propagation

to occur. An exciton, with a well-defined wavevector, may propagate by vir-

tual dipole interaction if the atomic wavefunctions do not significantly extend

among neighbouring lattice cells [179]. Both Wannier and Frenkel excitons

are analytically developed by assuming the lowest-lying excitations of a non-

metallic crystalline solid will be described accurately with a well-defined wave

vector K. In the limit that this momentum is precisely known, application of

the uncertainty principle results in completely de-localized excitations – the
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excitons that would be created by optical absorption (or by any other process,

really) would be completely spatially extended over the entire solid. Indeed,

since the initial analysis assumes that the solid extends infinitely in space,

the exciton wave function would also extend infinitely. Therefore, the exciton

wavefunction at Rwould be the exact same as at R + G, where G is any lat-

tice vector. In this limit, there are no scattering or interaction processes that

affects the exciton in any way. The excitation can be characterized by its wave

vector and momentum, K and ~K, with a velocity v = ~K/M∗ = 1
~∇KE (K),

and effective mass tensor 1
M∗

= 1
~∇K∇KE (K) [92]. We don’t have to worry

too much about the seemingly unphysical implications of infinitely extend-

ing wavefunctions, since the assumptions of perfect, infinite crystals is clearly

unphysical. More to the point, treating the excitation as a particle with a

single, well-defined wave vector would actually, under the strictest application

of conservation of momentum selection rules, result in a very small number of

allowed transitions. The presence of crystal imperfections is in fact responsible

for the formation of absorption bands, rather than isolated, single transitions.

Theoretical work prior to [91] neglect these effects of real systems, ignoring

surface effects, deviations from the ideal periodicity, and the attenuation of

light propagating through the material.

The total wavefunction for the exciton can be expressed in the center

of mass/relative motion coordinate system used here as

Ψ(r,R) = uc0uv0φ(r)eiKc·R
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The first two terms are related to the atomic orbitals that are used

to calculate the band structure, and, as note above, are approximated with

the k ∼ 0 orbitals. The symmetry of those functions in coordinate space

will determine the strength of the interband optical transition [270], as they

can be used to calculate the matrix elements of interest in an expression for

the transition rates – by applying Fermi’s Golden Rule, for example. φ (r) is

an envelope function that describes the relative motion of the hole and the

electron that comprise the exciton, and is found by solution of the Wannier

equation, sup. The center of mass term clearly has a plane-wave like character

in this expression for Ψ.

Direct observation of the Rydberg-like series of energy states is difficult

as it is not trivial to experimentally measure the exciton binding energy, as

it is often difficult to observe the more than two spectral lines of the hydro-

genic series. Broadening mechanisms, arising from many-body interactions,

for example, can blur these spectral features and make it impossible to fit this

simple model to an experimental result.

The angular momentum states that arise in the Wannier equation are

described similarly to those in the hydrogen atom, so that an exciton can be

described as having an s-like or p-like angular momentum and so on.

Excitons behave as approximate composite bosonic particles [186]. That

approximation may break down for high density n, though it should hold so

long as na3 � 1 for lattice spacing a.
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2.2.3.2 Optical absorption with excitons

We now turn our attention to the specifics of optical processes involving

the creation or destruction of excitons.

In addition to its own various dynamics, the the exciton quasi-particle

has a second role as the quantum of an electric polarization wave that is cou-

pled to an optical field. As a result of this coupling, the occupation of various

energy states by the exciton can be resolved from absorption or emission spec-

tra. Applying a weak probe to a population of excitons permits the observation

of such a spectrum [271].

The Coulomb interaction results in a tendency for the motion of an

electron and hole to correlate. If the excitation that annihilates a valence band

electron, creates a conduction band electron, and creates a hole in the state

vacated by the original electron occurs with a definite, well-defined momentum,

it will result in momentum eigenstates for the electron and hole, which will

therefore be delocalized. As a result they can interact locally since they overlap

in space

The effects of exciton formation on absorption spectra were observed

in the early 1950’s, and could be qualitatively explained using the predictions

of Wannier’s exciton theory. A relatively complete treatment of this prob-

lem was developed by Elliott [109]. We examine these results now and note

the improvement they offer compared to those models that neglect Coulomb

interaction, as described previously.
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In excitonic absorption, as elsewhere, the conservation of momentum

and energy must be satisfied. Since the momentum of an absorbed photon will

(again) be small compared to the scale set by the Brillouin zone for crystals

such as those we are interested in, the resulting center of mass motion of the

created exciton will be closely centered on Kc ∼ 0. We typically assume that

the excitons created by optical absorption are essentially at rest, and that the

parabolic, free particle dispersion relation for excitons – which, if taken into

account, would result in the formation of a band of possible exciton states –

may be neglected. This agrees with the experimental observations of a fairly

sharp spectral line associated with the exciton transition.

Photons carry angular momentum; the hydrogenic, relative motion ex-

citon wavefunction permits the familiar manifold of angular momentum eigen-

states well known from analysis of the hydrogen atom. Conservation of angular

momentum must hold for an optical absorption process to occur.

We noted previously that there are different paradigms for understand-

ing the absorption process. In one picture, we consider an initial state with

no holes, one electron in the valence band with a certain angular momen-

tum, and one photon with its angular momentum; the corresponding final

state after the transition has one hole in either the heavy or light hole band

with a well defined angular momentum, an annihilation of of the valence band

electron, an annihilation of one photon, and one electron in the conduction

band with its well defined angular momentum. In another picture for under-

standing the absorption process, we consider an initial state of no excitons
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and one photon, and after the transition an exciton but no photon. We use

this quasi-particle exciton picture now to understand the excitonic absorp-

tion process. In this picture, annihilation of the photon leads immediately

to the momentum conservation rule that 4l = ±1. The change in angu-

lar momentum that occurs in an excitonic transition can be split into two

separate components: angular momentum related to the envelope, and that

related to the internal motion of the electron-hole system. We express this

conservation rule as 4l = 4lint +4lenv = ±1. For an exciton wave function

Ψ(r,R) = uc0uv0φ(r)eiKc·R ∼ uc0uv0φ(r) the internal motion of the electron-

hole system is described by the product of the two periodic portions of the

Bloch functions used to construct the wavefunction, uc0uv0, while the envelope

function is the φ(r) term.

We note that changes in angular momentum can not be split into halves.

This follows from the argument that hydrogenic envelope wave function has

integer differences in its angular momenta states, and that even if internal

uc0uv0 part could change by half-integer values of angular momenta, there

is no possibility for the ’left-over’ half to be absorbed or emitted anywhere.

Therefore, the entire 4l = ±1 change must be absorbed by one or the other

parts of the wave function,

4lint = ±1, 4lenv = 0

or
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4lint = 0, ±2, 4lenv = ±1

for the first possible way to apportion the angular momentum (i.e.,

the change occurring on the internal wave function), photon absorption cor-

responds to a dipole transition between energy bands that are derived from

atomic orbitals with angular momenta that differ by +/-1, i.e. between a p-

like state and s-like state, or any other possible combination of energy bands

with principal contributions from atomic orbitals that have a difference of one

between their angular momenta. If this is the case, the envelope function of

the exciton must be s-like to satisfy angular momentum conservation – before

the photon absorption, the exciton does not exist, and therefore cannot pos-

sess l = 1 angular momentum, so when it is created, it is created in an s-like,

spherically symmetric state.

For the second set of transitions, the interband transition is dipole-

forbidden due to angular momentum conservation, but the transition will still

occur if the angular momentum quantum is absorbed by the envelope function,

which will take a +/- 1 angular momentum change. This transition is generally

significantly weaker than the allowed first order dipole transitions. The exciton

created is (at the lowest) a 2p or higher exciton function, as the 1p solution

does not exist (can only have 1s) [270].

If the crystal has inversion symmetry, exciton states with Kc ∼ 0 can

be described as having a definite, well-defined parity. If that is the case, group
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theory can be used to determine which exciton transition states are allowed

according to the conservation of parity.

2.2.3.3 Photon absorption by excitons in direct-gap semiconduc-
tors

As always, we are principally concerned with processes in direct gap

semiconductors. Consider the dipole-allowed transitions occurring at the cen-

ter of the first Brillouin zone, where the exciton exhibits essentially no cen-

ter of mass motion. This requires computing the matrix element for an in-

terband transition connecting all possible pairs of electron and hole states

that comprise the exciton wave packet. We seek the transition probability

w ∝
∣∣∣∑ke,kh

Φ(ke,kh) 〈c,ke |eq · d| v,kh〉
∣∣∣2 subject to the ever present require-

ment that we conserve momentum. This approach results in an expression

known as the Elliott formula, which is used to describe exciton creation by

absorption near the band edge. If we continue using the notation already de-

velop to describe exciton wave functions, the absorption coefficient that results

is given by

α(ω) =
8π2ω |dcv|2

nbc

∑
n

|φ(r = 0)|2 δ
(
~ω − Eg +

EB
n2

)
[270]. Here we see that absorption depends on the electron and hole

occupying the same lattice site (the φ (r = 0) term requires that r = re =

rh = 0) and forces conservation of energy, where the photon energy must now

equal the bandgap less the binding energy of the exciton – as mentioned in our
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description of exciton formation, the binding of the electron hole pair results

in a lowered energy necessary for photon absorption. In a hydrogenic system,

orthogonality of the eigenfunctions results in only the s orbitals exhibiting a

non-zero probability density at r = 0 (see, for example, [46]), therefore only

the creation of s-state excitons will contribute to the optical absorption.

It is possible to further develop this expression for the absorption coef-

ficient in order to describe both absorption into the discrete excitonic energy

levels as well as into the electron conduction continuum, frequently referred to

as free-carrier states. The resulting expression is

αElliott(ω) =
e2ω |dcv|2
nbcε0

(
2mr

~2

)2

×[
EB

∞∑
n=1

4π

n3
δ
(
~ω − Eg + EB/n

2
)

+ θ (~ω − Eg)
πeZ

sinh (Z)

]

where the first term describes absorption into the discrete states and

the second term describes absorption into the continuum states. The constant

Z is related to the square root of the exciton binding energy, normalized by

the energy difference between the photon and the bandgap

Z = π
√
EB/ (~ω − Eg)

[270]. This expression is usefully compared to that obtained for free

carrier absorption in the previous analysis, which neglects the Coulomb inter-
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action between the electron and hole, and only treats absorption by continuum

states:

αfree =
2

nc
|〈ϕc| er · E |ϕv〉|2

(
2mreduced

~2

)3/2 {
θ (~ω − Eg) (~ω − Eg)1/2

}
Note that not only does the inclusion of Coulomb interaction result in

the formation of the discrete excitonic Rydberg series below the conduction

band, but the absorption into continuum states is also substantially altered.

This Coulomb enhancement is present even in the limit that the photon energy

decreases to the bandgap – the shape of the continuum absorption feature is

fundamentally different once Coulomb interactions are considered.

There should be a hydrogenic series of exciton states formed below

the bandgap, where the oscillator strength of each exciton state decreases

with 1/n3 where n is the principal quantum number for the exciton envelope

function. Experimentally, however, broadening mechanisms result in only a

few – or even only one – observable exciton states. These broadening effects

cannot be completely eliminated, even at low temperatures, where interaction

with acoustic phonons will still broaden the exciton spectral features.

In addition to these features, much weaker transitions involving p or-

bital exciton wavefunctions are also possible. These will be difficult to resolve.
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2.2.3.4 Absorption by excitons in indirect gap semiconductors

As in the free electron-hole absorption process, the absorption of a

photon by an exciton in an indirect gap semiconductor requires the presence

of an additional quasi-particle or particle, and is thus by definition a higher

order process than the corresponding absorption in a direct gap semiconductor.

The conservation of momentum requires that the creation of an ex-

citon by photon absorption requires the emission or absorption of another

momentum carrying particle at the same time. Exciton mediated absorption

of a photon will typically occur by creating or destroying a phonon carrying

momentum ~K.

The likelihood of absorption of a phonon is proportional to nK, the

occupation number for phonons in the K mode, while the likelihood for emis-

sion of a phonon is proportional to nK + 1 – that probability must logically

be greater than that for absorption, since otherwise no phonon emission could

occur in a crystal that started with no phonon population. Since phonons are

(like excitons) approximate composite bosons, they obey the Bose-Einstein

distribution function, nK = 1
e~ΩK/kBT−1

, and therefor the relative likelihood of

emission to absorption, which must be proportional to nK+1/nK, is give

nK + 1

nK

= e~ΩK/kBT

from which we see that at low temperatures (ie those when kBT be-

comes small compared to the phonon energy ΩK, when such an exponential
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starts to diverge significantly from unity), the phonon emission process will

come to dominate [270]. That is to say that at low temperatures, indirect bad

gap materials will exhibit exciton formation by optical absorption preferen-

tially relying on the creation of phonons to conserve angular momentum.

The phonons have an essentially continuous spectrum – their energy

spacing is extremely small in a macroscopic crystal – with wave vectors running

over the first Brillouin zone. This allows any exciton state with a momentum

in that Brillouin zone to be accessed with the emission or absorption of the

appropriate phonon. The rate of optical absorption will tend to increase with

increasing photon energy, though this effect is due to the increased density of

states. The end result is a rounded stair-step of absorption spectrum, with

each new step up occurring as the next energetically higher exciton becomes

accessible to a transition.

2.2.3.5 Exciton relaxation

Having considered the absorption of photons in the context of Coulomb

interactions between electrons and holes, we now consider the inverse process

by which photons are emitted.

Excitons exhibit a finite lifetime; this may appear counter-intuitive

given the stability of the hydrogen atom. In fact, a one-body treatment of

an exciton would appear to result in an infinite lifetime, but a three-body

calculation or a more sophisticated field theoretical treatment of exciton cre-

ation and annihilation can be used to show that the exciton lifetime should
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be finite [186]. Excitons may decay by dissociating into a free electron-hole

pair by absorbing a necessary quantum of energy, or by the recombination of

the electron-hole pair. If that decay occurs via the emission of a photon the

process is known as luminescence.

The decay of an exciton may occur via relaxation involving some defect

in the system or via the intrinsic, free exciton luminescence. An example of

the former process is the emission of a photon mediated by crystal defects.

Impurities in a crystal, in the form of substitutional atoms, will result in strong

exciton luminescence lines with characteristic wavelengths that depend upon

the type of substitutional atom and the concentration of such defects. The

process is somewhat analogous to emission by trace atoms in an excited buffer

gas. The latter process, free exciton luminescence, entails the recombination

of the electron and hole. The ’free’ nomenclature here refers to the exciton’s

nature as a neutral, unbound particle that moves freely through the crystal

medium.

In a sufficiently low exciton density gas, which we may refer to as

the weak excitation limit, the exciton many body physics may be ignored,

assuming the characteristic time scale for exciton-exciton interactions are long

compared to the relaxation rate, or that the interactions are sufficiently weak

to be completely neglected. In this approximation, the exciton population ca

be treated as a gas of independent quantum emitters.

In a direct band gap material, excitons that are essentially motionless

(Kc ∼ 0) can decay without any other particle interactions. The emitted
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photons, however, will have a high likelihood of re-absorption by the material

by another exciton process, which may then subsequently decay and be re-

absorbed. The result is a propagating mode of excitation: this is a reasonably

intuitive picture of the excitonic polariton – a couple excitation comprising a

propagating electromagnetic mode mixed with a quasi-particle material exci-

tation mode. This polariton will only result in the creation of a free (not mixed

with other mode) photon when it leaks through a boundary of the material.

This is not a certainty in most real solids, however, as the excitons have a

high probability to be trapped by crystal defects. As a result, the direct free

exciton luminescence is typically a very weak emission, as only a small subset

of the exciton population will undergo decay in this manner.

For this reason we turn our attention to indirect free exciton lumines-

cence, the process by which a phonon is absorbed or emitted to allow the

exciton decay process to satisfy the simultaneous requirements of conservation

of energy and momentum. Due to the similarity to indirect, phonon-mediated

photon absorption processes we have included descriptions of those effects sup.

Typically, indirect free exciton luminescence will involve the optical

phonon. Since the optical phonon is essentially dispersionless (it exhibits a

relatively flat curve as a function of momentum k), conservation of momentum

may be satisfied for any essentially exciton since there is an optical phonon

available for any given momentum in the Brillouin zone. Instead of the small

subset of excitons that can participate via direct free luminescence, the entire

population can decay via this indirect process.
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At low temperatures such as those we consider, the equilibrium thermal

population of optical phonons is negligible, so the indirect free exciton decay

will typically proceed via emission of optical phonons.

We return out attention to the trapping of excitons at crystal defects.

The imperfections in a real crystal will act as localization sites, with exci-

tons becoming relatively closely bound to the imperfection site. That binding

energy will typically be on the scale of only a few meV, and thus will only

tend to occur at low temperatures. We might naively assume that bound ex-

citons would exhibit limited effect on exciton luminescence, since the number

of crystal defect site is typically orders of magnitude smaller than the number

of perfect sites. Most free excitons, however, cannot directly decay without

interacting with another particle or quasi-particle. These excitons will thus

propagate through the crystal until such time as they undergo an indirect de-

cay process. During this time there is some chance that they will be trapped

at an imperfection site; the likelihood of exciton capture at a defect can be

estimated with the same kind of back-of-the-envelope calculation that leads to

estimates of mean free path and mean time to scatter in any dilute gas – the

cross section for the capture process is approximately given by the exciton’s

Bohr radius. The capture lifetime is smaller than the exciton lifetime in some

semiconductors.

Localization at an imperfection permits the exciton to then decay di-

rectly – before the capture, the exciton could not decay without the mediation

of a phonon due to momentum conservation requirements. After the cap-
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ture, however, the exciton is localized at one specific point. Application of

the uncertainty principle results in an exciton with a broadened extension in

momentum or k-space, which can now proceed to directly luminesce without

the creation or annihilation of a phonon. This effect induces direct exciton de-

cays even in an indirect gap semiconductor. The bound exciton transition will

result in a very sharp spectral line, since there are fewer broadening perturba-

tions for the exciton bound at an impurity site, which no longer is subject to

the same thermal broadening\wider energy distribution associated with free

excitons [270].

2.2.3.6 Formation of excitation from free carriers

Absorption of a photon with greater than the band gap energy results in

the formation of an unbound e-h pair that possess an energy excess compared

to those formed in excitons below the band gap. That excess will be dumped

into the thermal in a rapid scattering process, typically via the emission of

successive optical phonons. This process is fast compared to the lifetime of

the exciton as long as the excess energy is greater than the energy of the longi-

tudinal optical phonon, allowing the creation of those quanta while satisfying

the conservation of energy requirements. The net result of this scattering pro-

cess is to transform a population of free electrons and holes created in a low

temperature crystal into a population of excitons in the n = 1 kinetic energy

band.

Further relaxation of the excess exciton kinetic energy occurs via the
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emission of acoustic phonons, which have available energy eigenstates all the

way down to zero energy, permitting them to ’carry’ any amount of excess

energy away from a scattering process [270]. Unlike the optical phonon, the

acoustic phonon branches are clearly not dispersionless, and thus there will

not always be a ’good’ phonon state available to carry off the right amount

of kinetic energy while satisfying the conservation of momentum requirement;

as a result this relaxation process is slower than the preceding step. It typi-

cally takes something on the order of a nanosecond for the exciton population

to reach thermal equilibrium with the crystal lattice, which may exceed the

exciton lifetime in some materials. As a result, it is possible that the en-

tire population will have decayed via indirect free exciton decay before this

thermalization process fully occurs.

If the exciton system were sufficiently long-lived that it had time to

thermalize completely via acoustic phonon scattering, the expected state could

be described with Bose-Einstein statistics,

g(ε)f(ε) = g(ε)× 1

e(ε−µ)/kBT − 1

where the density of states used is that for free particles, g(ε)dε =

1
2π2

(
2m0

~2

)3/2
ε1/2dε. The population distribution will deviate from this func-

tional form if that thermal equilibration has not gone to completion.

If transition probability is approximately independent of energy, then

the spectral intensity of luminescence is proportional to the energy density of
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the excitons,

I(~ω) ∝
ˆ
n(ε)δΓ(~ω − ε)dε ∼

ˆ
g(ε)f(ε)δΓ(~ω − ε)dε

where the function δΓ(~ω− ε) is a broadened lineshape that relates the

emitted photon energy ~ω to the energy of the exciton.

But, if that is the case, examining the lineshape of the exciton lumi-

nescence would suggest the underlying n (ε) thermal distribution of exciton

energies – in that case, the lineshape for phonon-assisted free exciton decay

should be a reasonably good model for the thermal distribution of the exci-

ton energies. This approximation will break down at higher exciton densities,

which will require a quantum mechanical treatment for their energy distribu-

tion function [194], [153], [268], [267].

2.2.4 Phonons

2.2.4.1 Basic phonon physics

The discussion presented here depends heavily upon[17], [270], and

[307].

Due to their much greater mass, the movement of the positively charged

ions that constitute the crystal lattice are, for a roughly equivalent electrical

force (depending on their ionization number) smaller in amplitude than the

oscillations exhibited by electrons. If this is a valid assumption, it is possible

to approximate the restoring force with a Hooke’s law model, and assume

51



simple harmonic motion for the resulting motion. The oscillation of these ions

can be treated with the phonon quasi-particle, which is a quantum mechanical

treatment of the normal modes of oscillation exhibited by the lattice. An

intuitive understanding of this system can be gained by evaluating the response

of a system of classical oscillators subject to coupling between neighbours

(or neighbours and next-nearest neighbours), then determining the quantum

mechanical analog of this behavior by applying the correspondence principal

(viz., by asserting the position-momentum commutation relations, etc, and

thus ’quantum-izing’ the normal mode vibrations).

We find that in the dispersion relationship for phonons the same limita-

tion is present on allowed momenta as we found in the analysis of the electron

wavefunctions in a periodic medium – the momenta are in both cases restricted

to the range {−π/a, π/a}. We note the important result that, after a quan-

tum mechanical analysis of phonons shows that the energy eigenstates for the

normal modes of the lattice are found by solution of a simple harmonic oscil-

lator Hamiltonian, it is common to refer to a phonon of energy level nq (where

q labels the phonons crystal momentum) with energy Enq = ~ωq

(
nq + 1

2

)
as

actually a population of n phonons of ’type’ ωq. In this language, the term

phonon emission is used to refer to raising the harmonic oscillator to the next

highest state, which in the language of a population of phonons is equivalent

to creating another phonon of a certain specific type. Similarly, phonon ab-

sorption is the process of lowering the harmonic oscillator by one state, and

corresponds to the annihilation of one phonon quasi-particle. The expectation
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value of the harmonic oscillator principal quantum number ωq is the phonon

occupation number, and refers to the number of quasi-particle phonons that

are present in some volume[17]. Starting from a normalized Boltzmann distri-

bution in order to determine the likely occupation number,

〈nq〉 =
∑
nq

nqe
−Enq/kBT

(
1∑

e−Enq/kBT

)
(see, e.g. [217], [308] or [190]), it is possible to show that the phonons

behave as approximate Bosons and obey statistical predictions made with

Bose-Einstein statistics,

〈nq〉 =
1

e−Enq/kBT − 1

The paradigm we have outlined here for understanding the behaviour of

phonons in a crystal starts with the assumption of small amplitude excursions

from ionic position equilibria leading to harmonic motion, finding the classical

solution for a network of couple oscillators thereby determining the set of

classical normal modes for oscillations of the crystal lattice, and only then

applying the correspondence principle and developing a quantum mechanical

treatment of the problem. We then find that the energy eigenstates for the

vibrational motion are those of a harmonic oscillator, and re-interpret that

quantum model as a population of enumerable quasi-particles – this is the

point where we properly begin to say that we have developed a cohesive phonon

picture. We then note the statistical properties that these quasi-particles will
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obey. The one additional feature that is necessary to stipulate for the quasi-

particle picture to obtain properly is that there are solutions – at least in

three-dimensions – for the propagation of these modes as plane waves through

the crystal medium. More formally, it is possible to use the second quantization

formalism (see e.g. [330]) that uses creation and annihilation operators to treat

the phonon field [270].

The great passion of condensed matter theory in recent years is to

reduce any quantum mechanical model to a set of enumerable “-ons” that can

be treated as quasi-particles; this trend certainly holds true for a great number

of effects in the solid state systems we are interested in.

Phonons are almost solely responsible for the thermal properties of

certain crystals – the thermal conductivity, heat capacity, and thermal ex-

pansivity of insulators are largely determined by phonon interactions. This is

physically intuitive, since in such materials the electrons will be tightly bound

to specific sites in the crystal, and cannot serve to communicate changes be-

tween different parts of the solid. In materials with more free electrons, the

phonon contribution to these effects may still be significant.

Some phonon modes in semiconductors can couple directly with light

– typically, these will be IR-active modes in semiconductors – and are corre-

spondingly responsible for significant absorption or reflection effects in these

materials. Other phonons do not directly couple to the optical field but may

indirectly result in significant scattering. We may naively expect that by re-

ducing the phonon population we can neglect these effects and thereby inves-
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tigate the electronic system response, but in fact it is necessary to consider the

effect of these quasi-particles in order to properly understand the electronic

absorption processes that they mediate.

Consider a one-dimensional model in order to develop some intuitive

understanding of phonons. In a linear chain of atoms, a diatomic unit cell will

result in a crystal that typically exhibits a phonon dispersion relationship with

two branches. The higher energy phonon band is called the optical phonon

branch, and is typically flatter than the acoustic phonon branch, which is lower

in energy but exhibits more dispersion. The flat dispersion relation of the op-

tical phonons indicate that the energy of these quasi-particles does not depend

strongly on the crystal momentum that they carry, while the acoustic phonon

energy is strongly dependent upon its crystal momentum. As a result, the

population of optical phonons that is created by thermal processes in a solid

will tend to contain many different momentum states, since the Boltzmann fac-

tor for any given optical phonon is roughly equal (GaAs longitudinal optical

phonons, for example, are about 36meV [180]; a back-of-the-envelope calcu-

lation to approximate the binding energy between two atoms in a molecular

bond will typically scale to about 30meV [92]). Contrarily, acoustic phonons

will tend to populate the lowest energy modes first at low temperatures, with

the higher energy phonons only appearing as the temperature of the system

is increased. Consequently, it is impossible to ever completely freeze out the

acoustic phonons from a material, since there are available states extending

downward to zero energy.
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In a diatomic material, at zero momentum, the acoustic phonon mode

corresponds to motion in-phase of neighbouring atoms of different species,

whereas the optical phonon mode corresponds to out-of phase motion of those

neighbouring atoms. Thus, center of mass motion is largely mediated by acous-

tic phonons, while relative motion of the unit cell atoms is treated with the

optical phonon mode. If the material is polar, such as ionic crystal like NaCl,

the two different atoms in the unit cell will have different electronegativities

and thus will possess opposite charge. The oscillation corresponding to an

optical phonon mode, then, will correspond to an array of oscillating dipoles,

thus intimately connecting this phonon mode with the optical field – thus the

name optical phonon. Optical phonons can be excited by a wave of light, as

the propagating electric field will tend to accelerate the oppositely charged

atoms away from one another.

The array of optical phonon dipoles does not necessarily arise in all

materials, however. If the unit cell of the crystal has two identical atoms

that are covalently bonded only, there will be no difference in charge between

the two ions. The term optical phonon is still used to describe the out-of-

phase motion of these atoms, but there is no dipole associated with these

oscillations, and therefore this mode will not couple strongly to incident light.

These phonons are said to exhibit low optical activity.

In three dimensions a similar analysis can be performed to study the

phonon dispersion relationship. The motion is now decomposed into what

are termed longitudinal and transverse phonons; longitudinal phonons refers
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to motion of the ions parallel to the wave vector that describes the phonon’s

propagation through the crystal, while in a transverse phonon the ions move

perpendicularly to that wave vector. One longitudinal mode and two trans-

verse modes are necessary to span the three-dimensional space of the crystal.

For a given momentum, longitudinal phonons tend to be higher energy than

transverse modes, since the restoring force is typically greater in the direction

parallel to the phonon propagation [270].

If the Wigner-Seitz unit cell contains only a single atom, there will be

three acoustic modes, corresponding to vibrational motion along the x, y, and z

directions. There will be no optical phonon modes present – we cannot logically

speak of out-of-phase motion of atoms in the same unit cell if there is only one

atom per cell. A diatomic unit cell material will have six phonon branches,

three acoustic and three optical. In general, a three dimensional crystal with

a unit cell containing p atoms will have 3p phonon bands, three of which

correspond to acoustic phonon branches, and 3p-3 of which will be optical

phonons. The dispersion relations for these phonon modes is not necessarily

isotropic in k-space, but will depend on the geometry of the crystal.

2.2.4.2 Optical excitation of phonons

Note that the momentum carried by a photon is typically very small

compared to the scale set by the dispersion relations in a solid. Processes

involving those characteristic momenta will occur in the vicinity of |k| ∼ 0 in

the Brillouin zone of a semiconductor.
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The acoustic phonon dispersion curve does not intersect the photon’s

linear dispersion curve in the vicinity of this point; therefore, it is not pos-

sible to annihilate a single photon and create a single acoustic phonon while

conserving momentum. This process is a first-class forbidden transition. The

dispersion relationship for the optical phonons does intersect the photon dis-

persion line, however, which means that these phonons can be excited by a

photon while satisfying the conservation of momentum and energy [270].

Optical phonons will typically lie in the IR region of the spectrum [92]

and, as a result, ionic solids that are optically active will typically exhibit sub-

stantial reflection and absorption related to optical phonon processes in this

wavelength range. If the incident optical field’s frequency becomes approxi-

mate to the phonon frequency, resonant excitation of that phonon mode may

occur, resulting in a significant increase in absorption.

Coupling between a photon and a phonon results in a polariton quasi-

particle. This is a mixture of the phonon field, which is related to a mechanical

oscillation of the ions, and the light, which is related to a transverse oscillation

of the electromagnetic field. A polariton is always formed where the photon

dispersion relation intersects with and couples to the dispersion relation of a

transverse excitation, such as the transverse optical phonon. Near the vicin-

ity of the intersection the effect of coupling is strong, and it is necessary to

consider the hybrid photon-phonon polariton mode, but further away from

that point the strength of coupling decreases and the lower polariton mode

essentially resembles a pure phonon mode, while the upper polariton mode
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essentially resembles a free photon mode [270]. We are interested in exciton-

photon polaritons in our own studies, but do not investigate photon-phonon

polaritons in this work; we mention them here for completeness.

2.2.4.3 Optical scattering by phonons

We note here that we have not given a proper or rigorous treatment

of what is meant by a scattering process. The intuitive understanding that is

developed in an elementary physics education – classical two-body scattering

problems, as well as Rayleigh or Thomson scattering, or other similar processes

– lends to most physicists a general fluency with the idea of scattering pro-

cesses that would be exhausting to try to cover here. Nonetheless, we mention

in passing another perspective that may be illuminating. In many analyses

we do not have available the actual stationary eigenfunctions and energy spec-

trum of a quantum mechanical system; instead we use an idealized version of

the system and use its complete basis to attempt to calculate its approximate

behaviour. Naturally, the initial values of the physical system will result in

a different condition at some later time than that which we calculate – the

usefulness of our approximate model is how closely the two sets of outcomes,

real and calculated, resemble one another. The end result of the real physical

evolution will be a state with contributions from (likely many) multiple states

of the ideal system. It is possible to describe, and indeed calculate, the trans-

formation from the idealized final state to the physically realized final state

using the language of scattering. This scientific philosophy stems from [307].
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Light can scatter either elastically ((~qi, ~ωi)→ (|~qf | = |~qi| , ~ωf = ~ωi))

or inelastically ((~qi, ~ωi)→ (|~qf | 6= |~qi| , ~ωf 6= ~ωi)) off phonons, whether

acoustic or optical. In an inelastic scattering process the difference in energy

and momentum is exchanged with the medium: if the scattered photon en-

ergy is lower than the initial energy, this is called a Stokes process and involves

phonon emission; if greater, an anti-Stokes process, causing phonon absorp-

tion. Either process involving an acoustic phonon is known as a Brillouin

scattering process; similarly, either of those scattering processes involving op-

tical phonons is known as a Raman process. Even though acoustic phonons

are not optically active and do not result in the strong IR absorption and re-

flection associated with optical phonons, they are active Raman modes. The

symmetry exhibited by the crystal, as well as the normal requirements for

conservation of energy and momentum, result in a set of complicated selection

rules specific to a given crystal structure; this can in principle be mapped out

in the vicinity of |k| ∼ 0 by performing an angle-resolved Raman or Brillouin

scattering measurement.

Rayleigh, or elastic scattering, does not involve a shift of the optical

frequency, as it involves coupling to a non-propagating mode (which, thus, does

not mesh well with our taxonomy of quasi-particles, which we stipulate possess

a well-defined wave vector), such as a thermal diffusion or heat wave. This

does not shift but does broaden the optical frequency distribution somewhat,

as scattered photons fluctuate in a small band (typically 10ˆ4 to 10ˆ-9 inverse

cm) around the central wavelength [270].
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The phonon scattering processes as described here are spontaneous in

origin, and result in a very weak signal even if the phonon population is rela-

tively large, as in room temperature measurements. It is possible to conduct

a resonant Raman experiment, however, involving two incident laser beams –

optical fields with well-defined momenta and energies are necessary for such

experiments. The momentum difference between the two beams is selected

by their relative angle. As the frequency difference between the two beams

is tuned into resonance with a particular phonon mode, the lattice oscillation

driven by the two lasers will result in a macroscopic population of that spe-

cific phonon, resulting in a much larger signal. This two beam experiment,

and three beam experiments like CARS (technically a four-wave mixing tech-

nique, where the output signal is the fourth ’wave’) are used to coherently

probe vibrations in various materials.

2.3 Quantum well physics

2.3.1 Quasi-2D semiconductors – quantum wells and superlattices

Many interesting optical effects arise when light is trapped in high-

finesse cavities that permit or forbid certain frequencies of oscillation. The

allowed modes for such systems are determined by boundary conditions that

require only certain numbers of half-wavelengths of light to propagate inside

the cavity. Similarly, the confinement of particles in small material structures

results in the emergence of quantum mechanical effects, where the wavelike

properties of those particles become significant.
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The development of modern growth techniques such as molecular beam

epitaxy have made it possible to fabricate layered materials with a great deal of

control. It is possible to produce materials that exhibit high quality interfaces,

with sophisticated control of the doping concentrations introduced into the raw

materials.

If a semiconducting material is grown under sufficiently controlled con-

ditions, the width of the deposited layer may be sufficiently thin that excitons

produced in that sample will exhibit novel (?) quantum mechanical effects. For

such behaviour to emerge, the structure must be grown so that the thickness

of the layer of interest is comparable to the Bohr radius of an exciton.

A quantum well is an ultra-thin layer of one kind of semiconductor sand-

wiched between two layers of a larger gap semiconductor. In order to reduce

the occurrence of disorder and defects at the interface, the materials should be

chosen to be approximately lattice matched – the lattice constants of the two

materials should be comparable. If the one material is epitaxially deposited

on top of another with a substantially different crystal structure it is possible

that the new material will deform and produce a crystal material under strain,

where the lattice constant and the bond angles may be substantially altered

due to the interaction with the lower layer. The growth of lattice mismatched

materials, however, is limited to a certain critical thickness – if a layer thicker

than tc is deposited, it will be more energetically favourable for dislocations

and faults to occur in the material than for the crystal to continue growing

under strain. The resulting crystal defects tend to ruin devices whose per-
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formance is based upon the electron behaviour adhering to that expected for

a perfect crystal. Careful control over epitaxial growth conditions may allow

the fabrication of a metastable layer thicker than tc but subsequent thermal

cycling may result in a sudden phase change to the energetically favoured, high

defect state [307]. From our remarks here on strain, it might appear that such

a situation should be carefully avoided, but in fact the reduction of crystal

symmetry that can occur when growing epitaxial semiconductors under strain

may have interesting and useful applications, particularly in determining which

states carriers will tend to occupy preferentially.

For optical applications, the absence of defects in the crystal and at

the interfaces is of high importance. Additionally, the physics of excitation

and emission tend to favour direct band gap materials. As such, the choice

of AlGaAs-GaAs-AlGaAs sandwiches have become highly favoured for use in

optoelectronic structures. GaAs, which has a bandgap of approximately 1.5eV,

is the second most commonly used semiconductor after Silicon. Pure AlGaAs

itself is not actually used, but rather AlxGa1−xAs where the molar fraction

of Aluminum substituted into the GaAs material is x, and ranges between

0 < x < 1. If the molar fraction of Aluminum is less than 0.4, the AlGaAs

material is a direct bandgap semiconductor with a bandgap of around 2eV,

where the precise gap depends upon the aluminum concentration.

One commonly fabricated heterostructure is a multiple quantum well

stack. This sample has multiple layers of GaAs separated by layers of the

AlGaAs alloy, with the AlGaAs layer typically thicker. In an ideal structure,
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the MQW would behave like a single quantum well but with the optical density

along the growth axis multiplied by the number of quantum well periods.

Obviously, not all optical properties will simply scale the number of layers in

an MQW – the effect upon coherent emission, for example, will depend upon

geometrical effects, where the path length between wells will determine how

modes with well-defined phase relationships will add.

If a sufficient number of layers are grown in an MQW sample, the struc-

ture is referred to as a superlattice – the AlGaAs layers in such samples are

typically thinner, resulting in greater overlap of the wavefunctions of excitons

or free carriers formed in the GaAs layers. The term superlattice is used to

denote that in addition to the underlying periodicity of the crystalline mate-

rials used, the deposition of alternating materials has created a second, larger

dimension periodicity of the quantum well layers.

The interest in quantum confined structures arises from the ability they

offer to control the optical properties of a material – the inherent properties of

bulk materials are determined by the quantum mechanical interaction of their

constituent particles, and cannot be adjusted. An engineered material allows

some control over the optical (and other) properties it exhibits, as its quantum

mechanical behaviour by potentials arising at interfaces – quantum confine-

ment effects – in such ways that it exhibits different macroscopic behaviour

than the bulk material would. GaAs quantum wells, for example, allow the

adjustment of the band edge absorption from 820nm to 650nm by varying the

quantum well width [270].
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2.3.2 Models of quantum wells – the infinite potential barrier square
well

In a great many situations it is possible to model the behaviour of

a particle semi-classically, where the particle motion is described as a free

quasi-particle with an effective mass tensor, derived from the curvature of

the particle’s bandstructure [307]. We are most familiar with this technique

when calculating the properties of electrons and holes near the band extrema,

where a parabolic dispersion relationship is a natural approximation, but there

is no formal reason this method cannot be extended to other quasi-particles

in analogous circumstances, such as for neutral atoms in a periodic optical

potential. As shown sup, excitons in a bulk material will also exhibit an

essentially classical center-of-mass motion.

When a particle’s bandstructure changes rapidly in real space, however,

such as it may at a material interface or under application of external poten-

tials, it is necessary to use a more overtly quantum mechanical treatment of

the particle’s motion [307]. Without this treatment certain physical phenom-

ena, such as tunneling or the formation of energy subbands in nanostructures,

cannot be explained.

It is possible to still incorporate the effects of the underlying bandstruc-

ture by use of an effective mass Schrodinger equation

(∑
i

− ~2

2mi

∂2
ri

+ Vapp (r)

)
ϕ (r) = Eϕ (r)
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which can be solved for an envelope function ϕ (r) ∼=
∑

k∼=k0
ake

i(k−k0)·r

where it has been assumed that the wavefunction can be approximated as one

depending only upon Bloch functions near some extrema k0 present in the bulk

material dispersion relation [307]. The full wavefunction is not often needed,

but will consist of the envelope function multiplied by the spatially extended

Bloch function at the momentum k0; this will simply introduce lattice-scale

oscillations to the longer ranged features described by the envelope function.

Further accuracy may be provided by allowing the effective mass to assume

position dependence. There may be some issues that require care to be taken

with the exact nature of boundary conditions (this will be important when we

consider finite potential barriers) in order to ensure particle conservation [307].

Since we are interested only in the approximate behaviour of our systems we

do not explore those issues further here. Greater rigor is required for transport

matrix numerical solutions for effective mass Schrodinger equations.

The simplest model of a quantum confined nanostructure relies upon

one of the elementary undergraduate problems – the particle in a box. In

this application, however, it is necessary to consider the motion of both the

electron and hole:

[ −~2

2me,h

∇2
e,h + V (ze,h)

]
ψe,h(xe,h, ye,h, ze,h) = εe,hψe,h(xe,h, ye,h, ze,h)

where the two possible subscripts indicate that there are actually two

separate equations, one single-particle Schrodinger equation describing the
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behaviour of an electron, and one for a hole. The coordinate axis is chosen

such that direction of the layered structure growth is along the z direction,

and the potential is then given as

V (z) =

{
0 −L/2 < z < L/2,

∞ |z| > L/2

For simplicity, we drop the e, h subscript notation subsequently un-

less needed for clarity. Prompted by the quasi-two dimensional nature of the

system, we seek solutions in the form ψ(x, y, z) = ϕ(x, y)ζ(z) where the phi

function descries the electron’s or hole’s wavefunction related to its probabil-

ity distribution in the plane of the layered structure, and the zeta function

is related to its probability distribution normal to that plane. Alternatively,

it is also possible to dimensionally simplify this problem by noting that in

non-confined directions, motion can still be treated semi-classically.

Separating the derivative operator into a longitudinal and transverse

operator, ∇2 = ∇2
⊥+ ∂2

z , allows us to write two separate differential equations

−~2

2m
∇2
⊥ϕ(x, y) = ε⊥ϕ(x, y)

and

[−~2

2m
∂2
z + V (z)

]
ζ(z) = εzζ(z)
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The differential equation for transverse motion clearly leads to the com-

mon plane-wave eigenfunctions and their energy eigenvalues. Without specify-

ing the nature of V (z), it is impossible to generally formulate a solution for the

second equation. Using the hard-walled particle-in-a-box potential described

above, we can obtain the well known sinusoidal solutions for that problem.

The resulting energy for the particle in this well is

ε =
~2

2me,h

(
j2π2

L2
+ k2

x + k2
y

)
where the integer j labels the sub-band that the particle resides in due

to quantum confinement, while the other two coordinates (x, y) exhibit the

parabolic dispersion of a free particle. Note that, as mentioned in passing, the

unconfined motion recovers its semiclassical dispersion relation here.

Note also from our previous examination of the exciton behaviour, we

already know that this cannot be a completely accurate description of the

behaviour of carriers in this system – neither an electron nor a hole are neutral,

and cannot move completely freely through the crystal without considering

Coulomb interactions. This single particle expression for energy is for either

an electron or a hole created by absorption of a photon and does not describe

the correlated motion of the pair.

This analysis only considered parabolic, non-degenerate energy bands

– in fact, this is not an unreasonable restriction on the behaviour of carriers,

given that strain will typically lift the degeneracy of the electron valence bands
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in a real crystal system. The more unphysical aspect of this model is that

there are an infinite number of possible energy levels, as there is no bound on

j. There is neither an explicit bound on the momentum in the plane of the

well, but we know a priori that the parabolic nature of the relevant bands is

only applicable over a limited range of momenta – therefore there is a failing of

this model in its explicit dispersion relationship, which does not place limits on

the allowed wavevectors for which it is an accurate description of free electron

or hole behaviour, but that weakness was implicit (and known) in its starting

assumptions. The failing added by this model as regards the infinite number of

j-dependent energy levels it allows is the new deviation from physical reality.

There are also issues that may be raised due to the failure to consider spin

degeneracy.

2.3.3 Electronic states with finite potential barriers

The change in potential at the edge of a quantum well is, of course,

never infinite. The approximation of the system as a square potential well

fails to consider the bending of the bands that must occur at the boundaries,

but with this model we will obtain a somewhat more realistic description of

electron and hole behaviour than is possible with an infinite square well model.

{The AlGaAs-GaAs-AlGaAs quantum well sandwich has a bandgap

structure that looks like ˜2eV - 1.5eV - 2eV (where all values approximate

and dependent on doping\alloy concentrations). {material about the three

types of hetero-interfaces here}}
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The half eV difference in bandgaps – which we label V0 in this analysis

– between AlGaAs andGaAs results in a potential well that will trap electron-

hole pairs created in an optical transition from the ground state. We assume

that the states involved are non-degenerate and found in parabolic bands (the

assumption of non-degeneracy fails for AlGaAs-GaAs as the highest energy

valence band in GaAs is four-fold degenerate. Nonetheless, this treatment

serves as a conceptual model that illustrates the physical origin of some of

the behaviours of this system). The potential, as before, is divided into two

regions

V (z) =

{
0 −L/2 < z < L/2,

V0 |z| > L/2

The treatment of motion of the electrons (or holes) in the plane of the

quantum well is also unchanged from the analysis used to analyze the infinitely

deep square well. And, in fact, the differential equations describing the system

in the well region is actually unchanged, although different boundary condi-

tions must now be enforced. Rather than requiring the probability distribution

for the wavefunction to be zero outside of the quantum well (as in the case

of the infinite potential well) we now simply require that the wave function

amplitude decay exponentially as the particle penetrates into the barrier.

The analysis of this problem is well understood (see, for example [149],

and leads to a transcendental equation for energy eigenvalues. An algebraic

solution is not available. As long as the potential of the barrier, V0, is greater
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than the potential inside the quantum well (chosen to be zero, here), there

will be at least one even parity bound state solution. As the depth increases

a bound odd state is available, and then higher bound states of either parity.

The solution does not require the existence of a bound odd eigenstate.

For even states, the energy can be found by approximating the solutions

(e.g. by a graphical solution that plots both sides of the following as a function

of the energy eigenvalue and seeks points where the two functions intercept)

to

√
ε+
z tan

(√
mε+

z

2~2
Lz

)
=
√
V0 − ε+

z

where the + sign denotes even states, and the subscript z refers to

the fact that this energy eigenvalue is the solution to the separated variable

Schrodinger equation that describes only motion in the direction perpendicular

to the quantum well plane.

For odd states, similarly, the solutions may be found by solving the

transcendental equation

−
√
ε−z cot

(√
mε−z
2~2

Lz

)
=
√
V0 − ε−z

where a similar notation is employed.

Note that as the width of the well is reduced, the energies of the bound

states increase: the smaller the well width, the greater the resulting blue shift

from this quantum size effect.
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The total single particle wave functions for free electrons or holes in

a semiconductor quantum well with a non-degenerate, parabolic dispersion

relation are plane waves that describe motion in the plane of the well, with

particle-in-a-box motion in the direction perpendicular to the quantum well

plane. That perpendicular motion exhibits the sinusoidal characteristic wave-

functions that decay exponentially as the particles penetrate into the barrier,

and results in energy sub-bands that depend on the perpendicular motion

quantum number j. The energy for these states varies as j2/L2
z.

2.3.4 Density of states in 2-d

We note the density of states in passing. Quantum confinement leaves

the electron-hole motion in the plane of a semiconductor quantum well largely

unaffected, as the differential equation for the fully three-dimensional Schodinger

equation is separable in Cartesian coordinates. In the direction perpendicular

to the plane of the quantum well, motion is quantized, and only wave vectors

allowed that are multiples of π/L, where L is the quantum well layer thickness.

The single particle density of states may be represented as a function

of energy as

g2d(ε)dε = g2d(k⊥)d2k⊥

where the wavevector k⊥describes motion only in the plane of the quan-

tum well. The density of states in k-space is explicitly
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g2d(k⊥)d2k⊥ =

(
1

2π

)2

2πk⊥dk⊥

which is valid if the density of states only need be used in quantities

where the directionality of the wavevector k⊥ is unimportant – i.e. those

quantities that depend only on the magnitude of k⊥.

2.3.5 Excitons in two-dimensions

As we noted in our description of optical absorption, it is necessary

to consider the electron-hole Coulomb attraction in order to recreate the ob-

served spectral features of a semiconductor. We now turn our attention to a

description of the effects of Coulomb interaction on the behaviour of electrons

and holes in a quantum well. The total Hamiltonian for carrier pairs in a

quantum well may be written

H = − ~2

2me

∇2
e −

~2

2mh

∇2
h + Vconfinement + VCoulomb

We change to a center-of-mass and relative position coordinate system;

in those variables, the Hamiltonian may be rewritten

H = − ~2

2me

∂2
ze−

~2

2mh

∂2
zh
− ~2

2Mxy

(
∂2
X + ∂2

Y

)
− ~2

2mXY

(
∂2
x + ∂2

y

)
+V0(ze,h)−

e2

ε0r

Here, capital letters, as in the partial derivative operators, represent

some quantity related to the center of mass, while lower case letters denote
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quantities related to relative electron-hole motion. For example, MXY is the

in-plane total mass of the electron and hole, and mxy is the reduced in-plane

mass of the electron-hole pair, where

MXY = (me +mh)xy and 1
mxy

=
(

1
me

+ 1
mh

)
xy

and r = re − rh

The total wave function ψ (r) can then be separated into z and (x, y)

dependent sub-functions,

ψ(r) = Φxy
n (rxy) ζei(ze)ζhj(zh)

where the function

Φxy
n (rxy) = uc0uv0ϕ

xy
n (rxy)e

iKxy
c ·Rxy

defined with the periodic parts uc0 and uv0 of the conduction and va-

lence band Bloch functions, and ϕxyn , an exciton envelope function that de-

scribes the extent of the exciton in the x, y plane, and an exponential term

that describes a plane wave solution for the center-of-mass motion of the ex-

citon system in the x, y plane. On the ζ functions, the labels i and j denote

the sub-band quantum numbers that describe the quantized motion in the

direction perpendicular to the plane of the quantum well – these quantum

numbers label the appropriate energy eigenstate and sinusoidal eigenfunction

for perpendicular quantized electron or hole motion.

An analytical solution exists for the two-dimensional exciton; however
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it’s general case, for arbitrary quantum numbers, is not immediately enlight-

ening, just as in the three dimensional case. The full expression in three

dimensions is

ψnlm (r) = −
√(

2

na0

)3
(n− l − 1)!

2n [(n+ l)!]3

(
2r

na0

)l
e
−
(

2r
na0

)
/2
L2l+1
n+l

(
2r

na0

)
Ylm (θ, φ)

and in two dimensions

ψnm (r) =

√
1

πa2
0

(
n+ 1

2

)3

(n− |m|)!
[(n+ |m|)!]3

(
2r

[(n+ 1/2) a0]

)|m|
×

e
− 1

2

(
2r

[(n+1/2)a0]

)
L

2|m|
n+|m|

(
2r

[(n+ 1/2) a0]

)
eimφ

[165]. More useful, perhaps, is a comparison of the ground state radial

wave function in three dimensions

f1,0 (|r|) =
1

a
3/2
0

2e−r/a0

and in two dimensions

f0,0 (|r|) =
1

a0

4e−2r/a0

Where we can see, clearly, that the Bohr radius for the exciton in the

quantum well is half that for the three dimensional bulk material [165].

The spectrum for the two dimensional, quantum confined system is
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ε2d
n = Eg +

h2π2j2

2mrL2
z

− EB(
nj − 1

2

)2 , nj = 1, 2, 3, . . .

with EB the exciton Rydberg energy found for the Schrodinger equation

for an exciton in in three dimensions, EB = ~2

2mra2
B

where aB is of course the

exciton Bohr radius and mr the reduced mass of the exciton system, calculated

using the effective electron and hole masses [270].

The second energy term, explicitly proportional to j2/L2
z , is the energy

resulting from quantum confinement of the electron-hole pair. The last term,

proportional to the exciton Rydberg, is due to the hydrogenic exciton system’s

binding energy. Note that compared with the three-dimensional exciton, the

n term has changed to n− 1/2.

As a result, for n = 1, E2d = 4×E3d; the result of quantum confinement

is that the exciton ground state is shifted further away from the bandgap

than it would be in three dimensions. Experimentally, this makes it easier to

excite excitonic states without also causing the excitation of a large number

of free carriers. Additionally, the Bohr radius for the exciton confined in

two dimensions is half that of the Bohr radius for the free, three-dimensional

exciton. The increase in binding energy that occurs with the restriction to a

two-dimensional system may be attributed to the exciton decreasing its Bohr

radius isotropically, and as a result, raising its binding energy, in order to

conserve spherical symmetry. While this does raise the binding energy of the

exciton, it is energetically favourable compared to the admixture of states
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that would be necessary to distort the exciton into an asymmetric probability

distribution [165].

In AlGaAs-GaAs-AlGaAs quantum wells, the background dielectric is

roughly equal in both the well and barrier. If the well dielectric is significantly

larger than the barrier dielectric, there will be further enhancement of the

exciton binding energy – this should only be a minor effect in the samples we

investigate, as the GaAs has a slightly higher dielectric constant. This is called

the local field effect, and results from the electron-hole Coulomb interaction

being mediated differently by the different materials of either the barrier or

the well [270].

Using the two-dimensional wavefunctions to evaluate the Elliott for-

mula for optical absorption, we find a new selection rule that obtains for a

strictly 2d system (i.e., one where the thickness of the well is small). In that

limit, ζ functions, which describe the quantized motion of electron and hole

perpendicular to the well, exhibit smaller and smaller overlap integrals until

they effectively become orthonormal. As a result, when evaluating the Elliott

formula for optical transitions, first class dipole transitions will only occur for

i = j, i.e., only between quantized electron and hole states with the same

quantum number.

The net result is that the Coulomb interaction, which is responsible for

exciton transitions, modifies the stair-step absorption spectrum produced by

free carrier absorption to include additional excitonic spectral line series that

occur at each step.
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2.3.6 AlGaAs-GaAs-AlGaAs multiple quantum wells

A multiple quantum well sample contains a number of quantum wells

grown in the direction perpendicular to the plane of the well, with a barrier

thickness sufficient to prevent the overlap of exciton wave functions from one

well to another. We study a prototypical MQW material, fabricated with

lattice matched, zincblende structured AlGaAs-GaAs-AlGaAs quantum wells.

Both of these materials are direct band gap semiconductors with band extrema

around |k| 0. The difference in the bandgaps of the two materials, which is

termed the confinement energy, is split into an offset of the conduction bands

and an offset of the valence bands.

As noted in our discussion of single quantum wells, these quasi-two

dimensional systems permit some (quantized ) motion in the direction nor-

mal to the plane of the well. The simple picture for this motion that we

note above neglects degeneracy and assumes band parabolicity. As a result

of those assumptions it is better suited to the description of the conduction

band electrons rather than the valence band holes, as the conduction band

does not exhibit the degeneracy present in the valence band states near the

|k| ∼ 0 extrema. The dispersion relations for the two hole bands that interact

significantly at energies near the band energy, the light- and heavy-hole bands

(the split-off band is shifted in energy by the spin-orbit interaction and is suf-

ficiently far from the band edge to neglect in a model of optical absorption)

are the sum of two parabolic dispersion relations, one that describes the per-

pendicular motion and one that describes motion in the plane of the quantum
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well:

εhh = − ~2k2
z

2
(

m0

γ1−2γ2

) − ~2k2
⊥

2
(

m0

γ1+γ2

) , Jz = ±3/2

and

εlh = − ~2k2
z

2
(

m0

γ1+2γ2

) − ~2k2
⊥

2
(

m0

γ1−γ2

) , Jz = ±1/2

where the Luttinger parameters γn are simply a system used to relate

the effective masses of the holes to the rest mass m0 of a free electron. They

were derived [225] as terms in an approximate Hamiltonian to describe the

motion of holes near the Γ point. In bulk GaAs, the two different masses

of the light and heavy holes are actually equal at |k| ∼ 0, but the quantum

confinement lifts this degeneracy. As a result of the different masses of the

two hole bands, the quantum confined motion of excitons will be different

depending on which band the holes come from. The effect is understood

intuitively by considering the dependence of the energy of a particle in a box

on the particle’s mass. This lifts the degeneracy of the two different species of

excitons, and, as a result, allows them to be spectrally resolved.

For GaAs, the heavy hole mass is greater than the light hole mass for

motion quantized along the normal to the quantum well – mhh,z ∼ 0.5m0 >

0.086m0 ∼ mlh,z, but for motion in the plane, the light hole effective mass is

actually greater, mhh,⊥ ∼ 0.11m0 < 0.23m0 ∼ mlh,⊥.
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If the quantum well layer is thin enough, the splitting between the light

and heavy hole will be sufficient to observe a doublet exciton line for the j = 1

set of transitions (where here the quantum number j refers to transitions

involving the lowest order quantized motion in the direction normal to the

plane of the well). This is clearly the case in our single and MQW samples.

Fluctuations in the well layer growth will result in a broadening of the

exciton lines, as compared to that seen in bulk GaAs. Well thickness will fluc-

tuate during growth, with the distribution of variations in the layers typically

obeying some sort of Lz ± 4Lz spread. The energy levels of the excitons in

quantum wells vary as 1/L2
z, analogously to the energy levels of particles in a

box, so that linear fluctuations in well width will lead to a quadratic spread in

the transition energies of the exciton lines. This is an inhomogeneous broad-

ening effect. A high-quality quantum well grown without any extrinsic doping

to a thickness of 10nm should typically exhibit approximately 2meV of broad-

ening at low temperatures; this compares to approximately 0.1meV linewidth

in bulk samples for high quality GaAs at similar temperatures. Due to the

inverse square nature of the dependence on well thickness, broadening will

become progressively worse for thinner wells.

Since the quantum confinement related effects lead to a substantial

increase in the exciton binding energy, a room temperature spectrum of an

AlGaAs-GaAs-AlGaAs quantum well system may exhibit some exciton fea-

tures even at room temperatures where the bulk material would fail to do

so due to thermal interactions. This effect is not necessarily observable in
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room temperature measurements of wide gap semiconductors, as may naively

be expected – a simple analysis might suggest that since those materials also

had higher exciton binding energies, an exciton absorption feature would also

be visible in their spectra. But in these wide gap materials the scattering of

excitons by longitudinal optical phonons increases correspondingly with the

increase in bandgap, and, as a result, the exciton features cannot be observed

in the spectrum.

2.3.7 Absorption anisotropy in GaAs MQW’s

The most important selection rule obtained for the absorption of light

by quantum wells is that allowed transitions will occur between valence elec-

tron states and conduction electron states that have the same quantized motion

perpendicular to the plane of the quantum well – that is to say, to states that

have the same j quantum number, where j describes which sinusoidal solution

to the quantum well potential describes the motion of the electron (or hole,

since those obey a similar solution). That selection rule is derived on the basis

of the behaviour of the solutions to the infinitely deep quantum well; since

the actual quantum well is not infinitely deep, there is some departure from

this behaviour, and indeed, transitions that connect states that have different

j quantum numbers do occur. These are forbidden transitions, which and are

weak in comparison to the first-class, allowed transitions.

Transitions coupling to either the light-hole exciton or heavy-hole ex-

citon depend strongly on the polarization of the photon that is absorbed.
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Chapter 3

Light-matter interaction

3.1 Introduction

It appears that for any thesis dealing with the interaction of light and

matter, the consensus opinion of Ph.D. candidates asserts the necessity of an

elementary description of the quantum mechanical nature of these processes.

Often, a description of the resonant interaction of light with a two-level system

is provided; in this document, we consider several different schemes, begin-

ning with the classical Lorentz model for the interaction of light with matter,

then present the two-level model with a description of the Feynman-geometric

model for that interaction, a derivation of the optical Bloch equations, a de-

scription of the semiconductor optical Bloch equations, and a digression on

more sophisticated methods for describing the interaction of light and matter.

This chapter is a digression itself, in a sense, but it provides context for our

subsequent history of certain particular experimental and theoretical work on

exciton optics, and is useful in understanding the density matrix toy model

we develop for partially collinear 2d Fourier transform spectroscopy.

The ubiquitous Optical Resonance and Two-Level Atoms [6] is a refer-

ence recommended to the reader as an introduction to the classical light-mater
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coupling material presented here, as is Haug and Koch’s text [166] for classi-

cal and quantum material. The 1953 paper by Feynman et al. developing a

geometric scheme to visualize the evolution of non-interacting two-level sys-

tems subject to external perturbation [121] is – again by apparent consensus of

thesis authors – not optional. Diels and Rudolph’s text [96] raises interesting

questions about the underlying quantum theory we typically apply blithely to

the study of problems such as ours .The search for a truly intuitive treatment

of the semiconductor optical Bloch equations that does not depend upon a

thorough understanding of quantum field theory is left as an exercise for the

reader.

3.2 Resonant light and two-level systems

In the linear regime the response of a material system to an incident

optical field may be described using the conventions of linear response theory.

In that picture, if we assume a primarily electric response (an assumption that

will not hold for magnetic materials or substances excited under extreme con-

ditions), an effective transfer function may be defined in terms of the complex

dielectric constant function ε (ω), and the problem of understanding the lin-

ear interaction of light and matter reduces to finding this function [96]. The

imaginary part of this function describes loss or gain processes by which the

intensity of the optical field will change, while the real part describes dispersive

phenomena – resulting, for example, in changes to the phase or group velocity

of the optical field passing through the medium.
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Subsequently, we will also consider the nonlinear interaction of light and

matter. In that case, the polarization that is induced in the material cannot

be so simply described, and is instead separated into first-order linear effects

and a nonlinear response, P = PL + PNL. It is possible in some systems that

the linear and nonlinear response of a material system arise due to different

constituent parts of the medium interacting differently with incident optical

fields. This is to be expected in the semiconductor systems we study, where

the exciton features dominate the optical spectrum near the band edge, but

the host or matrix dielectric material will interact with the same optical fields

in a linear fashion.

3.2.1 A classical precursor – the Lorentz model

To a remarkable degree, the behaviour of the light-matter interaction

can be developed using a classical oscillator model as derived by Lorentz, then

extended by Planck and Einstein. Typically, this model is applicable – or

at least, useful as an approximation – in the regime where the frequency of

the light is insufficient to ionize any electrons [166]. The classical scattering

formulae developed by Raleigh and Thomson are typically fairly good approx-

imations until light in the deep x-ray regime is considered, and the first quan-

tum mechanical models developed by Kramers and Heisenberg were found by

application of the correspondence principle to the classical model of Lorentz

[6]. We outline that theory here; perhaps its greatest utility is simply that it

provides us with a standard, common language to use in discussions of optical
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radiation processes.

Most optical phenomena derive from the interaction of electric charge

with the electromagnetic field [253]. We are particularly interested in phenom-

ena related to polarization. When matter is excited with a periodic oscillatory

transverse electric field – light – a polarization oscillation is induced in the sub-

stance. Since most charge in conventional matter is bound to positive ionic

cores, and exhibits only small amplitude oscillations about its equilibrium po-

sitions, the optical response can be assumed to depend largely on the motion

of the most loosely bound electrons relative to the ionic crystal. The motion of

an electron-ion pair is essentially a simple harmonic oscillator, which couples

to the electromagnetic field via a dipole interaction.

Starting with the simplest equation of motion,

m0d
2
txa(t) +m0ω

2
axa(t) = eE(t, ra)

where the subscript a simply labels a particular dipole oscillator in the

crystal, we recognize that the classical description of the resulting motion leads

directly to the conclusion that the accelerating charges involved will radiate,

and that the classical amplitude of their oscillation will decay to zero in some

finite period. By radiating, the oscillator loses energy to the electromagnetic

field. Typically, atomic systems are expected to radiate on a characteristic

time scale of tens of nanoseconds [6] due to this radiation reaction. Including

such damping in the equation of motion in order to model this dissipation, one
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obtains the equation of motion

m0d
2
txa (t) = −2m0γdtxa (t)−m0ω

2
axa + eE

where the decay time 1
τ0

= γ = 3m0c3

e2ω2
a

[93], [6] is expected to depend

only upon the reduced mass and the resonant frequency of the oscillator (and

certain fundamental constants).

The derivation of the classical analog to the Rabi problem demonstrates

that damping of the oscillator results in an inherent linewidth to these transi-

tions. Assuming that the perturbation is due to a harmonic driving field near

the oscillator’s resonant frequency,

E = Ẽe−iωt + c.c.

then the motion of each dipole oscillator may be decomposed into in-

and out-of-phase terms,

xa = x0 [ua cosωt− va sinωt]

where the amplitude x0 may be taken as a contant, but where the

coefficients ua and va are time-dependent. With some simpler calculation, an

expression for the dipole amplitude may be obtained for long times

xa(t) =
e

m0

Ẽ

(
eiωt

ω2
a − ω2 + 2iω

T

+ c.c.

)
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where the decay term τ0 used previously is replaced by a faster relax-

ation time T , based on the assumption that the dipole amplitude will decay

more rapidly in a real, physical environment due to perturbative interactions

or scattering events than it would in an otherwise empty universe. Indeed, in

a quantum electrodynamic treatment, even if the oscillator were completely

isolated from any other matter, the vacuum fluctuation of the electromagnetic

field would still result in a decrease of the decay time.

Analyzing this expression for xa (t), it is apparent that the dipole is

effectively driven into oscillation at the frequency of the incident field, but

it exhibits a non-zero phase relation with that field. The full solutions for

the in- and out-of-phase components may also be found in a straightforward

fashion [6] – though we see little practical utility in doing so to interpret actual

experimental results, as the early time classical solutions will deviate from the

real, coherent, quantum mechanical response of the material system.

From the equation of motion, a polarization may be calculated

P (ω) = −n0e
2

m0

1

ω2 + 2iγω − ω2
0

E (ω)

where the subscripts used previously have been dropped for simplicity.

Here, P (ω) is the polarization per unit volume. We may define the optical

susceptibility in a straightforward fashion as

χ (ω) = −n0e
2

m0

1

ω2 + 2iγω − ω2
0
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The renormalized resonance frequency for the transition – the actual

energy at which the dipole oscillates – is shifted as a result of the damping

term, and is given by ω
′
0 =

√
ω2

0 − γ2. This permits the expression for the

dielectric function,

ε (ω) = 1 + 4πχ (ω) = 1−
ω2
plasma

2ω
′
0

(
1

ω − ω′0 + iγ
− 1

ω + ω
′
0 + iγ

)

where the plasma frequency ωplasma =
√

4πn0e2

m0
is defined for a mean

oscillator density n0 [166]. The plasma frequency is the eigenfrequency for

small oscillations of an electron plasma about its equilibrium density when

perturbed. To be more physically concrete, we may sat that the plasma fre-

quency is defined for an electron density n0, and represents driven oscillations

of the electron density distribution in the material. Discounting the non-

resonant second term in the expression for the dielectric function, which we do

under the assumption that the denominator ω+ω
′
0 + iγ will be large compared

to 1 since the decay term γ is small compared to the resonance frequency ω0,

there is a straightforward expression available for the real and imaginary parts

of the dielectric function

ε′ (ω) = 1−
ω2
plasma

2ω0

ω − ω0

(ω − ω0)2 + γ2

ε′′ (ω) =
ω2
plasma

4ω0

2γ

(ω − ω0)2 + γ2
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which describe, respectively, the diffractive and absorptive aspects of

the optical response. The imaginary portion is related to absorption and

emission events, and therefore is directly related to the lineshape of absorption

spectral features. The lineshape that results from this kind of oscillation –

recall that this expression for the dielectric is derived from a classical, damped,

driven oscillator – is a Lorentzian function,

2γ

(ω − ω0)2 + γ2

where the absorption resonance falls off as 1/ (ω − ω0)2 as the frequency

of radiation diverges from the resonance. By way of contrast, the real part of

the dielectric function, related to dispersive effects, falls off more slowly – as

1/ (ω − ω0) away from the resonant line.
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Figure 3.1: Characteristic Lorentzian lineshapes
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Though this classical model of absorption, emission, and dispersion

seems far removed from a modern experiment designed to probe transient,

coherent features in the response of semiconductor nanostructures subjected

to precisely controlled ultra-fast laser pulses, it is worth noting that the sep-

aration of these different aspects of the optical response is of great signifi-

cance in the analysis of those results as well. It is therefore illustrative to

show that even the simplest model of light-matter interaction can illustrate

the different aspects of the material behaviour under optical excitation. Ob-

taining a dispersive and absorptive two-dimensional lineshape is of no little

interest in the semiconductor spectroscopy community and the ability to sep-

arately resolve these lineshapes in a multi-pulse experiment without relying

upon post-experimental analysis is a non-trivial challenge.

The interaction of light and matter that we consider depends upon

solution of the Maxwell equations using a (for now) macroscopic model of the

polarization that acts as a source term in these equations. Having outlined a

classical, Lorentzian model for the microscopic origin of that polarization, we

now look past the particulars of its physical origin, since we will shortly replace

that part of our model with a semi-classical, quantum mechanical model for

the microscopic origin of the polarization.

Assuming a solution to Maxwell’s equations that propagates in the z

direction with wave vector k and extinction coefficient κ, both of which are

frequency dependent,
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E = E0

(
ei(k+iκ)z + e−i(k+iκ)z

)
We find the following elementary dispersion relations

k2 (ω)− κ2 (ω) =
ω2

c2
ε′ (ω)

2κ (ω) k (ω) =
ω2

c2
ε′′ (ω)

defining the index of refraction by n (ω) = ck (ω) /ω and the absorp-

tion coefficient as α (ω) = 2κ (ω) we can relate these constants, derived in the

context of macroscopic, classical optics, to the microscopic, classical, damped

oscillator model that we have used to approximate the real light-matter inter-

action

n (ω) =

√
1

2

[
ε′ (ω) +

√
ε′2 (ω) + ε′′2 (ω)

]
α (ω) =

ω

n (ω) c
ε′′ (ω)

These results are the simplest useful model for the interaction of light

with a material system.

The polarization derived in the context of the classical Rabi problem

illustrates that even if each oscillator in the ensemble exhibited the exact same

resonant frequency, the relaxation terms in the equation of motion result in

an inherent linewidth rather than a Dirac delta function in frequency space.
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This homogeneous broadening is given by the inverse of the lifetime, denoted

T above.

Of course, a real array of dipole oscillators such as we study in the

laboratory will always exhibit some distribution of natural resonant frequen-

cies – the system response is that of an ensemble of individual oscillators,

each with a certain probabilistic likelihood to possess a particular transition

frequency. Perturbative effects will influence each quantum emitter in an en-

semble slightly differently, resulting in a spread in their resonance frequencies.

In gaseous systems, atoms or molecules at finite temperatures exhibit Doppler

broadening, due to the spread in the velocities of the constituent particles; in a

solid, similar broadening may arise due to variations in the local environment

from strain or defects in the sample. Essentially, the indistinguishability of

the members of the ensemble is reduced. As a result, a large, macroscopic

number of natural emission lines will occur in the light radiated by this dipole

array as the material dumps energy into the electromagnetic field. If the lines

are well-separated spectrally, it is possible to treat separately the dipoles that

are oscillating within a given frequency range, barring the occurrence of some

other coupling mechanism between oscillators – for example, in a quantum me-

chanical treatment, lines that are spectrally close will be inherently quantum

mechanically coupled via level repulsion, etc.

If each member of an ensemble exhibits different transition frequencies,

there will be a resulting spread in the polarization (and subsequent radiation)

in the material. The spread in these frequencies will result in a line that is by
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definition greater than the homogeneous width of the isolated quantum emit-

ter’s transition. This width is termed the inhomogeneous linewidth, because

it occurs due to the inhomogeneity experienced by the members of the en-

semble in their local environments. This width can generally be treated with

a normalized distribution function, G (ω0) dω0, determined by the fraction of

oscillators that exhibit a characteristic frequency that falls within ±dω0/2 of

the center frequency ω0. For many calculations, this normalized distribution is

actually expressed instead with the detuning as the independent variable that

describes members of the ensemble,
´∞
−∞ d∆′g (∆′) = 1 where ∆ = ω0 = ω

and the lower limit of integration can almost always be extended to negative

infinity.

3.2.2 A discrete level quantum mechanical system coupled to a
classical light field

By the equivalence principle, the quantum mechanical picture of light-

matter interaction may be derived from the results obtained in a classical

analysis. The analysis here follows that found in [166].

We consider an optical field coupled to the dipole moment of an isolated

quantum mechancial system – the prototype is a hydrogenic atomic system –

resulting in a time-dependent mixing of its eigenfunctions. The time evolution

of the state |ψ〉 is given by

i~∂t |ψ〉 =
[
Ĥ0 + Ĥint

]
|ψ〉
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with

Ĥint (t) = −e xE (t) = −dE (t)

where we assume the electric field is polarized along the x̂ direction for

specificity. The wavefunction |ψ〉 is decomposed onto the basis states of the

unperturbed Hammiltonian, which allows calculation of the set of expansion

coefficients {am (t)}. To first order, the coefficients are found by

a(1)
n (t) =

−dnl
~

ˆ
dω

E (ω)

2π

e−i(ω+Enl/~)t

ω + Enl + iγ

where the energy differences Enl separate the two states coupled by the

matrix elements dnl, which will be zero for diagonal elements n = l. This is

a linear response analysis, as it does not consider higher order terms in the

applied field.

The calculation of those coefficients allows us to calculate P (ω) and,

thereby, the optical susceptibility

χ (ω) = −n0

~
∑
m

|dlm|2
(

1

ω + Elm/~ + iγ
− 1

ω − Elm/~ + iγ

)
where the summation over the various m states permits the possibility

of more than two eigenstates coupling to the ground state l due to the in-

teraction with the electric field. This is a semiclassical result, which may be

compared to the classical, Lorentz model result

94



χ (ω) = −n0e
2

m0

1

ω2 + 2iγω − ω2
0

and which clearly exhibits a similar resonance structure. The classi-

cal result obtained above is remarkably effective at approximating the semi-

classical, weak field result.

For simplicity, we now consider only two levels coupled by the optical

interaction, with (without any loss in generality) state 2 higher in energy than

state 1. Assuming that the driving field is a simple, monochromatic electrical

field, we obtain the following equations describing the populations of those

states

i~dta1 = −d12
E (ω)

2

[
e−i(ω+E21/~)t + ei(ω−E21/~)t

]
a2

i~dta2 = −d21
E (ω)

2

[
e−i(ω−E21/~)t + ei(ω+E21/~)t

]
a1

If the optical field is nearly resonant with the transition, the exponential

function that depends on (ω − E21/~) will be a slow function of time, while

the other exponential function will oscillate at approximately twice the optical

frequency. The effect of this fast term will typically be discounted, as it is not

expected to produce a resonant effect in the resulting susceptibility. Thus, the

simplified expressions for the coefficients {a1, a2} are found to be
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i~dta1 ' −d12
E (ω)

2
ei(ω−E21/~)ta2

i~dta2 ' −d21
E (ω)

2
e−i(ω−E21/~)ta1

This simplification is known as the rotating wave approximation, after the

analysis of spin states undertaken by Bloch, where the time-dependence of

the coefficients in the two approximate equations above will be described as a

rotation of the Bloch vector in a (non-physical) space, and these equations are

known as the optical Bloch equations (in an eigenstate coefficient representa-

tion).

In the case of an exact resonance, the exponential terms go to zero in

both of these time-evolution equations, and the resulting solution is

a2 (t) = a2 (0) e±iωRt/2

where the Rabi frequency, a measure of the coupling strength between

the two levels, is given by ωR = |d21 E|
~ . As a result, the wavefunction for the

state can be given

|ψ (t)〉 = a1 (0) e−i(E1/~±ωR/2)t |ψ1〉+ a2 (0) e−i(E2/~±ωR/2)t |ψ2〉

Clearly, we can see from this expression that the original eigenenergies

for the unperturbed system are shifted into the new eigenenergies of the per-

turbed, interacting system. The effect of the light field has been to split the
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initial states |ψj〉 into two doublets. As a result, there are now three possible

transitions, one at the original, resonant condition, and two transitions arising

from the splitting of the original levels, with energy differences E21±~ωR. The

new levels that arise result in transitions that are labelled the Rabi sidebands.

In order to observe these splittings it is necessary to use a sufficiently strong

field that the Rabi frequency exceed any line broadening that occurs on the

transition.

If the applied electric field is not exactly resonant, but has some finite

detuning $ = E21/~− ω, the solution is somewhat altered, resulting in

a1 (t) = a1 (0) e±iΩt

a2 (t) = a2 (0) e∓iΩt

where we have a generalized Rabi frequency defined by Ω = −$
2
±

1
2

√
$2 + ω2

R. The coupling again results in a splitting of the original energy

levels; here, the two manifold of frequencies occur as

E2 ⇒ ~Ω2 = E2 + ~Ω = E2 − ~
(
$

2
± 1

2

√
$2 + ω2

R

)
E1 ⇒ ~Ω1 = E1 − ~Ω = E1 + ~

(
$

2
± 1

2

√
$2 + ω2

R

)

The renormalized energies and corresponding states of the atom per-

turbed by the interaction Hamiltonian are called the dressed atomic states.
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The splitting and shift of the energy levels is called the optical Stark effect,

due to its similarity to the modification of the atomic spectrum in a DC electric

field.

3.2.3 Nonlinear optical processes

There are a number of texts that describe at length the study of non-

linear optics. Boyd’s often appears the favourite of many and is certainly

recommended [41].

The optical response of a material system may be characterized by

the polarization induced in the material as a function of the strength of the

incident fields applied to it. For sufficiently strong excitation fields, the effect

of the light upon a material may no longer be described within the framework

of a linear response theory. Instead, we describe that nonlinearity with a

susceptibility that is a function of the applied field

P = ε0
←→χ (E)E

= ε0
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
= P (1) + P (2) + P (3) + . . .

In general, the strength of two successive terms in the nonlinear expan-

sion of the polarization can be estimated from

∣∣∣∣P (m+1)

P (m)

∣∣∣∣ =

∣∣∣∣χ(m+1)E

χ(m)

∣∣∣∣ ≈ ∣∣∣∣ E

Ematt

∣∣∣∣
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where the final ratio is the relative amplitude of the incident field com-

pared to a characteristic electric field inherent to the material under consid-

eration. Higher order nonlinear terms are expected to be weaker than lower

order effects, though of course, that trend is not strictly followed – see, for

example, the absence of a second order nonlinear response in most materials

that nonetheless exhibit third order nonlinearities under sufficiently intense

fields.

In general, χ(m) is a tensor, and the vector quantity P(m) is a product

of that tensor with up to m optical fields, which may or may not be the same

incident field – the nonlinear polarization may depend on field mixing effects.

The m-th nonlinear polarization uses the m+ 1-th order tensor susceptibility

χ(m) to couple the applied field or fields. Nonetheless, for simplicity the tensor

and vector notation may often be omitted.

The nonlinear polarization cannot be accurately represented by ap-

proximating the optical response as an instantaneous process. More properly,

we reflect this by defining the response as a product in the frequency space

P (ω) = ε0

(
χ (ω)(1)E (ω) + χ (ω)(2)E (ω)2 + χ (ω)(3)E (ω)3 + . . .

)
. In some

cases it may be possible to approximate the system response as occurring in-

finitely quickly, but for the time scales of interest relevant to our experiments,

it is necessary to consider the non-instantaneous nature of the nonlinear re-

sponse of the system to electromagnetic radiation. A memory effect, as it

were, of the past electric fields, persists until phase decoherence and energy

relaxation processes erase their effects. To analyze the nonlinear response in
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the time domain we use

P (n)(t) = ε0

ˆ ˆ
. . .

ˆ
χ(n)(t1, t2, . . . , tn)E(t− t1)E(t− t1 − t2) . . .

×E(t− t1 − t2 − . . .− tn)dt1dt2 . . . dtn

in other words, we have to keep track of a time convolution function

in order to understand the nonlinear polarization at any given time. This

intuitively corresponds to the simple product noted above when working in

the Fourier frequency space.

In particular, our experimental program is concerned with the third-

order nonlinear optical response of a semiconductor system. In some cases,

nonlinear processes may be exploited as light sources for wavelength ranges

that are not otherwise readily available; for our purposes, however, the non-

linear response is of interest as a tool to observe the microscopic processes

that occur on ultrafast time scales in the samples we study. The microscopic

phenomena may be built into the macroscopic susceptibility, and measuring

the behaviour of a nonlinear emission allows us to infer the parameters that

correspond to our microscopic theory. The details of calculating a nonlinear

susceptibility based on microscopic behaviour informs the greater part of the

theory discussed in this thesis.
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3.3 A density operator theory for nonlinear optics

3.3.1 Basic density matrix theory

It is a relatively straightforward matter to use either the Schrodinger

or Heisenberg picture in order to determine the time-evolution of a quantum

mechanical system if the initial conditions of that system can be adequately

expressed. For example, if the measurement of an observable represented by

the operator Ô is performed on a system that results in its wavefunction col-

lapsing into an eigenstate that is a simultaneous eigenstate of the Hamiltonian

(the necessary and sufficient condition is that the commutator of the operator

commutes with the Hamiltonian, viz.
[
Ĥ, Ô

]
= 0), it is trivial to determine

the subsequent behaviour of that system: the Hamiltonian or energy eigen-

states are the stationary states of the system. Thus, this system would exhibit

only a trivial evolution in time.

An apparently more complicated initial condition is also easily studied.

If the system is prepared in a quantum mechanical state that is not a simul-

taneous eigenstate of the Hamiltonian, it is still proves to be a trivial matter

to determine its behaviour at future times. The solution proceeds, as always,

by first decomposing the initial state upon some convenient basis. If we make

use of the energy eigenstates, their evolution is trivial, and simply by keep-

ing track of the time-dependent coefficients of the component eigenstates we

may readily understand the time evolution of the non-stationary state. Again,

either the Heisenberg or Schrodinger picture can be used to determine the

subsequent state of the system.
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In the Schrodinger picture, we keep track of the evolution of a state

ket,

|ψα (t)〉 = e−iĤt/~ |ψα (t = 0)〉

where we have assumed that the relevant Hamiltonian is time-independent

for the sake of simplifying this explanation. We may take the expectation value

of an operator of interest at a later time,
〈
Â
〉
t
, calculated using the appropri-

ate bra dual to the ket for the state of interest. Note the choice of notation

here, with the subscript indicating that the operator Â is not a function of

time. Time t appears here only as a parameter.

Compared to the Schrodinger picture, working in the Heisenberg pic-

ture is somewhat simpler if we are only interested in the evolution of a partic-

ular expectation value. We find

dtA (t) = dt

[
eiĤt/~ASchro.e

−iĤt/~
]

=
i

~

[
Ĥ, A (t)

]
+ ∂tA (t)

In most problems we consider, there is no explicit time dependence

for the Heisenberg observable A, and the last term on the right hand side is

dropped.

The equivalence of these two different methods for studying time evo-

lution was shown by Neumann Jnos. Thus, we seem to have a relatively

straightforward scheme for predicting the evolution of a system if its initial
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states is known. There is another type of uncertainty that often arises in

consideration of quantum mechanical systems, however, and which is not due

to non-commutability of operators. We now turn out attention to this dif-

ficulty: it is very likely that one will not possess sufficient initial condition

information to completely describe a quantum mechanical system and thereby

calculate its time evolution, i.e. that one does not have sufficient information

to completely determine the wavefunction. In that case, it is still possible to

describe substantially the behaviour of the system in time using the density

matrix formalism.

In classical statistical mechanics, a measure of the likelihood of finding

a system in a particular configuration is given by a phase space probability

distribution (see, for example [190]. The quantum mechanical analog is the

density matrix ρ.

The density matrix is not simply another way to calculate the time

evolution of a quantum mechanical system. Instead, it allows us to consider

mixed states,{this is the part we need} such as those that arise when phe-

nomenologically treating dephasing and relaxation processes.

The density operator may be defined as ρ̂ = |ψ〉 〈ψ| for a single quan-

tum system. In matrix form, the density matrix elements ρii determine the

population of the i-th state in the system, while the off-diagonal elements

ρij, i 6= j, are referred to as the coherences between the i-th and j-th states.

The equation of motion for the density operator may be defined using the

Schrodinger picture equation of motion for |ψ〉 noted above. Straightfowardly
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one may find (see, for instance, [315], [81], or many other texts on quantum

mechanics)

∂tρ̂ = ∂t [|ψ〉 〈ψ|]

= (∂t |ψ〉) 〈ψ|+ |ψ〉 (∂t 〈ψ|)

= − i
~
Ĥ |ψ〉 〈ψ|+ i

~
|ψ〉 〈ψ| Ĥ

= − i
}

[
Ĥ, ρ̂

]
where we made use of the relation ∂t |ψ (t)〉 = − i

~Ĥ |ψ (t)〉. In the case

that the Hamiltonian is not time-dependent this relationship can be obtained

directly from the expression noted above for the time evolution of a ket in

the Schrodinger picture. We note in passing that the time evolution of the

density operator obeys a ’wrong-signed’ Heisenberg equation of motion. This

result is somewhat similar in its use to the classical Liousville equation, which

describes the evolution of a probability distribution in phase space. It is not

strictly correct to call this result a quantum Liouville equation, however, as

that name is used for an equation that describes the time evolution of the

Wigner probability distribution. Nonetheless, this name is often used.

To this point, however, the use of a density operator does not seem to

provide any particular advantage as compared to considering the evolution of

the wavefunction. For an ensemble, however, the density matrix operator can

be defined as
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ρ =
∑
α

pα |ψα〉 〈ψα|

allowing us to treat mixed states that cannot be modelled simply using

a single state.

The density operator formalism also allows us to phenomenologically

treat dephasing and decay processes. A generalized master equation that

contains these population decay\transition rates and, additionally, terms de-

scribing the change in coherences between the levels of the system is known

as the Lindblad equation. The details of mathematical physics that underlies

this formalism is outside the scope of the current work; we will makes use of

the practical results of this type of analysis to treat spontaneous emission from

excited to lower levels, and to describe dephasing processes that occur in the

systems under study. The use of this formalism in this limited application is

intuitive and straightforward.

We may use the density operator to determine ensemble averaged ex-

pectation values in a straightforward fashion. For a given observable repre-

sented by the operator Ô we may find that observable’s expectation value

by tracing out the product of the density operator and that operator, viz.〈
Ô
〉

= Tr
{
ρ̂Ô
}

.
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3.3.2 Applicability of a density matrix model to ultrafast dynamics

Even an approximate description of the various ultrafast process in a

solid is prima facie a complicated project. After excitation of a condensed

system with a sufficiently fast laser pulse or pulses, the behaviour of an en-

semble of dipole oscillators can be broken down into several different time

scales. At very early times after the pulse interacts with the material, the

light-matter interaction drives a coherent, oscillating polarization that arises

due to a coherent coupling between optically coupled band states. This is a

collision-free, coherent regime, where rapid transition – Rabi flopping – occurs

among the coupled states, which are not dissimilar from a two (or few) level

atomic system.

During the second period, phase relaxation occurs due to fast processes

– such as carrier-carrier and carrier-phonon scattering in solid materials, which

dominate and cause real (as opposed to virtual) excitation [270]. The carriers

in such a system now occupy a non-thermal distribution among the relevant

energy bands. During this time period, the coherence oscillation among band

states ceases, and the ensemble of oscillators are no longer coherently coupled

to the optical field. Phase relaxation has eliminated the well-defined phase

relationship between the optical cycle of the exciting pulse and the oscillation

of the quantum emitters.

Further collisions and scattering continue, and the system evolves in

this third period from a non-thermal distribution back to a quasi-thermal

equilibrium state. This is not a true equilibrium, which would require the
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relaxation of the population to its original, unperturbed occupation of the

various available states. This time period is sometimes called the hydrody-

namic regime, and optical nonlinearities during this period arise principally

due to many-body effects – Coulomb screening, state-filling, and so on.

Despite this complexity, a remarkable amount of headway in attacking

the problems of describing these dynamics may be made using simple models

in a density matrix theoretical treatment. Typically, such a method will treat

the system as an ensemble of two-level systems that are resonant with an

incident optical field – in the case of broadband excitation such as we use in

our experiments, resonant simply means that the spectrum of the excitation

pulses is sufficiently broad in the vicinity of the transition to result in gain or

loss. We consider here the applicability of such a treatment to the physical

systems we are most interested in – typically, it is simply assumed that such

a treatment is valid. Given the interest in exploring non-Markovian dynamics

with multi-dimensional spectroscopy, however, we would be remiss to fail to

describe the criterion for using a density matrix model. Our discussion here

follows [96].

The complexity of the system dynamics arise due to the interaction of

particles with one another or with a non-resonant background. The resonant

system – the ensemble of two-level systems – is assumed to be coupled to

a dissipative bath with a large number of particles, with a large number of

degrees of freedom. Since a large number of interacting particles involved, it is

computationally intractable to calculate an approximate quantum mechanical
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response for each member of the ensemble and to combine those responses to

determine the macroscopic ensemble response. Very often, however, it is not

necessary to treat each member’s individual response, since the perturbations

on each given member of the ensemble will often by stochastic in nature, when

considered on a time scale greater than a certain correlation time. If the system

under consideration is polled only at a frequency slower than the correlation

time τC there will be no net effective force on an individual particle, as the

particular stochastic processes during the period between measurements will

have averaged to zero. For a homogeneous system the perturbations on all

members of the ensemble should be similar. If the macroscopic measurement

performed by an experimenter takes some finite amount of time to proceed its

value will be a sampled property, averaged over the stochastic evolution of the

ensemble during some measurement period TM :

X(t) =
1

TM

ˆ t+TM/2

t−TM/2
X(t′)dt′

[96]. So long as the measurement time is greater in duration than the

correlation time characteristic of the stochastic perturbations, the behaviour

of every ensemble member should appear identical. If the measurement time

is less in duration than the correlation time, the perturbative forces acting on

an ensemble member cannot be considered stochastic and will not average to

zero during this interval; in this case, the members of the ensemble will appear

distinguishable.
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In room temperature condensed matter systems, the relevant correla-

tion time is typically on the order of 10−14s, but this value may change sub-

stantially at lower temperatures. Since our experiments make use of a pulse

duration on the order of 10−13s this may be of significance to our measure-

ments, and we expect that some effect may be observed as an unavoidable

increase in noise, since the repeated measurement of an individual member

of the ensemble may not be assumed to provide perfectly repeatable results

even absent any noise of purely experimental origin. In practice we find good

repeatability in most of our measurements, suggesting that the experiment is

not limited by this possibly non-stochastic perturbative behaviour. As such,

we assume the bath can be regarded as only a weakly perturbing influence on

the behaviour of the resonant systems, and we may proceed using the density

matrix formalism. While we have not shown conclusively that this is the case,

our results do not suggest otherwise.

In this density matrix formalism, the effects of the dissipative bath are

characterized by only two constants. The validity of this model only holds on

time scales where the measurement occurs more slowly than the characteristic

correlation time describing stochastic perturbations by the bath, limiting the

useful temporal density of measurements that can be performed on such a

system.
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3.3.3 Coherent phenomena

One of the two phenomenological constants that quantifies the relax-

ation of an ensemble of quantum systems in the density matrix formalism

is the dephasing time T2, which may be probed with coherent spectroscopy

techniques. This parameter describes how a coherent optical field creates a

coherent excitation that then loses its well-defined phase relationship with that

field over time [80]. We briefly describe the general nature of this relationship,

to provide a better understanding of what we mean by coherent phenomena.

A high quality example of a coherent source is a continuous wave laser,

which may be considered a nearly monochromatic source of radiation. The

spectral power density for such a source is nearly a Dirac delta function at some

specific frequency. If this light were emitted from a point source, it would have

a nearly infinite coherence length and infinite coherence time. While actual

laser sources used in experimental physics are by no means perfectly operating

coherent devices, the electromagnetic radiation they emit nonetheless exhibits

a remarkably well-defined phase relationship. The temporal coherence may be

quantified with the correlation function

〈
Ẽ(t)Ẽ?(t+ τ)

〉
/
√
I(t)I(t+ τ)

and may be measured with, for example, a Michelson interferometer.

Note that a bandwidth limited pulse would have unity temporal coherence

using this definition.
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Coherent phenomena in materials, however, are typically studied using

pulsed sources with broad spectral bandwidth. As a general rule, the smaller

the pulse width used in a given experiment, the greater temporal resolution

that method can provide. It is frequently repeated that some coherent spec-

troscopic techniques provide temporal resolution determined by the precision

with which pulses may be delayed rather than the temporal width of the pulse

itself. Since those arguments frequently rely upon a theoretical model that

depends upon an analytically straightforward perturbation solution for the

system dynamics, the validity of that statement must be tested[96]. Caveat

ad sapiens.

A similar correlation function can be used to quantify spatial coherence.

If the source of some radiation field has a characteristic length scale much

smaller than the wavelength of the emitted light, i.e. d � λ, the emitted

radiation will have perfect spatial coherence. As an example, consider a single

atom radiating perfect spherical wavefronts: any fluctuations in the transition

frequency at the time of emission should propagate outwards from this isolated

emitter at the same velocity. Therefore, any point on a given spherical surface

centered on the atom will have perfect spatial coherence with anywhere else

on that sphere. The degree of spatial coherence as a function of position in the

radiation field may be probed in an analogous fashion to the measurements of

temporal coherence; for example, using a Young’s double slit experiment [96].

Most macroscopic sources studied in nonlinear optical spectroscopy are

arrays, possibly ordered, of oscillating electric dipole sources. The coherent
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four-wave mixing emissions we discuss at length in this thesis are emitted from

arrays of dipoles – generally, analytical results will be developed to describe

the radiated signal in terms of a macroscopic array of dipoles [402]. The

antenna-like properties of these arrays may be exploited to study microscopic

phenomena by collecting the highly directional radiation resulting from the

polarization induced in these materials [183].

The spatial coherence of emitted radiation must be considered, at least

in passing. Point source emission is not a realistic model for most of the light

sources one will study in a typical experiment, and certainly not for four-wave

mixing experiments on quantum wells where the laser spot on a sample may

be tens of microns in diameter. Since d � λ here, any sufficiently advanced

model for the nonlinear optical response should consider the effects of the

spatial array on the emission – including the consideration of the effect of

disorder in the material [357]. Although little attention is generally paid to

these effects in practice, in principle the angle between non-collinear beams,

and indeed, the numerical aperture of those optics that focus all the beams

used in an optical experiment, should be considered in order to ensure that

the coherence length scale is appropriate for studying the material of interest.

Generally, the relevant length scale is determined by the absorption length, and

an angle between beams for which the coherence length (inversely proportional

to the square of the angle) is approximately equal to the absorption length

is appropriate. This assumes that the interaction length scale is essentially

limited to a few times the absorption length [96].
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3.4 The optical Bloch equations and geometric model

3.4.1 Vector model for quantum states on the Bloch sphere

Shortly after the war Felix Bloch outlined a basic theory of nuclear mag-

netic resonance using phenomenological relaxation parameters – the longitu-

dinal and transverse relaxation times – to describe the decay of an inductively

detected RF signal emitted from a precessing macroscopic magnetic moment

[34]. In normal materials the application of a strong DC magnetic field results

in nuclear paramagnetic polarization, as the individual magnetic moments of

the constituent nuclei align parallel to the bias field lines. Subsequent appli-

cation of an RF pulse (or series of pulses) at right angles to the bias field will

result in a precession of the net magnetic polarization around that bias field.

In a vectorial description, where the bias field forms the z-axis and the direc-

tion of the pulsed RF drive field forms one of the other two axes (for specificity

let us choose the x-axis direction), the polarization may be represented by a

vector that will sweep out paths of decreasing latitude as the frequency of

the applied field approaches the Larmor frequency for the material sample –

quantum mechanically, we may think of this as the applied field approaching

resonance with the nuclear spin-flip transition. The result of the precessing

magnetic field vector is an oscillating component of the nuclear polarization

that lies at right angles to both the bias field and the applied RF field. Using

material parameters for various prototypical substances of interest (for exam-

ple, the proton spins on H2O at room temperature and pressure, with a bias

field of 1T) estimates suggest the feasibility of detecting the rapidly oscillating
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field component arising due to spin precession using inductive pickup coils.

For completeness we note that this was not the first nuclear magnetic

resonance experiment, as magnetic resonance techniques had previously been

used by Rabi, Alvarez, Bloch, and others [297], [298], [299], [7] to measure the

spin magnetic moments of nuclei. These previous experiments were in essence

an extension of the Stern-Gerlach space quantization experiments that use an

inhomogeneous magnetic field to separate a beam of atomic nuclei with differ-

ent spins. Prior spin measurement experiments based on magnetic resonance

relied on the application of an RF field in a region of space between different

analyzer magnets. Tuning the applied field to resonance with a specific nuclear

spin state transition effects a modulation of the intensity of the spin analyzed

beam. Bloch et al.’s work was motivated by a scientific interest in developing

a more direct probe of these transitions, which would not rely on spatially

separating various constituent populations of a beam. As a footnote of some

curiosity to the scientific historian we note that the Stern-Gerlach space quan-

tization technique is still an experimentally useful tool, finding application

today in the field of cold atom physics (for example), where it is employed to

separate stretched spin states in quantum gases (see, for example [55].

We return to the Bloch nuclear paramagnetism studies. Quantum me-

chanically, the application of the bias magnetic field provides a quantization

axis and splits the otherwise energetically degenerate magnetic sub-level states.

The spin dipole interaction Hamiltonian may be written
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H = −µ ·B

for a magnetic dipole µ in a static magnetic field B. The energy levels

of such a Hamiltonian are clearly determined by the spin quantum number

of the particle of interest; in the case of a spin 1/2 particle there will be two

magnetic energy levels.

Once these two levels have been spectrally resolved by the Zeeman

effect (see, for example [340]), they can be coupled via an RF transition. A

relatively straightforward problem in quantum mechanics follows, where the

transition rates may be calculated if the wavefunctions for the two states are

known, and a description of the dynamics may be found without too much

difficulty. The RF pulse sequence prepares an ensemble of two-level systems

in a coherent superposition, which possesses a macroscopic dipole moment.

The excited material volume is a phased array of dipoles, and is capable of

acting as a source term in the Maxwell equations

The elementary two-level quantum mechanical system is, however, un-

able to properly describe this system. As noted previously, the introduction of

phenomenological relaxation rates, T1, describing spontaneous emission from

the excited state, and T2, a dephasing rate describing the loss of phase co-

herence among the oscillators in the ensemble, is the two simplest parameter

scheme that extends the usefulness of this model. In the field of magnetic res-

onance experiments, this was found to provide a useful model for interpreting
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many of the physical phenomena observed. Indeed, the experimental result

[35] published in the same issue of Physical Review demonstrated the success

of the principle of nuclear induction.

The T1 and T2 parameters parameters exhibit a complex dependence

on the specific details of a given system, and are generally impossible to cal-

culate from first principles. Even in the absence of a conventional dissipative

bath, if the ensemble of two-level systems were to reside in a perfect vac-

uum, the vacuum field itself would act as a perturbation. In this limiting

case the vacuum fluctuations result in the inherent, natural line broadening

of the transition. Of course, in most realistic systems, there are an enormous

number of perturbations that perturbatively affect the individual oscillators

in a macroscopic ensemble. We discuss elsewhere in this thesis the limits that

stochasticity places on the time scales that may be probed using such a simple

model for relaxation. For now, we turn our attention to visualization tools

that are commonly used to develop an intuitive understanding of Bloch-like

systems.

Feynman et alia describe a geometric method for visualizing the Schrodinger

evolution of non-interacting, two-level quantum mechanical systems under the

influence of some generalized perturbation [121]. They demonstrate that by

performing a transformation of variables, the Schrodiinger equation may be

written in the form

dtr = ω × r
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where the components of the vector r are defined such that they com-

pletely determine the state |ψ〉 of the system, and the components of ω are

chosen such that it describes the perturbation that couples the two states. In

developing this formalism they frequently refer to their prototype system, a

magnetically coupled spin 1/2 system. In that case, the space in which the

vector r is embedded is the real, three-dimensional physical space, though this

is not generally true for an arbitrary two-level problem.

Nonetheless, if the Hamiltonian of an arbitrary two-level system may be

written in an isomorphic functional form, then the evolution of that system is

equivalent to the prototype spin 1/2 system, and may therefore be understood

in a similar fashion. The authors suggest using this formalism to study and

analyze various MASER problems, making the explicit connection between

the relatively low frequency regime of NMR and the highest frequency regime

accessible at the time (this 1957 paper predates the invention of the laser).

From this point, the connection between the underlying concepts of

spin and electronic physics provides a robust foundation for a broad range of

optical experiments. The advent of the colliding pulse mode-locked laser was

still decades away and the time scales of interest could not yet be probed in

semiconductor, but there was now a program to use the Bloch theory formalism

to model the dynamics of optical excitations in solid state systems.

The geometrical representation developed in this paper doesn’t actually

provide any problem-solving capability not already present in a more conven-

tional analysis of the Schrodinger equation, and no results can be obtained
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that aren’t already accessible to straightforward calculation, but it does pro-

vide a rapid pictorial representation of these problems that provides a more

immediate sense of physical intuition.

Reaching back conceptually to Bloch’s papers on spin dynamics [34],

[35], the authors note that a complete, rigorous geometrical model of the

Schrodinger equation evolution for a two level system is equivalent to the

well-studied classical mechanics problem of the procession of a gyromagnet in

a magnetic field (a gyromagnet is any object whose magnetic dipole moment is

coupled to the magnitude and direction of its angular momentum, whether in-

trinsic spin or classical angular momentum). Restricting their attention to the

dipole transition coupling of quantum two-level systems, they develop explicit

analyses of MASER oscillators and radiation damping effects.

The wave function for a particular individual member of an ensemble

of spatially distinct quantum emitters may be written

ψ (t) = a (t)ψa + b (t)ψb

where the state ψ is decomposed onto the two eigenstates of the Hamil-

tonian, which have eigenenergies W + ~ω0/2 and W − ~ω0/2. For the rest of

the analysis, one may without loss of generality take the mean energy of this

single system to be W = 0. In practice, it will be determined by the kinetic

energy of the individual system, and possibly by any internal degrees of free-

dom that are not affected during the time period of interest. The resonant
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frequency for the transition, ω0 is taken to be positive semidefinite.

Frequently one will solve Schrodinger’s equation for some quantum me-

chanical system subject to a perturbation V , obtaining the coefficients a (t)

and b (t), and then use that knowledge of the complete wavefunction to cal-

culate expectation values for any observables of interest for any subsequent

time. But the complex coefficients do not immediately yield the values of the

physical properties of the system, viz. the expectation values of operators

corresponding to observables.

Nor is it sufficient for our purposes to solve for the magnitudes of these

coefficients – which would only determine the population of the levels and

the likelihood (probability) of a transition. In order to study any processes

that depend upon coherence between the states it is required to solve for the

phases of a and b – however, since the overall phase of the wavefunction is not

significant, and can be set arbitrarily, the wavefunction ψ (t) = a (t)ψa+b (t)ψb

actually requires only three real numbers to be completely determined – the

magnitudes of a and b and their relative phase.

The Bloch vector (r1, r2, r3) is formed from three real-valued functions

of the coefficients a (t) and b (t) that may be shown to have a straightforward

physical interpretation (unlike the coefficients themselves)
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r1 = ab∗ + ba∗

r2 = i (ab∗ − ba∗)

r3 = aa∗ − bb∗

If an individual two-level system is perturbed in such a way as to move

it into the ψa state, with no projection along ψb, r3 takes on the value of

unity. Of course, this would destroy any coherence between the two levels,

which is reflected by r2 = r3 = 0. If the population is moved entirely to the

other state, i.e. the projection of ψ onto ψb is 1, this will result in the Bloch

vector x̂3-coordinate projection taking the value of -1, and again, the other two

components will be zero. The Bloch vector will describe motion on a spherical

surface; the first and second components describe the coherence between the

two states while the third is determined by the population inversion.

It is also possible to express these quantities in terms of the density op-

erator matrix elements – see, for example, [166] for a treatment of the Bloch

vector description using density matrices. In some cases an alternate defini-

tion is preferred for the Bloch vector that eliminates fast, optical frequency

oscillation from the geometric picture by defining the coherence components

r1 and r2 to be proportional to the optical cycle by including a factor of eiωt.

If a density matrix treat; the exponential term cancels out the fast

oscillation by effectively moving into a coordinate system that co-moves with

resonance Rabi oscillation in the x-y plane.
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The time evolution of the vector r is found from Schrodinger’s equation,

which yields

i~dta = a

(
~ω0

2
+ Vaa

)
+ bVab

Similar expressions may be obtained for dtb, dta
∗, and dtb

∗. These time

derivatives of the coefficients may be used to construct the vectorial differential

equation noted earlier,

dtr = ω × r

where the vector ω is defined in the same space in which r is embedded,

by

ω1 =
1

~
(Vab + Vba)

ω2 =
i

~
(Vab − Vba)

ω3 = ω0

All of these components are also all real valued functions. The only

remaining real bilinear combination of the a and b coefficients is, by design,

equal to the length of the vector r:

|r| =
√
r2

1 + r2
2 + r2

3 = aa∗ + bb∗
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and is constant in time.

The equation of motion described by

dtr = ω × r

is isomorphic to that of the precession of a classical gyromagnet in a

magnetic field. Logically, then, in the case that the two-level system of interest

is in fact a spin 1/2 particle that can transition between two magnetic levels,

the geometrical space in which r embedded is also the real physical space. In

this case the components of r, r1, r2, r3 will be equal to (within some constants

of proportionality) the expectation values of the dipole operator, µ1, µ2, µ3,

and the components ω1, ω2, ω3 will be propotional to the components of the

magnetic field Hx, Hy, Hz

In general, however, this formalism does not describe an r-space that is

necessarily equivalent to the real physical space. Nonetheless, the behaviour

in the r-space of some two-level system may be understood by analogously

considering the equivalent dynamics of the well understood physical system of

spin precession using a classical vector model (e.g. using something akin to a

single site of a classical Heisenberg lattice model).

Significantly, this analysis permits the study of the effects of the ma-

terial system acting back upon the electromagnetic field, – the effects of spin

dynamics are typically observed by the emission or absorption of RF fields. It

is easily shown that the energy for a single system in the ensemble is given
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〈
Ĥ
〉

=

ˆ
ψ∗ĤψdV =

~ω
2

(aa∗ − bb∗) = r3
~ω
2

If energy is measured in units of ~ω/2 then the total energy for the

ensemble is the sum of all the r3 values for each individual system, or, alter-

natively, is found from the projection onto the x̂3 axis of the vector sum

R =
∑
i

ri

integrated over the volume of interest in the material system. A super-

script is used here to index the Bloch vectors of individual quantum emitters

in the ensemble so as to avoid confusion with the components of those vectors.

More generally, any one particle operator ς̂ can be written as the sum

of several bilinear terms in the coefficients a (t) and b (t),

ς̂ = ςab
∑
i

(
ai
)∗
bi + ςba

∑
i

(
bi
)∗
ai + ςaa

∑
i

(
ai
)∗
ai + ςbb

∑
i

(
bi
)∗
bi

where the sum over i refers to the summation over each individual system in

the ensemble. As a result, the operator ς̂ is a linear combination of the rj or

Rj components, and its value may be found as the projection of the vector R

along some direction in the r space.

Transitions between the states can be modeled directly in this space as

well. For an electric dipole, 4m = 0 transition, the perturbing potential that

couples the two states may be written (as usual) as
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Vab = −µabE

For simplicity the matrix element µab is taken to be real. Then the

components of ω may be found

ω1 =
1

~
(Vab + Vba) = −2µab

~
E

ω2 =
i

~
(Vab − Vba) = 0

ω3 = ω0

then in this case, the expectation value for the dipole operator may be

found using the appropriate bilinear combination of the a and b coefficients,

〈µ〉 = a∗bµab + b∗aµba = r1µab

or, stated in the language of the macroscopic effects that occur due to

the ensemble behaviour, the polarization of the system, P, along the electric

field, is equal to the projection of r on the x̂1 axis in the volume of interest.

For electric dipole 4m = ±1 transitions, assuming Ex and Ey to be

the fields coupling to the dipole, then

V = −1

2

(
µ+E− + µ−E+

)
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with E± = Ex ± iEy, µ± = µx ± iµy , which by some manipulation of

the dipole µ± operators yields the matrix elements coupling the two states

Vab = −1

2
µ+
ab (Ex − iEy)

Vba = −1

2
µ−ba (Ex + iEy)

again, taking µ+
ab as real, µ+

ab = µ−ab = γ, and

ω1 = −γ
~
Ez

ω2 = −γ
~
Ey

ω3 = ω0

In both cases, the interaction can be envisioned by considering the

behaviour of a corresponding gyromagnet precessing in a classical magnetic

field.

The geometric formalism outlined here explicitly only treats the explicit

quantum mechanical coupling that we obtain from the Schrodinger equation;

nonetheless, an extension of this method that relies on the density matrix

formalism permits the addition of the phenomenological relaxation effects that

appear in the Bloch equations. In particular, such an analysis lends itself to

the analysis of the photon echo effect (for which see elsewhere in this thesis).

That approach (after [166]) is useful for considering the coherent regime

that occurs after ultrafast excitation couples two states in a semiconductor
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system (or more accurately, two bands of states) coupled by an harmonic

electric field E (t) = E0

2
(eiωt + e−iωt). If the the rotating wave approximation

is applied, a single particle density matrix may be written

ρ (k, t) =
∑
α,α′

ρα′α (k, t) |α′k〉 〈αk|

where α refers to the particular band of states (in our cases of interest,

the conduction and two valence bands) and k refers to the crystal momentum

of that state. Note that this analysis does not contain any interaction between

different momentum states, i.e. this is still a non-interacting ensemble model.

The density matrix time evolution will satisfy the normal equation of

motion for a density operator

dtρ (k, t) = − i
~

[Hk, ρ (k, t)]

Working in the interaction picture (see, for example [315]) allows a sim-

ple calculation of the density operator matrix elements, which we will then use

to determine the density operator matrix elements in the standard Schrodiner

picture. In the interaction picture, the elements are found from the equation

of motion

dtρ
int (k, t) = − i

~
[
H int

k , ρint (k, t)
]
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where the interaction Hamiltonian will be diagonal – again, this anal-

ysis relies upon the assumption that one may ignore Coulomb interaction be-

tween states with different momenta k. Working with the interaction density

operator, defined by

ρint (k, t) = eiĤ0t/~ρ (k, t) e−iĤ0t/~

is equivalent to working in a rotating frame. A density operator matrix

element in this picture will be associated with a particular transition between

a valence and conduction band state for some particular momentum,

ρintcv (k, t) =
〈
c, k

∣∣ρint (k, t)
∣∣ v, k

〉
One may transform back to the Schrodinger picture to obtain the den-

sity operator matrix elements

ρcv (k, t) = ρintcv (k, t) e−i(Eck−Evk)t/~

The interband equations may be expressed as a simplified Liouville

equation

(dt + i$k) ρcv (k, t) eiωt = −iωR
2

[ρcc (k, t)− ρvv (k, t)]

where the detuning is defined as $ = (Eck − Evk) /~−ω and the Rabi

frequency as ωR = dcvE0

~ . This quantity is real as long as the dipole off-diagonal
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matrix element is real. Again, for simplicity, this analysis uses the normal

convention of assuming no diagonal matrix element for the dipole operator,

and that dcv = dvc,

It is now possible to define a Bloch vector using these density matrix

elements. In this treatment, the Bloch vector comprises three components,

U1 (k, t) = 2Re
{
ρcv (k, t) eiωt

}
U2 (k, t) = 2Im

{
ρcv (k, t) eiωt

}
U3 (k, t) = ρcc (k, t)− ρvv (k, t)

from which we immediately see that the x̂3-component again describes

the population difference, while the first and second components describe the

coherence between the coupled states. The exponential term in the coher-

ence dependent terms removes the fast oscillation by moving into a coordinate

system that co-moves with a resonant Rabi oscillation in the x̂1-x̂2 plane.

The time evolution of the density operator Bloch vector can be written

in a compact form similar to that which we used previously, although due to

the slightly different definitions used here, the equation

dtU (k, t) = Ω×U (k, t)

now depends on the vector Ω = ωRe1 − $ke3, which determines the

frequency of precession of the Bloch vector. As before, we understand this
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equation in the context of the motion of a vector g that satisfies

dtg = η × g

which describes the rotation of g around the axis defined by the vector η

at an angular frequency |η|. In the coherent regime, the optical Bloch equations

represent the light-matter interaction as a rotation of the Bloch vector at a

frequency determined by the inherent energy spacing of the different levels

and the detuning of the optical field coupling them. If the field is turned off

at some time, the time rate change of the Bloch vector goes to zero, and the

Bloch vector remains frozen in that position.

If the system is excited on resonance (the detuning parameter $ → 0),

then the vector describing the perturbation, Ωres = ωRe1−0 ·e2, lies along the

e1 axis. The resulting evolution of the Bloch vector then simplifies to rotation

around e1. Assuming that the population is initially distributed only in the

lower level (note that we no longer refer to projection of a single quantum state

onto a specific ψa or ψb as we are now working in an inherently many-body

picture, albeit one without any interaction among its constituent members),

on-resonant excitation will begin transferring population to the higher state;

after a time ωRt = π/2, the x̂3-component of the Bloch vector, U3, will equal

zero. As noted, this component depends upon the population inversion, and

at this point there is an equal population distribution in both states. At

the same instant, the polarization, represented by the U2 component, will
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be maximal since the Bloch vector will lie in the x̂1-x̂2 plane. Continued

excitation will decrease the value of U2 and, by extension, of the polarization,

as more population is moved into the higher energy level. After a time ωRt = π

the population is completely inverted, with U3 = 1; at this point there is

no polarization. Continued excitation from this point results in the system

returning to its initial condition after time ωRt = 2π, at which point one

whole cycle has been completed. This process is commonly known as Rabi

flopping, and may be directly observed in optical nutation; for example, see

the observation of transient spin nutation in nuclear magnetic resonance [364]

or transient optical nutation [181].

A pulse of given duration will always result in rotation of the Bloch

vector by a certain angle in this geometrical picture. For any non-zero de-

tuning, the Ω3 component of the perturbation vector is also non-zero value,

and as a result the Bloch vector now rotates around an axis with a non-zero

x̂3-component. The path that the Bloch vector traces on the Bloch sphere no

longer passes through the inversion extrema (i.e. those points where U3 = ±1).

Thus for a finite detuning there is always some distribution of the population

in both energy states.

As we have noted in this thesis, one of the significant advantages of

using any density operator formalism is the flexibility it permits to add phe-

nomenological dissipative terms ’by hand’ to account for relaxation processes.

Transverse relaxation time T2 here results in the decay of the transverse com-

ponents U1 and U2 (for the sake of clarity we note that this is not the origin
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of this piece of jargon, as the nomenclature of “’longitudinal’ relaxation time”

and “’transversal’ relaxation time” may be found in Bloch’s theoretical paper

outlining his formalism for nuclear magnetic resonance [34]). The population

inversion U3 decays by spontaneous emission or other non-radiative mecha-

nisms, which are together described by the longitudinal relaxation time T1.

Deriving these quantities from theory is extremely challenging and most of-

ten an empirical value or semi-empirical value must be used. Including these

effects, we re-write the optical Bloch equations

dtU1 (k, t) = −U1 (k, t)

T2

+$kU2 (k, t)

dtU2 (k, t) = −U2 (k, t)

T2

−$kU1 (k, t)− ωRU3 (k, t)

dtU3 (k, t) = −U3 (k, t) + 1

T1

+ ωRU2 (k, t)

The simplest way to study the effect that these dissipative terms have is

to assume the creation of an initial state for the Bloch vector, and then apply

these time derivative equations in order to understand the subsequent rotation

and decay of the polarization induced by the initial preparation. We do not

consider specific examples here. We note again that this density theoretical,

geometrical Bloch picture lends itself to an analysis of the photon echo type

of experiment, which we shall turn to in depth later.

More important to us than the particular details of either of these

two methods for visualizing the Bloch equations is the fact that the paper
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outlining the original idea for a geometric scheme to aid in interpreting Bloch

dynamics makes clear a concrete connection between the dynamics of a broad

range of two-level systems. As long as the dynamics of an ensemble may be

assumed to be dominated by the unperturbed energy structure of an isolated

single oscillator and the coupling perturbation, the Bloch equations (for spin

physics) or optical Bloch equations (for optically coupled electronic states) are

expected to provide a reasonably accurate model for their temporal evolution.

To some extent this is true, but the inclusion of many-body physics effects that

are wholly inconsistent with the Bloch equation picture has proven necessary.

Indeed, it is in the failure of the Bloch equations to adequately describe exciton

dynamics in semiconductor nanostructures that has driven a great part of

the scientific interest in this field, as new and more sophisticated theoretical

frameworks have been developed to understand these many-body systems.

3.4.2 Semiconductor optical Bloch equations

The relatively tractable models based on the Bloch equations used to

describe nuclear resonance are useful tools to develop an intuitive understand-

ing of the dynamics of an ensemble of dipole oscillators, such as excitons cre-

ated in a semiconductor quantum well. Nonetheless, these models are largely

based upon the assumption that for a sufficiently low excitation density the sys-

tem will behave as a non-interacting ensemble of two-level systems. A number

of experiments test the validity of such theories, and indeed, prove that they

cannot accurately describe the nonlinear optical response of Wannier excitons
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in semiconductors. A more sophisticated model is necessary to understand

the effects that exciton-exciton interaction have on the coherent emission. An

immediate extension of the optical Bloch equation/Taira model is a number of

results collectively referred to as the semiconductor optical Bloch equations.

In particular, these models are well-suited to the study of higher excitation

densities and the related nonlinear phenomena. A useful introduction to the

semiconductor optical Bloch equations can be found in reference [166], which

we largely follow here – the quality of this source should perhaps not be sur-

prising given the authors’ close involvement with the development of these

theories (see, for example [251]).

In brief, the semiconductor optical Bloch equations are a set of differen-

tial equations derived in the second quantization formalism that describe the

dynamics of coupled electron and hole populations and the resulting optical

polarizations in the spectral region close to the band gap. The coupling be-

tween bands is described with a generalized Rabi frequency, resulting from the

additive effects of the externally applied optical fields and the internal dipole

field due to induced electron-hole excitations. Analysis of the semiconductor

optical Bloch equations leads to the distinction of several distinct regimes,

considered in terms of excitation density and characteristic timescale :

1. Low excitation regime – here, exciton resonances, and in some circum-

stances the formation of bi-excitons, dominate most optical properties.

Phonon scattering is the most important relaxation and dephasing pro-

cess. With greater density the scattering between multiple electron-hole

133



excitations becomes more significant. We note that most experimen-

tal work is typically performed in a low excitation regime in order to

minimize the complexity that can arise in a denser system. At the low

temperatures used to study exciton dynamics in semiconductor quantum

wells, scattering is typically dominated by acoustic phonons.

2. High excitation regime – here, the process of optical excitation may cre-

ate an electron-hole plasma. Coulomb screening of the carriers by other

optically excited carriers and the collective plasma oscillations (plas-

mons, if they can be well characterized by a quasi-particle description)

alter the optical properties of the material. The principal dissipative

effects are carrier-carrier Coulomb scattering.

3. Quasi-equilibrium regime – here, the relevant system dynamics occur

on relatively long timescales, or put differently, the relaxation processes

tend to exhibit fairly long durations compared to the individual events

that move the system back toward equilibrium. The populations of the

excited states may be approximated with thermal distribution functions

using an effective temperature. The relaxation toward an actual thermal

equilibrium state is relatively slow and can be treated with semi-classical

relaxation and dephasing kinetics.

4. Ultrafast regime – here, coherent quantum effects and the initial dissi-

pative processes significantly determine the material’s optical response.

Decoherence processes, initial relaxation, and the development of cor-
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relations (which require time to build up) are determined by quantum

kinetics that may be non-Markovian, and generally depend on carrier-

carrier and carrier-phonon scattering.

The semiconductor optical Bloch equations provide a relatively straightforward

treatment of multi-pulse experiments and allow the study of both relaxation

processes and the build-up of correlation among excited quasi-particles. Sig-

nificant effort concentrates on explaining the results of four-wave mixing spec-

troscopy and time-resolved differential transmission spectroscopy that were

not amenable to analysis using the optical Bloch equations.

The semiconductor optical Bloch equations, not surprisingly, bear a

functional resemblance to the optical Bloch equations for an ensemble of non-

interacting two-level systems:

∂tPk = −i (ee,k + eh,k)Pk − i (ne,k + nh,k − 1)ωRk + ∂tPk |scattering

∂tne,k = −2Im {ωRkP ∗k }+ ∂tne,k |scattering

∂tnh,k = −2Im {ωRkP ∗k }+ ∂tnh,k |scattering

where the polarizations Pk would correspond to the off-diagonal terms

in a density operator calculation, while the populations ne/h, k would corre-

spond to the diagonal terms. The index e/h labels an electron or hole states

here, while k is the normal crystal momentum. The terms ee/k, k are single

particle energies for an electron or hole state at a given momentum. The
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terms proportional to 2Im {ωRkP ∗k } describe the light-matter coupling that

generate electron and hole pairs via absorption. If the scattering terms are

discounted, the rate change of the hole and electron terms are equal. The

term in the first of the SOBE’s proportional to (ne,k + nh,k − 1) may be re-

written − (−ne,k − nh,k + 1) = nv,k − nc,k and is clearly just the population

inversion for states with momentum k. The effects of this term on the po-

larization are known variously as Pauli blocking, state filling, or phase space

filling, and contribute significantly to the many-body dynamics of an exciton

system. These effects were among the first studied in the development of the

semiconductor optical Bloch equation [322]. The saturation of an exciton ab-

sorption resonance due to free carrier plasmas or exciton gases was studied

in a relatively low density regime, where the interactions were mediated by

long-range phase-space filling and exchange forces. The screening of Coulomb

forces was found to be relatively weak in a two-dimensional exciton gas, per-

mitting the effect of these perturbations to extend across the relatively large

inter-particle spacing.

Superficially, it may appear that these equations are decoupled in terms

of momentum k, and that this is not actually a many-body theory at all. The

interaction effects are present, nonetheless, and appear implicitly in the gener-

alized Rabi frequency. This generalized frequency ωRk actually couples states

of different momenta to the state k; physically, that coupling is due to the ef-

fective field’s dependence on Coulomb mediated interactions with the induced

polarization as well as usual, external optical fields. The exciton-exciton in-
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teractions also appear in the form of the Coulomb interaction terms in the

exchange energy, which in part determines the renormalized single particle

energies eh/e, k.

Mean field theories – those that assume that a single particle wave func-

tion interacting with an average field that approximates the effect of many-

body interactions along with any external perturbations – may be considered

without introducing the scattering terms in the semiconductor Bloch equa-

tions. All the interactions beyond the mean field are contained in the scatter-

ing terms, which describe dissipative behaviour like dephasing for the inter-

band polarization and population distribution relaxation induced by collision.

Those relaxation mechanisms cause system to return to thermal equilibrium

before a purely radiative decay would occur if the system comprised only a

single isolated oscillator subject to no external perturbations; this is analogous

to the substitution τ0 → T in our description of the relaxation of a classical

Lorentz oscillator.

Again, it is analytically and numerically intractable to model the per-

turbative forces that enhance relaxation processes from first principles, and

again, a phenomenological description of relaxation is used. This requires at

least two relaxation time constants, T
′
1and T1:

dtne,k |scattering=
fe,k − ne,k (t)

T
′
1

− ne,k (t)

T1

where the first term models intra-band relaxation, as a non-equilirium
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distribution in a given band evolves toward its thermal distribution without

changing the number of carriers, while the second term describes the inter-band

recombination of carriers. The simplest description of dephasing kinetics for

the interband polarization once again uses a constant transverse relaxation

time T2. Nonlinear and non-Markovian effects establish the limits of applica-

bility of this approximation, but when it is valid is tends to work well even if

the underlying dynamics that result in dephasing are quite complex. Concep-

tually, we might suggest that if the perturbations may be viewed as stochastic

on those time scales that are probed with macroscopic optical measurements,

these relatively simple models for dephasing and population relaxation are

satisfactory.

In certain regimes, the use of ultra-short pulses may require abandoning

the Markov approximation that allows the scattering terms described here

to be dealt with using a Boltzmann-like scattering form. In the ultra-short

regime it may be necessary to use quantum kinetics that keep track of the

scattering processes with a memory structure that describes processes that are

not completed during the duration of the pulse – quantum coherence among

electron states influences the scattering dynamics, giving rise to a combination

of coherent and dissipative effects.

In the limiting case of no interaction the semiconductor optical Bloch

equation can be used to reproduce the results of the Wannier equation for

electron-hole pairs or the optical Bloch equations for free carrier transitions.

Typically, a self-consistent treatment using the semiconductor optical
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Bloch equations to describe the source polarizations in the Maxwell equations

is necessary to describe the complete physics of a system exited by a pulsed

source if the material system has sufficient spatial extension that propagation

effects cannot be ignored – such as the polariton effects that arise when a pho-

ton and exciton mode mix into a propagating hybrid mode. These propagation

effects are generally neglected in optically thin samples, though the validity of

that assumption as applied to even the thinnest direct band gap materials may

be questionable for resonant or near-resonant excitation. If it is reasonable to

consider the material as an optically thin sample, the transmitted optical field

is simply proportional to the calculated polarization field induced in the ma-

terial, and an integro-differential equation describing propagation effects can

be avoided.

We note for the sake of completeness that a significant portion of the

work on semiconductor optical Bloch equation theory was developed in the

context of the excitonic optical stark effect, where sub-resonant excitation

was observed to result in the splitting of the exciton peak near resonance in

differential transmission, pump-probe measurements. We do not discuss this

problem at length here.
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Chapter 4

A history of exciton optics

4.1 Nonlinear optical spectroscopy and its relation to
nuclear resonance

Early spectroscopic measurements of excitation in semiconductors con-

centrated on the dynamics of free photo-excited carriers. After Elliott’s de-

scription of optical absorption by exciton emission, a significant effort was

made to understand the dynamics of these bound electron-hole pairs. Most

studies interpreted the results of time-resolved spectroscopy of excitons fol-

lowing the models previously developed with great success in NMR. Coherent

optical spectroscopic tools were developed to study the process of optical deco-

herence, that is, to understand how a population of excitons coherently created

by ultrafast laser pulses would lose their well-defined phase relationship.

The Bloch equations [34] were found to be successful in describing the

dynamics of an ensemble of magnetic spins aligned by a bias field and subse-

quently excited and studied with pulsed RF electromagnetic fields [35]. The

particular utility of this theory for understanding the behaviour of so broad a

range of phenomena was due to its description of the relaxation toward thermal

equilibrium using only two physical parameters, the population decay time T1

and the dephasing time T2, frequently called the longitudinal and transverse
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relaxation times for historical reasons. It is assumed that there is some set of

perturbative processes that induce relaxation that are generally too compli-

cated to describe from first principles, but which may be approximated on a

sufficiently long time scale by a straightforward decay of coherence and popu-

lation among the members of the excited ensemble. See elsewhere in this thesis

for a brief description of the applicability of this density operator theoretical

model as regards to the assumption of stochasticity of the perturbing forces

acting upon the ensemble.

An enormous body of scientific progress has been performed using nu-

clear magnetic resonance techniques to study a wide variety of systems for

which spin flip transition energies and relaxation times – in part, the broad

applicability of such techniques is only possible by a happy accident of the

value of material parameters that results in the emission of RF signals that

can be readily detected in a normal laboratory environment.

4.1.1 Spin echoes and the development of photon echoes

Significant advancements in nuclear resonance relevant to our own in-

clude the development of multiple-pulse experiments, which frequently serve

as a model for developing corresponding optical spectroscopic techniques. No-

table among these are the spin echo technique [156]. In a spin echo experiment,

a series of RF pulses with temporal widths sufficiently short compared to the

relevant relaxation times are used to resonantly excite spin-flip transitions in

a liquid. After the pulse sequence has finished, the macroscopic magnetiza-
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tion induced in the material continues to evolve, as the individual magnetic

moment vectors precess freely around the quantization axis.

For an inhomogeneously broadened transition, the statistical distribu-

tion of the Larmor frequencies for each of the members of the ensemble also

determines these magnitude of those individual moments. The individual mag-

netic moment vectors will fan out due to their different precession rates, result-

ing in a rapid decay of the macroscopic magnetization due to this dephasing,

and therefore in the intensity of the inductively detected radiation. Nonethe-

less, the series of applied pulses determines specific times in the future when

there will be a constructive interference among the individual magnetic mo-

ment vectors, resulting in the observation of a revival – the spin echo – in the

spontaneous nuclear induction signal.

This effect is described using the Bloch theory, and allows direct mea-

surement o f the relaxation times by observation of the amplitude of the spin

echo signal as a function of the delay times used for the pulse sequence. An

early extension of the spin echo technique was used to measure both trans-

verse and longitudinal relaxation times [59], studying the effect of artificially

induced inhomogeneous broadening on the temporal line shape of a spin echo

signal. This allowed the study of the effects that diffusion has on a coherently

prepared ensemble of oscillators – illustrating a clear direction for a large

volume of later work using photon echoes or similar multiple pulse optical

spectroscopic methods.

The conceptual connection between the Bloch model for nuclear res-

142



onance and excitation of optical frequency transitions was made explicit in

the mid-1950’s, shortly after these early papers on spin echo methods demon-

strated the capabilities of sophisticated spectroscopic techniques for charac-

terizing and describing a broad range of material systems [121]. Feynman et

alia describe a geometric method for visualizing the Schrodinger evolution of

non-interacting, two-level quantum mechanical systems under the influence of

some generalized perturbation. While useful as a tool for developing physical

intuition for the evolution of two-level systems, this paper is more important

for our purposes for its role as a link between the well-developed field of nuclear

resonance physics and the optical science that was possible after the develop-

ment of coherent radiation sources at the appropriate wavelength – i.e., the

invention of the laser [259].

After light sources in the infrared and optical range became available,

a number of experimental programs were conducted to demonstrate optical

analogs of phenomena observed in nuclear spin transitions. While these re-

sults were scientifically important in so much as they characterized the optical

response of a number of materials, they are more significant for developing

nonlinear optical techniques that would be used to study a broad range of

systems.

Early results from the Columbia Radiation Lab included the observa-

tion of a photon echo – analog to spin echo – in a solid state sample. Ruby

crystals had been used to develop the first visible wavelength lasers, and were

studied in a number of early nonlinear optical experiments [229]. Two pump
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pulses are used to induce the emission of a photon echo, observed after a delay

almost exactly equal to the delay between the two incident pulses, in a result

analogous to spin echo observations [156].

Schematic for first photon echo experiment. 
Reproduced from Kurnit et al. Physical 

Review Letters 13:567 (1964). !

Figure 4.1: First photon echo schematic

Here, the photon echo measurement was used to study the dephasing

of electron spins on chromium ions in the ruby matrix, due to spin flips with

adjacent aluminum nuclei and electrons.

The first excitation pulse induces a Lamb-Dicke superradiant state [94]

in the material, which has a large macroscopic dipole moment due to cor-

relations among the individual emitters in the ensemble. This macroscopic

ensemble will oscillate at the optical frequency, emitting radiation, until it

decays via population relaxation and/or dephasing. In some materials, the

time scales of those two processes are comparable, although in these samples
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dephasing processes will dominate due to the relatively long population life-

time, while dephasing occurs due to inhomogeneity principally arising from

crystal strain. After significant dephasing has occurred but the population is

predominantly still present in the excited state (at this point, the population

relaxation continues by normal spontaneous emission), a second pulse arrives

and induces a reverse time evolution for the ensemble. After a waiting time

equal to the delay between the two incident pump pulses, this rephasing pro-

cess (as it is called) will have caused a revival of the macroscopic dipole state,

emitting a correspondingly intense coherent pulse of radiation. This is the

photon echo.

The first experimental observation of the photon echo [229] used a q-

switched pulsed laser source to produce 10 ns pulses. The limits of laser

technology at the time restricted the materials tractable to this type of time-

resolved spectroscopy. Non-collinear pump pulses excite a ruby crystal sample

at liquid Helium temperatures, producing a photon echo signal in the phase-

matched direction. A significant fraction of the experimental effort in these

early results was focused on demonstrating that the photon echo was not a

spurious signal.

The photon echo is explained using an ensemble of two-level systems

[2], explicitly noting the similarity between its behaviour and spin echo sys-

tems by referencing the Feynman paper on two-level systems [121]. There is a

distinction made between the nature of the emission, which in a nuclear reso-

nance experiment depends on the vector sum of individual magnetic moments
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Phase-matching geometry (a) and timing sequence (b) for the first 
photon echo experiments. The nonlinear signal is emitted along k, in a 

background free direction. The timing diagram indicates the relative 
timing of the photon echo signal (and the initial free-induction decay) 

relative to the two intense excitation pulses. The photon echo is 
indicated here by the revival of the dipole expectation value. Adapted 

from Abella et al., Physical Review 141:391 (1966).!

Figure 4.2: Phase-matching and timing for photon echo
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First photon echo signal. Time increases 
from left to right in the oscilloscope traces. 
The right-most feature is the photon echo 

signal observed in a ruby crystal. 
Reproduced from Kurnit et al. Physical 

Review Letters 13:567 (1964). !

Figure 4.3: First observed photon echo signal

– both the ground and excited states have a permanent magnetic dipole –

whereas in an optical photon echo experiment, the electric dipole moment de-

pends on a coherence induced between two states, since no permanent electric

dipole moment generally exists for either states. Nonetheless, the dependence

of the ensemble’s temporal evolution on a dipole matrix element is similar in

both cases.

An optical Bloch equation can be used to describe the evolution of a

pseudo-electric dipole moment vector that represents the transverse compo-

nents of the electric dipole moment and the degree of excitation of the system,

similar to the Bloch equations used for magnetic dipole evolution under an

applied field. Similarly, phenomenological relaxation terms may be used to
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describe decoherence and population relaxation.

In order to predict a photon echo, it is necessary to develop a theoretical

treatment that can describe the inhomogeneity present in the material system.

After the first pump pulse excites a coherence in the sample, the individual

Bloch vectors (using a geometrical model where an individual vector describes

the evolution of each emitter in the ensemble – see our previous description

of geometric\Bloch sphere models) fan out in the space in which the Bloch

vectors ri are embedded, as each evolves with a different resonant frequency.

That fanning out reduces the magnitude of the vector sum of the individual

dipole moments that comprise the net, macroscopic polarization, a function

of R =
∑

i r
i in the Bloch vector space. As the polarization is reduced, the

power radiated by the system decreases.

The second pump pulse induces evolution that reverses the motion of

the Bloch vectors. More specifically, in the geometric picture, the second

pump pulse actually rotates all the Bloch vectors through π radians, so that

the staggered order of the individual vectors has been effectively reversed, with

the fastest evolving oscillators now lagging the slowest. During the subsequent

evolution, those fastest precessing vectors will now ’catch up’ with the slower

Bloch vectors. After a waiting period equal to the delay between the two pump

pulses the individual Bloch vectors have rephased and are now closely bundled

in the Bloch vector space. After rephasing, the macroscopic electric dipole is a

linear combination of superradiant states that emits strongly due to coherence

among the individual emitters; the intensity of this, given by Dicke [94], is
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where I0 is the intensity emitted from a single, isolated quantum emitter, and

N is the number of emitters in the volume of interest in the material (the

volume is assumed sufficiently small that the electric dipole approximation is

valid, i.e. that the variation of the electric field across the volume is small).

This superradiant emission is strongly enhanced compared to incoherent radi-

ation from N emitters without correlation,

Iincoherent =
1

2
NI0

arising from an ensemble with random phases. If the spatial extension

of the sample is considered the electric dipole approximation will typically

need to be dropped, but the emission from a phased array of dipoles will likely

give rise to a strongly directional, intense photon echo emission that may be

detected in the phase-matched direction, while the emission will average to

zero over most other directions. For pump pulses along k1 and k2, phase-

matched emission occurs along 2k2 − k1 – a background-free direction that

permits the use of a sensitive detector to pick out the photon echo signal and

reject the pump beams. Collinear photon echo geometries were also explored

[2], but were only feasible because a fast shutter could effectively block the

pump power from saturating the detector.

Subsequent experiments in the gas phase studied the decay of photon

149



echo signals to extract dephasing times for transitions of ro-vibrational states

[285]. The absence of tunable lasers limited the frequency range of transitions

that were amenable to photon echo experiments, but early projects recognized

the future development possibilities with the advent of new light sources. Con-

trolling the polarization states used to excite the sample allowed isolation (by

angular momentum selection) of the particular transition giving rise to the

photon echo [145].

Semiconductor materials can also give rise to photon echoes, even if

the system does not exhibit inhomogeneous broadening; this effect, due to

the properties of the interband continuum of excitation states, is not simply

analogous to the photon echo observed in atomic systems. See, for example

[250] for a numerical solution of the semiconductor optical Bloch equations

for a two pump non-collinear photon echo experiment, and an analysis of the

transition between free-induction decay and photon echo.

Three pulse photon echo experiments have also been performed, and

can provide information on complex dynamics in a system. See, for example.

[284].

4.1.2 Early four-wave mixing, photon echo, pump-probe and re-
lated coherent experiments

Frequency degenerate four-wave mixing was observed in a non-collinear

geometry using a q-switched pulsed (14ns pulse duration) laser to excite a liq-

uid sample [56], with two ’input’ and two ’output’ beams. The χ(3) nonlinear
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effect observed in this demonstration resulted in no time-averaged addition

of energy to the medium, as it is a passive effect that depends on virtual

excitation. Again, for these early results, significant experimental effort was

necessary to ensure that the detected signal was a real four-wave mixing emis-

sion rather than a spurious reflection. Spectral analysis demonstrated that

light emitted in the phase-matched direction was not due to inelastic Bril-

louin, Raman, or similar scattering processes.
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We report in this Letter the observation of
stimulated four-photon or light-by-light scat-
tering for the case where the coupling is due
to the molecular-orientation Kerr effect. In
this process two forward-going photons in an
intense beam of light scatter to produce two
photons traveling at small angles +8 and -8,
respectively. ' If photons are already present
in the +8 and/or -8 beams, this stimulates
the process. In contrast to the stimulated Ra-
man case, coupling of these weak waves pro-
duces gain. ' One type of four-photon or four-
wave mixing experiment was performed by
Maker and Terhune involving g' '(m+6, &u, &u-Au,
m, v) where the beams are all collinear and
A&t 0. In our experiment, weak-wave retar-
dation allows phase matching and hence strong
exponential gain even for the degenerate case
when all the waves have the same frequency
and are not collinear. ~ Furthermore, this ex-
periment isolates the fundamental process caus-

ing beam trapping, namely, the amplification
of nonforward directed Fourier components
of the beam.
A Q-switched ruby-laser beam with a power

of 150-300 MW and a divergence of 6 mrad
was focused by a lens of 1-m focal length into
a short liquid cell. A weak beam in the +8 di-
rection was obtained from the forward laser
beam by a. beam splitter and mirror arrange-
ment (as shown in Fig. 1). Both beams were
then focused and deflected by the same lens
so as to cross within a nitrobenzene cell. The
+8 beam is amplified in the process of stim-
ulated light-by-light scattering and, in addition,
a beam in the -8 direction is generated. The
appearance of this —8 beam is the signature
of this effect. For the purpose of alignment,
a large-diameter He-Ne gas-laser beam was
arranged to coincide with the ruby beam. This
was used in conjunction with a focusing align-
ment telescope which assured that the two beams
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FIG. 1., The experimental arrangement. Q switching was accomplished by a combination of a rotating prism and
a saturable dye cell.

1281

Experimental schematic for first observation of self-diffracted four-wave 
mixing. Reproduced from Carman, Phys. Rev. Lett. 17:1281 (1966).!

Figure 4.4: Schematic for four-wave mixing experiment

The four-wave mixing process was noted to rely upon kinematics (i.e.

the momentum and energy conservation of a parametric process) identical to

those described in the contemporaneous photon-echo experiments in ruby [2] –

the distinction made was that the four-wave mixing observed here in nitroben-

zene did not use a time delay between excitation beams and the detected signal

was therefore not dependent on the rephasing process. This result is signifi-

cant as it reflects an increasing scope in the different aspects of the nonlinear

optical response that may be induced and observed with pulsed light sources.

We outline some of those effects here; not all are strictly four-wave mixing
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phenomena, but all depend on nonlinear optical processes studied with vis-

ible light. An extensive four-wave mixing optical spectroscopic toolkit was

developed as these experiments proceeded.

The first coherent transient phenomena studied in the radio frequency

regime ([364], [156]) were observed after the development of necessary tools to

emit and detect coherent radiation of the appropriate energy, an outgrowth

of technological advancement that occurred during the war. The development

of multiple pulse methods allowed the separate examination of different spin

dephasing mechanisms; spectrally resolving a spin transition provided further

information on the dynamics of these systems.

A similar advancement of the study of transient phenomena occurred in

the visible wavelength range after the development of new laser technologies

made it possible to probe the relevant excitations. While optical coherence

experiments had been performed previously – after all, the Young’s double

slit experiment depends upon spatial coherence of light, the Michelson in-

terferometer measures temporal coherence, and the Brown-Twiss experiment

studied intensity correlation; all of these (and other experiments) pre-date the

invention of the laser – new coherent visible light sources permitted the study

of optical analogs of previously observed spin transients. The similarity of

the electric dipole transitions and spin flip transitions was not certain prior

to laser measurements of light-matter interaction, but work by Dicke demon-

strated their equivalence and suggested that these analogous processes could

exist [94].
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Although photon echo experiments occurred first, optical nutation was

demonstrated soon after (reversing the order in which the corresponding nu-

clear resonance effects were seen). A q-switched, pulsed CO2 laser was used

to drive an oscillation between the upper and lower levels in a infrared ro-

vibrational transition in a molecular gas. Repeated cycling occurs via stimu-

lated emission and absorption, repeating until the end of the laser pulse; that

oscillation results in a cyclical reduction and increase of the transmitted beam

intensity [181].

After the pulse has passed through the sample, the dipoles formed by

the coupling of the upper and lower states have a well-defined phase relation-

ship, and emit an intense, coherent beam of radiation; this is analogous to

the free induction decay observed in nuclear resonance experiments [51], al-

though the nomenclature is awkward since the detection does not occur via

the eponymous inductive pickups used in NMR. The well-defined phase rela-

tionship among the N quantum emitters results in an emission intensity that

scales as N2, far exceeding the spontaneous emission intensity (N). For com-

pleteness, we note that these optical nutation experiments did not rely upon

pulsed laser systems at the appropriate wavelength – which would limit the

systems that could be studied to those for which suitably fast pulsed lasers

were available. Instead, a Stark switching scheme was used that brought tran-

sitions into and out of resonance with a continuous wave laser [50]. An early

two-dimensional spectrally resolved technique that recorded only amplitude

information was developed using Stark switching that measured the ampli-
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tude of photon echo signals as a function of the pump delay [151]. A related

technique to study transients in the UV and visible regions were developed

using frequency switching of a continuous laser; this is conceptually similar

to the Stark switching method but does not require Stark tunable molecules

and is therefore applicable to a broader range of materials [48]. We note that

this technique is not suitable for the study of semiconductor systems, even if

fast enough switching time were achievable (an electro-optic crystal inside the

laser cavity shifts the laser frequency in and out of resonance with a molecu-

lar transition by changing the effective cavity length; they attained switching

times of ˜50ps), due to the problems that would occur with off-resonant ex-

citation of free carriers. While these methods were extended to a number of

optical transients, their utility is less significant today due to the development

of tunable, ultrafast lasers.

Another significant development in the study of optical transients was

the observation of a two-photon photon echo [123], using two lasers to produce

a sum-frequency two-photon analog of the normal photon echo response in

an alkali vapour. This experiment observed quantum beating and studied

relaxation of the superposition of two optical states. Echo effects had been

predicted for multiple photon transitions earlier (see, for example [163]) but

never previously observed in the optical regime (two quantum transitions had

been observed in, of course, nuclear resonance experiments [164] shortly prior

to this result). The two photon photon echo was used to study the dephasing

effects caused by the introduction of buffer gases into the sodium vapour.
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Photon echo experiments were conducted to study heavy hole exci-

tons confined to a Gallium Arsenide quantum well [324], [329]. Previously,

excitation of carriers above the bandgap had been observed, with rapid re-

laxation into bound electron-hole pairs that exhibited dephasing times of a

few hundred femtoseconds, while photon echoes were observed from excitons

bound to impurity ions on the order of up to a hundred picoseconds. When

the pulse duration is comparable to the dephasing rate, significant deviation

from the theoretical behaviour of the system is to be expected (q.v. sub for

a description of the Taira model used to describe exciton dynamics). Tem-

poral line shape analysis provides a measurement of the coherence time (i.e.,

the dephasing rate) as a function of wavelength across the strongly broadened

exciton resonance. This can be used to fit for T2 even as the pulse duration

approaches the dephasing time, using a model that considers the possibility

of phase relaxation occurring even during the excitation pulses. This mod-

ification is still possible within the basic framework of a third-order density

matrix calculation. The experimental measurement of the photon echo tem-

poral line is provided by performing cross-correlation with an additional pulse

derived from a reference beam. Spectrally resolving the emission across the

exciton resonance – fluctuations in the well width in these early experiments

resulted in strong inhomogeneous broadening – demonstrates a strong depen-

dence of population relaxation time T1 and dephasing time T2, reflected in

qualitative changes in the photon echo lineshape (photon echo emission be-

comes symmetric if the decoherence time is shorter than the pulse duration).
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Near the center of the exciton resonance, the decay of the polarization respon-

sible for four-wave mixing emission is primarily driven by a fast dephasing,

suggestive of spectral diffusion processes. Below the line center the dephasing

appears much slower. This result suggests that the higher energy excitons in

the inhomogeneously broadened line are more de-localized and therefore un-

dergo significant dephasing interactions throughout the fluctuating quantum

well, while the more localized excitons below the line center are less likely to

dephase so rapidly. We note in passing that some effort would be necessary

to understand this result in the context of motional narrowing [36], and in-

deed, it is probably not possible to do so without much more sophisticated

measurements. Two-dimensional Fourier transform spectroscopic studies of

spectral diffusion here would be an interesting project, were it not for the

fact that higher quality samples are now available that exhibit homogeneous

broadening.

These early photon echo measurements of decoherence in semiconduc-

tor quantum well samples [329] already suggest that the optical Bloch/Taira

model would be unable to accurately describe the behaviour of these systems,

where exciton-exciton interactions could be probed due to the higher excita-

tion powers possible compared to previous frequency-domain measurements.

A model considering intensity dependent relaxation processes is suggested in

[90]. At higher energies, the fit increasingly failed to adequately describe the

correlation curve for the time-integrated photon echo signal. Closer fits were

obtained with a decay depending on e−2τ12/T2 , where the τ12 is the delay be-
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tween the two pump pulses used, with an extracted value of dephasing time T2

estimated to be 13 picoseconds. Using the normal photon echo fit suggests a

dephasing time and a population decay time of 4 ps (for both values ), which

is not a physically meaningful result. All two-level system photon echo results

should in principle consider the effects of the relative optical phase of the ex-

citation pulses used, but most experiments do not provide the necessary path

length stability [382]. It is a common assumption in experimental optical sci-

ence that acoustic noise will typically blur out the phase-dependent features

of most measurements, but the validity of this assumption must always be

tested.

The first saturated absorption experiments performed in the visible

range with appropriate temporal resolution to study fast electronic dynamics

essentially invented pump-probe optical spectroscopy [19], [333], [211]. These

experiments provided picosecond studies of the behaviour of carriers excited

by a strong pulse. The results of Kennedy et al. fit a value for the intraband

relaxation time (estimated at less than 5ps, the observed width of the satu-

rated absorption feature and the instrument resolution) for carriers optically

excited in high quality Germanium crystals. Subsequent re-analysis, however,

indicated that the feature observed was actually a coherence spike that oc-

curs in pump-probe spectroscopy as power from the intense pump beam is

parametrically coupled into the much weaker probe [335]. Performing a satu-

rated absorption measurement scanning over a longer delay indicated a slowly

pump-probe feature that builds relatively slowly before decaying due to free
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carrier recombination. Similar pump-probe measurements were used to study

dye molecules in solution [336], studying relaxation as a function of solvent

density. That experiment demonstrated the significance of polarization analy-

sis as a method to separate isotropic and anisotropic dichroism, permitting the

separation of orientational relaxation processes from population decay. Other

related experiments included sub-picosecond spectroscopy of hemoglobin com-

plexes [338].

In addition to their scientific merit and the usefulness of the pump-

probe techniques they pioneered, these experiments were significant for the

discovery of the parametric coupling effects at early times, when coherent

effects dominate the nonlinear optical response of these materials. We present

further discussion on this subject elsewhere in this thesis in the context of

our own differential transmission experiments, but note here that this result

leads conceptually to the self-diffracted four-wave mixing experiments (and

subsequent four-wave mixing based techniques) that were used in extensive

studies of semiconductor (and other) materials.

A great deal of that work depends upon a model that uses a non-

interacting ensemble of two-level systems to model the excitation, following

the early work of Yajima and Taira [402]. That paper is perhaps as significant

to the scientific understanding of exciton nonlinear optics as Bloch’s original

papers were for the interpretation of nuclear induction results. We will describe

their theory and experiment at length due to its significance; not simply due to

the substantial body of experiments whose results were interpreted using that
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model, but because breaking that model and pursuing new replacement models

proved such a significant achievement in the field of ultrafast spectroscopy of

semiconductors.

Nonetheless, we first turn out attention to another line of experimental

research – the foundational work on transient gratings – which are useful to

understand the underlying principles of the non-interacting two-level system

ensemble model.

4.1.3 Transient gratings

The process of scattering light off a transient grating induced in a sam-

ple (typically) by interfering optical fields has seen application in a number

of different spectroscopic techniques used to study microscopic phenomena in

various materials. A grating induced by some light-matter coupling mecha-

nism that does not depend upon optical damage will inherently be transient in

nature, and will persist (after the driving fields are removed) only until the re-

laxation processes in the system have dispersed the excitation (via mechanisms

such as diffusion or orientational relaxation) or the coherence or population

have decayed to thermal equilibria. The time resolved diffraction of light from

such a grating may be used to characterize those various relaxation processes.

We consider some results here.

Perhaps the first transient grating experiment also appears in a report

of the first observation of degenerate optical four-wave mixing [56], where light

was parametrically scattered out of two incident beams used to excite a liquid
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sample – although we note that this paper never uses the word ’grating’ to

describe this process. A grating phenomenon induced by spatial spectral hole

burning in a saturable absorber (a liquid used as a q-switch in laser cavities)

was shown to exhibit Bragg scattering [162] Shortly thereafter, an interfer-

ence pattern of carriers produced from two laser beams was shown to act as a

diffraction grating [398]. Experiments performed with pulsed ruby lasers used

to induce a grating that scatters an Argon ion laser permitted the study of

the relaxation time of thermal gratings [213], demonstrating the usefulness of

these techniques for studying time domain behaviours. This experiment was

limited by the relatively long pulse duration that only permitted the study

of slow, thermal effects. Similar experiments were performed with other light

sources [106]. The use of picosecond lasers permitted the first study of fast

grating relaxation [317]. Previous experiments had observed stimulated Bril-

louin scattering from an intense MASER beam into a weaker beam via the

coupling through an acoustic wave in a crystal, but were subject to specific

constraints on the geometry of the interacting beams, determined by momen-

tum conservation requirements that depended upon the geometry of the crys-

tal. Only certain geometries led to a buildup of sufficiently intense acoustic

waves to make the coupling possible [72]; analogous effects were also observed

in liquids [49]. The advantage presented by the transient grating techniques

was the flexibility it offered – the geometry of the interfering pulses that form

the grating may be altered according to the problem interest, permitting the

study of various orientational effects.
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(a)!

Transient grating experimental geometry (a) used to study fast 
stimulated Rayleigh and Brillouin scattering processes in a 
liquid (b). Reproduced from Scarlet, Physical Review A, 
6:2281 (1972).!

(b)!

Figure 4.5: Schematic for transient grating experiment
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Motivated by the contemporaneous pump-probe spectroscopy measure-

ments of relaxation processes in semiconductors [211], diffraction from a tran-

sient grating in a reflection geometry was demonstrated and suggested as a

diagnostic technique for characterizing relaxation processes in similar materi-

als [396]. Transient phase gratings in the semiconductor zinc oxide had already

been previously used to study free carrier and thermal dynamics [85], where

a weak probe was scattered from the induced grating, in addition to the ob-

servation of self-diffraction of the pump beams used to create the grating via

two-photon absorption. Thermal grating effects could be resolved from the

phase grating by monitoring the time required for the diffracted intensity to

decay. Siegman and coworkers demonstrated transient grating spectroscopy of

a dye molecule in a liquid solution using mode-locked pulsed lasers operating

in the sub-ns/ps pulse range [290]. The interference of two pulses induced a

spatial pattern of excited state population in the material, creating a tran-

sient hologram in the liquid sample. A delayed pulse was again diffracted by

this periodic structure, and again, by scanning the delay between the pulses

the lifetime of the photoexcited phenomena could be estimated to within the

precision of the pulse temporal width. The construction of this experiment al-

lowed easy substitution of the lenses used to focus the interfering beams; this

additional degree of geometrical control permits the measurement of spatial

domain effects separate from the lifetime decay. Rotating the fringe direction

permits the study of anisotropic diffusion effects. Other experiments demon-

strated the scattering of a laser pulse by a transient grating as a measurement
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of optical coherence times below the pulse width limit [104].

The self-diffracted processes observed in transient grating techniques

are the most significant for the development of the first transient tools used

to characterize excitation and relaxation processes in semiconductor samples.

These results are readily understood in the context of Raman-Nath scattering

theory [85] for diffraction of coherent light from a thin volume grating, although

thick gratings may also be studied [197]. The use of two-photon nonlinear

absorption processes extends the range of materials that can be studied since

a resonant excitation source is no longer required. The particular details of

self-diffracted four-wave mixing spectroscopy (and, additionally, three pulse

transient grating four-wave mixing techniques) will be explained at length

later in this chapter.

( 
1/2 Z 1 2S/D + W a(Dt) + 2 (Dt) lJ2r (siD) _ a 

X + 2 (D:) 172)- (Dt)1/2 + (3) 

with «'(x) = exp(x2) erfc(x). 

The solution given in Eqs. (2) and (3) is an approxi-
mation to the situation where D and TR depend on N. 
At typical values of N(::;: 1 xl020 cm-3) in our experiments 
the plasma degeneracy increases D to several times 
its nondegenerate value. will show later that this 
variation of D, as well as the dependence of TR on N for 
bimolecular and Auger recombination processes, can be 
accounted for by this experimental technique. 

The damped cosine term in Eq. (2) shows the decay 
of the free-carrier plasma grating. In the classical 
Drude model the contribution of the plasma to the di-
electric constant is given by5 

_ Ne 2 
E(w) =E,.- m:h[w + (i/T)lEow 

= {[no + 6n(w)] +i[ko + M(W)W, 

where nand k are the real and imaginary parts of the 
complex refractive index, respectively, no and ko are 
their background values, W is the probe frequency, T 

(4) 

is the intraband carrier scattering time, and E,. is the 
background dielectric constant, At the probe wavelength 
used, wT»l, no»ko, t..n=- Ne2/2nom:hw2Eo» 6.k, and 
the plasma thus acts as a thin periodic phase grating, 
The first-order diffraction intensity from such a grat-
ing is5 

11 (t) = 2n:;hw2E% T N(A, z, t) - z, t) ]dZ}, (5) 
where J 1 is the first-order Bessel function and its argu-
ment is one-half the full-phase modulation depth of the 
grating, 
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FIG. 1. Calculated normalized efficiency 1) versus probe 
delay. (a) For given values of S, D, a, and A. (b) For given 
values of S, D, and a. Solid curves A=5 I'm; broken curves 
A= 15 I'm. 
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FIG. 2. Experimental arrangement. PI' P2, and P3 are right-
angle glass prisms; LI and are focusing lenses, and BSl, 
BS2, and BS3 are beam splitters. 

For a surface excitation, a-1 :::0, 1-1 p.m, the dif-
fraction intensity is a sensitive probe for surface re-
combination over a range of S from ;5104 to?: 107 cm/ 
sec. Calculated values of the diffraction efficiency 
l1(t) with S as a parameter are presented in Fig. 1 (a), 

The integration of the plasma modulation over Z 
makes the diffraction intenSity dependent on the total 
number of electron- hole pairs in the sample and not on 
a specific density profile, Diffusion into the bulk there-
fore has little effect on the diffraction intensity. Diffu-
sion also affects N(x, z, t) through the term exp{-[(47T2D/ 
(A2)]t} in Eq. (2) and the SiD coefficient in Eq. (3). 
The former corresponds to the decay of the grating con-
trast as the electron- hole pairs diffuse parallel to the 
sample surface, and this decay is faster for larger D. 
Larger D also decreases the surface recombination 
because of increased diffusion current into the bulk 
away from the surface and possible recombination. The 
SiD coefficient in Eq. (3) shows this decrease. The two 
effects are displayed graphically in Fig. 1 (b). For an 
initial excess carrier density of 1 xl020 cm-3 at a GaAs 
or InP surface D is estimated to be three times its non-
degenerate value (Do) at the surface, decreasing to Do 
at larger z as N(x, z, t) decreases. 17 We have calculated 
l1(t) for D=10, 20, and 40 cm2/sec using for a non-
degenerate value Do = 10 cm2/sec. For a small grating 
spacing the contrast decay term dominates even at short 
times, and, as shown in the solid curves of Fig. l(b), 
the diffraction efficiency 11 will depend on D. With a 
judic ious chOice of A, however, even for D = 4Do 
throughout the entire sample, 11 is nearly independent 
of D for the time scale of interest [broken curves, 
Fig. 1 (b) 1. Therefore, the assumption of D(N) = Do in 
solving Eq. (1) is justified given an appropriate value 
of A. 

For the range of excess carrier densities injected 
into our samples the dependence of TR on N must also 
be conSidered. The contributions of linear, bimolecular, 
and Auger processes to the recombination rate are 
given in a simple power series expansion as R ==AN 
+ BN2 + The linear term AN corresponds typically 
to a carrier lifetime of 5-10 nsec. 18 On the picosecond 
time scale employed in our measurements this lifetime 
will therefore have a negligible effect, Bimolecular 
recombination (BGaAs:::1 xl0-10 cm3 sec-1) 19 contributes 
to the recombination rate for 5 x 1018 cmos and 
reaches a limit at (BN)-l :::300 psec for N:::3 xl019 

cm-S, 20 Auger recombination (CNs) should be competi-
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Experimental schematic for a three-pulse experiment used to study 
relaxation processes in a transient grating induced by the first two 
pulses. Reproduced from Hoffman, Appl. Phys. Lett. 33:536 (1978).!

Figure 4.6: Schematic for three-pulse photon echo

Three pulse picosecond transient grating processes have also been used

to study relaxation processes [182]. A carrier plasma grating is induced at
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a semiconductor surface or interface due to the interferometric absorption of

picosecond laser pulses; another pulse, at a longer wavelength so as to avoid

exciting above the band gap, scatters from the transient grating. The intensity

of that diffracted light is a measure of the grating modulation depth and can be

used to study its temporal evolution. Various population processes – diffusion,

recombination in the bulk, and recombination at the surface – can be studied

with this technique, though we note that it was not used to study dephasing

dynamics. Three pulse transient grating methods were subsequently developed

to do precisely that [347]; we describe them at length elsewhere in this thesis,

as the three pulse method is largely similar to the optical physics of two-

dimensional Fourier transform spectroscopy.

4.1.4 Taira model and four-wave mixing spectroscopy of semicon-
ductors

After the realization that fast processes [335] in the early time evolution

of pump-probe spectroscopy were determined by coherent parametric coupling,

a self-diffracted four-wave mixing spectroscopic technique was described and

demonstrated by Yajima and Taira [402] to exploit conceptually related co-

herent transient phenomena to study the dephasing processes on either homo-

geneously or inhomogeneously broadened transitions. Previously, information

about dephasing rates had been obtained by frequency domain measurements

with a precision approaching 100 fs, but these were indirect methods requir-

ing more careful analysis to extract the relaxation time (for example spectral

hole burning measurements of dye molecules [263], measurements of absorp-
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tion saturation in Germanium [210], a preliminary study of spectrally resolved

four-wave mixing using two optical frequencies that both lie inside an inhomo-

geneously broadened line [400], [401], and two-frequency technique that makes

use of polarization analysis to estimate dephasing times [353]). These indirect

techniques are deprecated if a direct time-domain measurement of dephasing

can be obtained that does not depend upon any substantial modeling of the

system under consideration – ideally, a method should be found for which de-

phasing and population decay may be studied without any prior knowledge

of the time scales in question. Self-diffracted four-wave mixing techniques

such as those described in [402] do not perfectly meet that description, but

do serve reasonably well for many cases of interest, and moreover serve as an

intermediate step necessary to understand more sophisticated three pulse tran-

sient grating and other four-wave mixing techniques. We describe the basic

self-diffracted four-wave mixing method and theory here, before considering a

range of experimental results significant to the materials we study in our own

experimental program.

Two non-collinear beams are used to excite a resonant medium, re-

sulting in a self-diffracted four-wave mixing emission that is detected in a

phase-matched direction. Conceptually, the experiment may be understood as

the scattering of some fraction of light from one pulse by a transient diffrac-

tion grating formed by the interference of that same pulse with another that

preceded it by less than the dephasing time of the material. The energy of the

diffracted pulse as a function of the delay between the pump pulses may be
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Typical geometry used for the self-diffracted four-wave mixing experiments 
frequently analyzed using a Taira-type model. The laser pulses propagate 
from left to right in this diagram. One beam path is shaded blue to indicate 
that it is the signal field, emitted in the phase-matched direction, but all of the 
pulses are frequency degenerate.!

Figure 4.7: Geometry for self-diffracted FWM experiment
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analyzed to obtain information about the decay of a macroscopic polarization

on a time scale principally determined by the dephasing time. This method

builds directly upon the transient grating effect used to study relaxation pro-

cesses [290], but with the use of sufficiently short pulses (temporal width less

than dephasing time T2) fast decay processes may be observed that can be an-

alyzed to back out a measurement of the dephasing time. Strictly, the decay

of the measured correlation trace is a function of the dephasing and popula-

tion relaxation rates, but if the two are substantially different it is possible to

neglect the relatively slow population decay. In some materials that is not the

case, as the dephasing and population decay rates approach each other, but

for semiconductor materials similar to those in which we are interested there

is something like a two order of magnitude difference between dephasing and

decay times.

To derive the underlying theory for their experiment, Yajima and Taira

use an elementary perturbation calculation to obtain n-th order corrections

to the density matrix elements describing the population of and coherence

between two energy bands. This calculation (outlined here) is performed in

the interaction picture (see our discussion of the second Bloch geometrical

formalism) and makes use of the rotating wave approximation to simplify the

result by discounting weak non-resonant effects.

To obtain the macroscopic polarization (which, modulo a phase shift

of i, is proportional to the diffracted signal, since the polarization serves as

a source term in Maxwell’s equations) it’s necessary to integrate the dipole-
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coherence product over the broadened line,

P̂ (n) = N

ˆ ∞
0

dω0µabρ̂ba (r, t, ω0) g (ω0)

where N is the number density for emitters in a volume of the sample

sufficiently small to be treated with the electric dipole approximation (see our

previous discussion of thin samples in the chapter on light-matter interaction).

It is necessary to apply a normalization condition on the distribution of the

inhomogeneous broadening function g (ω0),

ˆ ∞
0

g (ω0) dω0 = 1

Results for homogeneously broadened materials may be found by taking

the limit that the inhomogeneous width (the width of the distribution function

g (ω0) tends to zero). In our own calculations we will favour this conditions,

partially because of the high quality molecular-beam epitaxy samples we study,

but principally because it simplifies the calculations.

Calculated to the third-order in the perturbing electric fields, the off-

diagonal terms of the density matrix contain components at four different wave

vectors, k1, k2, k3 = 2k2 − k1, k4 = 2k1 − k2; this analysis only considers the

transmitted beams and we neglect (for now) the backward directed emission.

Both cases are possible, since the ensemble of dipole oscillators induced in

the material act as a phased array antenna, giving rise to strongly directional
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emissions. Detection in a specific geometry picks out a certain component of

the coherence induced by the two pump pulses.
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Figure 4.8: Taira model for FWM temporal lineshape

Analysis of the third-order nonlinear optical response detected in a

phase-matched direction reveals different behaviour for inhomogeneously vs

homogeneously broadened ensembles, and for short vs long pulse separation.

The by now familiar photon echo is found to be one specific case of this re-

sponse; specifically, it is the observed response for a system with inhomoge-

neous broadening and long waiting time between pulses. The spatial paramet-

ric effect described by this density operator theoretical treatment is a broader
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class of phenomena, and the photon echo is in this model seen as a specific

aspect of that more general effect.

It is not necessary to resolve the temporal lineshape of the transient

self-diffracted four-wave mixing emission in the time-domain emission in order

to extract information regarding the relevant dynamical parameters. Instead,

it suffices to examine the slow, time-integrated response measured along the

k3 direction as a function of the delay between the two pump pulses, t2 − t1 .

From Maxwell’s equations, the integrated energy of the optical emission

is found to be proportional to the integrated square of the polarization,

J =

ˆ ∞
−∞

dt
∣∣∣P̂ (3)

3 (r, t)
∣∣∣2

which may be considered for either case of homogeneously or inhomoge-

neously broadened samples. For inhomogeneously broadened transitions, i.e.

those with a spectral line width greater than the dephasing rate, δω � 1
T2

,

J =

{
A
{

1 + Φ
[
δω√
π

(t2 − t1)
]}

e[−4(t2−t1)/T2], t2 − t1 > 0,

0, t2 − t1 < 0

where the photon echo shape function Φ is defined by

Φ (x) =
2√
π

ˆ x

0

e−t
2

dt

Whereas for the homogeneously broadened case, the integrated energy

detected along the phase-matched direction may be shown to be
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J =

{
Be
− 2
T2

(t2−t1)
, t2 > t1

0, t2 < t1

In either case, the signal strength A or B is independent of the delay

between the pulses. In the limit of short pulse duration, the decay of the

correlation trace for output energy as a function of pulse delay is determined

by the dephasing time T2 for either type of broadening. Analysis of the time-

integrated energy as a function of that delay will directly yield this decay

constant – 2/T2 for homogeneous and 4/T2 for inhomogeneously broadened

systems. The decay of the second case is slower because the emission of a

photon echo occurs after a delay equal to t2 − t1 has passed following the

interaction with the second pulse. For inhomogeneously broadened samples,

peak emission occurs at t2 + (t2 − t1), while the homogeneously broadened

sample emission peaks at t2. Again, it is not necessary to actually resolve

the temporal structure of this emission. Instead, measurement of the decay of

the diffracted energy, combined with spectral information obtained via simple

absorption spectroscopy (for example), allows one to determine whether a

particular transition in some sample is inhomogeneously or homogeneously

broadened, and to extract a value for the dephasing time.

If the pulse width for the laser used to perform a self-diffracted four-

wave mixing experiment is comparable to dephasing time, the trace of the

integrated emission energy as a function of delay between the pulses is a more

complicated function of both the pulse parameters and the relaxation param-

eters. If that pulse is well-characterized, it is still possible to back out the
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dephasing time.

If the dephasing time is much shorter than the pulse duration, four-

wave mixing emission occurs only during the interval when the pulses overlap

temporally. In this case, the trace of emission as a function of delay only

contains information regarding the pulse parameters, and it is not possible to

extract a value for the dephasing time T2. At best, the experiment places an

upper bound on T2 – the width of the laser pulse.

For discussion of a similar model that considers more sophisticated

relaxation channels, distinguishes among gratings formed by several different

photo-excitation processes, and considers four-wave mixing emission in both

the probe and conjugate [175], [351] directions (the particular analysis used

in this paper is concerned primarily with transient phenomena observed by

pump-probe measurements that reveal transient grating coherent effects, but

uses a similar density operator formalism) we refer the reader to [395].

The Taira model can be understood as an extension of the optical Bloch

equations to the analysis of four-wave mixing. It once again asserts that that

relaxation process for a macroscopic ensemble may be understood simply in

terms of population decay and dephasing of coherence. Critically, this the-

ory assumes a non-interacting ensemble of two-level oscillators. A great deal

of subsequent experimental work uses this basic concept to explain a broad

range of results, studying changes to dephasing rates seen under different con-

ditions. While somewhat successful, ultimately this theory needs to be increas-

ingly patched to account for various observations. Ultimately, in the case of
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semiconductor samples such as those we are interested in, it can be shown to

completely fail to predict significant aspects of the nonlinear optical response.

In order to understand those effects, more sophisticated theories were intro-

duced – semiconductor optical Bloch equations and other microscopic theories

– and many-body physics came to be seen as the dominant force determining

the behaviour of these systems. In turn, the advancement of the theoretical

modeling of these materials interaction with light drove the development of

new, more complicated optical spectroscopic tools to resolve those details of

the nonlinear response unavailable to simpler techniques. In that context we

find ourselves using two-dimensional Fourier transform spectroscopy to study

outstanding problems in exciton optics, and developing new tools to resolve

effects previously unseen in semiconductor and semiconductor hybrid nanos-

tructures. A description of the development of those methods forms the last

portion of this thesis.

4.2 Ultrafast four-wave mixing experiments on semi-
conductor nanostructures

4.2.1 Self-diffracted four-wave mixing measurements to extract de-
phasing time

The development of ultrafast pulsed laser sources with pulse widths on

the order of less than a tenth of a picosecond (for example, colliding-pulse

mode-locked lasers [124]) made it possible to perform transient nonlinear op-

tical experiments on semiconductor systems; as a result, significant advances

were made in studying the behaviour of excitons in both quantum confined
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structures and bulk materials. Further developments in laser technology –

particularly the development of tunable, ultrafast Titanium-Sapphire lasers –

greatly simplified the experimental difficulties of working with these samples.

A large number of experiments concentrated on studying the dephasing

processes of excitons in single quantum wells. We note a few significant results

here, which made use of the Taira model of an ensemble of non-interacting

two-level systems to interpret their results.

Early experiments studied the dephasing processes for the inhomoge-

neously broadened heavy hole exciton resonance in GaAs multiple quantum

well samples [329], [324]. We noted these result previously, in the context of

photon echo experiments, but the experimental technique used is no different

from the self-diffracted four-wave mixing techniques described in this section.

In both cases, four-wave mixing processes in the material result in the emission

of a coherent signal along a phase-matched direction, and measurements of the

decay of the scattered energy. The distinction arises due to the difference in

material samples studied; in the photon echo case, poor interface quality in

the quantum well structure results in inhomogeneous broadening of the transi-

tion, while later results were obtained with higher quality quantum wells that

exhibited homogeneously broadened exciton resonances.

Picosecond pulses were used to perform transient four-wave mixing

measurements on thin Gallium Arsenide layers to study the decoherence and

orientational relaxation of excitons [326]. Coupling between different excita-

tion modes – in this case, between an exciton and a photon – may be under-
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Experimental results from four-wave mixing measurements on thin 
GaAs slivers. Transient grating measurements (a) measure the 
intensity scattered from a grating induced by the first two pulses, 
which are separated by a fixed delay. A three-pulse four-wave 
mixing measurement (b) plots the diffracted as a function of delay 
between the first two pulses for fixed T delay. The third plot (c) 
shows self-diffracted four-wave mixing emission that can be 
analyzed using a Taira-like model. Reproduced from Schultheis et 
al., Phys. Rev. Lett. 57:1797 (1986).!

Figure 4.9: Four-wave mixing data from Schultheis et al.
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stood conceptually as a new quasi-particle, a polariton, which is an eigenstate

of the interacting exciton-photon system and exhibits its own dispersion rela-

tionship. The polariton is a useful interpretation of the excited light-matter

system if strength of the coupling between the exciton and photon states is suf-

ficiently strong compared to the coupling between an exciton and the combined

bath of the crystal and other excitons. A measure of the coupling strength

between the exciton and photon is the oscillator strength for the transition

that is excited in exciton emission, whereas the coupling between an exciton

and the crystal-many exciton system may be characterized with the T2 time (a

slower dephasing process indicates a stronger coupling among excitons, an in-

tuitive result). A test of the validity of the polariton picture may be performed

by comparing the longitudinal-transverse splitting for the polariton mode (i.e.,

measure the oscillator strength) to the inverse of the dephasing time, but prior

to the development of four-wave mixing techniques an accurate value for T2

was not available. Prior work had assumed a sufficiently long coherence time

without actually demonstrating it.

To measure the dephasing time accurately, extremely low excitation

densities were used to reduce the exciton-exciton interaction. Thus, the re-

laxation time measurement reflects the residual interaction of an exciton with

phonons and crystal defects (interface roughness is not a significant factor in

this experiment, since 100nm to 200nm GaAs slices were used). The dephas-

ing rate (7 ps) was found to be independent of excitation density below a

certain threshold, and suggests that the coupling of an exciton to the photon
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is insufficiently strong by comparison to validate the polariton picture. The

small value of T2 indicates that the coherent coupling between an exciton and

photon is substantially disturbed; in a bulk sample, a propagating polariton

excited near resonance would be attenuated before traveling a single wave-

length. The imaginary part of the dispersion relation for polariton modes

must be considered in these materials.

This experiment relied on the Taira model, assuming a homogeneously

broadened ensemble of non-interacting two-level systems, to extract the de-

coherence time T2. The authors do note a slight discrepancy in the temporal

lineshape, which they suggest may be due to an asymmetric pulse (using an

asymmetric pulse envelope provides a better fit of the experimental data, but

do not have any independent measurements to suggest that the pulses used

are not symmetrical Gaussians).

Optical dephasing measurements were also performed on exciton tran-

sitions in GaAs quantum with a similar technique in order to determine the

nature of the broadening as homogeneous or inhomogeneous and, if possible, to

identify the processes that dominate the broadening of the exciton resonance

[325].

Inhomogeneity in these systems is believed to arise primarily due to the

well width fluctuation. The effect of inhomogeneity is to broaden the resonance

(naturally) and to result in a shift of the emission maximum to lower photon

energies compared to the maximum of the absorption line. This Stokes shift

is due to the energy loss exhibited by an exciton in the quantum well prior to
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Self-diffracted four-wave mixing intensity from three 
different GaAs quantum wells. Analysis of the temporal 
lineshape allows extraction of the dephasing time, but 
requires an additional measurement to prove the sample 
is homogeneously broadened. Reproduced from 
Schultheis et al., Physical Review B 34:9027 (1986)!

Figure 4.10: PS Four-wave mixing data from various QW’s
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recombination and emission of a detectable photon. In an inhomogeneous line

those excitons excited above the maximum of the absorption feature – i.e. the

higher energy excitons within the line – are less localized in the quantum well

and exhibit more translational kinetic energy. That population of excitons un-

dergoes fast momentum and energy relaxation due to scattering with acoustic

phonons, crystal defects (impurities), and interface fluctuation. By contrast,

excitons found below the center of the absorption line appear more localized,

and relaxation processes were found to be less efficient. On this slower time

scale, spectral diffusion may be found to occur

For these samples, however, spectral measurements of absorption fea-

tures provided linewidths that corresponded to the excitonic phase coherence

time (7 ps in bulk; 2-3 ps in quantum well samples measured here, with shorter

times observed for lesser well width), indicating that the exciton resonances in

these materials are homogeneously broadened. For a completely homogeneous

line, the linewidth is expected to vary as Γ = 2/T2.

Again, these results were obtained by fitting self-diffracted four-wave

mixing energy to the small signal optical Bloch equations as described by the

Taira model. A linear dependence of the homogeneous linewidth on temper-

ature was found, indicating that one phonon scattering by acoustic phonons

is primarily responsible for the line broadening observed at low temperatures,

where the optical phonon mode is frozen out. It was not possible, of course, to

vary the interface fluctuation that is expected to contribute significantly to the

exciton dynamics, but exciton resonances in the sample studied exhibited no
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Stokes shift between emission and absorption maxima. This suggests an ideal

2d exciton, with a single energy level on a global spatial scale, rather than a

local spatial scale. The emission linewidth was found to correspond exactly to

absorption linewidth, consistent with homogeneous line broadening.

Coherent polarization interactions were introduced into the description

of exciton dynamics in an attempt to accurately reproduce experimental re-

sults [242]. Time integrated self-diffracted four-wave mixing emission had been

observed to rise and decay asymmetrically for homogeneously broadened heavy

hole exciton resonances in GaAs multiple quantum well samples, already in-

dicating that the Taira/optical Bloch model does not accurately describe the

physics of this system. Significantly, this paper studied time-integrated four-

wave mixing that was emitted at the ’wrong’ time – straightforward density

operator calculation, such as the Taira/optical Bloch equation model, indi-

cates that no four-wave mixing emission should be detected along the phase

matched direction 2k2 − k1, unless the k2 pulse arrives after the k1 pulse;

obviously, this result is symmetric under interchange of the indices, and no

emission should be detected along 2k1 − k2 unless the k1 pulse arrives after

the k2 pulse. Previous work had concentrated on studying the decay of the

emission, and had not accounted much significance to this wrong time signal.

The dephasing time appears to be approximately twice the rise time.

At higher temperatures or increased exciton density that relationship between

rise and decay times changes, albeit at the limit of the experiment’s detection

ability, presumably due to enhanced dephasing. For InGaAs multiple quantum
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Time-integrated self-diffracted four-wave mixing emission 
occurs at negative pulse delays (a) and develops distortion in 
its temporal peak at higher excitation densities (b). Neither 
effect can be accounted for in a Taira-like model. Adapted 
from Leo et al., Phys. Rev. Lett. 65:1340 (1990).!

Figure 4.11: Four-wave mixing with unexplained temporal lineshape

wells, the time integrated self-diffracted four-wave mixing signal exhibited the

same asymmetry as seen in GaAs samples. The faster relaxation rates found

for this material is likely due to scattering from local variations in the band gap

due to ternary alloy fraction fluctuations [346] not present in the binary GaAs

material. As the excitation power used increased, the shape of the diffracted

energy curve evolves, with the peak flattening and subsequently splitting into

two temporally resolved maxima. The minimum between the two peaks occurs

at zero delay between the two pump pulses.

These behaviours cannot be explained using the ensemble of non-interacting

two-level systems. Instead, a microscopic theory that treats the interaction

of the excitons (and other excitations) created in the nonlinear polarization
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present in the quantum well [320], [321], [319], [354]. These theoretical treat-

ments consider the applied optical field and the Coulomb interaction among

excitons on an equal footing. Without the Coulomb interaction, the Rabi os-

cillation of the exciton amplitudes ψk, created by vertical transitions at wave

vectors k, do not undergo a simple Rabi oscillation at the frequency deter-

mined by the electric field strength and the interband dipole matrix element –

µkE – but instead experience the potential of all the other excitations created

at some other wavevectors Thus, the total coupling may be represented by

4k = µkE +
∑
k′

Vk,k′ψk′

If the pulse temporal envelope is approximated with a Dirac delta func-

tion, the first term in 4k results in a diffracted four-wave mixing emission

that exhibits the same time dependence as that predicted by the Taira/optical

Bloch theory.

Including the effects of the induced exciton amplitude ψk gives rise to

the second term in 4k which exhibits a steplike rise and a subsequent e−t/T2

decay for the four-wave mixing emission.

The wrong time emission is the result of coherent polarization interac-

tions. The simplest picture for four-wave mixing emission considers a para-

metric process that describes the scattering of some fraction of the power in

the second pulse by a phase grating caused by a coherently induced population

grating. Emisssion can also be described by considering the scattering of light
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from a polarization grating, P =
∑

k µ
∗
kψk, resulting in emission at both pos-

itive and negative time delays T . Two polarization waves propagating in the

k2 direction, and one in the k1 direction, result in the characteristic e4T/T2 rise

in intensity of four-wave mixing emission during the negative T delay period.

This effect can be described in the context of a fourth-order perturbation cal-

culation, which is a simple extension of the third-order calculation describing

the scattering of an electric field from the population grating. Due to the fi-

nite pulse duration and high excitation density only numerical simulations can

be found, which exhibit qualitative agreement with the observed experimental

results, but which seem to depend strongly on the exact excitation conditions

used.

These effects were further studied with faster pulses, using self-diffracted

four-wave mixing to study the many-body effects on the nonlinear optical re-

sponse of GaAs quantum wells [241]. Wrong-time signals were again explained

as a result of the coherent interaction among excitons that substantially alters

the temporal lineshape of four-wave mixing emission. The faster pulses used

in these experiments also had sufficient bandwidth to simultaneously excite

light hole and heavy hole exciton resonances, resulting in the observation of

an oscillatory four-wave mixing signal due to either polarization or quantum

interference (the specific mechanism was not able to be resolved in these ex-

periments). Again, for either homogeneously or inhomogeneously broadened

resonances, the correlation trace of the emission is expected to exhibit a step-

like turn on and exponential decay, given by
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Ihomogeneous (T ) ∼
{

0, T < 0

e−2T/T2 , T > 0

and

Iinhomogeneous (T ) ∼
{

0, T < 0

e−4T/T2 , T > 0

As we noted, polarization interactions have been used to explain the

wrong time signal in these systems. While the positive time decay of the emis-

sion is dominated by the coupling due to the applied optical field, the wrong

time behaviour exhibits a slower rise due to the interaction of the polarization

term\exciton correlation effects. Including these effects, the line shape for

homogeneously broadened transitions may be described with

I (T ) ∝
{
e4T/T2 . T < 0

e−2T/T2 , T > 0

If there is an inhomogeneous distribution of resonant frequencies in the

ensemble of oscillators, the macroscopic polarization P =
∑

k µ
∗
kψk appearing

in the coupling 4k = µkE +
∑

k′ Vk,k′ψk′ will decay more rapidly, compared

to the case of a homogeneous polarization, which would decay as e−t/T2 . As a

result the wrong time signal can be expected to vanish within the temporal res-

olution of the experiment if the transitions exhibit very strong inhomogeneous

broadening. Therefore, four-wave mixing emission observed at negative times

is an indicator of high quality samples with largely homogeneous broadening.
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High quality samples may be studied using photoluminescence to demonstrate

the homogeneity of the exciton transitions. Exciting one resonance at a time

permits a study of the rise and decay times of the emission, which follow the

predicted 2:1 ratio at low temperatures. At higher temperatures, the ratio

increases, suggesting that decoherence effects due to phonon scattering affect

the decoherence but not the many-body correlations that result in wrong time

signals. Introducing additional dephasing processes – via temperature control,

the injection of free carriers or incoherent excitons, or via increasing the ex-

citon density, can provide some ability to study the underlying physics of the

rise and decay times of the emission, but self-diffracted four-wave mixing mea-

surements cannot directly distinguish between the particular contributions to

four-wave mixing signals. We note that this is a particular strength of 2dFTS

[113]. Excitation density effects are easily studied by increasing the strength

of the pulses used, with the temporal lineshape largely similar to that seen at

lower power, albeit with faster rise and decay. Off resonance, the lineshape

becomes more complicated due to interference effects between higher order

nonlinear processes. χ(5) effects with an opposite sign to the emission due to

χ(3) processes affect the lineshape near the temporal overlap of the two pulses,

but fall off more rapidly and do not contribute to the behaviour of the emis-

sion at greater magnitude pulse delays. The dependence on detuning cannot

be understood directly in the context of this theory and experiment, which

do not distinguish the particular microscopic processes leading to four-wave

mixing emission.
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4.2.2 Reflection geometry four-wave mixing experiments

Self-diffracted four-wave mixing was also demonstrated in a reflection

geometry on single quantum well systems [183]. For transmission measure-

ments it can be shown that the strength of the four-wave mixing signal field

increases quadratically with the thickness of the sample (until saturation oc-

curs, due, e.g. to the depletion of the incident fields, phase mismatching that

eventually becomes significant over greater penetration lengths, etc.), whereas

in a reflection geometry the polarization that acts as a source term in Maxwell’s

equations does not exhibit the same favourable phase matching with the prop-

agating incident beams. As a result, the intensity of the backwards-directed

emission oscillates sinusoidally as a function of the sample depth – for very

thin samples, however, the forward and backward emissions are of theoretically

comparable intensities. Thus, reflection geometry experiments can be used to

study exciton dynamics in quantum wells.

More completely, the polarization induced in a material is determined

by the incident beams, and therefore in either detection geometry is given by

P (r, t, T ) ∝ C (t, T ) ei(ωt−(2k2−k1)·r)

where the integral function C (t, T ) describes the interaction of the

electric fields of the exciting pulses and the material response. This nonlinear

polarization results in the emission of an electric field En directed into a new,

different direction n that has a phase mismatch, compared to the nonlinear
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Phase matching for four-wave mixing experiments in reflection (k4) and 
transmission (k3) detection geometries (a). The greater mismatch in 
reflection mode results in a sinusoidal dependence on sample thickness 
for the four-wave mixing intensity (dashed curve), while the  transmission 
mode increases monotonically (solid curve) (b). The ratio of the two 
intensities is nonetheless large if the sample thickness is relatively small 
(c). Reproduced from Honold et al., Appl. Phys. Lett. 52:2105 (1988).!

Figure 4.12: Phase matching for reflection geometry four-wave mixing
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polarization’s wave vector, of 4kn = kn − 2k2 + k1. For small angles of inci-

dence, the signal intensity – given in either reflection or transmission geometry

by

In (T ) ∝ L2
z

sin2 (4knLz/2)

(4knLz/2)2

where Lz is the depth travelled into the material – grows monotonically

for the transmission phase-matched direction but oscillates sinusoidally for

measurements detected along the reflection phase-matched direction. In both

cases, the signal intensity will be given by the square of a sinc function, but

the relevant length scale determined by the phase mismatch will be much

shorter for reflection measurements. Thus, the intensity of transmitted four-

wave mixing signals should always be greater than the intensity of reflected

signals, but for very thin samples the ratio of the two fields should be small.

Two pulse self-diffracted four-wave mixing experiments were performed

on single GaAs quantum well samples, exciting only the heavy hole exciton res-

onances. Using the reflection geometry self-diffracted four-wave mixing tech-

nique it was possible to accurately fit a dephasing rate for this transition

(6± 0.5 ps).

Additionally, three pulse measurements are performed, where the scat-

tered energy from additional pulse is used to determine population relaxation

time constants (rather than dephasing rates). By controlling the polarization

states of the two pulses used to form the transient grating in the quantum well

188



,-------------- -.--------.- - ------l 

population /ll(al 
lOG I 1\ gratmg #3 -+-,0. I 

#1-4>---,- y' I 
10-111 _______ T -J # 4 I 
10-2 185 : 20 ps ! 

l-o--to--ioo--lto-Too----- ---l(bl 
o 10° l_ 1\ orientatlonal f\ __ I' 

f:: f /: \ g,atlng iI' 2 

; ":[1 t;.'" ::+Ef?UI 
10 g: 0 50 10e 150 200 tel 

25 10° I r\ 2 - {11 I \ 
laIr I I 
10-2[-]1 I 

I rfV1I T2 " 6: OSps I 
, __ ___ L ___ '--____ L... _ ____ _ _ ___ J 

-10 0 10 20 :30 

DELAY T (ps) 

FIG. 3. Diffraction cllrves of different time-resolved DFWM experiments 
on 1 s heavy-hole excitons in a 12 nm GaAs single quantum well in back-
ward direction at low excitation densities and a temperature of 2 K. (a) 
depicts the diffracted intensity of a population grating, (b) an oricntational 
grating, !.Ind (c) a two-pulse self-diffraction experiment vs the delay time of 
the pulses. The observable relaxation times are (a) the recombination life-
time'T, (b) theorientational relaxation time T" or (c) the phase coherence 
time 

signal may contribute to this difference. In contrast, the 
measured ratios of forward to backward signal produced in 
the same layer are measured to be 0.028 (194 nm) and 0.82 
(27.7 urn) and agree well with the calculated values of 0.028 
and 0.83, These ratios compare two signals generated in the 
same layer, so the absorption effect is almost the same for 
both signals and cancels in the ratio. 

The observation ofthe backward emission demonstrates 
the action of the excited excitons as a large antenna, whose 
radiation is highly directional not only in forward but also in 
backward direction. The two signals differ in the phase mis-
match and, therefore, the backward intensity is strongly 
modulated with the layer thickness, and the maximum satu-
rates at small values. But for thin layers, the backward emis-
sion is just as efficient as the forward emission. 

The backward geometry is also applied to study the dy-
namics of 1 s heavy-hole excitons in a 12 nrn GaAs single 
quantum weB at low excitation intensities with different 
time-resolved DFWM arrangements. 9 In a three-pulse pop-
ulation grating experiment (parallel polarization of the grat-
ing forming pulses), we determine the grating lifetime corre-
sponding to the recombination lifetime of the excitons. We 
obtain a recombination lifetime of r = 185 ± 20 ps at densi-
ties N x <2X 109 cm- 2 [see Fig. 3(a) 1. In an analogous 
orientationai grating experiment (perpendicular polariza-
tion of the grating forming pulses), the exponential decay of 
the signal determines the orientational relaxation time 
Tl = 21 ± 2 ps [see Fig. 3 (b) ]. The dynamical range of the 
diffraction curve is limited by a small residual population 

2107 Appl. Phys. Lett" Vol. 52, No, 25, 20 June 1988 

grating, whose signal is two orders of magnitUde smaller 
than that of the orientationul grating. In a two-pUlse self-
diffraction experiment we study the loss of phase coherence 
of the generated excitons [see Fig. 3 ( c) ). The position of the 
maximum and the decay of the signal are fitted by a phase 
coherence time of 1'2 = 6 ± 0.5 ps corresponding to a homo-
geneous Hnewidth of l:\ = 0.22 ± 0.02 meV. The dynamic 
range here is limited by a weak background of diffuse reflec-
tion with pump-probe-like behavior. 

A detailed analysis of these experimental results and a 
comparison of the relaxation times for 2D and 3D excitons 
will be published elsewhere. !O 

In conclusion, we observed a backward DFWM emis-
sion in optically thin GaAs layers with thicknesses between 
12 and 200 nm and used this signal to determine the relevant 
relaxation times of 2D exciton" in a GaAs single quantum 
well. Backward DFWM has thus been successfully proven 
to be a powerful technique offering several advantages. This 
backward DFWM configuration is a simple excitation ar-
rangement which enables the study of excitation dynamics in 
optically thin semiconductor layers on absorbing substrates 
without removing the substrate. 

We thank A. Jonietz, H. Kuhne, and K. Battli.ng for 
expert technical help and W. Konig for developing the com-
puter programs. We also thank R. F. Kopffor assisting with 
the molecular beam epitaxy. We are grateful to H. J. 
Queisser and F. Keilmann for critically reading the manu-
script. 
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Data from transient grating measurements are used to 
study population relaxation (a) and orientational relaxation 
(b) in a reflection geometry experiment. Self-diffracted 
four-wave mixing is also demonstrated in a reflection mode 
experiment (c). Reflection measurements possess 
numerous advantages we outline in the main text. 
Reproduced from Honold et al., Appl. Phys. Lett. 52:2105 
(1988).!

(a)!

(b)!

(c)!

Figure 4.13: Reflection geometry experiment schematic and data
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it is possible to isolate the population decay rate and the orientational relax-

ation rate. These experiments provide an independent measurement of prior

results obtained in a transmission geometry [326]. The underlying theory for

three pulse transient grating measurements is discussed at length elsewhere in

this thesis.

The dephasing rate of an exciton coherence induced in such a sample

can, of course, be readily measured in transmission geometry. Indeed, even

under the optimum reflection-to-transmission intensity conditions (ie in the

limit that the single quantum well thickness tends to zero – which, consider

that when that limit is reached the four-wave mixing signal itself necessarily

goes to zero intensity) the transmitted signal is more intense. Nonetheless, the

reflection geometry has a number of advantages that transmission experiments

cannot provide. We detail those elsewhere in this thesis, in consideration of our

development of a three pulse reflection geometry phase-sensitive spectroscopic

technique designed to detect weak four-wave mixing signals superimposed on a

strong pump-probe and transmitted probe background. The particular results

of the reflection geometry measurements described here are not as important

here for our own experimental program as is the analysis explaining the funda-

mentally weaker signals that must be studied using reflection mode four-wave

mixing.

Other reflection mode, self-diffracted four-wave mixing measurements

of the dephasing of homogeneously broadened heavy hole exciton resonances

have been performed on single quantum wells in order to investigate the
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exciton-exciton and exciton-free carrier scattering processes [184]. In a two-

dimensional system, exciton-exciton scattering is predicted to blue-shift the

exciton resonances and to reduce the oscillator strength. Exciton-free carrier

scattering, on the other hand, should only cause the transition bleaching, but

not the shift. The dephasing effects of these scatterers may be separately

probed by introducing a population of free carriers or incoherent excitons, i.e.

excitons without a well-defined phase relationship to the coherence and pop-

ulation induced by the two pump pulses in a self-diffracted four-wave mixing

experiment. The introduction of free carriers or incoherent excitons is accom-

plished by the use of a second laser, which is time-synchronized but is not phase

locked to the laser source used to perform the four-wave mixing experiment.

Incoherent excitons are produced by applying the extra laser pulse 20ps prior

to the arrival of the four-wave mixing pump pulses, while free carrier scatter-

ing is studied by synchronizing the additional laser with first four-wave mixing

pump pulse, so that there is insufficient time for the photoexcited carriers to

relaxed into bound excitons. In both cases, the homogeneous exciton reso-

nance linewidth is observed to broaden, but for excitation of free carriers the

effect is eight times as large as that seen for incoherent excitons, presumably

due to Pauli pressure between the free carriers and the constituent electrons

and holes the excitons comprise. To study these effects, reflection mode mea-

surements are preferred, since the result will not be altered by excitation of

the substrate material. A solution for the Taira model\optical Bloch equations

is used to analyze the relaxation processes of this system. The homogeneous
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linewidth function is shown to depend linearly on the density of scatterers,

with a density-independent contribution due to the residual interaction of the

excitons with acoustic phonons and impurity ions (leading to homogeneous

broadening) and interface fluctuations and alloy concentration fluctuations at

those interfaces (contributing to some degree of inhomogeneous broadening).

4.2.3 Some simple three pulse four-wave mixing results for semi-
conductor quantum wells

We have noted that three pulse four-wave mixing measurements have

been performed to measure population relaxation and diffusion processes (see,

for example [182], [183]), where control of the polarization state used permits

the separation of population decay from orientational relaxation times. Of

greater interest are measurements where the use of an additional pulse per-

mits the experimental separation of the dephasing time T2 from the population

relaxation time T1. Two pulse, self-diffracted four-wave mixing measurements

provide data that can be used to extract the dephasing rate if the popula-

tion relaxation rate is known from an independent measurement (e.g. from a

pump-probe measurement), but the three pulse technique does not require an

additional experiment.

Three pulse four-wave mixing experiments have been used to study

the dependence of decoherence and orientational relaxation on excitation den-

sity and the validity of the polariton picture [326]. The polariton descrip-

tion of excitation assumes that the interacting light-matter system is not well
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described using separate exciton and photon modes, but rather the coupled

exciton-phonon eigenmodes, or polaritons. The coupling between photons and

excitons, characterized by the oscillator strength, must be sufficiently strong,

compared to the exciton-exciton and exciton-bath interactions, characterized

by the dephasing time T2, for this picture to be valid. By performing experi-

ments at very low excitation densities, the exciton-exciton interaction can be

neglected. In this case the decoherence is determined by scattering by residual

acoustic phonons and impurities. Two pulse self-diffracted experiments are

performed to determine the dephasing time, but three pulse measurements

are also performed to study the orientational grating induced by two pre-

ceding parallel pump pulses. The short dephasing time T2 indicates that the

coupling between the exciton and the bath is stronger than the exciton-photon

coupling; this indicates that the polariton picture is not valid for these sam-

ples. The coherent interaction between light and the exciton population is

insufficiently strong to result in a coherently propagating coupled excitation

mode – the exciton polariton – which would be expected to decay within a

single wavelength in these systems. We note here that we do not consider

this result further in our own experiments on polaritons that describe coupled

plasmon-photon modes.

Further self-diffracted four-wave mixing measurements were able to re-

fine the model for exciton-exciton and exciton-free carrier scattering [328].

Again, an additional laser was used to inject free electron-hole pairs or inco-

herent excitons. A detailed examination of the dependence of the decoherence
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time on the density of the scatterers provides a measure of the dephasing

efficiency of each collision process. Efficient scattering occurs even at low

excitation densities of 5 × 1014cm−3, where the inter-exciton distance of ap-

proximately 100nm is nearly ten times the exciton Bohr radius of 13nm in

GaAs. These experiments also iteratively solved a Taira\optical Bloch model

to find theoretical fits to the temporally resolved time-integrated four-wave

mixing signal. We note that while the decay of this correlation trace appears

well fit in their results, the rising portion of the diffracted signal is not well fit

in this model. Moreover, proper comparison between theoretical and experi-

mental collision efficiencies is impossible in this model. Only an approximate

comparison is offered, since the validity of the theoretical approaches used

to describe three- and four-particle scattering has not been demonstrated for

semiconductor systems.

These experiments also provide a more complete description of the fre-

quently unspecified interactions among excitons and carriers, and relate those

microscopic processes to macroscopic spectroscopic observations. The exciton-

exciton interaction should resemble an attractive van der Waals force and a

repulsive hard-core force that results from Pauli pressure. The observed blue

shift of the exciton resonances due to injection of incoherent excitons suggests

that the repulsive forces dominate under the conditions probed in these (and,

by extension, most all) GaAs quantum well exciton experiments. The exciton-

carrier interaction, however, should resemble the polarization of a neutral par-

ticle (the hydrogenic exciton) by a charged particle (the free carrier); this is
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an attractive interaction. There is also a repulsive force for exciton-carrier

interactions, due to an exchange interaction for parallel electron spins. The

lack of any spectral shift observed for exciton-carrier scattering experiments

suggest these interactions are balanced in these systems.

Furthermore, the observed exciton-exciton scattering rates suggest that

this process cannot drive the system from a non-thermal to a thermal, quasi-

equilibrium distribution of excitons on a time scale comparable to the time

scale. Instead, this relaxation must be driven principally by interaction with

phonons and impurities.

4.2.4 Time-resolved four-wave mixing experiments

We have described some three pulse four-wave mixing measurements.

Perhaps more enlightening in dissecting the problems of many-body effects

in semiconductor quantum wells are the results of time-resolved four-wave

mixing experiments. Certainly, we note that the time-integrated self-diffracted

four-wave mixing experiments already show some deviation from the simple

Taira model of a non-interacting ensemble of two-level systems governed by

the optical Bloch equations.

The optical Bloch equations were first been rigorously tested as a de-

scription of optical interactions in solids in studies of Praseodymium impurity

atoms in Lanthanum Fluoride (Pr3+ : LaF3), chosen due to its substantially

different time scales for decoherence and population decay [90] (Other mea-

surements based on optical analogs of several NMR techniques had previously
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been used to validate the optical Bloch equation description of light-matter

interaction in atomic and molecular systems [28]. A small spectral band of

Praseodymium ions in the inhomogeneously broadened line are excited us-

ing an ultra-stable cw dye laser. The excitation is then removed very rapidly

switching the laser frequency [48], [89]. The resulting optical free induction de-

cay measurements (q.v. sup) are then fit using a free-induction decay solution

to the Bloch equations at low Rabi frequencies, or using a modified model that

considers NMR saturation in solid samples [306] for high Rabi frequencies. It

is assumed that the dephasing rate is not (or is only weakly) dependent on the

excitation density used. The simple theory provides a close fit for this system,

but notes that using a single-valued dephasing time T2 will fail at sufficiently

high intensities.

The applicability of the Taira\optical Bloch model is susceptible to even

more substantial issues in semiconductor exciton systems. While self-diffracted

four-wave mixing experiments suggested problems with the temporal lineshape

of the time-integrated emission, time-resolved four-wave mixing measurements

demonstrated that the ensemble of non-interacting two-level systems with re-

laxation processes described by T1 and T2 times was unable to describe the

dominant effects in the third-order nonlinear optical response.

Time-resolved four-wave mixing is a straightforward extension of the

two-pulse, self-diffracted four-wave mixing experiment used to study dephas-

ing in semiconductors. The phase-matched coherent emission is collected and

temporally resolved, typically by performing a nonlinear upconversion process
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Sketch of experimental geometry for time-resolved transient four-
wave mixing measurement. The signal field, indicated in blue, is 
mixed with a local oscillator field. Adjusting the delay of the local 
oscillator pulse maps out the intensity of four-wave mixing 
emission. In this diagram, the heterodyne field (green) suggests 
collinear coupling, but non-collinear geometry up-conversion in a 
nonlinear crystal is frequently used.!

Figure 4.14: Sketch of transient four-wave mixing experiment
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using an independently delayed reference pulse, detecting light at the upcon-

verted, higher frequency, and using its intensity to determine the intensity of

four-wave mixing emission as a function of the reference pulse delay. Essen-

tially, it is a standard self-diffracted four-wave mixing technique, but with a

more sophisticated detection scheme that maps out the temporal lineshape of

the nonlinear response.

The wrong time exponential rise of four-wave mixing emission at low

excitation density and temporal splitting of four-wave mixing emission at high

intensity [242] have been noted elsewhere in our discussion of self-diffracted

four-wave mixing experiments. These effects may be explained in theories

that consider exciton-exciton coherent interactions; these appear to be general

many-body effects that are not expected to be limited to the specific materials

studied.

We have discussed the nature of relaxation processes elsewhere in this

thesis [329], [328], [326], [183], [184], considering the effect of incoherent scat-

tering of excitons by acoustic phonons, impurities, other exciton populations,

and free carriers in four-wave mixing experiments. Quantum beating effects

have also been studied with four-wave mixing [141]. The analyses of these two

pulse measurements indicate that Coulomb forces among excitons result in

nonlinearities in the optical response of these systems, arising due to coherent

exciton-exciton interactions. These correlations among members of the inter-

acting ensemble of excitons have previously been studied in the context of the

excitonic AC Stark shift, the results of which led to the development of the
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semiconductor optical Bloch equations [320], [321], [323]. Theory developed

in the context of the exciton Stark shift is based on unrestricted Hartree-Fock

or BCS approximations, and can be successfully used to describe the coherent

exciton-exciton correlations [319], [354], [108], [414], [107], [318].

In addition to the dephasing processes previously studied, coherent

spectroscopic techniques have been shown to also probe exciton-exciton inter-

actions in a population of Wannier excitons under resonant excitation [3].

To study the failures of the simple models, time resolved four-wave

mixing was performed on an inhomogeneously broadened exciton resonance

[387]. Excitation below resonances permits resolution of the dephasing time

T2 within the precision of the laser temporal width. As the excitation intensity

is increased, the wrong time four-wave mixing signal increases correspondingly,

but develops a more complicated, two peak temporal lineshape.

The optical response of this system is governed by exciton effects. Non-

linearity is affected by the exciton-exciton correlation and anharmonicity in

the exciton-photon coupling. These effects can be considered in a BCS semi-

conductor model with a potential that couples the various exciton states via

a Coulomb force. The density matrix describing the system may be written

n̂k (t) =

(
nck (t) ψk (t)
ψ∗k (t) nvk (t)

)
where n̂k is a 2x2 block in the density matrix that describes those

members of the inhomogeneously broadened ensemble of two-level systems
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labeled by wave vector k, where the subscript c represents a conduction band

state and v the valence band states. The n terms in the matrix block are

populations, whereas the ψ terms are pair amplitudes. This density matrix

evolves according to a Liouville equation,

∂tn̂k (t) = −i [ε̂k, n̂k] + ∂tn̂k|relaxation

where the energy matrix contains not only self-energy terms and the

optical coupling, but also the Coulomb interaction,

ε̂k (t) =

(
ε0
ck −µE (t)

−µ∗E∗ (t) ε0
vk

)
−
∑

Vk,k′n̂k′ (t)

The inclusion of the Coulomb term will renormalize the valence and

conduction band energies, and the coupling to the light field is modified

µE (t)→ ∆k (t) = µE (t) +
∑
k′

Vk,k′ψk′ (t)

Physically, the interpretation of this interaction potential is that the

optically coupled conduction and valence states at a particular momentum

k are subject not only to the incident optical fields, but rather experience a

self-consistent local field ∆k, due to the sum of those applied external fields

and the so-called molecular field that arises due to the other optically coupled

states at different wave vectors. Phenomenological relaxation terms are still
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used in the Liouville equation to approximate stochastic perturbations leading

to decoherence and spontaneous emission in the ensemble.

Using the renormalized energies and modified interaction, it is possi-

ble to obtain a time-dependent Wannier equation that describes the induced

change in coherence. If the Coulomb interaction among the excitons is set

to zero in this equation, and a perturbation solution is found to the third

order in applied fields, the normal Bloch equations for an inhomogeneously

broadened ensemble of non-interacting two level systems is recovered. This

shows that the BCS theory of band-edge excitations can recreate the simpler

non-interacting exciton theory. In the BCS expressions for the time-evolution

of coherences or populations, the exciton-exciton Coulomb coupling terms will

appear nearly step-like in their onset, then exhibit a subsequent decay gov-

erned by dephasing and population relaxation times. This BCS theory can

accurately reproduce the temporal lineshape of the observed four-wave mixing

emission, including the wrong time emission, rising with half the time constant

that describes the emission decay, as well as predicting the formation of the

double peak at higher excitation density. These results suggest that the tem-

poral lineshape of four-wave mixing emission from excitonic systems is largely

due to the Coulomb interactions that nonlinearly couple the population and

coherence. Nonetheless, since the numerical simulations used to evaluate the

predictions of this model are computationally intensive. This theory is there-

fore of limited predictive utility in understanding the nature of the processes

involved, as it is difficult to understand which particular mechanisms directly
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affect the calculated or experimentally resolved four-wave mixing signal.

Time-resolved self-diffracted four-wave mixing from GaAs quantum 
wells, shown as a function of the local oscillator delay time for a 
number of different delays between the two pump pulses. A non-
interacting model cannot explain emission in the phase-matched 
direction for negative pump delay times. The traces are normalized to 
the same peak value, and show co-linear (a) and cross-linear (b) 
polarizations. Reproduced from Kim, Phys. Rev. Lett. 69:2725 (1992).!

Figure 4.15: Time-resolved transient four-wave mixing temporal lineshapes

Femtosecond time-resolved four-wave mixing spectroscopy on high qual-

ity GaAs wells can provide definitive proof that the Taira/optical Bloch model

is unsuitable to describe the nonlinear processes in this system [216]. The sim-

pler models predict a temporal lineshape for time-resolved four-wave mixing
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emission (not to be confused with the temporal lineshape of time-integrated

emission as a function of the pump pulse delay) that peaks at or shortly af-

ter the coincidence of the two pump pulses. Experimentally, it can be shown

that the temporally resolved diffracted power exhibits a slow turn on (1.5ps

in the samples studied, some ten to fifteen times the laser pulse duration),

with the peak occurring at a delay approximately equal to the dephasing time

T2. The effect is suspected to be due to the Coulomb interactions that have

been used to explain the time-integrated temporal lineshape. Unlike time-

integrated four-wave mixing, time-resolved spectroscopy permits the separa-

tion of the relative strengths of the Taira/optical Bloch contribution to the

four-wave mixing signal from the interaction-induced contributions. Time-

resolved emission suggests that the interaction-induced emission is as much as

two order of magnitude stronger than the response that can be explained in

the context of a non-interacting ensemble of emitters. Negative delay emission

can also be resolved temporally in these measurements. Assuming that a local

field effect can be used to explain the interaction induced emission allows an

estimate of the strength of that perturbation, obtaining a value of a few meV

– on the order of the exciton binding energy.
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Chapter 5

Two-dimensional Fourier Transform

Spectroscopy – background and experiments

5.1 Background and context: three pulse four-wave mix-
ing measurements and the coupling of exciton res-
onances

5.1.1 Three pulse four-wave mixing experiments: underlying the-
ory

We have mentioned some three pulse experiments already, but did not

yet spend significant time outlining the underlying theory for those techniques.

Rather, we consider the optical physics of three pulse measurements here, due

to their significance for two dimensional Fourier Transform spectroscopy.

An implicit theme throughout this thesis is that the dephasing pro-

cesses that govern the relaxation of a macroscopic polarization can reveal

fundamental static and dynamic properties of material systems. In many

media and in structured samples, significant dephasing of coherence among

quantum emitters can occur on a sub-picosecond time scale. Inhomogeneous

broadening of a transition may complicate the analysis of the particular de-

tails of phase relaxation processes. Frequency domain spectral hole burning

measurements can provide information on homogeneous widths concealed by
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inhomogeneous broadening [128], [155], [119], [60], but are deprecated if de-

phasing times may be measured directly in the time-domain. Photon echo

and self-diffracted four-wave mixing measurements are available to study de-

phasing times, and have been described elsewhere in this thesis, but suffer

from some disadvantages when studying certain media. Given the substantial

interest in understanding the behaviour of material’s optical response using

a Bloch formalism, wherein relaxation processes are characterized using only

two parameters, an experiment that can accurately measure dephasing and

population decay simultaneously is of significant scientific merit. Vol. 2, No. 4/April 1985/J. Opt. Soc. Am. B 655

/
/
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Fig. 1. Interaction scheme for dephasing measurements by the
three-pulse scattering technique.

analysis becomes more complicated; but three-pulse scattering
can still be used to extract information about these processes.
Although simple exponential dephasing (with time constant
T2) has been assumed here, an arbitrary transverse relaxation
function hT(t) is easily incorporated and will be used inter-
changeably throughout. 21 For homogeneous broadening the
polarization positive frequency amplitude P is simply the
product of (3') and the electric-dipole matrix element; when
inhomogeneous broadening is present, one must integrate the
expression for b g(e) over the distribution of resonant frequen-
cies g(wo).

If we now write the electric field as a superposition of the
three plane-wave input pulses of the same shape, we can
identify the source term for the scattering. Specifically, we
write

P(F, t) - ale(t + -r)exp(-ikl ) + a2e(t)exp(-i2 * 7)
+ a3e(t - T)exp(-ik 3 * 7), (2)

where e(t) is the (complex) electric-field envelope function
and the ai allow for different pulse intensities. The delay T
is positive when pulse # 1 precedes pulse # 2. With the re-
strictions that pulse # 3 arrives at least several pulse widths
after pulses # 1 and #2 and that the population does not
change appreciably within the duration of pulse # 3 (generally
valid if pulse # 3 arrives after any rapid excited-state relax-
ation is complete), the polarization source term for scattering
into direction k4 is written as follows:

PP)(F, t) - exp (-ik 4 7 r) J'dog(oo) tf dt'e(t' - T)

X exp[(-T + iA) (t - )

X exp(-T/Tg)y(r, Aco), (3a)

where
t,

'(r, A) Jf dt" J dt"' e*(t")e(t"' + r)

X exp [(- T + ic) (t" - /")I + e(t" + r)c*(t"')

X exp |- iAW 1 (t- 1)| (3b)

j(r, A) represents the complex grating amplitude generated
by the interference of the second pulse with the coherent po-

,y(r, T, Awo) = exp(-T/Tg) X 1 (, Ac)
X exp[-i(l - k2 ) * .] + c.c.j, (4)

where the maximum positive value of y corresponds to the
maximum ground-state depletion.

The quantity actually measured is the total scattered energy
U as a function of the delay r between pulses # 1 and #2 and
is proportional to the time integral of the squared polariza-
tion:

Uk 4 (r)- dtIP,)Q(7, t) 2 (5)

and similarly for direction k5.

B. Homogeneous Broadening
In the case of homogeneous broadening, the scattered energy
as a function of is proportional to the squared complex
grating amplitude, i.e.,

Uk4 = Uk 5 - I(r AW) 2. (6)
The scattering curves are always symmetric with respect to
the delay -r between pulses # 1 and #2, independent of pulse
# 3. The scattered energy depends on the delay T of pulse
# 3 relative to the ground-state recovery time Tg [see relation
(3a)]. However, because the dephasing is revealed through
the shape of the scattering curve as a function of T, we omit
the exp(-2T/Tg) factor in Eq. (6) and the following expres-
sions.

For pulses much shorter than the dephasing time T2, the
scattered energy has the following simple form:

Uk4 = Uk 5 exp(-21 -rI/T2 )- (7)

On the other hand, for pulses much longer than T2, the ex-
pression for the scattered energy reduces to the squared en-
velope of the electric-field autocorrelation, for both homo-
geneous and inhomogeneous broadening:

Uk4 = Uk5 -If dte(t)e*(t + r)2. (8)
This property was used previously to measure the coherence
properties of mode-locked pulses.22 Even when arbitrary
pulse shapes are considered, the electric-field autocorrelation
function is still sufficient to characterize the scattering. This
feature is particularly advantageous in the picosecond and
femtosecond time domains, in which pulse shapes themselves
cannot yet be directly measured. By rewriting the complex
grating amplitude from relation (3b) as a symmetrized
convolution of the transverse relaxation function hT(r) with
the electric-field autocorrelation G(T), we obtain the following
expression:

y(T, Aw) - dhT(T + )exp[iAo(T- + r)JG(r')
+ dT'hT*(r'- )exp[-iAct(r'- -r)]G*(r')

(9)

where G ' = dte(t)e*(t + ') and hT(T) is zero for negative
values of r. Because the electric-field autocorrelation func-
tion is readily measured,4 fast dephasing times can be resolved
by looking for small differences between the scattering data
and IG(T)12, which represents the response for T2 O. Fur-
thermore, because I G(T)l 2 depends not on the pulse width but

T

(T ULSE I

Weiner et al.

Typical three-pulse four-wave mixing experimental schematic. 
Background-free emission occurs along either of two separate 
phase-matched directions, determined by the pulse time ordering. 
Scanning the delay between the first two pulses allows direct 
extraction of the dephasing time. Scanning the delay between the 
last two pulses provides the population relaxation rate. Reproduced 
from Weiner, J. Opt. Soc. Am. B 2:654 (1985).!

Figure 5.1: Three pulse four-wave mixing schematic

Three pulse four-wave mixing experiments provide several advantages
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compared to self-diffracted four-wave mixing spectroscopic techniques, with

accuracy better than the laser temporal pulse width, and can discriminate

between homogeneous and inhomogeneous broadening without the need for

additional spectral measurements [392], [391]. Three-pulse transient grating

experiments were previously used to study population and orientational re-

laxation in condensed matter systems, as noted elsewhere in this thesis [106],

[290], [347], but had not been applied to studying dephasing processes. We

describe the three pulse experiment in some detail here, as it relates directly

to the optical processes upon which two-dimensional Fourier transform spec-

troscopy depend.

The three pulse experiments require more complicated experimental in-

frastructure to implement, but offer two significant advantages for which these

methods are preferred to the two pulse, self-diffracted four-wave mixing tech-

niques. First, three pulse transient grating techniques can separately measure

dephasing and population relaxation rates. The delays between the pulses used

in the three pulse scattering measurement may be scanned in such a way as to

probe only T2 time, whereas the two-pulse self-diffracted techniques produce

results that depend on a combination of the dephasing and population relax-

ation times. As a result, self-diffracted measurements experimental access T ∗2 ,

where 1
T ∗2

= 1
T2

+ 1
T1

. It is certainly possible to use a two-pulse measurement

to extract the dephasing time only if the population relaxation time is also

known, but this requires a second measurement. Moreover, if the population

relaxation is comparable to the dephasing rate, the analysis of the observed
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polarization decay curve becomes more prone to error, as it is more difficult to

distinguish the effects of dephasing from the longitudinal relaxation. The three

pulse measurement also permits a direct measurement of T2 = 0 curve, which

the two-pulse scattering method cannot provide due to the inherent mixing of

the two parameters in the observed correlation traces. The three pulse mea-

surement therefore can directly access both dephasing and population decay

times.

Second, the three pulse measurement may also distinguish between ho-

mogeneous and inhomogeneous broadening. Two pulse experiments may do so

only if the dephasing rate is sufficiently clearly resolved from the population

relaxation, which then permits a comparison with spectral data to determine

the broadening mechanism. Weiner et alia assert that the temporal line shape

observed in three pulse transient grating spectroscopy is indicative of the na-

ture of the broadening mechanisms for the transition of interest; this certainly

is the case within the framework of a density matrix theoretical model that

treats the system as an ensemble of non-interacting two-level oscillators, but

we note here that the failure of the Taira model to accurately capture those

many-body effects that depend upon correlation among excitons may call into

question the validity of this statement. If that model is valid, however, it can

be shown that the temporal envelope of the energy diffracted in a three pulse

experiment is a symmetric function of the τ delay for a homogeneous line,

whereas an inhomogeneous line exhibits a unit step behaviour at τ = 0, with

no wrong-time emission predicted by a Taira-like model. The stimulated pho-
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ton echo effect [262] is viewed here as a strong-field limit for the three pulse

transient grating experiment.

In either broadening case, this assumes that the probe delay T has

been chosen to be less than the spectral diffusion time; typically, the delay T

is chosen to be longer than the pulse length tp so as to ensure that the grating

formation process has gone to completion, and in some systems slower than

any extremely fast relaxation times (for a molecular dye, for instance, choosing

T to be fast enough for fast vibrational state relaxation process to occur; in

the semiconductor materials of interest to us, a comparable time scale would

be the exciton formation time. This is expected to occur extremely rapidly

– on the femtosecond timescale – and is thus not a significant factor in the

design of an experiment for GaAs nanostructures).

In a three pulse measurement, the second pump pulse to interact with

the sample induces a transient grating if it arrives prior to significant dephasing

of the coherence induced in the material by the first pulse. Interference results

in a spatially periodic pattern of excitation. The grating modulation depth is

then measured by scattering a third pulse from the grating. As long as the

pulse width tp is not long compared to the dephasing rate, T2 can be extracted

directly by scanning the delay τ between pump pulses. If, on the other hand,

tp � T2, then the scattered energy measured from either a homogeneous or

inhomogeneous transition is simply related to the square of the electric field

autocorrelation,
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Uk3±(k1−k2) ∝
∣∣∣∣ˆ dtE (t)E ∗ (t+ τ)

∣∣∣∣2
This may be moderately useful as a diagnostic tool [105], but essentially

it restricts the usefulness of three-pulse grating experiments as a simple diag-

nostic for samples with dephasing rates slower than the available laser pulse.

We note here that this is no different from the restriction on self-diffracted

four-wave mixing experiments performed with only two pulses, which exhibit

the same limitation. Technically, it is possible to extract dephasing informa-

tion even in the case of long pulses (tp � T2) in a three pulse experiment,

since the laser autocorrelation is readily available from an independent mea-

surement. Comparison to the data obtained in a three pulse transient grating

experiment should permit an estimate of the dephasing time, but this indi-

rect technique requires an additional measurement, which obviates one of the

principal advantages of the three pulse methods.

If the pulse duration is not greater than the dephasing time, the tem-

poral evolution of the four-wave mixing signal may be analyzed to determine

the nature of the broadening, as noted above. For a homogeneously broadened

transition, a single grating is induced in the sample, with the complex grating

amplitude determined by an integral function of the envelopes of the incident

electric fields. The total diffracted energy is then proportional to the simple

decay function

Uk4 ∝ e−2|τ |/T2

209



In the case of inhomogeneous broadening, the four-wave mixing emis-

sion is no longer a symmetric function of the pump pulse delay τ . In this

case, the first two pulses induce a set of population gratings, each with dif-

ferent spatial periodicity determined by a particular frequency on the inho-

mogeneous line. For very large inhomogeneity, the spatial distribution of the

photo-excitation may approach a uniform mean density – but will still result

in diffraction into the phase-matched direction. The probe pulse, arriving

after the waiting period T , induces a third-order nonlinear polarization for

each grating, with the initial phase of that polarizations evolution determined

by the spatial phase of that grating. Each individual polarization in the set

oscillates at a particular resonant frequency and together constitute the in-

homogeneously broadened emission line. The resulting scattered intensity is

given by

τ ≥ 0 : Uk4 = 0; Uk5 ∝ e−4τ/T2 ,

τ ≤ 0 : Uk4 ∝ e4τ/T2 ; Uk5 = 0

i.e. there are two possible phase-matched directions, due to the sym-

metry of the interaction under interchange of the pump pulses. In both cases,

there is only emission along a phase matched direction in the ’right’ time

window – there should be no ’wrong’ time emission if the Taira model is valid.

As noted, and similar to other four-wave mixing techniques, the signal

of interest here is emitted along a phase-matched direction. The results cited
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Folded BOXCARS for rotational Raman studies
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Nonplanar, crossed-beam phase matching has been employed to obtain pure rotational coherent anti-Stokes
Raman spectroscopy (CARS) [and coherent Stokes Raman spectroscopy (CSRS)] spectra to within a few wavenum-
bers of the incident pump frequency. Using this approach, the rotational CARS (and CSRS) radiation is spatially
separated from the pump and Stokes beams; therefore small Raman shifts can be observed with a single monochro-
mator.

Gas-phase coherent anti-Stokes Raman spectroscopy
(CARS) investigations are generally performed by
employing collinear phase matching because of its ex-
perimental simplicity.",2 For large Raman shifts, the
CARS signal is easily separated from the incident pump
and Stokes frequencies by using prisms or dichroic
mirrors. For small-shift rotational Raman work,
spectral separation can be achieved by using nonde-
generate three-wave mixing,3 but with the added in-
convenience that a third laser source is required.
Crossed-beam phase matching (BOXCARS),4 or a
variation thereof with three 5' 6 or two beams, 7 is gener-
ally utilized in gases when measurements of high spatial
precision are required. In this approach, Fig. 1(a), the
CARS beam emerges adjacent to one of the pump
components, nearly coincident at small shifts. The
experiment can generally be arranged so that the
overlapping CARS and pump components are ortho-
gonally polarized and hence are separable even for small
shifts.8 Stringent requirements are placed on the po-
larization purity of the incident wave-mixing beams,
and the signal-to-noise ratio is limited by the quality of
the polarizers and analyzers employed. Furthermore,
only anisotropic Raman modes can be observed. It has
been recognized for some time that the incident beams
in crossed-beam phase matching need not be coplanar
and that the BOXCARS phase-matching diagram, Fig.
1(a), could be folded along the dotted line, Fig. 1(b).
This approach has been used in background nonreso-
nant susceptibility cancellation experiments.9"l0 It is
also inherent in two-beam schemes 7 ; however, because
of spatial overlapping of the beams, filtering is required
in order to obtain the CARS signal. One advantage of
folded BOXCARS is that, with a proper experimental
design, beam-combining dichroic mirrors can be elim-
inated. Another advantage, and that is demonstrated
by the experiment described here, is that the CARS
beam is completely spatially separated from the inci-
dent wave-mixing components, even at zero Raman
shift. This relaxes polarization constraints and permits
greater freedom in the selection of the wave-mixing
polarizations. Recently, Prior" independently realized
the advantages of the technique but did not demon-
strate them. As an illustration of the technique, folded
BOXCARS has been employed to examine the rota-

tional spectrum of air and N2. The spectra could be
scanned to within 7 cm-' of the pump frequency by
using a single monochromator.

Rotational CARS may possess advantages for diag-
nostics over the more conventional vibrational-rota-
tional CARS. Chief among these is the fact that, for
most gases of interest, the rotational Raman transitions
are well separated, and interferences between adjacent
transitions are small. This considerably simplifies
analysis of the spectrum. In addition, since most ro-
tational transitions of interest encompass fewer than
a few hundred wavenumbers, the appropriate Stokes
frequency can generally be provided by a single laser
dye, and measurements can be made of several different
species at once. It should be noted that the larger
spontaneous Raman cross section for rotational CARS
is partly offset by the small population difference in-
volved in the transitions, particularly at high temper-
ature.

The experimental apparatus is similar to that which
has been described previously'2; however, for these
measurements it differs in several important aspects.
As usual, the second-harmonic output of a pulsed

(a) PLANAR

lb} FOLDED

Fig. 1. CARS crossed-beam phase-matching approaches
showing the phase-matching diagram and actual geometry of
the optical beams for (a) planar and (b) folded BOXCARS.
Subscripts denote beams: 1, pump; 2, Stokes; 3, anti-
Stokes.
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The planar phase-matching and beam geometries used for CARS four-wave 
mixing experiments (a) can be folded into the BOXCARS phase-matching 
and beam geometries (b), which take advantage of an additional spatial 
dimension to better separate the signal field from the excitation lasers. 
Reproduced from Eckbreth et al., Appl. Phys. Lett. 32:421 (1978)!

(a)!

(b)!

Figure 5.2: BOXCARS phase-matching geometry

here [392] make use of a folded BOXCARS geometry [343], which is of signif-

icance to our experimental efforts as this configuration remains the principal

geometry favoured by 2dFT spectroscopists. CARS, or Coherent anti-Stokes

Raman Spectroscopy, is a sophisticated nonlinear spectroscopic tool based on

a parametric process, used to study a broad range of materials [27]. Typ-

ically, a four-wave mixing effect results in emission at 2ω1 − ω2 when the

difference frequency ω1− ω2 matches a Raman transition in the system under

excitation. This process is known as an anti-Stokes spectroscopy because the

phase-matched emission occurs resonantly at at 2ω1 − ω2 = ω1 + (ω1 − ω2),

corresponding to the fundamental (ω1) frequency plus the anti-Stokes shift due

to coupling with a Raman mode at ω1 − ω2. Early CARS experiments were
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often performed in a collinear excitation geometry, resulting in emission of the

signal of interest along the same beam path; for sufficiently large frequency

shifts, the CARS signal is readily separable using any common spectrally dis-

persive element. To measure small shift CARS signals, however, such as those

arising due to rotational states, requires the use of a non-collinear geometry

to spatially separate the signal of interest from the background of the intense

beams used to drive the non-degenerate frequency mixing process [103]. The

folded BOXCARS geometry [343] uses a non-collinear, non-coplanar beam ar-

rangement to induce four-wave mixing along a direction that is well separated

from the excitation beams. The BOXCARS geometry allows the observation

of CARS signals even in the case of a completely degenerate energy structure

(i.e. for zero Raman shift). A third-order nonlinear signal detected in this

direction may be interpreted as the convolution of the susceptibility
∣∣χ(3)

∣∣2
with the spectrum of the excitation pulses.

The underlying optical physics is the same in the transient grating

three pulse experiments, and indeed, in non-collinear 2dFTS. In transient

grating three pulse spectroscopy, the folded boxcars configuration results in

exact phase matching for one of the scattered beams.

Excitation may be performed with co-parallel and cross-parallel beams.

When using all co-parallel beams, a slow thermal grating may be induced in the

material sample in addition to the population grating expected from the light-

matter interaction; this thermal effect may exhibit a lifetime greater than the

pulse repetition period, and can affect the interpretation of signals collected
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in this or similar techniques. The emergence of a thermal grating may be

investigated by selecting negative probe delays T ; if there is a slow, persistent

thermal grating, diffraction should be observed even at large negative times.

We note here that in our three pulse experiments (partially collinear 2dFTS

and a modified partially collinear three pulse experiment with heterodyne sig-

nal selection) no such effects were observed. If problematic thermal gratings

are demonstrated for a given medium, the effect may be decreased by using

orthogonal polarizations for the pump pulses, though this necessarily restricts

the range of polarization configurations that may be considered.

No issues with slow, persistent thermal grating diffraction are expected

in our experiments, as 2dFTS measurements return a null spectrum for neg-

ative probe delay times T . There is an unresolved question to consider for

other similar experiments on these materials, as it may be possible that the

null spectrum is obtained only because the thermal grating does not exhibit

the appropriate frequency dependence to be found in the signal spectral region

of interest. We do not consider this problem at length here.

Three pulse transient grating spectroscopic techniques also provide sen-

sitivity to spectral cross-relaxation, an effect that occurs when the resonant

frequency of an absorber is not fixed, but instead migrates within the in-

homogeneous line. This is not the dominant behaviour in the systems we

study in this thesis, since excitons emitted near the band edge in a direct gap

semiconductor have nearly zero momenta, but we note that it is possible for

non-localized exciton states to be formed by above-bandgap excitation, and
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that similar spectral shift behaviour may occur in such scenaria. Indeed, a

significant fraction of four-wave mixing experiments noted in this thesis con-

sider the question of exciton de-localization. There is an interplay between

disorder and delocalization for these exciton states: counter-intuitively, the

exciton linewidth may be reduced by motional narrowing, as mobile excitons

experience only an average perturbation during their evolution, whereas lo-

calized excitons may experience significantly different potentials due to their

local environment (typically, due to interface fluctuation that changes the con-

finement energy, although in less finely grown samples, impurity atoms may

also affect the exciton energy; that effect is, of course, not independent of the

exciton localization that impurity ions may cause).

Spectral cross-relaxation may be characterized by some time scale (say,

T3). If the delay of the probe pulse is greater than this time, i.e. T � T3,

then the various gratings induced by the first two pulses are no longer dis-

tinct entities (n.b. that without spectral cross-relaxation the population of

excitons excited into a given grating would differ (due to their place in the

inhomogeneous line) from the excitons comprising a second grating) , and the

rephasing that results in the emission of a photon echo for inhomogeneous

systems will not occur. Rather, there is only a total population grating, with

an amplitude that may be obtained by summing the individual complex grat-

ing amplitudes, weighted by the inhomogeneous distribution function. in this

case, where T � T3, the scattered energy is once again a symmetric function

of the delay between the first two pulses, even though the resonance has been

214



assumed a priori to be inhomogeneously broadened. This of course is not a

contradiction, as the introduction of any kind of spectral diffusion process is

not included in the Taira-esque models used thus far to describe these systems.

If the probe time is greater than the spectral cross-relaxation time, the tem-

poral width of the symmetric diffracted energy curve reflects the inverse of the

absorption width, rather than the actual dephasing time T2. By the time the

probe waiting period is approximately ten times the spectral cross-relaxation

time, the diffracted four-wave mixing signal’s temporal profile appears more

or less indistinguishably symmetric [391].

The effect upon the temporal line may be considered an asset rather

than a weakness of the three pulse experiment if it is possible to resolve T

delays less than the spectral cross-relaxation time. If it is, data may be ob-

tained with a range of probe waiting times, and changes in the behaviour of

the temporal lineshape may be used to investigate spectral diffusion processes.

We suggest that this may not be reliable if the spectral relaxation times are

less than the pulse duration. In our own experiments we do not consider this

effect, as the evolution of an exciton population during the waiting period T

is not not yet well understood in the context of the many-body theory used

to analyze our results.

Three pulse measurements are sensitive to a conceptually related effect,

the transition from Markovian to non-Markovian dynamics. The correlation

function for frequency fluctuations on an optical transition may be extracted

in a three pulse measurement [205], [83]. If the geometry of the beams used
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to excite the sample can be varied, diffusion process may be studied addi-

tionally. This diagnostic method is essentially a straightforward extension of

transient grating spectroscopy. We mention the sensitivity of these effects only

in passing, as we do not explore those topics in our own research.

We also note certain aspects of the application of three pulse experi-

ments to multi-level systems, which are of some interest to us in the context

of the three-band model frequently used to study exciton physics in a semi-

conductor quantum well. With a broadband laser pulse it is possible to excite

several transitions simultaneously, resulting in interference between the various

individual coherences created among the ground and excited state manifolds.

That interference typically results in faster dephasing than would occur with

excitation of a single resonance; dephasing due to multiline excitation is a

non-reversible process, by way of contrast to the inhomogeneous broadening

dephasing, where a revival (the photon echo) may occur. For time-domain

three-pulse transient grating measurements, if the individual transitions un-

resolved, the decay of the four-wave mixing signal will provide an effective

dephasing time that is the inverse of the total absorption width. By way of

contrast, a technique like 2dFTS that spectrally resolves this emission can

provide dephasing times for each resonance.

Analysis of the three-pulse, four-wave mixing experiment has been per-

formed using a non-perturbational theoretical treatment, demonstrating the

interplay between the population decay time T1 and the dephasing time T2

as the principal cause of decoherence in the quantum mechanical ensemble,
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and illustrating the conceptual connection between the irreversibility of the

relaxation processes and the symmetry breaking for phase-matched emission.

The general usefulness of grating models is explored in reference [102].

In summary, three pulse transient grating spectroscopy offers signifi-

cant advantages compared to the two pulse self-diffracted four-wave mixing

measurements: improved temporal resolution, a clear distinction between ho-

mogeneously and inhomogeneously broadened lines (assuming the validity of

the Taira model, which we obviously call into question), and an insensitivity

to fast longitudinal relaxation (a fast population decay) that makes interpre-

tation of self-diffracted four-wave mixing experiments difficult or impossible.

The dependence of the diffracted energy on the two pulse delays can be found,

in a Taira/optical Bloch type of density operator treatment, to be given by

Is (τ, T ) ∝ θ (τ) θ (T ) e−2γphτe−γgrT

for a homogeneously broadened system of two-level non-interacting os-

cillators, and

Is (τ, T ) ∝ θ (τ) θ (T ) e−4γphτe−γgrT

for an inhomogeneously broadened system of two-level non-interacting

oscillators. Straightforward extensions of optical Bloch/Taira type models for

exciton dynamics with few but greater than two levels are quite tractable, but

tend not to provide such simple analytical results. Two-level model analysis is
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useful for developing an intuitive understanding of the relevant physical pro-

cesses – specifically, how relaxation affects the nonlinear polarization induced

in the material.

5.1.2 Coupling of excitons in semiconductor quantum wells

The failure of the simple, non-interacting ensemble model for exciton

dynamics described in the previous chapters led to a renewed interest in study-

ing the many-body physics that was shown to dominate the nonlinear optical

response of this system. One particular question of interest, the nature of

coupling between excitons, was studied extensively.

Two-dimensional Fourier transform spectroscopy (2dFTS) is a partic-

ularly suitable tool for studying these effects, since it directly reveals the pres-

ence of coupling between spectrally resolved states in any system with a third-

order nonlinear response. While only certain materials possess a second order

response (within the assumption of electric dipole processes dominating the

optical response of the material, any substance with a centrosymmetric struc-

ture will not possess a second order response in the bulk, although even those

materials may exhibit some second order nonlinearity at boundaries or due

to cascaded higher-order optical effects [177]), any material will exhibit some

third-order nonlinearity under sufficiently strong excitation. As such, nonlin-

ear optical methods that depend upon χ(3) processes are popularly developed

to study a broad range of systems. 2dFTS is such a tool, and is well-suited to

revealing directly the nature and strength of the coupling between spectrally
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resolved excitons in quantum confined condensed matter systems.

The body of literature considering the existence and particular nature

of this coupling – which is speculative, and a matter of some dispute – is too

broad and sophisticated to cover completely in this thesis. Instead we simply

present some significant results and consider the conflicts among them. Ex-

citon states in quantum well structures were studied using the techniques we

have described in detail previously [243], [141], [241], [244]. Oscillations in

the decay of the nonlinear polarization, determined by self-diffracted transient

four-wave mixing measurements, or in pump-probe measurements of popula-

tion, are argued by some to indicate a quantum beating effect.

Using ultrafast pulses with sufficient bandwidth to overlap a number

of energy eigenstates of the exciton system results in the creation of a linear

superposition of those states; the time evolution was studied with a delayed

pulse. A two pulse experiment on an asymmetric double quantum well sys-

tem can be used to study the dephasing processes by examining the diffracted

energy, while population dynamics are revealed by resolving the change in

transmitted probe intensity [244]. The application of a bias electrical field can

control the coupling of exciton states in the two wells, resulting in localization

of the state in one side of the structure, or achieving roughly equal probability

distributions in both wells. The splitting between the exciton states in the two

wells is sufficient to allow selective optical excitation, or both well excitons can

be simultaneously excited with appropriate tuning of the laser. The oscilla-

tory diffracted four-wave mixing and transmitted pump-probe signals can be
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modulated by tuning the electronic levels of the two quantum wells into or out

of resonance; the observed decay will exhibit oscillation when the two states

are coupled by the electrostatic potential.

Similar wavepacket dynamics had been observed in atomic systems

[408], [362], and molecular systems [313], [25], [125] previously, but this study

[244] was the first observation of extended electronic wave packets in a solid

state system (while it may be expected that quantum beating of extended

electronic states could not be observed due to the extremely fast polariza-

tion decay expected for the distribution of transition energies described by

the bandstructure [26], exciton emission provides sharper energy eigenstates

that can exhibit little inhomogeneity and support coherent oscillation [241],

[141]. We note here that quantum beating had been previously observed in

solid state systems but was attributed to interference of quantum mechanical

states associated with colour centers in atomic [69] or molecular crystals [374]

rather than the interference of extended electronic states. Oscillatory decay of

the emission observed in molecular systems was also interpreted as quantum

beating in a number of these experiments (see, for example, [313], [25]).

These double quantum well results are interpreted in a relatively straight-

forward three-level theory that correctly describes the splitting of the exciton

states and the resulting oscillations in the four-wave mixing and pump-probe

measurements, but we note that it does not accurately predict the temporal

lineshape of these signals. The failure to correctly model the early time be-

haviour is dismissed as unimportant due to the increased importance of the
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pulse temporal lineshape during these periods, but it is likely that a many-

body theory is necessary to properly model the behaviour of this system. This

result is significant to the investigation of coupling because it demonstrates

an experimental control of the coupling of excitonic states via an applied field

that tunes the otherwise localized excitons into resonance across the double

quantum well structure. The demonstration of coupling in a system that is

mismatched by design suggests that coupling of spectrally resolved excitons

may be possible in a system where the resonances are not so substantially

separated.

We note that the analysis of a lineshape that is not completely under-

stood or modeled to assert the existence or absence of coupling cannot provide

ironclad proof of the presence or absence of such an effect.

Selective excitation of only one exciton resonance in a 
quantum well causes smooth decay of self-diffracted 
four-wave mixing, while simultaneous excitation of both 
resonances results in an oscillatory signal. Reproduced 
from Leo et al., Appl. Phys. Lett. 57:19 (1990).!

Figure 5.3: Oscillatory beating in four-wave mixing
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Similar self-diffracted four-wave mixing experiments were performed

using faster pulses to study the dynamics of simultaneously excited exciton

resonances in a single quantum well [243], [141], [241]. The first measurements

indicated coupling of heavy and light hole excitons occurring when the ex-

citation laser was tuned to span both resonances, while a simpler temporal

lineshape without oscillation was observed when only the heavy hole exciton

was excited [243]. We note (a frequent refrain in discussion of time-resolved

four-wave mixing experiments studying exciton coupling) that the temporal

lineshape itself is not well understood in either case, as we have discussed

extensively elsewhere in this thesis.

In these measurements, the oscillation in the four-wave mixing signal

was attributed to an interference occurring in the macroscopic polarization due

to interaction of these exciton states [241], which was judged to be a quantum

beating effect similar to those observed in a broad range of atomic, molecular,

and atomic nuclear [139] systems. These measurements considered the distinc-

tion between quantum beating arising when two excited states share a common

ground state [78], [345], [146], [344] and the quantum beating that may occur

if two or more two-level systems with slightly different transition energies are

excited simultaneously [237]. The oscillation appearing in the emission due to

a nonlinear polarization comprising contributions from both heavy hole and

light hole excitons is essentially a three-level system, since both species of ex-

citon depend upon the creation of an electron in the conduction band, and is

therefore more analogous to the former interference effects, while the coupling
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of spectrally resolved excitons would be more analogous to the latter. We will

discuss relevant measurements of spectrally resolved exciton states shortly. In

the case of these light hole and heavy hole beating effects, the energy states

are resolved due to the quantum confinement; in bulk materials, the conduc-

tion bands coincide, but in quantum wells there is a finite heavy hole-light

hole splitting. Again, excitation of just the heavy hole resonance results in a

simple exponential decay of the four-wave mixing emission, while excitation

of both resonances results in an oscillatory decay. The period of this oscilla-

tion is equal to the energy splitting of the two states obtained by independent

spectral measurements. The same caveats to the poorly modeled temporal

lineshape apply here as elsewhere, but with the additional observation that

including the finite pulse widths does not effectively model the slow rise of the

diffracted four-wave mixing at negative times [244]. Spectrally resolved time-

integrated transient four-wave mixing was used to investigate the distinction

between polarization interference and quantum beating (on the distinction of

which, q.v. sub) of light and heavy hole excitons in GaAs quantum wells and

impurity localized excitations in CdSe [257].

Beating effects may also arise in the coupling of free and bound exciton

states [240], [241], where the presence of beats in the decay but not in the rise

of the diffracted four-wave mixing was assumed to demonstrate a weaker cou-

pling of bound and free exciton states compared to the interaction observed in

experiments claiming to show coupling between light and heavy hole excitons

[243].
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Of significant interest to our own group is the coupling of excitons

that are spectrally resolved by interface fluctuations. In this case, two (or

more) two-level systems are relatively independent, in that they do not share

a common ground state is in the case of the light hole - heavy hole exciton

coupling. Instead, a particular resonance (generally, the heavy hole exciton is

studied because of its greater oscillator strength and lower transition energy,

allowing excitation of just the heavy hole without the light hole and free carrier

states by careful adjustment of the laser center wavelength) is split by extrinsic

defects in the fabrication of the quantum well structure.

Spectral structure to the exciton resonances suggests fluctuations of the

quantum well width on the order of atomic monolayers, which would shift the

resonance energy due to the particle-in-a-box effect of quantum confinement

[143]. In particular, photoluminescence measurements of exciton resonances

exhibited energy splittings in agreement with the values expected for mono-

layer fluctuations for samples that were shown to exhibit precisely such well

width fluctuations using x-ray diffraction [88]. Energy splittings correspond-

ing to half-monolayer fluctuations were also observed with photoluminescence

[310]. The presence of well width fluctuation was shown to be somewhat

controllable, with disorder introduced by interruption of the molecular beam

epitaxy growth process resulting in an increase of intrinsic dopants and the

formation of islands of monolayer-flat regions [365]. Scanning microscopy tech-

niques (scanning cathode luminescence and chemical mapping via scanning

transmission electron microscopy) permitted imaging of the island structures
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formed during interrupted growth processes [30], [282] though we note that

the surface structure cannot be assumed to remain unchanged after subse-

quent growth steps deposit the AlGaAs boundary layer and GaAs capping

layer on quantum well samples. A more complete description of the interface

disorder is suggested to account for inconsistencies with various optical and

microscopy measurements of the surface [383].

These variations in well width result in spectral resolution of the exci-

ton resonances. While coupling of light and heavy hole excitons in one region

is expected from the behaviour of these quasiparticles observed in lines broad-

ened by more substantial fluctuation, the existence of coupling of excitons in

different width regions is not known.

Self-diffracted four-wave mixing experiments were used to study these

effects, and attempt to resolve the question of coupling of these spectrally

resolved excitons by analysis of the temporal lineshape [241], [141]. Com-

parison of quantum wells grown with and without interruption permit study

of exciton dynamics in wells with semi-controllable interface disorder. Pho-

toluminescence reveals splitting of heavy hole exciton resonances, but does

not indicate localization of excitons to individual defect sites in the lattice.

In those materials fabricated with growth interruption, only a weak oscilla-

tion is observed in the decay of the four-wave mixing signal, while a strong

beating effect can be seen in the samples fabricated with growth interruption.

Variation of the temperature and excitation density does not affect the oscil-

lation period, suggesting that this effect is due to the quantum mechanical
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coupling of the spectrally resolved exciton states rather than to some partic-

ular detail of the experimental parameters. It is suggested that the beating

effect is analogous to the quantum beating observed in isotopically labelled

molecules [237]. If similar measurements are performed but with much nar-

rower wells, the splitting between spectrally resolved heavy hole excitons is

now greater compared to the heavy hole energy, due to the increased ratio of

the width fluctuation compared to the width. In this case, no oscillation is

observed, since the split heavy hole exciton states are sufficiently energetically

spaced as to be decoupled. Once again, these results are interpreted using

the Taira/optical Bloch model, despite its inability to completely account for

many of the features of the temporal lineshape of four-wave mixing emission

from exciton systems. This simple model suggests that strong inhomogeneous

broadening will suppress the oscillation. Even in homogeneously broadened

resonances the modulation depth is not expected to reach 100%, the result

found for a simple three level system with completely discrete energy levels.

We note again the vulnerability of any conclusions drawn from the

study of temporal lineshapes given the inability to model properly the line-

shape for any interacting exciton system. These assertions of coupling between

spectrally resolved excitons all depend on the observation of oscillations in the

nonlinear polarization, with a period equal to that expected from the energy

splitting of the resolved exciton states. If there is quantum mechanical cou-

pling of the two (or more) two-level systems, such a beating would be expected

– but it could also be polarization beating. The name is somewhat misleading
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sample A is grown without growth interruptions. The
substrate of the samples was removed by etching, there-
by allowing transmission experiments. The laser source
is a tandem synchronously pumped laser system. A
mode-locked YLF laser pumps a rhodamine-66 dye
laser, which in turn pumps a LDS750 dye laser, emitting
pulses with a second-order intensity autocorrelation
width (FWHM) of 800 fs and a spectral width
(FWHM) of 4.2 meV tunable between 700 and 800 nm.
The sample is mounted in a liquid-He cryostat.
We measure the decay of the phase coherence of

resonantly photoexcited excitons by the two-pulse self-
diffracted transient-grating technique. " Excitation with
two perpendicularly polarized pulses creates an excit-
onic-orientational grating as long as the delay time T be-
tween the pulses is of the order of the phase relaxation
time. The photons of the second beam will then be
diffracted by this transient grating giving rise to a signal
into the direction corresponding to 2k' —k2, where kI
and k2 are the wave vectors of the two incoming beams.
The decay of the diffracted signal with increasing delay
time between the pulses is therefore a sensitive measure
of the phase relaxation time T2. It has been shown that
the decay of the diffracted intensity is exponential, with
T2/2 and T2/4 as the characteristic time constant for
homogeneously and in homogeneously broadened sys-
tems, respectively. '

Figure 1 shows the decay' of the diff'racted signal as

0.01— GROWTH)

0 2
TIME (ps)

FIG. 1. Decay of the self-diffracted signal as a function of
the delay time for sample 8 (with growth interruption, solid
line) and sample A (without growth interruption, dashed line).
Excitation density and temperature are about 1 x 10 cm ' and
5 K, respectively. Sample A is resonantly excited at the exci-
ton peak; for sample B, the excitation spectrum covers the two
energetically lower exciton levels. Inset: Photoluminescence
excitation (PLE) spectra of sample A (top) and sample 8 (bot-
tom); the exciton splitting in the absorption spectrum of sam-
ple 8 (not shown) agrees with the PLE splitting.

a function of the delay time between the two pulses for
an excitation density of about 1 x10 excitons/cm for
both samples. Also plotted in the inset of Fig. 1 are the
photoluminescence excitation spectra for sample 8
(lower trace) and sample A (upper trace), which clearly
reveal the diff'erent absorption spectra of the two sam-
ples. Sample A exhibits a broad exciton absorption
feature with a spectral width of 3.4 meV (FWHM),
whereas in sample 8 three distinct exciton peaks with a
spacing of 2.7 meV and a FWHM of about 1.3 meV can
be resolved. The three distinct exciton peaks in sample 8
correspond to emission of excitons out of regions with
different confinement due to thickness diff'erences. ' In
sample A such regions are not present and the inhomo-
geneous broadening is much stronger.
The transient-grating signal is also fundamentally

diferent for the two samples: The dashed line shows the
result for sample A, which is grown without growth in-
terruption resulting in a broad exciton luminescence line.
The decay is nearly exponential with a time constant of
about 0.8 ps corresponding to a T2 of 3.2 ps, assuming
an inhomogeneously broadened transition. This result is
in reasonable agreement with results reported in Ref. 15.
The coherence decay of sample 8 with split exciton

levels (solid line in Fig. 1), however, shows a different
behavior: An oscillatory structure is superimposed onto
the exponential decay. The time constant of the ex-
ponential decay of about 1.2 ps is larger than in sample
A. The period of the superimposed oscillation is about
1.33 ps, corresponding to an energy splitting of 3. 1 meV,
which is slightly larger than the energy separation of the
exciton lines in the photolumininescence excitation
(PLE) spectrum. The oscillation frequency does not de-
pend on excitation density or temperature; however, the
polarization decay becomes faster with increasing tem-
perature and excitation density. No oscillation is ob-
served in the transient four-wave mixing for the exciton
transitions of the narrow well in the same sample, where
the splitting of the luminescence lines is larger than the
spectral width of our laser pulse; i.e., the exciton states
of two thickness regions are not simultaneously excited.
All these observations show that the oscillations ob-

served in the decay of the diffracted signal are quantum
beats caused by the coherent superposition of the polar-
ization of excitons from spatial regions with slightly
diferent energy. To the best of our knowledge, this is
the first observation of quantum beats in the decay of the
polarization due to extended state excitations in a solid.
In addition, it is the first observation where the energy
levels causing the interference are spatially separated
over large distances.
In order to describe our experimental observations, we

make use of the so-called phase-space filling model
which has been applied successfully to a number of non-
linear optical phenomena in both inorganic' and organ-
ic' semiconductors. This model ties the nonlinear opti-
cal response of excitons to the Fermi statistics of the un-
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The amplitude of oscillations in four-wave mixing emission can 
be greatly increased by altering the growth method to increase 
structural disorder. The fluctuation in well width results in 
splitting of the photoluminescence peak (b) compared to the 
smooth feature observed in normally grown samples (a). 
Reproduced from Göbel et al., Phys. Rev. Lett. 64:1801 (1990).!

Figure 5.4: Oscillatory beating and interface disorder
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here, in that we are not considering an oscillation in the polarization, which we

have modeled in this thesis as a macroscopic observable related to the coher-

ence among quantum states, but rather to the classical interference between

electromagnetic fields emitted from two sources that are not coupled in their

dynamics, but which are observed with the same detector. The self-diffracted

four-wave mixing measurements (e.g. [141]) cannot be definitively shown to

be due to one or the other interference effects. In a system that comprises two

independent two-level systems without broadening, the Taira/optical Bloch

model predicts a fairly straightforward result for the nonlinear polarization,

the oscillatory lineshape of which which may be distinguished from a polariza-

tion interference [191]. In homogeneously broadened systems, the distinction

between polarization and quantum beating is not so clear, and indeed, all these

models are questionable given their failure to properly predict the overall tem-

poral envelope of four-wave mixing for an interacting system of excitons. It is

argued that performing time-resolved transient four-wave mixing instead of the

simpler time-integrated transient four-wave mixing measurements can provide

proof of the nature of the interference [223]. We note several objections to this

result: the distinction depends upon the observation of a periodic oscillation

that occurs only a few times before the nonlinear polarization has decayed,

the result depends upon a Taira/optical Bloch model for the polarization in-

duced by the ultrafast pulses, and the result depends upon the assumption

that the system is purely homogeneously broadened. Moreover, the experi-

mental results obtained used multiple quantum well samples where the ability
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to produce identical wells cannot be independently verified. The theoretical

model also neglects the effects of dephasing and Coulomb correlation among

the excitons, both of which have been shown to have significant effect on the

dynamics of these systems. The argument offered in reply is that those ef-

fects not considered in the simple model only affect the overall envelope of the

four-wave mixing signal; it is hard to agree with the statement that some as

yet unknown but correct theory could not result in a different envelope and

alter the oscillatory behaviour of the four-wave mixing emission. This result,

then, should be considered suggestive but not irrefutable proof of quantum

beating occurring in GaAs quantum wells. Indeed, the inclusion of the effects

of dephasing and inhomogeneous broadening into this model can be shown to

produce a quantum beating that is indistinguishable from polarization inter-

ference [413]. Some caveats apply to the model of broadening used to obtain

those results [222]. The effects of inhomogeneously broadening of the exciton

resonances were considered at further length, demonstrating that correlation

among these states can strongly affect the modulated temporal lineshape [79],

giving us further reason to be suspicious of assertions of coupling dependent on

the observation of oscillations in the nonlinear polarization. Subsequent work

using spectrally resolved transient four-wave mixing asserted that quantum

beating could be observed in the four-wave mixing emission from GaAs quan-

tum wells, and could be shown to occur for spectrally resolved excitons that

shared no common ground state, and that both quantum beating and polar-

ization interference in these systems arose from the interference of macroscopic
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optical polarizations [291], however these results were interpreted using a mod-

ified Taira\optical Bloch model that includes corrections for exciton-exciton

interaction but which can only provide a qualitative description of the system

dynamics.

The dependence of the oscillations in a spectrally resolved 
four-wave mixing signal is argued to indicate evidence of 
coupling between excitons spectrally resolved by interface 
fluctuations. Reproduced from Phillips et al., Solid State 
Communications 111:317 (1999).!

Figure 5.5: Spectrally resolved oscillatory FWM

The general trend of these results would suggest that there is very

likely coupling occurring in these systems. Problematically, the model for the

temporal lineshape is not complete and cannot describe the dominant enve-

lope features for the four-wave mixing emission. More significant, perhaps,

are results from highly sensitive spectrally resolved two colour experiments

that indicate that there is no coherent coupling for spectrally resolved exci-

tons [117]. Partially non-degenerate four-wave mixing was used to study the

230



third-order nonlinear optical response of this system, with an initial, narrow

bandwidth pulse (temporal width ˜2 to 3 ps) used to excite a coherence, while

a broadband, 100 fs pulse then transforms that coherence into a population

grating before some fraction of its energy is scattered into the phase-matched

direction. Scanning the wavelength of the narrowband pulse across the exciton

absorption features and spectrally resolving the emission permits the creation

of a two-dimensional map that reveals diagonal features corresponding to en-

ergy eigenstates and off-diagonal features that demonstrate coherent coupling

between those states. An asymmetric quantum well with two different regions

was fabricated and shown not to exhibit coupling by design, but high quality

samples with three spectrally resolved heavy hole exciton states also failed to

indicate any coherent coupling.

The question of coupling between spectrally resolved excitons in quan-

tum wells is thus an open one, and one which seems highly suited to the

technique of two-dimensional Fourier transform spectroscopy. Our own exper-

imental program begins with the application of a standard non-collinear 2dFTS

experiment to prototypical GaAs quantum wells to study the problems of ex-

citon coupling, and leads us to the development of new spectroscopic tools

for studying a broad range of systems. First, we turn out attention to a brief

discussion of two-dimensional Fourier transform spectroscopy.
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two spatially well separated, high quality GaAs single-

quantum wells (QWs) with widths of 15 and 20 nm

embedded in Al0.3Ga0.7As barriers. We therefore have

the superposition of the nearly homogeneously broadened

heavy-hole (hh) and light-hole (lh) excitons of each of the

two QWs [15]. The excitons in one QW are completely

decoupled from the excitons in the other QW, and we

therefore have simultaneously a strongly coupled system

within each QW, and a decoupled, inhomogeneous system

between the two QWs. Figure 1(a) shows the result of our

experiment in a three-dimensional plot. The CES signal is

plotted as a function of detection energy and of the central

excitation energy of pulse 1. Cuts parallel to the detection

energy axis correspond to FWM power spectra and cuts

parallel to the excitation energy axis yield CES spectra.

First, we focus on the detection energy of 1.5267 eV,

which is the CES spectrum of the hh exciton of the 20 nm

QW. We get strong signals, if pulse 1 is tuned into the

same resonance or if it is resonant with the lh exciton of

the 20 nm QW at 1.5309 eV. The CES signal reaches a

plateau at higher excitation energies corresponding to the

continuum states of the hh excitons. The CES spectra are

very close to a linear absorption spectrum since we apply

a procedure which corrects for the spectral shape of the

pulses and which is described in the following theoretical

part. The CES spectrum for detection at the lh resonance

FIG. 1. (a) CES signal as a function of detection energy and
center energy of pulse 1. Clearly visible are the absorptionlike
spectra of the heavy-hole (hh) and light-hole (lh) exciton
resonances of the 15 and 20 nm quantum wells. (b) Calculated
linear absorption (solid), as well as spectrally normalized CES
(circles) signal. Inset: Simplified level scheme of the FWM
experiment, used for signal normalization.

at 1.5309 eV is very similar to the one obtained detecting

at the hh; see Fig. 1(a). The coherent coupling between

hh and lh excitons shows up directly in the experiment:

Both of the two coupled resonances are found in both CES

spectra, if any of them is excited. Therefore, coherently

coupled resonances show up as a square arrangement of

peaks in a three-dimensional CES plot. The same is found

for the hh and lh excitons of the 15 nm QW as shown

in the left regime of Fig. 1. Excitonic resonances of the

15 nm QW, however, do not appear in the CES signal

of the 20 nm QW and vice versa. Hence, CES provides

an easy, unambiguous means for the distinction between

coherently coupled and uncoupled systems.

We have performed model calculations of the nonde-

generate FWM signal, to verify our interpretation of the

CES spectra. We use a homogeneous, one-dimensional

tight-binding model which allows us to include all

Coulomb correlations arising in third order of the applied

electric fields exactly [16,17]. The FWM signal for zero

time delay, emitted at the spectral position of the exci-

tonic resonance, is calculated for excitation with realistic

Gaussian pulses of 3 ps and 100 fs duration, respectively.

The simulated, unnormalized CES signal (not shown)

rapidly decays with increasing energy due to the spectral

shape of the pulses. Thus we normalize this signal by the

known spectral pulse shape following the simplified level

scheme shown as an inset of Fig. 1(b). According to this

scheme, the signal should be proportional to the intensity

of pulse 1. Pulse 2 contributes twice: first, at the photon

energy of pulse 1 and, second, at the transition energy

of the 1s exciton. The signal thus is proportional to the
intensities of the respective spectral components of pulse

2 [18]. The resulting normalized CES spectrum follows

the shape of the calculated linear absorption spectrum.

The spectral positions of all features are reproduced

and also the shape of the continuum is resolved. All

experimental spectra are therefore also corrected for the

pulse shape of pulse 2 and the intensity of pulse 1.

Second, we study a GaAs!Al0.3Ga0.7As single QW with

7 nm well width and investigate whether hh excitons

belonging to different QW islands are coherently coupled.

The photoluminescence spectra of this QW show four

distinct excitonic peaks. These lines are associated with

QW islands, which differ in thickness by an integer

number of monolayers (ML), and which have extensions

larger than the diameter of an exciton. Again, this sample

represents an inhomogeneous ensemble consisting of only

a few different excitonic subensembles. Now, however,

the various hh excitons are all located in the same

single QW [19]. The question whether excitons from

different QW islands couple coherently is answered by

Fig. 2 showing the result of our CES experiment. The

signal is plotted in a contour plot with a logarithmic gray

scale covering three decades. The horizontal axis shows

the detection energy while the vertical axis shows the

excitation energy of pulse 1. We find three QW-island
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FIG. 2. Contour plot of CES signal as a function of detection
energy and central photon energy of pulse 1. The gray scale
is logarithmic, covering 3 orders of magnitude. The three
different island classes are indicated on top.

resonances of different strengths at 1.5834, 1.5873, and

1.5919 eV, respectively. However, we do not see peaks

of the (n 2 1) ML regions in the n MLs or (n 2 2) ML
CES spectra in spite of the strongly extended logarithmic

scale. All 1s resonances (lower half of Fig. 2), as well
as the continuum states of the hh excitons (upper half)

are aligned along the 145± axis in the plot. There are
virtually no signs for peaks on the 245± axis which would
reveal a coherent coupling of the resonances of different

QW islands. Recently, a very similar sample was studied

by means of time-resolved FWM [20]. It was claimed in

Ref. [20] that a coupling between excitons from different

QW islands in the form of quantum beats in time-resolved

FWM has been observed. Our results seriously question

this interpretation.

The advantage of CES in studying coherent coupling in

inhomogeneous systems is thus demonstrated. The exci-

tons in the different islands are, of course, incoherently

coupled: excitons excited in one island can move in space

to another island by interacting with phonons. In inco-

herent experiments, such as linear photoluminescence ex-

citation spectroscopy [9] and nonlinear experiments [10]

which are not purely coherent, this incoherent coupling

would show up as a signature of one QW island in the

spectrum of another QW island since these experiments

are not able to distinguish between coherent and inco-

herent coupling. The continua of the two hh exciton

subensembles are clearly observed in the upper part of

the n MLs and (n 2 1) ML spectra in Fig. 2. These re-

sults show again that CES is able to extract absorptionlike

spectra of individual subsystems of inhomogeneous exci-

tonic ensembles although large area excitation is used.

Third, we focus on a Ga0.95In0.05As!GaP0.11As0.89 mul-

tiple QW with 9 nm well width. The linear absorp-

tion spectrum is inhomogeneously broadened with a full

width at half maximum of the hh-exciton resonance of

3.8 meV at 5 K. This sample exhibits a continuous in-

homogeneous excitonic ensemble with a large number of

different subsystems having slightly different transition

energies between ground and excited states. This distri-

bution of the transition energy is due to both alloy fluc-

tuations of the ternary well material as well as roughness

of the interfaces between well and barrier material. In

such samples, the length scale of the potential fluctua-

tions is smaller than the exciton Bohr radius. The

exciton, while averaging over its spatial extension, there-

fore sees an effective potential landscape. Excitons ab-

sorbing at the high energy side of the linear absorption

line are usually considered to be delocalized, while ex-

citons at the low energy side are stronger localized, the

deeper the local potential minima are. A coherent cou-

pling between these energetically continuously distributed

resonances would result in a complex quantum-beat sys-

tem. The consequence would be disorder-induced de-

phasing, which has been discussed theoretically [21,22],

but could not be demonstrated experimentally. An-

other open problem in such an inhomogeneous, localized

exciton system is the influence of localization on the

hydrogenlike series of the Wannier excitons. The fol-

lowing experimental results will give answers to these

two open questions for our sample, again demonstrat-

ing the power of our CES concept. Figure 3(a) shows a

three-dimensional plot of the CES. The scale is loga-

rithmic covering 3 orders of magnitude. The 1s ex-

citon resonances are aligned as a narrow ridge along

the 145± diagonal. We would expect a strong blur-

ring of the diagonal into the 245± direction, if the dif-
ferent excitonic subsystems were coupled. The absence

of this broadening in the 245± direction proves the de-
coupling of the exciton resonances at various energies.

We therefore conclude that the disorder-induced coupling

in the present sample is very weak and that the differ-

ent excitonic subsystems can be regarded as indepen-

dent. Please note that the spectral width of the FWM

power spectra for resonant excitation is larger than the

width of pulse 1 and larger than our spectral resolu-

tion. This broadening is, however, caused by the photon-

echo nature of the emitted FWM signal and is not due

to disorder coupling [23]. The continua of the excitonic

ensemble are shown in Fig. 3(a) for excitation ener-

gies above "1.474 eV. Figure 3(b) presents a verti-

cal cut through the data of Fig. 3(a) at a detection

energy of 1.4689 eV. The absorptionlike spectrum shows

a pronounced 1s exciton resonance. A second, less-

pronounced peak appearing at 1.4751 eV and merging
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Figure 5.6: Coherent excitation spectroscopy
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5.2 Two-dimensional Fourier Transform Spectroscopy

5.2.1 What is 2dFT spectroscopy?

Optical 2dFT spectroscopy is a powerful, ultrafast spectroscopic tech-

nique that may be used, among other applications, to resolve the question of

coupling between spectrally resolved excitons. 2dFTS is particularly suited

to the study of coupling processes due to its ability to reveal correlations be-

tween the dynamics of an ensemble of oscillators occurring in two different

time periods. 2dFTS can show correlations between an initial absorption and

a subsequent absorption, emission, or change in refractive index; making use of

these capabilities, it is employed to study electronic coupling, energy transfer,

electron transfer, and relaxation processes [192].

2dFTS data are plotted in a two dimensional spectrum, typically as a

function of two frequencies. Spectral features in such a plot are interpreted as

a probability map connecting events that occurring during the first period at

frequency ωτ/2π to events that occur in a second period at a frequency ωt/2π

[238]. Those features appearing along the diagonal, where ωτ = ωt, contain

similar information to that found in a normal, one-dimensional experiment,

although the shape of these features provides additional details regarding the

inhomogeneous and homogeneous widths of the resonances. Specifically, a fea-

ture will be present for every absorption or emission that occurs at any energy

level present within the laser bandwidth [132]. The off-diagonal events, where

ωτ 6= ωt, reflect coupling processes between different energy states. Optical

2dFT experiments analogous to COSY and NOESY nuclear resonance tech-
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Figure 5.7: Sample 2dFTS spectra
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niques may readily be performed with the sample apparatus to distinguish

between coupling processes that occur coherently and those that occur as a

result of relaxation processes. Experimentally, the distinction between the

two techniques is trivially made by choosing either a zero or finite duration

population time. Since relaxation is (in a reasonable treatment) a probabilis-

tic process, no relaxation cross-features should appear at zero waiting time,

while coherent coupling processes may occur, resulting in characteristic cross-

peaks. A two-dimensional plot characterizing the nonlinear polarization of the

material also spreads complicated spectral features out over a larger space,

permitting easier analysis of those features – especially the identification of

coupling between energy states [132].

In general, 2dFTS experimental and theoretical programs tend to pur-

sue three different approaches – analyzing the couplings between transitions in

order to determine the nature of the microscopic Hamiltonian, characterizing

the lineshape in a 2dFTS spectrum in order to permit comparison to some more

generally sophisticated model, or performing non-equilibrium 2dFTS measure-

ments to study the effects of some additional excitation or perturbation of the

system [20] – not unlike the self-diffracted four-wave mixing measurements of

exciton dynamics performed after non-coherent excitation or carrier injection

noted previously.

Those more sophisticated 2dFTS experimental projects generally pro-

ceed by developing a model thought to accurately represent the microscopic

physics of some system of interest. That model is used to calculate parameters
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that can be compared to the macroscopic quantities studied using a 2dFTS

measurement in the lab. The data obtained in experiment is used to adjust

the model to obtain more accurate results. The whole process may be iterated

to satisfaction. It is also possible, however, to extract some immediate results

from a single 2dFTS experiment that are of significant interest to theorists –

such as estimates of the spectral correlation functions for oscillators, found by

measuring spectral shifts in 2dFTS plots [238].

Before considering the optical 2dFTS experiments used to study elec-

tronic states in condensed matter systems, we turn our attention to a brief

discussion of multi-dimensional spectroscopy in other contexts. Later we will

discuss results obtained in our group using non-collinear 2dFTS to study the

coupling of spectrally resolved exciton states in semiconductor quantum wells

[358], [359], [116]. This project and its preceding results demonstrating the

suitability of 2dFTS as a tool to study exciton systems in semiconductors [410],

[39], [248] led to the development of a new, partially collinear 2dFT experi-

ment [198] that has been used to demonstrate polarization selection rules for

exciton systems and perform reflection geometry 2dFTS for (we believe) the

first time [115]. These experiments prompted us to develop new spectroscopic

tools, which we describe in the next chapter.

5.2.2 2dFTS advantages compared to other ultrafast techniques

Fourier transformation of the detected four-wave mixing signal with

respect to two time intervals – the coherence time τ and the detection time t
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– yields a frequency-frequency spectrum that separates dense1-d spectral fea-

tures into a two-dimensional space and permits easy correlation among events

that occur at two different times. In particular, that permits the experimental

study of systems with overlapping bands of states with fast dynamics time

scales, where the interpretation of frequency selective pump-probe spectro-

scopic measurements is difficult.

Significant effort was applied previously to performing spectrally re-

solved pump-probe spectroscopic measurements. For molecular systems, a

non-interacting ensemble of two-level systems(Taira/optical Bloch-type) model

of femtosecond pump-probe differential transmission spectroscopy supported

experimental observations of spectral hole burning that can be analyzed to

determine the population decay time time; a free-induction type effect with a

rise time determined by the dephasing rate and a parametric pump-probe cou-

pling that occurs when the two pulses temporally overlap (a coherence spike)

were also seen in the spectra [334]. These hole-burning measurements require

pump pulses with less spectral width than the transitions under considera-

tion, while the probe pulse can have an arbitrarily large bandwidth, and thus,

be arbitrarily short. Density matrix theoretical calculations for this system

use a first-order perturbation to consider the effect of the probe beam and a

second-order perturbation to consider the effect of the pump beam; hence, it

is conceptually similar to other differential transmission, pump-probe spectro-

scopic methods, and is distinguished from those methods rather by the use of

different pulses and spectral resolution of the probe beam. The time dependent
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linear optical susceptibilities due to the electronic coupling of two manifolds of

vibrational energy states was explored with a similar technique, showing that

the the coupling of a weak probe field to the population induced by a pump

would result in the time-dependent, oscillatory emission rapidly decaying due

to frequency-dependent phase factors in the product χ0 (ω, t)Epr (t) eiωt [294],

or to study the coupling of nuclear motion to the electronic states by observing

changes in a probe absorption spectrum due to a strong pump field [126]. All

of these techniques depend upon the spectral resolution of the probe beam in

a two-pulse experiment, in order to detect the coherent emission along this

particular phase-matched direction. These measurements are all fundamen-

tally limited in the temporal resolution that they can provide, however, since

they cannot resolve any frequency-dependent temporal process that evolves on

a timescale faster than the probe pulsewidth [132]. The common tradeoff in

ultrafast experiments certainly obtains here, as a narrower pulse allows more

selective excitation of a particular set of lines or subset of inhomogeneously

broadened features, which may facilitate the analysis of coupling (e.g. by ex-

citing at one wavelength and detecting emission at another), but the reduced

bandwidth pulse is necessarily longer in duration and cannot be used to study

the fast dynamics of the system. These problems are further complicated if

there are overlapping spectral features in the region of interest.

2dFT is not subject to these restrictions, as its resolution is not lim-

ited by the pulse duration but is instead a function of the number of data

points collected. It is possible, perhaps surprisingly, to increase the signal res-
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olution using zero-padding of a data set collected with relatively short time

scan [296]. We discuss that subsequently in our description of 2dFT data

analysis. In principal, the linewidth of the spectral features in a 2dFT plot

are limited only by the homogeneous linewidth of the ensemble studied – the

limiting factor in a 2d measurement is in fact the resolution of the quantum

emitter itself [132]. The time and frequency resolution are limited only by

the sample itself if the time scans are taken arbitrarily large – of course, the

scan of τ and the spectrometer resolution for ωt set a practical limit [202]. A

more sophisticated treatment of the experimental resolution limits occurring

in Fourier transform spectral interferometry suggests significant attention be

paid to spectrometer calibration and characterization. A significant improve-

ment in data quality may be obtained by performing an FFT transformation

from the spectrometer’s wavelength space into a conjugate time domain, cor-

rection for the spectrometer response function and filtering for artifacts, then

transforming back into the wavelength space to extract the spectral phase of

the signal field, although this is likely not an issue for the electric field recon-

struction utilized in 2dFTS [100].

While other nonlinear optical spectroscopic methods are well developed

tools for studying inhomogeneously broadened systems or evaluating coupling

in the spectra of a complicated interacting system, 2dFTS also can perform

experiments that are problematic for other, simpler techniques. Photon echo

measurements, as described elsewhere in this thesis, are a frequently used tool

for studying dephasing processes, but are limited in their ability to resolve

239



ultrafast processes. The temporal resolution of a photon echo experiment is

not simply limited to the pulse temporal width, but is instead complicated by a

free induction decay signal that occurs at early times. Due to inhomogeneity in

the system (or, in the case of semiconductor materials, even in homogeneously

broadened systems [250]), the optical free-induction decay falls off very rapidly

due to the dephasing of oscillators with different resonant frequencies. In most

photon echo experiments, this early time behaviour is typically ignored, while

the coherence revival peak that occurs at later times is analyzed to understand

the dynamics of the system. If, however, a rapid dephasing process is to be

studied, the delay between the pump pulses must be made correspondingly

short, and temporal overlap between the photon echo peak and the otherwise

neglected free induction decay complicates the interpretation of small time

photon echo signals [284], [83].

5.2.3 Multidimensional techniques from NMR and other spectro-
scopic fields

Prior to the demonstration of optical, electronic 2dFT [192] previous

multi-dimensional experiments had been performed on a number of material

systems. Ernst and coworkers demonstrated a nuclear magnetic resonance

experimental method that could be used to extract a more complete charac-

terization of a system under study [18]; the relative simplicity of controlling

and detecting RF signals with a high degree of phase stability permitted the

rapid expansion of this field. Although the application of these methods to the

study of visible and IR electronic and vibrational transitions was suggested im-
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mediately, the experimental implementation of multi-dimensional methods in

optical physics took some time. While a multi-dimensional Fourier transform

spectrometer is something of a general purpose spectroscopic tool, somewhat

more restricted optical techniques had been demonstrated previously.

Cartoon of 2dFTS features found in NMR experiments (a) and 
experimental data from a nuclear measurement on an organic 
molecule (b). N.b. the extremely low frequencies of the transitions 
involved. Reproduced from Aue et al., J. Chem. Phys. 64:2229 (1976).!

Downloaded 09 Feb 2010 to 128.62.181.143. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

(a)! (b)!

Figure 5.8: NMR 2dFTS spectra

Phase cycling techniques were used to isolate signals in a three pulse

measurement analogous to NOESY techniques from NMR using RF signals to

probe the coupling between levels in the hyperfine manifold of chlorine atoms

in a relatively simple halogenated alkene [375] (specifically, ethylene with two

hydrogens substituted for a a chlorine and fluorine on one of the two car-

bon atoms); the use of phase cycling to isolate a particular coherent signal

from the background of the excitation pulses and scattered radiation is a di-

rect extension of nuclear resonance detection schemes (q.v. sub). Two pulse
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COSY analogue experiments were also performed, which can be used to re-

veal coherent coupling that occurs with no relaxation time. Two-dimensional

microwave Fourier transform spectroscopy [376] can provide more informa-

tion than simpler double resonance experiments where the introduction of a

tuned RF pulse decouples some sub-ensemble of nuclei from the rest of the

molecule, simplifying the normally split lines of other nuclei coupled to that

subset. While double resonance can provide structural information from the

indirectly determined coupling, microwave 2dFT measurements [12] provide a

direct spectral measurement of these effects with narrower spectral resolution.

There are the additional, often repeated benefits of spreading one-dimensional

spectral information into a two-dimensional space to facilitate interpretation

of complicated spectral features, as well as the ability to observe dynamics

such as relaxation in the system that double resonance cannot probe. These

techniques were direct extensions of NMR methods, and the relevant energy

scale for the transitions involved did not pose experimental difficulties for the

generation of pulse sequences with well-defined phase and timing control.

Optical two dimensional spectroscopy had been used to study the trans-

fer of coherence among Zeeman sub-levels in sodium vapor [360] he energy

structure of the ground state of an alkali gas was studied using two pulses

derived from a single laser source. The first pulse prepares a coherence be-

tween two hyperfine sub-levels of the ground state, which then evolves during

a subsequent waiting period. A second laser pulse initiates a mixing period,

wherein the coherence created between two sub-levels to a different pair of
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sub-levels. During the subsequent detection period the emission is observed

on that second transition. While this experiment does use visible radiation

(the D1 resonance occurs at 590 nm, coupling the 32S1/2 ground state man-

ifold and the 32P1/2 manifold), the actual coherences between the hyperfine

levels of the ground state are on the order of a GHz. As a result, experimental

control of the the pulse sequence is substantially simpler than the later exper-

iments that perform 2dFT on an optical transition; moreover, no phase data

was derived from the correlation plots obtained with this technique. Similar

experiments were performed using a periodic optical perturbation with repeti-

tion rate chosen to match the Larmor frequency of a specific Zeeman sub-level

of an alkali atom in a tunable magnetic field; 2d spectra taken in this manner

were recorded as a function of the optical field detuning and the magnetic field

strength. The lineshape along the optical axis reveals the dispersive lineshape

of the Zeeman resonances [378]. Two dimensional correlation plots were also

obtained for molecular compounds in the near-IR, using a fifth-order phase-

matched experiment that detected a signal dominated by a cascaded third-

order nonlinear process [32]. This technique apparently does not depend upon

any active phase stabilization. The Fourier transform spectral interferome-

try techniques subsequently used for the detection of four-wave mixing signals

in 2dFTS were previously applied to measure the transient,t second-order,

nonlinear, non-resonant response of a KDP crystal, essentially providing a

measurement of the frequency map where phase-matched emission occurred in

a two-pulse experiment [246].
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5.2.4 Optical 2dFTS contrasted with 2dNMR

Multidimensional spectroscopy as described by Ernst and coworkers

in the late 1970’s comprised a set of nuclear magnetic resonance experimen-

tal methods that could be used to extract a more complete characterization

of a system under study, but even in the first two-dimensional NMR pa-

pers the possibility of extending these techniques to the optical regime was

considered [18]. This early work on outlines a number of possible different

two-dimensional techniques, considering frequency-frequency measurements,

a mixed frequency-time space measurement, a time-time measurement, and a

stochastic noise technique that correlates a spectrally broad noise input to a

noise output. In each of these techniques, the signal of interest is mapped onto

a pair of independent variables. Frequency-frequency measurements performed

using double resonance were already commonly practiced, using a strong, per-

turbing field to modify the system of interest in a nonlinear fashion, and a

second, weakly interacting field to study that system – in some senses, one

may argue that this is still a simple, single dimensional spectroscopic tech-

nique that measures only the changes in the probing field, but if that change

is correlated with the parameters of the strong exciting field, a multidimen-

sional spectroscopic domain is obtained. The primary interest of these research

programs was the development of time-time methods, where a pair (or more

complicated train) of RF pulses was used to excite a system, with the relative

delays between pulses and between the last pulse and the detected emission

forming the pair of independent variables in a two-dimensional experiment.

244



The adaptation of spectroscopy tools developed in the radio frequency

region of the electromagnetic spectrum to the higher frequency regime of opti-

cal spectroscopy is complicated by a number of substantial experimental hur-

dles – although conceptually similar and relying upon the same fundamental

quantum mechanical physics as NMR methods, the substantially greater op-

tical frequencies and correspondingly shorter wavelengths make it difficult to

perform experiments that rely upon well-defined phase and time relationships

among the optical pulses.

Multi-dimensional spectroscopic techniques may be regarded as concep-

tually similar, whether the experiments are performed with radio frequency, in

the microwave region, or even with visible or UV light. The similarity between

these nonlinear spectroscopic methods is due to the invariance of the quantum

mechanical equations of motion that govern the electric dipole coupling and

stochastic relaxation of multiple level systems across this broad range of fre-

quencies. Nonetheless, while optical 2dFTS does resemble nuclear resonance

multi-dimensional spectroscopy, there are some significant differences between

these experiments.

In particular, the optical pulses used have a far smaller number of cycles

per pulse compared to the corresponding RF excitation pulses used in NMR

experiments, which may have millions of pulses. In our experiments, performed

in the vicinity of 800 nm, typically we expect something on the order of a few

tens of optical cycles per pulse.

In NMR experiments, a spin flip does not result in considerable change
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of the local environment. Essentially, the weak nuclear magnetic dipole re-

sults in only a small perturbation of the potential experienced by other spins

in the sample. Due to the presence of a strong bias field, spin flip transitions

can be viewed as perturbations localized along the quantization axis. In con-

trast, the electronic and vibrational excitations created in optical 2dFTS have

a strong perturbative effect on the local environment. Without the presence

of an externally applied quantization axis, a spatially three-dimensional set

of excitations is possible in optical experiments. As a result, control of the

polarizations of the excitation fields may now significantly affect the observed

system response. Perhaps counterintuitively given that the effect of the non-

linear polarization induced in a multi-dimensional experiment may be more

pronounced at optical wavelengths than for nuclear resonance measurements,

optical 2dFTS experiments must be performed in the so-called weak pulse

limit, since there is not an easily defined pulse area theorem (e.g. there is not

a straightforward way to generate an optical analog of a π or π/2 pulse) in a

system with multiple optical transitions [202].

5.2.5 Optical 2dFTS measurements

The 2dFTS experiment itself can be understood as a three pulse tran-

sient grating method, as described in a previous section. It is only in the

particular details of the detection scheme, the dense set of spectrally resolved

emission data collected, and the relatively simple post-experiment analysis

that 2dFTS is distinguished from other three pulse experiments. Indeed,
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because 2dFTS is something of a universal femtosecond spectrometer [132],

Fourier projection may be used to reduce the 2dFTS results to simpler rep-

resentations mimicking these other three or two pulse measurements [202].

In practice, obtaining the necessary phase stability between the two coherent

pulses and between the four-wave mixing signal of interest and the reference

field [235] used for optical heterodyne detection [131] in 2dFTS are the most

significant technical difficulties that complicate the experimental implementa-

tions of an otherwise conceptually straightforward measurement. In the mid to

near-IR, such problems are generally not insurmountable, but as experiments

move into the visible spectrum it becomes necessary to go to substantial length

to perform phase-stable optical multidimensional measurements.

In both 2dFTS and the other three-pulse experiments, however, the

light-matter interaction may be intuitively understood by considering a step-

wise process where a two-level system is dipole coupled via a resonant optical

field at three different moments in time. We explicitly consider a simple den-

sity operator theoretical treatment of the relevant exciton dynamics for our

partially collinear experiment elsewhere in an appendix to this thesis; now, we

only briefly describe the basic concepts of the optical interaction and relax-

ation processes. We neglect the interaction among members of the ensemble

to simplify the discussion of the optical physics.

To first order in a perturbation calculation, the first pulse excites a

dipole oscillation, creating a coherence that can be described by an off-diagonal

term ρab in a density matrix. The second pulse that arrives will either enhance
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or suppress that oscillation, depending on timing and relative phases of the

second pulse and the oscillation induced by the first pulse. If the second pulse

arrives prior to the occurrence of significant dephasing, the dipole oscillation

still possesses a well-defined phase relationship with the first pulse. Although

the phase of the oscillation and the second pulse cannot be directly observed or

controlled at this point, interferometrically precise control of the arrival time

of the second pulse relative to the first will thus provide an indirect control of

the second light-matter interaction. To the second order in a perturbation

calculation, this interaction creates a population ρbb in the excited states.

The phase of the second pulse relative to the coherence created by the first

determines the extent to which the excited state is populated. As long as

the delay τ between the two initial pulses is comparable to the dephasing

time, the interference of these optical fields results in a transient grating of

the electronic state population in the sample, which exhibits both dispersive

and absorptive properties [273]. After an additional waiting time T during

which population relaxation processes may occur, a third pulse interacts with

the population grating. In the third-order perturbation calculation, this field

again induces a coherence ρab between the optically coupled states; the dipole

moment of a given oscillator is given by the product µabρba + µbaρab, and a

macroscopic dipole due to the ensemble of phased oscillators emits light along

certain phase-matched directions. Alternatively, the coherent emission can

be interpreted as light from the last pulse scattered by the grating created

by the coherent interaction of the first two pulses. The diffracted four-wave
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mixing signal is then detected as a function of its emission time t after the final

pulse. In yet another interpretation, the emission after the third pulse may be

viewed as a free induction decay that occurs from a coherent superposition of

wavefunctions created by the three preceding pulses [202]. Fourier transform

of the measured four-wave mixing electric field over the two time periods τ

and t provides a 2dFT spectrum.

As the coherence time τ is increased the finesse of the grating increases

while perturbations from the environment have more time to destroy phase

coherence or induce spontaneous emission [238]. This effect of increasing the

grating finesse may be understood by considering the interference between two

co-propagating pulses with some variable delay – when the two pulses are tem-

porally overlapped, the spectrum is a smooth function (e.g. a Gaussian or the

square of a hyperbolic secant or similar, depending on the light source), but

as the delay between two pulses is increased the spectrum develops fringes,

with the number and finesse of the fringes increasing as the delay is increased.

Intuitively, then, higher frequency components are introduced into the electri-

cal field spectrum by scanning larger values of τ , and as a result the spectral

resolution along the Fourier transformed axis ωτ is increased. The maximum

frequency signal that can be resolved in the experiment is still limited by the

step size used to scan τ , as we discuss elsewhere (q.v. our extended discussion

of undersampling). The modulation of the spectral fringes may be alterna-

tively understood as the switching-on and -off of various frequency components

by control of the pulse delay, with the system response analyzed as a result
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of some particular combination of those frequency components. Traditional

one-dimensional Fourier transform interferometry experiments are sometimes

described in this manner, as some material containing an ensemble of oscilla-

tors, each subset of which possesses a slightly different resonant frequency, is

excited by the various combinations of frequency components and its response

measured interferometrically [202]. Interferometric control of a delayed pump

pulse pair has been previously demonstrated as a tool for coherent control of

exciton populations in quantum wells [256], [169]. In the 2dFTS experiment,

the phase modulation is stored by the population grating resulting from the

second pulse. After that pulse, dephasing no longer plays a role in the dy-

namics, and the slow population decay time allows a long-time storage of that

phase modulation information in the excited state population grating.

Subsequently, during the mixing period T , perturbation from the envi-

ronment will again affect the grating structure. Subsequently, a third pulse is

scattered from this grating and the diffracted four-wave mixing field is char-

acterized. In 2dIR experiments where the light-matter interaction is not a

strong perturbation, it is possible to transmit both the third pulse and an

additional, phase-stabilized pulse that acts as a local oscillator; in that case,

the scattering of these two pulses may be interpreted as a measurement of the

correlation of the gratings induced by the two pulse pairs. In semiconductor

systems such as those we study, it is not possible ot transmit the local oscilla-

tor/heterodyne pulse through the material, since the many-body dynamics of

interest are highly sensitive to the excitation density. The additional interac-
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tion of the fourth pulse would significantly affect the response of the system;

as such, a substantial effort is placed on re-routing the heterodyne field along a

separate optical path while maintaining the interferometric stability with the

third pulse [410].

Phase sensitive measurements of the electric field of the four-wave mix-

ing signal emitted the final excitation pulse completely characterizes the sys-

tem response, as both the amplitude and overall (rather than relative [70])

phase of the signal field are measured. In practice, the second time period t is

not scanned, and the electric field is not recorded in the time domain. Rather,

the four-wave mixing is spectrally resolved and the amplitude and phase of

the signal are characterized [131]; the first demonstration of optical 2dFT and

most other optical implementations still use spectral interferometry to extract

the signal field from the detected heterodyne measurement [245].

5.2.6 Optical analogues to COSY and NOESY distinguish coherent
and incoherent coupling

For a given optical 2dFTS experiment, the mixing period T is kept

fixed, while the evolution time τ is scanned. Changing this time period allows

the observation of different coupling processes in the system, as coherent pro-

cesses can be observed at T = 0, in an optical analogue of the NMR COSY ex-

periment. COSY, or Correlation Spectroscopy, first proposed by Jeener [199],

[260] in an unpublished lecture, relies on a two-pulse RF sequence that pre-

pares a coherent superposition, allows it to evolve during the period between
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the pulses, then detects a time-resolved free-induction decay signal emitted af-

ter the arrival of the second pulse. Transfer of magnetization among nuclei via

indirect dipole coupling had been observed previously in spin echo experiments

[157], [305]; in COSY experiments this coupling was observed as off-diagonal

peaks in a 2d spectrum obtained by varying the pulse delay time and recording

the induction signal as a function of the time after the final pulse [18].

If the population time T is non-zero, the 2dFT experiment can probe

non-coherent relaxation processes, which require finite time to occur due to

their probabilistic nature. This is analogous to the NOESY (Nuclear Over-

hauser Effect Spectroscopy) experiment in NMR. In practice, the NMR NOESY

experiment is distinguished from the COSY experiment by the addition of a

third pulse; the experiment is not conceptually too dissimilar from a three

pulse photon or spin echo measurement but with the second pulse now chosen

to have a π/2 pulse area instead of π. In the NMR experiment, a first π/2

pulse rotates the spins’ magnetic moments into the transverse plane, where

they precess at different rates around the quantization axis. A subsequent,

equal area pulse moves all the spin vectors back parallel to the bias field. Dur-

ing the subsequent mixing time, the nuclear Overhauser effect incoherently

transfers the magnetization from some set of nuclear spins to another set, af-

ter which a third pulse rotates the spins back into the x-y plane. Detection

of the free-induction decay occurs during this last period; if the Overhauser

effect resulted in the transfer of spin polarization from one set of spins to an-

other with a different chemical shift, cross-peaks will appear in the resulting
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2dFT spectrum [76]. This relaxation process takes time, and in spin systems,

only couples adjacent nuclei – unlike the coherent coupling observed in COSY

measurements that detect interaction mediated by the electronic bonds in a

molecule.

T=0!

k1!

Time increases 
from l to r in 
both experients!

k2! k3!

τ T t

τ t

Excitation pulse sequences for the optical 2dFTS 
analogues of NOESY (a) and COSY (b) experiments.!

(a)!

(b)!

Figure 5.9: Optical analogues of COSY and NOESY

The popular electronic 2dFTS technique pioneered by Jonas and co-

workers [192] and replicated by a number of other groups permits easy optical
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analogues of both COSY and NOESY experiments. The original demonstra-

tion and the majority of subsequent experiments were performed in a BOX-

CARS geometry (described elsewhere in this thesis) which allows 2dFTS mea-

surements with zero or non-zero T , since the arrival time of the final pulse in

the experiment is controlled using a delay stage or other mechanism.

5.3 Experimental and technical considerations for 2dFTS

5.3.1 Phase matched coherent emission of temporally ordered four-
wave mixing

Some techniques for calculating the nonlinear optical response of the

system require subsequent multiplication by a spatial filtering function to

permit straightforward comparison to the experimentally measured four-wave

mixing signal, as only certain terms in the optical response will result in co-

herent, beamed radiation. Since we use density operator-perturbation the-

ory methods to compute simple models for the nonlinear optical polariza-

tion, allowing us to develop an intuitive understanding of the optical physics

involved, we do not need to consider this additional complication. The co-

herence terms calculated in such an approach (and the related macroscopic

polarizations) have a well-defined wave vector, which permits us to keep track

of those terms that contribute to the macroscopic phase-matched polarization

that emits along the detection direction. Other terms in the perturbation cal-

culation, which do not correspond to propagating modes with the appropriate

wavevector, can be discarded. This simplifies the interpretation and analysis
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of experimental results, connecting the changes in a measured signal directly

to quantities of interest that appear in simple model calculations [132].

Temporal ordering of the pulses also simplifies the analysis of the ob-

served four-wave mixing field, as only certain quantum mechanical pathways

(a precise definition of this term, pathway, is not obvious, but inspection of

our simple calculation elsewhere in this thesis for the partially collinear ge-

ometry experiment makes clear what we mean by pathway) have the right

time ordering of the electric fields. Therefore, only those terms contribute to

the radiated signa, although ’wrong time’ sequence pathways will contribute

during those times when there is pulse temporal overlap.

In a density operator theoretical treatment, the coherence, off-diagonal

elements of the density matrix will depend upon a sum of different combina-

tions of the normal,

Ẽi = Ei (t) e
i(ki·r−Ωit)

and conjugate

Ẽ∗i = E∗i (t) e−i(ki·r−Ωit)

complex fields, which are summed to give the real electrical field E (t) =

Ẽi (t)+Ẽ
∗
i (t). Choosing the direction of observation and the temporal ordering

of the pulses determines the signs of the exponents in the product of complex

fields that interact with the sample during the time periods τ and t. This,

in essence, is what is meant by phase-matching in this context: only certain
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quantum mechanical pathways in the density matrix calculation, depending

on the appropriate combination of electric fields, results in a coherent, beamed

emission along a specific direction. This is readily understood as the optical

expression of conservation of momentum for these parametric processes.

Of particular interest are the relative signs of the exponents of the com-

plex fields of the first two pulses to interact with the material sample. If those

signs are opposite in a given quantum mechanical pathway, that pathway is

known as a rephasing pathway, and is understood by analogy to the rephas-

ing of an inhomogeneous ensemble of oscillators that occurs during photon

echo experiments, as described previously in this thesis. If the signs of those

exponents are identical, it is termed a non-rephasing pathway, and no macro-

scopic revival and photon echo is expected; the third complex field to interact

with the sample will then have an opposite signed exponent in order to result

in a frequency degenerate four-wave mixing emission. Obviously, in the case

of rephasing quantum mechanical pathways, no significant statements can be

made on the sign of the exponent of the third complex field. The emission for

the non-rephasing pathways, where the signs of the exponents are the same

for the first two pulses, may be called a virtual photon echo or anti-echo [102].

The optical 2dFTS technique developed by Jonas et al. [192] used the

non-collinear (BOXCARS) geometry described previously to produce phase-

matched four-wave mixing emission, which was widely emulated for other op-

tical multi-dimensional experiments, but their early analysis of this technique

also outlined an alternative method using a partially collinear beam geometry
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BOXCARS geometry for 2dFTS experiments. One beampath, 
marked in blue, indicates the beam that is missing from the 
square box on one side of the sample and the signal emission 
direction on the other.!

Figure 5.10: BOXCARS geometry phase-match for 2dFTS

[132], which was subsequently demonstrated experimentally [87], [152]. We

discuss 2dFTS in this geometry at some length subsequently.

5.3.2 Detection

While measurements of a small number of photons are technologically

feasible, 2dFTS, like most other nonlinear experiments, relies upon the detec-

tion of a macroscopic observable, viz. the detection of an optical field whose

classical properties (e.g. intensity, electric field strength, polarization, etc.,

where all these quantities are measured in the limit of large photon number

where quantum optics effects may be discounted – the study of these effects via

detected photons is sometimes described as quadrature-in-field, to distinguish

the observation from a direct measurement of the oscillating field itself [371])
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can be correlated with microscopic, quantum mechanical processes occurring

within the system of interest. As described elsewhere in this thesis, in wave-

mixing experiments of this ilk the selection of a particular set of wavevectors

for the excitation pulses results, via the conservation of momentum, in a spe-

cific phase-matched direction along which a macroscopic array of dipoles will

emit coherent radiation. The timing sequence of the pulses used will, in some

geometries, allow the selection of a particular subset of quantum mechanical

pathways that will radiate along this path. There is a specific density opera-

tor coherence pathway that connects the various energy levels and exhibits the

appropriate phase-matching for signal radiation in this direction. While emis-

sion will occur in all directions, except along those where a phase-matching

condition obtains there will be no coherent, intense, directed radiation.

This is an experimental distinction from the phase cycling methods

used to detect the signals of interest in a multi-dimensional NMR technique. In

those experiment, the pulsed RF fields used to excite the material are described

by a cw carrier multiplied by an envelope function, whereas in nonlinear optical

experiments using pulses created by changes in path length the electric field is

better described by an envelope function and a carrier wave that both change

their time argument. In other words, the optical phase is also affected by the

pulse delay in optical 2dFTS, and needs to be accounted for to properly explain

the optical response. The absolute phase of the polarization (and hence, the

four-wave mixing signal field) in the optical case depends on the absolute phase

of the three excitation pulses, ϕsignal = f (ϕ1, ϕ2, ϕ3), where the function f
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will be a simple linear combination of the absolute phases of the excitation

pulses. In the case of the popular non-collinear 2dFTS experiments, it will look

something like ϕsignal = ϕ3 + ϕ2 − ϕ1 for a rephasing pathway. A constant

shift of φ added to each of the excitation pulses will result in a phase shift of∑
i=1 siφ where si = ±1 is the sign of the ith excitation pulse’s wavevector in

the direction of the phase-matched emission – in this case, again, for the non-

collinear technique, that will result in a shift of −φ + φ + φ = 2φ. Scattered,

incoherent signals detected along the same direction will not exhibit the same

dependence on the phase of these pulses. In an NMR experiment, the signal of

interest is detected by adjusting the phase of the excitation pulses and keeping

those contributions that exhibit the correct dependence on that phase. This

technique allows the isolation of a signal of interest from other that do not

depend upon the quantum mechanical pathway of interest and do not exhibit

the correct dependence on phase of the excitation pulses – and which therefore

may be averaged out to zero or subtracted [202].

This is the general principle of phase-cycling, which in optical exper-

iments may be replaced with the detection of the macroscopic optical field

propagating along the phase-matched direction, although there are many ex-

tensions of this technique that can be applied to optical experiments to reduce

the contribution of incoherent scattered light to the detected signal. We do

not implement phase-cycling in the experiments in this thesis, but our use of

AOM’s to frequency shift the excitation beams in our 2dFTS experiment and

to control the relative phases and modulate the intensities of the beams in
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our new experiments certainly make such methods possible. For the partially

collinear geometry we are particularly interested in, phase-cycling schemes

have been described [403] and demonstrated using pulse shapers [342], [266].

The chemistry 2dFTS community tends to describe all of the phase-

matched signals collected and analyzed in coherent spectroscopy experiments

as free-induction decays occurring subsequent to some complicated wave-packet

preparation [202]; on the other hand, in the semiconductor physics commu-

nity the trend is to view the four-wave mixing signal of interest detected in

a 2dFTS experiment as taxonomically distinct from the pump-probe artifact

signals and incoherent emissions that may accompany it. It is true that in

all of these cases, an oscillating electric dipole emits radiation observable in a

far field, but the beam-like properties and dependence on material relaxation

processes of coherent four-wave mixing emissions make them far more suitable

as a macroscopic probe of microscopic physics of interest. It is in studying the

relationship of the emission to the independent variables, rather than in any

particular property of the radiated field itself, that the physics of interest may

be revealed.

2dFTS depends upon correlating optical events occurring in the first

coherence period τ with those that occur in a second, phase-sensitive detection

period t. In practice, the second time period t is not scanned, and the electric

field is not recorded in the time domain. Rather, the four-wave mixing is

spectrally resolved and the amplitude and phase of the signal are characterized

[131]. The first demonstration of optical 2dFT and most subsequent optical
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implementations still use spectral interferometry to extract the signal field

from the detected heterodyne measurement [245].

2dFTS depends upon a phase-sensitive optical detection technique. In

the nuclear resonance experiments upon which optical 2dFTS is largely based,

direct resolution of the electromagnetic field radiated from an ensemble of

dipoles is possible, but for the corresponding optical frequencies immediate,

direct measurement of the rapidly oscillating electric field is not available.

As noted in our previous discussion of time resolved four-wave mixing mea-

surements, it is possible to determine the temporal lineshape of emission via

simple nonlinear optical processes, such as frequency upconversion in a nonlin-

ear crystal. This cross-correlation method will only provide a measurement of

the intensity profile, however, and not the amplitude and phase of the emission

that we are interested in. More sophisticated heterodyne measurements may

be performed in the time domain, but typically require scanning a delay for

one reference pulse mixed with an unknown signal pulse. Performing phase

sensitive heterodyne measurements in the time domain may extend the labora-

tory time needed to perform a 2dFTS experiment too far for such methods to

be practical. Fortunately, heterodyne interferometry in the frequency domain

provides a more rapid method to retrieve the amplitude and phase of transient

nonlinear optical fields [112]. Frequency domain interferometry measurements

are single shot techniques if the spatially dispersed spectral components of the

interfering fields can be simultaneously measured. This kind of multiplex tech-

nique is common to spectrally resolved measurements using array detectors,
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such as the CCD’s commonly used for 2dFTS experiments. In the context

of signal-to-noise analysis, where multiplexed measurements benefit from si-

multaneously recording all the channels of interest for the entire period the

measurement is performed, this is known as Felgett’s advantage [316].

Since the electric field E (t) emitted in a four-wave mixing process is, of

course, a real-valued quantity, its frequency power spectrum is also real. This is

directly measurable, and completely independent of spectral phase. Once this

spectrum is known, measurement of the corresponding spectral phase φ (ω)

uniquely determines the electrical field E (ω) and its Fourier conjugate E (t).

The fringe pattern produced by the interference of two pulses that are

identical other than a delay of one relative to the other is well understood.

Nonetheless, quantitative measurements based on this interference effect were

not used to characterize the amplitude and phase of an unknown field combined

with a reference pulse prior to the development of spectral interferometry and

the corresponding algorithms for reconstruction of the unknown pulse [245].

These methods provide the envelope of the signal field and its spectral phase

relative to the reference field. Careful characterization of the reference pulse

is not even strictly necessary if the delay between the signal field and the local

oscillator is made sufficiently long [4], [202].

The only problematic aspect of these spectral heterodyne methods is

that they are insensitive to an overall relative spectral phase for the retrieved

signal field. As such, the phase between the signal field and the reference

field must be fixed by some other method. In the case of homotime detected
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2dFTS in the BOXCARS geometry, where a phase-stabilized 
reference pulse (lower left) is mixed with the four-wave mixing 
emission (following the beam path marked in blue) to perform 
spectral interferometry on the heterodyned signal (in green).!

Figure 5.11: Spectral interferometry detection schematic

partially collinear 2dFTS, the two fields co-propagate, and that phase rela-

tionship is trivially zero. Fixing the global phase ambiguity for non-collinear,

BOXCARS geometry experiments is more difficult, and requires an additional,

independent measurement – commonly, a two pulse, pump-probe, spectrally

resolved transient absorption measurement is compared to the τ = 0 portion

of the raw 2dFTS data to correctly fix this ambiguity, although there are

known drawbacks to this technique. Correctly determining the absolute phase

of the nonlinear response is essential for the correct separation of the real and

imaginary portions of any 2dFTS spectrum.
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5.3.3 Spectral issues, spectral resolution, effects of laser spectrum

A familiar result from more conventional one-dimensional Fourier trans-

form spectroscopy – a frequently employed tool for material characterization

– is that the frequency resolution of such an experiment is limited only by the

maximum delay τ set between the pulses, and not by the pulse spectral band-

width. This result is particularly approachable in light of our description of a

pulse pair’s spectral fringes being switched on or off as the delay is scanned. A

similar result obtains in 2dFTS, where the frequency variable ωτ conjugate to

the time domain variable τ is limited in resolution only by the maximum scan

length. Since raw 2dFTS data are collected as dense spectra samples indexed

by the variable τ , increasing this resolution requires longer duration experi-

ments, but in principle 2dFTS data could be captured as long as the apparatus

could be kept interferometrically stable. A similar result would also obtain for

the other frequency variable, ωt, if the raw data in a 2dFTS experiment were

collected in an analogous time domain scan. The shortcut of single-shot direct

spectral resolution by spectral interferometry precludes this, however, but in

principle a time-time domain experiment can be performed, with the experi-

mental resolution on either axis limited only by the homogeneous linewidth of

the transition studied. [132]

We consider the effects of finite duration pulses elsewhere in this thesis,

where we discuss the connection between phase twisting and temporal pulse

overlap.

Other than those effects, the simulated spectra calculated with finite
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duration pulses show no substantial differences from those computed using

Dirac delta function pulse envelopes; limiting the bandwidth of the excita-

tion pulses effectively acts as a spectral filter [203]. If the pulse used in an

experiment has sufficient bandwidth to cover all the spectral features of in-

terest, its duration does not affect the experimental results [132]. We note

that infrared 2dIR has also been demonstrated using a pulse spectrum that

does not span all the features of interest, where data are collected by tuning

the laser across a set of vibrational modes in an aromatic compound. The

off-diagonal peaks, representing coupling between different modes, were used

to fit a Hamiltonian model to determine the three-dimensional structure of

the molecule [158]. There should be no further complications due to reduced

optical bandwidth, since the nonlinear optical response of the material is, in

the frequency domain, given by a product of the nonlinear optical suscepti-

bility χ(3) (ω) and the various excitation fields. Since that expression for the

polarization is linear in the frequency domain system response function and all

of the fields, reduced bandwidth excitation will have no effect on the nonlin-

ear polarization for frequency components where the system impulse response

function has already gone to zero [202].

Eliminating the tradeoff between spectral and temporal resolution com-

mon to other nonlinear spectroscopic tools permits multi-dimensional spectro-

scopic methods to be treated as nearly universal spectrometers [132].

Some consideration of the interplay between causality and a Kramers-

Kronig relationship for nonlinear spectroscopy is also warranted. The nonlin-
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ear susceptibility χ(3) may be defined to span all frequency components run-

ning from negative to positive infinity. The use of excitation pulses with finite

spectral bandwidth in these experiments applies a frequency domain window

to the possible effects that can be observed. To ensure detection of as broad as

possible of a frequency range of phase-matched nonlinear products, using the

broadest pulse available is desirable – though again, not necessary to capture

rapid dynamics, since the bandwidth and resolution of the experiment are now

determined by the conditions of the phase-controlled time domain scans. In

many cases, such as the study of semiconductor optics, it may be desirable to

use slower pulses to avoid excitation of strongly resonant modes – such as the

common practice of frequency domain pulse-shaping to avoid the excitation of

free carriers in semiconductors.

If delta function pulses were available, the real and imaginary portions

of a 2dFTS spectrum would exhibit a Kramers-Kronig relationship due to

causality – but the requirement of infinite bandwidth, extending from negative

to positive infinity along the frequency axis clearly cannot be met. If it could

be, the ability of 2dFTS to simultaneously record absorptive and dispersive

spectra would not be so scientifically significant, since either could be obtained

once the other was measured. This is, incidentally, in contrast to the situation

that obtains in NMR measurements, where the available pulse bandwidth can

be made so large as compared to the relevant transition frequencies, including

extending to DC (certain phenomena related to the behaviour of the imaginary

part of the dielectric constant must be considered to ensure that the Kramers-
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Kronig relationship is properly obtained without considering the divergence of

n′ – these effects are not problematic if the material is not conductive [277]),

that the difference between infinite and nearly infinite isn’t significant, and a

Kramers-Kronig relationship is available [296].

5.4 Data processing and analysis for 2dFTS

There are optimum conditions for the collection of 2dFTS spectra to

study some particular system of interest, but in practice it may be difficult to

perform an experiment that satisfies these requirements. Nonetheless, certain

steps may be taken to improve the usefulness of collected 2dFTS data by

performing linear filtering processes. Linear filtering will neither create nor

destroy frequency components, or result in the nonlinear mixing of frequency

components. As such, linear filtering techniques described here permit more

effective study of 2dFTS data.

The principles of linear filter analysis for multi-dimensional spectroscopy

are well known from nuclear resonance experiments [296]. For our purposes,

we are interested in resolution enhancement by zero-padding and apodization

to reduce ripple in the 2d spectra. A linear transformation to perform either

of these steps can be represented by the convolution integral of the measured

signal and the impulse response of the filter process. For a spectrum S(ω) and

frequency-domain filter H(ω) we have

Sf (ω) = H(ω) ? S(ω)
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where one may evaluate convolution in frequency space, or alternatively

take the product of a time domain signal s(t) with the corresponding time

domain filter function

sf (ω) = h(t) · s(t).

Thus, in a Fourier transform spectroscopy analysis, linear filtering is

performed by multiplication of the signal of interest (what chemists would

call a free induction signal) by some appropriately chosen weighting function

h(t) prior to the transformation. Fourier transform spectroscopy thus has a

simple method of filtering, though it requires computation of a transformation

(relatively computationally slow) in order to see the effects of a choice of a

new filter.

5.4.1 Undersampling raw 2dFTS data

An astute reader may note issues related to the precision movement of

the delay stages used in the 2d experiment. With the current experimental

apparatus as described, it is impossible to move the τ delay stage in steps

less than half of the HeNe wavelength – approximately 316.41 nanometers

– which results in a delay step equal to the time it takes for light to travel

twice that distance, approximately 632.82nm. This corresponds to a sampling

frequency of 473.61338 THz. From the foundational papers of Nyquist and

Shannon we know that this sampling frequency limits the highest frequency

component of the signal that may faithfully be recreated (see, for example,
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[24] for an introductory explanation of the sampling criterion and the lesser

known conditions for high fidelity (see, for an explicit formulation of a fidelity

criterion as concerns the sampling of continuous, analog signals [341]) signal

reproduction from sampled data originally described in [278] from the discrete

set of data points to fNyquist = fsampling/2 ' 236.81 THz. This frequency falls

below the range of frequencies in which we are interested, unfortunately – the

heavy hole and light hole exciton resonant absorption features are observed to

occur in the 370 to 380 THz frequency range for Gallium Arsenide – Aluminum

Arsenide quantum well system such as those we study. This would appear

to be a serious dilemma for our experimental program, as a straightforward

application of the Nyquist criterion would appear to prevent the observation of

any oscillatory behaviour in the four-wave mixing emission as a function of the

τ delay; thus, Fourier transformation of the data collected in this experiment

might be expected to fail to reveal spectral features related to the excitons.

This is not an irreconcilable dilemma, however. We may make use here

of a sampling process that is normally considered undesirable – aliasing. Sim-

ply put, if there is an oscillatory component present in an analog sample that

is recorded using a discrete sampling method but which occurs at a frequency

greater than the Nyquist frequency, “aliases” of this signal will still appear

at a lower frequency in the spectrum after Fourier transform. This effect is

normally considered the source of deleterious artifacts, as the high frequency

signal’s aliased features may be confused for oscillations that actually occur

in the desired frequency range. This aliasing is already described in Nyquist’s
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early work [278], where the redundancy of information contained within the

higher frequency bands and their aliases in the DC-to-Nyquist frequency band

is explicitly illustrated. Nyquist notes that the contents of adjacent frequency

bands of width N/2, where N is the number of sampled points collected, are

symmetric about their boundaries.

In a pedagogical article motivated by the development of the Fast

Fourier Transform algorithm, Brault and White describe the utility of sig-

nal processing techniques well known in the field of telecommunications as a

tool for processing and analyzing scientific data, concentrating on the analysis

of long, continuous signals, albeit ones typically recorded directly in a fre-

quency space [47]. Nonetheless, these signals are band-limited by the nature

of the measurement apparatus used to record them, and the Fourier analysis

described is not dissimilar. Here, they show explicitly the effects of introduc-

ing an anti-aliasing filter to remove replica fast spectral features that appear

within the Nyquist band due to a sampling rate insufficient to properly resolve

the appropriate spectral components. In the case that these aliased spectral

features overlap with features of interest that appear at the correct frequency

in the transformed spectrum, the transform is considered unreliable as it is

not possible to discriminate between the genuine and artifact features. Here

the Nyquist frequency is explicitly referenced as the folding frequency around

which spectral features are reflected down into lower bands; the value of the

spectrum at any frequency point f in the transformed domain is not equal to

only the amplitude of the recorded signal at f , but rather the sum of the am-
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plitudes of that component and certain components at frequencies greater than

fNyquist which satisfy the appropriate reflection symmetries. A more rigorous

explanation may be found in [43].

Typically, as we noted, the presence of these higher frequency aliases

appearing inside the Nyquist pass band are unwanted artifacts that complicate

the interpretation of a Fourier transformed spectrum.

It has been demonstrated that Fourier transform spectroscopy can un-

ambiguously recover spectra from interferograms that were collected at less

than the Nyquist frequency [272], motivated by a desire to reduce the time

required for data collection in order to avoid slow noise processes that would

only significantly affect measurements taken over long time intervals. The

mechanics of this measurement are not dissimilar from our own, in that an op-

tical path length difference is introduced between two different signals derived

from the same source (here, an external astronomical measurement). The de-

lay is varied in discrete steps, a data point is collected, and the process is

repeated. During the detection period the translation mirror is fixed and the

modulated signal is detected via lock-in amplification – as a result, collecting

a complete data set is a slow process, as in our own experimental work. In

that work, the long duration of a data collection period would introduce noise

from long period variations that do not affect quicker measurements; as such,

significant interest was directed to the problem of reducing the time necessary

to unambiguously collect FTIR spectra. It was shown that with a signifi-

cantly undersampled data set a high-quality spectrum could be reconstructed,
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provided that there are no other features present at either the fundamental

frequencies within the Nyquist band or at even higher frequencies that satisfy

the appropriate folding conditions to be rendered by aliasing within the spec-

tral region of interest. In an astronomical observation such as this, we expect

that appropriate choice of optical filters could prevent any ambiguity in spec-

tra; in our own experiment, we do not expect any emissions in either the true

frequency region in the DC-to-Nyquist frequency band or at higher, folded

frequencies. This may be deduced from the band nature of the semiconductor

system, which does not (to a first approximation) exhibit lower energy emis-

sion than the exciton resonances, and from the fact that any higher energy,

unintentionally aliased emission would likely be weak due to its origin in some

multi-photon or multi-excitation process.

In signal processing applications, an anti-aliasing filter is often applied

to the analog signal prior to the sampling. This step removes the high fre-

quency components from the raw signal, and prevents aliasing of those signal

components into the DC-to-Nyquist band. In this application we expect it is

not necessary, as no other emissions are expected to appear other than those

we are intentionally aliasing into the frequency region of interest.

We are not specifically concerned with reducing the experimental time,

although that is beneficial in that a reduced experiment length would some-

what reduce the chances of the interferometer slipping due to external noise in

the laboratory. Rather, we are simply unable to satisfy the Nyquist sampling

criterion using the step size determined by the HeNe wavelength, and make
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use of the aliasing effect to pull our signal of interest down into an accessible

region of the Fourier transform spectrum.

We note that a common weakness to this data collection scheme is

that it is performed sequentially, and is thus more susceptible to systematic

effects than if the data were collected in a randomized τ order. We take data

sequentially do the accuracy requirements on τ , which can be easily satisfied

by the step-integrate-repeat scheme, wherein the interferometer is only briefly

unlocked and (if desired) the fringe can be observed during the movement of

the translation stage to ensure that no ’slips’ occur (when the stage moves by

more or fewer than the number of fringes expected). Since the total throw of

the piezo-mounted crystal is several microns, such an error may be introduced

if the experiment is not operating properly, and is partiuclarly likely if the

interferometer is not well aligned. Evidence of such a slip may be present if

the servo controlling the pzt re-locks at a different voltage; this is likely, but

in pathological cases it is possible to imagine gross error in stage positioning

could occur without a corresponding jump in the voltage used to position the

pzt. We monitor the pzt drive voltage at each step during data acquisition,

and if there is no evidence that the interferometer is not behaving properly we

assume that the absence of any pzt voltage jumps indicates a good data set

was collected.

In the data presented here we have only made use of a two-fold un-

derstampling, since the inherent Nyquist frequency (˜237 THz) doubled (˜474

THz) is sufficient to properly reveal all of the spectral features of interest asso-
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ciated with the exciton resonances in GaAs quantum wells. In practice, the un-

dersampling process merely consists of deriving the appropriate frequency axes

with which to label the spectral region of interest in the Fourier transformed

plots. This is performed in Matlab. A normal sampling discrete frequency axis

may be derived by creating a vector of frequency values equally spaced from

0 to the Nyquist frequency in increments determined by fNyquist/(N/2) for N

data points. Typically, we collect 1500 different spectra in a single experiment,

but then pad the raw data set to bring it to an even power of two; in that case,

it is the power of two (211 = 2048 ) that would be used for N when determining

the frequency spacing (q.v. sub for further description of zero-padding). The

undersampling axis is derived by creating a vector of frequency values equally

spaced from (U − 1)× fNyquist to U × fNyquist, where U is the undersampling

ratio used, in increments of fNyquist/ (N/2).

5.4.2 Zero-padding raw 2dFTS data

An elementary result from Fourier analysis is that the frequency res-

olution available from a data set is proportional to the length of the time-

domain data set. In the limit that the temporal data extend to positive

and negative infinity and the sample spacing T of time-domain data points

xn = x (nT ), for some continuous function x (t), the finite Fourier transform

X (ω) =
∑n=∞

n=−∞ xne
−iωn can be taken to be equal to the continuous trans-

form X (ω) =
´∞
−∞ dtx (t) e−iωt. In this limit, the frequency resolution is infi-

nite, since both the time-domain and frequency-domain representations of the
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signal are continuous functions.

Increasing the resolution of a fixed, sampled set of data is possible,

however, by simply adding null data to the end of an existing data set . This

process, known as apodization, provides some ability to artificially increase

the resolution of spectral features, thereby narrowing resonance lines. The

consequences of this technique, which clearly cannot provide us with a free

Fourier lunch, are increased noise; in particular, some apodization schemes

that increase frequency resolution by performing a weighted discrete Fourier

transform place more weight upon later data points, which can significantly

increase the high-frequency noise present in the spectra. Some utility can

certainly be gained by using such a technique if the increased noise occurs

outside the spectral region of interest. Doubling the resolution can, as a general

rule, reduce the sensitivity by an order of magnitude [296].

In our own experiments, we perform a small amount of zero-padding,

but this is not done in an attempt to improve signal resolution; rather, we

wish to bring the length of our data sets to the nearest power of 2, so as to

make use of the FFT algorithm more efficiently.

5.4.3 Windowing of raw 2d data

Apodization, the use of a window function to pre-process multi-dimensional

data, is a well-established technique in the field of NMR spectroscopy. Typi-

cally, the acquisition time tmax used to record a free induction decay is limited

for practical reasons, and the radiated signal is only recorded from t = 0 to
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t = tmax.

In the partially collinear geometry, the phase-matching condition as

derived from a third-order density matrix treatment indicates that the four

wave mixing signal of interest co-propagates with the probe beam. The pump-

probe signal also is emitted in this direction; therefore, any detection scheme

that measures the difference between the probe beam recorded with the pump

beams on and the probe beam recorded when they are off will resolve the

sum of the desired four-wave mixing signal and two pump-probe signals – one

arising due to the interaction of the static pump and probe with the material

sample and one arising due to the interaction of the dynamic pump and probe

with the material sample. Fourier transformation along the τ axis will shift

these pump-probe artifacts out of the spectral region of interest, but they still

complicate the interpretation of 2d data due to their much slower decay.

While the desired four-wave mixing signal analyzed with 2dFTS is ex-

pected to decay exponentially with a time constant determined by the dephas-

ing time T2 – see, for example [391], [393] for a description of the temporal

lineshape observed with three pulse transient grating experiments (or see for

example [228] for an introduction to spectral diffusion processes that result in

a more complicated, arbitrary transverse relaxation function in place of the

simple exponential dephasing) – the pump-probe signal will decay according to

the population relaxation time T1. It is not necessarily the case that T2 � T1,

and in fact in many systems the two relaxation time scales are comparable;

for excitons in semiconductor quantum wells, however, the dephasing time is
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much shorter (typically a few picoseconds) than the population relaxation time

(on the order of a few hundred picoseconds). As as result of the significantly

different time scales for the four-wave mixing and pump-probe signals, we ex-

pect that the coherent processes will have damped out to their background

level in a few picoseconds, but that the pump-probe artifacts will persist and

prevent the detected signal from decaying to the background noise level. The

pump-probe artifact originating due to the interaction of the static pump and

probe pulses with the sample remains constant and will contribute to the ex-

periment’s background level. Upon Fourier transform this DC component is

shifted outside the spectral region of interest. The pump-probe artifact that

occurs due to the interaction of the dynamic pump and probe pulses with the

sample will decay as the τ delay is incremented; we expect that the expo-

nential decay of the dynamic pump-probe signal will not readily be apparent

if data are collected over an interval only long enough to probe the coherent

behavior motivating these experiments. Upon Fourier transform the slowly de-

caying portion of the dynamic pump-probe artifact will be shifted out of the

spectral region of interest; the oscillatory behaviour that is observed at short

times may at first appear problematic as it shares the same frequencies as the

four-wave mixing signal, but upon a more careful consideration we note that

the separation of the detected signal into pump-probe and four-wave mixing

is somewhat artificial at these short times. Indeed, the oscillatory behaviour

at early pump-probe delay times reflects the coherent response of the material

sample and is part of the focus of these measurements.
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Regardless, it is not possible to collect densely spaced spectra over a

delay sufficiently long to allow the emission to completely decay to the back-

ground level, as the experiment time necessary to collect a sufficiently large

data set would be impractical. We perform transient absorption spectroscopy

(differential transmission and differential reflectivity measurements) as part

of the daily warm-up procedure for the experiment. These data indicate the

exciton population created in this sample exhibits a lifetime of hundreds of

picoseconds. Since the greater fraction of the population decay trace occurs

after dephasing processes have destroyed the coherence in the exciton popu-

lation, the dynamics reflected in that slow decay are of little interest to our

studies of exciton-exciton correlation.

We typically collect only a few ps worth of data (represented here by

1500 separate spectra) in order to study the early time evolution of the non-

linear optical response. This is insufficiently long to allow the pump-probe

artifacts to decay to a constant background level. Fourier transformation

along τ of the abruptly cut-off of polarization will introduce ringing artifacts

into the 2dFT spectra, as this is equivalent to the measurement of the actual,

complete physical decay convoluted with a square pulse window function ap-

plied in the τ time domain [341]. The application of a square pulse window in

the time domain is equivalent to the convolution of the undistorted spectrum

S (f) with the Fourier transform of the weighting function, which may be di-

rectly shown to be a sinc function. In the frequency space, the convolution of

the undistorted spectrum with the sinc function introduces oscillatory tails to
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the spectral features, which adversely affects the signal resolution. Intuitively,

the ripple effects may be associated with the high frequency components intro-

duced into a time-domain signal by the sharp cut-off – the point in the data

space where the signal abruptly drops from some finite value to zero is an

infinitely fast process, and will exhibit significant high frequency components.

To reduce this effect, a window function is applied to force the signal to tend

to zero at t = tmax [296]. There is an extensive body of applied mathematical

research to determine the optimum window function to prevent distortion of

the particular spectral features of interest, but in practice little effort is typ-

ically applied when developing a new experimental technique, and a simple

time-domain filter such as a cosine window function will be used (see, e.g.

[152]).

This effect is reduced by applying a Hanning window function

1

2
+

1

2
cos

(
2πτ

N

)
to the raw time domain data before transformation into the frequency

space. Here N is the number of spectra obtained (1500 spectra, for example

– we do not round up to the nearest power of two for window function).

Since coherent effects are expected only during the first few picoseconds,

this manipulation of the raw data should not deleteriously affect our results,

but it will result in a degree of spectral broadening along the ωτ axis, where

features will exhibit a linewidth equal to their natural width convoluted with
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the inverse of the greatest τ delay. As an illustrative example, we note that

the scan time used here (¿3ps) would result in the broadening of a frequency

domain delta function to a 0.316THz line.

We observe a not insignificant elongation of spectral features along the

ωτ axis; part of this effect is due to the truncation of the τ scan before the

emission has completely decayed to background levels. Obviously some of the

distortion along the vertical axis is due to this effect, but other processes are

thought to contribute to this selective absorption frequency broadening. Cer-

tain features are also elongated due to the physical phenomenon of absorption

from free carrier states; the light hole exciton diagonal feature and the light

hole exciton absorption – heavy hole exciton emission off-diagonal feature are

both asymmetrically broadened on the high-frequency side of the line. We re-

fer the reader to our preceding description of optical excitation of excitons in

semiconductor quantum confined nanostructures, which rephrases the taxon-

omy of excitons and free carriers in terms of bound and unbound (continuum)

exciton states – by analogy to an atomic system, it is easy to understand

the disassociated, free electron-hole pair in a picture analogous to the contin-

uum states of an electron-proton system. It is clear that absorption occurring

above the light hole exciton resonance depends significantly on excitation of

these continuum states, with subsequent relaxation to the exciton resonance

for emission. Note the absence of an extended diagonal feature at higher fre-

quencies, suggesting that any emission at those energies relaxes rapidly to the

exciton state prior to emission – the continuum diagonal is absent even as
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T → 0 (or indeed for T < 0), indicating the rapid nature of this process.

Our current investigation of the sophisticated numerical model developed to

consider the effects of phase space filling and residual Coulomb coupling may

further explain these spectral lineshapes.
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Figure 5.13: Zero padded and windowed raw 2dFTS data

It can be easily demonstrated that using shorter window functions be-

gins to obscure the detailed structure of the observed 2d spectra.

5.4.4 Analysis of 2dFTS spectra contents

In contrast to simpler four-wave mixing techniques, electronic 2dFT

recovers both the absorptive and dispersive lineshapes of the third-order non-

linear polarization for a material system. By simultaneously measuring the

phase and amplitude of the radiated four-wave mixing signal [131] it is possi-
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ble to correctly determine the amplitude and phase of the system’s response

function, whereas simpler techniques are largely limited to studying the square

modulus of the amplitude of the signal of interest. The ability to separate ab-

sorptive and dispersive features, with correct recovery of the overall, global

phase of the system’s response, is advantageous in comparison to microscopic

theories predicting the nonlinear polarization, but it also has a more immediate

utility in that it permits better spectral resolution of coupling and energy level

features. Dispersive lineshape features decay relatively slowly, as 1/ (ω − ω0)

away from the resonant line, whereas absorptive features decay as 1/ (ω − ω0)2

[6], [166]. Thus, the ability to separate these two components permits more

precise analysis of complicated spectral features where multiple transitions

overlap. Furthermore, a measurement resulting in a multidimensional plot of

the absolute value of either the dispersive or absorptive spectrum is not as

useful as a plot that properly assigns the sign of the response to the observed

spectral features. The sign of features in a 2dFT spectrum provides informa-

tion about the nature of the quantum mechanical pathways that involved in

the optical transition [132]. To perform a complete, signed measurement of

a 2dFT spectrum it is necessary to measure the electric field of the emitted

four-wave mixing signal, rather than simply record the intensity as is more

common in three pulse four-wave mixing experiments.

The signal electric field spectrally resolved at ωt is directly proportional

to the third order nonlinear polarization, the frequency ωt, and the length of

the sample l. It is inversely proportional to the n (ωt) and to the speed of
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light c. There is also a phase shift of i between the nonlinear polarization and

the emitted signal field. The detection scheme used in 2dFT preserves phase

information that is lost in simpler 2d correlation spectra. The phase sensitive

detection of the scattered field permits the separation into real and imaginary

components of the 2d spectrum [192]. The phase of a spectral feature in a

2dFTS plot is determined by the relationship between the phase of the final

dipole oscillation relative to the initial dipole oscillation.

As in spectrally resolved pump-probe spectroscopy, a positive peak in

a 2dFTS spectrum (assuming for the moment that the spectrum is collected

in transmission mode, as is common) is a bleach; in a two-level model for

the nonlinear optical response, those features correspond to a reduction in

ground state absorption or increase in excited state emission. A negative

peak, meanwhile, corresponds to an increase in the amount of light absorbed

at those frequencies [132], [203].

2dFTS spectra are essentially a Fourier separation of the the various

frequency components present in the observed four-wave mixing signal. Fourier

analysis separates the electric field contributions according to the initial elec-

tronic dipole oscillation frequency ωτ that they possess during the coherence

time τ between the first two pulses, and according to the final electronic dipole

oscillation frequency ωt that they possess after the final pulse interacts with

the system (if measured in the time domain, the electric field would be resolved

at some time t after the third pulse) for a fixed mixing time T [202]. The cor-

relation between these initial and subsequent events provides the capability
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of 2dFTS to reveal couplings between different energy states in the system of

interest.

More sophisticated analysis of the lineshape of spectral features can

provide the necessary information to apply sophisticated models that relate

microscopic processes to the macroscopic optical response (see, for example,

[404], which studies a Brownian oscillator model suitable for studying solva-

tion dynamics) – in our own case, we are particularly interested in lineshape

analysis based upon theoretical work modeling the many-body interactions of

excitons in semiconductors [113].

Nonetheless, certain straightforward, qualitative results are immedi-

ately available from inspection of 2dFTS spectra – the most immediately obvi-

ous are these coupling peaks, but there is also significant information available

from the general lineshape of the measured spectral features. The spread of

a feature along the diagonal ωτ = ωt is a well-known measure of the inhomo-

geneous, Gaussian width of the ensemble, while the broadening perpendicular

to this diagonal is determined by the homogeneous, Lorentzian width. Conse-

quently, the ellipticity of the features on this diagonal is related to the ratio

of the homogeneous to inhomogeneous broadening in the system [281]. This

simultaneous, clear measurement of both homogeneous and inhomogeneous

dephasing times is one of the most significant strengths of 2dFTS compared to

simpler one-dimensional experiments. The ellipticity of 2dFTS spectra may be

related quantitatively to a correlation function describing the spectral diffusion

processes exhibited by the material during its evolution [238].
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Although the mixing time T is fixed for a given 2dFTS experiment, it

can be varied from one experiment to another to study the various dynamics

that result in spectral relaxation (q.v. sup our discussion in the extended de-

scription of three pulse four-wave mixing experiments). Perhaps most simply,

the distinction between the correlation spectra that occur for zero or finite T

permit the study of coupling that is coherent (the former) or due to relaxation.

In some systems, particular quantum mechanical pathways may give rise to

a coherence ρ
(3)
ab that is the sum of two contributions with opposite signs. At

some values of the mixing time T those may cancel each other out, resulting in

the absence of any corresponding feature in the 2d spectrum; varying the mix-

ing time permits the study of the temporal evolution of those pathways. Alter-

natively, changing the pulse sequence and Fourier transforming with respect to

different time variables permits different types of two-dimensional experiments

that provide different information regarding the system’s evolution [71], albeit

frequently at the cost of complicated changes to the apparatus to ensure the

requisite phase stability between the relevant pulses. The logical conclusion

of such steps is to perform a fully three-dimensional Fourier transform exper-

iment (assuming only three excitation pulses are available) where the delays

between each pulse are varied interferometrically. These experiments have

been performed (see, for example, three-dimensional experiments on GaAs

quantum well exciton systems [367] that reveal spectral features with greater

clarity than is possible in the two-dimensional space) but are generally diffi-

cult and may require inconveniently long experiment times that would make
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active interferometric stabilization difficult to implement. Dedicated, actively

stabilized, multi-dimensional spectrometers suitable for such experiments have

been constructed [54]. We do not attempt to explain fully those dynamics that

may be studied by varying the delay T because the Taira/optical Bloch models

we develop for intuitive understanding of the nonlinear optical response are

not well suited to model the fluctuating environment of the different quantum

emitters in the ensemble, principally because these dynamics cannot be well

separated into infinitely fast relaxation processes, which would determine the

homogeneous broadening of the transition, and infinitely slow processes, which

would be associated with local environments and the related inhomogeneous

broadening of the ensemble [132]. The characterization of the relaxation dy-

namics using simple exponential decays of populations and coherences depend

upon the stochasticity of perturbative effects on the appropriate time scale

(see our description of the applicability of density operator theoretical models

elsewhere in this thesis for further discussion).

We do not explore the concept in detail, but phase-twisting may occur

in certain two-dimensional spectra, and must be treated with care if properly

phased spectra are desired. The complex nature of the nonlinear susceptibility

leads to both absorptive and dispersive components in a 2d spectrum; as such,

any 2dFTS generated spectrum should contain both real and imaginary parts

. Generally, this effect arises when there is an unintended mixing of the ab-

sorptive and dispersive portions of a 2dFTS spectrum. If a purely absorptive

spectrum (it is frequently desirable to separate these contributions not only in
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order to narrow the spectral features and provide increased resolution as noted,

but also to provide more direct comparison to theoretical or simulated results)

is found by summing the results of two independently measured spectra that

separately describe the rephasing and non-rephasing response of the system

[214], any imbalance in the signals that may be artificially introduced by the

typical complications of laboratory science will result in unintended phase-

twisting of the spectral features. This will, of course, reduce the resolution of

the experiment due to the mixing of the narrower absorptive resonances with

the slower decaying dispersive features. Moreover, it results in changes to the

lineshape of spectral features – any more sophisticated theoretical treatment

of the results of 2dFTS than what we present here will rely upon the shape

of these features to model the system dynamics; for example, analysis of a

dispersive spectrum’s node line separating positive from negative features will

tilt away from the vertical if the dynamics of the system result in a temporal

peak shift for the four-wave mixing emission [132]. One significant reason to

work in a partially collinear geometry instead of the more conventional non-

collinear BOXCARS geometry is that the absorptive and dispersive features

are both simultaneously detected (albeit in the time domain), and as such,

separation of these components is not as prone to the introduction of error as

the corresponding technique for non-collinear experiments [132], [152], [342],

[266], [403].

In the non-collinear experiment, the pulse-ordering sequence determines

whether the recorded spectra reflect rephasing or non-rephasing dynamics. As-
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suming that no significant drift occurs during this longer experiment, correctly

interchanging the first two excitation pulses’ temporal ordering and applying

the appropriate double-sided Fourier transform to the detected four-wave mix-

ing signal may eliminate the artificial lineshape distortion [132], although some

phase-twist may inevitably occur if there are unequal strength quantum me-

chanical pathways. This imbalance is inherent to some transitions and cannot

be eliminated under these phase matching conditions.

While phase-twisting is more problematic in non-collinear experiments,

even in partially collinear 2dFTS measurements some mixing of the lineshape

will occur. In both cases, the proper phasing of spectra is complicated at

early times – if the mixing time T is less than the pulse duration, the stronger

re-phasing and weaker non-rephasing pathways do not contribute with equal

strength, resulting in phase-twists for these early times [132].

After this initial phase-twisting dies off, any remaining twist detected

in a partially collinear geometry experiment is due to an inherent imbalance

in the pathways strengths. 2dFTS measurements taken at sufficiently large

T (i.e., longer than the pulse temporal width) correspond to the relaxation

spectra measured in NOESY spectroscopy. The connection between COSY

and 2dFTS spectra taken with zero mixing time is not so simple, however,

because of the unavoidable phase-twisting that occurs at early times. These

plots are qualitatively similar, and interpretation of the off-diagonal peaks

as markers of coherent coupling is still useful, but the bandstructure of the

excited and ground state manifolds may result in changes in the lineshape of
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spectral features that are not easily accounted for [132]. It can be shown that

the order of coherence, determined by the sum of the signs of the individual

excitation pulses (e.g. −k1 + k2 + k3 for a non-collinear 2dFTS experiment),

describing the light-matter coupling in the optical analogue of the COSY and

NOESY experiments corresponds to the appropriate NMR experiments.

We note in passing that in a completely collinear geometry the rephas-

ing and non-rephasing pathways are always matched in the strength of their

contributions to the detected nonlinear polarization, and that the artifact

phase-twisting will be eliminated for all mixing times T . Thus, it would be

possible to determine an intrinsic twisting (i.e. due to the different actual

strengths of those pathways) at any given T , even for those short compared

to pulse duration [132]. This experiment is extremely difficult to implement,

except in materials where fluorescence detection is possible [87].

5.5 Non-collinear (BOXCARS geometry) 2dFTS and
results from our group on the coupling of spectrally
resolved excitons

The first demonstration of electronic 2dFTS was performed using a

non-collinear BOXCARS geometry (we describe this beam configuration in our

general discussion of three pulse four-wave mixing experiments) [192]. This

non-collinear geometry permits easy detection of a phase-matched four-wave

mixing signal emitted in a background free direction, similar to the simpler

four-wave mixing experiments described in the previous chapter. Moreover, in
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L.O."

Two-dimensional Fourier transform spectroscopy is most frequently 
performed in a non-collinear, BOXCARS geometry, using an additional 
phase-stabilized local oscillator pulse to perform heterodyne spectral 
interferometry to characterize the four-wave mixing emission.!

Figure 5.14: Sketch of non-collinear 2dFTS experiment
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this phase-matching geometry, the pulse sequence order allows the selection of

a subset of the electronic nonlinear processes.

The non-collinear experiment may be understood in a very direct fash-

ion as an induced transient grating method – the first two pulses induce an

excitation grating that diffracts energy from the third pulse into the ’empty’

beam path at the fourth corner of the box [202]. The signal field will not ex-

hibit the same temporal behaviour as the excitation pulses, and may express

either normal [132] or virtual photon echo behaviour. Rather than measure

the four-wave mixing emission directly in the time domain, the signal of inter-

est is detected by frequency domain interferometry using an additional pulse

derived from one of the excitation pulses. Since the power, delay, and phase

of this local oscillator pulse is independently controlled, the detection method

is a true heterodyne technique and permits direct adjustment of the signal

to noise and optimization of the excitation pulse power for four-wave mixing

[247].

In this geometry, a tracer pulse may be sent down the missing beam

path in the BOXCARS arrangement, exiting the sample and co-propagating

with the four-wave mixing signal. This beam thus traverses the same optical

path as the signal, so that it has a well-defined phase relationship with the

emission and undergoes the same dispersion due to optics after the sample.

The delay of this tracer pulse is set in the interferometer so that it is synchro-

nized with the third pulse that scatters the four-wave mixing emission from

the transient grating.
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During actual experiments the tracer pulse is blocked in order to avoid

excitation of the material sample. A tracer-reference interferometric measure-

ment is made to determine the phase difference between the tracer and the sep-

arate reference pulse used for heterodyne spectral interferometry. Then, during

actual experiments, a signal-reference phase-sensitive measurement measure-

ment is performed,from which the phase of the signal relative to the tracer

can be determined. The delay of the tracer has been previously adjusted to

possess the phase as third pulse; it is vital to match the arms of the interfer-

ometer precisely to minimize the differences in the dispersion of these pulses.

A difference of even a fraction of a wavelength is enough to introduce errors

in phase measurements [202].

2dFTS has been performed on semiconductors previously using a non-

collinear geometry [410], [39], [248], [356], [366], [232], [231], [207]. In our own

group we perform measurements on GaAs semiconductor quantum wells to

determine the coupling between excitons spectrally resolved by interface fluc-

tuations. The disorder in these systems affect the wavefunctions of the exciton

states, which, in turn affects the coupling among the excitons.Thus, disorder in

the crystal strongly albeit indirectly affects the nature of the coupling between

these states. These 2dFTS studies provide the first quantitative measurement

of the strength of coupling in these systems; previous spectroscopic tools could

only suggest the presence or absence of this coupling from the changes it made

to the four-wave mixing lineshape.

Shown here is a rephasing spectrum, where the complex electric fields

293



A!

B!

C!

D!

CA!
DB!

-1531!
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Emission energy / meV!
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eV!

Real portion of a rephasing 2dFTS spectrum collected using the non-
collinear, BOXCARS geometry to study a GaAs multiple quantum well 
sample using co-circular excitation. The splitting of the heavy hole exciton 
resonance into the doublet A, B is clearly seen. The light hole exciton 
resonance is also split, into the C, D resonance. Coupling between the two 
species of excitons is seen within each region, viz. the CA, DB cross-peaks. 
No coupling can be clearly resolved for the spectrally heavy hole excitons, 
however, as there is no clear peak at AB; similarly for the light hole excitons.!

Figure 5.15: 2dFTS measurement of spectrally resolved excitons
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of the first and second pulses interact with opposite signs inducing the nonlin-

ear third order polarization. Clear splitting of both the light and heavy hole

excitons is observed in the spectrum of an 8 period 13nm GaAs quantum well

separated by AlGaAs barriers held at approximately 6K. While cross-peaks

indicating the coupling of light and heavy hole excitons are present for both of

the two regions, there is no clear evidence of cross-peaks indicating a coupling

of the spectrally split heavy hole excitons or the split light hole excitons. It

is possible, using 2dFTS, to establish quantitative limits on the strength of

the coupling here; for the heavy hole resonances, the ratio of a cross peak to

the diagonal features is less than 0.1. Spectral features suggesting coupling

can be eliminated using other polarization configurations, suggesting these fea-

tures actually arise due to biexciton formation, and are shifted in energy by

the biexciton binding energy. No cross peaks are clearly present for the light

hole excitons; quantitatively, the strength of the coupling to diagonal features

can be estimated as less than 0.3. Previous studies of exciton coupling con-

centrated on the heavy hole exciton features, since the absorption from free

carrier states tends to obscure the features expected for light hole exciton cou-

pling. In 2dFTS, these spectral features are better separated, spaced out into

two dimensions, and are more easily distinguished. The absence of coupling

observed using 2dFTS on this sample has been reported [358], [359], [116],

but further experimental work is under way to study the possibility of cou-

pling in similar systems grown under different conditions, with the intention

of affecting the characteristics of interface disorder in the sample.
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The effect of that disorder on the spectral lineshape of excitons in semi-

conductors is studied using a three band model, considering light hole, heavy

hole, and conduction band states [114]. This theory considers the effects of

phase-space filling, an approximate mean field arising due to exciton-exciton

interaction, and a force-force correlation effect arising due to two exciton cor-

relation effects. The temporal evolution of the nonlinear polarization is ap-

proximated (here, the Planck constant is taken to be unity) as

i∂tP
(3)
σ (R, t) =

(
Ĥσ (R)− iΓσ

)
P (3)
σ (R, t)−

1

2

∑
σi

ˆ
dR1dR2dR3β̃

σ2,σ3
σ1, σ

(R1, R; R2 R3)

×P (1)∗
σ1

(R1, t)P
(1)
σ2

(R2, t)P
(1)
σ3

(R3, t)

where σ = {σ, s} indexes the spin state σ of the holes and s of the

electrons, R is the centerl of mass spatial coordinate, Γσ describes relaxation

processes, and P
(1)
σ is a linear polarization. Of particular interest to us are

the many body parameters β̃, a four-point effective potential function that is

used to include the effects of Coulomb interactions that occur among the holes

and electrons. This effective potential function determines the approximate

spatial area from which a coherent four-wave mixing emission will occur; its

functional form is complicated and not well understood, but it is expected to

fall off at least as rapidly as the van der Waals r−6 potential once the distance

between an electron (or hole) and hole (or electron or another hole) is greater

than some critical range on the order of the exciton Bohr radius. This fast
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decay of the correlation function β̃ limits the area of the sample from which

coherent emission can arise. The dependence of the many body parameter is

due to its dependence on the approximate single particle Hamiltonian for an

exciton, Ĥσ = − 1
2Mσ
∇2

R + Wσ (R), where the potential W contains the effect

of the fluctuation disorder.

If the interface disorder is modeled with a binary system, i.e., assuming

that there are only monolayer fluctuations in the well thickness, that there are

sharp transitions in the quantum confinement between the regions of greater

and lesser thickness and that there are no edge effects, the fluctuation potential

is well modeled by a binary value, either 0 or −Vσ. The formation of islands

of greater or lower well width (and hence, lower or greater exciton transition

frequencies) may be considered using a correlation function that describes

the likelihood of the interface fluctuation being the same or different at some

distance r,

K (r) = 〈Wσ (R)Wσ (R + r)〉 − 〈Wσ (R)〉2

For islands of typical size rc, K (r) will decay exponentially with char-

acteristic length scale rc. The optical response of the sample is then found

to depend largely on the ratio of this length scale to the confinement length,

rc/ξ0 = rc/
(
π~/
√

2MσVσ
)
. The confinement energy is a typical length scale

for the quantum confined system, and is equal to the island size for which an

exciton confined to that island would possess a kinetic energy less than its po-

tential energy [61]. As the characteristic disorder length scale rc increases, the
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exciton resonance splits from a single inhomogeneous transition into a doublet.

The spectra taken for the sample studied in our lab shows two clearly sepa-

rated features, indicating that the disorder length scale (i.e., the island size)

is indeed greater than this confinement size; in this case, the excitons’ kinetic

energy may be neglected, simplifying the calculations for the nonlinear optical

response. The transition between a single broad feature and a split doublet

is not specific to this system, but should be a feature of other microscopic,

disordered materials.

Some coupling should always be expected at the edge of island features,

where the wavepackets of spectrally resolved excitons should overlap and di-

rectly couple, but the emissions from these edge excitons are not expected to

result in a coherent, beamed emission that would dominate the phase-matched

four-wave mixing signal from excitons located in the islands themselves. The

disorder in the quantum well system does break the simple conservation of

momentum phase-matching geometry, but the statistical homogeneity of the

system results in a strong emission along that direction as the small scale

fluctuations ’average out.’

Further study is needed of prototypical GaAs quantum well systems to

completely characterize the possible coupling features that may or may not

appear in these structures.

298



5.6 Partially collinear 2dFTS experiments on GaAs quan-
tum wells

5.6.1 Motivation for performing 2dFTS in a partially collinear ge-
ometry

Two-dimensional Fourier transform spectroscopy can be performed in 
a partially collinear geometry experiment, where the two pump pulses 
are collapsed onto a single beampath. The four-wave mixing emission 
co-propagates with the probe beam, which acts as a local oscillator 
field. The combined signal and probe field is spectrally resolved, 
providing one frequency axis. The τ delay is scanned through some 
interval, and the resulting data are Fourier transformed along that time 
axis to obtain the second frequency dimension."

τ"T"

Figure 5.16: Partially collinear 2dFTS measurement

The results of the non-collinear 2dFTS experiments performed in our

group [358], [359], [116] have been studied using a modified mean field theory

that treats exciton-exciton correlations exactly, while viewing the optical cou-
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pling as a perturbation [114]. This approach is somewhat counter-intuitive,

given the previous theoretical studies of exciton dynamics in semiconductors,

which, perhaps due to the early successes of the Taira/optical Bloch models,

frequently consider the optical excitation of the exciton states first, and then

typically try to ’add in’ many-body effects. This non-conventional modified

mean field theory has successfully reproduced the qualitative features of our

2dFTS measurements, but it does depend upon phenomenological quantities

extracted from 2dFTS data – or results from some other spectroscopic tech-

nique – that can separate the contributions of the light and heavy hole excitons

to the transient grating induced in the sample. Most 2dFTS experiments are

typically understood in terms of a nonlinear susceptibility that obscures the

microscopic physics occurring in the material, whereas the modified mean field

theory calculates the equation of motion for the polarization and the emitted

electric field directly.

Nonetheless, the ability to precisely model the exciton dynamics in

these systems is still greatly limited. The Coulomb correlations present in this

system are described with many body parameters β̃ that can be understood

as effective four-point potentials in the equation of motion for the nonlinear

polarization. Each β̃ parameter corresponds to a specific optical helicity; in

general, that nonlinear polarization is found by summing over these different

optical polarization states. Thus, a polarization due to excitation by linearly

polarized light will contain contributions from both right-handed and left-

handed many body parameters. Experimentally, 2dFTS measurements using
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linearly polarized light are simpler to implement, but will be more difficult to

analyze within this framework. While more complicated to perform, experi-

ments using only a single optical helicity to excite the semiconductor system

would provide more accurate fits of the β̃ parameters.

The majority of semiconductor 2dFTS has been performed using lin-

early polarized light, although some experiments have been performed with

co-circularly polarized. It is now possible to perform a non-collinear exper-

iment with arbitrary polarization control [53], but these methods require an

additional optical experiment to eliminate the global phase ambiguity inherent

to the non-collinear 2dFTS technique.

To study arbitrary polarization configurations, we constructed a par-

tially collinear geometry 2dFTS apparatus. 2dFTS based on a simpler, par-

tially collinear geometry was described in [132] and experimentally demon-

strated in [87], [152], but has not previously been used to study semiconductor

materials. We present the first such demonstration, and the first demonstra-

tion (so far as we know) of reflection mode 2dFTS experiments [115].

5.6.2 Other possible geometries and approaches to 2dFT

For completeness, we note that 2dFTS has also been performed in a

completely collinear geometry [363], [379], but those measurements relied on

phase cycling to study the nonlinear polarization [212] rather than directly

resolving the coherent four-wave mixing signal. While the phase cycling [212]

modulation scheme employed is largely analogous to the nuclear resonance
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Two-dimensional Fourier transform spectroscopy has been performed 
in a fully collinear geometry on samples where phase-cycled 
fluorescence detection is possible.!

Figure 5.17: Fully collinear 2dFTS measurement
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antecedents of 2dFTS, the observation of an incoherent signal has some dis-

advantages. In particular, that method can only measure the absorptive part

of the third order nonlinear polarization, unlike 2dFTS measurements that

collect a phase matched emission. Moreover, this technique depends upon

measurement of fluorescence, and cannot be used to study materials that do

not strongly emit.

an achromatic MO of 0.85 numerical aperture, which
was mounted in a cryostat on a piezoelectric transla-
tion stage. The reflected response field is collected by
the MO and spatially filtered at an intermediate im-
age plane to keep only the zeroth order of the Airy
diffraction created by the objective aperture for both
Pr and Ps (see the NF image in Fig. 1). From there, a
dual lens system (O1) images the FF into a mixing
AOM, in which Pr and Ps spatially overlap. The NF is
imaged to a Fourier plane of the AOM so that the
spatial separation between Pr and Ps in the NF
!"9 !m# corresponds to a directional separation in
the AOM, chosen to match the AOM diffraction angle
!0.015 rad#. In this way, the diffracted beam of Pr
overlaps with Ps and vice versa. The resulting mixed
beams Pa,b pass through a dual lens system (O2) that
images the NF into the input slit of a high-resolution
!15 !eV# imaging spectrometer where Pa,b are spa-
tially separated, while the FF is imaged onto the
spectrometer grating to avoid vignetting. The spec-
trally and time-resolved intensities Ia,b!" ,T# of Pa,b
are detected by a liquid-nitrogen-cooled silicon
charge-coupled device (CCD) at the output focus
plane of the spectrometer. In this notation " denotes
the optical frequencies, with a resolution limited by
the spectrometer !"3 GHz#, while T denotes the
lower-frequency time dynamics, which parameterizes
the repeated measurements with different #1,2.

The mixing AOM is driven with an electric field
$cos!%DT+##, so that Ps acquires a phase shift
−%DT−# when diffracted into Pr, while Pr is phase
shifted by %Dt+# when diffracted into Ps. The
diffraction efficiency is adjusted to 50% so that
the detected intensities are 2Ia,b!" ,T#= $Er$2+ $Es$2

±2R!ErĒsei%DT+## with the reference and signal fields
Er,s. We detect Ia,b!" ,T# integrated over the CCD ex-
posure time Te"50–1000 ms. To extract the interfer-
ence term only, we determine Id!"#=Ia−Ib

=2%0
TeR!ErĒsei%DT+##dT. In this quantity, the time in-

tegration results in a low-pass filter sin!x# /x with x
=Te% /2, suppressing frequencies %&4/Te. The re-
sponse Rs

l1,l2 has the interference frequency %i= l1%1
+ l2%2−%D. Since Er is much shorter than the repeti-

tion period, Erei%D contains many sidebands sepa-
rated by %p, and %i is thus only defined modulo %p.
By the choice of %1, %2, and %p, the %i of different l1,2
are separated in the MHz range. To select Rs

l1,l2 in Id,
we use %D= l1%1+ l2%2 to shift %i to zero, while other
Rs

l1!,l2! are suppressed by factors of Te%i!&106.
To correct for systematic variations of detection ef-

ficiencies in Ia,b!"#, e.g., due to inhomogeneities in
the CCD response, # is cycled by ' between adjacent
exposures, and we use 2Id=Id

#=0−Id
#='. In this way,

the classical noise and systematic errors from the
noninterfering term $Er$2+ $Es$2 are largely sup-
pressed, and the weak interference signal can be de-
tected, shot-noise limited. Note that Es also contains
the linear reflection of E!t#, which is often dominating
its intensity, and $Er$2 has to be significantly larger
than $Es$2 to reach shot-noise-limited detection.
Rs

l1,l2!"# is determined from Id the spectral
interferometry,9 using the fact that Er precedes the
signal field in time t: F&(!t#F−1'Id!"#()=Er

*!"#Rs
l1,l2!"#

with the Heaviside function (!t# and the Fourier-
transform operator F. The reference field amplitude
can be determined by blocking Ps and measuring
Ia,b= $Er$2 in this case. Since Er is the reference pulse
reflected on the sample, one should arrange that the
reflection is not strongly modifying its spectrum. This
can be achieved by use of a metal coating on the
sample with an opening at the signal beam, or by us-
ing a surface reflection that is dominated by a non-
resonant refractive index. Different Rs

l1,l2 including
their relative phases can be measured sequentially
using the phase stability of the electronic selection.
To measure the phase of the excitation pulses and to
correct for long-term drifts of the relative phase

Fig. 2. (Color online) Measured Rd
1,0, Rd

0,1, and Rd
−1,2 in in-

tensity and phase from a group of localized excitons for )
=1 ps. Time-resolved (bottom) and spectrally resolved (top)
data are shown. The pulse energies of P1,2 were (1.4,2.6) fJ.

Fig. 1. (Color online) Schematic of the experimental setup.
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A nearly collinear nonlinear optical measurement performed on single 
quantum dots. This technique does not actively stabilize the two 
pump pulses, but instead relies on a high degree of passive stability 
for the experimental apparatus. Reproduced from Langbein and 
Patton, Optics Letters 31:1151 (2006).!

Figure 5.18: Nearly collinear multi-dimensional heterodyne spectral interfer-
ometry

An approximately collinear two-dimensional spectroscopic method has

been demonstrated [234], [287], but used nearly collinear rather than fully

collinear beams – albeit with wavevectors sufficiently close to degenerate to

permit resolution of individual quantum emitters. More significantly, that

approach did not actively stabilize the visible wavelength ultrafast pulses used,
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and therefore cannot provide separation of the two dimensional spectrum into

its real and imaginary parts.

Completely collinear measurements are generally thought to be too dif-

ficult to implement and instead rely on transverse measurements of incoherent

emission [382] to avoid saturating the detector attempting to observe a phase

matched emission co-propagating with the excitation pulses. Our recent re-

sults suggest otherwise, as it may be possible to isolate weak four-wave mixing

signals from intense background fields, but further experiments are necessary

(q.v. our discussion in the next chapter).

An alternative non-collinear approach, substantially different from those

presented perviously in our discussions of 2dFTS, has also been demonstrated

[84]. This technique uses four pulses, created interferometrically in two phase-

locked pairs, to record phase and amplitude data for stimulated photon echo

signals.

As a compromise between background-free non-collinear 2dFTS exper-

iments and the indirect measurement of fully collinear, fluorescence detected

2dFTS, the partially collinear geometry allows us to spectrally resolve the in-

terference between the signal field and one of the three excitation pulses [132],

[152].
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5.6.3 Properly phasing 2dFTS spectra in the partially collinear ge-
ometry

Partially collinear 2dFTS possesses two particular advantages com-

pared to other techniques, both of which are related to the particular phase

matching geometry used. We first consider the automatic phasing of the

2dFTS spectra.

Non-collinear 2dFTS experiments exhibit a global phase ambiguity, as

noted in our description of the frequency domain spectral interferometry detec-

tion scheme used to characterize the four-wave mixing emission. To properly

separate the magnitude of the nonlinear response into its real and imaginary

parts, a separate, independent phase measurement must be used to correctly

fix the overall phase of spectra detected in this fashion.

In non-collinear experiments, the four-wave mixing signal is emitted in

a background-free direction, but is then mixed with a well-characterized (at

least, in the ideal world), phase-locked reference pulse before it is spectrally

resolved [245], [4]. Frequency domain spectral interferometry provides direct

experimental control of the heterodyne signal level by adjustment of the inten-

sity of the local oscillator pulse, but the phase-sensitive measurement requires

the construction of a second interferometer to stabilize the reference beam.

Since the reference pulse and the four-wave mixing signal propagate along

different beam paths there is an inherent phase ambiguity between the two

optical fields. In order to properly separate the recorded 2dFTS signal of in-

terest into its real and imaginary parts this additional degree of freedom must
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be fixed by characterizing the absolute phase of the system response. This re-

quires an additional experiment as the global phase cannot be extracted from

the existing data.

A two-pulse, spectrally resolved pump-probe measurement is approxi-

mately equivalent to the integral over the ωτ frequency axis from ωτ = −∞

to ωτ =∞. The ambiguous 2dFTS data is integrated, compared to the inde-

pendent spectral measurement, then re-adjusted and compared again until the

phases match [132], [202]. Alternatively, a spectrally resolved transient absorp-

tion measurement may simply be compared to the τ = 0 spectrum acquired

during the 2d experiment. While not formally equivalent, this approximation

generally provides a fairly accurate fit and is less susceptible to the integrated

noise present in the ωτ -integrated 2dFTS spectrum .

The use of either additional measurement is not ideal, since it limits the

possible set of polarization-dependent measurements that can be performed, as

the set of possible two pulse polarization configurations cannot reproduce the

response of the set of possible three pule polarization configurations. As a re-

sult the global phase cannot be set for experiments with cross-polarized pump

pulses. The different geometries of the spectrally resolved two-pulse measure-

ments and the non-collinear 2dFTS experiment itself are another weakness of

this technique; this would make it impossible to study samples where the opti-

cal physics depend on momentum transfer. Properly phasing the non-collinear

2dFTS measurements is partially a technical difficulty, but it also represents a

fundamental experimental limit for experiments performed in this geometry.
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Recently, an all-optical method for fixing the ambiguous global phase

degree of freedom in non-collinear 2dFTS measurements has been demon-

strated. This all optical phase retrieval method permits 2dFTS experiments

with arbitrary polarization configurations, including the use of cross-polarized

pump beams, or two quanta coherence experiments, that could not previously

be performed in a non-collinear geometry. This method relies on a precise

measurement of pulse temporal overlap and the extraction of relative pulse

phases via an interferometric measurement based on the comparison of pair-

wise fringe patterns [53]. In the case of semiconductor samples, which are

highly sensitive to the excitation power used, these phase measurements are

performed at a replica focus rather than the prime focus of the excitation

beams at the point probed on the sample. This technique has been used to

produce high quality 2dFTS measurements with arbitrary control of linearly

polarized excitation pulses, but makes use of more complicated infrastructure

[54] than the partially collinear 2dFTS technique, or the popular non-collinear

measurements.

We perform our 2dFTS measurements using a partially collinear geom-

etry, which provides automatic phasing of 2dFTS spectra [132], and does not

require an additional measurement. The correct overall phase of the spectrum

obtains due to the identical optical paths traversed by the probe pulse and the

emitted FWM signal. The phase ambiguity in non-collinear experiments re-

sults from heterodyning the four-wave mixing field with a reference pulse that

propagates through a similar but not identical beam path; in the partially
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collinear geometry, the four-wave mixing signal co-propagates with the probe

beam that induces its emission. The four-wave mixing emission is no longer

background free, but it gains the advantage of a trivial phase relationship with

its heterodyne field. Measuring the interference between an excitation pulse

and the signal of interest is known as homotime detection [4], and sacrifices the

flexibility of a heterodyne scheme in order to eliminate the phase ambiguity

between signal and local oscillator fields. in heterodyne detection methods.

The loss of the heterodyne knob is unfortunate, and in partially collinear ex-

periments this degree of freedom is no longer available to maximize the signal

to noise. Moreover, since the signal is emitted along a phase matched di-

rection identical to the wavevector of the probe field, the measurement is no

longer background free. Scattering is expected to play a more deleterious role

in these measurements compared to the non-collinear geometry. The relative

length scales of sample imperfections and visible wavelengths are comparable

in these materials, and incoherent scattering may be substantial, but 2dFTS

is less susceptible to these problems than other coherent spectroscopic tech-

niques since the integrated noise power is now distributed throughout the 2d

spectrum. This results in reduced noise power spectral density within the

spectral region of interest. Additionally, the 2dFTS signal of interest is now

superimposed (in the time-domain) on the optical free-induction decay of the

probe (non-coherent, non-phase matched but some power still emitted into the

transmitted probe direction), the depleted probe pulse itself, and two pump-

probe artifacts. Nonetheless, the greatest drawback of this geometry is not the
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presence of these backgrounds, which should not result in significant spectral

features in the region of interest after Fourier transform [132]), but is rather

the loss of the phase degree of freedom. If for any reason the experimenter

should wish to adjust the relative phase of the signal field, she is not able to

do so in a post-experiment process.

The automatic phasing of transmission mode partially collinear 2dFTS

works even in a structured sample, such as the multiple quantum well sample

we studied. While the probe pulse will have travelled a different path length

and thus possess a different phase when it interacts with different layers of a

structured material, the emitted four-wave mixing signal from each well will

reflect that phase, and will still overlap temporally with the local oscillator,

viz. the probe beam itself.

5.6.4 Measurement of rephasing & non-rephasing pathways to pro-
duce absorptive spectra

The second significant advantage of the partially non-collinear geom-

etry is related to set of quantum mechanical pathways that are sampled in

this phase matched geometry. In non-collinear 2dFTS, temporal ordering of

the excitation pulses selects emission of either the rephasing or non-rephasing

set of quantum mechanical pathways in the phase-matched direction [265].

Collapsing the non-collinear pump beam paths into a collinear pump pair

permits simultaneous measurements of the rephasing and non-rephasing sets

of quantum mechanical pathways [132] in the time domain (although in the
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frequency-frequency space the results are not quite so simple to separate –

nevertheless, simple techniques have been demonstrated to extract the sepa-

rate pathways or properly combine the two sets to render purely absorptive

features from a single pc2dFTS experiment [342], [403], [266]).

Since different components of the χ(3) response are measured in the

two geometries, the lineshape for partially collinear experiments is expected

to be substantially different from that observed in other geometries, due to

the different sets of quantum mechanical pathways that are sampled. 2dFT

data recorded in the completely non-collinear geometry separately sample ei-

ther the rephasing or non-rephasing pathway, depending on the pulse ordering.

To produce an absorptive spectrum requires two separate non-collinear mea-

surements, two independent measurements to fix their global phases, and the

summation of the resulting spectra to render absorptive\dispersive spectral

features [214]. This technique presents a number of possible points where

errors may be introduced that would result in phase-twisting of the spectral

features.

These absorptive plots are advantageous for several reasons. First,

purely absorptive spectral features are narrower than those comprising an ab-

sorptive resonance mixed with a more slowly decaying dispersive spectral fea-

ture. Separating the nonlinear polarization into absorptive and dispersive fea-

tures thus increases the frequency resolution of the experiment and the amount

of information conveyed by the collected data. This can be particularly useful

for studying coupling between closely spaced features (we note that this geom-
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etry may be useful to study the coupling of spectrally resolved excitons that we

have previously examined using non-collinear 2dFTS for this reason). Absorp-

tive features also have a more immediate, physically intuitive interpretation

than spectra related to certain sets of quantum mechanical processes. This

permits relatively straightforward connection between the 2dFTS results and

measurements from other kinds of experiments. Non-collinear 2dFTS is also

susceptible to worse phase-twisting problems due to imbalances between the

rephasing and non-rephasing pathways during those periods when the pulses

overlap, and are thus not quite as effective as a universal spectroscopic tool.

The proper separation of these pathways that is possible in partially collinear

experiments improves the time resolution of the technique at short mixing

times T . We discuss this at length elsewhere in this chapter.

We note here that if a strongly coupled system is studied in 2dFTS

with simultaneous, coherent excitation of multiple levels, it is impossible to

say which frequency component was absorbed in the excitation of a coherent

superposition of several states. 2dFTS permits the correlation of an initial

dipole oscillation at a particular frequency with the amplitude and phase of

each final oscillation frequency present in the emission, but the exact nature of

the connection – what precise processes result in spectral features in a compli-

cated system – is not necessarily known from this plot. In such cases, spectra

should be labelled only as real or imaginary, without necessarily associating ei-

ther of those parts of the complex spectra with strictly absorptive or dispersive

parts of the susceptibility [132].
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5.6.5 Delay stages vs pulse shapers

Although pulse shaping presents an attractive means to construct a

partially collinear 2dFTS experiment, we constructed our apparatus using pre-

cision translation stages that delayed pulses by interferometrically controled

changes of optical path length. In part, this choice was prescribed by our

familiarity with these techniques, but there are significant advantages to per-

forming 2dFTS spectroscopy with path length delayed pulses rather than using

pulse shaping. We consider the distinction between the two here.

We first note that a significant difference exists between optical pulse

trains generated by path length variation [4], [132] and those RF pulse trains

used in nuclear resonance experiments – and, interestingly, optical pulse trains

derived by some pulse shaping techniques.

Other than some in models of some 2d THz spectroscopic measure-

ments, early theoretical treatments of 2dFTS resembled their antecedents in

nuclear resonance, and used a pulse description that considered only the de-

lays of pulse envelopes without changing the phase of the optical frequency

carrier wave. Theoretical work by Mukamel and co-workers (for example) used

solutions to the nonlinear exciton equations derived with Green’s functions,

incorporating exciton interactions using a scattering matrix. Calculated model

spectra were demonstrated for various proposed techniques that made use of

a number of different phase-matching directions and pulse ordering schemes

to probe coupling between molecular states, and it was suggested that invert-

ing 2d spectra thus obtained could provide sufficient structural information to
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model the molecular system, analogously to 2d NMR experiments [71].

This model for phase sensitive measurements depends upon what might

be thought of as an unaltered carrier multiplied by some time domain shape

function. This type of pulse train is essentially a cw carrier that is turned

on and off by a pulse envelope that has a controllable delay. Such a pulse

sequence is not dissimilar to the results of certain kinds of pulse-shaping [209],

[101]. Those methods, often using acousto-optical pulse shaping, may be used

to perform multiple pulse, phase coherent spectroscopy [382]. But in the first

electronic optical 2DFTS experiments [192], the excitation pulses were created

by changing a delay arm of an interferometer. Keeping track of the carrier

phase is necessary to properly understand the microscopic response; without

correct treatment of the pulse delays, 2dFTS spectra will not accurately reflect

the real and imaginary parts of the nonlinear optical response. The phase of

a four-wave mixing signal detected in a 2dFTS experiment can be shown to

depend upon the phases of the pulses used to excite the third-order nonlinear

polarization, the particular details of the relaxation processes determining the

decay of the nonlinear polarization, the product of the four relevant transition

dipole matrix elements involved in the excitation of the nonlinear polarization

and the subsequent emission, and the optical phase arising due to the delay

of the pulses produced by varying the optical path lengths of the experiment

[133]. The method used for creating the delayed pulse sequence must be con-

sidered when modeling the nonlinear optical response in order to correctly

recover the electronic frequency information encoded in an electronic 2dFTS
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experiment. The analysis we use in our own calculations (see elsewhere in

this thesis for extensive description of and calculation of density operator ma-

trix perturbation models) uses envelope delayed form of pulses generated by

a path length difference in an interferometer; as such, the envelope functions

are changed ε (t) → ε (t+ ∆t), with the carrier function for the electric field

also affected, cos (φ (t))→ cos (φ (t+ ∆t)) [4].

Tokmakoff and coworkers first demonstrated partially collinear 2dFTS

using optical wedges mounted on translation stages to generate the phase

locked pump pulses [87]; however, after [152] it has become increasingly pop-

ular to use a pulse shaper to generate the phase-locked pump pulse pair (see,

for example, [266]). While well-suited to multidimensional spectroscopy of

atomic vapours and molecular solutions ([342], [361], and others), the use of

pulse shaping to generate the pump pulse pair is contraindicated for experi-

ments on semiconductors. In those materials, relevant time scales may require

the generation of pump pulse pairs separated by relatively long delays. Pulse

shapers typically introduce artifacts or distort the pulses when used to create

delays greater than some critical time – see, for example [152] for comment

on the limits of pulse shaping in pc2dFT. For high repetition rate laser sys-

tems, the use of liquid crystal based pulse shapers is prevalent in ultrafast laser

spectroscopy, since AOM based shapers are better suited to amplified\low-rep

lasers where the acoustic wave grating pattern does not substantially differ

from shot to shot [390], [389]. The pixellation of LC devices results in the

formation of periodic replica pulses [283], [394] – although present at much

314



lower intensity, these pulses are problematic for the study of semiconductor

materials (see below). These difficulties are further compounded by the pres-

ence of finite pixel gaps in the LC spatial light modulator. Even for an ideal

modulator, there are still fundamental limits to the time aperture that arise

due solely to optical effects for any typical pulse shaper [388].

The introduction of artifacts and the variations in pulse power are not

pathological to many systems of interest to 2d spectroscopists, but in the

materials we study they present a serious complication. Many-body dynamics

in semiconductor nanostructures are sensitive to excitation density (see for

example [31], [380], [254]), due in part to the dependence on exciton-exciton

Coulomb correlation interactions. Even in cases when optical selection rules

prevent the formation of bound biexciton states, correlation in the biexciton

continuum – or among a higher number of excitons – can significantly alter

the nonlinear optical response of a semiconductor. Even at reduced numbers,

the inadvertent emission of excitons by artifact pulses may significantly alter

the observed nonlinear polarization. Pulse shaping is not ideally suited to

the generation of exact replica pulses separated by a variable delay, whereas

moving a delay stage in an interferometer is precisely equivalent to shifting

the vector origin of a ray.

Compared to the pulse-shaping based method described in [152], our

technique is somewhat more cumbersome, but it provides high phase stability

and allows the generation of pulse pairs separated by longer delays. The

advent of polarization control in pulse shaping means that this feature of our
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when both the rephasing and non-rephasing signals are mea-
sured and added, as was discussed in section 2 above. This step
is necessary because each spectrum contains a twisted phase
that broadens the peaks, but cancels when the two spectra are
added to give absorptive spectra.28 In the four wave mixing
geometry, the rephasing and non-rephasing signals are emitted
from the sample in different spatial directions due to wave
vector matching. For instance, if the pulses arrive at the
sample in the order of k1, k2 and k3, then the rephasing signal
is emitted in the !k1 + k2 + k3 direction while the non-
rephasing signal appears in the +k1 ! k2 + k3 direction. Since
measuring both directions simultaneously would require an
additional local oscillator pulse, the two signals are usually
measured in the same phase matching direction, by reversing
the ordering of the k1 and k2 pulses and thereby swapping the
roles of the E1 and E2 pulses in eqn (1); e.g. the rephasing
signal is measured first by scanning the delay when k1 impinges
on the sample before k2, and then measuring the non-rephasing
signal by again scanning the time delay when k2 reaches the
sample first. Once the spectra have been collected, they must
be phased and added.29 Phasing is necessary because it is
exceedingly difficult to experimentally set the time zeros of the
laser pulses (an offset in the time domain is equivalent to a
phase shift in the frequency domain), so the spectra are
compared to a transient pump–probe spectrum for which the
t1 and t3 are precisely zero because both E1 and E2 come from
the pump and E3 and E4 come from the probe.29 (The reader
can summarize the difficulty of these tasks simply by the
amount of text taken to qualitatively describe the process!)
This elaborate process is in contrast to 2D IR spectroscopy via
hole burning. Since the hole burning approach has a pump–
probe phase matching geometry, the rephasing and the non-
rephasing are emitted collinearly and are automatically phased
because the time-zeros are precisely zero, resulting in the
desired absorptive spectrum. No post data processing is
necessary for the hole burning approach and only half the
number of 2D IR scans need be collected as compared to the
four wave mixing geometry since both the rephasing and non-
rephasing spectra are collected simultaneously.

An additional advantage of the hole burning approach is
that a portion of the 2D IR spectrum can be monitored
without having to collect an entire 2D IR spectrum. For
instance, an individual cross peak can be measured by tuning
to the appropriate pump frequency, whereas in the four wave
mixing approach, the cross peaks are not resolved until after
the data is collected and Fourier transformed. This ability is
sometimes advantages when monitoring kinetics such as
during protein folding. There are also no problems with
phase-drift when using hole-burning. In the four-wave mixing
approach, beam pointing and pathlength variations cause a
drift in phase which either needs to be actively stabilized,37

measured and corrected,38 or through passive stabiliza-
tion.39,40 Phase drift is especially problematic in the visible
because of the short wavelength. An advantage of 2D IR via
four wave mixing is that the signal is background free and thus
has higher sensitivity. It also has better frequency and time-
resolution, because only femtosecond pulses are used where as
hole burning requires a picosecond pulse. Moreover, this
method provides superior selectivity of choosing a specific

signal by spreading combinations of excitations in space
according to their phase matching conditions and by control-
ling polarizations of all four pulses to selectively allow a
combination of transitions at a specific order of angles. We
come back to this point shortly.

4. Overview of 2D IR spectroscopy via pulse
shaping

We now turn to the focus of this review article, which is the
third method for collecting 2D IR spectra (Fig. 3c).12 It is in
many ways a combination of the above two methods. It uses a
pump–probe beam geometry like the hole burning approach,
but uses two femtosecond pulses for the pump beam like the
four wave mixing approach. Using the pulse shaper, the t
delay is scanned like the four wave approach and the signal
Fourier transformed so that the optimal time and frequency
resolution is obtained. Furthermore, the spectra are automa-
tically phased because the shaper can perfectly set the t time
delay and the t time delay is zero by default. Thus, the best
possible 2D IR spectrum is collected automatically without
complicated and potentially erroneous post data processing, as
we describe in more detail below.
This third method for collecting 2D IR spectra is made

possible by a pulse shaper that we recently developed that
operates in the mid-IR.11,41 Shown in Fig. 4 is a schematic of
our pulse shaper as well as the spectrometer. A small fraction
of the input IR beam is served as a probe, and the remainder is
sent to the shaper and serves as a pump. The pulse shaper
(gray area enclosed with a dashed line) consists of two gratings

Fig. 4 The experimental setup of the automated 2D IR includes a

mid-IR pulse shaper (gray area enclosed with a dashed line) and a

pump–probe spectrometer. The pulse shaper consists of two gratings

(G) and cylindrical mirrors (CM) in a 4-f geometry as well as a

germanium acousto-optic modulator (Ge AOM) controlled by an

arbitrary waveform generator (AWG) equipped on a computer. The

shaped beam serves as a pump beam (thick gray line) and a small

portion of the unshaped beam is used as a probe beam (solid black

line). The probe spectrum is measured with a mercury cadmium

telluride (MCT) array detector equipped to a spectrometer.

752 | Phys. Chem. Chem. Phys., 2009, 11, 748–761 This journal is "c the Owner Societies 2009

A partially collinear geometry 2dFTS experiment, using a Germanium 
acousto-optic modulator as a phase mask in a 4-f beam shaper to 
generate the phase-locked pump pulse pair. The transmitted probe 
beam is spectrally analyzed and recorded, then the pump pulse pair 
sequence is incremented.  Reproduced from Shim and Zanni, 
Physical Chemistry Chemical Physics 11:737 (2009).!

Figure 5.19: Partially collinear 2dFTS with pulse shaping
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experiment is no longer a true advantage compared to such techniques, but the

interferometric experiment does allow individually addressable control of the

separate pulses – this allows the introduction of detection techniques relying

on amplitude or frequency modulation of the excitation pulses, which would

not be easy to implement using a pulse-shaper. So long as the interferometer

can still be locked and stabilized with the HeNe beam, any property of the

Ti:Sapph pulses may be manipulated as desired.

As an aside, we note that signal distortion effects occurring due to

propagation through dispersive media – the sample as well as the glass optics

used in the visible regime – are expected to be minor for pulse trains that

are generated using conventional interferometers, where the pulse amplitude

fronts are kept parallel to the wavevector in non-absorbing media [409].

5.6.6 Experiments with partially collinear 2dFTS

We perform 2dFTS experiments analogous to COSY and NOESY mea-

surements in a transmission geometry using linearly and circularly polarized

light. We collect data at a number of different values of mixing time T ; the

modified mean field model developed to study 2dFTS lineshapes as yet does

not properly treat the relaxation that occurs during this second time period

(n.b. in the equation of motion for the nonlinear polarization, no distinc-

tion is made between the dephasing and population decay processes affecting

the polarization – relaxation is instead lumped generally into the Γσ terms.

Nonetheless, collecting this data may be useful for subsequent study of these
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Experimental apparatus we constructed for performing 2dFTS in a partially collinear 
geometry. The Ti-Sapph beam is split into two portions. The probe portion is sent to a 
precision delay stage used to set the T delay, passing through a half-wave plate and 
linear polarizer that can be used to set its power and polarization. The probe is then 
focused onto a sample mounted in the cryostat. The other portion of the Ti-Sapph beam is 
sent to a Mach-Zehnder interferometer. Each arm has its own half-wave plate and linear 
polarizer to control power and polarization; one arm has a precision delay stage used to 
set the τ delay. After they are recombined on a beamsplitter, the collinear pump pulse pair 
are focused onto the same spot on the sample. If circularly polarized light is desired, a 
quarter-wave plate is placed in one or both beam paths after the dichroic mirror (q.v. sub)."

A second laser, a HeNe is also coupled into the experimental apparatus. The HeNe traces 
out the same beam path through the Mach-Zehnder interferometer as the Ti-Sapph, but is 
retroreflected by the dichroic mirror. The HeNe back-propagates through the experiment 
and is collected on the beam splitter used to divide the beams entering the interferometer. "

The HeNe beam exiting the interferometer is used to derive an error signal that permits 
active stabilization of the interferometer path length via a mirror mounted on a PZT."

After the probe beam transits the sample, it is collected and collimated, then sent to a 
spectrometer where its spectrum is recorded using a CCD."

For the 2dFTS experiments here, an acousto-optic modulator is used to apply an 80 MHz 
shift to the pump pulses. In order to maintain an equal path length and manage 
dispersion, another modulator is placed in the probe beam path (not shown), but is not 
powered."

Figure 5.20: Our partially collinear experimental apparatus
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effects. It might be interesting to consider a denser set of data collected at

very early times T , in order to observe the relaxation of free carrier pairs

into exciton states (for instance, permitting experimental determination of

the branching ratio for light hole and heavy hole excitons). It is possible to

take data at arbitrarily small or negative mixing times because the temporal

resolution of the 2dFTS technique is determined by the scan of the coherence

and detection times, but the early time results of such experiments must be an-

alyzed carefully since phase-twisting will occur even in this partially collinear

geometry due to the inherent mismatch in magnitudes of the rephasing and

non-rephasing pathways during the temporal overlap of the pulses.

Subsequently, we perform 2dFTS measurements on quantum well sam-

ples in a reflection geometry. To the best of our knowledge, this is the first such

reflection geometry experiment. The lineshape is complicated in comparison

to that observed for the transmission measurements; we suspect this is due to

coherent emissions from a number of different wells in the sample. The de-

tection scheme measures (effectively) the interference between those emissions

and the strong reflection of the probe beam from the front surface; each emis-

sion from different depths has a different phase relationship with that probe

reflection, resulting in a spectrum that is difficult to interpret intuitively.

These reflection geometry measurements lead directly to our interest in

performing coherent, homotime reflection spectroscopy of more complicated

nanostructures. To do so, we develop a new spectroscopic technique, described

in the next chapter of this thesis.
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5.6.7 Laser source, samples, general experimental methods and
data processing

These experiments are all performed using light produced by a commer-

cial Titanium:Saphire laser (Coherent, Mira 900D, operated in femtosecond

mode, pumped by a 10W Coherent Verdi cw DPSS laser), producing mode

locked pulses of approximately 130-150fs duration at a 76MHz repetition rate,

centered at 797nm with a spectral bandwidth of approximately 10nm. We do

not pay substantial attention to the pulse characteristics, although an auto-

correlation measurement is made every day; the particular temporal charac-

teristics are not important in understanding the response measured with the

2dFTS experiment. The laser is tuned so that the light hole exciton resonance

is more strongly excited than the heavy hole exciton resonance; this choice is

made since the oscillator strength for the heavy hole exciton is much greater

than the light hole exciton. Nonetheless, tuning the laser to far to the blue is

not desirable since it will increase the number of free carrier states created in

the GaAs material.

All beamsplitters used in this experiment are custom optics designed

and fabricated by CVI-Melles Griot for ultrafast laser pulses. These beam-

splitters were designed for use at 671nm in the interest of exploring samples

at these wavelengths, but performed satisfactorily at the longer wavelengths

used here. The mirrors used for this experiment were uncoated silver mir-

rors fabricated by JML Optical for use with pulse laser sources. Polarcor

thin film polarizers are used due to their ability to withstand high intensity
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pulses. Waveplates were purchased from Custom Optics for the use in this

wavelength range. The lenses used were conventional BK-7 glass with a near-

IR anti-reflection coating, purchased from Thorlabs. A dichroic mirror was

custom designed and fabricated by CVI-Melles Griot to transmit 800nm and

reflect 633nm light at zero angle of incidence. A small short-wave pass filter

from Thorlabs was used prior to the interferometer photodiode to block the

Ti:Sapph laser while allowing the HeNe to pass through to this detector. The

cw HeNe laser used to measure path length variation in the interferometer is

a temperature stabilized device purchased from Melles Griot, but successful

stabilization was also demonstrated with an un-stabilized surplus HeNe head

previously used as an alignment tool for alignment of medical instruments.

The data presented in this chapter were all taken using a 10 period

GaAs/AlGaAs multiple quantum well sample cooled to approximately 10K.

This is sufficiently low to freeze out the longitudinal optical phonon mode,

but acoustic phonons will still be present in the material since their dispersion

relationship permits states of essentially arbitrarily small energy. The samples

are prepared by using a chemical-mechanical etching process to remove the

majority of the substrate and capping layer, leaving a thin wafer that can be

studied in transmission geometry. That processes sample is then attached to a

sapphire disk using a thermal adhesive (Crystalbond). The mounted sample is

then placed in a sample holder that clamps it between two copper elements; a

small piece of niobium wire is placed between the upper clamp and the sapphire

disk to provide a soft cushion and prevent fracture of the rigid sapphire. We
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have also performed experiments where the sapphire disk is adhered to a copper

slug directly using the same thermal adhesive, but find this technique prone

to occasional failure as the sapphire, adhesive, and copper possess different

coefficients of thermal expansion; frequently, the sapphire disk will pop off

the copper sample holder if direct adhesion is used. We use a copper sample

holder with a through hole machined in it to permit transmission experiments.

The sample and holder are placed in the coldfinger of a commercial cryostat

(Cryo Industries of America), and liquid Helium is used to cool the system

to its desired temperature. The temperature is monitored constantly during

the experiments; it is possible to use active temperature stabilization with a

built-in heater element, but this was not deemed necessary for this project.

The entire experiment is enclosed inside a 3/8” aluminum box to isolate

the the apparatus from the laboratory environment. This provides the high

degree of passive stability necessary to perform phase-sensitive measurements,

but active phase stabilization is still required to produce high quality 2dFTS

spectra. Without the enclosure caps in place, the interferometer cannot be

stepped through a large number of positions without a phase slip.

Careful optical alignment of the 2dFTS experiment is crucial to achieve

high precision stepped control of the pulse timing using delay stages. In par-

ticular, the motion of travel for the translation stages must be made as parallel

as possible to the direction of beam propagation; this ensures that a move ∆x

in the stage position along its travel results in a change in the pulse delay of

precisely 2∆x. In order to achieve this, a portion of the laser power is split
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off at two separate points prior to the actual experiment and then sent to two

quadrant photodiode detector arrays that are used to precisely, repeatably

align the experiment using two steering mirrors prior to the experiment. The

quadrant photodiode is a circular detector divided into four π/2 slices. Adding

the photocurrents from the top two and the bottom two segments, then tak-

ing the difference using analog op amp circuits provides a vertical alignment

measurement. Adding the photocurrents from the left two and bottom two

segments and taking the differences provides horizontal alignment. Zeroing

the differences of both simultaneously implies that the laser spot is centered.

Zeroing the differences of both degrees of freedom for both detectors simulta-

neously implies that the laser is centered on both detectors; since two points

uniquely define a line, the position and pointing of the laser is now reliably

known. Once the experiment has been constructed and carefully aligned, the

optics that occur downstream of the beam splitters that send the laser to the

quadrant detectors are not moved, in order to maintain the beam path from

day to day.

The Ti:Sapph pulse is split into two portions upon entering the experi-

ment, with one half used as the probe and the other used to interferometrically

generate a pump pulse pair. The probe portion is sent to a precision trans-

lation stage, used to set the T mixing time delay, passes through a half-wave

plate and polarizer to control the power and polarization, and is then focused

onto the sample with a 20cm lens. The other portion of the Ti:Sapph beam is

split with a MachZehnder interferometer, one arm of which contains a high-
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precision, high-accuracy translation stage, used to set the evolution time τ .

This beam path is referred to as the dynamic pump path, while the one with-

out the translation stage is referred to as the static pump path, referring to

the ability to change the path length and hence delay of either arm. Both

arms of the MZI contain half-waveplates and polarizers, allowing independent

control of power and beam polarization. Upon exiting the interferometer, the

collinear pump pulse pair are focused onto the sample, using the same lens

as the probe beam, and onto the same spot illuminated by the probe beam.

The pump pulse pair beam and the probe beam form a small angle in the

horizontal plane. Irises are used to restrict the size of the pump beams prior

to the focusing lens to ensure that the spot they form on the sample is larger

in size than that of the probe.

For 2dFTS experiments both active and passive stabilization techniques

are used to ensure the phase control between the pump pulses that interact

coherently to produce the transient grating in the material. A high degree of

passive stability is a prerequisite for active stabilization techniques to work

properly. To this end, the entire experiment is encapsulated to reduce the

effects of acoustic noise or fluctuations in the air currents or temperature of

the room. An active stabilization system is used to provide a well-defined,

controlled phase relationship between the pump pulses. One of the arms of

the MZI used to generate the pump pulses contains a mirror mounted on a

piezo that can scan the beampath over a few microns with a bandwidth of

several kHz. This mirror is used to actively stabilize the phase between the
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pump pulses with interferometric precision, using a servo mechanism based

on an error signal derived from a second laser that co-propagates with the

Ti:Sapph.

A cw Helium Neon laser beam is introduced into the experiment along

with the Ti:Sapph. The two are spatially mode-matched, and co-propagate

throughout the entire experiment until the HeNe beam is retroreflected by a

dichroic mirror that passes the longer wavelength Ti:Sapph but reflects the

shorter wavelength HeNe back along its own beam path, retracing the beam

path through the interferometer. A fraction of the reflected HeNe power is

then collected at the input beamsplitter for the MZI and sent to a homebuilt

silicon PIN photodiode.

A sinusoidal voltage can be sent to the piezo mount in the interfer-

ometer, resulting in a corresponding dither motion of that mirror. Dithering

that mirror produces a typical interferometer fringe; the magnitude of the dis-

placement is approximately linear to the applied voltage for small excursions.

During the experiment, a loop filter is used to derive an error signal from the

photodiode voltage as the optical components of the MZI drift, resulting in a

change in path length. This signal can be amplified and fed back to the piezo,

counteracting that drift and achieving a typical stability of λ/150. The servo

mechanism is controlled by a TTL pulse switch that permits the experiment

computer to temporarily unlock the interferometer while the delay stage is

moved and to re-establish the lock at a zero-crossing of the HeNe fringe after

the motion has ceased. In this manner, phase stable data may be collected
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during a locked period, the interferometer is unlocked, the τ translation stage

is moved, and the interferometer is re-locked prior to collecting another data

point. Measurements of the interferometer error signal, the output of the servo

circuit, and the piezo drive voltage (divided by a factor of approximately 10 to

avoid overloading the analog data collection circuit) are made after each inter-

ferometer lock. If those signals are seen to be nearly constant over the course

of the interferometer, it is assumed that the experiment has been performed

properly without an unintended ’phase slip’ – the name given to the experi-

mental error when the analog electronics result in the piezo-mounted mirror

moving too far in one direction or another to lock to the incorrect fringe zero-

crossing. If a sufficient number of data points are captured prior to a phase

slip, it is possible to cut the data taken subsequently from the raw 2dFTS set

and still obtain a high quality spectrum.

It was found impractical to use the same quadrant detectors to align

the HeNe laser as were used for the Ti:Sapph laser due to the drastically dif-

ferent power levels of the different light sources. A homebuilt amplifier system

was built to compensate for this using switched gain, but was found to be

impractical due to (we suspect) different zero positions at different gain levels

due to analog input current errors in the circuit. As such, the alignment of the

HeNe was made by checking that the two lasers co-propagated over a long dis-

tance; in order to facilitate this, a flip mirror was placed prior to the dichroic

mirror. A series of parallel mirrors were used to extend the path length of the

two beams to something like 10 to 15 meters, allowing the experimentalist to
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check that the spatial modes were well overlapped over long distances. The

alignment of the HeNe could be optimized by examining the fringe patterns

appearing in its spot, and tweaking the HeNe input steering mirrors to obtain

a more homogeneous interference pattern.

Data are collected by detecting the transmitted probe beam. After the

sample, the probe is collimated using another 20cm lens, then coupled into

a single mode fiber used to bring the signal beam to a different part of the

optical table while providing some degree of noise rejection for scattered light.

For differential transmission measurements, the probe intensity is measured

using a home-built amplified Silicon PIN photodiode and an SRS830 lock-

in amplifier, using a chopper beam on the pump pulses after they exit the

stabilized interferometer to modulate the signal of interest, typically at 1-2kHz.

For spectrally resolved data, such as that used for a 2dFTS experiment, a flip

mirror is removed from the beam path, allowing the probe beam to be focused

using an f -number matched optic onto the slit of a 750 mm spectrometer

with a 1200 groovers/mm grating. Prior to the spectrometer, a number of

neutral density filters are used to reduce the probe power in order to avoid

saturating the CCD used to detect the signal. Spectra are typically collected

with the CCD cooled to approximately -20C, using an Andor CCD and home-

written Labview control software that coordinates control with the rest of

the experiment. For the 2dFTS experiment, spectra were recorded with the

pump pulses on and with them blocked, the difference is saved and Fourier

transformed to obtain the spectrum of interest. The pump pulses are blocked
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or transmitted using a mechanical chopper, with the CCD triggered by a TTL

pulse derived from the chopper driver. The maximum rate at which data

could be captured without running into timing issues that could result in

spectra with incorrectly gated pump pulses was 25Hz; since the duty cycle of

this experiment (’on’ minus ’off’) is 50%, that means that 12.5 data points

can be collected per second. The neutral density filters mentioned above were

chosen each day to ensure that as much of the CCD dynamic range was used as

possible without saturating the device given the exposure time determined by

the chopper synchronization (only a small fraction of the on-off cycle, typically

on the order of 4-8ms).

After subsequent study of the literature on 2dFTS experiments, we be-

lieve that no such modulation of the pump pulses is necessary. The component

of each on-spectrum that is due only to the probe beam will be shifted out of

the region of interest by Fourier transformation; as such, higher quality data

may be collected by optimizing the spectral measurements without the con-

straints of synchronizing the CCD capture and readout with the mechanical

chopper. Nonetheless, measuring data in the fashion described here is still use-

ful for early experiments proving the capabilities of this experiment because

it permits more direct comparison to differential transmission measurements,

conventionally reported as dT/T .

After an experiment is completed, raw data are analyzed by a home-

written Matlab program. This software package analyzed spectrally resolved

differential transmission measurements to provide plots of two-pulse experi-
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ments that can be compared to the τ = 0 spectrum in the raw 2dFTS exper-

iment to understand the phase relationship among the three pulses used to

excite and detect the nonlinear signal of interest. The 2dFTS data is collected

as a function of wavelength, but the analysis program transforms it into a fre-

quency space, then divides the raw data by the spectrum of the probe beam

obtained with the pump beams blocked. A temporal window is then applied

to the data; we discuss the use of Hanning windows to eliminate ringing effects

elsewhere in this thesis. The software uses a fast Fourier transform algorithm

to transform the windowed data from the (ωt, τ) domain to the (ωt, ωτ ) do-

main, then maps the data into the undersampled frequency space; we discuss

the frequency domain sub-Nyquist sampling issues elsewhere in this thesis.

The Matlab code then outputs a number of different graphical representations

of the data, including pseudo three-dimensional and contour plots of the real

and imaginary parts of the 2dFTS spectrum.

Initially, no acousto-optic modulators were used to frequency shift the

beams used in the experiment, although these devices were found to be neces-

sary to avoid interference effects (q.v. sub). We describe the introduction of

acousto-optic devices at some length.

The pulse delay zeroes are calibrated by taking cross-correlation mea-

surements of the probe beam with the static pump beam to find the T = 0

position for the probe, and cross-correlation measurements of the dynamic

pump with static pump beam to find the τ = 0 position for the dynamic

pump. These measurements are taken using a two-photon detector – a photo-
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diode with a bandgap greater than the photon energy of the Ti:Sapph laser,

which will therefore respond to the intensity squared of the combined optical

field (the electric field to the fourth power). We discuss the correlation mea-

surements at length in a subsequent chapter, as they were found to behave in

a more complicated fashion when more complicated modulation schemes were

used. Here, to pick out the nonlinear signal, a mechanical chopper is used

in combination with an SRS-830 lock-in amplifier. To detect the probe-static

pump correlation trace, the static pump is chopped at 1-2 kHz, while the probe

is unmodulated. The correlation observed by stepping the probe delay stage

is related to the square of the envelope function for the laser pulse, and can

in principle be de-convoluted to make a more accurate estimate of the pulse

shape (we do not trouble ourselves with that for these experiments for the

reasons noted above). To detect the static pump-dynamic pump correlation

trace, both beams are passed through the same chopper and modulated at the

same rate. The resulting signal contains information about the pulse envelope,

but for these co-propagating pulses there is also an interference term that os-

cillates rapidly. In both cases, a slow envelope function is fit to the data to

obtain an approximate value of the zero delay positions.

Having spent further effort studying multi-dimensional spectroscopy af-

ter performing these experiments, we have determined that greater care should

be taken with these measurements to provide a more precise and accurate

measurement of the zero delay positions. Moreover, the use of independent

acousto-optic modulators to actively control the individual phases of the beams
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is desirable to ensure that this phase relationship is completely characterized.

We emphasize that 2dFTS experiments performed in a partially collinear

geometry requires only one interferometer to stabilize the pump pulses, since

the ’heterodyne’ field for the four-wave mixing emission is simply the depleted,

co-propagating pump beam. This greatly simplifies the construction of the ap-

paratus in comparison to the non-collinear 2dFTS experiments.

5.6.8 Differential transmission measurements of GaAs quantum wells

We began the partially collinear 2dFTS experimental program by per-

forming two-pulse experiments. We performed differential pump-probe mea-

surements on the multiple quantum well sample in transmission mode as an

initial step to test our experimental apparatus.

Pump-probe spectroscopy is an elementary ultrafast technique [211], al-

beit one that still provides surprisingly useful results – particularly when some

additional property of the two pulses used is introduced as an independent

variable. In its simplest form, pump-probe spectroscopy uses a strong pulse

to induce excitation in a sample. Subsequently, after a controllable delay, a

weaker probe pulse interacts with the material. To be experimentally useful,

some property of the probe beam (intensity, polarization, etc) must be mod-

ified by its interaction with the material, and that effect must be sufficiently

large to be measured. Plotting the effective change in the probe as a function

of its delay relative to the pump pulse permits time-resolution of dynamic pro-

cesses in the material under study. In the limit of an optically thin sample,
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the time resolution of the experiment is limited only by the temporal pulse

width – or, if two separate lasers have been used to produce the two different

pulses, by the time jitter between the two pulses [331], [211].

We use the simplest form of pump-probe spectroscopy, where the two

pulses are essentially degenerate. Both pulses were derived from a commercial

Titanium Sapphire laser, producing pulses of approximately 130 fs duration

(FWHM), with a repetition rate of 76MHz. The laser repetition frequency

places a hard limit (approximately 13 ns) on the slowest phenomena that may

be observed in an experiment before arrival of the next pulse from the laser

disturbs the evolution of the system.

For these experiments, the time-integrated change in probe power was

measured. An unbiased Si PIN photodiode (Hamamatsu) and home-built

amplifier (based on the Analog Devices OP27G op amp) were used to measure

the intensity of the probe beam. That amplified voltage was then sent to a

digital lock-in amplifier (SRS 830), which picked out only those components

that oscillated at the reference modulation frequency, derived from a rotary

mechanical chopper used to modulate the beams at up to several kHz. Thus,

the recorded signal is proportional to the change in the transmitted probe

power, since any DC component will be filtered by the lock-in amp.

The amplifier output was read via GPIB interface and tabulated on

a personal computer using a home-written Labview (National Instruments)

program that was also used to control the translation stages that were moved

to set pulse delays. The experimental apparatus offers two simple ways to

332



perform these two-pulse measurements: using a pump pulse from either the

static pump or dynamic pump arm of the Mach-Zehnder interferometer, and a

probe pulse from the probe delay line. Each pulse has independent control of

polarization and power. These measurements were performed at liquid Helium

temperatures (typically ˜10K), with various combinations of pump and probe

powers ranging from a few hundred microWatts or less to several milliWatts.

The results presented here are differential transmission ∆T = (T − T0)

data, where the change ∆T in probe transmission that is induced by the

pump is not normalized. Frequently, the results of similar measurements are

presented in the form ∆T/T0 = (T − T0) /To normalized by T0, the probe

transmission when the pump is blocked. This would simply result in changing

the amplitude of the reported values by some constant; since we use arbitrary

units here, such a step seems of limited value. We note that our 2dFTS data

do not follow this convention, since normalization by the spectrally resolved

transmitted probe has some utility that is absent in normalization of spectrally

integrated measurements.

Although our experimental plan always included the use of acousto-

optic modulators to perform multiple frequency lock-in detection of four-wave

mixing signals from our samples, we initially did not include AOM’s in the

experiment for our initial measurements.

A lock-in amplifier from Stanford Research Systems was used to more

accurately measure the transmitted probe power, using a mechanical chopper

to modulate the pump beam.
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the pump-probe spot overlap. The fractured nature of the 
peak made it difficult to optimize the experiment.!

Figure 5.21: Unstable differential transmission data

334



We were surprised to see that this simple measurement seemed highly

unstable. Rather than a simple exponential decay of transmitted probe in-

tensity as a function of the pump-probe delay, which we intended to use to

extract the lifetime of exciton states, we instead saw a non-repeatable signal

that had extremely high noise imposed on it. Initial guesses were a noisy and

unreliable coupling into the optical fiber used to collect the transmitted probe

light and couple it to the spectrometer, but this was ruled out as a likely cause

by meticulously measuring the power of the probe beam as a function of the

probe delay stage’s translation with the pump beam blocked – the variation

in power measured as the probe stage was scanned was trivial compared to

the total measured power. No noise was observed in this measurement. We

also attempted experiments with various different chopping frequencies, with

two-frequency chopping (chopping both pump and probe beams and using the

lock-in amplifier to detect the signal of interest at the difference frequency),

and experiments where the probe stage was fixed and the dynamic pump stage

was scanned instead. None of these experiments resolved the noise problem

that broke up the differential transmission signal.

After some deliberation, a new differential transmission measurement

scheme was used, where the probe stage was stepped in sufficiently small in-

crements that any features that depend upon fast effects – up to the optical

frequency of the excitation laser – should be revealed. These measurements

demonstrated conclusively that the pump-probe measurement was experimen-

tally sound, but that a strong high frequency modulation of the signal had been
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Performing measurements with higher sampling 
frequency suggests at least two oscillatory components 
present in the dT signal. Inset: expanded view of high 
frequency component present in the signal measured with 
1.2 fs step size.!
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Figure 5.22: High frequency components in dT data
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THz. Inset: expanded view of the high frequency component.!

Figure 5.23: Well resolved high frequency components in dT
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aliased in the (relatively) low frequency measurements we had performed. The

previous measurements that had appeared noisy most likely had perfectly rea-

sonable signal-to-noise properties, but at each step of the probe delay scan at

which we measured the differential transmission power we sampled a signal oc-

curring at a different phase. Unaware of the fast periodic nature of this signal,

we had erroneously concluded there was some source of noise overwhelming

our measurement.

In order to eliminate this effect, a TeO2 AOM was placed in the com-

bined pump beam bath (i.e., after the beam splitter that is the exit port of the

Mach-Zehnder interferometer) and used to shift the pump beams by 80MHz.

This AOM was driven with an RF source produced with an HP 8657A sig-

nal generator and amplified using a discrete Minicircuits amplifier. The drive

frequency was not chosen for any scientific reason, but simply because it was

the center of the operating band for the AOM. This immediately remedied the

’problem’ of the high frequency component in the differential transmission sig-

nal, and allowed us to perform measurements with a more reasonable step size

– in order to resolve the high frequency component, the delay was incremented

by less than half the optical wavelength of 800nm. To perform measurements

that scanned the probe delay by several centimeters – the time scale necessary

to extract the sub-ns population relaxation – at this temporal resolution was

impractical.

We did collect 2dFTS data sets before implementing the frequency shift

on the pump beams, but did not take the time to process and analyze them
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since the differential transmission measurements had (to that point) appeared

to indicate some significant error in the operation of the experiment. Since the

2d data is collected in a phase-sensitive manner with sub-wavelength step size,

it is likely that those data sets are in fact usable, but subsequent experiments

make those sets redundant. Moreover, by this point in the development of

our experiment we had not yet determined the ideal powers to use for the

various beams, as that step had depended upon an analysis of a cogent set of

differential transmission data.

As a result of this change to the experiment, the nonlinear optical

processes we probe are not truly frequency degenerate – nonetheless, on the

scale of the optical frequency (˜375THz) or on the scale of the spectral features

associated with the exciton resonances (few hundred GHz) this shift is not

significant.

After placing an AOM in the combined pump beam path it was found

to be necessary to place an identical AOM into the probe path. While this

may have the advantage of inducing identical pulse dispersion in the probe

beam as that which affects the pump beams, this effect is not expected to be

significant at this wavelength – a quick calculation using easily available values

for the index of refraction of Tellurium Dioxide as a function of wavelength

suggests that the dispersion is essentially negligible for a length of material

comparable to the dimensions of the crystal used in our AOM’s – we expect

the pulse envelope to increase by approximately a tenth of a percent for a

150 fs duration pulse– the probe AOM was added for the more prosaic reason
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that it allowed us to match the probe optical path length back to that of

the pump beams. Without this second AOM it was impossible to observe an

autocorrelation of the pulses, indicating that the pump AOM had extended

the pump beam optical path too far to be compensated by translating the

stages.
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Figure 5.24: Lifetime measurements using linear polarization

After the AOM was used to shift the pump beam power, differential
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transmission measurements were taken using the lock-in amplifier. For either

parallel or perpendicular linear polarizations, there is an exponential decay

that can be used to extract the population relaxation time. There is addi-

tionally, however, a spike or peak that appears in the differential transmission

measurements near the time when the two pulses overlap. This early time has

been observed elsewhere in sub-picosecond experiments. The effect is some-

times referred to as a correlation spike, and is seen in various different media.
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coherence peak feature, indicating a parametric coupling of power 
from the intense pump beam into the transmitted probe beam.!

Figure 5.25: Early time dT measurements using linear polarization
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A simple explanation based on single-pulse effects is tempting, but can

be shown to fail to reproduce the observed features. We outline the one-pulse

argument briefly, for comparison: pulses with temporal widths shorter than

the polarization decay rate 1
T ∗

= 1
T1

+ 1
T2

will be spectrally broad compared to

the absorption resonance. The pulse therefore has spectral components that

are sufficiently far from the central frequency of the ensemble, that they do not

undergo significant absorption. In this case, the pulse depletion as a function of

distance traveled through the sample is substantially decreased when compared

to the exponential decay predicted by the Beer’s law dependence that describes

most absorptive light-matter interactions [6]. This model cannot explain the

coherence spike observed here, however, since this rapid transient does not

appear unless the pump is present and depends upon the pump polarization

state, suggesting that it is a parametric process coupling power from the strong

pump beam to weak probe beam.

Shank and Ippen describe correlation spikes that occur in pump-probe

measurements of organic dye molecules in solution that were studied as po-

tential saturable absorbers for use in mode-locked lasers [337].

Those authors measured the polarization rotation of the probe pulse

due to dichroism induced by a strong pump pulse to distinguish the isotropic

saturation effects – due, for example, to ground state bleaching – from anisotropic

saturation, which they attribute to the selective excitation of dye molecules

aligned parallel to the linearly polarized pump pulse. The sharp spike that

occurs in their pump-probe results is attributed to a parametric coupling be-
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tween the weak probe beam and the strong pump pulse that occurs when the

pulses overlap temporally. Under that condition, the interference between the

two pulses produces an absorption grating that scatters a portion of the in-

tense pump beam into the weaker probe. In liquid phase experiments it is

possible to demonstrate that it is indeed an absorption grating effect and not

a thermal grating by varying the solvent to one that exhibits little dependence

on temperature of its index of refraction, but we cannot perform a similar

test in our solid state system. Nonetheless, subsequent 2dFTS experiments

strongly suggest that the formation of thermal gratings is not significant in

our samples. Although one may expect that the spike shape is determined by

the temporal width of the laser pulse used – the correlation spike frequently

may appear comparable to autocorrelation measurements of temporal pulse

width – Shank and Ippen argue that it is rather a function of the coherence

of the light-matter system. The amplitude of the spike is then equal to the

transmission induced by the anisotropic saturation effects of the pump – thus

we should expect the correlation spike to appear roughly double to the ’next

bit’ of the differential transmission decay curve. This ratio is roughly correct

in our experiments, although we do not expect it to be much better than an

estimate or guide for the expected spike amplitude.

In a paper preceding shortly preceding that work, Shank and Auston

observe a similar parametric coupling of the intense pump beam into the weak

transmitted probe beam via an electron-hole plasma index grating [335]. A

calculation based on the Drude model was used to provided a estimate for the
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strength of the correlation spike. This result allowed the correct assignment of

the population relaxation time in Germanium; previous measurements had fit

the correlation spike to extract the decay time, severely under-estimating the

carrier lifetime in this material. A similar correlation spike was observed in

pump-probe spectroscopy of hemoglobin [339]. A much more complete theory

of the correlation spike is offered by von Jena and Lessing [377] who note that

the simpler models offered by Shank et al. cannot completely describe the

correlation spike. They develop a much more complete model, depending upon

pulse shape, the population kinetics in the excited material, dephasing and

orientational relaxation. This model also obtains the result that for parallel

pulse polarizations the amplitude of the correlation spike should be twice what

would be observed without this effect, and notes that similar coherent features

may also appear for perpendicularly polarized pulses, though their magnitude

will exhibit a more sophisticated behaviour and depend on the microscopic

particulars of the material. The particular shape of correlation spikes is shown

to depend on the coherence length and the relaxation processes.

That work [377] also proves extremely useful from an experimental

perspective, as it shows that the optimal optical alignment for a two-pulse

experiment is obtained when the correlation spike is maximized – this is the

metric we use in our work for fine-tuning the alignment of the pump pulses

onto the spot illuminated by the probe pulse.

For further consideration of the transient coherence effects occurring in

pump-probe spectroscopy, consider the density operator theoretical treatment
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in [395], which considers numerous possible relaxation channels and discusses

transients in both the pump-probe transmission and phase-conjugate geome-

try. Measurements of oscillatory coherent effects in pump-probe spectroscopy

have been argued to be evidence of the influence of the Heisenberg uncertainty

relationship, with the nature of the artifact determined by the relative time

scales of the experimental resolution, the bleaching time, and the dephasing

time [200]. Experimental observation similar to those we see here are described

in the context of that theory in [348]. While the coherence spike is a problem-

atic feature in transient absorption measurements, such as these differential

transition experiments performed prior to taking 2dFT data, and is typically

ignored in a density operator theoretical model, 2dFTS is able to study these

early time features without difficulty [132],

Returning to our differential transmission measurements, in either the

parallel or perpendicular linear polarization case, after the correlation spike has

decayed there is clearly an oscillation in the transmission suggestive of coherent

behaviour occurring for small probe delays. Typically, three clear periods of

the oscillation can be observed before the oscillatory behaviour appears to

damp out. Subsequently, the differential transmission curve appears well-fit by

a single exponential function. The appearance of the oscillatory behaviour for

early times suggests that this is the time period in which a 2dFTS experiment

may be used to study coherent behaviour.

We also obtained differential transmission measurements for circularly

polarized light. To produce circularly polarized light for the pump beams
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a quarter-wave plate was placed subsequent to the beamsplitter that recom-

bines the two arms of the Mach-Zehnder interferometer. Thus, cross-circularly

polarized light for the two pump pulses may be obtained by setting the polar-

izers in the interferometer to produce perpendicular linearly polarized light.

Co-circularly polarized light for the two pump pulses is produced by setting

the polarizers in the interferometer to produce parallel linearly polarized light.

There is a second quarter-wave plate used to produce circularly polarized probe

light.

We show here plots for co-circularly and cross-circularly polarized dif-

ferential transmission measurements. Similarly to the results for the linearly

polarized experiments, there is a significant coherence spike that appears in

the co-circularly polarized experimental data, a feature that again appears

largely absent from the cross-circularly polarized result. Some oscillation is

again observable after the coherence spike, though in the case of the cross-

circulary polarized experiments it seems much weaker in amplitude. In both

circular polarization cases, the amplitude of the differential transmission sig-

nal is comparable if somewhat smaller to that obtained in experiments using

linear polarizations.

Some measurements were taken using a linear probe polarization to

probe circular pump polarizations. In that case, the distinction between co-

and cross-circular is not so significant. We note that here a coherence spike

occurs, but is significantly reduced in amplitude compared to that seen for sim-

ilar types of polarization. It is tempting to speculate that the peak intensity
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Figure 5.27: Lifetime dT measurements using circular polarization
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is half of which is observed for the coherence spike in differential transmis-

sion experiments using only linear or only circular polarizations. That result

makes intuitive sense if one considers that the linearly polarized probe light

can be decomposed onto two circularly polarized beams, only one of which

leads to a significant coherence spike in this system. Nonetheless, without

a more rigorous analysis we do not draw any strong conclusions from these

experiments.

The purpose of these experiments is not strictly scientific; instead, we

use these measurements as a check that our apparatus can be controlled and

the data it produces readily understood. Nonetheless, we outline a basic de-

scription of the interpretation of these differential transmission data.

The pump-probe technique relies on the third-order nonlinear polar-

ization induced in the sample by the two pulses. Naively, it may appear

surprising that this system response is a third-order effect but this can be

seen readily in a density matrix treatment. In that model, the modification

of the probe beam – the change in transmission along the phase-matched di-

rection (ks = kpu + kpr − kpu) – results from two interactions with the pump

pulse and one with the probe. To a first approximation the polarization in the

semiconductor is proportional to
∣∣AEprEpuE∗pu + E∗pr

∣∣2, where the function A

is determined by the specifics of the light-matter coupling and the second E∗pr

is the homodyne term due to the co-propagation of the probe beam and the

electric field produced in this nonlinear interaction.

If the time scale of interest is faster than the dephasing time of the
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material, it is necessary to use the semiconductor optical Bloch equations, or

a more sophisticated treatment, to analyze the result of a pump-probe direc-

tion. Alternatively, if the time scale of the measurement is long compared to

the dephasing time, the interpretation of experimental results may be greatly

simplified by discounting the coherent effects of the light-matter interaction.

This is equivalent to considering only the diagonal terms in the density ma-

trix, which describe the occupation of the various states, and ignoring the

coherences that are determined by the off-diagonal elements. In that case,

assuming a two-level system, the decay of the differential transmission signal

directly maps the population decay as the system relaxes to its ground state.

In this limit, a pump-probe measurement reveals the population lifetime. It

is tempting to look at the early time behaviour of the differential transmis-

sion behaviour as indicative of a coherent transfer of population among the

various states involved, but a strict interpretation requires a more complete

model. Simple models, even the simple density theoretic treatment that as-

sumes an ensemble of non-interacting two-level systems, are typically solved

analytically using Dirac delta functions to approximate the laser pulse enve-

lope. Thus, any behaviour during or shortly after the pulse envelope cannot

be strictly analyzed in that model.

5.6.9 Effects of excitation density

While performing differential transmission measurements as a diagnos-

tic of our experimental apparatus, it was necessary to choose the excitation
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density at which we wished to take data for 2dFT. As a third-order nonlinear

process, the signal features should vary in amplitude as the third power of the

applied electric field – or, more simply, linearly as a function of the power of

each pulse that interacts only once with the sample.

We performed a one-pulse measurement to determine if we operating

our experiment the appropriate conditions. Simply, a linearly polarized pulse

of a certain power was focused onto the sample. The transmitted power is

measured with a power meter. The reflection is not measured, but assumed

to be equal to that predicted by the Fresnel equation (we expect R ∼ 0.325)

for GaAs at this wavelength. Any power not accounted for is assumed to

have been absorbed by the medium and re-radiated via exciton formation

and recombination. This is a crude estimate of the exciton population, but

it is consistent with other measurements made in the semiconductor optics

community. As such, its value is not in its predictive ability but rather its

utility as a way to communicate experimental conditions to other researchers.

We performed one-pulse transmission measurements over the range

200uW to 1.5mW, and observed a linear dependence of the transmitted in-

tensity of light over this entire range, suggesting that no significant saturation

effects were occurring in our sample. The spot size was estimated using a

pinhole and a translation stage, and fitting the transmitted power to a com-

plementary error function. This provided as estimated spot size of 0.00038cm2.

Our multiple quantum well sample has ten periods. It is immediately obvious

that depletion of the probe beam occurs in transmission, and that the exciton
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Figure 5.29: Exciton density as a function of power
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density in each quantum well will not be identical, thus the value we quote

here is simply an approximate number.

This simple experiment would indicate that it is possible to go to even

higher powers before saturation issues occurred in the material. We expect that

the third-order nonlinear signal would be more intense using greater excitation

power, and that the signal to noise would be improved by performing higher

power experiments. Nevertheless, we actually choose a somewhat lower power

for our incident pulses to make simpler the comparison to other 2dFT results

(and to other nonlinear spectroscopic measurements, more generally). It would

be impossible to give an exhaustive list of the parameters used in various

different studies of exciton dynamics in GaAs quantum wells. We list here

only a few representative works for illustrative purposes.

Other data obtained in our lab using non-collinear 2dFTS to study exci-

ton dynamics in a multiple quantum wells used an excitation density of ∼ 1010

excitons/well/cm2 in experiments on an 8-period GaAs quantum well sample

[358]]. Other experiments in the field, such as the measurements of the heavy

hole - light hole beating found in [349] and [350], used pulse fluences chosen to

produce exciton densities of 2 × 1010 cm−2. The hole-burning and four-wave

mixing measurements of localization found in [176] made use of an excitation

density of 1010 cm−2 per well in their demonstration of a mobility edge at the

center of the exciton line in GaAs multiple quantum wells. Quantum control

studies have pursued the possibility of developing experimental control of the

phase of population oscillations in GaAs quantum wells at exciton densities of
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1010 cm−2 .

A great number of experiments have been conducted to study the effect

that excitation density has on the dynamics of excitons in quantum confined

systems; the measurements described in [385] used time-resolved three-pulse

four-wave mixing to separate the contributions to the optical response from

homogeneous and inhomogeneous broadening of the exciton resonance. These

measurements were taken at a range of excitation densities, from below 8 ×

107 cm−2 per layer to above 5 × 109 cm−2 per layer. Measurements using

excitation densities from 4× 106 cm−2 to over 109 cm−2 to study the threshold

for onset of significant exciton-exciton interactions were reported in [23].

The measurements of Raman coherence and two-exciton correlations in

quantum wells reported in [167] used an excitation density of 1.4× 1010 cm−2.

The polarization of four-wave mixing emissions from quantum wells was com-

pletely characterized in [286] at excitation densities in the range from 1.5 ×

109 cm−2 to 2× 1010 cm−2.

In order to make comparison to the existing body of literature rela-

tively simple, we perform 2dFTS experiments using time-averaged pump pow-

ers of 1mW. Ideally, four-wave mixing experiments are performed with equal

or roughly equal powers in each of the three excitation beams to maximize the

signal-to-noise of the measurement [247]; however, we resolve a (relatively)

weak four-wave mixing emission that co-propagates with the probe beam. A

square-law detector that is optimized for the dynamic range we expect to ob-

serve for four-wave mixing signals would typically saturate at these powers.
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Thus we reduce the probe beam intensity, using a time-averaged power of

100 uW. It is a common practice in pump-probe experiments to use a probe

that is approximately an order of magnitude weaker for similar reasons. We

note here that our later work, using a monochromator and amplified photo-

diode in conjunction with a sophisticated modulation scheme rather than the

spectrometer-CCD setup used for these 2dFT measurements, we were able to

adjust the probe beam from 100 uW back to 1 mW, placing it on equal footing

with the pump beams. No adverse effects were observed, due to the ability to

perform phase-sensitive detection in conjunction with the AOM-based modu-

lation method.

All the differential transmission data presented thus far, and the 2dFT

data that we present subsequently, was recorded with 1 mW in the static

pump beam, 1 mW in the dynamic pump beam, and 100 uW in the probe

beam unless otherwise explicitly noted.

The appeal of performing 2dFT on GaAs quantum wells as a function

of excitation power is obvious, as it may provide some insight into the relative

strength of those many-body effects that dominate the nonlinear response of

the exciton resonances. This study has not been performed, to the best of

our knowledge; here, instead, we rely on a theoretical model for the lineshape

based on a modified mean-field theory treatment of exciton-exciton correlation

to assess the contributions of the different many-body effects.
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5.6.10 Demonstration of partially collinear 2dFTS with linearly po-
larized light

We perform partially collinear geometry 2dFTS on semiconductor sam-

ples for the first time.

A single 2dFTS two-dimensional spectrum takes approximately 40 min-

utes of time to collect the raw data, and an additional few minutes of computer

analysis at a later date. To produce a spectrum, the zero-delay positions of

the τ and T delays are found. A given T value is chosen and the probe stage

moved to the appropriate position. The precise T delay of interest is gen-

erally determined by studying a simpler, non-spectrally resolved pump-probe

differential transmission measurement; we generally look at points along the

differential transmission curve that we expect to be of interest in understand-

ing the coherent dynamics of the exciton system.

Once the T delay is set, the probe stage is no longer moved. The dy-

namic pump stage is moved to its zero delay position, and the servo electronics

are engaged to actively stabilize the Mach-Zehnder interferometer. The pro-

cess of collecting data as a function of τ now commences: a number of spectra

are taken with the pump beams alternately open and blocked and the differ-

ence spectra are averaged together to produce a single dT/T -esque spectrum.

The probe spectrum with no pump beams on is also saved. Then, the com-

puter controlling the experiment uses TTL control of the servo to unlock the

interferometer. The computer instructs the stage controller to move the τ de-

lay stage in the dynamic pump arm of the interferometer. Another TTL signal
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re-locks the interferometer, and the data collection cycle repeats. As noted,

analog voltage levels are also recorded for the output of the interferometer

photodiode, the output of the loop filter used in the servo, and 1/10th the

voltage used to drive the piezo. Sudden jumps in these data are taken as in-

dicators of phase slips and invalidate the data taken after that point. In order

to compensate for possible deviations in the positioning accuracy of the delay

stage, the target position for each τ step is adjusted with feedback derived

from the servo’s loop filter.
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A minimally pre-processed 2dFTS data set. Shown here, the raw set of 
spectra have been divided by the probe transmission spectrum."

Figure 5.31: Raw 2d data

As a demonstration of our experiment, 2dFTS spectra were collected

with various combinations of linear polarizations for the three pulses. Con-

sider first the raw 2dFTS data, plotted in a mixed frequency-time space, and

abruptly truncated at the end of the τ scan prior to the decay of the pump-
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probe background signals to zero. As noted, it is not practical to collect

densely spaced spectrally resolved data over a τ scan sufficiently long to allow

the emission to decay completely to the background level. The differential

transmission measurements we perform on this sample suggest a lifetime of

hundreds of picoseconds; it would be impossible to repeatably scan the inter-

ferometric delay τ over that kind of time scale without experiencing phase slips

due to laboratory noise. Moreover, even as τ →∞, the signal detected in this

direction would not decay to a zero, due to the presence of the pump-probe

artifact arising from the static pump-probe interaction, which does not depend

upon the τ delay. The long time dynamics are not of particular interest to

us, however, as they are fairly accurately modeled by the single exponential

dynamics that have historically been used to model population decay. More

interesting are the coherent behaviour of the excitons that occurs in the first

few seconds, prior to any dephasing processes substantially affecting the exci-

tonic coherences. As such, only the first few picoseconds (as a function of τ

delay) of the four-wave mixing signal are of interest to us. We typically collect

only 1500 spectra in a single experiment. The resulting hard cut-off will intro-

duce ringing artifacts into the 2dFTS spectrum if no time domain windowing

procedure is performed. We discuss the processing and analysis of these data

elsewhere in this thesis, but note here for specificity that the τ scans used for

these data (slightly greater than 3ps in duration) would broaden a Dirac delta

function spectral feature to approximately 0.316 THz along the ωτ axis.

The processed 2dFTS data are displayed as well. These data are taken
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Figure 5.32: Processed 2d data

with co-parallel, linear pump polarizations and a co-parallel linear probe po-

larization – essentially, the simplest configuration possible. As noted else-

where, the lineshape observed here for a GaAs quantum well sample is sub-

stantially different from that found using a non-collinear geometry 2dFTS

experiment, because the results here simultaneously record the re-phasing and

non-rephasing pathways. Qualitatively, we observe the diagonal features cor-

responding to the light hole exciton and heavy hole exciton resonance, and

off-diagonal features representing coupling between those states. Unlike our

non-collinear geometry experiments, these data do not provide clear evidence

of the presence or absence of coupling for spectrally resolved excitons, since

the sample studied was not prepared appropriately to observe the sharply split

doublets resulting from monolayer fluctuation in the well thickness. Instead,
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these data are useful for a qualitative modeling of the lineshape of a coupled

set of resonances. Our collaborators have had some success reproducing the

lineshape observed in these results, which has so far proven to be simpler to

simulate than the experiments performed using circularly polarized light – per-

haps counter-intuitively. In particular, simulations have managed to correctly

reproduce the zero contour separating positive from negative features on the

diagonal peaks. This diagonal has been studied previously as it relates to the

shift of the three pulse photon echo peak shift, but we do not make a direct

connection to those behaviours here – for an individual exciton resonance, a

real photon echo is not even necessarily expected, although virtual echoes may

still persist. All of the features in the partially collinear 2dFTS plots exhibit

much more vertical, ωτ broadening; part of this is attributable to the relatively

short τ scans used here and suggest the utility of performing longer duration

experiments to determine to what extent this broadening is due to systemat-

ics rather than dynamics of the exciton system. The off-diagonal feature and

diagonal feature at greater ωτ exhibit more pronounced elongation along this

axis that is due to absorption from free carrier states energetically higher than

the light hole exciton resonance, which relax to the lower energy light hole

and heavy hole resonances. This process is rapid, but some data suggest these

processes could be studied with 2dFTS. Due to the phase-twisting that occurs

during pulse overlap it may be difficult to separate the real effects from the

early time artifacts.

We also note here that the presence of absorption from free carrier states
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can be significantly reduced by pulse shaping in the frequency domain. A sim-

ple 4f spectral filter device has been designed to cut out the higher frequency

components of the Ti:Sapph pulse used in our 2dFTS experiments, but has not

yet been constructed. While this would increase the pulse duration and thus

restrict the early time behaviour that can be studied without phase-twisting

the peaks (thereby mixing the imaginary and real parts of the spectrum), it

would also drastically reduce the influence of free carrier states. As noted in

our description of four-wave mixing experiments studying dephasing processes

in semiconductors, these electron-hole pairs will have a substantial dephasing

effect on the exciton system (although we emphasize that these are electron-

hole pairs, not bare electrons or bare carriers, which are known to be far more

destructive to exciton coherences).

We collect extensive data as a function of T for the various linear (and

circular, q.v. sub) polarization configurations. Although the modified mean

field theory our collaboration is using to study these systems cannot yet handle

T 6= 0 relaxation, these data may prove valuable as that theory is extended.

Moreover, it is possible that a relatively simple analysis may be useful to

study the oscillation of the cross peaks corresponding to coupling to study the

quantum beating that is also observed in the simpler differential transmission

experiments. Little fundamentally new science can be gained from previous

experiments that study light hole - heavy hole exciton coupling in semicon-

ductors, and we do not pursue that avenue presently, neglecting it in favour

of studying more sophisticated systems. There are also risks in looking for
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oscillations in these peak heights if there isn’t a well developed theory concur-

rently available to model their behaviour as a function of T , as artifacts may be

mistakenly identified as significant physical processes. It is also possible that

spectral diffusion of the exciton system might be revealed with these 2dFTS

measurements, since the shape of the spectral features is expected to broaden

perpendicular to the diagonal with increased mixing time T . More data would

be necessary to make a significant scientific statement about these effects.

We repeat for emphasis that the linear polarization 2dFTS experiments

shown here (and similarly for the circularly polarized experiments we also per-

formed), any arbitrary polarization configuration may be used for the three

pulses exciting and probing the sample. Previous 2dFTS work on semicon-

ductors was performed using non-collinear phase matching geometries, which

could not use cross-polarized pump pulses due to the need to fix an over-

all, global phase ambiguity using a spectrally resolved transient absorption

experiment – the two-pulse experiment used to set the overall phase cannot

reproduce the same possible polarization configurations available to the three

plus one (local oscillator) pulse experiments used to generate the 2dFTS plots.

While an all-optical method has been demonstrated recently to find the rel-

ative phases of all of the pulses used in the non-collinear 2dFTS experiment

[53], that technique still requires an additional, sophisticated measurement to

correctly resolve the phase ambiguity. We note here that our experiments

assumed that the pulses that were correctly zeroed in τ delay were also in

phase; this assumes that the optical path lengths through the dispersive ma-
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terials comprising the lenses, etc, do not differ substantially between the two

interferometer arms. This is an untested assumption, and could introduce

phase ambiguity into the experiment and confuse the separation of real and

imaginary parts of the 2dFTS spectrum. Fortunately, we have placed AOM’s

into each beam path, which permit independent control of the amplitudes and

phases of the probe, static pump, and dynamic pump beams; in future ex-

periments these will permit us to directly observe and control the phases of

the three pulses used for these experiments. We have already demonstrated

this control in two pulse differential reflectivity measurements performed on

quantum well samples.

5.6.11 Demonstration of exciton selection rules using circularly po-
larized light

As noted, one of our motivations for constructing the partially collinear

2dFTS apparatus was to perform experiments with arbitrary polarization con-

figurations, principally to provide data used to further develop a modified mean

field theory for exciton dynamics. As a first proof of principle, the partially

collinear geometry is used to consider selection rules for exciton transitions.

To perform 2dFTS with light of a particular helicity, two quarter wave

plates are used to produce circularly polarized light. One is placed after the

Mach-Zehnder interferometer that produces the pump pulse pair, while the

other is placed in a convenient location in the probe beam path after its half

wave plate and linear polarizer. To change from one circularly polarized state
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to the other the wave plates are not altered, but the linear polarizers prior to

the plates are rotated by π/2. After the quarter waveplates, the only optic

other than steering mirrors is the focusing lens prior to the sample.

A waveplate alters the phase relationship between two perpendicu-

lar polarization components for some incident ray of light, exploiting crystal

anisotropy to create a fast axis and a slow axis for orthogonal polarization

states. In a typical quarter wave plate, the crystal is cut so that the optic

axis is parallel to the optical surface. If incident light is linearly polarized at

a 45 degree angle to that axis, it can be decomposed onto a basis of linear

polarization states parallel and perpendicular to the optic axis. The indices of

refraction experienced by light propagating along these directions will be dif-

ferent; thus, one polarization component will propagate through the medium

faster than the other. As a result, a phase shift is introduced between the two

components. While the incident linear light has a 0 radian phase shift between

the two components, the transmitted light will exhibit a π/2 phase shift be-

tween the two linear states. As a result, the electric field co-propagating in the

frame of the light is constant in magnitude, but rotates about the direction

of propagation – this is a circularly polarized ray of light. To ensure that the

light is circularly polarized rather than in some general helical state, careful

alignment is necessary to ensure that the waveplate’s optic axis is aligned at a

π/4 angle to the linearly polarized light. Like most optical processes that do

not exploit magnetic effects, the process is symmetric and permits circularly

polarized light to be converted back into linearly polarized light.
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In these measurements we did not determine if the light was left- or

right-hand circularly polarized. We can determine whether it is in one or

the other state, determined by which linear polarization is used to create the

circularly polarized light. We label the beams used in circularly polarized

experiments as A or B to distinguish between them. For brevity, 2dFTS

experiments are labelled (X, Y, Z) to indicate an experiment using X polarized

light for the dynamic pump, Y polarized light for the static pump, and Z

polarized light for the probe beam. These data were taken with the same,

standard powers used for the linearly polarized experiments, 1.00 mW in each

pump beam and 100 uW in the probe beam.

2dFTS experiments have previously been performed in a non-collinear

geometry to study selection rule physics in similar GaAs quantum wells [411].

There, a theoretical model was used to describe features in the real part of the

observed 2dFTS spectrum (due to the π/2 phase shift between the emitted

field and polarization induced by the ultrafast laser pulses, this corresponds to

the imaginary part of the nonlinear susceptibility); these experiments concen-

trated on isolating the biexciton correlations by suppressing the single exciton

features with cross-polarized excitation pulses. This measurement used an

additional spectrally resolved differential transmission experiment to correctly

phase the ambiguous 2dFTS spectrum produced by the non-collinear experi-

ment.

Based solely on the spin sub-states of the valence and conduction bands,

no significant coupling of light hole and heavy hole exciton resonances should
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The exciton energy level diagram (a), showing the polarizations that 
couple the states in the conduction and valence bands. Heavy hole 
excitons are indicated by the red arrows, while light hole excitons are 
indicated by blue arrows, in reference to their higher energy. Diagrams 
are also shown for co-circular excitation (b), (c), where no common 
states are present. In either of these cases, there no coherent coupling is 
expected without considering many-body physics effects that are not 
included in this simple model.!
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Figure 5.34: Exciton energy diagram and coupling
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be expected for co-circular excitation. Nonetheless, the coupling features are

readily observed in our co-circular spectra; this suggests that the many-body

interactions absent from that simplest model for exciton energy levels are re-

sponsible for the appearance of these cross-peaks. This result is comparable to

previously observed coupling for co-circular 2dFTS measurements performed

in a non-collinear geometry [411] and other spectroscopic techniques [122],

[352], [349]. Only theories treating Coulomb correlations beyond the Hartree-

Fock approximation correctly predict the strong off-diagonal features coupling

the light and heavy hole exciton resonances in this system. The combination

of Hartree-Fock interactions, Pauli blocking, and the Coulomb correlations

among excitons is necessary to provide the correct line shape, including the

free carrier absorption features that elongate along the ωτ axis.

This previous 2dFTS work in the non-collinear geometry [411] was un-

able to produce properly phased 2dFTS spectra because of its reliance on an

additional experiment to properly phase the measured two-dimensional spec-

trum. As such, only magnitude data were available. We can produce properly

phased 2dFTS spectra with cross-circular polarization configurations, but lack

a sophisticated model with which to analyze these results. As such, we simply

consider the qualitative effects observed in the absolute magnitude spectra, in

parallel to previous results.

Our experiments are capable of arbitrary polarization configurations.

We note, however, that the cross-polarized pump experiments performed with

T ∼ 0, and indeed, all of the experiments performed without all three pulses co-
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circularly polarized, produce 2dFTS spectra with significantly weaker features

that are, in some configurations, not even apparent on the same scale as those

present in the co-circular spectrum. For some combinations of the circular

polarization states, the features will be suppressed by an order of magnitude

compared to the spectral features present in co-circular excitation 2dFTS –

although some resonances and couplings may still be observed.

To first order, then, this result is reasonably well understood in the

context of the simplest model of exciton dynamics, absent any coupling of the

exciton states. In that case, the 2dFTS partially collinear experiment with

any of the pulses cross-circularly polarized is essentially an incomplete 2dFTS

experiment – no intense, coherent, phase-matched signal is expected if one of

the pulses fails to interact with the exciton population due to its cross-circular

polarization. In other words, it’s almost as if the experiment were missing one

of its pulses, or if one of the pulses were detuned from resonance and thus

returned a null spectrum.

Certain cross-circular polarization combinations do produce reasonably

well-resolved features, however. Of course, both co-circularly polarized pulse

configurations produce strong 2dFTS features both on the diagonal and off;

we note that one all co-circular polarization configuration (type (B, B, B) in

our jargon) produces stronger features than the other (type (A, A, A)).

It may be expected that experiments where the first two intense pulses

are co-circular and the probe pulse is cross-circular result in stronger, more

clearly resolved features than those observed with two cross-circularly polar-
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Figure 5.35: Co-circular absolute magnitude 2dFTS spectra
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Figure 5.36: Mixed circular absolute magnitude 2dFTS spectrum

ized pump pulses, with a probe pulse co-circular with either pump. We note

that (A, A, B) produces very strong signals, which are essentially comparable

in overall strength to those found for (A, A, A), albeit with a far dominant

cross-peak corresponding to light hole/free carrier absorption and subsequent

heavy hole emission. In this (A, A, B) spectrum the diagonal terms are sup-

pressed compared to the strengths seen in the (A, A, A) or (B, B, B) spectra

– here, light hole diagonal feature is moderately strong but the heavy hole

diagonal resonance is strongly suppressed. It is not immediately clear why

this should be the case, since the (A) circularly polarized light should couple

to both the exciton resonances. Further study of this weakening of the heavy

hole exciton is of interest, but careful attention must be paid to replicating the
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laser tuning conditions precisely, as well as collecting data at a large number

of T delays to account for the effect of coherent transfer of population, and

to ensure that this phenomenon (previously observed) is not responsible for

the apparent polarization selection physics seen here. Indeed, this problem

may be well suited to analysis using a 3dFTS experiment that could better

visualize the coupling features.

(B, B, A) circularly polarized light also results in moderately strong

features, though not as intense as those observed for the (A, A, B) experiment;

this may seem somewhat counter-intuitive given that the (B, B, B) experiment

results in stronger features than (A, A, A) co-circularly polarized pulses, but

it may be that it is the final interaction of the probe light with the sample

that determines the magnitude of the 2dFTS spectral features. That argument

is supported by the (B, A, B) spectra possessing stronger features than the

(A, B, A) spectra. It is not, however, contradicted by the (B, B, A) spectra

possessing stronger features than the (A, B, B) spectra. Interestingly, the (B,

B, A) experiment seems to have a turn-on effect, where the early time spectra

(we show here a result for T = 0.46 ps) is somewhat weaker and noisier than

one taken at later time (T = 3.9 ps here). Further data – in particular, densely

spaced data as a function of T – are needed to study whether or not this is a

coherent effect.

We similarly note an unusual time dependence for the (B, A, A) spec-

trum, where a negative T spectrum contains stronger features than those taken

with T > 0.
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Figure 5.37: Mixed circular absolute magnitude 2dFTS spectra - 2

In general, for non-cocircular experiments, the cross peak above the

diagonal, indicating light hole absorption and heavy hole emission, seems to

be enhanced relative to the other spectral features. This suggests a particular

mechanism by which the excited populations communicate.

Further analysis is clearly necessary to understand these features. We

collected data for a moderate number of T values, with the assumption that

it may prove useful once the theoretical treatment used to study our other re-

sults develops the ability to properly model T 6= 0 relaxation dynamics. These

preliminary spectra may suggest that spectra taken with cross-polarized pulses

require time for the coupling between the separately excited populations to oc-

cur probabilistically, while some particular cross-polarized configurations per-

mit T = 0 coherent coupling. Careful analysis of the behaviour as a function

of T is needed.
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5.6.12 Reflection 2dFTS experiments

Having performed experiments on GaAs quantum well samples in a

partially collinear geometry, it becomes immediately obvious that reflection

mode experiments are also possible. In this case, the four-wave mixing emis-

sion again simply co-propagates with the probe beam, albeit with the reflected

component rather than the transmitted part. There is an obvious disadvan-

tage to studying reflected four-wave mixing signals, as they are inherently

weaker than those collected in transmission experiments; nonetheless, many

complicated structures cannot be studied in a transmission geometry at all.

We consider this topic at greater length in the next chapter; here, we simply

present 2dFTS reflection mode data as a proof of concept.

While the multiple quantum well samples examined here are certainly

amenable to spectroscopic measurements in a transmission geometry, they are

used to demonstrate this technique. We perform (B, B, B) co-circularly polar-

ized 2dFTS experiments on a GaAs/AlGaAs multiple quantum well sample,

using 1.00 mW for the pump beams and 100 uW for the probe beam.

The lineshape revealed in these plots is more complicated than what

we observe for 2dFTS in transmission measurements. This is not due to any

systematic error in the experiment, it is simply a result of the nature of the

emission from this sample. Each quantum well in the 10 period sample emits

a four-wave mixing signal. Each of these emissions has a different phase,

related to its depth in the sample and the distance along the optical path the

incident pulses must penetrate to reach that well. Moreover, while in principal
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a weak reflection from the interface of each quantum well could provide a

heterodyne field, in reality the detected signal is proportional to the product

of the individual four-wave mixing emission from each well and the strong

first reflection of the probe beam off the front surface of the multiple quantum

well sample. Since each four-wave mixing emission has a non-trivial phase

relationship with that first reflection, the coherent sum of all of these emissions

has a complicated spectral structure. Since we do not have any real control

of the sample structure and can only estimate the optical path travelled by

the incident and reflected beams, we do not attempt to extract substantial

information from these plots. Instead, we simply note that this is the first

time 2dFTS has been demonstrated in a reflection geometry. We reported this

result previously this year [115].

2dFTS in a reflection geometry is a promising techniqe, as it may ob-

viate restrictions on optical density due to signal distortion that limit the use

of transmission mode experiments [409]. The non-collinear\BOXCARS geom-

etry that has previously been used to perform 2dFTS measurements on semi-

conductor samples is not easily adapted to perform properly phase-sensitive

measurements in a reflection geometry, but in the partially collinear geome-

try used here this extension is trivial due to the co-propagating probe field

that acts as a local oscillator. We consider the phase effects of this homotime

signal subsequently in our chapter on a novel four-wave mixing spectroscopy

experiment.
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2dFTS performed in transmission (a), (c) and reflection (b), (d) geometries. In 
transmission mode, the four-wave mixing signal from a structured sample 
maintains a trivial phase relationship with the co-propagating probe beam (a) 
that acts as a local oscillator, whereas in the reflection experiments there is a 
complicated relationship among emission from various depths within the 
sample and the strong first reflection of the probe beam (d). This model for the 
reflection experiments does not consider phase mismatches between the 
polarization induced in the reflection geometry and the in-bound probe beam.!

(a)! (b)!

(c)! (d)!

Figure 5.39: Phase in reflection mode 2dFTS
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5.6.13 Miscellaneous extensions

Performing 2dFTS on semiconductors in this partially collinear geome-

try permits interesting extensions of these measurements; indeed, these reflec-

tion geometry experiments are the first such extension of conventional trans-

mission measurements. Reflection 2dFTS allows the study of samples that

cannot be probed in transmission, whether simply due to high optical density

or opaque substrates – or more scientifically interesting, allowing the study of

samples that cannot be probed with a completely nc2dFTS experiment due to

a selection rule restricting the χ(3) response of the system. Partially collinear

2dFTS permits nonlinear experiments that depend on angle-tuned momentum

transfer effects, as we will describe at length in a subsequent chapter.

The partially collinear geometry is also a step toward performing 2dFTS

in a single beam, completely collinear geometry that would permit the study

of systems not amenable to a non-collinear experiment. For non-collinear

beam geometries, if the characteristic length scale of a sample is less than

the wavelength used to excite it, the translational symmetry of the system

breaks down and a coherent emission will no longer be radiated along a phase-

matched direction. Fully phase stabilized 2dFTS measurements of a single

quantum emitter remain a significant experimental challenge.
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Chapter 6

A novel coherent spectroscopy technique

6.1 Introduction to and motivation for a new experi-
mental program

6.1.1 Coherent spectroscopy in reflection mode

We have previously demonstrated 2dFT spectroscopic measurements

on a semiconductor nanostructure in a reflection geometry – albeit on what

may be considered an extremely simple nanostructure: the multiple quantum

well. As noted, these measurements are not technically challenging to perform

in the partially collinear 2dFT geometry, since the reflected probe beam and

co-propagating four-wave mixing emission is easily collected, collimated, cou-

pled to a fiber and transmitted to a spectrometer for acquisition in a manner

completely analogous to that used for the transmission mode 2dFT measure-

ments.

We have observed, however, that performing 2dFT measurements in re-

flection geometry on a multiple quantum well sample is not a useful scientific

pursuit, other than as a demonstration of the spectroscopic capabilities of our

experiment, due to the non-trivial phase relationship between the strong first

reflection of the probe beam and the four-wave mixing emission occurring from

the various depths of the individual quantum well layers inside the material.
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Given the moderately high index of refraction of Gallium Arsenide and Alu-

minum Gallium Arsenide at the relevant wavelengths, the optical path length

that these beams propagate before exiting the sample and co-propagating with

the strong first reflection is not insignificant, and the resulting 2dFT spectra

cannot be understood by approximating the system as one with emission from

only a single layer.

Results obtained from high quality single quantum well samples should,

however, be able to be readily understood in the reflection geometry 2dFTS

experiment. The sample we studied contained ten periods of quantum wells,

but we do not anticipate that the signal intensity would drop by a factor

of ten compared to the multiple quantum well sample, due to the coherent

nature of the addition of the various emissions, which are not necessarily (or

likely) in phase with one another, and due to the reduced excitation intensity

that penetrates the sample to the various quantum well layers. Deeper in

the sample, a significant fraction of the laser power will have been absorbed

or scattered in overlying material, or reflected from the interfaces between

wells and spacer layers, and thus less power is available to induce four-wave

mixing emissions from the deeper layers. The worst case scenario should only

obtain for a pathological sample with quantum wells spaced precisely an integer

number of wavelengths apart as measured along the optical path of the probe

beam, and even that material sample would not be expected to exhibit a

tenfold decrease in four-wave mixing strength. Nonetheless, we note that a

factor of ten decrease in intensity would result in a decrease in the signal-to-
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noise ratio of approximately
√

10 – which we estimate would still allow high

quality spectra to be obtained from a single quantum well sample. In certain

transmission experiments performed with circular polarizations we observed

a weaker spectrally resolved differential transmission signal and increased the

number of spectra pairs that were captured at each τ delay to ensure a high

quality 2dFT spectrum would be obtained. Doubling the number of spectra

captured did not significantly affect the number of experiments that could be

conducted during a given day, given the various other experimental hiccups

that typically determine an experiment’s duty cycle. Nor did increasing the

amount of time spent at each τ step affect the ability of the apparatus to

maintain interferometric stability over the course of an experiment. As such

we do not anticipate that collecting 2dFT spectra from a high quality Gallium

Arsenide – Aluminum Gallium Arsenide single quantum well sample.

There are, however, other samples that are of significant interest that

may only be studied in a reflection mode.

6.1.2 Motivation for reflection experiments

There are several reasons why performing measurements on these sam-

ples in a reflection geometry is desirable. A brief summary of the technical

arguments for studying even simple structures such as quantum wells is given

in [183]. Immediately obvious are the issues related to studying samples grown

on optically thick substrate materials. This is a significant problem for struc-

tures grown on direct band gap semiconductors, which are normally strong

383



absorbers. Excess material reduces the effective intensity of both the exci-

tation pulses and the four-wave mixing signal (indeed, in an optically thick

material the picture of a propagating electromagnetic wave is itself somewhat

questionable, as the excitation may be more accurately described as a polari-

ton due to the strong light-matter coupling – consider for example the results

of [23], which used a phase and amplitude sensitive ultrafast technique to

study the dynamics of excitons in GaAs heterostructures over a broad range

of excitation densities and found that weakly excited systems should more

accurately be described as polariton systems and require polaritonic interfer-

ence and motional narrowing effects). It is true that removing the relatively

opaque substrates that samples are generally grown upon is a nuisance as it

adds a not trivial step to the experimental preparation, but this is may still

appear more of a technical problem rather than a scientific one. Nonetheless,

the interpretation of the results of measurements performed in transmission

geometry may be difficult if inhomogeneous absorption of either the excita-

tion pulses or the emission occurs while propagating through the substrate

materials [327]. Additionally, the etching of samples introduces mechanical

strain into the system, which can substantially affect the band structure near

the band edge. To some extent, these complications could likely be avoided

by heavily doping the substrate material in order to shift the onset of its ab-

sorption features to a higher photon energy, but this approach would limit the

range of exciton energies that can be studied in the quantum well system –

and thus dictates the minimum well thickness that is easily studied in such a
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system. Chemical-mechanical etching typically results in poorer quality op-

tical surfaces, resulting in increased scattering that deleteriously affects the

signal-to-noise.

It is not advisable to perform transmission measurements on thin, un-

supported GaAs platelets since the strain present in those materials is typically

substantial, and results in strong inhomogeneous broadening of the exciton

resonances. Without the capping layer and substrate, these transmission mea-

surements will be affected by rapid, efficient recombination at the surface,

significantly altering the dynamics of the exciton population in these materi-

als [120], [130], [328]. Distortion effects due to the propagation through these

materials near the absorption resonances have been studied, but cannot be

discounted – even thin samples will introduce free-induction-decay types of

distortions [215].

More significantly, however, we are interested in the ability to perform

coherent ultrafast spectroscopic measurements – such as 2dFT – in a reflection

geometry in order to permit the study of systems that simply cannot be studied

in a transmission geometry. It is not difficult to imagine a large number of opto-

electronic systems whose quantum properties and nonlinear optical response

could be studied to great effect in a reflection capable apparatus – distributed

Bragg reflectors with semiconductor regions where either injection of carriers or

optical creation of an exciton population modulate the structure’s behaviour,

or a sample comprising quantum dots embedded in microcavities. We could use

a reflection geometry experiment to study the exciton dynamics of quantum
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dots located inside nanowires that act as waveguides for the emission of certain

particular modes [33].

6.1.3 Motivation for controlling beam geometry

A significant number of these experiments would also appear to benefit

greatly from the ability to control the precise geometry of the various beams

interacting with the sample, in order to observe or exploit geometrical effects

that alter the nature of the structure’s optical response. In particular, we are

interested in developing tools to coherently study nanostructured systems such

as the one described in [373].

Here, a patterned gold structure is constructed on top of a 10 nm

thick single AlGaAs-GaAs-AlGaAs quantum well. The quantum well is grown

with standard molecular beam epitaxy techniques on top of a normal Gallium

Arsenide substrate. The upper barrier layer is 20 nm of Al0.3Ga0.7As, and a

relatively thin 3 nm GaAs capping layer. As a result of this structure design,

the GaAs quantum well is relatively close to the surface of the semiconductor

material, which nonetheless exhibits sufficiently high optical quality. On this

surface, an 80 nm thick gold film is deposited, then patterned with an array

of slits with a slit width of 140 nm and a translational period of 500 nm.

Scanning probe electron microscopy was used to characterize the quality of the

structure and confirm that it satisfied design specifications. It is expected (and

indeed, demonstrated) that the presence of the grating substantially alters the

nonlinear response of the exciton system; it is expected that near field effects
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GaAs quantum well/ 10nm!
AlGaAs buffer layer/ 50nm!
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Cross-section sketch of nanostructure of interest, fabricated by our 
collaborators at the  University of Oldenburg. The semiconductor 
structure is grown by molecular beam epitaxy on a GaAs substrate. A 
solid gold film is deposited, then patterned using electron beam 
lithography. 140nm slits are etched into the gold film, resulting in a 
one-dimensional periodic structure – a grating – with a lattice constant 
of 500 nm. The size of the gold structure is limited by the resolution of 
the lithography tool, as the grating resolution and the digital precision 
of the device effectively limit the total area that can be patterned.!

Figure 6.1: Cross section of hybrid sample
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arise due to the coupling between a surface plasmon polariton mode at the

metal-semiconductor interface to the exciton mode in the GaAs quantum well.

The evanescent wave for the polariton is expected to extend sufficiently into the

quantum well to mediate that coupling. It is further expected that the hybrid

exciton-surface plasmon polariton mode will then couple to a second surface

plasmon polariton mode at the metal-air interface, resulting in emission that

transmits power away from the system in a manner that can be detected in

the far field.

6.2 Polaritons

We briefly consider the background of the polariton description of ele-

mentary excitations in a solid.

Polaritons were initially studied as the coupling between the long wave-

length excitations of a crystal lattice and an incident optical field [118], de-

veloping a quantum mechanical model for what we would today call the lon-

gitudinal and transverse optical phonon polaritons. Prior to Fano’s work, the

dielectric constant had been used in classical models developed to study the

response of electrons displaced from their equilibria by a driving field, but

a quantum mechanical theory of dielectric effects had not previously been

established using an atomic description of the medium. Subsequently, the

contributions of excitons to the dielectric constant of a material was consid-

ered [186] with the conclusion that the eigenstates of the system comprising

an absorptive medium and optical field are in fact a mixture of the photon and
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The surface plasmon polariton is a solution to Maxwellʼs equations 
that describes an excitation largely confined to propagate in the 
plane of the interface between a metal and a dielectric with a smaller 
wavelength than that of a free electromagnetic wave. By separation 
of variables it can be shown that the transverse surface plasmon 
polariton mode is an evanescent electric field that decays 
exponentially with increasing distance from the interface, with a 
characteristic length scale of less than 100nm. Typical propagation 
lengths are limited to a few microns before damping dissipates the 
excitation. Lifetimes are typically a few hundred femtoseconds.!

Figure 6.2: Surface plasmon modes at an interface

389



exciton states – this is the exciton polariton that is of direct relevance to our

own experimental program. The development of the exciton polariton model

at this point is perhaps more astonishing given that early evidence had only

just begun to suggest the experimental observation of exciton states [14], [16],

[15], [168], [150], [13]. The approximate exciton Hamiltonian was shown at this

point to be diagonalized by a hybrid eigenmode, and that interactions among

the excitation eigenstates are necessary to obtain finite lifetimes (barring other

perturbative effects) [186].

We are interested in a hybrid mode that describes the coupling of

a surface plasmon polariton to an exciton via an optical dipole interaction.

Nonetheless, because our studies have primarily focused upon exciton physics,

we tend to elucidate the polariton picture in the context of the exciton po-

lariton, due to its familiarity. The principles are largely the same, in that a

material excitation that would, in a vacuum, be well described by a dispersion

relation readily calculated from its Hamiltonian is coupled to an excitation

of the electromagnetic field, viz. a photon, that also would be well described

by eigenstates derived from a simpler Hamiltonian when in vacuum. It is the

coincidence of these two particles (or excitations, or what have you) and the

coupling between them that requires a more sophisticated treatment, from

which the polariton quasi-particle description emerges.

In the most general statement, the coupling of an elementary excita-

tion mode with an external field results in a new quasi-particle. A polariton

is a particular example, which describes the coupling of some aspect of the
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electric polarization wave and an electromagnetic wave [271]. The polariton

is a general quasi-particle framework used to describe some hybrid mode that

is not accurately described by a decoupled electron and material polarization

excitation.

6.2.1 A general analysis of coupled oscillation modes

In this analysis we follow the useful examples and derivations of refer-

ence [271].

In a given material system it is not often physically reasonable to ignore

the large number of oscillating excitations that will be present, a substantial

number of which may interact with one another. Often, attempts to simplify

the physics are made with an appeal to the simplifications suggested by a

dilute system, but even the simplest behaviours of solids are often dependent

upon these interactions; for example, electrical resistivity is due (at least in

part) to the scattering of electrons by phonons.

In a first step that must be familiar to any student of mathematical

physics, we simplify the analysis of the coupling between different fields rep-

resenting different species of excitations by writing an interaction potential

that may be linearized in the independent variable of either field. We need

only consider bosonic quasi-particles, since the excitations of interest to us

– excitons, photons, surface plasmons (perhaps surprisingly) – all obey Bose

statistics.

The interaction between two modes can thus be expressed using the
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potential

U (x, y) =
ω2

1x
2

2
+
ω2

2y
2

2
+ γω1ω2xy + (higher order terms)

A kinetic energy for center of mass motion for the modes of interest

has the same form as always,

T =
1

2

(
ẋ2 + ẏ2

)
where the generalized coordinates (x, y) used here are chosen so as to

permit us to write these terms without any explicit mass variables.

Using the kinetic and potential energy expressions above to write a La-

grangian function for the coupled modes permits the derivation of two coupled

equations of motion

(
ẍ+ ω2

1x
)

+ γω1ω2y + (nonlinear terms) = 0

(
ÿ + ω2

2y
)

+ γω1ω2x+ (nonlinear terms) = 0

At which point we apply the ubiquitous trick of disregarding the non-

linear effects with the usual caveat that the amplitude of oscillation for x and

y be kept sufficiently small. We note that these equations of motion are linear

in each independent variable, and that even after eliminating the nonlinear
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terms, the x and y degrees of freedom are still coupled with strength γ. The

simultaneous solution of these equations in x and y may be found by diago-

nalizing the

The simultaneous solution of the two equations of motion, neglecting

the nonlinear interaction, can be found by a standard technique from the study

of partial differential equations, diagonalizing the matrix

∣∣∣∣ ω2
1 − ω2 γω1ω2

γω1ω2 ω2
2 − ω

∣∣∣∣ = 0

thus obtaining two eigenfrequencies, ω±, and the two coupled x − y

eigenmodes. these modes are linear combinations of the uncoupled x and y

eigenmodes, with the particular dependence on each of the uncoupled eigen-

modes depending on the frequencies of oscillation. The mixing of the eigen-

function solutions is greatest when the frequencies of the uncoupled modes are

roughly equal, i.e. when ω1 ∼ ω2. This solution of the equations of motion

is equivalent to an orthogonal transformation of the original problem, result-

ing in a solution with two uncoupled harmonic oscillator solutions in the new

coordinate system. These uncoupled oscillators are polariton modes for the

coupled system. We note that if there are sufficiently large nonlinear terms

that their effects may not be neglected then the representation of the inter-

action as two completely uncoupled harmonic oscillators in a new coordinate

system is not valid [271].
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6.2.2 The polariton as a coupled, propagating polarization-optical
field

The exact solution of the full Hamiltonian, including the interaction

terms that couple the two different excitation modes, results in a straightfor-

ward polariton picture of the light-matter coupling [221]. Our analysis else-

where has been developed under the assumption that the description of the

light-matter coupling does not substantially alter the eigenstates of the elec-

tromagnetic excitation modes (i.e., photons) or the material excitation modes

(excitons, as we are primarily concerned with their dynamics). It is often the

case that under weak excitation, useful results are thus obtained by assuming

a less strongly coupled system, and treating the optical interaction as a per-

turbation of the semiconductor crystal system. In the perturbative approach,

the material excitation and the electromagnetic field are treated as distinct

entities.

If the polarization wave in some material may be given by

P (ω) = ε0 (ε (ω)− 1) E

then a polarization wave must always be present in any material, where

the index of refraction (or, alternatively stated but, excluding for the moment

magnetic materials, the permittivity) are not equal to unity. At sufficiently

high frequencies, the permittivity for most materials will tend to 1, and this

situation no longer obtains, but for most substances that effect is insignificant

until the optical frequency pushes into the x-ray portion of the spectrum. As
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a result, in the materials we are interested in, the propagating electromagnetic

mode in a solid substance consists of an admixture of an electromagnetic wave

resembling light and a polarization wave due to the material response [221].

Mechanically, the polarization wave comprises the movement of the ionic cores

comprising the crystal, collective excitations of the free electrons in the solid,

and two-particle electron-hole pair excitation. In the case of the semiconductor

materials we are interested in, excited below the bandgap, we have established

that the polarization mode can be attributed principally to the exciton mode –

unbound electron-hole pairs may be represented as continuum exciton states,

and we neglect the coherent excitation of optical phonons to simplify the analy-

sis. In metal substances, the motion of the free electrons relative to the crystal

lattice is more significant than in an intrinsically doped semiconductor, and

these excitations may be understood in a quantized picture as the plasmons

that we discussed previously. The coupling of polarization waves due to exci-

tons and, independently, plasmons, to the optical field is the subject of this

experimental program.

As a general principle the coupling of two modes, resulting in a hybrid

excitation, must be considered in the vicinity of the point the two separate

dispersion relations of the isolated modes would otherwise intersect. This may

be understood as a straightforward application of the familiar anti-crossing

phenomenon for interacting energy levels. In particular, where the dispersion

relations for the exciton and photon would intersect, a hybrid mode known as

- an exciton polariton is formed. The behaviour of this particular polariton
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A cartoon dispersion curve for exciton modes in the semiconductor 
quantum well plotted with the surface plasmon-polariton dispersion 
curves (a). In the inset, level anti-crossing for the coupled modes 
results in the emergence of a hybrid, mixed excitation mode (b). 
Coupling only occurs for a small range of momenta, determined 
experimentally by the angle tuning of the excitation and probe 
beams.!
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Figure 6.3: Dispersion curve mixing
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mode were studied quite early by Fano and Hopfield, obtaining a dispersion

curve qualitatively similar to that derived from the Lorentz oscillator model

[92].

In a vacuum, the propagating transverse modes of the electromagnetic

field are light waves, which are quantized as photons. In matter the dispersion

relationship for light is relatively trivial, Ek = ~ωk = ~ck
n0

, describing simply a

straight line in the momentum-energy space. The dispersion relationship for

the coupling material excitation is, of course, generally more complicated. As

a result, the exciton polariton is more complicated than the phonon polariton,

where the relatively flat longitudinal optical phonon curve simplifies emergence

of the hybrid mode.

For the exciton polariton, we may write a simple toy exciton dispersion

relationship based solely on the Wannier equation (see, for example [166]) as

Etot = Eg + En + ~2K2

2M
where Eg is the bandgap energy, En is the exciton

binding energy (which, n.b. is negative for bound states, and zero for states

in the continuum) and ~2K2

2M
is the kinetic energy of the exciton, subject to the

usual provisos regarding effective masses.

The light-matter interaction is understood as a propagating electromag-

netic wave that excites dipole oscillations in the material. That oscillation is,

macroscopically, a polarization that then radiates an electromagnetic wave,

which excites the oscillators, ad infinitum. In second quantization formalism,

a Hamiltonian may be written for this system [221] as
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H =
∑
k

~ωka
†
kak +

∑
k′

E (k′)B†k′Bk′ + i~
∑
k

gk

(
B†kak + a†kBk

)
which may be understood in a relatively straightforward manner as the

photon energy (the first term), the energy of some particular excitation (the

operator B is the annihilation operator for some non-specific material excita-

tion mode; for our purposes, all the relevant excitations are Bosonic), while

the third term is the coupling between the two (note that it creates a material

excitation quantum for each photon it destroys, and vice versa). The g pa-

rameter merely quantifies the strength of this interaction. This Hamiltonian is

then diagonalized by writing it using operators pk that are linear combinations

of the creation and annihilation operators for the optical and excitation fields.

We do not describe this diagonalization process in detail here but refer the

reader to the description found in [221]. The resulting Hamiltonian is simply

H =
∑

kEkp
†
kpk, where the pk are annihilation operators for the polariton

mode and Ekthe corresponding eigenenergies. The problem of understanding

the light-matter interaction is thus reduced to finding the dispersion relation-

ship for the polariton. Sufficiently far from the exciton resonance, the polari-

ton dispersion curve will appear more linear and photon-like, while near the

transition frequency it becomes bent due to the level repulsion.

6.2.3 Polaritons in quantum well systems

Although we may make significant progress toward understanding the

systems we study without introducing the polariton concept, polariton effects
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e!

h!
Diagrammatic representation of a polariton, where the hybrid light-material 
excitation mode is instead depicted as a photon that propagates (left to right) 
until it is annihilated during exciton emission. The electron and hole that 
comprise the exciton exchange virtual photons that mediate the Coulomb 
interaction. Upon exciton absorption, a photon is emitted that propagates until 
it is once again absorbed."

Figure 6.4: Polariton propagation diagram

must necessarily be considered for multiple quantum well samples, where elec-

tromagnetic modes propagate through regions that contain resonances (the

wells) and regions that do not (the barriers). Since the characteristic length

scales are less than the optical wavelength, it is no longer accurate to visualize

the system as a propagating electromagnetic wave (light) coupling to an exci-

tation (in this case, the exciton resonances) [221]. Instead, a polariton picture

is a more accurate description of the system. While a perturbative treatment

of the optical coupling is usually sufficient for dilute systems, in a strongly

absorbing solid such as a direct band gap semiconductor, a polariton picture

is an inherently more accurate treatment of the light-matter interaction [221].

One may develop an intuitive understanding of the polariton mode as the

propagation of a coupled electromagnetic-material oscillation that results in

the creation of a free photon only when it exits the material at an interface
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with the vacuum [270].

6.2.4 A brief summary of plasmon physics

The field of plasmonics is rapidly growing and is of great interest from

the perspective of both pure and applied physics. We do not delve in great

detail into the theory of plasmon quasi-particles, despite their centrality in the

samples we are presently turning our attention toward. In part this is because

the exciton polariton is more approachable given the extensive descriptions of

exciton optics elsewhere in this thesis, but also in part because the plasmon

polariton-exciton coupling of interest to us is studied by its effects on exciton

resonances, rather than its effects on the plasmon polariton.

As we have noted several times, the characteristic of a collective excita-

tion is that it is not associated with a single particle but is instead a compound

motion of the constituents of the entire material system. The excitation of an

electron gas is another such elementary collective excitation. In the limit that

this motion can be quantized and treated in a quasi-particle framework, it is

called a plasmon. Plasmons can have a significant effect on the physical prop-

erties of the material system, as the electron plasma effectively screens the

Coulomb interaction (in the highest density limit, the electron plasma may

be understood intuitively as a conductor). We note that both classical treat-

ments of plasma oscillations and quantum mechanical treatments of plasmons

are useful tools to understand the behaviour of these systems [37], [292], [38].

The classical limit of the electron motion is treated directly in the
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Lorentz model, which assumes a classical trajectory, harmonic response to

electric fields that initially disturb the equilibrium electron distribution. The

dielectric function calculated in this picture

ε (ω) = 1 + 4πχ (ω) = 1−
ω2
plasma

2ω
′
0

(
1

ω − ω′0 + iγ
− 1

ω + ω
′
0 + iγ

)

(where ω′0 =
√
ω2

0 − γ2 is the renormalized resonance frequency (shifted

from the natural resonance ω0 of the dipole oscillator due to the effects of

the damping term γ),) depends on the so-called plasma frequency ωplasma =√
4πn0e2

m0
, defined in terms of the mean electron density n0. It can be shown

that the plasma frequency is, intuitively, the frequency at which the electron

density oscillates if small perturbations are made away from the mean den-

sity. The dispersion relationship found for plasma waves indicates that it is a

longitudinal wave [270].

The quantized plasmon response can be understood by assuming a

spatially inhomogeneous charge distribution, then calculating the temporal

evolution of that density distribution. Such an analysis must approximate the

four-operator terms that appear in the calculation of the two-operator term

related to electron density (i.e. simply the electron number operator). The

recursive nature common to field theoretic calculations leads to six-operator

terms appearing in the calculation of the four-operator terms needed to cal-

culate a two-operator observable – this iterative process runs on ad infinitum,

and must be truncated at some point to perform a practical calculation. A

401



careful calculation performed in the second quantization formalism recovers

the plasma frequency derived classically [166].

The plasma frequency, then, is the dividing line between the spectral

regime of high transmission, occurring below the plasma frequency, and high

reflectance, occurring for electromagnetic waves above that frequency. In anal-

ogy to the phonon picture, plasmons occupation number may be used to de-

scribe higher frequency collective excitations – thus, one speaks of N plasmons

that oscillate at the electron plasma frequency ωplasma, rather than an excita-

tion occurring at N × ωplasma [270]. The dispersion relationship may become

more complicated if a more sophisticated model is used for the electron be-

haviour in a solid; this result – a dispersionless plasmon mode that only occurs

at discrete energies ~ωplasma – is obtained in analogous limit to the classical

Drude model for an electron gas.

In a three-dimensional material, light cannot excite a plasmon since the

transverse electromagnetic field cannot drive the longitudinal oscillation of the

electron gas. If an interface breaks the translational symmetry, however, the

solid-vacuum barrier describes a plane where the oscillating electric field has

a longitudinal component due to the discontinuity of the dielectric function.

Plasmons, then, may be excited using light incident at an oblique angle, with

the polarization of the electric field lying in the plane defined by the beam

direction and the surface normal (i.e., for p-polarized light) [270]. Excitation

of a plasmon is suggested by a corresponding drop in the transmission of light

through a material at the plasma frequency, where the photon energy can res-
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onantly excite plasma oscillations in the electron gas – of course, this assumes

that the parameters upon which the plasma frequency depend are indepen-

dently known. These surface plasmons were first proposed as an excitation

mode that would occur at lower energies than the bulk plasmon [312], to ex-

plain effects observed in electron beam experiments on thin metal films. The

surface plasmon was proposed shortly after the very first description of the

plasmon.

In addition to the broken symmetry that occurs at a vacuum-material

interface, the presence of an interface between two media may also lead to the

formation of a propagating surface plasma wave, or surface plasmon. These

surface waves are evanescent in the directions normal to the interface, viz. the

probability distribution for the quasi-particle diminishes exponentially with in-

creasing distance from the interface. Thus, the surface plasmon quasi-particle

is largely bound to the interface and, we note, will only interact with other

particles, quasi-particles, or other fields if they extend close to the interface.

Strictly speaking, excitation of a surface plasmon on a perfectly flat

metal-vacuum interface should still be unlikely, as the dispersion relations

for photons and surface plasmons would not normally intersect. Physically,

the higher index of refraction of the material reduces the wavelength of light

transmitted into the metal to less than that of surface plasmon mode, thereby

suppressing surface plasmon excitation. This inhibition may be overcome by

several different methods, one of which involves fabricating gratings on the

surface. Light incident on the grating at an oblique angle results in a longi-
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tudinal electric field in the plane of the interface with wavelength sufficient to

excite plasmon modes that propagate as traveling modes in this plane [270].

Absent a grating, surface roughness or other surface features may still suffice

to permit surface plasmon excitation.

6.2.5 Some relevant results for polariton hybrid modes

Previous experimental results had shown a range of different results

related to the coupling of different excitations into hybrid modes. The liter-

ature is expansive; here we note only a few particular results – indeed, the

study of evanescent modes began with Newton [275]; that problem held the

attention of the likes of Fresnel, Young, Huygens, and others, and the papers

cited here should not be considered representative of the total body of related

scientific work. A quantum optics treatment of the behavior of evanescent

waves [57] was shown to correctly predict the experimentally measured prob-

ability for exciting a monolayer of dye molecules [58], with the simple result

that the likelihood of excitation by evanescent photon modes was the same as

that by homogeneous photon modes (i.e. those that may be described in a

semiclassical picture as propagating electromagnetic waves). The probability

of absorption was found to be equal to the square modulus of the electric field,

which corresponds to the intensity in a classical description of light. Contem-

poraneous work studied, for example, the excitation of surface plasmons in a

gold film due to coupling with nearby excited dye molecules in solution [386].

Hecker et al. reported the observation of enhanced photoluminescence
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(up to three-fold increase in intensity) from a single quantum well after deposi-

tion of a thin silver film on the upper surface of the semiconductor sample. The

effect was shown to depend on the thickness of the metal coating, and was in-

terpreted as the first evidence of coupling occurring between surface plasmons

and light emission from a quantum well [269]. Depositing a nano-patterned

gold grating on top of the silver film was found to increase the quantum well

exciton emission even further, despite the fact that the semi-transparent metal

surfaces actually reduce the optical power incident on the quantum well; this

effect was attributed to the field due to surface plasmons induced in the metal

structure [9], [174]. Gontijo et al. argue that this effect was likely due to

increased absorption of the excitation laser, rather than due to a direct mod-

ification of the spontaneous emission rate due to the distance between the

metal surface and the active region of the quantum well, which was likely too

great to permit significant spatial overlap of the evanescent surface plasmon

field with excitons formed in the semiconductor material [144], although the

underlying physical principle of exciton-plasmon coupling is not questioned.

Motivated by the potential of InGaN/GaN quantum well based light

emitting diodes as a commercial replacement technology for white light fluo-

rescent tubes (and for certain telecomm applications), Okamoto et al. studied

the effects of depositing metal surfaces onto single quantum wells of this mate-

rial [264]. Surface plasmons in a metal layer will increase the density of states

inside the adjacent semiconductor material. This is expected to increase the

spontaneous emission rate, approximately given by Fermi’s Golden rule
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τ
=

2π

~
|〈f |d · E (re)| i〉|2 ρ (~ω)

for a dipole oscillator at some position some position re. Clearly, alter-

ing the density of states for photon emission will directly affect the spontaneous

emission rate [295]. With back-side optical excitation of the sample they ob-

serve significant increases in the photoluminescence intensity for silver and

aluminum coatings, while very little increase is found when gold is deposited

on top of the quantum well capping layer. The effect is large enough ( x 17

for Al) that it cannot be explained by reflectance of the excitation laser off

the metal surface for a second pass through the quantum well active region.

Moreover, insignificant increase in excitation was found with the deposition

of a gold layer. The material dependence was attributed to the mismatch

in the energies of the surface plasmon mode in the gold surface and that of

the InGaN quantum well exciton, whereas the silver and aluminum plasmon

energies were close enough to that of the exciton to observe a significant in lu-

minescence due to the plasmon-exciton coupling. In all cases, it is necessary to

use the renormalized surface plasmon energy, which is is affected by the pres-

ence of the other materials in contact or proximity to the metal layer [8]. An

exponential dependence on the spacer distance was observed for the lumines-

cence enhancement, which supports the model of coupling via the evanescent

wave of the surface plasmon; excitons that are located within the near-field

of the surface will couple effectively to the plasmon mode. That distance –

the penetration of the surface polariton’s fringing field – is determined by
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the dielectric constants of the semiconductor and metal used to fabricate the

structure. The authors note that emission from surface polaritons should be

suppressed for a perfectly flat semiconductor-metal interface, since the non-

propagating mode would not couple effectively to far field radiation. Inherent

surface roughness in evaporated metal layers, verified with scanning probe mi-

croscopy, however, suffices to scatter surface plasmons in a process that results

in photon emission. This suggests the fabrication of structured metal surfaces,

and following the example of metal grating structures that have been shown to

couple surface plasmons and photons, a metal grating structure is fabricated

and demonstrated to enhance luminescence.

In time-resolved photoluminescence experiments [280] the effect of sur-

face plasmon-quantum well exciton coupling on spontaneous emission rate may

be directly observed. A 32x increase in spontaneous emission was observed

due to coupling to surface plasmons. The effect on radiative decay rates was

shown to exhibit a spectral dependence, with the greatest enhancement occur-

ring for emission energies closer to the energies of the surface plasmon ~ωSP .

At certain wavelengths, the internal process for transferring energy is believed

to approach unit efficiency. Similar enhancement of spontaneous recombi-

nation rates were observed by another group studying the effect of capping

layer thickness on Purcell enhancement factors [274]. This work demonstrated

substantial coupling between excitons in InGaAn quantum wells and surface

plasmons in a silver film deposited on top, measuring up to a 92-fold increase

in spontaneous decay rate for certain wavelengths.
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Prior to these results, modification of the photoluminescence from exci-

tons in an InGaN single quantum well due to the deposition of a silver layer had

been observed and explained using a quantum electrodynamic model. The cal-

culated Purcell factor, which describes enhancement of surface plasmon emis-

sion, fit the photoluminescence dip, but no direct demonstration of increased

light extraction from surface plasmon enhanced emitters was observed [144].

Even earlier, the emission of AlGaAs/GaAs LEDs was shown to be control-

lable by deposition of a surface grating that resulted in highly directional, more

efficient emission with a reduced linewidth [224]. This development made pos-

sible improvements in the commercially desirable properties of LEDs without

resorting to fabricating more complicated devices such as laser diodes. Here, a

patterned grating on the front face of the diode increased efficiency by reduc-

ing Fresnel reflection loss of photons that would otherwise propagate out of

the device, and by coupling certain photons emitted from the quantum well to

surface plasmon modes on the grating that would subsequently emit into the

far field. This coupling occurs when the photon momentum would otherwise

satisfy the conditions of total internal reflection; as such, the plasmon-photon

coupling here (note that it is not a plasmon-polariton-exciton hybrid coupling)

exhibits specific momentum selection rules, the precise nature of which may

be determined by the periodicity of the structured surface. Related results

were shown in [140] and [252], which studied the effects of periodic patterns

on a metal surface deposited on top of LEDs. [22] explores the problem of

photon reflection at the interface, and notes the reduced cone of emission that
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will occur for materials with higher indices of refraction – estimating that a

bare semiconductor LED constructed with GaAs should couple out only 5% of

the photons created by pair recombination. That work studied a description

of the hybridization of the surface plasmon with emitted photon (a surface

plasmon-polariton) that occurs where those excitations’ dispersion relations

would otherwise intersect.

Less related to the particular nanostructure system that we are inter-

ested in: other groups have studied plasmon-exciton couplings in systems of

semiconductor and metal nanocrystals, or composite nanocrystals [147], [148],

[412], [188], in a system of semiconductor nanowires and metal nanoparticles

[239], or between dye molecules and metal nanoparticles [29], or a Langmuir-

Blodgett grown thin films and metal surfaces [293].

6.3 First measurements on hybrid samples

We return out attention to the gold grating on GaAs quantum well

structure. Due to broad scientific interest in the precise details of the en-

ergy transfer processes that result in the altered emission intensity from these

structured samples, 2dFTS has a potential application to answer questions

that would be difficult to otherwise resolve. Performing 2dFTS measurements

with a range of mixing times T would permit the observation of the evolu-

tion of coupling between spectrally resolved plasmon and exciton states, and

could provide a quantitative measure of the strength of that coupling. Such an

experiment could perform a useful role in characterizing the coupling process
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Schematic of basic experimental geometry, not to scale. The hybrid gold-
semiconductor nanostructure (purple and gold) is mounted on a copper slug held 
in a cryostat at liquid Helium temperatures. Two beam paths are incident on the 
sample, propagating from the lower right hand corner in this diagram. The probe 
beam lies in the horizontal plane, and reflects from the sample in that same 
plane. The pump beampath propagates in the same vertical plane as the probe, 
but enters higher and exits lower. The angle between the sample normal and the 
plane defined by the pump and probe rays can be altered by adjusting the stages 
used to mount the beam steering optics prior to and after the sample.!

Figure 6.5: Basic experiment sketch
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and help direct fabrication of superior devices. Many of these measurements

can only be performed in a reflection geometry, and due to the precise momen-

tum transfer conditions for the exciton-surface plasmon-polariton coupling, we

are particularly interested in building an apparatus that can perform angle-

resolved, reflection geometry, coherent ultrafast spectroscopic experiments on

these samples. For the particular sample we are considering, we specifically are

interested in the nonlinear optical response to resonant excitation that occurs

with the three beams all incident the same angle in the p-plane.

In collaboration with the group of Christoph Lienau at the University

of Oldenburg we have performed preliminary measurements on this structure,

and devised and constructed an apparatus that can perform more technically

challenging four-wave mixing measurements on these samples. To that end,

our 2dFTS experiment has been modified to perform a more sophisticated mea-

surement that uses a multi-frequency modulation and lock-in detection scheme

to isolate weak, phase-sensitive signals, with optical frequency temporal res-

olution. Fundamentally, this experiment is an extension of the three-pulse

transient grating measurements first performed by Weiner et al. [392], [391] in

that it allows direct measurement of a system’s dephasing time without con-

volution with population relaxation rates. In our partially collinear geometry,

however, the co-propagation of the weak four-wave mixing signal of interest

with the probe beam is a perennial challenge. To develop the ability to per-

form 2dFTS or similar measurements, we have devised a method to generate a

phase-stabilized pulse train while performing RF modulation of all three beams
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for purposes of high speed lock-in detection. Angular control has been built

into the experiment using a matched pair of translation and rotation stages

for beam direction. Although we are currently performing measurements in

what we call a periscope geometry, we expect that it should be trivial to

adapt the apparatus to conduct experiments a completely collinear geometry.

Although certain technical hurdles would remain, this would in principle al-

low us to consider performing coherent, optical phase-dependent spectroscopic

measurements on single quantum emitters – e.g., to perform 2dFTS on a single

quantum dot, or other isolated, individual structure.

We shall describe the development of these techniques in the subse-

quent sections, but we outline the time line of progress on this experiment

here first. While the accidental chronology of developing a new measurement

technique are not important to the final scientific conclusions resulting from

such a project, relating the process of this development may be useful from

the perspective of understanding the particular choices made in the design and

construction of this experimental apparatus.

6.3.1 Experimental geometry control

Many of the choices regarding experimental design were made to min-

imize the difficulties in adapting the existing 2dFTS apparatus to perform

measurements on these new samples. It was, however, necessary to alter the

beam path substantially to properly observe exciton-surface plasmon polariton

coupling phenomena.
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Since coupling of the surface plasmon polaritons located at the semiconductor-

metal interface to excitons created in the underlying GaAs quantum well occurs

as a function of the momentum used to excite the plasmon mode, the optical

fields used in these experiments must be able to be angle-tuned in order to

control the momentum transfer. Simply put, the angle of incidence for the

beams must be controllable. We construct an opto-mechanical system that

permits angle tuning of the pump and probe beams used in nonlinear optical

experiments. Coupling is expected when all of the optical fields used to ex-

cite or probe the system possess the same angle relative to the sample. The

presence of the metal grating breaks the cylindrical symmetry that otherwise

obtains, and the typical horizontal planar beam geometry common to most op-

tical experiments and in particular to four-wave mixing measurements cannot

be used.

We changed the geometry of the experimental setup, moving from a

horizontal plane to a vertical plane. The pump and probe beams are aligned

vertically one above the other, then focused to a point using a 20 cm lens,

with the probe passing directly through the center and the pump pulses passing

through the upper portion. The lens is placed a distance away from the sample

equal to its focal length, so that the two spots overlap on the sample. The

probe beam is reflected from the sample in the same horizontal plane, while

the pump beam is reflected downward and away from the signal field, co-

propagating with the probe.

The angle tuning of the incident beams is provided by rotating the stage
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The pump and probe beams lie in the same vertical plane, 
entering the diagram here from the right-hand side. A single 
lens focuses both beams to the same spot on the sample. 
The reflected probe is collected and re-collimated with a 
second lens before being sent to the monochromator.!

Figure 6.6: Experiment planar beam geometry
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A side view of the laser geometry used in the experiment. The 
probe beam and the reflected probe and signal beams propagate 
in the same horizontal plane, and are overlapped here when 
viewed from this angle. The pump beam path lies in the same 
vertical plane as the probe, but lies above it prior to the focusing 
lens. Here, the pump beampath can be seen approaching the 
sample from an elevated position and leaving propagating 
downwards.!

Figure 6.7: Planar beam geometry – side view
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on which the final steering mirror is mounted. That mirror is used to direct the

pump and probe onto the sample, but once the experiment is initially aligned at

one incident angle, the mirror is not adjusted subsequently – only the various

stages used to control beam geometry are moved. In order to ensure that

measurements taken as a function of angle reflect physical processes directly

affected by the beam angle, it is necessary to ensure that only the incident

angle changes, and not the position, size, or overlaps of the spots on the

sample. Thus, the final tuning mirror and its rotational stages are mounted

on a translation stage that is adjusted so that the spot is always aimed at the

same point on the sample for any arbitrary angle of incidence. Clearly, this also

requires that the focusing lens be translated an equal distance to keep the spots

of the two beams focused at the same point, with the (approximately) same

size spot. Ideally, these optics should all be mounted on a single translation

stage to minimize the amount of tweaking that must be done, but practical

considerations prevented that refinement from being built into the current

experiment.

A similar arrangement of a rotating and translating steering mirror and

a translating 20 cm lens are used to collect and collimate the reflected probe

beam and the co-propagating signal. We are only concerned with this beam,

and ignore the pump beams. Although we do not purposefully use a beam

block, the pump pulse is blocked by an anodized part of one of the stages.

Initially, we attempted to perform experiments by collecting the re-

flected probe, collimating that beam, and then coupling it into a fiber to sent
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Adjustment of the position and angle of the final beam steering 
mirror prior to the sample and the first steering mirror after the 
sample, with corresponding translation of the focusing lenses, 
permits control of the experiment geometry. Adjusting the incident 
angle changes the momenta transferred to the excitation modes 
from the laser. Shown here are three top views, where the rotation 
and translation stages are omitted but their movement is indicated 
by changes in the position and orientation of the mirrors and the 
position of the lenses.!

Figure 6.8: Angle tuning geometry
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to a spectrometer located elsewhere on the table. It is possible to do so, and

our first measurements were made in this fashion, using a CCD to observe the

exciton resonances on a bare portion of the grating/plasmon sample, i.e. a

region not covered by the gold grating nanostructure. This is possible but not

recommended: the geometrical control is designed to permit repeatable control

of the beam position and steering, and observation with a ccd suggests that the

spot is easily steered onto the same portion of the sample with an accuracy of

a few to a few tens of microns; nonetheless, the reflected beam does not couple

into the fiber after an adjustment of the rotational and translation stages to

change the angle of incidence. As such, we forgo the fiber coupler and send

the collected probe beam through free space to a different spectrometer. This,

a 50 cm spectrometer with a similar 1200 g/mm and similar manually con-

trolled slits, is used as a monochromator since a second CCD is not available

and, indeed, we need the sensitivity of a lock-in detection scheme to perform

precise measurements on the weak signals of interest. The light is aligned into

the spectrometer using a lens with a focal length of a few centimeters, placed

on a three-dimensional translation stage to permit precise alignment.

Since the samples of interest for this experiment have a well-developed

theory predicting exciton-surface plasmon polariton coupling for only certain

well-defined angles, it is necessary to properly calibrate the angular control of

the experiment. It is critical that the front surface of the final steering mirror

is centered on the axis of the rotation stage so that the beam does not walk

when the angle is changed.
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Initial alignment is performed without the focusing lens in position. An

iris is placed in the probe beam approximately a meter away from the final

steering mirror. The rotation stage is set to zero degrees, so that the pump and

probe beams are reflected approximately back onto themselves. The horizontal

and vertical alignment of the mirrors is then adjusted until the probe beam is

centered on the back side of the iris previously placed in the beam path.

The rotation stage is then rotated forty-five degrees, so that the re-

flected probe beam forms a right angle with the probe beam incident on the

final steering mirror. The probe beam is now directed onto the sample at

approximately normal incidence, and should form a spot on the sample in the

cryostat. Since the beam is not focused, the spot size is fairly large, and may

not be easily visible on the GaAs samples we use without the use of an IR

viewer. The cryostat alignment is adjusted by shimming its mounting plate

and base plate with thin metal shim stock or similar materials (pennies, paper,

etc) until the probe beam is reflected back onto itself and is again centered on

the back side of the iris. The geometry of the experiment is now well defined,

and any angles of interest may be directly determined from the rotation of the

final mirror stage.

It is necessary, now, to introduce the focusing lens into the beam path.

It is important that this optic be properly aligned with the probe beam path.

A small ccd camera is used to observe the position of the unfocused spot on

the sample in the cryostat; on the monitor display, marks are made in erasable

pen to indicate the center and shape of this spot. The focusing lens is then

419



inserted into the beam path and its height and horizontal alignment adjusted

until the now focused spot is centered at the indicated point on the monitor.

By observing the back reflection it is possible to see that the reflected probe

beam is still centered on the back side of the alignment iris.

This experiment, of course, makes use of more than one beam path –

the pump beams have been raised vertically by something on the order of a

centimeter and are propagating parallel to the probe beam. Careful alignment

of the experiment, including the use of several homemade Aluminum alignment

jigs with holes drilled to pass the properly aligned beams, ensures that the two

beams lie in the same vertical plane and are parallel in that plane. As a result,

the pump beams passing through the upper portion of the focusing lens should

be focused to the same spot at the probe beam. Since the beams used in this

experiment are not perfectly collimated, the lens position that focuses the two

parallel beams onto the same spot is not precisely the same as the one that

produces the smallest spots. Including a telescope prior to the experiment but

after the interferometrically aligned portion of the experimental apparatus is

suggested to permit better beam size management; several lenses are used

to bring the divergent laser from the head to the experiment over a distance

of some three meters, and to correct for the increased angular divergence

in the horizontal plane, but adjustment of these optics is strongly contra-

indicated due to the subsequent need to realign the experiment to ensure

proper parallelism of the beams with the delay stages.

We note a few other points related to the experimental alignment here.
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In order to roughly align the experiment, the patterned threaded hole layout

of the optical table is used as a guide, sending the beams parallel to one of

the two square lattice vectors, then using a turning mirror to send it parallel

to the second (and thus perpendicular to the first) in order to direct the beam

onto the final steering mirror. The motion of this mirror should be made as

parallel as possible to this ray; ideally, we would fix the translation stage to the

optical table, then align the beam using the previous two mirrors so that there

was no beam walk as the mirror (turned to normal incidence) is scanned the

length of the stage. That is essentially the same procedure as is used to align

the precision delay stages used to produce the τ and T delays. Such a degree

of precision is not deemed necessary for this alignment, however, and instead

the stage is aligned simply using the table pattern as a guide to parallelism.

We have done so using a straight edge pressed against the translation stage

so that deviations from parallelism can be observed over a greater distance,

permitting more accurate alignment. A fairly long focal length lens is used

in this experiment; in part, this is simply due to practical considerations; if a

shorter length lens were used it would be difficult to find sufficient space for

the rotation stage and final steering mirror. Of some note, however, is the

numerical aperture of the optic. If this is too great, the difference in wave

vector from one side of the focused beam to the other becomes significant, and

the sharp angular features present in the coupling spectra plots may become

washed out. In order to achieve high angular resolution, a reasonably long

lens is preferred.
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We have spent little effort in describing the stages and optics used to

collect the reflected light; this is because the principle of their operation is

largely identical. The alignment process is similar although somewhat less

rigorously applied, because any error in the alignment of the collected beam

can be corrected by adjusting the lens used to focus the light onto the slit of

the spectrometer.

6.3.2 Two pulse differential reflectivity and an attempt to observe
four-wave mixing

We first perform simple two-pulse measurements in a reflection geome-

try to observe the exciton resonances. Resonant excitation is used, and spectral

data are collected over a range of angles to observe the effect that the coupling

has on the exciton resonance position and width. These effects are only ex-

pected for one polarization state, as coupling of the optical field to the surface

plasmon at the metal-air interface is only expected to occur over a certain

range of angles. That surface plasmon polariton is expected to couple to the

surface plasmon at the metal-semiconductor interface. If the extension of the

evanescent electrical field associated with this plasmon couples to the excitons

that are simultaneously created in the semiconductor sample by the same inci-

dent optical fields, forming a hybrid mode that is an admixture of the exciton

and surface plasmon polariton, the observed emission that co-propagates with

the probe beam will be shifted in frequency and width from the exciton res-

onances that are observed when no coupling occurs. Data are collected as a

function of pump-probe delay, and as a function of wavelength. We also take
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data at a number of different pump and probe power levels, to try to find the

best combination to easily detect the signatures of coupling without power

broadening the resonances.

Data collected from an unpatterned, bare quantum well region of the 
sample using a 75cm focal length spectrometer with a CCD to record 
spectra. Preliminary measurements on the bare semiconductor 
sample were possible, while previous experimental work suggested 
that the weaker signal from the gold-patterned regions would require 
lock-in detection to isolate it from background noise.!
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Figure 6.9: Spectrum recorded with CCD

It is not generally effective to take data using a spectrometer and CCD

to record the emission, since the signal from this sample is too weak to obtain

accurate measurements above the noise floor without using some technique to

narrow the bandwidth.

The high noise level in this experiment may be attributed to several

factors. In part, the quantum well sample is not expected to be as high quality
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as those we studied in the 2dFTS portion of this thesis. Strain and disorder

in the sample increases scatter and broadens the resonances; the broader lines

are, generally, less well distinguished from the background reflectivity of the

sample and hence the differential reflectivity signal is not as clean. More sig-

nificantly, the overlay of gold on the sample surface reduces the amount of

optical power that actually penetrates into the semiconductor material under-

neath it; as such, the excitation density is lower. While we generally prefer

to work in a low excitation limit, there is an optimal point in the pulse power

space for performing a nonlinear experiment – pump probe measurements are

generally performed with a ten-to-one pump-probe power ratio. While the dif-

ferential effect may be larger if greater probe power were used, the presence of

the stronger probe background typically makes signal detection more difficult.

In addition, the increased probe intensity would complicate a theoretical de-

scription of most nonlinear experiments, which prefer to treat the population

induced by the pump pulse as not strongly affected by the probe. We find here

that increasing the excitation pump and probe powers from the values used

in the 2dFTS experiments (typically 1 mW pump, 100 microWatt probe) to

3 mW pump and 400 microWatt probe beams provides a differential reflectiv-

ity spectral lineshape that is not substantially broadened (we do not attempt

to model the recorded lineshape but simply look at the spectra to see if any

distortion suggesting broadening has occurred; while this is not particularly

rigorous it is a simple approach in the early stages of these experiments).

In order to detect these weak signals, we perform two-frequency modu-
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To perform lock-in detection, the experimental apparatus was changed to 
include an independent acousto-optic modulator in each beampath 
(probe, and both of the two pump beampaths). For two-pulse 
experiments, only one pump beam path was used. Due to space 
contraints, the apparatus as shown here does not include the variable 
geometric control stages and optics, or the reflection mode collection 
optics.!

Figure 6.10: Experimental apparatus with 3 AOM’s
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lation using a commercial RF function generator built by APE (APE DFD-80,

Germany). This device produces two phase-locked carrier signals at 80 MHz

that are amplified to drive the acousto-optic modulators. Either carrier is

modulated at an adjustable frequency, ranging from 0.10 to 10 MHz. The

device outputs the two drive signals (the slow, modulated carrier waves), a

reference monitor for either slow modulation frequency, and a reference for

the difference frequency between the two slow modulation frequencies.

Each of the RF drive signals is used to supply an acousto-optic mod-

ulator. We describe the principles of acousto-optic modulation later in this

chapter at substantial length. Here, we simply note that these devices deflect

part of the input optical power into a new beam path, with the angle formed

between the input beam and the diffracted beam determined by the carrier

frequency supplied. The fraction of power diffracted into the new mode is

determined by the power of the RF drive signal applied to the acousto-optic

modulator. The acousto-optic diffracted light also undergoes a frequency shift

equal to the carrier frequency applied to the modulator, but we do not exploit

that effect significantly here other than to lift the exact frequency degeneracy

of the beams as described in the chapter on 2dFTS.

In these two-pulse experiments, a carrier with a different modulation

frequency is sent to each acousto-optic modulator. Typically we use a few hun-

dred kHz to 1 to 2 MHz modulation frequencies, with a frequency difference of

∆f ∼ 25kHz. The difference frequency ∆f is sent to a lock-in amplifier (q.v.

sub for description of the principles of lock-in detection) to be used as the
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Spectrum measured in a two-pulse differential reflectivity 
measurement (a) using a commercial two-frequency generator to 
modulate the pump and probe beam intensities, and generate a 
signal at the difference of the two intensity modulation frequencies 
used as a reference for lock-in detection. This is shown 
schematically (b) in a diagram that indicates the intensity 
modulation frequencies and signal intensity frequencies used to 
detect the nonlinear signal. This diagram is not intended to reflect 
the actual experimental geometry."
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Figure 6.11: 2-pulse dR with commercial drive
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reference frequency in a phase-sensitive detection scheme. There is a subtle

point about the difference between the modulation frequency generated by the

DDS system and the actual frequency at which the intensity of the laser beam

is modulated, which we will address subsequently in our discussion of the laser

pulse auto-correlation measurements. For specificity, we are referring here to

experiments where the intensity of the probe laser beam is modulated at some

frequency f1, the intensity of a pump laser beam is modulated at f2, and the

difference frequency ∆f = |f1 − f2| is sent to the lock-in amplifier as a refer-

ence frequency. Clearly, given that the laser repetition rate is 76MHz, each

individual pulse is not being intensity modulated by the acousto-optic mod-

ulators; instead, a time-averaged data point is collected by the slow detector

(q.v. sub) for a number of pulse cycles, the intensity of which changes only

somewhat during the detection period. In a subsequent period, the amount

of optical powers diffracted by the acousto-optic modulator will have changed

slightly (evolving on the time scale of the slow modulation frequency), result-

ing in a data point collected with different intensity pulses. Monitoring the

change in the strength of the signal field that oscillates at the difference fre-

quency ∆f , correlated to the modulated intensities of the pulses directed onto

the sample, permits the extraction of a weak signal of interest from the strong

background of the probe beam and, of course, the typical background noise of

the laboratory environment. The reason we emphasize that the acousto-optic

modulators are used to modulate the intensity of the light in the experiment

is perhaps not apparent here, but will become more so when we consider the
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heterodyne methods developed subsequently for three-pulse measurements.

The collected probe beam, meanwhile, is sent to a 50cm monochromator

with 1200 g/mm gratings. To collect a spectrum at a given pump-probe delay

time, the grating angle is tuned to change the center wavelength that is imaged

onto the output slit. The intensity of the light at that particular wavelength

is then sent to a biased photodiode that is terminated to provide 100 kHz of

bandwidth (we experiment with various different choices of bandwidth and find

this termination works the best; a slower bandwidth would result in greater

photovoltage levels, but result in a signal that may saturate the other signal

processing components at high gains). This photovoltage is then applied to a

precision pre-amplifier with adjustable gain and programmable filters (SR560),

the output of which is then sent to the digital lock-in amplifier (SR830). As

noted, the frequency difference ∆f is applied to this amplifier as a reference.

The signal output by this lock-in amplifier is the differential reflectivity dR

due to the pump-probe interaction with the sample.

We have also performed measurements where a portion of the probe

beam is split off after the monochromator and detected with a homebuilt fast

amplified photodiode. That voltage is sent to a second, radio-frequency lock-in

amplifier (SR844). The reference signal used for this lock-in amplifier is one

of the RF modulation frequencies – specifically, the one used to modulate the

probe beam. Thus, the signal detected at this frequency should not depend

strongly upon the pump beam, and gives us (approximately) a probe reflec-

tivity spectrum. The measurement performed with this lock-in amplifier is
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Schematic for the detection scheme used in two-pulse 
measurements with the commercial two-frequency generator. The 
signal and co-propagating probe beam are collected and collimated, 
then spectrally analyzed with a 50cm spectrometer, using a 1200g/
mm grating. A small fraction of the analyzed light is sent to a 
homebuilt amplified Si PIN photodiode, then measured using a 
digital RF lock-in amplifier. The intensity modulation frequency used 
for the probe beam is used as an RF reference for the detection of 
the probe transmission spectrum. The greater part of the analyzed 
beam is sent to a biased photodiode, which is appropriately loaded, 
filtered, and amplified prior to lock-in detection using the difference of 
the two intensity modulation frequencies as a reference.!

Ωpr from generator!

Ωpr-Ωpu from 
generator!

Ωpr-Ωpu!

spex!
To pre-amp & 
lock-in amp!

Figure 6.12: 2-pulse modulation-detection scheme
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approximately equal to the probe reflectivity R; when this and dR are mea-

sured simultaneously a dR/R measurement is possible. This is not strictly

necessary to observe the effects of the exciton - surface plasmon polariton

coupling.

These measurements are largely a proof-of-concept project performed

to develop some familiarity with the sample of interest. Scientifically, little is

gained here with resonant excitation compared with the above-bandgap exci-

tation performed previously on this sample [373]. We wish to perform more

sophisticated three-pulse measurements (q.v. the chapter on 2dFTS for a

general description of the principles of three-pulse four-wave mixing measure-

ments) to study the dephasing times for this system, to see if the coupling of

the hybrid mode affects the coherence compared to the uncoupled the exciton

system.

To do so, the experimental configuration is changed somewhat. Three

independent pulses are now needed to observe a four-wave mixing signal. We

will again detect the changes in the probe beam due to the two collinear pump

pulses, as in the 2dFTS experiments performed previously. Again, the optical

physics are the same as in those measurements, but the method of detection

and the lack of the phase controlled scan of the pump delay τ means that

the resulting data cannot be used to completely characterize the amplitude

and phase of the nonlinear optical response with the explicit definiteness of a

2dFTS experiment.

The two modulated RF signals previously used to drive pump-probe
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Unmodulated 
probe!

Ωdp!
Ωdp-Ωsp!

Ωsp!

Four-wave mixing measurements were attempted using a 
commercial two-frequency generator to modulate the intensities 
of the two pump beams at different frequencies, using the 
difference between those frequencies (provided by the 
generator) as the reference signal for lock-in detection. The 
probe beam was not modulated; a constant RF carrier was used 
to deflect the beam so that no changes to the apparatus needed 
to be made. A four-wave mixing signal could not be found using 
this two-frequency scheme.!

Figure 6.13: FWM two-frequency modulation-detection

acousto-optic modulators are now both used to modulate the two pump pulses

independently. The probe pulse is driven with a constant cw RF carrier derived

from an RF synthesizer. We detect the collected probe reflection, spectrally

analyze that light as before with the monochromator, then detect it as before,

using a pre-amplifier and the SR830 lock-in amplifier. The difference frequency

∆f of the two pump modulations is used as the reference for this lock-in

measurement.

We cannot easily pick out the probe reflectivity R as before, since the

probe beam is now un-modulated. We attempt to remedy this by using an

optical chopper wheel to modulate the split off portion of the probe beam at

1-2 kHz. We find this impractical, however, since the chopper wheel motor
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and the controller’s square reference wave produce significant RF noise that

is picked up by the coaxial cables used for both measurements. Re-arranging

the cables used in the experiment, wrapping various cables and connectors in

tinfoil, and placing Aluminum enclosures around the chopper were unsuccessful

in eliminating the parasitic noise. As such, the mechanical chopper modulation

technique we have used ubiquitously is deprecated when extremely sensitive

measurements are to be made.

Nonetheless, independent measurement of the probe background is not

strictly necessary, and in principle a three-pulse measurement should still

be able to be performed. We expect to see a four-wave mixing signal co-

propagating with the probe beam, but modulated at the two RF modulation

frequencies used on the pump beams. By fixing the probe delay T relative

to the static pump pulse and scanning the dynamic pump pulse delay τ we

expect to be able to detect a decaying four-wave mixing signal corresponding

to a decay of the polarization driven strictly by dephasing processes.

Unfortunately, this proves not to be the case. We go to substantial

lengths looking for this signal with a two-frequency modulation of the three

pulses used in this experiment, but cannot detect any genuine four-wave mixing

signals, even using extremely long integration times (3 and even 10 seconds

per data point; to properly clear the low-pass filter in the lock-in amplifier

it is necessary to wait 9 or 30 seconds in this case) to try to detect a weak

signal. What appear at first to be four-wave mixing emissions are in fact probe

artifacts – the intensity of the probe optical field is detected, rather than the
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Schematic for the detection scheme used in four-wave mixing, three-
pulse measurements with the commercial two-frequency generator. 
The signal and co-propagating probe beam are detected 
analogously to the scheme used for two-pulse measurements.!
Since the probe beam is unmodulated, there is no immediate way to 
detect the probe background as before. A mechanical chopper is 
used but introduces too much noise into the electronics used for 
detecting the nonlinear signal. While ΔR/R two-pulse measurements 
are commonly used, the exciton-surface plasmon polariton  
lineshape may be studied in four-wave mixing without dividing the 
spectrum by the probe background.!

Ωchopper!

Ωsp-Ωdp 
from 

generator!

Ωdp-Ωsp!

spex!
To pre-amp & 
lock-in amp!

Mechanical!
chopper!

Figure 6.14: Initial FWM modulation-detection scheme
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four-wave mixing emission of interest. This can be proven by blocking one or

the other of the pump beams and seeing similar spectra, indicating that the

peaks observed in these experiments are not due to optical four-wave mixing

processes.

The most likely cause of these spurious signals is parasitic RF coupling,

perhaps among the cables used to drive the acousto-optic modulators. If the

slow modulation (typically 0.5-2 MHz) RF signals used to modulate the inten-

sity of the pump beams is inductively coupled into the signal used to power

the un-modulated probe beam, a weak modulation of the probe beam will

occur at that frequency. If both modulation frequencies are thus parasitically

into the probe’s drive signal, features will be observed in the probe spectrum

at the difference between those two modulation frequencies even should both

pump beams be blocked. This corresponds precisely to the observations we

have of this effect. Our efforts to combat this effect were the typical ones used

in every laboratory – we re-arranged our cable routes and tried to shield the

cables from one another to reduce the effects of inductive coupling. When

this failed, we attempted to quantify the inductive coupling effects. Using an

RF spectrum analyzer, no spurious coupling was observed at the level of the

noise floor of the device (i.e., no spurious frequency components corresponding

to parasitic coupling were observed, with a noise floor approximately 75 dB

below the peak of the applied frequency). The optical measurement is effec-

tively a very precise check for this parasitic effect, with the subsequent filtering

and amplification stages providing the ability to detect parasitic coupling even
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where it cannot be seen using conventional RF measurement techniques.

We checked for this parasitic coupling at various stages throughout the

experiment, including at the acousto-optic modulators themselves. Changing

the connections and cables used did nothing to reduce the effect, and it was

decided that a more sophisticated measurement system would be necessary to

perform three-pulse measurements and record extremely weak four-wave mix-

ing signals in order to characterize the dephasing of the hybrid exciton-surface

plasmon polariton modes. We proceeded by building an RF system that allows

us to produce three independent RF drive signals that are mixed with three

phase-locked modulation signals. We use direct digital synthesis techniques to

do so, allowing us easy experimental control of the phase, amplitude, and mod-

ulation frequency of all three pulses used in the experiment, and the generation

of an agile reference frequency for lock-in detection. Having demonstrated su-

perior performance compared to the commercial two-frequency apparatus, we

turn our attention to three-pulse measurements. Although we haven’t yet

performed the full range of three pulse experiments we are interested in using

to study the hybrid samples, our preliminary experiments with quantum well

samples indicate that the agile RF system we have constructed must prompt

a new reconsidered approach to performing nonlinear spectroscopy on weak

four-wave mixing emitters. We outline those results subsequently. Although

the final results are not of great scientific interest in the study of quantum well

exciton systems, the techniques we have begun to develop promise significant

advances in nonlinear optical spectroscopic techniques.
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First, we must re-consider the basic principles of lock-in detection, to

better understand the nature of the detection scheme we develop here. Subse-

quently, we present a description of acousto-optic principles and devices. The

experiments we wish to perform require an acousto-optic modulator applica-

tion that has not, to the best of our knowledge, been previously demonstrated,

which we describe here. Finally, we consider the use of this experiment to per-

form basic three-pulse measurements on a quantum well system as a demon-

stration of the relevant principles.

6.4 Lock-in detection of weak signals for ultrafast opti-
cal measurements

6.4.1 A brief description of noise in laboratory science

In a 1918 paper titled ’ber spontane Stromschwankungen in verschiede-

nen Elektrizittsleitern,’ Walter Schottky described shot noise and thermal

noise effects observed in the electrical current flowing through vacuum tubes.

The current in such a device is not a truly continuous phenomenon, but rather

consists of some (generally very large) number of discrete charge carriers. The

question of whether or not the electrons flowing through a vacuum tube exhibit

wavelike characteristics is immaterial to an analysis concerned with charge de-

tection as a function of time, i.e. current measurement. The carriers are

emitted from a hot filament according to a probabilistic process, and at any

given instant the number of carriers may be higher or lower than the mean

value measured over some interval. The similarity of charge carriers to the
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pellets fired from a shotgun prompted Schottky to term this ’schrotteffekt’ –

shot effect, or shot noise, in English. Shot noise is now used to describe the

characteristic fluctuations of any similar process, where the net observable that

occurs is due to the sum of some larger number of discrete processes. In the

same paper Schottky also describes effects due to thermal noise, arising when

thermal motion of microscopic particles gives rise to temporary fluctuations of

macroscopic observables. The experiments we perform rely on measuring an

optical intensity with a square law detector, and are performed above the limit

where quantum mechanical effects should be significant. Nonetheless, the ab-

sorption of photons is itself a probabilistic process, and forms a fundamental

noise floor that limits the precision such an experiment could ever achieve.

For these nonlinear optical experiments, much more substantial noise sources

will dominate these effects. We do not explore the noise processes present

in these systems in great detail, but we do mention some general properties

of statistical noise here. We are primarily concerned with the power spectral

density as a function of frequency, as it relates to our interest in eliminating

1/f noise in our optical measurements.

By the time that thermal noise was investigated experimentally by

Johnson [201] and theoretically by Nyquist [279], thermal noise in conductors

was often already the greatest noise source in precision electronic apparatui.

Nyquist argues that equipartition implies that in a frequency interval dυ the

power transferred from a resistor to the line is kTdυ, and thereby finds that

the voltage fluctuations across a resistor can be given by V 2 (υ) dυ = 4kTRdυ.
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Generally, the resistance can (and indeed certainly will) be a function of fre-

quency, but in an ideal resistor that would indicate white noise with no fre-

quency dependence for the power spectral density. While this result is derived

in the context of (again) charges measured in conductors, the fluctuation-

dissipation theorem that underlies this result is applicable to other physical

processes. We note that this analysis is not properly applicable to systems

where the quantum mechanical nature of particle statistics is relevant, and in-

deed, tends to deviate from observed noise spectral densities in the Terahertz

regime. If instead of equipartition a quantum mechanical argument is used to

determine the occupation of the individual modes of oscillation that consti-

tute the total noise in a resistive element – using the Bose-Einstein distribution

hυ/
(
ehυ/kT − 1

)
to assign the energy per degree of freedom – the expression

V 2 (υ) dυ = 4Rhdυ/
(
ehυ/kT − 1

)
is instead obtained for the noise power spec-

tral density. By approximating the exponential function ehν/kT ' 1+hν/kT it

can be seen that this noise power spectral density exhibits a characteristic 1/f

frequency dependence. Such a power spectral distribution is near ubiquitous

due to the general applicability of the fluctuation-dissipation theorem.

The observation of 1/f noise in a large number of fields is well known

– consider [261] on the emergence of 1/f distributions for any processes where

the successful completion of that process depends upon a large number of

independent subprocesses. Such processes, which are characterized as noise

only when they influence the observation of other effects but are present in

any complex system, are characterized according to a simple stochastic law,
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analogous to the central limit theorem.

In general, noise processes typically appear to obey f−β power laws

over time scales of nearly arbitrary length, but a unified theory has not yet

satisfactorily explained ubiquitous 1/f noise phenomena [21]. It is well known

that 1/f noise can arise in semiconductor materials for a variety of reasons,

where the underlying nature of the noise processes are usually of secondary

interest to the primary goal of reducing the effect of such noise on device

operation. Four fundamental noise sources give rise to these various effects:

thermal noise, which is generated in almost any dissipative system; shot noise,

noted above, due to the stochastic nature of randomly generated carriers,

which leads to fluctuations around an average number state; recombination

and generation noise, where the number of conduction carriers fluctuate due

to interactions with the band and trap sites; and the more problematic 1/f

noise processes.

One example of 1/f noise in semiconductor materials is the fluctuation

in the conductance, proportional to f−β, where β = 1 ± 0.1. This effect is

known to occur across a wide frequency range – in practice, typically from

1Hz to 10kHz, above which point thermal white noise will dominate the noise

power spectral density [185]. Measurement down to at least the microsecond

level has shown that the power spectral density continues to obey the 1/f

power law on such timescales [220]. Unlike the other three sources, the basic

principles underlying 1/f noise are not well understood [185]. As a result,

experimentalists tend to take it as unavoidable, and look to work around it.
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While this discussion is couched in language of conduction measurements,

the underlying statistical noise processes are present in an enormous range of

physical systems. The particular emphasis on carrier populations and electrical

resistivity are due to the widespread use of electrical resistivity as a taxonomy

of solids [77].

6.4.2 Principles of lock-in detection

Even if an experiment is designed to ensure that the signal of interest is

of significantly greater intensity than specious signals, a reliable measurement

may be difficult to perform if the desired signal is weak enough to be limited

by statistical noise.

Lock-in detection is a standard laboratory technique used to increase

the signal-to-noise ratio of such an experiment, providing the means to measure

weak signals that are otherwise undetectable. This phase-sensitive detection

method modulates an excitation source at a well-controlled frequency and

interrogates the resulting signal to isolate a corresponding effect occurring at

the same modulation frequency. This measurement of the isolated effect is

then averaged over many modulation periods to gain a
√
N type advantage.

This technique effectively reduces the bandwidth of the measurement, and, as

a result, reduces the integrated noise power present in the resulting signal.

A useful description of a number of different reduced bandwidth mea-

surement techniques is available in [187]. We describe the particulars of phase

sensitive detection and lock-in amplification only briefly here, depending pri-
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marily upon the example of that text, reference [276], and the comprehensive

manuals made available by Stanford Research Systems, such as [355].

The simplest approach to reduce the noise bandwidth of a measurement

– low-pass filtering – will not be effective if the noise power spectral density

is sufficiently great at the frequencies of interest for the measurement. Many

experimental measurements are performed to quantify what are, at least ap-

proximately, DC signals, and are thus particularly sensitive to low frequency

noise issues. Reducing the bandwidth by low pass filtering does not gain signif-

icant advantages for measuring a noisy signal if, as is generally the case, there

is a prototypical 1/f noise power spectral density. In such a case, most of the

total noise power will still present in the detected signal and no advantage has

been gained, with the added detraction of slowing the data acquisition rate to

substantially less than the corner frequency of the filter.

To obviate the difficulties of measuring DC (or low-frequency) signal,

most of the bandwidth narrowing techniques depend on the detection of a

repeating signal. It is relatively easy to force most typical laboratory detectors

to generate a periodic signal by modulating the control of some independent

variable in the experiment.

Fourier transform spectroscopy using a sufficiently sophisticated detec-

tion schemes provides simultaneous measurements of amplitude and spectral

phase data sufficient to reconstruct the time-resolved electric field correspond-

ing to four-wave mixing emission in the systems we study (n.b. we contrast a

time resolved measurement from one that simply probes the time integrated
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emission as a function of some particular variable, viz. pule delay times).

The temporal lineshape of such a signal is complicated, determined by the

optical coupling of conduction and valence band states, the narrow exciton

resonance resulting from electron-hole pair interactions, dephasing and spon-

taneous decay processes, and exciton-exciton correlations. It may seem to a

naive analysis that these relatively complicated measurements are categorically

not DC signals, nor are they periodic save in the sense that any well-behaved

time sequence data can be decomposed by Fourier analysis. Furthermore, the

emission should rise and decay some 76 million times a second due to the

repetition of the pulsed laser used as an excitation source.

Nonetheless, the actual detection step is in principle a DC measure-

ment. Although these experiments can reconstruct the electric field as a func-

tion of real time during the emission, they do so by detecting a time-integrated

intensity and extrapolating from its behaviour as a function of the phase sta-

ble delays between three excitation pulses. A slow photodiode (we variously

used a Thorlabs DET36A, which is simply a biased photodiode, and a home-

built detector using an amplified, biased Silicon PIN photodiode) produces

a photovoltage proportional the light incident upon its active area, but does

not respond fast enough to resolve either the envelope or the fast optical os-

cillation; typically, we use terminating resistors to set the cut-off frequency

at approximately 40kHz, and only conduct experiments designed to produce

signals oscillating at less than this cutoff. So, although the optical process of

interest has a complicated temporal evolution and a 76MHz repetition rate, it
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is necessary to modulate the low frequency or DC signals that are derived from

that fast signal. In the case of the dT measurements described in the previous

chapter, a chopper wheel was used to turn either just the pump or both the

pump and probe (we discuss two-frequency detection at some length in this

chapter, q.v sub) beams on and off by physically blocking and unblocking the

optical path, typically in the 1-2kHz range. To perform 2dFTS spectroscopy

we used a similar chopper with larger windows to perform modulation at 25Hz.

In general, the effect of modulation is to shift a signal of interest away

from DC, where 1/f noise can dominate even intense signals, and to move it

up to the modulation frequency. The the effect of taking a long measurement

centered on the modulation frequency is to reduce the effective bandwidth to

∆f = 1/T for some duration T . Thus, it is possible to isolate a signal of

interest and to perform an accurate measurement of it by modulating some

independent variable in the experiment.

The lock-in detector itself is essentially an extension of a phase detector.

In a simple implementation, this is a gated inverting buffer, so that the gain

of the circuit can be flipped between +1 and −1. By applying an input signal

to such a device,

Es cos (ωt+ φ)

while using a square wave reference signal that has edges as the zeros

of sin (ωt) to control the gating of the inverting element ad. If the output level
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where the brackets represent averages, and 
the minus sign comes from the gain rever- 
sal over alternate half cycles of Vref. As an 
exercise, you can show that 

EXERCISE 15.2 
Perform the indicated averages by explicit inte- 
gration to obtain the preceding result for unity 
gain. 

Our result shows that the averaged out- 
put, for an input signal of the same 
frequency as the reference signal, is pro- 
portional to the amplitude of V, and si- 
nusoidal in the relative phase. 

We need one more result before going 
on: What is the output voltage for an input 
signal whose frequency is close to (but 
not equal to) the reference signal? This 
is easy, since in the preceding equations 
the quantity 4 now varies slowly, at the 
difference frequency: 
cos(w + Aw)t = cos(wt + 4) 

with 4 = tAw 
giving an output signal that is a slow 
sinusoid: 
V,,, = ( ~ E , / T )  sin(Aw)t 
which will pass through the low-pass filter 
relatively unscathed if Aw < 117 = IIRC 
and will be heavily attenuated if Aw > 
117. 

weak 
signal low nolse + noise 

The lock-in method 

Now the so-called lock-in (or phase- 
sensitive) amplifier should make sense. 
First you make a weak signal periodic, as 
we've discussed, typically at a frequency 
in the neighborhood of 100Hz. The weak 
signal, contaminated by noise, is amplified 
and phase-detected relative to the modu- 
lating signal. Look at Figure 15.38. You 
need an experiment with two "knobs" on 
it, one for fast modulation in order to do 
phase detection and one for a slow sweep 
through the interesting features of the sig- 
nal (in NMR, for example, the fast modu- 
lation might be a small 100Hz modulation 
of the magnetic field, and the slow modu- 
lation might be a frequency sweep 10 min- 
utes in duration through the resonance). 
The phase shifter is adjusted to give maxi- 
mum output signal, and the low-pass filter 
is set for a time constant long enough to 
give good signallnoise ratio. The low-pass- 
filter rolloff sets the bandwidth, so a 1Hz 
rolloff, for example, gives you sensitivity to 
spurious signals and noise only within 1 Hz 
of the desired signal. The bandwidth also 
determines how fast you can adjust the 
"slow modulation," since now you must 
not sweep through any features of the sig- 
nal faster than the filter can respond. Peo- 
ple use time constants of fractions of a sec- 
ond up to tens of seconds and often do 
the slow modulation with a geared-down 

low~pass 
fi lter r @ meter 

( -  1 Hz or less) 

chart recorder 
computer 

4 data loaoer 

low freq r -2 
[ - looHz Figure 15.38. Lock-in detection. 

Schematic outlining the process of lock-in detection. 
Reproduced from Horowitz and Hill, The Art of Electronics, 
2nd ed., New York: Cambridge University Press, 1989!

Figure 6.15: Principles of lock-in detection

of this phase detector is then applied to a low pass filter with a time constant

greater than one period of the reference signal,

τ = RC � 2π/ω

then the low pass filter output is given by

〈Es cos (ωt+ φ)〉 |π/ω0 − 〈Es cos (ωt+ φ)〉 |2π/ωπ/ω

where the two averages have different signs due to being taken with

reversed gains from the analog linear phase detector. After taking the time

average, the output level is given by

〈Vout〉 = −
(

2Es
π

)
sinφ
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where the phase φ is determined by the phase difference between the

reference signal used as a gate on the inverting circuit and the signal of interest

Es cos (ωt+ φ). Thus the output of the combined phase detector and low pass

filter is, for any input signal synchronous with the reference signal applied

to gate the inverter, proportional to the amplitude of that signal, Es. The

constant of proportionality, aside from any particulars related to the physical

implementation of this device, is given by the phase difference between the

reference and the signal. Adjustment of this phase permits optimized detection

of the signal of interest.

If the input signal occurs at a modulation frequency that is close to,

but not equal to the reference signal, the phase φ varies slowly in the preceding

results, at a frequency equal to the difference between the reference and signal

frequencies:

cos (ω + ∆ω) t = cos (ωt+ φ) =⇒ φ = t∆ω

with the result that the output of the phase detector-low pass filter is

a slow sinusoidal signal in time,

Vout =
2Es
π

sin (∆ω) t

for small errors ∆ω between the reference and signal frequencies. If

that frequency difference is small compared to the corner frequency of the low

pass filter, i.e. if ∆ω < 1
τ

= 1
RC

, then an oscillating signal will be detected. If
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the difference frequency is greater than the corner frequency, if ∆ω > 1
τ
. the

output will be heavily attenuated. The degree of suppression is a function of

the size of the frequency mismatch and the slope of the low pass filter transfer

function. On a digital device such as the two lock-in amplifiers used in our

experiment, this may be trivially adjusted, but certain consideration must

be given to the waiting time used for the low pass filter to lose the memory

of its previous state after some change has been made to the experimental

parameters (in our case, to the waiting times between pulses or the wavelength

selected by the monochromator).

In summary, lock-in detection is used to measure a weak signal contam-

inated by noise. The apparatus producing the weak signal is controlled in such

a way that the signal is modulated. The raw measurement from some detector

is amplified, then a phase-detection stage is used to compare the signal to a

reference signal derived from the modulation source. Most all experiments

collect data as a function of some variable, rather than considering a single

point; as such, to use lock-in techniques the experiment needs two ’knobs,’ one

providing a slow modulation to sweep the experiment through the interesting

features present in the signal’s domain space, and a fast modulation that is

used for the phase sensitive detection. The choice of the low pass filter rolloff

sets the bandwidth of the measurement, so that a 1 second time constant for

the filter results in sensitivity to those signals and noise only occurring within

1Hz of the reference signal. The choice of bandwidth also determines maxi-

mum rate at which the slow modulation can occur. If the slow modulation
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rate were comparable to the low pass time constant then any changes in the

features of interest that would otherwise be observed will instead be filtered.

The experiment cannot be swept across its domain faster than the filter can

respond. So, in toto, the bandwidth for the measurement has been narrowed

to a range determined by the low pass filter stage, centered on the modulation

frequency used to make the weak signal periodic. Since this frequency can

be made relatively fast, lock-in methods alleviate problems with ubiquitous

laboratory 1/f noise.

There is a distinction that may be made between lock-in detected sig-

nals proportional to the signal of interest, obtained by effectively chopping the

signal on and off, or detected signals proportional to the derivative of that

signal’s lineshape, which are found by using a small sinusoidal modulation on

some independent variable in the experiment. We perform the former, gating

the light sources used to induce four-wave mixing emission, either using a me-

chanical chopper or an acousto-optic modulator that is employed to provide

amplitude modulation of the light it diffracts.

6.4.3 Multi-frequency modulation and lock-in detection

If a signal of interest is generated using more than one excitation source,

it is possible to use a multiple frequency modulation scheme to perform ex-

tremely sensitive measurements. If a signal A is modulated sinusoidally in

time at two different frequencies, the measured signal A cos (2πf1t) cos (2πf2t)

can be decomposed using trigonometric identities,
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A cos (2πf1t) cos (2πf2t) =
A

2
{cos [2π (f1 + f2) t] + cos [2π (f1 − f2) t]}

Thus, this intensity A of this weak signal could be detected and mea-

sured by considering a small frequency band centered on either (f1 + f2) or

(f1 − f2). Since this lock-in detection is a phase-sensitive technique, it is

strictly necessary that the two modulation frequencies and the reference fre-

quency used to select the lock-in pass band maintain a constant, well-defined

phase relationship. Should phase drift occur, the fraction of the lock-in signal

power desired to be in-phase with the reference frequency may drift into the

out-of-phase component, or vice versa; in such a case, the desired signal of

interest will be distorted or lost. Often, due to experimental contraints, a dif-

ference frequency modulation scheme will be used when the excitation source

can only be easily modified at frequencies that are too high to permit straight-

forward detection; in that case the beat frequency f1− f2 can be chosen to lie

within the accessible range of slower detectors. Since laboratory environments

often exhibit something like a 1/f law for noise power spectral density (or, at

least, almost always tend to have far greater noise power spectral density at

lower frequencies – see, for example [217], [21]), it is advantageous to use high

modulation frequencies to shift the signal of interest away from the signifi-

cant noise sources present at low frequency. In difference frequency detection,

the difference frequency term will be chosen to be as fast as the available

detector; in optical experiments using two excitation sources modulated us-

ing acousto-optic or other nonlinear optical processes it is not uncommon to
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use modulation frequencies in the MHz or tens of MHz range with difference

frequencies in the few to tens of kHz range.

The difference frequency detection scheme is straightforwardly extended

to three excitation sources, such as we use in our four-wave mixing experi-

ments. We use three-frequency modulation in order to look for a weak signal

superimposed on a strong, noisy background. In our experiment, one of the

beams that induces the polarization in the material sample that gives rise

to the four-wave mixing signal field co-propagates with that signal field. Us-

ing the common two frequency-difference frequency detection scheme does not

suffice to detect the weak four-wave mixing signal. We reserve the details of

our detection scheme for a later point in this chapter, but mention the three

frequency detection method here as a logical extension of two frequency mod-

ulation. The three frequency lock-in detection method we develop appears to

be (to the best of our knowledge) a novel tool for detecting weak nonlinear

signals.

Of course, the use of two-frequency or three-frequency or indeed, any

other kind of modulation scheme detection does not alter the way that the lock-

in detection process works. Lock-in detection is still used to simply isolate

a pass band near some particular frequency and average the power present

within that band to provide an accurate measurement of a weak, noisy signal.

Modulating the signal of interest in a more complicated fashion simply provides

a different way to produce a detectable signal at a desired frequency. This is at

times necessary if more straightforward modulation schemes do not effectively
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isolate the desired signal from the background.

6.5 Acousto-optic principles and applications to our ap-
paratus

Our experiment makes extensive use of acousto-optic modulators to

control the phase and amplitude of the laser beams that excite and probe our

samples. A detailed description of the theory of the acousto-optic effect and a

summary of the various devices and applications that depend upon it is out of

the scope of this work. Here we present only a brief summary of light-sound

coupling and a discussion of its application to the particular devices we used for

our measurements. The interested reader is referred to the extensive literature

on the subject, beginning with the early papers describing the effect (the first

theoretical exploration of the idea in [52] and the phase-grating theory for

diffraction developed in [300], [301], [302], [303], [304]). While this represents

a substantial digression from the greater part of the chapter, an explanation of

the underlying principles of acousto-optic interaction is required to understand

the use of acousto-optic modulators in our work.

The distinction between and transition from the Raman-Nath to Bragg

scattering regimes [397], [289], [218] will largely be elided, partly to avoid fur-

ther extending this discussion, but also because the operation of our devices

as used under optimum coupling conditions can be qualitatively explained

largely using the simpler Bragg picture, as may be observed from a few mo-

ments’ fiddling in the laboratory. By adjusting the incident angle of the laser,
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it is possible to observe far-field patterns where only the undeflected mode

and one of the m = ±1 modes are clearly visible, an accepted characteristic of

Bragg mode operation. It is, however, certainly true that adjusting the device

alignment around the ideal angle that maximizes the power diffracted into the

first order permits scattering into a number of different, weaker spots – which

is suggestive of operation in the Raman-Nath regime. The frequently repeated

argument is that Bragg diffraction should only permit one diffracted mode in

the far-field, since repeated scattering cannot occur in a Bragg crystal due to

a mismatch in the Bragg resonance condition between the first scattered light

mode and the periodic grating induced by the acoustic wave. This sharply

distinguished taxonomy is somewhat misleading, since the case of the ideal

Bragg device – where the acoustic wave is a periodic plane wave that is (para-

doxically) nonetheless confined to propagate through a perfect cylindrical or

rectangular column – is not an accurate description of a real physical device.

Even minor deviations from this ideal would allow non-resonant diffraction into

higher order modes, albeit at a reduced efficiency – and using intense, visible

laser sources would permit the observation of multiple diffraction orders from

devices for which the dominant effects (i.e. first order scattering) are still well

described by the simpler Bragg model. Thus, the observation of additional

spots does not necessitate delving into the gorier mathematical details of the

phase grating model, as the Bragg model serves accurately for an intuitive

understanding of our device. Perhaps most convincing of the applicability of

the Bragg description is the precise dependence on Bragg angle alignment for
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the device to function with anything approaching a useful efficiency, and the

modestly high RF frequencies used in the operation of these devices – opera-

tion of Raman-Nath devices at those acoustic wavelengths would require too

thin an interaction region to be practical for most materials.

A treatment for the Raman-Nath, intermediate, and Bragg scattering

regimes is described in [219], which used a coupled-mode theory (see [73]) to

analyze the diffraction of light by acoustic waves and established an eponymous

Klein-Cook parameter Q used to categorize the nature of an acousto-optic

device.

The interaction of light and acoustic waves was first predicted by Bril-

louin in 1922 [52] and experimentally demonstrated in 1932 [86], [255]. The

propagation of an acoustic wave through a medium induces a strain field in

that material. That strain results in a change in the local index of refraction

via the photoelastic effect. This phenomenon is found in all phases of matter.

Mathematically, the effect may be described as

∆ηij = ∆

(
1

n2

)
ij

= pijklSkl

where the quantity of interest, ∆ηij, is the change of the optical im-

permeability tensor resulting from the effects of the strain tensor Skl, related

to the physical deformation of the medium, via the coupling pijkl, known as

the strain-optic tensor. Photoelastic coupling may also depend nonlinearly on

the strain tensor, but higher order effects are typically small compared to the
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linear term. Generally, the elements of the strain tensor will take on values

of typically ∼ 10−5, and we may expect that the local index effects will be

correspondingly small.

Due to the periodic nature of the acoustic waves, the strain field is

periodic grating, resulting in a grating that can scatter light passing through

the medium. This physical process has substantial utility to the optical exper-

imentalist, discounting the fascinating scientific aspects of coupling two wave

phenomena (light and sounds) that occur in such different parameter spaces.

We describe the basic principles of acousto-optic interaction following

the invaluable derivation in [407]. Useful reviews of acousto-optical principles

and applications may be found in [368], [226]. We first turn our attention to

the general problem of the propagation of electromagnetic waves in periodic

crystals, before considering the specifics of light scattering by acoustic waves.

6.5.1 Propagation of light in periodic crystals

In a periodic material, the optical properties may be related to the

material parameters by periodic dielectric and permeability tensors

ε (x) = ε (x + a)

µ (x) = µ (x + a)

where a is any lattice vector describing the symmetry of the periodic

structure. The Maxwell equations used to describe light propagation in this
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material,

∇×H = iωεE

∇× E = −iωµH

will be symmetric under the operation n x → x + a in either the curl

operator or the tensor dielectric and permeability. The propagation of light

given the translational symmetry of the periodic medium is analogous to the

Schrodinger problem of an electron in a crystal potential, and suggests the use

of Bloch-like solutions for the electric and magnetic fields,

E = EK (x) e−iK·x

H = HK (x) e−iK·x

where the functions EK and HK inherit the same periodicity as the

underlying periodic medium and the exponential functions describe the wave-

character of the propagating optical field (the time dependence is omitted

here but will also enter in exponentially. Wave-like propagation is described

by functions whose arguments can be written (k · r± Ωt) for some wavevector

k, position r, and frequency Ω). In discussion of the propagation of electrons

in a crystal, this result is known as Bloch’s theorem; more generally, it is

referred to as Floquet’s theorem. A dispersion relation is obtained,
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ω = ω (K)

by substituting the ansatz solutions into the Maxwell equations with

a result, again, in parallel to that found in a Bloch problem. We restrict our

attention here to a one-dimensional, periodic, non-magnetic material – i.e. we

assume that the light-matter interaction is wholly described by the dielectric

constant.

For light incident on this periodic medium at angle θ, constructive in-

terference will occur in reflection for mλ = 2Λ cos θ, where Λ is the periodicity

of the material. This is the ubiquitous Bragg condition, which occurs when the

phase difference between rays reflected from different planes is equal to zero

(modulo 2π), resulting in constructive interference among the rays reflected

from the various planes [45], [44]. This constructive interference condition ob-

tains if the path length difference travelled by light reflecting from successive

planes is equal to an integer number of whole wavelengths. The periodicity of

the medium suggests an expansion of the dielectric tensor in a Fourier series

over the reciprocal lattice:

ε (x) =
∑
G

εGe
−iG·x

which may then be substituted into the wave equation for propagation

of the electric field (again, neglecting magnetic interactions) in the periodic

medium

456



∇× (∇× E)− ω2µεE = 0

Fourier analysis shows that the it is possible to decompose the propa-

gating electric field appearing in this wave equation onto a set of normal modes

(mathematical probity requires barring pathological functions not amenable to

Fourier analysis, i.e. only a finite number of discontinuities, finite number of

extrema in the interval considered, integrated absolute magnitude must be fi-

nite, though such fields are likely unphysical; if we are working in a charge-free

region we may assert that Laplace’s equation would require well-behaved fields

[196]). The general solution may be represented by a superposition of these

modes.

For a given optical frequency ω the wave vector describing propaga-

tion of the electric field may be found via the dispersion relationship. There

will be regions in the momentum-energy space (here, frequency and energy

are synonymous) where the wave vector K will be complex, in which case the

Bloch wave describing propagation through the medium will be an evanescent

wave – falling off exponentially with penetration into the material. The fre-

quency band for which that decay occurs is termed a forbidden band, and any

incident light that falls in such a band will be completely reflected; via the

historical antecedent of x-ray diffraction crystallography, this was known as

Bragg reflection.

As always, the actual physical processes we observe are more compli-

cated than those presented by this simple model. This description is based on
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the assumption of a one-dimensional system, but is readily extended to a full

three-dimensional treatment. The result of that analysis is that strong reflec-

tion will occur for specific angles θ determined by the symmetry operations

of the periodic medium. In the one-dimensional case, the relevant symmetry

operation is the translationally symmetry of the periodic modulation of the

material’s index of refraction.

This derivation also assumes that the material under consideration is

isotropic. This is not the case in many physically important media – such as

the TeO2 crystals used to fabricate our acousto-optical modulators – but it

is a useful conceit for developing an intuitive understanding of the relevant

scattering physics. In anisotropic materials a more complicated form for the

dispersion relationship will be obtained, and the subsequent analysis will be

slightly more complicated. In the general case, some dependence on the optical

polarization is also expected [98]. Realistic models of beam shapes predict

lower efficiencies than would be expected from a basic Bragg scattering analysis

[74]. The treatment of acousto-optic scattering interactions in [227] recovers

the behaviour found in the Bragg and Raman-Nath regime while avoiding the

use of un-physical descriptions of sound, such as the restriction of acoustic

waves to a columnar region, that were used in prior derivations

6.5.2 Acousto-optic modulators

Having established a simple model for the coherent scattering of light

by a periodic modulation of the local index of refraction, we turn our attention
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to the specifics of acousto-optical scattering in acousto-optical modulators.

Those that we use are constructed of Tellurium Dioxide, a material

chosen due to the large magnitude of the elements of its strain-optic tensor over

the optical wavelength range. This permits substantial acousto-optic coupling

without introducing extremely high strain in the material. Effectively, it is a

material with a high efficiency figure of merit for diffracting light by sound.

6.5.3 Traveling versus standing wave devices; their use as phase
modulators

It is possible to construct acousto-optic modulators where reflection

of the sound wave results in the formation of a standing wave; in this case,

the analysis of the acousto-optic interaction follows immediately from the de-

scription of the periodic modulated medium described above. If the acoustic

wave is a traveling wave, the resulting periodic perturbation of local index

of refraction will also propagate at the speed of sound in the material. This

speed is typically five orders of magnitude smaller than the speed of light in

the material, so the periodic perturbation will appear stationary on the time

scale of the light traversing the medium, and the Bragg model still serves as a

useful basis for developing physical intuition for the light scattering process.

The significant distinction that must be considered for the traveling

wave device is the frequency shift that occurs when light is diffracted by a

propagating periodic modulation of the index of refraction. Considered from a

classical optics perspective, that shift occurs due to the propagation of phase
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fronts through the crystal. The analogy offered by reference [407] is that of

a Doppler shift that would occur if light were reflected from a mirror moving

at velocity v through the acousto-optical material. If the Bragg condition

is satisfied, the shift will simply be Ω, the acoustic wave frequency. If the

direction of the diffracted light compared to the incident beam tilts more

toward the direction in which the acoustic wave is propagating, the frequency

will be shifted up; otherwise, it will be shifted down. Alternatively, a particle-

based picture of the acousto-optical interaction may be used to more intuitively

understand the frequency shift effect. In that description, the acousto-optical

interaction is described by (for example) the annihilation of a photon with

energy ω (~ = 1 in this brief analysis), the annihilation of a phonon with

energy Ω via a stimulated process in the phonon mode populating the acoustic

wave in the crystal, and the creation of another photon carrying the total

energy ω + Ω. Conservation of momentum requires that the final momentum

of the emitted photon equal the sum of the initial photon and phonon. This

picture can be used to determine if the frequency shift should be up or down

from a conservation of energy argument standpoint, depending on whether the

scattering involves creation or annihilation of a phonon. This is the m = +1

Bragg diffracted mode; the m = −1 mode is described by the annihilation

of a photon with energy ω, the creation of a phonon with energy Ω, and the

creation of a photon with energy ω − Ω.

We also note something of a hand-wavey argument offered for the appli-

cation of an acousto-optic modulator as an optical phase modulator. Following
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from the expression

ωf = ωi ± Ω

for conservation of energy, we simply multiply both sides of this equa-

tion by time t, obtaining

φf = ωf t = (ωi ± Ω) t = φi + φAOM

φf = φi + φAOM

thus we see that by varying the phase of the RF signal used to drive

the AOM we may linearly adjust the phase of light diffracted by the device

[311].

A more substantive derivation of the phase modulation process in these

devices requires – against our repeated objection – that we delve briefly into

Raman-Nath scattering theory. We adapt a derivation from [407] to consider

the dependence of the diffracted modes on an arbitrary acoustic phase. We

assume an acoustic wave propagating largely in a thin sheet nearly perpen-

dicular to the incident light ray induces a perturbation of the local index of

refraction described by

∆n (x, y, z, t) =

{
∆n0 sin (Ωt−K · r + ψ) , 0 < z < L,

0, otherwise
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where the wave-vector for the acoustic wave is given by K. We have in-

cluded here an arbitrary phase term ψ.For simplification, an isotropic medium

is assumed, and the perturbation of the local index is taken to be a scalar

function. It is assumed that the interaction length L is small – placing the

scattering in the Raman-Nath limit, compared to the volumetric nature of

Bragg scattering. In this case, the perturbation is effectively a phase grat-

ing that effects the transmission of the optical beam, initially described by

E = E0e
i(ωt−k·r). Assuming that the only effect of the phase grating is to

modulate the phase of the incident optical plane waves, the transmitted light

can be expressed as E = E0e
i(ωt−k·r)−iφ. The phase shift due to propagation

through the interaction medium has the straightforward form

φ =

ˆ z=L

z=0

ds
ω

c
∆n

where the integral must be evaluated over the path for a specific pencil

of optical rays. Assuming a small angle of incidence θ as well as the previously

stated assumption that the thickness of the phase grating is small, the resulting

phase can be found

φ =
ω

c
∆n0

L

cos θ
sin (Ωt−K · r + ψ)

which is simply the product of the index modulation with the num-

ber of optical full oscillations that occur during the transmission through the

phase grating. The dependence on the phase of the acoustic wave appears in

462



a straightforward fashion. From this expression, the transmitted light may

be written Etrans = E0e
i(ωt−k·r)−iδ sin(Ωt−K·r+ψ) where the modulation index is

given by δ = ωL∆n0

c cos θ
. We see immediately that the transmitted light field is

phase modulated due to diffraction by the acousto-optical device, as we as-

sumed, although the expression obtained here is lamentably more complex

than the hand-wavey argument borrowed from Bragg scattering theory. An

identity for the Bessel functions allows the intensity to be rewritten in the

form

Etrans = E0

∞∑
m=−∞

Jm (δ) ei(ω−mΩ)t−i(k−mK)·r+imψ

the physical interpretation of this result is that the transmitted light

field consists of a sum of plane waves propagating in different directions (k−mK)

with different frequencies (ω −mΩ) depending on the scattering order. The

diffraction efficiency for a given mode can be found here by taking the square

of the appropriate order Bessel function for that mode. Here we see that the

diffracted optical fields all depend on the phase of the modulated index of

refraction, and thereby couple to the phase of the acoustic wave and by exten-

sion the phase of the RF signal used to drive the transducer in the modulator

device. By this derivation we see that it is possible to directly control the

phase of light diffracted with an AOM. The tracking relationship for the phase

of diffracted beams and the phase of the RF drive used to power an AOM

has been noted before [382], but a rigorous proof of acousto-optical phase

modulation is often eschewed in favour of an appeal to physical intuition.
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We note that again, of course, the real physical processes cannot be

completely described by this model. In an isotropic medium, this analysis

suffices for most purposes; in an anisotropic material, the index of refraction

depends upon the direction of propagation, so it is no longer as tractable a

problem, and it is necessary to consider the diffraction condition more care-

fully. This is the case for Tellurium Dioxide, where many of the acoustic prop-

erties of interest depend on the specific acoustic or optical mode considered;

nonetheless, this description suffices for our purposes.

6.5.4 The use of AOMS as amplitude modulators

The mechanism by which these devices may be used to modulate the

amplitude of diffracted light beams is relatively straightforward compared to

the particular details of the phase modulation effect. Since the coupling mech-

anism depends upon the photoelastic effect – the distortion of the local index

of refraction due to mechanical strain – it is reasonable to assume that for most

materials, where an increasing strain results in an increasing distortion and

thus a deeper periodic grating – it is relatively straightforward to show that

in a simple model the intensity of diffracted light will increase linearly with

increasing acoustic wave intensity. This effect of course exhibits saturation

behaviour and nonlinearity as the power is increased past some critical point.
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6.5.5 Spectral purity of diffracted modes; synchronization and re-
fresh rates in acousto-optic devices

Some substantial consideration must be given to the problem of re-

fresh rates in a traveling wave device, as the acoustic waveform will propagate

through the medium. In some applications it may be necessary to synchronize

the RF signals used to drive the AOM to the laser pulse, with suitable delay.

We intend to use the acousto-optical modulators in our experiment primarily

as a relatively slow modulator of optical power, where typical modulation fre-

quencies will be on the order of 1MHz. By way of contrast, the drive frequency

for the AOM will be at or around 80MHz (determined not for any scientific

reason, but chosen simply as it is the center frequency for the devices we use),

and the laser repetition rate of 76MHz, determined by the length of our laser

oscillator cavity. A keen experimentalist may note the proximity of the AOM

drive frequency and the laser repetition rate and raise a note of alarm, but

this is not a significant issue, since the laser is not directly modulated by the

AOM drive frequency in the time domain. Instead, the drive frequency sim-

ply determines the spacing of the periodic grating induced in the Tellurium

Dioxide crystal. It is true that in the frequency domain, scattering off the

moving wavefronts in this crystal will shift the laser pulse by the AOM drive

frequency (the actual shift is slightly more complicated and will also depend

on the slow ˜MHz modulation frequency, but we discount that effect for the

present for the sake of simplicity). Since we work with a periodically repeating

pulse train, the laser spectrum does not actually consist of a single, smooth
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function, but instead is represented in frequency space by a comb of compo-

nents, each spaced by the repetition rate of 76MHz. Each of those components

will be shifted by the 80MHz drive frequency. If the frequency shift were ex-

actly or close to coincident with the laser mode spacing, we may be concerned

about beat effects that may arise – not in the laser field itself, since none of the

’original’ modes will be left in the diffracted beam [302], [397] , but possibly in

the nonlinear signals produced via light-matter interactions involving several

different beams shifted variously up and down in frequency.

Relatively early in the study of acousto-optical interaction it was un-

derstood that scattering by the traveling acoustic wave should result in a

frequency shift for diffracted beams [302], [397]. Raman-Nath theory predicts

that the light in each diffraction order should be spectrally pure – that it should

contain only one frequency component. This was tested by Yeh and coworkers

who performed an early laser diffraction experiment to make optical hetero-

dyne measurements of the beat frequency between an un-deflected beam and

one deflected by a water cell driven at an ultrasonic frequency. They observed

high spectral purity of the diffracted orders limited only by slow thermal per-

turbations in the liquid at ˜0.5 Hz. By way of contrast, a standing wave device

is deprecated for spectroscopic applications where the optical frequency may be

experimentally important, as Raman-Nath theory predicts those devices will

have complicated spectral distributions in each of the diffracted orders. The

even-order diffraction maxima spectra will contain optical frequency compo-

nents shifted by all even multiples of the drive frequency, while the odd-order
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diffraction maxima spectra will contain optical frequency components shifted

by all odd multiples of the drive frequency. [134].

Returning to the possibility of nonlinear interaction in our sample in-

troducing a beat frequency, we note that the 4 MHz spacing is fast enough

that any oscillation in signals resulting from the nonlinear interaction of two

or three such shifted laser pulses will be effectively filtered by the band-pass

high gain pre-amplifier and lock-in amplifier used in later data collection and

signal processing steps – we typically use at least 30 ms of integration time for

the lock-in’s low pass filter, which should correspond to 120,000 cycles of a 4

MHz oscillation – we expect to see no interference issues due to this effect.

Additionally, we need to consider the relative timing of the slow, MHz

modulation frequency and the laser pulses. During the period of a 1 MHz

sinusoidal modulation, 76 separate laser pulses should be diffracted at various

powers (ranging from full scale to approximately zero) onto our sample. Given

the number of cycles of the experiment that should occur during one period

of the slow modulation, we expect the error introduced to our measurements

by the lack of any phase-lock between modulation and laser repetition rate to

be on the order of 1/76 – a few percent at best. In kiloHertz repetition rate

systems, where modulation frequencies are lower, these errors may become

significant – such as in reference [204], where a 500 Hz chopper wheel was

synchronized to a 5 kHz laser system to ensure that a single chopping cycle

would consist of 5 on pulses and 5 off pulses for pump-probe polarization

anisotropy measurements.
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6.5.6 Tests of amplitude modulation depth and speed with our
AOM devices

Modulation speed is limited in a traveling wave device to the time it

takes for the acoustic waveform to refresh across the effective aperture. This is

limited by the speed of sound in the material, which cannot be easily changed

(it is possible of course to use a different material, or to use the same material

but to excite a propagating acoustic mode with a faster speed of sound, but

those choices typically involve a tradeoff with the acousto-optic figure of merit

– the photoelastic coupling will be reduced in those circumstances), and the

linear dimension of the laser spot. Faster modulation rates may be achieved

by focusing the laser to a smaller waist before it passes through the device.

For our purposes, we did not expect to use modulation frequencies

greater than a few MHz, although the availability of an RF-capable digital

lock-in does raise this possibility. To ensure that our AOM’s could be used

to modulate the beams as desired, a fast Si photodiode with a home-built

amplifier was placed after one of the modulators. We monitored the power

diffracted into the first-order mode. A series of neutral density filters was used

to ensure that the power did not saturate the detector, and a low-pass RC filter

was used to ensure that system time constant was insufficiently fast to respond

to the laser pulse repetition rate. This was necessary, since the bandwidth

of the photodiode (˜GHz) and amplifier (approximately 100 MHz) were not

sufficient to resolve the 76 MHz laser repetition rate, which would require a

sampling frequency of at least 152 MHz. With the added restrictions of a
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certain length of RG-58 cable and a 100 MHz oscilloscope, it was impossible

to follow the fast laser response without significant aliasing.

The slow modulation applied by the AOM, however, was perfectly re-

solved. The modulation depth for a few MHz appeared to be 100% within the

limits of the signal-to-noise of this simple test. From this we concluded that

our AOM scheme could be used to effectively modulate our laser intensity in

the 0 Hz to several MHz range. Since this was sufficient for our application,

we did not make any effort to improve the response time by reducing the laser

spot size through the AOM.

6.6 Homebuilt RF acousto-optic modulation system

We built a three-frequency RF modulation system in order to perform

four-wave mixing measurements on samples using the variable beam geometry

apparatus. First, however, we replicate the two-pulse measurements to test the

functioning of this system. In order to produce the multiple RF signals used

for these experiments we make use of a pc-controled direct digital synthesis

function generator. We describe the operation of such a device only briefly

here.

6.6.1 Direct digital synthesis

This experimental program requires several RF signals that can be

readily adjusted to permit measurement of different signal components. For

this application, we use a direct digital synthesis (DDS) apparatus as a high

469



stability, four channel frequency source. DDS sources exhibit extremely high

phase and frequency stability over long test periods, and allow us agile control

over frequency, phase, and amplitude of our generated signals.

A DDS source uses a high-precision frequency reference in order to

generate a set of sampled signals. A phase register determines the state of this

precision clock and compares the number of counted samples to a value set by

a binary tuning word. If the necessary number of clock ticks have occurred,

a digitally controllable phase-to-amplitude block then writes a digital word

to a digital-to-analog converter, thereby updating the analog output of the

device. Analog filtering removes or reduces the artifacts related to sampled

method of signal generation. Careful design of the filter stages is important

to avoid aliased signals from polluting the frequency pass band. In brief, the

DDS device has a programmed output waveform in a memory that is divided

up into a finite number of slices, which are indexed by the time they occur

after the waveform begins. After a controllable number of clock cycles, the

DDS increments to the next time slice. When the waveform has completed,

the DDS returns to the beginning of the waveform memory and repeats its

output process [11], [10].

We explored fabricating our own DDS-based function generator to gen-

erate the modulation frequencies used in our experiment. Evaluation boards

available from Analog Devices permit some interesting experimentation with

the ADXXXX DDS chipset, but unfortunately they are intentionally crip-

pled and only provide two usable output channels. Our application requires
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three modulation frequencies and one reference frequency, and could almost

certainly be implemented with that chipset but cannot be directly performed

with the evaluation board. The evaluation board itself required construction of

two stabilized precision power supplies and the supply of an external precision

frequency source, but it was determined that constructing a usable laboratory

device from a single un-crippled chip was not worth the significant effort it

would take to ensure no RF cross-talk or other issues were introduced. The

construction of RF circuits is notoriously fraught with unexpected difficulties.

As a result, we purchased a PC-controllable DDS-based synthesizer

from Novatech (Novatech 409b), based on the exact same Analog Devices chip.

This commercially available device, however, allows the use of all four of the

chip’s DDS outputs. Although we cannot find a reliable reference explaining

why, it has been informally suggested that the carrier frequencies that are

mixed with the modulation signals from the DDS should not be phase-locked.

We have not explored this effect ourselves, but we assume that it is therefore

not advisable to use a DDS device to produce the unmodulated RF drive signal

used to power the modulators since its outputs will be inherently phase-locked.

Independent frequency sources are used for the acousto-optic modulator carrier

frequencies. We note that the commercial two-frequency APE driver produced

phase-locked carrier signals; we have not explore this effect in either two- or

three-frequency modulation schemes.

The advantages of using a DDS source are the high degree of phase-

stability, the low degree of frequency, phase, or amplitude noise for analog
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signals produced using digital sampling, and the agility of computer control.

That agility allows us to generate a reference signal using the fourth out-

put that can be easily changed to perform a variety of different heterodyning

measurements in a three-frequency modulation scheme. By contrast, using

discrete mixer and filter components to produce reference frequencies is inflex-

ible and provides an additional channel for the introduction of cross-talk that

has catastrophic consequences for the measurement of weak signals.

6.6.2 Continuous frequency RF sources for acousto-optic modula-
tor drive

The drive frequencies used to power the AOM’s are produced using

stabilized quartz crystal oscillators (Crystek CPRO33-80.000 oscillators, pow-

ered with homebuilt, regulated voltage supplies based on a variable output

three terminal linear regulator) designed for use as frequency standards by RF

engineers. These devices produce an RF signal centered on a DC offset on the

order of a volt. We AC couple the signals produced by the frequency refer-

ence sources to the subsequent RF mixing and amplifying electronics via inline

capacitors on the central conductor; the common ground is not altered from

one side of the isolating capacitor to the other. RG-58 cables are sufficient for

the frequency bands used in these experiments, though SMA connectors are

preferred to reduce VSWR problems.

Unfortunately, the frequency range available in such devices is deter-

mined by commercial demand, and the 80 MHz oscillators we selected are
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uncomfortably close to the Mira laser’s pulse repetition frequency. Nonethe-

less, we chose to use these devices since three relatively inexpensive frequency

reference sources allowed us to ensure that the RF drive frequencies generated

were not phase correlated, which previous experimental research suggests to be

necessary [249]. We argue that the near coincidence of RF drive frequency and

the Mira repetition rate (76 MHz) should not cause significant problems with

generation of beat frequencies, since the beam power deflected by an AOM

does not respond to the drive signal used, but rather the modulation of that

signal power, which is determined by the modulation frequencies produced by

the DDS function generator.

We note that there is a possibility of an unintended beating effect oc-

curring due to the frequency shift of the diffracted light: depending on whether

the +1 or -1 mode is selected, the light diffracted by the AOM’s will undergo

a frequency shift of +/-80 MHz. We originally began using AOM’s in these

experiments to use the frequency shifting effect to move the pump and probe

pulse frequencies away from one another in a degenerate dT/T measurement

where classical interference effects were confusing the signal of interest – at the

time, our modulation for lock-in detection was performed using a mechanical

chopper and we were not concerned with using the AOM’s to gate the excita-

tion lasers. In those simpler experiments, an 80 MHz signal derived from an

RF frequency generator was used simply because that drive frequency lay in

the center of the AOM bandwidth. Since the shift was not precisely coincident

with the Mira repetition rate no problems were anticipated. To test whether
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the coincidence of the frequency shift from the new RF oscillators and the

Mira’s rep rate will cause any noticeable effect on our experiments we repeated

the two pulse measurements performed using the original 80 MHz generator

and saw no changes; from this we presume that this unfortunate choice in RF

drive frequency will likely have no effect on our results. Moreover, the 4 MHz

frequency difference would, if it introduced any beating, not be visible in the

signals measured using the photodiode-preamplifier-programmable filter setup

we use.

6.6.3 Mixing and amplification

The RF signals generated from the crystal reference sources and the

DDS function generator are split, attenuated, mixed, re-combined, and ampli-

fied using discrete RF components from Mini Circuits.

Our first implementation of a mixer-amplifier circuit derived the lock-

in reference frequency from the DDS modulation frequencies (i.e. the two

pump and the probe modulation frequencies for a three-frequency modulation;

or a single pump modulation frequency, doubled, and the probe modulation

frequency for a two-frequency modulation experiment). This was awkward, as

it required the use of additional doublers and filter components, and required

physically changing the RF circuit to switch between different measurements.

There is, furthermore, the ambiguous factor of 2 that keeps cropping up in

these projects, and which must be carefully dealt with when changing the RF

circuits to perform different measurements.
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Figure 6.16: Generating reference with discrete RF components
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We had an unreserved channel on the DDS board, however, and quickly

abandoned the previous method of obtaining a lock-in reference by mixing with

discrete RF components in favour of using this phase-stable, high spectral

purity signal.

Each RF carrier frequency is produced, as described previously, by an

independently crystal reference, powered by an independent, regulated home-

built supply. That RF signal is AC coupled to a mixer, where it is mixed

with one channel from the DDS generator, to produce a modulated RF signal

that is then amplified into the 1-2 Watt range, then sent to the acousto-optic

modulator.

A slight addition to this scheme is made to perform phase-sensitive,

interferometrically precise three-pulse measurements. An additional RF signal

must be supplied to the acousto-optic modulators of the pump beams, in this

case, as will be described elsewhere. For that purpose, an HP RF function

generator is used to create a single RF carrier, which is added to both of the RF

signals sent to the pump AOM’s, prior to final amplifier stage. For a schematic

diagram of the RF mixer constructed for these three-pulse measurements, see

the final section of this chapter

To avoid saturating any of the discrete components and generating un-

wanted nonlinearities in the RF mixer-amplifier, we checked RF power levels

at each point in the experiment. Since none of the signals used in this ex-

periment are very high frequency, it was possible to use a fast oscilloscope

with a proper 50 Ohm terminator to examine the signal at each step in the
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mixer-amplifier. A number of conventional RF attenuator pads were inserted

at various points throughout the experiment to ensure that no input tolerance

was exceeded for any of the RF components. Since the RF crystal reference

signal is a fixed amplitude, control of the final modulated RF signal amplitude

was provided by adjusting the DDS function generator output levels.

6.6.4 Beam modulation method

The modulation of the laser was performed using traveling wave acousto-

optical modulators, specifically three identical devices from Gooch & Housego

designed for use in the visible and near-IR frequency range (Gooch & Housego/Neos

Technologies AOBD model 46080-2-LTD). In these AOM’s, a high frequency

RF piezo transducer is used to transform RF power into a propagating acoustic

wave in the crystal, in this case, TeO2, chosen for its advantageous acousto-

optical properties. The bulk acoustic wave is a local pressure modulation,

which results in a periodic change of the local index of refraction of the mate-

rial. On the time scale characteristic of pulse propagation through the crystal,

the acoustic wave essentially does not propagate, and some portion of the

incident laser beam will scatter as though the light were passing through a

transmission grating. We have described the function of these devices previ-

ously in this chapter, with references to the various restrictions on their use,

etc.

It is possible to use either the zeroth-order mode or the first-order mode

(or indeed, a higher order mode, although this is inadvisable as the acousto-
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Bragg diffraction of a laser beam (at frequency ω) by a 
standing-wave acousto-optic modulator results in a 
frequency-shift for the scattered light. The first-order 
(m=+1) diffracted mode shown here increases its 
frequency by the acoustic frequency (Ω). Resonant 
scattering at the Bragg angle, 2θ, occurs when the 
incoming beam forms an angle θ with the phase fronts 
of the acoustic beam.$

Figure 6.18: Bragg diffraction in an AOM
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optic interaction in these devices approaches the Bragg limit) as the desired

beam, and to block the others. The simplest choice is to use the zeroth order

mode, since the beam steering of the undeflected mode does not depend upon

the RF signal applied to the modulator. This is not the ideal solution, however,

since the modulation depth is limited by the maximum diffraction efficiency.

While manufacturers of AOM’s often cite figures approaching 80% or 90%

diffraction efficiency, that number depends upon an optimal alignment, and

is only obtained for certain polarizations, beam size, etc. – in practice, 50%

diffraction is more commonly achievable. Thus, using negative logic (in the

digital circuit sense) where the high RF power state results in low optical power

is deprecated. The reduced modulation depth available in this application

would result in decreased lock-in sensitivity.

Instead, we use the first order diffraction modes, i.e. either the ±1

modes. Even in these beams, however, we note that there will always be some

finite amount of bleedthrough when the RF signal is in its low state, but the

extinction ratio is many orders of magnitude superior to what can be obtained

using the m = 0 mode. The disadvantage, of course, is that the beam steering

depends upon the frequency used. This also has implications for the optical

multiplexing method we develop (q.v. sub) that relies upon steering multiple

wavelengths with multiple acoustic waves.
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6.6.5 Replication of two-pulse measurements

To test the function of the home-built RF modulation system, we per-

form two pulse measurements using a pump-probe geometry. The intensities

of the diffracted pump and probe beams are typically modulated at approx-

imately 1MHz, with the difference between the two modulation frequencies

used as the reference for lock-in detection.

The samples used for these trials are simple single quantum well and

multiple quantum well structures studied in a reflection geometry (q.v. our re-

marks on the reflection geometry measurements performed in [183], n.b. that

the presence of additional layers in the structure is unlikely to result in sub-

stantially stronger signals as is typical for transmission measurements; also

q.v. our discussion of the complicated phase relationship that results for emis-

sion from multiple layered samples when studied in reflection geometries in

the chapter on 2dFTS measurements). The samples are prepared as previ-

ously, and mounted in a liquid Helium cryostat. Two-pulse experiments that

probe the population dynamics are not sensitive to dephasing, and we there-

fore perform these measurements at higher temperatures to conserve Helium –

typically at approximately 30 K. The additional population of phonon modes

is not expected to drastically alter the lineshape observed here.

Unlike our first measurements on these samples, we do not record any

data using a spectrometer, as we are primarily interested in a test of the

lock-in modulation system we have constructed. The reflected probe beam

is collected and spectrally analyzed with a monochromator, using the same
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optics and detection system previously employed. Indeed, the only difference

between these measurements and those performed with the APE system are

the sources of RF signals used to drive the acousto-optic modulator and sent

to the lock-in amplifier for a reference.

These data are collected as a function of wavelength. Specific times for

T , the pump-probe waiting time, are chosen that are sufficiently long that the

coherence spike artifact and coherent population oscillations are expected to

have damped out. The monochromator central wavelength is set by computer

control, the experiment is directed to wait three times the lock-in time constant

to allow the low-pass filter to clear, then a data point is collected and read

into the home coded Labview programs used to control the experiment. The

monochromator central wavelength is then incremented to a new position, and

the process is repeated until an entire spectrum has been acquired.

We believe these measurements provide equal or better resolution of the

lineshape seen with the commercial device. Without careful diagnostic tests

it is not prudent to claim drastic improvements in performance; the observed

light-hole and heavy-hole exciton resonances are clearly resolved, however, and

we find that it is possible to perform two-pulse measurements using very small

lock-in waiting times – indeed, we do not see any substantial changes after

reducing the lock-in time constant to sufficiently small values that the rate

limiting factor for collecting a spectrum is no longer the waiting period but

rather the mechanical adjustment of the monochromator. Typically we collect

two-pulse data with a ten millisecond time constant.

482



790 792 794 796 798 800 802 804 806

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

790 792 794 796 798 800 802 804 806
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04
in

-p
ha

se
 c

om
po

ne
nt

 s
pe

c 
in

te
ns

ity
 / 

a.
u.

)

wavelength / nm

sp-pr -- dR measurement
phase set to agree with
prior experiments

dp-pr -- dR measurement
rotate AOM phase to match
dp-sp phase relationship

ou
t-o

f-p
ha

se
 c

om
po

ne
nt

 s
pe

ct
ra

l i
nt

en
si

t /
 a

.u
.

wavelength / nm
790! 792! 794! 796! 798! 800! 802! 804! 806!

-0.02!
-0.01!

0.00!

0.01!
0.02!

0.03!
0.04!

0.05!
Sp

ec
tra

l i
nt

en
si

ty
 / 

a.
u.
!

Wavelength / nm!

Two-pulse differential reflectivity measurements (a) taken on 
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Figure 6.19: 2-pulse dR with homebuilt RF system
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We did not previously address the details of the phase of the spectral

measurements, though we mentioned the principle of adjusting the phase of a

lock-in reference to obtain the maximum signal strength. Lock-in amps can

be used to determine the intensity of signal components that are in- and out-

of-phase with the reference signal [355]. In some cases, there is no expected

out-of-phase component, and the proper adjustment of the reference signal

phase results in a null output for the out-of-phase channel; in general, how-

ever, a more complicated situation may obtain where the signal of interest

has components that oscillate in and out of phase with the modulation of the

excitation sources. This is the case for the exciton systems we study; specifi-

cally, for the exciton-surface plasmon polariton hybrid mode, the phase of the

signal is expected to vary across the spectral line. As such, it is necessary to

establish some principle to use to properly set the phase of the input signal

relative to the reference.

For our first measurements, performed using the commercial two-frequency

device, we followed the scheme privately communicated to us by our collabo-

rators at the University of Oldenburg to set the phase for the lock-in amplifier.

This consists of simply moving the monochromator to the peak of the heavy-

hole resonance, then using the automatic phase set control on the digital lock

in amplifier. The lock-in amplifier then iteratively adjusts the phase shift of

an internal reference derived from the input reference frequency to maximize

the in-phase signal component.

Using the computer controlled DDS function generator allows us to per-
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form more sophisticated experiments with the lock-in detected signal. Since

we wish to develop the toolset necessary to perform three-pulse measurements,

we explore the ability of the AOM’s to control the phases of the three beams

that will be used. In our partially collinear 2dFTS experiments we did not con-

centrate on the relative phases of the three pulses used. In part, we neglected

the phase between the first two pulses that interact with the sample because

little effort is made to determine that relationship in typical non-collinear ge-

ometry 2dFTS measurements, where a subsequent, independent, spectrally

resolved measurement is used to properly set the phase of the 2dFTS spec-

trum. The partially collinear detected four-wave mixing signal is purely real,

unlike the phase and amplitude signal extracted from spectral interferometric

heterodyne detected non-collinear 2dFTS measurements; as such, we cannot

perform any adjustment of the phase of the partially collinear measurements

after the fact. We assume that the phase relationship between the pump pulses

in the partially collinear experiment is trivial (ϕ = 0) when the two pulses are

temporally overlapped, but that assumption may be questioned. With the

more sophisticated amplitude and phase modulation scheme we develop here,

it is possible to arbitrarily control the phase of any of the pulses used in a

2dFTS measurement, which should allow us to remove this ambiguity in any

subsequent experiments.

To that end, we perform a two-pulse experiment using one pulse com-

ing from either the static pump or dynamic pump arm of the Mach-Zehnder

Interferometer as the pump pulse – call that (1) –, and the probe beam. The
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other arm of the Mach-Zehnder interferometer is blocked – call that (2) –, but

we set the AOM in that beam to modulate the intensity of the beam at the

same frequency used for the pump beam (1). Thus, the intensity modulation

of both pump pulses (1) and (2) are performed at the same frequency, but

only pulse (1) is incident on the sample during the first experiment. This

pump-probe experiment is used to perform a spectral measurement, resolving

the two exciton resonance features. We set the phase of the lock-in amplifier

as before on the peak of the heavy hole exciton resonance.

We then block the original pump pulse (1), and perform a second pump-

probe experiment with the other pump pulse (2). The precise phase relation-

ship between the light diffracted into beam (1) and (2) is not known at this

point, but it is constant since the two modulation signals have a well-defined

phase relationship. We can thus perform another spectral measurement with

pump (2) and the probe beam, and recover a lineshape that is multiplied

by some factor ranging from −1 to 1. Again, with this measurement we are

only resolving a real valued function – the intensity due to the probe and

co-propagating signal fields – and therefore we do not distort the lineshape

other than this scaling. We can easily set the phase of the (2) pump beam

to be equal to the (1) pump beam by adjusting the phase of (2)’s modulation

signal generated using the DDS until the spectrum observed while scanning

the monochromator reproduces the correctly phased one obtained with pump

(1) and the probe. It is possible to rotate the phase difference between the

two spectra very simply by adjusting the phase of the modulation signal sent
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Adjusting the phase of the DDS signal used to generate the 
modulated RF signal driving the dynamic pump beam AOM results 
in a change of the signal phase relative to the lock-in reference 
signal (a). A two-pulse differential reflectivity spectrum using the 
static pump and the probe beams is used to set the lock-in phase. 
Keeping that phase relative to the reference signal but switching to 
the dynamic pump beam, a spectrum may be obtained with a 
different phase relationship. We measure the out-of-phase signal 
component as a function of the DDS RF phase sent to mixer circuit 
driving the dynamic pump AOM (b). Note that the phase of the 
acousto-optic modulator varies at twice the rate of the drive signal 
generated via the DDS; this factor of two is also reflected in the 
frequency of intensity modulation compared to the DDS frequency.!
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Figure 6.20: 2-pulse dR with homebuilt RF system
487



second AOM. We show here a plot of the out-of-phase component of the signal

detected with pump (2) and the probe beam. By scanning the phase of the

DDS drive signal, it is possible to move the spectral information into or out

of phase with the internal lock-in reference set from using the reference signal

generated on the fourth channel of the DDS device. When actually setting the

phases of the two pump pulses to be equal, it is simpler to examine the out-

of-phase component while sitting on top of the heavy hole exciton peak, and

adjust the phase of the DDS modulation signal until the out-of phase signal

component is minimized. This same pump-probe comparison procedure may

be used to establish a phase relationship among the two collinear pump pulses

used to perform a three-pulse experiment.

6.7 Three-pulse measurements of weak ultrafast four-
wave mixing signals

The goal motivating the construction of this RF modulation system is,

of course, to perform more complicated nonlinear experiments that permit the

measurement of dephasing times – and, conceivably, the application of these

detection schemes to performing a full 2dFTS measurement.

For the moment, this is not practical with our experimental apparatus.

Although we have had success in resolving four-wave mixing signals in a re-

flection geometry, we need to change the detection method in order to increase

the data acquisition rate. Otherwise, a full 2dFTS data set (or the similarly

complicated data for some other three-pulse, spectrally resolved experiment)
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will take too long to acquire, and will not be able to be fully captured be-

fore the experiment can be expected to lose interferometric stability. The rate

limiting factor for performing these measurements is the serial collection of

spectral data; in order to reduce the necessary experiment time, a parallel

method of detection is needed. There are possible technical solutions to these

issues, which we will address subsequently.

First, we consider an intermediate result – the measurement of the laser

pulse autocorrelation traces using the RF lock-in detection scheme. These

measurements are normally made to determine the pulse temporal overlap

positions, in order to accurately determine the τ and T delays. Using the

RF-AOM modulation scheme to detect these signals reveals different features

from those observed using a mechanical chopper to modulate the laser beams.

We did not expect to observe these different correlation traces, but realized

that the unusual features present in these signals reveal some interesting as-

pects of the nature of heterodyne detection with this apparatus. Having ob-

served strange effects in the two-pulse autocorrelation measurements that we

normally use as a diagnostic, we then perform a two-pulse measurement on

the semiconductor system we have previously studied using the commercial

acousto-optic modulation system and our homebuilt RF system, now using

a different modulation scheme. The unusual nature of these measurements

greatly informs our subsequent approach to observing four-wave mixing emis-

sions in three-pulse measurements.

We then turn our attention to a digression on multiple acoustic fre-
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quency, multiple optical wavelength operation of acousto-optic modulators.

This discussion is necessary to better understand the trick we develop to use

the acousto-optic modulators in our experiment with both the modulated Ti-

Sapph beams used for the experiment itself and a co-propagating, unmodu-

lated HeNe beam that is used to interferometrically stabilize the experimental

apparatus. There is extensive literature on the use of acousto-optic devices in

various applications that are somewhat similar, but no other method has been

demonstrated (to the best of our knowledge) that is quite as simple as the one

we use. Partially, we expend so much energy cataloguing these more sophis-

ticated acousto-optic devices because we are surprised that our more-or-less

dumb solution works as well as it does.

We then consider the problems of intensity and field heterodyne de-

tection that arise when using the three-frequency lock-in detection method.

To the best of our knowledge, these issues have not been explored elsewhere,

if only because three-frequency modulation has not previously been used to

extract weak signals that co-propagate with an additional field that may be

used as a local oscillator – generally, optical measurements of extremely weak

signals are designed to result in a background-free emission that can be spa-

tially isolated from other light sources, and then integrated for a sufficient long

time to improve the signal to noise. As noted, we are interested in developing

an optical experiment that works in a partially collinear geometry where the

phase-matched four-wave mixing emission co-propagates with a strong, inci-

dent field. Here, we show that it is possible to observe not just the transient
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time-integrated envelope of a four-wave mixing signal, but also to directly ob-

serve the optical frequency oscillation of that emission via a phase-sensitive

detection technique that would permit direct, straightforward extension to a

2dFTS or similar sophisticated measurement.

6.7.1 Unusual two-pulse measurement results

Here, we describe the unexpected results of two-pulse measurements

that we performed specifically as preparation for the three pulse measurements.

Specifically, we report unusual autocorrelation measurements performed using

two-frequency detection with acousto-optic modulators used to modulate the

laser. This result suggests re-examination of the two-pulse measurement we

performed previously, using an alternative reference signal. The conclusions

from these measurements strongly influence the method we use to detect the

weak four-wave mixing signals with which we are primarily concerned in this

project.

6.7.1.1 Laser pulse correlation trace measurements

A broad range of three-pulse measurements can be performed without

accurately determining the temporal pulse overlaps to zero the T and τ times.

Many experiments use a two-pulse coherence spike artifact to approximately

find the zero, although the exact shape of this feature is, as we have noted, not

easily modeled and as a result it may not provide a high degree of accuracy.

It is also possible to observe phase-matched emission in two complementary
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directions, and to assume that the pulse zero time overlap occurs when the

coherent artifact intensities in those two channels are equal; this method makes

certain assumptions about the symmetry of the system being probed (most

likely true in transmission measurements) but is also susceptible to simple

errors introduced by unbalanced detection of two spatially separate signal

fields. Some of the interesting early work studying four-wave mixing lineshapes

from semiconductor exciton systems was performed without significant ability

to characterize the temporal behaviour of the pulses at all; the work presented

in reference [324], for example, relied on assumptions of the picosecond pulses

used since a nonlinear measurement was not available for those experiments.

To perform a measurement like 2dFTS where a transient four-wave

mixing signal is effectively time-resolved (we, like other groups performing

these coherent spectroscopy techniques, observe our signal of interest in a

Fourier conjugate domain but can transform those results to obtain a time-

resolved signal), however requires accurate timing of the pulse delays. Auto-

correlation and cross-correlation measurements provide the ability to roughly

resolve the temporal behaviour of the pulses used in these ultrafast nonlinear

experiments.

Electronic instruments cannot respond quickly enough to make direct

measurements of femtosecond scale phenomena; it is therefore necessary to

effectively sample-and-hold these phenomena, freezing some record of their ef-

fects until a relatively slow electronic device can respond and a measurement

can be made. Almost any optoelectronic device will exhibit a nonlinear re-
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sponse if it is sufficiently highly excited (c.f. the oft repeated remark of Arthur

Schawlow, that “anything will lase if you hit it hard enough,” [75] which led

perhaps most famously to the demonstration of Jell-O lasers by Ted Hansch

and coworkers [288]). As a result of the nonlinearity exhibited by such a device,

it can be difficult to perform a linear measurement of the pulse characteristics

– pulse duration, etc – as the instrument used will introduce distortion itself.

As a result, careful pulse measurements should strictly be analyzed using a

well characterized device such that the signal of interest may be de-convoluted

from the instrument response function [96]. Most laboratory techniques in-

deed rely on nonlinearity to characterize laser pulses. An entire discipline of

optical science is dedicated to developing new tools to better study and pa-

rameterize ultrafast pulses; we will avoid extensive discussion of FROG and

all of its related technologies here, for as powerful as they may be we have

not made use of any of these more sophisticated methods in our own experi-

mental program, which depends upon the older time-domain characterization

methods described here.

If a sufficiently fast phenomenon is available to use as a reference (for

all intents and purposes, we are referring to a faster laser pulse), a cross-

correlation measurement where an unknown optical field is characterized us-

ing that faster phenomenon would be possible. Typically this is not possible

for most ultrafast experiments, where the fastest available pulse on an optical

table – the one being used to perform nonlinear optical measurements – is

the phenomenon in need of characterization. Thus, auto-correlation measure-
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ments are performed, where the pulse is used itself to characterize the pulse

characteristics.

An intensity autocorrelation measurement, where a pulse is split and

one part of its power delayed relative to the other fraction before being com-

bined on a square-law detector, would result in a signal given by the convolu-

tion integral

AC(τ) =

∞̂

−∞

Is(t)Ir(t− τ)dt

where the function I (t) represents the intensity due to the combined

optical fields, and τ describes the delay between the two pulses. In this thesis,

we will go back and forth between the terms ’autocorrelation’ and ’cross-

correlation’ without any significant difference: it is true that all of the pulses

used in these experiments derive from the same laser source, suggesting the use

of ’autocorrelation,’ but the measurements performed on the frequency shifted

pulses of interest here are perhaps most accurately called ’cross-correlation’

measurements, since the beams are no longer frequency degenerate. Since

the distinction does not seem significant here, we use these terms essentially

interchangeably.

This measurement is necessarily a symmetric function about its zero,

and provides only very limited information about the laser pulse studied [96].

There are an infinite number of symmetric and anti-symmetric pulse shapes

that will exhibit the same intensity autocorrelation function. Nonetheless, the
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symmetry about the zero-delay position makes this relatively simple measure-

ment useful, and it is therefore sometimes used to estimate pulse timing.

Higher order intensity autocorrelation measurements, described by

An(τ) =

∞̂

−∞

I(t)In(t− τ)dt

can provide more information about the pulse characteristics. The

functional form used here may be somewhat surprising at first as it prima facie

treats the intensities at different times differently, until one considers that for

high n, the n-th order autocorrelation measurement is an integral convolution

of the intensity function with some increasingly high-localized function. In

the limit of n→∞, the second intensity term in the integrand would become

a Dirac delta function and the higher order autocorrelation would provide a

direct measurement of the pulse shape [96].

In order to determine the pulse temporal overlaps, we used a two-

photon detector to perform an interferometric autocorrelation measurement.

This technique is well established, and functionally similar to the use of a non-

linear crystal to generate a temporally gated second harmonic optical field,

which depends in intensity upon the delay and phase between two pulses [97].

Those measurements observed interferometric, fringed signals for collinear

pulses, similar to the signals we observe for the auto-correlation of the pump

pulses. A semiconductor device with a sufficiently wide band gap can be

substituted for the second-harmonic crystal; see, for example [309], where an
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unbiased AlGaAs detector with a bandgap in the 660nm range is used to mea-

sure interferometric autocorrelation signals. It is not strictly shown whether

the millivolt signal observed for pulsed lasers are due to a second harmonic

generation effect over a single coherence length inside the diode or simply due

to two-photon absorption, but the LED derived signal worked equally well as

that derived from a second harmonic crystal to characterize the laser pulse.

The additional advantage of using a semiconductor device rather than the

purely optical second harmonic method is that no phase-matching is required,

so that the measurement is largely insensitive to polarization, alignment, and

wavelength. Similar autocorrelation measurements performed using two pho-

ton absorption in biased ZnSe detectors demonstrate the usefulness of these

techniques [314], which may be more practical for the characterization of very

short pulses where propagation through the relatively thick nonlinear crystals

used for second harmonic generation results in dispersion that would limit

the temporal resolution of such a measurement. Photocurrents derived from a

two-photon absorption process have also been demonstrated as a tool for char-

acterizing pulses generated from low repetition laser systems [154]. A logical

extension to higher order photon absorption processes has been demonstrated;

in analogy to the increased pulse information available in a second order auto-

correlation measurement, these higher order measurements will provide further

information unavailable using a two-photon detector. Three-photon processes

can be used to study asymmetry in the pulse, such as frequency chirp [236]

More explicitly, a two-photon detector can be used to measure a photo-
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voltage signal that depends upon the intensity squared of the combined optical

field, yielding a signal represented by

G2(τ) =

∞̂

−∞

〈∣∣(E1(t− τ) + E2(t))2
∣∣2〉 dt

where we have used the electric fields rather than the intensity fields, for

reasons relevant to our subsequent discussion of field versus intensity hetero-

dyne schemes. The subscript of 2 here refers to the order of the autocorrelation

measurement. The signal provided by a second order autocorrelation measure-

ment such as this contains components that depend distinctly on the delay τ

that is scanned between the two pulses; there are constant background terms,

a term that depends upon the product ωτ of the optical frequency and the

delay, and a term that depends upon twice that product 2× ωτ [96].

When we performed our previous 2dFTS (and differential transmis-

sion) experiments, we would determine the pulse timings using this kind of

measurement. A flipper mirror diverted the beams away from the cryostat

and onto a wide gap semiconductor photodiode. The photocurrent induced in

the diode was dumped across a load resistor to produce a photovoltage, which

was then amplified using a precision instrumentation pre-amplifier (SR560,

Stanford Research Systems) then detected using a lock-in amplifier (SR830,

Stanford Research Systems). The modulation was provided using a mechani-

cal chopper wheel, which interrupted the beams at typically 1-2 kHz. When

measuring the static pump-dynamic pump autocorrelation, the chopper would
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be used to modulate both beams simultaneously, after the point where the two

arms of the Mach-Zehnder interferometer recombine. In the case of the static

pump-probe autocorrelation, the chopper, still in the same position, was used

to modulate only the pump beam.

For the non-collinear static pump-probe autocorrelation measurements,

the high frequency components were not present in the detected signal. This

is presumably due to either the variation of the spatial interference fringe

across the focused spot on the two-photon detector, or the frequency shift of

the pump beam relative to the probe beam. That shift may have resulted

in a beating between the frequency components of the two optical fields that

would not be detected using the relatively low bandwidth loaded photodiode,

and which would exceed the bandwidth of the precision pre-amp.

For those autocorrelation measurements that were performed for the

collinear beams, an interferometric autocorrelation was observed. The finest

resolution used for incrementing the delay stages in these experiments was

typically 0.15 um, resulting a change in optical path length of 0.30 um for each

step. In order to observe an oscillation occurring at the optical wavelength of

(approximately) 800 nm, a sampling resolution of 0.40 um is required – this

condition was satisfied, and the ωτ dependent features were revealed in the

autocorrelation trace. We did not look for the higher frequency components

occurring at 2 × ωτ , which would have required a more precise scan of 0.20

um, but would (at times) see some modulation of the fringe pattern that may

be due to the higher frequency component aliasing down into our observed
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Figure 6.21: Noncollinear autocorrelation with chopper
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Figure 6.22: Collinear autocorrelation with chopper
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signal.

To determine the temporal overlap of these pulses, a slow envelope

function was fit to the measured autocorrelation trace. In the future, given

the points raised regarding maintaining a precise phase relationship between

the two pump pulses, it is recommended that more careful attention is paid to

accurately determining the pulse temporal overlap and relative phase. With

the addition of the acousto-optic modulators to the experimental apparatus, we

have the ability to control independently the phases of any of the three pulses,

providing precise control of this degree of freedom. It is suggested that the

autocorrelation measurement using the two-photon detector may suffice as a

diagnostic for this purpose, or a two-pulse differential reflectivity measurement

may be used to monitor the pump relative phase.

In order to perform three-pulse measurements on the exciton systems

we study, we then attempted to measure the autocorrelations of the laser

pulses using those acousto-optic modulators as the modulation source in place

of the mechanical chopper. The DDS function generator is used to produce

a modulation signal typically in the 0.500 MHz range; when mixed with the

AC-coupled CW RF 80 MHz signals from the oscillators, this results in a high

frequency signal with an envelope at twice the modulation frequency gener-

ated by the DDS board – thus, the 0.500 MHz modulation signal will actually

result in a modulation of the RF power being sent to the acousto-optic mod-

ulator at 1.000 MHz, twice the generated frequency. We have not previously

remarked on the difference between the synthesized frequencies and the in-
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tensity modulation frequencies, but it becomes increasingly relevant to this

discussion here. The intensity of the light diffracted into the m = ±1 modes

is approximately linear over the range of RF powers used here; as a result,

the time-averaged intensity of the light in each of the beams is modulated at

twice the DDS frequency. The intensity of the diffracted light is determined

by the amount of high frequency RF carrier power sent to the acousto-optic

modulator – it is that high frequency signal that is transformed into a grating

via the acousto-optic effect. The slow modulation frequency may simply be

thought of as modulating the depth of that grating, and hence, the intensity

of the diffracted light at any particular time.

We perform these correlation measurements where one beam is intensity

modulated at f1 and the other at f2, and detect at the reference frequency

∆f = f1 − f2. For specificity, we took most of the autocorrelation data with

the probe beam intensity modulated at 1.000 MHz (using a DDS generated

signal at 0.500 MHz) and the static pump beam intensity modulated at 1.050

MHz (using a DDS generated signal at 0.525 MHz). The DDS generator is

used to produce a 0.050 MHz reference.

The results for the non-collinear, static pump-probe measurement ap-

pear essentially identical to the result found in the previous incarnation of our

experiment, using the mechanical chopper. We see a slow envelope function

related to the convolution of the instrument response function with the square

of the intensity envelope of the laser pulse. The signal peak occurs at the

stage position when the T delay is zeroed; we find the center by fitting a slow
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Two-photon autocorrelation measurements of the non-collinear pump pulse 
and probe pulse taken using AOMS to gate the intensity of the two beams. 
Modulation of the intensities at two different frequencies and detection at 
the difference of those frequencies (a) produces a simple envelope function 
when the T delay is scanned (b). Modulation of the intensities at two 
different frequencies and detection at half of the difference of those 
frequencies (c) results in no clear signal above the noise floor of the 
measurement (d). Both autocorrelation traces (b), (d) were collected with a 
time step of 1.16 fs, which is a sampling frequency sufficiently high to 
observe interferometric structure at the Ti-Sapph wavelength. The data 
were not collected with active phase-stabilization."
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Figure 6.23: Noncollinear autocorrelation with AOM’s
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function (a Gaussian, although the pulse may be slightly more accurately rep-

resented by a sech2 function; we have not previously closely investigated the

pulse shape produced by our laser source). Since we are only concerned with

finding the pulse overlaps, the exact pulse characteristics as measured by the

fit are not vital.

When we tried to perform similar measurements to find the autocor-

relation trace for the collinear pump pulse pair, a surprising result obtained.

Using two different intensity modulation frequencies f1 and f2 and detecting

at the difference frequency ∆f only produced a slow envelope function, with-

out any of the high frequency fringing present in the measurements obtained

using the single frequency chopper modulation.

Keeping track of the factor of 2 involved in the frequency modulation

scheme (i.e. the doubling of the intensity modulation frequency compared to

the modulation signal generated by the DDS) had caused us to be somewhat

skeptical that the difference between the observed signal found using acousto-

optic modulators and that obtained using the mechanical chopper was a real,

physical effect, and not an artifact of the detection scheme. We had previously

shown analytically that the electric field amplitude of a laser beam would be

modulated at a different frequency than the intensity of a laser beam when

considering how the multiple frequency acousto-optic scheme would work. For

these two reasons, we considered looking for a signal that we suspected may

be related to the interference of the electric fields of the two beams. We will

show this more rigorously, but if the intensities are modulated at f1 and f2,
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Two-photon autocorrelation measurements of the collinear pump pulse pair 
taken using AOMS to gate the intensity of the two beams. Modulation of the 
intensities at two different frequencies and detection at the difference of 
those frequencies (a) produces a simple envelope function when the τ 
delay is scanned (b). Modulation of the intensities at two different 
frequencies and detection at half of the difference of those frequencies (c) 
results in a bipolar interferometric signal that is centered on the background 
level (d). Both autocorrelation traces (b), (d) were collected with a time step 
of 1.16 fs, which is a sampling frequency sufficiently high to observe 
interferometric structure at the Ti-Sapph wavelength. The data were not 
collected with active phase-stabilization, which may explain the non-
uniform fringe, but it is also possible that a signal at half the Ti-Sapph 
wavelength (see main text for explanation of this 2ω autocorrelation signal) 
is being aliased into the detected signal.!

Figure 6.24: Collinear autocorrelation with AOM’s
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the electric fields would be modulated at f1/2 and f2/2. Therefore, we used

the DDS function generator to produce a reference signal at ∆′ = f1/2− f2/2,

while keeping the experiment otherwise unchanged. We immediately recover

a signal with high frequency components; this time, the observed correlation

trace is an AC signal, rather than the positive semi-definite envelope trace.

The observed fringe signal is weaker and noisier than that we had previously

seen in our measurements using a mechanical chopper.

We suspected that this different signal occurs due to modulation of

different cross terms in the integrand of G2 compared to those found by looking

for a signal at the intensity modulation frequency ∆. The full width-half of

the signal detected using either modulation scheme appears to be the same.

We note now that we neglected to consider the possibility that the sig-

nal observed here was different from that seen with the mechanical chopper

not due to different detection scheme, but because the two pump beams were

no longer degenerate. When we examined auto-correlation measurements ob-

tained using the mechanical chopper, we were looking at a signal obtained for

two pulses that were deflected by the same acousto-optic modulator, and thus

had the same optical frequency. The two pump beams here are deflected by

two different acousto-optic modulators operating at two different frequencies,

generating two optical fields with different carrier frequencies. Thus, the re-

sulting nonlinear signal in the two-photon detector may oscillate at the sum

and difference frequencies of the two optical fields, and the interferometric

autocorrelation high frequency components may be washed out. Further an-
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alytical study of the nonlinear process is necessary to properly consider the

effect the carrier frequency shift has here.

Regardless, the observation of a high frequency signal at the electric

field frequency was surprising and unexpected. This prompted us to consider

the question of which terms would be detected by the square law detector used

to perform three-pulse four-wave mixing measurements on the exciton systems

we study. We describe that at some length subsequently.

6.7.1.2 Two-pulse measurements with electric field modulation

In order to investigate this effect further, we turn our attention again to

the two-pulse measurements we have been using to characterize the behaviour

of our experimental apparatus. Using the sample previously studied, we now

perform an identical nonlinear optical measurement except we choose a new

reference frequency. In our prior measurements, we had modulated the inten-

sity of the optical fields at f1 (for, say the probe beam) and f2 (the pump), and

detected at ∆ = f1−f2. Now, using otherwise identical conditions, we instead

generate a reference frequency at ∆′ = f1/2− f2. This choice is suggested by

the results found for the autocorrelation measurement. Here, we expect that

the pump-probe electric field, proportional to EpumpE
∗
pumpEprobe will result in

a signal detected at ∆′ = f1/2 − f2 due to the dissimilar dependence on the

pump and probe intensities, while the unusual autocorrelation signal, found at

f1/2− f2/2, presumably depends upon the two pump intensities to the same

power.
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The results are remarkably different – the same lineshape is observed,

but at a greatly reduced signal strength, and much noisier than the signal

observed previously. The reduction in signal strength and increase in noise are

similar to the effects we observed for the two-pulse measurements using the

two-photon\autocorrelation detector. The conventional data presented here

were taken using the reference signal ∆ with an integration time constant

of 30ms, though we note that further reduction of the lock-in time constant

does not deleteriously affect the signal to noise (we do not perform these

measurements with a faster time constant simply because below 30ms, the

rate limiting constant for data collection is the time it take to scan the grating

in the monochromator), while the ∆′ reference signal measurement took a full

second for integration. Plotted on the same scale here, the ∆′ measurement

must be multiplied by a factor of 20 to show comparable magnitude features.

We note here that the choice of the new reference frequency – which we refer to

as a hybrid measurement – is different from the ’novel’ measurement performed

using the autocorrelation two-photon detector; the difference is to be expected

due to the geometry involved. In a pump-probe measurement, such as these

differential reflectivity measurements, the pump and probe do not interact with

the material in the same way, whereas in the autocorrelation measurements

the optical interactions of two pulses were treated on an equal footing.

We call the experiment performed with reference frequency ∆ an in-

tensity modulated experiment, while we call the result found using reference

frequency ∆′ a hybrid electric field-intensity modulated experiment. We use
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Two-pulse differential reflectivity measurements taken using our 
homebuilt RF electronics system to drive the AOMʼs used to 
modulate the intensities of the pump and probe beams (a). The 
trace in black is taken by modulating the intensities of the two 
beams at two different frequencies and using the difference 
between those frequencies as the lock-in reference (b). This 
measurement was taken using 30ms integration time, but faster 
measurements showed no noticeable decline in signal-to-noise. 
The trace in red, which has been multiplied by a factor of twenty, 
was also taken by modulating the intensities of the pump and 
probe at two different frequencies, but using a lock-in reference 
frequency equal to the difference between the pump intensity 
modulation frequency and half the probe intensity modulation 
frequency (c). This measurement, though significantly noisier 
than that shown in black, required an integration time of 1s."
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Figure 6.25: dR with intensity and field modulations
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this language since modulation of the laser intensity at some f results in a

modulation of electric field at a frequency f/2. We suspect that the signal

detected here is related to the electric field of the signal, which, for the pump-

probe experiment, is linear in the electric field of the probe beam but bi-linear

in the electric field of the pump beam (i.e. linear in the pump intensity). The

exact details of the measurement are still somewhat unresolved, as we are not

able to completely describe the nature of the photovoltage signal produced by

the photodetector. Typically, we are accustomed to treating the device as a

square law detector; the observation of a signal that appears to be related to an

electric field rather than an intensity is thus somewhat ambiguous. In these

two-pulse experiments, the argument that this alternative modulation tech-

nique represents a new detection scheme is not as clear as the corresponding

argument for three-pulse measurements, q.v. sub.

In an appendix at the end of this thesis, we derive an expression for

the intensity of the pump-probe signal detected here, which we repeat here

〈Ipr+sig〉 = 〈Ipr〉+ 〈Iheterodyne〉+ 〈Ihomodyne〉

The heterodyne term is proportional to a time average over the product

of the probe beam and the signal field that co-propagates with it, and is given

by an integral function of

η |Epu (t)|2
(
Epr (t)E∗pr (t+ ψ′) + E∗prEpr (t+ ψ′)

)
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where we see the electric fields of the probe beam and the pump beam

both appear bilinearly in the detected optical signal: videlicet, this signal

depends upon the product of intensities of the pump and probe beam. To the

best of our knowledge, other nonlinear optical experiments performed using a

two-frequency modulation scheme (for example, using a mechanical chopper

wheel with two sets of windows that can interrupt two spatially separate beams

at different frequencies) treat the modulation of the pump and probe beam on

an identical footing.

The homodyne term is, as we noted in the derivation found in the

appendix, typically discounted due to the additional factor of η that appears in

this term, resulting in a much weaker signal. The intensity for this homodyne

signal field is given by a time average over a different field product,

η2 |Epu (t)|4 |Epr (t+ ψ′)|2

we note that this signal field is proportional to the square of the pump

intensity, but is only linear in the probe intensity.

The exact explanation for the observed weak signal at ∆′ is as yet

unclear, but we believe that performing lock-in detection using a reference

frequency equal to the difference between the pump intensity modulation fre-

quency and the probe intensity modulation frequency results in detection of

the heterodyne signal component, while detection using a reference frequency

equal to the difference between the pump intensity modulation and the probe
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pulse experiments.!

Figure 6.26: Signal to noise in dR with various modulations
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electric field modulation frequency results in detection of the homodyne signal

component. Presumably, the distinction depends upon observing processes

that depend upon the product of the electric fields compared to the square

absolute magnitude of the electric field. As noted, the distinction is made

more conceptually clear in three pulse measurements, since the additional op-

tical field provides another modulation ’knob’ and thus more clearly reveals

the nature of the signal that is detected.

In order to ensure that the hybrid electric field - intensity modulation

signal we observed is a genuine nonlinear optical signal and not an artifact of

our apparatus, we made a number of measurements to test the origin of this

signal. Obviously, blocking either beam eliminates the signal. We also per-

formed differential reflectivity measurements with different frequency choices.

The observed spectra do not appear to be a function of the frequency choice,

suggesting that this is a real signal and not an artifact. We calculate all

the possible simple linear combinations of modulation frequencies and half-

modulation frequencies to ensure that our chosen reference frequency does not

coincide with another possible modulation scheme; in the two-pulse measure-

ments reported here, this is a relatively short list of combinations, but with

three pulses and three modulation frequencies, it is necessary to consider a

larger number of frequency combinations to ensure that a pump-probe signal

is not mistaken for a four-wave mixing signal, for example.

We also tried walking our reference signal slightly off the calculated

∆′ = f1/2− f2 hybrid detection frequency. The limiting factor here proved to
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Differential reflectivity measurements recorded in the hybrid 
modulation-detection scheme, using two different sets of 
modulation frequencies. The invariance of the spectrum 
suggests that this signal is not an artifact due to some other 
signal component that inadvertently occurs at the same 
frequency.!
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Figure 6.27: Hybrid modulation dR with different frequencies
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Differential reflectivity spectra taken with the hybrid modulation scheme. 
Detuning the reference frequency demonstrates the selectivity of this detection 
scheme. Changing the probe modulation frequency by 50 Hz (a) or 5 Hz (b) 
obscures any trace of the exciton signal. Changing the probe frequency by 0.5 
Hz (c) results in an artifact with poor signal-to-noise. A detuning of 0.1 Hz (d) 
reveals the normal exciton line multiplied by an oscillatory term. A spectrum 
recorded with resonant reference frequency is shown (e) for comparison.!
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Figure 6.28: Hybrid modulation dR with reference detuning
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be the time constant used for integration in the lock-in amplifier. In practice,

we did this by shifting the probe modulation frequency f1. To ensure the ac-

curacy of these measurements, a 1s lock-in time constant was used to provide

very high signal-to-noise. The on-frequency measurement is performed using

a DDS frequency of 1.050 MHz, corresponding to a probe intensity modula-

tion frequency of 2.100 MHz and a probe electric field modulation frequency

of 1.050 MHz. At any frequency error of greater than 5 Hz, no signal was

observed whatsoever. Decreasing the modulation frequency to 0.5 Hz resulted

in the observation of some sort of distorted signal – this was to be expected,

since the lock-in amplifier can not accurately discriminate between signals

with components oscillating at 1.050 MHz and those oscillating at 1.0500005

MHz during a 1 second interval. Reducing the frequency error further, using

f1 = 1.0500001 MHz, corresponding to a frequency error of 0.1 Hz, revealed

a lineshape that looked like the normal exciton features multiplied by some

oscillatory signal. Again, this is expected due to the inability of the lock-in

scheme to discriminate between such closely spaced signal components over

that timescale. These measurements lend credibility to the argument that

this is a real nonlinear optical signal rather than an artifact, and also provides

a remarkable demonstration of the performance of a digital synthesis based

RF system – the RF linewidths generated by this device are clearly extremely

narrow.

We also note that we made some effort to observe a signal at a third

reference frequency, this time determined by the difference between the probe
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intensity modulation frequency and the pump electric field modulation fre-

quency (∆′′ = f1−f2/2). No clear signal was observed above the noise floor of

the measurement, although with a very long integration time – 1 second per

point (corresponding to 4 second per point of experiment time, given the need

to allow the lock-in’s low pass filter to clear) revealed some extremely weak

features. These were too small and noisy to assert that they are or are not

related to the exciton lineshape we observed otherwise very easily using either

the intensity-intensity (conventional, ∆) or probe electric field - pump inten-

sity (hybrid, ∆′) modulation schemes. A fourth detection scheme was also

tested, looking for a signal at a reference frequency ∆′′′ = f1/2− f2/2. Again,

no clear signal was observed even using very long integration time constants.

A surprising detail that lends further credibility to the argument that

the probe electric field - pump intensity modulation (hybrid) detection scheme

is related somehow to an electric field more directly than the pump-probe in-

tensity is that when changing between the normal intensity-intensity modula-

tion and detection scheme and the hybrid electric field-intensity modulation

and detection scheme is that the phase of the signal detected with the lock-in

amplifier was found to differ by almost exactly 180 degrees (when we thought

to check for this effect, we found a phase difference of 181.8 degrees between

the two signals). It’s possible this is just a numerical quirk, but it also could

be related to the phase shift between polarizations in the material and the

corresponding emitted electric field. Further analysis is certainly needed to

better understand these results.
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6.7.1.3 Distinction between electric field modulation and intensity
modulation

For completeness, we show here the connection between the electric

field modulation and intensity modulation frequencies.

Consider a real electric field described by the sum of two complex fields,

E0 (t) = A
(
ei(k·r−ωt) + c.c.

)
then the corresponding intensity, proportional to the square of this field,

is given by

I0 ∝ E∗0 (t)E0 (t) = AA∗
(
e2i(kr−ωt) + e−2i(kr−ωt) + 2

)
= AA∗ (2 cos (2 (kr − ωt)) + 2)

= 4AA∗ cos2 (kr − ωt)

where we see that the instantaneous intensity corresponding to the sim-

plest harmonic electric field is a positive semidefinite quantity – intensities,

determined by photon counting, must of course be positive numbers, regard-

less of whether the electric field is instantaneously negative or positive valued.

Consider then that a modulated intensity cannot be represented by a simple

sinusoidal function, but must also be positive semidefinite. We model the in-

tensity modulation as cos (Ωmt) + 1 for some angular frequency Ωm = 2π
Tm

,

where Tm is the period of modulation. This assumes that the sinusoidal RF

518



signals generated in our experiment result in a purely sinusoidal acoustic trav-

eling wave in the acousto-optic material, and that the effective perturbation

of the index of refraction due to that overpressure wave is also linear. This

is usually considered a well founded assumption as long as the RF power is

sufficiently low to avoid saturating the diffracted light. Using a fast homebuilt

photodiode we can observe both the individual pulses generated by the laser

(albeit poorly resolved, since our device has an estimated bandwidth barely

sufficient to resolve the 76 MHz repetition rate) and the slower modulation

envelope. The results suggest this model for the intensity modulation is at

least suitable for a first approximate description of the modulation scheme.

With this model for the acousto-optic modulation, we expect a modu-

lated intensity given by

I = I0 × {1 + cos (Ωmt)}

= 4AA∗ cos2 (kr − ωt) {1 + cos (Ωmt)}

we can show that such an instantaneous intensity is given for light where

the electric field is modulated at half that frequency. Consider, therefore,

E = E0

{√
2 cos (Ωmt/2)

}
=
{√

2 cos (Ωmt/2)
}
A
(
ei(k·r−ωt) + c.c.

)
then, obviously,
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I = 2 cos2 (Ωmt/2)AA∗4 cos2 (kr − ωt)

I = {1 + cos Ωmt}AA∗4 cos2 (kr − ωt)

Thus, the strength of the electric field is modulated at half the frequency

at which the intensity is modulated. We believe that a number of the nonlinear

signals we observe can be attributed to detecting optical intensities that are

a product of different complex electrical fields which, in some cases, do not

depend upon an intensity directly.

6.7.2 Optical multiplexing with acousto-optic modulators – manip-
ulating beam geometries with AOM’s

Turning our attention to more sophisticated three-pulse measurements,

we realized that our experiment was at an impasse, with a seemingly unre-

solvable problem related to the use of acousto-optic modulators inside the

Mach-Zehnder interferometer.

As we have noted, Bragg diffraction only occurs at appreciable efficiency

near the resonant condition where the incident and diffracted beams form equal

angles relative to the wave vector of the sound wave in the material. In an

acousto-optic modulator, that Bragg angle, specifically, is

θB = arcsin

(
λ

2nΛ

)
= arcsin

(
λf

2nv

)
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where n is the index of refraction of the interaction medium λ is the

optical wavelength, Λ is the acoustic wavelength, f is the ultrasonic acous-

tic frequency, v is the phase velocity of sound in the material [407]. Thus,

for a given incident beam angle there is a particular acoustic frequency that

will result in efficient coupling of the incident power into a diffracted mode.

Conversely formulated, for a given incident beam angle, there are two angles

(one resulting in Bragg diffraction into the m = +1 mode, the other to the

m = −1 mode) into which a beam may be diffracted with any appreciable

efficiency. In both of these cases, we have assumed that the incident optical

beam is monochromatic.

The problem we did not anticipate when we began our experiments

using acousto-optic modulation of the Ti-Sapph excitation and probe beams

was how to perform actively stabilized experiments using a second beam – a

HeNe tracer – that would co-propagate with the first. For the purposes of

stabilizing and locking the interferometer, we do not wish that second beam

to be modulated by the acousto-optical modulator. Ideally, we wish to see the

HeNe co-propagate with the Ti-Sapph, but not be affected by any modulation

or phase shift we perform on the Ti-Sapph with the AOM’s. With the RF drive

system we have described thus far, the HeNe will effectively not propagate past

the acousto-optic modulators in the interferometer, and we cannot actively

stabilize our experiment.

For 2dFTS (and other phase-sensitive) experiments, we have always

used a Mach-Zehnder interferometer with two co-propagating beams, one of
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Bragg diffraction of a single beam composed of two different optical 
wavelengths  (ω1 and ω2) by a single acoustic wave (frequency Ω, 
wavelength Λ)  in an acousto-optic modulator results in two outgoing 
beams at different angles that are determined (to first order) by the 
wavelengths of the incident beams. Only one of the two beams can be 
resonantly diffracted, as the other will not form the Bragg angle relative 
to the acoustic column.$

Figure 6.29: Bragg diffraction of two beams
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which (the Ti-Sapph) is used to coherently excite the sample. The second

(the HeNe beam) is retroreflected by a dichroic mirror that separates the two

beams, and causes the HeNe to retrace its path through the interferometer;

a portion of this beam is collected at the input port of the interferometer,

where it is detected using an amplified photodiode. To maintain the well-

defined phase relationship between the two pulses derived from that beam,

the interference signal derived from the second beam is used to monitor the

path length change caused by translating the high performance stage that has

a corner cube mounted on it, and as the interferometric source of an error

signal that may be used to stabilize the Mach-Zehnder interferometer during

the periods between translation steps, when the experiment is locked and

collecting data. It is insufficiently accurate to rely on the positioning system

of the stage – although claims of a few to tens of nm precision have been made

by the companies that build high performance stages, recording high quality

spectra without active stabilization of the stages has proven impossible. This

may be due largely to the noisy lab environment, rather than any inherent

instability of the translation stages.

Methods of generating a pulse train other than the use of translation

stages have been employed with success, but for our particular experimental

program we decided the delay stage approach was preferred – we discuss this

at more substantial length elsewhere in this work. For present purposes, it

is enough to note that having built an experiment that used two AOMs to

modulate the Ti-Sapph propagating through both arms of a Mach-Zehnder
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interferometer, we now realized that we did not have a mechanism to actively

stabilize this interferometer. It is not simply that the HeNe laser would be

modulated at the same frequency as the Ti-Sapph laser; it would be possible to

treat that problem by simply low-pass filtering the interference measurement

made at the HeNe photodiode. Rather, the more substantial problem is that

Bragg scattering would result in diffraction of the HeNe at a different angle, so

that the beams no longer co-propagate after interacting with the acoustic wave

in the AOM. Furthermore, the HeNe beam, now directed into the wrong angle,

would be diffracted with essentially zero efficiency, as the angle of incidence

for a laser going into the AOM needs to be very nearly equal to the Bragg

angle in order to obtain diffraction at any appreciable efficiency. Thus, we

have a more-or-less zero intensity HeNe beam, no longer co-propagating with

the Ti-Sapph, and with an intensity modulation applied to it. This is highly

undesirable.

This problem is, at its heart, geometrical, as the coupling of the various

optical and acoustic modes is simply a matter of vector arithmetic. As such,

we perhaps would be forgiven for considering the example of Plato, whose

academy bore the inscription ’Let no one ignorant of geometry enter.’ In

The Republic Plato recounts Socrates development of a hypothetical system

of government; Socrates abjures responsibility for the Gedankenexperiment,

however, saying ’yet the true creator is necessity, who is the mother of our

invention.’ This is certainly why we built an optical multiplexer using acousto-

optic modulation.
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But perhaps a more useful maxim to describe our idea and experiment

is Ecclesiastes 1:9, which states ’The thing that hath been, it is that which

shall be; and that which is done is that which shall be done: and there is no

new thing under the sun,’ – because after we built an apparatus that let us

resolve our experimental difficulties we spent a sufficiently long time looking

that we eventually found evidence that others thought of this idea previously,

though certainly with substantial differences.

Perhaps even more useful to keep in mind is Aristotle’s remark that ’It

is unbecoming for young men to utter maxims,’ – or indeed, even better, that

we should conscientiously strive to remind any person who choses to repeat it,

present company included, of the obvious and immediate rejoinder that may

be offered. Res ipsa loquitor.

6.7.2.1 Optical multiplexing with acousto-optical modulators

Consider an acousto-optic modulator in the interferometer. The co-

propagating Ti-Sapph and HeNe lasers are incident upon the modulator at

the same angle. The Ti-Sapph wavelength, in conjunction with the angle of

incidence, index of refraction at that wavelength (approximately 797 nm at

the central wavelength of our pulse spectrum), the acoustic frequency driving

the AOM, and the phase velocity for the acoustic waveform used to drive the

AOM all satisfy the condition for Bragg diffraction. For the purpose of these

experiments, the Bragg angle is determined by the carrier frequency at 80

MHz, produced by a crystal reference oscillator. In order to perform lock-in
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amplification of weak signals derived from this beam, we modulate the car-

rier at some slow frequency derived from a Direct Digital Synthesis source –

typically less than a few MHz. Alternatively, one can use a frequency space

description of the operation of these modulators, where the modulated signal

is represented as the carrier plus the sidebands introduced by the modula-

tion frequency; since the modulation frequency is small relative to the carrier

frequency, the diffraction process still occurs with high efficiency.

Since it operates at a different wavelength (632.8 nm), the HeNe laser

does not satisfy the condition for Bragg diffraction. For the purpose of com-

pleteness, we note that the index of refraction for this wavelength of light is also

different, which would also result in the violation of the Bragg condition for

this second laser, but this effect is relatively small (the change in the index of

TeO2 is not very great between these two colours). Driving the acousto-optic

modulators as we have described previously, the HeNe beam does undergo far

off-resonant diffraction, producing an extremely weak beam propagating along

a different direction, but this is not useful for our purposes of stabilizing the

optical path of the Ti-Sapph with the HeNe. Indeed, this beam cannot even

reasonably be observed in the lab. Moreover, even if the HeNe were usefully

co-propagating with the Ti-Sapph, we would need to consider the best elec-

tronic filter to use to eliminate the effects of the MHz modulation in order to

use the HeNe interferometer signal to monitor and servo fluctuations in the

path length.

This seems problematic at first, as the inability to produce phase-
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stabilized ultrafast pulses eliminates our ability to perform optical phase-

sensitive measurements. In the lab, a simple solution using multiple-acoustic

frequency diffraction was developed without first considering the theoretical

basis for such a technique – something of a happy accident, since the existing

literature would suggest that this method would not work. We now briefly turn

our attention to the use of acousto-optical devices in the multiple acoustic fre-

quency operation mode and multiple optical wavelength diffraction. Typically,

most applications demonstrate either multiple acoustic frequency diffraction of

a single wavelength, or diffraction of multiple wavelengths by a single acoustic

wave, although there is some cross-over. We are principally concerned with

the undesirable nonlinear properties and the stringent restrictions on polar-

ization and geometry that the operation of these devices require, as one may

reasonably expect to see similar complications in the apparatus we build.

6.7.2.2 Multi-frequency operation

Early applications of multi-frequency acoustic processes in acousto-

optic modulators made use of the diffraction of a single laser beam into a

number of different, spatially resolvable spots by an arbitrary sound wave

propagating through the modulator. Imaging those spots onto a screen per-

mitted the use of this device as a spectrum analyzer, as each spot on the dis-

play would correspond to a specific acoustic mode excited in the acousto-optic

material, and thus, corresponds to a particular RF component in the signal

applied to the transducer. The first such device [233] used a Raman-Nath
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device, where the stringent condition of Bragg scattering is relaxed, allowing

the device, in conjunction with an appropriate lens, to image multiple spots in

the far field. The use of acousto-optic modulators as imaging devices or spec-

trum analyzers was developed further [1], suggesting the intentional chirping

of modulated electrical signals to temporally separate various RF components.

This permits the development of time-sequential displays, allowing acousto-

optic modulation to be used for a rastered 2d display. Multiple frequency

diffraction was also used in two-dimensional imaging devices. An acousto-

optical pattern display diffracted a single HeNe laser into multiple spots to

form a display pattern, where the intensity of each image element could be

modulated in intensity. The demonstrated technique could essentially be run

in reverse, allowing image pattern detection by heterodyning such a pattern

with an unmodulated beam, using a photomultiplier tube to detect the inter-

ference signals at the various beat frequencies, using the resulting RF signal

to power a second AOM, thereby recreating the original image [370]. A some-

what similar experiment [189] demonstrates a laser dot matrix image display

technology using multiple RF signals to diffract light from a Bragg modulator,

describing the trade-off between image resolution (determined by the number

of resolvable spots, a function of the device’s bandwidth and laser spot size)

and image refresh rate (determined by the acousto-optic access time, i.e. the

time it takes for an acoustic wave feature to propagate across the spot size).

A smaller spot size improves image resolution but reduces the device’s refresh

rate. For RF powers sufficiently low as to avoid the introduction of acoustic
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nonlinearities, the Bragg cells used in these experiments can be powered with

multiple frequencies, resulting in multiple spots diffracted at the appropriate

angle. We note that no comment is made on the decrease in efficiency of these

processes due to the non-optimal alignment of the beam entering the acousto-

optic device, although the issue has been addressed elsewhere [1], introducing

the possibility of using multiple acoustic transducers. Each transducer may be

dedicated to some range of frequencies, and its geometry chosen to ensure high

efficiency diffraction at the expense of a far more complicated acousto-optic

device.

1 
I 
I 

'" ).a= 2A 

+ 
light-sound interaction requires that the angle

A  between the incident light, which is fixed, \'d 
and the acoustic wave fronts approximately Ii 
satisfy the Bragg relationship a A/2A. The 
light is deflected by an angle 2a. A sound 
frequency deviation 6F produces a change in 
deflection angle 62a proportional to 

v 

The resolution N can be defined as the 
total scan angle divided by the diffrac-

).llF tion-limited angular spot size of the light 
beam, which is inversely proportional to theN=112a = 'V =llFD = optical aperture D of the light beam. Reso-aMIN. ). V lution is proportional to the product of fre-o  quency swing and optical aperture. More 

Fig. 2. Basic acousto-optic Bragg interaction.  specifically, it equals 6FT, where T is the 
acoustic transit time across the optical 
aperture, D. Any improvement in resolution 

must be obtained by increasing T or 6F. Increased 6F generally means higher operating frequencies 
and increased acoustic loss in the medium. A more fundamental limitation is imposed on the transit 
time T; this must be less than the access time in a random access system. In a raster scan system, 
in practice, it should be less than the retrace time. 

The amount of light in the diffracted light beam as a function of RF sound amplitude is proportion-
al to 6n, the change in refractive index.l Since the amount of diffracted light has sine-squared de-
pendence, there is an optimum RF sound amplitude that will allow all the light to be diffracted. At 
somewhat lower amplitude, it is possible to apply several RF sound signals simultaneously to the Bragg 
cell. Each of these signals then produces a beam of diffracted light in a direction corresponding to 
its frequency. 

Figure 3 shows a particular case where seven oscillators are used to create seven laser beams to 
represent the seven vertical dots in a character. Here, the seven oscillators are added and simUl-
taneously applied to the Bragg cell. The intensity of the light in each beam is determined by the 
sound power applied by each oscillator. Since the position of the diffracted light varies linearly 
with RF sound frequency, uniform dot spacing requires that the seven RF sound frequencies be separated 
by equal increments. 

The limit on how fast the light beams can be turned on and off is the major factor in determining  
the speed of character generation. What parameter con- 

17 trols this? Since the modulator is acousto-optic, the 
16 

diffracted light attains its full intensity within theIS 
14 time that the sound wave requires to traverse the lightI) 
12 beam. This time interval is known as the access time T 

BRAGG 
CELL and is calculated by dividing the laser beam diameter by 

10 the velocity of sound in the interaction medium. In glass, 
the reciprocal velocity is typically about 0.26 us/mm. 

It seems clear that we cannot turn the light beam 
on and off within a time interval shorter than the access 
time. Actually, the transition from full modulation of 
the light at slow rates to zero modulation at high rates 
is gradual and a function of light beam diameter. 2 The 
beam used in this equipment has a diameter close to 1.4 mm 
that can be modulated at about 1.25 MHz with a modulation 
depth of 75% of its low frequency value (100%). 

f1 < f7 A modulated signal can, of course, be thought of as 
a carrier plus two side bands separated from the carrier 

Fig. 3. Seven beam generation in a Bragg by the modulation frequency. We can think of each of 
cell. these frequencies as diffracting the light separately; 

El f2 f) f4 fS f6 f1 

272 

Multiple spots formed using a single laser in a Bragg cell to 
form an alphanumeric display as an early demonstration of 
multiple acoustic frequency operation. Reproduced from 
Hrbek and Watson, Proc. Electro-Optical Systems Design 
Conf., pg. 271 (1971).!

Figure 6.30: Multi-frequency acousto-optic device

Beam steering may also be accomplished using a phased array of trans-
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ducers that act upon the light in a step-wise process [369]. More significantly,

this work describes the diffraction of a modulated beam in terms of a mul-

tiple frequency operation, depending on the diffraction of light at the carrier

and sideband frequencies. This establishes a rule of thumb that a diffraction

pattern containing multiple spots it is necessary to keep each spot separated

by a frequency spacing more than twice the modulation bandwidth used in

the device in order to avoid interference between diffracted beams. While in

principle significant for our devices, this interference do not occur in our exper-

iment, where we are not intentionally trying to create a large number of spots.

The optical path length from out acousto-optic modulators to the experiment

is sufficiently great that an iris may be used to remove any spurious intermod-

ulation spots. It is shown that the modulation results in a broadening of the

diffracted mode exiting the AOM [369]. In our experiments we do not observe

a substantial beam divergence effect, since the modulation frequency used is

small compared to the carrier frequency. The operation of acousto-optic de-

vices across the broad frequency range necessary for many applications (here,

for example, the use in display technology that requires a large number of

resolvable spots) is be limited by degeneracies between the acoustic modes in

the crystal. Careful design that considers the crystal geometry may shift the

mode degeneracy so as to obtain a broader acoustic bandwidth [129] and may

be necessary to construct the kind of sophisticated acousto-optic device one

would speculate would be necessary to perform optical multiplexing.

The Klein-Cook formalism used to describe realistic acousto-optic in-
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ABSTRACT. D e t a i l e d  expe r imen ta l  and t h e o r e t i c a l  r e s u l t s  a r e  p re sen ted  c h a r a c t e r i z i n g  
t h e  r e a l - t i m e  o p t i c a l  F o u r i e r  spec t rum a n a l y s i s  o f  a wide band o f  e l e c t r i c a l  s i g n a l s  by means 
o f  a c o u s t o - o p t i c  d i f f r a c t i o n .  Resu l t s  i n c l u d e  bandwidth,  r e s o l u t i o n ,  i n t e rmodu la t ion ,  c r o s s  
modulation, s e n s i t i v i t y ,  dynamic range ,  e f f i c i e n c y ,  and p u l s e  r e sponse .  

I n t r o d u c t i o n  

Acous to-opt ic  d i f f r a c t i o n  may b e  u t i l i z e d  t o  
perform o p t i c a l l y  t h e  r e a l - t i m e  F o u r i e r  spec t rum ana ly -  
s i s  o f  a wide band of e l e c t r i c a l  s i g n a l s ,  r e s u l t i n g  i n  
very good r e s o l u t i o n ,  l i n e a r i t y ,  dynamic r ange ,  and 
s e n s i t i v i t y ,  very low cross-modula t ion  and in te rmodula-  
t i o n .  The spec t rum may b e  observed v i s u a l l y ,  recorded  
on moving f i l m  o r  o t h e r  media, and f u r t h e r  ana lyzed  
through a d d i t i o n a l  o p t i c a l  p r o c e s s i n g  and p h o t o e l e c t r i c  
d e t e c t i o n .  

Shown i n  F igure  1 is  t h e  b a s i c  appa ra tus  f o r  
an Acousto-Optic Spectrum Analyzer which d i s p l a y s  t h e  
frequency spec t rum F ( o )  o f  an e l e c t r i c a l  s i g n a l  f ( t )  
a p p l i e d  t o  t h e  e l e c t r i c a l  i n p u t .  The d i s p l a y  is  ob- 
t a i n e d  by Bragg d i f f r a c t i o n  o f  p a r t  o f  t h e  i n p u t  laser 
beam by a c o u s t i c  waves gene ra t ed  i n  t h e  Bragg c e l l  by 
t h e  ampl i f i ed  e l e c t r i c a l  s i g n a l  a p p l i e d  t o  t h e  p i e z o -  
e l e c t r i c  t r a n s d u c e r .  A cy1 i n d r i c a l  b eam- expanding 
t e l e s c o p e  i s  used t o  f i l l  t h e  o p t i c a l  a p e r t u r e  o f  t h e  
Bragg c e l l ,  whi le  a second c y l i n d r i c a l  beam-reducing 
t e l e s c o p e  is  used  t o  p r o j e c t  t h e  o u t p u t  d i s p l a y  wi th  a 
convenient  s i z e  and p o s i t i o n .  The d i s p l a y  c o n s i s t s  o f  
a p a t t e r n  o f  d i f f r a c t i o n - l i m i t e d  laser "beamlets" co r -  
responding  t o  each f requency  component p r e s e n t ,  w i th  
r e l a t i v e  i n t e n s i t i e s  p r o p o r t i o n a l  t o  t h e  power d e n s i t y  
spectrum i n  t h e  i n p u t  e l e c t r i c a l  s i g n a l .  The ampl i tude  
and phase  o f  t h e  l aser  beamle ts  i s  modulated acco rd ing  
t o  t h e  modulation i n  t h e  e l e c t r i c a l  s i g n a l .  Non- 
scann ing  spec t rum a n a l y s i s  is achieved  s imul t aneous ly  
ove r  t h e  whole frequency band o f  o p e r a t i o n .  
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Figure 1. Bragg-Diffraction Spectrum Analyzer 

Background 

Many performance c h a r a c t e r i s t i c s  o f  
acous to -op t i c  spec t rum a n a l y s e r s  have been i n v e s t i g a t e d  
t h e o r e t i c a l l y  and expe r imen ta l ly .  These may b e  po in ted  
out  i n  F igure  2 which i l l u s t r a t e s  a t y p i c a l  spec t rum 
due t o  two s i g n a l s  o f  f r equenc ie s  f 1  and f, . I t  
is immediately observed  t h a t  spu r ious  in t e rmodu la t ion  
o u t p u t s  may be  gene ra t ed  a t  f r equenc ie s  o t h e r  t han  f l  
and f, ; e . g .  t h o s e  a t  f l - f z  and f z - f l  , which 
are second-order  e f f e c t s ,  and those  a t  Z f l - f ,  and 
2 f z - f l  , which a r e  t h i r d - o r d e r  e f f e c t s .  R e s t r i c t i n g  
t h e  frequency band o f  i n t e r e s t  t o  one oc tave  
( f A  < f 1  < f, < f g  = 2fA) on ly  in t e rmodu la t ion  p ro -  
duc t s  of t h i r d  o r d e r  and h i g h e r  f a l l  w i th in  t h e  band. 

Primary c h a r a c t e r i s t i c s  o f  t h e  spec t rum 
a n a l y z e r  are t h e  d i f f r a c t i o n  e f f i c i e n c y  o f  t h e  u l t r a -  
s o n i c  wave d i f f r a c t i o n  g r a t i n g s  and t h e  a b s o l u t e  band- 
width o f  o p e r a t i o n .  These a r e  p r i n c i p a l  c o n s i d e r a t i o n s  
i n  t h e  a c o u s t o - o p t i c  dev ice  d e s i g n .  Add i t iona l  cha r -  
a c t e r i s t i c s  such as l i n e a r i t y  and t h e  l e v e l  of i n t e r -  
modulation p roduc t s  and c r o s s  modulation between 
s i g n a l s  a r e  fundamenta l ly  l i m i t e d  by t h e  a c o u s t o - o p t i c  
i n t e r a c t i o n s  a l though  inadequa te  p e r i p h e r a l  e l e c t r o n i c s  
can degrade performance. 
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Figure 2. Two-Tone Intermodulation Spectrum 

Other  p r i n c i p a l  c h a r a c t e r i s t i c s  depend heav i -  
l y  on t h e  o p t i c a l  d e s i g n .  I n  p a r t i c u l a r  t h e  c a p a b i l i t y  
t o  r e s o l v e  a d j a c e n t  s i g n a l s  is de termined  by t h e  d i f -  
f r a c t i o n  l i m i t  o f  t h e  o p t i c a l  a p e r t u r e  i n  t h e  Bragg 
c e l l .  I n  frequency terms, t h e  r e s o l u t i o n  i s  approxi -  
mately t h e  r e c i p r o c a l  o f  t h e  a c o u s t i c  t r a n s i t  time 
a c r o s s  t h e  o p t i c a l  a p e r t u r e .  Correspondingly ,  t h e  
p u l s e  response  o f  t h e  spec t rum ana lyze r  i s  de termined  
by t h e  o p t i c a l  a p e r t u r e  i l l u m i n a t i o n  p r o f i l e  which is 
probed as a p u l s e  t r a v e r s e s  t h e  Bragg c e l l ;  t hus  t h e r e  
i s  a t r a d e - o f f  i n  r e s o l u t i o n  ve r sus  temporal r e sponse .  
The a p e r t u r e  i l l u m i n a t i o n  p r o f i l e  a l s o  de te rmines  t h e  
i n e v i t a b l e  d i f f r a c t i o n  s i d e l o b e  s t r u c t u r e  f o r  each 
s i g n a l ,  which l i m i t s  t h e  dynamic range  f o r  c l o s e l y  
ad jacen t  s i g n a l s .  I n  a d d i t i o n ,  t h e  h i g h e r  d i f f r a c -  
t i o n  s i d e l o b e s  of t h e  unde f l ec t ed  beam c o n s t i t u t e  a 
broad background which l i m i t s  dynamic range  on t h e  low 
end. Two de r ived  parameters  which depend h e a v i l y  on 
both  acous to -op t i c  p r o p e r t i e s  and o p t i c a l  des ign  a r e  
t h e  time-bandwidth p roduc t  o f  t h e  sys tem which d e t e r -  
mines t h e  number o f  r e s o l v a b l e  f requency  components 
and t h e  l i n e a r  dynamic range  which i s  fundamenta l ly  
l i m i t e d  by o p t i c a l  background on t h e  low. end and 
acous to -op t i c  n o n l i n e a r i t i e s  on t h e  h igh  end .  
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Schematic of an RF spectrum analyzer using a Bragg-diffraction cell, 
an optical device demonstrating multiple acoustic frequency 
operation of an acousto-optic device. Reproduced from Hecht et al., 
Bulletin of the 1973 Ultrasonics Symposium, pg. 98 (1973), which 
develops a theory of intermodulation products arising in the 
operation of acousto-optic devices with multiple frequencies.!

Figure 6.31: Early multi-frequency acousto-optic device

teractions may be extended to consider the presence of multiple, independent

sound waves in the interaction material [173]. Significant results concerning the

acoustic bandwidth, spot resolution, the onset of intermodulation and cross-

modulation effects, the sensitivity to weak RF signals and dynamic range, the

diffraction efficiency, the impulse response of the acousto-optic device, and the

spectrum of the intermodulation modes may be found in this framework. Sig-

nificantly, multi-frequency Klein-Cook analysis indicates that intermodulation

diffraction modes may appear even in the absence of any acoustic nonlinear-

ities, i.e. even at low RF power where nonlinear acoustic wave mixing is not

expected.

Fortunately, these effects are less problematic in the Bragg regime,
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where our devices (approximately) operate, than they appear to be in the

Raman-Nath limit of acoustic diffraction. This suppression of nonlinearities

occurs due to the elimination of those multiple diffraction acousto-optic inter-

action pathways that are coupled via optical diffraction modes other than the

zero and first order modes, which are the only two allowed in the Bragg limit.

The behaviour of experimental acousto-optic spectrum analyzers operated in

the Bragg regime largely agrees with these theoretical predictions.
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DIFFRACTION  ORDERS:  G = n1+n2 

Fig. 2. Acoustooptic  generation of intermodulation  modes. 

quency  shift. As in single frequency  diffraction,  the  beams 
divide naturally  into  diffraction  orders: G = 0, * 1,+2, . . . . 
The  strongest  intermodulation  modes  which  interfere  spatially 
with  the  principal  modes in the  first  diffraction  order  corre- 
spond  to  frequencies 2fi - f i  and are  conventionally  termed 
third-order1  intermodulation  products because they  result 
from  a  third-order  interaction. This effect  limits  spurious 
free  dynamic range. A typical  intensity  spectrum is shown 
in Fig. 3.  

The  objective  of  this  work is to investigate quantitatively 
and  qualitatively  various  multifrequency  diffraction  effects, 
comparing  thick  (Bragg)  and  thin  (Raman-Nath)  acoustooptic 
diffraction devices. 

11. THEORY 
The  optical wave equation  for  the  electric  intensity is 

t 
T 

G = O  

G = -1 

ZERO ORDER FIRST ORDER 

Fig. 3. Two-tone  intermodulation  spectrum. 

assumed constant  for all modes (i.e., excluding  birefringent 
diffraction [ 151 ). A total of N signals is considered. 

The general  Fourier series for  the  electric  intensity is an 
N-tuple  expansion : 

where  the  refractive index  in  the region  of the  sound field 
(0 < z < L )  may be written as N 

n , = - -  n2=-m " ~ = - r n  

n,(w, t t S,) - 
N 

p ( x ,  t )  = p0 + C p, sin [(W&[ - k g x )  + S,] (2) 
m = 1  where 

where W& and klr, are the  circular  frequency  and  wavenumber nr 

of the  acoustic signal  of  wavelength A, ; p m  and 6, are the 
amplitude  and phase  of the refractive index  modulation  due  to m = l  
the mth  signal. p. is the  unperturbed  index of refraction, 

'* 
. ;'= pok(z cos 0 t x sin 0)  + C n ,  k g x  (4) 

( E )  represents ( n ,  , n 2 ,  . . . , n ~ )  and W and k are the  circular 
'To  avoid  confusion  between  diffraction  order  and  interaction  order, frequency  and for the light. nm may take any 

the  word  order  used  alone will be  used to refer to  interaction  order. positive or negative  integer  values. 

Schematic of the additional spots present in an acousto-optic 
device driven with two acoustic frequencies with a single applied 
optical wavelength. In our experiment, we use the ±1 modes, and 
are therefore primarily concerned with those adjacent 
intermodulation spots. Reproduced from Hecht, IEEE Trans. on 
Sonics and Ultrasonics, SU-24 (1977).!

Figure 6.32: Intermodulation in multi-frequency acousto-optic devices

At first glance, it may seem that the multiple-spot pattern would not
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occur at all for Bragg devices, where higher-order diffraction modes are for-

bidden. Simultaneous application of multiple acoustic frequencies, however,

results in the emergence of additional diffracted beams in both the Raman-

Nath and Bragg regimes. In general, the use of two acoustic waves actually

generates an infinite number of spots at n1f1 + n2f2 where n1 and n2 are in-

tegers. For Bragg devices, diffraction is only observed for those spots where

n1 + n2 = 0,±1, i.e. the extra spots appear centered around the zeroth and

first diffraction orders; nonetheless, an infinite number of spots is still tech-

nically possible under that constraint [170]. A modified Klein-Cook analysis,

relying on an infinite set of coupled mode equations, would indicated that the

appearance of these features does not depend upon acoustic or photo-elastic

nonlinearity (those effects may be discounted theoretically simply by requir-

ing that all the modulations of the index of refraction are sinusoidal when the

driving acoustic wave is also sinusoidal [171], [172]); instead, they are a result

of multiple linear diffraction processes occurring in the acousto-optic medium.

Each mode is shown to be coupled to a mode in the adjacent two orders. While

these spots cannot be eliminated, their effects may be minimized [170], [171],

[172], [137]. It can be shown that the difference frequency diffraction modes

(i.e. those arising due to acoustic waves at f1−f2) appear in the zeroth order,

and are therefore comparable in intensity to the intended diffraction modes (at

the separate angles determined by f1 and f2). Intermodulation modes (e.g.

2f2 − f1) appear in the first order, and may also exhibit significant intensity.

The lowest order intermodulation terms viz. (2f2 − f1) and (2f1 − f2) will
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have the greatest power of the intermodulation terms [110]. Harmonic (n×fi)

and sum (f2 +f1) frequency beams are shown to appear only in the second or-

der correction to the scattering process [172]. Difference and sum frequencies,

as well as some intermodulation terms and harmonics, may often be ignored

if they fall outside the bandwidth of the device, where propagating acoustic

waves are not supported [110].

The underlying argument in this analysis is that the multifrequency

nonlinearities in acousto-optic devices were predominantly due to multiple

diffraction processes. The Klein-Cook formalism applied to multi-frequency

operation permits the calculation of the intensities of the dominant intermod-

ulation products, which agree with the results obtained in Bragg devices op-

erated up to a few hundred MHz. This result may not be universal, however,

as intermodulation products are observed that exhibit intensities greater than

would be predicted by that theory for certain higher acoustic frequency devices

(using a longitudinal mode in TeO2 in the ˜1GHz range). In such devices, ex-

tremely high acoustic power density is expected – up to a kiloWatt per square

centimeter – and nonlinear acoustic effects appear to dominate the diffraction

of intermodulation products at these power levels [68]. The nonlinear acoustic

effects leading to the diffraction of intermodulation products places an up-

per limit on the dynamic range that may be achieved in a multiple frequency

acousto-optic Bragg device. Of course, nonlinear acoustic effects are known

to already place limits on the dynamic range of devices operated with a sin-

gle acoustic frequency. In those more pedestrian applications, diffraction due
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to the nonlinear acoustic interaction depletes RF power from the fundamen-

tal acoustic mode, resulting in a power-dependent acoustic attenuation effect.

In multiple frequency operation, nonlinear acoustic interactions result in the

coupling of harmonics both to the fundamentals and to each other. These

are purely acoustic effects [111], in contrast to the acousto-optic phase grating

nonlinearities previously considered [171]. It is also possible to see intermodu-

lation and mixing terms appear due to nonlinearity in the RF amplifiers used

to power the acousto-optic device [187]. Piezoelectric nonlinear effects may

also be significant in some media, although only those that possess higher

piezoelectric figure of merit. A general treatment of nonlinear acoustic effects

provides a description of the intensity of intermodulation effects to the fourth

order correction [110].

The field of multple frequency acousto-optic device design continues to

be an active area of research today [208].

6.7.2.3 Multi-wavelength operation

Multiple frequencies of light should not be expected to directly couple

due to the parametric processes of acousto-optic interaction. Rather, the com-

plexity of operating an acoustic-optic device with multiple frequencies arises

due to the chromaticity of the scattering process, determined by energy and

momentum conservation.

Acousto-optical filters represent a large fraction of the development of

techniques to manipulate multiple colours of light using a single acoustic fre-
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ACOUSTO-OPTIC TUNABLE FILTER

(a)
z

V(d)

LiNbO3 /

t( bI (c)

Y

x

FIG. 1. LiNbO3 acousto-optic filter. Longitudinal wave (L),
shear wave (S).

with the input optical signal to produce forcing optical
polarization waves at frequencies ce+ wa, and coe-Ca.
These forcing waves propagate with k vectors whose
magnitudes are ke+ka and ke-ka, respectively. Only if
the k vector of this forcing wave is equal or nearly equal
to that of the freely propagating electromagnetic wave,
will a cumulative interaction over many wavelengths
take place. In LiNbO3 , the ordinary refractive index is
greater than the extraordinary index, which for forward-
propagating waves requires phase matching such that
ke+ka=ko; this, in turn, results in the frequency of the
ordinary wave (the output frequency in our example)
being greater than that of the extraordinary wave
by ca.

The interaction between the acoustic and optical
waves takes place as a result of the photoelastic effect.
This effect is described as a perturbation of the elements
of the impermeability tensor bij such that Lbij= PijklSkl,

where pijkl are the components of the photoelastic
tensor and Ski is the propagating strain wave. This
perturbation of the impermeability tensor is equivalent
to the creation of a driving polarization, which for our
example may be shown to be given by

Pa=-e0 no2n=2p41S ~ (2)
P,,, - eono2 n 2p4,S3X,

where eo is the dielectric constant of free space and no
and ne are the refractive indices for the ordinary and
extraordinary waves respectively. If we substitute Eqs.
(1) and (2) into the one-dimensional driven-wave
equation for lossless media, i.e.,

028 1 a 2 E a2p
- - = o_ (3)

ay 2  c2 0tl 0t2

and make use of the fact that E,,(y) and Es(y) are
slowly varying functions of y, then the following coupled
complex equations may be obtained

dE. nane2P410o
-= - S6Ez exp (jjAky)

dy 4c

dEz neno2 p41coe
-= j-e S6*E, exp(-jAky),
dy 4c

where we have defined a k vector mis-match Ak=ko-k,
-kka. In these equations, the acoustic wave is assumed
to propagate losslessly and thus the acoustic strain S6
is assumed to be independent of position in the crystal.

Equations (4) are now solved subject to the boundary
condition that E,=0 and E.=E,(0) at y=0. The ratio
of the output power at y=L, P.(L), to the input power
at y=0, P,(0) is found to be given by

-! Ak2 -
sin2  2+-- L

PI (L) /W~o\ -_ _ __ _4 _ _

= - r2L2 v
P5 (0) e/ Ak2\

r2+ -- L2
4/

where
no3nfe3P412WOWe

r2 = 16 IS6 I2.
16c2

We note that the frequency of the transmitted optical
signal differs from that of the input signal by the
acoustic frequency w_. There is also an insignificant
Manley-Rowe-type power gain of magnitude coo/we,
which we neglect hereafter.

TRANSMITTANCE, TUNING RATE,
BANDWIDTH, AND APERTURE

From Eq. (5) it is clear that the maximum trans-
mittance of the filter will be attained when the input
optical frequency is such that the momentum mis-match
Ak=0. For this condition, we have

P5 (L)/P5 (0) = sin2 rL (6)

and thus for theoretical 100% peak transmittance we
require FL=2r/2. Expressing |S6 12 in terms of the
acoustic power density PA/A, we obtain

ne03f4e3 p412 7r2 1 PA
F2 =

2X,2 pV3 A
(7)

where Xo is the optical wavelength, p is the density of the
medium, V is the acoustic velocity, PA is the total
acoustic power, and A is the area of the acoustic and
optical beams.

For a 5-cm-long crystal of LiNbO3 at a central trans-
mission frequency of X0=5000 A, we have P41=0.1 55,5

no=2.3, ne=2.2, p= 4 .6 4 g/cm3 , V=4.0X10 5 cm/sec;
we therefore require an acoustic power density of 14
mW/mm2 of filter aperture for 100% peak transmittance.

With the acoustic power adjusted to provide peak
transmittance at the center frequency (rL=7r/2), the
frequency response of the filter is determined by the
variation of Ak as the optical frequency is changed.

I R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).

(5)

June 1969 745

A collinear geometry acousto-optic tunable filter. The 
acoustic wave is launched from the side of the interaction 
medium, reflected from an appropriately cut crystal facet, 
and co-propagates with the laser beam. The two additional 
components (marked (a) and (c) here) are crossed 
polarizers used to measure the efficiency with which the 
filter diffracts light between the ordinary and extra-ordinary 
polarizations. Reproduced from Harris and Wallace, Journal 
of the Optical Society of America 59:744 (1969).!

Figure 6.33: Collinear AOTF

quency. These are tunable devices that will allow certain optical wavelengths

to propagate while blocking others. Typically, they tend to employ diffraction

occurring at a large angle between the acoustic wave and the propagation di-

rection of the light, where only one particular wavelength in the light beam

satisfies the condition for resonant Bragg scattering. The first acousto-optical

filter, however, was demonstrated using a collinear interaction geometry [161],

[160] where anisotropy in an acousto-optical material caused the acoustic scat-

tering of light from one polarization state, corresponding to propagation in the

ordinary mode of the crystal, into another polarization, corresponding to the

extraordinary mode. The effect clearly depends strongly upon the precise ge-

ometry used as it relies on optical birefringence. Nonetheless, while the process

depends on a near resonant diffraction between an acoustic wave and the two

optical waves, with all three relevant vectors parallel the phase-matching is
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greatly simplified. This permits the use of nearly arbitrary acoustic frequen-

cies to diffract incident polarized light of various colours into the orthogonal

polarization. Selection of a different frequency resulted in the polarization

diffraction of different wavelengths of light – thus, the device may be operated

as an optical filter with a pass band determined by the choice of RF frequencies

used. A long interaction length permits nearly unit efficiency diffraction in the

passband. Both coherence and white light may be spectrally analyzed with

the acousto-optical tunable filter. Strong coupling between co-propagating

acoustic and light waves had been previously shown to occur when the vector

sum of the momenta for the incident light and the acoustic wave were equal

to the momentum for the diffracted wave [99]. Thus as such, for this effect to

do anything, the initial and final light fields have to carry different momenta.

This is directly accomplished using an anisotropic crystal. While the use of

this device with simultaneous multiple frequency operation is not explored, it

serves as a demonstration of the diffraction of light a broad range of wave-

lengths into the same optical path; conceptually, this is the same process we

wish to perform, albeit in dramatically different fashion.

Subsequent efforts improved the performance of collinear geometry

acousto-optical filter devices by constructing devices where the walk-off ef-

fect of the acoustic wave was minimized. In general, the phase velocity and

group velocity for sound in these acousto-optic materials are not parallel, and

a sound wave launched into such a material can co-propagate with the optical

wave for only a limited distance. Launching an acoustic wave with a group
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velocity parallel to the light permits a longer interaction length; the acoustic

phase fronts of the sound are no longer perpendicular to the light but efficient

diffraction is still obtained [230]. Further exploitation of the anisotropic prop-

erties of the acousto-optic material permit the construction of devices that

perform a similar filtering process by polarization diffraction, but without the

drawbacks associated with the non-co-propagating phase velocity. These de-

vices balanced the broadening of the spectral passband by exploiting acoustic

anisotropy [82] , [193]. Alternative methods to compensate for acoustic walk-

off employed the use of a phased array of acoustic transducers [64].

Z (OPTIC AXIS) 

FIG. 1. The wave vector construction for acousto-optic inter-
action in a noncollinear filter. 

tor, the momentum matching condition is still approxi-
mately maintained, i. e., k; +ka =kd' where ka is the 
wave vector for the acoustic wave and k; and kd are the 
wave vectors for the incident and diffracted light, 
respectively. The three wave vectors become collinear 
when the incident light is normal to the optic axis. 

The center wavelength Ao of the passband of the non-
collinear acousto-optic filter is related to the acoustic 
frequency fa by 

(1 ) 

where Va is the acoustic wave velocity, Iln = n. - no is 
the birefringence for light traveling in a plane normal 
to the optic axis, and F( e j) is a function of e i> the angle 
of incidence for exact momentum matching (see Fig. 1). 
An approximate expression of F(e j) can be shown to bell 

(2) 

As the angle of incidence deviates from the momentum 
matching angle e;, the center wavelength of filter pass-
band is, to first orde r, unchanged, i. e., Ao is again 
given by Eq. (1). 

INCIDENT 
LIGHT 

Te02 CRYSTAL [l1°]b 
. 10° 

Z 
[110] 

TRANSDUCER 

371 Appl. Phys. Lett., Vol. 25, No.7, 1 October 1974 

ACOUSTIC 
TERMINATION 

700 

650 

i 
J: 600 f-
t:J 
Z 
W 
..J 
W > « ;;: 
...J « 550 0 
1= 
0.. 
0 

500 

450 1-____ "-____ -'-____ ..... ___ ....;:. 

100 120 140 160 180 
ACOUSTIC FREQUENCY (MHz) 

FIG. 3. Tuning curve of the Te02 acousto-optic filter. 

A noncollinear acousto-optic filter using Te02 as the 
filter medium was deSigned and constructed. The sche-
matic of the filter is shown in Fig. 2. The chosen 
acoustic wave is a pure shear mode propagating in the 
(110) plane and making an angle of 100 from the [110) 
axis. Linearly polarized light is normally incident to a 
plane which makes an angle of 20.70 with the (001) plane. 
The transducer used is an X -cut LiNb03 transducer with 
a resonant frequency at about 145 MHz. Due to acoustic 
anisotropy of the shear wave mode, the acoustic energy 
column walks off at an angle of 64.3 0 from the [110) 
axis. 12 From the measurement of passband transmission 
with an acoustic pulse, the interaction length of the 
filter was found to be about 4 mm. By changing the 
acoustic frequency from 100 to 180 MHz, tuning of the 
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FIG. 2. Schematic of the Te02 acousto-
optic filter. 
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Substantial effort was applied to the development of acousto-optic 
filters, devices that use multiple RF frequencies to diffract specific 
wavelengths out of the transmitted beam. This device couples non-
collinear acoustic and optical modes; careful choice of crystal 
geometry permits a wide effective aperture. Reproduced from 
Chang, Applied Physics Letters 25: 370 (1974).!

Figure 6.34: Noncollinear AOTF

Non-collinear acousto-optic filters allow the modulation of multiple
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colours of light without altering the polarization, relying on spatial separation

of the diffracted and transmitted modes [62], [65]. The optical aperture of such

a device is necessarily limited due to phase matching requirements. The ge-

ometry of the device is again highly restricted, and the operation employs the

optical birefringence of the crystal to compensate for momentum mismatch

due to deviation from the ideal phase matching condition [63]. Large an-

gle non-collinear acousto-optic interaction provides superior filters properties

by exploiting anisotropic Bragg diffraction. In a certain geometry, optically

anisotropic media exhibit Bragg resonance for a given wavelength at two dif-

ferent angles if the angle between the light and the acoustic wave is sufficiently

large. The effect is only limited to wavelengths where the medium is birefrin-

gent [384]. Other non-collinear devices also spatially separate the diffracted

and transmitted colours, but achieve their high performance figures of merit

at the expense of rotating the polarization of the diffracted light [66]. Other

non-collinear geometries were also explored [67].

6.7.2.4 Multi-wavelength, multi-frequency operation

Multi-frequency, multiple wavelength acousto-optic modulators have

been demonstrated using non-copropagating input optical beams [136]. A

specific crystal cut [405] is required to obtain the desired phase-matching con-

ditions. A single acoustic frequency component can Bragg diffract the two

different wavelengths since they enter the crystal in their respective phase-

matched directions. Both beams are diffracted into the same spatial mode.
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Fig. 9. Tilted angle modulator. The 35° acoustic beam walk-off is
shown.

The wave vector construction of Fig. 8 shows that for
each incidence direction there exists in general two
synchronous interactions termed the positive and
negative ones, whose directions with respect to the z axis
are O+ and O_, respectively, corresponding to the two
diffracted rationalized wave vectors Nd+ and Nd- and
to the two different synchronous acoustical frequencies
f + and f _, respectively.

To complete the analogy of Fig. 1(b) with Fig. 8, one
must keep in mind that the two incidence directions of
Fig. 1(b) are symmetrical about the normal to the
acoustic wave vector, i.e., about the value (a of Oi and
the modulus of the difference I O - Ga in Fig. 8 stands
for e in Fig. 1(b).

In fact, the AFBW is imposed by the particular ap-
plication, which in turn fixes the order of magnitude of
the frequency separation between the two chromatic
components. This will allow the determination of the
parameters Ga, e, and W for a low frequency device.

The rather tedious calculation of the intersection of
the straight line U with the outer ellipsoidal wave sur-
face leads to the expressions of O± and f ± as a function
of the two angles Oi nd Ga. These results, as well as
those of angles 0 + and 0 - (for positive and negative
interaction, respectively, and corresponding each to the
angle 0 o of Fig. 6), are summarized in the Appendix.

Since our aim is to construct a low acoustic frequency
device, angles Oi and a must be chosen sufficiently
small.

Approximated formulas for such a limit are also re-
ported in the Appendix, and in such a case the substi-
tution of 0 0 in Eq. (14) gives the same AFBW for either
positive or negative interaction:

Af = A.ma1fleir W[n' sin 2(O, - Oa) + (n2 -n2) sin2 Oa]"2 * (16)

The AFBW, with Oa fixed, is maximum for Oi = a
___ ___ ___ A ~ max

A/fmax x W* G . (17)W v1 7 - n2 s ina 0 71

If the angle Oi - a is small, the AFBW as well as
the synchronously first-order diffracted directions re-
main quite equal to those for Qi = Oa. This corresponds
to the large AFBW [Eq. (15)] occurring when the inci-

dent and diffracted beams are interchanged. Typically
for a <0.5% decrease in AFBW, the allowed variation
in Gi must verify the condition

Isin(0i - Oa)l \ 0n7 sinOa. (18)

Again with = I o - Ga I and a diffraction angle Od
= Od± a combination between Eqs. (18) and (5) in the
small angle limit gives

AOd± no
AOi 5InreV,

(19)

since usually ne _ n,
This shows that the angular adjustment of the bi-

chromatic modulator is not very critical providing that
Eq. (18) remains verified.

There are two possible configurations for maximizing
the frequency separation in the bichromatic modulator:
(a) negative diffraction is retained, Gil = Ga + e, Gi2 =
Ga - e or (b) positive diffraction is retained, Gil = Ga
- , Gi2 = Ga + e, where the subscripts 1 and 2 have the
same meaning as in Sec. II and > 0.

In either of these two configurations, one must check
that the frequency separation between the positive and
negative diffraction is many times larger than the
AFBW in order not to disperse the optical intensity
between the two corresponding directions. This re-
quirement is more critical for the light incident with Gi
= Ga + and is independant of the criteria of frequency
separation described in Sec. II. With the same nu-
merical example of an AFBW of 6 MHz and a frequency
separation of at least 20 MHz, these criteria may be
summarized as:
(a) If negative diffraction is retained, the inequality f2-

< fl- < f+ < f2+ holds, and we must have
fi- - f2- > 20 MHz2
f+- fi- > 20 MHzJ (20a)

(b) similarly if positive diffraction is retained, now with
fl+ > f2+ > f2- > fi-, we must have

fl+ -f 2 + > 20 MHz
f2+ - f2- > 20 MHzJ

(20b)

V. Practical Realization Using a Paratellurite Crystal
If we neglect optical activity, we can consider the

paratellurite crystal as uniaxial. The r axis defined in
Fig. 8 will be chosen in the (110) direction for aniso-
tropic acoustooptic interaction with the slow shear
acoustic wave with v 620 m/sec. 11 We chose a rea-
sonable transducer width of 3 mm. An AFBW of 6
MHz at 3 dB with nearly 100% maximal efficiency (i.e.,
Aomax/r 0.8) is required for the purpose of light
modulation at a TV rate.

By using as numerical values for ne and n the mean
values between those at blue and green argon laser
wavelengths, i.e., ne 2.485 and n 2.32,12 we find
Ga 4.40.

The practical realization Fig. 9 takes into account the
large acoustic beam walk-off.5 11 (The angle between
the acoustic wave and Poynting's vector is nearly 350
for a 4.40.)
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An acousto-optic device used to independently modulate the 
intensities of light of two different wavelengths. While the 
diffracted beams co-propagate, the input beams are not. 
Reproduced from Gazalet et al., Applied Optics 23:674 
(1984).!

Figure 6.35: Multi-frequency, multi-beam, non-collinear AOTF

A similar technique had been presented previously, using two non-

collinear beams more closely spaced in frequency but with orthogonal polar-

izations [138], with significant emphasis placed on the acoustic bandwidth re-

quirements for the device to permit independent modulation of the two colours

in the diffracted beam without introducing cross-talk. In principle, the sep-

aration between the two acoustic frequencies used must be several times the

bandwidth needed for the modulation. If the optical wavelengths used are

relatively close, a wide bandwidth, high operating frequency device will be

needed. Exploiting anisotropic effects in the crystal allows the device to use

lower acoustic frequencies, simplifying the design. Further refinement of this

design corrects for the chromaticity of the dispersion of the acousto-optic ma-

terial, permitting the use of widely spaced colours of light. Unfortunately,

since these techniques depend upon an anisotropy that breaks symmetry in
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two dimensions, only two colours may be used in such a device. Extension to

a larger number of wavelengths is not possible [135].

These are useful results as they provide us with suggestions for the

bandwidth restrictions that need be applied to our modulation scheme, but

the device itself does not fit our application, which requires collinear input and

output beams.

An acousto-optic device has been shown that can diffract light of mul-

tiple wavelengths in a single beam into a different single beam [332]. The

modulator uses a single transducer, rather than a phased array, driven by

multiple frequency components. The intensity of the RF signals can be mod-

ulated by an electronic control system, since the apparatus was developed for

use in image projection devices. In brief, an input polychromatic beam can be

colour modulated into an output polychromatic beam with colour modulation.

Most red-green-blue colour projection systems based on acousto-optic

modulators use an indepdendent modulator for each light source, then recom-

bine the beams using dichroics prior to projection onto some kind of screen.

This redundancy is necessary not only because of the different Bragg reso-

nance conditions for the different colours, but because most AOM devices are

not wavelength selective, and modulation of the intensity of one wavelength

will result in simultaneous, unwanted modulation of the other, co-propagating

wavelengths. This device can use a large number of different wavelengths to

produce full spectrum projected images. Other techniques have been shown

using a single AOM with three different transducers, but this may result in
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An acousto-optic device that permits modulation of multiple 
optical wavelengths using multiple acoustic frequencies, 
reproduced from Shah, United States Patent no. 5,463,493 
(1995). This device largely resembles the acousto-optic 
modulation technique we use to independently diffract the 
HeNe and Ti-Sapph beams.!

Figure 6.36: Multi-frequency, multi-beam, collinear AOTF
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significant cross-talk, and results in a large, expensive device that is limited

to modulation of only a few colours. This device uses a specific crystal geom-

etry determined by the specific acousto-optical interaction, refraction due to

dispersion of the index of refraction, and Snell’s law.

In short, this technique would work for our experiment if we had the

resources and expertise to fabricate a custom acousto-optic device. Even then,

it may be necessary to restrict the polarizations used, and the layout of our

experiment on the optical table would likely need to be substantially altered to

use a similar device. Nonetheless, this device at least shows that the diffraction

of a polychromatic beam into another polychromatic beam is possible – an

encouraging result.

6.7.3 Our solution for optical multiplexing with acousto-optic mod-
ulators

Prior to researching the literature on the subject, we simply turned

out attention to trying to solve this problem in our own lab with our existing

experimental apparatus. Fortunately, a relatively simple solution presented

itself.

We use a second frequency source to cause resonant Bragg scattering

of the HeNe at the same angle as the Ti-Sapph. While this second acous-

tic frequency source should result in weak, non-Bragg resonant scattering of

the Ti-Sapph (just as the first acoustic frequency results in weak, non-Bragg

resonant scattering of the HeNe beam), physical intuition suggests that oper-
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We provide a second acoustic frequency to the conventional 
acousto-optic modulators used in this experiment. Each acoustic 
frequency separately satisfies the resonant Bragg diffraction 
condition for one of the two optical wavelengths. This cartoon 
neglects the chromaticity of the index of refraction, which is 
expected to be a secondary effect.!

Figure 6.37: Optical multiplex solution
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ating the AOM well within its linear regime should result in that second mode

diffracting at a different angle, thereby averting any unintended modulation

or distortion of the desired Ti-Sapph beam properties. We expect that de-

pletion of the incident Ti-Sapph power by the second set of diffracted spots

arising from diffraction by the new frequency component will require greater

RF power in the first frequency in order to obtain the desired Ti-Sapph power

at the sample.

The second RF signal is generated by the HP 8657A function generator

previously used to power the AOM on the combined pump beams for differ-

ential transmission and 2dFT experiments. A discrete RF splitter/combiner

is used to linearly add the two RF drive signals prior to amplification and

transmission to the modulator. The frequency for this second RF signal may

be estimated by a simple calculation, assuming the Bragg angles of the two

beams to be identical:

θT iSapph = arcsin

(
(800× 10−9m) (80× 106s−1)

2nv

)
= arcsin

(
(633× 10−9m) (f2)

2nv

)
= θHeNe

A brief search of the literature indicates that the index of refraction and

sound phase velocity varied little over the range of interest; as a result, the

same value was used for both the Ti-Sapph and HeNe Bragg conditions. An
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Schematic for the three-channel RF mixer circuit. The DDS 
function generator produces three modulation frequencies with 
variable amplitudes and phases, which are mixed with three 
independently sourced RF carriers to deflect and modulate the 
Ti-Sapph beams. A cw, unmodulated RF signal is added to the 
modulated signal driving the static pump and dynamic pump 
acousto-optic modulators to deflect the HeNe laser through 
the same angle at the Ti-Sapph beam.!

Figure 6.38: Full RF schematic for dual AOM drive
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estimated value of was found for the necessary drive frequency for the second

frequency source. Using the RF function generator to insert this acoustic

carrier into the acousto-optic modulators in the pump beams resulted in the

diffraction of the HeNe beam at a much more intense power than was seen

without the second frequency, and the diffracted spots were relatively close

to that of the Ti-Sapph beam – however, some additional spots could be

seen in the far-field pattern of both lasers. Adjusting the frequency of the

second source allowed us to effectively collimate the central spot in the HeNe

diffraction pattern with the central spot in the Ti-Sapph pattern. Selecting

the central spot in each pattern with an iris, we used nearly parallel mirrors

to lengthen the optical path and fine tune the precise RF frequency needed

to collimate the two laser beams. No deviation between the two beams was

visible over a length of approximately 8 meters.

Removing the aperture and examining the diffraction pattern, we noted

that the far field patterns of both lasers had similar structure: a stronger

central spot with two spots to either side. We used the aperture to select the

center spot for use in our experiment.

The second RF/acoustic frequency is supplied to the two pump acousto-

optic modulators using two more discrete splitter/combiners. The signal from

the RF function generator is split using a 50-50 power splitter from Minicir-

cuits; then each half is combined with the drive RF signal previously used to

power one of the acousto-optic modulators, using another splitter/combiner

prior to the final amplifier stages. The combined signal is then used to drive
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the acousto-optic modulator.

Several frequency components thus comprise the RF drive signals sent

to the pump acousto-optic modulators: the modulated drive frequency chosen

to satisfy the Bragg condition for the Ti-Sapph, which itself can be represented

as the sum of two frequency components spaced by the modulation frequency

and centered on the carrier frequency, and the constant RF signal derived from

the function generator. We note explicitly that the modulated drive signal

used to control the Ti-Sapph at each acousto-optic modulator is independent

of that used for that purpose in the first acousto-optic modulator: each was

generated using an independent reference oscillator crystal, which was mixed

with a slow reference signal derived from the computer controlled DDS gen-

erator. The slow modulations for the two acousto-optic modulators exhibit a

well-defined phase relationship, since they were generated by a single digital

counting process. This phase stability is necessary for the use of these mod-

ulation signals in multiple-frequency lock-in detection scheme. The 80 MHz

drive signals derived from the independent crystal references should not pos-

sess a well-defined phase relationship, since these devices should be operating

independently; based on anecdotal suggestion, we made the conscious decision

to use separate frequency sources for the acousto-optic modulator drive fre-

quency rather than deriving the carrier for all three acousto-optic modulators

from a single source. It is possible that coupling could occur through some

cross-talk mechanism and lead to a Huygens Odd Sympathy effect (see, for

example, [258], but we saw no particular evidence to suggest this. As our ex-
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periment operated satisfactorily with the independent drive frequency sources,

we did not study the effects of substituting a single RF source for the three

(two pump + one probe) independent frequency reference sources used here.

After reading the literature on multiple frequency operation of acousto-

optic modulators, we note that the problems of nonlinearities in this apparatus

need to be considered. First, we note that for a given optical wavelength there

is an inherent coupling between the frequency shift applied to a beam and

its angular deflection. Since a modulation signal can be represented as the

sum sin ((Ω0 + δ) t)+sin ((Ω0 − δ) t) of two frequency components rather than

the product of two sinusoidal signals, i.e. cos (Ω0t) cos (δt), the question of

cross-modulation of the two different laser sources can similarly be reduced to

a geometric argument. We know that applying a second constant frequency

from the HP RF signal generator will deplete the intensity of the Ti-Sapph

beam somewhat due to the deflection of that laser via non-resonant Bragg

scattering. That effect is trivial, however, since the intensity of the non-

resonant diffracted beam is vanishingly small. Similarly, the application of

the modulated RF carrier signal intended to drive the Ti-Sapph will cause

non-resonant diffraction of the HeNe; again, that effect is small enough to be

neglected.

Of more significant concern is the effect of the modulated signal on

the intensity of the HeNe diffracted beam. Barring any non-linearities in the

device due to e.g. higher order acoustic or photo-acoustic effects, we do not

expect these to be a significant problem. Examining the photodiode output
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A modulated RF signal, generated by nonlinear mixing of an 80 MHz 
carrier and a modulation signal produced by the DDS function 
generator (1 MHz is used in the signal shown here) (a) is used to 
deflect and modulate the Ti-Sapph beam. An unmodulated carrier 
generated by an RF function generator (b) is used to deflect the 
HeNe beam that co-propagates with the Ti-Sapph. The two are 
combined (c) prior to the acousto-optic modulator.!
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Figure 6.39: Modulation and cw dual AOM drive
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while scanning the PZT-mounted mirror reveals a normal interferometer fringe

at the HeNe wavelength, with no sign of modulation due to the other RF sig-

nal. This does not mean that these effects have been completely eliminated,

since the typical frequencies involved in the acousto-optic processes are too

fast for the homebuilt interferometer fringe to resolve a direct signature, but

it does indicate that no such processes are occurring that would prevent nor-

mal operation of our interferometric, lock-and-step system. Indeed, we find

that the interferometer locks with the same stability observed when using

only the cw drive frequency that deflects the HeNe beam (i.e. with the Ti-

Sapph beams effectively blocked at the acousto-optic modulators). If there

are cross-modulation effects occurring, they do not result in any effect on the

interferometer, which locks normally and allows us to step our τ delay stage

with interferometric precision. This is the sine qua non for phase-sensitive

experiments like 2dFTS.

We do not expect intermodulation products – those terms that occur

due to frequency mixing – to be a problem because they are spatially separated.

The interference terms at the difference frequencies and the intermodulation

frequencies at 2Ωi−Ωj will result in a diffraction of some fraction of the other-

wise usable optical power through different angles, but as long as they can be

spatially filtered from our beam of interest and do not excessively reduce the

efficiency of the experiment, we are not concerned with their effects. They are

readily visible as secondary spots that surround the mode we wish to use, but

can easily be blocked using the apertures that are already placed in the exper-
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iment for alignment purposes. The efficiency of the experiment is somewhat

troublesome at this point, as it now throws away a significant fraction of the

Ti-Sapph power that we use to excite and probe the sample. Since the probe

beam is split first from the input Ti-Sapph, the efficiency issue only really is

a concern for the dynamic and static pump beams, which are subsequently

split to share the remaining power using a 50%-50% ultrafast beam splitter.

When the laser source is operating optimally, power is not an issue, and some

Ti-Sapph efficiency can be gained by sacrificing some of the HeNe power by re-

ducing its cw RF drive intensity at the HP function generator. Unfortunately,

because the HeNe beams are retroreflected to operate the interferometer, they

must double pass the multi-frequency acousto-optic modulator, and hence re-

quire greater RF power than might otherwise be expected. This effect can be

somewhat accounted for by using a sufficiently high gain on the photodiode

used to detect the HeNe interference fringe.

Some questions can be raised regarding the intensity of the Ti-Sapph

beams directed toward the experiment, videlicet: does introducing the addi-

tional RF signal result in some time-dependent intensity modulation of those

beams. The demonstration of the interferometer locking and stability suggest

that the HeNe beams are not disturbed in any way that would impede their

function does not prove that no such modulation or other effect occurs – merely

that it is not observed when monitored with a relatively slow photodiode.

Such an effect might be somewhat problematic to observe in the Ti-

Sapph pump beams, because it would require a relatively high bandwidth
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measurement recorded over a relatively long duration. The necessary bullet-

proof demonstration would require sufficient bandwidth to properly resolve

the individual laser pulses rather than the modulation envelope. The laser

repetition rate is 76 MHz, but to ensure that the amplitude of each pulse is

properly resolved suggests using a sampling frequency faster than twice that.

Data would need to be collected over a sufficiently long period to observe ef-

fects corresponding to the slowest time scale; the immediate choice for that

is the slow modulation frequency, typically in the range of half a MHz to a

few MHz. This should probably suffice to provide direct proof of the spectral

purity of the modulated Ti-Sapph beam. We do not provide such a direct

measurement. Instead, we simply note that two-pulse differential reflectiv-

ity measurements performed using the static (or dynamic) pump and probe

beam, with the dynamic (or static, as appropriate) pump blocked reproduced

the previous set of two-pulse data. Barring any unexpected results, we take

this as suggestive that the device operates as we hypothesize it to.

Thus, we assert that this experimental apparatus in all likelihood allows

us to diffract a Ti-Sapph and HeNe beam through very nearly the exact same

beam paths, with the Ti-Sapph beams modulated at independently selectable

frequencies, and with the HeNe beam retroreflected through the interferometer

to provide an error signal that can be used to actively stabilize this experiment.
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6.7.4 Three-pulse four-wave mixing measurements in reflection mode
with variable beam geometries: a new technique for studying
structured samples

In this section we describe some experiments we made as a proof of

concept, to demonstrate the potential of our apparatus.

The experimental program outlined in this chapter describes a work in

progress. We wish to develop the ability to perform four-wave mixing mea-

surements on samples that require specific control of three independent beams

in order to observe momentum coupling effects. The nature of these samples

requires us to work in a reflection geometry, which is a useful spectroscopic

tool to develop due to the broad range of samples that it permits us to study

that are intractable to transmission mode experiments. The signals of interest

to us are extremely weak, requiring the use of a sophisticated three-frequency

lock-in detection scheme. In order to perform phase-sensitive measurements we

require the ability to interferometrically stabilize two optical path lengths to

less than one part in a hundred of the relevant wavelength; to do this while si-

multaneously using acousto-optic modulators to modulate the Ti-Sapph beam

we demonstrated that introducing a second acoustic frequency permits reso-

nant Bragg diffraction of a HeNe beam along the same beam path. Two-pulse

measurements alone reveal coherent oscillations at early times, but cannot

provide a direct measurement of the dephasing rate (at least, when not per-

formed using a self-diffracted geometry that would allow spatial separation of

the four-wave mixing emission).
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Two-pulse dR/R spectrum of a GaAs quantum well sample 
taken at T=2.5 ps delay with selected points along the 
exciton lineshape  indicated (a) and subsequently plotted as 
a function of probe delay T (b). The early time behaviour 
reveals clear evidence of coherent oscillations, but does not 
provide a simple, direct measurement of the dephasing time 
without a complete model of the temporal lineshape.!
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Figure 6.40: 2-pulse early time coherent behaviour
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During the development of this apparatus we have also performed ex-

periments that suggest that the conventional intensity modulation schemes

used for two-pulse experiments only sample a subset of the terms present in a

heterodyned measurement. We develop that idea further here. In an appendix

to this thesis, we show that the intensity detected along the probe beam after

it reflects from a sample is given by

|Epr + Esig|2 = |Epr|2

+ζ |Edp| |Esp|Epr (t)Epr (t+ π/2)

+ (ζ |Edp| |Esp|Epr (t+ π/2))2

The first term, |Epr|2, is simply the probe background and will be re-

jected by the lock-in detection method. This signal component is analogous to

the probe background spectrum that is detected with the pump beams blocked,

and then subtracted from the signal spectrum in our 2dFTS experiments.

The third term is a homodyne term, and is proportional to the intensity

of each of the three beams used to induce four-wave mixing emission, and to

the square of the proportionality constant determined by the light-matter in-

teraction. This, we note, is the term that would be detected by a conventional

extension of normal two-frequency modulation schemes; it will be detected
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if the intensities of the three beams are modulated at (Ωsp, Ωdp, Ωpr), where

the Ωi refer to the angular frequency of intensity modulation of a given beam

by its acousto-optic modulator. For this conventional scheme, the reference

frequency for lock-in detection is given by Ωsp ± Ωdp ± Ωpr. We refer to that

as an intensity modulation scheme, and present its results below.

The second term is a heterodyne term. Interestingly, the intensity of

this component is proportional to the intensity of the probe beam, but to

the electric field strength of the static pump and dynamic pump fields; the

emission described by this term is linear in the pump electric fields but bilinear

in the probe field. The result quoted here, which may be found in a simplified

derivation in the appendix, contains an apparent contradiction, in that the

time-averged intensity of this term would appear to be zero due to the π/2

phase difference between the probe and emitted four-wave mixing field; that

term only appears because this toy model did not consider the real, physical

geometry of the sample. In fact, there will be a phase difference between the

probe field reflected from the sample front surface and the four-wave mixing

emission that actually occurs within the material system itself. Modelling that

phase difference itself is not trivial, and will depend upon the precise geometry

used, the index of refraction of the medium, and the distance between the front

surface and the active region. Only for a pathological geometry would the

phase difference here actually work out to π/2, and in general we should expect

some observable signal here. We suggest that this term may be isolated from

the background and homodyne terms by proper choice of the lock-in reference
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frequency. We use a frequency given by Ωpr + Ωsp/2 − Ωdp/2 to isolate this

term from the other two in our experiments.

We emphasize that the extension of intensity modulation from conven-

tional two-frequency optical measurements to a three-frequency intensity mod-

ulation scheme would pick out only the homodyne term, which depends upon

the square of the proportionality constant that describes the nonlinear optical

processes. The intensity modulation measurement will thus only provide a

positive semi-definite measurement, and will lose the ability to discriminate

the sign of the constant of proportionality.

The hybrid intensity-electric field modulation scheme described here

that treats the three pulses on an unequal footing that is appropriate due to

the dissimilar way the pulses interact with the sample. While we used a sim-

ple dipole coupling approximation to describe the light-matter interaction, the

geometry of the probe beam is different from that of the two collinear pump

beams. This point must be re-visited in any attempt to move toward a fully

collinear geometry where all three beams co-propagate along the same beam

path; in such an experiment, the only distinction would be the phase-stability

between two of the three pulses, but cross terms between the four-wave mixing

signal field and all three of the incident optical fields would be present in the

detected intensity. Choosing the appropriate reference frequency in such an

experiment may provide a way to remove the degeneracy between these fields

and choose a specific heterodyne term. These considerations are not academic,

as our experimental apparatus was specifically constructed to permit both par-
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tially collinear and fully collinear experiments: a periscope placed in the beam

path of the combined pump beams lifts those beams slightly above the hori-

zontal plane in which all other beams in the experiment lie. Removing that

periscope will immediately provide a fully collinear experiment. The immedi-

ate question, whether a weak four-wave mixing signal can be detected against

this background, seems likely to be answered in the affirmative, as we have

already moved from performing three-pulse experiments with two strong (1.00

mW) pump beams and one weak (100 uW) probe beam to performing our

experiments with three equally strong beams (static pump, dynamic pump,

and probe all equal to 1.75 mW in these data). We realized shortly after

moving from CCD detection to lock-in detection that the ability to discrimi-

nate between the signal modulated at the reference frequency and the strong

background of the probe beam permitted us to increase the strength of the

probe beam. This allows us to perform these experiments with equal intensi-

ties in the three incident beams, which should provide us with the strongest

four-wave mixing signal. There are no apparent deleterious issues associated

with using the higher probe power. Moving from 100 uW to 1.75 mW is a

factor of 17.5 increase in the power present in the probe beam, but it does not

seem to cause any problems detecting the weak four-wave mixing field. This

suggests that the increase by a factor of three that would occur when working

in a completely collinear geometry should not cause any significant problems.

We show here data collected with both the conventional intensity modu-

lation scheme and the hybrid intensity-electric field modulation scheme. Since
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we were interested in observing a four-wave mixing that decays on a time scale

determined by the system dephasing time, we reduce the temperature to typ-

ically 5K in order to reduce the acoustic phonon population. These data are

taken with 1.75 mW in each of the three beams. The reflected probe beam is

collected as described previously, spectrally resolved using a 0.5m monochro-

mator, and detected using a biased Silicon photodiode. The photocurrent is

converted to a photovoltage across a resistor; the bandwidth of the loaded

detector is estimated to be greater than 100 kHz. We use the same precision

pre-amplifier (SR 560) to filter the signal, using a frequency bandpass that

should eliminate a significant fraction of the noise on the photodetector. The

conditioned signal is then sent to a lock-in amplifier for detection and averag-

ing. The lock-in amplifier is controlled via GPIB interface by the experiment

control computer. Home coded Labview software on that pc controls the un-

locking of the interferometer, the movement of the dynamic pump translation

stage to increment the τ delay, the re-locking of the interferometer, and the

polling of the lock-in amplifier to readout the detected signal.

Data recorded using the intensity modulation scheme are presented

for only one wavelength, corresponding to the heavy hole exciton resonance

peak, while hybrid scheme data are shown at two different wavelengths, corre-

sponding to the heavy hole exciton resonance peak and the light hole exciton

resonance peak. For both experiments, the conditions are identical other than

the reference frequency sent to the lock-in amplifier and the lock-in time con-

stant used. The probe pulse is delayed by T = 5.00 ps compared to the arrival
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A four-wave mixing signal (a) detected using the three-frequency 
modulation and detection scheme that is a conventional extension of the 
difference frequency detection (b) more commonly used with two 
modulated excitation sources. The intensity of each of the three beams 
used in this experiment is modulated at particular frequency; lock-in 
detection is performed using a reference signal generated as a linear 
combination of the three frequencies, i.e.  (±Ωpr ±Ωsp ±Ωdp). The data 
shown here are collected with the probe pulse delayed 2.5ps from its 
coincidence with the static pump pulse. A monochromator is used to 
spectrally analyze the four-wave mixing signal and co-propagating probe 
beam prior to detection; these data were taken at 799.5nm, corresponding 
to the peak of the heavy hole exciton resonance. The sketch of the 
detection scheme is not intended to represent the actual geometry of the 
reflection measurement."
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Figure 6.41: FWM using intensity modulation
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(a)!

(b)!
Ωdp!
Ωsp!

Ωpr!

±Ωpr/2 ± Ωsp ± Ωdp!

Four-wave mixing data (a) collected with the hybrid detection 
scheme (b) with phase-locked pump pulses generated from the 
Mach-Zehnder interferometer using the multi-frequency 
acousto-optic modulator drive system. These data were taken at 
799.5nm with a probe delay time T=2.5ps; we plot R magnitude 
data rather than the in-phase X-component of the lock-in signal 
because we wished to observe the largest magnitude signal 
possible when demonstrating the technique. The slow oscillation 
superimposed on the decay is determined by the splitting 
between the light hole and heavy hole exciton resonance, while 
the presence of the high frequency component will permit the 
extraction of the optical phase. !
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Figure 6.42: FWM using intensity modulation
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of the static pump pulse. The dynamic pump starts coincident in time with

the static pump and is stepped backwards in time, arriving earlier by 0.002109

picoseconds with each step. We run the experiment with 1404 steps, corre-

sponding to a τ delay scan of approximately 3 picoseconds. This appears to

suffice to see a decay of the observed four-wave mixing signal to the level of the

noise-floor in the hybrid detection experiment. We note (and discuss sub) that

the signal detected using conventional intensity modulation does not decay to

a zero background level during this scan.

For the hybrid detection scheme, 300 ms integration time was used,

while the intensity detection scheme signal could be well-resolved with 30ms.

As a result, the time needed for a single τ scan of the hybrid experiment,

approximately 25 minutes, was a factor of ten greater than that needed for

the intensity modulation scheme. It is not entirely clear why the hybrid scheme

signal requires greater time to accurately resolve, but we note that it may be

related to the high frequency fringe that appears in the hybrid signal but not

in the intensity modulated signal.

We cannot say definitively why the homodyne term lacks these fringes,

but suggest that it may be due to the manner in which the intensity terms

appear in the expression for this component of the |Esignal + Eprobe|2 expres-

sion. It is suggested that a more careful analysis that keeps track of how the

field amplitudes enter into the expression for the heterodyne and homodyne

terms will better explain this effect – but we note that it is significant for our

purposes. If we wish to perform a 2dFTS measurement, we rely on resolving
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Four-wave mixing signal detected in the partially collinear geometry 
using the hybrid electric field-intensity modulation scheme with 
interferometrically phase-locked pump pulses. These data were 
collected at 799.5nm (a), the heavy hole exciton peak, and at 793.6nm 
(b), the light hole exciton peak. Note the high frequency component in 
the signal, demonstrating the ability to resolve the optical phase of the 
four-wave mixing emission – a prerequisite to perform 2dFTS 
experiments. Note the absence of background to the signal, since the 
detection scheme eliminates the pump-probe background!

Figure 6.43: Phase-sensitive FWM using hybrid modulation
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Four-wave mixing signal collected in the partially collinear 
geometry using the conventional modulation and detection 
scheme, performed using phase-locked pump pulse pairs 
generated using the locked Mach-Zehnder interferometer. The 
slow oscillation of the four-wave mixing signal occurs due to the 
interaction between the heavy hole and light hole exciton 
resonances, but note the absence of any optical frequency 
component in the decay. This lack of optical frequency information 
prevents the use of this modulation-detection method to perform 
2dFTS, which requires the ability to measure the optical phase of 
the emission occurring after the arrival of the third (probe) pulse. 
Note the presence of the background due to the pump-probe 
artifacts.!
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Figure 6.44: Phase-sensitive FWM with conventional intensity modulation
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the optical frequency signal in the t period. The intensity modulation scheme,

which only reveals the envelope of the four-wave mixing signal, cannot be used

to perform this kind of experiment.

To re-iterate and emphasize this point: it is not clear that it is possible

to perform 2dFTS using the conventional detection scheme. A straightforward

implementation of 2dFTS requires that the experiment can resolve the phase

of the nonlinear signal at the beginning of the detection period in order to

correlate those events that occur in the first time period with those that oc-

cur during the third. That capability is demonstrated here for the hybrid

modulation and detection scheme. For comparison purposes, the fast, opti-

cal frequency component may be seen directly in the mixed frequency-time

(ωt, τ) domain measurements we performed during our 2dFTS measurements.

We note the similarity of that signal to the time domain data presented here

(for only two wavelengths, of course) collected using the hybrid modulation

scheme.

It is absolutely necessary to use phase-stabilized pump pulses to per-

form these measurements. The high-frequency component cannot accurately

be recorded without active stabilization, using the optical multiplex acousto-

optic system to modulate the Ti-Sapph beams while simultaneously permitting

the use of a HeNe beam to lock the Mach-Zehnder interferometer. Consider

the counter-example of hybrid modulation and detection scheme measurements

performed without phase stabilization.

The hybrid detected signal has certain other advantages compared to
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High resolution segments of four-wave mixing signals 
collected using the hybrid modulation and detection 
scheme, revealing the optical frequency component present 
in the decaying, oscillating signal emitted at the heavy hole 
exciton (black trace) and light hole exciton (red trace) 
wavelengths. The ability to resolve the optical frequency 
and thus, the optical phase of the emission, permits 2dFTS 
measurements using this detection scheme.!

Figure 6.45: High-res hybrid phase-sensitive FWM
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Four-wave mixing signals recorded with the hybrid modulation-
detection scheme without active phase stabilization. These data were 
collected at a probe delay of T=2.5ps, at a wavelength of 799.5nm. 
Without locking the interferometer used to generate the pump pulse 
pair, acoustic noise in the apparatus largely washes out the signal, as 
small perturbations in the path length walk the signal across the 
fringe pattern (q.v. sub). Increased integration times may actually 
decrease the signal-to-noise, as they provide greater time for random 
walks to wash out the fringe. These data demonstrate the necessity 
of active stabilization.!

Figure 6.46: Hybrid FWM without phase stabilization
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the intensity modulated, conventional signal.
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Four-wave mixing signals detected using the conventional, 
intensity three-frequency modulation and detection 
scheme. The features centered on τ=0 are composed of an 
exponential decay determined by dephasing dynamics, 
multiplied by an oscillatory, interference signal (a).  These 
features reveal an asymmetry due to the superposition of 
the four-wave mixing signal on top of a pump-probe artifact 
that can be revealed by expanding the range of the τ scan 
(b). The data shown here were collected with probe delays 
T=2.5ps (a) and T=1ps (b).!

Figure 6.47: Conventional FWM superimposed on pump-probe

The conventional signal is actually superimposed on a background, ap-

pearing superimposed on something like the pump-probe artifacts with which

we are familiar from our 2dFTS measurements detected using the CCD and

mechanical chopper. Those measurements also decayed slowly to a non-zero

baseline, with a characteristic time scale determined by the population relax-

ation rate. Using the hybrid detection scheme avoids this problem, since the

signal component it resolves is governed entirely by the dephasing time. It

also decays to a zero background level, reducing the number of experimental
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parameters that must be fit in an analysis. In any analysis, we note that it is

possible to extract the dephasing rate from the intensity modulation scheme

data, but not with the same precision that can be achieved analyzing the hy-

brid scheme data. Indeed, if the slow decay that the intensity modulation

four-wave mixing signal sits on top of were to decay faster – i.e., if there

were less separation between the population relaxation and dephasing rates

– it would not be possible to accurately extract the dephasing rate from the

recorded data. The hybrid intensity-electric field modulation scheme permits

direct extraction of the dephasing rate regardless of the population relaxation

time.

The elimination of the background from this signal is not completely

dissimilar to the application of various phase-cycling schemes to manipulate

a 2dFTS spectrum. We have not concentrated on these techniques in our de-

scription of 2dFTS because we did not (at the time we constructed it) have

the ability to readily control the phases of the three different pulses used for

that experiment. With the introduction of the three independently controlled

acousto-optic modulators, we now have the ability to perform phase modu-

lation experiments using the DDS function generator. At present, the DDS

parameters are set prior to running a three-pulse experiment, but the device

can be controlled readily simply by writing to the serial port with which it

communicates with the experiment pc. Serial control of this device to perform

phase shifts at each step during a multi-step experiment could be implemented

in a straightforward fashion using the home-coded Labview control software
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for our apparatus.

We are, of course, most interested in the potential to perform 2dFTS or

similar sophisticated measurements using this scheme. At the moment, 2dFTS

is not practical, since we can only detect a single wavelength at a time. To

record a mixed time-frequency data set for 2dFTS analysis would, at the cur-

rent rate, take something like 500 minutes for only 50 different wavelengths.

The spectra recorded in the two-pulse experiments shown in this thesis use

0.1 nm resolution – thus, to properly map our 5 nanometers spectral band-

width with a 3 picosecond time scan would require nearly eight and a half

hours. When we take 2dFTS data, our experiments typically took approx-

imately 30 to 40 minutes to collect sufficient data to record a high quality

spectrum. Occasionally, the lab environment would be too noisy to maintain

the interferometer lock on even that relatively short time scale. Data col-

lected in experiments performed overnight, during holiday weekends, was far

less susceptible to losing the interferometer lock, but that requirement does

not make for a practical experiment. To study the coupling of the surface

plasmon polariton to the quantum well exciton as a function of momentum

in the sample we’re currently interested in would require perhaps ten spectra

collected at different angles. In order to follow the transfer of energy between

the coupled states in this system may require several 2dFTS spectra be col-

lected as a function of the T delay. Further refinement of the experimental

technique is clearly called for before it is practical to study these systems, but

the fundamental proof of concept of this method has been demonstrated.
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Comparison of four-wave mixing signals detected using the 
hybrid modulation and detection scheme (black trace, 799.5nm; 
red trace, 793.6nm) and a conventional intensity modulation and 
detection scheme (blue trace, 799.5nm). The hybrid detection 
scheme traces are centered on zero, whereas the intensity 
modulation scheme trace is offset by a pump-probe background 
that is itself a function of the τ scan. The hybrid scheme permits 
direct, straightforward extraction of the dephasing time, 
regardless of the population relaxation rate, while the 
conventional scheme would require fitting the background 
artifact using the population relaxation rate. The hybrid traces 
also permit extension to more sophisticated measurements, such 
as 2dFTS. The disadvantage of using the hybrid scheme is the 
much longer time necessary – the hybrid traces shown here 
require approximately 25 minutes each to collect, compared to 
approximately 2.5 minutes for the conventional intensity 
modulation scheme."
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Figure 6.48: Comparison of hybrid and conventional FWM signals

572



Some parallelization is necessary; we suggest that a fast detector array

could be used, and that the reference signal could be simultaneously recorded.

A post-experiment data processing step functionally equivalent to lock-in de-

tection could subsequently be performed to extract the signal of interest. De-

veloping an ability to perform parallel measurement of some number of wave-

lengths would radically decrease the time necessary to collect sufficient data

for a 2dFTS or similar experiment.

It is also possible that the signal-to-noise may be increased simply by

improving the optical alignment. The exact cancellation of the kdp and ksp

wavevectors requires that those beams be perfectly overlapped. Any mis-

match in those beams’ wavevectors would result in a four-wave mixing signal

that is not perfectly mode-matched into the probe beam. As the probe beam

propagates further away from the sample, the difference between it and the

(ostensibly) co-propagating four-wave mixing signal’s wavevectors would de-

crease the intensity of the four-wave mixing signal that will be detected by

collecting the probe beam.

Some success may also be had by moving to a different choice of modu-

lation frequencies. The values used in these experiments (the probe intensity is

modulated at 0.643 MHz, the static pump intensity is modulated at 0.748 MHz,

and the dynamic pump intensity is modulated at 0.967 MHz) were chosen in

order that the linear combination of interest, viz. the hybrid intensity-electric

field detection frequency at 0.643 + 0.748 − 0.967 MHz did not coincide with

any other linear combinations of electric field and intensity modulation fre-
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quencies. This frequency choice is therefore largely determined by the need to

avoid inadvertently detecting another signal and mistaking that artifact (for

example, any of the two-pulse signal components) for a genuine four-wave mix-

ing signal. Significant attention was not paid to finding the ideal combination

of the modulation frequencies that would optimize the signal-to-noise given

the photo detector and signal processing.

In summary, the tools described in this chapter provide a promising

foundation for developing a sophisticated spectroscopic toolbox that may be

used to perform 2dFTS and other similarly complicated measurements on

samples that could not otherwise not studied.
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Appendix 1

Density operator calculations in the partially

collinear geometry

Multi-dimensional spectroscopy depends upon the measurement of a

nonlinear polarization induced by a tailored sequence of pulses. Some mea-

surements have detected the signal of interest by observing the effects that

phase-cycling the excitation pulses has upon incoherent fluorescence [363] in a

technique analogous to the detection schemes commonly used in nuclear reso-

nance experiments, but most rely upon the observation of a coherent emission

along a particular phase-matched direction. A simple density operator cal-

culation may be used to understand the direction and time-evolution of the

four-wave mixing signal. Although a more sophisticated microscopic model

is necessary to understand the rich dynamics of many complicated condensed

matter systems, a simple Taira/optical Bloch calculation is a useful approxi-

mation for these purposes.

For experiments where the polarization is induced by a time-sequenced

pulse train, the quantum mechanical equations of motion for a single pulse

may be used iteratively, with the result for one pulse – characterized by popu-

lations and coherences – used as the initial state for the calculation of the next
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pulse. In practice, this is effected by calculating a first-order perturbation cor-

rection due to the first pulse to arrive, a second-order perturbation correction

due to the second pulse to arrive, and a third-order perturbation correction

due to the third pulse that interacts with the sample. After all three pulses

are considered, the resulting perturbation calculation of the dipole operator

expectation value contains terms that are linear in each of the applied fields;

the emission arising from the macroscopic polarization depending on a phased

array of dipoles is the four-wave mixing signal of interest. Analysis of this

field as a function of the pulse delays permits the extraction of the relaxation

parameters characterizing the system in a Taira/optical Bloch model. Calcula-

tion in the density matrix theoretical framework does not require the addition

of a directional filter function because the interaction geometry is explicitly

considered in the integral functional form for the nonlinear polarization. This

treatment neglects the possibility of bound-free transitions driven by intense

electric fields [42], although certain features in the 2dFTS plots produced in

our experiment suggest the presence of absorption from free carrier states.

We have shown elsewhere in this thesis that the optical physics with

which we are concerned can be described using the interaction of several pos-

sible different excitonic states – bound and free – which relate the interactions

between electrons in at least three different energy bands. We outlined the use

of the Optical Bloch equations, developed first in the context of NMR experi-

ments relying on spin flips, and their utility as a tool for studying approximate

two- or few-level systems. We have also briefly described the semiconductor
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optical Bloch equations, a more sophisticated field theoretical method for more

completely approaching the problems of many-body physics in materials char-

acterized by band structures. This last model is a strong theoretical tool for

understanding the behaviour of optical excitations in semiconductor nanos-

tructures, but will nonetheless fail to reproduce all the features in the com-

plicated spectra that often arise in multiple pulse experiments such as those

with which we are interested. Clearly, sophisticated theoretical models are

necessary to understand the complexities of these systems.

Nonetheless, a toy picture of a two level system is often useful for

calculating the basic behaviour of these systems, as the simpler model re-

sults in predictions that have clear physical interpretations, such as dephasing

and decay rates arising from microscopically unspecified processes. A slightly

more sophisticated model that approximates the excitonic physics using four

possible energy levels (the ground, no exciton state; two states where either

an hh or lh exciton is created; and a fourth state with both an lh and hh

exciton (the interaction between which substantively alters the behaviour of

this system, and prevents us from using a model consisting of two indepen-

dent, non-interacting two level systems) provides a more complete physical

understanding [178], but the fundamental effects are easily understood in the

elementary two-level model we describe here. We may use the results of this

calculation as a means to establish a useful language for describing the general

behaviour of more complicated models, which shall similarly rely on the ideas

of coherence, population, dephasing, and population decay.
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We start with the initial conditions for the perturbation calculation

ρ
(0)
21 = ρ

(0)
12 = 0, ρ

(0)
11 = 1, ρ

(0)
22 = 0

for the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′

where the perturbation term

Ĥ ′ = −µ̂ · Ê (t)

is defined with the dipole matrix operator given by

µ12 = µ21 = µ, µ11 = µ22 = 0

We will assume that the dipole matrix element µ12 is real. For a purely

two-level system that is not a problematic assumption, but in a multi-level

system the product of dipole matrix elements appearing in a wave-mixing

expression for the nonlinear polarization may not necessarily be real [133]. The

expectation for the dipole operator can be found by tracing out its product

with the appropriate reduced density operator for the system,

〈µ〉 = Tr {ρ̂µ̂} = Tr

{(
ρ11 ρ12

ρ21 ρ22

)(
0 µ
µ 0

)}
= µ {ρ12 + ρ21}
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From the quantum equivalent of the Liouville equation, we know that

the time evolution of the density operator is given by

dtρ = − i
~

[
Ĥ, ρ̂

]
+ ∂tρ̂

where here (as in many cases) there is no explicit dependence of the

density operator on time, and the partial derivative with respect to time van-

ishes. The time evolution of the density operator is more easily considered on

an element-by-element basis for the purposes of this perturbation calculation

dtρ21 =
i

~

[
Ĥ0 + Ĥ ′, ρ̂

]
21

= − i
~

[(
E1 0
0 E2

)(
ρ11 ρ12

ρ21 ρ22

)
+

(
0 V12

V21 0

)(
ρ11 ρ12

ρ21 ρ22

)]
21

− i
~

[
−
(
ρ11 ρ12

ρ21 ρ22

)(
E1 0
0 E2

)
−
(
ρ11 ρ12

ρ21 ρ22

)(
0 V12

V21 0

)]
21

= − i
~

[(
V12ρ21 − ρ12V21 V12ρ22 + E1ρ12 − ρ12E2 − ρ11V12

E2ρ21 + V21ρ11 − ρ21E1 − ρ22V21 V21ρ12 − ρ21V12

)]
21

= − i
~

[(
V12ρ21 − ρ12V21 +ρ12 (E1 − E2) + V12 (ρ22 − ρ11)

ρ21 (E2 − E1) + V21 (ρ11 − ρ22) V21ρ12 − ρ21V12

)]
21

= − i
~
{ρ21 (E2 − E1) + V21 (ρ11 − ρ22)}

If we define the resonance frequency for a transition between two states

by ~ω0 = E2 − E1 we may write
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dtρ21 = −iω0ρ21 −
iV21

~
(ρ11 − ρ22)

for the interaction matrix we are interested in, V21 = −µ·E (t) which we

will write as simply V21 = −µE (t) , neglecting for simplicity of notation the

vector nature of the dipole and the electric field. We then write an expression

for the time derivative of the density matrix element of interest as

dtρ21 = −iω0ρ21 +
iµE (t)

~
(ρ11 − ρ22)

We may similarly calculate the other matrix element’s time derivatives,

obtaining the complete set

dtρ21 = −iω0ρ21 +
iV21

~
(ρ22 − ρ11)

dtρ12 = +iω0ρ12 −
iV12

~
(ρ22 − ρ11)

dtρ11 = − i
~

(V12ρ21 − V21ρ12)

dtρ22 = +
i

~
(V12ρ21 − V21ρ12)

Where we reverted to the Vij form for the interaction terms simply for

brevity.

We now add in phenomenological decay effects as described above. We

consider the dephasing effects, which we describe with the dephasing rate T2,

used to keep track of the loss of phase coherence among the ensemble of dipoles.
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The term transverse relaxation time is sometimes used, as the Bloch equation

formalism developed here was first used in the context of NMR experiments

where dephasing principally occurred due to spin-spin interactions. Population

relaxation is accounted for with the T1 time, called the longitudinal or lattice

relaxation time constant, again due to historical precedent from NMR theory.

In this calculation we express both of these relaxation times by their inverse,

using the dephasing rate γ = 1/T2, and the population decay rate Γ = 1/T1.

With the phenomenological relaxation terms, we obtain

dtρ21 = −iω0ρ21 +
iV21

~
(ρ22 − ρ11)− γρ21

dtρ12 = +iω0ρ12 −
iV12

~
(ρ22 − ρ11)− γρ12

dtρ11 = − i
~

(V12ρ21 − V21ρ12) + Γρ22

dtρ22 = +
i

~
(V12ρ21 − V21ρ12)− Γρ22

We consider electrical fields of the form E (t) = Ẽi (t) + Ẽ∗i (t), where

Ẽi = Ei (t) e
i(ki·r−Ωit)

Ẽ∗i = E∗i (t) e−i(ki·r−Ωit)

which couple to the material system via the dipole interaction,
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V12 = (−µ · E)12 = −µ12E

= −µ12

2

∑
i

Ẽ∗i + Ẽi

As noted above, we will drop the subscript and refer to the dipole

matrix element as µ, since the coupling strength should be the same for µ12 as

µ21. We proceed by assuming that the interaction is a weak perturbation that

does not drastically shift the structure of the energy manifolds of this system.

Then, to zeroth order,

ρ
(0)
22 = 0, ρ

(0)
11 = 1 = g (ω0) =

1

(∆ω0)
√
π
e−(ω0−ω)2/(∆ω0)2

where we have written the lower state as a distribution function to

explicitly permit some inherent spectral width to the transition between the

two states in the material samples. Considering the coherence terms:

dtρ12 = iω0ρ12 −
iV12

~
(ρ22 − ρ11)− γρ21

and the population terms

dtρ11 = − i
~

(V12ρ21 − V21ρ12) + Γρ22

we can see that, under the assumption that the coherence terms are ini-

tially zero (ρ
(0)
21 = ρ

(0)
12 = 0) in the zeroth order of the perturbation calculation,
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and assuming that the initial population of the upper state is zero (ρ
(0)
22 = 0),

then the time derivative of the lower state population will also be identically

zero. That analysis does not obtain for the coherence terms, however, due to

the presence of the ρ11 term, which is non-zero in the zeroth order (indeed,

integrated over ω0 it equals unity). To find more accurate perturbation so-

lutions we apply a step-by-step iterative method to find the density operator

elements to the n-th order.

We proceed by solving the differential equations describing the time

evolution of the coherence terms.

ρ̇21 = −iω0ρ21 +
iV21

~
(ρ22 − ρ11)− γρ21

= − (iω0 + γ) ρ21 +
iV21

~
(ρ22 − ρ11)

Multiply the time derivative of the coherence by the integrating factor e(iω0+γ)t

e(iω0+γ)tρ̇21 = − (iω0 + γ) ρ21e
(iω0+γ)t +

iV21

~
(ρ22 − ρ11) e(iω0+γ)t

e(iω0+γ)t {ρ̇21 + (iω0 + γ) ρ21} =
iV21

~
(ρ22 − ρ11) e(iω0+γ)t

dt
{
e(iω0+γ)tρ21

}
=

iV21

~
(ρ22 − ρ11) e(iω0+γ)t

e(iω0+γ)tρ21 =

ˆ t

−∞
dt′
iV21 (t′)

~
(ρ22 (t′)− ρ11 (t′)) e(iω0+γ)t′ + C
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from which we obtain

ρ21 (t) =

ˆ t

−∞
dt′
iV21 (t′)

~
(ρ22 (t′)− ρ11 (t′)) e−(iω0+γ)(t−t′) + Ce−(iω0+γ)t

The second term on the right hand side, arising from the constant of

integration, can be eliminated by setting C = 0 using the boundary conditions

of the initial value problem, from the requirement ρ21 (t) = 0. We have moved

the exponential term e−(iω0+γ)t inside the integral even though it does not

depend on the dummy variable t′ because the functional form written in this

manner clearly shows that the coherence at a given time t arises from the

effect of the product of the interaction element with the population inversion

(the term ρ22 − ρ11) at some previous point in time t′, with the strength of

that effect decreasing as a function of the increasing time interval that has

elapsed since the interaction (viz. the exponential decay of the weighting term

e−γ(t−t′)) while simultaneously exhibiting the optical oscillation (arising from

the complex term e−iω0(t−t′)). This functional form thus provides more physical

insight into the processes occurring at the microscopic level.

Using the zeroth order terms for the level populations we can determine

the first order coherences,
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ρ21 (t) =

ˆ t

−∞
dt′
iV21 (t′)

~
(ρ22 (t′)− ρ11 (t′)) e−(iω0+γ)(t−t′)

ρ
(1)
21 (t) =

ˆ t

−∞
dt′
iV21 (t′)

~

(
ρ

(0)
22 (t′)− ρ(0)

11 (t′)
)
e−(iω0+γ)(t−t′)

ρ
(1)
21 (t) =

i

~

ˆ t

−∞
dt′
(
−µ

2

∑
Ei (t

′)
)

(0− g (ω0)) e−(iω0+γ)(t−t′)

ρ
(1)
21 (t) =

iµg (ω0)

2~

ˆ t

−∞
dt′e−(iω0+γ)(t−t′)

∑
i

Ei (t
′)

The two coherence terms, to first order, are thus

ρ
(1)
21 (t) =

ig (ω0)

2~
µ
∑
i

ˆ t

−∞
dt′e−(iω0+γ)(t−t′)Ei (t

′)

ρ
(1)
12 (t) = −ig (ω0)

2~
µ
∑
i

ˆ t

−∞
dt′e−(−iω0+γ)(t−t′)Ei (t

′)

where for brevity we have written the electric field terms
∑

i Ẽ
∗
i + Ẽi =∑

iEi. We are neglecting to consider the conjugate electric fields, as the

field must necessarily be a real quantity. We note that this may result in

a different convention for labeling the fields that contribute to a particular

quantum mechanical pathway compared to other calculations.

For the population terms we again solve the differential equation de-

scribing the population time evolution using an integrating factor,
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dtρ22 =
i

~
(V12ρ21 − V21ρ12)− Γρ22

eΓt {dtρ22 + Γρ22} =
i

~
(V12ρ21 − V21ρ12) eΓt

dt
(
eΓtρ22

)
=

i

~
(V12ρ21 − V21ρ12) eΓt

eΓtρ22 =
i

~

ˆ t

−∞
dt′ (V12 (t′) ρ21 (t′)− V21 (t′) ρ12 (t′)) eΓt′ + C

ρ22 (t) =
i

~

ˆ t

−∞
dt′ (V12 (t′) ρ21 (t′)− V21 (t′) ρ12 (t′)) e−Γ(t−t′) + Ce−Γt

And again, we can fix the constant of integration to zero by applying

the initial value conditions, requiring the population of the excited state to

be zero at t = 0. We have again moved the exponential term related to

relaxation processes, here e−Γt, inside the integrand. As with the decoherence

effect found in the integral equation for the coherence terms, the purpose of

this is to emphasize that the population at some time t depends upon a light-

matter interaction occurring at some earlier time – here, the commutative

terms coupling the interaction element to the coherences, both evaluated at

some earlier time t′, with the strength of that effect having decayed during the

intervening period, per the integral’s kernel e−Γ(t−t′).

To second order, then,

ρ
(2)
22 (t) =

i

~

ˆ t

−∞
dt′
(
V12 (t′) ρ

(1)
21 (t′)− V21 (t′) ρ

(1)
12 (t′)

)
e−Γ(t−t′)
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As an intermediate step, we calculate the portion of the integrand that

is not part of the kernel,

V12 (t′) ρ21 (t′) =

(
−µ

2

∑
j

Ej (t′)

)
ig (ω0)µ

2~

ˆ t′

−∞
dt′′e−(iω0+γ)(t′−t′′)

∑
i

Ei (t
′′)

=

(
−ig (ω0)µ2

4~

) ˆ t′

−∞
dt′′e−(iω0+γ)(t′−t′′)

∑
i, j

Ei (t
′′)Ej (t′)

and

V21 (t′) ρ12 (t′) =

(
−µ

2

∑
j

Ej (t′)

)
−ig (ω0)µ

2~

ˆ t′

−∞
dt′′e−(−iω0+γ)(t′−t′′)

∑
i

Ei (t
′′)

=

(
ig (ω0)µ2

4~

) ˆ t′

−∞
dt′′e−(−iω0+γ)(t′−t′′)

∑
i, j

Ej (t′)Ei (t
′′)

=

(
ig (ω0)µ2

4~

) ˆ t′

−∞
dt′′e−(−iω0+γ)(t′−t′′)

∑
i, j

Ej (t′)Ei (t
′′)

Taking the difference, we obtain
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{V12 (t′) ρ21 (t′)− V21 (t′) ρ12 (t′)} =

(
ig (ω0)µ2

4~

)
×[

−
ˆ t′

−∞
dt′′e−(iω0+γ)(t′−t′′)

∑
i, j

Ej (t′)Ei (t
′′)

]

+

[
−
ˆ t′

−∞
dt′′e−(−iω0+γ)(t′−t′′)

∑
i, j

Ej (t′)Ei (t
′′)

]

= −
(
ig (ω0)µ2

4~

)
×

−
ˆ t′

−∞
dt′′
(
e−(iω0+γ)(t′−t′′) + e−(−iω0+γ)(t′−t′′)

)
×
∑
i, j

Ej (t′)Ei (t
′′)

= −
(
ig (ω0)µ2

4~

) ˆ t′

−∞
dt′′e−γ(t′−t′′)

×2 cos (ω0 (t′ − t′′))
∑
i, j

Ej (t′)Ei (t
′′)

Substituting that expression into the population integral, we find

ρ
(2)
22 (t) =

i

~

ˆ t

−∞
dt′
(
V12 (t′) ρ

(1)
21 (t′)− V21 (t′) ρ

(1)
12 (t′)

)
e−Γ(t−t′)
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ρ
(2)
22 (t) =

i

~

(
−iµ

2g (ω0)

4~

) ˆ t

−∞
dt′e−Γ(t−t′) ×{ˆ t′

−∞
dt′′e−γ(t′−t′′)2 cos (ω0 (t′ − t′′))

∑
i, j

Ej (t′)Ei (t
′′)

}

ρ
(2)
22 (t) =

(
µ2g (ω0)

4~2

)
×

ˆ t

−∞
dt′
ˆ t′

−∞
dt′′e−Γ(t−t′)e−γ(t′−t′′)2 cos (ω0 (t′ − t′′))

∑
i, j

Ej (t′)Ei (t
′′)

The conservation of probability requires that ρ22 + ρ11 = 1, from which

ρ22 − ρ11 = ρ22 − (1− ρ22) = 2ρ22 − 1. Using this we may calculate the third

order coherence without explicitly solving for the second order population of

the lower level. We find

ρ21 =

ˆ t

−∞
dt′
iV21 (t′)

~
(ρ22 (t′)− ρ11 (t′)) e−(iω0+γ)(t−t′) →

ρ
(3)
21 =

i

~

ˆ t

−∞
dt′V21 (t′)

(
2ρ

(2)
22 (t′)− 1

)
e−(iω0+γ)(t−t′),

ρ
(3)
12 = − i

~

ˆ t′

−∞
dt′V12 (t′)

(
2ρ
∗(2)
22 (t′)− 1

)
e−(−iω0+γ)(t−t′)

and explicitly substituting for the second order density operator matrix

element and the same interaction potential,
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ρ
(3)
21 (t) =

i

~

ˆ t

−∞
dt′V21 (t′)

(
2ρ

(2)
22 (t′)− 1

)
e−(iω0+γ)(t−t′)

=
i

~

ˆ t

−∞
dt′

(
−µ

2

∑
k

Ek (t′)

)
2

(
µ2g (ω0)

4~2

)
e−(iω0+γ)(t−t′) ×([ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′e−Γ(t′−t′′)e−γ(t′′−t′′′)2 cos (ω0 (t′′ − t′′′))

∑
i, j

Ej (t′′)Ei (t
′′′)

]
− 1

)

=

(
−iµ

3g (ω0)

4~3

) ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′e−Γ(t′−t′′)e−(iω0+γ)(t−t′)e−γ(t′′−t′′′)

×2 cos (ω0 (t′′ − t′′′))
∑
i, j, k

Ek (t′)Ej (t′′)Ei (t
′′′)

+
i

~

ˆ t

−∞
dt′

(
−µ

2

∑
k

Ek (t′)

)
(−1) e−(iω0+γ)(t−t′)

=

(
−iµ

3g (ω0)

2~3

) ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′

∑
i, j, k

Ek (t′)Ej (t′′)Ei (t
′′′)×

e−Γ(t′−t′′)e−(iω0+γ)(t−t′)e−γ(t′′−t′′′) cos (ω0 (t′′ − t′′′)) +

iµ

2~

ˆ t

−∞
dt′
∑
k

Ek (t′) e−(iω0+γ)(t−t′)

The first term contains the behaviour we are particularly interested in.

We will selectively detect this particular term out of the total signal propa-

gating in the pump direction by modulating each field independently. The

second term results in a linear response that does not provide us much ability

to study the underlying microscopic physics of the system – the only time

interval appearing in the integrand is the difference between the experiment

clock’s real time t and the time t′ at which the last pulse interacted with

the material sample. As such, it will not be simple to separate the decay of

591



this linear polarization field into relaxation due to dephasing and relaxation

due to population decay. Without synchronizing the detection to the moment

of excitation t′ – i.e., without performing a time-resolved rather than time-

integrated experiment – we cannot extract much meaningful information from

this term; by contrast, the first term depends upon several time intervals that

we may scan in order to extract the relaxation parameters that characterize

the dynamics of the system in this toy model. We note that (after the π phase

shift that arises from inserting the polarization into Maxwell’s equations as a

source term) the linear term will result in an electric field with the opposite

sign of the particular Ek field that gives rise to its emission; for this reason we

interpret this effect as linear absorption of the incident laser pulses; naturally,

the phase-matching condition for this term is coincident with the direction of

propagation of each original pulse. The nonlinear polarization hand, alter-

natively, will possess the same sign as the product of the three electric fields,

after the π phase shift; as such, we associate this term with a four-wave mixing

emission.

This expression for the coherence term is already fairly complicated

in appearance, but the full, expanded form where the electric field products

are completely expanded, is even more intractable. The combination of wave

vectors results in a number of different polarizations that must be considered

in the context of what any given experiment will actually measure. We can go

ahead and expand those terms and then try to pick out the terms of interest,

but we can simplify that problem by applying certain choices that select out
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only a few combinations of the electric fields.

We first choose a pulse sequence. We will make certain choices regard-

ing pulse ordering based upon the parameters of interest we wish to extract

and the experimental geometry available to us.

1.1 Pump-probe measurements

We first consider the simpler case where only two pulses interact with

the sample, and consider a pump-probe experiment. We label the pump pulse

(it can originate in either arm of the interferometer, q.v. sub) as E2, and arrives

at t = 0. We label the probe pulse E1, and assume that it arrives at t = T .

Physically, the pump pulse complex field interacts twice with the material

sample (this is an unfortunate way to describe the actual optical physics, but it

is nonetheless the commonly used jargon), creating a population that depends

upon the pump intensity, E∗2E2. The probe pulse arrives subsequently, and

scatters from the population created by the first pulse; physically, we expect

the absorption of the probe pulse to be increased or decreased depending upon

the interaction of the first pulse with the sample. Specifying this concrete pulse

sequence simplifies our expression for the third order coherence, giving us

∑
i, j, k

Ek (t′)Ej (t′′)Ei (t
′′′)→ E1 (t′)E2 (t′′)E2 (t′′′)

The obvious problem with this analysis is that when we perform a

differential transmission (or differential reflectivity) pump-probe measurement,
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we scan the probe pulse from a time preceding the pump pulse to some time

long after the pump pulse has arrived – where long refers to the time scale

of the relaxation processes in the system. Clearly, this simple analysis cannot

replicate the complete temporal lineshape. In particular, the finite duration

pulses will overlap significantly for some range of probe times T , during which

window this analysis (which will assume Dirac delta function pulse envelope

for analytical simplicity) will fail. Nonetheless, it will help us to understand

the quantum mechanical pathways giving rise to the signals detected during

the decay of the pump-probe signal, and will be useful when we consider the

effect various modulation schemes (described in the chapter on our variable

geometry, two- and three-frequency modulation schemes) have on selecting

particular components from the probe beam.

We thus need to consider third order coherences that depend on the

product

(
Ẽ1 (t′) + Ẽ∗1 (t′)

)(
Ẽ2 (t′′) + Ẽ∗2 (t′′)

)(
Ẽ2 (t′′′) + Ẽ∗2 (t′′′)

)
in the expression for ρ

(3)
21 (t). Expanded, this yields

Ẽ1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′) + Ẽ1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′) + Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′) +

Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ∗2 (t′′′) + Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′) + Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′) +

Ẽ∗1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′) + Ẽ∗1 (t′) Ẽ∗2 (t′′) Ẽ∗2 (t′′′)
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We collect emission in the direction that the probe beam propagates,

i.e. we only look for terms that obey a wave equation where the solution’s

argument is given in the form (k1 · r− ωt). Thus, we look for terms that

exhibit an functional dependence of ei(k1·r−ωt) or e−i(k1·r−ωt).

If we approximate the pulses used in the experiment as delta functions,

the integrals for the density matrix elements are analytically solvable. We use

E1 (t′) = A1δ (t′ − T )
(
ei(k1·r−Ω1t′) + e−i(k1·r−Ω1t′)

)
E2 (t′′) = A2δ (t′′)

(
ei(k2·r−Ω2t′′) + e−i(k2·r−Ω2t′′)

)
E2 (t′′′) = A2δ (t′′′)

(
ei(k2·r−Ω2t′′′) + e−i(k2·r−Ω2t′′′)

)
where, if we use our notation for complex fields, where E = Ẽ + Ẽ∗,

we may write the field terms and their conjugates as, for example,

Ẽ1 (t′) = A1δ (t′ − T ) ei(k1·r−Ω1t′)

Ẽ∗1 (t′) = A1δ (t′ − T ) e−i(k1·r−Ω1t′)

We consider the coherence term depending on the Ẽ1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′)

field combination first as an illustration of the phase-matching geometry. We

omit the linear absorption term identified previously, and concentrate on the

nonlinear response, obtaining
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ρ
(3)
21 ∝

ˆ
dt′dt′′dt′′′A1A2A2δ (t′ − T ) δ (t′′) δ (t′′′) ei(k1·r−Ω1t′)ei(k2·r−Ω2t′′)ei(k2·r−Ω2t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)
(
e−(iω0+γ)(t′′−t′′′) + e−(−iω0+γ)(t′′−t′′′)

)
Using the Dirac delta functions to spike the integrals, we find

ρ
(3)
21 (t) ∝ A1A2A2e

i(k1·r−Ω1T )ei(k2·r)ei(k2·r)e−Γ(T )e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
ρ

(3)
21 (t) ∝ A1A2A3

{
ei[(k1+k2+k2)·r−Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

ρ
(3)
21 (t) ∝ ei[(k1+2k2)·r−ω0t]

from which we see that this combination of complex field components

( Ẽ1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′)) would result in emission that propagates in a differ-

ent direction than that along which we collect the probe beam. Hence, the

Ẽ1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′) coherence does not lead to any contribution to a de-

tectable signal. By contrast, the Ẽ1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′) complex field combina-

tion will result in a coherence that maybe similarly calculated, yielding

ρ
(3)
21 (t) ∝ A1A2A

∗
2e
i(k1·r−Ω1T )ei(k2·r)e−i(k2·r)e−Γ(T )e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
ρ

(3)
21 (t) ∝ A1A2A2

{
ei[(k1)·r−Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

ρ
(3)
21 (t) ∝ ei[k1·r−ω0t]
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which does satisfy the appropriate wave equation, and thus results in

a signal that is directed along the probe propagation direction. We can see

that the terms that will contribute to this signal require opposite signs for the

arguments of the exponential functions depending on k2. Thus, we expect to

see a contribution from the Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′) field combination, viz.

ρ
(3)
21 (t) ∝ A1A

∗
2A2e

i(k1·r−Ω1T )e−i(k2·r)ei(k2·r)e−Γ(T )e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
ρ

(3)
21 (t) ∝ A1A2A2

{
ei[(k1)·r−Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

ρ
(3)
21 (t) ∝ ei[k1·r−ω0t]

but not for the Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ∗2 (t′′′) field combination, which yields

ρ
(3)
21 (t) ∝ A1A

∗
2A
∗
2e
i(k1·r−Ω1T )e−i(k2·r)e−i(k2·r)e−Γ(T )e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
ρ

(3)
21 (t) ∝ A1A2A3

{
ei[(k1−2k2)·r−Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

ρ
(3)
21 (t) ∝ ei[(k1−2k2)·r−ω0t]

and again, cannot lead to emission along the phase-matched direction

we are using. We also consider the contributions from field combinations

where the probe pulse appears as the conjugate complex field term. For

Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ2 (t′′′) we find
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ρ
(3)
21 ∝

ˆ
dt′
ˆ
dt′′
ˆ
dt′′′A∗1A2A2δ (t′ − T ) δ (t′′) δ (t′′′) e−i(k1·r−Ω1t′)ei(k2·r−Ω2t′′)ei(k2·r−Ω2t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)
(
e−(iω0+γ)(t′′−t′′′) + e−(−iω0+γ)(t′′−t′′′)

)
∝ A∗1A2A2e

−i(k1·r−Ω1T )ei(k2·r)e(k2·r)e−Γ(T )e−(iω0+γ)(t−T )
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
∝ A∗1A2A3

{
ei[(−k1+2k2)·r+Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

∝ e−i[(k1−2k2)·r+ωt]

similarly, we again find that we do not see emission in the right direction

when the two E2 terms have the same sign exponent. Accounting for this, we

consider the coherence term depending n the field product Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′)

and find

ρ
(3)
21 ∝ A∗1A2A2e

−i(k1·r−Ω1T )ei(k2·r)e−(k2·r)e−Γ(T )e−(iω0+γ)(t−T )
(
e−(iω0+γ)(0) + e−(−iω0+γ)(0)

)
∝ A∗1A2A3

{
ei[(−k1)·r+Ω1T ]

}
e−ΓT e−(iω0+γ)(t−T ) (2)

∝ e−i[k1·r+ωt]

which is a solution of the wave-equation, but one that represents back-

wards propagation along the direction of the probe beam. As such, it does not

contribute to the polarization that results in phase-matched emission along

our selected vector.

Thus, the coherences that need to be considered are, for this two pulse

experiment with specified pulse temporal ordering, given by
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ρ
(3)
21 ∝ ∝ Ẽ1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′) ∝ ei[k1·r−ω0t]

ρ
(3)
21 ∝ ∝ Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′) ∝ ei[k1·r−ω0t]

and, the Hermitian conjugate terms

ρ
(3)
12 ∝ ∝ Ẽ∗1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′) ∝ e−i[k1·r−ω0t]

ρ
(3)
12 ∝ ∝ Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′) ∝ e−i[k1·r−ω0t]

As we have noted previously, the expectation value for the dipole op-

erator µ̂ (related to the macroscopic polarization P via P = N 〈µ̂〉) may be

found by taking the trace of the product of the density operator and the dipole

operator

〈µ〉 = Tr {ρ̂µ̂} = Tr

{(
ρ11 ρ12

ρ21 ρ22

)(
0 µ
µ 0

)}
= µ {ρ12 + ρ21}

For the pump-probe measurements here, under the stated assumptions,

and omitting those terms that are linear in the applied optical fields or which

do not contribute to a signal that may be detected along the probe direction,

we find
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ρ
(3)
21 =

(
−iµ

3g (ω0)

2~3

) ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′Ẽ1 (t′) Ẽ2 (t′′) Ẽ∗2 (t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)e−γ(t′′−t′′′) cos (ω0 (t′′ − t′′′))

+

(
−iµ

3g (ω0)

2~3

) ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ2 (t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)e−γ(t′′−t′′′) cos (ω0 (t′′ − t′′′))

=

(
−iµ

3g (ω0)

2~3

)
A1A2A

∗
2e
i(k1·r−Ω1T )ei(k2·r)e−i(k2·r)

×e−Γ(T )e−(iω0+γ)(t−T )e−γ(0) cos (ω0 (0)) +

+

(
−iµ

3g (ω0)

2~3

)
A1A

∗
2A2e

i(k1·r−Ω1T )e−i(k2·r)ei(k2·r)

×e−Γ(T )e−(iω0+γ)(t−T )e−γ(0) cos (ω0 (0))

=

(
−iµ

3g (ω0)

~3

)
A1A2A

∗
2e
i(k1·r−Ω1T )e−ΓT e−(iω0+γ)(t−T )

=

(
−iµ

3g (ω0)

~3

)
A1A2A

∗
2e
i(k1·r−ω0t)e−ΓT e−γ(t−T )e−i(Ω1T−ω0T )

and, correspondingly,

ρ
(3)
12 =

(
iµ3g (ω0)

~3

)
A∗1A

∗
2A2e

−i(k1·r−ω0t)e−ΓT e−γ(t−T )ei(Ω1T−ω0T )

If we take the electric field strength to be real, we can set A∗i = Ai and

simplify the sum of these coherence terms,

{ρ12 + ρ21} =

(
iµ3g (ω0)

~3

)
A1A2A2e

−ΓT e−γ(t−T )
{
e−i(k1·r−ω0t−ψ) − ei(k1·r−ω0t−ψ)

}
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where the phase ψ = (Ω1T − ω0T ). Thus,

P = N 〈µ̂〉

= N

(
iµ4g (ω0)

~3

)
A1A2A2e

−ΓT e−γ(t−T )
{
e−i(k1·r−ω0t−ψ) − ei(k1·r−ω0t−ψ)

}
and the emission along the probe direction due to the nonlinear polar-

ization is given by

Esig = −N
(
µ4g (ω0)

~3

)
A1A2A2e

−ΓT e−γ(t−T )
{
e−i(k1·r−ω0t−ψ) − ei(k1·r−ω0t−ψ)

}
Although we have played somewhat fast and loose with the field con-

jugation values, we recognize that the product A2A2 here corresponds to the

pump intensity, while the interaction with the probe field A1 is linear, rather

than quadratic in the electric field. If we are more careful with the conjugation

terms, we can write a somewhat longer expression for the electric field that

will allow us to split the dependence of the signal field up with respect to the

two different complex electric fields. Within a few factors of two, that should

take a functional form given by

Esig = −N
(
µ4g (ω0)

~3

)
A∗2A2e

−ΓT e−γ(t−T )
{
A∗1e

−i(k1·r−ω0t−ψ) − A1e
i(k1·r−ω0t−ψ)

}
= η |A2|2

{
A∗1e

−i(k1·r−ω0t−ψ) − A1e
i(k1·r−ω0t−ψ)

}
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Esig (t) = η′ |Epu (t)|2Epr (t+ ψ/ω0 + π/2ω0)

= η′ |Epu (t)|2Epr (t+ ψ′)

We note that the electric field due to the nonlinear interaction in this

system is therefore proportional to the intensity of the pump beam, but only

to the electric field of the probe, i.e., it is bilinear in the electric field for one

of the optical interactions but not the other.

We can write a simple expression for the total field that propagates

along the probe direction if we assume that the probe intensity is not substan-

tially affected by the nonlinear optical process; this is sometimes referred to

as an un-depleted probe assumption. In that case, we may write the intensity

of this beam as

|Epr + Esig|2 =
(
Epr + η′ |Epu (t)|2Epr (t+ ψ′)

) (
E∗pr + η′ |Epu (t)|2E∗pr (t+ ψ′)

)
= |Epr|2 + η′ |Epu (t)|2EprE∗pr (t+ ψ′) + η′ |Epu (t)|2E∗prEpr (t+ ψ′)

+η′ |Epu (t)|2Epr (t+ ψ′) η′ |Epu (t)|2E∗pr (t+ ψ′)

= |Epr|2 + η′ |Epu (t)|2
(
Epr (t)E∗pr (t+ ψ′) + E∗pr (t)Epr (t+ ψ′)

)
+η′2 |Epu (t)|4 |Epr (t+ ψ′)|2

Of course, electronic detectors are not available to measure the instan-

taneous electric field at optical frequencies. Instead, a slow square law detector
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is used that will integrate over many pulses. Only a mean intensity is extracted

in such a measurement. We may directly associate the three different terms

in this expression – proportional to the instantaneous intensity – with average

intensity components:

〈Ipr+sig〉 = 〈Ipr〉+ 〈Iheterodyne〉+ 〈Ihomodyne〉

Typically, the homodyne term is preferred, since it will be much stronger

than the weak homodyne signal due to the additional factor of η′ present in

the homodyne term. We spend some time in these experiments considering

the effect of different modulation schemes on the detection of different sig-

nal components present in a field such as this, so we turn some attention to

that in our chapter on the novel experimental techniques we developed using

multi-frequency acousto-optic modulation and detection.

1.2 Four-wave mixing measurements

Once again, we consider the third-order coherences in order to under-

stand the four-wave mixing processes in these systems. We previously found

ρ
(3)
21 =

(
−iµ

3g (ω0)

2~3

) ˆ t

−∞
dt′
ˆ t′

−∞
dt′′
ˆ t′′

−∞
dt′′′

∑
i, j, k

Ek (t′)Ej (t′′)Ei (t
′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)e−γ(t′′−t′′′) cos (ω0 (t′′ − t′′′))

+
iµ

2~

ˆ t

−∞
dt′
∑
k

Ek (t′) e−(iω0+γ)(t−t′)
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using an interactive perturbative technique. Using only two pulses,

as in the pump-probe measurement outlined above, restricts the amount of

information that can be extracted from this system, but with a third pulse the

observed nonlinear response can be used to determine far more information

about the microscopic processes involved in the system dynamics.

We are interested in the dephasing rate in particular, for a coher-

ent emission along the phase matched direction determined in the partially

collinear geometry. Our experimental apparatus provides two collinear pump

pulses, one of which may be scanned in time, which we label the dynamic

pump pulse. The fixed pump is labeled the static pump. The non-collinear

pulse is labeled the probe pulse, since in 2dFTS experiments where we spec-

trally resolve one of the pulses we use lower power in the probe beam to avoid

saturating the CCD detector. The pulse sequence we intend to use may be

illustrated thus:

{pulse seq figure}

The dp pulse arrives first, at time t = −τ . We label the dynamic pump

pulse as E3. The fixed static pump pulse, labeled E2, arrives at t = 0. The

probe pulse arrives at t = T and is labeled E1. Physically, the electric field

E3 couples to the material system and creates a coherence. Subsequently, E2

arrives before significant dephasing occurs and creates a population grating.

The last pulse, E1 results in a coherence that we analyze in connection with the

emission arising from its associated polarization. This allows us to simplify the

pulse ordering, in that we only need to consider one time-sequence of pulses
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∑
i, j, k

Ek (t′)Ej (t′′)Ei (t
′′′)→ E1 (t′)E2 (t′′)E3 (t′′′)

We note here the obvious problems that arise when the pulses overlap

in time. The analysis used here to study the effects of the pulse interactions

clearly breaks down at least to some extent during those periods when the

pulses are not temporally separated. Regardless, the behaviour of the polar-

ization that occurs when the pulses are separated can be suitably modeled

using this framework.

What possible terms need to be considered? The electric field term in

the first term in our expression for ρ
(3)
21 (t) depends on the expansion of

(
Ẽ1 (t′) + Ẽ∗1 (t′)

)(
Ẽ2 (t′′) + Ẽ∗2 (t′′)

)(
Ẽ3 (t′′′) + Ẽ∗3 (t′′′)

)
which yields

Ẽ1Ẽ2Ẽ3+Ẽ1Ẽ2Ẽ
∗
3+Ẽ1Ẽ

∗
2Ẽ3+Ẽ1Ẽ

∗
2Ẽ
∗
3+Ẽ∗1Ẽ2Ẽ3+Ẽ∗1Ẽ2Ẽ

∗
3+Ẽ∗1Ẽ

∗
2Ẽ3+Ẽ∗1Ẽ

∗
2Ẽ
∗
3

where for brevity we have omitted the time arguments of the electric

field terms, since these field terms have already been determined to always

depend on only one particular time variable – Ẽ1 on t′, Ẽ2 on t′′, and Ẽ3 on

t′′′, and similarly for the conjugate field terms. We consider the coherence

term that gives rise to a macroscopic polarization that leads to emission in a
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specific direction. In the partially collinear geometry, we collect the= probe

beam and the four-wave mixing signal emitted collinearly with it; thus we

consider coherences that describe solutions to the wave equation that have an

argument given by (k1 · r− ωt). Given the assumption of harmonic electrical

fields, we thus expect to find solutions with the functional form ei(k·r−Ωt) or

e−i(k·r−Ωt), describing motion along some wave vector k, where k is parallel to

the probe wave vector k1. To obtain solutions that propagate in the ’forward’

direction, i.e. moving in the same direction as the probe pulse instead of in the

opposite direction, we need to ensure that the sign relationship between the

dot-product and the frequency-time product is negative. This selects forward-

propagating four-wave mixing signals.

If we approximate the pulses used in the experiment as delta functions,

the integrals for the density matrix elements are analytically solvable. We

write the electric fields for the three pulses as

E1 (t′) = A1δ (t′ − T )
(
ei(k1·r−Ω1t′) + e−i(k1·r−Ω1t′)

)
E2 (t′′) = A2δ (t′′)

(
ei(k2·r−Ω2t′′) + e−i(k2·r−Ω2t′′)

)
E3 (t′′′) = A1δ (t′′′ + τ)

(
ei(k3·r−Ω3t′′′) + e−i(k3·r−Ω3t′′′)

)
Again making use of our notation for complex fields, where E = Ẽ+Ẽ∗,

we can write the field terms and their conjugates as, for example,
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Ẽ1 (t′) = A1δ (t′ − T ) ei(k1·r−Ω1t′)

Ẽ∗1 (t′) = A1δ (t′ − T ) e−i(k1·r−Ω1t′)

Consider, then, the ρ
(3)
21 terms. First, we solve for the Ẽ1Ẽ2Ẽ3 coher-

ence,

ρ
(3)
21 ∝

ˆ
dt′dt′′dt′′′A1A2A3δ (t′ − T ) δ (t′′) δ (t′′′ + τ) ei(k1·r−Ω1t′)ei(k2·r−Ω2t′′)ei(k3·r−Ω3t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)
(
e−(iω0+γ)(t′′−t′′′) + e−(−iω0+γ)(t′′−t′′′)

)
where we have dropped the second term in the coherence, since it

depends only on one electric field, and will be rejected by our modulation-

detection scheme. Using the Dirac delta functions to spike the integrals, we

find

ρ
(3)
21 (t) ∝ A1A2A3e

i(k1·r−Ω1T )ei(k2·r)ei(k3·r−Ω3(−τ))e−Γ(T )e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)(−(−τ)) + e−(−iω0+γ)(−(−τ))

)
ρ

(3)
21 (t) ∝ A1A2A3

{
ei[(k1+k2+k3)·r−Ω1T+Ω3τ ]

}
e−ΓT e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)τ + e−(−iω0+γ)τ

)
ρ

(3)
21 (t) ∝ ei[(k1+k2+k3)·r−ω0t]
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This would lead to terms that propagate in the wrong direction to be

detected along the direction of the probe beam. Thus, the Ẽ1Ẽ2Ẽ3 coherence

does not lead to a detectable signal. We next consider the Ẽ1Ẽ2Ẽ
∗
3 coherence:

ρ
(3)
21 ∝

ˆ
dt′dt′′dt′′′A1A2A3δ (t′ − T ) δ (t′′) δ (t′′′ + τ) ei(k1·r−Ω1t′)ei(k2·r−Ω2t′′)e−i(k3·r−Ω3t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)
(
e−(iω0+γ)(t′′−t′′′) + e−(−iω0+γ)(t′′−t′′′)

)
which simplifies to

ρ
(3)
21 ∝ A1A2A3e

i(k1·r−Ω1T )ei(k2·r)e−i(k3·r−Ω3(−τ))

×e−Γ(T )e−(iω0+γ)(t−T )
(
e−(iω0+γ)(−(−τ)) + e−(−iω0+γ)(−(−τ))

)
ρ

(3)
21 ∝ A1A2A3

{
ei[(k1+k2−k3)·r−Ω1T−Ω3τ ]

}
×e−ΓT e−(iω0+γ)(t−T )

(
e−(iω0+γ)τ + e−(−iω0+γ)τ

)
ρ

(3)
21 ∝ ei[(k1+k2−k3)·r−ω0T ]

In our experiment the dynamic pump and static pump pulses are collinear

and (nearly) degenerate, and thus have identical wavevectors. As a result, the

k2 and k3 dependence of the exponential function drop out, and the coherence

for the Ẽ1Ẽ2Ẽ
∗
3 field product will propagate parallel to the probe wave vector;

explicitly,

ρ
(3)
21 ∝ ei[k1·r−ω0T ]
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We must therefore keep track of this coherence term in our model for

the polarization emission detected along with the probe pulse.

We turn our attention now to the Ẽ1Ẽ
∗
2Ẽ3 coherence. Other than break-

ing time symmetry between the dynamic pump and static pump pulses, this

coherence is expected to lead to a similar result as the previous Ẽ1Ẽ2Ẽ
∗
3 coher-

ence we calculated due to the otherwise interchangeable nature of the electric

fields corresponding to dp and sp (of course in actual experiments where we

may control, for example, the polarizations of these two fields – we have ne-

glected the vectorial nature of the electric field for the time, which means the

picture developed here cannot really accurately describe the optical physics

we’re studying, which would properly require us to introduce different effec-

tive dipole matrix elements. We reiterate that this calculation is only intended

to provide an intuitive tool for understanding the typical behaviour of this sys-

tem, rather than be used as a rigorous model for analyzing our results). We

therefore intuitively expect that the Ẽ1Ẽ
∗
2Ẽ3 coherence will exhibit a similar

behaviour:

ρ
(3)
21 ∝

ˆ
dt′dt′′dt′′′A1A2A3δ (t′ − T ) δ (t′′) δ (t′′′ + τ) ei(k1·r−Ω1t′)e−i(k2·r−Ω2t′′)ei(k3·r−Ω3t′′′)

×e−Γ(t′−t′′)e−(iω0+γ)(t−t′)
(
e−(iω0+γ)(t′′−t′′′) + e−(−iω0+γ)(t′′−t′′′)

)
from which we obtain
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ρ
(3)
21 ∝ A1A2A3e

i(k1·r−Ω1T )e−i(k2·r)ei(k3·r−Ω3(−τ))

×e−Γ(T )e−(iω0+γ)(t−T )
(
e−(iω0+γ)(−(−τ)) + e−(−iω0+γ)(−(−τ))

)
ρ

(3)
21 ∝ A1A2A3

{
ei[(k1−k2+k3)·r−Ω1T+Ω3τ ]

}
e−ΓT e−(iω0+γ)(t−T )

×
(
e−(iω0+γ)τ + e−(−iω0+γ)τ

)
ρ

(3)
21 ∝ ei[(k1−k2+k3)·r−ω0t]

ρ
(3)
21 ∝ ei[k1·r−ω0t]

which is, again, parallel to the probe wave vector since the k2 and k3

terms cancel in the exponential. We have now shown that the Ẽ1Ẽ2Ẽ
∗
3 and

Ẽ1Ẽ
∗
2Ẽ3 field products yielding coherences that will result in radiation in the

direction that we detect.

We write the coherences for the remaining five field products in an

abbreviated form, since the calculation of each of these results proceeds in

much the same manner as those shown. We find the following relations between
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field products and eigenfunctions for the wave equation:

Ẽ1Ẽ2Ẽ3 → ei[(k1+k2+k3)·r−ω0t]

Ẽ1Ẽ2Ẽ
∗
3 → ei[(k1+k2−k3)·r−ω0t]

Ẽ1Ẽ
∗
2Ẽ3 → ei[(k1−k2+k3)·r−ω0t]

Ẽ1Ẽ
∗
2Ẽ
∗
3 → ei[(k1−k2−k3)·r−ω0t]

Ẽ∗1Ẽ2Ẽ3 → ei[(−k1+k2+k3)·r−ω0t]

Ẽ∗1Ẽ2Ẽ
∗
3 → ei[(−k1+k2−k3)·r−ω0t]

Ẽ∗1Ẽ
∗
2Ẽ3 → ei[(−k1−k2+k3)·r−ω0t]

Ẽ∗1Ẽ
∗
2Ẽ
∗
3 → ei[(−k1−k2−k3)·r−ω0t]

Thus, we see that Ẽ1Ẽ2Ẽ
∗
3 and Ẽ1Ẽ

∗
2Ẽ3 lead to terms in the expansion

of ρ
(3)
21 that result in a polarization that will result in emission in the direction

of interest, viz. along the k1 wave vector. We must now consider the terms

that arise in the expansion of ρ
(3)
12 as well. By the Hermiticity of the density

operator, we know that ρ
(3)
21 = ρ

(3)∗
12 ; thus, the terms corresponding to the phase

matched ρ
(3)
21 terms

ρ
(3)
21 ∝ Ẽ1 (t′) Ẽ2 (t′′) Ẽ∗3 (t′′′) ∝ ei(k1·r−ω0t)

ρ
(3)
21 ∝ Ẽ1 (t′) Ẽ∗2 (t′′) Ẽ3 (t′′′) ∝ ei(k1·r−ω0t)

are found to be the conjugate terms
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ρ
(3)
12 ∝ Ẽ∗1 (t′) Ẽ∗2 (t′′) Ẽ3 (t′′′) ∝ e−i(k1·r−ω0t)

ρ
(3)
12 ∝ Ẽ∗1 (t′) Ẽ2 (t′′) Ẽ∗3 (t′′′) ∝ e−i(k1·r−ω0t)

We note for completeness that if the probe were incident on the sample

at normal incidence and thus retroreflected along −k1, it would be necessary

to consider additional contributions to the coherence to include backward-

propagating polarization waves; however, we do not perform any experiments

in this particular geometry and can therefore neglect these additional terms.

In summary, the choice of a pulse sequence and a detection geometry

has allowed us to select out only four coherence terms that need to be consid-

ered. Further, we discount those terms arising in the coherence that depend

upon only one electric field term, as these will not be selected by our modu-

lation scheme (in the case of the RF amplitude modulation setup) or will not

appear in the appropriate spectral region of interest in the 2dFTS plots.

The ρ
(3)
21 and ρ

(3)
12 coherence terms are, explicitly,

(
ρ

(3)
21 (t)

)
Ẽ1Ẽ2Ẽ∗3

=

(
−iµ

3g (ω0)

2~3

)
A1A2A3e

−ΓT eiω0T e−γ(t+τ−T ) cos (ω0τ) e−i(Ω1T+Ω3τ)

×ei((k1+k2−k3)·r−ω0t)

(
ρ

(3)
21 (t)

)
Ẽ1Ẽ∗2 Ẽ3

=

(
−iµ

3g (ω0)

2~3

)
A1A2A3e

−ΓT eiω0T e−γ(t+τ−T ) cos (ω0τ) e−i(Ω1T−Ω3τ)

×ei((k1−k2+k3)·r−ω0t)
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(
ρ

(3)
12 (t)

)
Ẽ∗1 Ẽ

∗
2 Ẽ3

=

(
iµ3g (ω0)

2~3

)
A1A2A3e

−ΓT e−iω0T e−γ(t+τ−T ) cos (ω0τ) ei(Ω1T+Ω3τ)

×e−i((k1+k2−k3)·r−ω0t)

(
ρ

(3)
12 (t)

)
Ẽ∗1 Ẽ

∗
2 Ẽ3

=

(
iµ3g (ω0)

2~3

)
A1A2A3e

−ΓT e−iω0T e−γ(t+τ−T ) cos (ω0τ) ei(Ω1T−Ω3τ)

×e−i((k1−k2+k3)·r−ω0t)

As noted above, the expectation value for the dipole operator µ̂ (related

to the macroscopic polarization P via P = N 〈µ̂〉) is given by the trace of the

product of the density operator and the dipole operator

〈µ〉 = Tr {ρ̂µ̂} = Tr

{(
ρ11 ρ12

ρ21 ρ22

)(
0 µ
µ 0

)}
= µ {ρ12 + ρ21}

With our third-order perturbation calculations for the density operator

matrix elements, we find
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µ {ρ12 + ρ21} = µ

{(
ρ

(3)
21 (t)

)
Ẽ1Ẽ2Ẽ∗3

+
(
ρ

(3)
21 (t)

)
Ẽ1Ẽ∗2 Ẽ3

+
(
ρ

(3)
12 (t)

)
Ẽ1Ẽ2Ẽ∗3

+
(
ρ

(3)
12 (t)

)
Ẽ1Ẽ∗2 Ẽ3

}
= µ

(
iµ3g (ω0)

2~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos (ω0τ)

×
[
−ei(k1·r−ω0t+ω0T−Ω1T−Ω3τ) − ei(k1·r−ω0t+ω0T−Ω1T+Ω3τ)

]
+µ

(
iµ3g (ω0)

2~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos (ω0τ)

×
[
+e−i(k1·r−ω0t+ω0T−Ω1T−Ω3τ) + e−i(k1·r−ω0t+ω0T−Ω1T+Ω3τ)

]
∝

(
e−i(k1·r−ω0t+ω0T−Ω1T−Ω3τ) − ei(k1·r−ω0t+ω0T−Ω1T−Ω3τ)

)
+
(
e−i(k1·r−ω0t+ω0T−Ω1T+Ω3τ) − ei(k1·r−ω0t+ω0T−Ω1T+Ω3τ)

)
∝ 2i sin (k1 · r− ω0t+ ω0T − Ω1T − Ω3τ) +

2i sin (k1 · r− ω0t+ ω0T − Ω1T + Ω3τ)

=

(−µ4g (ω0)

~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos (ω0τ)×

[sin (k1 · r− ω0t+ ω0T − Ω1T − Ω3τ) +

sin (k1 · r− ω0t+ ω0T − Ω1T + Ω3τ)]

=

(−µ4g (ω0)

~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos (ω0τ)

× [sin (k1 · r− ω0t+ φ1) + sin (k1 · r− ω0t+ φ2)]

where we have implicitly defined the two phases φ1 ≡ −Ω1T−Ω3τ+ω0T

and φ2 ≡ −Ω1T + Ω3τ + ω0T . We note that it can be more illustrative

to express the exponential dependence upon the dephasing rate γ and the

population decay rate Γ with the product e−ΓT e−γ(t+τ−T ) = e−ΓT e−γ(t−T )e−γτ ,

which presents a more straightforward physical interpretation of the dynamics

of the expectation value of the dipole operator:
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1. The dynamic pump pulse interacts with the material first, at time −τ .

This will induce an ensemble dipole oscillation or coherence between the

two levels; that coherence will decay in the time interval between the

arrival of the dynamic pump pulse at −τ and the arrival of the static

pump pulse at the time origin (0). That dephasing is accounted for by

the exponential term e−γτ .

2. Upon the arrival of the static pump pulse at the time origin (0), the

coherence created by the first pulse is converted into a population, which

will relax with the slower population decay rate, accounted for by the

term e−ΓT . That decay continues until the population interacts with the

probe pulse, arriving at time T .

3. When the probe pulse arrives that population is then converted back

into a coherence, after which the dipole shall decay in proportion to the

interval between the probe pulse and the moment at which the dipole

is measured (more explicitly, the time interval between the probe pulse

interacting with the material and a particular time t when emission form

the nonlinear polarization occurs), accounted for by the t−T dependence

of the exponential term e−γ(t−T ).

This completes the interpretation of the decay behaviour of the dipole expec-

tation value as a function of time during the various steps of the three pulse

experiments.
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In addition to the decay terms present in this expression, we also note

the presence of the trigonometric functions. The cosine function results in a

fast (optical frequency) oscillation in the strength of the dipole operator as a

function of the delay between two pump pulses. This makes sense in light of the

cartoon model of the interaction of a coherence with an impulse – the idea that

the second excitation source must arrive in phase with the oscillation induced

by the first source to result in the maximum excited population is immediately

intuitive. Since the frequency of the oscillation of the coherence in the period

between the two pump pulses is determined by the energy difference between

the two levels, the dependence upon the optical frequency is expected.

Finally, there are two sine functions that describe the propagation of a

polarization wave of dipoles. The phase terms that appear are related to the

relative phases of the three pulses interacting with the material system at the

various moments when they arrive at the sample.

The overall co-efficient for this expression is simply related to the cou-

pling strength of the optical field to the electronic structure of the system; we

note that it depends upon the fourth power of the dipole matrix element. As

noted, the use of a distribution function for the central frequency ω0 allows

us to back out the behaviour of an inhomogeneous system, although we note

that we have not been rigorous here in applying that distribution, as we did

not use an integrated frequency distribution to describe the flopping behaviour

captured in the Bloch equations, but simply used a single frequency value ω0.

Significantly, we note the linear dependence of the dipole (and, by ex-
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tension, the polarization) upon the electric field amplitudes. This is relevant

to the modulation method we use to pick out weak signals in the presence of

background noise.

It is possible to further simplify this expression. Using trigonometric

identities, it is possible to show that the sum of the two sine functions can

be rewritten as 2 sin (k1 · r− ω0t− Ω1T + ω0T ) cos (Ω3τ). Then, if we assume

that the carrier frequencies of the optical fields are all equal and are on res-

onance, Ω1 = Ω2 = Ω3 ∼ ω0, we may further reduce the complexity of this

expression to

µ {ρ12 + ρ21} =

(−µ4g (ω0)

~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos (ω0τ)

× [2 sin (k1 · r− ω0t− Ω1T + ω0T ) cos (Ω3τ)]

=

(−µ4g (ω0)

~3

)
A1A2A3e

−ΓT e−γ(t+τ−T ) cos2 (ω0τ)

×2 sin (k1 · r− ω0t)

which is sensitive to the phase relationship between the pump pulses

(due to the square cosine term that depends upon their relative timing) but

not upon the relationship to the phase of the third, probe pulse. It should

come as no surprise that this is readily physically interpreted in the context

of many similar four-wave mixing experiments, where the coherent interaction

of the second pulse to couple with the coherence (corresponding to the dipole

oscillation, physically) established by the first pulse ’freezes’ the information

on the dephasing processes into a population, which will then decay slowly
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during the T time period until the probe arrives. This can be visualized with

the following cartoon.

We note that making the assumption of resonant excitation helps to

simplify the expression for the polarization, but does prevent us from properly

keeping track of inhomogeneity using the distribution function g (ω0). We drop

that frequency distribution here, letting g (ω0)→ 1. It is possible to keep the

more general expression for the polarization, rather than assuming the fields

are on resonance, but that problem then becomes more suited to a numerical

simulation due to the resulting complex analytical expression.

We did not build the pulse ordering into this expression analytically –

hence, there are no Heaviside unit step functions that appear in this expres-

sion for the polarization. We can add their effect in after the fact by noting

that causality should imply no four-wave mixing emission will occur along the

phase-matched direction (co-propagating with the pump) if the pulses have

not arrived in order. Hence, there is a product Θ (t+ τ) Θ (t) Θ (t− T ) that

should appear here, which prevents any emission at the ’wrong’ time in this

toy model.

The important features of this result are that it separates the depen-

dence on dephasing from the dependence on population decay. We see by

inspection that scanning the position of the probe pulse will reveal a compli-

cated functional form, determined by the exponential decay term e−ΓT and

the oscillatory dependence on the phase that the probe pulse has when it ar-

rives at the sample, ϕprobe = ω0T , which appears in both of the trigonometric
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functions. The dephasing rate, however, will be directly revealed by a scan of

the position of the dynamic pump pulse, modulated by an oscillatory depen-

dence on the phase the dynamic pump has when it interacts with the sample

– cos2 (ω0τ) e−γτ = 1
2

(1 + cos (2ω0τ)) e−γτ . We may easily test the validity

of this assumption by looking for an oscillating decay with half the optical

wavelength. Any deviation from that is likely to arise due to the questionable

assumption that we could set all frequency components in the various pulses

– which effectively rolls back the analysis somewhat to a more complicated

functional form, which should nonetheless still contain the physics of interest,

since the previous expression

e−ΓT e−γ(t+τ−T ) cos (ω0τ) [sin (k1 · r− ω0t+ φ1) + sin (k1 · r− ω0t+ φ2)]

still allows the extraction of the dephasing rate by fitting the envelope

of an oscillatory decay curve.

As we did for the pump-probe experiment, we write an expression for

the nonlinear polarization here, which is simply proportional to the expectation

value for the dipole operator

P = N 〈µ̂〉

= N

(−2µ4

~3

)
A1A2A3e

−ΓT cos2 (ω0τ) e−γ(t+τ−T ) sin (k1 · r− ω0t)

=

(
iµ4

~3

)
A1A2A3e

−ΓT cos2 (ω0τ) e−γ(t+τ−T )
(
ei(k1·r−ω0t) − e−i(k1·r−ω0t)

)
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and the electric field, which we assume is proportional to the polariza-

tion with a phase shift of i,

Esig = NiP

=

(
−Nµ

4

~3

)
A1A2A3e

−ΓT cos2 (ω0τ) e−γ(t+τ−T )
(
ei(k1·r−ω0t) − e−i(k1·r−ω0t)

)
∝ ζ |Edp| |Esp|A1

(
ei(k1·r−ω0t) − e−i(k1·r−ω0t)

)
∝ ζEdpEspEpr(t+ π/2)

from which we find, calculating the interference term for the signal

detected with the co-propagating probe beam,

|Epr + Esig|2 = |Epr|2

+ζ |Edp| |Esp|Epr (t)Epr (t+ π/2)

+ (ζ |Edp| |Esp|Epr (t+ π/2))2

where we identify the term ζ |Edp| |Esp|Epr (t)Epr (t+ π/2) as a het-

erodyne term, which is bilinear in the probe electric field (albeit with a phase

shift) and linear in the other electrical fields. Thus, we note and empha-

size that the electric fields appear here on a different footing from one an-

other. The homodyne term, which is expected to be weaker, is given by

(ζ |Edp| |Esp|Epr (t+ π/2))2, where all three electrical fields appear as a bilin-

ear form. Thus, the homodyne term is proportional to the intensity of all
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of the experimental controllable electrical fields, while the heterodyne term is

proportional to the intensity of only the probe field, but is proportional to

electric field strength of the other fields driving the nonlinear system response.

The conscientious reader may point out that the heterodyne term should

vanish due to the pi/2 phase shift between the two instances of the probe elec-

tric field. We excuse this inconsistency as a result of an overly simple analysis:

we have neglected to properly consider the phase of the electric field of the

co-propagating probe beam. A simple explanation is not available. Account-

ing only for reflection from the front surface of the sample should result in a

simple π phase shift, resulting in, again, a π/2 phase difference between the

two fields. In addition, however, this expression should properly be evaluated

by considering the total optical phase accumulated by the portion of the probe

beam that penetrates into the sample to induce four-wave mixing emission as

well as the total phase accumulated by the light subsequently escaping the

sample. This complete analysis will remove the apparent contradiction, but

is beyond the scope of this thesis. A careful analysis, considering the phase

mismatch between polarization and electromagnetic waves, is suggested.
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[206] J. V. José and E. J. Saletan. Classical Dynamics: A Contemporary

Approach. Cambridge University Press, Cambridge, U.K, 1988.

[207] Denis Karaiskaj, Alan D. Bristow, Lijun Yang, Xingcan Dai, Richard P.

Mirin, Shaul Mukamel, and Steven T. Cundiff. Two-quantum many-

body coherences in two-dimensional fourier-transform spectra of exci-

ton resonances in semiconductor quantum wells. Phys. Rev. Lett.,

104(11):117401, Mar 2010.

[208] J. C. Kastelik, S. Dupont, H. Benaissa, and M. Pommeray. Bifrequency

acousto-optic beam splitter. Rev. Sci. Instrum., 77(7):075103, 2006.

[209] H Kawashima, M M Wefers, and K A Nelson. Femtosecond pulse shap-

ing, multiple-pulse spectroscopy, and optical control. Annual Review of

Physical Chemistry, 46(1):627–656, 1995.

[210] F. Keilmann. Infrared saturation spectroscopy in p-type germanium.

Quantum Electronics, IEEE Journal of, 12(10):592 – 597, oct 1976.

[211] Chandler J. Kennedy, John C. Matter, Arthur L. Smirl, Hugo Weiche,

Frederic A. Hopf, Sastry V. Pappus, and Marlan O. Scully. Nonlinear

absorption and ultrashort carrier relaxation times in germanium under

651



irradiation by picosecond pulses. Phys. Rev. Lett., 32(8):419–421, Feb

1974.

[212] Dorine Keusters, Howe-Siang Tan, and Warren. Role of pulse phase

and direction in two-dimensional optical spectroscopy. The Journal of

Physical Chemistry A, 103(49):10369–10380, 1999.

[213] P. Key, R. Harrison, V. Little, and J. Katzenstein. Bragg reflection from

a phase grating induced by nonlinear optical effects in liquids. Quantum

Electronics, IEEE Journal of, 6(10):641 – 646, oct 1970.
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[318] K.-H.; Schäfer, W.; Schuldt and R. Binder. Theory of the optical stark

effect in semiconductors. physica status solidi (b), 150(2):407–412, 1988.
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