
Copyright

by

Michael David Bond

2008

The Dissertation Committee for Michael David Bond
certifies that this is the approved version of the following dissertation:

Diagnosing and Tolerating Bugs in Deployed Systems

Committee:

Kathryn S. McKinley, Supervisor

Stephen M. Blackburn

Keshav Pingali

Peter Stone

Emmett Witchel

Diagnosing and Tolerating Bugs in Deployed Systems

by

Michael David Bond, B.S., M.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2008

Acknowledgments

I am deeply grateful to Kathryn McKinley for supporting and mentor-

ing me in many ways. Kathryn has provided invaluable technical expertise

and feedback even as we worked in new areas. She has been unwaveringly

enthusiastic and positive about students and ideas and projects, and she has

been a strong advocate, putting my and other students’ interests first. I en-

tered graduate school uncertain about getting a Ph.D., and I leave inspired to

pursue an academic career because of Kathryn.

Steve Blackburn has been an enthusiastic supporter and has devoted a

lot of his time to solving problems and giving advice, both solicited and unso-

licited. Steve, Keshav Pingali, Peter Stone, and Emmett Witchel have given

helpful feedback and spent a lot of time reading long documents and attending

long talks. Vitaly Shmatikov and Steve Keckler have provided valuable advice

and mentoring. David Padua and Craig Zilles were supportive advisors when

I was a master’s student at the University of Ilinois.

The graduate student community at UT has been incredibly support-

ive. I am thankful to have Ben Wiedermann, Xianglong Huang, and Milind

Kulkarni as friends and colleagues. I am indebted to them and to the fol-

lowing friends and colleagues for their technical and personal support: Kar-

tik Agaram, Katherine Coons, Boris Grot, Sam Guyer, Jungwoo Ha, Maria

Jump, Byeongcheol Lee, Bert Maher, Kristi Morton, Nick Nethercote, Phoebe

Nethercote, Alison Norman, Dimitris Prountzos, Jennifer Sartor, Simha Sethu-

madhavan, and Suriya Subramaniam. In my cohort but outside my area, Jason

iv

Davis, Justin Brickell, and Matt Taylor have been good friends and colleagues

without the good sense to be systems researchers.

This thesis would have not have been possible without Jikes RVM. I am

indebted to all Jikes RVM developers and especially Steve Blackburn, Daniel

Frampton, Robin Garner, David Grove, and Ian Rogers for their generous

efforts maintaining and improving Jikes RVM.

I am thankful for guidance and help provided by Gem Naviar, Tom

Horn, Aubrey Hooser, and Gloria Ramirez. Gloria Ramirez and Bill Mark

helped solve a two-body problem that would have prevented me from attending

UT. Intel funded my research with an internship and a fellowship, and Suresh

Srinivas has supported and mentored me.

I am thankful for the unconditional love and support that my parents

have provided throughout my life.

My partner Julia has selflessly supported and tolerated me while also

being awesome and fun, and I am grateful.

v

Diagnosing and Tolerating Bugs in Deployed Systems

Publication No.

Michael David Bond, Ph.D.

The University of Texas at Austin, 2008

Supervisor: Kathryn S. McKinley

Deployed software is never free of bugs. These bugs cause software to

fail, wasting billions of dollars and sometimes causing injury or death. Bugs

are pervasive in modern software, which is increasingly complex due to demand

for features, extensibility, and integration of components. Complete validation

and exhaustive testing are infeasible for substantial software systems, and

therefore deployed software exhibits untested and unanalyzed behaviors.

Software behaves differently after deployment due to different environ-

ments and inputs, so developers cannot find and fix all bugs before deploying

software, and they cannot easily reproduce post-deployment bugs outside of

the deployed setting. This dissertation argues that post-deployment is a com-

pelling environment for diagnosing and tolerating bugs, and it introduces a

general approach called post-deployment debugging. Techniques in this class

are efficient enough to go unnoticed by users and accurate enough to find and

report the sources of errors to developers. We demonstrate that they help de-

velopers find and fix bugs and help users get more functionality out of failing

software.

vi

To diagnose post-deployment failures, programmers need to understand

the program operations—control and data flow—responsible for failures. Prior

approaches for widespread tracking of control and data flow often slow pro-

grams by two times or more and increase memory usage significantly, making

them impractical for online use. We present novel techniques for representing

control and data flow that add modest overhead while still providing diagnos-

tic information directly useful for fixing bugs. The first technique, probabilistic

calling context (PCC), provides low-overhead context sensitivity to dynamic

analyses that detect new or anomalous deployed behavior. Second, Bell statis-

tically correlates control flow with data, and it reconstructs program locations

associated with data. We apply Bell to leak detection, where it tracks and

reports program locations responsible for real memory leaks. The third tech-

nique, origin tracking, tracks the originating program locations of unusable

values such as null references, by storing origins in place of unusable values.

These origins are cheap to track and are directly useful for diagnosing real-

world null pointer exceptions.

Post-deployment diagnosis helps developers find and fix bugs, but in

the meantime, users need help with failing software. We present techniques

that tolerate memory leaks, which are particularly difficult to diagnose since

they have no immediate symptoms and may take days or longer to mate-

rialize. Our techniques effectively narrow the gap between reachability and

liveness by providing the illusion that dead but reachable objects do not con-

sume resources. The techniques identify stale objects not used in a while and

remove them from the application and garbage collector’s working set. The

first technique, Melt, relocates stale memory to disk, so it can restore objects if

the program uses them later. Growing leaks exhaust the disk eventually, and

vii

some embedded systems have no disk. Our second technique, leak pruning,

addresses these limitations by automatically reclaiming likely leaked memory.

It preserves semantics by waiting until heap exhaustion to reclaim memory—

then intercepting program attempts to access reclaimed memory.

We demonstrate the utility and efficiency of post-deployment debugging

on large, real-world programs—where they pinpoint bug causes and improve

software availability. Post-deployment debugging efficiently exposes and ex-

ploits programming language semantics and opens up a promising direction

for improving software robustness.

viii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Bugs in Deployed Software Systems 1

1.2 Improving Reliability in the Deployed Setting 3

1.2.1 Diagnosing Bugs by Tracking Flow 4

1.2.2 Tolerating Memory Leaks 6

1.3 Meaning and Impact . 9

Chapter 2. Background 11

2.1 Implementations . 11

2.2 Methodology . 12

2.2.1 Compilers . 12

2.2.2 Execution . 13

2.2.3 Memory Management 14

2.2.4 Benchmarks . 15

2.2.5 Platform . 15

Chapter 3. Probabilistic Calling Context 16

3.1 Motivation . 19

3.1.1 Testing . 19

3.1.2 Debugging . 20

3.1.3 Security . 21

ix

3.2 Probabilistic Calling Context 22

3.2.1 Calling Context . 22

3.2.2 Probabilistic Approach 23

3.2.3 Computing Calling Context Values 24

3.2.4 Querying Calling Context Values 27

3.3 Implementation . 28

3.3.1 Computing the PCC value 28

3.3.2 Querying the PCC value 29

3.3.3 Defining Calling Context 30

3.4 Results . 32

3.4.1 Deterministic Calling Context Profiling 32

3.4.2 Potential PCC Clients 33

3.4.3 PCC Accuracy . 34

3.4.4 PCC Performance . 36

3.4.5 Evaluating Context Sensitivity 41

3.5 Conclusion and Interpretation 43

Chapter 4. Storing Per-Object Sites in a Bit with Bell 45

4.1 Encoding and Decoding Per-Object Information 46

4.1.1 Encoding . 46

4.1.2 Decoding . 48

4.1.3 Choosing the Encoding Function 50

4.2 Avoiding False Positives and Negatives 51

4.3 Implementation . 52

4.3.1 Overview . 52

4.3.2 Encoding Allocation and Last-Use Sites 54

4.3.3 Tracking Staleness Using Two Bits 54

4.3.4 Decoding . 55

4.3.5 Decreasing Instrumentation Costs 57

4.3.6 Memory Management 58

4.3.7 Miscellaneous Implementation Issues 59

4.4 Finding Leaks . 60

x

4.4.1 Methodology . 60

4.4.2 SPECjbb2000 . 62

4.4.3 Eclipse . 66

4.4.4 Adaptive Profiling . 68

4.4.5 Discussion . 70

4.5 Performance . 72

4.5.1 Methodology . 72

4.5.2 Space Overhead . 73

4.5.3 Compilation Overhead 73

4.5.4 Time Overhead . 74

4.6 Conclusion and Interpretation 77

Chapter 5. Tracking the Origins of Unusable Values 78

5.1 Origin Tracking in Java . 81

5.1.1 Supporting Nonzero Null References 81

5.1.2 Encoding Program Locations 82

5.1.3 Redefining Program Operations 83

5.1.4 Implementation . 86

5.2 Finding and Fixing Bugs . 87

5.2.1 Evaluation Criteria . 89

5.2.2 Origin Tracking Case Studies 90

5.3 Performance Summary . 94

5.4 Conclusion and Interpretation 95

Chapter 6. Tolerating Memory Leaks with Melt 96

6.1 How Melt Identifies and Tolerates Leaks 98

6.1.1 Identifying Stale Objects 99

6.1.2 The Stale Space . 101

6.1.3 Activating Stale Objects 104

6.1.4 When to Move Objects to the Stale Space 107

6.2 Implementation Details . 108

6.2.1 VM Issues . 109

6.2.2 Stale Space on Disk . 110

xi

6.2.3 Multithreading . 112

6.2.4 Saving Stale Space . 113

6.3 Results . 113

6.3.1 Melt’s Overhead . 114

6.3.2 Tolerating Leaks . 120

6.4 Conclusion and Interpretation 135

Chapter 7. Leak Pruning 137

7.1 Approach and Semantics . 138

7.1.1 Motivation . 139

7.1.2 Triggering Leak Pruning 140

7.1.3 Reclaiming Reachable Memory 144

7.1.4 Exception and Collection Semantics 144

7.2 Algorithm and Implementation 146

7.2.1 Predicting Dead Objects 146

7.2.2 The OBSERVE State . 147

7.2.3 The SELECT State . 148

7.2.4 The PRUNE State . 150

7.2.5 Intercepting Accesses to Pruned References 151

7.2.6 Concurrency and Thread Safety 152

7.3 Performance of Leak Pruning 153

7.3.1 Application Overhead 153

7.3.2 Garbage Collection Overhead 155

7.4 Effectiveness of Leak Pruning 156

7.4.1 EclipseDiff . 157

7.5 Accuracy and Sensitivity . 158

7.5.1 Alternative Prediction Algorithms 159

7.5.2 Space Overhead . 160

7.5.3 Full Heap Threshold . 161

7.6 Conclusion and Interpretation 162

xii

Chapter 8. Related Work 163

8.1 Static Analysis . 163

8.2 Dynamic Analysis . 165

8.2.1 Pre-Release Testing Tools 165

8.2.2 Invariant-Based Bug Detection 166

8.2.3 Tracking Control and Data Flow 166

8.2.4 Diagnosing Memory Leaks 167

8.2.5 Work Related to Bell 169

8.2.6 Work Related to Probabilistic Calling Context 170

8.3 Tolerating Bugs . 173

8.3.1 Avoiding Bugs . 174

8.3.2 Tolerating General Bugs 174

8.3.3 Tolerating Memory Leaks 175

8.3.4 Related Work for Melt: Orthogonal Persistence and Dis-
tributed GC . 178

Chapter 9. Conclusion 180

9.1 Summary . 180

9.2 Future Work . 181

Bibliography 184

Vita 207

xiii

List of Tables

3.1 Expected conflicts for various populations of random numbers
using 32-bit and 64-bit values. 24

3.2 Statistics for calling contexts at several subsets of call sites. . . 35

3.3 Statistics for every calling context executed. 37

3.4 Comparing call site profiles with calling context on Java API
calls. 42

4.1 Values of nmin for example numbers of sites and objects (n). . 49

4.2 Decoding statistics for Sleigh running SPECjbb2000. 64

4.3 Decoding statistics for Sleigh running Eclipse. 64

5.1 How origin tracking handles uses of null in Java code. 84

5.2 The diagnostic utility of origins returned by origin tracking in
Java. 88

6.1 Statistics for the DaCapo benchmarks running Melt (every GC)
with 1.5 times the minimum heap size. 119

6.2 Ten leaks and Melt’s ability to tolerate them. 121

6.3 Delaunay run times, stale memory, and activated memory for
various input sizes. 132

7.1 Ten leaks and leak pruning’s effect on them. 156

7.2 Effectiveness of several selection algorithms. 160

xiv

List of Figures

3.1 Application execution time overhead of maintaining the PCC
value and querying it. 39

3.2 Compilation time overhead due to adding instrumentation to
maintain the PCC value and query it. 39

3.3 Application execution time overhead of walking the stack. . . 39

4.1 Bell encoding. 47

4.2 Sleigh’s components. 53

4.3 Sleigh implicitly divides the heap into in-use and stale objects. 61

4.4 Reported allocation sites for SPECjbb2000 when decoding pro-
cesses stale border objects only. 65

4.5 Reported last-use sites for SPECjbb2000 when decoding pro-
cesses stale border objects only. 65

4.6 Reported last-use sites for Eclipse when decoding processes
stale border objects only. 69

4.7 Reported last-use sites for Eclipse when decoding processes in-
use border objects only. 69

4.8 Reported last-use sites for SPECjbb2000 when decoding pro-
cesses stale border objects only, using adaptive profiling. 71

4.9 Components of Sleigh runtime overhead. 74

4.10 Sleigh runtime overhead with adaptive profiling. 76

4.11 Sleigh runtime overhead with and without redundant instru-
mentation optimizations. 76

5.1 Case 1: VM output for Mckoi SQL Database bug. 91

5.2 Case 2: VM output for FreeMarker bug. 92

5.3 Case 3: VM output for JFreeChart bug. 94

6.1 Stale Objects and References 102

6.2 Segregation of In-Use and Stale Objects 102

6.3 Stub-Scion Pairs . 102

xv

6.4 Scion-Referenced Object Becomes Stale 105

6.5 Stale Object Activation . 105

6.6 Reference Updates Following Activation 105

6.7 State diagram for when Melt marks objects as stale and moves
objects to the stale space. 107

6.8 Figure 6.4 with On-Disk Stale Space 111

6.9 Figure 6.5 with On-Disk Stale Space 111

6.10 Application execution time overhead of Melt configurations. . 115

6.11 Normalized GC times for Melt configurations across heap sizes. 117

6.12 Performance comparison of Jikes RVM, Sun JVM, and Melt for
the first 300 iterations of EclipseDiff. 123

6.13 Performance of Melt running EclipseDiff leak for 24 hours. . . . 123

6.14 Comparison of reachable memory for the first 300 iterations of
EclipseDiff. 125

6.15 Reachable memory running EclipseDiff with Melt for 24 hours. 125

6.16 EclipseDiff leak with Melt: stale objects and references from stale
to in-use. 126

6.17 EclipseDiff leak with Melt: in-use objects, objects activated, and
scions. 126

6.18 EclipseCP performance over time, with and without Melt. . . . 128

6.19 EclipseCP reachable memory over time, with and without Melt. 128

6.20 MySQL performance over time, with and without Melt. 131

6.21 MySQL reachable memory over time, with and without Melt. . 131

7.1 Reachable heap memory for the EclipseDiff leak. 139

7.2 State diagram for leak pruning. 141

7.3 Example heap after the SELECT state. 143

7.4 Example heap at the end of GC in PRUNE state. 143

7.5 Example heap during the SELECT state. 150

7.6 Application execution time overhead of leak pruning. 154

7.7 Normalized collection time for leak pruning across heap sizes. . 155

7.8 Time per iteration for EclipseDiff. 158

7.9 Time per iteration for EclipseDiff when it must exhaust memory
prior to pruning. 161

xvi

Chapter 1

Introduction

1.1 Bugs in Deployed Software Systems

Software complexity. Despite a lot of effort to make deployed software

robust and error free, it still contains bugs that cause systems to fail. These

failures waste billions of dollars [Nat02, Sco98] and sometimes result in injury

or death. Society is relying more and more on software, and according to two

recent NRA reports [JTM07, WM07], public health, personal safety, and the

economy depend on systems being highly robust, available, and secure.

Bugs are inherent in modern software because software behavior is dif-

ficult to reason about. This uncertainty is due in large part to software being

increasingly connected, complex, and extensible. These characteristics are

driven by the need for software to do more for humans. For example, software

provided 8% of the F-4 fighter’s capability in 1960. In 2000, software provided

85% of the F-22 fighter’s capability. Large programs have tens of millions of

lines of code, and if current trends continue, they are likely to have one billion

lines of code in 10 years [WM07].

Software complexity makes it hard to write correct code since devel-

opers’ understanding of their programs does not scale well. Complexity also

makes it hard to find and fix bugs before deployment because it is infeasible

to test or statically analyze all possible program behaviors prior to deploy-

ment. Program behavior differs in the deployed setting because it executes

1

with different inputs and environments, which are too numerous to evaluate

exhaustively in complex software.

Debugging prior to deployment. Developers avoid most bugs during de-

velopment or fix them during testing, which is cost effective [WM07], but their

efforts fail to eliminate all bugs. Language support can eliminate many bugs,

but most solutions are not practical. Functional languages eliminate whole

classes of bugs but do not perform well for many applications. Annotations

for high-performance languages require too much programmer effort and still

rely on the programmer for correctness. Managed languages such as Java,

C#, Python, and Ruby are increasingly popular [FL05, TIO07] because they

improve programmer productivity by reducing programmer effort and elimi-

nating a whole class of bugs. These languages provide garbage collection and

type safety, which prevent many memory bugs (errors in heap management)

such as (1) memory corruption due to dangling pointers, repeat frees, and bo-

gus writes and (2) memory leaks due to unreachable objects. Unfortunately

these languages still suffer from (1) memory leaks due to reachable but dead

objects, (2) failures (rather than silent corruption) due to null pointer excep-

tions, array-out-of-bounds exceptions, and invalid type casts, (3) concurrency

bugs (bugs dependent on specific interleavings of operations of concurrent ex-

ecution contexts), and (4) semantic bugs (any other bug where the program

does not implement what the programmer intended).

Typical industrial approaches for preventing bugs include good pro-

gramming practices such as careful designs, coding disciplines, pair program-

ming, and code reviews. These practices are critical to obtaining software’s

current level of robustness, but they do not eliminate all bugs because they are

2

subject to human fallibility. To find and fix bugs, industry uses testing and, to

a lesser extent, static analysis. Static analysis has the advantage that it finds

bugs in all possible program executions, but to avoid path explosion, practical

tools conservatively abstract and summarize program state, resulting in false

positives. Testing uses dynamic analysis to find real errors in some program

executions intended to approximate deployed program behavior. Testing fails

to find some bugs that occur after deployment because the actual deployed

inputs and environments lead to different program behavior than occurred at

testing time.

In summary, real-world deployed software is never bug free. Increasing

complexity makes it infeasible to understand, analyze, and test programs to

eliminate all bugs early. At the same time, we need more reliable systems

because society is relying more and more on software.

1.2 Improving Reliability in the Deployed Setting

Deployed software contains bugs that are generally unknown and cause

failures unexpectedly. Developers need help finding and fixing these bugs,

which are often hard to reproduce outside of the deployed environment. Users

experiencing failures need immediate, automatic help to keep software running

usefully. These approaches must be orders of magnitude more efficient than

testing-time techniques, or users will not accept them.

This dissertation argues that the deployed setting is a necessary and

ideal environment for dealing with bugs because these bugs are most problem-

atic for users and developers. We present three low-overhead techniques that

help programmers diagnose bugs in deployment by identifying program behav-

ior responsible for bugs. While the deployed setting observes bugs that cause

3

failures, it may be too late for many applications that require high availabil-

ity such as mission-critical and autonomous systems. In the meantime, users

need immediate solutions to avoid downtime. We show automatic tolerance

is a compelling direction with two techniques that tolerate memory leaks in

deployed systems.

1.2.1 Diagnosing Bugs by Tracking Flow

To find and fix bugs, programmers need to know why and how failures

occur. They ask questions such as “Why did this program state occur?” and

“How did this variable get this value?” These questions are fundamentally

about how a program changes state using control and data flow. Our tech-

niques enable widespread tracking of control flow, data flow, and the relation-

ship between them in order to report code and data responsible for an error.

Prior work has used sampling to keep overhead low but requires many users

to experience a bug in order to diagnose it [Lib04]. In contrast, our techniques

need just one buggy run to report culprit code and data. This feature makes

our techniques applicable to safety-critical software that fails infrequently and

software with few running instances (e.g., aircraft carrier software).

Dynamic context sensitivity. Modern, object-oriented programs increas-

ingly use more interprocedural and less intraprocedural control flow, increasing

the importance of context sensitivity for analysis. Calling context enhances

program understanding and dynamic analyses by providing a rich represen-

tation of program location. Efficiently computing calling context has been

a problem for decades. Prior methods are expensive in time and space, e.g.,

walking the stack and building a calling context tree slow programs by a factor

4

of two or more.

Probabilistic calling context (PCC) adds dynamic context sensitivity

to analyses that detect new and potentially buggy behavior. It continuously

maintains a probabilistically unique value representing the current calling con-

text. Modern software typically has millions of unique contexts, yet a 32-bit

PCC value generates just a few conflicts. A 64-bit PCC value gives just a

few conflicts for billions of unique contexts, which are likely in future sys-

tems. Computing the PCC value adds overheads low enough for production

use. PCC is well suited to clients that detect new or anomalous behavior

since PCC values from training and production runs can be compared eas-

ily to detect new context-sensitive behavior. PCC is efficient and accurate

enough for residual testing [PY99, VNC07], bug detection, and intrusion de-

tection [FKF+03, IF02, WS02].

Statistical code-data correlation. Online bug diagnosis tools benefit from

storing per-object sites (e.g., allocation or last-access sites) and reporting the

sites for potentially bug-related objects. In modern programs with many small

objects, per-object sites add high space overhead, limiting their viability in

deployment.

We introduce Bell, a statistical technique that encodes per-object sites

in a single bit per object. A bit loses information about a site, but given

sufficient objects that use the site and a known, finite set of possible sites,

brute-force decoding recovers the site with high accuracy. We use Bell in a leak

detector to identify the sites that allocated and last used objects identified as

likely leaks. We show these sites are directly useful for diagnosing leaks in

applications such as Eclipse and SPECjbb2000.

5

Tracking bad values. Programs sometimes crash due to unusable values,

for example, when Java and C# programs dereference null pointers and when

C and C++ programs use undefined values to affect program behavior. A

stack trace produced on such a failure identifies the effect of the unusable

value, not its cause, and is usually not enough to understand and fix the bug.

These crashes can be especially difficult to debug because they contain no

useful information for the developer.

We present efficient origin tracking of unusable values, which maintains

the program location that initially produced each unusable value. The key idea

is value piggybacking : when the program stores an unusable value, value pig-

gybacking instead stores origin information in the spare bits of the unusable

value. Modest compiler support alters the program to propagate these mod-

ified values through operations such as assignments and comparisons. This

dissertation focuses on an implementation that tracks null pointer origins in

a JVM; the technique also finds undefined values in native programs running

in Valgrind’s Memcheck tool [BNK+07]. Our Java null pointer diagnosis tool

adds no noticeable overhead, and we show that the origins it reports are useful

for diagnosing real null pointer exceptions in large, open-source software.

1.2.2 Tolerating Memory Leaks

Our diagnosis techniques help developers find and fix bugs, but in the

meantime, users need help with failing software. Automatic tolerance tech-

niques can respond to failures by hiding, ignoring, or even attempting to fix a

bug automatically. This dissertation introduces two techniques that tolerate

memory leaks while preserving semantics.

Managed languages such as Java, C#, Python, and Ruby shield pro-

6

grammers from most but not all aspects of memory management. These

languages eliminate memory corruption due to malloc-free misuse and out-of-

bounds writes, and they eliminate memory leaks due to unreachable objects.

However, a program still leaks memory if it maintains references to objects

it will never use again. Garbage collection cannot collect these dead but

reachable objects because it uses reachability to over-approximate liveness.

Computing reachability is straightforward; collectors perform a transitive clo-

sure over the object graph from program roots (registers, stacks, and globals).

Computing liveness is much harder and is in general undecidable.

Memory leaks hurt performance by increasing garbage collection (GC)

frequency and workload, and by reducing program locality. Growing leaks

eventually exhaust memory and crash the program. Virtual memory paging

is not sufficient to handle these effects because (1) pages that mix leaked and

non-leaked objects waste physical memory, and (2) GC’s working set is all

reachable objects, which causes thrashing.1

Leaks are hard to reproduce, diagnose, and fix because they have no

immediate symptoms [HJ92]. For example, when a program exhausts memory

depends on the total memory available, the collector, and nondeterministic

factors not directly related to the leak. Leaks are difficult to find and fix,

and many industrial and research tools try to help programmers diagnose

them [JM07, MS03, Orab, Que, Sci].

We introduce two techniques for tolerating memory leaks. Our tech-

niques preserve program semantics: they keep leaky programs running by

moving unused memory out of the program and garbage collector’s working

1We focus on tracing collectors. Reference counting also must trace to reclaim dead
cycles.

7

set. They cannot tolerate all leaks indefinitely. They fail if they exhaust disk;

if a program leaks live, not dead, objects; or if they inadvertently collect live

objects.

Offloading leaks to disk. Melt tolerates leaks by moving likely leaked

objects to disk. It identifies stale objects, which are objects the program has

not accessed in a while, and moves them to disk, freeing virtual and physical

memory used for them. It preserves semantics by moving disk objects back to

memory if the program subsequently accesses them. By limiting application

and collector accesses to disk and using two levels of indirection for pointers

from disk to memory, Melt guarantees that time and memory usage remain

proportional to in-use memory rather than leaked memory. Whereas leaky

programs grind to a halt and crash, given sufficient disk space, Melt keeps

several programs with real leaks running and maintains their performance as

the leak grows.

Reclaiming leaked memory. Melt relies on available disk space to hold

leaking objects. However, growing leaks will eventually exhaust disk space,

and many embedded systems have no disk at all. Leak pruning predicts dead

objects and reclaims them automatically, based on data structure sizes and

usage patterns. It preserves program semantics because it waits until heap

exhaustion before reclaiming objects and then poisons references to objects it

reclaims. If the program later tries to access a poisoned referenced, the VM

throws an error. In the worst case, leak pruning defers fatal errors. In the best

case, programs with unbounded reachable memory growth execute indefinitely

and correctly in bounded memory with consistent performance.

8

We evaluate Melt and leak pruning on nine long-running leaks in real

programs and third-party microbenchmarks and show that both tolerate four

leaks for at least 24 hours, help one program run significantly longer, and do

not help three programs. Melt and leak pruning perform differently for one

leak: Melt tolerates it for at least 24 hours, while leak pruning terminates

sooner but allows it to run about 21 times longer than without leak tolerance.

1.3 Meaning and Impact

Our techniques use novel insights into programming languages to be

orders of magnitude more efficient than prior approaches. The diagnosis tech-

niques rely on innovative ways to represent data and control flow efficiently.

The tolerance techniques effectively narrow the liveness-reachability gap in-

herent in garbage-collected languages by providing the illusion that dead but

reachable objects consume no resources.

This work has immediate practical impact because it can be deployed

today to improve software reliability. For example, Azul is considering adding

origin tracking in their production VM [Cli08]. Nokia has expressed interest

in leak pruning as a way to deal with leaks on cell phones [Her08]. Other

researchers have used the Bell and PCC implementations in their work [JR08,

TGQ08].

The broader impact of this work is that it demonstrates the viability of

debugging and tolerating bugs during deployment. It points to a future where

(1) developers use system support for finding bugs in software that users are

running and (2) users embrace bug tolerance approaches since it improves

their computing experience. Developers will increasingly need help diagnosing

software as it becomes more complex and more difficult to reproduce errors

9

outside the deployment environment. As society’s reliance on software grows,

users will need more robust and available software, and they will increasingly

need automated techniques that keep software running.

10

Chapter 2

Background

This chapter provides background information for the five diagnosis and

tolerance approaches in this dissertation, which we have also published sepa-

rately [BM06b, BM07, BM09, BM08, BNK+07]. The chapter first describes

the base system for our implementations and then presents the common pa-

rameters of our experimental methodology.

2.1 Implementations

We implemented the five bug diagnosis and tolerance tools described in

this dissertation in Jikes RVM, a high-performance Java-in-Java virtual ma-

chine [AAB+00, AFG+00, Jika]. As of August 2008, the DaCapo benchmarks

regression tests page shows that Jikes RVM performs the same as Sun Hotspot

1.5 and 15–20% worse than Sun 1.6, JRockit, and J9 1.9, all configured for high

performance [DaC]. Our performance measurements are therefore relative to

an excellent baseline.

All five implementations are publicly available on the Jikes RVM Re-

search Archive [Jikb]:

• Probabilistic calling context, as a patch against Jikes RVM 2.4.6 (Sec-

tion 3.3). Jones and Ryder used part of this patch, deterministic calling

context profiling, in their object demographics study [JR08].

11

• Leak detection using Bell, as a patch against Jikes RVM 2.4.2 (Sec-

tion 4.3). Tang et al. used our leak detector as the basis for their Leak-

Survivor tool [TGQ08].

• Origin tracking of null pointer exceptions, as a patch against Jikes RVM

2.4.6 (Section 5.1). We have also made available the 12 null pointer

exceptions we used to evaluate the implementation [KB08]. Our co-

author Nethercote modified Valgrind’s Memcheck tool [NS07, SN05] to

track the origins of undefined values in C and C++ programs. That

implementation is publicly available as a branch in the Valgrind source

repository [BNK+07].

• Melt, as a patch against Jikes RVM 2.9.2 (Section 6.2).

• Leak pruning will be available in January 2009 (Section 7.2).

2.2 Methodology

Jikes RVM uses just-in-time compilation and automatic memory man-

agement, and this section describes how we control these features for our ex-

perimental evaluation. It also describes other aspects of methodology common

to all our experiments.

2.2.1 Compilers

Jikes RVM uses just-in-time compilation to produce machine code for

each method at run time. Initially a baseline compiler generates machine

code when the application first executes a method. The baseline compiler

generates machine code directly from bytecode and does not use an internal

12

representation (IR). If a method executes many times and becomes hot, the VM

recompiles it with an optimizing compiler at successively higher optimization

levels. This compiler uses an IR and includes standard optimizations such as

inlining, constant propagation, and register allocation. The implementations

in this dissertation modify both compilers to add instrumentation to generated

application code.

2.2.2 Execution

Like many VMs, Jikes RVM by default dynamically identifies frequent-

ly-executed methods and recompiles them at higher optimization levels. We

refer to experiments using this default execution model as using adaptive com-

pilation. Because Jikes RVM uses timer-based sampling to identify hot meth-

ods, adaptive compilation is nondeterministic. Run-to-run performance varia-

tion is significant because different profiles lead to differently-optimized code,

affecting application performance. In addition, the optimizing compiler affects

performance since it runs in parallel with the application and allocates objects

into the heap.

To eliminate this source of nondeterminism, performance experiments

use a deterministic compilation model called replay compilation [HBM+04,

OOK+06, SMB04]. Replay uses advice files produced by a previous well-

performing adaptive run (best of five). The advice files specify (1) the highest

optimization level reached by each method, (2) a dynamic call graph profile,

and (3) an edge profile. Fixing these inputs, replay compilation executes two

consecutive iterations of the application. During the first iteration, Jikes RVM

optimizes code based on the advice files. The second iteration executes only

the application, with a realistic mix of optimized and unoptimized code. We

13

use the first iteration to measure compilation time and the second iteration to

measure application time.

For replay compilation, we typically report the minimum of five trials

since it represents the run least perturbed by external effects. For adaptive

compilation, we typically execute 25 trials because of high variability and

report the median to discount outliers.

2.2.3 Memory Management

Jikes RVM’s Memory Management Toolkit (MMTk) [BCM04] supports

a variety of garbage collectors with most functionality residing in shared code.

The memory management parts of our implementations reside almost entirely

in this shared code, so they support a variety of collectors naturally. By default

we use a generational mark-sweep collector, which has high performance. It

allocates new objects into a nursery, then periodically moves surviving objects

to a mark-sweep mature space. Two implementations run with other collectors:

our leak detector that uses Bell, which requires a pure mark-sweep collector;

and Melt, which works with many collectors but executes with a generational

copying collector in our experiments to demonstrate Melt’s support for moving

in-use objects.

Heap size affects garbage collection frequency and workload, as well

as application locality. To control this source of performance variation, our

experiments fix the size of the heap for each benchmark. We typically execute

each benchmark in a heap three times the minimum, a medium size that

does not typically incur high GC overhead or poor application locality. We

determine minimum heap sizes experimentally.

14

2.2.4 Benchmarks

We evaluate performance using the DaCapo benchmarks (version beta-

050224 for Bell, 2006-10 for origin tracking and PCC, and 2006-10-MR1 for

Melt and leak pruning), a fixed-workload version of SPECjbb2000 called pseu-

dojbb, and SPECjvm98 [BGH+06, Sta99, Sta01].

2.2.5 Platform

Experiments execute on two Pentium 4 platforms and a Core 2 plat-

form:

• Experiments for PCC, Bell, and origin tracking, execute on a 3.6 GHz

Pentium 4 with a 64-byte L1 and L2 cache line size, a 16KB 8-way set

associative L1 data cache, a 12Kµops L1 instruction trace cache, a 2MB

unified 8-way set associative L2 on-chip cache, and 2 GB main memory,

running Linux 2.6.12.

• Experiments for Melt and leak pruning execute on a dual-core 3.2 GHz

Pentium 4 system with 2 GB of main memory running Linux 2.6.20.3.

Each core has a 64-byte L1 and L2 cache line size, a 16-KB 8-way set

associative L1 data cache, a 12-Kµops L1 instruction trace cache, and a

1-MB unified 8-way set associative L2 on-chip cache.

• When evaluating Melt’s ability to tolerate leaks, the top four leaks in

Table 6.2 and SPECjbb2000 execute on a machine with 126 GB of free disk

space. It is a Core 2 Quad 2.4 GHz system with 2 GB of main memory

running Linux 2.6.20.3. Each core has a 64-byte L1 and L2 cache line

size, an 8-way 32-KB L1 data/instruction cache, and each pair of cores

shares a 4-MB 16-way L2 on-chip cache.

15

Chapter 3

Probabilistic Calling Context

Dynamic calling context is the sequence of active method invocations

that lead to a program location. Calling context is powerful because it cap-

tures interprocedural behavior and yet is easy for programmers to understand.

Previous work in testing [Bin97, CG06a, GKS05, HRS+00, Mye79, RKS05],

debugging and error reporting [HRD+07, LYY+05, NS07, SN05], and secu-

rity [FKF+03, Ino05] demonstrates its utility. For example, programmers

frequently examine calling context, in the form of error stack traces, during

debugging. Untested behavior such as unexercised calling contexts are called

residuals [PY99]. Residual calling contexts observed in deployed software are

clues to potential bugs. Anomalous sequences of calling contexts at system

calls can reveal security vulnerabilities [FKF+03, Ino05].

Computing calling context cheaply is a challenge in non-object-oriented

languages such as C, and it is even more challenging in object-oriented lan-

guages. Compared with C programs, Java programs generally express more

control flow interprocedurally in the call graph, rather than intraprocedurally

in the control flow graph. Our results show that Java has more distinct con-

texts than comparable C programs [ABL97, Spi04]. For example, large C

programs such as GCC and 147.vortex have 57,777 and 257,710 distinct call-

ing contexts respectively [ABL97, Spi04], but the remaining six SPEC CPU

C programs in Ammons et al.’s workload have fewer than 5,000 contexts. In

16

contrast, we find that 5 of 11 DaCapo Java benchmarks contain more than

1,000,000 distinct calling contexts, and 5 others contain more than 100,000

(Section 3.4).

The simplest method for capturing the current calling context is walk-

ing the stack. For example, Valgrind walks the stack at each memory allocation

to record its context-sensitive program location, and reports this information

in the event of a bug [NS07, SN05]. If the client of calling contexts very rarely

needs to know the context, then the high overhead of stack-walking is easily

tolerated. An alternative to walking the stack is to build a calling context

tree (CCT) dynamically and to track continuously the program’s position in

the CCT [ABL97, Spi04]. Unfortunately, tracking the program’s current po-

sition in a CCT adds a factor of 2 to 4 to program runtimes. These overheads

are unacceptable for most deployed systems. Recent work samples hot calling

contexts to reduce overhead for optimizations [ZSCC06]. However, sampling

is not appropriate for testing, debugging, or checking security violations since

these applications need coverage of both hot and cold contexts.

This chapter introduces an approach called probabilistic calling context

(PCC) that continuously maintains a value that represents the current calling

context with very low overhead. PCC computes this value by evaluating a func-

tion at each call site. To differentiate calling contexts that include the same

methods in a different order, we require a function that is non-commutative.

To optimize a sequence of inlined method calls into a single operation, we pre-

fer a function whose composition is cheap to compute. We present a function

that has these properties. In theory and practice, it produces a unique value

for up to millions of contexts with relatively few conflicts (false negatives) using

a 32-bit PCC value. When necessary, a 64-bit PCC value can probabilistically

17

differentiate billions of unique calling contexts.

PCC is well suited to adding context sensitivity to dynamic analyses

that detect new or anomalous program behavior such as coverage testing, resid-

ual testing, invariant-based bug detection, and anomaly-based intrusion de-

tection. These clients naturally have a training phase, which collects program

behavior, and a production phase, which compares behavior against training

behavior. Calling contexts across runs can be compared easily by comparing

PCC values: two different PCC values definitely represent different contexts.

Although a new PCC value indicates a new context, the context is not deter-

minable from the value, so PCC walks the stack when it encounters anomalous

behavior to report the calling context.

We demonstrate that continuously computing a 32-bit PCC value adds

on average 3% overhead. Clients add additional overhead to query the PCC

value at client-specific program points. We approximate the overhead of query-

ing the PCC value by looking up the value in a hash table on each query.

Querying at every call in the application increases execution times by an av-

erage of 49% and thus is probably only practical at testing time. In several

interesting production scenarios, we demonstrate that querying the PCC value

frequently is feasible: querying at every system call adds no measurable over-

head, at every java.util call adds 3% overhead (6% total); and examining it at

every Java API call adds 9% overhead (12% total). Computing the PCC value

adds no space overhead, but clients add space overhead proportional to the

number of distinct contexts they store (one word per context), which is often

millions but still much smaller than statically possible contexts. To our knowl-

edge, PCC is the first approach to achieve low-overhead and always-available

calling context.

18

3.1 Motivation

This section motivates efficient tracking of calling context for improv-

ing testing, debugging, and security. Some previous work shows dynamic con-

text sensitivity helps these tasks [Bin97, FKF+03, LYY+05, Ino05]. However,

most prior work uses intraprocedural paths or no control-flow sensitivity for

these tasks [AH02, HRD+07, HRS+00, IF02, VNC07, WS02] since paths are

often good enough for capturing program behavior and calling context was

too expensive to compute. Because developers more often now choose object-

oriented, managed languages such as Java and C# [TIO07], calling context is

growing in importance for these tasks. In essence, Java programs use more

method invocations (i.e., interprocedural control flow) and fewer control flow

paths (i.e., intraprocedural control flow) compared with C programs. This

work seeks to help enable the switch to dynamic context-sensitivity analyses

by making them efficient enough for deployed systems.

3.1.1 Testing

Half of application development time is spent in testing [Bal01, Mye79].

A key part of testing is coverage, and one metric of coverage is exercising unique

statements, paths, calling contexts [Bin97], and calling sequences that include

the order of calls and returns [HRS+00, RKS05]. Residual testing identifies

untested coverage, such as paths, that occur at production time but were

not observed during testing [PY99, VNC07]. PCC is well suited to context-

sensitive residual testing since it identifies new contexts with high probability

while adding low enough overhead for deployed software.

19

3.1.2 Debugging

Identifying program behavior correlated with incorrect execution often

helps programmers find bugs. Previous work in invariant-based bug detec-

tion tracks program behavior such as variables’ values across multiple runs to

identify behavior that is well-correlated with errors [EPG+07, HL02, LNZ+05,

LTQZ06, ZLF+04]. We are not aware of work that uses calling context for

invariant-based bug detection, although the high time and space overhead

may have been a factor. Some previous work uses a limited amount of calling

context in features in bug detection. Liu et al. use behavior graphs, which

include call relationships (essentially one level of context sensitivity), to help

identify call chains correlated with bugs [LYY+05]. Clarify uses call-tree pro-

filing, which measures two levels of context sensitivity as well as the order of

calls, to classify program executions for better error reporting, a task similar

to bug-finding [HRD+07].

Programmers already appreciate the usefulness of calling context in

debugging tasks. For example, developers typically start with an error stack

trace to diagnose a crash and Valgrind, a testing-time tool, reports context-

sensitive allocation sites for heap blocks involved in errors [NS07].

Artemis provides a framework for selectively sampling bug detection

instrumentation to keep overhead low [FM06]. The key idea is to track contexts

and to avoid sampling contexts that have already been sampled. Artemis’s

definition of context includes values of local and global variables but does not

include calling context. PCC makes it viable to add calling context to Artemis

because of its low cost.

20

3.1.3 Security

Anomaly-based intrusion detection seeks to detect new attacks by iden-

tifying anomalous (i.e., previously unseen) program behavior [FKF+03, IF02,

WS02]. Existing approaches typically keep track of system calls and flag sys-

tem call sequences that deviate from previously-observed behavior and may

indicate an attacker has hijacked the application. Wagner and Soto show that

attackers can circumvent these approaches by mimicking normal application

behavior while still accomplishing attacks [WS02]. Adding context sensitivity

to the model of acceptable behavior constrains what attackers can do without

getting caught, and recent work on intrusion detection uses calling context to

identify program control-flow hijacking [FKF+03, Ino05, ZZPL05]. Inoue on

page 109 in his dissertation writes the following [Ino05]:

Adding context by increasing the number of observed stack frames

can make some attacks significantly more difficult. So-called “mi-

micry” attacks take advantage of the inner workings of applications

to attack while still behaving similarly to the attacked application.

Adding context makes this more difficult because it restricts the

attacker to using only methods usually invoked from within the

enclosing method that the exploit attacks, instead of any method

invoked by the entire application.

Zhang et al. show that k-length interprocedural paths gathered with hardware

reveal possible security violations [ZZPL05]. Feng et al. utilize a single level

of context sensitivity by including each system call’s return address in the

sequence of system calls, constraining possible attacks [FKF+03].

We show that the expense of walking the stack stands in the way of

deployed use of context-sensitive system calls but that PCC permits cheap

21

computation of context sensitivity (Section 3.4). An intrusion detection system

could use PCC to record the calling context for each system call in sequences

of system calls. Because PCC is probabilistic, it may incur false negatives if it

misses anomalous calling contexts that map to the same value as an already-

seen calling context. However, the conflict rate is very low, 0.1% or less for up

to 10 million contexts with 32-bit values, and 64-bit values provide even fewer

conflicts. A determined attacker with knowledge of PCC could potentially

engineer an attack using an anomalous calling context with a conflicting PCC

value. We believe randomizing call site values on the host would make a

“conflict attack” virtually impossible, although we do not prove it.

Existing work shows dynamic calling context is useful for residual test-

ing, invariant-based bug detection, and anomaly-based intrusion detection.

Trends toward managed languages and more complex applications are likely

to make dynamic context sensitivity more essential, and PCC makes it feasible.

3.2 Probabilistic Calling Context

This section describes our approach for efficiently computing a value

that represents the current calling context and is unique with high probability.

3.2.1 Calling Context

The current program location (method and line number) and the active

call sites on the stack define dynamic calling context. For example, the first

line below is the current program location, and the remaining lines are the

active call sites:

22

at com.mckoi.database.jdbcserver.JDBCDatabaseInterface.execQuery():213

at com.mckoi.database.jdbc.MConnection.executeQuery():348

at com.mckoi.database.jdbc.MStatement.executeQuery():110

at com.mckoi.database.jdbc.MStatement.executeQuery():127

at Test.main():48

3.2.2 Probabilistic Approach

Probabilistic calling context (PCC) keeps track of an integer value, V ,

that represents the current calling context. Our goal is to compute random,

independent values for each context. To determine the feasibility of this ap-

proach, we assume a random number generator and use the following formula

to determine the number of expected conflicts given population size n and 32-

or 64-bit values [MU05]:

E[conflicts] ≡ n−m + m

(

m− 1

m

)n

where m is the size of the value range (e.g., m = 232 for 32-bit values). Ta-

ble 3.1 shows the expected number of conflicts for populations ranging in size

from one thousand to ten billion. For example, if we choose 10 million ran-

dom 32-bit numbers, we can expect 11,632 conflicts on average. Applied to

the calling context problem, if a program executes 10 million distinct calling

contexts, we expect to miss contexts at a rate of just over over 0.1%, which is

good enough for many clients.

The programs we evaluate execute fewer than 10 million distinct calling

contexts (except eclipse with the large input; Section 3.4.1). For programs with

many more distinct calling contexts, or for clients that need greater probability

guarantees, 64-bit values should suffice. For example, one can expect only a

handful of conflicts for as many as 10 billion distinct calling contexts.

23

Random Expected conflicts
values 32-bit values 64-bit values
1,000 0 (0.0%) 0 (0.0%)

10,000 0 (0.0%) 0 (0.0%)
100,000 1 (0.0%) 0 (0.0%)

1,000,000 116 (0.0%) 0 (0.0%)
10,000,000 11,632 (0.1%) 0 (0.0%)

100,000,000 1,155,170 (1.2%) 0 (0.0%)
1,000,000,000 107,882,641 (10.8%) 0 (0.0%)

10,000,000,000 6,123,623,065 (61.2%) 3 (0.0%)

Table 3.1: Expected conflicts for various populations of random num-
bers using 32-bit and 64-bit values.

3.2.3 Computing Calling Context Values

The previous section shows that assigning randomly-chosen PCC values

results in an acceptably small level of conflicts (i.e., distinct calling contexts

with the same value). This section introduces an online approach for comput-

ing a PCC value that has the following properties:

• PCC values must be distributed roughly randomly so that the number

of value conflicts is close to the ideal.

• The PCC value must be deterministic, i.e., a given calling context always

computes the same value.

• Computing the next PCC value from the current PCC value must be

efficient.

We use a function

f(V, cs)

24

where V is the current calling context value and cs is the call site at which the

function is evaluated. We add instrumentation that computes the new value

of V at each call site by applying f as follows:

method() {

int temp = V; // ADDED: load PCC value

...

V = f(temp, cs_1); // ADDED: compute new value

cs_1: calleeA(...); // call site 1

...

V = f(temp, cs_2); // ADDED: compute new value

cs_2: calleeB(...); // call site 2

...

}

We have two requirements for this function: non-commutativity and efficient

composability.

Non-commutativity. We have found that our benchmarks contain many

distinct calling contexts that differ only in the order of call sites. For

example, we want to differentiate calling context ABC from CAB. We

therefore require a function that is non-commutative and thus computes

a distinct value when call sites occur in different orders. This requirement

rules out functions such as f(V, cs) ≡ ×V XORcs.

Efficient composability. We want to handle method inlining efficiently and

gracefully because of its widespread use in high-performance static and

dynamic compilers. For example, suppose method A calls B calls C calls

D. If the compiler inlines B and C into A, now A calls D. We want to

avoid evaluating f three times before the inlined call to D. By choosing

a function whose composition can be computed efficiently ahead-of-time,

25

we can statically compute the inlined call site value that represents the

sequence of call sites B, C, D.

We use the following non-commutative but efficiently composable function to

compute PCC values:

f(V, cs) ≡ 3× V + cs

where × is multiplication (modulo 232), and + is addition (modulo 232). We

statically compute cs for a call site with a hash of the method and line number.

The function is non-commutative because evaluating call sites in dif-

ferent orders do not give the same value in general:

f(f(V, csA), csB) = 9× V + (3× csA) + csB)

6= f(f(V, csB), csA) = 9× V + (3× csB) + csA)

since in general

(3× csA) + csB 6= (3× csB) + csA

Non-commutativity is a result of mixing addition and multiplication (which

are commutative operations by themselves). At the same time, the function’s

composition is efficient because addition and multiplication are distributive:

f(f(V, csA), csB) =

3× (3× V + csA) + csB =

9× V + (3× csA + csB)

Note that (3× csA + csB) is a compile-time constant, so the composition is as

efficient to compute as f .

26

Gropp and Langou et al. use similar functions to compute hashes for

Message Passing Interface (MPI) data types [Gro00, LBFD05]. We experi-

mented with these and other related functions. For example, multiplying by 2

is attractive because it is equivalent to bitwise shift, but bits for methods low

on the stack are lost as they are pushed off to the left. Circular shift (equiv-

alent to multiplication by 2 modulo 232 − 1) solves this problem, but when

combined with addition modulo 232 − 1 (necessary to keep efficient compos-

ability), it loses information about multiple consecutive recursive calls. That

is, 32 consecutive recursive calls compute f 32(V, cs), which for this function is

simply V for any V and cs.

3.2.4 Querying Calling Context Values

This section describes how clients can query PCC values at program

points. In any given method, V represents the current dynamic context, except

for the position in the currently executing method. To check V at a given

program point, we simply apply f to V using the value of cs for the current

site (not necessary a call site), i.e., current local method and line number:

method() {

...

cs: query(f(V, cs)); // ADDED: query PCC value

statement_of_interest; // application code

...

}

PCC is most applicable to clients that detect new or anomalous behavior,

which naturally tend to have two modes, training and production. In training,

clients query PCC values and store them. In production, clients query PCC

values and determine if they represent anomalous behavior; if so, PCC walks

27

the stack to determine the calling context represented by the anomalous PCC

value. Many anomalous contexts in production could add high overhead be-

cause each new context requires walking the stack. However, this case should

be uncommon for a well-trained application.

3.3 Implementation

PCC’s approach is suitable for implementation in ahead-of-time or dy-

namic compilation systems. This section describes details of our implementa-

tion in Jikes RVM.

3.3.1 Computing the PCC value

PCC adds instrumentation to maintain V that computes f(V, cs) at

each call site, where cs is an integer representing the call site. PCC could

assign each call site a random integer using a lookup table, but this approach

adds space overhead and complicates comparing PCC values across runs. PCC

computes a hash of the call site’s method name, declaring class name, descrip-

tor, and line number. This computation is efficient because it occurs once at

compile time and produces the same results across multiple program execu-

tions.

V is a thread-local variable modified at each call site. Since multiple

threads map to a single processor, each processor keeps track of the PCC

value for the current thread. When a processor switches threads, it stores

the PCC value to the outgoing thread and loads the PCC value from the

incoming thread. Accessing the PCC value is efficient in Jikes RVM because

it reserves a register for per-processor storage. In systems without efficient

access to per-processor storage, an implementation could modify the calling

28

conventions to add the PCC value as an implicit parameter to every method.

While this alternative approach is elegant, we did not implement it because it

would require pervasive changes to Jikes RVM.

To compute PCC values, the compiler adds instrumentation that (1) at

the beginning of each method, loads V into a local variable, (2) at each call site,

computes the next calling context with f and updates the global V , and (3) at

the method return, stores the local copy back to the global V (this redundancy

is helpful for correctly maintaining V in the face of exception control flow). At

inlined call sites, the compiler combines multiple call site values ahead-of-time

into a single value and inserts a function that is an efficient composition of

multiple instances of f .

3.3.2 Querying the PCC value

Clients may query PCC values at different program points, and they

may use PCC values differently. For example, an intrusion detection client

might query the PCC value at each system call, recording sequences of consec-

utive context-sensitive program locations (in the form of PCC values) during

training, then detecting anomalous sequences during production. A client per-

forms work per query that is likely to be similar to hash table lookup, so our

implementation looks up the PCC value in a global hash table at each query

point. The hash table implements open-address hashing and double hash-

ing [CLRS01] using an array of 2k 32-bit slots. To look up a PCC value, the

query indexes the array using the low k bits of V , and checks if the indexed

slot contains V . In the common case, the slot contains V , and no further

action is needed. In the uncommon case, either (1) the slot is empty (contains

zero), in which case PCC stores V in the slot; or (2) the slot holds another

29

PCC value, in which case the query performs secondary hashing by advancing

s + 1 slots where s is the high 32− k bits of V . Secondary hashing tries three

times to find a non-conflicting slot. If it fails, it stops trying to find a slot, and

it increments a variable that counts hashing failures.

For efficiency, we inline the common case into hot, optimized code. For

simplicity in our prototype implementation, we use a fixed-size array with

220 = 1, 048, 576 elements (4 MB of space), but a more flexible implementa-

tion would adjust the size to accommodate the number of stored PCC values

collected during training (e.g., intrusion detection clients could use much less

space since there are relatively few distinct contexts at system calls). Of our

benchmarks, pmd queries the most distinct PCC values, over 800,000 at Java

API calls (Table 3.3), for which a hash table with a million elements is probably

not quite large enough for good performance. We also measure the overhead

of querying the PCC value at every call as an upper bound for a PCC client

(Figure 3.1); for several benchmarks with millions of distinct contexts, the

hash table is not large enough, resulting in many hash table lookup failures,

but the time overhead should still be a representative upper bound.

3.3.3 Defining Calling Context

Our implementation distinguishes between VM methods (defined in

Jikes RVM classes), Java library methods (java.* classes), and application

classes (all other classes). The implementation does not consider VM and

library call sites to be part of calling context, since call sites in these meth-

ods are probably not interesting to developers and are often considered “black

boxes.” All application methods on the stack are considered part of the calling

context, even if VM or library methods are above them. For example, con-

30

tainer classes often access application-defined equals() and hashCode() methods:

at result.Value.equals():164

at java.util.LinkedList.indexOf():406

at java.util.LinkedList.contains():176

at option.BenchOption.getFormalName():80

at task.ManyTask.main():46

Our implementation considers this context to be simply

at result.Value.equals():164

at option.BenchOption.getFormalName():80

at task.ManyTask.main():46

Similarly, sometimes the application triggers the VM, which calls the applica-

tion, such as for class initialization:

at dacapo.TestHarness.<clinit>():57

at com.ibm.JikesRVM.classloader.VM_Class.initialize():1689

at com.ibm.JikesRVM.VM_Runtime.initializeClassForDynamicLink():545

at com.ibm.JikesRVM.classloader.VM_TableBasedDynamicLinker.resolveMember():65

at com.ibm.JikesRVM.classloader.VM_TableBasedDynamicLinker.resolveMember():54

at Harness.main():5

Our implementation considers this context to be

at dacapo.TestHarness.<clinit>():57

at Harness.main():5

PCC implements this definition of calling context. PCC instruments applica-

tion methods only, and in these methods it instruments call sites to application

and library methods. In cases where the application calls the VM directly, and

the VM then invokes the application (e.g., for class initialization), PCC walks

the stack to determine the correct value of V , which is feasible because it

happens infrequently.

31

3.4 Results

This section evaluates the performance and accuracy of probabilistic

calling context (PCC). It first describes deterministic calling context profiling,

which we use to measure the accuracy of PCC. Then we present the query

points we evaluate, which correspond to potential clients of PCC. Next we

evaluate PCC’s accuracy at identifying new contexts at these query points,

then measure PCC’s time and space performance and compare it to walking

the stack. Finally we evaluate PCC’s ability to identify new contexts not

observed in a previous run and the power of calling context to detect new

program behavior not detectable with context-insensitive profiling.

3.4.1 Deterministic Calling Context Profiling

To evaluate the accuracy of PCC and to collect other statistics, we

also implement deterministic calling context profiling. Our implementation

constructs a calling context tree (CCT) and maintains the current position

in the CCT throughout execution. Our implementation is probably less time

and space efficient than the prior work (Section 8.2.6) because (1) it collects

per-node statistics during execution, and (2) for simplicity, we modify only

the non-optimizing baseline compiler and disable the optimizing compiler for

these experiments only. Since we only use it to collect statistics, we are not

concerned with its performance.

For all performance and statistics runs, we use large benchmark inputs,

except we use medium for eclipse’s statistics runs. With large, our deterministic

calling context implementation runs out of memory because eclipse with this

input executes at least 41 million distinct contexts.

32

3.4.2 Potential PCC Clients

PCC continuously keeps track of a probabilistically unique value that

represents the current dynamic calling context. To evaluate PCC’s use in

several potential clients, we query the PCC value at various program points

corresponding to these clients’ needs.

System calls. Anomaly-based security intrusion detection typically collects

sequences of system calls, and adding context-sensitivity can strengthen de-

tection (Section 3.1). To explore this potential client, we add a call to PCC’s

query method before each system call, i.e., each call that can potentially throw

a Java security exception. The callees roughly correspond to operations that

can affect external state, e.g., file system I/O and network access. Our bench-

marks range in behavior from very few to many system calls. Programs most

prone to security intrusions, such as web servers, are likely to have many sys-

tem calls.

Java utility calls. Residual testing of a software component at production

time detects if the component is called from a new, untested context. While

application developers often perform residual testing on a component of their

own application, we use the Java utility libraries as a surrogate for exploring

residual testing on a component library. These libraries provide functionality

such as container classes, time and date conversions, and random numbers. At

each call to a java.util.* method, instrumentation queries the PCC value.

Java API calls. We also explore residual testing using the Java API li-

braries as a surrogate by adding instrumentation at every call to a method in

33

java.*. This library is a superset of java.util. Using these methods simulates

residual testing of a larger component, since calls to java.* methods, especially

java.lang.* methods, are extremely frequent in most Java programs (e.g., all

String operations are in the API libraries).

All calls. Finally, we evaluate querying the PCC value at every call site.

This configuration would be useful for measuring code coverage and generating

tests with good code coverage [Bin97, HRS+00, RKS05], and it represents an

upper bound on overhead for possible PCC clients. We find querying PCC

values at every call is too expensive for deployed use but speeds up testing

time compared with walking the stack.

3.4.3 PCC Accuracy

Table 3.2 shows calling context statistics for the first three potential

clients from the previous section. Dynamic is the number of dynamic calls

to query. For example, for system calls, Dynamic is the dynamic number of

system calls. Distinct is the number of distinct calling contexts that occur at

query points. Conf is the number of PCC value conflicts that occur for these

calling contexts. Conflicts indicate when PCC maps two or more distinct

calling contexts to the same value (k contexts mapping to the same value

count as k − 1 conflicts). We summarize the dynamic and distinct counts

using geometric mean.

The benchmarks show a wide range of behavior with respect to system

calls. Seven benchmarks perform more than 1,000 dynamic system calls, and

two benchmarks (antlr and jython) exercise more than 1,000 distinct contexts

at system calls. No PCC value conflicts occur between contexts.

34

System calls Java utility calls Java API calls
Program Dynamic Distinct Conf Dynamic Distinct Conf Dynamic Distinct Conf

antlr 211,490 1,567 0 698,810 8,010 0 24,422,013 128,627 3
bloat 12 10 0 1,030,955,346 143,587 3 1,159,281,573 600,947 40
chart 63 62 0 43,345,653 44,502 0 258,891,525 202,603 4
eclipse 14,110 197 0 3,958,510 54,175 0 132,507,343 226,020 5
fop 18 17 0 5,737,083 25,528 0 9,918,275 37,710 0
hsqldb 12 12 0 90,324 267 0 81,161,541 16,050 0
jython 5,929 4,289 0 76,150,625 131,992 2 543,845,772 628,048 48
luindex 2,615 14 0 5,437,548 1,024 0 39,733,214 102,556 0
lusearch 141 11 0 23,183,861 176 0 113,511,311 905 0
pmd 1,045 25 0 372,159,946 442,845 24 537,017,118 847,108 79
xalan 137,895 59 0 744,311,518 6,896 0 2,105,838,670 17,905 0

DaCapo geo 843 60 19,667,815 12,689 163,072,787 85,963

pseudojbb 507,326 145 0 18,944,200 475 0 30,340,974 3,410 0
compress 7 5 0 1,018 682 0 8,138 1,081 0
jess 50 6 0 4,851,299 2,061 0 16,487,052 5,240 0
raytrace 7 5 0 1,078 684 0 5,331,338 3,383 0
db 7 5 0 65,911,710 767 0 90,130,132 1,439 0
javac 7 5 0 6,499,455 55,994 0 24,677,625 255,334 4
mpegaudio 7 5 0 874 682 0 7,575,084 1,668 0
mtrt 7 5 0 880 682 0 5,573,455 3,366 0
jack 7 5 0 14,987,342 14,718 0 21,771,285 29,461 0

SPEC geo 30 7 199,386 1,724 7,074,200 5,410

Geomean 188 23 2,491,316 5,168 39,734,213 24,764

Table 3.2: Statistics for calling contexts at several subsets of call sites. Dynamic and distinct
contexts, and PCC value conflicts, for (1) system calls, (2) Java utility calls, and (3) Java API calls.

35

As expected, the programs make significantly more calls into the utility

libraries and the entire Java API. For the utility libraries, dynamic calls range

from about a thousand for several SPECjvm98 benchmarks to a billion for

bloat, and the number of unique contexts ranges from 176 to 442,845. For the

Java API, the dynamic calls are up to 2 billion for xalan, and distinct contexts

range from 905 to 847,108. These potential clients will therefore require many

PCC value queries, but as we show in the next section, PCC is efficient even

with this high load. The numerous zero entries in the Conf columns show that

PCC is completely accurate in many cases. The conflicts are low—at most 79

for pmd’s 847,108 distinct contexts at API calls—and are consistent with the

ideal values from Table 3.1.

Table 3.3 presents calling context statistics for all executed contexts,

as well as average and maximum call depth. To profile every context, we query

calling context at every call site, as well as every method prologue in order

to capture leaf calls. The table shows six programs execute over one million

distinct contexts and another five over one hundred thousand contexts. The

last two columns show that programs spend a lot of time in fairly deep call

chains: average call depth is almost 20, and maximum call depth is over 100

for several benchmarks due to recursive methods.

3.4.4 PCC Performance

This section evaluates PCC’s run-time performance. We evaluate PCC

alone without a client and also measure the additional cost of using PCC with

four sets of query points corresponding to potential clients. These experi-

ments report application time only using replay compilation, which produces

a deterministic measurement.

36

All contexts Call depth
Program Dynamic Distinct Conf Avg Max

antlr 490,363,211 1,006,578 118 21.5 164
bloat 6,276,446,059 1,980,205 453 30.6 167
chart 908,459,469 845,432 91 16.6 29
eclipse 1,266,810,504 4,815,901 2,652 15.0 102
fop 44,200,446 174,955 2 22.4 49
hsqldb 877,680,667 110,795 1 19.3 36
jython 5,326,949,158 3,859,545 1,738 58.3 223
luindex 740,053,104 374,201 12 19.4 34
lusearch 1,439,034,336 6,039 0 15.2 24
pmd 2,726,876,957 8,043,096 7,653 28.9 416
xalan 10,083,858,546 163,205 6 19.4 63
DaCapo geo 1,321,327,982 562,992 22.3 78
pseudojbb 186,015,473 19,709 0 7.1 25
compress 451,867,672 1,518 0 13.6 17
jess 198,606,454 18,021 0 43.1 83
raytrace 557,951,542 21,047 0 6.7 18
db 91,794,359 2,118 0 13.0 18
javac 135,968,813 2,202,223 544 29.5 122
mpegaudio 218,003,466 7,576 0 21.9 26
mtrt 564,072,400 21,040 0 6.7 18
jack 35,879,204 82,514 1 22.3 49
SPEC geo 200,039,740 20,695 14.8 32

Geomean 565,012,654 127,324 18.6 52

Table 3.3: Statistics for every calling context executed. Dynamic and
distinct contexts, PCC value conflicts, and average and maximum size (call
depth) of dynamic contexts.

37

Figure 3.1 shows the run-time overhead of PCC, normalized to Base,

which represents execution without any instrumentation. PCC is the exe-

cution time of PCC alone: instrumentation keeps track of the PCC value

throughout execution but does not use it. The final four bars show the exe-

cution time of examining the PCC value at call sites correspond to potential

clients: system calls, Java utility calls, Java API calls, and all calls. PCC

actually improves chart’s performance, but this anomaly is most likely because

of architectural sensitivities due code modifications that may affect the trace

cache and branch predictor.

PCC by itself adds only 3% on average and 9% at most (for hsqldb).

Since system calls are relatively rare, checking the context at each one adds

negligible overhead on average. PCC value checking at Java utility and API

calls adds 2% and 9% on average over PCC tracking, respectively, which is

interesting given the high frequency of these calls (Table 3.2). The highest

overhead is 47%, for bloat’s API calls.

Compilation overhead. By adding instrumentation to application code,

PCC increases compilation time. We measure compilation overhead by mea-

suring time spent in the baseline and optimizing compilers during the first

iteration of replay compilation. Figure 3.2 shows compilation time over-

head. PCC instrumentation alone adds 18% compilation overhead on average.

Adding instrumentation to query the PCC value increases compilation time

by an additional 0-31% for system, utility, and API calls, and up to 150% for

all calls, although this overhead could be reduced by not inlining the query

method. Per-phase compiler timings show that most of the compilation over-

head comes from compiler phases downstream from PCC instrumentation, due

38

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean
w/o chart

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

ti
m

e

Base
PCC
PCC + system calls
PCC + util calls
PCC + API calls
PCC + all calls

2.3 2.8 2.1

Figure 3.1: Application execution time overhead of maintaining the
PCC value and querying it.

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 c
om

pi
la

ti
on

 t
im

e

Base
PCC
PCC + system calls
PCC + util calls
PCC + API calls
PCC + all calls

2.3 2.2 2.5

Figure 3.2: Compilation time overhead due to adding instrumentation
to maintain the PCC value and query it.

antlr
bloat

eclipse
fop hsqldb

jython
luindex

lusearch

pmd
pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

ti
m

e

Base
SW for system calls
SW for util calls
SW for API calls

3.1
>10.0

>10.0
>10.0

7.1
>10.0

>10.0
>10.0

>10.0>10.0
>10.0

>10.0
>10.0

8.9
>10.0

>10.0
>10.0

>10.0
>10.0

>10.0
>10.0

3.5 >10.0
>10.0

>10.0
>10.0

>10.0 2.7 >10.0
>10.0

Figure 3.3: Application execution time overhead of walking the stack.

39

to the bloated intermediate representation (IR). By design, compilation time

is a small fraction of overall execution time. In our experiments, the time

spent in the application is on average 20 times greater than the time spent in

compilation, for each of the PCC configurations shown in Figure 3.2.

Space overhead. Computing the PCC does not add space overhead to keep

track of the PCC value, but of course the clients use space proportional to the

number of PCC values they store. Our experiments that test potential clients

simply use a fixed-size hash table with 220 = 1, 048, 576 slots (4 MB), as

described in Section 3.3, but real clients would use space proportional to their

needs. Clients storing PCC values in a large data structure could potentially

hurt execution time due to poor access locality.

PCC adds space overhead and instruction cache pressure by increasing

the size of generated machine code. We find that on average, PCC instru-

mentation adds 18% to code size. Adding instrumentation to query the PCC

value at system calls, utility calls, API calls, and all calls adds an additional

0%, 2%, 6%, and 14%, respectively.

Comparison with stack-walking. An alternative to PCC is to walk the

stack at each query point (Section 8.2.6). We evaluate here how well stack-

walking performs for the call sites corresponding to potential clients. We

implement stack-walking by calling a method that walks the entire stack at

each query point; we do not add any PCC instrumentation for these runs.

Stack-walking implementations would additionally look up a unique identifier

for the current context [NS07], and they could save time by walking only the

subset of calls occurring since the last walk [Wha00], but we do not implement

40

these features here.

Figure 3.3 shows the execution time overhead of walking the stack at

various points corresponding to three potential clients: system calls, Java util-

ity calls, and Java API calls (we omit “all calls” because its overhead is greater

than for Java API calls, which is very high). Since most benchmarks have few

dynamic system calls, stack-walking adds negligible overhead at these calls.

However, for the two benchmarks with more than 200,000 dynamic system

calls, antlr and pseudojbb, stack-walking adds 67% and 62% overhead, respec-

tively. These results show the substantial cost of walking the stack even for

something as infrequent as system calls. Applications prone to security attacks

such as web servers are likely to have many system calls.

3.4.5 Evaluating Context Sensitivity

Clients that detect new or anomalous behavior usually do not use dy-

namic context sensitivity because of its prior cost. This section compares

calling context profiling to call site profiling, which is context insensitive, to

evaluate whether calling context detects significantly more previously unob-

served behavior than call sites alone. Table 3.4 compares calling contexts and

call sites. The first two columns are counts of distinct calling contexts and call

sites for calls to Java API methods (the calling context figures are the same

as in Table 3.2). For most programs, there are many more calling contexts

than call sites, which indicates that call sites are invoked from multiple calling

contexts. The first two columns show that thousands of call sites generate

hundreds of thousands of calling contexts.

Finally, we consider the power of residual calling context compared to

residual call site profiling on the medium versus the large inputs. Columns in

41

Large input Large-medium diff Contexts with
Program Contexts Call sites Contexts Call sites new call sites

antlr 128,627 4,184 8 0 0
bloat 600,947 3,306 320,864 82 1,002
chart 202,603 2,335 139,599 379 9,112
eclipse∗ 226,020 9,611 121,939 1,240 46,206
fop 37,710 2,225 0 0 0
hsqldb 16,050 947 13 0 0
jython 628,048 1,830 59,202 1 1
luindex 102,556 654 7,398 0 0
lusearch 905 507 0 0 0
pmd 847,108 1,890 711,223 48 388
xalan 17,905 1,530 15 2 2
Dacapo geo 85,963 1,897
pseudojbb 3,410 846 17 0 0
compress 1,081 1,017 0 0 0
jess 5,240 1,363 1,827 22 22
raytrace 3,383 1,215 25 2 5
db 1,439 1,105 72 4 4
javac 255,334 1,610 163,916 9 201
mpegaudio 1,668 1,072 32 1 4
mtrt 3,366 1,190 25 2 5
jack 29,461 2,173 0 0 0
SPEC geo 5,410 1,242

Geomean 24,764 1,568

Table 3.4: Comparing call site profiles with calling context on Java
API calls. ∗Medium vs. small inputs for eclipse.

42

Table 3.4 under Large-medium diff count the distinct calling contexts and call

sites seen in a large run but not a medium run. In several programs, many

new distinct calling contexts occur, but many fewer new call sites occur, and,

in particular, luindex executes 7,398 new contexts without executing any new

call sites. The final column shows the number of new, distinct calling contexts

that correspond to the new call sites in the large run. This column shows

how well residual call site profiling would do at identifying new calling context

behavior. If every new call site (i.e., call site seen in large but not medium run)

triggered stack-walking, call site profiling would identify only a small fraction

of the new calling contexts for most programs.

3.5 Conclusion and Interpretation

Complex object-oriented programs motivate calling context as a pro-

gram behavior indicator in residual testing, invariant-based bug detection,

and security intrusion detection. PCC provides dynamic context sensitivity

for these clients with low overhead.

The bug diagnosis work in this dissertation tracks control and data

flow and the relationship between them. PCC tracks control flow only, but it

is directly useful for adding context sensitivity to invariant-based bug detec-

tion systems that correlate code and data [EPG+07, HL02, LNZ+05, LTQZ06,

ZLF+04]. For example, PCC could improve the precision of DIDUCE and

statistical bug isolation, which identify program locations where anomalous

variable values occur [HL02, LNZ+05], by tracking each context-sensitive pro-

gram location separately. Context sensitivity is fundamental for understand-

ing and analyzing modern software since static program location is not enough

in complex, object-oriented programs. By showing for the first time how to

43

represent dynamic context efficiently, this work promotes the use of context

sensitivity in deployed debugging situations.

44

Chapter 4

Storing Per-Object Sites in a Bit with Bell

To find and fix bugs, programmers benefit from knowing which program

locations (sites) are responsible for failures. Some bug detection and program

understanding tools track sites for each object, such as the site that allocated

the object or last accessed the object [CH04, LTQZ06]. Then when an error

occurs, the tools report the program location(s) stored for objects associated

with the error. Most programs written in managed languages have many small

objects, and this approach adds space overhead too high for deployed systems.

This chapter introduces Bell, a novel approach for correlating object

instances and sites with extremely low space overhead. Bell encodes the site

for an object in a single bit using an encoding function f(site, object) that takes

the site and the object address as input and returns zero or one. Bell thus

loses information, but with sufficiently many objects and a known, finite set of

sites, Bell can decode sites with high confidence. Decoding uses a brute-force

application of the encoding function for all sites and a subset of objects. Bell

can assist with a variety of tasks that can use statistical per-object informa-

tion, both in managed and unmanaged languages. Bell can benefit debugging

tasks that involve multiple errors, such as malformed data structures (e.g.,

a completely unbalanced binary search tree) [CG06b] and memory leaks. It

can also help debugging of multiple running instances, either runs by multiple

users or repeated runs by one user, by reconstructing culprit program locations

45

with confidence by combining information across runs.

We apply Bell to diagnosing memory leaks since they are an important

and challenging bug type. Managed languages do not eliminate memory leaks

since garbage collection cannot reclaim reachable but dead memory; leaks are

hard reproduce since they often take days or longer to manifest; and they are

hard to find and fix since they have no immediate symptoms [HJ92]. We use

Bell as part of a new leak detector that identifies program sites responsible for

memory leaks without adding any space overhead. It helps diagnose memory

leaks in SPECjbb2000 and Eclipse [Eclb, Sta01], which have known memory

leaks. The sites it reports are directly useful for fixing the leaks, although the

programs need to run long enough to leak enough objects to be reported by

Bell decoding. This work demonstrates that bug detection can in some cases

store nontrivial information for every object statistically, reducing overhead

drastically, while still recovering useful information.

4.1 Encoding and Decoding Per-Object Information

This section describes Bell, novel approach for encoding per-object in-

formation into a single bit.

4.1.1 Encoding

Bell encodes per-object information from a known, finite set in a single

bit. In this work, we use Bell to encode sites such as source locations that

allocate and use objects. A site can be a program counter (PC) value or a

unique number that identifies a line in a source file. Bell’s encoding function

46

Figure 4.1: Bell encoding. (a) An object’s encoded site is stored in its site
bit. (b) A different site matches the object with 1

2
probability.

takes two parameters, the site and object address, and returns zero or one:

f(site, object) = 0 or 1

Bell computes f(site, object) and stores the result in the object’s site bit, and

we say the site was encoded together with the object. We say a site matches an

object if f(site, object) equals the object’s site bit. An object always matches

the site it was encoded together with, but it may or may not match other sites.

We choose f so it is unbiased : (1) with 1
2

probability, a site matches an ob-

ject encoded together with a different site, and (2) whether an object and site

match is independent of whether another object matches the site. Figure 4.1

shows an example of the first property of an unbiased function. Section 4.1.3

presents several encoding functions that are unbiased and inexpensive to com-

pute.

Since many sites (about half of all sites) may match an object, Bell

loses information by encoding to a single bit. However, with enough objects,

Bell can decode sites with high confidence.

47

4.1.2 Decoding

Bell decodes the sites for a subset of all objects. In this section, all

mentions of objects refer to objects in this subset. In a leak detection tool,

for example, Bell would decode the subset of objects the tool identified as

potential leaks. Decoding reports sites encoded together with a significant

number of objects, as well as the number of objects each site encodes (within

a confidence interval). The key to decoding is as follows (recall that a site

matches an object if f(site, object) equals the object’s site bit).

A site that was not encoded together with a significant number of

objects will match about half the objects, whereas a site that was

encoded together with a significant number of objects will match

significantly more than half the objects.

In general, we expect a site encoded together with nsite objects (out of n objects

in the subset) to match about msite = nsite + 1
2
(n − nsite) objects, since the

site matches (1) all of the nsite objects that were encoded together with it and

(2) about half of the n− nsite objects that were not encoded together with it.

Solving for nsite, we find that about nsite = 2msite − n objects were encoded

together with the site given that it matches msite objects.

Bell decodes per-object sites using a brute-force approach that evaluates

f for every object and every site:

foreach possible site
msite ← 0
foreach object in the subset

if f(site, object) = object ’s site bit
msite ← msite + 1

print site has about 2msite − n objects

48

n = 102 n = 103 n = 104 n = 105

103 sites 68 232 736 2,326
104 sites 72 248 784 2,480
105 sites 74 260 828 2,622
106 sites 78 272 868 2,752
107 sites 80 286 910 2,874

Table 4.1: Values of nmin for example numbers of sites and objects
(n).

Because of statistical variability, 2msite − n only approximates the number

of objects encoded together with the site. Bell differentiates between sites

that were actually encoded together with objects, and those that were not, by

weeding out the latter with a false positive threshold mFP:

if m ≥ mFP

print site has about 2msite − n objects

Section 4.2 describes how we compute mFP so that decoding avoids false posi-

tives with high probability (99%). By weeding out sites, Bell misses sites that

were encoded together with few but not many objects. We can compute the

minimum number of objects nmin that need to be encoded together with a

site, in order for Bell to report the site with very high probability (99.9%).

Section 4.2 describes how we compute nmin.

Table 4.1 reports nmin for various numbers of sites and objects. It

shows that nmin scales sublinearly with n (at a rate roughly proportional to
√

n). Thus, an increase in n requires more objects—but a smaller fraction of

all objects—be encoded together with a site for Bell to report it. The table

shows that nmin is not affected much by the number of sites, so Bell’s precision

scales well with program size.

49

4.1.3 Choosing the Encoding Function

This section presents the encoding functions we use. A practical en-

coding function should be both unbiased and inexpensive to compute, since

applications of Bell will compute it at runtime. We find that taking a bit from

the product of the site and the object address, meets both these criteria fairly

well:

fsingleMult(site, object) ≡ bit31(site× object)

fsingleMult returns the middle bit of the product of the site identifier and object

address, assuming both are 32-bit integers. We find via simulation that for

object addresses chosen randomly with few constraints, this function is un-

biased (i.e., decoding does not report false positives or negatives more than

expected). However, our leak detection implementation uses a segregated free

list allocator, yielding non-arbitrary object addresses. Using fsingleMult causes

decoding to report a few more false positives than expected.

We find that the following encoding function eliminates unexpected

false positives because the extra multiply permutes the bits enough to ran-

domize away the regularity of object addresses allocated using a segregated

free list:

fdoubleMult(site, object) ≡ bit31(site× object× object)

We also experimented with

fparity(site, object) ≡ parity(site ∧ object)

which returns the parity of the bitwise AND of the site and object address.

While fparity is unbiased if we choose object addresses randomly, site decoding

50

returns many false positives if a segregated free list allocates objects since

fparity does not permute the bits of its inputs.

4.2 Avoiding False Positives and Negatives

Section 4.1.2 describes how Bell avoids false positives by not reporting

sites that match less than mFP objects, and how weeding out some sites re-

quires that a site have been encoded together with at least nmin objects to be

almost certainly reported. This section describes how we compute mFP and

nmin.

To compute mFP, we use the fact that msite (the number of objects that

match a site) for a site encoded together with no objects, can be represented

with a binomially-distributed random variable X with n trials and 1
2

probabil-

ity of success. (X is binomially distributed since whether a particular object

matches the site is an independent event.) Solving for mFP in the following

equation gives the threshold needed to avoid reporting a single site as a false

positive with high probability (99%):

1− Pr(X ≥ mFP) ≥ 99%

We want to avoid reporting any false positive sites, so we solve for mFP in the

following equation:

[1− Pr(X ≥ mFP)]|sites| ≥ 99%

where |sites| is the number of possible sites.

Using mFP, we compute nmin as follows. Given a site encoded together

with nmin objects, we model the number of matches for the site as a binomially-

distributed random variable Y with n trials and probability of success 1
2
(n +

51

nmin)/n (because the expected value is msite = nmin+
1
2
(n−nmin) = 1

2
(n+nmin)).

We solve for nmin in the following equation (note that mFP is fixed, and nmin

is implicitly in the equation as part of Y ’s probability of success):

1− Pr(Y ≥ mFP) ≥ 99.9%

Table 4.1 showed example values of nmin for various numbers of sites and

objects. Before decoding, our implementation solves for mFP and mmin using

the Commons-Math library [Apa].

4.3 Implementation

The section describes a memory leak detector we wrote that uses Bell to

store and report per-object sites responsible for memory leaks. Sleigh encodes

sites that allocated and last accessed each object, and it decodes these sites

for highly stale objects.

4.3.1 Overview

Sleigh finds memory leaks in Java programs and reports the allocation and

last-use sites of leaked objects, using just four bits per object. It inserts Bell

instrumentation to encode object allocation and last-use sites in a single bit

each, tracks object staleness (time since last use) in two bits using a loga-

rithmic counter, and occasionally decodes the sites for stale objects. Sleigh

borrows four unused bits in the object header in our implementation, so it adds

no per-object space overhead. Other VMs such as IBM’s J9 [GKS+04] have

free header bits. Without free header bits, Sleigh could store its bits outside

the heap, efficiently mapping every two words (assuming objects are at least

two words long) to four bits of metadata, resulting in 6.25% space overhead.

52

Figure 4.2: Sleigh’s components. (a) Sleigh uses four bits per object. (b)
Sleigh has several components that live in different parts of the VM.

Figure 4.2(a) shows the four bits that Sleigh uses in each object’s

header. Figure 4.2(b) shows the components that Sleigh adds to the VM.

Sleigh uses the compiler to insert instrumentation in the application at ob-

ject allocations (calls to new) and object uses (field and array element reads).

It uses the garbage collector to increment each object’s stale counter at a

logarithmic rate. The garbage collector invokes decoding periodically or on

demand. Decoding identifies allocation and last-use sites of potentially leaked

objects.

53

4.3.2 Encoding Allocation and Last-Use Sites

Sleigh uses Bell to encode the allocation and last-use sites for each object

using a single bit each. Sleigh adds instrumentation at object allocation that

computes f(site, object) and stores the result in both the allocation bit and

the last-use bit. If an object is never used, its last use is just its allocation

site. Similarly, Sleigh adds instrumentation at object uses (field and array

element reads) that computes f(site, object) and stores the result in the last-

use bit. Figure 4.2(b) shows how the compiler inserts this instrumentation

into application code.

Sleigh defines a site to be a calling context consisting of methods and

line numbers (from source files), much like an exception stack trace in Java.

For efficiency, Sleigh uses only the inlined portion of the calling context, which

is known at compile time, whereas the rest of the calling context is not known

until runtime. The following is an example site (the leaf callee comes first):

spec.jbb.infra.Factory.Container.deallocObject():352

spec.jbb.infra.Factory.Factory.deleteEntity():659

spec.jbb.District.removeOldestOrder():285

Sleigh assigns a unique random identifier to each unique site and maintains a

mapping from sites to identifiers.

4.3.3 Tracking Staleness Using Two Bits

In addition to inserting instrumentation to maintain per-object allocation and

last-use sites, Sleigh inserts instrumentation at each site that tracks object stal-

eness using a two-bit saturating stale counter. The stale counter is logarithmic:

its value is approximately the logarithm of the time since the application last

54

used the object. A logarithmic counter saves space without losing much accu-

racy by representing low stale values with high precision and high stale values

with low precision.

Sleigh resets an object’s stale counter to zero at allocation and at each

object use. Periodically, during garbage collection (GC), Sleigh updates all

stale counters (Figure 4.2(b)). Sleigh updates stale counters by incrementing

a counter from k to k + 1 only if the current GC number divides bk evenly,

where b is the base of the logarithmic counter (we use b = 4). k saturates at 3

because the stale counter is two bits. Stale counters implicitly divide objects

into four groups: not stale, slightly stale, moderately stale, and highly stale.

In our experiments, we consider the highly stale objects to be potential leaks.

We find Sleigh is not very sensitive to the definition of highly stale objects since

most objects are stale briefly or for a long time. Our Sleigh implementation

fixes the logarithm base b at 4, but a more flexible solution could increase b

over time to adjust to a widening range of object staleness values.

Sleigh updates objects’ stale counters at GC time for efficiency and con-

venience. It measures staleness in terms of number of GCs but could measure

staleness in terms of execution time instead by using elapsed time to determine

whether and how much to increment stale counters.

4.3.4 Decoding

Sleigh occasionally performs Bell decoding to identify the site(s) that allocated

and last used highly stale objects. Users can configure Sleigh to trigger decod-

ing periodically (e.g., every hour or every thousand GCs) or on demand via

a signal (not currently implemented). Decoding occurs during the next GC

after being triggered. Figure 4.2(b) shows how GC occasionally invokes decod-

55

ing, and it shows pseudocode for decoding based on the decoding algorithm

from Section 4.1.2. Decoding computes the number of objects that match each

possible site, for both the object’s allocation and last-use bits. It reports al-

location and last-use sites that match more than mFP objects (Section 4.1.2),

and it reports the number of objects for each site, within a confidence interval.

Decoding is potentially expensive because its execution time is propor-

tional to both the number of possible sites and number of highly stale objects.

However, several factors mitigate this potential cost. First, we expect de-

coding to be an infrequent process, occurring only occasionally as needed on

runs that last hours, days, or weeks and take as long to manifest significant

memory leaks. Second, the vast majority of decoding’s work can occur in

parallel with the VM and application, on a different CPU or machine (cur-

rently unimplemented). The VM would need to provide the highly stale object

addresses and the possible sites (or a delta since the last decoding) to a sep-

arate execution context, which would perform the brute-force application of

the encoding function. Third, it is not necessary to perform decoding on all

stale objects: a random sample of them suffices, although using fewer objects

increases nmin and widens confidence intervals. Fourth, decoding could use

type constraints (e.g., an object can only encode allocation sites that allocate

the object’s type) to significantly decrease the number of times Sleigh com-

putes f(site, object) (currently unimplemented). Decoding runs in reasonable

time in our experiments, and occasionally paying for decoding offers mem-

ory efficiency as compared with the all-the-time space overhead from storing

un-encoded per-object sites.

Sleigh decodes allocation and last-use sites separately, but it could find

and report allocation and last-use sites correlated with each other, as suggested

56

by an anonymous reviewer.

4.3.5 Decreasing Instrumentation Costs

The instrumentation Sleigh adds at object uses (field and array reads) can be

costly because it executes frequently. Sleigh removes redundant instrumenta-

tion and uses adaptive profiling [CH04] to reduce instrumentation overhead.

Removing redundant instrumentation. Instrumentation at object uses

is required only at the last use of any object because the instrumentation

at each use clears the stale counter and computes a new last-use bit. Sleigh

can thus eliminate instrumentation at a use if it can determine that the use

is followed by another use of the same object. A use is fully redundant if

the same object is used later on every path. A use is partially redundant if

the program uses the same object on some path. We use a backward, non-

SSA, intraprocedural data-flow analysis to find partially redundant and fully

redundant uses. Our analysis is similar to partial redundancy elimination

(PRE) analysis [BC94], but is simpler because it computes redundant uses

rather than redundant expressions.

We do not add instrumentation at fully redundant uses because they

do not need it. We do add instrumentation at partially redundant uses, al-

though we could remove it and add instrumentation along each path that does

not use the object again. We have not implemented this optimization, but

Section 4.5.4 evaluates an upper bound on its benefit.

Removing redundant instrumentation may cause Sleigh to report some

in-use objects as stale if a long time passes between an uninstrumented use

and an instrumented use. However, this effect can happen only to an object

57

referenced by a local (stack) variable continuously between the uninstrumented

use to the instrumented use. We do not see inaccuracy in practice.

Adaptive profiling. Sleigh as described so far adds no per-object space

overhead, but it does add 29% time overhead on average (Section 4.5.4). This

time overhead is low compared to other memory leak detection tools (Sec-

tion 8.2.4) but may be too expensive for online production use. To reduce this

overhead, we borrow adaptive profiling from Chilimbi and Hauswirth [CH04],

which samples instrumented code at a rate inversely proportional to its execu-

tion frequency. This approach maintains bug coverage while reducing overhead

by relying on the hypothesis that cold code contributes disproportionately to

bugs.

Sleigh optionally uses adaptive profiling to sample instrumentation at

object uses. Since Bell decoding needs a significant number of objects to report

a site, Sleigh uses all-the-time instrumentation at a site until it takes 10,000

samples. It progressively lowers the sampling rate by 10x every 10,000 samples

until reaching the minimum sampling rate of 0.1%.

4.3.6 Memory Management

Since Bell’s encoding function takes the object address as input, objects

cannot move, or decoding will not work correctly. We use Jikes RVM’s mark-

sweep collector [BCM04], which allocates using a segregated free list and does

not move heap objects.

Mark-sweep is not among the best-performing collectors. Sleigh could

be modified to use a high-performance generational mark-sweep (GenMS) col-

lector, which allocates objects in a small nursery and moves them to a mark-

58

sweep older space if they survive a nursery collection. A GenMS-compatible

Sleigh would (1) store un-encoded allocation and last-use sites (as extra header

words) for nursery objects, (2) store encoded sites for older objects, and (3)

when promoting objects from the nursery to the older space, encode each ob-

ject’s allocation and last-use sites using the object’s new address in the older

space and the object’s un-encoded sites from the nursery. If the nursery were

bounded, the space overhead added by un-encoded sites would be bounded.

Bell is incompatible with compacting collectors, which are popular in

commercial VMs (e.g., JRockit [Oraa]) because they increase locality and de-

crease fragmentation. However, in some production environments it might be

worthwhile to switch to generational mark-sweep in order to take advantage

of Bell’s space-saving benefits. Bell is compatible with C and C++ memory

managers, since they do not move objects.

4.3.7 Miscellaneous Implementation Issues

Sleigh adds instrumentation to both application methods and library meth-

ods (the Java API) to reset objects’ stale counters. Sleigh encodes allocation

and last-use sites in application methods, but not in library methods since

these sites are probably not helpful to the user and may obscure Sleigh’s re-

port. Sleigh does encode sites for library methods when they are inlined into

application methods.

Because Jikes RVM is written in Java, the VM allocates its own objects

in the heap together with the application’s objects. These VM objects are not

of interest to application developers, and thus Sleigh differentiates VM and

application objects at allocation time using a fifth bit in the object header (a

more elegant solution would put application and VM objects in separate heap

59

spaces). Bell decoding then ignores these VM objects.

4.4 Finding Leaks

This section evaluates Sleigh’s ability to find leaks and help developers

fix leaks.

4.4.1 Methodology

Execution. We execute Sleigh by running a production build of Jikes RVM

(FastAdaptive) for two hours. We use a variable-sized heap (Jikes RVM auto-

matically and dynamically adjusts the heap size) since leaks cause live memory

to grow over time. In Sections 4.4.2 and 4.4.3, Sleigh inserts all-the-time in-

strumentation at object uses and removes instrumentation from fully but not

partially redundant uses (this configuration is called Sleigh default in Sec-

tion 4.5). In Section 4.4.4, Sleigh samples object uses using adaptive profiling

(Sleigh AP in Section 4.5). We show just one trial per experiment since av-

eraging Sleigh’s statistical output over multiple runs makes its accuracy seem

unfairly high, but we have verified that the presented results are typical from

run to run.

Decoding. Decoding can process every (highly) stale object in the heap.

However, we have found that many stale objects are pointed at by only other

stale objects, i.e., they are just interior members of stale data structures.

Sleigh’s staleness-based approach implicitly divides the heap into two parts:

in-use and stale objects. Figure 4.3 shows in-use and stale objects in a cross-

section of the heap. Conceptually, an in-use/stale border divides the in-use

and stale objects; this border consists of references from in-use to stale objects.

60

Figure 4.3: Sleigh implicitly divides the heap into in-use and stale
objects.

We define a stale object pointed at by an in-use object as a stale border object,

and an in-use object that points to a stale object as an in-use border object.

Stale border objects are effectively the “roots” of stale data structures, and

decoding these objects gives the allocation and last-use sites for these data

structures. In-use border objects point to stale data structures, so decoding

their sites may help answer the question, “Why is the stale data structure not

being used anymore?” We note we had the idea to investigate stale and in-

use border objects after examining the output from decoding all stale objects

and fixing the Eclipse leak. Limiting decoding to border objects may be more

important in Java since data structures typically consist of many objects,

whereas Chilimbi and Hauswirth report success using sites for all stale objects

in C [CH04].

61

We configure Sleigh to execute decoding every 20 minutes. Decoding

processes and reports sites for three different subsets of objects: (1) all stale

objects, (2) stale border objects, and (3) in-use border objects. Whenever one

of these subsets has more than 100,000 objects, decoding processes a sample

of 100,000 of them.

We plot reported object counts for reported sites with respect to time,

which shows the sites that are growing. (Identifying growing sites is currently a

manual process, but Sleigh could automatically find growing sites by analyzing

the plotted data.) In this section, we are primarily interested in growing sites,

since they will eventually crash programs. However, program developers might

also be interested in non-growing sites, since unused memory may indicate poor

memory usage.

Benchmarks. We evaluate Sleigh on two leaks in SPECjbb2000 and Eclipse

3.1.2 [Eclb, Sta01].

4.4.2 SPECjbb2000

SPECjbb2000 simulates an order processing system and is intended

for evaluating server-side Java performance [Sta01]. SPECjbb2000 contains

a known, growing memory leak that manifests when it runs for a long time

without changing warehouses. The leak occurs because SPECjbb2000 adds

but does not correctly remove orders from an order list that is supposed to

have zero net growth.

We use Sleigh to find and help fix the leak. Table 4.2 presents statistics

from running Sleigh on SPECjbb2000 for three subsets of stale and in-use

objects. The first three labeled columns give the size of the object subset, the

62

number of program sites, and decoding’s execution time; the data are ranges

over the six times decoding executes during a two-hour run. As expected, the

number of stale objects grows over time as the leak grows (the number of stale

objects starts high due to unused String and char[] objects that appear to be

SPECjbb2000’s “data”). The number of sites increases as dynamic compilation

adds more sites. The last two columns show how many allocation and last-use

sites decoding reports, and how many of these sites’ object counts grow over

time (based on manual inspection of plots with respect to time).

Figures 4.4 and 4.5 plot the sites for stale border objects (the dashed

line is the minimum object count nmin). In general, we expect the plots for

stale border objects to be most useful because they show site(s) where the

roots of stale data structures were allocated and last used. Figure 4.4 reports

one growing and one non-growing allocation site; the growing site is the generic

Class.newInstance(), which is not very useful information. Last-use sites

are more useful in this case, and we expect them to be more useful in general

for pinpointing an unintentional leak’s cause. Figure 4.5 shows two growing

and two non-growing last-use sites with enough stale objects to be reported

by decoding. One of the two growing sites Sleigh reports is the following:

spec.jbb.infra.Factory.Container.deallocObject():352

spec.jbb.infra.Factory.Factory.deleteEntity():659

spec.jbb.District.removeOldestOrder():285

This site is the key to fixing SPECjbb2000’s leak: the fix replaces SPECjbb-

2000’s only call to removeOldestOrder() with two different lines that properly

remove orders from SPECjbb2000’s order list. Thus the three lines of inlined

calling context that Sleigh provides are enough to pinpoint the exact line

responsible for the leak. We believe a SPECjbb2000 developer could quickly

63

Instru- Object Possible Decoding Growing (all) reported sites
mentation subset Objects sites time (s) Allocation Last use

All-the-time All stale 60,610–73,175 4,412–4,476 2.0–2.5 3 (8) 3 (10)
Stale border 24,454–28,639 4,412–4,476 0.8–1.0 1 (2) 2 (4)
In-use border 239,603—420,128∗ 4,412–4,476 3.4–3.4 3 (6) 3 (14)

Adaptive All stale 103,228–127,917∗ 4,302–4,384 3.2–3.2 1 (7) 3 (14)
profiling Stale border 50,905–60,008 4,302–4,384 1.6–2.0 0 (4) 3 (10)

In-use border 225,876–459,393∗ 4,302–4,384 3.2–3.2 3 (6) 2 (11)

Table 4.2: Decoding statistics for Sleigh running SPECjbb2000. *Decoding processes at most
100,000 objects.

Instru- Object Possible Decoding Growing (all) reported sites
mentation subset Objects sites time (s) Allocation Last use

All-the-time All stale 1,616,736–8,936,357∗ 31,733–32,574 24.2–24.9 7 (14) 10 (17)
Stale border 40,492–43,360 31,733–32,574 10.0–10.9 1 (3) 2 (3)
In-use border 40,572–454,975∗ 31,733–32,574 10.3–24.7 1 (7) 0 (10)

Adaptive All stale 1,683,898–9,022,732∗ 31,151–32,000 23.1–23.8 7 (7) 7 (12)
profiling Stale border 34,093–36,241 31,151–32,000 8.0–8.6 1 (3) 1 (2)

In-use border 37,440–361,703∗ 31,151–32,000 9.0–23.5 0 (7) 0 (5)

Table 4.3: Decoding statistics for Sleigh running Eclipse. *Decoding processes at most 100,000
objects.

64

0 2000 4000 6000
Time (s)

0

1000

2000

3000

4000

5000

O
bj

ec
ts

spec.jbb.infra.Factory.Factory.tempArrayOfNear():486
Allocation via java.lang.Class.newInstance()

Figure 4.4: Reported allocation sites for SPECjbb2000 when decod-
ing processes stale border objects only.

0 2000 4000 6000
Time (s)

0

1000

2000

3000

O
bj

ec
ts

spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.District.removeOldestOrder():285
spec.jbb.infra.Collections.longBTreeNode.Split():654
spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.infra.Collections.longBTree.removeEntry():1640

Figure 4.5: Reported last-use sites for SPECjbb2000 when decoding
processes stale border objects only.

65

fix the leak based on Figure 4.5. The key site takes some time (about an

hour) to manifest since decoding requires about nmin = 1200 objects (dashed

line) to report the site. The last-use plot for all stale objects (not shown) also

includes the key site, as well as several other sites, including two growing sites

for non-border stale objects. The key site takes longer to manifest in this case

since nmin increases with n (Section 4.1.2). The last-use plot for in-use border

objects (not shown) does not show the key site above, which is not surprising

since decoding operates on an entirely different subset of objects. At this time

we do not understand SPECjbb2000 well enough to know if the plot for in-use

objects is useful for fixing the leak.

SPECjbb2000’s heap growth is due to both stale and in-use objects:

Orders grow in number but are used, whereas Containers become stale. The

fix described above eliminates only heap growth due to in-use objects, which

contribute the vast majority (or perhaps all) of the heap growth in terms

of bytes. Sleigh reports the offending last-use site because the in-use and

stale objects are related (orders point to containers). At this time we do

not understand SPECjbb2000 well enough to determine if the stale container

objects are a leak or how to fix this potential leak, although the fix described

above appears to eliminate all sustained heap growth.

4.4.3 Eclipse

Eclipse 3.1.2 is a popular integrated development environment (IDE)

written in Java [Eclb]. Eclipse is a good target because it is a large, complex

program (over 2 million lines of source code). The Eclipse bug repository

reports several unfixed memory leaks. We pick unfixed bug #115789, which

reports that repeatedly performing a structural (recursive) diff leaks memory

66

that eventually exhausts available memory. We automate the GUI behavior

that performs a repeated structural diff on MMTk source code [BCM04] before

and after implementing Sleigh (17 of 250 files differ; textual diff is 350 lines).

The leak occurs in Eclipse’s NavigationHistory component, which al-

lows a user to step backward and forward through browsed editor windows.

This component keeps a list of NavigationHistoryEntry (Entry) objects,

each of which points to a NavigationHistoryEditorInfo (EditorInfo) ob-

ject. In our test case, each EditorInfo points to a CompareEditorInput ob-

ject, which is the root of a data structure that holds the results of the structural

diff. The NavigationHistory component maintains the number of Entry ob-

jects that point to each EditorInfo object. If an EditorInfo’s count drops

to zero, NavigationHistory removes the object. However, NavigationHis-

tory erroneously omits the decrement in some cases, maintaining unnecessary

pointers to EditorInfo objects. Because NavigationHistory regularly iter-

ates through all EditorInfo objects but not pointed-to CompareEditorInput

objects, the former are in-use border objects, and the latter are stale border

objects.

Table 4.3 shows information about running Eclipse using Sleigh, in

the same format as Table 4.2. Decoding all objects returns seven growing

allocation and 10 growing last-use sites (plot not shown), most of which are

for stale descendants of CompareEditorInput objects (i.e., the data for the

structural diff).

Decoding stale border objects gives one growing allocation and two

growing last-use sites. Figure 4.6 shows the last-use sites. The first grow-

ing last-use site, from ElementTree, is a red herring: this site’s count grows

and shrinks over time. It does not cause the sustained growing leak, but

67

it may be of interest to developers. The second growing last-use site, from

CompareEditorInput, is in fact the last-use site for leaking CompareEditor-

Input objects. Unfortunately, the last-use site for these objects is not in or

related to the NavigationHistory component.

We next try decoding sites for in-use border objects. Figure 4.7 plots

the last-use sites for in-use border objects. It is not clear to us why the object

counts of most reported sites decrease over time; perhaps Eclipse performs

clean-up of pointers to unused objects as time passes. Almost two hours pass

before Sleigh reports two sites from NavigationHistory, both of which are

involved with NavigationHistory’s iteration through the list of EditorInfo

objects. These sites do not have time to grow since the experiment ends after

two hours, but a longer run shows that these sites do in fact grow. The plot of

allocation sites for in-use border objects (not shown) also reports a site within

NavigationHistory (the allocation site of EditorInfo objects) shortly before

two hours pass.

Fixing the leak requires modifying a single line of code inside Naviga-

tionHistory.java to correctly decrement the reference count of each Editor-

Info object. After determining that the NavigationHistory component was

causing the leak by holding on to EditorInfo objects, we fixed the leak within

an hour. Thus we believe Sleigh’s output would help an Eclipse developer fix

the leak quickly, although enough in-use border objects must leak first. We

posted the leak’s fix as an update to the bug report.

4.4.4 Adaptive Profiling

The results so far use all-the-time instrumentation at object uses. This

section evaluates Sleigh’s accuracy using adaptive profiling at object uses (Sec-

68

0 2000 4000 6000
Time (s)

0

500

1000

1500

2000

O
bj

ec
ts

org.eclipse.core.internal.watson.ElementTree.getDataTree():354
org.eclipse.compare.CompareEditorInput.removePropertyChangeListener():771
org.eclipse.core.internal.registry.ReferenceMap$SoftRef.getKey():146

Figure 4.6: Reported last-use sites for Eclipse when decoding pro-
cesses stale border objects only.

0 2000 4000 6000
Time (s)

0

20000

40000

60000

O
bj

ec
ts

org.eclipse.core.internal.resources.Resource.getFullPath():855
 org.eclipse.core.internal.resources.Resource.getResourceInfo():973
 org.eclipse.core.internal.localstore.FileSystemResourceManager.read():521
org.eclipse.core.runtime.Path.segment():831
 org.eclipse.core.internal.dtree.DeltaDataTree.lookup():666
 [VM_Array.arraycopy -- touch]
org.eclipse.compare.ResourceNode.createStream():178
org.eclipse.core.runtime.Path.lastSegment():701
 org.eclipse.core.internal.resources.Resource.getName():903
 org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.internal.resources.Resource.getName():903
 org.eclipse.compare.ResourceNode.getName():87
org.eclipse.core.runtime.Path.lastSegment():701
 org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.core.internal.resources.Resource.getName():903
org.eclipse.ui.internal.NavigationHistory.createEntry():527
org.eclipse.ui.internal.NavigationHistory$1.updateNavigationHistory():97

Figure 4.7: Reported last-use sites for Eclipse when decoding pro-
cesses in-use border objects only.

69

tion 4.3.5). Adaptive profiling affects Sleigh’s accuracy by (1) identifying some

in-use objects as stale if it samples all the use sites of an in-use object at a too-

low sampling rate and (2) reporting false positive or negative last-use sites if it

samples a leaking last-use site at a too-low sampling rate. Tables 4.2 and 4.3

show results for adaptive profiling (lower three rows). Adaptive profiling causes

Sleigh to identify more stale objects and to report more sites than all-the-time

instrumentation. Figure 4.8 shows last-use sites for stale border objects from

SPECjbb2000. This plot is noisier than Figure 4.5, which shows the same data

collected using all-the-time instrumentation. However, the adaptive profiling

graph shows the key leaking site, removeOldestOrder(), which appears in

both graphs after about an hour and grows after that.

Sleigh with adaptive profiling does report the key leaking sites for

SPECjbb2000 and Eclipse since these sites’ execution rates are comparable

with the rates they leak objects. We believe developers could fix the leaks

using Sleigh’s output from adaptive profiling.

4.4.5 Discussion

This section discusses Sleigh’s benefits and drawbacks as a leak detec-

tion tool. Allocation and last-use sites help us find leaks, which agrees with

Chilimbi and Hauswirth’s experience that these sites are useful [CH04]. Last-

use sites are particularly useful for pinpointing leaks, although allocation sites

may be useful to developers, who understand their own code well. Limiting de-

coding to objects on the in-use/stale border is particularly useful for reporting

sites directly involved in leaks.

At the same time, border objects may be few in number compared with

all stale objects. For example, each structural diff performed in Eclipse yields

70

0 2000 4000 6000
Time (s)

0

5000

10000

15000

O
bj

ec
ts

java.lang.String.getChars():631
 spec.jbb.infra.Util.DisplayScreen.privText():259
 spec.jbb.infra.Util.DisplayScreen.putText():290
spec.jbb.Item.getBrandInfo():116
 spec.jbb.Orderline.process():367
java.lang.String.<init>():210
 spec.jbb.Stock.getData():265
 spec.jbb.Orderline.process():372
spec.jbb.infra.Collections.longBTreeNode.Split():654
spec.jbb.infra.Collections.longBTreeNode.SearchGt():355
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.District.removeOldestOrder():285
spec.jbb.Stock.getId():244
 spec.jbb.StockLevelTransaction.process():208
spec.jbb.Stock.getQuantity():211
 spec.jbb.StockLevelTransaction.process():240
spec.jbb.infra.Factory.Container.deallocObject():352
 spec.jbb.infra.Factory.Factory.deleteEntity():659
 spec.jbb.DeliveryTransaction.process():206
spec.jbb.Stock.incrementRemoteCount():236
 spec.jbb.Orderline.process():382

Figure 4.8: Reported last-use sites for SPECjbb2000 when decoding
processes stale border objects only, using adaptive profiling.

71

one in-use border object and one stale border object—as well as a stale data

structure whose size is dependent on the size of the diff. Bell needs hundreds or

thousands of these objects to definitely report the leaking site (Section 4.1.2).

By decoding all stale objects, Sleigh can generally report leaking sites for any

nontrivial leak, but it is unclear if sites for non-border stale objects are useful

in general. Thus, Sleigh may not be able to find some leaks in other programs,

but we have not encountered such leaks (SPECjbb2000 and Eclipse are the

only programs for which we have tried to find leaks due to time constraints

and a lack of available long-running Java programs). While Sleigh may fail to

find some leaks, it is unlikely to report erroneous leaks (false positives) since

(1) its staleness approach precisely identifies memory not being used by the

application, and (2) the false positive threshold mFP (Section 4.1.2) avoids

reporting incorrect sites for stale objects.

Another drawback of Sleigh’s sites, and per-object sites in general, is

that calling context is limited to the inlined portion, which may not be enough

to understand the behavior of the code causing the leak. Eclipse in particular

is a complex, highly object-oriented program with deep calling contexts. Un-

fortunately, efficiently maintaining and representing dynamic calling context

is an unsolved problem.

4.5 Performance

This section evaluates Sleigh’s space and time overheads.

4.5.1 Methodology

We execute each benchmark with a heap size fixed at two times the

minimum possible for that benchmark. Because decoding is infrequent and not

72

part of steady-state performance, we do not evaluate decoding’s performance

here (Section 4.4 evaluates decoding’s performance).

4.5.2 Space Overhead

Sleigh uses four bits per object to maintain staleness and encode allo-

cation and last-use sites (Section 4.3.1). It commandeers four available bits in

the object header, so it effectively adds no per-object space overhead. Sleigh

adds some space overhead to keep track of the mapping from sites to unique

identifiers. The mapping’s size is equal to the number of unique sites, which is

proportional to program size. Sleigh could forego this mapping by using pro-

gram counters (PCs) for sites (Jikes RVM supports obtaining source locations

from the PC).

4.5.3 Compilation Overhead

Sleigh adds compilation overhead because it inserts instrumentation at

object allocations and uses, increasing compilation load. Adaptive profiling

duplicates code, so it also adds significant compilation overhead. We measure

compilation overhead by extracting compilation time from the first run of re-

play compilation. Sleigh with all-the-time instrumentation and with adaptive

profiling add 43% and 122% average compilation overhead, respectively, al-

though an adaptive VM might respond to these increases by optimizing less

code and by scaling back bloating optimizations such as inlining. Compila-

tion overhead is not a primary concern because Sleigh targets long-running

programs, for which compilation time represents a small fraction of execution

time.

73

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

or
m

al
iz

ed
 e

xe
cu

ti
on

 t
im

e

 Base
 Sleigh w/o instr
 Sleigh alloc only
 Sleigh stale simple
 Sleigh one mult
 Sleigh default

Figure 4.9: Components of Sleigh runtime overhead.

4.5.4 Time Overhead

Sleigh adds time overhead to maintain objects’ stale counters and to

encode objects’ allocation and last-use site bits. Figure 4.9 presents the exe-

cution time overhead added by Sleigh. We use the second iteration of replay

compilation, which measures only the application (not the compiler). Each

bar is the minimum of five trials. We take the minimum because it represents

the run least perturbed by external effects. The striped bars represent the

portion of time spent in garbage collection (GC). Base is execution time with-

out Sleigh; the bars are normalized to Base. The following configurations add

Sleigh features monotonically:

• Sleigh w/o instr is execution time including updating stale counters dur-

ing GC and marking VM objects at allocation time (Section 4.3.7) but

without any instrumentation. This configuration adds no detectable

overhead.

• Sleigh alloc only adds instrumentation at each allocation to initialize

74

the stale counter and encode and set the allocation and last-use bits,

incurring only 1% overhead on average.

• Sleigh stale simple adds simple instrumentation at object uses that resets

the stale counter but does not encode the last-use site. This instrumen-

tation occurs frequently and reads and writes the object header, and it

adds 22% overhead over Sleigh alloc only.

• Sleigh one mult adds instrumentation that computes fsingleMult (Sec-

tion 4.1.3) at object uses and encodes the result in the object’s last-use

bit. This configuration adds just 5% over Sleigh stale simple, demon-

strating that computing the encoding function itself is not a large source

of overhead in Sleigh.

• Sleigh default uses the more robust fdoubleMult, which adds 1% over the

single-multiply encoding function, for total average overhead of 29%.

Adaptive profiling. Sleigh uses adaptive profiling to lower its instrumen-

tation overhead at object uses (Section 4.3.5). Figure 4.10 shows the overhead

of Sleigh with adaptive profiling. Base and Sleigh default are the same as in

Figure 4.9. Sleigh AP min is the execution overhead of Sleigh using adap-

tive profiling, but configured so control flow never enters the instrumented

code. This configuration measures just the switching code, which adds 10%

overhead. This overhead is higher than the 4% switching code overhead that

Chilimbi and Hauswirth report [CH04], which is apparently a platform and im-

plementation difference (e.g., C vs. Java). Sleigh AP is the overhead of Sleigh

using fully functional adaptive profiling; it adds just 1% on average over Sleigh

75

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

or
m

al
iz

ed
 e

xe
cu

ti
on

 t
im

e

 Base
 Sleigh default
 Sleigh AP min
 Sleigh AP

Figure 4.10: Sleigh runtime overhead with adaptive profiling.

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

pseudojbb

antlr
bloat

fop jython
pmd

xalan
geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 e
xe

cu
ti

on
 t

im
e

 Base
 Sleigh default
 Sleigh elim none
 Sleigh elim all

2.03 2.06

Figure 4.11: Sleigh runtime overhead with and without redundant
instrumentation optimizations.

AP min since adaptive profiling executes instrumented code infrequently, for

a total of 11% overhead.

Redundant instrumentation. All Sleigh configurations presented so far

remove fully redundant but not partially redundant instrumentation (Sec-

tion 4.3.5). Figure 4.11 shows the overhead of Sleigh with various redundant

instrumentation optimizations. Base and Sleigh default are the same as in

76

Figure 4.9. Sleigh elim none is execution time including both fully and par-

tially redundant instrumentation (i.e., no redundant instrumentation removal).

Sleigh default saves 7% of total execution time on average by removing fully

redundant instrumentation. Sleigh elim all removes both fully and partially

redundant instrumentation, providing an optimistic lower bound of 22% aver-

age overhead for redundant instrumentation removal.

4.6 Conclusion and Interpretation

Bell is a novel approach for encoding per-object information from a

known, finite set in a single bit and decoding the information accurately and

with statistical guarantees, given enough objects. We apply Bell to leak detec-

tion to store and report statistical per-object sites responsible for potentially

leaked objects, using no space overhead. Drawbacks include high encoding

and decoding time and a steep accuracy-time trade-off. Future work could

decrease overhead with more efficient instrumentation and increase accuracy

and decrease decoding time by considering dynamic type.

Similar to the other diagnosis approaches in this dissertation, Bell

tracks a relationship between control and data flow. It maintains any number

of program locations specific to all objects in the heap. We show Bell is directly

useful for diagnosing leaks. It is applicable to other bugs that involve multiple

erroneous objects, such as malformed data structures [CG06b], or that involve

multiple running instances since it can reconstruct information from across the

instances. From a research perspective, Bell demonstrates that it is possible

to store relational information for all program data—but statistically to save

space—and still be able to reconstruct information corresponding to a subset

of the data.

77

Chapter 5

Tracking the Origins of Unusable Values

Finding the causes of bugs is hard, both during testing and after de-

ployment. One reason is that a bug’s effect is often far from its cause. Liblit

et al. examined bug symptoms for various programs and found that inspecting

the methods in a stack trace did not identify the method containing the error

for 50% of the bugs [LNZ+05].

This chapter offers help for a class of bugs due to unusable values that

either cause a failure directly or result in erroneous behavior. In managed

languages such as Java and C#, the null value is unusable and causes a null

pointer exception when dereferenced. In languages like C and C++, undefined

values—those that are uninitialized, or derived from undefined values—are un-

usable, and their use can cause various problems such as silent data corruption,

altered control flow, or a segmentation fault.

Failures due to unusable values are difficult to debug because (1) the

origin of the unusable value may be far from the point of failure, having been

propagated through assignments, operations, and parameter passing; and (2)

unusable values themselves yield no useful debugging information. At best,

the programmer sees a stack trace from the crash point that identifies the

effect of the unused value, not its source. This problem is particularly bad for

deployed software since the bug may be difficult to reproduce.

78

Null pointer exceptions are a well-known problem for Java program-

mers. Eric Allen writes the following on IBM developerWorks [All01]:

Of all the exceptions a Java programmer might encounter, the null-

pointer exception is among the most dreaded, and for good reason:

it is one of the least informative exceptions that a program can

signal. Unlike, for example, a class-cast exception, a null-pointer

exception says nothing about what was expected instead of the

null pointer. Furthermore, it says nothing about where in the code

the null pointer was actually assigned. In many null-pointer excep-

tions, the true bug occurs where the variable is actually assigned

to null. To find the bug, we have to trace back through the flow of

control to find out where the variable was assigned and determine

whether doing so was incorrect. This process can be particularly

frustrating when the assignment occurs in a package other than

the one in which the error was signaled.

Our goal is to provide this information automatically and at a very low cost.

Unused value errors are similarly difficult to debug for programs written

in unmanaged languages such as C and C++. For example, Memcheck [SN05]

is a memory checking tool built with the dynamic binary instrumentation

framework Valgrind [NS07]. Memcheck can detect dangerous uses of unde-

fined values, but prior to this work gave no origin information about those

values. Requests for such origin information from Memcheck users were com-

mon enough that the FAQ explained the reason for this shortcoming [NS07].

The key question is: why does this variable contain an unusable value?

We answer this question and solve this problem by introducing origin tracking.

Origin tracking records program locations where unusable values are assigned,

so they can be reported at the time of failure. We leverage the property that

79

unusable values are difficult to debug because they contain no useful informa-

tion and store the origin information in place of the unusable values themselves,

a form of value piggybacking. Value piggybacking requires no additional space,

making origin tracking efficient. With some modifications to program execu-

tion, origin values flow freely through the program: they are copied, stored in

the heap, or passed as parameters. They thus act like normal unusable values

until the programs uses them inappropriately, whereupon we report the origin,

which is often exactly what the programmer needs to diagnose the defect.

We present an approach and report implementation results for tracking

the origins of null pointers in Java. Our results show that origin tracking

is effective at reporting the origins of Java null pointer exceptions and adds

minimal overhead to overall execution time (4% on average), making it suitable

for deployed programs. We collected a test suite of 12 null pointer exceptions

from publicly available Java programs with documented, reproducible bugs.

Based on examining the stack trace, origin, source code, and bug report, we

determine that origin tracking correctly reports the origin for all of the 12 bugs

in this test suite, provides information not available from the stack trace for 8

bugs, and is useful for debugging in 7 of those 8 cases.

Tracking origins via value piggybacking has other applications in addi-

tion to null pointers in managed languages. As part of this research, our collab-

orator Nicholas Nethercote implemented origin tracking for undefined values

in C and C++ programs executing in Valgrind’s Memcheck tool [NS07, SN05].

Origin tracking adds negligible overhead to Memcheck, and identifies the origin

of most 32-bit undefined values, but it cannot handle origins of smaller un-

defined values since they are too small to hold origins. Our conference paper

describes origin tracking of undefined values in C and C++ in detail [BNK+07].

80

Tracking origins is notable because previous value piggybacking ap-

plications conveyed only one or two bits of information per value [KLP88],

whereas we show it can convey more useful information. Since our approach

requires modest changes to the Java virtual machine and incurs very low over-

head, commercial JVMs could rapidly deploy it to help programmers find and

fix bugs.

5.1 Origin Tracking in Java

This section describes our implementation for tracking the origins of

null references in Java programs. In each subsection, we first describe the

general strategy used to piggyback information on null references, and then

describe the details specific to our Jikes RVM implementation.

5.1.1 Supporting Nonzero Null References

Java virtual machines typically use the value zero to represent a null

reference. This choice allows operations on null references, such as comparisons

and detection of null pointer exceptions, to be simple and efficient. However,

the Java VM specification does not require the use of a particular concrete

value for encoding null [LY99b]. We modify the VM to instead represent null

using a range of reserved addresses. Objects may not be allocated to this

range, allowing null and object references to be differentiated easily.

Our implementation reserves addresses in the lowest 32nd of the ad-

dress space: 0x00000000–0x07ffffff. That is, a reference is null if and only if its

highest five bits are zero. The remaining 27 bits encode a program location as

described in the next section.

81

As an alternative to a contiguous range of null values, null could be rep-

resented as any value with its lowest bit set. Object references and null could

be differentiated easily since object references are word-aligned. VMs such

as Jikes RVM that implement null pointer exceptions using hardware traps

could instead use alignment traps. We did not implement this approach since

unmodified Jikes RVM compiled for IA32 performs many unaligned accesses

already (alignment checking is disabled by default on IA32).

5.1.2 Encoding Program Locations

The strategy described above provides 27 bits for encoding an origin

in a null reference. We use one of these bits to distinguish between two cases:

nulls that originate in a method body (the common case) and nulls that result

from uninitialized static fields. In the latter case, the remaining 26 bits identify

the particular field. In the former case, we encode the program location as a

<method, line number> pair using one more bit to choose from among the

following two layouts for the remaining 25 bits:

1. The default layout uses 13 bits for method ID and 12 bits for bytecode

index, which is easily translated to a line number.

2. The alternate layout uses 8 bits for method ID and 17 bits for bytecode

index, and is used only when the bytecode index does not fit in 12 bits.

The few methods that fall into this category are assigned separate 8-bit

identifiers.

We find these layouts handle all the programs in our test suite for origin

tracking. Alternatively, one could assign a unique 27-bit value to each pro-

gram location that assigns null via a lookup table. This approach would use

82

space proportional to the size of the program to store the mapping. Our

implementation adds no space since Jikes RVM already contains per-method

IDs.

5.1.3 Redefining Program Operations

Our implementation redefines Java operations to accommodate repre-

senting null using a range of values.

Null assignment. Instead of assigning zero at null assignments, our mod-

ified VM assigns the 27-bit value corresponding to the current program loca-

tion (method and line number). The dynamic compiler computes this value

at compile time. Table 5.1, row (a) shows the null assignment in Java, its

corresponding semantics for an unmodified VM, and semantics for a VM im-

plementing origin tracking.

Object allocation. When a program allocates a new object, whether scalar

or array, its reference slots are initialized to null by default. VMs implement

this efficiently by allocating objects into mass-zeroed memory. Since origin

tracking uses nonzero values to represent null, our modified VM adds code at

object allocations that initializes each reference slot to the program location,

as shown in Table 5.1, row (b). These values identify the allocation site as the

origin of the null.

Since reference slot locations are known at allocation time, we can

modify the compiler to optimize the code inserted at allocation sites. For hot

sites (determined from profiles, which are collected by Jikes RVM and other

VMs), the compiler inlines the code shown in the last column of Table 5.1,

83

Java semantics Standard VM Origin tracking

(a) Assignment of obj = null; obj = 0; obj = this location;

null constant

(b) Object obj = new Object(); . . . allocate object allocate object . . .

allocation foreach ref slot i foreach ref slot i

obj[i] = 0; obj[i] = this location;

. . . call constructor call constructor . . .

(c) Null reference b = (obj == null); b = (obj == 0); b = ((obj & 0xf8000000) == 0)

comparison

(d) General reference b = (obj1 == obj2); b = (obj1 == obj2); if (((obj1 & 0xf8000000) == 0))

comparison b = ((obj2 & 0xf8000000) == 0);

else

b = (obj1 == obj2);

Table 5.1: How origin tracking handles uses of null in Java code. Column 2 shows example code
involving null. Column 3 shows typical semantics for an unmodified VM. Column 4 shows semantics in a
VM implementing origin tracking.

84

row (b). If the number of slots is a small, known constant (true for all small

scalars, as well as small arrays where the size is known at compile time), the

compiler flattens the loop.

Static fields are also initialized to null, but during class initialization.

We modify the VM’s class initialization to fill each static reference field with a

value representing the static field (the VM’s internal ID for the field). Of the

12 bugs we evaluate in Section 5.2, one manifests as a null assigned at class

initialization time.

Null comparison. To implement checking whether a reference is null, VMs

compare the reference to zero. Origin tracking requires a more complex com-

parison since null may have any value from a range. Our implementation uses

the range 0x00000000–0x07ffffff for null, and it implements the null test using

a bitwise AND with 0xf8000000, as shown in Table 5.1, row (c).

General reference comparison. A more complex case is when a program

compares two references. With origin tracking, two references may have dif-

ferent underlying values even though both represent null. To handle this case,

the origin tracking implementation uses the following test: two references are

the same if and only if (1) they are both nonzero null values or (2) their values

are the same. Table 5.1, row (d) shows the modified VM implementation.

We optimize this test for the common case: non-null references. The

instrumentation first tests if the first reference is null; if so, it jumps to an out-

of-line basic block that checks the second reference. Otherwise, the common

case performs a simple check for reference equality, which is sufficient since

both references are now known to be non-null.

85

5.1.4 Implementation

Our implementation in Jikes RVM stores program locations instead of

zero (Table 5.1, rows (a) and (b)) only in application code, not in VM code

or in the Java standard libraries. This choice reflects developers’ overriding

interest in source locations in their application code. Since the VM is not

implemented entirely in pure Java—it needs C-style memory access for low-

level runtime features and garbage collection—generating nonzero values for

null in the VM and libraries would require more pervasive changes to the VM

because it assumes null is zero. Since null references generated by the applica-

tion sometimes make their way into the VM and libraries, our implementation

modifies all reference comparisons to handle nonzero null references (Table 5.1,

rows (c) and (d)) in the application, libraries, and VM.

Some VMs, including Jikes RVM, catch null pointer exceptions using

a hardware trap handler: since low memory is protected, dereferencing a null

pointer generates the signal SIGSEGV. The VM’s custom hardware trap han-

dler detects this signal and returns control to the VM, which throws a null

pointer exception. The origin tracking implementation protects the address

range 0x00000000–0x07ffffff so null dereferences will result in a trap. For origin

tracking, we modify the trap handler to identify and record the culprit base

address, which is the value of the null reference. When control is returned to

the VM, it decodes the value into a program location and reports it together

with the null pointer exception. VMs that use explicit null checks to detect

null pointer exceptions could simply use modified null checks as described in

Section 5.1.3.

The Java Native Interface (JNI) allows unmanaged languages such as

C and C++ to access Java objects. Unmanaged code assumes that null is

86

zero. Our modified VM uses zero for null parameters passed to JNI methods.

This approach loses origin information for these parameters but ensures correct

execution.

5.2 Finding and Fixing Bugs

This section describes a case study using origin tracking to identify the

causes of 12 failures in eight programs. These results are summarized in Ta-

ble 5.2, which contains the lines of code measured with the Unix wc command;

whether the origin was identified; whether the origin was identifiable trivially;

and how useful we found the origin report (these criteria are explained in

detail later in this section). We describe three of the most interesting cases

(Cases 1, 2, and 3) in detail below. The other nine are in our conference

paper [BNK+07]. In summary, our experience shows:

• The usefulness of origin information depends heavily on the complexity

of the underlying defect. In some cases, it is critical for diagnosing a

bug. Given the extremely low cost of origin tracking (see Section 5.3),

there is little reason not to provide this extra information, which speeds

debugging even when a defect is relatively trivial.

• Bug reports often do not contain sufficient information for developers to

diagnose or reproduce a bug. Origin tracking provides extra information

for users to put in bug reports to help developers without access to the

deployment environment.

• It is not always clear whether the defect lies in the code producing the

null value, or in the code dereferencing it (e.g., the dereferencing code

87

Case Program Lines Exception description Origin? Trivial? Useful?

1 Mckoi SQL DB 94,681 Access closed connection Yes Nontrivial Definitely
2 FreeMarker 64,442 JUnit test crashes unexpectedly Yes Nontrivial Definitely
3 JFreeChart 223,869 Plot without x-axis Yes Nontrivial Definitely

4 JRefactory 231,338 Invalid class name Yes Nontrivial Definitely
5 Eclipse 2,425,709 Malformed XML document Yes Nontrivial Most likely
6 Checkstyle 47,871 Empty default case Yes Nontrivial Most likely
7 JODE 44,937 Exception decompiling class Yes Nontrivial Most likely
8 Jython 144,739 Use built-in class as variable Yes Nontrivial Potentially
9 JFreeChart 223,869 Stacked XY plot with lines Yes SWNT Marginally
10 Jython 144,739 Problem accessing doc attribute Yes SWNT Marginally
11 JRefactory 231,338 Package and import on same line Yes Trivial No
12 Eclipse 2,425,709 Close Eclipse while deleting project Yes Trivial No

Table 5.2: The diagnostic utility of origins returned by origin tracking in Java. Cases 1, 2, and
3 are described in detail in Section 5.2. SWNT means “somewhat nontrivial.” Bug repositories are on
SourceForge [Sou] except for Eclipse [Eclb] and Mckoi SQL Database [Mck].

88

should add a null check). A stack trace alone only provides information

about the dereferencing code. Origin tracking allows programmers to

consider both options when formulating a bug fix.

• Null pointer exceptions often involve a null value flowing between dif-

ferent software components, such as application code and library code.

Therefore, even when the origin and dereference occur close together

it can be difficult to evaluate the failure without a full understanding

of both components. For example, a programmer might trigger a null

pointer exception in a library method by passing it an object with a field

that is unexpectedly null. Origin tracking indicates which null store in

the application code is responsible, without requiring extra knowledge

or source code for the library.

5.2.1 Evaluation Criteria

For each error, we evaluate how well origin tracking performs using

three criteria:

Origin identification. Does origin tracking correctly return the method and

line number that assigned the null responsible for the exception?

Triviality. Is the stack trace alone, along with the source code, sufficient to

identify the origin? In 8 of 12 null pointer exceptions, the origin is not

easy to find via inspection of the source location identified by the stack

trace.

Usefulness. Does knowing the origin help with understanding and fixing the

defect? Although we are not the developers of these programs, we ex-

amined the source code and also looked at bug fixes when available. We

89

believe that the origin report is not useful for one-third of the cases;

probably useful for another third; and definitely useful for the remaining

third of the cases.

5.2.2 Origin Tracking Case Studies

We now describe three bugs that highlight origin tracking’s role in

discovering the program defect.

Case 1: Mckoi SQL Database: Access Closed Connection

The first case highlights an important benefit of origin tracking: it

identifies a null store far away from the point of failure (possibly in another

thread). The location of the store indicates a potential cause of the failure.

The bug report comes from a user’s message on the mailing list for

Mckoi SQL Database version 0.93, a database management system for Java

(Message 02079). The user reports that the database throws a null pointer

exception when the user’s code attempts to execute a query. The bug report

contains only the statement dbStatement.executeUpdate(dbQuery); and a stack

trace, so we use information from the developer’s responses to construct a test

case. Our code artificially induces the failure but captures the essence of the

problem.

Figure 5.1(a) shows the stack trace. This information presents two

problems for the application developer. First, the failure is in the library

code, so it cannot be easily debugged. Second, it indicates simply that the

query failed, with no error message or exception indicating why.

Our origin information, shown in Figure 5.1(b), reveals the reason

90

java.lang.NullPointerException:

at com.mckoi.database.jdbcserver.JDBCDatabaseInterface.execQuery():213

at com.mckoi.database.jdbc.MConnection.executeQuery():348

at com.mckoi.database.jdbc.MStatement.executeQuery():110

at com.mckoi.database.jdbc.MStatement.executeQuery():127

at Test.main():48

(a)

Origin:

com.mckoi.database.jdbcserver.AbstractJDBCDatabaseInterface.internalDispose():298

(b)

Figure 5.1: Case 1: VM output for Mckoi SQL Database bug. (a)
The stack trace shows the query failed inside the library. (b) Origin tracking
suggests that the failure is due to a closed connection.

for the failure: a null store occurred in AbstractJDBCDatabaseInterface.internal-

Dispose() at line 298. This method is part of closing a connection; line 298

assigns null to the connection object reference. The cause of the failure is that

the query attempts to use a connection that has already been closed.

The origin information may be useful to both the application user and

the database library developers. Users can probably guess from the name

of the method AbstractJDBCDatabaseInterface.internalDispose() that the problem

is a closed connection, and can plan for this possibility in their application

logic. The developers can also modify the execQuery() method to check for a

closed connection and to throw a useful SQLException that reports the reason,

as noted in an existing response on the mailing list.

Case 2: FreeMarker: JUnit Test Crashes Unexpectedly

The second case illustrates how origin tracking helps diagnose errors

when the null reference passes from variable to variable by assignment. The

91

java.lang.NullPointerException:

at freemarker.template.WrappingTemplateModel.wrap():131

at freemarker.template.SimpleHash.get():197

at freemarker.core.Environment.getVariable():959

at freemarker.core.Identifier._getAsTemplateModel():70

at freemarker.core.Expression.getAsTemplateModel():89

...

at junit.textui.TestRunner.main():138

(a)

Origin: freemarker.template.DefaultObjectWrapper.instance

(b)

Figure 5.2: Case 2: VM output for FreeMarker bug. (a) The stack trace
shows the fault location. (b) The null’s origin is an uninitialized static field.

case is also interesting because at first glance the initial assignment appears

to be non-null, but it is in fact null because of a static initialization ordering

issue.

FreeMarker 2.3.4 is a Java library that generates output such as HTML

and source code using user-defined templates. We reproduced an exception in

the library using test code posted by a user (Bug 1354173). Figure 5.2 shows

the exception stack trace.

The exception occurs at line 131 of wrap(), which tries to dereference

defaultObjectWrapper, which is null. Previously, defaultObjectWrapper was as-

signed the value of the static, final field DefaultObjectWrapper.instance. At first

glance, it appears that DefaultObjectWrapper.instance is properly initialized:

static final DefaultObjectWrapper instance =

new DefaultObjectWrapper();

However, due to a circular initialization dependency between WrappingTemplate-

92

Model and DefaultObjectWrapper, instance is in fact initialized to null. Origin

tracking helps diagnose this error by reporting the uninitialized static field

instance as the origin of the offending null. The origin is quite useful for di-

agnosing the bug since (1) the null passes through a variable, and (2) it is

not intuitive that the original assignment assigns null. A responder to the

bug report also came to the conclusion that the exception is a result of static

class initialization ordering, but to our knowledge it has not been fixed in any

version of FreeMarker.

Case 3: JFreeChart: Plot Without X-Axis

This case involves a small test program provided by a bug reporter that

causes a null pointer exception inside JFreeChart 1.0.2, a graphing library (Bug

1593150). This case, like the first case in this section, represents an important

class of failures for which origin tracking is useful: the failure is induced by

the application, but since it occurs inside the library the programmer has no

easy way to interpret the stack trace or to debug the library code.

The following is code provided by the user, annotated with line num-

bers:

12: float[][] data = {{1.0f,2.0f},{3.0f,4.0f}};

13: FastScatterPlot plot = new FastScatterPlot(data, null, null);

14: Button aButton = new Button();

15: Graphics2D graphics = (Graphics2D)(aButton.getGraphics());

16: plot.draw(graphics, new Rectangle2D.Float(),

new Point2D.Float(), null, null);

Figure 5.3(a) shows the exception stack trace. The method FastScatterPlot.-

draw(), called from line 16 of the user code, throws a null pointer exception.

93

java.lang.NullPointerException:

at org.jfree.chart.plot.FastScatterPlot.draw():447

at Bug2.test():16

at Bug2.main():9

(a)

Origin: Bug2.test():13

(b)

Figure 5.3: Case 3: VM output for JFreeChart bug. (a) The stack trace
shows a failure inside the library. (b) Origin tracking identifies the error as
caused by a null from user code.

This stack trace is not very helpful to the library user, who may not have

access to or be familiar with the JFreeChart source code.

On the other hand, origin tracking provides information that is directly

useful to the user: the origin is line 13 of the user’s test() (Figure 5.3). The

user can quickly understand that the exception occurs because the code passes

null as the x-axis parameter to the FastScatterPlot constructor.

While the origin allows a frustrated user to modify his or her code

immediately, it also suggests a better long-term fix: for JFreeChart to return

a helpful error message. The developers diagnosed this bug separate from us,

and their solution, implemented in version 1.0.3, causes the constructor to fail

with an error message if the x-axis parameter is null.

5.3 Performance Summary

This section summarizes the performance impact of tracking origins

of null references. Using adaptive compilation, we find that origin tracking

94

adds 4% to overall execution time. Replay compilation shows that about 3%

comes from instrumentation in the application and 1% comes from compila-

tion overhead. The conference paper contains a detailed performance evalua-

tion [BNK+07].

5.4 Conclusion and Interpretation

Developers need all the debugging help they can get. Our lightweight

approach reports errors due to unusable values by storing program locations

in place of the values. Its minimal footprint and diagnosis benefits make it

suitable for commercial VMs.

The diagnosis approaches in this dissertation generally track control

and data flow and the relationship between them. This chapter presented an

approach for efficiently storing information about control flow through arbi-

trary data flow for a class of values that are particularly difficult to debug.

With modest effort, commercial VMs could implement origin tracking and use

it during deployment. There it would provide immediate benefits by enhancing

user error reports, which often contain only a stack trace. Azul is considering

adding origin tracking to its production JVM [Cli08]. More broadly, origin

tracking’s success motivates developers to build other debugging features in-

tended for the deployed setting.

95

Chapter 6

Tolerating Memory Leaks with Melt

Chapter 4 applied Bell to the problem of detecting leaks in order to save

space. As part of the Bell work, we manually diagnosed and fixed a memory

leak in Eclipse, but several months passed before developers applied the fix

and released a new version [Ecla]. While waiting for developers to find and fix

a leak, users have to deal with the effects of the leak. Performance suffers as

garbage collection workload and frequency grows and as application locality

decreases. Eventually the program grinds to a halt if it outgrows physical

memory, or it crashes with an out-of-memory error when it runs out of virtual

memory or reaches the maximum heap size.

While deployed software is full of many types of bugs, we expect mem-

ory leaks to be particularly difficult to find and fix in the testing stage. They

are environment sensitive and may take days or weeks or longer to manifest.

Since they have no immediate symptoms but instead eventually result in slow-

downs and crashes at arbitrary program points, they are especially hard to

reproduce, find, and fix [HJ92]. Leaks may occur unexpectedly, and they are

thus excellent candidates for automatic approaches that tolerate leaks by elim-

inating performance degradations and out-of-memory errors. Although it is

undecidable in general whether an object is dead (will not be used again), we

can estimate likely leaks due to dead objects by identifying objects that the

program has not used in a while.

96

This chapter presents a new leak tolerance approach called Melt that

transfers likely leaked objects to disk. By offloading leaks to disk and freeing

up physical and virtual memory, Melt significantly delays memory exhaus-

tion since disks are typically orders of magnitude larger than main memory.

Melt is analogous to virtual memory paging since both conserve memory by

transferring stale memory to disk. However, standard paging is insufficient for

managed languages since (1) pages that mix in-use and leaked objects cannot

be paged to disk, and (2) garbage collection thrashes since its working set is all

objects. Melt effectively provides fine-grained paging by using object instead

of page granularity and by restricting the collector accessing only objects in

memory. Determining whether an object is live (will be used again) is unde-

cidable in general, so Melt predicts that stale objects (objects the program has

not used in a while) are likely leaks and moves them to disk. Melt maintains

program semantics: if the application tries to access an object on disk, Melt

activates it by moving it from disk back to main memory.

Melt keeps programs performing well by guaranteeing time and space

remain proportional to in-use (non-leaked) memory. It restricts the applica-

tion and garbage collector accesses to in-use objects in memory. It prohibits

accesses to stale objects on disk and keeps metadata proportional to in-use

memory. Other leak tolerance approaches for garbage-collected languages do

not provide this guarantee [BGH+07, GSW07, TGQ08]. Bookmarking collec-

tion is similar to Melt in that it restricts collection to in-use pages, but it

operates at page granularity [HFB05], whereas Melt seeks to tolerate leaks

with fine-grained object tracking and reorganization.

We implement Melt in a copying generational collector, which demon-

strates Melt’s support for collectors that move objects. Our design works

97

with any tracing copying or non-copying collector. Our results show that Melt

generally adds overhead only when the program is close to running out of

memory. For simplicity, our implementation inserts instrumentation into the

application that helps identify stale objects, adding on average 6% overhead,

but a future implementation would insert instrumentation only in response to

memory pressure. We apply Melt to 10 leaks, including 2 leaks in Eclipse and

a leak in a MySQL database client application. Melt successfully tolerates five

of these leaks: throughput does not degrade over time, and the programs run

until they exhaust disk space or exceed a 24-hour limit. It helps two other

leaks but adds high overhead activating objects that are temporarily stale but

not dead. Of the other three, two exhibit in-use growth since most of the heap

growth is memory that is inadvertently in-use: the application continues to

access objects it is not using. Melt cannot tolerate the third leak because of a

shortcoming in the implementation.

As a whole, our results indicate that Melt is a viable approach for

increasing program reliability with low overhead while preserving sematnics,

and it is a compelling feature for production VMs.

6.1 How Melt Identifies and Tolerates Leaks

Melt’s primary objective is to give the illusion there is no leak: perfor-

mance does not degrade as the leak grows, the program does not crash, and

it runs correctly. To achieve this objective, Melt meets the following design

goals:

1. Time and space overheads are proportional to the in-use memory, not

leaked memory.

98

2. Melt preserves semantics by maintaining and, if needed, activating stale

objects.

Furthermore, Melt adheres to the following invariants:

• Stale objects are isolated from in-use objects in a separate stale space,

which resides on disk.

• The collector never accesses objects in the stale space, except when mov-

ing objects to the stale space.

• The application never accesses objects in the stale space, except when

activating objects from the stale space.

We satisfy these invariants as follows: (1) Melt identifies stale objects (Sec-

tion 6.1.1); (2) it segregates stale objects from in-use objects by moving stale

objects to disk, and it uses double indirection for references from stale to in-

use objects (Section 6.1.2); and (3) it intercepts program attempts to access

objects in stale space and immediately moves the object into in-use space.

(Section 6.1.3). Section 6.1.4 presents how Melt decides when and which stale

objects to move to disk, based on how close the program is to running out of

memory.

6.1.1 Identifying Stale Objects

We classify reachable objects that the program has not referenced in a

while as stale. If the program never accesses them again, they are true leaks.

As we show later, some leaks manifest as in-use (live) objects. For example,

the program forgets to delete objects from a hash table, keeps adding objects,

99

and then rehashes all elements every time it grows beyond the current limit.

Staleness thus under-approximates leaks of in-use objects.

To identify stale objects, Melt modifies both the garbage collector and

the dynamic compiler. At a high level, the modified collector marks objects

as stale on each collection, and the modified compiler adds instrumentation to

the application to unmark objects at each use. At each collection, objects the

program has not accessed since the last collection will still be marked stale,

while accessed objects will be unmarked. For efficiency, the collector actually

marks both references and objects as stale. It marks references by setting

the lowest (least significant) bit of the pointer. The lowest bit is available for

marking since object references are word-aligned in most VMs. In Melt, the

collector marks objects as stale by setting a bit in the object header.

The compiler adds instrumentation called a read barrier [BH04] to every

load of an object reference. The barrier checks whether the reference is stale.

If it is stale, the barrier unmarks the referenced object and the reference. The

following pseudocode shows the barrier:

b = a.f; // Application code

if (b & 0x1) { // Conditional barrier

t = b; // Backup ref

b &= ~0x1; // Unmark ref

a.f = b; [iff a.f == t] // Atomic update

b.staleHeaderBit = 0x0; // Unmark object

}

This conditional barrier reduces overhead since it performs stores only the first

time the application loads each reference in each mutator epoch.1 Checking

1The mutator is the application alone, not the collector. A mutator epoch is the period
between two collections.

100

for a marked reference, rather than a marked object, reduces overhead since it

avoids an extra memory load.

For thread safety, the barrier updates the accessed slot atomically with

respect to the read. Otherwise another thread’s write to a.f may be lost.

The pseudocode [iff a.f == t] indicates the store is dependent on a.f being un-

changed. We implement the atomic update using a compare-and-swap (CAS)

instruction that succeeds only if a.f still contains the original value of b. If

the atomic update fails, the read barrier simply continues; it is semantically

correct to proceed with (unmarked) b while a.f holds the update from the

other thread. Similarly, clearing the stale header bit (b.staleHeaderBit = 0x0)

must be atomic if another thread can update other bits in the header. In our

implementation, these atomic updates add negligible overhead since the body

of the conditional barrier executes infrequently.

At the next collection, each object will be marked stale if and only

if the application did not load a reference to it since the previous collection.

Figure 6.1 shows an example heap with stale (shaded gray) objects C and

D. They have not been accessed since the last collection, because all their

incoming references are stale, marked with S. Although B has incoming stale

references, B is in-use because the reference A → B is in-use.

6.1.2 The Stale Space

When the garbage collection traces the heap, it moves stale objects to

the stale space, which resides on disk. For example, the collector moves stale

objects C and D from Figure 6.1 to the stale space, as illustrated by Figure 6.2.

101

Figure 6.1: Stale Objects and References

Figure 6.2: Segregation of In-Use and Stale Objects

Figure 6.3: Stub-Scion Pairs

102

Stub-Scion Pairs

References from stale objects to in-use objects are problematic because

moving collectors such as copying and compacting collectors move in-use ob-

jects. For example, consider moving B, which has references from C and D.

If B moves, we do not want to touch stale objects to update their outgoing

references, which would violate the invariants. Solutions such as remembered

sets and card marking [JL96] will not work because either space is proportional

to the number of references, or GC must access the source reference slot.

We solve this problem by using stub-scion pairs, borrowed from dis-

tributed garbage collection [Pla94]. Stub-scion pairs provide two levels of

indirection. Melt creates a stub object in the stale space and a scion object in

the in-use space for each in-use object that is referenced by one or more stale

object(s). The collector avoids touching stubs and stale objects by referencing

and updating the scion. The stub has a single field that points to the scion.

The scion has two fields: one points to the in-use object and the other

points back to its stub. We modify references in the stale space that refer to

an in-use object to refer instead to the stub. Figure 6.3 shows Bstub and Bscion

providing two levels of indirection for references from C and D to B. Scions

may not move. The collector treats scions as roots, retaining in-use objects

referenced by stale objects. If the collector moves an object referenced by a

scion, it updates the scion to point to the moved object.

To ensure each in-use object has only one stub-scion pair, we use a scion

lookup table that maps from an in-use object to its scion, if it has one. This

data structure is proportional to the number of scions, which is proportional

to the number of in-use objects in the worst case, but is usually much smaller

in practice. The collector processes the scions at the beginning of collection.

103

Returning to Figure 6.2, when the collector copies C to the stale space, B

initially has no entry in the scion lookup table, so Melt adds a mapping B →
Bscion to the table when it creates Bstub and Bscion. Next, when it copies D to

the stale space, it finds the mapping B → Bscion in the table and re-uses the

existing stub-scion pair. The resulting system snapshot is shown in Figure 6.3.

It may seem at first that we need scions but not necessarily stubs,

i.e., stale objects could point directly to the scion. However, we need both

because an in-use object referenced by a scion may become stale later. For

example, consider the case of B becoming stale on the next garbage collection

in Figure 6.3. In order to eliminate the scion without a stub (to avoid using in-

use memory for stale-to-stale references), we would need to find all the stale

pointers to the scion, which violates the stale space invariant to never visit

stale objects after instantiation. Instead, Melt copies B to the stale space,

looks up the stub location in the scion, and points the stub to stale B. Note

that Melt accesses the disk both to modify the stub and to move the new stale

object. These accesses do not violate invariants since they are part of moving

an object to the stale space. Melt then deletes the scion and removes the entry

in the scion lookup table. Figure 6.4 shows the result.

6.1.3 Activating Stale Objects

Melt prevents the application from directly accessing the stale space

since (1) these accesses would violate the invariant that the stale space is not

part of the application’s working set, and (2) object references in the stale

space may refer to stubs and scions. Melt intercepts application access to

stale objects by modifying the read barrier to check for references to the stale

space:

104

Figure 6.4: Scion-Referenced Object Becomes Stale

Figure 6.5: Stale Object Activation

Figure 6.6: Reference Updates Following Activation

105

b = a.f; // Application code

if (b & 0x1) { // Read barrier

t = b;

b &= ~0x1;

// Check if in stale space

if (inStaleSpace(b)) {

b = activateStaleObject(b);

}

a.f = b; [iff a.f == t]

b.staleHeaderBit = 0x0;

}

The VM method activateStaleObject() copies the stale object to the in-use space.

Since other references may still point to the stale version, activateStaleObject()

creates a stub-scion pair for the activated object as follows: (1) it converts the

stale space object version into a stub, and (2) it creates a scion and points the

stub at the scion. The scion points to the activated object. The store to a.f

must be atomic with respect to the original value of b, i.e., [iff a.f == t].

Consider activating C from Figure 6.4. First, activateStaleObject() copies

C to the in-use space. Then it replaces stale C with a stub, allocates a scion,

and links them all together, as shown in Figure 6.5. Note that C retains its

references to D and Bstub, and E retains its reference to the old version of C,

which is now Cstub.

If the application later follows a different reference to the previously

stale object in the stale space, activateStaleObject() finds the stub in the object’s

place, which it follows to the scion, which in turn points to the activated object.

The first access of such a reference will update the reference to point to the

activated version and any subsequent accesses will go directly to the in-use

object. For example, if the application accesses a reference from E to Cstub in

106

Figure 6.7: State diagram for when Melt marks objects as stale and
moves objects to the stale space.

Figure 6.5, activateStaleObject() follows Cstub to Cscion to C in the in-use space

and updates the reference, as shown in Figure 6.6.

6.1.4 When to Move Objects to the Stale Space

Melt can mark objects as stale and/or move objects to the stale space

on any full-heap garbage collection. However, it does not make sense to incur

this overhead if the application is not leaking memory. Furthermore, Melt

could potentially fill the disk for a non-leaking application, producing an error

where none existed. Thus, Melt decides whether to mark and move based on

how full the heap is as shown in Figure 6.7.

Initially Melt is INACTIVE: it does not mark or move objects. It also

does not need read barriers if the VM supports adding them later via recompi-

107

lation or code patching (we did not implement this feature). The heap fullness

is the ratio of reachable memory to maximum heap size at the end of a full-

heap collection. Since users typically run applications in heaps at least twice

the minimum needed to keep GC overhead low, by default we use 50% fullness

as the “unexpected” heap fullness. If the heap fullness exceeds this expected

amount, Melt moves to the MARK state, where the GC marks all objects and

references during the next full-heap GC.

After GC marks all objects and references, Melt enters the WAIT state.

It remains in the WAIT state until the program is close to memory exhaustion;

then it enters the MOVE & MARK state. By default this threshold is 80%

heap fullness. Users could specify 100% heap fullness, which would wait until

complete heap exhaustion before using the stale space. However, coming close

to running out of memory brings the application to a virtual halt because

garbage collection becomes extremely frequent. In MOVE & MARK, Melt moves

all objects still marked to the stale space. It marks all objects that remain in

the in-use space, so they can be moved to the stale space later if still marked.

If the heap is still nearly full (e.g., for fast-growing leaks), Melt remains in

MOVE & MARK for another full-heap GC. Otherwise, it returns to WAIT until

the heap fills again, and then it returns to MOVE & MARK, and so on. Melt

could return to INACTIVE if memory usage decreased to expected levels (not

shown or implemented).

6.2 Implementation Details

This section presents details specific to our implementation in Jikes

RVM. Our approach is suitable for garbage-collected, type-safe languages using

tracing garbage collectors.

108

6.2.1 VM Issues

Identifying stale objects. To identify stale objects, Melt modifies (1) the

compilers to add read barriers to the application and (2) the collector to mark

heap references and objects stale. For efficiency and simplicity, we exclude VM

objects and objects directly pointed to by roots (registers, stacks, and statics)

as candidates for the stale space.

Moving large objects. Like most VM memory managers, MMTk allocates

large objects (8 KB or larger) into a special non-moving large object space

(LOS). Since we need to copy large objects to disk, we modify the LOS to

handle copying. During collection, when Melt first encounters a stale large

object, Melt moves it to the stale space, updates the reference, and installs a

forwarding pointer that corrects any other references to this object. At the

end of the collection, it reclaims the space for any large objects it moves.

Activation works in the same way as for other object sizes.

Activating stale objects. When a read barrier intercepts an application

read to the stale space, Melt immediately copies the object to an in-use space

and updates the reference. Since activation allocates into the in-use part of

the heap, it may trigger a garbage collection (GC). Application reads are not

necessarily GC-safe points. GC-safe points require the VM to enumerate all

the pointers into the heap, i.e., to produce a stack map of the local, global, and

temporary variables in registers. If an activation triggers a GC, Melt defers

collection by requesting an asynchronous collection, which causes collection to

occur at the next GC-safe point. The VM may thus exceed its page budget.

The number of operations until the next GC-safe point is small and bounded

109

since these points are frequent and occur and occur at allocations, method

entries, method exits, and loop back edges in Jikes RVM and many other

VMs.

6.2.2 Stale Space on Disk

64-bit on-disk addressing. Melt uses an on-disk stale space with 64-bit

addressing, even though memory is 32-bit addressed. When it moves a stale

object to disk, it uses a 64-bit address and expands the object’s reference slots

to 64 bits. Similarly, it uses 64-bit stubs. Most stale objects refer to other

stale objects. For stale objects referenced by in-use objects, we use a level

of indirection to handle the translation from 32- to 64-bit addresses. These

mapping stubs reside in memory, but reference 64-bit on-disk objects. The GC

traces mapping stubs, which reside in in-use memory, and collects unreachable

mapping stubs. The number of mapping stubs is bounded by the number of

references from in-use to stale memory, which is small in practice, and is at

worst proportional to in-use memory.

Figures 6.8 and 6.9 show the 64-bit on-disk stale space representation

for Figures 6.5 and 6.6. The main difference is the mapping stub space, which

provides indirection for references from the in-use space to the stale space.

Three types of references are 64 bits: mapping stubs, references in stale objects,

and pointers from scions to their stubs. If a stale object references an in-

memory object, e.g., Cstub → Cscion in Figure 6.9, the reference uses only the

lower 32 bits.

We use swizzling [Mos92, Wil91] to convert references between 32-bit

in-memory and 64-bit on-disk addresses. When the collector moves an object

to the stale space, it unswizzles outgoing reference slots. If a slot references a

110

Figure 6.8: Figure 6.4 with On-Disk Stale Space

Figure 6.9: Figure 6.5 with On-Disk Stale Space

mapping stub, the collector stores the target of the mapping stub in the slot,

in order to avoid using in-use memory (the mapping stub) for an intra-disk

reference. When a read barrier activates an object in the stale space, it swizzles

outgoing references by creating the mapping stub for each slot that references

a 64-bit object. When the application activates C in Figure 6.8, Melt swizzles

its references to Bstub and D by creating mapping stubs BSms (mapping stub

of Bstub) and Dms, and redirecting the references through them, as shown in

Figure 6.9.

111

Buffering stale objects. Melt initially moves stale objects into in-memory

buffers that each correspond to a 64-bit on-disk address range. Buffering

enables object scanning and object expansion (from 32- to 64-bit reference

slots) to occur in memory, and it avoids performing a native read() call for

every object moved to the stale space. Furthermore, Melt flushes these buffers

to disk gradually throughout application execution time, avoiding increased

collection pause times.

Our implementation fills available disk space and crashes when there

is no disk space left. A future implementation would limit its disk usage

by reserving some space for other applications; it would exit gracefully after

reaching this limit; and it would delete files corresponding to the stale space

before exiting.

6.2.3 Multithreading

Melt supports multiple application and garbage collection threads by

synchronizing shared accesses in read barriers, the scion lookup table, and the

stale space. The scion lookup table is a shared, global hash table used during

garbage collection to find existing scions for in-use objects referenced by the

stale space. For simplicity, table accesses use global synchronization, but for

better scalability, a future implementation would use fine-grained synchroniza-

tion or a lock-free hash table.

Stale space accesses occur when the collector moves an object to the

stale space or the application activates a stale object. Melt increases paral-

lelism by using one file per collector thread (there is one collector thread per

processor) and by using thread-local buffers for stale objects before flushing

them to disk. Each thread allocates stale objects to a different part of the

112

64-bit stale address range: the high 8 bits of the address specify the thread

ID.

An application thread may activate an object allocated by the col-

lector thread on another processor. In this case, the read barrier acquires

a per-collector thread lock when accessing the collector thread’s buffers and

file. When Melt flushes stale buffers in parallel with application execution, it

acquires the appropriate collector thread’s lock.

6.2.4 Saving Stale Space

This section discusses approaches for reducing the size of the stale space

that we have not implemented. With Melt as described, garbage collection is

incomplete because it does not collect the stale space. Stale objects may be-

come unreachable after they are moved to the stale space and furthermore, they

may refer to in-use objects. These uncollectible in-use objects will eventually

move to the stale space since they are inherently stale. For example, even if C

in Figure 6.6 becomes unreachable, the scion will keep it alive and it will even-

tually move to the stale space. One solution would be to reference-count the

stale space, but reference counting cannot collect cycles. Alternatively, Melt

could occasionally trace all memory including the stale space. An orthogonal

approach would be to compress the stale space [CKV+03]. The stale space is

especially suitable for compression compared with a regular heap because the

stale space is accessed infrequently.

6.3 Results

This section evaluates Melt’s performance and its ability to tolerate

leaks in several real programs and third-party microbenchmarks.

113

6.3.1 Melt’s Overhead

Application overhead. Figure 6.10 presents the run-time overhead of Melt.

We run each benchmark in a single medium heap size, two times the minimum

in which it can execute. Each bar is normalized to Base (an unmodified

VM) and includes application and collection time, but not compilation time.

Each bar is the median of five trials; the thin error bars show the range of

the five trials. For all experiments, except for some bloat experiments, run-

to-run variation is quite low since replay methodology eliminates almost all

nondeterminism. The variation in bloat is high in general and not related to

these configurations. The bottom sub-bars are the fraction of time spent in

garbage collection, which is always under 12% in these configurations.

Barriers includes only Melt’s read barrier; the barrier’s condition is

never true since the collector does not mark references stale. Marking performs

marking of references and objects on every full-heap GC, i.e., Melt is always

in the MARK state. Melt memory performs marking and moving to the stale

space on every full-heap GC (i.e., Melt is always in the MOVE & MARK state),

but the stale space is in memory rather than on disk. This configuration is

analogous to adding a third generation based on object usage in a generational

collector. Finally, Melt marks objects and moves objects to the on-disk stale

space on every full-heap GC.

The graph shows that the read barrier alone costs 6% on average, and

adding Marking adds no noticeable overhead. The Melt memory configura-

tion, which divides the heap into in-use and in-memory stale spaces, has a

negligible effect on overall performance. In fact, it sometimes improves col-

lector performance (see below). Storing stale objects on disk (Melt) adds 1%

to average execution time because of the extra costs of swizzling between 32-

114

antlr
bloat

chart
eclipse

fop hsqldb
jython

luindex

lusearch

pmd
xalan

pseudojbb

compress

jess
raytrace

db javac
mpegaudio

mtrt
jack

geomean

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 a
pp

lic
at

io
n

ti
m

e

Base
Barriers
Marking (every GC)
Melt memory (every GC)
Melt (every GC)

Figure 6.10: Application execution time overhead of Melt configurations. Sub-bars are GC time.

115

and 64-bit references and transferring objects to and from disk. Melt improves

the performance of a few programs relative to barrier overhead. This improve-

ment comes from better program locality (jython and lusearch) and lower GC

overhead (xalan).

Melt’s 6% read barrier overhead is comparable to read barrier over-

heads for concurrent, incremental, and real-time collectors [BCR03, DLM+78,

PFPS07]. With the increasing importance of concurrent software and the po-

tential introduction of transactional memory hardware, future general-purpose

hardware is likely to provide read barriers with no overhead. Azul hardware

has them already [CTW05]. Melt achieves low overhead because the common

case is just two IA32 instructions in optimized code: a register comparison

and a branch. An alternative to all-the-time read barriers would be to start

without read barriers and recompile to add them to all methods only when the

program entered the MARK state. This approach would require full support

for on-stack-replacement [SK06].

Collection overhead. Figure 6.11 shows the geometric mean of the time

spent in garbage collection as a function of heap size for all our benchmarks

using Melt. We measure GC times at 1.5x, 2x, 3x, and 5x the minimum heap

size for each benchmark. Times are normalized to Base with 5x min heap.

Note that the y-axis starts at 1 and not 0.

The graph shows Marking slows collection by up to 7% for the smaller

heap sizes. The other configurations measure both the overhead and benefits

of using the stale space. Melt memory, which enjoys the benefits of reduced

GC workload and frequency due to stale space discounting, speeds collection

15% over Marking and 8% over Base for the 1.5x heap. Melt adds up to

116

2 3 4 5

Minimum heap size multiplier

1.0

1.5

2.0

N
or

m
al

iz
ed

 G
C

 t
im

e

Base
Marking (every GC)
Melt mem (every GC)
Melt (every GC)

Figure 6.11: Normalized GC times for Melt configurations across heap
sizes.

10% GC overhead over an in-memory stale space due to pointer swizzling and

transferring objects to and from disk. This configuration adds up to 10% over

the baseline in large heaps, but benefits and costs are roughly equal at the

smallest heap size, where Melt nets just 1% over the baseline.

Compilation overhead. We also measure the compile-time overheads of

increased code size and slowing downstream optimizations due to read barriers.

Adding read barriers increases generated code size by 10% and compilation

time by 16% on average. Because compilation accounts for just 4% on average

of overall execution time, the effect of compilation on overall performance is

modest.

117

Melt statistics. Table 6.1 presents statistics for a Melt stress test marks

and moves objects every full-heap GC (i.e., the Melt (every GC) configuration

used in Figures 6.10 and 6.11), for the DaCapo benchmarks. We run with a

small heap, 1.5 times the minimum heap size for each benchmark, in order

to trigger frequent collections and thus exercise Melt more heavily. The table

presents the total number of objects moved to the stale space and activated by

the program. It also shows the number of objects in the in-use and stale spaces,

pointers from in-use to stale and from stale to in-use, and scions, averaged over

each full-heap GC except the first, which we exclude since it does not move

any objects to the stale space. The final column is the number of full-heap

GCs. The table excludes fop and hsqldb since they execute fewer than two

full-heap GCs.

The table shows that Melt moves 9–151 MB to the stale space, and

the program activates 0–17 MB of this memory. Some benchmarks activate

a significant fraction of stale memory, for example, more than 10% for bloat,

eclipse, and lusearch due to this experiment’s aggressive policy of moving objects

to the stale space on every GC. The next two columns of Table 6.1 show that

often more than half of the heap is stale for a long time, which explains the

reductions in collection time observed in Figure 6.10. Leak tolerance can

improve the performance of applications that do not have leaks per se but

only use a small portion of a larger working set for significant periods of time.

Used this way, leak tolerance is analogous to a fine-grained virtual memory

manager for managed languages.

The In→St column shows the average number of references from in-use

to stale objects. These references require a mapping stub to redirect from 32-

bit memory to 64-bit disk, but there are usually signficantly fewer mapping

118

Total Average per GC

Moved to stale Activated In-use Stale In→St St→In Scions GCs
antlr 157,486 (10 MB) 28 (0 MB) 68,331 (7 MB) 104,877 (6 MB) 1,592 6,250 2,692 4
bloat 337,126 (19 MB) 51,970 (2 MB) 127,335 (9 MB) 238,167 (14 MB) 13,196 29,701 10,358 6
chart 192,810 (10 MB) 107 (0 MB) 95,139 (14 MB) 153,928 (8 MB) 22,443 23,440 4,079 6
eclipse 1,789,252 (102 MB) 478,518 (17 MB) 258,823 (18 MB) 1,096,570 (65 MB) 48,590 607,619 81,852 24
jython 215,807 (14 MB) 16,842 (1 MB) 47,253 (6 MB) 193,691 (12 MB) 21,028 45,467 30,818 15
luindex 157,814 (9 MB) 308 (0 MB) 55,033 (7 MB) 118,091 (7 MB) 17,718 21,281 1,333 5
lusearch 249,709 (16 MB) 20,287 (2 MB) 92,224 (43 MB) 205,606 (13 MB) 7,593 10,622 9,493 9
pmd 475,714 (26 MB) 28,064 (1 MB) 125,625 (8 MB) 337,292 (19 MB) 39,811 18,787 10,419 16
xalan 701,733 (151 MB) 18,892 (1 MB) 43,538 (13 MB) 461,928 (87 MB) 26,741 77,565 5,173 101

Table 6.1: Statistics for the DaCapo benchmarks running Melt (every GC) with 1.5 times the
minimum heap size.

119

stubs than in-use objects. The St→In and Scions columns show the number of

references from stale to in-use objects and the number of scions, respectively.

The next section shows that for growing leaks, the number of scions stays

small and proportional to in-use memory, while references from stale to in-use

grow with the leak, motivating Melt’s use of stub-scion pairs.

6.3.2 Tolerating Leaks

This section evaluates how well Melt tolerates growing leaks in the wild

by running programs with leaks longer and maintaining program performance.

Table 6.2 shows all 10 leaks we found and could reproduce: two leaks in Eclipse,

EclipseDiff and EclipseCP; a leak in a MySQL client application; a leak in Delaunay,

a scientific computing application; a real leak in SPECjbb2000 and an injected

leak in SPECjbb2000 called JbbMod; a leak in Mckoi, a database application;

and three third-party microbenchmark leaks: ListLeak and SwapLeak from Sun

Developer Network, and DualLeak from IBM developerWorks. Melt tolerates 5

of these 10 leaks well; it tolerates 2 leaks but adds high overhead by activating

many stale objects; and it does not significantly help 3 leaks.

Melt cannot tolerate leaks in SPECjbb2000 and DualLeak because they

are live leaks: the programs periodically access the objects they access. For

example, DualLeak repeatedly adds String objects to a HashSet. It does not

remove or use these objects again. However, when the HashSet grows, it re-

hashes all the elements and accesses the String objects, so the String cannot

remain in the stale space permanently. It seems challenging in general to de-

termine that an object being accessed is nonetheless useless. However, future

work could design leak-tolerant data structures that avoid inadvertently ac-

cessing objects that the application has not accessed in a while. At least two

120

Leak (LOC) Melt’s effect Reason
EclipseDiff (2.4M) Runs until 24-hr limit (1,000X longer) Virtually all stale
EclipseCP (2.4M) Runs until 24-hr limit (194X longer) All stale?
JbbMod (34K) Runs until crash at 20 hours (19X longer) All stale?
ListLeak (9) Runs until disk full (200X longer) All stale
SwapLeak (33) Runs until disk full (1,000X longer) All stale
MySQL (75K) Runs until crash (74X longer; HAO) Almost all stale
Delaunay (1.9K) Some help (HAO) Short-running
SPECjbb2000 (34K) Runs 2.2X longer Most stale memory in use
DualLeak (55) Runs 2.0X longer Almost all stale memory in use
Mckoi (95K) Runs 2.2X longer Threads’ stacks leak

Table 6.2: Ten leaks and Melt’s ability to tolerate them. HAO means “high activation overhead.”

121

other leaky programs, EclipseDiff and MySQL, also have live leaks, although

they leak significantly more dead than live memory, so Melt can still improve

their longevity and performance significantly.

We run the following experiments in maximum heap sizes chosen to

be about twice what each program would need if it were not leaking. All

the programs except Delaunay have growing leaks, so their behavior with and

without Melt is not very sensitive to maximum heap size. All programs

have a memory ceiling, which may be heap size, physical memory, or vir-

tual memory, although physical memory is always a ceiling since it causes GC

to thrash [HFB05, YBKM06]. Melt extends a program’s memory ceiling to in-

clude all available disk space, substantially postponing a crash. We run Jikes

RVM in uniprocessor mode because in multiprocessor mode, the VM often

crashes before completing runs lasting many hours, apparently due to bugs in

either Melt or Jikes RVM.

EclipseDiff. Eclipse is an integrated development environment (IDE) written

in Java with over 2 millions lines of source code [Eclb]. We reproduce Eclipse

bug #115789, which reports that repeatedly performing a structural (recur-

sive) diff, or compare, slowly leaks memory that eventually leads to memory

exhaustion. The leak occurs because a data structure for navigation history

maintains references it should not. It exists in Eclipse 3.1.2 but was fixed by

developers for Eclipse 3.2 after we reported a fix when working on Bell.

We automate repeated structural differences via an Eclipse plug-in that

reports the wall clock time for each iteration of the difference. Figure 6.12

shows the time each iteration takes for vanilla Jikes RVM 2.9.2, the Sun JVM

1.5.0, and Jikes RVM with Melt. We use iterations as the x-axis. This figure

122

50 100 150 200 250 300

Iteration

0
2

4

T
im

e
(s

)

Jikes RVM
Sun JVM
Melt

Figure 6.12: Performance comparison of Jikes RVM, Sun JVM, and
Melt for the first 300 iterations of EclipseDiff.

0 20000 40000 60000

Iteration

0
2

4

T
im

e
(s

)

Figure 6.13: Performance of Melt running EclipseDiff leak for 24 hours.

shows the first 300 iterations in order to compare the three VMs, and Fig-

ure 6.13 shows the performance of just Melt for its entire run (terminated by

us after 24 hours). Unmodified Jikes RVM slows and crashes after about 50

iterations when its heap fills. Sun JVM, which uses a more space-efficient col-

lector than the generational copying collector used by Jikes in our experiments,

runs almost 200 iterations before slowing down and crashing.

Melt’s performance stays steady in the long term with variations in the

short term. All VMs’ performance varies per iteration because iterations inter-

rupted by a full-heap GC take longer. Melt’s performance varies more because

123

full-heap GCs that move objects to the stale space take longer: Melt moves

objects to the stale space, unswizzles their references, and creates stub-scion

pairs and mapping stubs. Melt buffers new stale objects in memory during

these GCs, and it flushes these buffers to disk gradually during application

execution. Without this gradual flushing, performance varies more. When we

terminate Melt at 24 hours, it has written over 80 GB to the on-disk stale

space.

Figures 6.14 and 6.15 show reachable memory, as reported at the end

of the last full-heap GC, for the same VMs at each iteration. Unmodified Jikes

RVM and Sun JVM fill the heap as the leak grows, while Melt starts moving

stale objects to the disk when the heap reaches 80% full, and it keeps memory

usage fairly constant in the long term. The figures show that memory usage

oscillates gradually between about 100 and 130 MB: (1) Melt moves objects to

buffers for the stale space when usage reaches 130 MB; (2) it then slowly flushes

these buffers to disk over time; and (3) in the meantime, the leak continues to

increase heap size until it reaches 130 MB again and triggers Melt to repeat

the cycle.

Figures 6.16 and 6.17 report numbers of objects and references at each

iteration of EclipseDiff. We divide the data between two graphs since the mag-

nitudes vary greatly. Figure 6.16 shows that references from stale to in-use

and objects in the stale space both grow linearly over iterations and have

large magnitudes. This result motivates avoiding a solution that uses time or

space proportional to stale objects or references from stale to in-use objects.

Figure 6.17 shows that Melt holds in-use objects relatively constant over iter-

ations. The number of scions grows linearly over time, although it stays small

in magnitude: roughly one scion per iteration. This growth occurs because a

124

0 100 200 300

Iteration

0
50

10
0

15
0

20
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Sun JVM
Melt

Figure 6.14: Comparison of reachable memory for the first 300 itera-
tions of EclipseDiff.

0 20000 40000 60000

Iteration

0
50

10
0

15
0

20
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Figure 6.15: Reachable memory running EclipseDiff with Melt for 24
hours.

125

0 20000 40000 60000

Iteration

0
1

bi
lli

on
2

bi
lli

on Stale to in-use refs
Objects in stale space

Figure 6.16: EclipseDiff leak with Melt: stale objects and references
from stale to in-use.

0 20000 40000 60000

Iteration

0
1

m
ill

io
n

Scions

Objects in in-use space Objects activated

Figure 6.17: EclipseDiff leak with Melt: in-use objects, objects acti-
vated, and scions.

very small part of the leak is live. Each iteration leaks a large data structure,

and the root object of this structure remains live, and this object uses an extra

scion.

The graph shows that the number of objects activated increases linearly

but its magnitude is still small compared with objects in the stale space, i.e.,

just a few stale objects are activated. Each activated object needs a scion,

and many more objects are activated than there are scions, which shows that

the application activates the same objects over and over again. A future

126

implementation could consider a different policy for objects that have been

activated, as LeakSurvivor does [TGQ08]. The fact that scions stay relatively

small while stale-to-in-use references grow significantly, motivates Melt’s use

of stub-scion pairs to maintain references from stale to in-use objects. In

contrast, LeakSurvivor’s swap-out table, which maintains references from disk

to memory, does not guarantee time or space proportional to in-use memory.

For the other leaks in this section that Melt tolerates, we observe similar

ratios for in-use and stale objects and references between them.

EclipseCP. We reproduce Eclipse bug #155889, which reports a growing leak

when the user repeatedly cuts text, saves, pastes the same text, and saves

again. We wrote an Eclipse plug-in that exercises the GUI and performs

this cut-paste behavior. Figure 6.18 shows the run time of each iteration

of a cut-save-paste-save of a large block of text, using a logarithmic x-axis

since unmodified Jikes runs for a short time before running out of memory.

We do not present data for Sun JVM since we could not reproduce the leak

with it. The figure shows that Melt adds some overhead to EclipseCP, but

it is able to execute with fairly constant long-term performance for nearly

200 times as many iterations as without Melt. We terminate Melt after 24

hours, at which point it has used 39 GB of disk space. We note that the

performance fluctuations are due to the application, not Melt, since they occur

with unmodified Jikes RVM. Figure 6.19 shows memory usage over time, with

and without Melt. Melt holds memory fairly steady in the long term. The

short-term fluctuations are due to Melt moving objects gradually to the stale

space each time the heap reaches 80%.

127

1 10 100 1000

Iteration

0
20

40
60

T
im

e
(s

)

Jikes RVM
Melt

Figure 6.18: EclipseCP performance over time, with and without Melt.
X-axis is logarithmic x-axis to show behavior of both VMs.

1 10 100 1000

Iteration

0
10

0
20

0
30

0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Melt

Figure 6.19: EclipseCP reachable memory over time, with and without
Melt. X-axis is logarithmic x-axis to show behavior of both VMs.

128

JbbMod. SPECjbb2000 (see below) has significant live heap growth. Tang

et al. modified SPECjbb2000 by injecting a leak of dead (permanently stale)

objects [TGQ08], which we call JbbMod. Tang et al. execute JbbMod using

LeakSurvivor for two hours before terminating the experiment. Melt runs

almost 21 hours (almost 20 times more iterations than without Melt) before

crashing with an apparent heap corruption error, likely due to a bug in Melt.

During this time, it keeps performance and memory usage fairly constant. We

thus believe that all heap growth is dead and, in lieu of crashing, Melt would

run the program as long as disk space allowed.

ListLeak. The first microbenchmark leak is from a post on the Sun Developer

Network [Sun03b]. It is a very simple and fast-growing leak:

List list = new LinkedList();

while (true) list.add(new Object());

Clearly this leak grows very quickly. Whereas unmodified Jikes RVM and Sun

JVM crash in seconds, Melt keeps ListLeak running until it fills 126 GB of disk,

which takes about 100 minutes.

SwapLeak. This leak also comes from a message posted on the Sun Developer

Network [Sun03a]. The message asks for help understanding why an attached

program runs out of memory. The program first initializes an array of 1,000,000

SObjects, which each contain an inner class Rep. The program then swaps

out each SObject’s Rep object with a new SObject’s Rep object. Intuitively

it seems that the second operation should have no net effect on reachable

memory. However, as explained by a response to the message, the VM keeps a

reference from an inner class object back to its containing object, which causes

129

the swapped-out Rep object and the new SObject to remain reachable. The

fix is to make the inner class static. Melt provides the illusion of a fix until

the developer applies the correction.

The swapping operation leaks only about 64 MB, so we add a loop

around this operation to create a growing leak. SwapLeak grows nearly as

quickly as ListLeak, and unmodified Jikes RVM and Sun JVM survive fewer

than five iterations. Melt runs for 2,341 iterations (7 hours) and then termi-

nates when it fills the available 126 GB of disk space.

MySQL. The MySQL leak is a simplified version of a JDBC application from a

colleague. The program exhausts memory unless it acquires a new connection

periodically. The leak, which is in the JDBC library, occurs because SQL

statements executed on a connection remain reachable unless the connection

is closed or the statements are explicitly closed. The MySQL leak repeatedly

creates a SQL statement and executes it on a JDBC connection. We count

1,000 statements as an iteration. The application stores the statement objects

in a hash table. The program periodically accesses them when the hash table

grows, re-hashing the statement objects. However, in terms of bytes, objects

referenced by the statement objects contribute much more to the leak, i.e., the

vast majority of objects are permanently stale.

Melt tolerates this leak but periodically suffers a huge pause when the

hash table grows and re-hashes its elements, which activates all statement

objects. Figures 6.20 and 6.21 show the performance (logarithmic y-axis)

and memory usage of MySQL over time, with and without Melt. Unmodified

Jikes RVM and Sun JVM quickly run out of memory, but Melt keeps the

program running for 74 times as many iterations as Jikes RVM. When the

130

200 400 600 800 1000

Iteration

0.
01

0.
1

1.
0

10
10

0
10

00

T
im

e
(s

)
Jikes RVM
Sun JVM
Melt

Figure 6.20: MySQL performance over time, with and without Melt.
The y-axis is logarithmic because some pause times are quite high.

200 400 600 800 1000

Iteration

0
50

10
0

15
0

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Jikes RVM
Sun JVM
Melt

Figure 6.21: MySQL reachable memory over time, with and without
Melt.

hash table of statements grows and re-hashes its elements, e.g., at iterations

300 and 600, pause times rise to 30 minutes. Our implementation of Melt is not

optimized for activation performance since it does not consider locality when

moving objects to disk or activating objects. Alternatively, we could attempt

to recognize that statement objects are highly stale but live, not dead.

Melt terminates with an unrelated corruption error, mostly likely due

131

Input Jikes Melt memory Melt
size Time Time Time Stale Activated

15,000 7 s 7 s 7 s 0 MB 0 MB
20,000 11 s 10 s 12 s 0 MB 0 MB
21,000 12 s 14 s 15 s 0 MB 0 MB
22,000 OOM 18 s 45 s 90 MB 14 MB
25,000 OOM 19 s 98 s 94 MB 18 MB
30,000 OOM 27 s 166 s 118 MB 25 MB

Table 6.3: Delaunay run times, stale memory, and activated memory
for various input sizes. OOM means out of memory.

to a bug in Melt or perhaps Jikes RVM, after 4 hours and 20 minutes. Melt

could tolerate the leak longer if the VM did not crash, albeit with periodic

pauses to activate all statement objects.

Delaunay. Next we present a leak in Delaunay, an application that performs

a Delaunay triangulation, which generates a triangle mesh, for a set of points,

that meets a set of constraints [GKS90]. We obtained the program from col-

leagues who added a history directed acyclic graph (DAG) to reduce algo-

rithmic complexity of the triangulation, but the change inadvertently caused

graph components no longer in the graph to remain reachable.

Delaunay is not a growing leak in a long-running program. Rather, this

leak degrades program performance and prevents the program from running

input sizes and heap sizes that would work without the leak. To highlight

this problem, we execute the program with a variety of input sizes, comparing

Jikes RVM to Melt’s memory and disk configurations.

Table 6.3 shows run times for all configurations and how much memory

is transferred to and from disk using a maximum heap size of 256 MB and

a variety of input sizes with a focus on 20,000-22,000 iterations, when the

132

program exhausts memory. We set the threshold for moving objects to the

stale space at 95% to avoid moving objects to the stale space too aggressively.

For input sizes ≤21,000 iterations, all VMs perform similarly since the program

has enough memory. Starting with 22,000 iterations, Melt tolerates the leak

while the unmodified VM runs out of memory. The performance of Melt with

an in-memory stale space scales well with input size. The on-disk stale space’s

performance does not scale well because Melt activates many objects from

disk, which becomes expensive when the working set of accesses exceeds disk

buffering. At some point, Melt is going beyond tolerating the leak, i.e., the

heap would not be large enough even if the leak were fixed, as indicated by

the increasing amount of activated memory.

These results show that Melt can help somewhat with short-running

leaks, but it can add significant overhead if it incorrectly moves many live

objects to the stale space, since activation overhead will be high.

SPECjbb2000. SPECjbb2000 simulates an order processing system and is in-

tended for evaluating server-side Java performance [Sta01]. It contains a

known, growing memory leak that manifests when it runs for a long time

without changing warehouses. It leaks because it adds orders to an order list

and does not correctly remove some of them when the orders complete.

Although SPECjbb2000 experiences unbounded heap growth over time,

it uses almost all the objects. The program periodically accesses all orders in

the order list. It seems unlikely that any system will be able to differentiate

useful from useless memory accesses. We note our staleness-based leak de-

tector using Bell diagnoses this leak because a small part of each order’s data

structure is stale (Section 4.4). Melt executes SPECjbb2000 about twice as long

133

as without Melt (1166 vs. 540 iterations) since it finds some stale memory to

move to disk. However, performance suffers beginning at about 650 iterations

because Melt starts moving many objects that are not permanently stale to

disk in order to avoid running out of memory, resulting in significant activation

overhead.

DualLeak. This leak comes from an example in an IBM developerWorks col-

umn [GP05]. We call it DualLeak since its 55 sources lines contain two different

leaks. The program executes in iterations and exercises both leaks during each

iteration. The first leak is slow-growing and occurs because of an off-by-one

error that leads to an Integer object not being removed from a Vector on each

iteration. The other leak grows more quickly by adding multiple String objects

to a HashSet on each iteration.

Melt cannot tolerate either leak since the program accesses all of the

Vector and HashSet periodically. The Vector leak accesses all slots in the Vector

every iteration, since it removes elements from the middle of the vector, causing

all leaked elements to the right to be moved one slot to the left. The HashSet

repeatedly adds String objects that are accessed during re-hashing.

Melt executes twice as many iterations of DualLeak as unmodified Jikes

RVM by swapping out the HashSet elements when they are not in use. But

this approach is not sustainable. When the HashSet grows, Melt activates its

elements, hurting performance and eventually running out of memory.

Mckoi. We reproduce a memory leak reported on a message board for Mckoi

SQL Database, a database management system written in Java [Mck02]. The

leak occurs if a program repeatedly opens a database connection, uses the

134

connection, and closes the connection. Mckoi does not properly dispose of the

connection thread, leading to a growing number of unused threads. These

threads leak memory; most of the leaked bytes are for each thread’s stack.

Melt cannot tolerate this leak because stacks are VM objects in Jikes

RVM, so they may not become stale. Also, program code accesses the stack

directly, so read barriers cannot intercept accesses to stale objects. However,

we could modify Melt to detect stale threads (threads not scheduled for a

while) and make their stacks stale and also allow objects directly referenced

by the stack to become stale. If the scheduler scheduled a stale thread, Melt

would activate the stack and all objects referenced by the stack.

Melt runs the leak for about twice as long as unmodified Jikes RVM

because Melt still finds some memory to swap out that is not in use, but soon

the leaked stacks dominate memory usage and exhaust memory.

6.4 Conclusion and Interpretation

While managed languages largely insulate programmers from memory

management, programmers still need to ensure unused objects become un-

reachable. Otherwise they will produce programs that may use bounded live

memory but have unbounded memory requirements. This work provides some

protection for these programs by utilizing available disk space. Melt moves

all highly stale objects to disk, which overestimates dead objects but works

fairly well since Melt can recover live objects from disk. MySQL adds high

space overhead since it activates many highly stale but live objects. The next

chapter presents an approach that eliminates likely leaked memory, so it nec-

essarily uses a more precise leak prediction heuristic. Melt could benefit from

this more precise heuristic to reduce high activation overhead.

135

Melt is well suited to the deployed setting. Leaks are input and envi-

ronment sensitive, and they can grow slowly and take days, weeks, or longer

to have effects. For non-leaking programs, Melt adds low overhead, or no

overhead if it adds instrumentation only when the program starts to run out

of memory. If a leak does occur in deployed software, the system can acti-

vate Melt and reap its benefits. Melt is a bug tolerance approach that can be

built into commercial VMs, deployed with current software, and automatically

improve robustness and increase user happiness. It points to a future where

systems provide, and users use, a variety of bug tolerance approaches that on

the whole improve system reliability dramatically.

136

Chapter 7

Leak Pruning

The previous chapter presented an approach that relegates highly stale

objects to disk. Although disks are typically orders of magnitude larger than

main memory, a growing leak will eventually exhaust available disk space.

Another concern is embedded devices that have no disk. This chapter intro-

duces an approach orthogonal to Melt called leak pruning that uses bounded

resources. It defers out-of-memory errors by predicting which objects are dead

and reclaiming them when the program is about to run out of memory. As

long as the program does not attempt to access reclaimed objects, it may run

indefinitely. Otherwise, a leak pruning-enabled VM intercepts the access and

throws an error. This behavior preserves semantics since the program already

ran out of memory. In the worst case, leak pruning only defers out-of-memory

errors. In the best case, it enables leaky programs with unbounded reachable

memory growth to run indefinitely with bounded resources.

The key to leak pruning is precisely predicting which reachable objects

are dead. In contrast, Melt simply predicts that highly stale objects are leaked

since it can recover from mistakes by activating live objects from disk. Our

dynamic prediction algorithm for leak pruning identifies stale data structures,

i.e., stale subgraphs, during tracing garbage collection. It records the source

and target classes of the first reference and the number of stale bytes in the

stale data structure. When the VM runs out of memory, leak pruning poi-

137

sons references to instances of the data structure type consuming the most

bytes. Poisoning invalidates and specially marks references. The collector

then reclaims objects that were only unreachable from these references. If the

program subsequently accesses a poisoned reference, the VM throws an error.

We show leak pruning, which uses read barriers similar to Melt’s, adds

low enough overhead for deployed systems. We evaluate it on the same 10 leaks

as in the previous chapter. Leak pruning is about as effective as Melt with an

infinite disk for all leaks but two. Melt seems to run JbbMod indefinitely, but

leak pruning eventually runs out of memory since it fails to identify some small

part of the leak. Leak pruning extends MySQL’s lifetime for about as long as

Melt but avoids Melt’s slowdowns due to high activation overhead since leak

pruning’s more accurate identification algorithm does not select a small in-use

part of the leak.

Modern software is never bug-free. In the event of an unexpected mem-

ory leak in a deployed system, leak pruning offers an alternative to running

out of memory: reclaim some memory and keep going. Our evaluation shows

that leak pruning often picks well and keeps real leaks going much longer or

indefinitely.

7.1 Approach and Semantics

This section describes the high-level approach and semantics of leak

pruning. Section 7.2 presents the details of our algorithm and implementation.

138

0 500 1000 1500 2000

Iteration

0

64

128

192

R
ea

ch
ab

le
 m

em
or

y
(M

B
)

Leak
Manually fixed leak
With leak pruning

Figure 7.1: Reachable heap memory for the EclipseDiff leak. An un-
modified VM running the leak, a manually fixed version, and the leak running
with leak pruning.

7.1.1 Motivation

Figure 7.1 shows the memory consumption over time measured in it-

erations (fixed amounts of program work) for EclipseDiff, the growing leak

described in the previous chapter. The graph shows reachable memory at the

end of each full-heap collection. The solid line shows that the leak causes

reachable memory to grow without bound until it overflows the heap. At 200

MB for this experiment, the VM throws an out-of-memory error (the plotted

line reaches only 192 MB since the program did not complete another iteration

before exhausting memory).

The dashed line shows reachable memory if we modify the Eclipse

source to fix the leak. Reachable memory stays fairly constant over time,

and Eclipse does not run out of memory. The dotted line shows reachable

memory with leak pruning. When the program is about to run out of mem-

ory, leak pruning reclaims objects that it predicts are dead. It cannot reclaim

all dead objects promptly because objects need time to become stale. Sec-

tion 7.4 shows that leak pruning keeps EclipseDiff from running out of memory

139

for over 50,000 iterations (24 hours).

Leak pruning seeks to close the gap between liveness and reachability.

When a program starts to run out of memory, leak pruning observes program

execution to predict which reachable objects are dead and therefore will not

be used again. When the program actually runs out of memory, it poisons

references to these objects and reclaims them. If the application subsequently

attempts to read a poisoned reference, the VM throws an internal error, giving

the original out-of-memory error as the cause. Since the program has executed

beyond an out-of-memory error, throwing an internal error does not violate se-

mantics. The goal of leak pruning is to defer out-of-memory errors indefinitely

by eliminating the space and time overheads due to leaks.

7.1.2 Triggering Leak Pruning

Figure 7.2 shows a high-level state diagram for leak pruning. Leak

pruning’s state is based on how close the program is to running out of memory.

Leak pruning performs most of its work during full-heap garbage collections,

and it changes state after each full-heap GC. State changes depend on how

full the heap is at the end of GC.

Initially, leak pruning is INACTIVE and does not observe program be-

havior. This state has two purposes. First, it avoids the overhead of leak

pruning’s analysis when the program is not running out of memory. Second, it

collects potentially better information by focusing on program behavior that

appears to be leaking. Leak pruning remains INACTIVE until reachable memory

exceeds “expected memory use,” a user-configurable threshold. By default our

implementation sets this threshold to 50% since users typically execute pro-

grams in heaps at least twice as large as maximum reachable memory. Leak

140

Figure 7.2: State diagram for leak pruning.

pruning is not very sensitive to the exact value of this threshold. If set too low,

leak pruning may incur some overhead when the program is not leaking; if set

too high, it will have less time to observe program behavior before selecting

memory to reclaim.

When memory usage crosses this threshold, leak pruning enters the

OBSERVE state, in which it analyzes program reference patterns to choose

pruning candidates (described in detail in Section 7.2). Once leak pruning

enters the OBSERVE state, it never returns to the INACTIVE state because it

considers the application to be in a permanent unexpected state.

Leak pruning moves from OBSERVE to SELECT when the program has

nearly run out of memory, which is user-configurable and 90% of available

memory by default. In SELECT, leak pruning chooses references to prune,

based on information collected during the OBSERVE state (described in detail

in Section 7.2).

141

In principle, we would like to move to the PRUNE state only when

the program has completely exhausted memory. However, executing until

reachable objects fill available memory can be expensive. Because reachable

memory usually grows more slowly than the allocation rate, allocations trigger

more and more collections as memory fills the heap. Thus, we support two

options: (1) leak pruning moves to PRUNE when the heap is 100% full after

collection, i.e., the VM is about to throw an out-of-memory error,1 or (2)

it moves to the PRUNE state immediately after finishing a collection in the

SELECT state. The VM has flexibility in how it reports memory usage, since

details such as object header sizes are not visible to the application, so the

second option is not necessarily a violation of program semantics. We believe

the second option is more appealing since it avoids the application grinding to

a halt before pruning can commence. Users should consider the “nearly full”

threshold to be the maximum heap size and “full” to be extra headroom to

perform GCs efficiently. We use option (2) by default but also evaluate (1).

Regardless, after entering PRUNE once, leak pruning always enters PRUNE

immediately following SELECT since it has already exhausted memory once.

The PRUNE state poisons selected references by invalidating them and

not traversing the objects they reference. The collector then automatically

reclaims objects that were reachable only from the pruned references. If the

collector reclaims enough memory so that the heap is no longer nearly full,

leak pruning returns to the OBSERVE state. Otherwise, it returns to SELECT

and identifies more references to prune.

1In this case leak pruning remains in SELECT until heap exhaustion but does not repeat
the selection process.

142

Figure 7.3: Example heap after the SELECT state. References selected
for pruning are marked with sel.

Figure 7.4: Example heap at the end of GC in PRUNE state. Poisoned
references end in an asterisk (*).

Example. Figure 7.3 shows an example heap when leak pruning enters the

PRUNE state. Each circle is a heap object. Each object instance has a name

based on its class, e.g., b1, b2, b3, and b4 are instances of class B. The selection

algorithm uses class to select references to prune (Section 7.2). The figure

shows that objects a1 and e1 are directly reachable from the program roots

(registers, stacks, and statics), and other objects are transitively reachable.

Suppose leak pruning selects three references to prune, labeled sel in the figure:

b1 → c1, b3 → c3, and b4 → c4.

143

7.1.3 Reclaiming Reachable Memory

During a full-heap collection in the PRUNE state, the collector repeats

its analysis, but this time poisons selected references and reclaims all objects

reachable only from these references as shown in Figure 7.4. The collector

reclaims objects reachable only from pruned references since it does not trace

pruned references. For example, the subtree rooted at c4 is not reclaimed

because it is transitively reachable from the roots via object e1, whereas b3

has the only reference to its subtree.

Leak pruning poisons a reference by setting its second-lowest-order bit

(Section 7.2.4). Setting the reference to null is insufficient since that could

change program semantics. If the program accesses a poisoned reference, the

VM intercepts the access and throws an internal error with an attached out-of-

memory error. This behavior preserves semantics since the program previously

ran out of memory when it entered the PRUNE state for the first time.

7.1.4 Exception and Collection Semantics

The Java VM specification says the VM may throw OutOfMemoryError

only at program points responsible for allocating resources, e.g., new expres-

sions or expressions that may trigger class initialization [LY99a]. Program

accesses to pruned memory are at reference loads, which are not memory-

allocating expressions. The Java specification however permits InternalError to

be thrown asynchronously at any program point. Our implementation thus

throws an InternalError if the program accesses a pruned reference.

When the VM runs out of memory, leak pruning records and defers the

error. However, if the application can catch and handle the out-of-memory

error, then deferring the error violates semantics. Catching out-of-memory

144

errors is uncommon since these errors are not easy to remedy. In Java, a

regular try { ... } catch (Exception ex) { ... } will not catch an OutOfMemory-

Error since it is on a different branch of the Throwable class hierarchy. Some

applications, such as Eclipse, catch all errors in an outer loop and allow other

components to proceed, but the Eclipse leaks we evaluate cannot do useful

work after they catch out-of-memory errors. Deciding whether to reclaim

memory or throw an out-of-memory error when there is a corresponding catch

block, can be an option set by users or developers.

Leak pruning may affect object finalizers, which are custom methods

that help clean up non-memory resources when an object is collected, e.g., to

close a file associated with an object. Pruning causes objects to be collected

earlier than without pruning, so calling finalizers could change program be-

havior. A strict leak pruning implementation would disable finalizers for the

rest of the program after it started pruning, which does not technically vio-

late the Java specification since there is no timeliness guarantee for finalizers.

Our implementation currently continues to call finalizers after pruning starts,

which would likely be the option selected by users and developers in order to

avoid running out of non-memory resources while tolerating memory leaks.

Leak pruning provides information for leak diagnostics. When the VM

first runs out of memory, leak pruning optionally reports an out-of-memory

“warning.” If the program later accesses a pruned reference, the VM throws

an InternalError whose getCause() method returns the original OutOfMemoryError.

In verbose mode, leak pruning provides information about the data structures

chosen for pruning by the SELECT state, as well as the reasons they were

selected.

145

7.2 Algorithm and Implementation

This section describes our algorithm and implementation for predicting

which reachable objects are leaked, selecting which references to prune, poi-

soning them, and detecting attempted accesses to poisoned references. Leak

pruning first identifies references to data structures that are highly stale. It

prunes stale data structures based on the following criteria: (1) no instance of

the data structure was stale for a while and then used again, and (2) the data

structures contain many bytes.

7.2.1 Predicting Dead Objects

Our prediction algorithm has the following key objectives: (1) perfect

accuracy, (2) high coverage, and (3) low overhead. If the prediction algorithm

is not perfect, the program will access a pruned object and will terminate.

However, if the prediction algorithm is not aggressive enough, it will not prune

all the leaking objects. Of course, predicting liveness perfectly in all cases is

beyond reach, but we have developed an algorithm with high coverage and

accuracy that works well in many cases. Any prediction algorithm preserves

correctness since leak pruning ensures accesses to reclaimed memory are inter-

cepted.

Since leaks add space and time overhead, the prediction algorithm

should not make matters worse. In particular, we should not add space propor-

tional to the objects in the heap. Our algorithm steals three available bits in

object headers and two unused lowest-order bits in object-to-object references.

When the program starts to run out of memory, it stores concise summaries

of which reference types are highly stale.

146

7.2.2 The OBSERVE State

In the OBSERVE state, leak pruning starts keeping track of each object’s

staleness, and it also summarizes accesses to highly stale references.

Tracking staleness. In the OBSERVE state, leak pruning tracks each ob-

ject’s staleness, i.e., how long since the program last used it. Our implemen-

tation maintains staleness using a three-bit logarithmic stale counter in each

object’s header, which we first used in our leak detector using Bell. A value

k in an object’s stale counter means the program last used the object ap-

proximately 2k collections ago. We maintain each stale counter’s value by (1)

incrementing object counters in each collection and (2) inserting instrumenta-

tion to clear an object’s counter when it is used.

The collector keeps an exact count of the number of full-heap garbage

collections. Every full-heap collection i increments an object’s stale counter if

and only if i evenly divides 2k, where k is the current value of the counter. As

for Melt, the collector sets the lowest bit of every object-to-object reference to

allow for a quick read barrier test. The following pseudocode shows the read

barrier:

b = a.f; // Application code

if (b & 0x1) { // Read barrier

// out-of-line cold path

t = b; // Save ref

b &= ~0x1; // Clear lowest bit

a.f = b; [iff a.f == t] // Atomic w.r.t. read

b.staleCounter = 0x0; // Atomic w.r.t. read

}

Similar to the Melt read barrier, the cold path is out-of-line in a separate

147

method, and the barrier update is atomic with respect to the read, to avoid

overwriting another thread’s write.

Edge table. Starting in the OBSERVE state, leak pruning maintains an edge

table to track the staleness of heap references based on type. For a stale

edge in the heap, src → tgt, the table records the Java class of the source

and target objects: srcclass → tgtclass. Each entry summarizes an equivalence

relationship over object-to-object references: two references are equivalent if

their source and target objects each have the same class. Each edge entry

srcclass → tgtclass records: bytesUsed, which is used later in the SELECT state,

and maxStaleUse, which identifies edge types that are stale for a long time, but

not dead. Leak pruning only prunes objects that are more stale than their

entry’s maxStaleUse. We record in maxStaleUse the all-time maximum value of

tgt ’s stale counter when a barrier accesses a reference srcclass → tgtclass. The

read barrier executes the following code as part of its out-of-line cold path:

if (b.staleCounter > 1)

edgeTable[a.class->b.class].maxStaleUse =

max(edgeTable[a.class->b.class].maxStaleUse, b.staleCounter);

The update occurs only if the object’s stale counter is at least 2, since a value of

1 is not very stale (stale only since the last full-heap collection). We find stale

objects are used infrequently, and the edge table update occurs infrequently.

7.2.3 The SELECT State

A full-heap collection in SELECT chooses one edge type for pruning. It

divides the regular transitive closure, which marks live all reachable objects,

into two phases:

148

1. The in-use transitive closure starts with the roots (registers, stacks, stat-

ics) and marks live objects, except for when it encounters a stale reference

whose target object has a stale counter at least two greater than its edge

table entry’s maxStaleUse value. We conservatively use two greater, in-

stead of one, since the stale counters only approximate the logarithm of

staleness. These references are candidates for pruning, and we put them

on a candidate queue.

2. The stale transitive closure starts with references in the candidate queue;

these references’ target objects are the roots of stale data structures.

While it marks them live, it computes the bytes reachable from each

root, i.e., the size of the stale data structure. The stale closure adds this

value to bytesUsed for the edge entry for the candidate reference. The

value computed depends on processing order since objects can be reach-

able from multiple stale roots. Fortunately the decision affects pruning

accuracy but not correctness, and it is not a problem in practice.

At the end of this process, leak pruning iterates over each entry in the edge

table, finding the entry with the greatest bytesUsed value, and it resets all

bytesUsed values. The PRUNE state poisons stale instances of this edge type.

Example. Figure 7.5 shows the heap and an edge table for Figures 7.3 and

7.4 during SELECT. Each object is annotated with the value of its stale counter.

The in-use closure adds the references marked cand to the candidate queue, but

it does not add b2→ c2 since c2’s stale counter is less than 2. It also does not

add e1→ c4. Its stale counter must be at least 4, i.e., 2 more than maxStaleUse,

which is 2 for E → C in this example. The stale closure processes the objects

149

Figure 7.5: Example heap during the SELECT state.

reachable only from candidate references, which are shaded gray. Objects c4,

d7, and d8 are processed by the in-use closure since they are reachable from

non-candidate reference e1 → c4. If we suppose each object is 20 bytes, then

bytesUsed for B → C is 120 bytes. We select this edge entry for pruning since

it has the greatest value of bytesUsed.

7.2.4 The PRUNE State

During collection in PRUNE, the collector again divides the transitive

closure into in-use and stale closures, but during the in-use closure it prunes all

references that correspond to the selected edge type and whose target objects

have staleness values that are at least two more than the entry’s maxStaleUse.

The collector poisons each reference in the candidate set by setting its second-

lowest bit. The collector does not trace the reference’s target. Future collec-

tions see the reference is poisoned and do not dereference it. The following

pseudocode shows how the collector poisons references during the in-use clo-

sure:

150

while (!inUseQueue.isEmpty()) {

ObjectReference object = inUseQueue.pop();

for (slot : object’s fields or array elements) {

ObjectReference target = *slot; // dereference slot

EdgeType et = getEdgeType(slot);

if (target.staleCounter >= edgeTable[et].maxStaleUse + 2) {

if (et == selectedEdgeType) {

slot |= 0x2; // set second-lowest bit of slot

} else {

candidateQueue.push(slot); // defer to stale closure

}

} else () {

slot.store(traceObject(target));

// Note: traceObject(target) calls

// inUseQueue.push(target)

// if it is the first to trace target.

}

}

}

7.2.5 Intercepting Accesses to Pruned References

In order to intercept program accesses to pruned references, we overload

the read barrier’s conditional to check the two lowest bits:

b = a.f; // Application code

if (b & 0x3) { // Check two lowest bits

// out-of-line cold path

if (b & 0x2) { // Check if pruned

InternalError err = new InternalError();

err.initCause(avertedOOME);

throw err;

}

/* rest of read barrier */

}

The read barrier body checks for a poisoned reference by examining the second-

lowest bit. If the bit is set, the barrier throws an InternalError. To help users

151

and developers, it attaches the original OutOfMemoryError that would have been

thrown earlier.

7.2.6 Concurrency and Thread Safety

Our implementation supports multi-threaded programs executing on

multiple processors. Previously we discussed how atomic updates in the read

barrier preserve thread safety. The edge table is a global structure that can be

updated by multiple threads in the read barrier or during collection. We need

global synchronization only on the edge table when adding a new edge type,

which is rare. We never delete an edge table entry. When updating an entry’s

data, we could use fine-grained synchronization to protect each entry. Since

we expect conflicts to be rare, and bytesUsed and maxStaleUse are parameters

to an algorithm whose result does not affect program correctness, we do not

synchronize their updates.

By default, the garbage collector is parallel [BCM04]. It uses multiple

collector threads to traverse all reachable objects. The implementation uses

a shared pool from which threads obtain local work queues to minimize syn-

chronization and load-balance. Because many objects have multiple references

to them, the collector prevents more than one thread from processing an ob-

ject with fine-grained synchronization on the object. We piggyback on these

mechanisms to implement the in-use and stale transitive closures. In the stale

closure, a single thread processes all objects reachable from a candidate edge.

The stale closure is parallel since multiple collector threads can process the

closures of distinct candidates simultaneously.

152

7.3 Performance of Leak Pruning

This section measures the overhead leak pruning adds to observe and

select references for pruning. We show leak pruning adds little or no overhead

if the program is not leaking. When tolerating leaks, it adds modest overhead

to select and prune references.

7.3.1 Application Overhead

Leak pruning adds overhead because it inserts read barriers into appli-

cation code and tracks staleness and selects references to prune during garbage

collection. Figure 7.6 shows application and collection times without compi-

lation. Execution times are normalized to Base. Each bar is the mean of five

trials; the error bars show the range across trials. Replay compilation keeps

variability low in all cases except for bloat. The sub-bars at the bottom are

the fraction of time spent in collection.

The Barriers configuration includes only leak pruning’s read barriers.

Similar to Melt, our implementation uses all-the-time barriers, which add 6%

on average, but a future implementation could wait to add barriers until the

OBSERVE state. Since the inlined parts of their read barriers are virtually

the same, leak pruning adds the same compilation and code size overheads as

Melt.

Observe shows the overhead of the OBSERVE state. For these exper-

iments, we force the OBSERVE state all the time. This configuration adds

updating of each object’s staleness header bits during collection and updating

of maxStaleUse for edge types that become stale but the program later uses.

Similarly, the Select configuration represents the overhead of always being in

the SELECT state: performing the stale trace, updates to bytesUsed in the edge

153

an
tlr

bl
oa

tch
ar

tec
lip

sefo
p

hs
ql

db
jy

th
on

lu
in

de
xlu

se
ar

chpm
d

xa
la

n
ps

eu
do

jb
b

co
m

pr
es

s

je
ss

ra
yt

ra
cedb

ja
va

c
m

pe
ga

ud
io

m
trt

ja
ck

ge
om

ea
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Norm. execution time

B
as

e
B

ar
ri

er
s

O
bs

er
ve

Se
le

ct

F
ig

u
re

7.
6:

A
p
p
li
c
a
ti

o
n

e
x
e
c
u
ti

o
n

ti
m

e
o
v
e
rh

e
a
d

o
f
le

a
k

p
ru

n
in

g
.

S
u
b
-b

ar
s

ar
e

G
C

ti
m

e.

154

2 3 4 5

Minimum heap size multiplier

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

N
or

m
al

iz
ed

 G
C

 t
im

e Base
Observe
Select

Figure 7.7: Normalized collection time for leak pruning across heap
sizes. Y-axis starts at 1.0.

table, and selection of an edge type to prune. These configurations add no no-

ticeable overhead since they mainly add collection overhead, which accounts

for 2% of overall execution time on average.

7.3.2 Garbage Collection Overhead

Figure 7.7 plots the geometric mean of normalized GC time over all

the benchmarks as a function of heap sizes ranging from 1.5 to 5 times the

minimum heap size in which each benchmark executes. The smaller the heap

size, the more often the program exhausts memory and invokes the collector.

Observe adds up to 5% overhead to mark the lowest bit of references and update

staleness. Selecting references to prune every collections adds 9% more, for a

total of 14%. Since collection adds only modestly to total time, this overhead

does not add appreciably to overall application time. The read barriers incur

the majority of overall program overhead.

155

Leak Leak pruning’s effect Reason
EclipseCP Runs >100X longer All reclaimed?
EclipseDiff Runs >200X longer Almost all reclaimed
ListLeak Runs indefinitely All reclaimed
SwapLeak Runs indefinitely All reclaimed
MySQL Runs 35X longer Most reclaimed
JbbMod Runs 21X longer Most reclaimed
SPECjbb2000 Runs 4.7X longer Some reclaimed
Mckoi Runs 1.6X longer Some reclaimed
DualLeak No help None reclaimed
Delaunay No help Short-running

Table 7.1: Ten leaks and leak pruning’s effect on them.

7.4 Effectiveness of Leak Pruning

Table 7.1 summarizes leak pruning’s effectiveness of the same 10 leaks

evaluated in the previous chapter. Leak pruning performs similarly to Melt

in many cases: both approaches execute the top four leaks over 24 hours and

possibly indefinitely (Melt’s lifetime is limited by available disk space).

Leak pruning extends MySQL’s lifetime significantly since it correctly

prunes dead objects reachable from Statement objects without pruning State-

ment objects, which are periodically accessed during hash table re-hashing.

Melt also extends MySQL’s lifetime, but its less accurate prediction algorithm

leads to overhead because it moves Statement objects to disk and then later

activates them.

Melt and leak pruning both fail to provide much help SPECjbb2000 and

DualLeak since much of their heap growth is live, and Mckoi because of imple-

mentation limitations. Melt provides limited help to Delaunay but incurs high

activation overhead, whereas leak pruning does not help at all since Delaunay

156

does not run long enough for leak pruning to make good decisions

Finally, Melt seems to run JbbMod until disk exhaustion, whereas leak

pruning runs it 21 times longer. Leak pruning fails sooner because either (1) it

fails to identify and prune some small fraction of the leak, or (2) it incorrectly

prunes a reference that is later used.

A best-of-both-worlds approach could store leaks to disk and prune

leaks to avoid running out of disk space. Our implementation handles the

most challenging case: identifying and pruning leaks without falling back on

the disk to increase the time until heap exhaustion.

We execute each program in a heap chosen to be about twice the size

needed to run the program if it did not leak. We have evaluated leak pruning

with four heap sizes for each leak (data omitted for brevity) [BM09] and found

leak pruning’s effectiveness is generally not sensitive to maximum heap size,

except it sometimes fails to identify and prune the correct references in tight

heaps, since it has little time to do so.

7.4.1 EclipseDiff

We omit detailed results for each leaky program since leak pruning’s

effect on program reliability and performance is similar to Melt’s. Here we de-

scribe the results for EclipseDiff, which leaks large subtrees of difference results

whose roots are ResourceCompareInput objects. These root objects are in use,

but the result of the subtree is dead. Leak pruning selects and prunes several

edge types with source type ResourceCompareInput. With leak pruning, Eclipse-

Diff should eventually exhaust memory since some heap growth is live, but the

subtree rooted at each ResourceCompareInput is comparatively much larger, so

leak pruning turns a fast-growing leak into a very slow-growing leak. We run

157

1 10 100 1000 10000

Iteration

0

1

2

3

4

5

T
im

e
(s

)

Base
Leak pruning

Figure 7.8: Time per iteration for EclipseDiff. X-axis is logarithmic.

EclipseDiff with leak pruning for 24 hours, and it does not run out of memory.

Figure 7.1 (page 139) shows reachable memory in the heap with and

without leak pruning for its first 2,000 iterations. Figure 7.8 plots time for

each iteration for all 55,780 iterations, using a logarithmic x-axis. Selection and

pruning during GC extend some iterations up to two times because unmodified

GC adds significant overhead to iterations interrupted by GC, and selection

and pruning add additional overhead. However, long-term throughput stays

consistent.

7.5 Accuracy and Sensitivity

This section examines implementation considerations. It shows that (1)

the prediction mechanism in leak pruning is more accurate than just staleness

or ignoring data structure sizes, (2) its space overhead is small, and (3) com-

pletely exhausting memory before pruning can initially degrade performance

significantly.

158

7.5.1 Alternative Prediction Algorithms

This section evaluates whether our prediction algorithm’s complexity

is merited, by comparing it to two simpler alternatives:

Most stale. In the SELECT state, this algorithm identifies the highest stal-

eness level of any object. In the DELETE state, it prunes all references

to every object with this staleness level. This algorithm is the same

as Melt’s algorithm, which simply predicts that highly stale objects are

leaks. Other approaches that move objects to disk use the same pre-

dictor [BGH+07, GSW07, TGQ08]. LeakSurvivor also avoids moving

previously activated objects back to disk.

Individual references. This algorithm is similar to our default, except that

it elides the stale transitive closure. In SELECT, it updates the edge

table for every reference whose target object’s stale counter is at least 2

greater than maxStaleUse. Each update simply adds the size of the target

object to the edge type’s bytesUsed value. Thus, this algorithm identifies

individual leaked references, not leaked data structures.

The middle columns of Table 7.2 show the effectiveness of these prediction al-

gorithms measured in iterations. For example, EclipseCP with Indiv refs termi-

nates after 41 iterations because the algorithm selects and prunes highly stale

String→ char[] references. The program later tries to use one of these references.

In contrast, our default algorithm prunes reference types org.eclipse.jface.text.-

DefaultUndoManager$TextCommand → String and org.eclipse.jface.text.Document-

Event → String, automatically reclaiming the growing, leaked Strings without

accidentally deleting other live Strings. In general, our algorithm matches or

159

Alternative selection algorithms Edge
Leak Base Most stale Indiv refs Default types
EclipseCP 11 10 41 ≥1,115 2,203
EclipseDiff 259 228 3,380 ≥55,780 1,817
ListLeak 110 108 Same →≥2,788,755 56
SwapLeak 5 5 11 ≥11,368 83
MySQL 18 35 114 634 230
JbbMod 204 41 911 4,267 209
SPECjbb2000 135 97 625 632 197
Mckoi 44 47 71 72 308
DualLeak 145 149 144 143 69

Table 7.2: Effectiveness of several selection algorithms. The final col-
umn is space overhead from the edge table.

outperforms the others since (1) it considers references’ types (unlike Most

stale) and (2) it considers data structures (unlike Individual references, which

tries to identify each leaked reference type).

7.5.2 Space Overhead

Our implementation adds space overhead to store information about

edge types in the edge table. For simplicity, it uses a fixed-size table with 16K

slots using closed hashing [CLRS01]. Each slot has four words—source class,

target class, maxStaleUse, and bytesUsed—for a total of 256K. A production

implementation could size the table dynamically according to the number of

edge types. The last column of Table 7.2 shows the number of edge types used

by our implementation when it runs each leak. We simply measure the number

of edge types in the edge table at the end of the run, since we never remove

an edge type from the table. Eclipse is complex and uses a few thousand edge

types; the database and JBB leaks are real programs but less complex and

store hundreds of types; and the microbenchmark leaks store fewer than 100

160

0 200 400 600

Iteration

0

1

2

3

4

5

T
im

e
(s

)

Figure 7.9: Time per iteration for EclipseDiff when it must exhaust
memory prior to pruning.

edge types.

7.5.3 Full Heap Threshold

By default, our implementation starts pruning references when the heap

is 90% full (Section 7.1.2). However, the user can specify that leak pruning

wait to prune references until the heap is 100% full, i.e., when it is just about

to throw an out-of-memory error. Figure 7.9 shows the throughput of Eclipse-

Diff for its first 600 iterations using a 100% heap fullness threshold. The first

spike, at about 125 iterations, occurs because Eclipse slows significantly as GCs

become very frequent: each GC reclaims only a small fraction of memory, so

the next GC occurs soon after. Later spikes are smaller because leak pruning

prunes references when the heap is only 90% full (since the program has already

exhausted memory once); some of the overhead is due to the overhead of

selecting and pruning references. The spike is about 2.5X greater than the

other spikes, which may be a reasonable trade-off in order to run the program

as long as possible before commencing pruning.

161

7.6 Conclusion and Interpretation

Leak pruning closes the gap between reachability and liveness by pre-

dicting which objects constitute this gap and reclaiming them without chang-

ing semantics. It can tolerate unbounded memory with bounded resources in

many cases, which is particularly compelling for embedded systems without

disks, but can add value to any system. Our prediction algorithm performs

almost as well as any algorithm could do: except in one case, leak pruning

fails only due to live memory growth, which other semantics-preserving leak

tolerance approaches cannot handle.

Melt and leak pruning are complementary approaches. Melt makes full

use of system resources to provide strong availability guarantees, but it is lim-

ited by resource finiteness. Leak pruning conserves resources and has weaker

availability guarantees. A combination of the two approaches would work bet-

ter than either by using available disk space until full and then reclaiming

objects.

162

Chapter 8

Related Work

Bug diagnosis falls into two general categories: static and dynamic anal-

ysis. Static analysis suffers from scalability issues and false positives, and it

does not easily handle modern language features. Dynamic analysis finds bugs

in real executions, but most approaches add high time and space overhead, so

they are used in testing, where they miss behavior occurring only in deployed

runs. Liblit presents a framework for bug detection in deployment [Lib04].

His statistical, invariant-based approach finds different bugs than our flow

tracking-based approaches, and it requires multiple buggy instances whereas

our approaches need only one. Most prior work on tolerating bugs focuses

on nondeterministic errors. Prior work on tolerating leaks does not preserve

semantics, offers less coverage, or does not guarantee time and memory usage

remain proportional to live memory.

8.1 Static Analysis

By finding bugs in all possible executions, static analysis finds bugs

without having to execute the buggy code. Unfortunately, static analysis tools

often produce many false positives because they rely on coarse approximations

of dynamic program behavior, since path- and context-sensitive analysis is

often too expensive for large programs. Perhaps most problematic is pointer

analysis, which even at its most powerful makes significant approximations for

163

heap objects [WL04]. Dillig et al. present a fully path- and context-sensitive

data-flow analysis [DDA08], but it still produces false positives because its

pointer analysis makes significant approximations such as conflating all heap

objects into a single node. Shape analysis models the structure of the heap

but has not been successfully applied to real, large programs.

Previous bug detection work includes a number of practical static anal-

ysis tools for detecting bugs. Pattern-based systems such as PMD are ef-

fective at identifying potential null dereferences but lack the dataflow anal-

ysis often needed to identify the reason for the bug [PMD]. FindBugs uses

data-flow analysis to identify null dereferences and includes a notion of con-

fidence to reduce the false positive rate, although this also results in false

negatives [HP04, HSP05]. ESC/Java employs a theorem prover to check that

pointer dereferences are non-null [FLL+02]. Both FindBugs and ESC/Java

are primarily intraprocedural and rely on user annotations to eliminate false

positives due to method parameters and return values. JLint and Metal

include an interprocedural component to track the states of input parame-

ters [HCXE02, Jli]. Several of these detectors are made intentionally unsound

to reduce the false positive rate. This choice allows code with bugs to pass

silently through the system and fail at run time.

Prior work uses static analysis to find memory leaks in C and C++

programs but reports false positives since it makes conservative assumptions

about control flow [CPR07, HL03]. Prior work identifies lost (unreachable and

unfreed) objects, whereas we focus on leaks due to useless (reachable but dead)

objects. Detecting useless objects statically seems inherently very challenging.

Our dynamic approaches complement static analyses. Because they

make approximations with respect to context- and path-sensitivity and the

164

heap, static analyses have trouble finding bugs that involve long sequences of

control or data flow. Dynamic approaches can diagnose these more complex

bugs that static tools miss. For example, thin slicing provides programmers

with statements that affect value of interest, but within a limited scope in

order to avoid reporting too many false positives [SFB07]. Thin slicing helps

programmers find some bugs, but origin tracking can find the causes of the

remaining bugs that involve arbitrarily long data and control flow. On balance,

origin tracking’s bug focus is narrower, and it identifies the origin only and

not intervening flow.

Modern languages include features such as dynamic dispatch, reflection,

and dynamic class loading that complicate static analysis since control flow is

unclear before run time. In the case of dynamic class loading, the code may

not even be available at analysis time.

8.2 Dynamic Analysis

Dynamic analysis, the dual of static analysis, finds bugs in real program

executions. Testing runs do not exercise all program behavior that occurs in

deployment, but most existing dynamic analyses are too expensive for deployed

use.

8.2.1 Pre-Release Testing Tools

Valgrind [NS07] and Purify [HJ92] find errors such as memory cor-

ruption, memory leaks, and uses of undefined values in C and C++ pro-

grams [HJ92, NS07]. They add heavyweight instrumentation at every memory

access, allocation, and free, and use conservative garbage collection to find lost

objects. These tools have overheads from 2x to 20x, coupled with high per-

165

object space overhead. They are too expensive for production runs; they target

testing runs and provide high accuracy and versatility.

8.2.2 Invariant-Based Bug Detection

Invariant-based bug detection (also called anomaly-based bug detec-

tion and statistical bug isolation) uses multiple program runs to identify pro-

gram behavior features correlated with errors [EPG+07, HL02, Lib04, LTQZ06,

ZLF+04]. Our work is complementary to these approaches since they have dif-

ferent usage models and can detect different types of bugs. Whereas invariant-

based bug detection requires multiple executions with multiple inputs (AVIO

can use the same inputs [LTQZ06]), our approaches require just one buggy

execution. Our approach is thus applicable to software that has few running

instances that fail infrequently (e.g., fighter jet software).

PCC could add low-overhead dynamic context sensitivity to existing

invariant-based bug detection systems, which generally have not used context

sensitivity because of its previous cost. Invariant-based bug detection already

adds overhead too high for deployed use [EPG+07, HL02], requires many users

experiencing a bug to identify its cause [LNZ+05], or relies on hardware to

achieve low overhead [LTQZ06, ZLF+04]. Artemis lowers the overhead of

these tools by limiting profiling to infrequently-executed “contexts,” which

include input variables’ values but not calling context [FM06]. PCC could

efficiently add calling context to Artemis’s context computation.

8.2.3 Tracking Control and Data Flow

Our bug diagnosis approaches track control and data flow and the re-

lationship between them, which are fundamental to program understanding.

166

Dynamic program slicing tracks the statements that affect a value via

control, data dependencies, or omitted statements [AH90, NM03, ZGG06,

ZTGG07]. It adds high overheads (e.g., 10-100x slowdowns). Origin track-

ing and Bell limit which data they track but add overhead low enough for

deployed systems.

TraceBack records a fixed amount of recent control flow (similar to

dynamic slicing but without data flow) during execution and reports it in the

event of a crash [ASM+05]. In contrast, origin tracking provides the data-

flow origin of the faulting value; and PCC summarizes new interprocedural

control-flow throughout execution rather than just before the fault.

TaintCheck is a security tool that tracks which values are tainted (i.e.,

from untrusted sources) and detects if they are used in dangerous ways [NS05].

TaintCheck shadows each byte, recording for each tainted value: the system

call from which it originated, a stack trace, and the original tainted value.

Thus TaintCheck uses a form of explicit origin tracking that requires both

extra space and time (extra operations are required to propagate the taint

values). Value piggybacking would not be appropriate for TaintCheck because

tainted values cannot have other values piggybacked onto them as they do not

in general have spare bits.

8.2.4 Diagnosing Memory Leaks

Leak detectors for native languages find leaks by tracking heap reach-

ability or application accesses to the heap. Prior leak detectors for managed

languages infer leaks from dynamic heap growth. Our leak diagnosis and tol-

erance approaches predict leaks based on application accesses to the heap.

167

Leak Detection for Native Languages

Dynamic tools for C and C++ track allocations, heap updates, and

frees to report unfreed objects [HJ92, MRB04, NS07] or track object accesses

to report stale objects [CH04, QLZ05].

SWAT finds leaks in C and C++ programs by guessing that stale ob-

jects (objects not used in a while by the program) are leaks [CH04]. Our

leak detection and tolerance approaches borrow SWAT’s staleness approach

to find leaks. SWAT adds several words of space overhead per object, while

our leak detector uses Bell to save space but cannot report sites that do not

leak many objects due to its statistical nature. For C programs that allocate

and custom-manage large chunks of memory [BZM02], SWAT has low space

overhead. On the C benchmark twolf, which allocates many small objects,

SWAT adds 75% space overhead. Many native programs and most managed

programs heap-allocate many small objects (24-32 bytes per object on aver-

age [DH99]), where Bell’s space-efficient mechanism offers substantial space

advantages.

SafeMem employs a novel use of error-correcting code (ECC) memory

to monitor memory accesses in C programs, in order to find leaks and catch

some types of memory corruption [QLZ05]. For efficiency, ECC memory mon-

itors only a subset of objects, which SafeMem finds by grouping objects into

types and using heuristics that identify potentially leaking types.

Leak Detection for Managed Languages

JRockit [Orab],JProbe [Que], LeakBot [MS03], Cork [JM07], and .NET

Memory Profiler [Sci] are among the many tools that find memory leaks in

Java and C# programs. These tools use heap growth and heap differencing to

168

find objects that cause the heap to grow. JRockit provides low-overhead trend

analysis, which reports growing types to the user. At the cost of more overhead,

JRockit can track and report the instances and types that are pointing to

growing types, as well as object allocation sites. LeakBot takes heap snapshots

and uses an offline phase to compare the snapshots. It uses heuristics based

on common leak paradigms to insert instrumentation at run time.

These tools use growth as a heuristic to find leaks, which may result in

false positives (growing data structures or types that are not leaks) and false

negatives (leaks that are not growing). Our approaches use staleness (time

since last use) to find all memory the application is not using, although they

cannot find live heap growth that the program is using. Our leak detector may

report false positives if non-leaking memory is not used for a while, although

these reports probably indicate poor memory usage.

8.2.5 Work Related to Bell

Per-object information. An alternative to Bell’s statistical approach is to

store un-encoded per-object information for a sample of objects (e.g., dynamic

object sampling [JBM04]). Sampling avoids Bell encoding and decoding but

still adds some space overhead and requires conditional instrumentation that

checks whether an object is in the sampled set.

Instrumentation Optimization. Our leak detector uses data-flow analysis

to find partially and fully redundant instrumentation at object uses, and it

removes fully redundant instrumentation. The instrumentation at object uses

(reads) is called a read barrier [BH04]. Prior work studies the overheads of a

variety of read barriers and finds lightweight barriers can be cheap (5 to 8%

169

overhead on average), but more complex barriers are expensive (15 to 20%

on average) [BCR03, BH04, Zor90]. Bacon et al. use common subexpression

elimination to remove fully redundant read barriers, which reduces average

overhead from 6 to 4% on PowerPC [BCR03]. Since our leak detector includes

a load, store, and two multiplies, redundancy elimination still does not reduce

its overhead to the levels in previous work.

Information theory and communication complexity. Bell encoding

and decoding are related to concepts in information theory and communication

complexity [CT91, KN96]. For example, a well-known idea in communication

complexity is that two bit strings can share just one bit with each other to

determine if they are the same string: they both hash against the same public

key, and a non-match indicates they are different, while a match is inconclu-

sive [KN96]. Extracting random bits from two weakly random input sources

(Bell’s encoding function) is a well-studied area in communication complex-

ity [CG88]. We are not aware of any work that probabilistically encodes and

decodes program behavior as Bell does.

8.2.6 Work Related to Probabilistic Calling Context

This section discusses prior work in calling context profiling. It first

considers stack-walking, then heavyweight approaches that construct a calling

context tree (CCT), and finally sampling-based approaches. We also consider

related forms of profiling.

Walking the stack. One approach for identifying the current calling con-

text is to walk the program stack, then look up the corresponding calling con-

170

text identifier in a calling context tree (CCT) [NS07, SN05]. Unfortunately,

walking the stack more than very infrequently is too expensive for production

environments, as shown in Section 3.4.4.

Calling context tree. An alternative approach to walking the stack is to

build a dynamic calling context tree (CCT) where each node in the CCT

is a context, and maintain the current position in the CCT during execu-

tion [ABL97, Spi04]. This instrumentation slows C programs down by a factor

of 2 to 4. The larger number of contexts in Java programs and the compile-time

uncertainty of virtual dispatch further increase CCT time and space overheads.

CCT nodes are 100 to 500 bytes in previous work, whereas PCC values are

very compact in comparison, since each one only needs 32 or 64 bits, and

storing them in a half-full hash table achieves good run-time performance, as

shown in Section 3.4.4.

Sampling-based approaches. Sampling-based and truncation approaches

keep overhead low by identifying the calling context infrequently [BM06a,

FMCF05, HG03, Wha00, ZSCC06]. Clients use hot context information for

optimizations such as context-sensitive inlining [HG03] and context-sensitive

allocation sites for better object lifetime prediction and region-based alloca-

tion [ISF06, SZ98]. Hazelwood and Grove sample the stack periodically to

collect contexts to drive context-sensitive inlining [HG03]. Zhuang et al. im-

prove on sampling-based stack-walking by performing bursty profiling after

walking the stack, since it is relatively cheap to update the current position in

the CCT on each call and return for a short time [ZSCC06]. Bernat and Miller

limit profiling to a subset of methods [BM06a]. Froyd et al. use unmodified bi-

naries and achieve extremely low overhead through stack sampling [FMCF05].

171

Sampling is useful for identifying hot calling contexts, but it is not suitable

for clients such as testing, security, and debugging because sampling sacrifices

coverage, which is key for these clients.

Although PCC primarily targets clients requiring high coverage, it

could potentially improve the accuracy-overhead trade-off of sampling-based

approaches. Zhuang et al.’s calling context profiling approach avoids perform-

ing bursty sampling at already-sampled calling contexts [ZSCC06]. Currently

they walk the stack to determine if the current context has been sampled

before, but instead they could use PCC to quickly determine, with high prob-

ability, if they have already sampled a calling context.

Dynamic call graph profiling. Dynamic optimizers often profile call edges

to construct a dynamic call graph (DCG) [AHR01, LRBM07, QH04, SYK+01],

which informs optimizations such as inlining. DCGs lack context sensitivity

and thus provide less information than calling context profiles.

Path profiling. Ball-Larus path profiling computes a unique number on

each possible path in the control flow graph [BL96]. An intriguing idea is ap-

plying path profiling instrumentation to the dynamic call graph and computing

a unique number for each possible context. This approach is problematic be-

cause call graphs, which have thousands of nodes for our benchmarks, are

typically much larger than control flow graphs (CFGs). The number of possi-

ble paths both through CFGs and call graphs is exponential in the size of the

graph in practice, so the statically possible contexts cannot be assigned unique

32- or even 64-bit values. Other challenges include: (1) recursion, which leads

to cyclic graphs; (2) dynamic class loading, which modifies the graph at run

172

time; and (3) virtual dispatch, which obscures call targets and complicates call

edge instrumentation. Wiedermann computes a unique number per context at

run time by applying Ball-Larus path numbering to the call graph, but does

not evaluate whether large programs can be numbered uniquely [Wie07]. His

approach uses C programs, avoiding the challenges of dynamic class loading

and virtual dispatch, and handles recursion by collapsing strongly-connected

components in the call graph. Melski and Reps present interprocedural path

profiling that captures both inter- and intraprocedural control flow, but their

approach does not scale because it adds complex call edge instrumentation, and

there are too many statically possible paths for nontrivial programs [MR99].

As Section 3.1 points out, much prior work uses path profiling to un-

derstand dynamic behavior in testing, debugging, and security, but dynamic

object-oriented languages need calling context, too, since it captures impor-

tant behavior. Paths and calling contexts are complementary since paths cap-

ture intraprocedural control flow while calling context provides interprocedural

control flow. One could imagine combining PCC and path profiling for best-

of-both-worlds approaches in residual testing, invariant-based bug detection,

and anomaly-based intrusion detection.

8.3 Tolerating Bugs

Most prior work on tolerating bugs focuses on nondeterministic errors,

including memory corruption errors sensitive to layout. A common response

to failure is to restart the application, but this approach does not work in

general, for example, for mission-critical or autonomous systems. Prior work

tolerates memory leaks but does not preserve semantics or does not scale.

173

8.3.1 Avoiding Bugs

An attractive alternative to tolerating bugs is to provide language sup-

port to help programmers avoid code with bugs in the first place. Unfor-

tunately most approaches require additional programmer effort and are not

fool-proof.

Chalin and James propose extending Java with “never null” pointer

types, which are the default, and requiring “possibly null” pointers to be

annotated specially [CJ06]. This feature makes it harder to forget to initialize

pointers, but as long as null pointers are possible, the problem can still occur.

HeapSafe helps C programmers by ensuring correct manual memory

management with dynamic reference counting of heap objects [GEB07]. It

also adds a language feature called delayed free scopes, during which dangling

references can exist. The approach adds run-time overhead and helps manual

memory management bugs only.

To help programmers avoid leaks and manage large heaps, the Java

language definition provides weak and soft references. The collector always

reclaims weakly-referenced objects, and it reclaims softly-referenced objects if

the application experiences memory pressure [Goe05, Goe06]. Inserting soft

and weak references adds to the development burden, and programmers may

still cause a leak by forgetting to eliminate the last strong (not weak or soft)

reference.

8.3.2 Tolerating General Bugs

DieHard, Rx, Grace, and Atom-Aid tolerate nondeterministic errors

due to memory corruption and concurrency bugs [BYL+08, BZ06, LDSC08,

174

QTSZ05]. Rx rolls back to a previous state and tries to re-execute in a different

environment. DieHard uses random memory allocation, padding, and redun-

dancy to probabilistically decrease the likelihood of errors [BZ06, QTSZ05].

Grace and Atom-Aid tolerate some concurrency bugs by using block-atomic ex-

ecution to reduce or eliminate the occurrence of buggy interleavings [BYL+08,

LDSC08].

Failure-oblivious computing tolerates general failure bugs. It ignores

out-of-bound writes and manufactures values for out-of-bounds reads. Its ap-

proach could also tolerate failure bugs in type-safe languages, such as null

pointer and array out-of-bounds errors, by simply ignoring them [RCD+04].

8.3.3 Tolerating Memory Leaks

Prior work for tolerating memory leaks either does not preserve seman-

tics, does not offer full coverage, or does not scale.

Tolerating Memory Pressure

Many VMs dynamically size the heap based on application behavior.

For example, some approaches adaptively trigger GC or resize the heap in

order to improve GC performance and program locality [CBC+06, XSaJ07,

YBKM06, YHB+04].

When the application’s heap size exceeds its working set size, book-

marking collection reduces collection overhead [HFB05]. It cooperates with

the operating system to bookmark swapped-out pages by marking in-memory

objects they reference as live. The garbage collector then never visits book-

marked pages. Bookmarking can compact the heap but cannot move objects

referenced by bookmarked pages. It tracks staleness on page granularity. Melt

175

instead uses object granularity, grouping and isolating leaking objects.

Static liveness detection of GC roots can reduce the drag between when

objects die and when they are collected [HDH02] but cannot deal with objects

that are dead but reachable.

Leaks in Native Languages

Cyclic memory allocation tolerates leaks in C and C++ by limiting

allocation sites to m live objects at a time [NR07]. Profiling runs determine

m for each allocation site, and subsequent executions allocate into m-sized

circular buffers. Cyclic memory allocation does not preserve semantics since

the program is silently corrupted if it uses more than m objects, although

failure-oblivious computing [RCD+04] mitigates the effects in some cases.

Plug tolerates leaks in C and C++ with an allocator that segregates

objects by age and allocation site, increasing the likelihood that leaked and

in-use objects will reside on distinct pages [NBZ08]. Plug deals with later

fragmentation via virtual compaction, which maps two or more virtual pages to

the same physical page if the allocated slots on the pages do not overlap. Plug’s

approach helps native languages since objects cannot move, but collectors in

managed languages can reorganize objects. In addition, segregating leaked and

in-use objects is insufficient for managed languages since tracing collectors by

default access the whole heap.

Leaks in Managed Languages

Like Melt, LeakSurvivor and Panacea tolerate leaks by transferring po-

tentially leaked objects to disk [BGH+07, GSW07, TGQ08]. They reclaim

virtual and physical memory and modify the collector to avoid accessing ob-

176

jects moved to disk.

Panacea supports moving stale objects to disk [BGH+07, GSW07]. The

approach requires annotations for objects that can be moved to disk, and these

objects must be serializable to get put on disk. Panacea does not scale for

small, stale objects—which we find are frequent leak culprits—because it uses

proxy objects for swapped-out objects. An advantage of Panacea is that it is

implemented at the library level and needs no VM modifications.

LeakSurvivor [TGQ08] is the closest related work to Melt and is con-

current work with Melt. Both approaches free up virtual and physical memory

by transferring highly stale objects to disk, and both preserve semantics by

returning accessed disk objects to memory. Unlike Melt, LeakSurvivor cannot

guarantee space and time proportional to in-use memory because references

from stale to in-use objects continue to use space even if the in-use objects

become stale. In particular, entries in LeakSurvivor’s Swap-Out Table (SOT)

(similar to Melt’s scion table) cannot be eliminated if the target object moves

to disk, since incoming pointers from disk are unknown. In contrast, Melt

uses two levels of indirection, stub-scion pairs, to eliminate scions referencing

objects later moved to the stale space (Section 6.1.2). For the three leaks eval-

uated in LeakSurvivor, the SOT grows only slightly, but it is unclear if they

grow proportionally to the leak since the experiments are terminated after

two hours, before the leaks would have filled the disk. Melt adds less overhead

than LeakSurvivor to identify stale objects (6% vs. 21%) since LeakSurvivor

accesses an object’s header on each read, while Melt uses referenced-based

conditional read barriers to avoid accessing object headers in the common

case.

Melt, LeakSurvivor, and Panacea preserve semantics since they retrieve

177

objects from disk if the program accesses them. Since they retrieve objects

from disk, the prediction mechanisms do not have to be perfect, just usually

right. If the systems are too inaccurate, performance will suffer. All will even-

tually exhaust disk space and crash. Leak pruning, on the other hand, requires

perfect prediction to defer a leak successfully. Consequently, it uses a more

sophisticated algorithm for predicting dead objects (Section 7.5.1 compares

leak pruning’s prediction algorithm to the algorithm used in prior work that

uses the disk). Leak pruning is potentially less tolerant of errors because it

must throw an error if it makes a mistake, but we find this happens for only

one leak. In its favor, leak pruning uses bounded resources, making it suitable

when disk space runs out or no disk is available (e.g., embedded systems).

8.3.4 Related Work for Melt: Orthogonal Persistence and Dis-
tributed GC

Melt uses mechanisms that have been used in orthogonal persistence,

distributed garbage collection, and other areas. Orthogonal persistence uses

object faulting, pointer swizzling, and read barriers to support transparent

storage of objects on disk [ADJ+96, HC99, HM93, MBMZ00, ZBM01]. Pointer

swizzling can also be used to support huge address spaces [Mos92, Wil91].

Our implementation uses swizzling to support a 64-bit disk space on a 32-

bit platform. Read barriers are widely used in concurrent garbage collec-

tors [BCR03, BH04, DLM+78, HNCB99, PFPS07, Zor90]. Distributed collec-

tors use stub-scion pairs for references between machines [Pla94]. We use stub-

scion pairs to support references from stale to in-use objects. Although Melt

borrows existing mechanisms, previous work does not combine these mech-

anisms in the same way as Melt, i.e., to identify, isolate, and activate stale

memory.

178

In complex programs, dynamic analysis finds bugs that static analysis

misses since it approximates at data and control flow merge points. Most

dynamic analysis approaches are only suitable for testing time since they add

high overhead, whereas ours have low enough overhead for deployed use. Most

prior work on tolerating bugs targets failures due to nondeterministic bugs

and memory bugs. Unlike previous approaches, our leak tolerance approaches

preserve semantics and guarantee time and memory usage proportional to in-

use memory.

179

Chapter 9

Conclusion

This dissertation concludes with a summary of the work presented and

a discussion of future work.

9.1 Summary

Deployed software contains bugs because complexity makes it hard to

write correct code and to fully validate or exhaustively test software prior to

deployment. These bugs cause software to fail, wasting billions of dollars and

sometimes threatening human life. The uncertainty of software is impeding

a future where society can reap benefits from increased reliance on software

systems.

We argue that deployment is an ideal and necessary environment for

both diagnosing and tolerating bugs. We show that unlike most prior ap-

proaches, ours add modest overhead, and they help developers find and fix

bugs and help users deal with buggy software. Our diagnosis approaches track

control and data flow throughout the program, in order to report culprit code

and data if the program fails. This information helps programmers understand

the program operations directly responsible for the failure. These approaches

rely on novel insights into how to track control and data flow efficiently and

usefully. Our leak tolerance approaches help several programs run indefinitely

180

or significantly longer by removing likely leaked objects from the working set

of the application and garbage collector. They help close the gap between live-

ness and reachability by predicting dead objects while preserving semantics.

Several of these approaches are ready for immediate adoption in de-

ployed systems, where they would help developers and users with existing

bugs. More broadly, the efficiency and effectiveness of our approaches demon-

strate the viability of diagnosing and tolerating bugs at deployment time.

They point to a future where developers routinely use powerful approaches to

find and fix elusive bugs occurring only at deployment time, and users eagerly

use automatic tolerance approaches to help them get the most out of buggy

software.

9.2 Future Work

We have demonstrated the potential of using PCC to add dynamic

context sensitivity to analyses that detect new or anomalous behavior, such as

residual testing, invariant-based bug detection, and anomaly-based intrusion

detection (Section 3.1). Future work could demonstrate the viability of using

PCC for these clients and quantify the usefulness of context sensitivity for

improving these applications. We are currently working toward using PCC to

help detect intrusions that involve anomalous contexts. We are also developing

an approach for reconstructing calling contexts from PCC values (PCC values

as presented here are not reversible). This new approach would add context

sensitivity to any dynamic analysis, including Bell and origin tracking.

Section 4.4.5 discusses several opportunities for future work on Bell.

They include lower-overhead read barriers modeled on our leak tolerance bar-

riers; considering type compatibility between sites and objects during decoding

181

to improve accuracy and decrease decoding time; and demonstrating Bell in a

generational mark-sweep collector.

Melt and leak pruning are complementary approaches that should be

combined. Melt provides availability guarantees, but growing leaks eventually

fill the disk. When this happens, leak pruning could reclaim some on-disk

objects. With more time to observe program behavior, leak pruning is likely

to make better decisions. Melt simply predicts that highly stale objects are

leaks, which incurs high activation overhead if many highly stale objects are

live. Melt could benefit from leak pruning’s more precise prediction algorithm

to identify highly stale objects that are likely to be used again.

Our leak tolerance approaches handle leaks due to dead, not live, ob-

jects. If the program continues to access leaked objects, moving them to disk or

collecting them is not possible. In several cases, programs keep leaked objects

alive inadvertently when the underlying data structures access the objects.

For example, two programs from Chapters 6 and 7 use a hash table containing

leaked objects that the programs do not access again. However, when the

hash table grows, it re-hashes and thus accesses all its objects. We propose

the design of leak-tolerant data structures that avoid accessing objects that the

program is not using. A leak-tolerant hash table could store stale entries sep-

arately from other entries (e.g., in a linked list). To preserve semantics, get()

and put() operations need to check for equality with other key objects in the

hash table. However, the VM could avoid equality checks in certain cases. If

the equals() method is the default Object.equals(), then the VM knows based on

the object’s address whether it is on disk or has been collected automatically.

The VM could handle other cases by summarizing the stale objects and sym-

bolically executing equals() on an over-approximated, abstract representation

182

of all stale objects in the hash table.

183

Bibliography

[AAB+00] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,

J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, Susan Flynn

Hummel, D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell,

V. Sarkar, M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar,

H. Srinivasan, and J. Whaley. The Jalapeño Virtual Machine.

IBM Systems Journal, 39(1):211–238, 2000.

[ABL97] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting

Hardware Performance Counters with Flow and Context Sensitive

Profiling. In ACM Conference on Programming Language Design

and Implementation, pages 85–96, Las Vegas, NV, 1997.

[ADJ+96] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and

S. Spence. An Orthogonally Persistent Java. SIGMOD Rec.,

25(4):68–75, 1996.

[AFG+00] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind,

and Peter F. Sweeney. Adaptive Optimization in the Jalapeño

JVM. In ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 47–65, 2000.

[AH90] H. Agrawal and J. R. Horgan. Dynamic Program Slicing. In ACM

Conference on Programming Language Design and Implementation,

pages 246–256, 1990.

184

[AH02] Taweesup Apiwattanapong and Mary Jean Harrold. Selective Path

Profiling. In ACM Workshop on Program Analysis for Software

Tools and Engineering, pages 35–42, 2002.

[AHR01] Matthew Arnold, Michael Hind, and Barbara G. Ryder. An

Empirical Study of Selective Optimization. In International

Workshop on Languages and Compilers for Parallel Computing,

pages 49–67, London, UK, 2001. Springer-Verlag.

[All01] Eric Allen. Diagnosing Java Code: The Dangling Composite bug

pattern. http:

//www-128.ibm.com/developerworks/java/library/j-diag2/,

2001.

[Apa] Apache Software Foundation. Commons-Math: The Apache

Commons Mathematics Library.

http://commons.apache.org/math/.

[ASM+05] Andrew Ayers, Richard Schooler, Chris Metcalf, Anant Agarwal,

Junghwan Rhee, and Emmett Witchel. TraceBack: First Fault

Diagnosis by Reconstruction of Distributed Control Flow. In ACM

Conference on Programming Language Design and Implementation,

pages 201–212, 2005.

[Bal01] T. Ball. The SLAM Toolkit: Debugging System Software via

Static Analysis, 2001.

[BC94] Preston Briggs and Keith D. Cooper. Effective Partial

Redundancy Elimination. In ACM Conference on Programming

Language Design and Implementation, pages 159–170, 1994.

185

[BCM04] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley.

Oil and Water? High Performance Garbage Collection in Java with

MMTk. In ACM International Conference on Software

Engineering, pages 137–146, 2004.

[BCR03] D. Bacon, P. Cheng, and V. Rajan. A Real-Time Garbage

Collector with Low Overhead and Consistent Utilization. In ACM

Symposium on Principles of Programming Languages, pages

285–298, 2003.

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.

Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,

A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,

and B. Wiedermann. The DaCapo Benchmarks: Java

Benchmarking Development and Analysis. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 169–190, 2006.

[BGH+07] David Breitgand, Maayan Goldstein, Ealan Henis, Onn Shehory,

and Yaron Weinsberg. PANACEA–Towards a Self-Healing

Development Framework. In Integrated Network Management,

pages 169–178, 2007.

[BH04] Stephen M. Blackburn and Antony L. Hosking. Barriers: Friend or

Foe? In ACM International Symposium on Memory Management,

pages 143–151, 2004.

[Bin97] D. Binkley. Semantics Guided Regression Test Cost Reduction.

IEEE Transactions on Software Engineering, 23(8):498–516, 1997.

186

[BL96] Thomas Ball and James R. Larus. Efficient Path Profiling. In

IEEE/ACM International Symposium on Microarchitecture, pages

46–57, 1996.

[BM06a] Andrew R. Bernat and Barton P. Miller. Incremental Call-Path

Profiling. Concurrency and Computation: Practice and Experience,

2006.

[BM06b] Michael D. Bond and Kathryn S. McKinley. Bell: Bit-Encoding

Online Memory Leak Detection. In ACM International Conference

on Architectural Support for Programming Languages and

Operating Systems, pages 61–72, 2006.

[BM07] Michael D. Bond and Kathryn S. McKinley. Probabilistic Calling

Context. In ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 97–112, 2007.

[BM08] Michael D. Bond and Kathryn S. McKinley. Tolerating Memory

Leaks. In ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 109–126, 2008.

[BM09] Michael D. Bond and Kathryn S. McKinley. Leak Pruning. In

ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2009. To appear.

[BNK+07] Michael D. Bond, Nicholas Nethercote, Stephen W. Kent,

Samuel Z. Guyer, and Kathryn S. McKinley. Tracking Bad Apples:

Reporting the Origin of Null and Undefined Value Errors. In ACM

Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 405–422, 2007.

187

[BYL+08] Emery D. Berger, Ting Yang, Tongping Liu, Divya Krishnan, and

Gene Novark. Grace: Safe and Efficient Concurrent Programming.

Technical Report UM-CS-2008-017, University of Massachusetts,

2008.

[BZ06] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic

Memory Safety for Unsafe Languages. In ACM Conference on

Programming Language Design and Implementation, pages

158–168, 2006.

[BZM02] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley.

Reconsidering Custom Memory Allocation. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 1–12, 2002.

[CBC+06] W. Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and

Weihaw Chuang. Profile-guided Proactive Garbage Collection for

Locality Optimization. In ACM Conference on Programming

Language Design and Implementation, pages 332–340, 2006.

[CG88] Benny Chor and Oded Goldreich. Unbiased Bits from Sources of

Weak Randomness and Probabilistic Communication Complexity.

SIAM J. Comput., 17(2):230–261, 1988.

[CG06a] A. Chakrabarti and P. Godefroid. Software Partitioning for

Effective Automated Unit Testing. In ACM & IEEE International

Conference on Embedded Software, pages 262–271, 2006.

[CG06b] Trishul M. Chilimbi and Vinod Ganapathy. HeapMD: Identifying

Heap-based Bugs using Anomaly Detection. In ACM International

188

Conference on Architectural Support for Programming Languages

and Operating Systems, pages 219–228, 2006.

[CH04] Trishul M. Chilimbi and Matthias Hauswirth. Low-Overhead

Memory Leak Detection Using Adaptive Statistical Profiling. In

ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 156–164,

2004.

[CJ06] Patrice Chalin and Perry James. Non-null references by default in

java: Alleviating the nullity annotation burden. Technical Report

2006-003, Concordia University, 2006.

[CKV+03] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,

B. Mathiske, and M. Wolczko. Heap Compression for

Memory-Constrained Java Environments. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 282–301, 2003.

[Cli08] Cliff Click. Blog entry, January 2008. http://blogs.

azulsystems.com/cliff/2008/01/adding-transact.html.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms, chapter 11. The MIT

Press, McGraw-Hill Book Company, 2nd edition, 2001.

[CPR07] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina.

Practical Memory Leak Detection using Guarded Value-Flow

Analysis. In ACM Conference on Programming Language Design

and Implementation, pages 480–491, 2007.

189

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory.

John Wiley & Sons, 1991.

[CTW05] Cliff Click, Gil Tene, and Michael Wolf. The Pauseless GC

Algorithm. In ACM/USENIX International Conference on Virtual

Execution Environments, pages 46–56, 2005.

[DaC] DaCapo Benchmark Regression Tests.

http://jikesrvm.anu.edu.au/~dacapo/.

[DDA08] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, Complete and

Scalable Path-Sensitive Analysis. In ACM Conference on

Programming Language Design and Implementation, pages

270–280, 2008.

[DH99] S. Dieckmann and U. Hölzle. A Study of the Allocation Behavior

of the SPECjvm98 Java Benchmarks. In European Conference on

Object-Oriented Programming, pages 92–115, 1999.

[DLM+78] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten,

and E. F. M. Steffens. On-the-Fly Garbage Collection: An

Exercise in Cooperation. Communications of the ACM,

21(11):966–975, November 1978.

[Ecla] Eclipse Bug System Home Page.

http://www.eclipse.org/bugs/.

[Eclb] Eclipse.org Home. http://www.eclipse.org/.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen

McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao.

190

The Daikon System for Dynamic Detection of Likely Invariants.

Science of Computer Programming, 69(1–3):35–45, 2007.

[FKF+03] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke

Lee, and Weibo Gong. Anomaly Detection Using Call Stack

Information. In IEEE Symposium on Security and Privacy,

page 62. IEEE Computer Society, 2003.

[FL05] J. Fenn and A. Linden. Hype Cycle Special Report for 2005.

Gartner Group, 2005.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg

Nelson, James B. Saxe, and Raymie Stata. Extended Static

Checking for Java. In ACM Conference on Programming Language

Design and Implementation, pages 234–245, 2002.

[FM06] Long Fei and Samuel P. Midkiff. Artemis: Practical Runtime

Monitoring of Applications for Execution Anomalies. In ACM

Conference on Programming Language Design and Implementation,

pages 84–95, 2006.

[FMCF05] Nathan Froyd, John Mellor-Crummey, and Rob Fowler.

Low-Overhead Call Path Profiling of Unmodified, Optimized Code.

In ACM International Conference on Supercomputing, pages 81–90,

2005.

[GEB07] David Gay, Rob Ennals, and Eric Brewer. Safe Manual Memory

Management. In ACM International Symposium on Memory

Management, pages 2–14, 2007.

191

[GKS90] Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir.

Randomized Incremental Construction of Delaunay and Voronoi

Diagrams. In Colloquium on Automata, Languages and

Programming, pages 414–431, 1990.

[GKS+04] Nikola Grcevski, Allan Kielstra, Kevin Stoodley, Mark G.

Stoodley, and Vijay Sundaresan. Java Just-in-Time Compiler and

Virtual Machine Improvements for Server and Middleware

Applications. In Virtual Machine Research and Technology

Symposium, pages 151–162, 2004.

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

Automated Random Testing. In ACM Conference on Programming

Language Design and Implementation, pages 213–223, 2005.

[Goe05] Brian Goetz. Plugging memory leaks with weak references, 2005.

http://www-128.ibm.com/developerworks/java/library/

j-jtp11225/.

[Goe06] Brian Goetz. Plugging memory leaks with soft references, 2006.

http://www-128.ibm.com/developerworks/java/library/

j-jtp01246.html.

[GP05] Satish Chandra Gupta and Rajeev Palanki. Java memory leaks –

Catch me if you can, 2005.

http://www.ibm.com/developerworks/rational/library/05/

0816_GuptaPalanki/index.html.

[Gro00] William Gropp. Runtime Checking of Datatype Signatures in

MPI. In European PVM/MPI Users’ Group Meeting on Recent

192

Advances in Parallel Virtual Machine and Message Passing

Interface, pages 160–167, London, UK, 2000. Springer-Verlag.

[GSW07] Maayan Goldstein, Onn Shehory, and Yaron Weinsberg. Can

Self-Healing Software Cope With Loitering? In International

Workshop on Software Quality Assurance, pages 1–8, 2007.

[HBM+04] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley,

J. Eliot B. Moss, Zhenlin Wang, and Perry Cheng. The Garbage

Collection Advantage: Improving Program Locality. In ACM

Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 69–80, 2004.

[HC99] Antony L. Hosking and Jiawan Chen. PM3: An Orthogonal

Persistent Systems Programming Language – Design,

Implementation, Performance. In International Conference on

Very Large Data Bases, pages 587–598, 1999.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A

System and Language for Building System-Specific, Static

Analyses. In ACM Conference on Programming Language Design

and Implementation, pages 69–82, 2002.

[HDH02] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the

Usefulness of Type and Liveness Accuracy for Garbage Collection

and Leak Detection. ACM Transactions on Programming

Languages and Systems, 24(6):593–624, 2002.

[Her08] Matthew Hertz, 2008. Personal communication.

193

[HFB05] Matthew Hertz, Yi Feng, and Emery D. Berger. Garbage

Collection without Paging. In ACM Conference on Programming

Language Design and Implementation, pages 143–153, 2005.

[HG03] Kim Hazelwood and David Grove. Adaptive Online

Context-Sensitive Inlining. In IEEE/ACM International

Symposium on Code Generation and Optimization, pages 253–264,

2003.

[HJ92] Reed Hastings and Bob Joyce. Purify: Fast Detection of Memory

Leaks and Access Errors. In Winter USENIX Conference, pages

125–136, 1992.

[HL02] Sudheendra Hangal and Monica S. Lam. Tracking Down Software

Bugs Using Automatic Anomaly Detection. In ACM International

Conference on Software Engineering, pages 291–301, 2002.

[HL03] David L. Heine and Monica S. Lam. A Practical Flow-Sensitive

and Context-Sensitive C and C++ Memory Leak Detector. In

ACM Conference on Programming Language Design and

Implementation, pages 168–181, 2003.

[HM93] Antony L. Hosking and J. Eliot B. Moss. Object Fault Handling

for Persistent Programming Languages: A Performance Evaluation.

In ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pages 288–303, 1993.

[HNCB99] Antony L. Hosking, Nathaniel Nystrom, Quintin I. Cutts, and

Kumar Brahnmath. Optimizing the Read and Write Barriers for

194

Orthogonal Persistence. In International Workshop on Persistent

Object Systems, pages 149–159, 1999.

[HP04] David Hovemeyer and William Pugh. Finding Bugs is Easy. In

Companion to ACM Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 132–136, 2004.

[HRD+07] Jungwoo Ha, Christopher J. Rossbach, Jason V. Davis, Indrajit

Roy, Hany E. Ramadan, Donald E. Porter, David L. Chen, and

Emmett Witchel. Improved Error Reporting for Software that Uses

Black Box Components. In ACM Conference on Programming

Language Design and Implementation, pages 101–111, 2007.

[HRS+00] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An

Empirical Investigation of the Relationship Between Spectra

Differences and Regression Faults. Software Testing, Verification &

Reliability, 10(3):171–194, 2000.

[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating

and Tuning a Static Analysis to Find Null Pointer Bugs. In ACM

Workshop on Program Analysis for Software Tools and

Engineering, pages 13–19, 2005.

[IF02] Hajime Inoue and Stephanie Forrest. Anomaly Intrusion Detection

in Dynamic Execution Environments. In Workshop on New

Security Paradigms, pages 52–60, 2002.

[Ino05] Hajime Inoue. Anomaly Detection in Dynamic Execution

Environments. PhD thesis, University of New Mexico, 2005.

195

[ISF06] H. Inoue, D. Stefanović, and S. Forrest. On the Prediction of Java

Object Liftimes. ACM Transactions on Computer Systems,

55(7):880–892, 2006.

[JBM04] Maria Jump, Stephen M. Blackburn, and Kathryn S. McKinley.

Dynamic Object Sampling for Pretenuring. In ACM International

Symposium on Memory Management, pages 152–162, 2004.

[Jika] Jikes RVM. http://www.jikesrvm.org.

[Jikb] Jikes RVM Research Archive.

http://www.jikesrvm.org/Research+Archive.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. John Wiley & Sons,

Inc., New York, NY, USA, 1996.

[Jli] Jlint. http://jlint.sourceforge.net.

[JM07] Maria Jump and Kathryn S. McKinley. Cork: Dynamic Memory

Leak Detection for Garbage-Collected Languages. In ACM

Symposium on Principles of Programming Languages, pages 31–38,

2007.

[JR08] Richard E. Jones and Chris Ryder. A Study of Java Object

Demographics. In ACM International Symposium on Memory

Management, pages 121–130, 2008.

[JTM07] Daniel Jackson, Martyn Thomas, and Lynette I. Millett, editors.

Software for Dependable Systems: Sufficient Evidence? National

Research Council, The National Academies Press, 2007.

196

[KB08] Stephen W. Kent and Michael D. Bond. Bad Apples Suite, 2008.

http://www.cs.utexas.edu/~mikebond/papers.

html#bad-apples-suite.

[KLP88] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: An

Interpreter-Based Programming Environment for the C Language.

In Summer USENIX Conference, pages 161–71, 1988.

[KN96] Eyal Kushilevitz and Noam Nisan. Communication Complexity.

Cambridge University Press, 1996.

[LBFD05] Julien Langou, George Bosilca, Graham Fagg, and Jack Dongarra.

Hash Functions for Datatype Signatures in MPI. In European

Parallel Virtual Machine and Message Passing Interface

Conference, pages 76–83, 2005.

[LDSC08] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze.

Atom-Aid: Detecting and Surviving Atomicity Violations. In

ACM/IEEE International Symposium on Computer Architecture,

pages 277–288, 2008.

[Lib04] Benjamin Robert Liblit. Cooperative Bug Isolation. PhD thesis,

University of California at Berkeley, 2004.

[LNZ+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and

Michael I. Jordan. Scalable Statistical Bug Isolation. In ACM

Conference on Programming Language Design and Implementation,

pages 15–26, 2005.

[LRBM07] Byeongcheol Lee, Kevin Resnick, Michael D. Bond, and

Kathryn S. McKinley. Correcting the Dynamic Call Graph Using

197

Control Flow Constraints. In International Conference on

Compiler Construction, pages 80–95, 2007.

[LTQZ06] Shan Lu, Joe Tucek, Feng Qin, and Yuanyuan Zhou. AVIO:

Detecting Atomicity Violations via Access-Interleaving Invariants.

In ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 37–48, 2006.

[LY99a] Tim Lindholm and Frank Yellin. The Java Virtual Machine

Specification. Prentice Hall PTR, 2nd edition, 1999.

[LY99b] Tim Lindholm and Frank Yellin. The Java Virtual Machine

Specification (2nd Edition). Prentice Hall PTR, 1999.

[LYY+05] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining Behavior

Graphs for Backtrace of Noncrashing Bugs. In SIAM International

Converence on Data Mining, pages 286–297, 2005.

[MBMZ00] Alonso Marquez, Stephen M Blackburn, Gavin Mercer, and John

Zigman. Implementing Orthogonally Persistent Java. In

International Workshop on Persistent Object Systems, pages

247–261, 2000.

[Mck] Mckoi SQL Database. http://www.mckoi.com/database/.

[Mck02] Mckoi SQL Database message board: memory/thread leak with

Mckoi 0.93 in embedded mode, 2002.

http://www.mckoi.com/database/mail/subject.jsp?id=2172.

198

[Mos92] J. Eliot B. Moss. Working with Persistent Objects: To Swizzle or

Not to Swizzle. IEEE Transactions on Computers, 18(8):657–673,

1992.

[MR99] David Melski and Thomas Reps. Interprocedural Path Profiling.

In International Conference on Compiler Construction, pages

47–62, 1999.

[MRB04] Jonas Maebe, Michiel Ronsse, and Koen De Bosschere. Precise

Detection of Memory Leaks. In International Workshop on

Dynamic Analysis, pages 25–31, 2004.

[MS03] Nick Mitchell and Gary Sevitsky. LeakBot: An Automated and

Lightweight Tool for Diagnosing Memory Leaks in Large Java

Applications. In European Conference on Object-Oriented

Programming, pages 351–377, 2003.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing:

Randomized Algorithms and Probabilistic Analysis. Cambridge

University Press, New York, NY, USA, 2005.

[Mye79] G. J. Myers. The Art of Software Testing. Wiley, 1979.

[Nat02] National Institute of Standards and Technology. The Economic

Impacts of Inadequate Infrastructure for Software Testing.

Planning Report 02-3, 2002.

[NBZ08] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. Plug:

Automatically Tolerating Memory Leaks in C and C++

Applications. Technical Report UM-CS-2008-009, University of

Massachusetts, 2008.

199

[NM03] Nicholas Nethercote and Alan Mycroft. Redux: A Dynamic

Dataflow Tracer. Electronic Notes in Theoretical Computer

Science, 89(2), 2003.

[NR07] Huu Hai Nguyen and Martin Rinard. Detecting and Eliminating

Memory Leaks Using Cyclic Memory Allocation. In ACM

International Symposium on Memory Management, pages 15–29,

2007.

[NS05] James Newsome and Dawn Song. Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature Generation of

Exploits on Commodity Software. In Network and Distributed

System Security Symposium, 2005.

[NS07] Nicholas Nethercote and Julian Seward. Valgrind: A Framework

for Heavyweight Dynamic Binary Instrumentation. In ACM

Conference on Programming Language Design and Implementation,

pages 89–100, 2007.

[OOK+06] Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki

Komatsu, and Toshio Nakatani. Replay Compilation: Improving

Debuggability of a Just-in-Time Compiler. In ACM Conference on

Object-Oriented Programming, Systems, Languages, and

Applications, pages 241–252, 2006.

[Oraa] Oracle. JRockit.

http://www.oracle.com/technology/products/jrockit/.

[Orab] Oracle. JRockit Mission Control. http://www.oracle.com/

technology/products/jrockit/missioncontrol/.

200

[PFPS07] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne

Steensgaard. Stopless: A Real-Time Garbage Collector for

Multiprocessors. In ACM International Symposium on Memory

Management, pages 159–172, 2007.

[Pla94] David Plainfossé. Distributed Garbage Collection and Reference

Management in the Soul Object Support System. PhD thesis,

Université Paris-6, Pierre-et-Marie-Curie, 1994.

[PMD] PMD. http://pmd.sourceforge.net.

[PY99] C. Pavlopoulou and M. Young. Residual Test Coverage

Monitoring. In ACM International Conference on Software

Engineering, pages 277–284, 1999.

[QH04] Feng Qian and Laurie Hendren. Towards Dynamic Interprocedural

Analysis in JVMs. In USENIX Symposium on Virtual Machine

Research and Technology, pages 139–150, 2004.

[QLZ05] Feng Qin, Shan Lu, and Yuanyuan Zhou. SafeMem: Exploiting

ECC-Memory for Detecting Memory Leaks and Memory

Corruption During Production Runs. In International Symposium

on High-Performance Computer Architecture, pages 291–302, 2005.

[QTSZ05] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan

Zhou. Rx: Treating Bugs as Allergies—A Safe Method to Survive

Software Failures. In ACM Symposium on Operating Systems

Principles, pages 235–248, 2005.

[Que] Quest. JProbe Memory Debugger.

http://www.quest.com/jprobe/debugger.asp.

201

[RCD+04] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and

W. Beebee. Enhancing Server Availability and Security through

Failure-Oblivious Computing. In USENIX Symposium on

Operating Systems Design and Implementation, pages 303–316,

2004.

[RKS05] A. Rountev, S. Kagan, and J. Sawin. Coverage Criteria for Testing

of Object Interactions in Sequence Diagrams. In Fundamental

Approaches to Software Engineering, LNCS 3442, pages 282–297,

2005.

[Sci] SciTech Software. .NET Memory Profiler.

http://www.scitech.se/memprofiler/.

[Sco98] D. Scott. Assessing the Costs of Application Downtime. Gartner

Group, 1998.

[SFB07] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin

Slicing. In ACM Conference on Programming Language Design

and Implementation, pages 112–122, 2007.

[SK06] Sunil Soman and Chandra Krintz. Efficient and General On-Stack

Replacement for Aggressive Program Specialization. In

International Conference on Programming Languages and

Compilers, 2006.

[SMB04] Narendran Sachindran, J. Eliot B. Moss, and Emery D. Berger.

MC2: High-Performance Garbage Collection for

Memory-Constrained Environments. In ACM Conference on

202

Object-Oriented Programming, Systems, Languages, and

Applications, pages 81–98, 2004.

[SN05] Julian Seward and Nicholas Nethercote. Using Valgrind to Detect

Undefined Value Errors with Bit-Precision. In USENIX Annual

Technical Conference, pages 17–30, 2005.

[Sou] SourceForge.net. http://www.sourceforge.net/.

[Spi04] J. M. Spivey. Fast, Accurate Call Graph Profiling. Softw. Pract.

Exper., 34(3):249–264, 2004.

[Sta99] Standard Performance Evaluation Corporation. SPECjvm98

Documentation, release 1.03 edition, 1999.

[Sta01] Standard Performance Evaluation Corporation. SPECjbb2000

Documentation, release 1.01 edition, 2001.

[Sun03a] Sun Developer Network Forum. Java Programming [Archive] -

garbage collection dilema (sic), 2003.

http://forum.java.sun.com/thread.jspa?threadID=446934.

[Sun03b] Sun Developer Network Forum. Reflections & Reference Objects -

Java memory leak example, 2003.

http://forum.java.sun.com/thread.jspa?threadID=456545.

[SYK+01] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki

Komatsu, and Toshio Nakatani. A Dynamic Optimization

Framework for a Java Just-in-Time Compiler. In ACM Conference

on Object-Oriented Programming, Systems, Languages, and

Applications, pages 180–195, 2001.

203

[SZ98] Matthew L. Seidl and Benjamin G. Zorn. Segregating Heap

Objects by Reference Behavior and Lifetime. In ACM

International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 12–23, 1998.

[TGQ08] Yan Tang, Qi Gao, and Feng Qin. LeakSurvivor: Towards Safely

Tolerating Memory Leaks for Garbage-Collected Languages. In

USENIX Annual Technical Conference, pages 307–320, 2008.

[TIO07] TIOBE Software. TIOBE programming community index, 2007.

http://tiobe.com.tpci.html.

[VNC07] Kapil Vaswani, Aditya V. Nori, and Trishul M. Chilimbi.

Preferential Path Profiling: Compactly Numbering Interesting

Paths. In ACM Symposium on Principles of Programming

Languages, pages 351–362, 2007.

[Wha00] John Whaley. A Portable Sampling-Based Profiler for Java Virtual

Machines. In ACM Conference on Java Grande, pages 78–87.

ACM Press, 2000.

[Wie07] Ben Wiedermann. Know your Place: Selectively Executing

Statements Based on Context. Technical Report TR-07-38,

University of Texas at Austin, 2007.

[Wil91] Paul R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently

Supporting Huge Address Spaces on Standard Hardware. ACM

SIGARCH Comput. Archit. News, 19(4):6–13, 1991.

[WL04] John Whaley and Monica S. Lam. Cloning-Based

Context-Sensitive Pointer Alias Analysis Using Binary Decision

204

Diagrams. In ACM Conference on Programming Language Design

and Implementation, pages 131–144, 2004.

[WM07] Joan D. Winston and Lynette I. Millett, editors. Summary of a

Workshop on Software-Intensive Systems and Uncertainty at Scale.

National Research Council, The National Academies Press, 2007.

[WS02] David Wagner and Paolo Soto. Mimicry Attacks on Host-Based

Intrusion Detection Systems. In ACM Conference on Computer

and Communications Security, pages 255–264. ACM Press, 2002.

[XSaJ07] Feng Xian, Witawas Srisa-an, and Hong Jiang. MicroPhase: An

Approach to Proactively Invoking Garbage Collection for Improved

Performance. In ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 77–96,

2007.

[YBKM06] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B.

Moss. CRAMM: Virtual Memory Support for Garbage-Collected

Applications. In USENIX Symposium on Operating Systems

Design and Implementation, pages 103–116, 2006.

[YHB+04] Ting Yang, Matthew Hertz, Emery D. Berger, Scott F. Kaplan,

and J. Eliot B. Moss. Automatic Heap Sizing: Taking Real

Memory into Account. In ACM International Symposium on

Memory Management, pages 61–72, 2004.

[ZBM01] John N. Zigman, Stephen Blackburn, and J. Eliot B. Moss.

TMOS: A Transactional Garbage Collector. In International

Workshop on Persistent Object Systems, pages 138–156, 2001.

205

[ZGG06] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning

Dynamic Slices with Confidence. In ACM Conference on

Programming Language Design and Implementation, pages

169–180, 2006.

[ZLF+04] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou,

Samuel Midkiff, and Josep Torrellas. AccMon: Automatically

Detecting Memory-related Bugs via Program Counter-based

Invariants. In IEEE/ACM International Symposium on

Microarchitecture, pages 269–280, 2004.

[Zor90] Benjamin Zorn. Barrier Methods for Garbage Collection.

Technical Report CU-CS-494-90, University of Colorado at

Boulder, 1990.

[ZSCC06] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and

Jong-Deok Choi. Accurate, Efficient, and Adaptive Calling

Context Profiling. In ACM Conference on Programming Language

Design and Implementation, pages 263–271, 2006.

[ZTGG07] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv

Gupta. Towards Locating Execution Omission Errors. In ACM

Conference on Programming Language Design and Implementation,

pages 415–424, 2007.

[ZZPL05] Tao Zhang, Xiaotong Zhuang, Santosh Pande, and Wenke Lee.

Anomalous Path Detection with Hardware Support. In

International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, pages 43–54, 2005.

206

Vita

Michael David Bond graduated from Thomas Jefferson High School

for Science and Technology in Alexandria, Virginia, in 1999. He received

the degrees of Bachelor of Science and Master of Computer Science from the

University of Illinois at Urbana-Champaign in 2002 and 2003. He entered the

Ph.D. program at the University of Texas at Austin in 2003.

Permanent address: 804A E. 32nd 1/2 St.
Austin, Texas 78705

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

207

