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This work studies the use of modal expansion approximations of solu-

tions of model long wave equations. Such model equations are of interest to

oceanographers and engineers because they describe the propagation of surface

water waves, used in near-shore models of sandbar formation.

General theoretical results are derived for standard long wave models

in the form of dispersive, nonlinear partial differential equations. Particu-

lar numerical results are computed for such model equations, including the

Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the

Benjamin-Ono equation, among others.
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Chapter 1

Introduction

1.1 Motivation

Figure 1.1: A beach on the Australian Gold Coast, before erosion

The first photograph (Figure 1.1) shows a beach on the Australian

Gold Coast on the date February 1, 1988. Nearly one year later in January,

1989, the beach had eroded beyond viable use (Figure 1.2). After the failure

of restoration through direct nourishment of the beach, the local community

called in oceanographer B. Boczar-Karakiewicz and ocean engineer L. Jackson

to help restore the beach and prevent further erosion.

Through their efforts [11], an artificial sandbar was created at some dis-

tance offshore. (See Figure 1.3.) This sandbar altered the near-shore dynamics

1
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Figure 1.2: The same beach, one year later, after total erosion

Figure 1.3: Ship discharging tons of sand to create artificial sandbar

sufficiently to protect the newly nourished beach from further substantial ero-

sion.

Ocean engineering problems of this nature contributed to modern in-

terest in modeling and understanding the dynamics of near-shore processes,

specifically the interaction of surface waves with the sandy beach bottom. In

1981, Boczar-Karakiewicz and J. Bona developed such a model of wave-bottom

interaction, and continued refining it through the latter part of the decade.
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(See, for example, [9], [8], [10].)

As this model provides the motivation for the analytical and numerical

studies in the present work, we will describe it in some detail.

1.2 A Model of Sandbar Formation

A sandbar is a large underwater structure found in near-shore zones. Shaped

like gentle hills, they are often hundreds of meters long, several meters high,

and formed of loose granular sediment. [29]

The model of sandbar formation developed by Boczar-Karakiewicz et

al. [10] describes the interaction between incoming surface water waves and

the evolving sandy bottom. The model may be described verbally as follows.

1. A regular wavetrain, incoming from deep water, and fixed bottom to-

pography provide boundary conditions for

2. a nonlinear partial differential equation or system that describes the one-

way propagation of (dispersive) waves. This surface motion determines

the velocity field of the fluid in the interior of the region between the

surface and a thin boundary layer at the bottom. The internal velocity

field provides a boundary condition for

3. a differential equation that characterizes the motion of the sediment-

laden, viscous boundary layer at the bottom. Longuet-Higgins’ boundary

layer theory determines the velocity profile in this thin region. The

velocity profile is averaged over the depth of the layer and over the

fundamental period of the incoming surface waves to determine
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update
bottom
profile

1ωη (0,t) = sin (      t)
PDE

BC for

BC for boundary layer

average

τ

Incoming wavetrain from deep water

Average boundary layer velocity.

h(x,    +      )  τ ∆τ

Solve PDE: mass transport in the
Longuet-Higgins boundary layer theory

δ
U(x,z,t)

z=-h(x)

BBM (one-way propagation) gives
η

u

η

surface    (x,t) and, thus, internal
velocity field  u (x,t)

z=-h(x,  )

boundary layer gives new bottom profile

Figure 1.4: Flowchart describing sandbar model

4. the mass transport within the boundary layer. The bottom topography

evolves according to the mass transport equation, which simply expresses

conservation of mass. This new configuration, coupled with the regular

incoming wavetrain, provides the starting point (1. above) for another

iteration of the model.

Figure (1.4) shows a flow chart of one cycle in this iterative process.

1.2.1 Physical context

The definition sketch shown in Figure (1.5) describes the physical context of

the problem.
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ηz =    (x,t)

x

z

z=-h 0

Figure 1.5: Definition sketch

The spatial variables are (x, z) with the still water level at z = 0, the

flat bottom at z = −h0, and the free surface at z = η(x, t) where t is the time

variable. A typical assumption is that the problem is independent of one hor-

izontal (the longshore) direction so that we may neglect this third dimension.

Further assume that the fluid is inviscid and incompressible, moving irrota-

tionally. The model characterizes the interplay between the evolving sandy

bottom and the evolving velocity field of the fluid and its free surface.

1.3 Modeling Considerations

1.3.1 The governing partial differential equation

Boczar-Karakiewicz et al. began their work using the Boussinesq Approxima-

tion to the Euler system (BAE), a system of the form

ut + ζx + αuux − 1

3
βh2uxxt = 0 (1.1)

ζt + [u(αζ + h)]x = 0 (1.2)
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where the nondimensional quantities are u = u(x, t) for the velocity field,

ζ = ζ(x, t) for the parametrization of the free surface, h = h(x) for the bottom

topography (which is parametrized by z = −h(x)), and parameters α (ratio of

characteristic wave amplitude to characteristic water depth) and β (squared

ratio of characteristic water depth to characteristic wave length).

Boczar-Karakiewicz et al. later adapted their model, using the BBM

equation as the partial differential equation governing propagation of the sur-

face waves. The remainder of this section is devoted to BBM, discussing its

derivation in broad terms following the work of Benjamin, Bona, and Mahony

[7], as described in Bona (lecture notes—in preparation, [13]). For details,

refer to Appendix A.

The physical framework of the discussion begins with the study of a

fluid (say, water) in an idealized format that is inviscid and incompressible.

The fluid is of finite depth and is bounded below by an impermeable surface.

The only external force acting on the fluid is gravity, and the fluid is presumed

to flow in an irrotational manner.

This well-studied situation is governed by the Euler equations, first de-

scribed by Euler in 1755 (see, for example, [13]) with boundary conditions

imposed at the impermeable bottom and at the air-water interface (the sur-

face). The Euler equations describe the conservation of mass (combined with

the incompressibility assumption) and the conservation of momentum. From

vector calculus identities, it is possible to show the existence of a velocity po-

tential φ such that the velocity field of the fluid flow is given by u = ∇φ.

Then the conservation of mass equation reduces to the Laplace equation for
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the velocity potential, ∆φ = 0. That is, the solution of the Laplace equation

gives the velocity field directly and subsequently, through the conservation of

momentum equation, determines the hitherto unknown pressure.

The next step is to relate the above description of the fluid flow to

the description of the motion of the surface (which will result in the BBM

equation): there are two boundary conditions at the surface linking φ (hence

u) and the surface. Assume that the surface is described by a function of

the spatial variable x and the time variable t; that is, eliminate the case of

overturning waves from our consideration, describing the surface by a function

η(x, t). The two boundary conditions are

1. “kinematic,” meaning the velocity of the fluid at the surface is equated

to the velocity of the surface, and

2. “dynamic,” meaning (after neglecting surface tension’s small effect) the

pressure is continuous across the surface; that is, the air pressure at

the surface is equated to the water pressure at the surface, and thus

Bernoulli’s equation may be used.

Use of the kinematic and dynamic boundary conditions leads to (one

version of) the Boussinesq system of equations, linking the free surface η and

the horizontal velocity w of the fluid at the bottom. This derivation depends on

parameters α and β introduced in a nondimensionalization process: assuming

typical wavelengths l, wave amplitudes a, and constant fluid depth h0, we

introduce α = a/h0 and β = h2
0/l

2. Requiring that α and β be small indicates

that we are studying the physical context of small amplitude, large wavelength

waves.
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The Boussinesq system may further be reduced by assuming the waves

propagate in only one direction. Such an assumption forces a relationship be-

tween η and w which at lowest order is simply η = w. At the order α and

β, this is corrected by taking w = η + αA + βB, where A = A(η, ηx, ηt, . . .)

and B = B(η, ηx, ηt, . . .), in the full Boussinesq system. Forcing consistency

of the equations places restrictions on A and B, so that only 8 possible model

equations can be developed. Of these, two in particular are selected (on math-

ematical grounds) for study. One is the famous KdV equation,

ηt + ηx +
3

2
αηηx +

β

6
ηxxx = 0 (1.3)

first derived by Boussinesq in 1871 (see [13]) and later by Korteweg and

de Vries in 1895 [21]. The second equation is the well-known BBM equation

(originally called the Regularized Long Wave equation by Benjamin, Bona,

and Mahony in 1972 [7]),

ηt + ηx +
3

2
αηηx − β

6
ηxxt = 0 (1.4)

chosen by Boczar-Karakiewicz and Bona for their development of a model of

sandbar-oceanwave interactions. For full details of this derivation, refer to

Appendix A.

1.3.2 Information obtained from BBM

The BBM equation gives information about both the evolution of the surface

waves and the evolution of the internal velocity field (through the velocity po-

tential φ). According to inviscid theory, this internal velocity field is assumed

to drive the upper boundary of the laminar, sediment-laden, viscous bottom
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boundary layer. Due to the associated drift velocity (known as Stokes drift),

the motion of the boundary layer imparts a mean transport of sediment mass.

1.3.3 Boundary Layer Theory and Mass Transport

In a fundamental 1953 paper, M. Longuet-Higgins [23] derived a mathematical

theory describing the behavior of fluid near a boundary. In particular, he

described a general method for finding the mass transport velocity in arbitrary

small amplitude oscillations of a perfect fluid (given knowledge of the first order

motion). This mass transport is determined by only the first order motion and

the local boundary conditions.

For their model of wave-topography interaction, Boczar-Karakiewicz et

al. used the theory of Longuet-Higgins to calculate the mass transport velocity

in the boundary layer of the bed. Subsequently, they calculated the sediment

flux (as a function of the spatial variable). This quantity is necessary to

described the conservation of mass within the boundary layer. Conservation

of mass is the physical principle underlying the erosion equation, which then

determines the time evolution of the bottom topography.

1.4 Goal of Present Work

The Boczar-Karakiewicz-Bona model appears to give results that agree fairly

well with actual physical data, for example, describing the location and num-

ber of sandbars at the U. S. Army Corps of Engineers Field Research Facility

at Duck, North Carolina. (See [12] and [30].) However, implementation of the

model is computationally quite intensive [14]. Hence, a reasonable goal is to
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reduce the computational burden by introducing an analytical approximation

to the governing partial differential equation. The point of such an approxima-

tion procedure is to eliminate the work required to solve numerically a partial

differential equation, while retaining a minimal error margin.

This work aims to address the latter issue, applying the idea of the

modal expansion approximation to the specific nonlinear, dispersive equations

used by Boczar-Karakiewicz et al. in their model. The results obtained in

these contexts are easily extended to more general nonlinear, dispersive wave

equations. Both analytical and numerical results will be exhibited, providing

validation of such an approach.



Chapter 2

The Flat Bottom BBM Equation

2.1 The Modal Expansion

The modal expansion is a well-established approach to the solution of nonlin-

ear partial differential equations, combining the ideas of Fourier series and of

separation of variables. In a 1962 paper studying light waves in a nonlinear

dielectric, Armstrong, Bloembergen, Ducuing, and Pershan [5] used this ap-

proach (that they called quantum-mechanical perturbation theory) to develop

coupled amplitude equations, describing for instance the interaction between

a plane light wave and its second harmonic. In 1972, Mei and Ünlüata [25]

continued studying the phenomenon of second harmonic generation, but in

the context of the shallow water theory instead of nonlinear optics. Their

overview points out the applicability of these ideas to other contexts including

deep water waves (as studied by Phillips and others). Refer to [22] for further

details.

Also in 1972, Lau and Barcilon published a fundamental paper [22] in

which they analyze the impact of bed topography on incoming shallow water

waves, thus characterizing the behavior of wave energy in near shore processes.

The application of the modal expansion to the model of wave-sandbar

11
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interaction described in Chapter 1 was developed by Boczar-Karakiewicz et

al. [10] in 1987. The details of this work are described in the next section.

2.2 Derivation of Lau–Barcilon Equations for the Boussi-
nesq Approximation to the Euler Equations

In this section, the work of Boczar-Karakiewicz, Bona, and Cohen [10] is

summarized, in order to provide a foundation for further work with these

ideas. Following Boczar-Karakiewicz et al., begin with the nondimensional

Boussinesq approximation to the Euler equations in one spatial dimension,

ut + ζx + αuux − 1

3
βh2uxxt = 0 (2.1)

ζt + [u(αζ + h)]x = 0 (2.2)

where the nondimensional quantities are u = u(x, t) for the velocity field,

ζ = ζ(x, t) for the parametrization of the free surface, h = h(x) for the bottom

topography (which is parametrized by z = −h(x)), and parameters α (ratio

of characteristic wave amplitude to characteristic water depth) and β (ratio of

characteristic water depth to characteristic wave length).

Introduce a new horizontal variable, which will represent a long spatial

scale, X = αx. Introduce a two-scale expansion, in which x and X will be

treated as independent; that is, the above differentiations with respect to x

will be replaced via the chain rule by

d

dx
=

∂

∂x
+ α

∂

∂x
.

The use of such a change of variables is well-known as a reasonable approach

to studying problems characterized by physical effects occurring at different

physical scales.
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Suppose that the bottom is varying gradually, and write (taking ac-

count of scaling) h(X) = 1 + αG(X). Apply the chain rule and this assump-

tion to the above system, keeping only terms which are O(α). This process

gives the two equations

ut + ζx − β

3
uxxt = − αζx − αuux +

2αβ

3
Guxxt

+
2αβ

3
uxXt +O(α2) (2.3)

ζt + ux = − αuX − α(uζ)x − αGux +O(α2) (2.4)

under the assumption that the incoming wavetrain is periodic with frequency

ω1. If the system were linear, the next step would be to assume the form

of the solution was a linear combination of plane waves (in complex form,

ei(kjx−ωjt)). Since the system is nonlinear, modify this approach by assuming

that the amplitudes for these plane waves are slowly-varying, meaning that

the amplitudes are functions of X only. Thus, suppose

ζ(x,X, t) =
∑
j

ζj(X)ei(kjx−ωjt) + ζ∗j e
−i(kjx−ωjt) (2.5)

u(x,X, t) =
∑
j

uj(X)ei(kjx−ωjt) + u∗je
−i(kjx−ωjt) (2.6)

where the asterisk (*) indicates complex conjugate. Notice that the assumption

that ζ and u are of order one implies that the amplitudes ζj and uj are also

of order one.

Introduce some helpful notation: let Ej = ei(kjx−ωjt) so that E∗
j =

e−i(kjx−ωjt). Next, derive an order-α relationship between ζj and uj. Using

the second of the derived equations, (2.4) above, compute the derivatives and
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keep the right side as O(α):

∑
j

−iωjζjEj + iωjζ
∗
jE

∗
j + ikjujEj − ikju

∗
jE

∗
j = O(α)

which, after grouping, gives

∑
j

(−ωjζj + kjuj)Ej + (ωjζ
∗
j − kju

∗
j)E

∗
j = O(α).

Thus, compute

−ωjζj + kjuj = O(α) (2.7)

kjuj = ωjζj +O(α) (2.8)

which shows that

uj(X) =
ωj
kj
ζj(X) +O(α).

The next step is to eliminate ζ from the left side of the above system

(2.3, 2.4) of PDEs by computing ∂
∂t

of the first and − ∂
∂x

of the second to obtain

utt − uxx − β

3
uxxtt = α

{
−ζXt + uXx +Guxx (2.9)

+
2β

3
[Guxxtt + uxXtt] − 1

2
(u2)xt + (ζu)xx

}
+O(α2)

Working with this equation, substitute in the assumed forms for u and

ζ , neglect O(α2) terms, and ignore all but the first three harmonics. A helpful

notation here is to introduce the detuning parameter, ∆k = k2 − 2k1. With

this notation, for example, E2
1 = e−i∆kxE2. Thus, it is easy to determine which

harmonics interact to yield effects in the first three harmonics. After somewhat

long computations (using the chain rule over and over), one determines that
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the left-hand side of the partial differential equation has the form

E1(−ω2
1u1 + k2

1u1 − β

3
k2

1ω
2
1u1)

+E2(−ω2
2u2 + k2

2u2 − β

3
k2

2ω
2
2u2)

+E3(−ω2
3u3 + k2

3u3 − β

3
k2

3ω
2
3u3)

+conj

where ‘conj’ represents the complex conjugate of all the previous terms. This

is reassuring, as it gives the usual (first-order) dispersion relation

−ω2
j + k2

j −
β

3
k2
jω

2
j

that is,

ω2
j =

k2
j

1 + β
3
k2
j

and k2
j =

ω2
j

1 − β
3
ω2
j

which is plotted in Figure (2.1).

The order α coefficient of the right-hand side of the partial differential

equation has the form

E1

(
iω1ζ

′
1 + ik1u

′
1 −Gk2

1u1 +
2β

3
[Gk2

1ω
2
1u1 − ik1ω

2
1u

′
1]

−[(k2 − k1)ω1u
∗
1u2e

i∆kx + (k3 − k2)ω1u
∗
2u3e

−i(k1+k2−k3)x]

−[(k2 − k1)
2(u∗1ζ2 + u2ζ

∗
1)e

i∆kx + (k2 − k3)
2(u∗2ζ3 + u3ζ

∗
2 )e−i(k1+k2−k3)x]

)
α

+E2

(
iω2ζ

′
2 + ik2u

′
2 −Gk2

2u2 +
2β

3
[Gk2

2ω
2
2u2 − ik2ω

2
2u

′
2]

−[k1ω2u
2
1e

−i∆kx + (k3 − k1)ω2u
∗
1u3e

−i(k1+k2−k3)x]

−[4k2
1u1ζ1e

−i∆kx + (k1 − k3)
2(u∗1ζ3 + u3ζ

∗
1)e

−i(k1+k2−k3)x]
)
α

+E3

(
iω3ζ

′
3 + ik3u

′
3 −Gk2

3u3 +
2β

3
[Gk2

3ω
2
3u3 − ik3ω

2
3u

′
3]
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Figure 2.1: Dispersion Relation, ω(k)

+(k1 + k2)ω3u1u2e
i(k1+k2−k3)x − (k1 + k2)

2(u1ζ2 + u2ζ1)e
i(k1+k2−k3)x

)
α

+conj +O(α2)

Notice that neglecting the third mode (by setting u3 = ζ3 = 0) reduces

this form to the corresponding result for the case of two modes, namely

E1

(
iω1ζ

′
1 + ik1u

′
1 −Gk2

1u1 +
2β

3
(Gk2

1ω
2
1u1 − ik1ω

2
1u

′
1)

−(k2 − k1)ω1u
∗
1u2e

i∆kx − (k2 − k1)
2(u2ζ

∗
1 + u∗1ζ2)e

i∆kx
)
α

+E2

(
iω2ζ

′
2 + ik2u

′
2 −Gk2

2u2 +
2β

3
(Gk2

2ω
2
2u2 − ik2ω

2
2u

′
2)

−k1ω2u
2
1e

−i∆kx − 4k2
1u1ζ1e

−i∆kx
)
α + conj +O(α2)
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The Lau-Barcilon equations are simply the ordinary differential equa-

tions which result from setting each coefficient of Ej equal to zero. Simplify

these equations by putting

uj =
ωj
kj
ζj +O(α)

and by carrying out some straightforward algebraic manipulation. Here are

the equations which result:

ζ ′1 + iF1ζ1 + iQ1e
i∆kxζ∗1ζ2 + iR1e

−i(k1+k2−k3)xζ∗2ζ3 = 0 (2.10)

ζ ′2 + iF2ζ2 + iQ2e
−i∆kxζ2

1 + iR2e
−i(k1+k2−k3)xζ∗1ζ3 = 0 (2.11)

ζ ′3 + iF3ζ3 + iR3e
i(k1+k2−k3)xζ1ζ2 = 0 (2.12)

where

R1 =
3k2

1

ω1

(k3 − k2)

k2k3
·
[
ω1 + (k3 − k2)

(
k2

ω2
+
k3

ω3

)]
(2.13)

R2 =
3k2

2

16ω1

(k3 − k1)

k1k3
·
[
ω2 + (k3 − k1)

(
k1

ω1
+
k3

ω3

)]
(2.14)

R3 =
k2

3

9ω3

(k1 + k2)

k1k2
·
[
ω3 + (k1 + k2)

(
k1

ω1
+
k2

ω2

)]
(2.15)

After changing variables to eliminate the dependence on X, rewrite the flat

bed version of this system as

a′1 = −iαQ1e
i∆kxa∗1a2 − iαR1e

−ikHxa∗2a3 (2.16)

a′2 = −iαQ2e
−i∆kxa2

1 − iαR2e
−ikHxa∗1a3 (2.17)

a′3 = −iαR3e
ikHxa1a2, (2.18)

where kH = k1 + k2 − k3. The flat bed two modes case is characterized by the

following system of two coupled ordinary differential equations.

a′1 = −iαQ1e
i∆kxa∗1a2 (2.19)
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a′2 = −iαQ2e
−i∆kxa2

1, (2.20)

with

Q1 = (k2 − k1)
k1

k2ω1

[
ω1 + (k2 − k1)

(
k1

ω1
+
k2

ω2

)]
(2.21)

Q2 =
k2

2

8k1

(
1 +

2k2
1

ω2
1

)
. (2.22)

2.3 Derivation of the Lau-Barcilon Equations for BBM

Recall the BBM equation from Chapter 1,

ut + ux +
3

2
αuux − 1

6
βuxxt = 0. (2.23)

Suppose that u is characterized by a slowly varying amplitude. This requires

two steps. First, carry out a two-scale expansion by setting X = αx for

the small parameter α and u(x,X, t) = u(x, t), so that in the above form

of BBM ∂x is replaced with ∂x + α∂X . The process to follow is commonly

(though casually) described as ‘assuming that X and x are independent,’ but

what does it mean to treat X and x as independent variables? Consider the

following two calculations:

(∂x + α∂X) [f(X)g(x)] = f(X)g′(x) + αf ′(X)g(x)

∂x [f(αx)g(x)] = f(αx)g′(x) + αf ′(αx)g(x).

These are identical for X = αx! So, in fact, we need not assume the indepen-

dence of X and x to replace ∂x by ∂x+α∂X in our governing partial differential

equation. This is simply a consequence of the separation of variables and the

product rule from calculus.
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Apply the two-scale expansion to the BBM equation (2.23) gives

ut + (∂x + α∂X)u+
3

2
αu(∂x + α∂X)u− β

6
(∂x + α∂X)(uxt + αuXt) = 0

which reduces to

ut + ux − β

6
uxxt + α

[
uX +

3

2
uux − β

3
uxXt

]
= O(α2). (2.24)

Second, set

u(x,X, t) =
N∑

j=−N
uj(X)ei(kjx−ωjt), (2.25)

where ωj = jω1, ω−j = −ωj , k−j = −kj , ω0 = 0, k0 = 0, u0(X) = 0, and

u−j = u∗j represents the complex conjugate. Using the notation Ej = ei(kjx−ωjt)

introduced in the previous section, consider the order one terms in the two-

scale version of BBM:

ut =

N∑
j=−N

− iωjujEj

ux =

N∑
j=−N

ikjujEj

uxxt =
N∑

j=−N
ik2
jωjujEj .

These terms combine to give the O(α0) expression

ut + ux − β

6
uxxt =

∑
j

i

(
kj − ωj − β

6
k2
jωj

)
Ej .

Setting this equal to zero gives the linearized dispersion relation for BBM:

kj − ωj − β

6
k2
jωj = 0



20

which is typically written as

ω =
k

1 + β
6
k2
.

This linearized BBM dispersion relation agrees with the full linearized disper-

sion relation for the Euler equation to order β. For β =
(

1
12

)2
, this relation

has the form shown in Figure (2.2).
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Figure 2.2: Dispersion Relation, ω(k)

Refer to Figure 3.2 in Chapter 3 for comparison with another linearized

dispersion relation, for the case of the KdV equation.

Another issue is highlighted by the linearized dispersion relation: how

can the relation between β and ω be used in the (later) numerical analysis
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of this situation? More simply, how do the magnitudes of β and ω compare?

First, this requires an understanding of the physical meaning of the quantity

k1 in the above modal expansion. In physical variables, the wavenumber is

k =
2π

λph

where λph = λ/h is the physical variable representing a typical wavelength.

Thus, in the nondimensional version of the model,

k =
2πh

λ
= 2πβ.

Now, inserting this expression into the dispersion relation gives

ω =
k

1 + β
6
k2

=
2πβ

1 + 2
3
π2β4

,

and the assumption that β is small yields the approximation ω ≈ 2πβ. For

the typical value β = (1/12)2 (to be discussed later in the development of the

numerical results), one finds ω1 ≈ 2πβ = 0.5236.

Returning to the expansion (in powers of α), consider the pieces which

contribute to the order α terms in the two-scale version of BBM:

uX =

N∑
j=−N

u′jEj

uxXt =

N∑
j=−N

kjωju
′
jEj .

The expansion and simplification of the nonlinear term depends on how many

modes (N) are being used to approximate u. The nonlinearity generates higher

order modes which must be neglected. For example, in the case of two modes
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(N = 2),

uux =

(
2∑

j=−2

ujEj

)(
2∑

n=−2

iknunEn

)

= ik1u
2
1E

2
1 + ik2u

2
2E

2
2

+ E1E2 (i(k1 + k2)u1u2) + E∗
1E2 (i(k2 − k1)u

∗
1u2)

+ conj

Here, E2
2 = e2i(k2x−ω2t) = ei(2k2x−ω4t), but this gives a fourth mode, at frequency

ω4 = 4ω1, which must be neglected in the two modes approximation. Hence,

after simplification,

uux = ik1u
2
1e

−i∆kxE2 + i(k2 − k1)u
∗
1u2e

i∆kxE1 + conj

where ∆k = k2 − 2k1.

Putting together these pieces and simplifying gives the expression for

the O(α) portion of the two-scale BBM equation in the case of 2 modes:

uX +
3

2
uux − β

3
uxXt = E1

[
u′1 −

β

3
k1ω1u

′
1 + i

3

2
(k2 − k1)u

∗
1u2e

i∆kx

]

+ E2

[
u′2 −

β

3
k2ω2u

′
2 + i

3

2
k1u

2
1e

−i∆kx

]
+ conj.

This equation provides the Lau-Barcilon equations:

u′1(X) = −i3
2

k1 − k2

1 − β
3
k1ω1

ei∆kxu∗1(X)u2(X)

u′2(X) = −i3
2

k1

1 − β
3
k2ω2

e−i∆kxu2
1(X).
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Change variables back to the original (x, t) coordinates by setting aj(x) =

uj(X) = uj(αx) so that ∂X is replaced by 1
α
∂x. Thus the system is

a′1 = −iα3

2

k1 − k2

1 − β
3
k1ω1

ei∆kxa∗1a2 (2.26)

a′2 = −iα3

2

k1

1 − β
3
k2ω2

e−i∆kxa2
1. (2.27)

The Lau-Barcilon equations for the case of three modes may be com-

puted similarly, with the nonlinear term having the form

uux = E1

(
i(k2 − k1)u

∗
1u2e

i∆kx + i(k3 − k2)u
∗
2u3e

−i(k1+k2−k3)x)
+E2

(
ik1u

2
1e

−i∆kx + i(k3 − k1)u
∗
1u3e

−i(k1+k2−k3)x)
+E3

(
i(k1 + k2)u1u2e

i(k1+k2−k3)x)
+conj

after neglecting higher harmonics. As in the two modes case, the O(α) terms

yield the Lau-Barcilon equations:

u′1(X) = −i3
2

k2 − k1

1 − β
3
k1ω1

ei∆kxu∗1(X)u2(X)

−i3
2

k3 − k2

1 − β
3
k1ω1

e−i(k1+k2−k3)xu∗2(X)u3(X) (2.28)

u′2(X) = −i3
2

k1

1 − β
3
k2ω2

e−i∆kxu2
1(X)

−3

2
i
k3 − k1

1 − β
3
k2ω2

e−i(k1+k2−k3)xu∗1(X)u3(X) (2.29)

u′3(X) = −i3
2

k1 + k2

1 − β
3
k3ω3

ei(k1+k2−k3)xu1(X)u2(X). (2.30)

After a change of variables back to the usual (x, t) coordinates by tak-

ing, as before, aj(x) = uj(X) = uj(αx), the Lau-Barcilon equations become

a′1 = −iα3

2

k2 − k1

1 − β
3
k1ω1

ei∆kxa∗1a2
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−iα3

2

k3 − k2

1 − β
3
k1ω1

e−i(k1+k2−k3)xa∗2a3 (2.31)

a′2 = −iα3

2

k1

1 − β
3
k2ω2

e−i∆kxa2
1

−iα3

2

k3 − k1

1 − β
3
k2ω2

e−i(k1+k2−k3)xa∗1a3 (2.32)

a′3 = −iα3

2

k1 + k2

1 − β
3
k3ω3

ei(k1+k2−k3)xa1a2. (2.33)

Introducing notation for the constants makes the structure of these equations

easier to observe. Set

Q1 =
3

2

k2 − k1

1 − β
3
k1ω1

(2.34)

Q2 =
3

2

k1

1 − β
3
k2ω2

(2.35)

and

R1 =
3

2

k3 − k2

1 − β
3
k1ω1

(2.36)

R2 =
3

2

k3 − k1

1 − β
3
k2ω2

(2.37)

R3 =
3

2

k1 + k2

1 − β
3
k3ω3

. (2.38)

Introducing the further notation kH = k1 +k2−k3 then yields the three

modes Lau-Barcilon equations:

a′1 = −αiQ1e
i∆kxa∗1a2 − αiR1e

−ikHxa∗2a3 (2.39)

a′2 = −αiQ2e
−i∆kxa2

1 − αiR2e
−ikHxa∗1a3 (2.40)

a′3 = −αiR3e
ikHxa1a2. (2.41)
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2.4 The Modal Expansion for Linear BBM

The linear BBM equation is simply equation (2.23) without the nonlinear term,

that is

ut + ux − β

6
uxxt = 0.

This equation models traveling waves in which dispersive effects dominate

nonlinear effects.

Apply the two-scale expansion, taking X = αx and, consequently, re-

placing ∂x with ∂x + α∂X in the above equation. After simplification, linear

BBM written in the two-scale variables becomes

ut + ux − β

6
uxxt + α

[
uX − β

3
uXxt

]
= O(α2).

After the modal expansion is applied to u, the O(α0) terms will reduce

to the usual linearized dispersion relation for each mode:

−iωj + ikj − β

6
(ikj)

2(−iωj) = 0 (2.42)

which may be rewritten as

ωj =
kj

1 + β
6
k2
j

. (2.43)

The next step is to apply the modal expansion to the O(α) terms:

substitute the form

u(x,X, t) =
∞∑

j=−∞
uj(X)ei(kjx−ωjt)

into the equation

uX − β

3
uXxt = 0. (2.44)
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The coefficients of each mode then provide the relationship

u′je
−i(kjx−ωjt) − β

3
(ikj)(−iωj)u′je−i(kjx−ωjt) = 0

where the prime refers to differentiation with respect to X. This relation

reduces to (
1 +

β

3
kjωj

)
u′j = 0

which shows that

uj(X) = Cj ,

meaning each coefficient is constant. Therefore, in the case of linear BBM, the

modal expansion simply reduces to the standard Fourier series expansion:

u(x, t) =

∞∑
j=−∞

Cje
−i(kjx−ωjt)

subject to the dispersion relation for each (j−th) mode. The coefficients are,

as usual, determined once boundary data has been posed for the problem.

2.5 Conservation of Energy for BBM

Begin with the Lau-Barcilon equations for the case of the BBM equation.

These are

da1

dx
= −iαQ1e

i∆kxa∗1a2 (2.45)

da2

dx
= −iαQ2e

−i∆kxa2
1 (2.46)

Write these equations in complex form by setting aj(x) = rj(x)e
iθj(x).

The system then becomes

r′1 + ir1θ
′
1 = −iαQ1r1r2e

i[θ2−2θ1+∆kx] (2.47)

r′2 + ir2θ
′
2 = −iαQ2r

2
1e

−i[θ2−2θ1+∆kx] (2.48)
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where the prime indicates differentiation with respect to the variable x. The

next step is to separate these equations into real and imaginary components,

first by setting φ = θ2 − 2θ1 + ∆kx. Expanding the exponential term in sine

and cosine yields

r′1 + ir1θ
′
1 = −iαQ1r1r2 cos φ+ αQ1r1r2 sin φ (2.49)

r′2 + ir2θ
′
2 = −iαQ2r

2
1 cosφ− αQ2r

2
1 sin φ. (2.50)

So, sorting into real and imaginary parts gives the following four ordinary

differential equations.

r′1 = αQ1r1r2 sinφ θ′1 = −αQ1r2 cosφ (2.51)

r′2 = −αQ2r
2
1 sinφ θ′2 = −αQ2

r2
1

r2
cosφ (2.52)

Reduce the number of equations by noting that the equations for θ1

and θ2 may be written as one equation for the phase φ, since

φ′ = θ′2 − 2θ′1 + ∆k = −αQ2
r2
1

r2
cosφ+ 2αQ1r2 cosφ+ ∆k.

This reduces the system to

r′1 = αQ1r1r2 sin φ (2.53)

r′2 = −αQ2r
2
1 sinφ (2.54)

φ′ = ∆k − α
[
Q2

r2
1

r2
− 2Q1r2

]
cosφ. (2.55)

Notice that this system must have a periodic solution.

From equations 2.53 and 2.54, compute

r′1
r′2

= −Q1

Q2

r2
r1

(2.56)
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r1r
′
1 = −Q1

Q2

r2r
′
2 (2.57)

Q2

(
1

2
r2
1

)′
= −Q1

(
1

2
r2
2

)′
(2.58)

which integrates to give the conservation of energy expression

Q2r
2
1 +Q1r

2
2 = R2.

One could choose to re-scale, so that this becomes r2
1 + r2

2 = C, where C is

some positive constant.

To derive a conservation law for the case of three modes, follow a nearly

identical calculation. Begin with the three modes Lau-Barcilon equations for

BBM:

a′1 = −iαQ1e
i∆kxa∗1a2 − iαR1e

−ikHxa∗2a3 (2.59)

a′2 = −iαQ2e
−i∆kxa2

1 − iαR2e
−ikHxa∗1a3 (2.60)

a′3 = −iαR3e
ikHxa1a2 (2.61)

including the conjugate equations to these, where the previously introduced

notational conveniences ∆k = k2 − 2k1 and kH = k1 + k2 − k3 are used.

As in the two modes case, set aj(x) = rj(x)e
iθj(x) so that

a′j = r′je
iθj + irjθ

′
je
iθj .

Substituting these forms into the first of the above ordinary differential equa-

tions gives

r′1e
iθ1 + ir1θ

′
1e
iθ1 = −iαQ1e

i∆kxr1e
−iθ1r2eiθ2 − iαR1e

−ikHxr2e
−iθ2r3eiθ3 .
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Computing similarly for the second and third equations and grouping the

exponential terms gives the following system,

r′1 + ir1θ
′
1 = −iαQ1r1r2e

i[θ2−2θ1+∆kx] − iαR1r2r3e
−i[θ1+θ2−θ3+kHx](2.62)

r′2 + ir2θ
′
2 = −iαQ2r

2
1e

−i[θ2−2θ1+∆kx] − iαR2r1r3e
−i[θ1+θ2−θ3+kHx] (2.63)

r′3 + ir3θ
′
3 = −iαR3r1r2e

i[θ1+θ2−θ3+kHx] (2.64)

together with conjugate equations.

Now set φ = θ2 − 2θ1 + ∆kx and ψ = θ1 + θ2 − θ3 + kHx. Using this

notation, the above system becomes

r′1 + ir1θ
′
1 = −iαQ1r1r2e

iφ − iαR1r2r3e
−iψ (2.65)

r′2 + ir2θ
′
2 = −iαQ2r

2
1e

−iφ − iαR2r1r3e
−iψ (2.66)

r′3 + ir3θ
′
3 = −iαR3r1r2e

iψ. (2.67)

Breaking this system into real and imaginary parts yields the following

six ordinary differential equations,

r′1 = αQ1r1r2 sin φ− αR1r2r3 sinψ (2.68)

θ′1 = −αQ1r2 cosφ− αR1
r2r3
r1

cosψ (2.69)

r′2 = −αQ2r
2
1 sinφ− αR2r1r3 sinψ (2.70)

θ′2 = −αQ2
r2
1

r2
cosφ− αR2

r1r3
r2

cosψ (2.71)

r′3 = αR3r1r2 sinψ (2.72)

θ′3 = −αR3
r1r2
r3

cosψ. (2.73)

The next step is to write these equations in terms of the variables φ and ψ,

eliminating explicit dependence on the θj . Using the forms

φ′ = θ′2 − 2θ′1 + ∆k (2.74)
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ψ′ = θ′1 + θ′2 − θ′3 + kH (2.75)

gives the following system in terms of r1, r2, r3, φ, ψ:

r′1 = αQ1r1r2 sinφ− αR1r2r3 sinψ

r′2 = −αQ2r
2
1 sin φ− αR2r1r3 sinψ

r′3 = αR3r1r2 sinψ

φ′ = ∆k + α cosφ
(
2Q1r2 −Q2r

2
1/r2

)
+ α cosψ

(
2R1

r2r3
r1

−R2
r1r3
r2

)
ψ′ = kH − α cosφ

(
Q1r2 +Q2r

2
1/r2

)
+α cosψ

(
R3
r1r2
r3

−R1
r2r3
r1

−R2
r1r3
r2

)
.

The next step is to carry out the algebra needed to obtain a conservation

law—this requires only the first three equations in the above system. First,

compute

(Q2r1r
′
1 +Q1r2r

′
2)R3 = (−α (Q2R1 +Q1R2) r1r2r3 sinψ)R3

and then add this to the quantity (Q2R1 +Q1R2) r3r
′
3 to obtain the result that

Q2R3r1r
′
1 +Q1R3r2r

′
2 + (Q2R1 +Q1R2) r3r

′
3 = 0.

This may be written as[
1

2
Q2R3r

2
1 +

1

2
Q1R3r

2
2 +

1

2
(Q2R1 +Q1R2)r

2
3

]′
= 0

which integrates to the conservation law

Q2R3r
2
1 +Q1R3r

2
2 + (Q2R1 +Q1R2)r

2
3 = constant.
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2.6 Closed-form Solution: 2 Modes Case

Following Armstrong et al. [5], derive the analytical solution to the two modes

Lau-Barcilon equations as follows. Rewrite the ordinary differential equation

for φ,

dφ

dx
= ∆k − α

[
Q2
r2
1

r2
− 2Q1r2

]
cos φ

by substitution, first noting that

d

dx
ln

(
r2
1r2

)
=

1

r2
1r2

(
2r1

dr1
dx

r2 + r2
1

dr2
dx

)
=

2

r1

dr1
dx

+
1

r2

dr2
dx

and so,

cosφ

sin φ

d

dx
ln(r2

1r2) =
cosφ

sinφ

2

r1

dr1
dx

+
cosφ

sin φ

1

r2

dr2
dx

=
cosφ

sinφ

2

r1
αQ1r1r2 sinφ− cosφ

sinφ

1

r2
αQ2r

2
1 sinφ

= 2αQ1 cos φ r2 − αQ2 cosφ
r2
1

r2

= −α
[
Q2

r2
1

r2
− 2Q1r2

]
cosφ

Then rewrite the differential equation for φ as

dφ

dx
= ∆k − α

[
Q2

r2
1

r2
− 2Q1r2

]
cosφ

= ∆k +
cosφ

sinφ

d

dx
ln(r2

1r2). (2.76)

Now continue with the three differential equations for the two modes

case,

dr1
dx

= αQ1r1r2 sinφ (2.77)

dr2
dx

= −αQ2r
2
1 sinφ (2.78)

dφ

dx
= ∆k +

cosφ

sin φ

d

dx
ln(r2

1r2). (2.79)
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Apply the change of variables

ρ1 =
√
Q2 r1 (2.80)

ρ2 =
√
Q1 r2 (2.81)

ξ = −α
√
Q1x (2.82)

so that differentiation with respect to x is replaced by

d

dx
=
dξ

dx

d

dξ
= −α

√
Q1

d

dξ

and, further,

αQ1r1r2 sin φ = αQ1
ρ1√
Q2

ρ2√
Q1

sin φ = α

√
Q1√
Q2

ρ1ρ2 sin φ.

Thus,

dρ1

dξ
= −ρ1ρ2 sinφ.

Similarly,

dr2
dx

= −α
√
Q1

d

dξ

(
1√
Q1

ρ2

)
= −αdρ2

dξ

and

−αQ2r
2
1 sin φ = −αQ2 · 1

Q2

ρ2
1 sin φ = −αρ2

1 sin φ

yield

dρ2

dξ
= ρ2

1 sin φ.

Finally,

∆k +
cosφ

sin φ

d

dx
ln(r2

1r2) = ∆k +
cos φ

sin φ
(−α

√
Q1)

d

dξ
ln

(
ρ2

1

Q2

ρ2√
Q1

)
= ∆k − α

√
Q1

cosφ

sin φ

d

dξ
ln(ρ2

1ρ2) (2.83)
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so that the ordinary differential equation for φ becomes

dφ

dξ
= − ∆k

α
√
Q1

+
cosφ

sin φ

d

dξ
ln(ρ2

1ρ2). (2.84)

In summary, the new coordinates give

dρ1

dξ
= −ρ1ρ2 sin φ (2.85)

dρ2

dξ
= ρ2

1 sinφ (2.86)

dφ

dξ
= ∆s +

cosφ

sin φ

d

dξ
ln(ρ2

1ρ2) (2.87)

where ∆s = −∆k/(α
√
Q1).

The conservation law in terms of the new variables is

ρ2
1 + ρ2

2 = R2.

Rescaling by the constant R gives the form

ρ2
1 + ρ2

2 = 1. (2.88)

As in Armstrong et al., if ∆k = 0, then the ordinary differential equa-

tion (2.84) for φ may be integrated:

dφ

dξ
=

cosφ

sinφ

d

dξ
ln(ρ2

1ρ2)

sin φ

cosφ

dφ

dξ
=

d

dξ
ln(ρ2

1ρ2)

− ln(cosφ) = ln(ρ2
1ρ2) + c1

1

cosφ
= c2ρ

2
1ρ2

Thus,

ρ2
1ρ2 cosφ = c for all ξ.
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Using this result, derive a formula for the constant c:

c = ρ2
1(0)ρ2(0) cosφ(0)

= Q2r
2
1(0)

√
Q1 r2(0) cos [θ2(0) − 2θ1(0)]

= Q2

√
Q1 r

2
1(0)r2(0) cos [θ2(0) − 2θ1(0)] (2.89)

The next goal is to use the first two ordinary differential equations to

derive an elliptic integral, as in Armstrong et al. Notice:

d

dξ

(
ρ2

2

)
= 2ρ2ρ

′
2

= 2ρ2
1ρ2 sinφ

= ±2ρ2
1ρ2

√
1 − cos2 φ

= ±2
√
ρ4

1ρ
2
2 − ρ4

1ρ
2
2 cos2 φ

= ±2
√

(1 − ρ2
2)

2ρ2
2 − (ρ2

1ρ2 cosφ)2

= ±2
√
ρ2

2(1 − ρ2
2)

2 − c2

Rewrite this formulation using separation of variables to find

d(ρ2
2)

dξ
= ±2

√
ρ2

2(1 − ρ2
2)

2 − c2 (2.90)

dξ = ±1

2

d(ρ2
2)√

ρ2
2(1 − ρ2

2)
2 − c2

(2.91)

Thus derive the elliptic integral,

ξ = ±1

2

∫ ρ22(ξ)

ρ22(0)

d(ρ2
2)√

ρ2
2(1 − ρ2

2)
2 − c2

(2.92)

that represents the general solution of the differential equation (2.90) for ρ2.

Now consider the polynomial ρ2
2(1 − ρ2

2)
2 − c2. Since 1 = ρ2

1 + ρ2
2 and

ρ2(ξ) ∈ R, it must follow that 0 ≤ ρ2
2 ≤ 1, and, thus, ρ2

2(1 − ρ2
2)

2 ≥ 0. Study
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this polynomial more closely, considering the graph of

f(x) = x(1 − x)2 − c2 = 0 for x ∈ [0, 1].

It is an elementary calculus exercise to show that the local maximum

and minimum occur at x = 1/3 and x = 1, respectively. For what values of

c is x(1 − x)2 − c2 > 0 at the value x = 1/3? Solving the inequality gives

c <
√

4/27. This is realistic in the context of the modal problem, as the

starting values r1(0) and r2(0) are typically small; thus, in fact, one obtains

three real roots.

These roots of f are named σ2
a ≤ σ2

b ≤ σ2
c . If x ∈ (0, σ2

a), then f(x) =

x3 − 2x2 + x− c2 < 0. This forces the integrand of the elliptic integral (2.92)

to be strictly imaginary, which is not allowed. Similarly, x ∈ (σ2
b , 1) forces

f(x) < 0, which is not allowed. Thus, as Armstrong et al. note, require

σ2
a < ρ2

2 < σ2
b

where σ2
a and σ2

b are the smallest two roots of ρ2
2(1 − ρ2

2)
2 − c2 = 0.

In the case where c = 0, return to the differential equation

d(ρ2
2)

dξ
= ±2

(
ρ2

2(1 − ρ2
2)

2
)1/2

and recognize that the sign ± is determined only by sin φ|z=0. Without loss of

generality, assume the sign is positive. Then, since ρ2 �= 0,

d(ρ2
2(ξ))

dξ
= 2ρ2(ξ)(1 − ρ2

2(ξ)) (2.93)

2ρ2(ξ)
dρ2

dξ
= 2ρ2(ξ)(1 − ρ2

2(ξ)) (2.94)

dρ2

dξ
= 1 − ρ2

2 (2.95)
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This equation is separable and may be integrated to find

1

2

∫ [
1

1 + ρ2
+

1

1 − ρ2

]
dρ2 =

∫
dρ2

1 − ρ2
2

=

∫
dξ = ξ + c1

So,

1

2
[ln(1 + ρ2) − ln(1 − ρ2)] = ξ + c1 (2.96)

ln

[√
1 + ρ2

1 − ρ2

]
= ξ + c1 (2.97)

√
1 + ρ2

1 − ρ2
= eξ+c1 (2.98)

1 + ρ2

1 − ρ2
= e2ξ+2c1 (2.99)

Setting ρ2(0) = 0 then forces c1 = 0, and so one may rewrite the solution ρ2

as follows:

1 + ρ2 = e2ξ − ρ2e
2ξ (2.100)

ρ2(e
2ξ + 1) = e2ξ − 1 (2.101)

ρ2(ξ) =
eξ − e−ξ

eξ + e−ξ
= tanh(ξ) (2.102)

and, subsequently, from the conservation law (equation 2.88) find

ρ1(ξ) = sech (ξ).

The next step is to analyze the case where c �= 0 in equation (2.92).

First introduce a change of variables, writing

w2 =
ρ2

2 − σ2
a

σ2
b − σ2

a

and γ2 =
σ2
b − σ2

a

σ2
c − σ2

a

.
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This allows reformulation of the elliptic integral as

ξ =
±1

(σ2
c − σ2

a)
1/2

∫ w(ξ)

w(0)

dw

[(1 − w2)(1 − γ2w2)]1/2

(see Appendix B for this calculation). Manipulation of this expression will

eventually yield a formulation for ρ2
2:

(σ2
c − σ2

a)
1/2ξ =

∫ w(ξ)

w(0)

dw

[(1 − w2)(1 − γ2w2)]1/2

(σ2
c − σ2

a)
1/2ξ =

∫ w(ξ)

w(0)

dw

[(1 − w2)(1 − γ2w2)]1/2

+

∫ w(0)

0

dw

[(1 − w2)(1 − γ2w2)]1/2

−
∫ w(0)

0

dw

[(1 − w2)(1 − γ2w2)]1/2

(σ2
c − σ2

a)ξ =

∫ w(ξ)

0

dw

[(1 − w2)(1 − γ2w2)]1/2

−
∫ w(0)

0

dw

[(1 − w2)(1 − γ2w2)]1/2
.

Setting K = (σ2
c − σ2

a)
1/2ξ0, compute the solution by taking the inverse:

(σ2
c − σ2

a)
1/2ξ +K = sn−1(w, γ)

sn((σ2
c − σ2

a)
1/2(ξ + ξ0), γ) = w

=

√
ρ2

2 − σ2
a

σ2
b − σ2

a

so that

ρ2
2 − σ2

a = (σ2
b − σ2

a)sn
2
[
(σ2

c − σ2
a)

1/2(ξ + ξ0), γ
]

or

ρ2
2 = σ2

a + (σ2
b − σ2

a)sn
2
[
(σ2

c − σ2
a)

1/2(ξ + ξ0), γ
]
.
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By the conservation of energy expression 2.88, one obtains

ρ2
1 = 1 − ρ2

2 = 1 − σ2
a − (σ2

b − σ2
a)sn

2
[
(σ2

c − σ2
a)

1/2(ξ + ξ0), γ
]
.

2.7 The Lau-Barcilon Equations for Infinitely Many Modes

Begin with the O(α) equation obtained by setting equal to zero the coefficient

of α in equation (2.24):

uX +
3

2
uux − β

3
uxXt = 0.

Take

u(x,X, t) =

∞∑
j=1

uj(X)ei(kjx−ωjt) + u∗j(X)e−i(kjx−ωjt)

and compute the relevant terms. Again using the notation Ej = ei(kjx−ωjt),

uX =
∑
j

u′jEj + u∗jE
∗
j (2.103)

uxXt =
∑
j

kjωju
′
jEj + kjωju

∗
j
′E∗

j (2.104)

uux =
∑
m,n

(iknumunEmEn − iknu
∗
mu

∗
nE

∗
mE

∗
n

+iknu
∗
munE

∗
mEn − iknumu

∗
nEmE

∗
n) (2.105)

The latter expression may be simplified, since En:

EmEn = ei(km+kn)x−(ωm+ωn)tei(km+n−km+n)x

= ei(km+kn−km+n)xEm+n

where ωm + ωn = mω1 + nω1 = (m + n)ω1 = ωm+n. Thus, the conjugate

equation,

E∗
mE

∗
n = e−i(km+kn−km+n)xE∗

m+n
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holds.

Similarly, compute E∗
mEn = ei((kn−km)x−(ωn−ωm)t) but ωn − ωm = (n −

m)ω1. So, examine the following cases

if n > m : E∗
mEn = ei(kn−km−kn−m)xEn−m (2.106)

if n < m : E∗
mEn = ei(kn−km+km−n)xE∗

m−m (2.107)

if n = m : E∗
mEn = 1 (2.108)

The nonlinear term may be written as

uux =
∑
m,n

iknumune
i(km+kn−km+n)xEm+n − iknu

∗
mu

∗
ne

−i(km+kn−km+n)xE∗
m+n

+

{
iknu

∗
mune

i(kn−km−kn−m)xEn−m if n > m
iknu

∗
mune

i(kn−km+km−n)xE∗
m−n if n < m

−
{
iknumu

∗
ne

−i(kn−km−kn−m)xE∗
n−m if n > m

iknumu
∗
ne

−i(kn−km+km−n)xEm−n if n < m

Notice that if n = m the two cases cancel each other. Closer examination of

these two cases shows that if n > m then

iknu
∗
mune

i(kn−km−kn−m)xEn−m − iknumu
∗
ne

−i(kn−km−kn−m)xE∗
n−m

while if n < m then

iknu
∗
mune

i(kn−km+km−n)xE∗
m−n − iknumu

∗
ne

−i(kn−km+km−n)xEm−n.

Then notice that

E∗
j = e−i(kjx−ωjt) = ei(−kjx+ωjt) = ei(k−jx−ω−jt) = E−j

Hence the expressions from the two cases above are identical: the same form

may be used independently of the sign of m − n. It is also necessary to
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take u−j = u∗j , as will be seen later in comparing this derivation with hand

computations of the 2 modes case and the 3 modes case.

However, the large expression for uux is still not in the form needed in

order to combine it with the series terms from uX and uxXt. Notice that this

is simply the Fourier transform of a product, hence a convolution; thus the

coefficient of Ej has the form( ∞∑
m=1

ikj−mumuj−mei(km+kj−m−kj)x + ikj+mu
∗
muj+me

i(kj+m−km−kj)x

)
.

The series expressions for uux and uX − β
3
uxXt may be substituted into

the O(α) equation,

uX +
3

2
uux − β

3
uxXt = 0.

Setting the coefficient of each mode (that is, of each Ej) equal to zero gives

the Lau-Barcilon equations, indexed by j = 1 . . .∞:

(1 − β

3
kjωj)u

′
j

= −3

2

∞∑
m=1

ikj−mumuj−mei(km+kj−m−kj)x + ikj+mu
∗
muj+me

i(kj+m−km−kj)x

However, differentiation in these equations is with respect to X, with

uj = uj(X). Change variables so that these are all ordinary differential equa-

tions with respect to the independent variable x to reach the expression

(1 − β

3
kjωj)u

′
j

= −3

2
α

∞∑
m=1

ikj−mumuj−mei(km+kj−m−kj)x + ikj+mu
∗
muj+me

i(kj+m−km−kj)x

where j = 1, 2, . . ..
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A quick check of this computation can be carried out by comparing with

the 2 modes case computed earlier. To do so, take j = 1, 2 so that m = 1, 2

and uj = 0 for j > 2. The first equation comes from the j = 1 case:

0 = (1 − β

3
k1ω1)u

′
1

+
3

2
α
(
0 + ik2u

∗
1u2e

i(k2−k1−k1)x + ik−1u2u−1e
i(k2+k−1−k1)x)

= (1 − β

3
k1ω1)u

′
1 +

3

2
i(k2 − k1)u

∗
1u2e

i(k2−2k1)x

which gives

u′1 = −i3
2

k2 − k1

1 − β
3
k1ω1

ei∆kxu∗1u2,

the first Lau-Barcilon equation. Similarly, taking j = 2 gives

0 = (1 − β

3
k2ω2)u

′
2 +

3

2
ik1u1u1e

i(k1+k1−k2)x

= (1 − β

3
k2ω2)u

′
2 +

3

2
ik1u

2
1e

−i(k2−2k1)x

which gives the second Lau-Barcilon equation,

u′2 = −i3
2

k1

1 − β
3
k2ω2

u2
1e

−i∆kx.

While the process of determining the mathematical form taken by the

ordinary differential equations in the case of infinite modes has been informa-

tive, it is actually true that, for the model at hand, only a finite number of

modes is necessary. In fact, to preserve the dispersion relation only a finite

number of modes is even permitted! Consider the function

ω(k) =
k

1 + β
6
k2
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where β = (1/12)2. Notice that by a freshman calculus argument we may

compute the maximum value of ω:

ω′(k) =
1 − β

6
k2(

1 + β
6
k2

)2 = 0 when k =

√
6

β
= 12

√
6

and ω(12
√

6) = 6
√

6 < 15. The graph of ω was shown in Section 4, in context

of the first derivation of the Lau-Barcilon equations.

Now let ω1 = constant and recall that ωj = jω1 for positive integers

j. Once j > 15
ω1

, there exists no value kj for which the linearized dispersion

relation

ωj =
kj

1 + β
6
k2
j

holds. In fact, j > 6
√

6/ω1 implies that

ωj = jω1 > 6
√

6 > max
k∈�+

[ω(k)].

Thus, after a finite number of terms, the modes in the expansion

∞∑
j=−∞

aj(X)ei(kjx−ωjt)

must fail to satisfy the linearized dispersion relation.

For the typical value of β = (1/12)2, as we saw earlier ω1 ≈ 2πβ =

0.5236. Thus, if

j > 6
√

6/0.5236 = 28.0690,

the dispersion relation between ωj and kj fails. This forces the requirement

that j is no greater than 28, and hence the number of modes permitted is no

greater that 28.
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The infinite modal expansion is not useless, however! The general form

for the jth mode may be used to write down easily the Lau-Barcilon system

for these modes as verified above for the N = 2 modes case. For example, here

is the N = 4 modes system:

u′1 = −iα [
Q(1)ei∆kxu∗1u2 + S(1)e−ikHxu∗2u3 + T (1)eikGxu∗3u4

]
u′2 = −iα [

Q(2)e−i∆kxu2
1 + S(2)e−ikHxu∗1u3 + T (2)ei(k4−2k2)xu∗2u4

]
u′3 = −iα [

S(3)eikHxu1u2 + T (3)eikGxu∗1u4

]
u′4 = −iα [

T (4)e−ikGxu1u3 + T (5)e−i(k4−2k2)xu2
2

]
Similarly, here is the N = 5 modes system:

u′1 = −iα[Q(1)ei∆kxu∗1u2 + S(1)e−ikHxu∗2u3 + T (1)eikGxu∗3u4

+P (1)eikFxu∗4u5]

u′2 = −iα[Q(2)e−i∆kxu2
1 + S(2)e−ikHxu∗1u3 + T (2)ei(k4−2k2)xu∗2u4

+P (2)eikFxu∗3u5]

u′3 = −iα[S(3)eikHxu1u2 + T (3)eikGxu∗1u4 + P (3)eikExu∗2u5]

u′4 = −iα[T (4)e−ikGxu1u3 + T (5)e−i(k4−2k2)xu2
2 + P (4)eikFxu∗1u5]

u′5 = −iα[P (5)e−ikFxu1u4 + P (6)e−ikExu2u3]

The coefficients of these systems are given by

Q(1) =
3

2

k2 − k1

(1 − β
3
k1ω1)

and Q(2) =
3

2

k1

(1 − β
3
k2ω2)

and, similarly,

S(1) =
3

2

k3 − k2

(1 − β
3
k1ω1)

; S(2) =
3

2

k3 − k1

(1 − β
3
k2ω2)

; S(3) =
3

2

k1 + k2

(1 − β
3
k3ω3)
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and, also,

T (1) =
3

2

k4 − k3

(1 − β
3
k1ω1)

; T (2) =
3

2

k4 − k2

(1 − β
3
k2ω2)

; T (3) =
3

2

k4 − k1

(1 − β
3
k3ω3)

;

T (4) =
3

2

k1 + k3

(1 − β
3
k4ω4)

; T (5) =
3

2

k2

(1 − β
3
k4ω4)

and, finally,

P (1) =
3

2

k5 − k4

(1 − β
3
k1ω1)

; P (2) =
3

2

k5 − k3

(1 − β
3
k2ω2)

; P (3) =
3

2

k5 − k2

(1 − β
3
k3ω3)

;

P (4) =
3

2

k5 − k1

(1 − β
3
k4ω4)

; P (5) =
3

2

k1 + k4

(1 − β
3
k5ω5)

; P (6) =
3

2

k2 + k3

(1 − β
3
k5ω5)

.

Perhaps as was only to be expected, the theory derived in the pre-

vious sections does not hold for these higher mode solutions. In particular,

conservation of energy in the form

∑
j

cj · rjr′j = 0 (2.109)

(where the cj are constants involving the Lau-Barcilon coefficients) does not

hold in the N = 4 and higher mode cases. The next subsection sketches the

argument supporting this claim.

2.7.1 Sketch of argument

To demonstrate that a conservation law of the form (2.109) above does not

hold, begin by following the procedure used to derive the conservation law in
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the N = 2 and N = 3 modes cases. That is, write the equations in the 4

modes system in real and imaginary parts, by setting

uj(x) = rj(x)e
iθj(x).

The result is a system of the form

r′1 = αQ1r1r2 sinA+ αS1r2r3 sinB + αT1r3r4 sinC

r′2 = −αQ2r
2
1 sinA+ αS2r1r3 sinB + αT2r2r4 sinD

r′3 = −αS3r1r2 sinB + αT3r1r4 sinC

r′4 = −αT4r1r3 sinC − αT5r
2
2 sinD

where A,B,C,D are quantities depending on the θj terms and the detuning-

type parameters ∆kx, kHx, and so on. Forming the system of equations for

rjr
′
j gives the array

r1r
′
1 = Q1A + S1B + T1C

r2r
′
2 = −Q2A + S2B + T2D

r3r
′
3 = −S3B + T3C

r4r
′
4 = −T4C + T5D

where the calligraphic quantities (such as A) represent terms of the form

(rirjrk/α) sinA. The goal, then, is to show that there do not exist nonzero

quantities cj such that
4∑
j=1

cjrjr
′
j = 0 (2.110)

Equation (2.110) may be written in the form

0 = c1r1r
′
1 + c2r2r

′
2 + c3r3r

′
3 + c4r4r

′
4
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= A · (c1Q1 − c2Q2) + B · (c1S1 + c2S2 − c3S3)

+C · (c1T1 + c3T3 − c4T4) + D · (c2T2 − c5T5) (2.111)

Setting each coefficient of the calligraphed quantities equal to zero gives the

system of equations

c1Q1 − c2Q2 = 0

c1S1 + c2S2 − c3S3 = 0

c1T1 + c3T3 − c4T4 = 0

c2T2 − c5T5 = 0

which may be written as a single matrix equation,


Q1 −Q2 0 0
S1 S2 −S3 0
T1 0 T3 −T4

0 T2 0 −T5







c1
c2
c3
c4


 =




0
0
0
0


 (2.112)

Alas for the goal of finding a conservation law in the form of (2.109)

above, this matrix in equation (2.112) has nonzero determinant, indicating

that the only solution to the equation is cj = 0 for j = 1 . . . 4. Of course, this

result does not preclude the existence of a conservation law in another form,

perhaps one including cross terms of the form rjrk where j �= k.

An important question is, how good an approximation is the modal

expansion for the lower modes?

2.8 Error Calculations

The goal here is to apply the BBM operator to the approximate solution to

the BBM equation which was obtained via the Lau-Barcilon equations. The
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BBM operator, after the two-scale expansion, has the following form:

BBM = ∂t + (∂x + α∂X) +
3

2
α(·, ∂x + α∂X) − β

6
(∂x + α∂X)2∂t

= ∂t + ∂x + α∂X +
3

2
α(·, ∂x) +

3

2
α2(·, ∂X) − β

6
∂2
x∂t

−β
6
α2∂2

X∂t −
β

3
α∂x∂X∂t.

Apply this operator to the N modes solution

u(x,X, t) =

N∑
j=−N

uj(X)ei(kjx−ωjt)

where the uj(X) satisfy the Lau-Barcilon equations.

Carrying out the computations as in the derivation of the Lau-Barcilon

equations yields the following expressions:

ut =

N∑
j=−N

−iωjujEj (2.113)

ux =

N∑
j=−N

ikjujEj (2.114)

αuX =
N∑

j=−N
αu′jEj (2.115)

−β
6
uxxt =

N∑
j=−N

−β
6
iωjk

2
jujEj (2.116)

−β
6
α2uXXt =

N∑
j=−N

β

6
α2iωju

′′
jEj (2.117)

−β
3
αuxXt =

N∑
j=−N

−β
3
αkjωju

′
jEj . (2.118)

The portions of the nonlinear terms retained depend on the number

of modes used to characterize the approximate solution. In the case of two
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modes, the Lau-Barcilon equations are

u′1(X) = −iQ1u
∗
1u2e

i∆kx (2.119)

u′2(X) = −iQ2u
2
1e

−i∆kx (2.120)

where

Q1 =
3

2

k2 − k1

1 − β
3
k1ω1

and Q2 =
3

2

k1

1 − β
3
k2ω2

.

The first nonlinear term becomes

3

2
αuux = E1

[
−i3α

2
(k1 − k2)u

∗
1u2e

i∆kx

]
+ E∗

1

[
i
3α

2
(k1 − k2)u1u

∗
2e

−i∆kx

]

+ E2

[
i
3α

2
k1u

2
1e

−i∆kx

]
+ E∗

2

[
−i3α

2
k1u

∗
1
2ei∆kx

]

+ E3

[
i
3α

2
(k1 + k2)u1u2e

i(k1+k2−k3)x

]

+ E∗
3

[
−i3α

2
(k1 + k2)u

∗
1u

∗
2e
i(k1+k2−k3)x

]

+ E4

[
−i3α

2
k2u

∗
2
2e−i(k4−2k2)x

]
+ E∗

4

[
i
3α

2
k2u

2
2e
i(k4−2k2)x

]

and the second nonlinear term becomes

3α2

2
uuX = E1

[
3α2

2
(u∗1u2)

′ei∆kx

]
+ E∗

1

[
3α2

2
(u1u

∗
2)

′e−i∆kx

]

+ E2

[
3α2

2

(
1

2
u2

1

)′
e−i∆kx

]
+ E∗

2

[
3α2

2

(
1

2
u∗1

2

)′
ei∆kx

]

+ E3

[
3α2

2
(u1u2)

′ei(k1+k2−k3)x
]

+ E∗
3

[
3α2

2
(u∗1u

∗
2)

′e−i(k1+k2−k3)x
]

+ E4

[
3α2

2

(
1

2
u∗2

2

)′
e−i(k4−2k2)x

]
+ E∗

4

[
3α2

2

(
1

2
u2

2

)′
ei(k4−2k2)x

]
.

Again, as in the derivation of the Lau-Barcilon equations, these ex-

pressions have used the fact that E2
j , E1E2, E1E

∗
2 et cetera may be written

in terms of E1, E2, E3, E4. The next step is to put all these pieces together
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and determine the quantity BBM(u). To simplify the final result, use the

first order dispersion relation, kj − ωj − β
6
ωjk

2
j = 0, and use the Lau-Barcilon

equations to eliminate the first order derivatives. The result is

BBM(u) = E1α
2

[
3

2
ei∆kx(u∗1u2)

′ + i
β

6
ω1u

′′
1

]

+ E2α
2

[
3

2
e−i∆kx

(
1

2
u2

1

)′
+ i

β

6
ω2u

′′
2

]

+ E3

(
3

2
αei(k1+k2−k3)x

)
[i(k1 + k2)u1u2 + α(u1u2)

′]

+ E4

(
3

2
αe−i(k4−2k2)x

)[
−ik2u

∗
2
2 + α

(
1

2
u∗2

2

)′]
+ conj.

At this point, change variables to eliminate the long spatial scale X.

This provides the appropriate error estimate:

BBM(u) = E1 · α2

[
3

2
αei∆kx(u∗1u2)

′ + i
β

6
ω1α

2u′′1

]

+ E2 · α2

[
3

2
e−i∆kxα

(
1

2
u2

1

)′
+ i

β

6
ω2α

2u′′2

]

+ E3 ·
(

3

2
αei(k1+k2−k3)x

)[
i(k1 + k2)u1u2 + α2(u1u2)

′]
+ E4 ·

(
3

2
αe−i(k4−2k2)x

)[
−ik2u

∗
2
2 + α2

(
1

2
u∗2

2

)′]
+ conj

= E1 · α3

[
3

2
ei∆kx(u∗1u2)

′ + i
β

6
ω1αu

′′
1

]

+ E2 · α3

[
3

2
e−i∆kx

(
1

2
u2

1

)′
+ i

β

6
ω2αu

′′
2

]

+ E3 · α
(

3

2
ei(k1+k2−k3)x

)[
i(k1 + k2)u1u2 + α2(u1u2)

′]
+ E4 · α

(
3

2
e−i(k4−2k2)x

)[
−ik2u

∗
2
2 + α2

(
1

2
u∗2

2

)′]
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+ conj

It is interesting to notice that the error in the first two modes is of

order α3, while in the third and fourth modes the error terms are of order α.

The next step is to carry out the computation for the three modes case

and to determine a general form for larger numbers of modes.

For three modes, apply the two-scale BBM operator to the approximate

solution

u(x,X, t) =
3∑

j=−3

uj(X)Ej

where

u′1 = −iαQ1e
i∆kxu∗1u2 − iαR1e

−ikHxu∗2u3 (2.121)

u′2 = −αQ2e
−i∆kxu2

1 − iαR2e
−ikHxu∗1u3 (2.122)

u′3 = −iαR3e
ikHxu1u2 (2.123)

and the constants are given by

R1 =
k3 − k2

1 − β
3
k1ω1

(2.124)

R2 =
k3 − k1

1 − β
3
k2ω2

(2.125)

R3 =
k1 + k2

1 − β
3
k3ω3

(2.126)

Q1 =
k2 − k1

1 − β
3
k1ω1

(2.127)

Q2 =
k1

1 − β
3
k2ω2

. (2.128)

The next step is to compute all the pieces required to put together

BBM(u). The linear terms are as in the two modes case.
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After some computation and simplification, in which terms of the form

EmEn are re-written in the form Ej (exactly as described in the derivation of

the Lau-Barcilon equations for the case of infinitely many modes), the nonlin-

ear terms have the following forms:

3

2
αuux = E1

[
−3

2
αi(k1 − k2)u

∗
1u2e

i∆kx − 3

2
αi(k2 − k3)u

∗
2u3e

−i(k1+k2−k3)x
]

+ E2

[
3

2
αik1u

2
2e
i∆kx − 3

2
αi(k1 − k3)u

∗
1u3e

−i(k1+k2−k3)x
]

+ E3

[
3

2
αi(k1 + k2)u1u2e

i(k1+k2−k3)x
]

+ E4

[
3

2
αik2u

2
2e
i(2k2−k4)x +

3

2
αi(k1 + k3)u1u3e

i(k1+k3−k4)x

]

+ E5

[
3

2
αi(k2 + k3)u2u3e

i(k2+k3−k5)x
]

+ E6

[
3

2
αik3u

2
3e
i(2k3−k6)x

]
+ conj

and

3

2
α2uuX = E1

[
3

2
α2(u∗1u2)

′ei∆kx +
3

2
α2(u∗2u3)

′e−i(k1+k2−k3)x

]

+ E2

[
3

2
α2(

1

2
u2

1)
′e−i∆kx +

3

2
α2(u∗1u3)

′e−i(k1+k2−k3)x
]

+ E3

[
3

2
α2(u1u2)

′ei(k1+k2−k3)x

]

+ E4

[
3

2
α2(

1

2
u2

2)
′ei(2k2−k4)x +

3

2
α2(u1u3)

′ei(k1+k3−k4)x
]

+ E5

[
3

2
α2(u2u3)

′ei(k2+k3−k5)x

]

+ E6

[
3

2
α2(

1

2
u∗1

2)′ei(2k3−k6)x
]

+ conj.
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The next step is to put all these pieces together, sorting them by mode

Ej . During this process, cancel terms which correspond to the first order

dispersion relation,

−iωjuj + ikjuj − β

6
iωjk

2
juj = 0,

and to the Lau-Barcilon equations for u′j. What remains is the following

relation:

BBM(u) = E1 · α2

[
β

6
iω1u

′′
1 +

3

2
(u∗1u2)

′ei∆kx +
3

2
(u∗2u3)

′e−i(k1+k2−k3)x

]

+ E2 · α2

[
β

6
iω2u

′′
2 +

3

2

(
1

2
u2

1

)′
e−i∆kx +

3

2
(u∗1u3)

′e−i(k1+k2−k3)x
]

+ E3 · α2

[
β

6
iω3u

′′
3 +

3

2
(u1u2)

′ei(k1+k2−k3)x
]

+ E4

[(
αik2u

2
2 + α2(

1

2
u2

2)
′
)

3

2
ei(2k2−k4)x

+
(
αi(k1 + k3)u1u3 + α2(u1u3)

′) 3

2
ei(k1+k3−k4)x

]
+ E5

[
αi(k2 + k3)u2u3 + α2(u2u3)

′] 3

2
ei(k2+k3−k5)x

+ E6

[
αik3u

2
3 + α2(

1

2
u∗1

2)′
]

3

2
ei(2k3−k6)x

+ conj.

After changing variables from the long spatial X to x, the error terms

have the form

BBM(u) = E1 · α2

[
β

6
iω1α

2u′′1 +
3

2
α(u∗1u2)

′ei∆kx

+
3

2
α(u∗2u3)

′e−i(k1+k2−k3)x
]

+ E2 · α2

[
β

6
iω2α

2u′′2 +
3

2
α(

1

2
u2

1)
′e−i∆kx
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+
3

2
α(u∗1u3)

′e−i(k1+k2−k3)x
]

+ E3 · α2

[
β

6
iω3α

2u′′3 +
3

2
α(u1u2)

′ei(k1+k2−k3)x
]

+ E4

[(
αik2u

2
2 + α3(

1

2
u2

2)
′
)

3

2
ei(2k2−k4)x

+
(
αi(k1 + k3)u1u3 + α3(u1u3)

′) 3

2
ei(k1+k3−k4)x

]
+ E5

[
αi(k2 + k3)u2u3 + α3(u2u3)

′] 3

2
ei(k2+k3−k5)x

+ E6

[
αik3u

2
3 + α3(

1

2
u∗1

2)′
]

3

2
ei(2k3−k6)x

+ conj.

This may be re-written as

BBM(u) = E1 · α3

[
β

6
iω1αu

′′
1 +

3

2
(u∗1u2)

′ei∆kx +
3

2
(u∗2u3)

′e−i(k1+k2−k3)x

]

+ E2 · α3

[
β

6
iω2αu

′′
2 +

3

2
(
1

2
u2

1)
′e−i∆kx +

3

2
(u∗1u3)

′e−i(k1+k2−k3)x

]

+ E3 · α3

[
β

6
iω3αu

′′
3 +

3

2
(u1u2)

′ei(k1+k2−k3)x
]

+ E4 · α
[(
ik2u

2
2 + α2(

1

2
u2

2)
′
)

3

2
ei(2k2−k4)x

+
(
i(k1 + k3)u1u3 + α2(u1u3)

′) 3

2
ei(k1+k3−k4)x

]
+ E5 · α

[
i(k2 + k3)u2u3 + α2(u2u3)

′] 3

2
ei(k2+k3−k5)x

+ E6 · α
[
ik3u

2
3 + α2(

1

2
u∗1

2)′
]

3

2
ei(2k3−k6)x

+ conj. (2.129)

In summary,

Ej : α3 [O(1) +O(α)] for j = 1, 2, 3,

Ej : α
[
O(1) +O(α2)

]
for j = 4, 5, 6. (2.130)
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So the approximate solution u(x, t) =
∑3

j=−3 uj(x)Ej provides a very

good approximation of the behavior in the first three modes, with error order

of α3; but the approximation is good in the last three modes only if little

energy is present in those modes. That is, not much energy may cascade into

these higher modes from the dominant modes.

The obvious generalization of the error calculation to N modes is to

obtain

BBM(u) = E1 + . . .+ EN + EN+1 . . . E2N

where the first N terms are O(α3) from α2 · (ujuk)
′ and the last N terms

are O(α) from αuux and α2uuX . For example, the two-scale BBM operator

applied to the N = 3 modes u(x,X, t) yielded terms organized as

∂t + ∂x︸ ︷︷ ︸
disp.
rel.

+α∂X +
3

2
α(·, ∂x)︸ ︷︷ ︸

E1,2,3 → LB
E4,5,6 → error

+
3

2
α2(·, ∂X)︸ ︷︷ ︸
error

−β
6
∂2
x∂t︸ ︷︷ ︸

disp.
rel.

−β
6
α2∂2

X∂t︸ ︷︷ ︸
error

−β
3

3
α∂x∂X∂t︸ ︷︷ ︸

E1,2,3 → LB
E4,5,6 → error

where ‘LB’ and ‘disp. rel.’ indicate use of the Lau-Barcilon equations and of

the dispersion relation, respectively, to eliminate terms.

2.9 Numerical Analysis

2.9.1 Numerics

The reduction from a fully nonlinear evolution equation to a system of sim-

ple ordinary differential equations provides a remarkable computational ad-

vantage. Numerical solutions to the modal equations may be computed with

the most simple-minded of numerical schemes, specifically, the Euler difference

method implemented in the environment of the commercial package MATLAB.
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MATLAB’s ‘ode45’ command implements a standard Runge-Kutta method

that computed results remarkably faster than the Euler method. However,

the efficiency of the Runge-Kutta method gave large x-spacing which made

some results (such as the graph of the conservation law) too sparsely sampled

for good graphical representation. In all that follows, results were generated

with the simple Euler difference scheme. For results of a convergence study for

this implementation, refer to [17], in preparation. The following figures clearly

demonstrate the mathematical results obtained earlier, namely the transfer of

energy between modes and the conservation of energy.

All numerical results presented in this section used the parameter values

α = .15 β =

(
1

12

)2

ω1 =
π

6
(2.131)

Boundary data values uj(0) in vector form [u1(0)u2(0) . . .] are indicated in the

heading of each figure.

2.9.2 Numerical results for BBM

For the case of two modes, the solution of the Lau-Barcilon differential equa-

tions (2.45, 2.46) for the BBM equation is given in Figure (2.3). For the case

of three modes, the solution of the Lau-Barcilon differential equations is given

in Figure 2.4.

The second part of each figure shows the behavior of the conservation

law. Its small, linear growth provides one indication of the level of numerical

error for the modes shown in the first part of the figure. Notice that the

energy transfer between modes is clearly visible. A further point to note is the

cascade of energy: the first mode exhibits more energy than the second mode.
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Figure 2.3: BBM modal amplitudes, N = 2: u1 solid blue, u2 dashed green
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Figure 2.4: BBM modal amplitudes, N = 3: u1 solid blue, u2 dashed green,
u3 dotted red
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Figure 2.5: Squares of modal amplitudes for BBM, N = 2

In this context, energy in the higher modes is proportional to the square of

the modulus of the modal amplitudes, as demonstrated in the error calculation

(2.129). Plots showing these squares of the modal amplitudes (N = 2, 3 cases)

are given in Figures 2.5 and 2.6.

Also, it is possible to compute the solution forN = 4 and N = 5 modes.

The graphs of these solutions suggest that chaotic behavior may develop in

these cases (see Figures (2.7) and (2.8)), but further study is indicated.

The point of the modal expansion is to obtain an approximate solution

η of the governing nonlinear partial differential equation; hence, use the for-
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Figure 2.6: Squares of modal amplitudes for BBM, N = 3
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Figure 2.9: Modal approximations to BBM, N = 3

mulation (2.25) with the computed modal amplitudes to determine u(x, t) at

various time values. See Figures 2.9 and 2.10 and note the rightward propa-

gation of waves along the x−axis.

2.9.3 Numerical results for BAE

As studied by Boczar-Karakiewicz et al., one may easily solve the Lau-Barcilon

equations corresponding to the Boussinesq approximation to the Euler equa-

tion (BAE). In the case of two modes, this solution has the form shown in

Figure (2.11).

Similarly, it is easy to solve the Lau-Barcilon equations for BAE in the
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Figure 2.10: Modal approximations to BBM, N = 3
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case of three modes. This solution is shown in Figure (2.12).

2.9.4 Numerical comparison between BAE and BBM

The analytical studies described in earlier sections suggest that the modal

expansion technique provides a reasonable approximate solution to the BBM

equation in the context of the wave-sandbar interaction model of Karakiewicz

and Bona. Comparison of the numerical results validates this conclusion. The

absolute differences of the modal solutions are plotted in Figures (2.13) and

(2.14).
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Both of these modal approximations agree with each other very well,

as they should!



Chapter 3

Modal Expansion of the KdV Equation

3.1 Introduction

The Korteweg-de Vries equation (KdV) first derived by Boussinesq in 1871,

later published by Korteweg and de Vries in a seminal 1895 paper, has been

well studied (see [21], [13], [7], for example) during the past century, generating

a wealth of mathematics.

As a description of small amplitude, large wavelength surface water

waves, KdV may also be used as the governing equation in the model of wave-

bottom interaction developed by Boczar-Karakiewicz and Bona (refer to Chap-

ter 1). Hence, it is interesting to study the results of the modal approximation

applied to this partial differential equation. The goal of this chapter is to

carry out such a study and to compare with the results for BBM derived in

the previous chapter.

3.2 Derivation of the Lau-Barcilon Equations for KdV

Begin with the KdV equation,

ut + ux +
3

2
αuux +

β

6
uxxx = 0. (3.1)

69
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Just as in the previous chapter, suppose that u may be characterized by a

slowly varying amplitude that carries more rapidly oscillating information.

Carry out a two-scale expansion by setting X = αx for the small parameter

α and u(x,X, t) = u(x, t), so that in equation (3.1) above ∂x is replaced by

∂x + α∂X . This process yields

ut + (∂x + α∂X)u+
3

2
αu(∂x + α∂X)u+

β

6
(∂x + α∂X)2(ux + αuX) = 0

which reduces to

ut + ux +
β

6
uxxx + α

[
uX +

3

2
uux +

β

2
uxxX

]
= O(α2). (3.2)

Setting to zero the coefficient at each order of α gives the following equations.

O(α0) : 0 = ut + ux +
β

6
uxxx (3.3)

O(α) : 0 = uX +
3

2
uux +

β

2
uxxX (3.4)

Now, set

u(x,X, t) =
N∑

j=−N
uj(X)ei(kjx−ωjt),

where as before ωj = jω1, ω−j = −ωj , k−j = −kj , ω0 = 0, k0 = 0, u0(X) = 0,

and u−j = u∗j represents the complex conjugate. Notice that these conditions

on ωj and kj force u to be real-valued. Again, use the notation Ej = ei(kjx−ωjt).

Now consider the order one terms in the two-scale version of KdV:

ut =

N∑
j=−N

− iωjujEj

ux =
N∑

j=−N
ikjujEj

uxxx =
N∑

j=−N
− ik3

jujEj .
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These terms combine to give the O(α0) expression

ut + ux +
β

6
uxxx =

∑
j

i

(
kj − ωj − β

6
k3
j

)
Ej.

Setting this equal to zero gives the linearized dispersion relation for KdV:

kj − ωj − β

6
k3
j = 0

which is typically written as

ω = k

(
1 − β

6
k2

)
.

For β = (1/12)2, this relation has the form shown in Figure (3.1).
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Figure 3.1: Dispersion Relation for KdV
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As for BBM, the dispersion relation may be used to show an approxi-

mate size for the values of ω,

ω = k

(
1 − β

6
k2

)
≈ 2πβ +O(β4) (3.5)

as long as β remains small.

Figure (3.2) shows a comparison of this dispersion relation with disper-

sion relations for BAE, BBM, and the Euler equation (as discussed in Chapter

2).
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Figure 3.2: A plot of the four relevant dispersion relations

As in Chapter 2, the dispersion relation also provides a mathematical

restriction on the number of modes permitted in this expansion. This point
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will be discussed later in Section 6.

Returning to the expansion (in powers of α), consider the terms which

contribute to the order α equation from the two-scale version of KdV:

uX =

N∑
j=−N

u′jEj

uxxX =
N∑

j=−N
− k2

ju
′
jEj .

As in the previous chapter, the expansion and simplification of the nonlinear

term depends on how many modes (N) are being used to approximate u. The

nonlinearity typically generates higher order modes which must be neglected.

In the case of two modes (N = 2),

uux =

(
2∑

j=−2

ujEj

)(
2∑

n=−2

iknunEn

)

= ik1u
2
1E

2
1 + ik2u

2
2E

2
2

+ E1E2 (i(k1 + k2)u1u2) + E∗
1E2 (i(k2 − k1)u

∗
1u2)

+ conj

with the same notation as used in Chapter 2. Neglect the higher harmonics

to write the nonlinear term as

uux = ik1u
2
1e

−i∆kxE2 + i(k2 − k1)u
∗
1u2e

i∆kxE1 + conj

where ∆k = k2 − 2k1.

Put together these quantities and simplify to obtain the expression for

the O(α) portion of the two-scale KdV equation in the case of 2 modes. Setting
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the coefficient of each mode equal to zero gives

u′1 −
β

2
k2

1u
′
1 + i

3

2
(k2 − k1)u

∗
1u2e

i∆kx = 0 (3.6)

u′2 −
β

2
k2

2u
′
2 + i

3

2
k1u

2
1e

−i∆kx = 0 (3.7)

This equation yields the Lau-Barcilon equations for KdV:

u′1(X) = −i3
2

k2 − k1

1 − β
2
k2

1

ei∆kxu∗1(X)u2(X) (3.8)

u′2(X) = −i3
2

k1

1 − β
2
k2

2

e−i∆kxu2
1(X). (3.9)

Notice that these differ from the Lau-Barcilon equations for BBM only in the

denominator of the (constant) coefficient. Thus, all the analysis developed in

Chapter 2 for BBM carries over to the KdV case nearly identically.

Change variables back to the original (x, t) coordinates by setting aj(x) =

uj(X) = uj(αx) so that ∂X is replaced by 1
α
∂x. Thus the Lau-Barcilon equa-

tions are

a′1 = −iα3

2

k2 − k1

1 − β
2
k2

1

ei∆kxa∗1a2 (3.10)

a′2 = −iα3

2

k1

1 − β
2
k2

2

e−i∆kxa2
1. (3.11)

The Lau-Barcilon equations for the case of three modes may be com-

puted similarly, with the nonlinear term having the form

uux = E1

(
i(k2 − k1)u

∗
1u2e

i∆kx + i(k3 − k2)u
∗
2u3e

−i(k1+k2−k3)x)
+E2

(
ik1u

2
1e

−i∆kx + i(k3 − k1)u
∗
1u3e

−i(k1+k2−k3)x)
+E3

(
i(k1 + k2)u1u2e

i(k1+k2−k3)x)
+conj
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after neglecting higher harmonics. As in the two modes case, the O(α) terms

yield the Lau-Barcilon equations:

u′1(X) = −i3
2

k2 − k1

1 − β
2
k2

1

ei∆kxu∗1(X)u2(X)

−i3
2

k3 − k2

1 − β
2
k2

1

e−i(k1+k2−k3)xu∗2(X)u3(X) (3.12)

u′2(X) = −i3
2

k1

1 − β
2
k2

2

e−i∆kxu2
1(X)

−i3
2

k3 − k1

1 − β
2
k2

2

e−i(k1+k2−k3)xu∗1(X)u3(X) (3.13)

u′3(X) = −i3
2

k1 + k2

1 − β
2
k2

3

ei(k1+k2−k3)xu1(X)u2(X). (3.14)

After a change of variables back to the usual (x, t) coordinates by taking

aj(x) = uj(X) = uj(αx), the three modes Lau-Barcilon equations for the KdV

model become

a′1 = −iα3

2

k2 − k1

1 − β
2
k2

1

ei∆kxa∗1a2

−iα3

2

k3 − k2

1 − β
2
k2

1

e−i(k1+k2−k3)xa∗2a3 (3.15)

a′2 = −iα3

2

k1

1 − β
2
k2

2

e−i∆kxa2
1

−iα3

2

k3 − k1

1 − β
2
k2

2

e−i(k1+k2−k3)xa∗1a3 (3.16)

a′3 = −iα3

2

k1 + k2

1 − β
2
k2

3

ei(k1+k2−k3)xa1a2. (3.17)

Again, introducing notation for the constants makes the structure of these

equations easier to observe. Similarly to the definitions in the previous chapter,

set

Q̃1 =
3

2

k2 − k1

1 − β
2
k2

1

Q̃2 =
3

2

k1

1 − β
2
k2

2

(3.18)
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and

R̃1 =
3

2

k3 − k2

1 − β
2
k2

1

R̃2 =
3

2

k3 − k1

1 − β
2
k2

2

R̃3 =
3

2

k1 + k2

1 − β
2
k2

3

. (3.19)

Introducing the further notation kH = k1 +k2−k3 then yields the three modes

Lau-Barcilon equations:

a′1 = −αiQ̃1e
i∆kxa∗1a2 − αiR̃1e

−ikHxa∗2a3 (3.20)

a′2 = −αiQ̃2e
−i∆kxa2

1 − αiR̃2e
−ikHxa∗1a3 (3.21)

a′3 = −αiR̃3e
ikHxa1a2. (3.22)

Later sections describe the analytical structure of these equations, in-

cluding a derivation of the conservation law they obey.

3.3 The Modal Expansion for Linear KdV

The linear KdV equation is

ut + ux +
β

6
uxxx = 0.

Apply the two-scale expansion, taking X = αx, consequently replacing

∂x with ∂x+α∂X in the above equation. After simplification, the KdV equation

written in the two-scale variables becomes

ut + ux +
β

6
uxxx + α

[
uX +

β

2
uxxX

]
= O(α2).

After the modal expansion is applied to u, the O(α0) terms will yield

the usual linearized dispersion relation for each mode, as described in the

previous section.
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The next step is to apply the modal expansion to the O(α) terms:

substitute the form

u(x,X, t) =
∞∑

j=−∞
uj(X)ei(kjx−ωjt)

into the equation

uX +
β

2
uxxX = 0.

The coefficients of each mode then must satisfy

u′je
i(kjx−ωjt) +

β

2
(ikj)

2u′je
i(kjx−ωjt) = 0

where the prime refers to differentiation with respect to X. This relation

reduces to (
1 − β

2
k2
j

)
u′j = 0.

Thus,

uj(X) = C̃j ,

meaning each coefficient in the modal expansion is constant. Therefore, in

the case of linear KdV (as in the case of linear BBM), the modal expansion

reduces to the standard Fourier series solution:

u(x, t) =

∞∑
j=−∞

C̃je
i(kjx−ωjt)

subject to the dispersion relation for each (j−th) mode. The coefficients are

determined once boundary data has been posed for the problem, just as for

the BBM case.
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3.4 Conservation of Energy

Begin with the Lau-Barcilon equations for the case of the KdV equation:

da1

dx
= −iαQ̃1e

i∆kxa∗1a2 (3.23)

da2

dx
= −iαQ̃2e

−i∆kxa2
1 (3.24)

Exactly as in the BBM case, derive conservation laws via the follow-

ing calculation. Write these equations in complex form by setting aj(x) =

rj(x)e
iθj(x). The system then becomes

r′1 + ir1θ
′
1 = −iαQ̃1r1r2e

i[θ2−2θ1+∆kx] (3.25)

r′2 + ir2θ
′
2 = −iαQ̃2r

2
1e

−i[θ2−2θ1+∆kx] (3.26)

where the prime indicates differentiation with respect to the variable x. Sep-

arate these equations into real and imaginary components, setting φ = θ2 −
2θ1 + ∆kx. Expand the exponential in terms of sine and cosine to find

r′1 + ir1θ
′
1 = −iαQ̃1r1r2 cos φ+ αQ̃1r1r2 sin φ (3.27)

r′2 + ir2θ
′
2 = −iαQ̃2r

2
1 cosφ− αQ̃2r

2
1 sin φ, (3.28)

then sort these into real and imaginary parts to obtain the ordinary differential

equations

r′1 = αQ̃1r1r2 sinφ θ′1 = −αQ̃1r2 cosφ (3.29)

r′2 = −αQ̃2r
2
1 sinφ θ′2 = −αQ̃2

r2
1

r2
cosφ. (3.30)

As before, reduce the number of equations: since

φ′ = θ′2 − 2θ′1 + ∆k = −αQ̃2
r2
1

r2
cosφ+ 2αQ̃1r2 cosφ+ ∆k,
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the system is simply

r′1 = αQ̃1r1r2 sinφ (3.31)

r′2 = −αQ̃2r
2
1 sinφ (3.32)

φ′ = ∆k − α
[
Q̃2

r2
1

r2
− 2Q̃1r2

]
cos φ (3.33)

From the first two of these, compute

r′1
r′2

= −Q̃1

Q̃2

r2
r1

(3.34)

Q̃2r1r
′
1 = −Q̃1r2r

′
2 (3.35)

Q̃2

(
1

2
r2
1

)′
+ Q̃1

(
1

2
r2
2

)′
= 0 (3.36)

which integrates to give the conservation of energy expression

Q̃2r
2
1 + Q̃1r

2
2 = R2.

Again, one could choose to re-scale, so that this becomes r2
1 + r2

2 = C, where

C is some positive constant.

To derive a conservation law for the case of three modes, follow a nearly

identical calculation. Begin with the three modes Lau-Barcilon equations for

KdV:

a′1 = −iαQ̃1e
i∆kxa∗1a2 − iαR̃1e

−ikHxa∗2a3 (3.37)

a′2 = −iαQ̃2e
−i∆kxa2

1 − iαR̃2e
−ikHxa∗1a3 (3.38)

a′3 = −iαR̃3e
ikHxa1a2 (3.39)

including the conjugate equations to these, where the notational conveniences

∆k = k2 − 2k1 and kH = k1 + k2 − k3 are used.
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Again, set aj(x) = rj(x)e
iθj(x) so that a′j = r′je

iθj +irjθ
′
je
iθj . Substituting

these forms into the first of the above ordinary differential equations gives

r′1e
iθ1 + ir1θ

′
1e
iθ1 = −iαQ̃1e

i∆kxr1e
−iθ1r2eiθ2 − iαR̃1e

−ikHxr2e
−iθ2r3eiθ3 .

Computing similarly for the second and third equations and grouping the

exponential terms gives the following system,

r′1 + ir1θ
′
1 = −iαQ̃1r1r2e

i[θ2−2θ1+∆kx] − iαR̃1r2r3e
−i[θ1+θ2−θ3+kHx](3.40)

r′2 + ir2θ
′
2 = −iαQ̃2r

2
1e

−i[θ2−2θ1+∆kx] − iαR̃2r1r3e
−i[θ1+θ2−θ3+kHx] (3.41)

r′3 + ir3θ
′
3 = −iαR̃3r1r2e

i[θ1+θ2−θ3+kHx] (3.42)

together with conjugate equations.

Now set φ = θ2 − 2θ1 + ∆kx and ψ = θ1 + θ2 − θ3 + kHx. With this

notation, the above system becomes

r′1 + ir1θ
′
1 = −iαQ̃1r1r2e

iφ − iαR̃1r2r3e
−iψ (3.43)

r′2 + ir2θ
′
2 = −iαQ2r

2
1e

−iφ − iαR2r1r3e
−iψ (3.44)

r′3 + ir3θ
′
3 = −iαR3r1r2e

iψ, (3.45)

or in terms of the real and imaginary parts,

r′1 = αQ̃1r1r2 sin φ− αR̃1r2r3 sinψ (3.46)

θ′1 = −αQ̃1r2 cosφ− αR̃1
r2r3
r1

cosψ (3.47)

r′2 = −αQ̃2r
2
1 sinφ− αR̃2r1r3 sinψ (3.48)

θ′2 = −αQ̃2
r2
1

r2
cosφ− αR̃2

r1r3
r2

cosψ (3.49)

r′3 = αR̃3r1r2 sinψ (3.50)

θ′3 = −αR̃3
r1r2
r3

cosψ. (3.51)



81

Write these equations in terms of the variables φ and ψ, eliminating explicit

dependence on the θj . Use the forms

φ′ = θ′2 − 2θ′1 + ∆k (3.52)

ψ′ = θ′1 + θ′2 − θ′3 + kH (3.53)

to obtain the following system in terms of r1, r2, r3, φ, ψ:

r′1 = αQ̃1r1r2 sinφ− αR̃1r2r3 sinψ

r′2 = −αQ̃2r
2
1 sin φ− αR̃2r1r3 sinψ

r′3 = αR̃3r1r2 sinψ

φ′ = ∆k + α cosφ
(
2Q̃1r2 − Q̃2r

2
1/r2

)
+ α cosψ

(
2R̃1

r2r3
r1

− R̃2
r1r3
r2

)
ψ′ = kH − α cosφ

(
Q̃1r2 + Q̃2r

2
1/r2

)
+α cosψ

(
R̃3
r1r2
r3

− R̃1
r2r3
r1

− R̃2
r1r3
r2

)
.

The next step is to carry out the algebra needed to obtain a conservation

law—this utilizes only the first three equations in the above system. First,

compute

(Q̃2r1r
′
1 + Q̃1r2r

′
2)R̃3 = (−α

(
Q̃2R̃1 + Q̃1R̃2

)
r1r2r3 sinψ)R̃3

and then add this to the quantity
(
Q̃2R̃1 + Q̃1R̃2

)
r3r

′
3 to obtain the result

that

Q̃2R̃3r1r
′
1 + Q̃1R̃3r2r

′
2 +

(
Q̃2R̃1 + Q̃1R̃2

)
r3r

′
3 = 0.

This may be written as[
1

2
Q̃2R̃3r

2
1 +

1

2
Q̃1R̃3r

2
2 +

1

2
(Q̃2R̃1 + Q̃1R̃2)r

2
3

]′
= 0
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which integrates to the conservation law

Q̃2R̃3r
2
1 + Q̃1R̃3r

2
2 + (Q̃2R̃1 + Q̃1R̃2)r

2
3 = constant.

Again, this derivation has been identical to the derivation of the con-

servation laws for the BBM modal expansion.

3.5 Closed-form Solution: 2 Modes Case

The analytical solution to the two modes Lau-Barcilon equations for KdV may

be derived exactly as in Chapter 2 for the two modes Lau-Barcilon equations

for BBM, only replacing the coefficients Qj , Rj with Q̃j , R̃j , as defined in

equations 3.18 and 3.19.

3.6 Derive the Lau-Barcilon Equations for Infinitely Many
Modes

Exactly as in Chapter 2 for the BBM equation, one may derive the Lau-

Barcilon equations in the case N → ∞. These have the form

0 = (1 − β

2
k2
j )u

′
j

+α
3

2

∞∑
m=1

ikj−mumuj−mei(km+kj−m−kj)x + ikj+mu
∗
muj+me

i(kj+m−km−kj)x.

Again, a quick check of this computation can be carried out by com-

paring with the 2 modes case computed earlier. To do so, take j = 1, 2 so that

m = 1, 2 and uj = 0 for j > 2. The first equation comes from the j = 1 case:

0 =

(
1 − β

2
k2

1

)
u′1
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+α
3

2

(
0 + ik2u

∗
1u2e

i(k2−k1−k1)x + ik−1u2u−1e
i(k2+k−1−k1)x)

=

(
1 − β

2
k2

1

)
u′1 + i

3

2
(k2 − k1)u

∗
1u2e

i(k2−2k1)x

which gives

u′1 = −iα3

2

k2 − k1

1 − β
2
k2

1

ei∆kxu∗1u2,

the first Lau-Barcilon equation. Similarly, taking j = 2 gives

0 =

(
1 − β

2
k2

2

)
u′2 + iα

3

2
k1u1u1e

i(k1+k1−k2)x

=

(
1 − β

2
k2

2

)
u′2 + iα

3

2
k1u

2
1e

−i(k2−2k1)x

which gives the second Lau-Barcilon equation,

u′2 = −iα k1

1 − β
2
k2

2

u2
1e

−i∆kx.

Recall from the discussion of the BBM long wave model that, in fact,

to preserve the dispersion relation only a finite number of modes is allowed.

Consider the function

ω(k) = k

(
1 − β

6
k2

)
where β = 1/12. Notice that by a freshman calculus argument we may com-

pute the maximum value of ω:

ω′(k) = 1 − β

2
k2 = 0 when k =

√
2

β
= 12

√
2

and ω(4
√

3) = 8
√

2 < 12. The graph of ω was given in Figure (3.1).

Now let ω1 = constant and recall that ωj = jω1 for positive integers

j. Once j > 12
ω1

, there exists no value kj for which the linearized dispersion

relation

ωj = kj

(
1 − β

6
k2
j

)
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holds. Thus, after a finite number of terms, the modes in the expansion

∞∑
j=−∞

aj(X)ei(kjx−ωjt)

must fail to satisfy the linearized dispersion relation. For our typical values

of β = (1/12)2 and ω1 = π/6, one finds that j > 23 violates the dispersion

relation.

As in the BBM case, the general form for the jth mode may be used

to write easily the Lau-Barcilon system for these modes as verified above for

the N = 2 modes case. For example, here is the N = 4 modes system:

u′1 = −iα
[
Q̃(1)ei∆kxu∗1u2 + S̃(1)e−ikHxu∗2u3 + T̃ (1)eikGxu∗3u4

]
u′2 = −iα

[
Q̃(2)e−i∆kxu2

1 + S̃(2)e−ikHxu∗1u3 + T̃ (2)ei(k4−2k2)xu∗2u4

]
u′3 = −iα

[
S̃(3)eikHxu1u2 + T̃ (3)eikGxu∗1u4

]
u′4 = −iα

[
T̃ (4)e−ikGxu1u3 + T̃ (5)e−i(k4−2k2)xu2

2

]
Similarly, here is the N = 5 modes system:

u′1 = −iα[Q̃(1)ei∆kxu∗1u2 + S̃(1)e−ikHxu∗2u3 + T̃ (1)eikGxu∗3u4

+P̃ (1)eikFxu∗4u5]

u′2 = −iα[Q̃(2)e−i∆kxu2
1 + S̃(2)e−ikHxu∗1u3 + T̃ (2)ei(k4−2k2)xu∗2u4

+P̃ (2)eikFxu∗3u5]

u′3 = −iα
[
S̃(3)eikHxu1u2 + T̃ (3)eikGxu∗1u4 + P̃ (3)eikExu∗2u5

]
u′4 = −iα

[
T̃ (4)e−ikGxu1u3 + T̃ (5)e−i(k4−2k2)xu2

2 + P̃ (4)eikFxu∗1u5

]
u′5 = −iα

[
P̃ (5)e−ikFxu1u4 + P̃ (6)e−ikExu2u3

]



85

The coefficients of these systems are given by

Q̃(1) =
3

2

k2 − k1

(1 − β
2
k2

1)
and Q̃(2) =

3

2

k1

(1 − β
2
k2

2)

and, similarly,

S̃(1) =
3

2

k3 − k2

(1 − β
2
k2

1)
; S̃(2) =

3

2

k3 − k1

(1 − β
2
k2

2)
; S̃(3) =

3

2

k1 + k2

(1 − β
2
k2

3)

and, also,

T̃ (1) =
3

2

k4 − k3

(1 − β
2
k2

1)
; T̃ (2) =

3

2

k4 − k2

(1 − β
2
k2

2)
; T̃ (3) =

3

2

k4 − k1

(1 − β
2
k2

3)
;

T̃ (4) =
3

2

k1 + k3

(1 − β
2
k2

4)
; T̃ (5) =

3

2

k2

(1 − β
2
k2

4)

and, finally,

P̃ (1) =
3

2

k5 − k4

(1 − β
2
k2

1)
; P̃ (2) =

3

2

k5 − k3

(1 − β
2
k2

2)
; P̃ (3) =

k5 − k2

(1 − β
2
k2

3)
;

P (4) =
3

2

k5 − k1

(1 − β
2
k2

4)
; P (5) =

3

2

k1 + k4

(1 − β
2
k2

5)
; P (6) =

3

2

k2 + k3

(1 − β
2
k2

5)
.

As in the BBM case, the theory derived in the previous sections does

not hold for these higher mode solutions. In particular, conservation of energy

in the form ∑
j

cj · rjr′j = 0 (3.54)

(where the cj are constants involving the Lau-Barcilon coefficients) does not

hold in the N = 4 and higher mode cases. Refer to the identical argument

given in the corresponding section in Chapter 2 to verify this assertion.

The next issue to study is the accuracy of the approximation.
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3.7 Error Calculations

The goal here is to apply the KdV operator to the approximate solution to the

KdV equation which was obtained via the Lau-Barcilon equations. The KdV

operator, after the two-scale expansion, has the following form:

KdV = ∂t + (∂x + α∂X) +
3

2
α(·, ∂x + α∂X) +

β

6
(∂x + α∂X)3

= ∂t + ∂x + α∂X +
3

2
α(·, ∂x) +

3

2
α2(·, ∂X) +

β

6
∂3
x

+
αβ

2
∂2
x∂X +

α2β

2
∂x∂

2
X +

α3β

6
∂3
X .

Apply this operator to the N modes solution

u(x,X, t) =

N∑
j=−N

uj(X)ei(kjx−ωjt)

where the uj(X) satisfy the Lau-Barcilon equations for KdV. Carry out the

computations exactly as in Chapter 2, only replacing Qj , Rj with Q̃j , R̃j as

given in equations 3.18 and 3.19.

The resulting error estimate is

KdV (u) = E1α
2

[
3

2
ei∆kxα(u∗1u2)

′ − iα2β

2
k1u

′′
1 + α4β

6
u′′′1

]

+ E2α
2

[
3

2
e−i∆kxα

(
1

2
u2

1

)′
− iα2β

2
k2u

′′
2 + α4β

6
u′′′2

]

+ E3

(
αeikHx

) [
i
3

2
(k1 + k2)u1u2 + α23

2
(u1u2)

′
]

+ E4

(
αe−i(k4−2k2)x

) [−i3
2
k2u

∗
2
2 + α23

2

(
1

2
u∗2

2

)′]
+ conj
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= E1α
3

[
3

2
ei∆kx(u∗1u2)

′ − iα
β

2
k1u

′′
1 + α3β

6
u′′′1

]

+ E2α
3

[
3

2
e−i∆kx

(
1

2
u2

1

)′
− iα

β

2
k2u

′′
2 + α3β

6
u′′′2

]
+ E3α

(
eikHx

) 3

2

[
i(k1 + k2)u1u2 + α2(u1u2)

′]
+ E4α

(
e−i(k4−2k2)x

) 3

2

[
−ik2u

∗
2
2 + α2

(
1

2
u∗2

2

)′]
+ conj

case and to determine a general form for larger numbers of modes.

For the three modes case, the error terms have the form

KdV (u) = E1 · α3

[
α3β

6
u′′′1 +

3

2
(u∗1u2)

′ei∆kx +
3

2
(u∗2u3)

′e−ikHx

−iαβ
2
k1u

′′
1

]

+ E2 · α3

[
α3β

6
u′′′2 +

3

2

(
1

2
u2

1

)′
e−i∆kx +

3

2
(u∗1u3)

′e−ikHx

−iαβ
2
k2u

′′
2

]

+ E3 · α3

[
α3β

6
u′′′2 +

3

2
(u1u2)

′eikHx − iα
β

2
k3u

′′
3

]

+ E4 · 3

2
α

[(
ik2u

2
2 + α2

(
1

2
u2

2

)′ )
ei(2k2−k4)x

+
(
i(k1 + k3)u1u3 + α2(u1u3)

′) ei(k1+k3−k4)x
]

+ E5 · 3

2
α
[
i(k2 + k3)u2u3 + α2(u2u3)

′] ei(k2+k3−k5)x

+ E6 · 3

2
α

[
ik3u

2
3 + α2

(
1

2
u∗1

2

)′ ]
ei(2k3−k6)x

+ conj.

In summary,

Ej : α3 [O(1) +O(α)] for j = 1, 2, 3,



88

Ej : α
[
O(1) +O(α2)

]
for j = 4, 5, 6. (3.55)

The obvious generalization of the error calculation to N modes is to

obtain

KdV (u) = E1 + . . .+ EN + EN+1 . . . E2N

where the first N terms are O(α3) from α2 · (ujuk)′ and the last N terms are

O(α) from αuux and α2uuX. As in Chapter 2, the terms in KdV (u) may

be viewed according to their contribution to the error. The approximation is

good in the last half of the modes only if not much energy cascades into these

modes from the dominant modes.

3.8 Numerical Analysis

3.8.1 Numerics

Again, the reduction from a fully nonlinear evolution equation to a system

of simple ordinary differential equations provides a remarkable computational

advantage. Numerical solutions to the model equation were computed with the

Euler difference method implemented in the environment of the commercial

package MATLAB, just as described in Chapte 2 for the BAE and BBM

equations.

All numerical results presented in this section used the parameter values

α = .15 β =

(
1

12

)2

ω1 =
π

6
(3.56)

Boundary data values uj(0) are indicated in the heading of each figure.
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Figure 3.3: KdV modal amplitudes, N = 2: u1 blue solid, u2 green dashed

3.8.2 Numerical results for KdV, N = 2

For the case of two modes, the solution of the Lau-Barcilon differential equa-

tions for KdV is given in Figure (3.3).

The second part of the figure shows the behavior of the two modes

conservation law. Its small, linear growth provides one indication of the level

of numerical error.
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3.8.3 Numerical results for KdV, N = 3

Figure (3.4) shows the solution of the N = 3 modes Lau-Barcilon equations

for KdV. Just as in the BBM case, the cascade of energy from lower to higher

modes is evident in the relative magnitudes of the modal amplitudes.

3.8.4 Numerical comparison of KdV and BBM

It is reasonable to wonder, at this point, how the results for the BBM model

and the KdV model compare in the modal expansion. Numerically, they are

nearly identical: Figure (3.5) shows the magnitude of the differences of each

modal solution in the N = 2 case, computed as described in Chapter 2 for the

comparison between BBM and BAE.

Notice the small scale of the vertical axis. Similarly, figure (3.6) shows

the magnitude of the differences in the N = 3 case.

3.8.5 Numerical conclusions

These analytical studies suggest that the modal expansion technique provides

a reasonable approximate solution to the KdV equation, as for the BBM equa-

tion, in the context of the wave-sandbar interaction model of Karakiewicz and

Bona.
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Chapter 4

Modal Analysis of KdV-Type Long Wave

Models

The previous chapters applied the Lau-Barcilon derivation to gain a deeper

understanding of an effective approximation procedure (the modal expansion)

applied to the BBM and KdV equations. The first two sections of this chapter

describe the Lau-Barcilon theory as applied to long wave models incorporating

general dispersion relations.

4.1 The Two-Scale Form

Begin with a KdV-type model of long wave behavior:

ut + ux + αuux − βM(∂x)ux = 0 (4.1)

where M is a differential (or pseudo-differential) operator.

Now apply a two-scaling argument by taking X = αx, so that ∂x is

replaced in the scaled BBM equation by ∂x + α∂X . This procedure yields

ut + ux + αuX + αuux − βM(∂x + α∂X)(ux + αuX) = 0, (4.2)

neglecting O(α2).

94



95

In order to sort these terms by orders of α, we need to consider the

properties of M and, hence, of its symbol m(k).

The symbol m(k) corresponds to the dispersion relation determined

by the governing PDE, in that knowledge of the dispersion relation uniquely

determines the symbol and vice versa.

4.2 Linear KdV

For example, the linear KdV equation

ut + ux + uxxx = 0

corresponds to the case in which

M(∂x) = −∂2
x and m(k) = M(ik) = k2. (4.3)

In this case, the dispersion term is given by

βM(∂x + α∂X)(ux + αuX) = β(∂2
x + 2α∂x∂X + α2∂2

X)(ux + αuX)

= β(∂2
xux + 3α∂2

xuX) +O(α2) (4.4)

Notice that the O(α0) terms give the dispersion relation ω(k) = k(1 −
k2). Thus, the linear KdV dispersion relation has the form

ω(k) = k(1 − k2) = k(1 −m(k)).

This is, of course, also the form of the dispersion relation for the gen-

eralized linear KdV form,

ut + ux −M(∂x)ux = 0,
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since substitution of u = ei(kx−ωt) gives −iω + ik −m(k)ik = 0 so that

ω(k) = k − km(k) = k(1 −m(k)).

4.3 Polynomial operators M

For an operator M(∂x) = c∂px, the corresponding symbol is m(k) = c(ik)p.

The dispersive term in (4.2) above has the form

c(∂x + α∂X)p(ux + αuX) = c∂pxux + αc∂pxuX + αpc∂p−1
x ∂Xux +O(α2)

= c∂pxux + c(p+ 1)α∂pxuX +O(α2)

so that the two-scale form is

ut + ux + αuX − βc∂pxux − αc(p+ 1)β∂pxuX = 0

ut + ux − βc∂pxux + α [uX − c(p+ 1)β∂pxuX ] = 0 (4.5)

At the lowest order, O(α0), this equation gives the dispersion relation −iω +

ik − βc(ik)pik = 0, that is,

ω = k(1 − βm(k)).

Substitution of the modal expansion

u(x,X, t) =
∑
j

uj(X)ei(kjx−ωjt)

into the O(α) equation yields essentially the left-hand side of the Lau-Barcilon

equations, u′j − β(p+ 1)m(k)u′j = 0, which simplifies to

(1 − (p+ 1)βm(k))u′j = 0 (4.6)
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Hence, applying this analysis to the nonlinear equation, in which a term of

the form uux is present at the beginning (as in Chapters 2 and 3), yields

Lau-Barcilon equations of the form

(1 − (p+ 1)βm(k))u′j = − (nonlinear terms) (4.7)

Now, consider the case in which M is actually a polynomial with zero

constant term. (A nonzero constant term in M would give only another term

of the form ux, already present in the model equation. One could simply

change variables and scale out the factor of (c + 1) in front of ux.) Thus, in

general, set

M(∂x) =

n∑
κ=1

cκ(∂
pκ
x ).

Apply this form of M to the two-scaled linear KdV equation, (4.2) above, and

use the preceding analysis of the c∂px case to find that

0 = ut + ux + αuX − β
n∑
κ=1

cκ (∂pκ
x ux + (pκ + 1)α∂pκ

x uX) +O(α2).

Sorting these terms in orders of α gives

ut + ux − β
n∑
κ=1

cκ(∂
pκ
x )ux + α

[
uX − β

n∑
κ=1

cκ(pκ + 1)∂pκ
x uX

]
= 0 (4.8)

4.4 Smooth operators M

In the general case, given in two-scaled form as (4.2) above, it is necessary to

expand the expression M(∂x + α∂X). Using Taylor’s formula and assuming

sufficiently smooth behavior of M ,

M(∂x + α∂X) = M(∂x) + αM ′(∂x)∂X +O(α2).
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For particular choices of M , Taylor’s Remainder Theorem must be applied to

guarantee that the tail of this expansion really remains O(α2).

Apply this expansion to the two-scaled dispersion term, in (4.2) above,

gives

0 = ut + ux + αuX − β (M(∂x) + αM ′(∂x)∂X) (ux + αuX)

= ut + ux − βM(∂x)ux + α [uX − β (M(∂x)uX +M ′(∂x)∂xuX)] +O(α2)

Thus, the O(α0) terms yield the usual dispersion relation,

ut + ux − βM(∂x)ux = 0. (4.9)

For u = ei(kx−ωt), −ω + k − kβm(k) = 0 and, hence,

ω = k − βkm(k). (4.10)

The O(α) terms yield the following

[1 − β (M(∂x) +M ′(∂x)∂x) ]uX = 0 (4.11)

This is the general formulation, so the corresponding Lau-Barcilon equations

for the nonlinear case will look like

[1 − β (m(k) + km′(k)) ]u′j = −(nonlinear terms) (4.12)

Note that there is no factor of i in the term km′(k) (a result of the M ′(∂x)∂x

term) since m′(k) = d
dk
M(ik) = iM ′(ik); thus, the factor of i from the Fourier

transform of ∂x is absorbed into m(k).
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4.4.1 The Benjamin-Ono equation

One example of interest is the Benjamin-Ono equation, discussed in Abde-

louhab et al. [1] The Benjamin-Ono equation has the general form as in (4.1)

above, where the symbol of the dispersion operator is given by

m(k) = 2π|k| (4.13)

Note that, for the purposes of the modal expansion, k ∈ R
+. In this case,

then, the dispersion relation is

ω = k − 2πβk2, (4.14)

as graphed in Figure (4.1).

Note, as for BAE, BBM, and KdV, the dispersion relation may be used

to estimate the size of ω: k ≈ 2πβ forces ω ≈ 2πβ to O(β3).

The Lau-Barcilon equations (4.12) then become

[1 − 4πβk]u′j = −(nonlinear terms) (4.15)

The parameters used to compute the numerical solution of these equa-

tions are

α = .15 β =

(
1

12

)
ω1 =

π

24
. (4.16)

Boundary data values uj(0) are indicated in the heading of each figure.

The two modes solution of these equations is very interesting, clearly

demonstrating the oscillation of energy between the two modal amplitudes.

However, the second mode exhibits little growth, remaining small with small

initial data.
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Figure 4.2: Benjamin-Ono solution N = 2, small data in second mode: u1

blue solid, u2 green dashed
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Figure 4.3: Benjamin-Ono solution N = 2, medium data in second mode: u1

blue solid, u2 green dashed
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Figure 4.4: Benjamin-Ono solution N = 2, large data in second mode: u1 blue
solid, u2 green dashed
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Figure 4.5: Benjamin-Ono solution N = 3: u1 blue solid, u2 green dashed, u3

red dotted

Figures (4.5) and (4.6) show the modal amplitudes for the N = 3 Lau-

Barcilon equations modeling the Benjamin-Ono equation, using different sizes

of boundary data. Note that the energy levels are, of course, greatly affected

by the boundary data.

4.4.2 Intermediate Long Wave equation

The intermediate long wave equation (ILW) is another example of great inter-

est, as it may be used to describe two-layer fluid flow.

The ILW equation has the form in (4.1) above, where the symbol of
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Figure 4.7: ILW Dispersion Relation with δ = .1

the dispersion operator is given by

mδ(k) = 2πk coth(2πδk) − 1

δ
. (4.17)

The parameter δ characterizes the depth of the lighter, upper fluid layer in the

system. The dispersion relation for ILW is

ω = k − βk

(
2πk coth(2πδk) − 1

δ

)
. (4.18)

A graph of this dispersion relation for δ = .1 is shown in Figure (4.7).

As for the other operators discussed here, k ≈ 2πβ forces ω ≈ 2πβ to
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O(β2) as long as 1
δ
≈ O(β). The derivative of mδ is

m′
δ(k) = 2π coth(2πδk) − 4π2δk

csch2(2πδk)
(4.19)

so that the Lau-Barcilon equations for ILW have the form[
1 − β

(
2πk coth(2πδk) − 1

δ
+ km′

δ(k)

)]
u′j = −(nonlinear terms) (4.20)

The parameters used to compute the numerical solution of these equa-

tions are

α = .15 β =

(
1

12

)
ω1 =

π

6
. (4.21)

Boundary data values uj(0) are indicated in the heading of each figure.

An interesting line of future research may develop from the work of

Abdelouhab et al. They established rigorously the fact that the KdV and

Benjamin-Ono equations may be obtained as limiting forms of ILW as δ tends

to zero and infinity, respectively. It would be interesting to compare numerical

results of the modal approximation to ILW for increasingly small and large

values of δ with numerical results of the modal approximations to KdV and

Benjamin-Ono.

4.4.3 The Smith equation

The final example in this section is the Smith equation, having the form in

(4.1) above, where the symbol of the dispersion operator is given by

ms(k) = 2π
(√

k2 + 1 − 1
)
. (4.22)

The dispersion relation for the Smith equation is, then,

ω = k − βk · 2π
(√

k2 + 1 − 1
)
. (4.23)
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Figure 4.8: ILW solution N = 2: u1 solid, u2 dashed
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The graph of this dispersion relation is given in Figure (4.10). Again, since

k ≈ 2πβ, it follows that ω ≈ 2πβ to O(β2).

Since

m′
s(k) =

2πk√
k2 + 1

(4.24)

the Lau-Barcilon equations for the Smith equation have the form[
1 − β

(
2π

√
k2 + 1 − 2π +

2πk2

√
k2 + 1

)]
u′j = −(nonlinear terms) (4.25)

The solutions of the two modes Lau-Barcilon equations for the Smith

equation are displayed in Figure (4.11). The parameters used to compute the

numerical solution of these equations are

α = .15 β =

(
1

12

)
ω1 =

π

24
. (4.26)

Boundary data values uj(0) are indicated in the heading of each figure.

The three modes solution is displayed in Figure (4.12).
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Figure 4.11: Smith solution N = 2: u1 solid, u2 dashed
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Chapter 5

Concluding Comments

5.1 Summary

This work has demonstrated the utility and efficiency of the modal expan-

sion as an approximate solution to nonlinear partial differential equations that

include dispersive effects. Such equations are relevant in modeling physical

phenomena, particularly traveling, nonlinear dispersive surface water waves.

The modal expansion provides a viable computational alternative to

a full partial differential equations solver, as it reduces the problem to solv-

ing numerically a system of ordinary differential equations. This approach

has been demonstrated for well-known nonlinear dispersive equations such as

the Korteweg-deVries, Benjamin-Bona-Mahony, Intermediate Long Wave, and

Benjamin-Ono equations. The results have also been demonstrated in the con-

text of simple nonlinear partial differential equations for which the dispersion

term is characterized by a smooth operator.

5.2 Future Directions

Several interesting lines of research may follow from this work.

1. As mentioned in Chapter 4, the Korteweg-deVries and Benjamin-Ono
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equations may be obtained as limiting forms of the Intermediate Long

Wave equation. It would be interesting to study rigorously the limiting

behavior of the associated modal expansion approximations.

2. The Korteweg-deVries equation has an infinite number of conserved

quantities. While the Benjamin-Bona-Mahony equation is not inte-

grable, it too has several associated conserved quantities. A question

of interest is, what (if any) new information results from applying a

modal expansion to these quantities?

3. Now that the Lau-Barcilon machinery is in place, the next obvious step

is to work directly with the wave-sandbar model of Boczar-Karakiewicz

et al., continuing a comparison of model predictions with the enormous

amount of data collected at various oceanographic research sites world-

wide.

4. Yet another direction is to work on improvements to the wave-sandbar

model directly, incorporating neglected physical effects such as run-up

and reflection, possibly even finding a way to include wave-breaking.

5. Finally, other areas of interest are closely related to this work, including

study of the nonlinear Schrödinger equation in context of developing a

theory of fully two-dimensional surface wave patterns.



Appendices

116



Appendix A

Derivation of BBM and KdV

A.1 The Governing Partial Differential Equation

Following Benjamin, Bona, and Mahony [7] begin with conservation of mass,

∇ · u = 0,

conservation of momentum,

∂

∂t
u+ u · ∇u = −1

ρ
∇P − g�k,

and the assumption of irrotational flow,

∇× u = 0,

of an incompressible, inviscid fluid. As usual, when the curl of a vector field u

is zero, there exists a potential function φ(x, y, z, t) such that u = ∇φ. Thus,

the incompressibility condition ∇ · u = 0 yields

∆φ = 0,

the famed Laplace equation.

In the above descriptions, P represents the pressure, g the force of

gravity, �k the unit vector in the vertical (z) direction, and u the velocity field.
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Rewriting conservation of momentum in terms of φ yields

∂

∂t
∇φ+

1

2
∇(∇φ · ∇φ) +

1

ρ
∇P + g�k = 0

from which

∇
[
∂φ

∂t
+

1

2
∇φ · ∇φ+

1

ρ
P + gz

]
= 0.

Since this gradient is zero everywhere, the function of (x, z, t) in the square

brackets must be independent of x and z. Thus, it is a function of t alone,

∂φ

∂t
+

1

2
∇φ · ∇φ+

1

ρ
(P − P0) + gz = B(t)

where P0 is the (constant) pressure in the air near the fluid surface. Rewrite

this formulation by taking

φ̃(x, z, t) = φ(x, z, t) −
∫ t

0

B(τ)dτ

so that

∂φ̃

∂t
+

1

2
∇φ̃ · ∇φ̃+

1

ρ
(P − P0) + gz = 0.

Dropping the tilde and rearranging yields

P − P0

ρ
= −∂φ

∂t
− 1

2
∇φ · ∇φ− gz.

So the problem is to solve the Laplace equation ∆φ = 0: this yields the

velocity field u from u = ∇φ and, subsequently, the pressure P from the above

formulation. The next task is to determine appropriate boundary conditions.

Begin by assuming that the free surface of the fluid is described by the level

set of a function f(x, z, t) = 0.
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A.2 The Kinematic Boundary Condition

The physical meaning of the kinematic boundary condition is simply that

the velocity of the fluid at the surface matches the velocity of the surface.

Mathematically, this means for u = (u1, u2, v)

u1fx + u2fy + vfz
(f 2
x + f 2

y + f 2
z )

1/2
= u · �n =

−ft
||∇f ||

where �n is the unit normal vector to the surface and where the subscripts

indicate differentiation. This gives the condition

ft + u1fx + u2fy + vfz = 0.

If the free surface can be described by a single-valued function of (x, t), namely

f(x, z, t) = η(x, t) − z, then the equation

z = η(x, t)

parametrizes the surface. (This assumption eliminates breaking waves from

the model.) Applying this assumption and writing the boundary condition in

terms of the velocity potential φ, yields the kinematic boundary condition

ηt + φxηx + φyηy = φz.

A.3 The Dynamic Boundary Condition

The dynamic boundary condition, following from the conservation of momen-

tum, describes the pressure jump across the free surface. Reference to any

standard physics text reminds one that the pressure jump is proportional to

the curvature of the surface:

P − P0

ρ
= −σ

ρ

ηxx√
(1 + η2

x)
3
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thus the conservation of momentum becomes

σ

ρ

ηxx√
(1 + η2

x)
3

+ φt + (∇φ)2 + gη = 0.

For the case in which surface tension is absent, σ = 0. The dynamic boundary

condition is then

φt + (∇φ)2 + gη = 0.

A.4 The Boundary Value Problem

The full boundary value problem is the governing partial differential equation

within the flow domain together with two boundary conditions at the surface

and the condition of zero vertical velocity at the bottom. In three dimensions,

this problem is

∆φ = 0 in −h0 < z < η (A.1)

φz = 0 at z = −h0 (A.2)

ηt + φxηx + φyηy − φz = 0 at z = η (A.3)

φt +
1

2
(φ2

x + φ2
y + φ2

z) + gη = 0 at z = η (A.4)

For the purposes of this derivation, assume uniform behavior in the y

direction and work in only two dimensions. The two-dimensional formulation

of this problem is

φxx + φzz = 0 in −h0 < z < η (A.5)

φz = 0 at z = −h0 (A.6)

ηt + φxηx − φz = 0 at z = η (A.7)

φt +
1

2
(φ2

x + φ2
z) + gη = 0 at z = η (A.8)
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Notice that the boundary conditions are partial differential equations

that are applied at the unknown and variable free surface, η. Thus, the next

step is to determine a change of variables to make this problem more tractable

mathematically.

A.5 A Change of Variables

Let the old variables from the previous sections (e.g. x) be replaced by the same

variables with tildes (e.g. x̃). Then impose the general change of variables

x̃ = Xx; z̃ = Zz − h0; t̃ = Tt η̃ = Nη; φ̃ = Fφ

After some algebra, the differential equations in the boundary value

problem may be written in the dimensionless form(
Z

X

)2

φxx + φzz = 0 (A.9)

φz = 0 (A.10)

ηt +
FT

X2
φxηx − FT

NZ
φz = 0 (A.11)

φt +
gNT

F
η +

FT

X2

(
1

2
φ2
x

)
+
FT

Z2

(
1

2
φ2
z

)
= 0 (A.12)

where the units of the scaling quantities are as follows:

(X) = (Z) = (N) = length (A.13)

(T ) = time (A.14)

(F ) = length2/time (A.15)

Notice that these choices make all of the quantities in the scaled boundary

value problem unitless!
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Now, impose the change of variables given by

F =

(
gla√
gh0

)
; T =

(
l√
gh0

)
; (A.16)

(A.17)

X = l; Z = h0; N = a (A.18)

With these choices, the boundary value problem is transformed as fol-

lows.

1. The governing equation:

Z2

X2
=

(
h0

l

)2

= β

so the partial differential equation becomes

βφxx + φzz = 0.

2. The flow domain: beginning with −h0 < z̃ < η̃ yields

−h0 < h0z − h0 < aη (A.19)

0 < h0z < aη + h0 (A.20)

0 < z <
a

h0

η + 1 (A.21)

Putting α = a
h0

gives the flow domain in the form

0 < z < αη + 1.

3. The bottom boundary condition: this is the easiest to describe, as it

becomes simply

φz = 0 at z = 0.
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4. The kinematic boundary condition: first sort through some algebra.

FT

X2
=

gla√
gh0

l√
gh0

l2
=

a

h0
= α (A.22)

FT

NZ
=

gla√
gh0

l√
gh0

ah0

=
l2

h2
0

=
1

β
(A.23)

Thus, the kinematic boundary condition may be written in terms of the

small parameters α and β as follows:

ηt + αφxηx − 1

β
φz = 0

at the free surface.

5. The dynamic boundary condition: again sort through some algebra.

gNT

F
=

ga l√
gh0

gla√
gh0

= 1 (A.24)

FT

Z2
=

gla√
gh0

l√
gh0

h2
0

=
l2

h2
0

a

h0

=
α

β
(A.25)

Hence, the dynamic boundary condition is

φt + η + α
1

2
φ2
x +

α

β

1

2
φ2
z = 0

at the free surface.

A.6 Apply the Governing Equation and Bottom Bound-
ary Condition

Begin with the formulation of the dimensionless boundary value problem,

βφxx + φzz = 0 in 0 < z < αη + 1

ηt + αφxηx − 1

β
φz = 0 at z = αη + 1

φt + η + α
1

2
φ2
x +

α

β

1

2
φ2
z = 0 at z = αη + 1

φz = 0 at z = 0
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Expand the velocity potential φ in a power series (with a nod to the

differential equations technique called separation of variables):

φ(x, z, t) =
∞∑
m=0

fm(x, t)zm.

Substitution of this form of φ into the governing equation yields the following

calculation:

0 = β

∞∑
m=0

f ′′
m(x, t)zm +

∞∑
m=2

m(m− 1)fm(x, t)zm−2 (A.26)

=

∞∑
m=0

(βf ′′
m + (m+ 2)(m+ 1)fm+2) z

m (A.27)

which yields the recursion relation

fm+2 =
−β

(m+ 2)(m+ 1)
f ′′
m

where the primes indicate differentiation with respect to x.

Now the bottom boundary condition φz = 0 at z = 0 forces the co-

efficient of z to be zero; namely, 0 = f1(x, t). Application of the recursion

relation easily shows that all odd-indexed terms in the expansion of φ must be

identically zero. Thus, φ may be rewritten as

φ(x, z, t) =

∞∑
m=0

(−1)mβm
z2m

(2m)!
f (2m)(x, t)

where f(x, t) = f0(x, t) and f (2m) indicates the 2m-th derivative with respect

to x.
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A.7 Apply the Kinematic and Dynamic Boundary Con-
ditions

Now substitute the quantity

φ(x, z, t) =
∞∑
m=0

(−1)mβm
z2m

(2m)!
f (2m)(x, t)

into each of the kinematic and dynamic boundary conditions, in hope of sim-

plifying the relations between φ and η.

1. The kinematic condition: straightforward substitution yields

0 = ηt + αηx

( ∞∑
m=0

(−1)mβm
z2m

(2m)!
f (2m+1)(x, t)

)

− 1

β

( ∞∑
m=1

(−1)mβm
z2m−1

(2m− 1)!
f (2m)(x, t)

)
(A.28)

Writing out several terms of these series and substituting z = αη+1 gives

a long relation in terms of α and β. Neglecting terms that are quadratic

in these parameters (namely, α2, β2, and αβ) yields the equation

ηt + [(αη + 1)fx]x −
β

6
fxxxx = O(quadratics).

2. The dynamic condition: as before, simply substitute the series form of φ

into the dynamic boundary condition and evaluate at z = αη+ 1, which

gives

0 =

( ∞∑
m=0

(−1)mβm
z2m

(2m)!
f

(2m)
t (x, t)

)
+ η

+
α

2

( ∞∑
m=0

(−1)mβm
z2m

(2m)!
f (2m+1)(x, t)

)2

+
α

2β

( ∞∑
m=1

(−1)mβm
z2m−1

(2m− 1)!
f (2m)(x, t)

)2

(A.29)



126

Again, writing out several terms in the series expansion, substituting

z = αη + 1, and neglecting terms that are quadratic in α and β yield

η + ft + α
1

2
f 2
x − β

1

2
fxxt = O(quadratics)

In summary, the equations resulting from the surface boundary condi-

tions are

ηt + [(αη + 1)fx]x −
β

6
fxxxx = 0 (A.30)

η + ft + α
1

2
f 2
x − β

1

2
fxxt = 0 (A.31)

Introduce a new variable, w = fx: this is a physically relevant variable,

as it represents the horizontal velocity at the bottom of the flow domain.

Further, differentiate the dynamic condition with respect to x. With these

definitions, the above system becomes

ηt + [(αη + 1)w]x −
β

6
wxxx = 0 (A.32)

ηx + wt + αwwx − β

2
wxxt = 0 (A.33)

A.8 Obtaining BBM and KdV

Rewrite the above system to find that

ηt + wx + α(ηw)x − β

6
wxxx = 0 (A.34)

ηx + wt + α

(
1

2
w2

)
x

− β

2
wxxt = 0 (A.35)

Notice that at lowest order this system is the factored one-dimensional

wave equation. In that case, it is easy to find that w = η and ηt + ηx = 0.
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(Note that this means ηt = −ηx and wt = −wx.) Here, then, it is natural to

try the Ansatz w = η+αA+βB, where A and B are functions of η and all of

its derivatives. Substitute of this form of w into the above system and retain

only terms quadratic in α and β:

1. The kinematic condition becomes

0 = ηt + ηx + αAx + βBx + α(η2 + αηA+ βηB)x

− β

6
(ηxxx + αAxxx + βBxxx) (A.36)

= ηt + ηx + αAx + βBx + 2αηηx − β

6
ηxxx (A.37)

and grouping terms in powers of α and β gives

ηt + ηx + α(Ax + 2ηηx) + β

(
Bx − 1

6
ηxxx

)
= 0

2. The dynamic boundary condition becomes

0 = ηx +ηt + αAt + βBt + α(η + αA+ βB)(ηx + αAx + βBx)

− β

2
(ηxxt + αAxxt + βBxxt)

= ηt + ηx + α(At + ηηx) + β

(
Bt − 1

2
ηxxt

)
(A.38)

which may be written as

ηt + ηx + α(At + ηηx) + β

(
Bt − 1

2
ηxxt

)
= 0 (A.39)

The task now is to reconcile these two equations, choosing A and B so

that the terms of order α and the terms of order β respectively correspond.

That is, force the equalities

Ax + 2ηηx = −Ax + ηηx

Bx − 1

6
ηxxx = −Bx − 1

2
ηxxt,
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where the fact that wt = wx forced At = −Ax and Bt = −Bx. Choosing A

and B that satisfy these requirements, for example,

A = −1

4
η2 and B =

1

12
ηxxx − 1

4
ηxt

leads to a choice of model equations, among which are two of particular inter-

est, the KdV equation

ηt + ηx +
3

2
αηηx +

β

6
ηxxx = 0,

and the BBM equation

ηt + ηx +
3

2
αηηx − β

6
ηxxt = 0,

where the parameters α and β are assumed small.
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Jacobian Elliptic Functions Solution of N = 2

Modal Equations

These are the details for the change of variables described in the derivation of

the analytical solution to the two modes Lau-Barcilon equations, where

w2 =
ρ2

2 − σ2
a

σ2
b − σ2

a

and γ2 =
σ2
b − σ2

a

σ2
c − σ2

a

are applied to the elliptic integral

ξ = ±1

2

∫ ρ22(ξ)

ρ22(0)

d(ρ2
2)√

ρ2
2(1 − ρ2

2)
2 − c2

.

Notice that ρ2
2(1 − ρ2

2)
2 − c2 = 0 if and only if

0 = (ρ2
2 − σ2

a)(ρ
2
2 − σ2

b )(ρ
2
2 − σ2

c ).

Since ρ2
2 = (σ2

b − σ2
a)w

2 + σ2
a, we note that d(ρ2

2) = 2(σ2
b − σ2

a)wdw and,

thus

d(ρ2
2)

2(σ2
b − σ2

a)
=

(ρ2
2 − σ2

a)
1/2

(σ2
b − σ2

a)
1/2

dw (B.1)

dw =
d(ρ2

2)

2(σ2
b − σ2

a)
1/2

· (σ2
b − σ2

a)
1/2

(ρ2
2 − σ2

a)
1/2

(B.2)

=
1

2

d(ρ2
2)

[(σ2
b − σ2

a)(ρ
2
2 − σ2

a)]
1/2

(B.3)
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Now, sort through some algebra:

(1 − w2)(1 − γ2w2)(σ2
c − σ2

a) =

(
1 − ρ2

2 − σ2
a

σ2
b − σ2

a

)

·
(

1 − σ2
b − σ2

a

σ2
c − σ2

a

· ρ
2
2 − σ2

a

σ2
b − σ2

a

)
(σ2

c − σ2
a)

=

(
1 − ρ2

2 − σ2
a

σ2
b − σ2

a

)(
1 − ρ2

2 − σ2
a

σ2
c − σ2

a

)
(σ2

c − σ2
a)

=

(
σ2
b − ρ2

2

σ2
b − σ2

a

)(
σ2
c − ρ2

2

)
=

[
σ2
b − ρ2

2

σ2
b − σ2

a

]
(σ2

c − ρ2
2)

Hence,

dw

[(σ2
c − σ2

a)(1 − w2)(1 − γ2w2)]1/2
=

1

2

d(ρ2
2)

[(σ2
b − σ2

a)(ρ
2
2 − σ2

a)]
1/2

·
[

σ2
b − σ2

a

(σ2
b − ρ2

2)(σ
2
c − ρ2

2)

]1/2

=
1

2

d(ρ2
2)

[(ρ2
2 − σ2

a)(ρ
2
2 − σ2

b )(ρ
2
2 − σ2

c )]
1/2

=
1

2

d(ρ2
2)

[ρ2
2(1 − ρ2

2)
2 − γ2]

1/2

Thus, w is a Jacobian elliptic function of ξ, in particular,

ξ =
±1

(σ2
c − σ2

a)
1/2

∫ w(ξ)

w(0)

dw

[(1 − w2)(1 − γ2w2)]1/2
.

Simply write down the solution, change variables back to ρ2
2 and use the con-

servation law to determine ρ2
1 = 1 − ρ2

2.
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