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Autofluorescence spectroscopy can improve the early detections of oral cancer. 

Biochemical and structural changes associated with dysplastic progression alter the 

optical properties of oral mucosa and cause diagnostically significant differences in 

spectra from normal and neoplastic sites. This dissertation describes experimental and 

modeling studies aimed at revealing biological reasons for the diagnostically significant 

differences observed in depth-resolved fluorescence spectra from normal and neoplastic 

oral mucosa.  

An experimental approach, based on high-resolution fluorescence imaging, is 

used to study the autofluorescence patterns of oral tissue. At UV excitation, most of the 

epithelial autofluorescence originates from cells occupying the basal and intermediate 

layers, while stromal signal originates from collagen and elastin crosslinks. With 

dysplasia, epithelial autofluorescence increases, while autofluorescence from 

subepithelial stroma drops significantly. Benign lesions also display a drop in 
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autofluorescence from subepithelial stroma, but have different epithelium fluorescence 

patterns compared to dysplasia. Optical probes that measure mostly stromal fluorescence, 

may reveal a similar loss of fluorescence intensity and thus fail to distinguish benign 

inflammation from dysplasia. These results emphasize the importance of using probes 

with enhanced detection of epithelial fluorescence for improved diagnosis of different 

types of oral lesions. 

The second part of this work presents a Monte Carlo model that predicts 

fluorescence spectra of oral mucosa obtained using a depth-selective probe as a function 

of tissue optical properties.  A model sensitivity analysis determines how variations in 

optical parameters associated with neoplastic development influence the intensity and 

shape of spectra, and elucidates the biological basis for differences in spectra from 

normal and premalignant oral mucosa.  Spectra of oral mucosa collected with the depth-

selective probe, are affected by variations in epithelial optical properties and to a lesser 

extent by changes in superficial stromal parameters, but not by changes in the optical 

properties of deeper stroma. Changes in parameters associated with dysplastic 

progression lead to a decreased fluorescence intensity and a shift of the spectra to longer 

emission wavelengths. Decreased fluorescence is due to a drop in detected stromal 

photons, whereas the shift of spectral shape is attributed to an increased fraction of 

detected photons arising in the epithelium.     
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Chapter 1:  Introduction 

 

1.1 OVERVIEW 
 

Cancer is one of the leading problems in public health and second only to heart 

disease as the leading cause of death in the United States. The overall five-year survival 

rate for cancer in many organs has remained low for the past several decades despite 

advances in the treatment of this disease. The mortality due to cancer can be greatly 

reduced by accurate early diagnosis before malignant changes have spread to distant sites 

in the body. For example, the five-year survival rate for oral cancer patients with 

advanced stages of disease is 21%; this figure improves to 80% if cancer is diagnosed at 

local stages of development. Providing an accurate early diagnosis of oral lesions is an 

important step towards decreasing the mortality caused by oral cancer.  

Current screening techniques for oral lesions have a number of limitations. The 

accurate clinical detection of an oral lesion depends heavily on the expertise of the 

clinician and may involve several invasive biopsies. These limitations motivate the need 

for an automated, non-invasive and accurate diagnostic tool to aid the clinician in 

discriminating malignant oral lesions from normal oral tissue. A combination of  

autofluorescence spectroscopy and imaging has the potential to offer accurate, non-

invasive, real-time diagnoses of oral lesion in a clinical settings. Preliminary clinical 

studies have shown that both autofluorescence spectroscopy and imaging can accurately 

distinguish oral lesions from healthy mucosa. Autofluorescence images and spectra 

display a set of diagnostically significant features that can be used to discriminate normal 

from abnormal tissue. However, the biological basis for these diagnostically significant 
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differences in autofluorescence spectra and images from normal and neoplastic tissue is 

not well understood.  

Neoplastic transformation in oral mucosa is accompanied by a series of 

morphological, structural and biochemical changes that affect the optical properties of 

both epithelial and stromal tissue. These altered optical parameters are reflected as 

diagnostically significant differences in the autofluorescence spectra of normal, 

precancerous and cancerous epithelial sites. Improving the accuracy of fluorescence 

spectroscopy as a diagnostic tool for oral cancer detection within a large and diverse 

population requires a thorough understanding of the relationship between the changes in 

tissue optical properties and the measured fluorescence spectra. Analysis of spectral 

variations caused by neoplastic progression can be achieved by developing mathematical 

models to describe fluorescence propagation in oral tissue. The design of an accurate 

model for fluorescence light propagation in oral mucosa depends on prior knowledge of 

the key optical parameters associated with cancer progression and their effect on the 

intensity and shape of the in vivo spectra. 

For multilayered tissue, such as the oral mucosa, understanding the biological 

factors behind differences in spectra is more complex because the measured data contain 

contributions from both the epithelium and stroma.  Since most oral cancers originate in 

the epithelium, the diagnostic accuracy of autofluorescence spectroscopy can be 

improved by designing fiber optic probes that provide enhanced detection of fluorescence 

originating from within this region. In our research group, a ball-lens coupled probe was 

previously designed and proven to offer depth-resolved detection of fluorescence. This 

probe is currently used to obtain depth-resolved fluorescence spectra from normal and 

neoplastic oral sites in a clinical setting.  
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This dissertation aims at understanding the biological basis for diagnostically 

significant differences in depth-resolved spectra from normal and malignant oral sites 

measured with the clinical ball-lens coupled probe. A Monte Carlo based modeling 

approach was used to study how changes in optical parameters associated with neoplastic 

progression in the oral cavity affect fluorescence intensity and spectral shape. Previously, 

Monte Carlo simulations have been implemented for model-based analysis of 

fluorescence and reflectance spectra from cervical tissue. These existing models do not 

account for the multilayered structure of the oral mucosa. A unique feature of the 

approach that I took,  is the use of biologically realistic fluorescence and tissue geometry, 

specific for oral cavity tissue as input parameters for Monte Carlo simulations. Other 

innovative characteristics of the Monte Carlo code presented in this work, is the modeling 

of fluorescence detection with a ball lens coupled fiber optic probe, and the ability to 

predict depth-resolved fluorescence spectra measured by the clinical probe. 

Chapter 2 gives background information relevant to the research presented in this 

dissertation. The anatomy and pathology of oral mucosa are reviewed, followed by a 

summary of the application of fluorescence spectroscopy to oral cancer diagnosis and an 

overview of commonly used modeling methods to analyze fluorescence spectra from 

normal and abnormal epithelial tissue. A theoretical background of the Monte Carlo 

modeling approach has also been provided in this chapter. 

In order to obtain biologically realistic input for the Monte Carlo model, the 

autofluorescence patterns of normal and neoplastic oral tissue has been experimentally 

determined in a high resolution microscopy study of fresh oral biopsies. Chapter 3 

describes, qualitatively and quantitatively, the distribution of autofluorescence at the 

cellular level in oral tissue using laser scanning confocal fluorescence microscopy. The 

primary objective of this study was to characterize the origins of autofluorescence in 
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normal oral mucosa and to assess the effect of anatomical site variations on these 

autofluorescence patterns. In this chapter, I also studied how inflammation and dysplasia 

alter the autofluorescence properties of oral tissue and compared the autofluorescence 

patterns of oral cancers with different grades of differentiation. Upon visual examination 

of the confocal images, oral mucosa was subdivided into several sublayers with distinct 

autofluorescence characteristics. The average fluorescence intensity of each sublayer was 

determined for normal, inflammatory and dysplastic tissue slices.  The resulting values 

were used to quantitatively analyze how neoplastic progression affects the depth-

dependent distribution of autofluorescence in oral tissue. In addition, these average 

fluorescence values were used as biologically realistic input to the Monte Carlo based 

model.  Thus, understanding how autofluorescence patterns in the epithelial and stromal 

layers change during oral carcinogenesis was the first step in the development of accurate 

and biologically realistic model for predicting depth-resolved fluorescence from oral 

mucosa. 

A detailed description of the Monte Carlo based model for light propagation in 

oral tissue is offered in Chapter 4. The oral mucosa was represented as a multi-layered 

tissue geometry, allowing for depth-dependent variation in optical parameters in both the 

epithelium and the stroma. This model uses realistic fluorescence input parameters for 

each sublayer derived from measurements obtained from normal and neoplastic oral 

tissue to predict depth-resolved fluorescence detected by the clinical probe. A Monte 

Carlo based analysis was performed to study the sensitivity of predicted spectra to 

changes in biologically relevant optical parameters associated with the development of 

precancer and cancer.  This served to identify the key optical parameters responsible for 

the observed differences in normal and neoplastic fluorescence spectra. Next, the model 

was validated by predicting normal and dysplastic depth-resolved fluorescence spectra 
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and comparing the predictions to data measured in the clinic. Finally, model predictions 

of average normal and dysplastic fluorescence spectra were analyzed to elucidate the 

biological reasons for diagnostically significant spectral features observed in clinical 

data.  Chapter 5 further validates the ability of the Monte Carlo model to predict depth-

resolved spectra from oral mucosa by comparing predictions to in vivo measurements 

from a normal, dysplastic and a cancerous site obtained from the same patient. To 

increase the accuracy of the predictions, input parameters for the thickness and 

fluorescence intensity of epithelial and stromal sublayers were derived from confocal 

images of biopsies obtained from the same oral sites that were clinically measured.  

Normal oral tissue differs in the degree of keratinization of the superficial 

epithelial layer, which could contribute to a significant spectral variance in clinical data. 

Chapter 5 investigates how a thick and strongly fluorescent superficial layer affects 

Monte Carlo predictions and suggests possible biological reasons for variations in clinical 

depth-resolved spectra measured from keratinized and nonkeratinized anatomical sites. In 

particular, fluorescence spectra from normal tongue, buccal and palate were simulated 

and compared to clinical data. Depth analysis of the prediction is used to explain 

differences observed in the clinical measurements from these various normal oral sites. 

Chapter 6 summarized the main accomplishments of this work and discusses the 

future directions for the research presented in this dissertation.  Monte Carlo simulations 

present a convenient approach to analyze fluorescence spectra from the oral cavity and to 

understand the key optical parameters responsible for the differences between clinical 

normal and abnormal data. However, a Monte Carlo modeling approach for spectral 

analysis is computationally intensive and time consuming. Thus, the next step in model 

based analysis of fluorescence spectra is to develop an analytical expression that can 

accurately describe depth-resolved fluorescence spectra from multilayered tissue.  
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1.2 SPECIFIC AIMS 

In summary, the primary objective of my research is to elucidate the biological 

basis for diagnostically relevant differences in depth- resolved fluorescence spectra 

measured from normal and abnormal oral mucosa.   

 My specific goals were to: 

1. Use high-resolution fluorescence microscopy imaging of fresh biopsies to 

elucidate the autofluorescence patterns of normal oral tissue and to investigate 

how these patterns vary in benign, dysplastic and cancerous lesions. 

2. Divide normal, benign and dysplastic oral mucosa into several layers with distinct 

autofluorescence characteristic and estimate, quantitatively, the average 

fluorescence intensity of each sublayer. Use these experimentally derived 

parameters as biologically realistic input to the Monte Carlo model. 

3. Develop a Monte Carlo based model that can predict depth-resolved fluorescence 

spectra from normal and neoplastic oral sites. Unique features of this code include 

the use of multilayered tissue geometry and fluorescence input parameters 

specific for oral tissue. In addition, this code predicts spectra measured with a 

ball-lens coupled probe that offers enhances detection of epithelial fluorescence. 

4. Implement the depth-sensitive Monte Carlo model to determine some of the 

optical parameters responsible for diagnostically significant differences observed 

in clinically measured fluorescence spectra from normal and neoplastic oral 

tissue. Based on these results, predict fluorescence spectra from normal, 

dysplastic and cancerous sites and validate simulations with clinical data. Use 

predictions to elucidate the biological basis for the decrease in intensity and shift 

of spectra shape to longer emission spectra that are commonly observed when 

comparing normal and neoplastic clinical spectra. 
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Chapter 2:  Background 

 

2.1 MOTIVATION 
 

Oral cancer is a major health problem worldwide. It has been estimated that 

annually oral cancer is responsible for more then 7500 deaths in the United States and 

approximately 127,000 deaths worldwide (1, 2). Oral cancer is an epithelial cancer, 

which arises from genetic damage due to exposure to carcinogens (3), and it is closely 

associated with the tobacco usage and alcohol consumption (4). Additional causes of oral 

cancer include nutritional deficiencies, poor dentition, genetic predispositions, and 

viruses such as the human papilla and the herpes simplex viruses (HPV, HPS) (5, 6).  

Despite years of research in cancer treatment, U.S. oral cancer survival rates have 

remained the same for approximately the last 20 years (2). The five-year survival rate for 

patients with advanced stages of the disease is 21%; however it improves to 81% if cancer is 

diagnosed early (2). Early diagnosis of oral cavity lesions drastically reduces the mortality rate 

associated with this disease, however with current oral cavity screening methods, it is difficult to 

identify early malignancies of the oral cavity. Screening for oral cancer is typically 

performed during dental check up or routine physical examination (7). Current techniques 

for detection oral lesions include clinical observation of the suspected area, followed by 

the performance of invasive biopsies by the clinician. Microscopic histologic 

examination of the biopsied tissue by a trained pathologist remains the gold standard for 

oral cancer diagnosis.   

The accuracy of current screening methods for oral cancer detection depends 

substantially on the clinical expertise of the practitioner and the performing of repeated 

invasive biopsies of suspected areas. However, even experienced practitioners have 
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difficulty distinguishing premalignant lesions from benign inflammatory conditions. In 

addition, in high risk patients the entire mucosal lining is at risk for developing multiple 

lesions. Accurate diagnosis would depend on the performance of multiple oral biopsies, 

which are painful and require a waiting period for diagnostic results. Thus, both the 

patients and clinicians are hesitant to have multiply biopsies performed. Improvements in 

current screening methods would require a non-invasive diagnostic tool that can help the 

general practitioner accurately diagnose early stages of oral cavity malignancies in a one-

time visit to the clinic.  

 

2.2 ANATOMY OF THE ORAL CAVITY 

 

As shown in Figure 1 A, the oral cavity is a multi-site organ with several 

anatomical sites. In general, the oral cavity is covered by a squamous epithelial tissue 

called the oral mucosa. Figure 1 B shows that oral mucosa can be divided into two major 

layers: the squamous epithelium and the underlying connective tissue (Figure 1 B). The 

squamous epithelium consists of several layers of cells stacked above the basement 

membrane. Germinative cells (or basal cells) occupy a region immediately above the 

basement membrane and are responsible for new cell growth. Thus, these cells have high 

cell proliferation and metabolism rates. As basal cells proliferate, they move upwards 

towards the tissue surface, where they become keratinized and are sloughed off every 6-7 

days. The connective tissue directly below the basement membrane is called the lamina 

propria (or stroma) and it is composed primarily of fibrous proteins such as collagen and 

elastin. This region is also perfused with a network of capillaries. The oral mucosa can be 

subdivided into two main types, depending on the principal patterns of epithelial 

differentiation: keratinized and nonkeratinized oral mucosa. The buccal, floor of mouth, 
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soft palate and ventral surface of the tongue are covered by nonkeratinized oral mucosa. 

Differentiation in keratinized oral mucosa leads to the production of a distinct keratin 

layer, called the stratum corneum. Keratinized oral mucosa covers the oral anatomical 

sites such as the hard plate, gingiva and the dorsal side of the tongue (10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Anatomy and architecture of the oral cavity. (A) Major anatomical sites of 
the oral cavity (adapted from (8)); (B) Basic architecture of stratified 
squamous epithelium (adapted from (9)). 
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2.3 PATHOLOGY OF THE ORAL CAVITY 

 

More the 90 % of all cancers in the oral cavity are squamous cell carcinomas 

which arise from the epithelial region of the oral mucosa (6). Figure 2 illustrates the step-

wise progression of normal oral tissue to mild, moderate and severe dysplasia, carcinoma 

in situ, and finally, invasive carcinoma. Dysplastic progression is characterized by a 

series of morphologic cellular features including increased nuclear size, increased nuclear 

to cytoplasmic ratio, increased rate of mitosis, and hyperchromasia (11). Oral dysplasia is 

also associated with architectural changes such as disordered maturation from basal to 

squamous cells, hyperplasia of the basal cell layer and excessive surface keratin 

(hyperkeratosis) (11). An increased rate of proliferation within the basal layer is the first 

step of dysplastic transformation. Sites where cell proliferation is limited to one third of 

the epithelial thickness are diagnosed with mild dysplasia, whereas cell proliferation 

occupying more the half of epithelium is defined as higher grades of dysplasia. 

Carcinoma in situ is defined as having uncontrolled growth of epithelial cell, occupying 

the whole thickness of the epithelium. Invasion of malignant epithelial cells through the 

basement membrane is diagnosed as invasive carcinoma. 

Oral lesions can be divided into two groups depending on their clinical 

appearance. Most lesions have the appearance of white patches and are called 

“leukoplakia”. Silverman has observed in a study of 257 cases over a time period of 7.2 

years that 17.5% of leukoplakias undergo premalignant transformation (12). Most of the 

precancerous lesions (85%) have the appearance of leukoplakia (13); however some 

benign conditions such as hyperkeratosis or severe chronic inflammations, such as lichen 

planus, can have the appearance of white patches (14). This complicates the clinical 

recognition of benign and premalignant oral lesion.  Lesions with the appearance of a red 
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patch are defined as “erythroplakia” and are associated, most of the time, with malignant 

or premalignant transformations at the time of clinical diagnosis (3). Lesions having a 

mixed appearance of red and white patches (erythroleukoplakia) are more likely to 

develop malignant transformations compared to white lesions alone (6). The diverse 

appearance of oral lesions complicates accurate clinical diagnosis and requires the 

performance of repeated biopsies, even in cases of benign transformations. This 

motivates the need for a non-invasive, accurate technique to aid the clinician in 

diagnosing oral neoplasia. 

 

 

        

 

Figure 2.2:  An illustration of the stepwise progression of normal squamous epithelium 
to invasive cancer. 
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2.4 OPTICAL TECHNOLOGIES AS A DIAGNOSTIC TOOL  

 

Optical spectroscopy has emerged as a fast, accurate and non-invasive technology 

for diagnosing precancers and cancers in several organ sites. Several research groups 

have demonstrated that in vivo fluorescence spectroscopy can diagnose precancerous 

lesions in the cervix with a high sensitivity and specificity ranging from 68% to 90% (15-

18). For example, a diagnostic algorithm, having a sample size of 147 patients and 

excitation wavelengths of 350 and 430 nm, distinguished high grade cervical lesions from 

normal tissue with 68% specificity and 81% sensitivity (15). Optical spectroscopy has 

shown much promise as a diagnostic tool in other organ sites such as breast tissue (19), 

esophagus (20), the bladder (21), and the colon (22).  

In the oral cavity, several pilot studies proved that fluorescence spectroscopy can 

distinguish oral lesions from normal mucosa with sensitivity and specificity in the range 

of 82-100% (23-28). The accuracy of diagnosis oral cancer from normal tissue is 

especially high with sensitivity and specificity values above 95%. Heintzelman el al. 

reported that in a clinical study of 56 patients, fluorescence spectroscopy achieved 100% 

sensitivity and 90% specificity in diagnosing oral lesions from healthy tissue (24).  

Muller et al. recorded autofluorescence and reflectance spectra from 91 oral sites and 

developed a model to disentangle the effect of scattering and absorption on the intrinsic 

fluorescence caused by biological chromophores. Analysis of the intrinsic fluorescence 

spectra resulted in differentiation of cancerous and dysplastic lesion from normal tissue 

with 96% sensitivity and 96% specificity (25).  De Veld el al. measured autofluorescence 

spectra from 155 patients and 97 healthy volunteers and found excellent separation 

between normal oral mucosa and oral cancer (26). However, in a different article De Veld 
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et al. report that while autofluorescence spectroscopy can successfully discriminate 

lesions from normal oral mucosa, classification of different types of lesions with high 

accuracy was not possible (28).  In particular, she reports that autofluorescence 

spectroscopy could not distinguish benign from malignant oral lesions, due to the large 

variance in spectra from different pathologic categories. 

Autofluorescence imaging has also been used to discriminate oral lesions from the 

surrounding normal oral tissue in several pilot studies (29-31). Recently, Lane et al. 

developed a commercial device for visualization of oral tissue autofluorescence (32). In a 

clinical study of 50 patients, they have observed that abnormal lesions display a loss of 

fluorescence intensity compared to normal oral mucosa. Based on this diagnostic feature 

alone, high risk dysplastic and cancerous lesions were differentiated from normal mucosa 

with 98% sensitivity and 100% specificity. 

Most of the fluorescence spectra measured from the oral mucosa, to date, are 

acquired with fiber probes that sample fluorescence originating from large regions of the 

stroma as well as from the epithelium. Precancerous changes originate in the epithelium; 

therefore a probe design that detects fluorescence predominantly from the epithelial layer 

is likely to improve the diagnostic abilities of fluorescence spectroscopy. Separation of 

epithelial from stromal signal requires a fiber optics design that measure depth-resolved 

spectra from multilayered epithelial tissue.  Several prior studies have reported fiber optic 

probe designs that allow for the detection of fluorescence and reflectance spectra with 

depth selectivity (33-35).  Angled illumination fiber probes have been evaluated by 

measuring in vivo fluorescence spectra from epithelial precancers (36) and by diagnosing 

oral lesions with polarized reflectance spectroscopy (33). Recently in our lab, a ball-lens 

coupled probe has been designed and is currently used to obtain spatially resolved 

fluorescence spectra from normal and neoplastic oral sites in a clinical setting. The 
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shallow channel of this probe collects fluorescence from approximately 300 microns 

beneath the probe surface, which corresponds primarily to the epithelium and the 

superficial stroma (37). 

 

2.5 OPTICAL PROPERTIES OF NORMAL AND ABNORMAL EPITHELIAL TISSUE 

 

Optical spectroscopy has a high diagnostic potential because it can detect 

biochemical and morphological changes that occur in tissue during neoplastic 

progression. Cellular and architectural changes, linked to dysplastic progression in 

epithelial tissue, affect the absorption, scattering and fluorescence properties of tissue, 

and lead to diagnostically significant differences in clinically measured spectra. This 

section summarized the major optical properties of epithelial tissue and how these 

properties are altered by neoplastic development. 

Fluorescence in turbid tissue can be described as a three step event. First, 

excitation light travels into the media and is attenuated by scattering and absorption in the 

media. Absorption of excitation light by a fluorophore and the emission of fluorescence 

depend on the absorption coefficient and fluorescence efficiency of the fluorophore. 

Finally, the remitted fluorescence light travels back to the detector and is further 

attenuated by scattering and absorption events. Thus, the intrinsic fluorescence signal is 

distorted by absorption and scattering events. The detected signal from epithelial tissue 

and its underlying stroma are affected by several main fluorophores, scatterers and 

absorbers, whose optical properties and distribution in tissue are summarized in this 

section. 
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2.5.1 Fluorophores 

Pyridine nucleotides and the flavins are the main fluorophores responsible for 

cellular autofluorescence and play an important role in cellular metabolism (38).  

Nicotinamide adenine dinucleotide is a major electron acceptor in the oxidative 

phosphorylation chain of mitochondria and its reduced form (NADH) is fluorescent, 

having an excitation maximum near 360 nm and an emission maximum near 450 nm. 

When NADH is not bound to enzymes in the mitochondrial membrane it has an emission 

maximum at 470 nm. Flavin adenine dinucleotide is another major electron acceptor and 

its oxidized form, FAD, is fluorescent, having an excitation maximum near 450 nm and 

an emission maximum near 530 nm (39). Fluorescence excitation-emission matrices 

(EEMs) of cervical cell suspensions (40-42) indicate that the metabolic indicators NADH 

and FAD are the main source of cellular fluorescence at 350 nm and 450 nm excitation, 

respectively. Thus, fluorescence spectroscopy can be used to detect changes in the 

metabolic state of cells as assessed by the concentration of NADH and FAD.  

Another possible source of autofluorescence in cells, are cytokeratin filaments, 

concentrated around the nucleus and the cell membrane of epithelial cells (43). Studies on 

the fluorescence properties of wool show that oxidation of the tryptophan residue in 

keratin results in several fluorescent species that are excited in the 335 to 445 nm range 

(44).  In addition, EEMs of reduced wool fibers show a major peak at 365 nm excitation 

and 430 emission (45), and EEMs of human fingernail (composed mostly of keratins) 

show a peak that has a broad excitation from 350 to 400 nm and emission at 430 nm . 

Significant autofluorescence has been noted in the structural proteins collagen and 

elastin. Collagen and elastin autofluorescence is associated with crosslinks (46, 47). 

There are two major mechanisms of collagen and elastin crosslinks formation. 

Enzymatically formed crosslinks were believed to be the main fluorophores in collagen at 
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325 nm excitation (48). A second mechanism of inter-molecular crosslinking of collagen 

has been reported, age related, and occurs via glycation (48).  Several types of fluorescent 

crosslinks can result, such as pentosidine (excitation maximum 335 nm, emission 

maximum 385 nm, accounting for 25-40% of total collagen fluorescence), vesperlysine 

(370 nm, 440 nm, 5% of total fluorescence), crossline (380 nm, 460 nm) and 

argpyrimidine (320 nm, 380 nm) (48,49).  Spectroscopic analysis of cervical stroma 

indicates that stromal fluorescence is mainly due to collagen crosslinks. In particular, 

collagen crosslinks, ranging from enzymatically formed crosslinks to advanced glycation 

endproducts (AGEs) are thought to be the major fluorescence source at 310 to 400 nm 

excitation (41).  Since stroma has multiple fluorophores (crosslinks), Sokolov et al. 

described the emission spectra from stromal tissue using a linear combination of three set 

of Gaussian-Lorentzian curves centered at different emission wavelengths. The dominant 

component of stromal fluorescence at 350 nm excitation has an emission peak at 405 nm 

(41). 

Fluorescence microscope images of viable short term tissue cultures from cervical 

biopsies show that with dysplasia the epithelial fluorescence at 360 nm excitation 

increases, while stromal fluorescence decreases (50).  In a similar study, high-resolution 

confocal fluorescence images revealed that cytoplasmic fluorescence in epithelial cells is 

caused by mitochondrial NADH at 350-360 nm excitation and mitochondrial FAD at 488 

nm excitation (51). In normal epithelium, cytoplasmic fluorescence is limited to a thin 

layer of basal cells, while the rest of the epithelium is dominated by fluorescence 

originating from the periphery of cells. With the development of precancer in the 

epithelium, the number of cells with cytoplasmic fluorescence increases, occupying about 

2/3 of the whole layer, as in the case of high-grade dysplasia. Confocal images of stroma 

from normal and precancerous short-term tissue cultures indicate that the major source of 
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stromal fluorescence comes from fibers organized in a dense matrix. With the 

progression of dysplasia the density of the matrix decreases, so that the fluorescence 

properties of the stroma differ immediately under a precancerous lesion and 250-500 µm 

beneath the basement membrane.  

 

2.5.2 Scatterers 

Tissue scattering arises due to the microscopic heterogeneities of refractive 

indices between extracellular, cellular and sub-cellular components. Using angular 

measurements of elastic scattering from cells, Mourant et al. (52) identified that cellular 

scattering is caused by nuclei as well as other cellular organelles. Simulations based on a 

finite-difference time-domain (FDTD) technique predict an increase in the scattering 

cross section of precancerous cells, due to changes in nuclear size, optical density and 

texture (53). In addition, the scattering properties of cells vary not only with dysplasia, 

but also with epithelial depth. Further FDTD modeling shows that scattering decreases , 

going from the superficial layer to the intermediate layer, but increases again in the 

basal/parabasal layer of cervical epithelium (54). 

 

2.5.3 Absorbers 

Oxy- and deoxy-hemoglobin are considered to be the main absorber in the visible 

range of the spectrum and are present in vascularized tissues, such as the stromal layer 

underlying the epithelium.  Hemoglobin has a strong absorption peak near 420 nm; two 

smaller absorption bands are present in oxy-hemoglobin near 540 and 580 nm. A single 

absorption peak is found in deoxy-hemoglobin, near 560 nm. Reabsorption of 

fluorescence by oxy- and/or deoxy-hemoglobin produces valleys in the emitted 
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fluorescence spectra. With the progression of dysplasia, the density of blood vessels has 

been reported to increase in the oral cavity (55), and a change in the absorption properties 

of dysplastic tissue is expected.  

 

2.6 MODELING OF FLUORESCENCE IN TURBID MEDIA 

 

One of the challenges in fluorescence spectroscopy is to develop models that 

provide quantitative understanding of how biochemical factors influence the optical 

properties and fluorescence from turbid tissue. Analytical models developed, are usually 

based on the diffusion theory which is an approximate solution to the transport equation 

that describes light propagation in a scattering and absorbing media. A second modeling 

approach involves Monte Carlo simulations. 

Analytical models, based on diffusion theory, have been previously developed 

that can separate the intrinsic fluorescence from the distorting effects of scattering and 

absorption of turbid media. The validity of the diffusion theory in modeling propagation 

of light in turbid tissue was tested by several authors (56-58). The diffusion 

approximation is valid when the scattering properties of the media dominate its 

absorption properties and the distance between the source and detector fibers is large. In 

particular, the reduced scattering coefficient of the media, μs (1-g), must be much larger 

than the absorption coefficient, μa, (μs (1-g) >> μa) (59) and there should be a large 

source/detector separation, such that r (μs (1- g) > 5) (60), where r is the source-detector 

separation and g is the anisotropy factor.  

 Chen et al. (56) showed that, with an index-mismatched boundary between the 

tissue and the outside medium, the diffusion approximation yields a significant error. In 

epithelial tissues, the epithelium and the underlying stroma have different optical 
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properties, and these two layers cannot be accurately described by a single homogeneous 

medium. Moreover, scattering in the epithelium is forward directed, and the condition,  

μs (1-g) >> μa, is not valid for the epithelial layer. Results from a two layer model 

showed that light propagation in the bottom layer can be accurately described with 

diffusion theory; however, that from the top layer was difficult to predict accurately (57, 

58). Propagation of fluorescence light in a one layer media for a collimated excitation 

source and point source of emission has also been modeled with diffusion theory (61). In 

addition, models that consider different source-detector separations, have been previously 

considered (62, 63). For example, Hyde et al. (63) developed a model that measures 

fluorescence detected at different source-detector separations from a media with variable 

fluorophore concentration. Results show that for the optical parameters used in the 

model, fluorescence from shallow depths is difficult to predict with diffusion theory. 

Chang et al. (64) developed an analytical model that describes fluorescence light 

propagation in two separate layers with different theories. In particular, light from the 

forward scattering epithelial layer was modeled with Beer-Lambret Law, while the highly 

scattering stroma was described with diffusion theory. The model was validated by 

clinically measured data and Monte Carlo simulations, and predicted normal and 

abnormal fluorescence spectra within 5% accuracy. 

Monte Carlo simulations offer a flexible approach to model light propagation in 

tissue. This approach views light as photon particles and follows their random walk in a 

scattering and absorbing media. The location and trajectory of a photon in the tissue is 

determined by two random numbers that describe the path length and the scattering angle. 

The probability that a photon is scattered or absorbed, is calculated after a given step size. 

The main advantage of this approach is that it allows for implementation of a multi 

layered medium and different source-detector geometries.  Monte Carlo simulations have 
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been widely used to analyze fluorescence and reflectance spectra and to validate 

predictions with clinical measurements. Previously, Zonios et al. (66) used a model based 

on Monte Carlo simulations to analyze fluorescence measurements from the colon. 

Monte Carlo simulations have also been used to generate spectra from a two-layered 

medium and separate the contributions from the epithelial (NADH) and stromal 

(collagen) fluorescence in in vivo spectra (65).  In addition, Monte Carlo simulations are 

used investigate the efficiency of different source-detector geometries (33-35). The major 

disadvantage of Monte Carlo modeling is that it is statistical in nature and requires the 

simulation of a large number of photons, which is computationally extensive. Thus this 

model cannot be used routinely to extract optical parameters from in vivo data, but can be 

implemented to validate other models of fluorescence.  

Monte Carlo simulations are used as the main computational approach in this 

dissertation to generate and analyze depth-resolved fluorescence spectra from multi-

layered epithelial tissue. The next section provides a short theoretical background on this 

simulation technique. 
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2.7 MONTE CARLO MODELING  

 

In Monte Carlo models, turbid media is represented by one or more homogenous, 

infinitely wide layers. Each layer is described by a set of input parameters including the 

thickness D, the refractive index n, the absorption coefficient μa, the scattering coefficient 

μs, and anisotropy factor g. The absorption coefficient is defined as the probability of 

photon absorption per unit infinitesimal pathlength, and the scattering coefficient is 

defined as the probability of photon scattering per unit infinitesimal pathlength. The 

anisotropy factor characterizes the change in direction of propagation upon scattering 

(28). 

The two key parameters that determine the photon’s propagation path, are the 

mean free path for photon-medium interaction and the scattering angle. The mean free 

path is defined by the reciprocal of the total attenuation coefficient, μt. The attenuation 

coefficient can be represented by the sum of the scattering coefficient, μs, and the 

absorption coefficient, μa: 

μt = μs + μa      (2.1) 

At each scattering event the photon trajectory is deflected by an angle, θ, referred 

to, as the scattering angle. In addition, at the scattering event, the photon is assumed to be 

deflected symmetrically about the initial axis of propagation at an azimuthal angle ψ.  

Figure 2.3 illustrates the geometry of a scattering event. In this figure, the scattering 

angle θ , is defined as the angle between incident photon direction, sˆ′ , and the scattered 

photon direction, sˆ.   
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Figure 2.3:  Deflection of a photon at a scattering event. The scattering angle or 
deflection angle is indicated by θ. Adapted from (8). 

 

In Monte Carlo models, the parameters of mean free path and scattering angle are 

described with probability distribution functions. In particular, the mean free path, 

indicated as ∆s, can be sampled from a probability distribution that depends on the total 

attenuation coefficient, μt.  This probability distribution can be expressed as: 

 
p(∆s) = μt exp(-μt ∆s)    (2.2) 

 

The probability density function for the scattering angle, or more precisely, the 

probability distribution for the cosine of the deflection angle, p(cos θ), is described by the 
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Henyey-Greenstein phase function. In tissue, scattering is not isotropic, but highly 

forward directed and therefore the scattering angle probability density function is not 

uniform. Henyey and Greenstein proposed a scattering phase function that approximates 

Mie scattering from particles that are similar in size to the wavelengths of light. The 

Henyey-Greenstein phase function is extensively in used in Monte Carlo models to 

approximate the scattering phase function in tissue: 

 

              (2.3) 

 

where the anisotropy factor, g, is the average value of cos θ. The azimuthal scattering 

angle is assumed to be uniformly distributed between 0 and 2 π. 

In Monte Carlo simulations light propagation in tissue is modeled by 

incrementally propagating a statistically large number of photons through the 

homogenous layers that represent tissue media. The refractive index, the scattering and 

absorption coefficients and the anisotropy factor are specific for each layer. After each 

interaction event, a new mean free path, scattering and azimuthal angles are determined. 

Photons that are not absorbed and reach the surface of the medium are detected only if  

they exit under the area defined by the detector radius, and their propagation direction at 

the exit point is within the collection cone determined by the NA and refractive index of 

the fiber.  

A fixed weight Monte Carlo model is employed for describing fluorescence light 

propagation in multilayered oral tissue. Chapter 4 provides more details about modeling 

fluorescence light with Monte Carlo simulation techniques.  
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Chapter 3:  Understanding the biological basis of autofluorescence 
imaging for oral cancer detection: High resolution fluorescence 

microscopy in viable tissue. 1 

 

3.1 INTRODUCTION 

 

Oral cancer is one of the most common malignancies worldwide, and carries one 

of the lowest overall survival rates (1, 2). Despite the easy accessibility of the oral cavity 

to examination, most patients present with advanced disease, when treatment is 

associated with higher morbidity, more expense, and less success than earlier 

interventions. Early detection of oral cancer can greatly improve treatment outcomes. 

Unfortunately, there is no method to adequately screen and diagnose early oral cancers 

and pre-cancers because detection still relies on clinicians’ ability to visually identify 

subtle neoplastic changes, and to distinguish these changes from more common 

inflammatory conditions. Technologic advances are needed to assist clinical diagnosis of 

oral cancer.  

Autofluorescence imaging has been used successfully to rapidly and non-

invasively distinguish malignant oral lesions from surrounding tissue in several pilot 

studies (29-31).  A low-cost device for visualization of oral autofluorescence was used to 

identify high-risk precancerous and cancerous lesions with 98% sensitivity and 100% 

specificity based on the loss of fluorescence in abnormal sites compared to normal tissue 

(32). This device is now commercially available.2 Autofluorescence spectroscopy has 

                                                 
1 This chapter is modified from:  I. Pavlova, M. Williams, A. El-Naggar, R. Richards-Kortum, A. Gillenwater. Clinical Cancer 
Research (in press). 
2 http://www.velscope.com. 
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also emerged as a non-invasive technology for diagnosing precancers and cancers in 

several organ sites (16-20, 68). In the oral cavity, several groups used fluorescence 

spectroscopy to distinguish oral lesions from normal tissue with high specificity and 

sensitivity (ranging from 81% to 100%) (23-28).  Despite preliminary clinical evidence 

indicating the potential role of fluorescence imaging and spectroscopy for improved 

detection of early neoplasia in the oral cavity, there is limited understanding of the 

biological basis for optical changes associated with neoplastic transformation of oral 

tissue. 

The diagnostic potential of fluorescence imaging and spectroscopy lies in the 

ability to non-invasively probe alternations in tissue morphology and biochemistry that 

occur during malignant progression. Fluorescence in epithelial tissue originates from 

multiple fluorophores (molecules that when excited by light emit energy in the form of 

fluorescence) and is influenced by absorption and scattering as light propagates through 

the epithelium and stroma. In the cervix, which is histologically similar to oral tissue in 

many respects, epithelial fluorescence originates from the cytoplasm of cells and is linked 

to the metabolic indicators NADH and FAD, which increase as dysplasia develops (50, 

51, 39).  Neoplastic progression is also associated with increased nuclear size and 

chromatin texture, which leads to increased epithelial scattering (69, 70).  

Carcinogenesis involves complex biochemical signaling between the epithelial 

cells and the surrounding extracellular matrix (71-73). Subepithelial chronic 

inflammatory microenvironments express products that induce angiogenesis and 

degradation of the extracellular matrix, which in turn stimulates promotion of cancer in 

the epithelium (74). Since altered stromal properties may precede epithelial changes 

during carcinogenesis (75), understanding the autofluorescence patterns in the stroma and 

the impact of inflammation on these patterns, may help explain spectral differences in 
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normal oral mucosa and early dysplasia.  Confocal images and spectroscopy analysis 

indicate that collagen crosslinks are the major fluorophore in stroma in the cervix (41). 

Remodeling of the stroma during cervical carcinogenesis leads to structural changes in 

the collagen matrix accompanied by loss of collagen fluorescence (51) and a decrease in 

stromal scattering (76).  Thus, to harness the full potential of fluorescence based 

diagnosis, it is important to clarify how both epithelial and stromal alterations in oral 

tissue contribute to the changes in the overall optical properties during carcinogenesis.  

Epithelial and stromal autofluorescence patterns can be directly visualized using 

fluorescence microscopy of viable ex vivo oral tissue. High spatial resolution is necessary 

to assess variability in the microscopic origin of autofluorescence within the epithelial or 

stromal layer. Here I qualitatively and quantitatively examined the distribution of 

autofluorescence at the cellular level in viable oral tissue using laser scanning confocal 

fluorescence microscopy. Our first objective was to characterize the origins of 

autofluorescence in normal oral mucosa and to assess how anatomical site variations 

affect these autofluorescence patterns. Second, I investigated how inflammation and 

dysplasia alter the autofluorescence properties of oral tissue. Third, I compared the 

autofluorescence patterns of oral cancers with different grades of differentiation. 

Understanding the biological basis underlying alteration in autofluorescence in epithelial 

and stromal layers during oral carcinogenesis will facilitate development of accurate 

diagnostic algorithms to differentiate normal, benign, precancerous, and cancerous oral 

tissue; an important step needed to achieve the full diagnostic potential of this 

technology. 
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3.2 METHODS 

 

3.2.1 Biopsy collection and preparation of tissue slices 

Clinical protocols were approved by the Institutional Review Boards at The 

University of Texas M. D. Anderson Cancer Center (MDACC), The University of Texas 

at Austin, and Rice University.  A clinically normal and one or more clinically abnormal 

biopsy were obtained from each consenting patient at MDACC.  Biopsies were 

immediately stored in iced phenol-free DMEM media (Sigma-Aldrich, St. Louis, MO) 

and kept there until examination. Transverse tissue slices approximately 200 µm thick 

were obtained from each fresh biopsy using a Krumdieck tissue slicer (Alabama Research 

and Development, Munford, AL). Note that prior to fluorescence imaging, slices were not 

fixed or processed in any way.  Each unstained and unprocessed tissue slice was imaged 

with an inverted Leica SP2 AOBS confocal laser scanning fluorescence microscope 

(Leica Microsystems, Wetzlar, Germany) within 12 hours after biopsy collection. 

Detailed procedures for tissue cutting and preparation for imaging are described 

elsewhere (50, 51). 

 

3.2.2 Confocal Microscopy and Image Collection 

Optical sections from each tissue slice were obtained at both UV and 488 nm 

excitation using a 40 X oil-immersion objective. UV excitation was provided by an argon 

laser, at 351 nm and 364 nm, and an Ar/Kr laser was used for 488 nm excitation. Prior 

analysis on cervical tissue (41) has indicated the UV excitation (at 351 nm and 364 nm) 

targets predominantly NADH in the epithelium and collagen fibers in the stroma, while 

488 nm excitation targets FAD in the epithelium in addition to stromal fibers. The oil-
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immersion objective had a numerical aperture of 1.25 and a working distance of 80 µm. 

Single optical sections of each region of interest were obtained at a fixed depth of 15 µm 

beneath the cover slip. The fluorescence signal at UV excitation was collected from 380 

to 500 nm, whereas at 488 nm excitation, fluorescence was collected from 505 to 650 nm. 

The field of view for each image was 375 µm × 375 µm.  The lateral resolution was 

limited by the pixel size of the detector and was 0.73 µm.  The axial step size varied from 

1.0 to 1.2 µm. In order to perform quantitative comparisons all images were taken with 

the same detector settings and corrections for laser power variations were performed prior 

to analysis. 

In tissue slices with well defined layered structure (normal, inflammation, and 

dysplasia), adjacent images were acquired to include the whole thickness of the 

epithelium and the more superficial stromal regions down to about 1 mm in depth. In 

tissue slices without a defined structure (invasive carcinoma), several images were taken, 

starting from what appeared to be the surface of the tissue slice and ending about 1 mm 

below this edge. Adjacent confocal images were tiled together in order to provide large-

scale mosaic view of each region of interest. Some adjacent images had a considerable 

area of overlap, which was cropped off prior to assembly of the mosaic view. Brightness 

and contrast was readjusted by the same amount for all confocal images prior to display. 

 

3.2.3 Histology 

After imaging, tissue slices were fixed in 10% formalin and prepared for 

pathological examination using standard protocols. Hematoxylin and eosin (H&E) 

stained sections were obtained from each imaged tissue slice and reviewed by 

experienced head and neck pathologists.   A pathologic diagnosis of normal, dysplasia or 

cancer was rendered; hyperkeratosis and hyperplasia were treated as normal for further 
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analysis. In addition, the absence or presence (and degree) of inflammation was 

determined.  

 

3.2.4 Image analysis: average fluorescence intensity and redox ratio calculations 

A qualitative assessment of autofluorescence patterns was performed initially, 

comparing variations by anatomic site and pathologic diagnosis.  Then the UV and 488 

nm images were overlaid and examined visually. In normal and precancerous tissue 

slices, the fluorescence patterns were examined in the superficial, intermediate and basal 

epithelium as well as in the superficial and deep stroma. Tissue slices diagnosed with 

invasive cancers displayed a loss of layered morphology. After visually identifying 

common morphological and fluorescence patterns, tumor images were divided into 

subregions, including regions with tumor cells and surrounding fiber matrix.  

Quantitative image analysis was performed in the following manner:  After 

background subtraction, the UV and 488 nm image for each tissue slice were overlaid.  

Several regions containing cells and stroma were outlined based on the appearance of the 

overlaid images.  The average grayscale values of all pixels within an outlined region 

were calculated in order to obtain the mean fluorescence intensity value (FIV) for each 

region. These calculations were performed for both the UV and 488 nm images.  In 

addition the average redox ratio value was calculated for the cellular regions in each 

tissue slice by dividing the mean FIV at 488 nm excitation for the region by the sum of 

the mean FIV at UV and the mean FIV at 488 nm excitation for the same region.  The 

redox ratio reflects changes in the concentrations and redox potentials of the metabolic 

indicators NADH and FAD, and has been used in previous research to monitor cellular 

metabolism (39, 50). 
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Finally, all tissue slices were grouped according to their pathologic diagnosis, and 

the mean FIV and redox ratio were calculated for each diagnostic category. For normal, 

inflammatory and dysplastic samples, which retain a well-defined layered morphology, 

tissue slices were grouped by both pathologic diagnosis and anatomic site.  For tissue 

slices from cancerous lesions, samples were grouped by diagnosis regardless of anatomic 

site.  The average FIV was calculated for cellular and stromal regions by averaging the 

mean FIV for each tissue slice for that diagnostic group and anatomic site.  The average 

FIVs were used to compare changes in the fluorescence characteristics of oral tissue that 

occur in association with neoplastic development. In a similar manner, the average redox 

ratio was obtained for each diagnostic group.  
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3.3 RESULTS 
 

A total of 49 oral biopsies were obtained in this study. The biopsies were 

subdivided according to oral anatomical type and pathologic diagnosis.  Oral biopsies 

from five different anatomical types were imaged including the tongue, palate, gingiva, 

buccal mucosa and the floor of mouth. Each biopsy was assigned to the following 

pathological diagnostic subcategories: normal without inflammation (8 tongue biopsies, 2 

palate biopsies, 2 gingival biopsies, 2 buccal mucosa biopsies, and 4 floor of mouth 

biopsies); normal with mild to moderate inflammation (2 tongue biopsies, 2 gingival 

biopsies, and 3 floor of mouth biopsies); normal with severe inflammation (3 tongue 

biopsies); dysplasia (6 tongue biopsies, 2 palate biopsies); well differentiated carcinoma 

(3 tongue biopsies, 1 palate biopsy, and 2 floor of mouth biopsies); moderately 

differentiated carcinoma (5 tongue biopsies, and 1 floor of mouth biopsies); poorly 

differentiated carcinoma (1 palate biopsy).   

 

 

 

 

 

 

 

 

 

Table 3.1: Total number of biopsies for each diagnostic category and anatomic site.  

602013Well differentiated carcinoma

601005Moderately differentiated carcinoma

100010Poorly differentiated carcinoma

49Total

8

3

7

18

Total

0

0

0

2

Buccal

3202Normal with mild to moderate inflammation

0026Dysplasia

0003Normal with severe inflammation

4228Normal without  inflammation

Floor 
of 

mouthGingivaPalateTongue

602013Well differentiated carcinoma

601005Moderately differentiated carcinoma

100010Poorly differentiated carcinoma

49Total

8

3

7

18

Total

0

0

0

2

Buccal

3202Normal with mild to moderate inflammation

0026Dysplasia

0003Normal with severe inflammation

4228Normal without  inflammation

Floor 
of 

mouthGingivaPalateTongue



 32

3.3.1 Normal oral mucosa autofluorescence patterns 

Figure 3.1 displays confocal images at UV and 488 nm excitation from a 

representative normal tongue tissue slice. At UV excitation, most of the epithelial 

fluorescence originates from the cytoplasm of cells occupying roughly the lower 2/3 of 

the epithelial layer (Figure 3.1 A). At 488 nm excitation, these same cells have less 

cytoplasmic fluorescence compared to the upper 1/3 of the epithelium (Figure 3.1 B). 

Strong stromal autofluorescence at both excitation wavelengths originates from a dense 

matrix of structural fibers and does not vary significantly with depth. 

Autofluorescence characteristics of normal oral mucosa from different anatomical 

sites are compared in Figure 3.2.  Oral epithelium often retains a superficial keratin-

containing layer which is highly fluorescent. I observed the presence of this highly 

fluorescent superficial layer in epithelia from the palate and gingiva (Figure 3.2 A and B). 

In contrast, epithelia from the floor of mouth, buccal mucosa and the tongue (Figure 3.2 

C and D and Figure 3.1) display a weakly fluorescent superficial layer. Deep to this 

superficial layer, autofluorescence patterns of epithelia in all tissue sites except the 

gingiva are generally similar. Gingival epithelia, in contrast to other oral sites such as the 

tongue (Figure 3.1), is dominated by cells that have low fluorescence at UV excitation 

but high fluorescence at 488 nm excitation. The diminished cytoplasmic fluorescence at 

UV excitation was observed in all gingival samples, although the number of gingival 

samples examined was limited.  

 

 

 

 

 



 33

 

 

 

Figure 3.1: Fluorescence and histologic images of normal tongue without inflammation: 
Confocal fluorescence images at (A) UV excitation, (B) 488 excitation and 
(C) H&E image. Scale bars represent 200 µm in the confocal images and 
125 µm in the H&E image. Note that epithelial fluorescence increase with 
depth at UV excitation and slightly decrease at 488 nm excitation.   
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Figure 3.2: Fluorescence and histologic images of four normal oral sites without 
inflammation. Confocal fluorescence images at both UV (top row) and 488 
nm excitation (middle row) and H&E image (bottom row) from (A) palate; 
(B) gingiva; (C) floor of mouth and (D) buccal mucosa. White line indicates 
the approximate location of the basement membrane. Scale bars represent 
200 µm. Note that the superficial layer is significantly more fluorescent is 
the palate, then in other anatomical sites. Gingival epithelium displays a loss 
of fluorescence at UV excitation, which is unusual for other normal sites. 

 

A CB D 
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3.3.2 Autofluorescence patterns in inflammatory and dysplastic oral tongue tissue  

Representative fluorescence images of oral tongue lesions diagnosed as normal, 

non-dysplastic epithelium with severe inflammation (Figure 3.3A) and mildly dysplastic 

epithelium with mild to moderate inflammation (Figure 3.3 B) are compared. Mild 

dysplasia and severe inflammation can be distinguished based on differences in epithelial 

fluorescence at UV excitation. A large decrease in fluorescence at UV excitation is 

observed in the normal basal epithelium overlying inflammatory stroma compared to 

normal non-inflammatory tongue epithelium (Figure 3.1 A). In contrast, dysplatic 

epithelium displays a small increase in fluorescence at UV excitation, compared to 

normal non-inflammatory tongue epithelium. Thus, the representative images in Figures 

3.3 indicate that dysplastic epithelium is significantly more fluorescent than the normal 

basal epithelium overlying severely inflamed stroma. Images from a non-dysplastic floor 

of mouth sample with mild to moderate inflammation in the stroma show a similar loss of 

epithelial fluorescence at UV excitation as in the tongue (data not shown). 

Stromal areas directly beneath the basement membrane in both the inflammatory 

and the dysplastic examples exhibit a large loss in fluorescence at UV and 488 nm 

excitation. In the loose stromal matrix evident in both samples, autofluorescence signals 

originate predominantly from cells rather than from fibers as seen in normal oral tissue. 

This shift in origin of stromal fluorescence from fibers to cells, which is more obvious in 

the severe inflammation case, appears to be associated with the influx of inflammatory 

cells in this area, as confirmed in H&E images (black arrows in Figure 3.3). In the 

dysplastic example, these stromal changes affect only the region 100-200 µm below the 

basement membrane. In particular, stromal fluorescence and fiber density decrease 

predominantly in areas underling the epithelium, whereas autofluorescence patterns of 

deeper stroma appear to be similar to normal stroma.  
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3.3.3 Quantitative analysis of fluorescence in normal, benign, and dysplastic oral 
tongue slices  

Figures 3.4 A and B illustrate how images of tissue slices with well defined 

layered morphology were divided into subregions for quantitative analysis. The 

superficial epithelial region includes cells that retain keratin (white area on Figure 3.4 B).  

Non-keratinized epithelial cells displaying a weak cytoplasmic fluorescence signal at UV 

excitation are defined as type 1 cells (green area on Figure 3.4 B). At 488 nm excitation; 

type 1 cells display an increased cytoplasmic fluorescence signal compared to the rest of 

the nonkeratinized epithelium. Epithelial cells with a strong cytoplasmic fluorescence 

signal at UV excitation are defined as type 2 cells (blue area on Figure 3.4B). Stromal 

region 1 occupies an area approximately 100 -200 µm below the basement membrane. 

Stromal region 2 is situated below stromal region 1, and occupies an area that is about 

200-500 µm deep.  For all tissue slices obtained from the tongue, the mean fluorescence 

intensity value was calculated for each region by diagnostic category for slices diagnosed 

as normal, inflammatory or dysplastic; results are shown in Figures 3.4 C and D. 

In normal tongue epithelium, type 2 cells display the highest average fluorescence 

intensity at UV excitation but the lowest value at 488 nm excitation. The average redox 

values for type 2 cells are 1.8 times lower than the redox values for type 1 cells (data not 

shown) indicating an increased metabolic activity in this region of the epithelium. In all 

normal tongue samples, type 2 cells occupied more than half of the non-keratinized part 

of the epithelium. These data suggest that the majority of normal tongue epithelium is 

occupied by cells with bright UV cytoplasmic fluorescence and weak 488 nm 

cytoplasmic fluorescence. 

Average fluorescence intensities for type 2 cells at UV excitation (Figure 3.4 C) 

illustrate the differences in epithelial fluorescence between normal, inflammatory and 
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dysplastic tongue samples. In dysplasias, fluorescence from type 2 cells increases by a 

factor of 1.3 on average compared to normal tongue. In contrast, inflammatory tongue 

tissue displays a large drop in the average fluorescence intensity of type 2 cells, which is 

more pronounced for samples with severe inflammation. Thus, type 2 cells in dysplastic 

lesions exhibit an increase in UV excited fluorescence by more than a factor of 4 

compared to lesions with severe inflammation. These modifications in epithelial 

fluorescence at UV excitation are not accompanied by significant changes in the 488 nm 

excited fluorescence.  

Average fluorescence values from stromal region 1 (Figures 3.4 C and D) reveal 

that both inflammatory and dysplastic lesions are characterized by a large loss of stromal 

fluorescence at both excitations.  Mild to moderate inflammation and dysplasia show a 

similar drop in fluorescence at UV excitation (by more than a factor of 2) compared to 

normal values. Severe inflammation displays an even more pronounced decrease (by 

factor of 4 at UV excitation) compared to mild to moderate inflammation and dysplasia. 

The degree of inflammation also determines the depth of the affected stromal areas. 

Severe inflammation displays a very large loss of fluorescence in both stromal region 1 

and 2. In mild to moderate inflammation and dysplasia, fluorescence from stromal region 

2 is higher compared to severe inflammation.  
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Figure 3.3: Fluorescence patterns of (A) inflammation and (B) mild dysplasia in the oral 
tongue. Mosaic of confocal fluorescence images at UV (left), 488 nm 
excitation (middle) and H&E images (right). The histopathologic diagnosis 
of (A) is normal, non-dysplastic epithelium with severe inflammation and of 
(B) is mildly dysplastic epithelium with mild to moderate inflammation. 
White line indicates the approximate location of the basement membrane. 
Scale bars in the confocal images represent 200 µm and scale bars in the 
H&E images represent 120 µm. Arrow heads mark lymphocytic infiltration.  
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Figure 3.4: Quantitative analysis of the average fluorescence intensities of all normal, 
inflammatory and dysplastic oral tongue tissues. (A) Overlaid UV and 488 
nm excited fluorescence images and (B) a simplified cartoon of normal 
tongue showing the approximate distribution of the epithelial and stromal 
subregions. Type 2 cells display easily visualized cytoplasmic fluorescence 
at UV excitation; while type 1 cells exhibit a weak cytoplasmic signal at UV 
excitation. Stromal region 1 includes stroma that is 100 -200 microns below 
the basement membrane, whereas stromal region 2 represents deeper stroma. 
Average fluorescence intensities at (C) UV excitation and (D) 488 nm 
excitation for each epithelial and stromal region. Error bars represent one 
standard deviation. Legend key for the diagnostic categories: N-Normal 
without inflammation (n=8); NMI-Normal with mild to moderate 
inflammation (n=2); NSI- Normal with severe inflammation (n=3); DMI-
Dysplasia with mild to moderated inflammation (n=6).  
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3.3.4 Autofluorescence of well, moderately and poorly differentiated carcinomas  

Figure 3.5 displays representative confocal fluorescence images of well, 

moderately and poorly differentiated carcinomas, while Figure 3.6 A and B show how 

images of cancers were divided into three subregions. A common feature present in all 

cancers is the absence of layered morphology and the aggregation of cancer cells in 

clearly defined regions (Figure 3.6 A and B). Type 1 cancer cells are characterized by an 

absence of cytoplasmic fluorescence at UV excitation but a strong cytoplasmic signal at 

488 nm excitation. Type 2 cancer cells display an easily visualized cytoplasmic 

fluorescence at UV excitation. Cancer cells are surrounded by matrix fibers. Matrix 

regions with dense, brightly fluorescent fibers and without a significant cellular 

component are defined here as fibrous stroma (light blue region in Figure 3.6 B). Matrix 

regions with a dominant cellular component, consisting of inflammation and atypical 

cells are very heterogeneous and difficult to outline.  These regions were excluded from 

the analysis of cancer images and are not shown in Figure 3.6. Some tissue slices 

contained submucosal tumors. Figure 3.5 A shows an example of a well differentiated 

submucosal tumor underneath a mildly dysplastic surface epithelium.  Cells from the 

surface epithelium overlying submucosal tumors were excluded from quantitative 

analysis of carcinomas. 
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Figure 3.5:  Fluorescence patterns of invasive tumors in the oral cavity. Confocal 
fluorescence images at UV (first column) and 488 nm excitation (second 
column); overlaid UV and 488 nm images (third column) and H&E images 
(fourth column). (A) Mildly dysplastic epithelium overlaying well 
differentiated submucosal carcinoma in the tongue; (B) Moderately 
differentiated carcinoma in the tongue; (C) Poorly differentiated carcinoma 
in the palate (C). Scale bars represent 200 microns. 

 

 

Average fluorescence intensity values for type 1 and type 2 cancer cells are 

compared in Figure 3.6 C and D. The poorly differentiated tumor shows the highest 

fluorescence intensity at UV excitation for both cell types and the lowest fluorescence at 

488 nm excitation. Average redox values for type 1 and 2 cancer cells are shown in 

Figure 3.6 D.  The poorly differentiated carcinoma displays the lowest redox values, 

especially for type 2 cells. Since redox values are inversely proportional to metabolic 

activity, these results provide support for the clinical tenet that poorly differentiated 

carcinoma cells are more metabolically active on average than cells in more differentiated 

tumors. In addition, average fluorescence intensity values show that fibrous stroma in 

well differentiated tumors generally has higher fluorescence at both excitation 

wavelengths when compared to less differentiated carcinomas. 
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Figure 3.6:  Quantitative analysis of invasive tumors. (A) Overlaid UV and 488 nm 
excited fluorescence images and (B) a simplified cartoon of an invasive 
tumor showing the distribution of type 1 (green regions) and type 2 (dark 
blue regions) cancer cells surrounded by fibrous stroma (light blue region). 
Type 2 cancer cells display easily visualized cytoplasmic fluorescence at 
UV excitation; while type 1cancer cells exhibit weak cytoplasmic signal at 
UV excitation. Fibrous stroma includes matrix with a dominant fiber 
component. Average fluorescence intensities at (C) UV and (D) 488 nm 
excitation for each subregion and (E) average redox ratio values for type 1 
and type 2 cancer cells. Error bars indicate one standard deviation. Legend 
key for diagnostic categories: WDC-Well differentiated carcinoma (n=6); 
MDC-Moderately differentiated carcinoma (n=6) ; PDC-Poorly 
differentiated carcinoma (n=1).  
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3.4 DISCUSSION 

 

Understanding how optical properties are altered during oral carcinogenesis is 

critical for optimizing diagnostic technologies for oral cancer detection based on 

autofluorescence imaging and spectroscopy. In this study I used high resolution 

microscopy to investigate patterns of autofluorescence in normal oral mucosa and in 

benign and neoplastic oral lesions. Our results demonstrate that the autofluorescence 

properties of oral tissue vary based on the anatomical site within the oral cavity and the 

pathologic diagnosis. The fluorescence signals from epithelial and stromal layers can 

change independently of other tissue layers. This has important implications for clinical 

diagnosis of oral lesions using fluorescence imaging and spectroscopy. 

When normal oral tissue is illuminated by UV light, most of the epithelial 

autofluorescence that is generated originates from the cytoplasm of cells occupying the 

basal and intermediate layers.  Similar findings were found using confocal images of 

cervical tissue, where the epithelial fluorescence at UV excitation originates partially 

from the cytoplasm of metabolically active cells and the main fluorophore responsible for 

this signal was shown to be NADH (19, 29). In normal, non-dysplastic tongue and FOM 

tissue, the presence of inflammation within the lamina propria is characterized by a 

significant decrease in fluorescence from the lower epithelial layers at UV excitation. 

Several investigators have suggested that in benign lesions such as lichen planus, the 

large influx of inflammatory cells under the basement membrane triggers apoptosis and 

changes the proliferation rate of epithelial cells, which would also affect the 

autofluorescence of these cells (51, 78). In contrast, epithelial dysplasia in the tongue 

exhibited a small increase in epithelial fluorescence at UV excitation. A similar pattern 
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was previously observed in dysplastic cervical tissue and was attributed to increased 

cellular metabolism (50). 

In normal oral tissue, stromal fluorescence originates from structural fibers such 

as collagen. Indeed, collagen crosslinks are believed to be the dominant fluorophores in 

normal stroma and the optical signatures of these crosslinks are quite different from that 

of epithelial NADH and FAD (41).  With the appearance of inflammation, a large loss of 

stromal fluorescence is noticed, especially in areas close to the basement membrane. This 

trend is observed in inflammatory tissue, irregardless of anatomical site and the degree of 

inflammation correlates well with the extent of the fluorescence loss. I speculate that the 

reduction in stromal fluorescence in the presence of chronic inflammation is linked to the 

displacement of structural fibers by the infiltrating lymphocytes which are much less 

fluorescent, and also promote expression of matrix degrading proteases leading to 

breakdown of collagen crosslinks (74). A study of the distribution of collagen fibers in 

human gingiva found that collagen types I and III are lost in stromal tissue with 

progression of inflammation (79). In vivo multiphoton microscopy images of hamster 

check pouch tissue demonstrated that number and length of collagen fibers is greatly 

diminished with increasing severity of inflammation (80).  

Our results demonstrated a marked loss of stromal fluorescence in dysplastic 

lesions similar to that observed in normal mucosa with mild to moderate inflammation. 

Since most of the dysplatic samples in this study also had mild to moderate inflammatory 

infiltrate in the lamina propria, the reduction of stromal fluorescence is most likely due to 

the presence of chronic inflammatory cells.  Gannot et al also documented increasing 

levels of subepithelial inflammatory infiltrate (sometimes referred to as lichenoid 

inflammation) in oral tissue during progression from normal to dysplasia to carcinoma 

(81). A second investigation found that stromal T cells increased by roughly a factor of 2 
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in mild dysplasias, and by about 5-fold in moderate and severe dysplasia compared to 

normal oral tissue (82).  

In vivo fluorescence spectroscopy and imaging evaluations consistently find that 

oral lesions display a loss of fluorescence intensity when compared to normal oral tissue.  

Some investigators have extracted the intrinsic fluorescence spectra from in vivo 

fluorescence spectra in the cervix (83) and the oral cavity (25) with a mathematical 

model. They have found that in the cervix and the oral cavity the intrinsic fluorescence 

spectra can be composed of two spectra components, NADH and collagen, and that the 

NADH contribution increases whereas the collagen contribution decrease as lesions 

become more malignant. In both the cervix and oral cavity, the decrease in collagen 

contribution was larger then the increase in NADH contribution. These results are in 

agreement with the autofluorescence patterns from normal and dysplastic oral tongue 

tissue summarized in this study. Moreover, the loss of fluorescence intensity in oral 

lesions, as observed in both autofluorescence spectra and images, can be explained 

mostly by changes in stromal optical and morphologic properties. Lane et al attribute the 

loss of autofluorescence signal in images of oral precancerous and cancerous lesions 

primarily to the breakdown of the collagen matrix and increased hemoglobin absorption 

and secondarily to epithelial factors, such as increased epithelial scattering and thickness 

(32). Previously Drezek et al have shown with Monte Carlo simulations of fluorescence 

spectra that most of the in vivo fluorescence signal in cervical tissue (about 80% in 

normal cervix tissue and 70% in dysplastic tissue) originates from the stroma. She 

concludes that the decreased fluorescence in dysplatic cervical tissue is due more to the 

reduction of stromal collagen fluorescence than changes in the contribution from 

epithelial NADH fluorescence (65).  
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Here I show that both inflammatory and dysplastic oral tongue tissue display a 

large decrease in stromal fluorescence, especially in the superficial stroma, but have very 

different fluorescence patterns in the epithelium. Imaging such lesions with optical 

devices or probes that measure mostly stromal fluorescence may result in similar findings 

of loss of fluorescence intensity and thus fail to distinguish benign inflammation from 

dysplasia. Current results suggest that a possible way to distinguish benign inflammation 

from dysplatic lesions is to probe differences in epithelial fluorescence in addition to 

stromal fluorescence. Moreover, while stromal fluorescence decreases with malignant 

progression at both UV and 488 nm excitations, significant differences in epithelial 

fluorescence are observed only at UV excitation. Thus, the diagnostic ability of 

fluorescence imaging and spectroscopy for differentiating benign inflammations from 

dysplastic lesions could be improved by using excitation wavelengths in the UV range. 

Recently it was shown that a simple imaging device can be used as an aid to successfully 

detect and identify high-risk pre-invasive lesions with excitation wavelengths in the 400 

to 460 nm range (32). While the success of this device is quite exciting, our results 

suggest that the accuracy of such imaging devices in distinguishing different types of oral 

lesions, such as benign inflammation and dysplasia might be enhanced by using UV 

excitation in addition to higher excitation wavelengths. 

Bright autofluorescence was noted from the superficial, keratinized epithelial 

layer, which is often present in normal oral tissue from specific anatomical sites such as 

the palate and the gingiva, and also in clinically apparent leukoplakia. This superficial 

layer is composed of keratinized cells that have different scattering (70) and fluorescence 

signatures (84) than the rest of the epithelium. The presence of a thick, keratinized 

superficial layer can influence both the intensity and emission peak of in vivo 

fluorescence spectra. Muller et al. reported that fluorescence spectra from keratinized oral 



 48

mucosa exhibit a shift to the red and a lower intensity compared to nonkeratinized tissue.  

They explained these differences by a reduction of the depth of penetration of excitation 

light due to scattering from the keratin layer, which results in an increased NADH and 

decreased collagen contribution to the measured spectra. Thus, in order to classify 

dysplastic tissue from cancers with good accuracy, they advocated that non-keratinized 

and keratinized mucosa should be divided in to different groups (25). Our results support 

this view, and also suggest that this subdivision would be important for distinguishing 

non-dysplastic from dysplastic oral mucosa. 

Results here suggest that the diagnostic potential of fluorescence spectroscopy 

and imaging can be improved by designing optical probes or devices that can selectively 

measure signal from either the epithelium or the stroma.  Excitation wavelengths in the 

UV range may also improve the accurate diagnosis of different types of oral lesions. 
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Chapter 4:  A Monte Carlo model to describe depth selective 
fluorescence spectra of epithelial tissue: Applications for diagnosis of 

oral precancer. 3 

 

4.1 INTRODUCTION 

 

Autofluorescence imaging of the oral cavity has emerged as a promising non-

invasive technique to aid visualization and identification of premalignant and malignant 

oral lesions from benign lesions and normal oral mucosa (29-32). Autofluorescence 

spectroscopy can also identify oral dyplasia and cancer with high specificity and 

sensitivity (24-28).  During neoplastic progression, the optical properties of both the 

superficial epithelium and the underlying stroma are altered.    These changes can include 

an increase in epithelial cell scattering, increased stromal hemoglobin content and 

decreased structural protein fluorescence within the stroma.  Many research groups have 

developed analytical models to analyze fluorescence spectra collected in vivo in terms of 

these biochemical and morphologic changes (25, 83, 85-87).  Accurate biological 

interpretation of autofluorescence spectra of precancer and cancer diagnosis depends, in 

part, on prior knowledge of the key optical parameters associated with cancer progression 

and a detailed understanding of how these optical parameters can alter the intensity and 

shape of the in vivo spectra. 

Interpretation of tissue spectra is made more complex because measured data 

often contain contributions from both the epithelium and stroma.  Recently, a number of 

groups have developed fiber optic probes to acquire fluorescence spectra with depth 

                                                 
3 This chapter is modified from:  I. Pavlova, R. Schwarz, M. Williams, A. El-Naggar, A. Gillenwater, R. Richards-Kortum, Journal of 
Biomedical Engineering (submitted). 
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selectivity (33, 34, 93).  Schwarz at al have used a ball-lens coupled probe to obtain 

spatially resolved fluorescence spectra from normal and neoplastic oral sites in a clinical 

setting (37); the shallow channel of this probe collects fluorescence from approximately 

300 microns beneath the probe surface, which corresponds primarily to the epithelium 

and the superficial stroma. 

In order to guide the interpretation of spectra collected with such probes, this 

chapter presents a Monte Carlo based model to study the sensitivity of tissue fluorescence 

spectra collected with a depth-selective probe to variations in epithelial and stromal 

optical parameters associated with neoplastic transformation. An advantage of using 

Monte Carlo simulations rather than analytic models is the lack of simplifying 

assumptions which must be made regarding either the source-detector geometry or the 

tissue heterogeneity.  Monte Carlo simulations have been used to evaluate the effect of 

scattering and absorption changes on light propagation in a two layer model of the cervix 

(64, 88) and in multilayered models of the colon (89) and bronchial tissue (90).  As a 

clinically relevant example, I explore the application of this model to describe 

fluorescence spectra of oral tissue, using physiologically realistic input parameters and 

tissue geometries for normal oral tissue and for benign and precancerous oral lesions.  

High-resolution fluorescence and confocal microscopy of viable oral tissue has 

elucidated the autofluorescence and scattering characteristics of the epithelial and stromal 

layers in normal, benign and dysplastic tissue (70, 91, 92). Results from these studies 

suggest that oral epithelium can be divided into three layers with different optical 

properties.  The superficial oral epithelium is occupied by a highly scattering keratinized 

layer which varies in thickness depending on the specific anatomical oral site or the 

presence of hyperkeratosis. The main fluorophore of the superficial layer is thought to be 

keratin.  Beneath this layer, the non-keratinized oral epithelium is less scattering and is 
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occupied by metabolically active intermediate and basal cells.  Fluorescence from the 

non-keratinized epithelium is associated with the metabolic indicators NADH and FAD, 

which increase in dysplastic oral samples. 

Since carcinogenesis involves biochemical signaling between the epithelium and 

the surrounding extracellular matrix (75), the optical properties of the superficial stroma 

are expected to be altered more by disease progression than those of the deeper stroma. 

Stromal fluorescence, caused by collagen and elastin crosslinks, is significantly reduced 

in dysplastic and inflammatory oral samples, especially in the stromal layer immediately 

beneath the dysplastic epithelium.  Dysplastic progression in oral mucosa leads to a 

decreased volume fraction of collagen and decreased stromal scattering (76), which also 

may be more prominent in the superficial stroma. Angiogenesis, associated with 

neoplastic progression in oral mucosa, may also be more prevalent in superficial stromal 

areas.  In particular, spectra collected with a depth sensitive fiber optic probe will likely 

depend strongly on both the magnitude and the spatial extent of neoplastic related 

changes in optical properties.   

Here I introduce a Monte Carlo model to describe fluorescence spectra in oral 

mucosa with a multi-layered tissue geometry, allowing depth dependent variation in 

optical parameters in both the epithelium and the stroma. This model uses realistic 

fluorescence input parameters for each sublayer derived from measurements in viable 

normal and neoplastic oral tissue.  This depth sensitive model is used to study the 

sensitivity of predicted spectra to changes in biologically relevant optical parameters 

associated with the development of precancer and cancer, and thus to begin to elucidate 

the key optical parameters responsible for observed differences in normal and neoplastic 

fluorescence spectra.  Finally, model predictions are compared to clinical spectroscopy 

measurements of normal and neoplastic tissue. 
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4.2 METHODS 

 

4.2.1 Clinical measurements of fluorescence spectra from oral mucosa 

A point probe spectroscopic system was used to obtain depth-resolved 

fluorescence spectra at 350 nm excitation of normal and neoplastic oral lesions in IRB 

approved clinical studies carried out at the University of Texas M.D. Anderson Cancer 

Center (37). Lesions selected by the clinician and an anatomically similar contralateral 

normal appearing site were measured for each patient by placing the probe against the 

mucosal surface. To minimize artifact from exposure to room light the measurements 

were performed in a darkened room. Wavelength calibration, power calibration and 

standard measurements were performed for each set of clinical measurements. After 

spectroscopic measurements, biopsies were collected from the corresponding tissue site 

for histological examination, subject to prior patient consent and discretion of the 

clinician. Histologic results were reviewed by a collaborating pathologist. 

 

4.2.2 Tissue geometry and model input parameters 

Oral mucosa is modeled as a multilayered medium with homogenous distribution 

of absorbers, scatterers and fluorophores within each sublayer. As illustrated in Fig. 4.1A, 

the epithelium of normal oral mucosa can be divided into three layers with different 

fluorescence characteristics. The strongly scattering superficial epithelial layer includes 

cells that retain keratin and the main fluorophore in this layer is assumed to be keratin. 

Immediately beneath this is a layer of intermediate non-keratinized epithelial cells 

containing FAD as the dominant fluorophore.  Beneath this is a layer of basal epithelial 

containing mitochondrial NADH as the dominant fluorophore.  Similarly, the stroma can 
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be divided into two layers with different optical properties: the superficial stroma and 

deeper stroma.  Previous research shows that the main stromal fluorophores are collagen 

and elastin crosslinks (41). The thickness of each sublayer was derived from confocal 

fluorescence images of a representative normal tongue tissue slice shown in Fig. 4.1.  In 

our model, the total thickness of the epithelial layer is 280 µm; the superficial layer and 

the intermediate epithelial layer are each 80 µm thick, whereas the basal epithelial layer 

occupies 120 µm.  The superficial stroma (stromal region 1) occupies an area 125 µm 

below the basement membrane and deeper stroma (stromal region 2) is modeled as a 

semi-infinite medium. 

In this model the fluorescence emission properties of a given sublayer are 

described by the fluorescence efficiency term (μ ( λ ex ) · φ ( λex, λem ) of the dominant 

fluorophore within that sublayer, where μ ( λex ) is the absorption coefficient and φ ( λex, 

λem ) is the quantum efficiency of the dominant fluorophore. The spectral shape of the 

quantum efficiency for each sublayer was estimated from emission spectra at 350 nm 

excitation of biological samples containing the predominant fluorophore.  The spectrum 

of keratin was obtained by measuring the fluorescence of human nail (41), which is 

dominated by keratin.  The emission spectrum of an optically dilute solution of FAD was 

used to represent the shape of the fluorescence efficiency of the intermediate epithelial 

cells. A suspension of SiHa cervical cancer cells (41) was used to describe the shape of 

the basal epithelium.  Previously it was shown that the emission spectrum from collagen 

type 1 gel can be described as a linear combination of spectra from three main types of 

collagen crosslinks (41). The contribution from collagen crosslinks with emission peaks 

at 410 nm was found to be dominant, and was used here as input for the shape of the 

stromal fluorescence efficiency. The relative magnitude of the fluorescence efficiency 

term for each sublayer was determined from the confocal images of the representative 
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normal tongue tissue slice used here as a baseline example. The relative fluorescence 

efficiencies for each sublayer are summarized in Fig. 4.1B. 

Baseline values for the absorption and scattering coefficients for each epithelial 

and stromal layer were obtained from previous studies of cervical, oral and bronchial 

tissue. The scattering coefficients of the superficial and basal epithelial layer were 

derived from reflectance confocal measurements of cervical epithelium (92). In 

particular, the scattering coefficient extracted from keratinized cervical epithelium is used 

to represent superficial oral scattering, while the scattering coefficient from basal cervical 

cells is used here for the basal epithelial layer. The scattering coefficient of the 

intermediate epithelial layer was derived from reflectance confocal images of normal oral 

epithelium (70). The stromal scattering coefficients for stromal layer 1 and 2 were 

assumed to be the same and were taken from a study on bronchial tissue (94).  Note that 

the scattering coefficients were extrapolated to lower wavelengths using the inverse 

proportionality relationship of cellular scattering to wavelength (95).  The absorption 

coefficient was assumed to be constant throughout the oral epithelium and was based on 

measurements from bronchial tissue (94). Stromal absorption is assumed to be caused by 

collagen and oxy- and deoxy-hemoglobin. The total hemoglobin absorption coefficient 

was calculated by the well known expression for blood absorption published by Jacques 

(96). The extinction coefficients for oxy- and deoxy-hemoglobin were taken from the 

same source and the oxygen saturation of hemoglobin was assumed to be 80%.  The 

concentration of hemoglobin per liter of blood used in this study was 150 g/l (the normal 

value reported by Jacques) and the baseline volume fraction of blood in stromal layers 1 

and 2 was set to be 0.16%.  Stromal collagen absorption coefficients are based on 

measurements from bloodless skin samples (97).  Figures 1 C and D summarize the 
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baseline absorption and scattering coefficients for the stromal and epithelial layers used 

in this study. 

 

 

 

Figure 4.1:  Baseline tissue geometry and input parameters: (A) Tissue geometry for 
normal oral tissue, (B) Normalized fluorescence efficiencies, (C) Absorption 
coefficients, (D) Scattering properties.  
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4.2.3 Description and validation of the Monte Carlo model 

A fixed weight, multilayered reflectance Monte Carlo code with a depth selective 

fiber optic probe has been modified to account for generation and propagation of 

fluorescent light. Details regarding the reflectance Monte Carlo code and the geometry of 

illumination and collection are described in a previous study (93). In the fluorescence 

Monte Carlo code used here, excitation photons are initially propagated using scattering 

and absorption coefficient values at the excitation wavelength. At each scattering event, 

the probability of the photon being absorbed is given by μa/ μa + μs, where μa is the 

absorption coefficient and μs is the scattering coefficient for a specific layer. Upon 

absorption, the probability that a photon is absorbed by a fluorophore is calculated. In the 

epithelial layers this probability is equal to one, because it is assumed that the only 

absorbers are also fluorophores.  In the stromal layers, however, a photon can be 

absorbed by either collagen crosslinks (a fluorophore) or by hemoglobin (an absorber). 

The probability that the photon is absorbed by a stromal fluorophore is given by μa coll/ 

μa coll + μa Hb, where μa coll is the absorption coefficient of collagen and μa Hb is the 

absorption coefficient for a given stromal layer at the excitation wavelength. The 

probability of fluorescence emission at a particular emission wavelength is given by the 

fluorescence efficiency of each sublayer. After isotropic emission, fluorescence photons 

are further propagated using the scattering and absorption coefficient of each layer at the 

emission wavelength, until reabsorbed or until remitted from the tissue surface. The 

Heyney-Greenstein approximation was used as the phase function. The accuracy of the 

multilayered fluorescence Monte Carlo code for an infinite source and detector was 

compared to remitted fluorescence reported in the literature and our results were found to 

be within 1% of published values (98).  



 57

Figure 4.2 shows a diagram of the depth selective probe used to measure tissue 

fluorescence spectra and the geometry used within the Monte Carlo code.  In the probe, a 

ball lens is used to confine illumination and collection to a shallow area, approximately 

300 microns beneath the tissue surface.  In the Monte Carlo code, the ball lens was 

approximated using a half ball lens coupled to a flat window (93).  To validate that the 

Monte Carlo code predicted the depth selectivity of the fiber probe, the code was used to 

predict the measured fluorescence form a thin fluorescent target as the distance between 

the probe tip and the target was varied.  Results were compared to experimental 

measurements.  The experimental measurements were performed in water to better 

simulate the refractive index mismatch between the probe tip and tissue. In the 

simulations, the fluorescence target was modeled as a very thin (10 μm) strongly 

fluorescent layer, with a large absorption coefficient and a very small scattering 

coefficient, and a refractive index equal to 1.4. The gap between the probe and the target 

was represented by a layer with the optical properties of water. Simulations of 

measurements at different probe to target distances were performed by increasing the 

thickness of the water layer in increments of 50-100 μm.  
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Figure 4.2:  Diagram of the depth-selective fiber optic probe geometry used in the Monte 
Carlo forward model. S represents the source fiber, and D the detector fiber.  
An air gap separates the fibers and the half ball lens.  The distance between 
the source and detector fibers is 0.072 cm. The window is placed in contact 
with tissue.   
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4.2.4 Predictions of Tissue Fluorescence  

After validation, the Monte Carlo model was then used to explore the predicted 

fluorescence spectra of tissue.  All simulations were done at an excitation wavelength of 

350 nm.  A single simulation output consists of the detected fluorescence intensity (total 

number of detected fluorescence photons) at emission wavelengths of 400 nm, 420 nm, 

440 nm, 450 nm, 460 nm and 480 nm. Each simulation was performed with 108 

excitation photons. Simulations were performed first for a baseline case using the optical 

properties of normal oral mucosa.  Then a sensitivity analysis was performed by varying 

the optical properties of individual layers which are expected to change with neoplasia.  

In the baseline case and the model sensitivity analysis of stromal input parameters 

simulations were repeated three times. Simulations for the model sensitivity analysis of 

epithelial parameters were performed only once. For display purposes the output for the 

six emission wavelengths has been interpolated in Matlab using a linear interpolation 

function to decrease the sampling interval to 10 nm. 

For each detected photon, the depth at which fluorescence emission occurred was 

recorded. The mean depth of fluorescence was calculated by averaging these depths for 

all detected photons. I calculated the depth above which 85% of the detected photons 

originated, termed the 85% fluorescence depth.  I also calculated the fraction of detected 

photons with a depth of emission originating from the epithelium.  Finally, in order to 

determine how deep excitation light penetrates, I recorded the maximum depth at which 

excitation photons scatter in tissue and calculated the depth at which 85% of the 

excitation light has been attenuated. 
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4.3 RESULTS 

 

4.3.1 Validation of model with probe to target measurements 

Figure 4.3 shows simulated fluorescence measurements for a thin fluorescent 

target as the distance between the probe tip and the sample is varied and compares the 

performance of the modeled probe to the actual probe used in the clinical studies.  The 

agreement between measured and predicted data is within 10% at all distances and 

illustrates the depth selective nature of the probe which collects fluorescence generated 

within 300-400 microns of the probe tip. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:   Detected fluorescence intensity from a thin fluorescent layer as the 
separation between the target and window is varied.  The line represents 
Monte Carlo predictions and the symbols are experimental measurements. 
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4.3.2 Sensitivity of the model to variations in epithelial input parameters 

The development of neoplasia in the oral cavity is accompanied by series of 

physiological changes in the epithelium such as hyperkeratosis and higher cellular 

metabolic activity.  These physiologic changes lead to changes in optical properties, 

including increased epithelial scattering and an increase in the NADH associated 

fluorescence from epithelial cells. The effect of each of these changes on the detected 

fluorescence was studied individually by varying a particular input parameter while 

holding all other factors constant.  Figure 3.4 summarizes the predicted fluorescence 

spectra for three different sets of simulations designed to model hyperplasia, 

hyperkeratosis and dysplasia in oral mucosa.  Predictions in Figs. 3.4 A, C and E were 

normalized to the maximum intensity value of the baseline spectra (black line) to 

emphasize the effect of varying a particular input parameter on the overall intensity of the 

fluorescence. Predictions in Figs. 3.4 B, D and F were normalized by dividing each 

individual spectrum by its maximum intensity value to emphasize changes in spectral 

shape. In all sets of simulations, the baseline fluorescence spectrum is plotted as a black 

line. Table 4.1 summarizes the fraction of detected fluorescence photons which originate 

in the epithelium at 440 nm emission for each predicted spectrum.  

The effect of hyperplasia is simulated by changing the thickness of the 

nonkeratinized epithelium (keeping the thickness of the superficial layer and the ratio of 

the intermediate epithelium to the basal epithelium thickness constant) in increments of 

50 microns. Figures 3.4 A and B show that, as the thickness of the non-keratinized 

epithelium is increased, the overall fluorescence intensity drops, accompanied by a shift 

of the spectra to longer emission wavelengths and an increase in the fraction of detected 

photons generated in the epithelium. For example, increasing epithelial thickness by 150 

microns results in a drop of fluorescence intensity at 440 nm emission by about a factor 
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of 1.5 and an increase in the fraction of epithelial photons by about a factor of 1.6.  

Examination of the number of epithelial and stromal photons indicates that the relative 

increase in the fraction of epithelial photons is due more to a drop in stromal photons than 

to an increased number of epithelial photons.  Increasing the thickness of the 

nonkeratinized epithelium decreases excitation light penetration to stromal areas, and 

thus increases sampling of epithelial fluorescence. Decreased epithelial thickness results 

in the opposite trend. It is interesting to observe that even small changes (50 microns) in 

the thickness of non-keratinized epithelium have a significant effect on both the intensity 

and the shape of the predicted spectra. 

The effect of hyperkeratosis on the spectral shape and fluorescence intensity was 

studied by changing the thickness of the strongly scattering, keratinized superficial layer 

(and hence changing the total thickness of the epithelium) by 50 microns; results are 

illustrated in Figs. 3.4 C and D. A thicker keratin layer results in a drop of fluorescence 

intensity by a factor of 1.3 without a significant shift in spectral shape and fraction of 

epithelial photons. However, a thicker keratin layer causes a small increase in photons 

detected from the keratin layer, and a large decrease in the numbers of photons from the 

underlying basal epithelial layer and stroma. Decreasing the thickness of the superficial 

layer has the opposite effect, due to deeper light penetration and increased detection of 

stromal fluorescence.  

The development of dysplasia is associated with an increase in epithelial 

scattering and an increase in NADH based cellular fluorescence. I have modeled these 

changes by increasing the thickness of the basal epithelial layer without changing the 

overall thickness of the epithelium. As shown in Figs. 3.4 E and F, an 80 μm increase in 

the thickness of the basal epithelium leads to higher total fluorescence intensity and a 

shift of the spectral shape to the red. These changes are accompanied by a significant 
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increase (a factor of 1.4) in the fraction of detected epithelial photons, due an increase in 

the number of epithelial photons, but no significant change in the number of detected 

stromal photons. Thus, as the fraction of cells with higher scattering and NADH based 

fluorescence increases, fluorescence from the epithelium starts to dominate the total 

detected fluorescence. 
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Figure 4.4:  Effect of epithelial input parameters, associated with (A, B) hyperkeratosis, 
(C, D) hyperplasia and (E, F) dysplasia on the intensity (left column) and 
spectral shape (right column) of the predicted fluorescence spectra. 
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Table 4.1:  Effect of input parameters associated with hyperkeratosis, hyperplasia and 
dysplasia on the fraction of photons detected from the epithelium and the 
fraction of photons detected from the superficial oral mucosa (the 
epithelium and stromal layer 1) at emission wavelength of 440 nm.  

 

 

 

 

 

 

Fraction of 
superficial photons

Fraction of 
epithelial photons

Decreased by 40%

Decreased by 20%

Increased by 20%

Fluorescence Intensity of superficial stroma

+ 80 microns

+ 50 microns

- 50 microns

Thickness of the basal epithelial  layer 

+ 50 microns

- 50 microns

Thickness of superficial epithelial layer

+ 150 microns

+ 50 microns

- 50 microns

Thickness of nonkeratinized epithelium

Baseline case 

0.56

0.50

0.39

0.60

0.56

0.35

0.50

0.38

0.66

0.51

0.35

0.43 ± 0.01

0.86

0.89

0.91

0.93

0.92

0.88

0.90

0.89

0.93

0.92

0.88

0.90 ± 0.01

Fraction of 
superficial photons

Fraction of 
epithelial photons

Decreased by 40%

Decreased by 20%

Increased by 20%

Fluorescence Intensity of superficial stroma

+ 80 microns

+ 50 microns

- 50 microns

Thickness of the basal epithelial  layer 

+ 50 microns

- 50 microns

Thickness of superficial epithelial layer

+ 150 microns

+ 50 microns

- 50 microns

Thickness of nonkeratinized epithelium

Baseline case 

0.56

0.50

0.39

0.60

0.56

0.35

0.50

0.38

0.66

0.51

0.35

0.43 ± 0.01

0.86

0.89

0.91

0.93

0.92

0.88

0.90

0.89

0.93

0.92

0.88

0.90 ± 0.01
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4.3.3 Sensitivity of the model to variations in stromal input parameters 

The fraction of epithelial photons, calculated for different sets of simulations and 

summarized in Table 4.1, indicates that the modeled probe detects a substantial number 

of stromal photons. For example, in the baseline case, more the half of the detected 

photons originate from the stroma. In tissue geometries representing hyperplasia and 

dysplasia, the fraction of epithelial photons rises to 0.60 - 0.66, however complete 

rejection of stromal photons is not achieved, suggesting that variations in stromal 

parameters can also influence simulations.  Here I have modeled stroma as a two layered 

medium which allows us to study variations in input parameters within each individual 

stromal sublayer. 

Figure 4.5 illustrates the effect of changing the magnitude of the stromal 

fluorescence efficiency on the total intensity and spectral shape of the predictions. Benign 

and dysplastic alterations in oral tissue were found to be characterized by a large drop of 

fluorescence intensity in the superficial stroma (91). I simulated the effect of changes in 

the magnitude of the fluorescence efficiency of the superficial stromal layer 1 (Figs. 4.5 

A and B), separately from changes in the deeper stromal layer 2 (Figs. 4.5 C and D). 

Decreasing the fluorescence efficiency of stromal layer 1 leads to a drop in the total 

fluorescence intensity and a shift of the spectrum to the red. These changes are also 

associated with an increased epithelial fraction of photons, due to a decrease in the 

number of stromal photons. Note that decreasing the fluorescence of stromal layer 1 by a 

factor of 2 leads to a significant decrease in total fluorescence (by a factor of 1.3) and a 

relatively large increase in the fraction of epithelial photons (by a factor 1.3). Previous 

research indicates that with inflammation and dysplasia, fluorescence from the stroma 

can drop by more then a factor of 3.  Thus, changes in the magnitude of the fluorescence 

efficiency of stromal layer 1 can have a potentially more significant effect than shown in 
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Fig. 4.5. Decreasing the fluorescence efficiency of stromal layer 2 does not have a 

significant effect on the spectral shape, fluorescence intensity, or the fraction of detected 

epithelial photons.  This indicates that only changes in the magnitude of the fluorescence 

efficiency of stromal layer 1 lead to changes in predicted spectra collected with the depth 

selective probe.  

The effect of changes in stromal hemoglobin absorption on predictions is 

illustrated in Fig. 4.6. An increase in blood vessel density by about a factor of 1.2 to 3 is 

commonly associated with premalignant progression in oral mucosa (32). Here the 

volume fraction of hemoglobin in stroma was varied, which changes the stromal 

absorption coefficient. Simulations show that an increased volume fraction of 

hemoglobin in stromal layer 1 leads to a decrease in the total fluorescence intensity, 

mainly in the 400-440 nm emission region. These changes are also associated with small 

differences in the epithelial fraction of photons, also limited to the 400-450 nm emission 

range (data not shown). Changes in stromal layer 2 have a minimal effect on predicted 

spectra.  
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Figure 4.5:  Effect of variations in the magnitude of the fluorescence efficiency of the 
stroma on (A and C) the intensity and (B and D) spectral shape of the 
predicted fluorescence spectra: (A-B): changes in superficial stromal layer 1 
and (C-D): and deeper stromal layer 2.  
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Figure 4.6:  Effect of variations in the volume fraction of hemoglobin on (A and C) the 
intensity and (B and D) spectral shape of the predicted fluorescence spectra: 
(A-B) Changes in superficial stromal layer 1 and (C-D) deeper stromal layer 
2.  
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Figure 4.7 summarizes the effect of decreasing scattering in stromal layer 1 and 

stromal layer 2. Results indicate that variations in the scattering coefficient in both 

stromal layer 1 and 2 do not change the spectral intensity, shape or epithelial photons 

fraction by more then 10%. It should be noted that varying both stromal scattering and 

hemoglobin absorption had a less pronounced effect on predictions compared to changes 

associated with variations in the stromal fluorescence and epithelial optical parameters.  

 

 

 

Figure 4.7:  Effect of variations in the stromal scattering on (A and C) the intensity and 
(B and D) spectral shape of the predicted fluorescence spectra: (A-B) 
Changes in superficial stromal layer 1 and (C-D) deeper stromal layer 2.  
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4.3.4 Depth sensitivity analysis for fluorescence light 

Results in Figs. 4.5-4.7 indicate that the fluorescence output is most affected by 

variations in input parameters from stromal layer 1. This suggests that the modeled probe 

geometry limits the penetration of excitation light to the superficial layers of the oral 

mucosa and detects fluorescence that originates mostly from the epithelium and 

superficial stromal areas.  The fraction of superficial fluorescence photons (the number of 

fluorescence photons originating from the epithelial and superficial stromal layers 

divided by the total fluorescence photons) was calculated for the baseline case and for 

simulations with varied epithelial and stromal fluorescence parameters. As shown in 

Table 4.1, in the baseline case, 90% of detected fluorescence photons originate from the 

epithelium and superficial stromal layer 1. While variations in the input parameters 

influence the value of the superficial photon fraction, results consistently indicate that 

most (86 to 93%) of the detected fluorescence originates from the epithelium and 

superficial stroma of the oral mucosa for all sets of simulations.  

Figure 4.8 shows the distribution of detected fluorescence photons as a function 

of the depth of generation for each photon for two tissue geometries. The mean 

fluorescence depth and the depth above which 85% of the photons originate are also 

indicated in Fig. 4.8. Note that these profiles display only the distribution of photons in 

the basal epithelium, the superficial stromal layer 1 and the deeper stroma.  In the 

baseline case (Fig. 4.8 A) the mean fluorescence depth (278 μm) is approximately at the 

interface of the epithelium and stroma, while 85% the photons originate above the depth 

of 408 microns (approximately at the border of stromal layers 1 and 2). Figure 4.8 B 

displays the fluorescence depth profile for a tissue geometry representing hyperplasia. 

Increasing the thickness of the nonkeratinized epithelium by 150 μm, results in a photon 

distribution that is more shifted to the basal epithelial layer then in the baseline case.  For 
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example, the mean fluorescence depth (328 μm) is above the epithelium/stromal 

interface, and the depth above which 85% of photons originate is located in the 

superficial stromal layer 1.  

It should be noted that fluorescence emission can be cause by backscattered 

excitation light. Thus, while recording the origin at which fluorescence photons are 

generated is useful indication of the enhanced detection abilities of the probe to 

superficial fluorescence, recording the maximum penetration depth of excitation light can 

further elucidate the significance of input parameters in stromal layer 2 on the depth 

resolved spectra. For the baseline case in Figure 4.8 A, the depth at which 85% of 

excitation light has been attenuated is 420 μm (located in the deeper stromal layer 2), 

while for the hyperplasic case this depth is just above the interface between the 

superficial stromal layer 1 and deeper stroma. Thus, for tissue geometries with a thinner 

epithelium, the optical properties of the deeper stroma can still have a small influence on 

the fluorescence output; fluorescence from tissue with ticker epithelium is largely 

independent of the optical properties of deep stroma.  
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Figure 4.8:  Depth profiles at emission wavelength of 440 nm for (A) the baseline case 
and (B) hyperplasia with increased non-keratinized epithelium of 150 μm. 
The profiles show the distribution of fluorescence photons in basal 
epithelium, superficial stroma and deeper stroma. The green line indicates 
the mean depth of fluorescence, whereas the red line marks the depth above 
which 85 % of fluorescence photons originate. 
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4.3.5 Comparison of Monte Carlo predictions to average clinical spectra 

The performance of the Monte Carlo code in predicting normal and abnormal 

fluorescence spectra was validated by comparing simulation results to average spectra 

from normal and dysplastic sites measured from the buccal mucosa, the tongue, the lip, 

and the floor of the mouth at 350 nm excitation. Depth resolved fluorescence spectra 

from 336 normal oral sites and 19 oral sites diagnosed with moderate to severe dysplasia 

were used to calculate the average normal and dysplastic spectra. 

Normal oral tissue was simulated with the input parameters and tissue geometry 

used in the baseline predictions. Dysplasia is characterized by a series of physiological 

changes including an increase in the total epithelial thickness (hyperplasia), thickening of 

the keratinized superficial epithelium, and spreading of abnormal cells with increased 

scattering and metabolic activity throughout the epithelium. In addition the fluorescence 

intensity of superficial stroma was found to decrease in oral lesions diagnosed with 

dysplasia. Other stromal changes, such as increased Hb absorption and decreased stromal 

scattering were not considered because the model sensitivity analysis shows that these 

parameters have only a small effect on the intensity and shape of predictions. In order to 

model dysplastic tissue the combined effect of several epithelial changes were 

considered. It was found that the set of changes that best predict dysplastic fluorescence 

spectra is a combination of hyperkeratosis, hyperplasia, increase in the thickness of the 

basal epithelium (to simulate the spreading of metabolically active and highly scattering 

cells) and a drop of fluorescence intensity of the superficial stroma. In particular, 

hyperkeratosis was modeled by a small increase in the superficial thickness (50 μm), a 

small increase in the thickness of the nonkeratinized epithelium (50 μm), and an 

increased fraction of the epithelium occupied by the basal sublayer. The fluorescence 

intensity of the superficial stromal was reduced by a factor of 1.6.  
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Figure 4.9 compares the average clinical spectra at 350 nm excitation to simulated 

spectra from normal and dysplastic sites. The error bars in the figure represent the 

standard deviation of the clinical average spectra at a particular emission wavelength 

(420 nm for normal and 440 nm for dysplasia) and indicate the degree of variability in the 

data sets. Results show good agreement between the clinical data and the simulations in 

both the normal and dysplastic case, except in 400-420 nm emission region.  Moreover, 

both simulations sets are slightly shifted to the red emission region compared to clinical 

data.  The Monte Carlo model accurately predicts the drop in intensity and the shift of 

spectral shape to longer emission wavelengths that accompanies dysplastic progression. 

Bar graphs representing the total number of detected photons from the epithelium and 

stroma are displayed in Fig. 4.9B. The drop in fluorescence intensity can be attributed to 

a decrease in the total number for photons originating from the stroma, whereas the shift 

of the emission peak is due to the increased fraction of epithelial photons of the total 

detected signal.   
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Figure 4.9:  Comparison of average clinical fluorescence spectra from normal oral 
mucosa (blue line) and lesions diagnosed with moderate to severe dysplasia 
(red line) to Monte Carlo predictions. (A) Average clinical spectra and 
predictions. Error bars represent the standard deviation in the clinical data 
for each diagnostic category. Number of detected photons from the 
epithelium and stroma in (B) normal and (C) dysplastic predictions.  
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4.4 DISCUSSION 

 

This chapter presents a Monte Carlo forward model to describe the sensitivity of 

oral tissue spectroscopy data collected with a depth selective fiber optic probe to changes 

in the optical properties of the epithelium and stroma that accompany the development of 

dysplasia.  Simulation results show that the depth selective probe offers enhanced 

detection of fluorescence from the superficial layers of the oral mucosa.  Comparison of 

simulated fluorescence spectra from normal and dysplastic oral tissue to clinical data 

shows that the model correctly predicts the characteristic drop in fluorescence intensity 

and the shift of spectral shape to longer emission wavelengths that accompanies 

neoplastic progression in the oral mucosa. Moreover, analysis of the depth of origin of 

the simulated fluorescence collected with the depth-selective probe indicates that the 

reduced fluorescence intensity associated with dysplasia is due to a decreased number of 

photons originating from the stroma, whereas the spectral red shift can be attributed to an 

increase in the fraction of epithelial photons in the total detected signal. 

Similar trends in clinical data have been previously reported by other studies on 

oral cancer detection.  For example, previously De Veld et al. have found that dysplastic 

and tumor sites are accompanied by a progressive drop in fluorescence intensity (26), 

whereas Lane et al reported a loss of autofluorescence signal in images of oral 

precancerous and cancerous lesions compared to the surrounding normal mucosa (32).  

Mathematical models for extracting the intrinsic fluorescence spectra from in vivo 

fluorescence spectra in the cervix (83) and the oral cavity (25) have been previously 

described. Results from these studies indicate that intrinsic fluorescence spectra can be 

composed of two spectral components, epithelial (NADH) and stromal (collagen), and 

that the epithelial contribution increases whereas the stromal contribution decreases with 
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malignant transformation. This is in agreement with current results from the depth 

analysis of simulated average fluorescence spectra of normal and dysplastic oral tissue. 

The model sensitivity analysis described in this chapter elucidates the relationship 

between changes in tissue optical properties commonly associated with neoplastic 

development and the spectral characteristics of the depth resolved fluorescence spectra. It 

was found that predictions are sensitive to changes in the epithelial properties commonly 

associated with dysplastic progression in oral tissue. For example, thickening of the 

epithelial layer, thickening of the keratinized superficial epithelium and increasing the 

fraction of the epithelium occupied by more metabolically active and scattering cells all 

lead to significant changes in the shape and intensity of predicted spectra. As the 

epithelium becomes thicker and contains more metabolically active cells, the spectral 

intensity drops and the spectral shape shifts to longer emission wavelengths. These 

changes are accompanied by an increase in the fraction of epithelial photons in the total 

detected fluorescence.  A major epithelial fluorophore is mitochondrial NADH. In this 

study the fluorescence properties of mitochondrial NADH were approximated by 

emission spectra from SiHa cells in suspension, which have an emission peak at 440 nm. 

In contrast, collagen crosslinks which are the dominant fluorophores in the stroma have 

an emission peak that is more shifted to the blue region (405 nm). Thus, the spectral shift 

in simulated spectra that is linked to neoplastic changes in oral mucosa suggests that the 

total detected signal is dominated by NADH-based fluorescence instead of stromal 

fluorescence. 

Previous Monte Carlo based model sensitivity analysis of cervical reflectance and 

fluorescence spectra indicate that changes in epithelial parameters such as epithelial 

scattering and thickness have only a minimal effect on predictions (64, 88). It should be 

noted that these studies modeled fluorescence or reflectance detected with optical probes 
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that do not offer enhanced detection of epithelial signal. A recent investigation of the 

autofluorescence properties of viable oral tissue indicates that benign and premalignant 

lesions have similar stromal but different epithelial fluorescence properties (91).  Thus, 

depth selective probes, which enhance the sensitivity to epithelial changes, may aid in 

accurate discrimination of spectra from benign and premalignant lesions.  

In particular, results from the penetration depth analysis presented in this chapter 

show that 43-66% of total detected light with the depth-selective probe originates from 

the epithelium as the thickness of the nonkeratinized epithelium was varied from 280 to 

420 microns.  Previously a Monte Carlo model without enhanced detection of epithelial 

signal was employed to simulated fluorescence spectra of cervical tissue and to calculate 

the fraction of epithelial photons in the total detected fluorescence (55). Results from this 

study indicate that more than 80% of the fluorescence originates from the stroma when 

considering an epithelial thickness of 300 microns and optical properties similar to those 

used for the baseline case of normal oral mucosa. In comparison, the Monte Carlo model 

presented in the current study illustrates that the depth-selective probe offers a significant 

improvement in detecting light from the epithelial layer. 

However, results from the depth sensitivity analysis also indicate that the modeled 

probe does not offer complete rejection of stromal fluorescence.  This is in agreement 

with experimental measurements of the depth sensitive collection efficiency of the 

clinical probe which indicate that even though the probe’s response is weighted towards 

the epithelium, it can not completely exclude stromal signal (37). Moreover, the 

simulations indicate that most of the stromal fluorescence originates from the superficial 

stromal region and not from deeper stroma. For example, the fraction of photons 

originating from the epithelium and superficial stromal region varies from 88 to 93% 

depending on the epithelial thickness.  Changes in the optical properties of deeper stroma, 
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such as increased hemoglobin concentration and decreased stromal scattering and 

fluorescence intensity have minimal effect on predicted fluorescence spectra.   

The enhanced detection of epithelial fluorescence offered by the depth selective 

probe depends on the overall thickness of the epithelial layer and also on the thickness of 

the superficial and basal epithelial sublayers. Therefore accurate predictions of depth 

enhanced spectra from the oral cavity depend on the use of biologically realistic tissue 

geometries. A major advantage of the Monte Carlo model described in this chapter is the 

use of tissue geometries obtained from confocal images of viable oral tissue.  However 

the volume fraction of hemoglobin was estimated from previous studies on fluorescence 

spectra from cervical tissue. A more accurate estimation of the volume fraction of 

hemoglobin in the subepithelial stroma of oral tissue can lead to more accurate prediction 

of depth-resolved fluorescence spectra.  
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Chapter 5:  The biological basis for differences in fluorescence spectra 
caused by neoplastic development and by anatomical site variations in 

oral mucosa. 

 

 

5.1 INTRODUCTION 

 

A Monte Carlo model that predicts depth-resolved fluorescence spectra from oral 

mucosa was introduced in Chapter 4. The model was tested by simulating a 

representative normal fluorescence spectrum and comparing predictions to average 

clinical data from normal sites. A typical dysplastic spectrum was simulated by changing 

optical parameters, commonly associated with neoplastic progression, and predictions 

were validated with average clinical data from dysplatic lesions. The model correctly 

predicts the characteristic drop in fluorescence intensity and the shift of spectral shape to 

longer emission wavelengths that accompany neoplastic progression in the oral mucosa.  

However, model sensitivity analysis suggests that predictions are very sensitive to 

changes in epithelial and some superficial stromal input parameters. Even small (50 

microns) changes in the epithelial thickness and the fluorescence intensity of superficial 

stroma can lead to noticeable differences in the shape and intensity of predictions. Visual 

analysis of confocal images from oral mucosa indicates that the thickness of the 

epithelium can vary by more then 40 microns even within the same field of view. The 

question arises as to whether the model can accurately predict a spectrum from an 

individual oral site by using input parameters derived from confocal images.  In this 

chapter, I further validate the ability of the model to predict depth-resolved spectra from 

oral mucosa, by comparing predictions to measurements from a normal, a dysplastic and 
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a cancerous site obtained from the same patient. Input parameters for the thickness and 

fluorescence intensity of epithelial and stromal sublayers were extracted from confocal 

images of biopsies obtained from the same oral sites that were clinically measured.  

Superficial epithelium in normal oral mucosa can vary significantly in thickness 

and fluorescence intensity depending on anatomical site (91). A thick superficial layer is 

expected in normal oral tissue from keratinized anatomical sites such as the hard palate 

and the gingiva, and also in some lesions such as leukoplakia (6, 99, 100). Muller et al. 

reported that in vivo fluorescence spectra from keratinized oral mucosa exhibit changes 

in the intensity and spectral shape compared to nonkeratinized tissue (25). De Veld et al. 

reported that autofluorescence spectroscopy cannot achieve accurate distinction between 

benign and malignant lesions, possibly due to the large spectral variance observed within 

the different pathologic categories (28). She points out that oral lesions differ in the 

degree of keratinization, in addition to other factors, such as hyperplasia and blood 

content. 

 Simulations in Chapter 4 indicate that even a small (50 microns) increase in the 

highly scattering superficial epithelial layer can decrease the intensity of the predictions. 

These simulations were performed by increasing the thickness of the superficial 

epithelium without changing the fluorescence intensity of this layer.  In some confocal 

images analyzed in chapter 3, the superficial layer is also characterized by a very bright 

autofluorescence. This chapter investigates how the presence a strongly fluorescent 

superficial layer affects Monte Carlo predictions and suggests possible biological reasons 

for variations in clinical depth-resolved spectra measured from different anatomical sites. 

I simulated fluorescence spectra from a normal buccal site, having a thin and weakly 

fluorescent superficial layer, and a normal palate site, having a thick and very 

fluorescence superficial epithelium. Predictions were compared to clinical data and 
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analysis of the origin of simulated fluorescence signal was used to explain the differences 

in shape and intensity, observed in the clinical measurements from these two normal 

sites. 

 

 

5.2 METHODS 

 

5.2.1 Clinical measurements and biopsy collection 

Depth-resolved fluorescence spectra at 350 nm excitation of a normal, dysplastic 

and cancerous oral site from the same patient were measured with a point probe 

spectroscopic device in a IRB approved clinical study carried out at the University of 

Texas M.D. Anderson Cancer Center. Depth-resolved spectra were also collected from 

normal buccal and normal palate sites from different patients. After spectroscopic 

measurements, the oral sites were biopsied and part of each biopsy was sent for 

histological examination by a certified pathologist. Transverse tissue slices were obtained 

from the second part of each biopsy and imaged with a confocal fluorescence microscopy 

while the tissue was still viable. Confocal images at UV excitation were obtained from 

each tissue slice. Detailed procedures for imaging and quantitative analysis of 

autofluorescence patterns are described in Chapter 3. 

 

5.2.2 Tissue geometry and model input parameters 

In order to validate the performance of the model in predicting neoplastic 

changes, fluorescence spectra from a normal, dysplastic and cancerous oral sites were 

simulated. Oral sites with layered morphology (the normal and the dysplastic example) 
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were modeled as a multilayered turbid media with five different sublayers: superficial, 

intermediate, basal epithelium, subepithelial and deep stroma. The thickness and relative 

fluorescence intensities for each sublayer were derived from confocal fluorescence 

images (at UV excitation) of the particular oral biopsy site considered in the simulations. 

Fluorescence efficiencies for each particular layer were derived as previously described 

in chapter 4. The cancer example was modeled as a turbid media with two main regions: 

a superficial region, occupied by cancer cells, and an underlying fibrous stroma.  Based 

on visual examination of the confocal images, the superficial region was further 

subdivided into top, intermediate and lower sublayers, having different fluorescence 

intensities.  

The buccal site was modeled as a multilayered turbid media with five different 

sublayers: superficial, intermediate, basal epithelium and subepithelial and deep stroma. 

Confocal images of the palate example indicate that here, the epithelium is covered by a 

very fluorescent keratinized layer, occupying the top 100 microns of the total epithelium, 

followed by another keratinized layer, having very weak fluorescence intensity. 

Underlying these keratinized layers, is the intermediate and basal epithelium and 

subepithelial and deep stroma.  

Baseline scattering coefficients for each stromal and epithelial layer are described 

in chapter 4 (Figure 1 D) and are used as input values for the normal tongue, buccal and 

palate examples.  Note that the two keratinized layers in the palate example are assumed 

to have the same scattering coefficient as baseline superficial epithelium. The superficial, 

intermediate and basal epithelium in the dysplastic example have the same scattering 

coefficients as the baseline case.  However, to accurately model the drop in stromal 

scattering associated with oral dysplasias, the scattering coefficient in subepithelial 

stroma was decreased by a factor of 0.75 (76).  The top 40 microns of the cancer example 
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were assumed to have the same scattering coefficient as baseline superficial epithelium; 

whereas cancer cells in the intermediate and lower cellular regions were assumed to have 

the same scattering coefficient as baseline basal epithelium. The scattering coefficient of 

fibrous stroma in the cancer example was decreased by a factor of 0.5, compared to the 

baseline stroma value.    

The volume fraction of blood in the stroma for each particular example in this 

study was determined from quantitative analysis of H&E slides. In particular, H&E 

images for each particular diagnostic and anatomical site were taken and analyzed by 

estimating the fraction of the total stromal area occupied by blood. The estimated value 

includes areas occupied only by the lumen of the blood vessels and excludes lymph 

vessels. The volume fraction of blood in the superficial stromal layer of normal tongue 

was estimated to be in the range of 0.05 – 0.1%, while the value for deep stroma was in 

the range of 0.2-0.3%. The superficial stromal layer underlying dysplastic epithelium has 

a volume fraction of blood in the range of 0.11-0.20%, while deep stroma has an 

approximate value of 0.70 %. Previous research indicates that the microvessel density of 

oral cancers is about 3 times higher than in normal oral tissue (55).  To model blood 

absorption in the cancer example, I increased the volume fraction of blood estimated 

from superficial normal stroma by a factor of 3.  
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5.3 RESULTS 

 

5.3.1 Biological basis for spectral differences caused by neoplastic progression. 

Clinical data indicate that neoplastic progression in oral cavity is characterized by 

a set of characteristic spectral differences. Some of these diagnostically relevant spectral 

features include a drop of fluorescence intensity and a shift of the spectral shape to longer 

emission wavelengths. Figure 5.1 displays clinical depth-resolved emission spectra at 350 

nm excitation from a normal, a dysplastic and a cancerous tongue, measured from the 

same patient, and illustrates the characteristic drop in intensity and spectral shift to longer 

emission wavelengths associated with neoplastic progression in oral mucosa. Confocal 

images at UV excitation of oral biopsies taken from the same clinically measured oral 

sites are also displayed in Figure 5.1. The dysplastic example (Figure 5.1 B) displays a 

thicker basal epithelium and a lower fluorescence intensity from subepithelial stroma 

compared to normal tongue (Figure 5.1 A). Confocal images of the cancer example 

(Figure 5.1 C) illustrate the loss of layered architecture typical for cancer lesions.  

Depth-resolved spectra for the normal, dysplastic, and cancerous tissue sites were 

simulated with the Monte Carlo based model. Biologically realistic input parameters for 

the tissue geometry and fluorescence properties of epithelial and stromal sublayers were 

determined from the confocal images for each specific pathologic case. Predictions and 

measured (in vivo) fluorescence spectra at 350 nm excitation are compared in Figure 5.2 

A-C. In order to understand the depth-dependent origin of the predicted fluorescence, and 

how it changes with neoplastic progression, the numbers of photons originating from the 

epithelium and stroma have been calculated at each emission wavelength and 

summarized in Figures 5.2 D-F.  
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Figure 5.1:   Fluorescence confocal images and clinical depth-resolved fluorescence 
spectra at UV excitation showing 3 stages of neoplastic progression in the 
tongue. The spectra are measured from the same oral sites shown in the 
confocal images. (A) Normal Tongue, (B) Focal Mild Dysplasia (with 
stromal inflammation), (C) moderately differentiated cancer, (D) 
Fluorescence spectra at 350 nm excitation of normal tongue (blue line), 
focal mild dysplasia (green line), and moderately differentiated cancer (red 
line).  
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Predictions show the characteristic drop in fluorescence intensity and spectral 

shift characteristic for dysplastic and cancerous oral lesions. The depth analysis indicates 

that in the normal case, the total detected fluorescence consists of a significant fraction of 

stromal photons. In the 400 – 440 nm emission range, stromal photons significantly 

dominate the predicted total fluorescence. With dysplasia (Figure 5.2 E), the number of 

photons originating from the stroma drops significantly, whereas the number of epithelial 

photons increases by about a factor of 2. Thus, the total predicted fluorescence is 

dominated by epithelial photons, which is reflected in a shift of the emission peak to 

longer emission wavelengths. The drop of total fluorescence intensity can be explained 

by the decreased number of photons detected from the stroma. The major optical 

parameters responsible for these changes are the increased thickness of basal epithelium 

and the decreased fluorescence intensity of the subepithelial stroma. Results from chapter 

4 indicate that other stromal parameters, such as increased hemoglobin absorption and 

decreased stromal scattering, would not affect predictions as much as the changes in the 

fluorescence intensity of subepithelial stroma. 

The superficial 400 microns of the malignant tissue slices are occupied by highly 

scattering cancer cells, followed by a fibrous matrix infiltrated, having atypical and 

inflammatory cells.  It should be noted that the fluorescence intensity of the cancer cells, 

calculated from the confocal images of the cancer case, was lower then the fluorescence 

intensity calculated for basal cells from the normal and dysplastic example. The stromal 

matrix has lower fluorescence intensity, a lower scattering coefficient and higher blood 

absorption compared to normal and dysplastic stroma. Thus, the number of photons 

detected from the cancerous cell layer and the number of photons detected from the 

underlying fibrous matrix were low compared to the normal case.  This resulted in an 

overall drop of fluorescence intensity, that is larger then the drop observed for the 
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dysplastic case. The prominent shift of the spectra to the red emission region is attributed 

to a dominant contribution from the cancerous cell region and a very small contribution 

from the fibrous matrix, especially in the 400 -440 nm emission region due to high blood 

absorption and low fluorescence intensity.  

 

5.3.2 Biological basis for spectral differences caused by anatomical site variations. 

Figure 5.3 shows autofluorescence trends of normal oral mucosa taken from 

different anatomical sites. As seen on Figure 5.3 A, normal buccal displays very similar 

autofluorescence patterns as does normal tongue (Figure 5.1 A).  In contrast, the palate 

(Figure 5.3 C) has a very strongly fluorescent superficial layer and a basal layer that is 

thinner compared to normal tongue and normal buccal. Clinical depth-resolved 

fluorescence spectra at 350 nm excitation from normal buccal and palate are displayed in 

Figure 5.3 D. Here, the emission spectrum from the palate stands out by having an 

increased intensity and a spectral shape shifted to the blue region relative to the buccal.  
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Figure 5.2:   Validation of the Monte Carlo model with clinical fluorescence spectra of 
(A) a normal tongue site, (B) focal mild dysplasia, and (C) moderately 
differentiated cancer measured from the same patient. The x axis represents 
emission wavelength in nm, while the y axis represents normalized 
fluorescence intensity.  The bar graphs represent the predicted number of 
photons originating from the epithelium (black bars) and the stroma (white 
bars) for (D) normal and (E) dysplastic oral tissue.  The depth statistics for 
the cancerous example are displayed in (F) where the black bars represent 
detected photons from a superficial region (top 400 microns) with cancer 
cells and the white bars represent photons detected from the underlying 
fibrous matrix.  
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Predictions for each normal tissue site are compared to clinical measurements in 

Figure 5.4 A and B. The number of fluorescence photons from each epithelial sublayer 

and the number of photons originating from the stroma are summarized in Figure 5.4 D 

and C. Both the buccal and the tongue examples display a similar distribution of 

epithelial and stromal photons, with stromal fluorescence dominating the spectrum. In 

contrast, the palate example has an increased number of photons detected from the 

superficial epithelial layer, and an almost negligible number from the stroma. In addition, 

there is an increase in the photons detected from the basal epithelium, compared to the 

buccal and palate. Thus, the presence of a thick, highly scattering and fluorescent 

superficial layer shifts the origin of detected fluorescence towards the epithelial region 

and increases the overall fluorescence intensity. Since photons from the superficial layer 

dominate the spectra, the spectral shape of the detected fluorescence is similar to that of 

keratin (the dominant fluorophore in the superficial layer).  Note that the fluorescence 

intensity of the predicted spectra from the palate is lower by about 15 % compared to the 

clinical measurements. Previous model sensitivity analysis has shown that even 

variations of 50 microns in the thickness of the superficial layer can result in a noticeable 

(a factor of 1.3) effect on the total intensity of the predictions. The estimated thickness of 

the strongly fluorescent keratin layer from the confocal images has a large standard 

deviation, which could explain the difference in intensity between the simulated and 

clinical spectra. 
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Figure 5.3:   Fluorescence confocal images and depth-resolved clinical fluorescence 
spectra at UV excitation showing changes in autofluorescence patterns due 
to anatomical site variation. The spectra were measured from the same oral 
sites shown in the confocal images. Confocal images from (A) normal 
buccal and (B) normal palate. (C) Emission spectra at 350 nm excitation of 
normal buccal (red line) and normal palate (green line). 
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Figure 5.4:   Validation of the Monte Carlo model with clinical spectra of oral sites from 
(A) normal buccal and (B) normal palate. The x axis represents emission 
wavelength in nm, while the y axis represents normalized fluorescence 
intensity.  The bar graphs represent the predicted number of photons 
originating from the superficial (first bars); intermediate (second bars) and 
basal (third bars) epithelium and the stroma (forth bars) for (C) normal 
buccal and (D) normal palate.  
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5.4 DISCUSSION 

 

This study tests the ability of the Monte Carlo model to predict depth-resolved 

spectra from individual spectra of a normal, dysplastic and a cancerous site by using 

tissue input parameters extracted from confocal images. The decreased fluorescence 

intensity and spectral shift to longer emission regions, typical for neoplastic progression 

in oral tissue, can be explained by a drop in the detected fluorescence from the superficial 

stromal layer and by an increase in fluorescence, originating from basal epithelium. The 

major optical parameters responsible for these changes are the decreased fluorescence 

intensity of the subepithelial stroma and the increased thickness of the basal epithelium.  

  For oral tissue with layered morphology, such as the normal and dysplastic 

example, the predictions agree very well with clinical data. Using input parameters for 

the thickness and fluorescence intensity for each sublayer derived from the quantitative 

analysis of confocal images can improve the accuracy of Monte Carlo simulations. In the 

cancer example, the intensity of the predicted spectrum was about 15 % higher than 

clinical data. This error can be attributed to the large variations in tissue morphology that 

can be observed even within the same field of view captured in the confocal images of 

the cancerous example. For tumor sites that display a loss of layered morphology, 

extracting optical properties for a single field of view can lead to noticeable errors in the 

predictions. 

Results in this chapter, suggest that variations in the fluorescence intensity and 

thickness of the superficial layer in oral tissue can lead to significant differences in both 

the intensity and spectral shape of clinically measured data. The presence of a thick, 

highly scattering and fluorescent keratin layer shifts the origin of detected fluorescence 

towards the superficial and basal epithelium and increases the overall fluorescence 
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intensity of predicted spectra. In contrast, a previous clinical study reports that in vivo 

fluorescence spectra from keratinized oral mucosa exhibit a lower intensity compared to 

nonkeratinized tissue (25).  These differences were explained by a reduction of the depth 

of penetration of excitation light due to scattering from the keratin layer, which results in 

an increased NADH and decreased collagen contribution to the measured spectra. 

Moreover, simulation results demonstrated in Chapter 4 also indicate that a thicker 

superficial epithelium leads to a decreased fluorescence intensity of predicted spectra. 

However, these simulations were performed by changing the thickness and not the 

fluorescence intensity of the superficial layer. Current predictions suggest that increasing 

the fluorescence intensity of the superficial layer leads to an increased fluorescence from 

the keratinized layer, in addition to a drop in stromal fluorescence. Thus, the total 

fluorescence is dominated by contributions from keratin, the main fluorophore in the 

superficial layer, and high fluorescence intensities from this layer would lead to an 

increase in the overall detected fluorescence. In the high-resolution microscopy study of 

oral tissue (Chapter 3), the presence of a very brightly fluorescence superficial layer was 

observed only in a limited number of samples. The fluorescence and morphological 

properties of the superficial layer in keratinized normal oral sites, such as the hard palate 

and gingiva, have to be determined in a larger data set.  
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Chapter 6:  Conclusion 

 

6.1 SUMMARY AND CONTRIBUTIONS 

 

Autofluorescence spectroscopy and imaging have the potential to improve the 

early detections of oral cancer. Biochemical and structural changes associated with 

dysplastic progression alter the optical properties of oral mucosa and cause diagnostically 

significant differences in spectra from normal and neoplastic sites. This dissertation 

describes experimental and modeling studies aimed at elucidating the autofluorescence 

trends that accompany neoplastic progression in oral tissue and at revealing how changes 

in biologically relevant optical properties influence fluorescence spectra. Analysis of 

fluorescence form multilayered tissue, such as the oral mucosa, is further complicated by 

the depth-dependent distribution of fluorophores, scatterers and absorbers. Fiber optics 

probes that enhance the detection of fluorescence from the diagnostically significant 

epithelial and superficial stromal regions are likely to improve the accuracy of in vivo 

spectroscopy in detecting oral lesions. The ultimate goal of this work is to prove a 

biological explanation for diagnostically significant differences observed in depth-

resolved fluorescence spectra measured from normal and neoplastic oral mucosa. 

The first part of the dissertation presents an experimental approach to study the 

autofluorescence patterns in oral tissue. High-resolution confocal images have revealed 

the autofluorescence properties of oral mucosa are depth-dependent and that normal 

tissue can be subdivided into several epithelial and stromal layers. At UV excitation, 

most of the epithelial autofluorescence originates from the cytoplasm of cells occupying 

the basal and intermediate layers, while stromal signal originates from collagen and 
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elastin crosslinks. With dysplasia autofluorescence signal from basal and intermediate 

cells increases, while a dramatic drop in autofluorescence has been observed in stroma 

underlying neoplastic epithelium. Benign lesions diagnosed with severe inflammation, 

also display a dramatic drop in autofluorescence from subepithelial stroma, but have very 

different fluorescence patterns in the epithelium compared to dysplastic lesions. Imaging 

such lesions with optical devices or probes that measure mostly stromal fluorescence may 

result in similar findings of loss of fluorescence intensity and fail to distinguish benign 

inflammation from dysplasia.  Another interesting finding is that UV excitation offers 

more optical contrast between normal, benign and dysplastic tissue, then excitation at 

longer wavelengths. Thus, results from this study suggest that the accuracy of 

fluorescence spectroscopy in differentiating benign inflammation from dysplasia could be 

improved by using excitation wavelengths in the UV range and fiber-optics probes with 

depth-sensitive detection of fluorescence signal. 

A depth-sensitive probe that offers enhanced detection of epithelial signal has 

been previous designed in our lab and is currently used to detect fluorescence spectra 

from normal and neoplastic mucosa in clinical settings. In Chapter 4, I present a Monte 

Carlo model that predicts fluorescence spectra of the oral mucosa obtained with the 

depth-selective probe as a function of tissue optical properties. A model sensitivity 

analysis elucidates how variations in optical parameters associated with neoplastic 

development influence the intensity and shape of spectra.  Predictions indicate that 

spectra of oral mucosa collected with the depth-selective probe are affected by variations 

in epithelial optical properties and to a lesser extent by changes in superficial stromal 

parameters, but not by changes in the optical properties of deeper stroma. Depth analysis 

of the predicted spectra reveals that 90% of the detected signal originates from the 

epithelium and superficial stroma. In addition, 43-66% of total detected light with the 
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depth-selective probe originates from the epithelium as the thickness of the 

nonkeratinized epithelium was varied from 280 to 420 microns.  Thus, model sensitivity 

results confirm that the depth selective probe offers enhanced detection of epithelial 

fluorescence and that spectra detected with this probe are more sensitive to changes in 

epithelial optical parameters then the stromal parameters. 

Model sensitivity results also suggest that predictions are influenced even by 

small changes in the epithelial thickness and the fluorescence intensity of superficial 

stroma. Therefore, accurate predictions of depth enhanced spectra from the oral cavity 

depend on the validity of input parameters used to model oral tissue. A major advantage 

of the Monte Carlo model is the use of biologically realistic tissue geometries and input 

parameters obtained from confocal images of viable oral tissue.  In chapter 4 depth-

selective spectra of normal and dysplastic oral tissue were simulated and were shown to 

be in good agreement with measured average spectra from normal and dysplatic oral 

sites.  In chapter 5, I further validate the ability of the model to predict depth-resolved 

spectra from oral mucosa, by comparing predictions to measurements from a normal, a 

dysplastic and a cancerous site obtained from the same patient, using tissue input 

parameters extracted from confocal images.  

Fluorescence spectra from normal and dysplastic oral tissue simulated in Chapter 

4 and 5 correctly predict the drop in fluorescence intensity and the shift of spectral shape 

to longer emission wavelengths characteristic for neoplastic progression in the oral 

mucosa. The major changes in optical parameters that describe these spectral trends are 

the decreased fluorescence intensity of the subepithelial stroma and the increased 

thickness of the basal epithelium. It should be noted that increasing the thickness of the 

basal layer also increases the fraction of the total epithelium occupied by metabolically 

active and highly scattering basal cells. Analysis of the origin of simulated fluorescence 
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indicates that the reduced fluorescence intensity associated with dysplasia is due to a 

decreased number of photons originating from the stroma, whereas the spectral red shift 

can be attributed to an increase in the fraction of epithelial photons in the total detected 

signal. Thus, while fluorescence spectra collected with the depth-sensitive probe have an 

enhanced epithelial contribution and are very sensitive to changes in epithelial 

parameters, variations in the fluorescence properties of subepithelial stroma also have an 

effect on the total detected intensity.   

Superficial epithelium in normal oral mucosa can vary significantly in thickness 

and fluorescence intensity depending on anatomical site. In the high-resolution 

microscopy study of oral tissue, the presence of a very brightly fluorescence superficial 

layer was observed in some of the tissue slices originated from keratinized oral mucosa. 

Chapter 5 suggests possible biological reasons for variations in clinical depth-resolved 

spectra measured from different anatomical sites. In particular it was found that the 

presence of a thick, highly scattering and fluorescent keratin layer shifts the origin of 

detected fluorescence towards the superficial and basal epithelium and increases the 

overall fluorescence intensity of predicted spectra. Further studies are needed to 

investigate the fluorescence properties of the superficial layer in keratinized normal oral 

sites, such as the hard palate and gingiva and to determine if depth-sensitive clinical 

spectra from these sites display spectral differences compared to nonkeratinized oral 

mucosa in a larger data set. 

The depth-sensitive Monte Carlo model with biologically relevant input provides 

a simple and accurate method for predicting and analyzing clinical spectra from normal 

and neoplastic oral tissue. Some of the biological reasons for the deceased fluorescence 

intensity and spectral shift to the red region that are typical for neoplastic progression in 

oral tissue have been elucidated. In addition, possible sources for variations in clinical 
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data due to anatomical site to site differences have been address. Results outlined in this 

dissertation provide the first step towards building a model-based approach to analyze 

spectra data. However Monte Carlo simulations are time consuming, and real time 

diagnosis of oral cancer requires the development of an analytical model that can 

accurately describe depth-resolved fluorescence spectra from multilayered tissue. 

 

6.2 FUTURE RESEARCH DIRECTIONS 

 

A previous study showed that fluorescence spectra from cervical tissue, which is 

histologically similar to oral tissue, could be described by a two-layered analytical model. 

In the weakly scattering epithelial layer, light propagation can be described by the Beer- 

Lambert Law, assuming that the mean free path, δ= 1/(μs + μa), is comparable to the 

average epithelial thickness. In contrast, the stroma is the strongly scattering and light 

propagation in the stroma layer has been approximated by diffusion theory. The total 

remitted signal in this model includes four different cases of excitation and fluorescence 

light propagation through the two layers. In the first case excitation light is exponentially 

attenuated and converted to fluorescence in the epithelium. Here, the remitted light is 

further attenuated in the epithelium before it reaches the tissue surface. The second case 

refers to diffuse fluorescence that has been generated and scattered in the stroma and 

epithelium before reaching the tissue surface. The third case involves diffuse 

fluorescence light that has been generated in the epithelium but backscattered from the 

stromal/epithelium interface. The forth case refers to diffuse excitation light from the 

stroma that travels back to epithelium and causes epithelial fluorescence. For all four 

cases the fraction of fluorescence detected at the surface of the epithelium depends on the 

collection efficiency of the fiber optics probe.  
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The existing analytical model can be modified to account for light propagation in 

oral tissue and the depth-dependent response of the clinical probe used to measure 

fluorescence spectra from oral tissue. As a start, the Monte Carlo model described in 

Chapter 4 can be used to estimate which of the four major fluorescence cases, would be 

the dominant component in the depth-resolved signal detected from oral tissue. 

Preliminary Monte Carlo simulation results have shown that for normal oral mucosa, 

epithelial fluorescence (case 1) and diffuse stromal fluorescence (case 2) would be the 

dominant components to the total detected signal. Backscattered epithelial fluorescence 

from the epithelial/stromal interface (case 3) and epithelial fluorescence caused by 

diffuse excitation light from the stroma (case 4) would account for less then 10% of the 

total detected signal and could be ignored for simplicity reasons. This suggests that a 

simplified version of the analytical model could include mathematical expression only for 

epithelial and diffuse stromal fluorescence. 

The depth-sensitive collection efficiency of the clinical probe could be 

experimentally determined by measuring the signal from a fluorescence target at different 

probe to target distances. An example of a previously determined fluorescence 

measurements at different probe to target distances of a can be found in Chapter 4, Figure 

3. It should be noted that these experiments were performed in water. However, the 

measured collection efficiency of the probe depends on the properties of the media 

between the fluorescent target and the fiber tip. To estimate more accurately the 

collection efficiency of the probe, the media between the fluorescent target and the fiber 

tip should have scattering and absorption properties similar to that of tissue.  

In summary, the Monte Carlo simulation approach outlined in this dissertation can 

be extended to develop an analytical expression of light propagation in multilayered 

tissue. The new model can be used in the inverse estimation of biologically relevant 
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optical parameters for clinically measured data.  A model-based approach for diagnosing 

oral lesions has the potential to improve the accuracy of fluorescence spectroscopy as a 

screening tool for the early detection of oral neoplasia.  
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