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This dissertation studies three applications of the tools of coupling

and unimodularity in stationary settings. The first application is to exact

coupling of randomwalks. Conditions for admitting a successful exact cou-

pling are given that are necessary and in the Abelian case also sufficient.

This solves a problem posed by H. Thorisson [Tho11]. The second applica-

tion is centered on the random graph generated by a Doeblin-type coupling

of discrete time processes whereby when two paths meet, they merge. This

random graph is studied through a novel subgraph, called a bridge graph,

generated by paths started in a fixed state. The bridge graph is then made

into a unimodular network. The final application focuses on point-shifts

of point processes on topological groups. Foliations and connected compo-

nents generated by point-shifts are studied, and the cardinality classification

of connected components is generalized to unimodular groups.
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Chapter 1

Introduction

The heart of this thesis is primarily comprised of three papers in

probability theory. The papers, which make up the contents of Chapters 3

to 5, may be read in isolation, but there is value in taking them as a whole.

The common thread between the papers is the set of mathematical tools

used to create them. Broadly speaking, those tools may be boiled down to

coupling, unimodularity, and stationarity. This thesis may be seen as an

example of how these tools work together. This introduction will give the

essence of each of the three papers and their applicability. Chapter 2 then

covers the requisite preliminaries for the rest of the document.

Exact Coupling of RandomWalks on Polish Groups

Chapter 3 deals with exact coupling of random walks. In general,

a successful exact coupling between two processes (or their distributions)

gives a specific way of defining copies of the processes on the same proba-

bility space in such a way that almost surely the two processes eventually

merge, i.e., that they meet in finite time and move in unison for all time

thereafter. One of the primary motivations for constructing an exact cou-

pling of two processes is to obtain bounds on the total variation distance
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between the processes after some number of steps. The intuition behind

this is that, because copies of the processes can be made to merge almost

surely, in which case their tail behaviors are literally identical, their dis-

tributions after a certain number of steps must be getting closer together.

Thinking of the processes as experiments or simulations, this means that

the initial conditions become irrelevant to an outcome observed a long time

after the start of the experiment. Moreover, a specific exact coupling can

be analyzed to give bounds on the rate at which the total variation distance

between the two processes decays.

The first attributable instance of exact coupling is the seminal 1938

work of Doeblin [Doe38]. Doeblin considered the simplest kind of exact

coupling, where two irreducible and aperiodic Markov chains on a finite

state space are run independently until they meet. However, Doeblin’s

coupling fails when applied to more general chains. An exact coupling is

not “successful” if it does not ensure the twoprocessesmeetwith probability

one. This failure occurs with Doeblin’s coupling, e.g., for differently started

random walks on Z. In 1968, Ornstein [Orn69] introduced a new coupling

that is successful for such random walks on Z. Ornstein’s idea was to start

with independent walks, but to have them share a common step-length if

the difference in their step-lengths were to be larger than some threshold.

This ensures that the walks cannot separate from each other too quickly,

which, under an aperiodicity assumption, is enough to show the coupling

is successful. Eventually, exact coupling of random walks not living on a
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lattice were studied. Instead of using aperiodicity conditions to guarantee

the existence of a successful exact coupling between random walks started

at any two starting points, the question shifted to asking from which pairs

of starting points can a successful exact coupling be constructed. This is the

subject of Chapter 3.

In Chapter 3, the processes in question are taken to be randomwalks

that jump in an i.i.d. fashion according to a common step-length distribution,

but that are started at differing locations. The space on which the walks

occur is allowed to be a topological group that is nice enough (a Polish

group), though the results are new even on R. This work was inspired by

H. Thorisson’s paper [Tho11] and Ö. Arnaldsson’s thesis [Arn10], which

delineated the continuous (or, technically, “spread out”) and discrete cases

on R. The underlying technique of the general case, which encapsulates

both the former cases, is a small extension of what was required in [Arn10].

For the discrete case, Arnaldsson demonstrated in [Arn10] that a successful

exact coupling of two random walks started at different locations can be

constructed if and only if independent copies of the walks have positive

probability of meeting after a finite number of steps. This condition is

rephrased in terms of being able to fit a nontrivial distribution underneath

different shifts of the random walks viewed after some number of steps.

The rephrasing allows for generalizing the answer in the discrete case to all

distributions on R, as well as many other topological groups.

The main result of Chapter 3 is to give a condition that is necessary
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and, in the Abelian case, also sufficient to guarantee the existence of a suc-

cessful exact coupling. When the condition is met, a specific exact coupling

is given, which leads to a bound on the total variation distance between the

two walks after n steps by O(1/
√

n) and, in some special cases, by O(ρn) for

some ρ ∈ (0, 1). The coupling itself is similar to the one presented in [Arn10].

Ultimately, regardless of the group on which the random walks live, a trick

allows one to turn the difference process between the random walks (or

something resembling a difference process in the non-Abelian case) into a

random walk on a cyclic group, reducing the entire study to a question of

return times of lazy symmetric random walks on Z or Z/dZ.

Using the criterion established to determine from which starting

points a successful exact coupling with a walk started at the identity can

be constructed, the previously known continuous and discrete cases are

shown as consequences. Then the set of such good starting points, here

referred to as the successful exact coupling set, is studied in its own right. In

particular, the successful exact coupling set is shown to be a Borel measur-

able group. Finally, the weaker notion of possible exact coupling, whereby

two randomwalks are only made to merge with positive probability instead

of almost surely, is studied. It is shown in the Abelian case that the os-

tensibly weaker condition of admitting a possible exact coupling is, in fact,

equivalent to admitting a successful exact coupling. The chapter ends with

a non-Abelian examplewhere possible and successful exact coupling are not

the same notions.
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Doeblin Trees

Chapter 4 is an extension of the vast amount of literature on what is

now commonly referred to as coupling from the past (CFTP). CFTP tradi-

tionally refers to either a mathematical technique or a corresponding algo-

rithm to obtain samples from the stationary distribution of an irreducible,

aperiodic, and positive recurrent Markov chain. The mathematical theory,

which applies even in a non-Markovian setting, was initially developed by

Borovkov and Foss in [BF92], and the algorithmic viewpoint focusing on the

Markov case is due to Propp and Wilson in [PW96].

The CFTP algorithm, in certain cases, offers a much better alternative

to the naive method of running the Markov chain for a very long time in

order to sample from its steady state behavior. The naive method often fails

to perform because it is unknown how long “a very long time” should be.

For example, if there are 264 states in the system, as is the case when the state

space is all possible spin configurations (up/down) of particles aligned in an

8×8 grid, it is unclearwhether onemillion time steps or even one billion time

stepswould be sufficient. CFTP ismore tenable in that certainmodels can be

simulated in significantly less time and space thanwith the naive algorithm,

and, importantly, when the algorithm terminates, one can be sure that the

result is indeed a sample from the true stationary distribution. The spin

system example was given in the original Propp and Wilson paper [PW96]

as one of the systems for which CFTP may be advantageously applied. The

property that CFTP returns a sample from the stationary distribution itself
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and not from a distribution that is just close to the stationary distribution is

what the literature commonly refers to as a “perfect” sample.

When analyzing the CFTP algorithm, one envisions different copies

of the Markov chain started in all possible states and at all possible times

defined in such away thatwhen twopathsmeet, theymerge. The trajectories

of all these copies of the Markov chain may then be interpreted as a random

graph, which is a tree if it has all trajectories eventually coalescing1. For this

introduction, assume that the random graph in question is a tree. While

an impressive amount of literature studies the CFTP algorithm and how it

can be extended to more general settings or specialized for specific Markov

chains, there has been no explicit treatment or study of the random graph

of trajectories, coined a Doeblin graph, in its own right. To the best of the

author’s knowledge, Chapter 4 is the first such treatment. In Chapter 4,

one takes a step back from the CFTP algorithm and obtaining samples from

the stationary distribution, and instead one focuses on properties of the

Doeblin graph itself. Identifying global properties of the Doeblin graph

gives a hands-on kind of geometric insight into why the CFTP algorithm

works.

The novel part of the study of Doeblin graphs is a particular kind of

subgraph, called a bridge graph, which consists of all trajectories starting

1In this case, the setup actually givesmany examples of the sort of exact coupling studied
in Chapter 3 (any two trajectories started at the same time eventually merge), but Markov
chains are used instead of random walks. However, this viewpoint is not elaborated upon
in Chapter 4.
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at a particular anchor state. The primary result, from which essentially all

the other results in this chapter follow, is that, under certain conditions,

bridge graphs are unimodularizable. An explicit way of picking a root

turns a bridge graph into a unimodular network in the sense of Aldous

and Lyons [AL07]. This is used to prove the existence of a special kind

of bi-infinite path in the Doeblin graph. The special path is the almost

surely unique path in the Doeblin graph that is recurrent both forwards

and backwards in time for any (and hence every) state. The existence of

this so-called bi-recurrent path in a bridge graph is leveraged in many ways

to discern properties of the larger Doeblin graph, and of Markov chains in

general.

It is shown that any Markov chain indexed by Z can be seen as living

inside some Doeblin graph. Hence properties of Markov chains in gen-

eral can be obtained from the theory of Doeblin graphs. For example, a

Markov chain that is indexed by Z and that has an irreducible, aperiodic,

and positive recurrent transition matrix is stationary if and only if its trajec-

tories are almost surely bi-recurrent, cf. Theorem 4.2.11. Another example

is that, if its transition matrix converges in a uniform sense to its stationary

distribution, any Markov chain that is indexed by Zmust be stationary and

bi-recurrent. In otherwords, a bi-infiniteMarkov chain thatmixes uniformly

is automatically stationary. This is a partial converse to the well-known fact

that a stationaryMarkov chain indexed byN can be extended to a stationary

Markov chain indexed byZ. EmbeddingMarkov chains into Doeblin graphs
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may also be used to give new proofs of well-known properties of Markov

chains. In particular, the classical cycle formulas for relating expected return

times of a Markov chain to the stationary distribution and relating the aver-

age number of visits to a state before returning to another state to the ratio

of the stationary distribution on those states are recovered using Doeblin

graphs.

Additional questions about Doeblin graphs studied include the fol-

lowing: When is the bi-recurrent path the only bi-infinite path in theDoeblin

graph? What is the relationship between bridge graphs using different an-

chor states? Vertical slices of a bridge graph themselves form a Markov

chain, what are its properties? Can the unimodular version of a bridge

graph be approximated in the sense of local weak convergence by finite win-

dows? How can the mass-transport principle be leveraged in other ways

beyond giving the existence of the bi-recurrent path?

Finally, the flexibility that one has in picking the transition structure

that generates the Doeblin graph allows the class of Doeblin graphs to con-

tain a rich set of examples to call upon for study, and which can have major

differences in certain qualitative aspects, such as having only one versus

infinitely many bi-infinite paths. Additionally, the family of unimodular

versions of bridge graphs is a concrete class of examples of unimodular

networks that the author hopes will prove useful to check intuition, ideas,

and perhaps conjectures against throughout the further development of the

theory of unimodular networks in general.
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Point-shifts of Point Processes on Topological Groups

Chapter 5 deals with point-shifts of stationary point processes. Point-

shifts map points of a point process to other points of the process in a

flow-adapted manner. That is, if the whole process were shifted by some

amount, then a point-shift must map a shifted point to the shift of where the

original point would be mapped to. This condition means that a point-shift

must act using only information about the local view from the perspective

of the point it is mapping. It has no concept of an origin with which to

refer as an absolute anchor point, and two points that have the same local

view must be mapped in the same manner. This philosophy imposed upon

point processes and point-shifts captures the idea that no point or location

in space is special in an absolute sense. Stationary point processes are most

often defined on Rd . However, stationarity may be considered with respect

to the action of any group. Last’s [Las10a, Las10b] are good references on

this topic, and the framework for stationary point processes on groups used

in this chapter is based on these references.

Chapter 5 studies the behavior and structure of point-shifts of sta-

tionary point processes that are stationary with respect to groups. The use-

fulness of studying such point-shifts is somewhat indirect. Indeed, point-

shifts of stationary point processes are in many ways analogous to so-called

vertex-shifts of random networks. Vertex-shifts map points of a network

to other points of the network in a manner respecting isomorphisms. The

advantage of using random networks is that they are more widely applica-
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ble and are not limited to living on a particular space like Rd . They also

come with a natural notion of convergence that makes it easy to formalize

statements like “an n × n grid converges to Z2 as n →∞”. Stationary point

processes, in a certain sense, act like unimodular networks, i.e., networks

where, heuristically, the root has been selected “uniformly at random”. In

fact, under its Palm measure, a stationary point processes on Rd can be

directly seen as an embedding of a unimodular network, cf. Theorem 5.4.4

and Proposition 5.4.6. However, there is a separation between stationary

point processes and unimodular networks when the underlying group with

respect to which the process is stationary is itself not unimodular (in the

group-theoretic sense of being unimodular). Studying this boundary and

relationship between stationarity, unimodularity in the sense of groups, and

unimodularity in the sense of random networks is a stepping stone towards

a better understanding of random networks. This is the main reason for

studying point-shifts of point processes on groups other than Rd , but occa-

sionally it may also be useful to take advantage of specific structure of the

underlying group that may be lost in the up-to-isomorphisms framework of

random networks.

The primary result of Chapter 5 is an extension of the classification of

components of the graph drawn by a point-shift on a stationary point pro-

cess. This resultwasoriginallyprovedonRd byBaccelli andHaji-Mirsadeghi

in [BHM18]. The result splits all components into three classes that have

drastically different qualitative structure according to conditions that are

10



often trivial to check. In this chapter, their result is extended verbatim to

unimodular groups, and proofs using some properties about the order of R

have been replaced by mass-transport arguments. This is possible because

stationary point processes satisfy a kind of mass-transport theorem that,

when the underlying group is unimodular, reduces to the standard formula:

“expected mass in” � “expected mass out”.

The classification theorem has since been extended to unimodular net-

works [BHMK18], though, for point-shifts of point processes on non-

unimodular groups, the classification theorem fails to hold. This is one of

the reasons preventing a general stationary point processes from being seen

under its Palm measure as an embedding of a unimodular network, as is

possible on Rd . The question of for which groups can every stationary point

processes be seen as an embedding of a unimodular network is also studied

in this chapter. It remains conjectured that all unimodular groups have

this property. To better understand the divide between stationary point

processes and unimodular networks, more general theory about point-shifts

on possibly non-unimodular groups is given that studies generalizations of

Mecke’s invariance theorem on bĳective point-shifts preserving the Palm

measure, running a point-shift backwards in time, and separating points of

a point process by a function.
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Chapter 2

Preliminaries

These sections serve to lay out some of the basic ideas and notation

that are shared across multiple chapters.

2.1. Coupling

This section is suggested as a preliminary for Chapters 3 and 4. Stan-

dard references on coupling are [Lin02, Tho00]. Often times one wants to

compare two probability distributions P1 and P2 on some spaces S1 and S2.

One way to do so is to find a joint distribution P1,2 on S1×S2 that has P1 and

P2 as its marginals. Such a distribution is called a coupling of P1 and P2.

Typically, a coupling is constructed by defining random variables X1 ∼ P1

and X2 ∼ P2 on a common probability space, so that the distribution of

the pair (X1,X2) is a coupling of P1 and P2. Since there is little chance of

confusion, one also commonly refers to the random variable (X1,X2) itself,

together with the probability space on which it is defined, as a coupling of

X1 and X2, or of P1 and P2.

Consider the following example of how coupling can give a useful

result. Suppose one can construct a coupling so that X1 6 X2 a.s., then

12



one can gather that P(X1 > t) 6 P(X2 > t) for all t simply by noting that

E[1{X2>t} − 1{X1>t}] > 0. Note that in order to even write the expression

E[1{X2>t} − 1{X1>t}] one has already used that X1 and X2 are defined on the

same probability space.

When P1 and P2 are distributions of sequences, i.e., distributions on

SN or SZ for some space S, it is often useful to construct a coupling for

which the two sequences merge. If (X1,X2) is a coupling of two sequences

such that X1
n � X2

n for all n after a random time T, then one can use the

fact that X1 and X2 are defined on the same space and the fact that they

eventually merge in order to bound the total variation distance between the

distributions of X1
n and X2

n . This type of coupling is studied at length in

Chapter 3.

More generally, the question arises: What can be gleaned about the

relationship between two distributions by constructing an interesting cou-

pling, and what are methods to construct interesting couplings? In fact,

the question is not limited to a coupling of just two distributions. One can

define a single probability space that simultaneously houses couplings of

many different distributions. For example, one could define a single prob-

ability space on which there is a copy of a given Markov chain started in

every possible starting location and view the interactions between all of the

different versions of the chain. This idea is taken even further in Chapter 4,

where a Markov chain is started not just in every location, but also at every

time.
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2.2. Point Processes

This section is suggested as a preliminary for Chapter 5 and for a

single section (see Section 4.2.3) of Chapter 4. The general theory of point

processes and randommeasures has been developed on any locally compact

second-countable Hausdorff (LCSH) space G, cf. [DVJ08]. In this document,

only point processes are needed. A point process on G is a random element

Ψ in the space M of all locally finite counting (N ∪ {∞}-valued) measures

on G, where M is endowed with the cylindrical σ-algebra generated by the

mappings µ ∈ M 7→ µ(B) for each B ∈ B(G). All point processes Ψ in this

document are simple, meaning every atom ofΨ has mass 1. In this case,Ψ

can andwill be identifiedwith its support, which is a randomdiscrete subset

of G, allowing for notation such as X ∈ Ψ to denote thatΨ({X}) � 1. When

both arguments need to be specified, the notationΨ(ω, B)will be preferred

over the more cumbersome Ψ(ω)(B). This notation is also consistent with

the view of a point process as being transition kernel from Ω to G.

2.3. Haar Measure

This section is suggested as a preliminary for Chapters 3 to 5. The

standard text [Coh13] covers all the basics on Haar measures used in this

text. Suppose G is a LCSH topological group. Then, for each x ∈ G and

B ∈ B(G), consider the shifted set xB :� {xb : b ∈ B}. Up to a multiplicative

constant, there exists a unique Borelmeasure λ on G that is finite on compact
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sets1 and satisfies λ(xB) � λ(B) for all x ∈ G and B ∈ B(G). One refers to

λ as a (or, when there is no chance of confusion, “the”) left-invariant Haar

measure on G. The same game can be played with right-invariance and the

sets Bx :� {bx : b ∈ B} for all x ∈ G and B ∈ B(G) to get a right-invariant

Haar measure, but in this document a Haar measure will always refer to a

left-invariant Haar measure.

2.4. Random Networks

This section is suggested as a preliminary for Chapters 4 and 5. This

section reviews the theory of random networks in the sense of Aldous and

Lyons. See [AL07, Khe17] for a more thorough review of random networks

thanwhat is provided here. A network is a graph Γ � (V(Γ), E(Γ)) equipped

with a complete separable metric space (ΞΓ, dΞΓ) called themark space and

two maps from V(Γ) and {(v , e) : v ∈ V(Γ), e ∈ E(Γ), v ∼ e} to ΞΓ, where ∼

is used for adjacency of vertices or edges. The image of v (resp. (v , e)) in ΞΓ
is called its mark, which is extra information associated to the vertex (resp.

edge). Themark of (v , e)may also be thought of as themark of e considering

it to be a directed edge with initial vertex v. The graph distance between v

and w is denoted dΓ(v , w). Unless explicitly mentioned otherwise, networks

are assumed to be nonempty, locally finite, and connected.

An isomorphism between two networks with the same mark space

1Theunnecessary assumption thatG is second-countable is usedhere to avoiddiscussion
of regularity of measures. Finiteness on compact sets implies regularity on a LCSH space.
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is a graph isomorphism that also preserves the marks. A rooted network

is a pair (Γ, o) in which Γ is a network and o is a distinguished vertex of Γ

called the root. An isomorphism of rooted networks is a network isomor-

phism that takes the root of one network to the root of the other. Similar

definitions apply to doubly rooted networks (Γ, o , v). For convenience, from

now on throughout the document, consider only networks with mark space

(Ξuniv, dΞuniv), where Ξuniv is some fixed uncountable complete separable

metric space, such as [0, 1], since all possible mark spaces are Borel isomor-

phic to a subset of such a Ξuniv. When constructing examples of networks,

the marks will be specified on whatever space is convenient, but the reader

should be aware that the marks specified are actually being embedded into

Ξuniv. Similarly, to avoid uninformative tedium, only the relevant portion

of marks will be specified. The most common example of this used in this

document is that directed networks use edge marks to specify which direc-

tion(s) the edges point. If, additionally, one wants to mark the edges with

weights, one might say, e.g., “the network is marked with i.i.d. weights on

the edges” when, in actuality, an edge mark would be the embedding into

Ξuniv of a pair (edge direction indicator,weight).

Let G denote the set of isomorphism classes of nonempty, locally

finite, connected networks, and let G∗ (resp. G∗∗) be the set of isomorphism

classes of singly (resp. doubly) rooted networks of the same kind. The

isomorphism class of a network Γ (resp. (Γ, o), or (Γ, o , v)) is denoted by [Γ]

(resp. [Γ, o] or [Γ, o , v]).
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The sets G∗ and G∗∗ are equipped with natural metrics mak-

ing them complete separable metric spaces, cf. [AL07]. The distance

dG∗([Γ1, o1], [Γ2, o2]) between the isomorphism classes of (Γ1, o1) and (Γ2, o2)

is 1/(1 + α), where α is the supremum of those r > 0 such that there is a

rooted isomorphism of the neighborhoods NΓ1(o1, r),NΓ2(o2, r) of graph-

distance brc around the roots of Γ1, Γ2 such that each pair of corresponding

marks has distance less than 1/r. The distance on G∗∗ is defined similarly

and the projections [Γ, o , v] 7→ [Γ, o] and [Γ, o , v] 7→ [Γ, v] are continuous.

Borel measurable functions on G∗ and G∗∗ are, in a certain sense, those

functions that can be determined by looking only at (perhaps larger and

larger) finite neighborhoods (including marks) of the root or roots. For

example, [Γ, o] 7→ deg(o) and [Γ, o , v] 7→ dΓ(o , v) are Borel functions. A

random (rooted) network [Γ, o] is a random element in G∗ equipped with

its Borel σ-algebra B(G∗). Weak convergence of probability measures on G∗
is referred to as local weak convergence.

2.5. Unimodularity

This section is suggested as a preliminary for Chapters 4 and 5. Chap-

ter 4 only uses unimodularity of random networks explicitly, and Chapter 5

only uses unimodularity of groups explicitly, but the connections between

these two types of unimodularity are important to the cohesiveness of this

thesis as a whole.
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Unimodularity of Random Networks

A random network [Γ, o] is called unimodular if it obeys the follow-

ing mass-transport principle: For all measurable g : G∗∗→ R>0,

E
∑

v∈V(Γ)
g[Γ, o , v] � E

∑
v∈V(Γ)

g[Γ, v , o]. (2.1)

Heuristically, the root of a unimodular network is picked uniformly at ran-

dom from its vertices. However, since there is no uniform distribution on

an infinite set of vertices, the mass-transport principle (2.1) is used in lieu

of requiring the root to be picked uniformly at random. One should take

care to note that the sums in the previous equation depend only on the

isomorphism class [Γ, o] and not which representative is used.

Next, the notions of covariant vertex-shifts, foils, connected com-

ponents, and the cardinality classification of components of a unimodular

network are reviewed. See [BHMK18] for a reference on these concepts. A

(covariant) vertex-shift is a map Φ which associates to each network Γ a

function ΦΓ : V(Γ) → V(Γ) such that Φ commutes with network isomor-

phisms and the function [Γ, o , v] → 1{ΦΓ(o)�v} is measurable on G∗∗. For a

vertex-shiftΦ, define two equivalence relations on each network Γ by saying

u , v ∈ V(Γ) are in the same Φ-foil if Φn
Γ
(u) � Φn

Γ
(v) for some n ∈ N, or in the

same Φ-component if Φn
Γ
(u) � Φm

Γ
(v) for some n ,m ∈ N. Two vertices are

in the same Φ-component if their forward orbits under Φ intersect, whereas

they are in the same Φ-foil if, after some finite number of applications of Φ,

the vertices meet. The Φ-graph of Γ is the graph drawn on Γ with vertices
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V(Γ) and edges from each v ∈ V(Γ) to ΦΓ(v). The following is a special case

of the classification theorem appearing in [BHMK18]. The full version tells

even more about the structure of each of the classes.

Theorem 2.5.1 (Foil Classification in Unimodular Networks [BHMK18]). Let

[Γ, o] be a unimodular network and Φ a vertex-shift. Almost surely, every vertex

has finite degree in the Φ-graph of Γ. In addition, each component C of the Φ-graph

of Γ falls in one of the following three classes:

(i) Class F/F: C and all its foils are finite, and there is a unique cycle in C.

(ii) Class I/F: C is infinite but all its foils are finite, there are no cycles in C, and

there is a unique bi-infinite path in C.

(iii) Class I/I: C is infinite and all its foils are infinite, and there are no cycles or

bi-infinite paths in C.

The last tool needed from [BHMK18] is the so-called no infinite/finite

inclusion lemma, which is used heavily in the proof of Theorem 2.5.1. To

state it, the following definitions are needed. A covariant subset (of the

set of vertices) is a map C that associates to each network Γ a set CΓ ⊆

V(Γ) such that C commutes with network isomorphisms, and such that

[Γ, o] 7→ 1{o∈CΓ} is measurable. A covariant (vertex) partition is a map

Π which associates to all networks Γ a partition ΠΓ of V(Γ) such that Π

commutes with network isomorphisms, and such that the (well-defined)

subset {[Γ, o , v] : v ∈ ΠΓ(o)} ⊆ G∗∗ is measurable, where ΠΓ(o) denotes the

partition element in ΠΓ containing o. Then one has the following.
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Lemma 2.5.2 (No Infinite/Finite Inclusion [BHMK18]). Let [Γ, o] be a uni-

modular network,Π a covariant partition, and C a covariant subset. Almost surely,

there is no infinite element E of ΠΓ such that E ∩ CΓ is finite and nonempty.

Unimodularity of Groups

Again let λ be a Haar measure on G. Notice that, for each x ∈ G,

the measure λx(B) :� λ(Bx) defined for B ∈ B(G) is also a Haar measure,

and therefore differs by a multiplicative constant from λ. That is, for each

x ∈ G, λx � ∆(x)λ for some ∆(x) ∈ (0,∞). The function ∆ : G → (0,∞) is

called the modular function of G, and it depends only on G and not which

scalar multiple was chosen to be λ. One has that ∆ is, in fact, a continuous

homomorphism. One says that G is unimodular if ∆ � 1 everywhere. In

other words, G is unimodular if and only if λ(Bx) � λ(B) for all B ∈ B(G).

In this case, λ is bi-invariant.

One may wonder what this type of unimodularity has to do with the

unimodularity of random networks. There are many deep connections, but

the one that will be exploredmost in Chapter 5 is a mass-transport principle

very similar in form to Equation (2.1), except that it applies to G-stationary

point processes instead of unimodular networks. This ultimately gives the

main result of the chapter, which is an analogous classification theorem to

Theorem 2.5.1.
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Chapter 3

Exact Coupling of RandomWalks on Polish
Groups

Let G be a Polish group with identity e. Recall that a Polish group

is a group equipped with a topology under which multiplication and in-

version are continuous operations, and such that the topology is separable

and completely metrizable. The most pertinent examples to keep in mind

throughout are Rd and Zd . If G is Abelian, additive notation is used instead

and the identity is denoted 0. Fix, for the remainder of the chapter, a Borel

probability measure µ on G. For each x ∈ G, let RW(x , µ) be the law of a

(right) random walk on G started at x and with step-length distribution µ.

That is, RW(x , µ) is the lawon the product space GN of a process Sx � (Sx
n)∞n�0

such that

Sx
n � xX1X2 · · ·Xn , 0 6 n < ∞, (3.1)

where the step-lengths (Xi)∞i�1 are i.i.d. random elements in G with distri-

bution µ. Such a process Sx ∼ RW(x , µ) is called an (x , µ)-random walk.

One may be interested in the long-term effects of the choice of the

Note: The contents of this chapter have been published. The full citation appears below.
J. T. Murphy. Exact coupling of random walks on polish groups. Journal of Theoretical
Probability, pages 1–17, 2017.

21



initial location x ∈ G of a random walk. After a long time, can one distin-

guish an (x , µ)-randomwalk from a (y , µ)-randomwalk in the sense of total

variation? That is, for (x , µ)- and (y , µ)-randomwalks Sx and Sy , one would

like to know whether

P(Sx
n ∈ ·) − P(Sy

n ∈ ·)




TV → 0, n →∞, (3.2)

where ‖ν‖TV � supB ν(B) − infB ν(B) denotes the total variation of a finite

signed measure ν. The primary result of this chapter precisely determines,

under certain conditions, when (3.2) occurs. Note that for probability mea-

sures ν1 and ν2, one also has

‖ν1 − ν2‖TV � 2 sup
B
|ν1(B) − ν2(B)|. (3.3)

An equivalent formulation of (3.2) may be expressed in terms of successful

exact couplings.

An exact coupling of RW(x , µ) and RW(y , µ) is a triple (Sx , Sy , T)

defined on a probability space (Ω, F , P) in such a way that Sx ∼ RW(x , µ),

Sy ∼ RW(y , µ), and T is a random time, called a coupling time, such that

Sx
n � Sy

n , n > T. (3.4)

If T is a.s. finite, the exact coupling is called successful. If S̃x ∼ RW(x , µ)

and S̃y ∼ RW(y , µ) are defined on possibly different spaces, one also calls

(Sx , Sy , T) an exact coupling of S̃x and S̃y . The condition (3.2) is equivalent to

the statement that RW(x , µ) and RW(y , µ) admit a successful exact coupling.
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See Theorem 9.4 in Chapter 4, Section 9.5 of [Tho00] for the equivalence of

these statements. In essence, successful exact coupling may be achieved if

and only if the initial condition is uniformly forgotten as time progresses.

Moreover, the tail probabilities of a coupling time control the speed at which

the total variation distance between the two random walks decays. Indeed,

if (Sx , Sy , T) is an exact coupling as above, one has for any Borel set B ⊆ G,��P(Sx
n ∈ B) − P(Sy

n ∈ B)
�� � ���E[1{Sx

n∈B} − 1{Sy
n∈B}]

��� 6 P(T > n), n > 0.

Multiplying by 2 and taking the supremum over all Borel B, one finds

P(Sx
n ∈ ·) − P(Sy

n ∈ ·)




TV 6 2P(T > n), n > 0. (3.5)

This chapter investigates underwhat conditions successful exact cou-

plingsmay be constructed. When successful exact coupling can be achieved,

the constructed coupling time is analyzed to give bounds on the rate atwhich

total variation distance decays.

Note that if Sx is an (x , µ)-random walk and y ∈ G, then ySx is a

(yx , µ)-random walk. Hence RW(x , µ) and RW(y , µ) admit a successful

exact coupling if and only if RW(e , µ) and RW(y−1x , µ) admit a successful

exact coupling. It therefore suffices to study only the case when one of

the initial locations is the identity. That is, for what initial positions x do

RW(e , µ) and RW(x , µ) admit a successful exact coupling?

Definition 3.0.1. Define the successful exact coupling set Gs to be the subset

of all x ∈ G such that there exists a successful exact coupling of RW(e , µ)

and RW(x , µ).
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The primary question is then to determine what is the set Gs . This

question was posed by Thorisson in [Tho11] for G :� R, and in that case

the following two special cases were known as early as 1965, cf. [Sta66,

Her65], though references using more modern notation are cited here. In

the following, recall that when G admits a (left-invariant) Haar measure λ

(e.g. Lebesgue measure on Rd or the cardinality counting measure on Zd),

then µ is called spread out if for some n > 1 one has µn >
∫
· f dλ for some

Borel f > 0 not λ-a.e. zero, where for a Borel measure ν on G, νn denotes

the n-fold convolution of ν with itself.

Theorem 3.0.2. [Tho00] Let G :� R. Then Gs � G if and only if the step-length

distribution µ is spread out.

Theorem 3.0.3. [Arn10] Let G :� R and suppose µ is purely atomic with A

denoting the set of atoms of µ. Then Gs is the subgroup generated by A − A �

{a − a′ : a , a′ ∈ A}.

Given two Borel measures ν1 and ν2 on G, denote ν1 ∧ ν2 to be the

largest measure smaller than ν1 and ν2. The zero measure is denoted 0. For

x ∈ G, also define the shift θxν by θxν(B) :� ν(x−1B) for each Borel B ⊆ G.

The interpretation of θxν is ν with all mass shifted (left-multiplied) by x,

and θxν satisfies
∫

G f (y) θxν(dy) �
∫

G f (x y) ν(dy) for all Borel f : G→ R>0.

The resolution to Thorisson’s problem and generalizations of the pre-

vious theorems may now be stated. The proof is postponed and broken into

several separate more general theorems appearing across multiple sections.
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Theorem 3.0.4. Suppose G is Abelian. Then the following hold:

(a) Gs � {x ∈ G : ∃n > 1, µn ∧ θ−1
x µn , 0}.

(b) For x ∈ Gs and n0 > 1 such that µn0 ∧ θ−1
x µn0 , 0, there is C �

C(µ, x , n0) > 0 such that for S ∼ RW(0, µ) and Sx ∼ RW(x , µ) under

P, one has

• if x has infinite order,

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6

C√
n
, n > 1, (3.6)

• if x has finite order, there is ρ � ρ(µ, x , n0) ∈ (0, 1) such that

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6 Cρn n > 1. (3.7)

(c) Suppose G is locally compact with Haar measure λ. If Gs � G, then µ is

spread out. If G is connected, the converse holds as well.

(d) Suppose µ is purely atomic with A denoting the set of atoms of µ. Then Gs is

the subgroup generated by A − A.

(e) Gs is a Borel measurable subgroup of G.

Section 3.1 builds to the main theorem, Theorem 3.1.6, which gen-

eralizes Theorem 3.0.4 (a) and (b). It is more technical but also applies in

some non-Abelian cases. The reader familiar with the proof of the spread

out case [Tho00] or the purely atomic case [Arn10] on R may recognize the
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proof of Proposition 3.1.5, which shows that if µn dominates the sum of

a measure ν and some shift θ−1
x ν, then successful exact coupling can be

achieved. Similarly, the proof of the main theorem of this chapter follows

the spirit of the purely atomic case on R.

With the main theorem proved, Section 3.2 covers parts (a)-(d) of

Theorem 3.0.4 as simple corollaries. That is, it resolves the Abelian case

and gives an even simpler description of Gs in the spread out and purely

atomic cases. Note that Corollary 3.2.2 is more general than claimed in

Theorem 3.0.4 (c), as one direction applies in the non-Abelian case without

extra restrictions.

Section 3.3 then investigates the structure of Gs . In particular, it is

shown to be Borelmeasurable. This, togetherwith the fact that Gs is a group,

shows part (e) of Theorem 3.0.4.

Finally, in Section 3.4, the weaker notion of possible exact coupling

is studied. It is noted that the necessary and sufficient conditions derived

for successful exact coupling in the Abelian case are coincidental. It is

shown that the conditions derived for admitting a successful exact coupling

in the Abelian case are, in the general case, equivalent to the ostensibly

weaker notion of admitting a possible exact coupling, but that in the Abelian

case admitting a possible exact coupling and admitting a successful exact

coupling are equivalent. The chapter ends with an example on a (non-

Abelian) free group for which possible exact coupling can be done but

successful exact coupling cannot.
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3.1. The Successful Exact Coupling Existence Criterion

This section culminates in the main theorem of the chapter, Theo-

rem 3.1.6, which gives necessary and sometimes sufficient conditions for

successful exact coupling to occur, even in the non-Abelian case. The trans-

fer and splitting theorems that appear in [Tho00] are used. Less general

versions are stated that are sufficient for the current setting. The need of a

Polish space in the transfer and splitting theorems is also the primary reason

G is assumed to be Polish.

In order to state the transfer and splitting theorems, first the notion

of an extension of a probability space is needed. Recall that (E, E) is a

measurable space if E is a set and E is a σ-algebra on E, and that a random

element in (E, E) is a measurable map Y : Ω → E, where (Ω, F , P) is

some probability space. When the target space is R or Rd this is usually

called a random variable or random vector. One says ((Ω̄, F̄ , P̄), ξ) is an

extension of a probability space (Ω, F , P) if (Ω̄, F̄ , P̄) is a probability space

and ξ : Ω̄ → Ω is a random element with distribution P, that is to say,

P̄(ξ ∈ ·) � P. In this case, for any random element Y defined on Ω and

taking values in any measurable space (E, E), ξ induces a canonical copy

Ȳ :� Y ◦ ξ of Y that is defined on (Ω̄, F̄ , P̄), as depicted in the following

diagram.
(Ω, F , P) (E, E)

(Ω̄, F̄ , P̄)

Y

ξ
Ȳ
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By calling Ȳ a copy or version of Y, one means that Ȳ and Y have the same

distribution, which follows in this case from the fact that

P̄(Ȳ ∈ ·) � P̄(ξ ∈ Y−1(·)) � P(Y ∈ ·).

Because Ȳ is induced by ξ as described, one refers to Ȳ as an original random

element. That is, Ȳ represents a random element coming from (Ω, F , P), as

opposed to a random element defined on the extended space (Ω̄, F̄ , P̄) that

does not come from a random element defined on (Ω, F , P).

Now it is possible to state the transfer and splitting theorems.

Theorem 3.1.1 (Transfer Theorem). [Tho00] Suppose (Ω, F , P) is a probability

space and Y1 is a random element in some measurable space. Further suppose that

there is a pair (Y′1,Y′2) on some probability space (Ω′, F ′, P′) with Y′2 a random

element in some Polish space, and Y1 is a version of Y′1. Then Y′2 can be transferred

to (Ω, F , P). That is, there exists an extension ((Ω̄, F̄ , P̄), ξ) of (Ω, F , P) that

contains a copy Ȳ2 of Y′2 such that:

(i) (Ȳ1, Ȳ2) has the same distribution as (Y′1,Y′2), where Ȳ1 � Y1 ◦ ξ is the

induced copy of Y1.

(ii) If Y0 is a random element defined on (Ω, F , P) and Ȳ0 its induced copy, then

Ȳ2 is conditionally independent of Ȳ0 given Ȳ1, i.e.,

P̄(Ȳ2 ∈ · | Ȳ1) � P̄(Ȳ2 ∈ · | Ȳ0, Ȳ1).

This transfer procedure can be repeated countably many times.
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Theorem 3.1.2 (Splitting Theorem). [Tho00] Suppose (Ω, F , P) is a probability

space and Y is a random element in a measurable space (E, E). Let (νi)∞i�0 be

subprobability measures on (E, E) and suppose P(Y ∈ ·) > ∑
i νi . Then there exists

an extension ((Ω̄, F̄ , P̄), ξ) of (Ω, F , P) containing a nonnegative integer-valued

random variable K̄, called a splitting variable, such that:

(i) P̄(Ȳ ∈ ·, K̄ � i) � νi for each i, where Ȳ � Y ◦ ξ is the induced copy of Y.

(ii) If Y0 is a random element defined on (Ω, F , P) and Ȳ0 its induced copy, then

K̄ is conditionally independent of Ȳ0 given Ȳ, i.e.,

P̄(K̄ ∈ · | Ȳ) � P̄(K̄ ∈ · | Ȳ0, Ȳ).

This splitting operation can be repeated countably many times.

After an extension ((Ω̄, F̄ , P̄), ξ) is introduced, one typically wants

to pretend that one started with the extension in the first place. Therefore,

when there is no risk of confusion, one often drops the bar notation and

renames the extended space to (Ω, F , P), and any induced variable Ȳ to Y.

This allows one to assume that all the random elements being considered

are defined on a common probability space. One signals that this renaming

is happening by saying that (Ω, F , P) has been “extended” to house new

random elements with certain properties. All the results in this chapter

concern only the laws or joint distributions of random elements, so there is

no loss of precision by replacing a space by an extension when needed.
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Theorems 3.1.1 and 3.1.2 are useful for constructing random elements

with specific dependencies on a single probability space. A simple example

application is the following. If one can construct up to a countable number

of successful exact couplings, then in fact they can be made to occur on the

same probability space.

Proposition 3.1.3. If N ∈ N ∪ {∞} and {xi}Ni�1 ⊆ Gs , then there exists a single

probability space (Ω, F , P) onwhich there existS ∼ RW(e , µ) andSxi ∼ RW(xi , µ)

for each i such that for every i there is an a.s. finite random time Ti with Sxi
n � Sn

for all n > Ti . That is, (S, Sxi , Ti) is a successful exact coupling for all i.

Proof. By assumption, there is a successful exact coupling of RW(e , µ) and

RW(x1, µ) on some (Ω, F , P). Since xi ∈ Gs for each i, the extension proce-

dure given by Theorem 3.1.1 can be repeated countably many times, once

for each Sxi , to give a single extension of (Ω, F , P) onwhich S and Sxi couple

for every i. �

This gives the first structural result about the successful exact cou-

pling set.

Corollary 3.1.4. Gs is a group.

Proof. Consider x , y ∈ Gs . By Proposition 3.1.3, respectively define suc-

cessful exact couplings (S, Sx , Tx) and (S, Sy , T y) on a common probability

space. Then for n > max{Tx , T y} it holds that Sy
n � Sn � Sx

n . In particular,
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(x−1Sx , x−1Sy ,max{Tx , T y}) is a successful exact coupling of RW(e , µ) and

RW(x−1 y , µ). Thus x−1 y ∈ Gs . �

The following works towards determining a specific scenario when

a successful exact coupling can be constructed and it is an extension of a

result of Ö. Arnaldsson in [Arn10] with nearly identical proof.

Proposition 3.1.5. Fix x ∈ G and suppose that n > 1 is such that µn > ν + θ−1
x ν

for a nonzero measure ν. If G is Abelian or, more generally, if there is B with

µn(B) � 1 such that x commutes with all of B, then x ∈ Gs . In this case, RW(e , µ)

and RW(x , µ) admit a successful exact coupling with a coupling time T for which

T/n has the same distribution as the hitting time of e of a lazy simple symmetric

random walk on the cyclic group 〈x〉 started at x with probability 1 − 2ν(G) of not

moving at each step. In particular, P(T � n) � ν(G).

Proof. Begin with an (Ω, F , P) on which there is S ∼ RW(e , µ) with step-

lengths (Xi)∞i�1. An extension of (Ω, F , P) and an Sx ∼ RW(x , µ) on that

extension are constructed such that successful exact coupling occurs. Let

Li :� X(i−1)n+1 · · ·Xin (3.8)

for i > 1 so that (Li)∞i�1 is an i.i.d. family and P(Li ∈ ·) � µn > ν + θ−1
x ν. By

Theorem 3.1.2, expand (Ω, F , P) to accommodate random variables (Ki)∞i�1

taking values in {0, 1, 2} such that (Li , Ki)∞i�1 is an i.i.d. sequence and, for

each i,

P(Li ∈ ·, Ki � 1) � ν, P(Li ∈ ·, Ki � 2) � θ−1
x ν. (3.9)
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For i > 1 define

L′i :�


Li , Ki � 0,
x−1Li , Ki � 1,
xLi , Ki � 2.

(3.10)

It is elementary to check using (3.9) that L′i has the same distribution as Li .

Let R be the random walk started at e with step-lengths (Li)∞i�1, and let R′

be the random walk started at x with step-lengths (L′i)
∞
i�1. By construction,

L′iL
−1
i ∈

{
e , x , x−1} for each i. By assumption, it is possible to choose B with

µn(B) � 1 such that x commutes with all of B. Thus, a.s. every Li , L′i ∈ B

and so a.s. for every i,

R′iR
−1
i � xL′1 · · · L′iL

−1
i · · · L

−1
1 � x(L′1L−1

1 ) · · · (L′iL
−1
i ) ∈ 〈x〉 � {x

m : m ∈ Z}.

Thus, R′R−1 is in distribution the same as a lazy simple symmetric random

walk started from x with step-lengths (L′iL
−1
i )
∞
i�1. The walk has probability

ν(G) to increase the power of x, ν(G) to decrease it, and 1− 2ν(G) < 1 to stay

put at each time step. Since nontrivial lazy simple symmetric randomwalks

on cyclic groups are recurrent, there is an a.s. finite random time M with

R′MR−1
M � e, i.e. the random walks R′ and R meet at time M. Theorem 3.1.1

makes it possible to extend (Ω, F , P) one final time to accommodate an

i.i.d. sequence (X′′i )
∞
i�1 with each X′′i having distribution µ and such that

L′i � X′′(i−1)n · · ·X
′′
in for i > 1. Define T :� Mn and let Sx be the random walk

started at x with step-lengths

X′i :�

{
X′′i , i 6 T,
Xi , i > T.

(3.11)
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Then S and Sx witness the definition of successful exact coupling with

coupling time T. If K1 � 1, then R and R′ meet in one time step, so T � n,

showing P(T � n) � P(K1 � 1) � ν(G). �

In the previous proof, the problem is reduced to the case where a

difference process (or, in the non-Abelian case, something that resembles a

difference process) is a random walk. Since a general random walk may be

transient, it is important to the proof that the difference process is made to

be a random walk not on all of G, but rather on the cyclic group generated

by x, so that the analysis reduces to that of Z or Z/dZ. This highlights the

fact that the joint distribution of S and Sx required to cause successful exact

coupling is very special, and could not, except in trivial cases, be achieved

with S and Sx being independent before the coupling time T.

The main theorem of the chapter follows.

Theorem 3.1.6 (Successful Exact Coupling Existence Criterion). Fix x ∈ G.

If x ∈ Gs , then there is n > 1 such that µn ∧ θ−1
x µn , 0. Conversely, if

n0 > 1 is such that µn0 ∧ θ−1
x µn0 , 0 and there exists B with µn0(B) � 1

such that x commutes with all of B, then x ∈ Gs . In this case, there exists

a successful exact coupling of RW(e , µ) and RW(x , µ) with a coupling time T

satisfying P(T � n0) > 0. Moreover, there is C � C(µ, x , n0) > 0 such that for

S ∼ RW(0, µ) and Sx ∼ RW(x , µ) under P, one has
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• if x has infinite order,

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6

C√
n
, n > 1, (3.12)

• if x has finite order, there is ρ � ρ(µ, x , n0) ∈ (0, 1) such that

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6 Cρn n > 1. (3.13)

Proof. Suppose that S ∼ RW(e , µ) and Sx ∼ RW(x , µ) witness the defi-

nition of successful exact coupling with coupling time T and respective

step-lengths (Xi)∞i�1 and (X′i)
∞
i�1. Choose n such that P(T � n) > 0, which

is possible since T is a.s. finite. Then one has the following comparisons of

measures,

0 , P(T � n , Sn � Sx
n ∈ ·)

6 P(Sn � Sx
n ∈ ·)

6 P(Sn ∈ ·) ∧ P(Sx
n ∈ ·)

� µn ∧ θxµ
n .

Applying θ−1
x to both sides of the previous inequality then gives 0 , θ−1

x µn∧

µn .

Conversely, suppose n0 is such that ξ :� µn0 ∧ θ−1
x µn0 , 0 and that

there exists B with µn0(B) � 1 such that x commutes with all of B. In case

x � e, RW(e , µ) and RW(x , µ) clearly admit a successful exact coupling with

a coupling time T :� 0, so assume x , e. Choose y ∈ supp ξ. Since y , x y,
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it is possible to choose a neighborhood U of y small enough that U∩xU � ∅.

Consider

ν :� ξ((x−1·) ∩U) , 0. (3.14)

Then

ν 6 µn0
(
x
(
(x−1·) ∩U

) )
� µn0(· ∩ xU)

and

θ−1
x ν � ξ(· ∩U) 6 µn0(· ∩U).

It follows that

ν + θ−1
x ν 6 µn0(· ∩ (U ∪ xU)) 6 µn0 . (3.15)

Proposition 3.1.5 then shows RW(e , µ) and RW(x , µ) admit a success-

ful exact coupling with a coupling time T satisfying P(T � n0) � ν(G) > 0

and such that τ :� T/n0 has the distribution of the hitting time to e of a

symmetric lazy randomwalk on 〈x〉 with 1− 2ν(G) chance of not moving at

each step.

Suppose that x has finite order d. In this case, τ also has the distri-

bution of the hitting time to 0 of the symmetric lazy random walk on Z/dZ

that is started at 1 and absorbed when it hits 0. Call P the transition kernel

of the absorbing walk. The absorbing walk converges geometrically quickly

to its stationary distribution δ0, cf. [LP17]. Choose ρ ∈ (0, 1) and C > 0 such

that ‖Pn(1, ·) − δ0‖TV 6 Cρn for all n > 1. By (3.5) it suffices to show that
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P(T > n) decays geometrically as n →∞. Indeed, for all n > 1,

P(T > n) � P(τ > n/n0)

� P bn/n0c+1(1, {0}c)

6


P bn/n0c+1(1, ·) − δ0




TV + δ0({0}c)

6 Cρbn/n0c+1
+ 0

6 C̃
(
ρ̃
)n

for new constants C̃ > 0 and ρ̃ ∈ (0, 1), as desired.

Next suppose that x has infinite order, so 〈x〉 ' Z. The tail decay of

symmetric lazy random walks on Z are known, see, for example, Corollary

2.28 in [LP17]. In [LP17], lazy random walks are defined to have chance 1/2

of staying still at each step, but allowing a 1−2ν(G) ∈ (0, 1) chance of staying

still at each step does notmodify the result beyond giving a different leading

constant in the decay rate. Hence, by Corollary 2.28 in [LP17], choose C > 0

such that P(τ > n) 6 C√
n
for integers n > 1. Thus, for all n > 1,

P(T > n) � P(τ > n/n0)

� P(τ > bn/n0c + 1)

6
C√

bn/n0c + 1

6
C̃√
n

for some new constant C̃ > 0, as desired. �
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3.2. The Abelian Case

In this section, parts (a)-(d) of Theorem 3.0.4 are derived as simple

corollaries of the main theorem. Firstly, determining Gs can be resolved

entirely for Abelian G. This is parts (a) and (b) of Theorem 3.0.4.

Corollary 3.2.1. Suppose G is Abelian. Then Gs � {x ∈ G : ∃n > 1, µn ∧

θ−1
x µn , 0}. Moreover, for x ∈ Gs and n0 > 1 such that µn0 ∧ θ−1

x µn0 , 0, there

is C � C(µ, x , n0) > 0 such that for S ∼ RW(0, µ) and Sx ∼ RW(x , µ) under P,

one has

• if x has infinite order,

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6

C√
n
, n > 1,

• if x has finite order, there is ρ � ρ(µ, x , n0) ∈ (0, 1) such that

‖P(Sn ∈ ·) − P(Sx
n ∈ ·)‖TV 6 Cρn n > 1.

Proof. Since G is Abelian, the condition in Theorem 3.1.6 that there is B with

µn(B) � 1 such that x commutes with all of B is automatic. �

Next, a generalization of part (c) of Theorem 3.0.4 is covered. That is,

for connected spaces step-lengths are spread out if and only if a successful

exact coupling can always be achieved. The only if direction is essentially

the same as in [Ber79], Theorem 5.3.2, and it also applies in the non-Abelian

setting.
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Corollary 3.2.2. Suppose G is locally compact with Haar measure λ. If Gs � G,

then µ is spread out. If G is connected and Abelian, the converse holds as well.

More generally, if G is Abelian but not necessarily connected, then Gs is clopen.

Proof. Suppose RW(e , µ) and RW(x , µ) admit a successful exact coupling for

all x ∈ G. Then for all x ∈ G,


µn − θ−1

x µn




TV → 0 as n →∞. Consequently,

G �

∞⋃
n�1
{x ∈ G :



µn − θ−1
x µn




TV 6 1}. (3.16)

Themeasurability of the sets Bn :� {x ∈ G :


µn − θ−1

x µn




TV 6 1} for n > 1 is

taken for granted here. This fact is proved in the upcoming Corollary 3.3.2.

Choose n large enough that λ(Bn) > 0. Suppose for contradiction that a

Borel set N ⊆ G is such that µn(N) � 1 but λ(N) � 0. Then λ(N−1) � 0 as

well, and

0 �

∫
G

∫
G

1{sx∈Bn}1{x∈N−1} λ(dx) µn(ds)

�

∫
G

∫
G

1{x∈Bn}1{s−1x∈N−1} λ(dx) µn(ds)

�

∫
G

∫
Bn

1{s∈xN} λ(dx) µn(ds)

�

∫
Bn

θ−1
x µn(N) λ(dx)

>

∫
Bn

µn(N) − |θ−1
x µn(N) − µn(N)| λ(dx)

>

∫
Bn

1 − 1
2


θ−1

x µn − µn




TV λ(dx)

>
1
2
λ(Bn)

> 0
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which is a contradiction. It follows that µn must not be singular with respect

to λ, and hence µ is spread out.

For the other direction, suppose G is Abelian and that ν :� µn >∫
· f dλ as stated. By replacing f with min{ f , b}1K for some b > 0 and

K ⊆ G compact, one may assume f is bounded and compactly supported.

Furthermore, it is claimed that by replacing n with 2n onemay assume f > ε

on some nonempty open set for some ε > 0. Indeed,

µ2n
� ν ∗ ν >

∫
·

f ∗ f dλ.

Since f is bounded and compactly supported, the convolution f ∗ f is con-

tinuous, and also


 f ∗ f




L1 �



 f


2

L1 > 0, so f is not constant 0. Thus the

assumption that f > ε > 0 on some nonempty open set U and for some

ε > 0 is justified. In particular, choosing a symmetric neighborhood V of

the identity such that (U − x) ∩U , ∅ for each x ∈ V , it holds that

ν ∧ θ−1
x ν(G) >

∫
G

min{ f (y), f (x + y)} λ(dy) >
∫
(U−x)∩U

ελ(dy) > 0

for every x ∈ V . It follows that Gs ⊇ V . By Corollary 3.1.4, Gs is a subgroup

of G, and thus Gs is either clopen or has empty interior. Since Gs contains

the nonempty open set V , Gs must be clopen. If G is connected then this

implies Gs � G. �

The connectedness assumption in Corollary 3.2.2 plays a nontrivial

role. For example, consider when G is a countable group. Then any choice

of µ is automatically purely atomic because G is countable and spread out
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because the Haar measure is a counting measure. The following corollary

shows that in that case the conclusion of Corollary 3.2.2 does not hold. This

is also part (d) of Theorem 3.0.4.

Corollary 3.2.3. Suppose G is Abelian and µ is purely atomic with A the set of

atoms of µ. Then Gs is the subgroup generated by A − A.

Proof. The atoms of µn are nA :� A + · · · + A. Then since µn is atomic,

µn ∧ θ−1
x µn , 0 if and only if nA∩ (nA− x) , ∅ if and only if x ∈ nA− nA �

n(A−A). Finally, note that⋃∞n�1 n(A−A) is exactly the subgroup generated

by A−A since A−A is symmetric. Corollary 3.2.1 then finishes the claim. �

The section ends by showing that, in the Abelian case, any countable

subgroup can be a successful exact coupling set, and that the Haar measure

is insufficient to measure the size of Gs .

Corollary 3.2.4. Suppose G is Abelian and H is a countable subgroup of G. Then

there is a choice of µ for which Gs � H.

Proof. Any purely atomic µ whose set of atoms is H suffices. If µ is as

mentioned, then since the subgroup generated by H − H is H itself, one

finds that Gs � H by Corollary 3.2.3. �

Corollary 3.2.5. Suppose G is locally compact with Haar measure λ, and that G

is connected and Abelian as well. If µ is not spread out, then λ(Gs) � 0.
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Proof. The measurability of Gs is proved in the upcoming Corollary 3.3.2.

Here it is taken for granted. If λ(Gs) > 0, then Gs � Gs − Gs contains a

neighborhood of the identity by the Steinhaus Theorem [Str72]. In this case

it follows as in the proof of Corollary 3.2.2 that Gs � G, which implies that

µ is spread out by the same corollary. �

3.3. Properties of the Successful Exact Coupling Set

The primary goal of this section is to treat the measurability issues

previously neglected. In the Abelian case, the successful exact coupling

set is Borel measurable. To show this, a slight but natural extension of

Exercise 6.10.72 in volume II of [Bog07], is required. The following gives the

existence of a measurable choice of a family of Radon-Nikodym derivatives.

Importantly, the following does not assume absolute continuity and instead

produces Radon-Nikodym derivatives of the absolutely continuous parts of

measures.

Proposition 3.3.1. Let (X,A , µ) be a finite measure space with A countably

generated, and let (T,B) be a measurable space. Let (µt)t∈T be any family of

finite measures on X such that for each A ∈ A, the function t 7→ µt(A) is B-

measurable. Then there is anA⊗B-measurable f : X×T → R such that for every

t ∈ T, x 7→ f (x , t) is a version of the Radon-Nikodym derivative of the absolutely

continuous part of µt with respect to µ.

Proof. First consider X :� [0, 1] and A :� B([0, 1]), the Borel sets on [0, 1].
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Fix a sequence (εn)∞n�0 with εn ↘ 0. For every t ∈ T,

lim
n

µt(B(x , εn))
µ(B(x , εn))

�
dµt ,a

dµ
(x), µ-a.e. x , (3.17)

where µt ,a denotes the absolutely continuous part of µt with respect to µ.

This follows from, e.g., Theorem 5.8.8. in volume I of [Bog07]. Define

f (x , t) :� lim sup
n

µt(B(x , εn))
µ(B(x , εn))

(3.18)

for x ∈ supp µ and t ∈ T, and f (x , t) :� 0 otherwise. By (3.17), it suffices to

show f is A ⊗ B-measurable. Indeed, consider a fixed n and consider the

numerator

(x , t) 7→ µt(B(x , εn)) �
∫
[0,1]

1{|y−x |<εn} µt(dy).

Let g(x , y) :� 1{|y−x |<εn} and choose a sequence of measurable simple func-

tions (sk)∞k�0 of the form

sk(x , y) :�
mk∑
i�0

αi ,k1{x∈Ai ,k}1{y∈Bi ,k} , (3.19)

with 0 6 sk 6 1 and Ai ,k , Bi ,k ∈ B([0, 1]) for each k, and sk → g as k → ∞.

Then ∫
[0,1]

1{|y−x |<εn} µt(dy) � lim
k

mk∑
i�0

αi ,k1{x∈Ai ,k}µt(Bi ,k),

which shows (x , t) 7→ µt(B(x , εn)) is a limit ofA ⊗B-measurable functions,

showing its measurability. The argument for the denominator (x , t) 7→

µ(B(x , εn)) is similar and easier. It follows that f isA ⊗ B-measurable.
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Next, consider a general X and A. Since A is countably generated,

choose an A-measurable φ : X → [0, 1] such that A � {φ−1(B) : B ∈

B([0, 1])}, cf. Theorem 6.5.5 in volume II of [Bog07]. Also set

ν :� µ(φ ∈ ·), νt :� µt(φ ∈ ·), (3.20)

for each t ∈ T. For each B ∈ B([0, 1]), it holds that A :� φ−1(B) ∈ A and

t 7→ νt(B) � µt(A) is B-measurable. By the case where X � [0, 1] and

A � B([0, 1]), choose f : [0, 1]×T → R that is B([0, 1]) ⊗B-measurable and

such that for all t ∈ T, f (·, t) is a version of the Radon-Nikodymderivative of

the absolutely continuous part of νt with respect to ν. Define f0 : X×T → R

by f0(x , t) :� f (φ(x), t). Then f0 is A ⊗ B-measurable. Fix t ∈ T and let

A ∈ A be given. Choose B ∈ B([0, 1])with A � φ−1(B). Then∫
X

1{x∈A} f0(x , t) µ(dx) �
∫

X
1{φ(x)∈B} f (φ(x), t) µ(dx)

�

∫
[0,1]

1{y∈B} f (y , t) ν(dy)

� νt ,a(B)

� µt ,a(A).

Some care should be taken in the last equality, where it is used that the

absolutely continuous part of µt(φ ∈ ·) with respect to µ(φ ∈ ·) is the same

as the push-forward with respect to φ of the absolutely continuous part of

µt with respect to µ. Write

νt � νt ,a + νt ,s , µt � µt ,a + µt ,s ,
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with νt ,a � ν and νt ,s ⊥ ν, and µt ,a � µ and µt ,s ⊥ µ. Then also

νt � µt(φ ∈ ·) � µt ,a(φ ∈ ·) + µt ,s(φ ∈ ·),

so it suffices to show by the uniqueness of Lebesgue decompositions that

µt ,a(φ ∈ ·) � ν and µt ,s(φ ∈ ·) ⊥ ν.

Indeed, if B ∈ B([0, 1]) is such that 0 � ν(B) � µ(φ ∈ B), then µt ,a(φ ∈ ·) � 0

because µt ,a � µ. Thus µt ,a(φ ∈ ·) � ν. Similarly, choose A ∈ A such

that µt ,s(Ac) � µ(A) � 0. Choose B ∈ B([0, 1]) with A � φ−1(B), then

compute µt ,s(φ ∈ Bc) � µt ,s(Ac) � 0 and ν(B) � µ(φ ∈ B) � µ(A) � 0, so

that µt ,s(φ ∈ ·) ⊥ ν. The previous use of νt ,a(B) � µt ,a(A) is now justified,

showing that f0(·, t) is a version of the Radon-Nikodym derivative of the

absolutely continuous part of µt with respect to µ, completing the claim. �

The following, togetherwith Corollary 3.1.4, gives Theorem 3.0.4 part

(e).

Corollary 3.3.2. For a probability measure ν on G, the maps x 7→


ν − θ−1

x ν




TV,

x 7→


ν ∧ θ−1

x ν




TV, and the set {x : ν ∧ θ−1
x ν , 0} are Borel measurable. In

particular, if G is Abelian then Gs � ∪∞n�1{x ∈ G : µn ∧ θ−1
x µn , 0} is Borel

measurable.

Proof. Apply Proposition 3.3.1 with X :� T :� G and the family of measures

νt :� θ−1
t ν for t ∈ G. For A ⊆ G open and tn → t ∈ G, Fatou’s lemma
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implies that

νt(A) �
∫

G
1{x∈tA} ν(dx)

�

∫
G

1{t−1∈Ax−1} ν(dx)

6

∫
G

lim inf
n

1{t−1
n ∈Ax−1} ν(dx)

6 lim inf
n

∫
G

1{t−1
n ∈Ax−1} ν(dx)

� lim inf
n

νtn (A),

so that t 7→ νt(A) is semicontinuous and hence measurable. A monotone

class argument shows that t 7→ νt(A) is measurable for all Borel A ⊆ G.

Thus, Proposition 3.3.1 gives a measurable f : G × G → R such that for

every t ∈ G, x 7→ f (x , t) is a version of the Radon-Nikodym derivative of

the absolutely continuous part of θ−1
t ν with respect to ν. It follows that

M(t) :�
∫

G
min{ f (x , t), 1} ν(dx) �



ν ∧ θ−1
t ν




TV (3.21)

is measurable in t. Hence

ν − θ−1
t ν




TV � 2 − 2



ν ∧ θ−1
t ν




TV (3.22)

is measurable in t, and

{t : ν ∧ θ−1
t ν , 0} � {t : M(t) > 0} (3.23)

is measurable as well. �

It is not known to the author in the non-Abelian case whether Gs is

measurable. Even in the Abelian case though, little is known about other
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structural properties of Gs . When is Gs nicer than Borel measurable? The

worst case seen so far in Corollary 3.2.4 is that Gs may be any countable

subgroup of G, which gives cases where Gs is an Fσ set but not closed (e.g.

Q ⊆ R). Depending on G, this also gives cases where Gs is dense (e.g.

Q ⊆ R), infinite but not dense (e.g. Z ⊆ R), and finite but not trivial (e.g.

{−1, 1} ⊆ R\ {0}). Corollary 3.2.5 indicates that in many cases either Gs � G

or λ(Gs) � 0, so in these cases the Haar measure on G is not useful to

measure the size of Gs . Is there a natural measure with which to measure

the size of Gs? What is the Hausdorff dimension of Gs , and can it be related,

say, to the Hausdorff dimension of the subgroup generated by supp µ? All

of these questions remain open and are not investigated further here.

3.4. Possible Exact Coupling

In this section, a weaker notion of exact coupling is studied. Suppose

that (S, Sx , T) is an exact couplingofRW(e , µ) andRW(x , µ). IfP(T < ∞) > 0,

then (S, Sx , T) is called a possible exact coupling. The difference between

possible exact coupling and successful exact coupling is that a possible exact

coupling only requiresT < ∞with positive probability, whereas a successful

exact coupling would require T < ∞ a.s.

Definition 3.4.1. Define the possible exact coupling set Gp to be the subset

of all x ∈ G such that there exists a possible exact coupling of RW(e , µ) and

RW(x , µ).
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Carefully looking over the proofs in Section 3.1 reveals that in many

places, the fact that a coupling time T satisfies T < ∞ a.s. is used only to

guarantee that P(T � n) > 0 for some n, allowing the same proofs work for

possible exact couplings as well. In particular, the following variations on

Proposition 3.1.5 and Theorem 3.1.6 hold without the need for any kind of

assumption about the existence of large sets that commute with x.

Proposition 3.4.2. Fix x ∈ G and suppose that n > 1 is such that µn > ν + θ−1
x ν

for a nonzero measure ν. Then x ∈ Gp and there exists a possible exact coupling of

RW(e , µ) and RW(x , µ) with a coupling time T satisfying P(T � n) � ν(G).

Proof. In the proof of Proposition 3.1.5, the only place where the assumption

that there exists a B with µn(B) � 1 such that x commutes with all of B is

needed is to show that the constructed coupling time T is a.s. finite and T/n

looks like a hitting time of a random walk. When this assumption is not

met, the coupling from that proof still works, and the coupling time T still

satisfies P(T � n) � ν(G), but not necessarily P(T < ∞) � 1, and T/n does

not necessarily look like a hitting time of a random walk on 〈x〉. �

Theorem 3.4.3. For all x ∈ G, there exists a possible exact coupling of RW(e , µ)

and RW(x , µ) with a coupling time T satisfying P(T � n) > 0 if and only if

µn ∧ θ−1
x µn , 0. In particular, Gp � {x ∈ G : ∃n > 1, µn ∧ θ−1

x µn , 0}.

Proof. The proof is nearly identical to that of Theorem 3.1.6, except one

appeals to Proposition 3.4.2 to construct a possible exact coupling instead of

Proposition 3.1.5. �
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One may now reap some low-hanging fruit. In particular, it is shown

that the possible exact coupling set is Borel measurable, that in the Abelian

case admitting a possible exact coupling and admitting a successful exact

coupling are the same, and that if an n-fold convolution of a measure over-

laps with one of its shifts, then all higher-fold convolutions of the measure

admit the same property.

Corollary 3.4.4. Gp is Borel measurable.

Proof. The set in question, by Theorem 3.4.3, equals
⋃∞

n�1{y : µn ∧ θ−1
y µ

n ,

0}, which is Borel measurable by Corollary 3.3.2. �

Corollary 3.4.5. Suppose G is Abelian. Then Gp � Gs .

Proof. By Theorems 3.4.3 and 3.2.1, both equal {x ∈ G : ∃n > 1, µn∧θ−1
x µn ,

0}. �

Note that the previous corollary says that if an exact coupling with

coupling time T satisfying P(T < ∞) > 0 exists, then an exact coupling

with coupling time T′ with P(T′ < ∞) � 1 exists. It does not show that if

P(T < ∞) > 0 then P(T < ∞) � 1.

Corollary 3.4.6. For a probability measure ν on G, if νn0 ∧ θ−1
x νn0 , 0 for some

n0 > 1, then νn ∧ θ−1
x νn , 0 for all n > n0.

Proof. Let n0 as above and let n > n0 be given. By Theorem 3.4.3, choose

a possible exact coupling (S, Sx , T) of RW(e , ν) and RW(x , ν) with P(T �
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n0) > 0. Then T′ :� T + (n − n0) is also a coupling time for S and Sx with

P(T′ � n) > 0, so by Theorem 3.4.3 it holds that νn ∧ θ−1
x νn , 0. �

In theAbelian case, admittingapossible exact couplingandadmitting

a successful exact coupling turned out to be the same. Lastly, it is shown

that in the non-Abelian case this is not necessarily the case.

Example 3.4.7. Let G :� F2 be the free group on two letters a , b and consider

S and Sab simple random walks on G. That is, the step-length distribution

µ is supported on four atoms:

µ({a}) � µ({a−1}) � µ({b}) � µ({b−1}) � 1
4
. (3.24)

Suppose S starts at the empty word e, and Sab starts at ab. If S and Sab are

taken to be independent, then with positive probability S1 � a � Sab
1 , so a

possible exact coupling can be easily constructed. Furthermore, note that

the length len S of S is itself a Markov chain on N. In fact, with W denoting

a simple random walk on Z having probability 1/4 of decreasing and 3/4

of increasing at each step, and which, for any x ∈ Z, is started at x under a

measure Px , one has

P(len S returns to 0) � P1(W hits 0) < 1, (3.25)

where the last inequality is a standard fact about asymmetric simple random

walks on Z. It follows that 0 is a transient state for the Markov chain len S

and, since the chain is irreducible, all states are transient. Hence a.s. the

length of S tends to∞ and a limiting word is finalized. A similar statement
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holds for Sab . Denote the limiting words lim S and lim Sab . Admitting a

successful exact coupling is also equivalent, cf. Theorem 9.4 in Section 9.5 of

[Tho00], to

P(S ∈ B) � P(Sab ∈ B), B ∈ T , (3.26)

where T is the σ-algebra of tail measurable events. The set

{s � (sn)∞n�0 : lim s starts with b}

is tail measurable. With τ the hitting time of e for Sab , by the strong Markov

property and the fact that at time τ it holds that Sab starts anew as a copy of

S,

P(lim Sab starts with b) � P(τ < ∞)P(lim S starts with b)

� P2(W hits 0)P(lim S starts with b)

< P(lim S starts with b).

Thus there is no successful exact coupling between S and Sab .

3.5. Bibliographical Comments

The work in this chapter heavily relies on the inspiration of previ-

ous works. The initial idea for exact coupling comes from Doeblin’s 1938

work [Doe38] on irreducible and aperiodic Markov chains on finite state

spaces. In 1968, Ornstein [Orn69] provided an exact coupling that is suc-

cessful for random walks on Z under aperiodicity assumptions. In 1979,
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Berbee [Ber79] constructed an exact coupling that is successful for spread

out randomwalks onR. Interestingly, earlier in 1966 andusingnon-coupling

methods, Stam [Sta66] determined necessary and sufficient conditions for

random walks on R with either spread out or discrete step-lengths to have

total variation bounds that are now known to be equivalent to admitting a

successful exact coupling. The equivalence is deep in nature and work on

it spans several papers. The equivalence is neatly presented in Thorisson’s

work [Tho00], see Theorem 9.4 in Chapter 4, Section 9.5. Coupling proofs

of the spread out case and discrete case on R using more modern notation

are given in [Tho00] and [Arn10] respectively, and the proofs in these two

sources were the main starting points for the proof of the general case for

any step-length distribution given in this chapter.
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Chapter 4

Doeblin Trees

The first incarnation of the Propp and Wilson [PW96] coupling from

the past (CFTP) algorithm was designed to build a perfect sample from

the stationary distribution π of an irreducible and aperiodic Markov chain

on a finite state space S. It uses a Doeblin-type coupling of a family of

copies of the Markov chain started in all possible states at all possible times,

whereby when two chains meet, they merge. This coupling is represented

with a random directed graph on Z × S depicting the trajectories of these

Markov chains. Below, this random graph will be referred to as theDoeblin

graph of the chain. It will be shown that the Doeblin graph admits a

unimodularizable subgraph, and, when the graph is a tree, this fact is used

to show the existence and uniqueness of a bi-infinite path in the graph that

is recurrent both forwards and backwards in time, which is in-turn used to

determine other properties of the Doeblin graph and of Markov chains in

general, particularly in relation to this recurrence property.

Prior to this research, the study of this randomgraph has beenmostly

a by-product of research on perfect simulation. In 1992–1993, Borovkov

and Foss [BF92, BF94] laid out the framework of stochastically recursive se-
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quences (SRS), of which Markov chains are a special case, and they proved

the main results on the existence of a stationary version of an SRS to which

non-stationary versions converge in a certain sense. The CFTP algorithm

itself was introduced by Propp and Wilson in 1996 in [PW96] for obtaining

samples from the stationary distribution of a Markov chain. The CFTP algo-

rithm can be seen as a specialization of the general ideas of [BF92] for SRS to

theMarkov case aiming at perfect simulation. Foss and Tweedie [FT98] then

gave a necessary and sufficient condition for the CFTP algorithm to con-

verge a.s. From 1996 to 2000, many papers [PW98a, MG98, PW98b, Ken98,

Fil99, HN99, HvLM99, Møl99, KM00, Wil00, Men00] investigated how to

improve CFTP implementations or how to apply CFTP or a CFTP-inspired

algorithm to obtain a perfect sample from a particular Markov chain’s sta-

tionary distribution. Of particular importance is Wilson’s read-once CFTP

algorithm [Wil00], which allows CFTP to be done by only simulating for-

wards in time. A review of perfect simulation in stochastic geometry up

to that point is provided in [Møl01]. Since then, [Ken04, CK07] showed

that (possibly impractical) generalizations of the CFTP algorithm can be ap-

plied under weaker conditions, and [FK03] gives a CFTP-like algorithm that

applies even in the non-Markovian setting.

In this chapter, focus is shifted away from finding an individual sam-

ple from the stationary distribution of a Markov chain, and instead prop-

erties of the Doeblin graph as a whole are studied. The SRS framework

will be used, but, because the Markov case is a fundamental special case,
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most sections will spell out what can be said in the Markov case. The main

tool of study is the theory of unimodular random (rooted) networks in the

sense of Aldous and Lyons [AL07]. Unimodular networks are rooted net-

works where, heuristically, the root is picked uniformly at random. In order

to generalize this concept for infinite networks, instead of picking the root

uniformly at random, the network is required to satisfy a mass-transport

principle. The primary new object of study is the subgraph of bridges be-

tween a fixed recurrent state, which is referred to as the bridge graph for this

state and is roughly inspired by the population process in [BS18]. The sub-

graph is defined by looking at processes started at any time from this fixed

state. General setup and definitions of the Doeblin graph and the bridge

graph are given in Section 4.1 along with how to view the bridge graph as a

random network. The main theorem is then proved in Section 4.2.

Section 4.2.1 proves the main theorem, identifying the unimodular

structure in the bridge graph. Section 4.2.2 studies properties of the bridge

graph that are inherited due to its I/F component structure as a unimodular

network. Here I/F refers to the class of a component in the sense of the foil

classification theorem in unimodular networks in [BHMK18], which was

reviewed in Section 2.4. The most interesting case is when S is infinite and

the Doeblin graph is connected. In this case (see Corollary 4.2.8), although

there may be infinitely many bi-infinite paths in the Doeblin graph, there

exists a unique bi-recurrent path, a bi-infinite path that visits every state

infinitely often in the past, as well as in the future. This unique path also
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has the property that the states in S that the path traverses form a stationary

version of the original Markov chain (or SRS), and hence give samples from

its stationary distribution. Indeed, the original CFTP algorithm ultimately

computes the time zero point on the bi-recurrent path. By embedding

Markov chains inside Doeblin graphs, bi-recurrence is also shown to be a

decisive property for Markov chains indexed by Z. Theorem 4.2.11 shows

that if a Markov chain (Xt)t∈Z has an irreducible, aperiodic, and positive

recurrent transition matrix, then (Xt)t∈Z is stationary if and only if it is bi-

recurrent for any (and hence every) state. The I/F structure of a component

leads to further useful qualitative properties discussed in Section 4.2.2. In

reversed time, the bridge tree can be seen as a multi-type branching-like

process where the types are the elements of S, and for which there is at

most one child of each type per generation. The nodes in this branching

process are either mortal (i.e., with finitely many descendants) or immortal

(resp. infinitely many). The mortal descendants of the nodes on the bi-

infinite path form a stationary sequence of finite trees. Mean values in

these trees are linked to coupling times by mass-transport relations. Finally,

Section 4.2.3 gives results that are relevant to simulating the bridge graph,

such as approximating the bridge graph by finite networks, and viewing the

process of vertical slices of the bridge graph as a Markov chain in its own

right.
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4.1. The Doeblin Graph
4.1.1. Definition

In this section, the Doeblin graph is constructed. Fix a probability

space (Ω, F , P), a countable state space S, and a complete separable metric

space Ξ for the remainder of the chapter. The first ingredient needed is a

pathwise transition generator, a function hgen : S×Ξ→ S that will be used

for determining transitions between states of S. Such an hgen, combined

with a driving sequence (ξt)t∈N, is used to give a pathwise representation

of a stochastic process (Xt)t∈N satisfying

Xt+1 :� hgen(Xt , ξt), t > 0. (4.1)

Equation (4.1) is the defining property of a stochastically recursive sequence

(SRS) in the sense of Borovkov and Foss [BF92]. If the driving sequence is

taken to be i.i.d. and independent of X0, then (Xt)t∈N is a (discrete time)

Markov chain with transition matrix P � (px ,y)x ,y∈S determined by px ,y :�

P(hgen(x , ξ0) � y) for each x , y ∈ S. It is a classical result that, when

Ξ :� [0, 1], all possible transition matrices P can be achieved by choosing

hgen and the distribution of ξ0 accordingly (c.f. Chapter 17 in [Bor13]). Many

processes in this chapter will be indexed by Z or an interval of Z instead of

just N. The pathwise transition generator hgen and a stationary and ergodic

bi-infinite driving sequence ξ :� (ξt)t∈Z, are fixed for the remainder of the

chapter. The notation for the transition matrix P � (px ,y)x ,y∈S is also fixed

for the remainder of the chapter, even when ξ is not assumed to be i.i.d.
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The space Z × S should be thought of as time and space coordinates,

with (t , x) ∈ Z×S being in state x at time t. The vertices and edges of a graph

Γwill be written V(Γ) and E(Γ), and if V(Γ) ⊆ Z × S, the vertices of Γ sitting

at a particular time t or in a particular state x will be denoted, respectively,

as

Vt(Γ) :�
{
(s , y) ∈ V(Γ) : s � t

}
, Vx(Γ) :�

{
(s , y) ∈ V(Γ) : y � x

}
. (4.2)

Note that Vt(Γ) and Vx(Γ) are subsets Z × S, i.e. their elements have both

a time component and a space component. If instead just states (elements

of S) or just times (elements of Z) are desired, then the following are used

instead

Γt :�
{

y ∈ S : (t , y) ∈ Vt(Γ)
}
, Γx :� {s ∈ Z : (s , x) ∈ Vx(Γ)} . (4.3)

Then the Doeblin graph G � G(hgen, ξ) is constructed as follows. It

has vertices V(G) :� Z × S. The edges of G are determined by the follow

map f+ : V(G) → V(G), which is a random map giving directions of where

each vertex should move to in the next time step. It is defined by

f+(t , x) :� (t + 1, hgen(x , ξt)), (t , x) ∈ Z × S. (4.4)

That is, let the edges of G be drawn from each (t , x) ∈ Z × S to f+(t , x). By

saying a function f : A→ B is a randommap, it is meant that f : A×Ω→ B

is measurable and the second argument will be omitted. Iterates of f+ are

denoted by f n
+ for n > 0. Thinking of each vertex in G as an individual,

one may also interpret the follow map as mapping each vertex to its unique

parent vertex.
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4.1.2. Modeling

When dealing with paths in G, it will often be convenient to ignore

the time coordinate and focus only on the space coordinate. If (Xt)t∈I is

a stochastic process defined on Ω that takes values in S and is such that

(t ,Xt)t∈I is a.s. a path in G over some fixed time interval I ⊆ Z, then (Xt)t∈I

is called the state path (in G) corresponding to the path (t ,Xt)t∈I . That

is, there are two ways of looking at every route through G: as a path

(t ,Xt)t∈I ⊆ V(G), or as a state path (Xt)t∈I ⊆ S.

Lemma 4.1.1. Let I , ∅ be an interval in Z. Suppose that (Xt)t∈I is a stochastic

process taking values in S a.s. satisfying the recurrence relation Xt+1 � hgen(Xt , ξt)

for each inf I 6 t < sup I, where hgen and (ξt)t∈I are the same as are used to define

G. Then (Xt)t∈I is a state path in G.

Proof. One must check that (t ,Xt)t∈I is a.s. a path in G. Fix t ∈ I. Since

V(G) � Z × S, (t ,Xt) is certainly a vertex of G. If t + 1 ∈ I as well, one must

check the edge e from (t ,Xt) to (t + 1,Xt+1) is a.s. an edge in G. The edges

of G are defined to be from each (t , x) ∈ Z × S to (t + 1, hgen(x , ξt)), so the

relation Xt+1 � hgen(Xt , ξt) holding a.s. implies the edge e is a.s. an edge of

G. �

In particular, Lemma 4.1.1 says that any SRS whose driving sequence

is defined for all times in Z can be seen as living inside a Doeblin graph,

namely the one generated by its driving sequence and choosing hgen to be

the same as in the definition of the SRS.
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State paths started at a deterministic vertex will also be used heavily.

For the remainder of the chapter, let F(t ,x) :� (F(t ,x)s )s>t ⊆ S be the state

path in G started at time t in state x, i.e., F(t ,x) is a re-indexing of the states

traversed by f+ defined by

(s , F(t ,x)s ) � f s−t
+ (t , x), (t , x) ∈ Z × S, s > t . (4.5)

One has that F(t ,x) is a version of the SRS or Markov chain started in state x

with initial condition given at time t. Generally speaking, throughout the

chapter, a parenthesized superscript, as in F(t ,x), refers to a starting location.

For every x ∈ S, the distribution of (F(t ,x)s+t )s>0 does not depend on t because

ξ is stationary. An example of a Doeblin graph and path of F(t ,x) are drawn

in Figure 4.1.

It has already been noted (see [Bor13]) that a Markov chain (Xt)t∈N
with any given desired transition matrix can be constructed as an SRS with

i.i.d. driving sequence. The following is an analogous result saying that any

Markov chain (Xt)t∈Z may be realized as a state path in a Doeblin graph

with i.i.d. driving sequence. Note here that the time index set is all of Z, not

just N.

Theorem 4.1.2. Suppose that (Xt)t∈Z is a Markov chain with transition matrix

P on some probability space, where P is the same as was defined for the Doeblin

graph G. Also suppose the driving sequence ξ is i.i.d. Then there is a probability

space (Ω′, F ′, P′) and (X′t)t∈Z ∼ (Xt)t∈Z on Ω′ such that (X′t)t∈Z is state path

in G′, where G′ is the Doeblin graph generated by some i.i.d. driving sequence
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Figure 4.1: An example of a Doeblin graph with the path corresponding to
the state path F(t ,x) distinguished. All edges are directed from left to right.

ξ′ � (ξ′t)t∈Z ∼ ξ inΩ′ with pathwise transition generator hgen. Moreover, for each

t ∈ Z, X′t is independent of (ξ′s)s>t .

Proof (sketch). Consider a probability space housing independent copies of

(Xt)t∈Z and G. Then consider for each t ∈ Z the state path in G started at

Xt . The distributions of these state paths determine a consistent set of finite

dimensional distributions for the desired pair of processes ((X′t)t∈Z, (ξ
′
t)t∈Z).

By the Kolmogorov extension theorem, the result follows. The full proof

of Theorem 4.1.2 is given in Appendix A.
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4.1.3. Basic Properties

Plainly, G is acyclic as an undirected graph because all outgoing

edges point forward one unit in time and each vertex has only one outgoing

edge. When G is a.s. connected, it is called a Doeblin Eternal Family Tree

or a Doeblin EFT for short. More generally, G may have up to countably

many components and is referred to as a Doeblin Eternal Family Forest

or Doeblin EFF. The EFT and EFF terminology is inspired by [BHMK18]

and the word eternal refers to the fact that every vertex of G has a unique

outgoing edge. That is, every individual has exactly one parent. An EFF is

a more general object than an EFT, i.e. an EFF may also be an EFT.

If the driving sequence ξ is i.i.d., so that the state paths F(t ,x) for

each (t , x) ∈ Z × S are Markov chains, then say that G is Markovian. If ξ

is such that for each t ∈ Z, ( f+(t , x))x∈S is an independent family, then G

is said to have vertical independence. If G is Markovian and has vertical

independence, then say that G has fully independent transitions.

Some later results are only valid for EFTs, so the following result gives

an easy case when G can be shown to be connected.

Proposition 4.1.3. Suppose G has fully independent transitions, and P is irre-

ducible and positive recurrent with period d. Then a.s. G has d components. In

particular, if P is irreducible, aperiodic, and positive recurrent, then G is an EFT.

Proof (sketch). The case of a general d is reduced to d � 1 by viewing the

chain only every d steps and with state space restricted to one of the d
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classes appearing in a cyclic decomposition of the state space. Consider the

state paths in G started at (0, x) and (0, y) for any two x , y. Strictly before

hitting the diagonal of S×S, the pair of state paths has the same distribution

as a product chain, i.e. two independent copies of the chain with one

started at x and the other at y. The product chain is irreducible, aperiodic,

and positive recurrent, and therefore a.s. hits the diagonal, showing the

state paths started at (0, x) and (0, y) eventually merge. The full proof

of Proposition 4.1.3 is given in Appendix A.

A ξ-measurable subgraph Γ � Γ((ξt)t∈Z) ofG is called shift-covariant

if, for all s ∈ Z, Γ((ξt+s)t∈Z) is a.s. the time-translation of Γ by −s. Say a

state path (Xt)t∈Z is shift-covariant if the corresponding path in G is shift-

covariant. In other words, if the driving sequence ξ is translated by some

amount s in time, then shift-covariant objects are also translated in time by

the same amount. Let E ∈ F be ξ-measurable, say 1E � g((ξt)t∈Z). Say that

E is shift-invariant if g((ξt)t∈Z) � g((ξt+1)t∈Z) a.s. That is, shift-invariant

events are those events whose occurrence is unaffected by time translations

of the driving sequence ξ. One has that P(E) ∈ {0, 1} for all shift-invariant

events E due to the ergodicity of ξ. All of the following are shift-invariant

andhence happenwith probability zero or one: G is locally finite,G contains

no cycles,G is connected,G has exactly n ∈ N∪{∞} components,G contains

exactly n ∈ N ∪ {∞} bi-infinite paths. Generally it will be obvious whether

an event is shift-invariant.
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When G is a Markovian, one needs to be cautious that not all state

paths in G are Markov chains with transition matrix P.

Example 4.1.4. Let S :� Z and suppose G has fully independent transitions

with px ,x−1 � px ,x � px ,x+1 �
1
3 for all x ∈ S. Choose X0 to be the smallest

element of Z (in some well-ordering of Z) such that F(0,X0)
1 � F(0,X0)

2 . In this

case, a.s. X1 � X2, so (Xt)t∈N is not even Markovian.

The problem with the path in the previous example is that it looks

into the future. Namely, the value of X0 depends on information at time 1

and time 2. To exclude state paths like those in Example 4.1.4, the notion of

properness is introduced. For a nonempty interval I of Z, if for each t ∈ I,

Xt is independent of (ξs)s>t , then (Xt)t∈I is called a proper state path. In the

Markovian case, if I has aminimumelement t0, then to show that a state path

(Xt)t∈I is proper it is sufficient that Xt0 is independent of (ξs)s>t0 because for

any s ∈ N, Xt0+s is measurable with respect to the σ-algebra generated by

Xt0 and ξt0 , . . . , ξt0+s−1. Unlike general state paths in G, proper state paths

inherit a Markov transition structure.

Lemma 4.1.5. Suppose G is Markovian. If (Xt)t∈I is a proper state path in G over

a nonempty interval I ⊆ Z, then (Xt)t∈I is a Markov chain with transition matrix

P.

Proof. Fix t < sup I. Let E :� {Xt � xt , . . . ,Xt−k � xt−k} be given with k ∈ N

such that t − k > inf I, and xt , . . . , xt−k ∈ S. Note that whether E occurs is
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a function of Xt−k and ξt−k , . . . , ξt−1, so the fact that Xt−k is independent of

(ξs)s>t−k and the fact that ξ is i.i.d. imply that E is independent of (ξs)s>t .

Then for any x ∈ S,

E[1{Xt+1�x}1E] � E[1{h(xt ,ξt)�x}1E]

� P(h(xt , ξt) � x)P(E)

� pxt ,xP(E)

� E[pXt ,x1E].

Since E was an arbitrary cylinder set, it follows that for all x ∈ S,

P(Xt+1 � x | (Xs)s∈I ,s6t) � pXt ,x .

Thus (Xs)s∈I is a Markov chain with transition matrix P. �

4.1.4. Connections with CFTP

Consider the following structural result that will be expanded upon

in Section 4.2.2. It is a special case of Proposition 4.2.7 and Corollary 4.2.8,

which will be proved later.

Proposition 4.1.6. Suppose G is Markovian, and that P is irreducible, aperiodic,

and positive recurrent. Then a.s. in every component of G there exists a unique

bi-infinite path that visits every state in S infinitely often in the past. All other

bi-infinite paths in G do not visit any state infinitely often in the past. If G is an

EFT, then with βt denoting the state at time t of the unique bi-infinite path visiting

every state infinitely often in the past, one has that (βt)t∈Z is a stationary Markov
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chain with transition matrix P, so that βt ∼ π for all t ∈ Z, where π is the invariant

distribution for P.

The main result of the original Propp andWilson paper can be trans-

lated into the language of Doeblin EFFs and summarized as follows. The

reader is encouraged to ponder what it says about the structure of G, and in

doing so one sees that is has much the same spirit as Proposition 4.1.6.

Proposition 4.1.7 (Perfect Sampling [PW96]). If S is finite and G is Markovian

and an EFT (which necessitates that P is irreducible and aperiodic), then there is an

a.s. finite time τ such that all paths in G started at any time t 6 −τ have merged

by time 0, all reaching a common vertex (0, β0). Moreover, β0 ∼ π, where π is

the stationary distribution of P, and there is an algorithm A that a.s. terminates in

finite time returning β0.

Remark 4.1.8. In fact, the β0 appearing in Proposition 4.1.7 and the β0 appearing

in Proposition 4.1.6 are the same. That is, the perfect sampling algorithm A is

ultimately computing the point in G on the unique bi-infinite path and returning

its state. This can be seen by the fact that, since all paths started at time −τ reach

the common vertex (0, β0), any bi-infinite path in G must also pass through (0, β0).

However, what is notably absent in Proposition 4.1.6 is any mention of an algorithm

to compute β0. Whether such an algorithm exists in general is not studied in the

present research.
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4.1.5. Bridge Graphs

Theprimary tool used in this chapterwill be the theory of unimodular

networks in the sense of [AL07]. Local finiteness is essential in the theory of

unimodular networks, but the Doeblin graph G may not be locally finite, as

the following result shows.

Proposition 4.1.9. If
∑

x∈S px ,y < ∞ for all y ∈ S, then G is a.s. locally finite. If

G has fully independent transitions and for some y ∈ S,
∑

x∈S px ,y � ∞, then G is

a.s. not locally finite.

Proof. Both statements follow from the Borel-Cantelli lemmas. That is, for

any fixed (t , y) ∈ Z × S, if
∑

x∈S px ,y < ∞, then a.s. one has that only finitely

many of the events
{

f+(t − 1, x) � (t , y)
}

x∈S occur, showing (t , y) has finite

in-degree, and hence finite degree, in G. On the other hand, if G has fully

independent transitions and for some fixed (t , y) ∈ Z×S one has
∑

x∈S px ,y �

∞, then a.s. infinitely many of the events
{

f+(t − 1, x) � (t , y)
}

x∈S occur, so

that (t , y) has infinite degree. �

The remedy taken here is to instead concentrate on particular sub-

graphs of G. In this section, subgraphs are introduced that are locally finite

under a positive recurrence assumption and turn out to have nice properties

when considered as random networks.

For each (t , x) ∈ Z × S, and each y ∈ S, let

τ(t ,x)(y) :� inf
{
s > t : F(t ,x)s � y

}
, σ(t ,x)(y) :� τ(t ,x)(y) − t (4.6)
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be, respectively, the return time and time until return of F(t ,x) to y. The

word return is used even when y , x, in which case it may be that F(t ,x)

is not part of a state path that has visited y before time t. Note that the

distribution of σ(t ,x)(y) does not depend on t because ξ is stationary. Call a

state x ∈ S positive recurrent if E[σ(0,x)(x)] < ∞ or recurrent if σ(0,x)(x) < ∞

a.s. In the Markovian case these are the usual definitions. If a state x ∈ S is

recurrent, then indeed for every t ∈ Z, F(t ,x) visits x infinitely often.

For each fixed x ∈ S, consider the subgraph B(x) of G of all paths

starting from state x at any time. That is, B(x) is the subgraph of G with

V(B(x)) :�
⋃
t∈Z

{
(s , F(t ,x)s ) : s > t

}
�

⋃
t∈Z

{
f n
+ (t , x) : n > 0

}
. (4.7)

Call B(x) the bridge graph for state x and refer to it as either a bridge

EFF or bridge EFT depending on whether it is a forest or a tree. Note that

one of these possibilities happens with probability 1 because the number of

components in B(x) is shift-invariant.

Assumption 4.1.10. For the remainder of the chapter, assume there exists a positive

recurrent state x∗ ∈ S, which is fixed, and the notationB :� B(x∗) refers to the bridge

graph for state x∗.

An example bridge graph appears in Figure 4.2. Equivalently, B can

be described in terms of descendants of vertices, viewing directed edges in

G as pointing from a vertex to its parent. For each (t , y) ∈ Z × S, define the
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Figure 4.2: An example bridge graph, in this case for state x∗ � 0, sitting
inside the Doeblin graph.

descendants of (t , y) in G to be

D(t ,y) :�
{
(s , x) ∈ Z × S : F(s ,x)t � y

}
. (4.8)

Then B is also the subgraph of G with

V(B) �
{
(t , y) ∈ Z × S : ∃s , (s , x∗) ∈ D(t ,y)

}
.

That is, B is the subgraph of G generated by vertices that have some descen-

dant in state x∗. In particular, recalling the notation (4.3),

y ∈ Bt ⇐⇒ ∃s , x∗ ∈ D(t ,y)s , (t , y) ∈ Z × S. (4.9)
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Lemma 4.1.11 shows that if G is a.s. connected, then B is too.

Lemma 4.1.11. If u , v ∈ V(B) are in the same component of G, then they are in

the same component of B. In particular, if G is an EFT, then B is an EFT.

Proof. Consider times s , t ∈ Z. Suppose (s , x∗) and (t , x∗) are in the same

component of G. Then F(s ,x
∗) and F(t ,x

∗) meet at some point. But, by def-

inition, the paths of F(s ,x
∗) and F(t ,x

∗) are included in B. Hence (s , x∗) and

(t , x∗) are in the same component of B. Now if u , v ∈ V(B) are in the same

component of G, u is in the same component in G as some (s , x∗) and v

is in the same component of G as some (t , x∗), and (s , x∗) and (t , x∗) are in

the same component of B by the previous part. Hence u , v are in the same

component of B. �

The condition that B is an EFT is equivalent to strong coupling con-

vergence (defined and studied in [BF92, BF94, FK03]) of F(0,x
∗) to a stationary

version of the SRS. However, simple conditions for B to be an EFT are not

known outside of the fully i.i.d. Markovian case, where Proposition 4.1.3

showed that if P is irreducible, aperiodic, and positive recurrent, then G is

an EFT. Another (not necessarily easy to check) condition for B to be an EFT

will be given in Corollary 4.2.9.

The main tool used in this chapter is unimodularity of random net-

works. The first form of unimodularity used is stationarity, i.e., the uni-

modularity of the deterministic network Z rooted at 0 and with neighboring

integers connected. Unimodularity of Z gives a helpful way to reorganize
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proofs based on stationarity in terms of transportingmass between different

times. Recall that a (measurable) group action θ : Z ×Ω→ Ω of Z on Ω is

called P-invariant if P(θt ∈ ·) � P for all t ∈ Z. The shift operator on ΞZ is an

example of such an action.

Lemma 4.1.12 (Mass-transport Principle for Z). Suppose w : Z × Z→ R>0 is

a random map. Also suppose θ : Z ×Ω→ Ω is a P-invariant Z-action on Ω, and

that the two are compatible in the sense that w(s , t) ◦ θr � w(s + r, t + r) almost

surely for each s , t , r ∈ Z. Then with w+ :�
∑

t∈Z w(0, t) and w− :�
∑

s∈Z w(s , 0),

one has

E[w+] � E[w−]. (4.10)

Proof. One calculates

E[w+] �
∑
t∈Z

E[w(0, t)] �
∑
t∈Z

E[w(0, t) ◦ θ−t] �
∑
t∈Z

E[w(−t , 0)] � E[w−]

as desired. �

The mass-transport principle for Z immediately gives the following.

Proposition 4.1.13. For all t ∈ Z, E[#Bt] 6 E[σ(0,x∗)(x∗)]. In particular, B is a.s.

locally finite, even if G itself is not.

Proof. Without loss of generality, Ω is the canonical space ΞZ, with the

driving sequence (ξt)t∈Z being coordinate maps. Then θ : Z × Ω → Ω

defined by θs((ξt)t∈Z) :� (ξs+t)t∈Z is a P-invariant measurable Z-action on
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Ω. Choose the mass-transport w(s , t) :� 1{σ(s ,x∗)(x∗)>t−s>0}. The fact that one

has σ(s ,x∗)(x∗)◦θr � σ(s+r,x∗)(x∗) for all s , t , r ∈ Z implies w is compatiblewith

θ. Then w+ � σ(0,x
∗)(x∗) − 1, and w− � #

{
s < 0 : σ(s ,x∗)(x∗) > |s |

}
> #B0 − 1,

where this inequality follows from the fact that for every y ∈ B0 \ {x∗}, there

is s < 0 such that σ(s ,x∗)(x∗) > |s | and F(s ,x
∗)

0 � y. Thus the mass-transport

principle for Z gives E[σ(0,x∗)(x∗) − 1] > E[#B0 − 1], from which the result

follows. �

The proof style of Proposition 4.1.13 may be repeated in many differ-

ent ways and the boilerplate setup of the proof can be mostly omitted once

one understands the flow of the proof. The shortened version of the proof of

Proposition 4.1.13 is given to exemplify how much can be omitted without

losing the main idea.

Proof (shortened). Let the mass-transport w(s , t) send mass 1 from s to all

times t strictly after s and strictly before F(s ,x
∗) returns to x∗. Then w+ �

σ(0,x
∗)(x∗) − 1 and w− � #

{
s < 0 : σ(s ,x∗)(x∗) > |s |

}
> #B0 − 1, where this

inequality follows from the fact that for every y ∈ B0 \ {x∗}, there is s < 0

such that σ(s ,x∗)(x∗) > |s | and F(s ,x
∗)

0 � y. The mass-transport principle

finishes the claim. �

One now sees the versatility of using even the simplest form of uni-

modularity. A list of mass-transports and the results they give, all by follow-

ing the same proof style, appears in Section A.2 in Appendix A. Some of the

mass-transports give new results, and others recover well-known results,
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such as fact that π(y)/π(x∗) is the expected number of visits of a Markov

chain started at x∗ to y before returning to x∗, and 1/π(x∗) is the expected

return time of a Markov chain started at x∗ to return to x∗, where π is the

invariant distribution for the Markov chain. The next section shows how

to embed subgraphs of G as random networks, so that eventually one may

find a unimodular structure inside G.

4.1.6. Embedding Subgraphs of the Doeblin Graph as Random Net-
works

In order to view a subgraph of G as a random network, one must

ensure the subgraph is nonempty, locally finite, connected, and a root o has

been suitably chosen. Since the vertices of G come from the fixed countable

spaceZ×S, the following setupwill help toverify all the technicalities. Before

proceeding, the reader may wish to recall the notation used for random

networks that was established in Section 2.4.

Let V :� Z × S and suppose that

Γ : Ω→ {0, 1}V × ΞV × {0, 1}V×V × ΞV×V
�: ( fV , ξV , fE , ξE) (4.11)

is measurable (where the codomain is given its product topology and corre-

sponding Borel σ-algebra). Then Γ(ω) can be considered for each ω ∈ Ω as a

(possibly empty, possibly not locally finite, possibly disconnected) network

in the following way. For each u , v ∈ V , interpret:

(i) fV(v) as the indicator that v ∈ V(Γ),
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(ii) fE(u , v) as the indicator that the edge {u , v} ∈ E(Γ),

(iii) ξV(u) as the mark of u, and

(iv) ξE(u , v) as the mark of the vertex-edge pair (u , {u , v}).

That is, use items (i) to (iv) to define V(Γ), E(Γ), and the marks of vertices

and edges in Γ. Note that fE must be symmetric because edges are not

directed, but ξE may not be, since each edge is associated with two marks,

one per vertex. If one wants to consider directed edges, one instead uses

undirected edges and uses themarks on edges to specifywhich direction the

edge should point. The definition of ξV(u)when u < V(Γ) is irrelevant, and

similarly for the definition of fE(u , v) and ξE(u , v) if either of u or v is not

in V(Γ). All statements about the network defined by Γ are then translated

into statements about the maps ( fV , ξV , fE , ξE). For instance,

{Γ is not empty} �

{∑
v∈V

fV(v) > 0

}
.

This is exactly the kind of construction used to define the Doeblin graph G.

In the case of G,

(i) fV � 1 on Z × S,

(ii) fE ((t , x), (t + 1, h(x , ξt))) � fE ((t + 1, h(x , ξt)), (t , x)) � 1 for all (t , x) ∈

Z × S and fE � 0 otherwise,

(iii) ξV(t , x) � ξt for all (t , x) ∈ Z × S, and
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(iv) ξE ((t , x), (t + 1, h(x , ξt ,x))) � 1 for all t ∈ Z, x ∈ S to indicate the edge

is directed forwards in time.

This construction also works for the bridge graph B as well. When a Γ has

been constructed as in this section, one can see Γ as a random network after

any measurable choice of root, given that it is nonempty and locally finite.

Lemma 4.1.14. Suppose Γ � ( fV , ξV , fE , ξE) is as above and a.s. Γ is nonempty,

locally finite, and connected. Then for any measurable choice of root o ∈ V(Γ),

[Γ, o] is a random network.

Proof (sketch). Write the event that [Γ, o] is within ε > 0 of some fixed

network [Γ, o] as a countable union over rooted isomorphic copies (Γ′, o′) of

(Γ, o)with vertices in V of the event that o � o′, the neighborhood of radius

d1
ε e around o is exactly Γ′, and the marks ξV(u) for u ∈ V(Γ′) and ξE(v , w)

for {v , w} ∈ E(Γ′) are within ε of the corresponding vertex and edge marks

of (Γ′, o′). Each of these conditions individually are written in terms of

events using the maps fV , ξV , fE , ξE, showing the desired measurability of

ω 7→ [Γ(ω), o(ω)]. The full proof of Lemma 4.1.14 given in Appendix A.

Thus indeed G may be seen as a random network when rooted and

marked, assuming it is locally finite and connected. But the question remains

whether this may be done in such a way as to make G unimodular. The

first approach one might take is to investigate whether G, rooted at (0,X0)

for some (random) choice of X0 ∈ S, is unimodular. Two natural choices,
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at least in the standard CFTP setup, are to take X0 to be the output of the

CFTP algorithm, or to take X0 to be independent of G. For simplicity, the

“standard” CFTP setup refers to the case where G has fully independent

transitions, S is finite, and the CFTP algorithm succeeds a.s. The following

proposition determines when G can be unimodular under the previous

choices of X0.

Proposition 4.1.15. Suppose G is an EFT, that G has each (t , x) ∈ V(G) marked

by (x , ξt), and that X0 is a random choice in S. Then the following hold:

(a) If [G, (0,X0)] is unimodular, then S is finite and X0 is uniformly distributed

on S.

(b) If X0 is independent of G and uniformly distributed on a finite S, then

[G, (0,X0)] is unimodular.

(c) If X0 is the output of the CFTP algorithm in the standard CFTP setup, then

[G, (0,X0)] is unimodular if and only if S has a single element.

Proof (sketch). The first point follows by constructing for each x , y ∈ S a

mass-transport that, when applied to G, sends mass 1 within vertical slices

of G from the vertex in state x to the vertex in state y. Unimodularity then

gives P(X0 � x) � P(X0 � y). The second point follows from the definition

of unimodularity. The third point follows by noting that the output of the

CFTP algorithm has at least one child, but unimodularity implies that it

must have one on average, so a.s. it has one child. A nonempty tree where
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every vertex has one incoming and one outgoing edge is isomorphic to Z,

so S can only have one state. The full proof of Proposition 4.1.15 is given in

Appendix A.

While choosing X0 uniformly distributed on S and independent of

G works when S is finite, unimodularity of the whole G is doomed in the

general case, as there is no uniform distribution on an infinite S. This is the

reason for introducing the bridge graph B, which is locally finite. However,

the bridge graphmay still not be connected, so a spine is added to it to make

it connected. Recall that x∗ is the fixed positive recurrent anchor state for B.

Corollary 4.1.16. Let B be B with spine added, i.e. with edges from each (t , x∗) to

(t + 1, x∗) for all t ∈ Z added. Then for any measurable marks and any measurable

choice of root o ∈ V(B), [B, o] is a random network.

Proof. One has that (0, x∗) ∈ V(B), so B is nonempty. Also B is locally

finite by Proposition 4.1.13 and the fact that adding the spine has increased

the degree of each vertex by at most two. Finally, since each v ∈ V(B) is

connected to some (t , x∗), and the spine in B connects all such vertices, B is

connected. Lemma 4.1.14 finishes the claim. �

Everything is in place to see the unimodular structure hidden in G,

which is handled in the next section.
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4.2. Unimodularizability and its Consequences
4.2.1. Unimodularizability of the Bridge Graph

The following result identifies the unimodular structure inside G.

For the rest of the chapter, each (t , y) ∈ V(B) is marked by (y , ξt) whenever

considered as a vertex in a rooted network.

Theorem 4.2.1. Any random network with distribution

P�(A) :� 1
E[#B0]

E


∑
w∈V0(B)

1{[B,w]∈A}

 , A ∈ B(G∗). (4.12)

is unimodular. The spine need not be added and B may also be used instead of B if

B is already connected.

One may interpret the distribution P� as a size-biased version of the

network obtained by starting with B and selecting the root uniformly from

B0.

Proof. ByCorollary 4.1.16,Bwithmarks as specified and any choice of root is

a random network. Therefore, all the quantities in the following calculation

are measurable. Let g : G∗∗→ R>0 be given. One has∫
G∗

∑
v∈V(Γ)

g[Γ, o , v]P�(d[Γ, o])

�
1

E[#B0]
E

∑
y∈B0

∑
v∈V(B)

g[B, (0, y), v]

�
1

E[#B0]
∑

y ,y′∈S,t∈Z
E

[
1{(0,y),(t ,y′)∈V(B)}g[B, (0, y), (t , y′)]

]
.
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Stationarity on Z implies the right hand side is equal to

1
E[#B0]

∑
y ,y′∈S,t∈Z

E
[
1{(−t ,y),(0,y′)∈V(B)}g[B, (−t , y), (0, y′)]

]
�

1
E[#B0]

∑
y ,y′∈S,t∈Z

E
[
1{(t ,y),(0,y′)∈V(B)}g[B, (t , y), (0, y′)]

]
�

1
E[#B0]

E
∑

y′∈B0

∑
v∈V(B)

g[B, v , (0, y′)]

�

∫
G∗

∑
v∈V(Γ)

g[Γ, v , o]P�(d[Γ, o]).

Thus P� is the distribution of a unimodular network. �

The view of P� as a size-biased version of a network is formalized in

the following.

Proposition 4.2.2. Let o be, conditionally on V0(B), uniformly distributed

on V0(B) and independent of B. Then under the size-biased measure P̂(E) :�
1

E[#B0]E[#B01E] for each E ∈ F , the random network [B, o] has the distribution P�.

Proof. In what follows, V ranges over the sets for which P(V0(B) � V) > 0,

of which there are at most countably many because B0 is a.s. a finite subset

of the countable S. For any A ∈ B(G∗) and with C :� E[#B0],

P̂([B, o] ∈ A)

�
1
C

E[#B01{[B,o]∈A}]

�
1
C

∑
V

|V | P(V0(B) � V)P([B, o] ∈ A | V0(B) � V)

�
1
C

∑
V

∑
v∈V

|V | P(V0(B) � V)P(o � v , [B, v] ∈ A | V0(B) � V)
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which, by the conditional independence of o and B, is

�
1
C

∑
V

∑
v∈V

|V | P(V0(B) � V) 1
|V |P([B, v] ∈ A | V0(B) � V)

�
1
C

E

[∑
V

∑
v∈V

1{[B,v]∈A,V0(B)�V}

]
� P�(A)

as claimed. �

4.2.2. I/F Component Properties

For any measurable event A ⊆ G∗ in the σ-algebra of root-invariant

events, i.e., such that if [Γ, o] ∈ A then [Γ, v] ∈ A for all v ∈ V(Γ), one has

P�(A) � 1
E[#B0]

E


∑
w∈V0(B)

1{[B,w]∈A}

 �
1

E[#B0]
E

[
#B01{[B,(0,x∗)]∈A}

]
.

This immediately gives the following.

Lemma 4.2.3. One has that P� and P([B, (0, x∗)] ∈ ·) have the same root-invariant

sets of measure 0 or 1. �

Next, a vertex-shift that is designed to follow the arrows in B is

defined. It plays the same role as f+ but is defined for all networks. For

the rest of the chapter, let Φ denote the follow vertex-shift defined on any

network Γ for each u ∈ V(Γ) by ΦΓ(u) :� v if either:

(i) there is a unique outgoing edge from u and this edge terminates at v,

or
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(ii) u is in state x∗ and there is a unique outgoing edge from u that does

not terminate at a vertex in state x∗, and this edge terminates at v.

If neither of the two conditions above ismet for any v ∈ V(Γ), defineΦΓ(u) :�

u for concreteness. Here a vertex is considered to be in a state y ∈ S when

the first component of its mark is y (recall that a vertex (t , y) ∈ V(B) is

marked by (y , ξt)). The second clause in the definition of Φ is there because

of the presence of the spine in B, so that if the root is in state x∗ the vertex-

shift will choose to follow the arrow in B instead of following the arrow

to the next element of the spine, unless the two coincide. By construction,

ΦB(t , x) � f+(t , x) for all (t , x) ∈ V(B).

The event that all Φ-components of a network are of class I/F is root-

invariant, and moreover it has P([B, (0, x∗)] ∈ ·)-probability one because the

Φ-graph of B is B itself, theΦ-components of B are the components of B, and

the Φ-foils of B are subsets of the sets (Vt(B))t∈Z, which are finite. Hence

P� is concentrated on the set of networks having only Φ-components of

I/F class. It follows that any a.s. root-invariant properties that follow from

P� being unimodular and having I/F components automatically apply to

P([B, (0, x∗)] ∈ ·) aswell. Suchpropertieswill be referred to as I/F component

properties and are explored in the rest of the section.

Bi-recurrent Paths

This section studies bi-infinite paths in G and identifies special bi-

infinite paths that have a certain recurrence property backwards in time.
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Firstly, it is possible to have multiple bi-infinite paths in G because G is

disconnected.

Example 4.2.4. Consider the case where S :� {1, 2} and hgen and (ξt)t∈Z
are chosen so that the transition (t , 1) → (t + 1, 2) occurs if and only if

(t , 2) → (t + 1, 1) occurs. In this case G has two components a.s. Each

component is itself a bi-infinite path.

Moreover, even when G is connected, it it still possible to have mul-

tiple bi-infinite paths in G.

Example 4.2.5. Consider the case of S :� N with fully independent tran-

sitions. Let the transition matrix P be determined as follows. In state 0,

transition to a Geom(1/2) random variable, and from any other n , 0, de-

terministically transition from n to n − 1. In this case, from every vertex

(s , x) ∈ Z×S, there is a bi-infinite path (t ,Xt)t∈Z in G for which Xs−k � k + x

for all k > 0. Thus there are infinitely many bi-infinite paths, despite the fact

that in this case G is an EFT, which follows from Proposition 4.1.3.

In Example 4.2.5, even though G is connected, G has infinitely many

bi-infinite paths. However, amongst the bi-infinite paths, there is one special

bi-infinite path. The special path is the unique bi-infinite path that visits

every state infinitely often in the past. It turns out that this is the correct kind

of path to look for in general.
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Definition 4.2.6. A bi-infinite sequence (xt)t∈Z in S is called bi-recurrent

for state x if {t ∈ Z : xt � x} is unbounded above and below. If (xt)t∈Z is bi-

recurrent for every x ∈ S, it is simply calledbi-recurrent. A state path (Xt)t∈I

in G is called bi-recurrent (for state x) if a.s. its trajectory is bi-recurrent (for

state x).

Recall that Φ denotes the follow vertex-shift. The existence of bi-

infinite paths in Φ-components of a network is an I/F component property

as previously defined, and hence one has the following.

Proposition 4.2.7. It holds that B has a unique bi-infinite path in each component

a.s. The corresponding state paths are bi-recurrent for x∗ and these are the only state

paths in all of G that are bi-recurrent for x∗. Moreover, for each y ∈ S, these state

paths either a.s. never visit y, or are bi-recurrent for y.

Proof. By Theorem 2.5.1, P�-a.e. network has a unique bi-infinite path in

each Φ-component, where Φ is the follow vertex-shift. But having a unique

bi-infinite path in each Φ-component is a root-invariant event, and hence

P-a.s. B has a unique bi-infinite path in each Φ-component. Since the Φ-

components of B are the components of B, P-a.s. every component of B

contains a unique bi-infinite path.

Let Π be the covariant partition of Φ-components. Define the covari-

ant subset C on a network Γ by letting CΓ be the subset of vertices of Γ that

are either the first or last visit to a given state y ∈ S, if they exist, on the

unique bi-infinite path in their Φ-component of Γ, if such a path exists. The
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no infinite/finite inclusion lemma, Lemma 2.5.2, implies that P� is concen-

trated on the set of networks Γ with no first or last visit to y on the unique

bi-infinite paths in each Φ-component of Γ. This property is root-invariant

and hence a.s. the state paths corresponding to the unique bi-infinite paths

in each component of B either do not visit state y or are bi-recurrent for y.

Taking a countable union over y ∈ S shows this property holds simultane-

ously for all y ∈ S. Since the unique bi-infinite path in each component of

B at least hits x∗, one may at least conclude the paths are bi-recurrent for

x∗. Finally, there cannot be any other bi-recurrent state paths for x∗ in G

because, by definition, a bi-recurrent state path in G will lie in B since it

visits x∗ at arbitrarily large negative times. �

The next result applies Proposition 4.2.7 to the nicest case, where G

is a tree.

Corollary 4.2.8. Suppose that G is an EFT. Then G contains a unique (up to

measure zero modifications) state path (βt)t∈Z that is bi-recurrent for x∗. Moreover,

there is a version of (βt)t∈Z that is shift-covariant, stationary, and for each t ∈ Z

one has that βt is measurable with respect to σ(ξs : s < t). Additionally, (βt)t∈Z is

bi-recurrent for every x ∈ S that is positive recurrent.

Proof. Proposition 4.2.7 shows that a.s. there is a unique bi-infinite path in

each component of B, and the corresponding state paths are bi-recurrent

for x∗. Since G a.s. has only one component, B does too. The second

part of Proposition 4.2.7 then implies the bi-recurrent state path for x∗ in
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B is the only bi-recurrent state path for x∗ in G. One would like to define

(βt)t∈Z to be the unique bi-recurrent state path for x∗ in G. However, in

that case, (βt)t∈Z would only be defined a.s. For concreteness, define βt

for each t ∈ Z by letting βt :� lims→−∞ F(s ,x
∗)

t on the event that the limit

exists, and βt :� x∗ otherwise. The limit here is in the discrete topology,

so that convergence means eventually constant. On the a.s. event E that B

is connected, #Bt < ∞ for all t ∈ Z, and there is a unique bi-infinite path

in B, one has that (t , βt)t∈Z coincides with the unique bi-infinite path in

B. This is because if, for some t ∈ Z, lims→−∞ F(s ,x
∗)

t does not exist, then

either #Bt � ∞, or there exist two states x , y ∈ S such that (t , x) and (t , y)

have (necessarily disjoint) locally finite infinite trees of descendants in B.

The former case is forbidden on E, and, in the latter case, König’s lemma

would imply the existence of two distinct bi-infinite paths in B, which is

also forbidden on E. Thus lims→−∞ F(s ,x
∗)

t exists for all t ∈ Z on the event

E, and, on this event, the unique bi-infinite path in B must therefore be

(t , βt)t∈Z. The shift-covariance and hence stationarity of (βt)t∈Z follows from

its definition in terms of F(s ,x
∗) for each s ∈ Z. For each t ∈ Z, measurability

of βt with respect to σ(ξs : s < t) also follows from its definition, since each

F(r,x
∗)

t with r 6 t is σ(ξs : s < t)-measurable.

Now let (Yt)t∈Z be the unique bi-recurrent state path for some other

y ∈ S that is positive recurrent. Since G is a.s. connected, (βt)t∈Z and (Yt)t∈Z
eventually merge, a.s. However, stationarity forbids that there is a first time

such that βt � Yt , so it must be that βt � Yt for all t ∈ Z. Thus (βt)t∈Z is
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bi-recurrent for every y ∈ S that is positive recurrent. �

Corollary 4.2.8 shows that, like in the standard CFTP setup, there

is a β0 living at time 0 in G that is a perfect sample from the stationary

distribution of the Markov chain or SRS. However, unlike in the standard

CFTP setup, it is not known whether there is an algorithm that can find β0

in finite time.

Another consequence of the existence of bi-recurrent paths in B is

that one can bound the number of components of B.

Corollary 4.2.9. The a.s. constant number n of components of B is no larger

than min {k : P(#B0 � k) > 0} < ∞. In particular, B has finitely many connected

components, even if G has infinitely many components, and if P(#B0 � 1) > 0,

then B is an EFT.

Proof. The number of components of B is shift-invariant and hence a.s. con-

stant. Each component ofB contains a bi-recurrent path by Proposition 4.2.7.

Each bi-recurrent path intersects V0(B) in a different element since they are

in different components of B. It follows that n 6 #B0 a.s. If P(#B0 � k) > 0

for some k, then it follows that n 6 k. �

The deterministic cycle on n states shows that the bound in Corol-

lary 4.2.9 can be achieved for each n. In general, any bi-infinite stationary

process on S (or any countable set) must be bi-recurrent.
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Proposition 4.2.10. Suppose that (Xt)t∈Z is a stationary process taking values in

S. Then a.s. (Xt)t∈Z is bi-recurrent for every x ∈ {Xt}t∈Z.

Proof. For each x ∈ S, stationarity forbids that there is a first or last visit

of (Xt)t∈Z to x since such an occurrence would have to be equally likely to

happen at all times t ∈ Z. Thus, a.s. either x < {Xt}t∈Z or {t ∈ Z : Xt � x}

must be unbounded both above and below. The countability of S finishes

the claim. �

The remainder of the section specializes to the Markovian setting

again. In the Markovian setting, bi-recurrence is actually equivalent to

stationarity in the irreducible, aperiodic, positive recurrent case.

Theorem 4.2.11. Suppose that P is irreducible, aperiodic, and positive recurrent,

and that (Xt)t∈Z is a Markov chain with transition matrix P. Then (Xt)t∈Z is

stationary if and only if it is bi-recurrent for any (and hence every) state.

Proof. By Theorem 4.1.2, it is possible to assume without loss of generality

that (Xt)t∈Z is a state path in the Doeblin graph G with fully independent

transitions. By Proposition 4.1.3, G is an EFT and therefore Corollary 4.2.8

implies that G contains a bi-recurrent state path (βt)t∈Z that is, for all y ∈ S,

the a.s. unique bi-recurrent state path for state y in G. Moreover, βt ∼ π

for all t ∈ Z, where π is the stationary distribution for P. If (Xt)t∈Z is bi-

recurrent for some y ∈ S, then, by uniqueness, Xt � βt for all t ∈ Z, a.s. In

particular, (Xt)t∈Z is stationary. The converse follows fromProposition 4.2.10

and irreducibility. �
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Figure 4.3: TheDoeblin graph fromExample 4.2.5with the bi-recurrent path
and a spurious path distinguished.

A bi-infinite path in G whose state path is not bi-recurrent for any

state x ∈ S will be called spurious. Observe the difference between spurious

bi-infinite paths and the unique bi-recurrent path in Figure 4.3. Viewed in

reverse time, a spurious path must run off to ∞ in the sense that for every

finite set F ⊆ S, the reversed path eventually leaves F forever. It is possible

for G to contain spurious bi-infinite paths, as was seen in Example 4.2.5.

Say that Pn converges uniformly (to π as n → ∞) if P is irre-

ducible, aperiodic, and positive recurrent with stationary distribution π,

and supx∈S ‖Pn(x , ·) − π‖TV → 0 as n → ∞. For example, this is automatic

if P is irreducible, aperiodic, and S is finite. Some authors call P uniformly
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ergodic, but the termergodic is not usedhere to avoid a terminology collision

with ergodic theory. Uniform convergence to π is also equivalent (cf. [MT09]

Theorem 16.0.2 (v)) to the statement that there is m such that Pm(x , ·) > ϕ(·)

for all x ∈ S, for a measure ϕ which is not the zero measure. It is also

equivalent (cf. [FT98] Theorem 4.2) to the fact that the CFTP algorithm suc-

ceeds in the case of fully independent transitions, i.e. the backwards vertical

coupling time inf
{
t > 0 : F(−t ,x)

0 � F(−t ,y)
0 , ∀x , y ∈ S

}
is a.s. finite.

Together, the following two results say that when a Markov chain

that mixes uniformly is started in the infinite past, it has converged to its

stationary distribution by any finite time.

Proposition 4.2.12. Suppose Pn converges uniformly to π as n → ∞ and G has

fully independent transitions. Then G contains no spurious bi-infinite paths.

Proof. For every s < t let Cs ,t be the event that F(s ,x)t � F(s ,y)t for all x , y ∈ S.

That is, Cs ,t is the event that starting at time s, all paths in G collapse to

a single state by time t. Note that P(Cs ,t) depends only on t − s. Since

G has fully independent transitions and Pn converges to π uniformly as

n → ∞, by e.g. Theorem 5.2 in [FT98], there exists some k ∈ N such that

P(Cs ,t) > 0 when t − s > k. Consider En :� C−k(n+1),−kn for each n ∈ N. One

has P(En) � P(E0) > 0 for all n and the En are independent. It follows that

a.s. infinitely many of them occur. On an ω for which infinitely many En

occur, there is at most one bi-infinite path in G, and thus any bi-infinite path

in G must coincide with the unique bi-recurrent path guaranteed to exist
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by Corollary 4.2.8. �

It is a classical result that it is possible to find a bi-infinite stationary

version (Xt)t∈Z of a Markov chain that has a stationary distribution. The

following shows that, in the case of uniform convergence to π, this is the

only way to extend a Markov chain to have time index set all of Z. That

is, if (Xt)t∈Z is a Markov chain that converges uniformly to its stationary

distribution, then it must be that Xt ∼ π for all t ∈ Z.

Proposition 4.2.13. Suppose Pn converges uniformly to π as n →∞. Then every

Markov chain (Xt)t∈Z with transition matrix P is stationary and bi-recurrent. The

subtle assumption here is that the time index set is all of Z.

Proof. By Theorem 4.1.2, one may assume (Xt)t∈Z is a state path in G with

fully independent transitions, which is then an EFT by Proposition 4.1.3.

Since Pn converges uniformly to π as n → ∞, G contains no spurious

bi-infinite paths by Proposition 4.2.12, and hence (Xt)t∈Z must be the bi-

recurrent state path. Theorem 4.2.11 then implies (Xt)t∈Z is stationary. �

Proposition 4.2.13 may fail for an irreducible, aperiodic, and positive

recurrent P if P does not converge uniformly to its stationary distribution.

Indeed, it was already shown, e.g., in Example 4.2.5, that it is possible for G

to admit spurious bi-infinite paths. If (Xt)t∈Z is a proper state path in G that

corresponds to a spurious bi-infinite path, then (Xt)t∈Z is a Markov chain

with transition matrix P, but it is not stationary since it is not bi-recurrent.
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Recall that B(x) denotes the bridge graph in G using x as the base point

instead of x∗.

Proposition 4.2.14. Suppose P is irreducible, aperiodic, and positive recurrent,

and that G has fully independent transitions. If

(i) S is infinite,

(ii) G is locally finite, and

(iii) G contains no spurious bi-infinite paths,

then ⋂
x∈S

V(B(x)) �
{
(t , βt) : t ∈ Z

}
, (4.13)

where (βt)t∈Z is the unique bi-recurrent state path in G. That is, the bi-recurrent

path in G is the only thing common to all of the bridge EFTs. Alternatively, if S is

finite and has at least 2 states, then a.s.⋂
x∈S

V(B(x)) )
{
(t , βt) : t ∈ Z

}
. (4.14)

Proof. For each x ∈ S, the bi-recurrent path is in B(x) because it is bi-

recurrent for x. Suppose S is infinite, G is locally finite, and that G contains

no spurious bi-infinite paths. Consider a vertex v ∈ V(G) not on the bi-

recurrent path. The tree of all descendants of v in G must be finite, else

König’s lemma would give a bi-infinite path in G that is distinct from the

unique bi-recurrent path since v is not on the bi-recurrent path. Since G
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contains no spurious bi-infinite paths, this is impossible. Since the tree of

descendants of v is finite but S is infinite, there is some state x ∈ S such

that v has no descendant in state x. In particular, v < V(B(x)), showing that

nothing off the bi-recurrent path can be common to all the bridge EFTs.

Next suppose that 2 6 #S < ∞. It suffices to give a finite determin-

istic graph Γ that is a subgraph of G with positive probability such that

when some time-translate of Γ is a subgraph of G,
⋂

x∈S V(B(x)) contains

a vertex not on the unique bi-infinite path in G. Firstly, since S is finite,

choose a tree T on Z × S that occurs with positive probability and is an

example witnesses of the a.s. finiteness of the backwards vertical coupling

time inf
{
t > 0 : F(−t ,x)

0 � F(−t ,y)
0 , ∀x , y ∈ S

}
. Suppose T is rooted at (0, x0). In

particular, V(T) ⊆ (−∞, 0]×S. By irreducibility of P and the fact that #S > 2,

choose L � (x0, x1, . . . , xn) a finite path in S using only positive probability

transitions from x0 back to x0 � xn that passes through all states of S and

has the property that xi , xi+1 for any i. Note that

L0 :� {(t , xt) : t � 0, . . . , n} , L1 :� {(t + 1, xt) : t � 0, . . . , n} (4.15)

do not intersect. Moreover, L0 and T intersect only at the vertex (0, x0),

and L1 and T do not intersect. Let Γ be the union of T, L0, and L1. The

edges of T, L0, and L1 all occur with positive probability in G, and none

of them have the same initial vertex, so that in fact they are comprised of

independent edges in G. Since Γ has only a finite number of edges, it follows

that Γ ⊆ G occurs with positive probability. Moreover, when Γ ⊆ G occurs,
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the vertex (n , xn−1) ∈ V(B(x)) for all x ∈ S, but it is not on the bi-infinite

path. This is because, by construction, (0, x0) is on the bi-infinite path in G

and therefore L0 makes up a segment of the bi-infinite path in G. But, L1

includes a representative for every state, so for every x ∈ S there is an s ∈ Z

such that x ∈ D(n ,xn−1)
s . Finally, V(L0) ∩ V(L1) � ∅ so (n , xn−1) is not on the

bi-infinite path in G. �

Other I/F Component Properties

The existence and uniqueness of a bi-infinite path in each Φ-

component of a network is one I/F property that was studied at length in

Section 4.2.2, which centered around bi-recurrent paths in B. However,

there are many other potential things to say about B following from its I/F

structure. A few of them are discussed in this brief section.

The first is the general structure of a network with only I/F compo-

nents. Each component of B contains a unique bi-infinite path. Points on a

bi-infinite path are sometimes referred to as immortals due to the fact that

they do not disappear after an infinite number of applications of the follow

vertex-shift Φ. A component evaporates if each point disappears after a

finite number (depending on the point) of applications of Φ. Thus, in the

case of B, none of the components evaporate. Mortals are those points in

V(B) that do disappear after a finite number of applications of Φ, i.e. those

that have only finitely many descendants. Each component of B contains a

bi-infinite path of immortals, and each immortal has exactly one child who
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is immortal. Thus the immortals within a component are ordered like Z

in a shift-covariant way. Hanging off of each immortal is then a (possibly

empty) tree of mortals, the descendants of the immortal who are not them-

selves immortal and whose closest immortal ancestor is the given immortal.

With this viewpoint, each component of B can be seen as a shift-covariant

bi-infinite sequence of finite rooted trees, where each immortal is the root

of its tree. If there is only one component of B, then it has already been

noted that there is a unique bi-infinite path in B whose state path (βt)t∈Z is

stationary. However, more can be said in this case. If there is only one com-

ponent of B, then in fact the whole sequence ([Qt , (t , βt)])t∈Z is stationary,

where Qt is the tree hanging from the immortal (t , βt). It is important here

that the isomorphism class of Qt is used and each vertex (t , y) ∈ V(B) is

marked with (y , ξt), otherwise the sequence would not be stationary due to

the strictly increasing time coordinate. This view of B as a joining of trees

gives an alternativeway of looking atB compared to the view ofB as a union

of bridges between x∗ at different times. Yet another viewpoint is that of B

as a sequence of vertical slices. This idea has already been explored slightly

in that the way the root was chosen in the definition of the unimodular

measure P� is by choosing a root from one of these vertical slices. The view

of B as a sequence of vertical slices is explored more in Section 4.2.3.

Additionally, the list of mass-transports given in Appendix A gives

some integrability results relating these three viewpoints. In particular, in

eachway of viewingB there is a naturalway to splitB into pieces. In the view
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of B as a joining of a sequence of trees of mortals hanging off an immortal,

the vertices are partitioned by which tree they are in. In the view of B as a

sequence of vertical slices, the vertices are partitioned bywhich slice they are

in. In the view of B as paths started from state x∗, vertices are partitioned

by the time they first return to x∗. In fact, the mass-transport arguments

given in Appendix A show that the mean number of vertices in a partition

element is the same for all three viewpoints. See the list of mass-transports

in Appendix A for a more detailed description of these results and other

finer-grained results.

4.2.3. Applications to Simulating the Bridge Graph

Local Weak Convergence to the Bridge Graph

It was shown in Proposition 4.2.2 that themeasure P�may be thought

of as an appropriately size-biased version of a network with the root picked

uniformly at random from individuals at time 0. A common reason for size-

biasing to showup iswhenpicking uniformly at randomacross a population

and asking the size of the group an individual is in. Picking uniformly at

random is what unimodularity models, so one might expect that a unimod-

ular network can be approximated by picking the root uniformly at random

from a very large but finite sub-network. At present, whether all unimodu-

lar networks can be approximated in this way is an open problem [AL07]. In

the case of the unimodular bridge EFF, it will be shown directly that indeed

it can be approximated by finite sub-networks with a root picked uniformly
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at random.

In this section, different ways of approximating the unimodular ver-

sion of B by finite subgraphs are considered. Recall that B denotes B with

spine added, i.e.Bwith edges connecting each (t , x∗) to (t+1, x∗). For a finite

interval I ⊆ Z define VI(B) :�
⋃

t∈I Vt(B) and let B ∩ I denote the subgraph

of B induced by VI(B). Also define V′I (B) :�
⋃

t∈I

{
(s , F(t ,x

∗)
s ) : t 6 s 6 sup I

}
to be the vertices of B obtained by simulating paths starting from x∗ within

the time window I, and let Bu I denote the graph it induces in B. Two ways

of approximating B are then as follows:

(i) Restrict to [−n , 0] and pick a uniform root in V[−n ,0](B).

(ii) Simulate paths starting from x∗ in the window [−n , n], which gives

the vertices of B u [−n , n] ⊆ B, then pick a uniform root in V′[0,n](B).

After choosing a large viewingwindow I, a vertex picked at randomwill not

likely be near the edge of this window, so the effects of throwing away all

but this finite window can be controlled. However, the first method involves

perfect knowledge of some finite window of B. Practically speaking, when

S is infinite, one does not have a way to be sure that one has computed

all of B in a finite window, as the only tool available is to simulate sample

paths starting from different locations. This is the motivation for the second

method of picking a root. For, even if the edge effects caused by only viewing

simulations of paths in B from −n to n cannot be controlled, the edge effects

from 0 to n can be controlled using the information from simulating from−n
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to n. It will be shown shortly that both of these methods enjoy convergence

in the local weak sense to the measure P�.

Lemma 4.2.15. For any strictly increasing sequence of finite intervals (In)n∈N in

Z, and any function g ∈ L1(P�), one has

1
#InE[#B0]

∑
v∈VIn (B)

g[B, v] → E�[g] (4.16)

and

1
#VIn (B)

∑
v∈VIn (B)

g[B, v] → E�[g], (4.17)

where both convergences happen P-a.s. as n →∞. In particular

#VIn (B)
E[#VIn (B)]

�
#VIn (B)

#InE[#B0]
→ 1. (4.18)

Proof. Assume without loss that Ω � ΞZ is the canonical space and (θt)t∈Z
is the family of shift operators defined by θt((ξs)s∈Z) � (ξt+s)s∈Z. Both

statements follow from rewriting∑
v∈VIn (B)

g[B, v] �
∑
t∈In

(∑
x∈Bt

g[B, (t , x)]
)
�

∑
t∈In

g0 ◦ θt ,

where g0 :�
∑

x∈B0 g[B, (0, x)]. The pointwise ergodic theorem for amenable

groups (cf. [Lin01]) then proves the claim. �

Proposition 4.2.16. Fix any strictly increasing sequence of finite intervals (In)n∈N
in Z, and for each n ∈ N, let on be, conditionally on VIn (B), uniformly distributed

on VIn (B) and independent of B ∩ In (including its marks). Then for all bounded
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measurable g : G∗ → R>0 depending only on vertices at some bounded distance to

the root, one has

1
#VIn (B)

∑
v∈VIn (B)

g[B ∩ In , v] → E�[g], P-a.s. (4.19)

as n →∞. In particular,

P([B ∩ In , on] ∈ ·) → P�, n →∞ (4.20)

in the sense of local weak convergence.

Proof. Fix N ∈ N and let g : G∗ → R>0 measurable, bounded, and such that

g depends only on vertices at graph distance at most N from the root. One

has

E[g[B ∩ In , on]]

� E[E[g[B ∩ In , on] | VIn (B)]]

� E
 1
#VIn (B)

∑
v∈VIn (B)

g[B ∩ In , v]


� E

(
E[#VIn (B)]

#VIn (B)

) ©­« 1
E[#VIn (B)]

∑
v∈VIn (B)

g[B ∩ In , v]
ª®¬
 .

Call the two parenthesized expressions in the previous expectation an and

bn respectively, then it will be shown that an bn → E�[g] a.s., from which

it also follows that E[an bn] → E�[g] by dominated convergence. This will

prove the claims. By stationarity and linearity of expectation, for each n ∈ N,

E�[g] � 1
E[#B0]

E

[∑
v∈B0

g[B, v]
]
� E

 1
E[#VIn (B)]

∑
v∈VIn (B)

g[B, v]
 .
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Call the inside of the last expectation cn . Letting [Γ, o]N denote the neigh-

borhood of size N around o in a network Γ, for all n > N

|bn − cn |

6
1

#InE[#B0]
∑

v∈VIn (B)

���g[B ∩ In , v] − g[B, v]
���

6
2‖g‖∞

#InE[#B0]
#
{

v ∈ VIn (B) : [B ∩ In , v]N , [B, v]N
}

6
2‖g‖∞

#InE[#B0]

(min In+N∑
k�min In

#Bk +

max In∑
k�max In−N

#Bk

)
6

2‖g‖∞
#InE[#B0]

(∑
k∈In

#Bk −
max In−N∑

k�min In+N

#Bk

)
→ 2‖g‖∞ − 2‖g‖∞

� 0

as n →∞, P-a.s., by Lemma 4.2.15. But also cn → E�[g] and an → 1, P-a.s.,

also by Lemma 4.2.15. Hence an bn → E�[g], P-a.s., as claimed. �

Proposition 4.2.17. Fix any increasing sequence of finite intervals (In)n∈N �

([−an , bn])n∈N in Z containing 0 with an → ∞ and bn strictly increasing. For

each n ∈ N, let o′n be, conditionally on V′In
(B), uniformly distributed on V′[0,bn](B)

and independent of B u In (including its marks). Then for all bounded measurable

g : G∗→ R>0 depending only on vertices at some bounded distance to the root, one

has

1
#(V′In

(B) ∩ [0, bn])
∑

v∈V′In (B)∩[0,bn]
g[B u In , v] → E�[g], P-a.s. (4.21)

98



In particular,

P([B u In , o′n] ∈ ·) → P�, n →∞ (4.22)

in the sense of local weak convergence.

Proof. Fix N ∈ N and let g : G∗ → R>0 measurable, bounded, and such that

g depends only on vertices at graph distance at most N from the root. The

finiteness ofB0 implies that one has that [B u In , v]N � [B ∩ In , v]N � [B, v]N
eventually as n → ∞ for all v ∈ V0(B), and hence for all v ∈ VIn (B) ∩

[0, bn − N] eventually as n → ∞ as well. For the same reason V′In
(B) ∩

[0, bn] � V[0,bn](B) eventually as n →∞ as well. It follows that eventually

1
#(V′In

(B) ∩ [0, bn])
∑

v∈V′In (B)∩[0,bn]
g[B u In , v]

�
1

#V[0,bn](B)
∑

v∈V[0,bn ](B)
g[B ∩ In , v]

+
1

#V[0,bn](B)
∑

v∈V[bn−N+1,bn ](B)
(g[B u In , v] − g[B ∩ In , v]).

Of the last two terms, 1
#V[0,bn ](B)

∑
v∈V[0,bn ](B) g[B ∩ In , v] → E�[g] by Proposi-
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tion 4.2.16, so it suffices to show that the last term goes to 0. Indeed,������ 1
#V[0,bn](B)

∑
v∈V[bn−N+1,bn ](B)

(g[B u In , v] − g[B ∩ In , v])

������
6

2‖g‖∞#V[bn−N+1,bn](B)
#V[0,bn](B)

�
2‖g‖∞(#V[0,bn](B) − #V[0,bn−N](B))

#V[0,bn](B)
→ 2‖g‖∞(1 − 1)

� 0

as desired. �

Renewal Structure of the Bridge Graph

In this section, the driving sequence ξ is assumed to be i.i.d., i.e. G

is Markovian. One may ask whether the bridge graph B admits any kind

of renewal structure. Is it possible that Bt contains only one state? This

is not necessarily possible. Indeed, if px ,x � 0, then Bt contains at least

two states for every t ∈ Z. It is true, though, that Bt is infinitely often

equal to any set that it has positive probability of being equal to. Let SB

denote the possible configurations of B0, i.e. SB :� {E ⊆ S : P(B0 � E) > 0}.

By Proposition 4.1.13, SB consists only of finite subsets of S and is therefore

countable.

Lemma 4.2.18. For any subset E ∈ SB, the set of t for which Bt � E forms a

simple stationary point process ΨE on Z with P(ΨE(Z) � ∞) � 1 and intensity

λE � P(B0 � E). In particular, (Bt)t∈Z is bi-recurrent for each E ∈ SB.
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Proof. For E ∈ SB, the event that there is a t such thatBt � E is shift-invariant

and has positive probability. Therefore it happens almost surely. The set of

such t is shift-covariant and therefore determines a simple stationary point

processΨE. Theprevious line implies thatΨE contains at least onepoint, and

therefore infinitely many a.s. One calculates λE � E[ΨE({0})] � E[1{B0�E}],

completing the proof. �

Moreover, ruling out obvious hurdles to Bt being a singleton is suffi-

cient.

Lemma 4.2.19. Suppose G is an EFT and has fully independent transitions. As-

sume that px∗ ,x∗ > 0. Then {x∗} ∈ SB.

Proof. By Proposition 4.1.13, #Bt is a.s. finite for each t ∈ Z, and thus it is

possible to choose x1, . . . , xn ∈ S such that P(B0 � {x1, . . . , xn}) > 0. Since

G is an EFT, choose a tree T ⊆ Z × S with leaves (0, x1), . . . , (0, xn) and root

(t , x∗) for some t > 0 such that P(T ⊆ G) > 0. With [t] :� {0, . . . , t}, let

I :� {s ∈ [t] : x∗ < Ts}. Then

P(Bt � {x∗}) > P(B0 � {x1, . . . , xn} , T ⊆ G, F(s ,x
∗)

s+1 � x∗, ∀s ∈ I)

> P(B0 � {x1, . . . , xn})P(T ⊆ G)P(F(s ,x
∗)

s+1 � x∗, ∀s ∈ I)

� P(B0 � {x1, . . . , xn})P(T ⊆ G)(px ,x)#I

> 0.

To justify the use of independence in the previous calculation, note that B0

is (ξs)s<0-measurable, whereas the events {T ⊆ G} and
{
F(s ,x

∗)
s+1 � x∗, ∀s ∈ I

}
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are (ξs)s>0-measurable, so the first is independent of the second two. Then

the second is independent of the third because, by construction, they involve

disjoint sets of edges in G. �

Now it is possible to see the renewal structure in B. Namely, (Bt)t∈Z is

itself an irreducible, aperiodic, and positive recurrent Markov chain under

certain conditions.

Proposition 4.2.20. One has that (Bt)t∈Z is a Markov chain on SB. Additionally,

(Bt)t∈Z is stationary and bi-recurrent for every E ∈ SB. Its transition matrix PB is

irreducible and positive recurrent. IfG is anEFT with fully independent transitions

and px∗ ,x∗ > 0, then {x∗} ∈ SB and PB({x∗} , {x∗}) > 0 so PB is aperiodic as well.

Proof. By Proposition 4.1.13, #Bt is a.s. finite for each t ∈ Z. Moreover,

Bt+1 � {x∗} ∪
{
F(t ,y)t+1 : y ∈ Bt

}
, so indeed (Bt)t∈Z is a Markov chain on the

finite subsets of S since, for each t ∈ Z, Bt+1 is a function of Bt and ξt .

Here the running assumption that ξ is i.i.d. is used. By Lemma 4.2.18,

(Bt)t∈Z is bi-recurrent for every state E ⊆ S such that P(B0 � E) > 0. In

particular, the chain must be irreducible on SB, else a return to some state E1

could not occur after a return to another state E2 for some E1, E2 that do not

communicate. Since (Bt)t∈Z is shift-covariant it is stationary. The existence

of a positive stationary distribution (the law of B0) for the irreducible PB

implies PB is positive recurrent. If G is an EFT with fully independent

transitions, then Lemma 4.2.19 shows that {x∗} ∈ SB. Then px∗ ,x∗ > 0 implies

PB({x∗} , {x∗}) > 0 as well, so PB is also aperiodic in that case. �
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It is possible that the SB is strictly smaller than the set of all finite

subsets of S containing x∗.

Example 4.2.21. Consider S :� {0, 1, 2} and x∗ :� 0with p0,0 � p0,1 � p0,2 �
1
3

and p1,0 � p2,0 � 1. That is, from 0 make a uniform choice of where to jump,

and from 1 and 2 deterministically return to 0. Fix t ∈ Z. In this case, if

1 ∈ Bt , it must be that F(t−1,0)
t � 1. Similarly, if 2 ∈ Bt , it must be that

F(t−1,0)
t � 2. Thus it cannot be that both 1, 2 ∈ Bt , and hence {0, 1, 2} < SB.

However, if every state has a chance to be lazy, then SB does turn out

to be the set of all finite subsets of S containing x.

Proposition 4.2.22. Suppose G has fully independent transitions, P is irreducible,

and py ,y > 0 for all y ∈ S. Then (Bt)t∈Z is an irreducible, aperiodic, positive

recurrent, and stationaryMarkov chain on the set of all finite subsets of S containing

x∗.

Proof. The assumptions imply that, in fact, P is irreducible, aperiodic, and

positive recurrent (since x∗ is always assumed positive recurrent), so Propo-

sition 4.2.20 implies that the only item left to show is that SB contains all

finite subsets of S containing x∗. Let a finite set E containing x∗ be given.

Call (y1, . . . , yn)with each yi ∈ S a possible path if
∏n−1

i�1 pyi ,yi+1 > 0. For the

rest of the proof, all paths considered are possible paths. One would like to

simply draw a path from x∗ to each y ∈ S where after a path reaches its des-

tination it becomes constant while it waits for the other paths to finish. This

103



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Time t

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
St

at
e 

y
S

An example bridge graph containing 

Bridge graph, also 
Doeblin graph

Figure 4.4: The graph Γ from the proof of Proposition 4.2.22 when S �

Z/15Z, x∗ � 0, and E � {0, 2, 5, 8, 12}, where the Markov dynamics are the
lazy version of the deterministic cycle x 7→ x + 1 on S. The graph Γ is
constructed so that, as shown in the figure, if B0 � {0} and Γ ⊆ G, then
B27 � {0, 2, 5, 8, 12}.

approach is slightly flawed because it may be that, for instance, every path

from x∗ to z passes through y. In this case, one must draw the path from

x∗ to y before the path from x∗ to z, otherwise the resulting graph would

have a vertex with multiple outgoing edges, which is an impossibility in G.

However, the approach will work as long as it is possible to draw the paths

in an order such that no interference occurs.

Define a partial order ≺0 on E by saying y ≺0 z if all paths from x∗

to z pass through y with the convention that the trivial path (x∗) does not
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pass through x∗ (to prohibit x∗ ≺0 x∗). Since E is finite, there is a ≺0-maximal

element x0 ∈ E. That is, for all y ∈ E there is a path from x∗ to y that

does not hit x0. Choose a path L0 from x∗ to x0. With ≺n , x0, . . . , xn , and

L0, . . . , Ln defined, as long as E \ {x0, . . . , xn} , ∅, recursively define ≺n+1,

xn+1, and Ln+1 as follows. By construction, for all y ∈ E \ {x0, . . . , xn}, there

is a path from x∗ to y that avoids x0, . . . , xn . Define ≺n+1 on E \ {x0, . . . , xn}

by saying y ≺ z if all paths from x∗ to z avoiding x0, . . . , xn pass through

y. Then it is possible to choose a ≺n+1-maximal element xn+1, i.e. for all

y ∈ E \ {x0, . . . , xn+1}, there is a path from x∗ to y that does not pass

through any of x0, . . . , xn+1. Also choose Ln+1 a path from x∗ to xn+1 avoiding

x0, . . . , xn . Necessarily the recursion terminates when n � #E − 1. It is now

possible to construct a graph Γ ⊆ Z × S with P(B0 � {x∗} , Γ ⊆ G) > 0 and

when Γ ⊆ G and B0 � {x∗}, one has Bt � E for some t. Let ti be the sum of

the lengths of the paths L0, . . . , Li−1 for each 0 6 i 6 #E, with t0 :� 0. Let Γ

be the graph that for each i has:

(i) a path from (ti , x) to (ti+1, xi)with state path Li from time ti to ti+1,

(ii) a path started at (ti+1, xi) that stays constant at xi until time t#E, and

(iii) a (possibly trivial) path started at (ti + 1, x) that stays constant at x∗

until time ti+1.

Note that, by construction, Γ is a finite graph that is the union of edges that

occur with positive probability. Moreover, the connected components of Γ
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are formed from points items (i) and (ii) for some i and item (iii) from i − 1.

Whenever Γ ⊆ G and B0 � {x∗}, one has Bt#E � E. This occurs with positive

probability since py ,y > 0 for all y ∈ S. �

Proposition 4.2.23. Suppose G has fully independent transitions. Extend the

definition of PB to

PB(E, E′) :� P
(
{x∗} ∪

{
F(0,y)1 : y ∈ E

}
� E′

)
, (4.23)

for all finite E, E′ ⊆ S containing x∗. Then PB satisfies the following recurrence:

for E � {x∗, x1, . . . , xn} and E′ �
{

x∗, y1, . . . , ym
}
,

PB(E, E′) �
(
pxn ,x∗ +

m∑
i�1

pxn ,yi

)
PB(E \ {xn} , E′)

+

m∑
i�1

pxn ,yi PB(E \ {xn} , E′ \
{

yi
}
), (4.24)

with recursive depth at most n and base cases
PB(E, E′) � 0, #E′ > #E + 1
PB({x∗} ,

{
x∗, y

}
) � px∗ ,y , y ∈ S

PB(E, {x∗}) �
∏

y∈E py ,x∗ .

(4.25)

Proof. First one justifies the extension of the definition of PB by noting that

for E, E′ ∈ SB one has

PB(E, E′) � P(B1 � E′ | B0 � E)

� P({x∗} ∪
{
F(0,y)1 : y ∈ B0

}
� E′ | B0 � E)

� P({x∗} ∪
{
F(0,y)1 : y ∈ E

}
� E′ | B0 � E)

� P({x∗} ∪
{
F(0,y)1 : y ∈ E

}
� E′),
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where the last equality follows from the fact that B0 is measurable with

respect to (ξt)t<0, whereas F(0,y)1 is ξ0-measurable for each y ∈ S. The base

cases for PB are immediate from the definition of PB and the independence

structure. To see the recurrence, suppose E � {x∗, x1, . . . , xn} and E′ �{
x∗, y1, . . . , ym

}
as above. Split PB(E, E′) depending on the value of F(0,xn)

1 �

x∗ or F(0,xn)
1 � yi , and on whether {x∗} ∪

{
F(0,y)1 : y ∈ E \ {xn}

}
� E′ still or

{x∗} ∪
{
F(0,y)1 : y ∈ E \ {xn}

}
� E′ \

{
yi

}
,

PB(E, E′) � P
(
F(0,xn)

1 � x∗, {x∗} ∪
{
F(0,y)1 : y ∈ E \ {xn}

}
� E′

)
+

m∑
i�1

P
(
F(0,xn)

1 � yi , {x∗} ∪
{
F(0,y)1 : y ∈ E \ {xn}

}
� E′

)
+

m∑
i�1

P
(
F(0,xn)

1 � yi , {x∗} ∪
{
F(0,y)1 : y ∈ E \ {xn}

}
� E′ \

{
yi

})
which, since G has fully independent transitions, equals

pxn ,x∗P
(
{x∗} ∪

{
F(0,y)1 : y ∈ E \ {xn}

}
� E′

)
+

m∑
i�1

pxn ,yi P
(
{x∗} ∪

{
F(0,y)1 : y ∈ E \ {xn}

}
� E′

)
+

m∑
i�1

pxn ,yi P
(
{x∗} ∪

{
F(0,y)1 : y ∈ E \ {xn}

}
� E′ \

{
yi

})
which simplifies to(

pxn ,x∗ +

m∑
i�1

pxn ,yi

)
PB(E \ {xn} , E′) +

m∑
i�1

pxn ,yi PB(E \ {xn} , E′ \
{

yi
}
),

showing the recurrence holds.
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Finally, the recursive depth needed to fully compute PB(E, E′) is at

most n because each application of the recurrence removes an element from

E. �

Example 4.2.24. By implementing the recurrence of Proposition 4.2.23 in,

e.g. Python, one may compute PB explicitly. Then, given values for the px ,y ,

one may compute the stationary distribution πB of PB. For example, with

S :� {0, 1, 2} and x∗ :� 0, and px ,y �
1
3 for all x , y ∈ S, one has

πB �
[
πB({0}) πB({0, 1}) πB({0, 2}) πB({0, 1, 2})

]
�

[ 17
143

45
143

45
143

36
143

]
.

It is an open question whether, in the fully independent transitions

case, there is a general closed form expression for PB in terms of P or for the

stationary distribution πB of PB in terms of P and π.

4.3. Bibliographical Comments

While this work may be the first time the Doeblin graph G has been

explicitly defined and studied in its own right, it is without doubt that most,

if not all, who have worked on CFTP-related research have had this picture

in mind. Rather, the novelty here lies in the consideration of the bridge

graph B. While, to the best of the author’s knowledge, the bridge graph B

has not previously been defined or studied, it is not without ties to other

objects that have been previously studied.
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The first occurrence of some form of the bridge graph appears

in [BF92], where Borovkov and Foss consider a family of stochastically

recursive sequences started at times 0,−1,−2, . . . , all with the same initial

condition, and they proved the existence (under suitable conditions) of

a stationary version of the SRS. They defined three notions of coupling

convergence and studied when coupling convergence to the stationary SRS

occurs. Their notion of strong coupling convergence to the stationary SRS is

akin to the condition thatB is an EFT. That is, it is the condition that all paths

in B eventually merge. It is conceivable that, in the EFT case, one could

derive the existence of the bi-infinite path in B from the work in [BF92],

though it is not clear whether Borovkov and Foss had this in mind, and they

did not make any mention of the key bi-recurrence property used in the

current chapter to distinguish this bi-infinite path from the potential others

in G.

Another occurrence of a similar object to the bridge graph may be

found in [BS18] in the very special case of integer-valued renewal processes.

The dynamics there are slightly different, where instead of specifying a

whole process started from each time, one marks each time with the time

of death of an individual who is born at that time. This is akin to marking

each t ∈ Z by the return time τ(t ,x∗)(x∗) of F(t ,x
∗) to x∗, though in [BS18] these

times of death are assumed to be i.i.d., whereas in the present work they

have intricate dependence due to the Doeblin-type coupling. The popula-

tion process defined in [BS18] is then similar in nature to the sequence of
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cardinalities of (Bt)t∈Z as considered in Section 4.2.3. It is proved in [BS18]

that, under natural conditions, the population process is a stationary regen-

erative process with independent cycles. In the present work, the process

(Bt)t∈Z was shown in Proposition 4.2.20 to be an irreducible, aperiodic, and

positive recurrent Markov chain under suitable conditions, which therefore

also admits an i.i.d. cycle decomposition. The analysis of this special case

and, in particular, the identification of the I/F structure of the components

has been kept in mind throughout the development of the theory of Doeblin

EFFs.
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Chapter 5

Point-shifts of Point Processes on Topological
Groups

Dynamics on stationary point processes that map each point of the

process to another in a translation invariant way, or point-shifts as they

are called in the literature, have been studied as far back as Mecke’s sem-

inal work [Mec67]. A recent advancement in the study of such dynamics

was the classification of a point-shift based on the cardinalities of the foils

and connected components of the random graph generated by the point-

shift [BHM18]. This graph is drawn on the vertices of the point process with

an edge from each point to its image under the point-shift. Two points are

considered to be in the same foil if they eventually merge under the same

number of repeated applications of the point-shift, and they are in the same

component if their forward orbits under the point-shift intersect, i.e., if they

are in the same connected component of the graph. The classification states

that a.s. each connected component belongs to one of the following three

classes:

(i) Class F/F: The component and its foils are all finite, and there is a

unique cycle in the component.
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(ii) Class I/F: The component is infinite, but all foils are finite, there are no

cycles, and there is a unique bi-infinite path in the component.

(iii) Class I/I: The component is infinite, all its foils are infinite, and there

are no cycles or bi-infinite paths in the component.

The primary result of this chapter is the extension of the classifica-

tion theorem verbatim to unimodular groups. In other words, the answers

(infinitely many/finitely many) to the questions: “Howmany points are in a

given graph component?” and “Given a point, how many other points will

mergewith it under repeated application of the point-shift?” fundamentally

determine many properties of the components of the graph generated by a

point-shift.

The type (F/F, I/F, or I/I) of a component determines whether it is

acyclic, the number of bi-infinite paths it contains, and whether any points

remain after an infinite number of applications of the point-shift. This car-

dinality classification was generalized in [BHMK18] to so-called (covariant)

vertex-shifts on unimodular random networks (see again Theorem 2.5.1 in

the preliminaries). Here a network refers to a graph with extra information

called marks associated to its vertices and edges, and a vertex-shift maps

each point of the network to another in an isomorphism invariant way. It

was shown in an early preprint (arXiv v1) of [BHMK18] that, under its Palm

probability, which encodes the view of the world from a “typical” point’s

perspective, a stationary point process onRd can be seen as an embedding of
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aunimodular randomnetwork in a natural sense, where 0 ∈ Rd is considered

to be the root of the point process. The most current version of [BHMK18]

no longer includes this section, but an independent proof is provided in this

chapter. Thus the cardinality classification for point-shifts on Rd is indeed a

special case of the cardinality classification for vertex-shifts.

This chapter is concerned with generalizing the cardinality classifi-

cation in a different direction, namely to point-shifts of G-stationary point

processes on a unimodular group G. For a group G, G-stationarity means

distributional invariance with respect to the action of G on a space, and uni-

modularity refers to the existence of a bi-invariant Haar measure, though

this form of unimodularity does imply a mass-transport principle for point

processes. Point process theory has been developed on any locally compact

second-countable Hausdorff (LCSH) space [DVJ08], and G-stationarity has

been studied thoroughlywhen G is a LCSH group acting on a homogeneous

space S, cf. [Las10b]. The theory of G-stationarity on homogeneous spaces

is very general, but in many cases a G-stationary point process on a homo-

geneous space S may be pushed forward in a natural way to a G-stationary

point process on G itself, and this is the setting that is assumed here. Also

note that the embedding techniques used to view stationary point processes

on Rd as unimodular random networks used properties of Delaunay trian-

gulations that do not generalize to arbitrary LCSH groups, and therefore

the present work is not subsumed by similar work on unimodular networks.

Indeed, it will even be shown that the cardinality classification fails to hold
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for a point-shift on an explicit LCSH group that is not unimodular.

The structure of the chapter is as follows. Section 5.1 defines the

framework used for dealing with G-stationary point processes and gives

some basic results about Palmprobabilities and point-shifts. In Section 5.2.1,

the structure of the components of the random graph generated by a point-

shift is studied when G is unimodular. Theorem 5.2.7 shows that the cardi-

nality classification when G � Rd extends verbatim to G when G is unimod-

ular, though proofs in [BHM18] relying on the order of R are replaced by

direct mass-transport arguments. Section 5.2.2 shows that unimodularity

of G is crucial to the cardinality classification theorem. In this section, G

is chosen to be an explicit non-unimodular group, the ax + b group, and a

point-shift F is given for which the cardinality classification fails in many

respects. The next portion of the chapter explores the boundary between

the unimodular and non-unimodular cases and spends a good amount of

effort identifying those point-shifts that act like the underlying space is uni-

modular even when it is not. Such point-shifts will be called isomodular.

In Section 5.3, at points it is more natural to use a point-map than

a point-shift. Point-maps are equivalent to point-shifts in that they map

points of a point process to other points of the point process, except a point-

map specifies only where the identity element under the Palm probability

measure is mapped. Some simple relationships involving point-maps are

given in Section 5.3.1. It is a classical result on Rd , cf. [HL05], that a point-

shift preserves the Palm probability measure of a point process if and only if
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the point-shift is almost surely bĳective on the support of the process. This

result is commonly referred to as Mecke’s invariance theorem or, in some

cases, Mecke’s point-stationarity theorem. In Section 5.3.2 it is shown that

Mecke’s invariance theorem holds if G is unimodular. Moreover, when G is

not necessarily unimodular, the class of bĳective point-shifts that preserve

Palm probabilities is identified as the bĳective isomodular point-shifts, the

point-shifts that preserve the modular function of the group. Section 5.3.3

continues with the study of isomodularity and investigates for bĳective

point-shifts the distributional relationship between the reciprocal of the

corresponding point-map and the reverse point-map, which corresponds to

running the point-shift backwards in time. Section 5.3.4 studies different

ways in which functions separate points of a point process. For example,

given a function h : G → S for some set S and a point processΨ, when are

the values of h(X) distinct for all X ∈ Ψ?

Finally, Section 5.4 attempts make explicit the connections between

unimodular networks and G-stationary point processes on unimodular

groups by defining a way to view a point process as an embedding of a

unimodular network. Two natural questions then arise:

(i) Given a G-stationary point process, when can the Palm version of it be

seen as an embedding of a unimodular network?

(ii) Given a unimodular network, when is it possible to find a G-stationary

point process such that the Palm version of the point process is an
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embedding of the given unimodular network?

Some progress in the answering the first question is made in Section 5.4,

where the problem is reduced to an invariant geometry problem on the

underlying space, which is conjectured to always be solvable when G is

unimodular. The results of previous sections also indicate that when G

is not unimodular, one should not expect either question to be answered

affirmatively.

5.1. Point-shift Basics and Notation

This chapter will make use of simple point processes on a general

LCSH group G, which is fixed for the remainder of the chapter. Denote the

Borel sets of G by B(G).

The following framework for dealing with G-stationary point pro-

cesses was developed in [Las10b, Las10a]. A stationary framework

(Ω, F , θ, P) on G is a probability space (Ω, F , P) equipped with a measur-

able and P-invariant left G-action θ : G ×Ω→ Ω, called a flow, which will

be identifiedwith the family of mappings (θx)x∈G defined by θxω :� θ(x , ω)

for x ∈ G, ω ∈ Ω. A point processΨ is flow-adapted if

Ψ(θxω, B) � Ψ(ω, x−1B), x ∈ G, ω ∈ Ω, B ∈ B(G). (5.1)

Another way of expressing (5.1) is

Ψ ◦ θx � TxΨ, x ∈ G,
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where for µ ∈ M and x ∈ G the translated measure Txµ is defined by

Txµ(B) :� µ(x−1B) for all B ∈ B(G). Under these assumptions, any flow-

adaptedΨ is G-stationary in the usual sense thatΨ and TxΨ have the same

distribution for all x ∈ G. For the remainder of the chapter, fix a stationary

framework (Ω, F , θ, P) on G. All point processes introduced in this chapter

are assumed to be flow-adapted.

Apoint-shift on apoint processΨ is ameasurablemap F : Ω×G→ G

on the support ofΨ, i.e. for P-a.e. ω ∈ Ω,

F(ω,X) ∈ Ψ(ω), X ∈ Ψ(ω). (5.2)

From now on, all point-shifts considered in this chapter are assumed to be

flow-adapted in the sense that

F(θyω, yx) � yF(ω, x), x , y ∈ G, ω ∈ Ω. (5.3)

If unspecified, F(ω, x) :� x for x < Ψ(ω). Dependence on ω is usually

dropped and F(X) is written instead of F(ω,X). Say that F has a functional

property, e.g. bĳectivity, injectivity, surjectivity, if for P-a.e. ω ∈ Ω, F(ω, ·)

has the property on the support ofΨ(ω).

Fix, for the remainder of the chapter, a left-invariant Haar measure λ

on G. Also, for the remainder of the section, suppose Ψ is a flow-adapted

point processes with finite and nonzero intensity, that is Λ(·) :� E[Ψ(·)] is

locally finite and not the zero measure. The Palm probability measure of

Ψ, denoted PΨ, is defined by

PΨ(A) :� 1
γ

E
∫

G
1{θ−1

x ∈A}w(x)Ψ(dx), A ∈ F , (5.4)
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where γ �
E[Ψ(B)]
λ(B) for any B ∈ B(G) with λ(B) ∈ (0,∞), and w : G →

R>0 is any nonnegative measurable function with
∫

G w dλ � 1. Note that

γ ∈ (0,∞) is uniquely determined and PΨ is independent of the choice of

w. Expectation with respect to PΨ is denoted EΨ. The Palm probability

measure PΨ makes rigorous what is meant by the view of the world from a

typical point’s perspective.

It is possible to convert betweenP-a.s. andPΨ-a.s. events in the follow-

ing manner. Intuitively, that which happens almost surely from the typical

point’s perspective happens almost surely from every point’s perspective

simultaneously, and vice-versa.

Proposition 5.1.1. Let A ∈ F . Then the following are equivalent:

(a) PΨ(A) � 1.

(b) P(Ψ(x ∈ G : θ−1
x < A) � 0) � 1.

(c) PΨ(Ψ(x ∈ G : θ−1
x < A) � 0) � 1.

A proof of Proposition 5.1.1 could not be found in the literature, so

one is given in Appendix B.

For the rest of the chapter, ∆ : G→ (0,∞) is the modular function of

G. Then themass-transport principle for point processes takes the following

form.
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Theorem5.1.2 (Mass-transport Theorem). [Las10a] For all diagonally invari-

ant τ, i.e. measurable τ : Ω × G × G→ R>0 invariant in the sense that

τ(θzω, zx , z y) � τ(ω, x , y) �: τ(x , y), ω ∈ Ω, x , y , z ∈ G, (5.5)

it holds that

EΨ
∫

G
τ(e , y)Ψ(dy) � EΨ

∫
G
τ(x , e)∆(x−1)Ψ(dx). (5.6)

Interpret τ(ω, x , y) as the amount of mass sent from x to y on the

outcome ω. Under EΨ, e is a point of Ψ. Thus the left side of (5.6) is an

average of mass sent out of e ∈ Ψ to all points of Ψ. On the other hand,

the right side of (5.6) is a weighted average of mass received by e ∈ Ψ from

all points of Ψ. If ∆(x) � 1 for all x ∈ G, i.e. if G is unimodular, then the

mass-transport formula is the one expected from the case of translations on

Rd , which says that the average mass a typical point ofΨ receives equals the

average mass a typical point ofΨ sends. The mass-transport theorem takes

an even simpler form for a point-shift F, i.e., when τ(x , y) :� 1{F(x)�y} when

G is unimodular.

Proposition 5.1.3. Suppose that G is unimodular. Then for every point-shift F on

Ψ, one has that EΨ[# {X ∈ Ψ : F(X) � e}] � 1. �

In particular, this gives the very useful fact that injectivity and sur-

jectivity are equivalent for point-shifts on unimodular G.

Proposition 5.1.4. Suppose that G is unimodular and let F be a point-shift onΨ.

Then F is injective if and only if it is surjective.
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Proof. If F is injective, then #{X ∈ Ψ : F(X) � e} 6 1 PΨ-a.s. by Proposi-

tion 5.1.1. But EΨ[#{X ∈ Ψ : F(X) � e}] � 1 so in fact #{X ∈ Ψ : F(X) � e} �

1, PΨ-a.s. This implies F is bĳective by Proposition 5.1.1 again. The proof

when F is surjective is the same with 6 1 replaced by > 1. �

5.2. Point-shift Foliations
5.2.1. The Cardinality Classification of Components

In this section, the cardinality classification components of point-

shifts in [BHM18] is extended to the general stationary framework for uni-

modular G. The classification theorem is Theorem 5.2.7, and the funda-

mental result used in its proof, which says it is impossible to pick out finite

subsets of infinite sets in a flow-adapted manner, is Proposition 5.2.3.

Throughout this section, G is assumed to be unimodular. Fix for

the rest of the section a flow-adapted simple point process Ψ on G with

intensity γ ∈ (0,∞), and a point-shift F on Ψ. The wording of proofs is

substantially cut down by thinking of F(X) as the father of X. For example,

the children of X are the Y ∈ Ψ such that F(Y) � X. Next appear the

necessary ingredients needed for the classification theorem.

The iterates Fn are defined by repeatedly applying the point-shift F.

That is, F0(X) :� X and Fn+1(X) :� F(Fn(X)) for all X ∈ Ψ. Elements Y ∈ Ψ

that are in the image Fn(Ψ) for all n ∈ N are called primeval, and F∞(Ψ)

will denote the set of all primeval elements ofΨ. Here Fn(Ψ) is considered

as a set, i.e. multiplicities are ignored, for all n 6 ∞. Moreover, Fn(Ψ) is a
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flow-adapted simple point process for any n 6 ∞.

Random graphs will be used throughout this section. However,

random graphs in this section are not random networks in the sense of

Section 2.4. Connections with those types of networks will be studied in

Section 5.4. In this section, a random (directed) graphΓonG is specifiedwith

a random variable N taking values in N∪ {∞} and random elements (xi)i∈N
in G with V(Γ) :� {xi : i < N}, and measurable indicators (ξi j)i , j∈N with

E(Γ) :� {(xi , x j) : i , j < N, ξi j � 1}. A random subset C of vertices of Γ is a

map onΩ taking values in the subsets of V(Γ) such that 1{xi∈C} is measurable

for each i. Similarly, a random (countable) collectionC � {Ci}i<NC of subsets

of vertices of Γ is identified with a random variable NC taking values in

N ∪ {∞} and random subsets (Ci)i∈N with the elements of C being defined

as {Ci : i < NC}. In all cases of interest for the present study, the specific

numbering of vertices in a random graph or elements of a random collection

are of no interest andwill not be given upon defining the graph or collection.

The adjective flow-adapted has already been defined for point pro-

cesses and point-shifts. The same adjective will also be used for random

graphs and for random collections. A random graph Γ on G is flow-adapted

if for all ω ∈ Ω and all X,Y, z ∈ G, one has X ∈ V(Γ(ω)) if and only if

zX ∈ V(Γ(θzω)) and (X,Y) ∈ E(Γ(ω)) if and only if (zX, zY) ∈ E(Γ(θzω)).

A random collection C � {Ci}i<N is flow-adapted if for all ω ∈ Ω, z ∈ G,

one has N(θzω) � N(ω) and there is a permutation π(ω) of N ∩ [0,N(ω))

such that Ci(θzω) � {zx : x ∈ Cπ(ω)(ω)} for each i < N(ω). That is, C(θzω)
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contains the same elements as C(ω), shifted by z, and possibly enumerated

in a different order. Now the random graph generated by the point-shift F

is defined.

Definition 5.2.1. Define ΓF, the random graph generated by F to have ver-

tices at the points ofΨ and directed edges from each X ∈ Ψ to F(X).

Two natural equivalence relations on the vertices of ΓF are defined by

connected components and foils.

The set of undirected connected components of ΓF is denoted by CF

and the component of X ∈ Ψ is denoted CF(X). Then X,Y ∈ Ψ are in the

same component if and only if there are n ,m ∈ N such that Fm(X) � Fn(Y).

That is, CF(X) is the set of all relatives of X. The graph ΓF is flow-adapted,

and hence so is CF.

The foliation LF is defined to be the set of foils LF(X) of F for

X ∈ Ψ, which are equivalence classes under the equivalence relation where

X,Y ∈ Ψ are equivalent if and only if there is n ∈ N such that Fn(X) � Fn(Y).

That is, LF(X) is the relatives of X from the same generation as X. The

foliation LF is flow-adapted, and LF is a subdivision of CF. For a foil L,

also denote L+ :� LF(F(X)) for any X ∈ L. Note that if X,X′ ∈ L then

LF(F(X)) � LF(F(X′)) so L+ is well-defined. If there is Y ∈ Ψ such that

F(Y) ∈ L, then set L− :� LF(Y). Then L− is well-defined because if Y,Y′ are

both such that F(Y), F(Y′) ∈ L, then L(Y) � L(Y′). It holds that (L+)− � L

and when L− exists (L−)+ � L.
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Itwill be important later toknowthat thegraphΓF is locallyfinite. The

following result, generalizing one in [BHM18], guarantees this. It crucially

relies on the unimodularity of G.

Proposition 5.2.2. LetDn(X) denote the n-th order descendants ofX, i.e.Dn(X) :�

{Y ∈ Ψ : Fn(Y) � X}. Also let D(X) :�
⋃∞

n�1 Dn(X) be all descendants of X.

Then with dn(X) :� #Dn(X), d(X) :� #D(X), one has for every n > 0 that

EΨ[dn(e)] � 1. In particular, dn(e) is PΨ-a.s. finite, or equivalently P-a.s. every

X ∈ Ψ has dn(X) finite. If, in addition, ΓF is PΨ-a.s. acyclic, then EΨ[d(e)] � ∞.

Proof. Fn is a point-shift in its own right, so Proposition 5.1.3 implies that

EΨ[dn(e)] � EΨ[#Dn(e)] � 1 since G is unimodular. Thus dn(e) < ∞, PΨ-a.s.,

and hence P-a.s. dn(X) < ∞ for all X ∈ Ψ by Proposition 5.1.1. Moreover,

whenΓF is acyclic, theDn partitionD andhenceEΨ[d(e)] � ∑∞
n�1 EΨ[dn(e)] �

∞. �

The primary tool needed to prove the classification theorem follows.

It says that it is not possible to extract finite subsets of infinite subsets of Ψ

in a flow-adapted way. The proof is modified from the argument proving a

similar result for unimodular networks given by Lemma 2.11 in [BHMK18].

Proposition 5.2.3. Let N � {Ni}i<N be a flow-adapted collection of infinite mea-

surable subsets of Ψ and let k be the number of i such that e ∈ Ni . Suppose

that EΨ[k] < ∞. If Ψ′ is a measurable flow-adapted subset of Ψ for which P-a.s.

#(Ψ′ ∩ Ni) < ∞ for each i, then P-a.s. Ψ′ ∩ Ni � ∅ for all i. In particular, if

Ψ′ ⊆ ⋃
N, then P-a.s.Ψ′ � ∅.
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Proof. Define

τ(ω, x , y) :�
∑

i<N(ω)
1{x ,y∈Ni(ω),y∈Ψ′(ω)}

1
#(Ψ′(ω) ∩Ni(ω))

.

The assumptions about flow-adaptedness of N, Ψ′, and Ψ, imply that τ is

diagonally invariant. Then one has
∫

G τ(e , y)Ψ(dy) � k by construction

since e is in k of the Ni . Also
∫

G τ(x , e)Ψ(dx) � ∞ if e ∈ Ψ′ ∩ Ni for some i

because the Ni are infinite. But the mass-transport theorem implies

EΨ
∫

G
τ(x , e)Ψ(dx) � EΨ

∫
G
τ(e , y)Ψ(dy) � EΨ[k] < ∞,

and thus it must be that PΨ-a.s. e < Ψ′∩Ni for any i. Equivalently, P-a.s. for

all X ∈ Ψ it holds that X < Ψ′ ∩Ni for any i. SinceΨ′ ∩Ni ⊆ Ψ for each i, it

follows that P-a.s.Ψ′ ∩Ni � ∅ for all i. �

Note that, by Proposition 5.1.1, the condition EΨ[k] < ∞ appearing

in Proposition 5.2.3 is automatically satisfied if the Ni are pairwise disjoint,

or more generally if there is a constant n such that almost surely no X ∈ Ψ

appears in more than n of the Ni , as this would imply k 6 n, PΨ-a.s.

More information follows about the structure of the locally finite

graph ΓF. In particular, cycles in components are unique, infinite compo-

nents are acyclic, foils in infinite components can be ordered like N or Z in a

flow-adapted way, and F acts bĳectively on the primeval elements.

Lemma 5.2.4. P-a.s. a connected component C of ΓF is either an infinite tree or has

exactly one (directed) cycle K(C) for which for all Y ∈ C there is n ∈ N such that

Fn(Y) ∈ K(C). Moreover, P-a.s. there are no infinite components with a cycle.
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Proof. The fact that all elements in C are connected and have out-degree 1

implies there can be at most one cycle. If there are no cycles, then C must

be infinite since applying F to any element repeatedly must never repeat an

element. Otherwise there is one cycle K(C) and connectedness implies for

every Y ∈ C there is n ∈ Nwith Fn(Y) ∈ K(C).

Let N be the set of infinite components of ΓF with a cycle, and let

Ψ′ ⊆ ⋃
N be the union of all the cycles of these components. Since cycles

are finite, it follows that Ψ′ ∩ C is finite for all components C ∈ N. By

Proposition 5.2.3,Ψ′ � ∅ and hence there are no infinite components with a

cycle P-a.s. �

Within an infinite acyclic connected component C ∈ CF, it is possible

to define an order, called the foil order, on the foils LF(C) that are subsets

of C. This is accomplished by declaring LF(X) < LF
+(X) for all X ∈ C. When

thinking of F(X) as being the father of X, the order is that of seniority.

Lemma 5.2.5. The foil order on an infinite acyclic component C is a total order on

C isomorphic to either the order of Z or N.

Proof. Fix any X ∈ C. Let L0 :� LF(X) and recursively define Ln+1 :� (Ln)+
and if it exists L−n−1 :� (L−n)− for n > 0. Let L be a foil in C, then it must be

that L � Li for some i. Indeed, let Y ∈ L and by definition of connectedness

choose n ,m such that Fn(Y) � Fm(X) ∈ Lm . It then follows by induction

that Y ∈ Lm−n , and hence L � LF(Y) � Lm−n . Next it is shown that i 7→ Li is

injective. Suppose for contradiction that L j � L j+N . Then there are N pairs
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(Xi ,Yi+1)with Xi ∈ Li ,Yi+1 ∈ Li+1 such that F(Xi) � Yi+1 for j 6 i 6 j+N−1.

Since L j � L j+N it follows that X j ,Yj+N ∈ L j . Hence it is possible to choose n

such that Fn(X j) � Fn(Yj+N) and Fn(Xi) � Fn(Yi) for all j +1 6 i 6 j +N −1.

Assume by induction that for some k one has FN(Fn(X j)) � FN−k(Fn(Yj+k)).

Then as long as k + 1 6 N ,

FN(Fn(X j)) � FN−k(Fn(Yj+k))

� FN−k(Fn(X j+k))

� FN−k−1(Fn(F(X j+k)))

� FN−k−1(Fn(Yj+k+1)).

Since FN(Fn(X j)) � FN−1(Fn(F(X j))) � FN−1(Fn(Yj+1)) shows the base case

k � 1 holds, the induction is complete. Therefore, one finds FN(Fn(X j)) �

F0(Fn(Yj+N)) � Fn(X j), contradicting that C is acyclic. Thus i 7→ Li is

injective. If there is a smallest foil Li0 then i 7→ Li0+i is an order isomorphism

with N, otherwise i 7→ Li is an order isomorphism with Z. �

Lemma 5.2.6. F restricts to a bĳective point-shift F |Ψ′ on the flow-adapted sub-

processΨ′ :� F∞(Ψ) of primeval elements.

Proof. F naturally restricts to a point-shift F |Ψ′ on Ψ′ because if X ∈ F∞(Ψ)

then F(X) ∈ F∞(Ψ). By definition, primeval elements are in the image F(Ψ),

but moreover they are in the image F(Ψ′). Indeed, by Proposition 5.2.2,

points in Ψ have only finitely many children. If X ∈ Ψ′ were such that

none of its children were primeval, then there would be n ∈ N large enough
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that none of X’s children are in the image Fn(Ψ). But then X would not be

in Fn+1(Ψ), contradicting that X ∈ F∞(Ψ). Thus the restricted point-shift

F |Ψ′ is surjective. If Ψ′ is not the empty process P-a.s. then it has nonzero

and finite intensity so that surjectivity and injectivity are equivalent by

Proposition 5.1.4 �

The main result of this chapter follows.

Theorem 5.2.7 (Cardinality Classification of a Component). P-a.s. each con-

nected component C of ΓF is in one of the three following classes:

(i) Class F/F: C is finite, and hence so is each of its F-foils. In this case, when

denoting by 1 6 n � n(C) < ∞ the number of its foils:

• C has a unique cycle of length n.

• F∞(Ψ) ∩ C is the set of vertices of this cycle.

(ii) Class I/F: C is infinite and each of its F-foils is finite. In this case:

• C is acyclic.

• Each foil has a junior foil.

• F∞(Ψ)∩C is a unique bi-infinite path, i.e. a sequence (Xn)n∈Z of points

ofΨ such that F(Xn) � Xn+1 for all n.

(iii) Class I/I: C is infinite and all its F-foils are infinite. In this case:

• C is acyclic.
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• F∞(Ψ) ∩ C � ∅.

Proof. The properties of finite components C are immediate, so only infinite

components are considered. Recall that by Lemma 5.2.4 P-a.s. all infinite

components are acyclic. Consider the collectionN of all infinite components

that have both finite and infinite foils. Suppose C ∈ N. According to

Proposition 5.2.2, all X ∈ Ψ have only finitely many children, so that if L is

an infinite foil, then L+ is also infinite. It follows that there is a maximum

finite foil L with respect to the foil order in C. LetΨ′ ⊆ ⋃
N be the union of

these maximum finite foils of each C ∈ N. By construction, Ψ′ ∩ C is finite

for each C ∈ N, so Proposition 5.2.3 implies Ψ′ � ∅ and hence N � ∅, P-a.s.

Thus P-a.s. each infinite component is either of class I/F or I/I.

Next, redefine N to be the set of infinite foils L of Ψ, and let Ψ′ :�

F∞(Ψ). By construction Ψ′ ∩ L is finite for each L ∈ N because a foil can-

not have multiple primeval elements. If X , Y ∈ L were both primeval,

then with n minimal such that Fn(X) � Fn(Y) one finds the primeval ele-

ment Fn(X) is the image of two distinct primeval elements Fn−1(X), Fn−1(Y),

contradicting injectivity of F |Ψ′ guaranteed by Lemma 5.2.6. Thus Proposi-

tion 5.2.3 implies P-a.s. Ψ′ ∩ L � ∅ for all infinite foils L, and hence P-a.s.

F∞(Ψ) ∩ C , ∅ implies C is of class I/F.

Conversely, it will be shown that if C is class I/F, then F∞(Ψ)∩C , ∅.

Indeed, redefine N to be the collection of components C of class I/F that

have a minimum foil in the foil order. Letting Ψ′ ⊆ ⋃
N be the union of
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minimum foils in C, it holds that Ψ′ ∩ C is the (finite) minimum foil in C

for each C ∈ N. Thus Proposition 5.2.3 implies Ψ′ � ∅ and hence N � ∅,

P-a.s. Now consider a C of class I/F and an arbitrary foil L of C. Since

L is finite there is a minimum n such that Fn(L) is a single point. Let C0

denote the subgraph of ΓF of L together with all descendants of elements

of L and all forefathers of elements of L up to Fn(L). Then C0 is an infinite

connected graph with vertices of finite degree, and hence it contains an

infinite simple path (Xi)i60 with F(Xi) � Xi+1 for each i < 0 by König’s

infinity lemma (c.f. Theorem 6 in [K9̈0]). For i > 0, define Xi :� F i(X0).

Then (Xi)i∈Z is a bi-infinite path in C satisfying F(Xi) � Xi+1 for all i ∈ Z,

and thus {Xi}i∈Z ⊆ F∞(Ψ) ∩C, in particular showing F∞(Ψ) ∩C , ∅. It also

holds that F∞(Ψ) ∩ C ⊆ {Xi}i∈Z since for any X ∈ F∞(Ψ) ∩ C it is possible

to choose n ,m such that Fn(X) � Fm(X0) � Xm . Uniqueness of primeval

children then implies X � Xm−n . It follows that F∞(Ψ) ∩ C � {Xi}i∈Z.

Thus it is shown that P-a.s. infinite components C are class I/F if

and only if F∞(Ψ) ∩ C , ∅ and in this case F∞(Ψ) ∩ C is a unique bi-

infinite sequence {Xi}i∈Z satisfying F(Xi) � Xi+1. Since I/F and I/I are the

only possible choices, by process of elimination it follows that P-a.s. infinite

components C are of class I/I if and only if F∞(Ψ) ∩ C � ∅. �

5.2.2. A Counterexample on a Non-unimodular Group

This example serves to show that the cardinality classification (Theo-

rem 5.2.7) does not hold for non-unimodular spaces. It is an open question
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whether a more general classification for such spaces exists. Recall the stan-

dard first example of a non-unimodular group: the ax + b group. In this

section,

G �

{(
a b
0 1

)
: a > 0, b ∈ R

}
with matrix multiplication and the topology inherited from R4. G is identi-

fied with the right half-plane in R2 by identifying (a , b) with
(
a b
0 1

)
. In this

notation

(a , b)(c , d) � (ac , ad + b), (a , b)−1
� (1

a
,−b

a
).

Then, cf. [HR79] Example 15.17 (g), G has a left-invariant Haar measure

λ(B) �
∬

B

1
a2 da db

and modular function

∆(a , b) � 1
a
.

Let Ψ be a homogeneous Poisson point process on G with intensity γ ∈

(0,∞). Necessarily Ψ is G-stationary and simple. For all (a , b) ∈ G define

the strip

S(a , b) :� [a ,∞) × [b − δa , b + δa]

for some fixed δ > 0. Note that the definition is chosen so (a , b)S(1, 0) �

S(a , b), where here (1, 0) � e ∈ G. Moreover, for any (a , b) ∈ G,

λ(S(a , b)) �
∫ b+δa

b−δa

∫ ∞

a

1
x2 dx dy �

1
a
· ((b + δa) − (b − δa)) � 2δ

so in particular Ψ(S(a , b)) < ∞ a.s. By the Slivnyak-Mecke theorem (see

Theorem B.1.6 in Appendix B), Ψ! :� Ψ − δe is Poisson under PΨ with
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EΨ[Ψ!(B)] � γλ(B). Hence EΨ[Ψ!(S(1, 0))] � 2δγ and thereforeΨ(S(1, 0)) <

∞, PΨ-a.s. Equivalently, P-a.s. Ψ(S(X)) < ∞ for all X ∈ Ψ by Proposi-

tion 5.1.1. This leads to the strip point-shift F where F(X) is defined to be

the right-most point of Ψ in S(X) for each X ∈ Ψ. One may theoretically

resolve ties for right-most point using the lexicographic order on R2, but

the interested reader may note that results in Section 5.3.4 will show that

there is no need because almost surely each point X ∈ Ψ has a unique first

coordinate.

Now suppose that 2δγ < 1. It will be shown that P-a.s. Fn(X) eventu-

ally becomes constant as n →∞ for all X ∈ Ψ. It suffices to show that under

PΨ it holds that Fn(e) eventually becomes constant. Recall that the n-th

factorial power of a counting measure µ with representation µ �
∑

i δxi is

defined as µ(n) :�
∑

i1,···,in δ(xi1 ,...,xin ), where the notation i1 , · · · , in means
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that i1, . . . , in are all distinct. Then

EΨ
∞∑

k�0

Ψ(S(Fk(e)) \ {Fk(e)})

�

∞∑
k�0

EΨΨ(S(Fk(e)) \ {Fk(e)})

6
∞∑

k�0

EΨ
∫

Gk+1
1{x1∈S(e)} · · · 1{xk+1∈S(xk)} (Ψ!)(k+1)(dx1 × · · · × dxk+1)

�

∞∑
k�0

E
∫

Gk+1
1{x1∈S(e)} · · · 1{xk+1∈S(xk)}Ψ

(k+1)(dx1 × · · · × dxk+1)

�

∞∑
k�0

∫
Gk+1

1{x1∈S(e)} · · · 1{xk+1∈S(xk)}γ
k+1 λ(dxk+1) · · · λ(dx1)

�

∞∑
k�0

(2δ)k+1γk+1

< ∞,

where here the Slivnyak-Mecke theorem is used again, along with the fact

that the factorialmomentmeasures of a Poissonpoint process are just powers

of the intensity measure, cf. Example 9.5 (d) in [DVJ08]. Thus it must be that

Ψ(S(Fk(e)) \ {Fk(e)}) � 0 for all k large, PΨ-a.s. That is, there are no points

ofΨ in S(Fk(e)) besides Fk(e) itself. Consequently, Fk(e) is a fixed point of F

for large k and Fk(e) is thus eventually constant in k. Equivalently, P-a.s. for

every X ∈ Ψ it holds that Fk(X) is eventually constant in k.

Next it will be shown that every fixed point of F is the image of

infinitely many X ∈ Ψ. Again it is enough to show under PΨ that if F(e) � e

then e is the image of infinitelymany X ∈ Ψ. This is accomplished by finding
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a region of points (x , y) ∈ G such that

(i) (1, 0) ∈ S(x , y), and

(ii) S(x , y) ∩ ([1,∞) × R) ⊆ S(1, 0),

which implies F would map a point ofΨ at (x , y) to (1, 0). The condition (i)

says 1 > x and y − δx 6 0 6 y + δx, i.e. −δx 6 y 6 δx. Condition (ii) is

guaranteed if [y − δx , y + δx] ⊆ [−δ, δ], i.e. if y > δ(x − 1) and y 6 δ(1 − x).

The constraints

0 < x 6 1, −δx 6 y 6 δx , y 6 δ(1 − x), y > δ(x − 1),

bound a parallelogram D with corners

(0, 0), (1/2, δ/2), (1, 0), (1/2,−δ/2).

Then

EΨ[Ψ!(D)] � γλ(D) > γ
∫ 1/2

0

∫ δx

−δx

1
x2 dy dx � γ

∫ 1/2

0

2δ
x

dx � ∞

so that the region D contains infinitely many points of Ψ, PΨ-a.s. By con-

struction, if F(e) � e then every X ∈ Ψ ∩ D has F(X) � e, proving the

claim.

Putting previous claims together, it holds that the foils and connected

components are identical because every component contains a fixed point,

and the foils and components are in bĳection with the fixed points of F. The

connected component of a fixed point Y of F is all X ∈ Ψ that are eventually
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sent to Y. Thus all components and foils are infinite (class I/I). However,

the components are not acyclic and F∞(Ψ) � {X ∈ Ψ : F(X) � X} , ∅,

contrary to what the classification theorem would suggest for unimodular

G. It follows that the properties of the cardinality classification cannot be

extended beyond the case of unimodular G.

5.3. Properties of Point-shifts
5.3.1. Point-maps

Onemay define a point-shift on a point processΨ indirectly by speci-

fyingwhere e ismapped tounderPΨ instead ofwhere every point ismapped

under P. Some properties of point-shifts that are more easily phrased in

terms of these so-called point-maps are collected in this section. Fix a point-

shift F on a flow-adapted simple point process Ψ with intensity γ ∈ (0,∞)

for the remainder of the section.

A point-map onΨ is a measurable map f : Ω→ G such that f (ω) ∈

Ψ(ω) for PΨ-a.e. ω ∈ Ω. There is a natural correspondence between point-

shifts and point-maps. Namely, if F is a point-shift, then f (ω) :� F(ω, e) is a

point-map, and if f is apoint-map, then F(ω,X) :� X f (θ−1
X ω) is apoint-shift,

and these operations are inverses. Proposition 5.1.1 ensures that changing

the definition of F on a P-null set will only change the corresponding f on

a PΨ-null set, and vice-versa. The unfamiliar reader may see Example B.1.5

in Appendix B for the details of how to convert definitions under P and PΨ

more generally.
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Let F−(x) :� {Y ∈ Ψ : F(Y) � x} be the in-neighbors of x for each

x ∈ G. Further define f − :� F−(e) to be the in-neighbors of e. These

two definitions also contain the same information by Proposition 5.1.1. The

boldface in f −, F− is intended to indicate to the reader that the result is a

subset of G and should not be confused with, e.g., an expression like f −1,

which is an element of G, namely the group inverse of the element f .

Suppose that F is bĳective. In this case, it makes sense to run the

point-shift backwards in time. Define the reverse point-shift F← by letting

F←(X) be the unique element of F−(X) for all X ∈ Ψ. Similarly define the

reverse point-map f← to be the point-map corresponding to F←. Note that

P-a.s.

F(F←(X)) � F←(F(X)) � X, X ∈ Ψ. (5.7)

That is, F and F← are inverses (as point-shifts, not as group elements) on the

support ofΨ.

With themass-transport theorem andProposition 5.1.1, the following

may be obtained in a straightforward manner.

Proposition 5.3.1. The following hold:

(a) P-a.s. every X ∈ Ψ is the image under F of at least (resp. at most) k distinct

points ofΨ if and only if PΨ-a.s. # f − > k (resp. 6 k).

(b) P-a.s. every X ∈ Ψ is the image under F of finitely (resp. infinitely) many

distinct points ofΨ if and only if PΨ-a.s. # f − < ∞ (resp. � ∞).
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(c) P-a.s. F is bĳective (resp. surjective, injective) if and only if PΨ-a.s. # f − � 1

(resp. > 1, 6 1).

(d) For all ζ : Ω→ R>0 measurable,

EΨ[ζ(θ−1
f )∆( f

−1)] � EΨ[ζ · # f −]. (5.8)

In particular, the following mass-flow relationship for point-shifts holds

EΨ[∆( f −1)] � EΨ[# f −]. (5.9)

(e) P-a.s. every X ∈ Ψ is the image under F of at least (resp. at most) k points of

Ψ if and only if for all ζ : Ω→ R>0 measurable

EΨ[ζ(θ−1
f )∆( f

−1)] > kEΨ[ζ] (resp. 6 kEΨ[ζ]).

(f) (Test for Bĳectivity)1 F is bĳective if and only if for all ζ : Ω → R>0

measurable

EΨ[ζ(θ−1
f )]∆( f

−1)] � EΨ[ζ]. (5.10)

(g) If F is bĳective, also

EΨ
[

f (θ−1
f )

]
� EΨ

[
f

∆( f←)

]
. (5.11)

(h) If P-a.s. every X ∈ Ψ is the image under F of at least (resp. at most) k points

ofΨ, then EΨ[∆( f −1)] > k (resp. 6 k).

1G. Last also proves this and similar results, e.g. Corollary 10.1 in [Las10a].
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(i) If EΨ[∆( f −1)] < ∞, P-a.s. every X ∈ Ψ is the image of only finitely many

Y ∈ Ψ under F.

(j) If EΨ[∆( f −1)] � 1, then F is injective if and only if it is surjective. In

particular, this is automatic if G is unimodular.

(k) If EΨ[∆( f −1)] > 1 (resp. < 1), then F is not injective (resp. not surjective).

Proof.

(a),(b),(c): Direct application of Proposition 5.1.1.

(d): Apply the mass-transport theorem with the diagonally invariant

function

τ(ω, x , y) :� f (θ−1
y ω)1{x ,y∈Ψ(ω),y�F(x)}∆(y−1x).

(e): Apply (a) and (d).

(f): Apply (e) with k :� 1.

(g): Replace ζ with ζ
∆( f←) in (d) and use the fact that PΨ-a.s.

f←(θ−1
f ) � f −1 · ( f f←(θ−1

f )) � f −1F←( f ) � f −1F←(F(e)) � f −1.

(h),(i): Take ζ :� 1 in (d) and apply (a) or (b).

(j): Take ζ :� 1 in (d). Use (a), (c), and the fact that a random variable

bounded above (or below) by 1 with expectation 1 must be constant 1

a.s.
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(k): From (5.9), the hypothesis implies that # f − > 1 (resp. < 1) with

positive PΨ-probability. But if F were injective (resp. surjective), then

one would have # f − 6 1 (resp. > 1) PΨ-a.s. �

5.3.2. Mecke’s Invariance Theorem

In the case of G � Rd , Mecke’s invariance theorem shows that Palm

probabilities are preserved under bĳective point-shifts. Even stronger, a

point-shift is bĳective if and only if it preserves Palm probabilities. It will

be shown in Corollary 5.3.2 that, if G is unimodular, then this still holds.

However, for non-unimodular G this is not so. Precisely, the notion of iso-

modularity will be introduced, and it will be shown that, amongst bĳective

point-shifts, isomodular ones are exactly those that preserve Palm probabil-

ities (Proposition 5.3.7).

For the rest of the section, fix a flow-adapted simple point processΨ

of intensity γ ∈ (0,∞), and a point-map f with associated point-shift F. The

simple case of Mecke’s invariance theorem when G is unimodular follows.

Corollary 5.3.2 (Mecke’s Invariance Theorem). Suppose that G is unimodular.

Then F preserves PΨ if and only if F is bĳective. That is, PΨ(θ−1
f ∈ A) � PΨ(A)

for all A ∈ F if and only if F is bĳective.

Proof. Apply Proposition 5.3.1 (f), the test for bĳectivity, and use the fact that

∆(x) � 1 for all x ∈ G. �

With Mecke’s invariance theorem for unimodular G in place, one
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may ask about non-unimodular G. For these G, which bĳective point-shifts

preserve Palm probabilities? Equation (5.10) shows that the obstruction is

the factor ∆( f −1). This motivates the definition of isomodularity, which says

that a point-shift preserves the value of ∆(X) for each X ∈ Ψ.

Definition 5.3.3. Thepoint-shift F is said to be isomodular ifP-a.s.∆(F(X)) �

∆(X) for all X ∈ Ψ.

Isomodularity is a special case of invariance of a subgroup under F,

which is defined presently.

Definition 5.3.4. A measurable subgroup H ∈ B(G) of G is called F-

invariant if P-a.s. F(X) is in the same coset as X for all X ∈ Ψ.

Isomodularity of F is the same as the assumption that the subgroup

{∆ � 1} is F-invariant. Also note that if G is unimodular, then F is automat-

ically isomodular.

A brief detour is taken to go through the equivalent descriptions of

F-invariance under P and PΨ.

Proposition 5.3.5. Let H ∈ B(G) a measurable subgroup of G, and for each x ∈ G

let [x] :� xH denote the coset of x. Then the following are equivalent:

(a) H is F-invariant, i.e. P-a.s. [F(X)] � [X] for all X ∈ Ψ.

(b) PΨ-a.s. [ f ] � [e].

139



If F is bĳective, the previous statements are also equivalent to:

(c) P-a.s. [F←(X)] � [X] for all X ∈ Ψ.

(d) PΨ-a.s. [ f←] � [e].

Proof.

(a) ⇐⇒ (b): The equivalence follows from Proposition 5.1.1, so that

PΨ-a.s. [ f ] � [e] is equivalent to P-a.s. [ f (θ−1
X )] � [e] for all X ∈ Ψ,

which is the same as [F(X)] � [X] after multiplying by X.

(a) ⇐⇒ (c): Using that F and F← are inverses, replace X with F←(X)

in (b) to get (c) or replace X with F(X) in (c) to get (b).

(c)⇐⇒ (d): The proof is the same as (a)⇐⇒ (b). �

Since isomodularity plays an important role in what follows, the

previous result is restated for H :� {∆ � 1} in the bĳective case.

Corollary 5.3.6. Let F be bĳective, then the following are equivalent:

(a) F is isomodular, i.e. P-a.s. ∆(F(X)) � ∆(X) for all X ∈ Ψ.

(b) PΨ-a.s. ∆( f ) � 1.

(c) P-a.s. ∆(F←(X)) � ∆(X) for all X ∈ Ψ.

(d) PΨ-a.s. ∆( f←) � 1. �
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Now the question of which bĳective point-shifts preserve Palm prob-

abilities is answerable.

Proposition 5.3.7. Suppose F is bĳective. Then F preserves PΨ if and only if F

is isomodular. That is, PΨ(θ−1
f ∈ A) � PΨ(A) for all A ∈ F if and only if F is

isomodular.

Proof. Suppose F is isomodular. Then ∆( f←) � 1, PΨ-a.s. by Corollary 5.3.6.

Hence (5.11) immediately implies F preserves PΨ. If F is not isomodular, at

least one of PΨ(∆( f←) > 1) and PΨ(∆( f←) < 1) is strictly positive. The cases

are nearly identical, so assumePΨ(∆( f←) > 1) > 0 and let A :� {∆( f←) > 1}.

Then take f :� 1A in (5.11) to find

PΨ(θ−1
f ∈ A) � EΨ

[1{∆( f←)>1}

∆( f←)

]
< EΨ

[
1{∆( f←)>1}

]
� PΨ(A),

showing that PΨ is not preserved. �

5.3.3. Reciprocal and Reverse of a Point-map

In this section, a curious interplay between the reverse f← and the

reciprocal f −1 of a point-map is investigated, and a characterization of when

the two have the same law under PΨ is given. The notation of the previous

section is retained. That is, Ψ is a flow-adapted simple point process of

intensity γ ∈ (0,∞), and F is a point-shift with associated point-map f .

Next follows another result along the lines of Proposition 5.3.1 (f) and (g)

which sparks interest in the distributional relationship between f −1 and f←.
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Corollary 5.3.8. Suppose F is bĳective. For all ζ : G → R>0 measurable it holds

that

EΨ
[
ζ( f −1)∆( f −1)

]
� EΨ

[
ζ( f←)

]
, (5.12)

EΨ
[
ζ( f −1)

]
� EΨ

[
ζ( f←)
∆( f←)

]
. (5.13)

Proof. Use the fact that PΨ-a.s.

f←(θ−1
f ) � f −1 · ( f f←(θ−1

f )) � f −1F←( f ) � f −1F←(F(e)) � f −1

and replace ζ by ζ( f←) in each of (5.8) and (5.11). �

One sees in (5.13) that non-unimodularity of G is, as usual, an ob-

struction. Two more results relating the distributions of ∆( f←) and ∆( f −1)

are given. Then it is shown in Proposition 5.3.11 that, amongst bĳective

point-shifts, the isomodular ones are precisely those for which f −1 and f←

have the same distribution under PΨ. Recall that this is also the class of

point-shifts that preserve Palm probabilities by Proposition 5.3.7.

Corollary 5.3.9. Let F be bĳective, then for all r > 0 it holds that

rPΨ(∆( f −1) � r) � PΨ(∆( f←) � r),

and, if this number is strictly positive, then for all A ∈ F

PΨ(θ−1
f ∈ A | ∆( f −1) � r) � PΨ(A | ∆( f←) � r).

Proof. Fix r > 0 and take ζ(x) :� 1{∆(x)�r} in (5.13). One finds

PΨ(∆( f −1) � r) � 1
r
PΨ(∆( f←) � r) �: p
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showing the first claim. Supposing that p > 0, take ζ :� 1A1{∆( f←)�r} in (5.11)

and use that PΨ-a.s. f←(θ−1
f ) � f −1 to find

PΨ(θ−1
f ∈ A,∆( f −1) � r) � 1

r
PΨ(A,∆( f←) � r).

Division by p finishes the proof. �

Lemma 5.3.10. Let F be bĳective, then for all α ∈ R and 0 6 r 6 s 6 ∞ it holds

that

EΨ
[
∆( f −1)α1{r6∆( f −1)6s}

]
� EΨ

[
∆( f←)α−11{r6∆( f←)6s}

]
. (5.14)

Proof. Take ζ(x) :� ∆(x)α1{r6∆(x)6s} in (5.13). �

Proposition 5.3.11. Let F be bĳective, then f −1 and f← have the same law under

PΨ if and only if F is isomodular.

Proof. Suppose F is isomodular. Then by Corollary 5.3.6, PΨ-a.s. ∆( f ) �

∆( f←) � 1 and thus (5.13) shows that f −1 and f← have the same law under

PΨ.

Next suppose that f −1 and f← have the same law under PΨ. Then

EΨ[∆( f −1)α1{r6∆( f −1)6s}] � EΨ[∆( f←)α1{r6∆( f←)6s}] (5.15)

for all α ∈ R and all 0 6 r 6 s 6 ∞. But then for all α ∈ R and all

0 6 r 6 s 6 ∞

EΨ[∆( f −1)α+11{r6∆( f −1)6s}] � EΨ[∆( f←)α1{r6∆( f←)6s}] (by (5.14))

� EΨ[∆( f −1)α1{r6∆( f −1)6s}] (by (5.15))

� EΨ[∆( f←)α−11{r6∆( f −1)6s}]. (by (5.14))
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Taking α :� 1, r :� 1, s :� ∞

EΨ[∆( f −1)21{16∆( f −1)}] � EΨ[∆( f −1)1{16∆( f −1)}]

which is absurd unless∆( f −1) 6 1, PΨ-a.s. It also holds that with α :� 1, r :�

0, s :� 1,

EΨ[∆( f −1)21{∆( f −1)61}] � EΨ[∆( f −1)1{∆( f −1)61}],

which is absurd unless ∆( f −1) > 1, PΨ-a.s. It follows that ∆( f −1) � 1, PΨ-a.s.

By Corollary 5.3.6 the result follows. �

5.3.4. Separating Points of a Point Process

In this section a notion of a function separating points of a point

process is introduced. For the remainder of the section, Ψ is a simple and

flow-adapted point process of intensity γ ∈ (0,∞). Let S be a set, ζ : G→ S,

and suppose that P-a.s. no distinct X,Y ∈ Ψ have ζ(X) � ζ(Y). In this case

one says that ζ separates points of Ψ. Similarly, say that a fixed partition

{Bi}i∈ J of G separates points ofΨ if P-a.s. no Bi contains more than 1 point

ofΨ.

When separation of points occurs is studied by proving a general

result concerning when there cannot be an n-tuple of distinct points of Ψ

satisfying a given constraint. Recall again that µ(n) �
∑

i1,···,in δ(xi1 ,...,xin )

denotes the n-th factorial power of a measure µ �
∑

i δxi , µ! :� µ − δe is µ

with a point at e removed, and a measurable space is a set together with a

σ-algebra.
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Proposition 5.3.12. Let (S,Σ) be a measurable space and fix M ∈ Σ. Let Z :

G×Gn → S be measurable, and suppose that for all y � (y1, . . . , yn) ∈ (G\{e})n ,

or more generally that for EΨ[(Ψ!)(n)]-a.e. y ∈ Gn ,

λ(x ∈ G : Z(x , x y) ∈ M) � 0.

Then P-a.s. no n + 1 distinct X,Y1, . . . ,Yn ∈ Ψ have Z(X,Y1, . . . ,Yn) ∈ M.

Proof. By straight calculations,

P(∃X ∈ Ψ,Y ∈ Ψ(n) : (X,Y) ∈ Ψ(n+1), Z(X,Y) ∈ M)

6 E
∫

G
1{∃Y∈Ψ(n):∀i ,Yi,x ,Z(x ,Y)∈M}Ψ(dx)

6 E
∫

G
Ψ(n)(θe , {y ∈ Gn : ∀i , yi , x , Z(x , y) ∈ M})Ψ(dx)

� γEΨ
∫

G
Ψ(n)(θx , {y ∈ Gn , ∀i , yi , x , Z(x , y) ∈ M}) λ(dx)

� γEΨ
∫

G
Ψ(n)(θe , {x−1 y : y ∈ Gn , ∀i , yi , x , Z(x , y) ∈ M}) λ(dx)

� γEΨ
∫

G
Ψ(n)(θe , {y ∈ Gn , ∀i , x yi , x , Z(x , x y) ∈ M}) λ(dx)

� γEΨ
∫

G

∫
G

1{Z(x ,x y)∈M} (Ψ!)(n)(dy) λ(dx)

� γEΨ
∫

G
λ(x ∈ G : Z(x , x y) ∈ M) (Ψ!)(n)(dy)

� 0,

where in the first equality the refined Campbell theorem, stated in Ap-

pendix B as Theorem B.1.1, is used. This proves the claim. �

Proposition 5.3.12 immediately gives a condition for separatingpoints

ofΨ.
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Corollary 5.3.13 (Condition for Separating Points). Let (S,Σ) be a measurable

space, ζ : G → S measurable, and suppose for all y , e, or more generally for

EΨ[Ψ!]-a.e. y ∈ G,

λ(x ∈ G : ζ(x) � ζ(x y)) � 0.

Then ζ separates points of Ψ. Implicit in the previous line is the assumption that

the sets {x ∈ G : ζ(x) � ζ(x y)} are measurable for all y ∈ G. This is automatic if

(S,Σ) is a standard measurable space, i.e., if there is a bi-measurable bĳection of S

with a Polish space, or more generally if S × S has measurable diagonal.

Proof. Take n :� 1, Z(x , y) :� (ζ(x), ζ(y)) for all x , y ∈ G, and take M to be

the diagonal of S × S, then apply Proposition 5.3.12. �

Corollary 5.3.13 generalizes thewell-known theorem in G � Rd that a

stationary point process has not two points equidistant from 0. That would

be the case of ζ(x) :� |x |. Not all G have this property though. Indeed,

if G is a countable group with the discrete distance d(x , y) :� 1{x,y}, then

λ(x ∈ G : d(x , e) � d(x y , e)) > 0 for all y , e so the result does not apply if

G has more than one element.

The next results can be used to show that there is no need to resolve

ties when defining a point-shift in some situations. Intuitively, if a set B is

small from the typical point’s perspective, then no shift of B will contain

more than one point ofΨ.
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Proposition 5.3.14. Let B ∈ B(G) with e ∈ B. If EΨ[Ψ!(B)] � 0, then P-a.s. for

all X ∈ Ψ it holds that Ψ(Xb : b ∈ B) � 1, i.e. X is the unique point of Ψ inside

{Xb : b ∈ B}.

Proof. The hypotheses imply PΨ-a.s.Ψ(B \ {e}) � 0. By Proposition 5.1.1, P-

a.s. all X ∈ Ψ are such that TX−1Ψ(B\{e}) � 0, i.e. Ψ({Xb : b ∈ B}\{X}) � 0,

and henceΨ(Xb : b ∈ B) � 1. �

For example, recall the strip point-shift on the ax + b group of Sec-

tion 5.2.2. It was defined by sending a point X to the right-most point in

a certain strip in the plane. In that case, take B :� {1} × R in the previous

result to find that the points ofΨ have unique first coordinates. Hence there

are no ties for right-most point.

Finally, the previous result is restated in the case that B is a subgroup

and applied to see that the only way for F to preserve a small subgroup from

the typical point’s perspective is to act as the identity.

Corollary 5.3.15. Let H ∈ B(G) a subgroup of G. If EΨ[Ψ!(H)] � 0, then the

cosets of H separate points ofΨ. �

Corollary 5.3.16. Let H ∈ B(G) a subgroup of G. If EΨ[Ψ!(H)] � 0 but H is

F-invariant for some point-shift F, then F is the identity point-shift P-a.s.

Proof. H being F-invariant means F(X) and X are in the same coset for

X ∈ Ψ, then by Corollary 5.3.15 F is the identity point-shift. �
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Corollary 5.3.17. Let H ∈ B(G) a subgroup of G. If λ(H) � 0 andΨ is Poisson

with intensity γ ∈ (0,∞), then the only F for which H is F-invariant is the identity.

Proof. The Slivnyak-Mecke theorem, Theorem B.1.6 in Appendix B, implies

that one has EΨ[Ψ!(H)] � γλ(H) � 0 and Corollary 5.3.16 applies. �

5.4. Connections with Unimodular Networks

A general situation is given under which a point process, seen under

its Palm probability measure and rooted at the identity, is a unimodular

network. The reader may wish to glance again at Section 2.4 to recall the

notation used here for random networks. Next, the appropriate notion of

flow-adaptedness for networks must be given, then the result follows.

Suppose β is a map on Ω such that for all ω ∈ Ω, β(ω) is a network

whose vertex set V(β) ⊆ G. Note that β is not a random network as defined

in Section 2.4. It is, for each ω ∈ Ω, a network, not an isomorphism class

of rooted networks. Then β is called flow-adapted if for all z ∈ G, β(θzω)

is the shift Tzβ(ω) of β(ω) by z, i.e. V(β(θzω)) � {zX : X ∈ V(β(ω))}, and

E(β(θzω)) � {{zX, zY} : {X,Y} ∈ E(β(ω))}, and all marks are preserved.

Theorem 5.4.1. Suppose G is unimodular. Let Ψ be a flow-adapted simple point

process with intensity γ ∈ (0,∞). Let β be a map on Ω such that for all ω ∈ Ω,

β(ω) is a network, and such that β satisfies

(i) V(β) � Ψ,
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(ii) β is flow-adapted,

(iii) ω 7→ [β(ω), e] is measurable on the event {e ∈ V(β)}.

Then [β, e] is a unimodular network under PΨ on the event {e ∈ V(β)} � {e ∈ Ψ}.

Proof. The assumption (iii) implies [β, e] is a random network under PΨ on

{e ∈ V(β)}, so one only needs to check unimodularity. Let g : G∗∗→ R>0 be

given. Then

EΨ
∑

v∈V(β)
g[β, e , v] � EΨ

∫
G

g[β, e , x]Ψ(dx)

� EΨ
∫

G
g[β(θ−1

y ), e , y−1]Ψ(dy) (mass-transport)

� EΨ
∫

G
g[Ty−1β, e , y−1]Ψ(dy)

� EΨ
∫

G
g[β, y , e]Ψ(dy)

� EΨ
∑

v∈V(β)
g[β, v , e],

showing unimodularity. �

Recall that the symbol Tz for z ∈ G, used in the previous result as

the shift operator on networks, is also used as the shift operator on counting

measures and point processes, which is how it is used in the following.

Definition 5.4.2. Let [Γ, o] be a unimodular network. A G-embedding of

[Γ, o] with respect to a probability measure P on Ω is a map η : G∗ → M

with the following properties:
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(i) η is measurable.

(ii) e ∈ η[Γ, o] for all rooted networks (Γ, o).

(iii) There is a measurable function t : G∗∗ → G such that for every rooted

network (Γ, o) and every vertex v ∈ V(Γ),

η[Γ, v] � Tt[Γ,o ,v]−1η[Γ, o],

t[Γ, v , o] � t[Γ, o , v]−1.

(iv) P-almost surely, themapdefinedonV(Γ)by v 7→ t[Γ, o , v] is a bĳection

between V(Γ) and the support of η[Γ, o].

Say that the Palm version of a point processΨ is a G-embedding of [Γ, o] if

there is a G-embedding η with respect to PΨ such that PΨ-a.s.Ψ � η[Γ, o].

Two of the motivating open questions of this research are:

(i) For a fixedΨ, is the Palm version ofΨ a G-embedding of some [Γ, o]?

(ii) For a fixed [Γ, o], is there a Ψ such that the Palm version of Ψ is a

G-embedding of [Γ, o]?

When G is unimodular, the answer to the first question is “yes” forΨ

if it is possible to draw a connected graph onΨ in a flow-adapted way.

Definition 5.4.3. Call a flow-adapted simple point processΨ connectible in

a flow-adapted way if there exists a connected flow-adapted locally finite
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graph Γ � Γ(ω) such that V(Γ) � Ψ almost surely and such that for some

measurable enumeration (Yi)i∈N of the points of Ψ (where Yi is defined

arbitrarily if i exceeds #Ψ), 1{Yi ,Yj}∈E(Γ) is measurable for all i , j ∈ N on the

event {#Ψ > i , j}.

Theorem 5.4.4. Suppose G is unimodular and that Ψ is a flow-adapted simple

point process with intensity γ ∈ (0,∞) that is connectible in a flow-adapted way.

Then the Palm version ofΨ is a G-embedding of some unimodular network.

Proof. Choose a random graph Γ witnessing the fact that Ψ is connectible.

Consider some edge g ∈ E(Γ) from X ∈ Ψ to Y ∈ Ψ. Without loss of gener-

ality, assume the mark space Ξ � G. Let the mark of (X, g) be X−1Y, and let

β(ω) be the networkwith underlying graph Γ(ω) andmarks as just specified.

Choose o :� e and let [Γ, o] :� [β, e]. Let ψ a rooted automorphism of (Γ, v)

be given, where v is any vertex of Γ. It will be shown that ψ is the identity.

Assume that ψ fixes all vertices less than graph distance k from v. For each

Y ∈ Ψ of distance k + 1 from v, there is an X ∈ Ψ of distance k from v and

an edge g from X to Y. The mark of (X, g) is X−1Y and this must equal

the mark of ψ(X) � X between X and ψ(Y). But this mark is X−1ψ(Y).

Thus X−1Y � X−1ψ(Y) so that Y � ψ(Y). By induction and using that Γ is

connected, one finds that ψ is the identity automorphism. By construction

V(β) � Ψ, β is flow-adapted, and ω 7→ [β(ω), e] is measurable on the set

{e ∈ Ψ}. By Theorem 5.4.1, [β, e] is a unimodular network under PΨ on the

set {e ∈ Ψ}. It will be shown thatΨ is a G-embedding of [Γ, o].
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On the set {e ∈ Ψ} one has that Ψ can be reconstructed from [Γ, o].

The reconstruction procedure will be used to define a G-embedding η. In-

deed, let t[Γ, o , v] :�
∏k−1

i�0 ξE(vi , gi) where v0v1 · · · vk is a path between the

two arbitrary vertices o and v of Γ, and gi is the edge {vi , vi+1}, assuming the

product is independent of the path chosen between. Let t[Γ, o , v] :� e other-

wise. The fact that
∏k−1

i�0 ξE(vi , gi) is required to be independent of path im-

plies that for any v1, v2, v3 ∈ V(Γ) one has t[Γ, v1, v3] � t[Γ, v1, v2]t[Γ, v2, v3]

and in particular that t[Γ, v , o] � t[Γ, o , v]−1 for any o , v ∈ V(Γ).

For [Γ, o] ∈ G∗ such that (Γ, v) has no rooted automorphisms for any

v ∈ V(Γ), define

η[Γ, o] :� {t[Γ, o , v] : v ∈ V(Γ)} ,

otherwise define η[Γ, o] :� {e}. Also for [Γ, o] ∈ G∗ such that (Γ, v) has no

rooted automorphisms for any v ∈ V(Γ), one has for each v ∈ V(Γ) that

η[Γ, v] � {t[Γ, v , v′] : v′ ∈ V(Γ)}

�
{
t[Γ, o , v]−1t[Γ, o , v]t[Γ, v , v′] : v′ ∈ V(Γ)

}
�

{
t[Γ, o , v]−1t[Γ, o , v′] : v′ ∈ V(Γ)

}
� Tt[Γ,o ,v]−1η[Γ, o].

If [Γ, o] is such that some v ∈ V(Γ) is such that (Γ, v) has a rooted automor-

phism, then then same is true of [Γ, v], so that η[Γ, v] � {e} � Tt[Γ,o ,v]−1η[Γ, o]

for the only vertex v � o ∈ V(Γ).

Onemay then recoverΨ from [Γ, o]on the set {e ∈ Ψ} in the following

way. Consider a path v0v1 · · · vk in [Γ, o] starting and ending at the root.
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Since there are no rooted automorphisms of (Γ, o) on the set {e ∈ Ψ} onemay

uniquely choose X0 :� e ,X1, . . . ,Xk−1,Xk :� e ∈ G such that ξE(vi , gi) �

X−1
i Xi+1 for each i. Then

∏k−1
i�0 ξE(vi , gi) � X−1

0 Xk � e regardless of the

choice of v0v1 · · · vk so long as the path starts and ends at the root. It follows

that for an arbitrary path v0v1 · · · vk one has that
∏k−1

i�0 ξE(vi , gi) depends

only on the endpoints v0 and vk . Thus, for anyX ∈ Ψ � V(Γ), consider a path

starting at the root o ∈ Γ and ending at v :� X. Then t[Γ, o , v] � e−1X � X.

ThusΨ � {t[Γ, o , v] : v ∈ V(Γ)} � η[Γ, o] almost surely on the set {e ∈ Ψ}.

Hence η is a witness to the fact that Ψ is a G-embedding of [Γ, o] � [β, e]

under PΨ. �

The problem of finding which point processesΨ have Palm versions

that are G-embeddings of some unimodular network now reduces to finding

which Ψ admit a connected flow-adapted locally finite graph on Ψ. It is

conjectured that the requirement that Ψ be connectible in a flow-adapted

way is automatic.

Conjecture 5.4.5. Suppose G is unimodular. Then all flow-adapted simple point

processesΨ on G are connectible in a flow-adapted way.

Finally, some special cases of the conjecture are known to hold.

Proposition 5.4.6. Let Ψ be a flow-adapted simple point process of intensity γ ∈

(0,∞). Then Ψ is connectible in a flow-adapted way in any of the following

situations:
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(a) G is compact.

(b) G � Rd .

(c) There exists a point-shift F such that ΓF is connected.

Proof. If G is compact then P-a.s. Ψ(G) < ∞ and the complete graph on Ψ

suffices. If G � Rd , then the Delaunay graph of Ψ suffices. If there exists a

point-shift F such that ΓF is connected, then the graph ΓF suffices. �

5.5. Bibliographical Comments

The starting points for this chapter were Last’s [Las10a] for Palm

theory on groups and an early version of Baccelli and Haji-Mirsadeghi’s

work [BHM18] for the original cardinality classification theorem for com-

ponents of point-shifts of point processes on Rd . The classification theo-

rem was generalized to the case of vertex-shifts on unimodular networks

in [BHMK18].
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Appendix A

Doeblin Trees

A.1. Postponed Proofs

In this appendix, all the notation of Chapter 4 is retained. Proofs that

were only sketched in the main text are collected in full detail here.

Proof of Theorem 4.1.2. For each t ∈ Z, let µt be the distribution of Xt . It

is enough to show the existence of (Ω′, F ′, P′) on which there is a process

X′ :� (X′t)t∈Z and some i.i.d. ξ′ :� (ξ′t)t∈Z such that

(i) X′t ∼ µt for all t ∈ Z,

(ii) ξ′t ∼ ξt for all t ∈ Z,

(iii) X′t is independent of (ξ′s)s>t for all t ∈ Z, and

(iv) X′t+1 � hgen(Xt , ξ′t) for all t ∈ Z.

Items (i) to (iv) and Lemma 4.1.1 will imply the result. Note that items (i)

to (iv) are sufficient to characterize the joint finite dimensional distributions

of (X′t)t∈Z and (ξ′t)t∈Z. To see this fix t0 6 t1. The joint distribution of

(X′t)t06t6t1
and (ξ′t)t06t6t1

is determined because, conditional on (ξ′t)t06t6t1
,

X′t0
is still distributed as µt0 by items (i) and (iii), and, conditional on both
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X′t0
and (ξ′t)t06t6t1

, one has that (X′t)t06t6t1
is deterministic by item (iv). Thus

it suffices to show that (X′t)t∈Z and (ξ′t)t∈Z satisfying items (i) to (iv) exist.

Also note that items (i) to (iv) with t0 6 t 6 t1 are sufficient for determining

the joint distribution of (X′s)t06s6t1
and (ξ′s)t06s6t1

.

The proof will proceed by the Kolmogorov extension theorem. Sup-

pose, by extending (Ω, F , P) if necessary, that (Xt)t∈Z and ξ are defined on

the same space and are independent of each other. Consider for each t ∈ Z,

the state path F(t ,Xt) in G started at (t ,Xt). Then for all s , t ∈ Z with s 6 t

and all x ∈ S,

P(F(s ,Xs)
t � x) �

∑
y∈S

P(Xs � y , F(s ,Xs)
t � x)

�

∑
y∈S

µs(y)Pt−s(y , x)

� µsPt−s(x),

where in the previous line P is treated as a transition kernel with powers Pk

(k � 0, 1, 2, . . .). Since (Xt)t∈Z exists and is a Markov chain with transition

matrix P, one has

µsPt−s
� µrPs−rPt−s

� µrPt−r
� µt (A.1)

for all r 6 s 6 t. Moreover, for all s 6 t, F(s ,Xs)
t is σ(Xs , (ξt′)s6t′<t)-

measurable, hence it is independent of (ξt′)t′>t . Now fix s0, t0, t1 ∈ Z

with s0 6 t0 6 t1 and consider the joint distribution of (F(s0 ,Xs0 )
t )t06t6t1

and (ξt)t06t6t1 . One has F(s0 ,Xs0 ) and ξ satisfy
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(i’) F
(s0 ,Xs0 )
t ∼ µt for all t0 6 t 6 t1,

(ii’) ξ ∼ ξ,

(iii’) F
(s0 ,Xs0 )
t is independent of (ξt′)t′>t for all t0 6 t 6 t1, and

(iv’) F
(s0 ,Xs0 )
t+1 � hgen(F

(s0 ,Xs0 )
t , ξt) for all t0 6 t.

As mentioned before, items (i’) to (iv’) are sufficient to determine the joint

distribution of (F(s0 ,Xs0 )
t )t06t6t1

and (ξt)t06t6t1 , so the joint distribution of

(F(s0 ,Xs0 )
t )t06t6t1

and (ξt)t06t6t1 does not depend on s0 as long as s0 6 t0.

Thus a consistent set of finite dimensional distributions is determined by

taking s0, t0 → −∞ and t1 → ∞ while maintaining s0 6 t0 6 t1. It follows

by the Kolmogorov extension theorem that there is a space (Ω′, F ′, P′) and

processes X′ � (X′t)t∈Z and ξ′ � (ξ
′
t)t∈Z satisfying items (i) to (iv), completing

the proof. �

Call P strongly recurrent if all its recurrent classes are positive re-

current and call P recurrent-attracting if any Markov chain with transition

matrix P eventually enters a recurrent state. These conditions are both

automatic if P is irreducible and positive recurrent.

Proposition A.1.1 (Subsumes Proposition 4.1.3). Let S � T ∪ ⋃ (Ri)06i<N

decompose S into its transient states and N ∈ N ∪ {∞} recurrent communication

classes for P. Assume that P is strongly recurrent and recurrent-attracting. Let

d(i) be the period of Ri , and let Ri � C i
0 ∪ · · · ∪ C i

d(i)−1 be a cyclic decomposition.
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If G has fully independent transitions, then the components (C i
j )06i<N,06 j<d(i)

of

G are in bĳection with (C i
j)06i<N,06 j<d(i)

, and for x ∈ C i
j , (t , x) ∈ V(C i

j′) if and

only if j − t � j′ (mod d(i)), and for x ∈ T, (t , x) ∈ V(C i
j ) where (t

′, y) ∈ V(C i
j )

is any vertex on the path of (t , x) for which y is recurrent. That is, C i
j is the set of

all vertices of all paths in G that pass through an element of C i
j at any time t � 0

(mod d(i)).

Proof. Fix i , j, t and let x , y ∈ C i
j . Then Pd(i) restricted to C i

j is irreducible,

aperiodic, and positive recurrent. Thus the product chain Pd(i) ⊗ Pd(i) re-

stricted to C i
j × C i

j is too. Strictly before the hitting time to the diagonal,

(F(t ,x)t+sd(i), F
(t ,y)
t+sd(i))s>0

is distributed the same as the product chain Pd(i) ⊗ Pd(i)

on C i
j × C i

j , and thus the hitting time to the diagonal is a.s. finite because

the product chain is irreducible, aperiodic, and positive recurrent. It follows

that (t , x) and of (t , y) are in the same component of G. If x ∈ C i
j and y ∈ C i′

j′

with i′ , i, then F(t ,x) and F(t ,y) cannot merge because the states of F(t ,x)

are contained in Ri and the states of F(t ,y) is contained in Ri′. If x ∈ C i
j and

y ∈ C i
j′ with j′ , j (mod d(i)), then F(t ,x) and F(t ,y) cannot merge because

F(t ,x)t+s ∈ C i
j+s but F(t ,y)t+s ∈ C i

j′+s with indices taken modulo d(i) as necessary.

Thus, the set of y ∈ S \ T such that F(t ,x) eventually merges with F(t ,y) is

precisely C i
j . If x ∈ C i

j , y ∈ C i′
j′ and t 6 t′, then F(t ,x)t′ ∈ C i

j+(t′−t), so it follows

that F(t ,x) and F(t
′,y) eventually merge if and only if i′ � i and j + (t′ − t) � j′

(mod d(i)), or equivalently j′ − t′ � j − t (mod d(i)). It follows that for any

x , y ∈ S \ T and any t , t′ ∈ Z, the two vertices (t , x), (t′, y) ∈ V(G) are in the

same component of G if and only if there are i , j, j′ such that x ∈ C i
j , y ∈ C i

j′
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and j′ − t′ � j − t (mod d(i)). If x ∈ C i
j , then F(t ,x)s ∈ C i

j−t+s for all s > t.

Thus F(t ,x)s ∈ C i
j−t for all s � 0 (mod d(i))with s > t. Call C i

j−t the time-zero

class of (t , x). Then for x ∈ C i
j , y ∈ C i

j′ and t , t′ ∈ Z, the condition that

j′− t′ � j− t (mod d(i)) is equivalent to the fact that (t , x) and (t , y) have the

same time-zero class. Thus the components of G are exactly the equivalence

classes of vertices in the same time-zero class, except possibly ignoring (t , x)

for transient x. By the assumption that P is recurrent-attracting, if x ∈ T,

then F(t ,x) eventually hits some recurrent class and so does not form a new

component of G, and the path F(t ,x) is in the component of the first (and

every) (t′, y) it hits with y recurrent. �

Proof of Lemma 4.1.14. Fix k ∈ N. For every v ∈ V � Z × S, the event that

v ∈ V(Γ) and dΓ(o , v) 6 k is measurable. Indeed, there are atmost countably

many paths (v0, v1, v2, . . . , vn) in V with n 6 k, and the desired event is the

union over all such paths of any length n 6 k ending at v of the event

{o � v0} ∩
n⋂

i�1

({
fV(vi) � 1

}
∩

{
fE(vi−1, vi) � 1

})
.

From here one sees that event that the r-neighborhood around o is exactly

some fixed finite graph Γ is measurable. Indeed,

{NΓ(o , r) � Γ} �
⋂
v∈V

{
( fV(v) � 1 and dΓ(o , v) 6 r) ⇐⇒ v ∈ V(Γ)

}
.

Enhancing Γ with marks ξu , ξv ,w for each u ∈ V(Γ) and all {v , w} ∈ E(Γ),
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for any ε > 0 and o ∈ V(Γ), one sees that the event

Dr,ε(Γ, o) :�{o � o ,

NΓ(o , r) � Γ,

∀u ∈ V(Γ), dΞuniv(ξV(u), ξu) < ε,

∀ {v , w} ∈ E(Γ), dΞuniv(ξE(v , w), ξv ,w) < ε}

is measurable. Since V is countable and Γ is a finite graph, there are at most

countably many rooted isomorphic copies of (Γ, o) that can be made with

vertices in V . It follows that the event
{

dG∗([Γ, o], [Γ, o]) < ε
}
is a countable

union of the events Dd 1
ε e ,ε
(ρ(Γ, o)) with ρ ranging over the countable col-

lection of such rooted isomorphisms of (Γ, o). Hence ω 7→ [Γ(ω), o(ω)] is

measurable. �

Proof of Proposition 4.1.15. For Item (a), suppose [G, (0,X0)] is unimodular.

Let η be a vertex-shift that follows the arrows in G. For example, define for

each network Γ and u ∈ V(Γ) the vertex-shift by ηΓ(u) :� v if there is a unique

outgoing edge from u and this edge terminates at v, or ηΓ(u) :� u if this

condition is notmet for any v. SinceG is connected, its η-foils are (Gt)t∈Z. Let

themark of a vertex v be denoted (s(v), ξ(v)), and let v ∼ w denote that v and

w are in the same η-foil. Fix x , y ∈ S and let g[Γ, v , w] :� 1{s(v)�x ,s(w)�y ,v∼w}.

Then the mass-transport principle implies

P(X0 � x) � E
∑

v∈V(G)
g[G, (0,X0), v] � E

∑
v∈V(G)

g[G, v , (0,X0)] � P(X0 � y),
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so X0 is uniformly distributed on S.

For Item (b), first suppose that X0 is independent of G and uniformly

distributed on a finite S. Let N be the cardinality of S. Let g : G∗∗→ R>0 be

given. Then

E
∑

v∈V(G)
g[G, (0,X0), v] �

1
N

∑
x∈S

E
∑

(t ,y)∈Z×S

g[G, (0, x), (t , y)]

�
1
N

∑
t∈Z

∑
x ,y∈S

E[g[G, (0, x), (t , y)]]

�
1
N

∑
t∈Z

∑
x ,y∈S

E[g[G, (−t , x), (0, y)]]

�
1
N

∑
y∈S

E
∑

(t ,x)∈Z×S

g[G, (−t , x), (0, y)]

� E
∑

v∈V(G)
g[G, v , (0,X0)],

where in the third equality time-homogeneity of G is used. It follows that

in this case G is unimodular.

For Item (c), let X0 be the output of the CFTP algorithm in the stan-

dard CFTP setup. Suppose [G, (0,X0)] is unimodular. Since (0,X0) has

one outgoing edge in G, unimodularity implies that on average it has one

incoming edge. But, being the output of the CFTP algorithm, (0,X0) a.s.

has at least one incoming edge. Hence (0,X0) a.s. has exactly one incoming

edge. By unimodularity, it follows that a.s. every vertex in G has exactly

one incoming edge. Since G is a tree, this is only possibly if S has a single

element. If S has only a single element unimodularity is immediate. �
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A.2. List of Mass-transports

As mentioned in Section 4.1.5, the proof style of Proposition 4.1.13

can be used to prove many equalities and inequalities in mean. A list is

provided giving mass-transports, followed by the results they give after

applying the boilerplate proof style with these mass-transports. Drawing a

picture for each transport helps significantly in computing w+ and w− for

the given transports. In all of the following, β is the union of all bi-recurrent

paths in B.

(i) Send mass 1 from each s to all times t strictly after s and strictly before

F(s ,x
∗) returns to x∗.

• E[#B0] 6 E[σ(0,x∗)(x∗)], where σ(0,x∗)(x∗) is the time until return of F(0,x
∗)

to x∗.

(ii) Fix y ∈ S. For each s, if y ∈ Bs , send mass 1 to the first time t > s that

F(s ,y) hits x∗.

• P(y ∈ B0) � E[#R(0)y], where R(0) ⊆ B is the subgraph of vertices that

first return to x∗ at time 0, i.e., the (possibly empty) subgraph of B of

all (t , y) ∈ V(B) such that τ(t ,y)(x∗) � 0, where τ(t ,y)(x∗) is the return

time of F(t ,y) to x∗.

• Summing over y ∈ S, one finds E[#V(R(0))] � E[#B0].

(iii) Send mass 1 from each s to the first time t > s that F(s ,x
∗)

t � F(s
′,x∗)

t for

some s′ > t.
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• E[C(0)] � 1, where C(0) is the total number of paths F(s ,x
∗) that merge

with a younger F(s
′,x∗) (i.e. with s′ > s) for the first time at time 0.

• P(#B1 6 #B0 − k) 6 P(C(1) > k + 1) 6 1
k+1 for all k ∈ N.

(iv) Fix y ∈ S. For each s, send mass 1 to each time t that F(s ,x
∗)

t � y and t

is strictly before F(s ,x
∗) merges with the unique bi-recurrent path in its

component of B.

• E[N(0,x
∗)

0 (y; β)] � E[1{y∈B0\β0}#Vx∗(D(0,y) ∩ V(B))], where N(0,x
∗)

0 (y; β)

denotes the number of visits (potentially 0) of F(0,x
∗) to y strictly before

merging with β.

• Summing over y ∈ S, E[σ(0,x
∗)

0 (β)] � E[#Vx∗(DV0(B)\V0(β)∩V(B))], where

σ(0,x
∗)

0 (β) is the number of steps (potentially 0) before F(0,x
∗)mergeswith

β, and DV0(B)\V0(β) is the set of all descendants of all v ∈ V0(B) \ V0(β).

(v) Fix y ∈ S. For each s, if y ∈ Bs send mass 1 to the first time t that F(s ,y)

is on the bi-recurrent path in its component of B.

• P(y ∈ B0) � E[#V y(DV0(β),M ∩ V(B))], where DV0(β),M denotes the

union of V0(β) with their mortal descendants, i.e. those descendants

with only finitely many descendants and whose first ancestor in β is at

time 0.

• Summing over y ∈ S, one finds E[#B0] � E[#(DV0(β),M ∩ V(B))].
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(vi) Fix y ∈ S and suppose G is an EFT and (βt)t∈Z is the bi-recurrent path

in G. For each t, if βt � y send mass 1 backwards to the most recent

time s < t such that βs � x∗.

• E[N(0,x∗)(y; x∗)1β0�x∗] � P(β0 � y), where N(0,x
∗)(y; x∗) denotes the

number of visits of F(0,x
∗) to y before returning to x∗, including the

initial visit if y � x∗.

• Summing over y ∈ S, one finds E[σ(0,x∗)(x∗)1{β0�x∗}] � 1.

• If G is also Markovian, then the previous points reduce to the classical

cycle formulas, E[N(0,x∗)(y; x∗)]π(x∗) � π(y) and E[σ(0,x∗)(x∗)]π(x) � 1,

where π is the stationary distribution of the Markov chain.

Instead of using the unimodularity of Z and specifying a mass-

transport w � w(s , t) for s , t ∈ Z, one may also use the unimodular ver-

sion of B (that is, the random network with distribution P�) and specify

a mass-transport w � w[Γ, u , v] for all networks Γ and all u , v ∈ V(Γ).

Some mass-transports are much easier to write in this way. For example,

the mass-transport in item (iii) above also follows from the mass-transport

w[Γ, u , v] � 1 if v is the unique out-neighbor of u in Γ. However, strictly

speaking, there are no results using a mass-transport on B that could not

also be proved with a mass-transport on Z. Indeed, if w is a mass-transport

defined for all networks Γ, then with [B, �] denoting the identity mapping
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under P�,

E�


∑
v∈V(B)

w[B,�, v]
 � E�


∑

v∈V(B)
w[B, v ,�]


may be rewritten as

1
E[#B0]

E

[∑
t∈Z

ŵ(0, t)
]
�

1
E[#B0]

E

[∑
t∈Z

ŵ(t , 0)
]

where

ŵ(s , t) :�
∑

u∈Vs(B)

∑
v∈Vt(B)

w[B, u , v], s , t ∈ Z

is a mass-transport on Z. That being said, the reader is encouraged the

ponder the sequence ofmass-transports onZ thatwouldbe required toprove

a result like the classification theorem, Theorem 2.5.1, for the network [B, �]

directly. It seems more elegant to call upon the machinery of unimodular

networks when convenient instead.
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Appendix B

Point-shifts of Point Processes

B.1. Palm Calculus

In this appendix, fix a flow-adapted point process Ψ of intensity

γ ∈ (0,∞). Thenecessity of this appendix ismostly toproveProposition 5.1.1

and show how it may be used to translate definitions under P and PΨ, a

technique that is used extensively is this research.

The connection between P and PΨ is given by the refined Campbell

theorem, abbreviated to C-L-M-M for Campbell, Little, Mecke, andMatthes.

Theorem B.1.1 (C-L-M-M). [Las10a] For all ζ : Ω × G→ R>0 measurable,

E
∫

G
ζ(θ−1

x , x)Ψ(dx) � γEΨ
∫

G
ζ(θe , x) λ(dx).

It is possible to recoverP, up to the set onwhichΨ is the zeromeasure,

via the following inversion formula. The zero measure on G is denoted 0.

TheoremB.1.2 (Inversion Formula). [Las10a] There exists a boundedmeasurable

K : Ω × G→ R>0 such that∫
G

K(θe , x)Ψ(dx) � 1{Ψ,0} , (B.1)
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and for all K : Ω × G → R>0 (not necessarily bounded) P-a.s. satisfying (B.1), it

holds that

E[1{Ψ,0}ζ] � γEΨ
∫

G
ζ(θx)K(θx , x) λ(dx) (B.2)

for all measurable ζ : Ω→ R>0.

Proposition B.1.3. If A ∈ F is shift-invariant in the sense that A � θ−1
x A for

all x ∈ G, then

P(A) � 1 �⇒ PΨ(A) � 1 �⇒ P(A | Ψ , 0) � 1.

In particular, if {Ψ � 0} ⊆ A then

P(A) � 1 ⇐⇒ PΨ(A) � 1.

Proof. Suppose P(A) � 1. From the definition of Palm probabilities, for

B ∈ B(G) such that λ(B) ∈ (0,∞),

PΨ(A) � 1
γλ(B)E

∫
G

1{x∈B}1{θ−1
x ∈A}Ψ(dx)

�
1

γλ(B)E
∫

G
1{x∈B}1AΨ(dx) (shift-invariance of A)

�
1

γλ(B)E[1AΨ(B)]

�
1

γλ(B)E[Ψ(B)] (P(A) � 1)

� 1.

Next suppose PΨ(A) � 1. Then from Theorem B.1.2 there is measur-
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able K : Ω × G→ R such that

P(A ∩ {Ψ , 0}) � E[1{Ψ,0}1A]

� γEΨ
∫

G
1{θx∈A}K(θx , x) λ(dx) (inversion formula)

� γEΨ
[
1A

∫
G

K(θx , x) λ(dx)
]

(shift-invariance of A)

� γEΨ
[∫

G
K(θx , x) λ(dx)

]
(PΨ(A) � 1)

� E[1{Ψ,0} · 1] (inversion formula)

� P(Ψ , 0).

Dividing by P(Ψ , 0) > 0 gives P(A | Ψ , 0) � 1, and if {Ψ � 0} ⊆ A, then

P(A) � P(A ∩ {Ψ , 0}) + P(A ∩ {Ψ � 0}) � P(Ψ , 0) + P(Ψ � 0) � 1. �

Lemma B.1.4. Let A ∈ F . Then

PΨ(A) � 1 ⇐⇒ P(Ψ(x ∈ G : θ−1
x < A) � 0) � 1.

Proof. By replacingA with its complement it is equivalent to showPΨ(A) � 0

if and only if it holds that P(Ψ(x ∈ G : θ−1
x ∈ A) > 0) � 0. Note that it is

the joint measurability of the action (ω, x) 7→ θxω that lets one conclude for

B ∈ B(G) that sets like

{Ψ(x ∈ G : x ∈ B, θ−1
x ∈ A) > 0}

are measurable.
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If PΨ(A) � 0, then for B ∈ B(G) such that λ(B) ∈ (0,∞),

0 � PΨ(A)

�
1

γλ(B)E
∫

G
1{x∈B}1{θ−1

x ∈A}Ψ(dx)

�
1

γλ(B)E[Ψ(x ∈ G : x ∈ B, θ−1
x ∈ A)].

Thus E[Ψ(x ∈ G : x ∈ B, θ−1
x ∈ A)] � 0 and taking relatively compact B

increasing to G one finds that E[Ψ(x ∈ G : θ−1
x ∈ A)] � 0, so P(Ψ(x ∈ G :

θ−1
x ∈ A) > 0) � 0.

Conversely, suppose P(Ψ(x ∈ G : θ−1
x ∈ A) > 0) � 0. Then for

B ∈ B(G)with λ(B) ∈ (0,∞),

PΨ(A) � 1
γλ(B)E

∫
G

1{x∈B}1{θ−1
x ∈A}Ψ(dx)

�
1

γλ(B)E[Ψ(x ∈ G : x ∈ B, θ−1
x ∈ A)]

6
1

γλ(B)E[Ψ(x ∈ G : θ−1
x ∈ A)]

� 0,

completing the proof. �

It is now possible to prove Proposition 5.1.1.

Proof of Proposition 5.1.1.

(a) ⇐⇒ (b): This is the content of Lemma B.1.4.
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(b) ⇐⇒ (c): This follows from Proposition B.1.3 and the fact that the

event {Ψ(x ∈ G : θ−1
x < A) � 0} contains {Ψ � 0} and is shift-invariant.

To wit, for all y ∈ G,

θ−1
y ω ∈ {Ψ(x ∈ G : θ−1

x < A) � 0}

⇐⇒ Ψ(θ−1
y ω, {x ∈ G : θ−1

x θ−1
y ω < A}) � 0

⇐⇒ Ψ(ω, {yx : x ∈ G, θ−1
yxω < A})

⇐⇒ Ψ(ω, {x ∈ G, θ−1
x ω < A}) � 0

⇐⇒ ω ∈ {Ψ(x ∈ G, θ−1
x ω < A) � 0}. �

Example B.1.5. Fix somemeasurable space (S,Σ) and a measurable ζ : Ω→

S. Define Z : Ω × G → S by Z(ω, x) :� ζ(θ−1
x ω) for all ω ∈ Ω,X ∈ Ψ(ω),

and Z(ω, x) may be defined arbitrarily otherwise. It will be shown that

knowing Z up to a P- or PΨ-null set on the support of Ψ is equivalent to

knowing ζ up to a PΨ-null set. Indeed, suppose ζ � ζ′, PΨ-a.s., then it will

be shown that the corresponding Z, Z′ agree P, PΨ-a.s. on the support of

Ψ. By Proposition 5.1.1, P- and PΨ-a.e. ω ∈ Ω has for all X ∈ Ψ(ω) that

ζ(θ−1
X ω) � ζ′(θ−1

X ω), i.e. Z(ω,X) � Z′(ω,X). Similarly, if either P-a.e. or

PΨ-a.e. ω ∈ Ω is such that Z(ω,X) � Z′(ω,X) for all X ∈ Ψ(ω), then

ζ(θ−1
X ω) � Z(ω,X)

� Z′(ω,X)

� ζ′(θ−1
X ω),

for P-a.e. or PΨ-a.e. ω ∈ Ω,X ∈ Ψ(ω), so by Proposition 5.1.1 one finds that
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ζ � ζ′, PΨ-a.s. Thus, ζmay be defined under PΨ or Z may be defined under

P or PΨ, whichever is more convenient.

Finally, the following standard result is needed in Section 5.2.2.

Theorem B.1.6 (Slivnyak-Mecke Theorem). [DVJ08] The distribution ofΨ un-

der PΨ is the same as the distribution of Ψ + δe under P if and only if Ψ is a

homogeneous Poisson point process with intensity γ under P.
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