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Supervisor: Stephen D. Boyles

Autonomous vehicle (AV) technology has matured sufficiently to be in testing

on public roads. However, traffic models of AVs are still in development. Most

previous work has studied AV technologies in micro-simulation. The purpose of this

dissertation is to model and optimize AV technologies for large city networks to

predict how AVs might affect city traffic patterns and travel behaviors. To accomplish

these goals, we construct a dynamic network loading model for AVs, consisting of

link and node models of AV technologies, which is used to calculate time-dependent

travel times in dynamic traffic assignment. We then study several applications of the

dynamic network loading to predict how AVs might affect travel demand and traffic

congestion.

AVs admit reduced perception-reaction times through technologies such as (co-

operative) adaptive cruise control, which can reduce following headways and increase

capacity. Previous work has studied these in micro-simulation, but we construct a

mesoscopic simulation model for analyses on large networks. To study scenarios with

both autonomous and conventional vehicles, we modify the kinematic wave theory to
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include multiple classes of flow. The flow-density relationship also changes in space

and time with the class proportions. We present multiclass cell transmission model

and prove that it is a Godunov approximation to the multiclass kinematic wave the-

ory. We also develop a car-following model to predict the fundamental diagram at

arbitrary proportions of AVs.

Complete market penetration scenarios admit dynamic lane reversal — chang-

ing lane direction at high frequencies to more optimally allocate road capacity. We

develop a kinematic wave theory in which the number of lanes changes in space and

time, and approximately solve it with a cell transmission model. We study two meth-

ods of determining lane direction. First, we present a mixed integer linear program

for system optimal dynamic traffic assignment. Since this program is computationally

difficult to solve, we also study dynamic lane reversal on a single link with determin-

istic and stochastic demands. The resulting policy is shown to significantly reduce

travel times on a city network.

AVs also admit reservation-based intersection control, which can make greater

use of intersection capacity than traffic signals. AVs communicate with the inter-

section manager to reserve space-time paths through the intersection. We create

a mesoscopic node model by starting with the conflict point variant of reservations

and aggregating conflict points into capacity-constrained conflict regions. This model

yields an integer program that can be adapted to arbitrary objective functions. To

motivate optimization, we present several examples on theoretical and realistic net-

works demonstrating that näıve reservation policies can perform worse than traffic

signals. These occur due to asymmetric intersections affecting optimal capacity al-

location and/or user equilibrium route choice behavior. To improve reservations, we

adapt the decentralized backpressure wireless packet routing and P0 traffic signal

policies for reservations. Results show significant reductions in travel times on a city

network.

Having developed link and node models, we explore how AVs might affect

travel demand and congestion. First, we study how capacity increases and reserva-

tions might affect freeway, arterial, and city networks. Capacity increases consistently

reduced congestion on all networks, but reservations were not always beneficial. Then,
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we use dynamic traffic assignment within a four-step planning model, adding the mode

choice of empty repositioning trips to avoid parking costs. Results show that allow-

ing empty repositioning to encourage adoption of AVs could reduce congestion. Also,

once all vehicles are AVs, congestion will still be significantly reduced. Finally, we

present a framework to use the dynamic network loading model to study shared AVs.

Results show that shared AVs could reduce congestion if used in certain ways, such

as with dynamic ride-sharing. However, shared AVs also cause significant congestion.

To summarize, this dissertation presents a complete mesoscopic simulation

model of AVs that could be used for a variety of studies of AVs by planners and

practitioners. This mesoscopic model includes new node and link technologies that

significantly improve travel times over existing infrastructure. In addition, we moti-

vate and present more optimal policies for these AV technologies. Finally, we study

several travel behavior scenarios to provide insights about how AV technologies might

affect future traffic congestion. The models in this dissertation will provide a basis

for future network analyses of AV technologies.
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1 Introduction

1.1 Background

Autonomous vehicle (AV) technology has the potential to revolutionize the

ground transportation systems that are vital to the function of modern cities. Due to

urbanization and population growth, demand for traffic networks is increasing. How-

ever, the high time and cost requirements of constructing traffic network infrastruc-

ture have resulted in significant traffic congestion in many major cities. Fortunately,

vehicle automation and new traffic control protocols could greatly reduce traffic con-

gestion with relatively minor changes in infrastructure. Besides changing traffic flow,

AVs could also create new low-cost options for travelers that may change the typical

home-to-work vehicle use patterns.

AVs incorporate a variety of new technologies that could greatly increase traf-

fic safety and efficiency. The precision, reaction times, and consistency of computers

should reduce incidents, which contribute to congestion. Furthermore, because of the

computer precision, AVs can safely operate at smaller margins than human-driven ve-

hicles (HVs). For instance, reduced reaction times admits smaller following headways.

Reduced headways can increase road capacity (Marsden et al., 2001; Van Arem et al.,

2006; Kesting et al., 2010) and the stability of the traffic flow (Schakel et al., 2010) in

response to bottlenecks or other obstructions to traffic flow. Furthermore, AV com-

munication protocols admit more complex intersection behaviors. Reservation-based

intersection control (Dresner and Stone, 2004, 2006b) reduces intersection safety mar-

gins by relying on computer precision to prevent conflicts. Vehicles reserve specific

space-time sections of the intersection, timing conflicting turning movements to avoid
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occupying the same intersection space at the same time but with smaller margins

than permitted by traffic signals. Most of the vehicle behaviors modeled in this dis-

sertation assume full vehicle automation, i.e. all travelers are passengers. However,

the traffic flow model of adaptive cruise control is relevant to partially-automated

vehicles, including those that are already available to consumers.

Besides the benefits to traffic efficiency, AVs are likely to be more convenient

for travelers. Passengers can engage in alternative activities via computers or smart-

phones. These activities are likely to reduce the disutility per unit of in-vehicle travel

time relative to conventional (human-driven) vehicles (HVs). Furthermore, AVs can

drop off passengers and then reposition, empty, to alternative parking locations (Levin

and Boyles, 2015a). Empty repositioning allows travelers to avoid parking costs at

their destination or to share the AV with other household members. Many transit

passengers do not have another option because they are too young to have a driver’s

license or do not own a vehicle. AVs could make personal vehicle travel available to

some of those captive transit riders. Therefore, once AVs become publicly available,

they may be be quickly adopted by travelers.

Most previous work on AVs has focused on micro-simulation, which models the

specific actions and movements of individual vehicles. AV behaviors can be explicitly

defined in micro-simulation. However, to study an entire city’s or region’s traffic,

more aggregate models are necessary for tractability. Therefore, this dissertation

focuses on network models. A traffic network is a type of directed graph in which

intersections are represented by nodes, and connecting roads are modeled by links. A

traffic network is represented by G= (N,A) where N is the set of nodes and A is the

set of arcs. Z⊆N is the set of centroids or zones. All demand enters and exits from

the network at a centroid.

1.2 Motivation

Due to the time required to construct network infrastructure, policymakers

and planning organizations often plan two or three decades in advance. With AVs in

testing on public roads in several cities, AVs might be available for general purchase
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within the time frame of current planning models. Policymakers rely on these mod-

els for predictions of future levels of service to decide whether and how to improve

infrastructure. Because AVs might behave significantly differently than HVs, future

predictions of traffic should specifically incorporate AV behavior. However, current

models of how AVs will affect traffic are very preliminary, and are not suitable for

studying city-wide traffic.

Predicting how AVs will affect traffic requires holistic analysis of entire city

networks. Vehicles seek to minimize their own travel time, which results in an user

equilibrium (UE) (Wardrop, 1952) of route choices that is often suboptimal for the

overall network. In fact, the Braess (1968) and Daganzo (1998) paradoxes demon-

strate that network improvements could increase overall congestion due to UE be-

havior. The alternative, system optimal (SO) route choice, involves assigning routes

to each vehicle to minimize the total system travel time. However, SO is difficult to

achieve in practice. Marginal cost tolling on every link can result in SO behavior,

but is difficult to implement. AVs could be forced into SO behavior by coordinating

routes, but that could cause litigation issues in addition to the high costs of infras-

tructure. For instance, if an AV or its passengers are harmed by an assigned route,

such as one that traverses a flooded road, the liability could be placed on the system.

Furthermore, finding the SO route choice in a dynamic setting is computationally

difficult, and solution methods are typically limited to toy networks. Therefore, pre-

dicting how AVs might affect traffic requires city-wide modeling to include the effects

of route choice.

However, developing a network model of AV behavior has considerable chal-

lenges. Most work on AVs has used micro-simulation to simulate the behavior of

individual vehicles. The purpose of network models is to study how route choices

affect congestion, which requires analysis of larger regions. Finding the UE route

choice is known as the traffic assignment problem. Traffic assignment models can

be categorized into static traffic assignment (STA) and dynamic traffic assignment

(DTA) models. STA uses macroscopic link impedance functions to determine link

travel times as a function of link flows. STA models have nice mathematical prop-

erties, and STA can be quickly solved for large networks. However, STA does not

3



predict how congestion evolves over time, and has limited node models. Because AV

behaviors can significantly change link and node flows, this dissertation focuses on

DTA. In fact, we will show in Chapter 5 that using the less realistic STA can yield

significantly different conclusions than DTA.

DTA uses more detailed mesoscopic simulation of nodes and links to predict

time-dependent congestion. The objective of DTA is to find a dynamic user equi-

librium (DUE) in which no vehicle can improve its time-dependent travel time by

changing routes. Finding DUE typically involves an iterative framework, illustrated

in Figure 1.1. A full traffic simulation is performed each iteration, and DTA for large

cities can require many iterations. AV behaviors significantly change the traffic sim-

ulator step, and the goal of this dissertation is developing a dynamic network loading

model for AVs. Therefore, efficient node and link models are necessary for network

analyses.

However, mesoscopic models of AVs have received little attention in the liter-

ature thus far. Developing aggregate models offers considerable challenge. The node

model must be a consistent simplification of the intersection models of AVs, which

have previously been defined in terms of microsimulation. The link model should

include mixed AV/HV traffic and predict how the traffic behavior changes in space

and time as the proportion of AVs changes.

It is reasonable to assume that AVs will have the same route choice objective

as HVs: minimize individual travel time. In fact, while bounded rationality mod-

els (Mahmassani and Chang, 1987) are arguably more realistic for HVs, AVs will be

aware of minute differences in travel times in their route choices. Consequently, we

assume AV choose routes to minimize their own travel time, which results in a DUE.

The main change AVs make to DTA is in the DNL model used to calculate travel

times. Therefore, after creating a DNL model of AVs, we will also have a DTA model

of AVs.

Besides the changes to traffic flow, the new AV behaviors raise the questions

of finding optimal policies for making use of AV technology. (Note that the term

policy as used here refers to the control taken in response to a system state.) A

considerable amount of literature has been devoted to optimizing infrastructure for
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HVs. For instance, the well-studied network design problem seeks to answer how

to improve traffic networks to minimize travel time subject to cost limitations. For

intersections, decades of study has established conditions for using different types

of controls (e.g. stop signs, traffic signals) and optimized signal timing for travel

demand. The communications capabilities of AVs creates even greater flexibility for

intersection control and active traffic management strategies. However, we will show

in Chapter 3 that infrastructure for HVs could perform better than suboptimal use

of AV technologies. Therefore, it is necessary to model and optimize AV technologies

before they are deployed.

This dissertation has three major goals:

1. Construct a complete dynamic network loading (DNL) model incor-

porating AV behavior. No such model currently exists, and predicting how

AV technology might affect traffic congestion is critically important for policy-

makers. DNL is a subproblem to DTA, and an effective model is a prerequisite

to finding optimal policies for AV technology.

2. Improve use of AV technology. Using the DTA model, we will develop

policies for more effective use of AV infrastructure. New road and intersec-

tion behaviors have been shown to reduce traffic congestion compared with HV

infrastructure in certain situations. However, much previous work has been

focused on developing new AV technologies without optimizing them.

3. Analyze how AVs might affect traffic. Having developed a DNL model

of AVs and developed better strategies for using AV technology, the remaining

question addressed by this dissertation is how AV technology could affect traffic

congestion. Besides changing traffic flow, AVs are also likely to affect travel

demand. Of course, it is impossible to know the full extent of traveler behav-

ior changes before implementation. We will use the network model to more

accurately explore several traffic scenarios proposed in the literature.
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1.3 Problem statements

To achieve the overall goal of modeling and optimizing network infrastructure

for AVs, this dissertation addresses three major modeling problems. As mentioned

before, network models are constructed of links and nodes. Each admits different

behaviors for AVs, and therefore must be addressed separately in detail. During

the process of modeling AV technology, we also develop a framework amenable to

optimization. After developing link and node models, we then seek to answer how

AVs might affect city traffic. We discuss each problem in more detail below.

1.3.1 Link model

AVs have significant effects on link flow. Computer reaction times allow safely

reducing following headways via (cooperative) adaptive cruise control and platooning.

That results in greater capacity (Marsden et al., 2001; Van Arem et al., 2006; Kesting

et al., 2010) and stability of flow (Schakel et al., 2010). Reduced following headways

are possible even in mixed flows of traffic. Traffic flow — defined by the fundamental

diagram in DTA — determines traffic congestion, and is therefore a major aspect of

network models. However, AV traffic flow has yet to be modeled in DTA. Since AV

adoption will occur gradually, the network model should be able to study arbitrary

proportions of AVs on the road. Since the proportion of AVs at specific points depends

on the evolution of traffic flow, the link model must admit a fundamental diagram

that changes in space and time with the proportion of AVs. A multiclass kinematic

wave theory with changing fundamental diagrams has yet to be solved for large-scale

DTA.

Furthermore, when AVs are a high proportion of vehicles, links may be made

more efficient through AV-specific active traffic management. Hausknecht et al.

(2011b) proposed dynamic lane reversal (DLR) which uses intersection managers for

reservations to control lane direction. DLR allows for safe, frequent changes in lane

direction in response to dynamic demand even within peak hours. DLR differs from

currently used contraflow lanes in that the direction of contraflow lanes cannot be

safely changed frequently because of the difficulties in communicating with human
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drivers. DLR could have major effects on network traffic, and determining an optimal

DLR policy is also an open problem.

1.3.2 Node model

A major section of the literature on AVs in traffic has focused on reservation-

based intersection control (Dresner and Stone, 2004, 2006b). Although reservations

were designed for 100% AVs, extensions (Dresner and Stone, 2006a, 2007; Qian et al.,

2014; Conde Bento et al., 2013) extended reservations to scenarios with both AVs

and HVs. Fajardo et al. (2011) and Li et al. (2013) demonstrated that in certain

situations, reservations substantially improve over optimized traffic signals. Since

signals are a feasible policy for reservations (Dresner and Stone, 2007), reservations

can always perform at least as well as signals. Therefore, reservation-based control

should be included in the DTA model of AVs, and has great potential for optimization.

Most previous studies on reservations have used micro-simulation because

reservations are defined in terms of individual vehicle movements in small inter-

vals of space and time. Models of multiple intersections have been limited to small

networks (Hausknecht et al., 2011a) or made extensive simplifications that greatly

reduced the capacity of the reservation protocol (Carlino et al., 2012). Levin and

Boyles (2015b) proposed a conflict region simplification for DTA, but it was not well

justified, and a was not amenable to optimization. Specifically, it was not clear how

the conflict regions were an accurate model of the collision avoidance constraints in

the reservation protocol. Zhu and Ukkusuri (2015) developed a linear programming

model for DTA, but it used unnecessarily restrictive collision avoidance constraints,

and it is not clear how it would scale to large networks. Therefore, a simplification

of reservations consistent with microsimulation tractable for large-scale DTA, and

open to optimization, is still an open problem. A further question is how to optimize

reservations. Most previous studies used the first-come-first-served (FCFS) policy,

in which vehicles are prioritized according to their reservation request time. It is

not clear that FCFS is optimal for reservations, despite favorable comparisons with

optimized traffic signals (Fajardo et al., 2011; Li et al., 2013).
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1.3.3 How do AVs affect traffic and travel demand?

The broad question of interest to practitioners and policymakers is how AVs

will affect future traffic and travel demand. Due to the lack of a complete network

model of AV traffic, addressing this question has previously been difficult. The DTA

model developed in this dissertation admits more accurate network analyses, and we

therefore consider two questions about future traffic conditions with AVs:

1. How will AVs affect network traffic congestion? AVs could improve

link efficiency due to reduced following headways. Also, once the AV market

penetration is sufficiently high, reservations could be used instead of traffic

signals. Holding demand constant, how will network traffic be affected as AV

market penetration increases?

2. How will AVs affect travel demand? AVs admit new traveler behaviors that

could greatly affect travel demand, and therefore travel congestion. Two such

behaviors are empty repositioning trips (Levin and Boyles, 2015a) and shared

autonomous vehicles (SAVs) (Fagnant and Kockelman, 2014; Fagnant et al.,

2015; Fagnant and Kockelman, 2016). With empty repositioning, AVs drop off

travelers at their destination then park elsewhere to avoid parking costs or share

the vehicle with other household members. Repositioning could greatly increase

the demand because each traveler choosing repositioning makes two vehicular

trips per traveler trip. SAVs are a fleet of publicly owned autonomous taxis

that service travelers instead of travelers owning a personal vehicle (Fagnant

and Kockelman, 2014). SAVs can operate at much lower costs than conven-

tional taxis due to the lack of driver. However, SAVs could also require empty

repositioning and increase the number of vehicle trips.

1.4 Contributions

In addressing the problems discussed in Section 1.3, this dissertation makes

the following contributions to the literature. Figure 1.2 illustrates the overall con-

tributions. First, we create models of multiclass link flow and DLR (Section 1.4.1).
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Then, we develop and optimize a node model of reservation-based control (Section

1.4.2). Combining the link and node models yields a complete network model, which

we use to study how AVs could affect network traffic under current and future (with

new traveler behaviors from AV technology) demand scenarios (Section 1.4.3).

1.4.1 Cell transmission model

The first part of the dynamic network loading model is the link flow model.

This dissertation modifies the cell transmission model CTM) (Daganzo, 1994, 1995a)

to model two changes to vehicular flow from the introduction of AVs.

1.4.1.1 CTM for mixed AV/HV flow

The most immediate impact is likely to be the effects reduced reaction times

have on the flow-density relationship. Reduced reaction times do not require specific

infrastructure like reservation-based intersections or DLR, and can occur at any mar-
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ket penetration of AVs. To model the changing flow due to AV reaction times, we

develop a multiclass kinematic wave model (Lighthill and Whitham, 1955; Richards,

1956) in which the capacity and backwards wave speed of the fundamental diagram

are functions of class densities. Then, we develop a multiclass CTM consistent with

the multiclass kinematic wave theory. To predict the fundamental diagram at different

proportions of AVs, we develop a car-following model that determines safe following

distance as a function of speed and reaction time. The car-following model predicts

the maximum speed possible at a given density, resulting in a triangular fundamental

diagram.

1.4.1.2 CTM and optimization of dynamic lane reversal

The second link flow behavior we consider is DLR (Hausknecht et al., 2011b).

DLR has yet to be studied or optimized at the network level, and this dissertation

aims to accomplish both. First, we present a CTM in which the number of lanes

per cell can vary per time step. We introduce safety constraints based on reasonable

assumptions about AV behavior. Next, we integrate DLR into the system optimal

DTA linear program (Ziliaskopoulos, 2000; Li et al., 2003), resulting in a mixed integer

linear program (MILP) to find a DLR policy and vehicle routing that satisfies SO.

Since SO routing may be too strict an assumption even for AVs, we then study

DLR for single link, with the aim of integrating single link DLR policies with UE

behavior. We characterize the single link flow-optimal DLR policy when demand is

deterministic, and use it to inspire a heuristic for when demand is stochastic. Results

show significant improvement on a city network.

1.4.2 Reservation-based intersection control

Reservation-based intersection control (Dresner and Stone, 2004, 2006b) is

a major component of traffic literature on AVs, and a network model would not

be complete without a node model of reservations. Reservations are defined in

terms of microsimulation, and therefore are not tractable for direct use in DTA.

We first propose an integer program (IP) for the conflict point simplification (Zhu
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and Ukkusuri, 2015) based on capacity constraints instead of explicit conflict avoid-

ance constraints. Then, we aggregate conflict points into conflict regions for greater

tractability. We also present a version for mixed traffic reservations based on a “legacy

mode” (Conde Bento et al., 2013). We then motivate and study more effective policies

for reservations.

1.4.2.1 Paradoxes of reservations

All previous work on reservations have indicated that the first-come-first-

served (FCFS) policy performs better than traffic signals. Indeed, Fajardo et al.

(2011) and Li et al. (2013) compared FCFS reservations with optimized traffic sig-

nals. However, we discovered three theoretical examples in which FCFS reservations

perform worse than signals. Two examples abuse the fairness ordering of FCFS. The

third example shows that decentralized reservation policies (including FCFS) can ac-

tivate Daganzo (1998)’s paradox when traffic signals would not. In addition to the

theoretical examples, we present two city subnetworks in which signals outperform

FCFS reservations as well.

1.4.2.2 Integer program for optimization

The conflict region model we develop is formulated as an IP with arbitrary

objective function. The general objective function admits a wide range of policy goals,

such as maximizing throughput, minimizing energy consumption, or fairness (such as

FCFS). Because IPs are NP-hard, we propose a polynomial-time heuristic. We derive

several theoretical results and show that the heuristic finds an optimal solution to the

FCFS objective.

1.4.2.3 Backpressure control

Our IP finds the optimal vehicle ordering for an individual intersection at a

specific time step. Because intersection ordering affects network congestion, a policy

that minimizes congestion over the entire network rather than at individual inter-

sections is preferable. We build on the work of Tassiulas and Ephremides (1992) to
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develop a pressure-based policy that maximizes queue stability. Because of the ex-

ample demonstrating that decentralized control cannot stabilize the network due to

DUE route choice, we also adapt the P0 policy (Smith, 1980, 1981) to reservations.

P0 is designed for UE route choice, and might be more effective when DUE route

choice is a significant issue with congestion. Since choosing vehicle ordering with the

backpressure and P0 policies requires solving an IP, we apply our heuristic and achieve

significant reductions in congestion when compared with FCFS on a city network.

1.4.3 Applications

Having developed a complete dynamic network loading model, we now turn

to applying it to predicting how AVs might affect network traffic.

1.4.3.1 Effects of AVs on network traffic

First, we study how AVs affect network traffic conditions under current de-

mand scenarios on a variety of freeway, arterial, and city networks. We study how AV

adoption will affect link flow at a variety of market penetrations. At partial adoption

of AVs, we assume signals are still used for intersections, but also that AVs propor-

tionally improve link capacity. We then study the 100% AV adoption scenarios with

reservations. In addition, we study how the policies for reservations and DLR can

further improve network traffic. Pressure-based reservation policies and DLR each

result in significant additional reductions in congestion.

1.4.3.2 Empty repositioning trips

Next, we study how AVs might affect travel demand. Levin and Boyles (2015a)

suggested that AVs might drop off travelers at their destination then return home to

avoid parking costs or share the AV with other household members. We present a four-

step planning model using DTA with endogenous departure time choice (Levin et al.,

2016a) in which travelers choose between transit, driving and parking, and driving

and repositioning. We consider the scenario in which travelers choosing to park drive

HVs whereas travelers choosing repositioning use AVs. Due to the later departure
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times of repositioning trips and the greater AV efficiency, allowing repositioning trips

reduced congestion by encouraging greater AV market penetration.

1.4.3.3 SAVs with realistic congestion models

Fagnant and Kockelman (2014, 2016) and Fagnant et al. (2015) suggested an

even more radical change in travel behavior: a public fleet of SAVs could provide

low-cost and efficient service, replacing private ownership of AVs. Previous work on

SAVs have not been able to use realistic congestion models due to lack of network

modeling work on AVs. We present a framework for integrating SAV behavior into

our network model, and study how SAVs affect congestion and level of service. We

also test heuristics for dynamic ride-sharing with SAVs (Fagnant and Kockelman,

2016) in anticipation of future demand.

1.5 Organization

The goal of this dissertation is to develop a DTA model of AVs, optimize AV

technology, and analyze how AVs might affect traffic congestion and travel demand.

This goal can be separated into three parts, illustrated in Figure 1.2. First, Chapter

2 modifies CTM to model shared roads with arbitrary proportions of AVs as well as

DLR. Analytical results and efficient heuristics for the DLR policy are also presented.

Next, Chapter 3 presents a node model of reservation-based intersection control and

develops an optimal policy. Finally, the node and link models are used in Chapter 4

to study the effects of AVs and AV travel behaviors on city networks. Conclusions

and future directions are discussed in Chapter 5. Literature relevant to each topic is

reviewed in detail in each chapter, and notation is introduced as needed. A list of

abbreviations may be found in Appendix A, and a list of notation may be found in

Appendix B.

Numerical results for the models developed in this dissertation are discussed

in Chapters 2, 3, and 4 following model development. Results in Chapters 2 and

3 are primarily for demonstrations of the model and optimizations, whereas results

in Chapter 4 are intended to demonstrate applications of the DNL model to other
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analyses scenarios. All experimental results, except for those in Section 2.6, were

obtained using an entirely new DTA software written in Java comprising over 47,000

lines of code. Using an object-oriented program structure, alternative node, link,

and travel behavior models were implemented and constructed as necessary for each

experiment. Chapter 2 is based on Levin and Boyles (2015c, 2016) and Duell et al.

(2016). Chapter 3 includes work adapted from Levin et al. (2015a) and Levin et al.

(2016b). Chapter 4 includes work adapted from Patel et al. (2016).
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2 Link models incorporating

autonomous vehicle behaviors

2.1 Introduction

This chapter is concerned with developing mesoscopic link flow models of AV

behaviors. The models in this chapter are focused on predicting time-dependent flows

through a single link in A. We develop DTA models of two significant changes in AV

technology. First, AVs have reduced perception reaction times from (cooperative)

adaptive cruise control and platooning, which admits safe reductions in following

headways. Reduced headways changes the flow-density relationship (Marsden et al.,

2001; Van Arem et al., 2006; Kesting et al., 2010; Schakel et al., 2010), and these

changes will be active even at partial AV market penetration. We discuss these

changes more in Section 2.1.1. Second, analogous to reservation-based intersection

control, AV communications and computer precision admit more creative link behav-

iors, specifically DLR. AVs can safely respond to frequent and rapid changes in lane

direction (Hausknecht et al., 2011b). Current lane reversal technology — contraflow

lanes — cannot change lane direction often due to the limitations of HVs. DLR can

be used to adjust link capacities in response to time-varying demand within peak

periods or at other times. DLR is further discussed in Section 2.1.2.

2.1.1 Changes to flow-density relationship

AVs may also increase link capacity (Marsden et al., 2001; Van Arem et al.,

2006; Kesting et al., 2010) because (cooperative) adaptive cruies control reduced
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perception reaction times requires smaller following distances, and AVs may be less

affected than HVs by certain adverse road conditions. However, capacity improve-

ments are complicated by sharing roads with HVs, and roads will likely be shared for

many years before AVs are sufficiently available and affordable to completely replace

HVs.

However, modeling link capacity improvements from shared road policies is

still an open problem. Most current models of AVs are micro-simulations, which are

not computationally tractable for the traffic assignment typically used to determine

route choice. Levin and Boyles (2015a) modified static link performance functions

model to predict capacity improvements as a function of the proportion of AVs on

each link based on Greenshields et al. (1935)’s capacity model. However, in reality

the proportion of AVs on each link will vary over time. DTA models flow more

accurately than static models and can include the varying-time effects of capacity.

Kesting et al. (2010) predicted theoretical capacity for adaptive cruise control and use

linear regression to extrapolate for various proportions of connected vehicles (CVs)

and non-CVs. For consistency with DTA, we use a constant acceleration model to

analytically predict capacity and wave speed as a function of the proportion of each

vehicle class on the road, and generalize to multiple classes with different reaction

times. Whereas many previous papers on CVs use micro-simulation experiments,

we use DTA on a city network to study the impacts of AVs under dynamic user

equilibrium (DUE) route choice.

This chapter makes two contributions towards developing a shared road DTA

model. First, a multiclass cell transmission model (CTM) is proposed that admits

space-time variations of capacity and wave speed. Second, a link capacity model based

on a collision avoidance car-following model with different reaction times is presented.

The link capacity assumptions lead to the triangular fundamental diagram assumed

by Newell (1993) and Yperman et al. (2005). Intersection efficiency scales dynamically

with the proportion of AVs using the intersection.
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2.1.2 Dynamic lane reversal

Lane reversal has already been explored through contraflow lanes. Most liter-

ature pertains to evacuation (see, for instance, Zhang et al., 2012b; Wang et al., 2013;

Dixit and Wolshon, 2014), because of the costs associated with reversing lanes for

human drivers, but several papers study contraflow for daily operations. Zhou et al.

(1993) use machine learning on queue length and total delay for scheduling the lane

reversal. Xue and Dong (2000) similarly applied neural networks on fuzzy pattern

clustering to contraflow for a bottleneck tunnel. Meng et al. (2008) use a bi-level op-

timization to address the driver response to contraflow lanes through DUE behavior.

As demonstrated by the Braess (1968) and Daganzo (1998) paradoxes, consideration

of DUE routing behavior is important as it can adversely affect potential network

improvements. Therefore, our results include solving DTA on a city network.

The primary constraint on existing work on contraflow lanes for daily opera-

tions is communication with and ensuring safety of human drivers. Reversing a lane

with human drivers therefore often requires significant time and cannot be performed

frequently. Furthermore, it is impractical to perform on every road segment (link),

and, where it is used, the lane is reversed on the entire link. Partial lane reversal

could increase flow by adding temporary turning bays. Consequently, a more frequent

DLR for AVs, controlled by a lane manager agent per link in communication with

AVs on the link, could result in significant improvements over contraflow lanes.

Our work is primarily motivated by the greater communications available for

AVs due to the frequency of lane reversals we propose for DLR. We assume that lane

direction can be changed at very small intervals of space-time, such as a few hundred

feet of space and 6 second time steps. Such frequent reversals of lane direction can be

used to optimize lane direction for small variations in demand over time. Contraflow

lanes are typically reversed for the duration of a peak period, whereas DLR could

change lane direction many times within a peak period to reduce queueing and spill-

back. However, such small space-time intervals for DLR cannot be safely implemented

with human vehicles. The greater precision and bandwidth of AV communications is

necessary.
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In this dissertation, we assume that lane manager agents exist that can com-

municate the direction of each lane at space and time intervals to all vehicles on the

link. Hausknecht et al. (2011b) suggest using AV intersection controllers as a lane

manager to specify the direction of lanes for the entire link at different times. With

some changes the intersection controllers could communicate lane direction at space

intervals as well, and we also assume that AVs could be forced to obey these policies.

Therefore, rather than study an enabling protocol, we focus on the potential benefits.

Hausknecht et al. (2011b) found that DLR improved capacity on a micro-

simulation of a small network and used optimization techniques on the lane reversal

problem for static traffic assignment (STA). A natural extension is how to model DLR

and construct optimal lane direction policies for city networks with dynamic demand

and more realistic flow models. Computational tractability becomes a major concern.

As noted by Hausknecht et al. (2011b), even for a static flow model, STA becomes a

subproblem to finding the DLR policy, forming a bi-level optimization problem. As

the number of lanes is integer, the upper level involves integer programming (IP), a

potentially NP-hard problem. Dynamic demand also introduces stochasticity from the

perspective of the lane manager because future conditions may not be known perfectly.

Therefore, finding the optimal DLR policy could require impractical computational

resources. However, a heuristic that yields consistent improvements over current fixed

lane configurations would be valuable.

This chapter incorporates DLR into the cell transmission model (CTM) (Da-

ganzo, 1994, 1995a) and studies optimal policies for DLR. We consider two types of

information availability for finding the optimal DLR policy. First, when future de-

mand is known, we study DLR in the context of IPs and present theoretical results

and motivating examples. When future demand is stochastic, we formulate DLR as

a Markov decision process (MDP) and present a saturation-based heuristic for com-

putational tractability that appears to perform well on a variety of demands for a

single bottleneck link. We then solve DTA on a city network using this heuristic, and

demonstrate significant improvements in system efficiency.
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2.1.3 Organization

The remainder of this chapter is organized as follows: Section 2.2 discusses

literature on AVs in traffic and dynamic lane reversal. Next, Section 2.3 presents the

multiclass CTM. The fundamental diagram for the CTM is developed in Section 2.4.

After, we extend the CTM for dynamic lane reversal. We define the CTM in Section

2.5. In Section 2.6, we consider a SO version of DLR. Due to the potential issues

with enforcing SO behavior, Sections 2.7 and 2.8 study policies for DLR on a single

link, assuming that route choice is UE. DLR results are presented in Section 2.9. We

present our conclusions from our link model studies in Section 2.10.

2.2 Literature review

This literature review addresses three aspects of modifying link models for

AV behaviors. First, we begin by discussing DTA and multiclass flow models in

Section 2.2.1. Next, in Section 2.2.2 we discuss previous (micro-simulation) work on

flow models of AVs. Finally, we discuss the technology necessary for dynamic lane

reversal and the seminal DLR paper (Hausknecht et al., 2011b) in Section 2.2.3.

2.2.1 Dynamic traffic assignment

DTA includes a number of different flow models, some of which are solved an-

alytically and others which are simulation-based. For an overview of DTA, we refer

to Chiu et al. (2011). DTA uses dynamic flow models to predict dynamic travel times

and congestion more accurately than STA. Although many flow models have been

proposed for DTA, most current DTA models use a simulation-based approximation

of the kinematic wave theory (Lighthill and Whitham, 1955; Richards, 1956). The

partial differential equations of the kinematic wave theory are generally more difficult

to solve when multiple vehicle classes result in varying capacities. The method we

use in this chapter is CTM, a Godunov (1959) approximation developed by Daganzo

(1994, 1995a). The multiclass CTM presented in Section 2.3 is shown to approxi-

mately solve the multiclass extension of the kinematic wave theory. The link tran-
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mission model (Yperman et al., 2005; Yperman, 2007) reduces the numerical errors

associated with the CTM approximation, but is more difficult to adapt to multiclass

flow with a varying flow-density relationship. Recent work has also proposed exact

solution methods such as a Lax-Hopf formulate (Claudel and Bayen, 2010a,b), but

these would also be difficult to modify for multiclass flow.

Multiclass DTA has previously been studied in the literature although pri-

marily with a focus on heterogeneous vehicles of length and speed. Wong and Wong

(2002) allowed vehicles to have a class-specific speed and demonstrate that their

model adheres to flow conservation. However, they use a new discrete space-time

approximation to solve their model, and it is not clear whether it is compatible with

the most common simulation-based approximations, which is desirable for integration

with existing DTA models. Tuerprasert and Aswakul (2010) formulated a multiclass

CTM with different speeds per class, including how different speeds affect cell propa-

gation. It is not clear, though, whether their model solves a multiclass form of LWR,

or is a modification of CTM with useful properties.

2.2.2 Autonomous vehicle flow

The models presented in this chapter are concerned with varying capacities and

wave speeds due to the multiple classes of human-driven and autonomous vehicles.

We assume that speed does not depend on vehicle class, which is reasonable because

some AVs are programmed to exceed the speed limit to maintain the same speed as

surrounding traffic for improved safety (Aarts and Van Schagen, 2006).

Potential improvements in traffic flow from CVs and AVs have begun to receive

attention in the literature. Adaptive cruise control (ACC) (Marsden et al., 2001) has

been developed to improve link capacity and, even if it is not incorporated into AVs,

will likely influence AV car-following behavior. Van Arem et al. (2006) and Shladover

et al. (2012) used micro-simulation to show that cooperative ACC can improve ef-

ficiency. Kesting et al. (2010) developed a continuous acceleration behavior model

of CVs to predict theoretical capacity. They use a linear regression to extrapolate

for different proportions of CVs and non-CVs. We generalize by including multiple

vehicle classes with different reaction times in our constant acceleration model and
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predict both capacity and wave speed as a function of the proportion of each vehicle

class. Schakel et al. (2010) used simulation to study traffic flow stability, finding

that ACC increases stability and also increases shockwave speed. This behavior is

consistent with the theoretical wave speed we develop in Section 2.3. Although much

of the literature uses micro-simulation to study CVs and AVs, we use the predicted

capacities and wave speeds in a DTA model to study the impacts on a city network

with DUE.

2.2.3 Dynamic lane reversal

The precision and communications potential of AVs have been used to propose

several new traffic behaviors such as DLR. A primary topic of study is improving

intersection efficiency, and the communications required for the proposed intersection

controller can be adapted to the requirements of DLR.

Dresner and Stone (2004, 2006b) introduced reservation-based intersection

control, in which AVs communicate with an intersection manager to request inter-

section passage. The intersection manager simulates requests on a grid of space-time

tiles, which are accepted only if they do not conflict with other requests. Fajardo

et al. (2011) and Li et al. (2013) demonstrated that reservations can reduce delays

beyond optimized signals. Therefore, when AVs are a sufficiently high proportion of

vehicular demand, reservations are likely to be used in place of signals (Dresner and

Stone, 2007).

The seminal DLR paper of Hausknecht et al. (2011b) observed that the inter-

section manager could be used to control lane usage by restricting AVs from entering

certain lanes. This restriction could enforce DLR by ensuring that AVs do not enter

a lane in the wrong direction. Therefore, the reservation protocol is sufficient for

implementing lane reversal where lanes have the same direction for each link.

In this chapter, we consider lane reversal at multiple spatial intervals within

a link. This partial lane reversal can also be handled by a modification to the inter-

section manager. In the reservation protocol, AVs communicate with the intersection

manager well before reaching the intersection to request a reservation. These longer-

range communications can be used to establish lane direction at small space-time
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intervals and require AVs to switch lanes to comply with lane reversals.

2.3 Multiclass cell transmission model

This section presents a multiclass extension of CTM. The focus of this section

is on roads with both human and autonomous personal vehicles; we do not include the

speed differences between heavy trucks and personal vehicles. The models in Sections

2.3 and 2.4 are defined for continuous flows, which some DTA models use. Because

this dissertation is also concerned with node models, and because reservation-based

intersection controls are defined for discrete vehicles, our results will discretize the

flow model defined here. We make the following assumptions:

1. All vehicles travel at the same speed. Although in reality vehicle speeds

differ, in DTA models the vehicle speed behavior model is often assumed to

be identical for all vehicles. This assumption is reasonable even with multiple

vehicle classes because AVs may match the speed of surrounding vehicles, even if

it requires exceeding the speed limit, to improve safety (Aarts and Van Schagen,

2006). Although Tuerprasert and Aswakul (2010) consider different vehicle

speeds in CTM, in this study of HVs and AVs much of the differences in speed

would come from variations in HV behavior that are often not considered in

DTA models.

2. Uniform distribution of class-specific density per cell. Single-class CTM

assumes the density within a cell is uniformly distributed. We extend that

assumption to class-specific densities.

3. Arbitrary number of vehicle classes. Although this study focuses on the

transition from HVs to AVs, different types of AVs may be certified for different

reaction times, and thus may respond differently in their car-following behavior.

4. Backwards wave speed is less than or equal to free flow speed. This

assumption is necessary to determine cell length by free flow speed because of

the Courant et al. (1967) condition. Although this assumption is common in
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DTA models, in Section 2.4 we show that a sufficiently low reaction time might

break this assumption.

We first define the multiclass kinematic wave theory in Section 2.3.1. Then,

following the presentation of Daganzo (1994), we state the cell transition equations

in Section 2.3.2 and show that they are consistent with the multiclass kinematic wave

theory in Section 2.3.3.

2.3.1 Multiclass kinematic wave theory

Let M be the set of vehicle classes. Let km(x, t) be the density of vehicles of

class m at space-time point (x, t) with total density denoted by k(x, t) =
∑
m∈M

km(x, t).

Similarly, let qm(x, t) = u(k1

k
, . . . ,

k|M|
k

)km(x, t) be the class-specific flow, with the total

flow given by q(x, t) =
∑
m∈M

qm(x, t), and let the function u
(
k1

k
, . . . ,

k|M|
k

)
denote the

speed possible with class proportions of k1

k
, . . . ,

k|M|
k

. In anticipation of dynamic lane

reversal, we let L be the number of lanes and define capacity and jam density per lane.

Section 2.5 will expand L to vary in space and time. Observe that class proportions

of flow and density are identical:

Proposition 1.
qm(x, t)

q(x, t)
=
km(x, t)

k(x, t)
(2.1)

Proof.

qm(x, t) = ukm(x, t) (2.2)

relates flow and density. Therefore,

q(x, t) =
∑
m∈M

qm(x, t)

= u
∑
m∈M

km(x, t)

= uk(x, t) (2.3)
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which results in
qm(x, t)

q(x, t)
=
uqm(x, t)

uq(x, t)
=
km(x, t)

k(x, t)
(2.4)

Speed is limited by free flow speed, capacity, and backwards wave propagation:

u(k1, . . . k|M|) = min

uf ,
Q
(
k1

k
, . . . ,

k|M|
k

)
L

k
,w

(
k1

k
, . . . ,

k|M|
k

)
(KL− k)

 (2.5)

where w
(
k1

k
, . . . ,

k|M|
k

)
is the backwards wave speed, Q

(
k1

k
, . . . ,

k|M|
k

)
is the capacity

per lane when the proportions of density in each class are k1

k
, . . . ,

k|M|
k

, uf is the free flow

speed, and K is jam density per lane. K is assumed not to depend on vehicle type

because the physical characteristics (such as length and maximum acceleration) of

human-driven and autonomous vehicles are assumed to be the same. For consistency,

conservation of flow must be satisfied (Wong and Wong, 2002):

∂qm(x, t)

∂x
= −∂km(x, t)

∂t
∀m ∈M (2.6)

2.3.2 Cell transition flows

As with Daganzo (1994), to form the multiclass CTM we discretize time into

timesteps of ∆t. Links are then discretized into cells labeled by i = 1, . . . , |C| (where

C is the set of cells) such that vehicles traveling at free flow speed will travel exactly

the distance of one cell per timestep. Let nmi (t) be vehicles of class m in cell i at time

t, where ni(t) =
∑
m∈M

nmi (t). Let ymi (t) be vehicles of class m entering cell i from cell

i− 1 at time t. Then cell occupancy is defined by

nmi (t+ 1) = nmi (t) + ymi (t)− ymi+1(t) (2.7)
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with total transition flows given by

yi(t) =
∑
m∈M

ymi (t) = min

{∑
m∈M

nmi−1(t), Qi(t)L,
wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.8)

where N is the maximum number of vehicles that can fit in cell i and Qi(t) is the

maximum flow.

Equation (2.8) defines the total transition flows, which will now be defined spe-

cific to vehicle class. To avoid dividing by zero, assume ni−1(t) > 0. (If ni−1(t) = 0,

then qi−1(t) = 0 trivially). As stated in Assumption 2, class-specific density is as-

sumed to be uniformly distributed throughout the cell. Then class-specific transition

flows are proportional to
nm
i−1(t)

ni−1(t)
:

ymi (t) =
nmi−1(t)

ni−1(t)
min

{∑
m∈M

nmi−1(t), Qi(t)L,
wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.9)

Equation (2.9) may be simplified to

ymi (t) = min

{
nmi−1(t),

nmi−1(t)

ni−1(t)
Qi(t)L,

nmi−1(t)

ni−1(t)

wi(t)

uf

(
NL−

∑
m∈M

nmi (t)

)}
(2.10)

which shows that flow of class m is restricted by three factors: 1) class-specific cell oc-

cupancy; 2) proportional share of the capacity; and 3) proportional share of congested

flow.

In the general kinematic wave theory, class proportions may vary arbitrarily

with space and time, which includes the possibility of variations within a cell. There-

fore, assuming uniformly distributed density results in the possibility of non-FIFO

behavior within cells. One class may have a higher proportion at the end of the cell,

and thus might be expected to comprise a higher proportion of the transition flow.

However, as discussed by Blumberg and Bar-Gera (2009), even single class CTMs

may violate FIFO. The numerical experiments in this chapter use discretized flow to

admit reservation-based intersection models. The discretized flow also allows vehicles
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within a cell to be contained within a FIFO queue, which ensures FIFO behavior at

the cell level. Total transition flows for discrete vehicles are determined as stated

above for continuous flow.

2.3.3 Consistency with kinematic wave theory

Proposition 2. The transition flows of equations (2.7) and (2.10) satisfy the con-

servation of flow equation (2.6) for the multiclass kinematic wave theory defined in

Section 2.3.1.

Proof. Class-specific flow is proportional to density by Proposition 1. Consider the

case that k > 0, because if k = 0 then flow is also 0. Then

qm(x, t) =
km
k

min

{
ufk,Q

(
k1

k′
, . . . ,

k|M|
k

)
L,w

(
k1

k
, . . . ,

k|M|
k

)
(KL− k)

}
(2.11)

Let ∆t be the time step and choose cell length such that uf ·∆t = 1. Then cell length

is 1, uf is 1, x = i, K = N , and k(x, t) = ni(t). Cell length is chosen so that flow may

traverse at most one cell per time step to satisfy the Courant et al. (1967) conditions.

Then

qm(x, t) =
nmi (t)

ni(t)
min

{
ni(t), Qi(t)L,

wi(t)

v
(NL− ni(t))

}
= ymi+1(t) (2.12)

except for the subindex of n the last term, which should be i + 1. As with Daganzo

(1994) this difference is disregarded. (See Daganzo, 1995b, for more discussion on

this issue.) Therefore ∂qm(x,t)
∂x

= ymi+1(t) − ymi (t). Since ∂km(x,t)
∂t

= nmi (t + 1) − nmi (t)

is the rate of change in cell occupancy with respect to time, the conservation of flow

equation ∂qm(x,t)
∂x

= −∂km(x,t)
∂t

is satisfied by the cell propagation function of equation

(2.7).

Proposition 3. The transition flows of equations (2.7) and (2.10) approximate the

multiclass kinematic wave theory defined in Section 2.3.1. Specifically,

lim
∆x→0

nmi (t)

∆x
= km(x, t) (2.13)
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and

lim
∆t→0

ymi (t)

∆t
= qm(x, t) (2.14)

Proof. Since the transition flows satisfy conservation of flow by Proposition 2, the

transition flows are a Godunov (1959) approximation to the partial differential equa-

tions of the multiclass kinematic wave theory.

Because it is not known how to solve the multiclass kinematic wave theory

exactly, we will use the multiclass CTM in our DNL model.

2.4 Car-following model for autonomous vehicles

We now present a car-following model based on kinematics to predict the

speed-density relationship as a function of the reaction times of multiple classes. Car-

following models can be divided into several types as described by Brackstone and

McDonald (1999) and Gartner et al. (2005). For instance, some predict fluctuations

in the acceleration behavior of an individual driver in response to the vehicle ahead.

However, for DTA a simpler model is more appropriate to predict the speed of traffic

at a macroscopic level. Newell (2002) greatly simplified car-following to be consistent

with the kinematic wave theory, but the model does not include the effects of reaction

time. Instead, the car-following model used here is inspired by the collision avoidance

theory of Kometani and Sasaki (1959) to predict the allowed headway for a given

speed, which varies with driver reaction time. The inverse relationship predicts speed

as a function of the headway, which is determined by density. This car-following model

results in the triangular fundamental diagram used by Newell (1993) and Yperman

et al. (2005).

Although this car-following model is useful in predicting the effects of a het-

erogeneous vehicle composition on capacity and wave speed, other effects such as

roadway conditions are not included. Furthermore, CTM assumes a trapezoidal fun-

damental diagram that admits a lower restriction on capacity. Therefore, the effect

of reaction times on capacity and backwards wave speed are used to appropriately

scale link characteristics for realistic city network models. Although AVs may be
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less affected by adverse roadway conditions than human drivers, this section assumes

similar effects for the purposes of developing a DTA model of shared roads. Other

estimations of capacity and wave speed may also be included in the multiclass CTM

model developed in Section 2.3.

2.4.1 Safe following distance

Suppose that vehicle 2 follows vehicle 1 at speed u with vehicle lengths d.

Vehicle 1 decelerates at a to a full stop starting at time t = 0, and vehicle 2 follows

suit after a reaction time of τ . The safe following distance, D, is determined by

kinematics.

The position of vehicle 1 is given by

x1(t) =

ut− 1
2
at2 t ≤ u

a

u2

2a
t > u

a

(2.15)

where u
a

is the time required to reach a full stop. For t > u
a

, the position of vehicle

1 is constant after its full stop. The position of vehicle 2, including the following

distance of D, is

x2(t) =

ut−D t ≤ τ

ut− 1
2
a(t− τ)2 −D t > τ

(2.16)

The difference is

x1(t)− x2(t) =


u− 1

2
at2 +D t ≤ τ

−atτ + 1
2
a(τ)2 +D τ < t ≤ u

a

u2

2a
− ut+ 1

2
a(t− τ)2 +D t > u

a

(2.17)

and the minimum distance occurs when both vehicles are stopped, at u
a

+τ . To avoid

a collision,

D ≥ − u2

2a
+ u

( u
a

+ τ
)
− 1

2
a
( u
a

)2

+ d = uτ + d (2.18)
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Figure 2.1: Flow-density relationship as a function of reaction time

2.4.2 Fundamental diagram

Equivalently, inequality (2.18) may be expressed as

u ≤ D − d

τ
(2.19)

which restricts speed based on following distance (from density). Flow may be deter-

mined from the relationship q =
(
D−d
τ

)
k with D = 1

k
, which is linear with respect

to density. Figure 2.1 shows the resulting relationship between flow and density for

different reaction times for a characteristic vehicle of length 20 feet that decelerates

at 9 feet per second per second for a free flow speed of 60 miles per hour. Since speed

is bounded by free flow speed and available following distance, the triangle is formed

by q = min
{
uk,
(
D−d
τ

)
k
}

. Reaction times of 1 to 1.5 seconds correspond to human

drivers (Johansson and Rumar, 1971).

The maximum density at which a speed of u is possible is 1
uτ+d

from inequality

(2.19), and therefore capacity for free flow speed of uf is

Q = uf 1

ufτ + d
(2.20)
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Backwards wave speed is

w = −
uf

ufτ+d

1
ufτ+d

− 1
d

=
d

τ
(2.21)

which increases as reaction time decreases. The direction of this relationship is con-

sistent with micro-simulation results by Schakel et al. (2010). Note that if τ < d
uf

, which may be possible for computer reaction times, then backwards wave speed

exceeds free flow speed. If w > uf for CTM, then the cell lengths would need to be

derived from the backward wave speed, not the forward. That would complicate the

cell transition flows. To avoid this issue, this dissertation assumes that w ≤ uf .

2.4.3 Heterogeneous flow

The car-following model in Section 2.4.2 is designed to estimate the capacity

and backwards wave speed when the reaction time varies, but is uniform across all

vehicles. This section expands the model for heterogeneous flow with different vehicles

having different reaction times. Let the density be disaggregated into km for each

vehicle class m. Consider the case where speed is limited by density. Assuming that

all vehicles travel at the same speed, for all vehicle classes,

u =
Dm − `
τm

(2.22)

where Dm is the headway allotted and τm is the reaction time for vehicles of class m.

Also, with appropriate units, ∑
m∈M

kmDm = 1 (2.23)

is the total distance occupied by the vehicles. Thus∑
m∈M

km (Dm − d) = 1− kd (2.24)
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By equation (2.22),
∑
m∈M

kmuτm = 1− kd, and

u =
1− kd∑

m∈M
kmτm

(2.25)

Equation (2.25) may be rewritten as u
∑
m∈M

kmτm = 1 − kd. Dividing both sides by

k yields

u
∑
m∈M

km
k

∆tm + d =
1

k
(2.26)

Assuming that vehicle class proportions km
k

remain constant because all vehicles travel

at the same speed, the maximum density for which a speed of uf is possible is

k =
1

uf
∑
m∈M

km
k
τm + d

(2.27)

which follows by taking the reciprocal of equation (2.26). Capacity is

Q = uf 1

uf
∑
m∈M

km
k
τm + d

(2.28)

Backwards wave speed is thus

w = −

uf

uf
∑

m∈M

km
k
τm+d

1

uf
∑

m∈M

km
k
τm+d

− 1
d

=
d∑

m∈M

km
k
τm

(2.29)

Equations (2.25) through (2.29) reduce to the model in Section 2.4.2 in the single

vehicle class scenario. Figure 2.2 shows an example of how capacity and wave speed

increase as the AV proportion increases when human drivers have a reaction time of

1 second and autonomous vehicles have a reaction time of 0.5 second. The cases of

0% AVs and 100% AVs are identical to the 1 second reaction time and 0.5 second

reaction time fundamental diagrams in Figure 2.1, respectively.
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Figure 2.2: Flow-density relationship as a function of AV proportion

2.4.4 Other factors affecting flow

In reality, factors such as narrow lanes and road conditions affect capacity as

well. These factors are usually in Highway Capacity Manual estimates of roadway

capacity used for city network models. The model above, however, does not include

factors beyond speed limit. To include these factors in the experimental results,

we scale existing estimates on capacity and wave speed in accordance with equa-

tions (2.28) and (2.29). Although the model in Section 2.4.3 predicts a triangular

fundamental diagram as used by Newell (1993) and Yperman et al. (2005), other

flow-density relationships are often used. CTM, the basis for multiclass DTA in this

chapter, uses a trapezoidal fundamental diagram (Daganzo, 1994).

Assume estimated roadway capacity and wave speed are Q̂ and ŵ, respectively,

and that the reaction time for human drivers is τHV. Human reaction times may vary

depending on the location of the road; for instance reaction times on rural roads are

often greater than those in the city. Because capacity is affected by reaction time
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through equation (2.28), scaled capacity Q̃ is

Q̃ =
ufτHV + d

uf
∑
m∈M

km
k
τm + d

Q̂ (2.30)

Similarly, wave speed is affected by reaction time through equation (2.29), so scaled

wave speed w̃ is

w̃ =
τHV∑

m∈M

km
k
τm
ŵ (2.31)

Equations (2.30) and (2.31) provide a method to integrate the capacity and

backwards wave speed scaling of Section 2.4.3 with other factors and realistic data.

2.5 Cell transmission model for dynamic lane reversal

In this section, we modify the CTM (Daganzo, 1994, 1995a) to include a

varying number of lanes in space and time. The modifications here are concerned

with the number of lanes available, and are therefore orthogonal to the multiclass

CTM of Section 2.3. We make the following assumptions to ensure safe and realistic

behavior:

1. Vehicles can change lanes at most once per time step. For a typical time

step of 6 seconds with free flow speed of 30 miles per hour, the corresponding

cell length is 264 feet. That interval in space and time should be sufficient for

one lane change. Lane changing may cause disruptions to the traffic stream

because increases in density from forcing vehicles to merge may reduce flow.

Lane changing is modeled by scaling the fundamental diagram with the change

in the numbers of lanes. When the number of lanes is reduced, the relative

congestion increases, resulting in reductions in capacity and possibly maximum

flow as per the new fundamental diagram.

2. The lane manager can specify the direction of each lane per cell and

time step. Changes in lane direction are subject to constraints on jam density

and lane changing.
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Figure 2.3: Illustration of paired CTM links [a, b] and [b, a])

3. All vehicles are autonomous and obey lane direction specified by the

lane manager. We do not admit human drivers because dynamic lane re-

versal with human drivers would introduce additional complexity due to safety

requirements.

4. All lanes traveling in the same direction are contiguous. This assump-

tion simplifies lane changing and turning movement behavior.

5. DLR can be used for arterials and highway links that have a parallel,

opposite direction link of the same length and free flow speed.

2.5.1 Flow model

Consider a pair of links [a, b] ∈ A and [b, a] ∈ A from a to b and from a to

b, respectively with contiguous lanes and identical free flow speed v and backwards

wave speed w, so that DLR is possible and cells align. (For links without a parallel,

opposite direction link, the number of lanes may be assumed to be fixed and follow

the original CTM). Let C be the set of cells in [a, b]. We assume that because [a, b]

and [b, a] have contiguous lanes, every cell i ∈ C has a parallel cell
←−
i of the same

length in the opposite direction. Link [a, b] has cells 1 through |C|.
←−
|C| refers to the

first cell of link [b, a], and
←−
1 refers to the last cell. Figure 2.3 illustrates this notation.

The cell length is uf∆t, the distance a vehicle can travel in a time step of ∆t at free

flow speed.

Assumptions 2 and 4 simplify defining the direction of each lane at each time

step to specifying the number of lanes in each direction in space and time. This
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restriction also opens the possibility for preventing use of a lane in any direction over

some interval in spacetime. Emptying a lane could be used to reduce the congestion

caused by a later lane reversal.

Section 2.3 assumed a fixed number of lanes, L. For this section, we allow L

to vary in space and time. We define L to be a lane policy — specification of the

number of lanes for each space-time interval, denoted Li(t) for cell i and time t or

L(x, t) at position x ∈ R. We replace the fixed L in the multiclass CTM of Section

2.3 with time and space-varying number of lanes Li(t). L(x, t) is used to verify that

CTM with lane reversals is consistent with conservation of flow. In Section 2.5.2

we describe constraints on lane policies to follow the above assumptions. We use a

trapezoidal fundamental diagram for link flow:

q(x, t) = min{ufk,QL(x, t), w (KL(x, t)− k)} (2.32)

As with Daganzo (1994) we specify the cell transition flows, then demonstrate that

they satisfy conservation of flow: ∂q
∂x

= −∂k
∂t

. Cell occupancy ni(t) is determined by

transition flows yi(t, L), which depend on the lane policy L:

ni(t+ 1) = ni(t)− yi(t, L) + yi−1(t, L) (2.33)

with

yi(t, L) = min {Si(t, L), Ri+1(t, L)} (2.34)

where

Si(t, L) = min {ni(t), QLi(t)} (2.35)

is the sending flow and

Ri(t, L) = min
{
QLi(t),

w

v
(NLi(t)− ni(t))

}
(2.36)

is the receiving flow, where N is the maximum number of vehicles that can fit in 1

lane of cell i. Since the links are interchangeable, equations (2.33) and (2.34) define

cell evolution for cells 1 through |C| as well as cells
←−
|C| through

←−
1 .
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Proposition 4. The transition flows of equations (2.33) through (2.36) satisfy con-

servation of flow, ∂q(x,t)
∂x

= −∂k(x,t)
∂t

.

Proof. Let ∆t be the time step and choose cell length such that v∆t = 1. If units are

chosen so that ∆t = 1, cell length is 1, v = 1, x = i, K = N , and k(x, t) = ni(t). This

cell length satisfies the Courant et al. (1967) condition for stability of these difference

equations when w ≤ v.

Then, as with Daganzo (1994),

q(x, t) = min
{
ni(t), QLi(t), QLi+1(t),

w

v
(NLi+1(t)− ni+1(t))

}
= yi(t, L) (2.37)

which results in ∂q(x,t)
∂x

= yi+1(t) − yi(t). Since ∂k(x,t)
∂t

= ni(t + 1) − ni(t) is the rate

of change in cell occupancy with respect to time, flow conservation ∂q
∂x

= −∂k
∂t

is

yi+1(t)− yi(t) = ni(t)− ni(t + 1), which is the cell propagation function of equation

(2.33).

Proposition 5. The transition flows of equations (2.33) through (2.36) approximate

the multiclass kinematic wave theory defined in Section 2.3.1. Specifically,

lim
∆x→0

ni(t, L)

∆x
= k(x, t) (2.38)

and

lim
∆t→0

yi(t, L)

∆t
= q(x, t) (2.39)

Proof. Since the transition flows satisfy conservation of flow by Proposition 4, the

transition flows are a Godunov (1959) approximation to the partial differential equa-

tions of the multiclass kinematic wave theory.

2.5.2 Constraints

The number of lanes per cell and time step must satisfy constraints for safety.

First, for all i ∈ C and for all t the total number of lanes across a cell and its opposite

is limited by the maximum number of lanes available, `i:

Li(t) + L←−
i
(t) ≤ `i (2.40)
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We set `i = `←−
i
, and refer to it as either for simplicity. We do not require equality

because it may be desirable to empty a lane before reversing its direction.

Assumption 1 requires that if n←−
i
(t) > 0 then

|Li(t+ 1)− Li(t)| ≤ 1 (2.41)

|L←−
i
(t+ 1)− L←−

i
(t)| ≤ 1 (2.42)

so that vehicles in cell i at time t that remain in i at t+ 1 cannot be forced to change

lanes more than once. Also,

|Li+1(t+ 1)− Li(t)| ≤ 1 (2.43)

|L←−−
i+1

(t+ 1)− L←−
i
(t)| ≤ 1 (2.44)

so vehicles moving from cell i at time t to cell i+1 at time t+1 do not have to change

lanes more than once.

When the lane direction changes, the number of vehicles in a cell could poten-

tially exceed the jam density, which results in the following requirement:

NLi(t) ≥ ni(t) (2.45)

so that the available physical space in the cell (which changes based on its number of

lanes) is sufficient to hold all vehicles in the cell.

2.5.3 Feasibility

The additional constraints require an analysis of feasibility. Because the initial

conditions could potentially force a violation of constraint (2.45), a sufficient condition

for feasibility is that constraints (2.40) through (2.45) are initially satisfied. Therefore,

feasibility is easily achievable for DTA models that start with empty links at t = 0

and load flow onto links in subsequent time steps. Proposition 6 shows that if the
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initial cell occupancies are feasible, then there exists a solution to DLR feasible for

all time steps.

Proposition 6. Let LT be the set of policies satisfying constraints (2.40) through

(2.45) for 0 ≤ t ≤ T . If for all cells i

(i) Li(0) + L←−
i
(0) ≤ `

(ii) |Li+1(0)− Li(0)| ≤ 1

(iii) |L←−−
i+1

(0)− L←−
i
(0)| ≤ 1

(iv) NLi(0) ≥ ni(0)

(v) NL←−
i
(0) ≥ n←−

i
(0)

then LT 6= ∅.

Proof. A fixed lane policy is a policy L such that for all i ∈ C and for all t, Li(t) =

Li(0). Any fixed lane policy satisfies constraints (2.41) and inductively satisfies con-

straints (2.40), (2.43), and (2.45) if Li(0) + L←−
i
(0) ≤ `, |Li+1(0) − Li(0)| ≤ 1, and

NLi(0) ≥ ni(0), respectively.

The conditions of Proposition 6 correspond to constraints (2.40) through (2.45)

for t = 0. Essentially, they require that the initial state of the network is feasible.

Part 1 requires that every lane has a single direction. Parts ii and 3 require that the

change in the number of lanes between two adjacent cells is at most one. Parts iv

and v require that the initial lane configuration provides enough space for vehicles in

the network at time t = 0.

A fixed lane policy can be used to provide a bound on the value of the opti-

mal DLR policy. However, näıve policies could easily perform worse than fixed lane

policies. Section 2.6 presents a method to find the optimal DLR policy under SO

conditions, and Sections 2.7 through 2.9 are concerned with DLR policy with UE

behavior.
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2.6 System-optimal dynamic lane reversal

Due to the constraints formulated in Section 2.5.2, a SO DLR policy can be

naturally developed based on the linear program (LP) for SO CTM. Hausknecht et al.

(2011b) also studied a bi-level program to optimize lane reversal for STA. However,

STA is designed for steady state conditions, and their formulation cannot evaluate

the impact of time-varying demand.

2.6.1 Formulation

In this section we present an MILP based on the SO LP for CTM by Zil-

iaskopoulos (2000) for a single destination and Li et al. (2003) for more general net-

works. The SODTA formulation by Ziliaskopoulos has been widely applied in a num-

ber of research applications, especially evacuation (Shen and Zhang, 2014; Chiu et al.,

2007). CTM more realistically propagates traffic than alternative approaches relying

on link performance functions. However, it faces drawbacks due to the size of the lin-

ear program, the holding back issue (i.e., when the linearized relaxation of the CTM

produces a solution that would be infeasible in the non-linearized CTM (Peeta and

Mahmassani, 1995; Doan and Ukkusuri, 2012)), and in multi-destination applications,

FIFO violations (Carey et al., 2014). While addressing these issues is unnecessary for

the scope of this work, it is possible that in a network comprised solely of AVs, the

latter could represent realistic behavior.

The addition of the number of lanes per cell, assumed to be integer, requires

an MILP as opposed to an LP. In preparation for the formulation, let C̃ be the set of

all cells in the network and E the set of cell connectors. C̃differs from C, which is the

set of cells for a single link. Since C̃ includes all cells, let C̃R ⊂ C̃and C̃S ⊂ C̃ be the

sets of source and sink cells, respectively. Let T denote the time horizon. Without

loss of generality, and for simplicity of notation, let the time step be 1. To define cell

transitions, let Γ−(i) and Γ+(i) be the sets of preceding and succeeding cells to cell

i. Let drs(t) be the demand for (r, s) ∈ C̃R× C̃S at time t. Let P̃ be a set of all pairs

of parallel opposite cells
(
i,
←−
i
)

.

The decision variables are cell density nrsi (t) specific to origin-destination (r, s),
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cell transition flows yrsij (t) from i ∈ C̃ to j ∈ C̃ per origin-destination pair (r, s) at

time t, and the number of lanes per cell Li(t). Because this MILP is formulated for a

network, including nodes, both the source and destination cells must be specified in

the cell transition flows. Due to the complexity of the MILP, we do not incorporate

the node model of Chapter 3 into the SO DLR formulation. (The node model will be

combined with DLR in Sections 2.7 through 2.9.)

The objective of the DLR-SODTA model is to minimize total system travel

time, which due to the CTM assumptions, is simply the summation of the density

of each cell over all time steps. This objective and these constraints results in the

following MILP:

min Z =
∑

(r,s)∈ C̃R× C̃S

T∑
t=0

∑
i∈C̃\ C̃S

nrsi (t) (2.46)

s.t. nrsj (t+ 1) = nrsj (6) +
∑

i∈Γ−(j)

yrsij (t)−
∑

k∈Γ+(j)

yrsjk(t)

∀(r, s) ∈ C̃R × C̃S

∀j ∈ C̃\( C̃R ∪ C̃S)

∀0 ≤ t ≤ T

(2.47)

nrsj (t+ 1) = nrsj (t) +
∑

i∈Γ−(j)

yrsij (t)

∀(r, s) ∈ C̃R × C̃S

∀j ∈ C̃S

∀0 ≤ t ≤ T

(2.48)

T∑
t=0

∑
i∈Γ−(s)

yrsis (t) =
T∑
t=0

drs(t) ∀(r, s) ∈ C̃R × C̃S (2.49)

∑
j∈Γ+(i)

yrsij (t) ≤ nrsi (t)

∀(r, s) ∈ C̃R × C̃S

∀i ∈ C̃\( C̃R ∪ C̃S)

∀0 ≤ t ≤ T

(2.50)
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∑
r∈ C̃R

∑
s∈ C̃S

w

uf
nrsj (t) +

∑
i∈Γ−(j)

yrsij (t)

 ≤ w

uf
NjLj(t)

∀j ∈ C̃\( C̃R ∪ C̃S)

∀0 ≤ t ≤ T

(2.51)∑
r∈ C̃R

∑
s∈ C̃S

∑
i∈Γ−(j)

yrsij (t) ≤ Qj(t)Lj(t)
∀j ∈ C̃\( C̃R ∪ C̃S)

∀0 ≤ t ≤ T

(2.52)∑
r∈ C̃R

∑
s∈ C̃S

∑
i∈Γ−(j)

yrsij (t) ≤ Qi(t)Li(t)
∀i ∈ C̃\( C̃R ∪ C̃S)

∀0 ≤ t ≤ T

(2.53)

nrsr (t+ 1)− nrsr (t) +
∑

j∈Γ+(r)

yrsrj (t) = drs(t)

∀(r, s) ∈ C̃R × C̃S

∀r ∈ C̃R

∀0 ≤ t ≤ T

(2.54)

nrsi (0) = 0

∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T

(2.55)

yrsij (0) = 0

∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T

(2.56)

yrsij (t) ≥ 0

∀(r, s) ∈ C̃R × C̃S

∀(i, j) ∈ E

∀0 ≤ t ≤ T

(2.57)

Li(t+ 1) ≥ Li(t)− 1
∀i ∈ C̃

∀0 ≤ t ≤ T
(2.58)
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Li(t+ 1) ≤ Li(t) + 1
∀i ∈ C̃

∀0 ≤ t ≤ T
(2.59)

Li+1(t+ 1) ≥ Li(t)− 1
∀i ∈ C̃

∀0 ≤ t ≤ T
(2.60)

Li+1(t+ 1) ≤ Li(t) + 1
∀i ∈ C̃

∀0 ≤ t ≤ T
(2.61)

Li(t) + L←−
i
(t) ≤ `i

∀
(
i,
←−
i ∈ P̃

)
∀0 ≤ t ≤ T

(2.62)

Li(t) ≥ 0
∀i ∈ C̃

∀0 ≤ t ≤ T
(2.63)

Constraints (2.47) through (2.54) define the cell transition flows. Constraints (2.50),

(2.51), and (2.52) have been modified from the original multi-destination CTM linear

programming model to account for the explicit representation of multiple lanes as a

decision variable. Constraints (2.58) through (2.61) bound the number of lanes that

can be reversed per time period, and constraint (2.62) defines the number of lanes

available to any pair of cells as `i, the total number of lanes available to both cells,

which is an input to the model. Note that all available lanes must be allocated during

all time periods, which will at times result in an arbitrary lane configuration.

2.6.2 Discussion

Let Z∗ be the optimal value of the objective function. Also, let Z̄ = Z solved

with the additional constraints

Li(t) = L̄i ∀i ∈ C̃,∀0 ≤ t ≤ T (2.64)

for some L̄i’s satisfying L̄a + L̄b ≤ `a and L̄i ≥ 0 for all i ∈ C̃. Let Z̄∗ be the

optimal solution with corresponding flow and lane assignment
(
ȳ∗, L̄

)
. Z̄∗ reduces to

solving the SO problem with a fixed lane configuration L̄. Clearly,
(
ȳ∗, L̄

)
is a feasible

solution to the original problem since the fixed configuration constraint (2.60) satisfies
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Figure 2.4: (a) two link network and (b) cell representation

constraints (2.57) through (2.63). This analysis results in the following observation:

Proposition 7. Z∗ ≤ Z̄∗.

2.6.3 Demonstration and analysis

This section presents the SO DLR model results on a small corridor example

and a larger grid network. The DLR results are compared with the fixed-lane results.

The SO DLR problem was solved using the AMPL programming interface to the

CPLEX solver.

2.6.3.1 Two link demonstration

The SO DLR model is initially demonstrated on a simple two-link example in

order to closely analyze the relationship between dynamic lane allocation and dynamic

traffic demand patterns. Both links are of length 650 m with a free flow speed of 50

kph. Each link has two lanes with a capacity of 1800 vehicles/hour/lane. Figure 2.4

illustrates the demonstration network.

Using a time increment of 6 seconds, the each link is comprised of 8 cells with

N = 13.2 vehicles and Q = 3 vehicles. We examine four demand cases and compare

the DLR and fixed lane SODTA results. Demand case I is illustrated in Figure 2.5.

In case (I), the vehicle flow is much higher in one direction. In the traditional

fixed lane network, this situation will result in congested conditions. The SODTA
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Figure 2.5: Demand case (I)

model considered 30 time steps, or 3 minutes of simulation. Demand for the first

ten time steps was assumed to be d13,14(t) = 10 vehicles and d16,15(t) = 3 vehicles

respectively. The demand follows a uniform departure time profile. The DLR model

resulted in a total travel time of 5166 seconds and 18 time increments for all vehicles

to exit the network. The fixed-lane approach was higher with a total travel time of

6834 seconds and 23 time-increments for all vehicles to exit.

Figure 2.6 shows a detailed representation of the lane configuration for pairs

of cells. Each vertical column represents the four lanes that are shared by a pair of

cells. The green shows that a lane is assigned to the first cell in the pair, while the

red represents a lane assignment to the second cell in the pair. For example, under

pair (13,15), all four lanes are assigned to cell 13 until time period 7. In demand case

I, the vehicle flow was unbalanced and therefore a majority of the lanes were able to

be utilized by the direction with a higher volume of flow. Also note that when there

is no vehicle demand for the cell or cell connector, the lane is assigned arbitrarily.

In the second case, the flow from both directions is more equal, as Figure

2.7 shows. This demand scenario is a common case for some congested network

corridors, even during peak hours. Demand for the first ten time steps was assumed

to be d13,14(t) = 9 vehicles and d16,15(t) = 5 vehicles.

In the fixed lane case, the model requires 16 time periods for all the flow to exit

the network while the DLR model requires 20 time-increments. The total travel time

in the fixed case was 7230 seconds and in the DLR case was 6756 seconds. Again, the

DLR model was able to reduce the total travel time. However, because there were

more vehicles from both directions, the reduction was not as great.
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Figure 2.6: Lane configuration in demand case (I)

Figure 2.7: Balanced demand case (II–IV)
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Figure 2.8: Lane configuration in demand case (III)

Demand case III examines the impact of time dependent demand, which an

important consideration for network operators. In this case, the total vehicle demand

is the same (90 vehicles/3 minutes) but the departure times are different. In this

scenario, the departure time are more spaced out and we assume d13,14(t) = 18 vehicles

for 0 ≤ t ≤ 24 and d16,15(t) = 10 vehicles for 60 ≤ t ≤ 84.

Both the fixed-lane and the DLR models require 25 time periods for all vehicles

to exit the network. However, the total travel time in the fixed case was 9084 seconds

and in the DLR case was 7488 seconds.

In addition, Figure 2.8 shows the detailed lane configuration in demand case

III. This demand scenario may be particularly conducive to dynamic lane allocation

because the first wave of demand from (13,14) had sufficient time to exit the network

before the second wave of demand from (16,15) entered the network.

Finally, in Table 2.1 we examine the peak demand case where the total demand

at each departure time is no longer uniform.

The total travel time for the fixed case is 8958, while the total travel time for

the SO DLR is 8718. The vehicles exited the network in 22 time-steps versus 18 time-

steps. Table 2.2 summarizes the results from the four demand cases. Additionally,
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Table 2.1: Peak departure pattern demand

Time (14, 13) (16, 15)
0 5 0
6 15 0
12 10 0
15 30 0
24 30 0
30 0 5
36 0 5
42 0 20
48 0 18
54 0 2

Total 90 50

Table 2.2: Summary of results for the two-link network

Total Departure # departure Fixed DLR DLR1

demand profile periods (s) (s) (s)
I 100, 30 Uniform 10 7464 5796 5796
II 90, 50 Uniform 10 7230 6756 6756
III 90, 50 Uniform 5 9084 7488 8220
IV 90, 50 Peak 5 8958 8718 8718

Table 2.2 presents the results for the case in which only two of the four lanes are

available to change directions as DLR1. This restriction would ensure that for all

time periods, each direction has at least one lane available which could be another

possible dynamic lane configuration.

Finally, we examined a 30 minute CTM simulation period, which is 300 time

steps. We loaded demand at the same rate (9 and 5 vehicles per time step respectively)

for 15 minutes, or 150 time steps. In this case, we placed a constraint that required

that there be at least one lane in each direction during all times periods (called DLR1).

There was a total of 1,350 vehicles between (13,14) and 750 between (16,15).
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The DLR solution assigned 3 lanes to the direction with a greater volume

of vehicles and then switched to a 2 lanes in each direction configuration after 108

time increments. This relatively static assignment of lanes is expected because of

the uniform demand profile. If the demand were to arrive in more of a heavy-slow

pattern, we would expect there to be more changes in lane configuration as more

capacity was switched to the favored direction of travel.

The total travel time in the fixed case was 108.9 hours. The DLR model

reduced the travel time to 69.4 hours, which represented 36% of the travel time.

2.6.3.2 Grid network demonstration

Finally, this section presents the results for the SODLR model on a demon-

stration network with a grid structure and multiple origin-destination (OD) pairs. A

grid network results in additional paths available between each OD and may have a

significant impact on the performance of dynamic lane management. Furthermore,

the additional constraint (2.49) is necessary to ensure that the total demand between

each origin-destination is maintained.

Figure 2.9 shows the demonstration network with four zones (i.e., A, B, C,

D) that act as both origins and destinations. The OD pairs considered are A–D,

D–A, B–C, and C–B with a demand of 3300 vph, 300vph, 2700 vph, and 600 vph,

respectively. Links have identical properties and the same as the previous example

(i.e., two lanes available in the fixed case, a free flow speed of 50 kph and length of 650

m). In this network, we expect each OD pair to have three primary paths through

the network. The majority of demand will favor the most direct path through for

each OD, but as congestion increases, the paths on the outside links will become more

favorable.

We explore three different demand cases, similar to the two link example, and

each case has the same amount of total demand. Case I has a uniform departure

profile for ten departure time periods. Case II features a peak pattern of departure

over five time periods, while Case III has a more pronounced peak over three departure

time periods. The peak periods were chosen such that the departure time periods for

opposing OD pairs (i.e., A–D and D–A) were overlapping.
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Figure 2.9: Grid network with four OD pairs

Table 2.3: Summary of results for the grid network demonstration

Demand Departure # departure Fixed DLR Decrease
case profile periods (min) (min)

Uniform 83, 8, 68, 15 10 238.74 200.95 15.8%
Medium peak 83, 8, 68, 15 5 261.09 227.65 12.8%

High peak 83, 8, 68, 15 3 279.18 245.55 12.0%

Table 2.3 shows the results for the three demand cases on the grid shaped

demonstration network. The total demand is shown for OD pairs (A–D, D–A, B–C,

C–B). Table 2.3 shows the results for the fixed case where there are required to be

two lanes in each direction for all time periods and the SODLR case, where the lane

management can be optimized. In each case, the reduction in total travel time is

between 12–15%. That is a significant reduction for the relatively short simulation

period shown and suggests that DLR may be able to significantly reduce travel time.

However, for the case where the demand is overlapping in all directions, the reduction

in total travel time may be less.
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2.7 Dynamic lane reversal on a single link

Section 2.6 presented a MILP formulation for the SO DLR problem. However,

in practice SO routing requires an impractical level of control over individual vehicles.

Even with AVs, travelers may be unwilling to follow proscribed routing. Furthermore,

the MILP is computationally intensive even for small networks. Therefore, it is

valuable to study DLR under the assumption of DUE behavior.

In this section we study the optimal DLR policy for a single link when sending

and receiving flows at the upstream and downstream ends are known. Although this

level of knowledge is still not completely realistic, this model is useful for developing

theory about the DLR problem. Furthermore, the lane manager may be able to

communicate with other lane and intersection managers across the city to acquire

sending and receiving flows for a limited time horizon. Section 2.8 studies DLR

policies for a single link with stochastic demand and downstream supply. Overall this

section focuses on policies from a single link perspective for computational tractability,

which is nevertheless demonstrated to improve total system travel time on a city

network in Section 2.9.

Without the additional constraints of the SO formulation, we again refer to

cell occupancies as ni(t) and cell transition flows as yi(t). Since we focus on a single

pair of links [a, b] and [b, a], recall that C is the set of cells on [a, b].

2.7.1 Motivation

We first motivate the discussion with a demonstration of the challenges in find-

ing an optimal DLR policy. A näıve approach might consider the objective of maxi-

mizing flow on a per time step basis, i.e. at t, choose lanes to max
∑
i∈C

(
yi(t) + y←−

i
(t)
)
.

This objective is favorable because it exhibits the optimal substructure characteristic

for constructing a dynamic programming algorithm. However, consider two parallel

but opposite directional links with capacity 1200vph per lane, with 4 lanes between

them, 4 cells, and 4800vph demand in each direction for a limited time. Then the

lane configuration shown in Figure 2.10, maximizes flow initially but results in a bot-

tleneck in the middle of the link. Therefore, an optimal policy must consider future
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Figure 2.10: Example of bottleneck lane configuration

evolution of flows.

2.7.2 Integer program

Because näıve methods for DLR policies may reduce flow, we formulate the

DLR problem for a single link as an IP. We then analyze this IP to derive some

theoretical results about the solution that inspire our heuristic in Section 2.8. To be

consistent with the cell notation, let cells 0 and
←−−−−
|C|+ 1 be source cells connected to

cells 1 and
←−
|C|, respectively. Because we assume demand and supply for the pair of

links under consideration are deterministic in this section, we model the upstream

and downstream links as point queues on source and sink cells. (This assumption

is relaxed in Section 2.8.) Let the number of vehicles entering the queues on 0 and
←−−−−
|C|+ 1 at time t be given by d0(t) and d←−−−|C|+1

(t). Then the queues of vehicles waiting

to enter the link at time T are
T∑
t=0

(
d0(t)− y|C|(t, L)

)
and

T∑
t=0

(
d←−−−|C|+1

(t)− y←−
0

(t, L)
)

,

the differences between upstream demand and vehicles that entered the pair of links.

For the downstream ends, let cells |C| + 1 and
←−
0 be sink cells connected to

cells |C| and
←−
1 with receiving flows are R|C|+1(t) and R←−

0
(t). Denote by y0(t) flow

entering cell 1 and by y←−−−|C|+1
(t) flow entering cell

←−
|C|. We consider the objective of

maximizing link throughput. Let L∗ be an optimal solution to the following IP:

max Z(L) =
T∑
t=0

ξt
(
y|C|(t, L) + y←−

1
(t, L)

)
(2.65)
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s.t. yi(t, L) = min {Si(t, L), Ri+1(t, L)} ∀i,←−i ∈ C,∀t ∈ [0, T ]

Si(t, L) = min {ni(t), QLi(t)} ∀i,←−i ∈ C,∀t ∈ [0, T ]

Ri(t, L) = min
{
QLi(t),

w

v
(NLi(t)− ni(t))

}
∀i,←−i ∈ C,∀t ∈ [0, T ]

Li(t) + L←−
i
(t) ≤ ` ∀i ∈ C, ∀t ∈ [0, T ]

|Li(t)− Li(t+ 1)| ≤ 1 ∀i ∈ C, ∀t ∈ [0, T ]

|Li(t)− Li+1(t+ 1)| ≤ 1 ∀i ∈ C,∀t ∈ [0, T ]

Li(t) ∈ Z+ ∀i ∈ C,∀t ∈ [0, T ]

yi(t, L) ≥ 0 ∀i,←−i ∈ C,∀t ∈ [0, T ]

where ξ ∈ (0, 1] is a discount factor to discourage delayed throughput. ξ < 1 penalizes

delaying throughput to later time steps. ξ < 1 is necessary for analyses for which

T →∞, as ξ = 1 would result in Z(L)→∞ as T →∞.

Cell transition flows and vehicle movement may be specified for the single link

under consideration because it is assumed that vehicles will move forward if possible.

However, if multiple links were to be considered, the IP would have to include vehicle

route choice.

Z(L) as defined in the IP (2.65) maximizes discounted flow through the single

link under consideration. This IP does not directly apply to traffic networks because

of queue spillback. However, the DLR policy problem for a single link is sufficiently

complex to require heuristics when used with DTA. Solving the IP for a network

would introduce additional complexity in the form of route choice and intersection

conflicts. Therefore, we restrict our attention to flow on a single link. In Section

2.9.3, we show that the single link heuristic yields significant improvements for a city

network.

Proposition 8. The IP (2.65) has at least one feasible solution if for all cells i ∈ C,

(i) Li(0) + L←−
i
(0) ≤ `

(ii) |Li+1(0)− Li(0)| ≤ 1

(iii) |L←−−
i+1

(0)− L←−
i
(0)| ≤ 1
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(iv) NLi(0) ≥ ni(0)

(v) NL←−
i
(0) ≥ n←−

i
(0)

Proof. From Proposition 6, there exists a solution satisfying the DLR constraints on

the number of lanes at each cell-time for t ≥ 0. The feasibility of flow propagation

constraints follows from CTM.

The conditions for Proposition 8 correspond to the constraints of the IP (2.65)

at t = 0.

Although solving the IP (2.65) yields the optimal DLR policy for a single link,

it is not sufficient for network analyses. The single-link model does not consider queue

spillback effects because demand waiting to enter the link is modeled as point queues.

Furthermore, solving this IP for every link in a city network is not tractable, especially

when UE route choice is taken into consideration. Therefore, the remainder of this

section develops structure and intuition about the single-link IP. This structure is

used to construct an effective heuristic in Section 2.8.

2.7.3 Bottlenecks

This section further explores the creation of bottlenecks on the links by al-

lowing y0(t) + y←−−−|C|+1
(t) > Q` demand to enter in one time step. As seen in Section

4.1, bottlenecks can adversely affect the objective of maximizing total discounted

flow through the link. In Proposition 9, we prove that creating a bottleneck is not

necessary for optimality.

Intuitively, total flow between any pair of parallel opposing cells is restricted by

the capacity and the number of lanes. Lemmas 1 and 2 formally prove this intuition,

and are used in the proof of Proposition 9.

Lemma 1. For all L ∈ LT and i ∈ C, yi(t, L) + y←−
i
(t, L) ≤ Q`.

Proof. Since yi(t, L) ≤ QLi(t) and y←−−
i+1

(t, L) ≤ QL←−
i
(t), and from constraint (2.40),

yi(t, L) + y←−−
i+1

(t, L) ≤ QLi(t) +QL←−
i
(t) ≤ Q`.

Lemma 2. For all L ∈ LT and i ∈ C, yi(t, L) + y←−−
i+1

(t, L) ≤ Q`.
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𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝐿𝑖 𝑡  

𝐿𝑖 𝑡  

Figure 2.11: Flow through a single cell

𝑦𝑖 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝑦𝑖+1 𝑡 ≤ 𝑄𝐿𝑖 𝑡  

𝐿𝑖 

𝐿𝑖  

𝐿𝑖+1 

𝐿𝑖+1 

Figure 2.12: Flow between a pair of cells

Proof. yi(t, L) ≤ QLi(t) and y←−−
i+1

(t, L) ≤ QL←−
i
(t), but Li(t)+L←−

i
(t) ≤ ` by constraint

(2.40). Therefore yi(t, L) + y←−−
i+1

(t, L) ≤ QLi(t) +QL←−
i
(t) ≤ Q`.

Lemmas 1 and 2 state that total flow through a cell or between a pair of cells

in any one time step is limited to Q` because only ` lanes are available at a single

cell, illustrated in Figures 2.11 and 2.12, respectively. These results are used as the

basis for a general result about bottlenecks:

Proposition 9. Suppose that there exists an i ∈ C, j ≥ i, t such that yi(t, L
∗) +

y←−
j

(t, L∗) ≥ Q`. Then there exists an L′ ∈ LT with Z(L′) ≥ Z(L∗) and yi(t, L
′) +

y←−
j

(t, L′) ≤ Q`.

Proof. By induction on j− i. The proof is split into two cases: whether the difference

between i and j is even or odd.

Basis: j = i: by Lemma 1, flow through cell i is limited to Q`, thereby limiting

the future reward. j = i + 1: by Lemma 2, flow through cell i is limited to Q`,

thereby limiting the future reward.
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Inductive step: Suppose j − i = n+ 1 (with n+ 1 ≥ 2). If yi(t, L
∗) + y←−

j
(t, L∗) > Q`,

then such an L′ exists by the inductive hypothesis applied at i+ 1,
←−−−
j − 1, t+ 1 (with

(j − 1)− (i+ 1) = n− 1).

Proposition 9 notes that if in L∗, two cells i and j at some time t have yi(t, L
∗)+

y←−
j

(t, L∗) > Q`, then some alternate policy L′ with yi(t, L
′) + y←−

j
(t, L′) ≤ Q` is also

optimal. Note that Proposition 9 applies for flow entering in opposite directions at

the time step, or for flow entering and flow already on the link. Therefore, Proposition

9 allows restrictions to be placed on the solution. For instance, in a pair of links with

4 lanes total, if it is optimal to assign 3 lanes to one direction in one time step and

entering flow exceeds 2Q, then it is optimal to assign 3 lanes to succeeding cells in

succeeding time steps to allow that flow to reach the end of the link.

2.7.4 Partial lane reversal

A major modeling decision in the above formulation is deciding lane direction

at the cell level, as opposed to the entire link. From Proposition 9, L1(t)+L←−|C|(t) > `

is not necessary for optimality. However, the opposite, where L1(t) + L←−|C|(t) < `,

could be beneficial to add additional turning lanes for exiting vehicles. To prevent

queue spillback for one turning movement from interfering with another until vehicles

exit, additional turning lanes longer than one cell could also improve flow. Although

lane reversals to improve short-term flow at the end of the link may not be optimal in

the long term, a discount factor of ξ < 1 encourages giving preference to exiting flow

due to the total discount of at least ξ|C| from the minimum time required to traverse

the link. Proposition 10 demonstrates that under certain conditions, a partial lane

reversal on cell |C| will improve the total discounted flow through the link. Symmetric

conditions apply to cell
←−
1 . These conditions are likely to occur at some time step

for many networks.

Proposition 10. If

(i) L∗|C|(t) ≤ L∗|C|(t− 1)
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(ii)
t∑

t′=0

d←−−−|C|+1
(t)−

t−1∑
t′=0

y←−−−|C|+1
(t, L∗) ≤ Q

(
L∗←−
|C|

(t)− 1
)

(iii) n←−|C|(t) ≤ Q
(
L∗←−
|C|

(t)− 1
)

(iv) n|C|(t, L
∗) ≥ R|C|+1(t) > QL∗|C|(t)

(v) ξ < 1

then there exists an L′ ∈ LT with Z(L′) > Z(L∗).

Proof. Construct L′ as follows: L′i(t) = L∗i (t) and L′←−
i
(t) = L∗←−

i
(t) for all i ∈ C and

t′ ∈ [0, t], except that L′←−
|C|

(t) = L∗←−
|C|

(t) − 1 and L′|C|(t) = L∗|C|(t) + 1. L′ is feasible

because of condition (i). Because of conditions (ii) and (iii) removing a lane from
←−
|C| does not restrict flow. Then for all i ∈ C and t′ ∈ [0, t], yi(t

′, L′) ≥ yi(t
′, L∗)

and y←−
i
(t′, L′) ≥ y←−

i
(t′, L∗). Furthermore, because of condition (iv), y|C|(t, L

′) >

y|C|(t, L
∗). From condition (v), Z(L′) > Z(L∗).

Condition (i) in Proposition 10 ensures feasibility of adding a lane to |C|.
Conditions (ii) and (iii) state that the numbers of vehicles in cells

←−−−−
|C|+ 1 and

←−
|C|

are sufficiently small that removing a lane from
←−
|C| will not obstruct flow. Finally,

condition (iv) states that the number of vehicles in |C| and the receiving flow on

|C| + 1 are greater than the capacity allocation from L∗, and thus adding a lane

to |C| will result in y|C|(t, L
′) > y|C|(t, L

∗) when moving flow later is discounted in

accordance with condition (v). Condition (v) is necessary because it rewards reducing

delays, and adding a temporary extra turning lane is designed to reduce delays. With

ξ = 1, there might be no difference in objective from providing an extra turning lane

instead of forcing some vehicles to wait until the next time step.

2.7.5 Stability

Because the objective function in the IP (2.65) maximizes discounted flow

through the link, the optimal solution without a discount has a superstable property:

if any policy prevents queues from growing to infinity as T → ∞, then L∗ is such a

57



policy. First, we bound the queue lengths when L∗ is used. Let d̂(L) be the sum of

the queue lengths at the end of the time horizon, T , for policy L ∈ LT . Then

d̂(L) =
T∑
t=0

((
d0(t)− y|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L)
))

(2.66)

Proposition 11. Let T ≥ 0, L ∈ LT , and ξ = 1. Then d̂(L) ≥ d̂(L∗).

Proof. From the objective function with ξ = 1,

T∑
t=0

((
y|C|(t, L

∗)
)

+
(
y←−

1
(t, L∗)

))
≥

T∑
t=0

((
y|C|(t, L)

)
+
(
y←−

1
(t, L)

))
(2.67)

Therefore

d̂(L∗) =
T∑
t=0

((
d0(t)− y|C|(t, L∗)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L∗)
))

≤
T∑
t=0

((
d0(t)− y|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− y←−
1

(t, L)
))

= d̂(L) (2.68)

Denote by (LT ) = (LT : LT ∈ LT , T ∈ Z+) a sequence of feasible policies where

every T ∈ Z+ is mapped to a policy LT ∈ LT . Similarly, denote by (L∗T ) a sequence of

optimal policies to the IP (2.65). For any sequence of policies (LT ), the resulting re-

maining queue lengths also form a sequence
(
d̂(LT )

)
. Obviously,

(
d̂(LT )

)
is bounded

below as d̂(LT ) ≥ 0 for any LT ∈ LT . However
(
d̂(LT )

)
may not be bounded above

(and if it is bounded, the sequence may not converge). Nevertheless, we can use such

sequences to establish the superstability of (L∗T ).

Proposition 12. Let ξ = 1, and suppose that there exists a sequence of feasible

policies (LT ) and a ζ ∈ R+ such that
(
d̂(LT )

)
is bounded by ζ (i.e. for all T ∈ Z+,

d̂(LT ) ≤ ζ). Then
(
d̂(L∗T )

)
is also bounded by ζ.
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Proof. For any T , d̂(L∗T ) ≤ d̂(LT ) by Proposition 11. Since d̂(LT ) ≤ ζ, d̂(L∗T ) ≤ ζ.

Proposition 12 states the superstable property: if some sequence of feasible policies

(LT ) results in bounded queue lengths, then (L∗T ) also has bounded queue lengths.

However, these stability results require that ξ = 1, i.e. that delaying exiting flow has

no effect on the objective, as long as flow exits before T . This result is due to the

relationship between the queue length and the objective function. When a discount

is used, inequality (2.67) becomes

T∑
t=0

((
ξty|C|(t, L

∗)
)

+
(
ξty←−

1
(t, L∗)

))
≥

T∑
t=0

((
ξty|C|(t, L)

)
+
(
ξty←−

1
(t, L)

))
(2.69)

which only yields

T∑
t=0

((
d−1(t)− ξty|C|(t, L∗)

)
+
(
d←−−−|C|+1

(t)− ξty←−
1

(t, L∗)
))

≤
T∑
t=0

((
d−1(t)− ξty|C|(t, L)

)
+
(
d←−−−|C|+1

(t)− ξty←−
1

(t, L)
))

(2.70)

Inequality (2.70) shows how a policy L∗ for ξ < 1 may not be optimal for bounding

queue length. As a counterexample, consider a scenario in which the policy may shift

lanes to cells 0 through |C| to allow more vehicles on the link to exit, or shift lanes to

cells
←−
|C| through

←−
0 to allow more queued vehicles to enter (and exit |C| time steps

later). For sufficiently small ξ, the optimal policy will prioritize vehicles already on

the link because they can exit sooner, although this policy may result in a longer

queue for entering cell
←−
|C| at the end of the time horizon.

Although ξ = 1 is necessary for superstability to hold, ξ < 1 does not neces-

sarily prevent the optimal policy from bounding queues for some demand scenarios.

However, L∗ cannot be guaranteed to bound queues if ξ < 1. The choice of discount

factor is similar to the capacity-delay tradeoff for traffic signals, where longer cycle

lengths increase both capacity and delay. As ξ increases, the optimal policy prioritizes

capacity more than delay. ξ = 1 maximizes capacity but also removes any penalty
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for delaying vehicles. On the other hand, as discussed in Section 2.7.4, ξ < 1 is a

necessary condition for adding extra turning lanes to increase the objective function

in some scenarios.

The stability discussion also demonstrates some weaknesses of the IP approach.

Besides requiring perfect information about demand, the IP also is solved for a fixed,

finite time horizon. The solution results in a policy optimized for a specific demand

scenario. Because it is an IP, minor changes to the demand could result in major

changes to the optimal policy. In the next section, we study DLR with stochastic

demand as a Markov decision process (MDP). The resulting heuristic policy is more

robust and tractable than the solution to this IP.

2.8 Dynamic lane reversal with stochastic demand

Although perfect information about demand yields ideal scenarios and cor-

responding theoretical results, in reality acquiring perfect information for arbitrary

time horizons (such as the entire AM peak) requires knowledge of both vehicle route

choice and departure times. Changes in either would potentially require solving the

entire model again for some subinterval of time. Therefore, developing a DLR policy

for stochastic supply and demand is also valuable. From the perspective of the link

manager at time t, we assume that the change in demand d0(t), d←−−−|C|+1
(t) and supply

R|C|+1(t), R←−
0

(t) for the next time step are known, but future demand and supply

are given by stochastic processes. In general, upstream sending flow at t + 1 is not

independent of upstream sending flow at t because vehicles that do not enter at t will

wait for the next time step. Similarly, if downstream receiving flows are limited by

congestion at time t, there is a higher probability they will be limited by congestion

at time t + 1. Since all vehicles are in communication with the link manager, we

assume that for all i ∈ C, ni(t) and n←−
i
(t) are deterministic. Therefore, we consider

the following infinite-horizon MDP with state space S, control space U, and one-step

rewards g(t):

• The state at time t is the cell occupancies and number of lanes. Therefore, the
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state space is

S= [0, N`]2|C| × Z2
+ × [0, `]2|C| (2.71)

The integer 2|C|-vectors of [0, N`]2|C| are the possible combinations of cell occu-

pancies because N` is the maximum occupancy of any single cell, and there are

|C| cells in each direction. Z2
+ is the possible lengths of the queues of vehicles

waiting to enter the links. The integer 2|C|-vectors of [0, `]2|C| are the possible

lane configurations.

• The control is how many lanes are assigned to each cell. Therefore,

U⊂ [0, `]2|C| (2.72)

The control space is limited by constraints (2.40) through (2.45) to ensure that

vehicles do not change lanes more than once per time step, and that each cell

has enough lanes that vehicles in the cell have sufficient physical space.

• The one-step rewards are given by the objective function to the IP:

g(t) = y|C|(t, L) + y←−
1

(t, L) (2.73)

where transition flows y|C|(t, L) and y←−
1

(t, L) are determined by equation (2.34).

• The state transitions are determined by entering demand and transition flows.

Entering demand is d0(t) and d←−−−|C|+1
(t). Transition flows are described by equa-

tion (2.34) for CTM. The transition flows are affected by the number of lanes

assigned to each cell.

• The objective is to find a policy L∗ of lane assignments that maximizes the

long-run expected reward.

With a countable state space and finite action space, the MDP has an op-

timal stationary policy. Unfortunately, solving this MDP is fairly difficult. Due to

the simulation-based CTM state, solving it analytically encounters similar issues to

solving DTA with CTM analytically. Computational methods for solving MDPs,
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based on dynamic programming, are polynomial in the state space. However, the

state space is intracatble due to the curse of dimensionality. For instance, a typical

0.5 mile, 4 lane pair of links with free flow speed 30 miles per hour and jam density

120 vehicles per mile has 10 cells in each direction, and each cell could contain up

to 24 vehicles. This portion of the state alone results in a state space of 4.01 × 1027

elements. Choosing out of 5 possible lane configurations (0 through 4) per cell in one

direction results in a further orthogonal 9.8× 106 possibilities.

Based on the complexity, it would be ideal to derive theoretical results for the

MDP similar to the analyses in Section 2.7. Propositions 8 and 11 can be extended

to the MDP with similar proofs. However, Proposition 9 does not have a direct

counterpart in the stochastic case. Consider a pair of links with 2 lanes in each

direction, 900 vph capacity per lane, expected 900 vph demand in each direction,

time step of ∆t, and ξ = 1. If, due to randomness, 3600∆t demand in direction 1

appears at time t, based on expected future demand assigning 3 lanes to direction 1

at time t is a maximum throughput policy. If at times t + 1 through t + 5, 3600∆t

demand also appears in direction 2, to maximize throughput a bottleneck on the link

should be created in direction 1 as the potential reward in direction 2 is greater.

2.8.1 Heuristic algorithm

Therefore, instead of attempting to solve this MDP computationally, we use

the analytical structure developed in Section 2.7 to inspire a saturation-based heuris-

tic. Hausknecht et al. (2011b) briefly discuss a theorem on DLR with respect to

saturation, but it assumes stationary, constant flow and does not include downstream

receiving flow limitations. We use their method as a heuristic for the stochastic de-

mand, CTM model to determine expected saturation levels for two links [a, b] and

[b, a]. At time t, we first determine the number of lanes per cell, then propagate flow.

To simplify the possible actions, we choose two modes of control. First, all but

the last cell is assigned the same number of lanes, formally cells 1 through |C| − 1

and cells
←−
|C| through

←−
2 . Although Proposition 9 may not hold in its most general

sense, allowing more than Q` of flow to enter in one time step still cannot increase

the reward. Furthermore, we add the restriction that each direction must always

62



have at least one lane, even if no flow is presently using it. This restriction prevents

flow in one direction from being completely obstructed due to high demand in the

other direction. In most practical scenarios, it is unlikely for one direction to have

completely zero demand.

2.8.1.1 Overall lane direction

Inspired by Theorem 1 of Hausknecht et al. (2011b), this heuristic estimates

the difference between demand and capacity for each direction. If demand exceeds

capacity in one direction, and the other direction has unused capacity, then it may

be beneficial to reverse one lane. Since the number of lanes is integer, we choose to

reverse a lane only if shifting Q capacity from one direction to the other is expected

to improve flow. Formally, define σλ(t) as the saturation estimation for direction

λ ∈ {1, 2}, where the direction index is assigned arbitrarily. σλ(t) > 0 and σλ(t) < 0

indicate over- and under-saturation, respectively. To avoid confusion with Li(t), let

lλ(t) represent the number of lanes in direction λ. The initial condition is l1(t− 1) +

l2(t− 1) = `. Set

σ1(t) = min


∑

1≤i≤|C|
ni(t) +

∑
0≤t′≤T

E[S−1(t+ t′)],∑
0≤t′≤T

E[R|C|+1(t+ t′)]

−Ql1(t− 1)T (2.74)

and

σ2(t) = min


∑

1≤i≤|C|
n←−
i
(t) +

∑
0≤t′≤T

E[S←−−−|C|+1
(t+ t′)],∑

0≤t′≤T
E[R←−−1

(t+ t′)]

−Ql2(t− 1)T (2.75)

T defines how far ahead into the future the heuristic considers when estimating

saturation. A low value of T will not allow all vehicles to exit, and will result in

the heuristic being highly reactive to specific realizations of supply and demand.

Therefore we recommend T be at least the number of cells in the link. On the

other hand, a high value of T might prevent the heuristic from reacting optimally to
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dynamic congestion.

The minimum term in σλ(t) is the possible expected throughput of the link,

accounting for expected upstream sending flow and constraints of expected down-

stream receiving flow. The subtracted term is the maximum throughput possible

over T using lanes lλ(t− 1).

If σ1(t) > (Q+ σ2(t))+ and lane constraints (2.40) through (2.45) allow it, set

l1(t) = l1(t − 1) + 1, where (·)+ = max{0, ·}. Similarly, if σ2(t) > (Q+ σ1(t))+ and

lane constraints (2.40) through (2.45) allow it, set l2(t) = l2(t − 1) + 1. These two

conditions cannot both be true because if σ1(t) > (Q+ σ2(t))+ then σ2(t) < σ1(t),

and vice versa.

2.8.1.2 Additional turning bays

In addition, the last cell can be assigned extra turning lanes to allow more flow

to exit, based on Proposition 10. We refer to the number of lanes at the start and

end cells of direction 1 as l11(t) and l
|C|
1 (t), respectively. For direction 2, the number

of lanes at the start and end cells are l
←−
|C|
2 (t) and l

←−
1

2 (t), respectively. Initially, set

l11(t) = l
|C|
1 (t) = l1(t) and l

←−
|C|
2 (t) = l

←−
1

2 (t) = l2(t). For direction 1, if l+ 1(t) ≤ l1(t− 1)

(to satisfy at most 1 additional lane per time step), set

σ′11 = min
{
n|C|(t), Q (l1(t) + 1) , R|C|+1(t)

}
−min

{
n|C|(t), Ql1(t), R|C|+1(t)

}
(2.76)

and

σ′21 = min
{
S←−−−|C|+1

(t), Ql2(t)
}
−min

{
S←−−−|C|+1

(t), Q (l2(t)− 1)
}

(2.77)

σ′11 is the difference in flow for the cases of l
|C|
1 (t) = l1(t)+1 and l

|C|
1 (t) = l1(t),

and σ′21 is similarly the difference in flow for the cases of l
←−
|C|
2 (t) = l2(t) − 1 and

l
←−
|C|
2 (t) = l2(t). If the improvement is sufficient, i.e. if σ′11 > 0 and σ′11 > σ′21, then

set l
|C|
1 (t) = l1(t) + 1 and l

←−
|C|
2 (t) = l2(t)− 1. An analogous operation is performed for

direction 2.
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Figure 2.13: Cell transmission model simulation with dynamic lane reversal

2.8.1.3 Simulation algorithm

This heuristic is part of the Simulate procedure in Algorithm 1. Every time

step, we use the above heuristic to determine the number of lanes in each direction for

each pair of parallel cells using equations (2.74) through (2.77). Then, we calculate

transition flows using equations (2.34) through (2.36), and propagate flow according

to equation (2.33). We repeat this calculation each time step until all vehicles have

exited. The simulation is illustrated in Figure 2.13. DLR adds the step of deciding

lane directions before propagating flow. The remainder of the simulation is the same

as conventional CTM.
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2.8.2 Demonstration

To demonstrate the effectiveness of the above heuristic, we performed a suite

of tests on a single pair of links with varying combinations of stationary demand.

Each link was 0.4 miles long, had 2 lanes, 1200 vph capacity, 30 mph free flow speed,

15 mph backwards wave speed, and arrivals were Poisson each time step based on

demand. A time step of 6 seconds was used for CTM (as used by Ziliaskopoulos

and Waller, 2000), and the lookahead parameter T was set to 40 time steps. Due

to randomness in the demand, each scenario was simulated 100 times for 1 hour,

and average results are presented. Figure 2.14 graphs the difference in throughput

between DLR and a fixed lane configuration of 2 lanes in each direction.

Figure 2.14 demonstrates that in asymmetric demand scenarios where the

total demand is less than the total link capacity including lanes in both directions,

the DLR heuristic tends to improve over the fixed base lane configuration. Although

these results are not surprising, theyare important for several reasons.

First, although contraflow lanes would achieve similar results in some of the

demand scenarios considered, they are difficult to implement due to human drivers.

When AV intersection controllers are in use, DLR may be implemented on every link,

and this experiment demonstrates some of the benefits of doing so.

Second, this heuristic responds particularly well to scenarios in which one di-

rection is slightly oversaturated and the other is slightly undersaturated, but reversing

a lane would not improve the total flow. For example, consider a link with 4 lanes,

with 1200vph capacity per lane, and with demand of 2700vph in one direction and

1500vph in the other. With 2 lanes in each direction, 300vph of demand will not be

served, which is also true for a 3–1 lane configuration. DLR allows frequent changing

between 2–2 and 3–1 configurations, allowing that additional 300vph to use the link.

The proposed heuristic switches automatically based on the queues of vehicles waiting

to enter.

Finally, this DLR heuristic was not observed to perform significantly worse

than a fixed lane configuration. In several demand scenarios the average throughput of

DLR was slightly worse than that of fixed lanes. However, the decrease was two orders
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Figure 2.14: Change in total throughput from DLR heuristic

of magnitude less than the potential improvement. Overall, these results suggest that

while this heuristic may not be the optimal policy for DLR, in many cases it improves

over a fixed lane configuration, and it will probably not be much worse. Therefore,

this heuristic is worth consideration on larger networks.

2.9 Dynamic lane reversal on networks

Although the heuristic developed in Section 2.8 proved effective on single link

bottlenecks with stationary demand, the ultimate goal is to apply DLR to larger
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networks with the additional variables of intersection constraints and DUE routing.

Therefore, we incorporate the heuristic into DTA, presented in Algorithm 1.

Algorithm 1 Dynamic lane reversal in dynamic traffic assignment

1: procedure Initialization
2: for each link [a, b] do
3: if there exists a link [b, a] with the same free flow speed and length then
4: Pair [a, b] and [b, a] together for DLR
5: end if
6: end for
7: for m = 1 to M do
8: Add 1

M
of unassigned vehicles to the network

9: Path-generation(1)
10: Simulate
11: end for
12: end procedure
13:

14: procedure Method of successive averages
15: for m = 1 to M do
16: Path-generation( 1

m
)

17: Simulate
18: end for
19: end procedure
20:

21: procedure Path-generation(λ)
22: for each ODT (r, s, t), find shortest path π∗rst do
23: for each vehicle v traveling from r to s departing within t do
24: Assign v to π∗rst with probability λ
25: end for
26: end for
27: end procedure

2.9.1 Determining expected sending and receiving flows

The saturation definitions in equations (2.74) and (2.75) use expected demand,

which depends on traveler route choice. To determine this endogenously, each link
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Algorithm 1 Dynamic lane reversal in dynamic traffic assignment (continued)

28: procedure Simulate
29: for t = 0 to ∞ do
30: for each link [a, b] do
31: if [a, b] is paired with [b, a] then
32: Determine lane assignment for [a, b] and [b, a]
33: end if
34: end for
35: for each link [a, b] do
36: Propagate flow through [a, b]
37: Update expected sending and receiving flows
38: end for
39: end for
40: end procedure

stores expected sending and receiving flows per assignment interval (AST). In DTA,

ASTs are used to reduce the computational complexity of routing demand. Typi-

cally, each iteration a single shortest path is found for every origin-destination-AST

(ODT) tuple. For DLR, we also use ASTs as the aggregation level for expected send-

ing and receiving flows because it corresponds to the path assignment aggregation.

Because changes in route choice affect expected sending and receiving flows, each it-

eration, the expected values per link are updated based on average observations from

the simulation. Average upstream sending flows for link [a, b] are calculated as the

average number of vehicles wanting to enter [a, b]. (For general networks, this calcu-

lation requires disaggregation of sending flows of upstream links by destination link).

Receiving flows are more difficult to calculate because of intersection constraints on

crossing flow. Instead, we used the average exiting flow as the expected receiving flow

for the heuristic. For congested links this estimate is accurate because exiting flow is

bounded by receiving flows. For uncongested links, DLR is not necessary anyways.

2.9.2 Dynamic traffic assignment algorithm

The first step of Algorithm 1 is to determine which links can be paired for

DLR. We paired together any links [a, b] and [b, a] with the same length and free
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flow speed. In practice, some pairs of opposite and parallel links are separated by a

median or divider. We assume that for AVs, such dividers are not necessary for safety

purposes. We also did not have specific data on which pairs of links had dividers or

not. However, if such dividers are used in practice, they would prevent DLR from

being applied.

For the first iteration, expected sending and receiving flows are not known, so a

partial demand initialization (Levin et al., 2015b) is used to both improve convergence

and provide initial inputs to DLR. DLR is embedded in the simulation step of DTA,

as illustrated by Figure 2.13. Every time step, lane assignments are chosen using

the heuristic in Section 2.8. After each simulation, expected sending and receiving

flows are recorded. This definition of DLR uses values from only the last iteration.

However, because the number of vehicles moved continuously decreases through MSA,

the change in the DLR policy gradually decreases as well.

2.9.3 City network results

To demonstrate the tractability and effectiveness of our proposed heuristic, we

tested it on the downtown Austin network, shown in Figure 2.15, which has 62836

trips over 2 hours, 171 zones, 546 intersections, and 1247 links in the AM peak. CTM

was used with a time step of 6 seconds and an AST duration of 15 minutes. DLR was

implemented on all pairs of parallel and opposite direction links with the same speed

and length. As much of the network is a downtown grid, DLR was implemented on

most links in the network. Because DLR is most applicable when all vehicles are AVs,

the conflict region model (Levin and Boyles, 2015b) with FCFS priority was used for

intersections. To fully explore the impact of our proposed DLR heuristic, we did not

include the capacity improvements from reduced reaction times in these results. In

Chapter 4 we will study the effects of combining DLR, pressure-based intersection

control, and capacity improvements from AVs.

The demand is completely deterministic. However, because route choice changes

through the process of solving for dynamic user equilibrium, determining the demand

for individual links in the network would require forward simulation. Due to the

computational cost of simulating many possible lane direction scenarios, it is easier
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Figure 2.15: Downtown Austin network
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Figure 2.16: Convergence of dynamic lane reversal on downtown Austin

to model link-specific demand as a random variable.

To demonstrate our DLR heuristic, we solved DTA for two scenarios: current

(fixed) lane configuration, and DLR. We then compared the travel times at UE for

both scenarios. To avoid skewing results by different levels of convergence, both

scenarios were solved to the same cost gap of 2% of total system travel time.

Convergence of DTA with DLR is demonstrated in Figure 2.16. The partial

demand initialization resulted in a relatively small initial gap. Around 4–5%, the

cost gap percent oscillated, which was probably due in part to DLR. However, after

iteration 9 the cost gap steadily decreased, suggesting it found a local equilibrium.

With the addition of DLR, DTA required 8.16 minutes to solve on an Intel Xeon

CPU at 3.07 GHz. These computation times make it tractable for study on large city

networks.

Our heuristic was developed for a single link, and the results in Section 2.8.2

show its effectiveness. However, the network level introduces route choice and queue

spillback, neither of which are considered in our analysis of DLR policy for single

link flow. The results presented here could be further improved by including network

effects.
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Table 2.4: Total system travel time

Scenario TSTT (hr)
Fixed lanes 8420.966

DLR heuristic 6588.828

Table 2.4 shows the total system travel time (TSTT) for both fixed lanes and

when the DLR heuristic was used. The DLR heuristic resulted in an improvement

of 21.8% over fixed lanes. This experiment demonstrates the potential benefits of

using DLR during peak hour demand. As this experiment is the AM peak, most of

the demand is headed towards the downtown region, shown in Figure 2. The extra

capacity afforded by DLR helps alleviate the congestion caused by the asymmetric

use of right-of-way. On average, distance traveled by the same vehicle was observed

to decrease by 23.9% when DLR was used. This result suggests that greater capacity

on shorter distance routes increased their utility in DUE routing.

Figure 2.17 shows the average improvement in travel time from DLR for vehi-

cles at different departure times. Vehicles departing later receive the greatest benefit

because those vehicles experience a more congested network, and DLR alleviates

much of the congestion. Overall, these results demonstrate that the DLR heuristic is

effective at improving efficiency in congested large city networks.

This particular test network contains both freeways on the east and west

boundaries and a detailed downtown region. (Some links in downtown are two-way,

while others are one-way and do not have a counterpart for DLR). Vehicles traveling

shorter distances are more likely to take arterials or the downtown grid, whereas ve-

hicles traveling longer distances are more likely to take freeways and downtown roads

due to the geometry of the network. Figure 2.18 demonstrates that vehicles traveling

between 1–2 miles and 5+ miles in the fixed lane configuration experienced similar re-

ductions in travel times. This result suggests that the DLR heuristic is more effective

for arterials than restricted access freeways because vehicles traveling longer distances

have a greater potential for reductions in travel time. This effectiveness could be due

to the limited number of lanes on exit ramps; DLR would not be able to add extra
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Figure 2.17: Average reduction in travel time at different assignment intervals

lane capacity to these ramps. As with the VISTA DTA simulator (Ziliaskopoulos and

Waller, 2000), the queueing model allows queues for these ramps to block entire cells.

Surprisingly, vehicles traveling 3–4 miles experienced a significantly lower reduction in

travel time. This observation suggests further study into the effects of DLR on DUE

routing could be useful. However, regardless of the distance, vehicles experienced

average reductions in travel time, which suggests this heuristic consistently improves

over the fixed lane configuration.

2.10 Conclusions

To provide a framework for studying the effects of AVs on city networks, this

section developed a shared road DTA model for human and autonomous vehicles. A

multiclass CTM was presented for vehicles traveling at the same speed with capacity

and backwards wave speed a function of class proportions. A collision avoidance car-

following model incorporating vehicle reaction time iwas used to predict how reduced

reaction times might increase capacity and backwards wave speed. These models are

generalized to an arbitrary number of classes because different AVs may be certified
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Figure 2.18: Average reduction in travel time from DLR with respect to vehicle
miles traveled.
The ith bin corresponds to vehicles traveling between i and (i+ 1) miles.

for different reaction times. These models also use continuous flow so that DTA

models built on continuous flows may incorporate these multiclass predictions.

We also developed a cell transmission model with variable number of lanes in

space and time consistent with the kinematic wave theory of traffic flow to model DLR.

We explored and developed a MILP model based on the multi-destination SODTA (Li

et al., 2003) that propagates traffic using the cell transmission model. The number

of lanes in each cell is explicitly considered as a decision variable, allowing for real

time network design in response to time-varying travel demand. Results illustrate the

importance of accounting for time-varying demand profiles when exploring the DLR

concept. However, due to the integer representation of lanes, this approach will face

significant computation challenges when using traditional optimization techniques.

The model presented here motivates the possibility of DLR, but a number of simpli-

fications were necessary, which could be the subject of future research. This model

could also be compared with contraflow lanes (reversing the direction of a lane for

the entire peak period) to determine the benefits of DLR over existing technology.
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We then focused on a single link and considered the scenarios of known and

stochastic demand. When demand is known, we demonstrated that a solution algo-

rithm should consider future demand and receiving flows and formulated DLR as an

IP. We derived theoretical results about the optimal solution(s), noting that using

lane reversals to create a bottleneck on a link is never necessary for optimality when

demand is known, and proving that the optimal solution will stabilize queues if they

can be stabilized.

Because demand is often not known perfectly at arbitrary times in the future,

we formulated the DLR problem with stochastic demand as a MDP. The MDP was

analytically difficult to solve because it is built on a DTA model, and the curse

of dimensionality led to computational intractability. Nevertheless, we developed a

heuristic based on saturation estimates that was demonstrated to work well on a single

bottleneck link at various combinations of stationary demand. We then presented an

algorithm for using the heuristic in dynamic traffic assignment, and tested it on a

city network. DTA converged to an equilibrium and resulted in a 21.8% reduction in

TSTT.
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3 Node model of reservation-based

intersection control

3.1 Introduction

The computer precision and communications abilities of AVs admit new inter-

section behaviors with the potential to improve traffic flow, such as reservation-based

control (Dresner and Stone, 2004, 2006b). Run by a computerized intersection man-

ager, reservations divides each intersection into a grid of space-time tiles to monitor

conflicts. Vehicles must communicate a request to occupy specific space-time tiles

to the intersection manager, which accepts reservations under the condition that two

vehicles cannot occupy the same space-time tile. Fajardo et al. (2011) and Li et al.

(2013) demonstrated that reservations can reduce delay over optimized traffic signals.

Since intersection managers are forced to reject many reservations to prevent

conflicts, an important question is how to decide which reservations to reject. Early

studies used a FCFS policy in which reservations are prioritized according to the

time of the request. Later studies considered priority for emergency vehicles (Dresner

and Stone, 2006a) and using auctions to determine priority (Schepperle and Böhm,

2007, 2008; Vasirani and Ossowski, 2012; Carlino et al., 2013). Shahidi et al. (2011)

also considered batching reservations to improve over FCFS. However, the range of

strategies for deciding which vehicles move when potential conflicts exist is arbitrarily

large. Previous work has focused on priority-based resolution of conflicting reservation

requests. Depending on the strategy, it may be optimal for the intersection manager to

aggregate requests, then choose a non-conflicting subset according to some objective.
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To study such strategies, a more general model is necessary.

One major issue with reservations is the computational tractability of simulat-

ing vehicle movements through the grid of tiles. Smaller tiles results in greater inter-

section utilization but correspondingly greater computational requirements. Reser-

vations in its original form is therefore intractable for solving DTA. The problem of

modeling reservations in DTA has been addressed by two recent papers: Zhu and

Ukkusuri (2015) proposed a conflict point simplification, which focuses only on the

intersections between turning movement paths in the grid of tiles. However, as we

will discuss in Section 3.3.1, intersections with a large number of lanes and turning

movements would have a correspondingly large number of conflict points, limiting the

computational efficiency.

Alternately, Levin and Boyles (2015b) proposed to aggregate the tiles into

larger conflict regions constrained by capacity. While effective for DTA, they did not

fully justify using conflict regions instead of conflict points or tiles. In addition, their

priority function for resolving conflicts does not directly correspond to an objective

function for the intersection policy. Therefore, this chapter improves over the work

of Levin and Boyles (2015b) through two objectives:

1. Provide justification for using the conflict region model to approximate reser-

vations. To accomplish this justification, we begin by formulating the conflict

point simplification (Zhu and Ukkusuri, 2015) as an IP for DTA. By aggre-

gating conflict points for tractability we derive an IP for the conflict region

model (Levin and Boyles, 2015b).

2. Create more system-efficient policies for reservation-based control. The fairness-

based FCFS policy is potentially suboptimal for typical policy goals such as

maximizing intersection flow. The unspecified objective function of the conflict

region IP admits arbitrary system policies for moving vehicles across the inter-

section. We propose a polynomial-time heuristic for this NP-hard IP and study

pressure-based objective functions that are effective at reducing total travel time

on a city network.
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3.1.1 Contributions

The contributions of this chapter are as follows: we present an IP for the

conflict point simplification of the reservation-based model. For tractability, we ag-

gregate conflict points into conflict regions and derive a corresponding IP. Because the

objective is unspecified, this formulation results in a reservations model that admits

arbitrary strategies for moving vehicles across a reservation-controlled intersection.

This IP may also be used as a framework for DTA models of reservations. Since this

IP is NP-hard, we propose a greedy polynomial-time heuristic. Finally, we demon-

strate the potential utility of the IP — and our heuristic — through an objective

function that increases intersection efficiency on a city network.

3.1.2 Organization

The remainder of this chapter is organized as follows: First, Section 3.2 dis-

cusses previous literature on reservations, reservation policies, and backpressure and

P0. Then, Section 3.3 derives the conflict region model as an IP and Section 3.4

presents a greedy heuristic. Section 3.5 explores scenarios in which signals perform

better than reservations. Section 3.6 adapts backpressure and P0 for reservations,

and Section 3.7 presents results. We conclude in Section 3.8.

3.2 Literature review

The tile-based reservation protocol proposed by Dresner and Stone (2004,

2006b) operates through an intersection manager agent communicating wirelessly

with individual vehicles. The intersection manager divides the intersection into a

grid of space-time tiles, illustrated in Figure 3.1. Vehicles request a reservation from

the intersection manager, which simulates the vehicle’s desired path through the grid.

If no conflicts occur, the reservation may be accepted. Otherwise, the reservation of

one or more of the conflicting vehicles must be rejected. Vehicles must know their

arrival time at the intersection to request to enter the intersection at a specific time.
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(a) Accepted       (b) Rejected 

Figure 3.1: Tile-based reservation protocol (Fajardo et al., 2011)

3.2.1 First-come-first-serve policy

A major question for reservation controls is which vehicle’s reservation should

be accepted when requests conflict. Dresner and Stone (2004, 2006b) suggested prior-

itizing on a FCFS basis for fairness. Studies comparing reservations with signals (Fa-

jardo et al., 2011; Li et al., 2013) focused on FCFS and found that FCFS could reduce

delays beyond optimized signals. However, as we will show in Section 3.5, in some

situations signals will perform better than FCFS-based reservations.

FCFS is a fairness-based method for accepting reservations that has been used

in most previous studies. When a vehicle requests a reservation, the intersection man-

ager accepts it if it does not conflict with previously accepted reservations. Otherwise,

it is rejected, and the intersection manager advises a later possible time (Fajardo et al.,

2011). Equivalently, the vehicle is delayed until it can safely make its desired turning

movement.

Although simple, the definition of FCFS results in some important properties

that are exploited in the paradoxes of reservation-based control in Section 3.5:

1. Vehicles are prioritized by when they first requested a reservation, independent

of external costs imposed on other vehicles. For instance, vehicles making left
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and right turns impose different conflict separation requirements on intersection

traffic, but the type of turning movement does not affect FCFS priority. This

disconnect is exploited in Section 3.5.1.1.

2. Reservation request time may not be the same as time spent queued or other in-

tuitive measures. Vehicles cannot request a reservation unless they can execute

it. Therefore, vehicles in a queue, or at the back of a platoon, may not request

a reservation until they are able to enter the intersection. A road with more

lanes may correspondingly obtain a greater share of the intersection capacity

because the vehicle at the front of each lane can request a reservation. Also,

vehicles on a long low-traffic road may be able to request a reservation long be-

fore reaching the intersection, because in free-flow conditions their arrival time

at the intersection is known. This timing is exploited in Section 3.5.1.2.

3. If one vehicle’s request is accepted, other requests that do not conflict may also

be accepted. This combining of requests may result in vehicles moving in an

order that is different from the order of their reservation requests.

For instance, in the four-approach intersection in Figure 3.2, suppose there are 3

vehicles, each at the front of their lane: vehicle 1 requests to move north-south

through the intersection, vehicle 2 requests to move east-west, and vehicle 3

requests to move south-north (in that order). Vehicle 1’s reservation is accepted

due to priority. Vehicle 2’s reservation is rejected due to conflict with vehicle 1.

Vehicle 3’s reservation is then accepted because it does not conflict with vehicle

1. Vehicles 1 and 3 move at the same time, and vehicle 2 moves after.

3.2.2 Alternative reservation policies

The question of vehicle priority admits a wide range of potential policies.

Dresner and Stone (2006a) suggested giving higher priority to emergency vehicles,

although other traffic already typically yields the right-of-way to them. Shahidi et al.

(2011) proposed batching reservations to avoid the fairness attribute of FCFS from

dominating intersection use. Studies by Schepperle and Böhm (2007, 2008), Vasirani
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Figure 3.2: Conflict region representation of four-way intersection

and Ossowski (2010, 2012), and Carlino et al. (2013) demonstrated that using auc-

tions for priority can in some cases reduce delay beyond that of FCFS for all vehicles,

not just high-bidding vehicles. Intersection auctions are an interesting development

for the area of congestion pricing because intersection pricing opens up the possibility

of tolling every link, which can potentially yield SO routing under UE behavior (Beck-

mann et al., 1956). Auctions also introduce the possibility of vehicles paying other

vehicles for the delays caused to them. From the perspective of traffic management

policy, one significant result from the work on auctions is demonstrating that optimal

strategies for reservations have yet to be identified. Modeling and improving on such

strategies is one goal of this chapter.

One major potential issue for reservations is that its communication complex-

ity restricts usage by human drivers. Since it is likely that AVs will not be in exclusive

use for many decades, extensions that allow humans to use reservation-based controls

have been studied. Dresner and Stone (2006a, 2007) proposed periodically providing

a green light to specific lanes or links for human drivers. Qian et al. (2014) extended

the reservation system to human-driven and semi-autonomous vehicles under certain

assumptions about path and car-following behaviors, and Conde Bento et al. (2013)
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proposed reserving larger sections of the intersection for human-driven vehicles. Such

interventions should be compatible with general reservations strategies by requiring

occasional allowances for non-autonomous vehicles.

Optimizing reservations is further complicated by the effects of UE routing,

which can produce system inefficiencies such as the well-known Braess (1968) para-

dox. Network studies of reservations have been complicated by its computational

requirements. Previous network models with reservations have not included traffic

assignment, and were limited in size (Hausknecht et al., 2011a) or forced to reduce

the number of tiles for computational tractability at the cost of intersection effi-

ciency (Carlino et al., 2012). Zhu and Ukkusuri (2015) developed a LP for flow

through the conflict point model, albeit with some further restrictions on conflicting

flow. Levin and Boyles (2015b) developed the conflict region model of reservations

for simulation-based dynamic traffic assignment (SBDTA), which was shown to be

tractable for solving SBDTA on large city networks. For a more general model of

reservation-based intersection control, we combine the conflict point and conflict re-

gion approaches by developing a discrete vehicle-based IP for the conflict point model

and transforming its feasible region to achieve the conflict region model.

3.2.3 Pressure-based control

This section first discusses the backpressure policy for communications net-

works. Then, we review the P0 policy for maximizing intersection throughput with

UE route choice.

3.2.3.1 Backpressure policy

The backpressure policy originates from studies of multihop communication

networks. Such networks typically involve packets traveling from some origin node to

some destination node with unspecified routing. The seminal paper of Tassiulas and

Ephremides (1992) is concerned with developing a policy that is stable for the largest

possible region of demands. A stable policy is a policy in which customer queues

at each node remain bounded. Using a queueing model, Tassiulas and Ephremides
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(1992) proposed a maximum throughput policy based on queue pressure — the dif-

ference between upstream and downstream queues. They proved that choosing the

combination of packets that maximized the relieved pressure at each node resulted in

maximum stability. Route choice was determined by the system at each node based

on downstream queue lengths.

As the work of Tassiulas and Ephremides (1992) is focused on communication

routing, the assumptions and modeling are not standard to traffic literature. First,

they modeled links as point queues without a free flow travel time. This assumption

was made because in electronic communications, the transmission speed is typically

fast (possibly the speed of light) relative to node processing speeds. Therefore, their

packets are modeled as traversing a link in one time step. This travel behavior may be

applied to traffic by reversing the nodes and links: vehicles take relatively little time

to traverse an intersection compared with the typical link travel time, and intersection

controls determine intersection access. However, in traffic networks, queues require

physical space. Later extensions to finite-buffer queues (Giaccone et al., 2007; Le

et al., 2012) required a minimum buffer size, which cannot be guaranteed for arbitrary

roads. As demonstrated by Daganzo (1998), queue spillback with DUE route choice

can create significant congestion issues. Furthermore, traffic queues place first-in-first-

out (FIFO) restrictions on vehicle movement, whereas in communication networks

the order of service may be arbitrary. Finally, Tassiulas and Ephremides (1992)

adaptively determine route choice in response to queue lengths, whereas vehicles

typically choose routes individually, resulting in DUE behavior. Although tolling can

encourage a system-optimal route choice, the route choices specified by backpressure

could change every time step, and current tolling models have not considered changing

route choice at such high frequencies.

Nevertheless, several papers have applied the backpressure policy to traffic in-

tersections. Zhang et al. (2012a) proposed a pressure-based algorithm for intersection

control that determined the probability of a driver choosing a specific turning move-

ment based on the difference in the upstream and downstream link queue lengths.

This behavior is challenging to resolve with DUE route choice, but Zhang et al.

(2012a) modeled adaptive route choice on a hyperpath, similar to some stochastic
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DUE models. Gregoire et al. (2014) applied the pressure idea more conventionally

with respect to route choice by using the difference between upstream and downstream

queue lengths to choose which signal phase to activate. Wongpiromsarn et al. (2014)

also included lack of route control in their adaptation of the pressure-based algorithm

to signal control, and provided an analytical treatment similar to that of Tassiulas

and Ephremides (1992). Under the assumption of infinite queue capacities, they were

able to show that their pressure-based policy maximized throughput. However, prac-

tical limitations such as link length require careful choice of the pressure function

to avoid queue spillback. Therefore, Xiao et al. (2014) proposed a pressure-releasing

policy that accounts for finite queue capacities. Nonetheless, to more canonically

apply the pressure-based routing they assumed that each turning movement has a

separate queue, which is often not realistic.

A major limitation on signal control is the clearance intervals necessary to sep-

arate phases for human drivers. Some demand scenarios could result in frequent phase

switching as the pressure relieved by one phase makes another phase have relatively

higher pressure, and it does not appear that previous work on using backpressure poli-

cies to activate signal phases included lost time penalties in their models. Frequent

phase switching for signalized intersections would result in considerable time lost to

clearance intervals. Therefore, we apply the backpressure policy to reservation-based

control, which does not require clearance intervals and has much greater flexibility in

vehicle movements.

3.2.3.2 P0 traffic signal policy

In contrast to the communication network pressure-based approach, the P0

signal control policy by Smith (1980) is designed for traffic intersection control with

UE route choice. Smith (1979) demonstrated that Webster’s signal policy could sig-

nificantly reduce network capacity due to UE route choice, and Smith (1981) further

derived properties about signal policies that resulted in a consistent equilibrium. For

instance, Webster’s policy and a delay-minimizing policy induce route choice counter

to the objectives of the signal policy. This route choice behavior motivated the P0

policy of Smith (1980), which was also derived from traffic assignment principles later
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discussed by Smith and Ghali (1990). The problem P0 addresses is how to allocate

green time to each signal phase. P0 uses the principle that low pressure phases re-

ceive no green time to avoid encouraging vehicles to switch to low capacity routes.

As specified by Smith and Ghali (1990), the pressure on a phase is the product of

saturation flow and link travel delay. This policy favors links with two properties:

1. Links with high saturation flow have a greater ability to service demand. Pro-

viding more green time to high saturation flow links will encourage drivers to

choose links that can better handle the demand.

2. Links with a high delay (due to unsatisfied flow) have a longer queue of demand

waiting to be serviced by the intersection.

Whereas P0 is capacity maximizing, follow-up work by Smith and Van Vuren (1993)

studied policies that are gradient, monotone, and/or capacity maximizing with respect

to the BPR cost function. Smith and Ghali (1990) also provided a method of modeling

P0 signal timing as a static traffic assignment problem. Meneguzzer (1997) provided

a review of papers considering signal timing and UE together. Liu and Smith (2015)

extended this work to a day-to-day bottleneck model and demonstrate that if the

delay formula is non-decreasing and the P0 policy is used for the signal control, then

flow swapping among pairs will achieve equilibrium. Overall, in contrast to the work

on backpressure, the work on the P0 signal policy is much more inclusive of UE route

choice effects, and we therefore also consider P0 for reservations.

3.3 Derivation of conflict region model

This section justifies the conflict region model by deriving it from the conflict

point model of reservations in two steps:

1. In Section 3.3.1, we present a conflict point IP for DTA. This formulation in-

volves replacing continuous time with discrete time steps. As is typical with

SBDTA, vehicles crossing the intersection are assumed to begin and complete

their turning movement within one time step. Therefore, we constrain conflict

points by capacity rather than occupancy.
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2. Section 3.3.2 presents the conflict region IP by aggregating conflict points into

conflict regions for tractability.

3.3.1 Conflict point model for dynamic traffic assignment

The reservation control policy (Dresner and Stone, 2004) operates on a grid

of tiles in space-time. The tile conflict analysis of reservations may be simplified

through the definition of conflict points (Zhu and Ukkusuri, 2015). As illustrated in

Figure 3.3, the paths for any two turning movements (i, j) and (i′, j′) first intersect

at some point c. Ensuring adequate spacing at c for vehicles traveling from (i, j)

and (i′, j′) will guarantee that no conflict occurs at c or anywhere in the intersection

between vehicles moving from i to j and from i′ to j′. For vehicles uniform in physical

characteristics and acceleration behaviors, these conflict points are fixed. However,

in terms of practical implementation, tiles may be required instead of conflict points

to handle vehicles of different shapes and turning behaviors. Nevertheless, in many

DTA models physical uniformity of vehicles is assumed.

Previous work on reservations (Fajardo et al., 2011) studied tiles with width

as small as 0.25 meters to improve intersection efficiency. Assuming 3 meter wide

lanes, the intersection in Figure 3.3 requires 676 such tiles in space. With 3 turning

movements per link, and 4 links, there are a total of 12 paths through the intersection.

In the worst case, in which each turning movement conflicts with all movements from

other links, each turning movement has only 9 conflicts, for a total of 108 conflict

points. In general, for a rectangular intersection with ℵ lanes along the width and

i lanes along the height, the number of tiles is Θ (ℵi). Assuming vehicles are not

permitted to change lanes in the intersection, the number of turning movements is

O(ℵ + i), and thus the number of conflict points is O ((ℵ+ i)2). Therefore the

conflict point model scales worse than the tile model. However, as demonstrated

by the analysis of Figure 3.3, the conflict point model may be significantly more

efficient for small intersections. The conflict point model also admits mathematical

programming methods (Zhu and Ukkusuri, 2015).

In their conflict point LP, Zhu and Ukkusuri (2015) assume that vehicles can-

not simultaneously propagate through two conflicting lane movements. Depending
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Figure 3.3: Illustration of conflict points between turning movement paths.

on the magnitude of the time step, this assumption may or may not lead to over-

conservative estimates. For sufficiently large time steps allowing adequate spacing,

two vehicles from conflicting turning movements should be able to traverse a single

conflict point. That assumption is relaxed in this chapter through capacity constraints

on conflict points.

Let CP be the set of conflict points, and let yv(t) denote whether vehicle v

enters the intersection in time step t. Turning movements from different lanes of

the same link may encounter different conflict points as they follow different paths

through the intersection. Therefore, denote by Γ− and Γ+ the sets of incoming and

outgoing lanes, respectively, and let Γ−(v) be the incoming lane for vehicle v.

The sending flow is the number of vehicles that would move if there were no

intersection conflicts or constraints in the downstream link. Let Si(t) be the sending

flow for lane i and S(t) =
⋃
i∈Γ+

Si(t) be the total sending flow for the intersection in

time t. We assume that S(t) includes vehicle order.

In most SBDTA models, vehicles are assumed to begin and complete turning

movements within the same time step. Turning movements spanning multiple time
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steps are normally not considered. Therefore, instead of constraining the arrival

times of individual vehicles at conflict points, we constrain the total flow through each

conflict point during each time step. This constraint is equivalent to a major difference

between micro-simulation and DTA: in car-following models, vehicles decelerate to

avoid colliding with the vehicle in front; in DTA, speed decreases as density increases

to model vehicle deceleration to avoid collisions.

The limitation on conflict point flow is a capacity-based restriction. Although

using this constraint reduces the power of the model to prevent intersection conflicts,

conflicting movements still constrain flow at an aggregate level consistent with SBDTA

flow models. Let δcv ∈ {0, 1} denote whether c ∈ πv, and let Qc be the capacity

of conflict point c. Vehicles from lane i require a spacing headway of 1
Qc(i)

where

Qc(i) is the capacity reserved for vehicles from lane i moving through c. Then the

separation constraint is
∑

v∈S(t)

δcv
1

Qc(Γ−(v))
≤ ∆t, where ∆t is the simulation time step.

This constraint may be written as
∑

v∈S(t)

δcv
Qc

Qc(Γ−(v))
≤ Qc∆t, which yields the capacity

reduction in Levin and Boyles (2015b). In addition, we add a receiving flow constraint

for all lanes j:
∑

v∈S(t)

yv(t)δ
j
v ≤ Rj(t), where δjv denotes whether v enters lane j.

For first-in-first-out (FIFO) movement, assume that SBDTA determines arrival

order for discrete vehicles. Let θ(v) be the time v arrives at the intersection, and let

S̃v(t) = {v′ ∈ SΓ−(v)(t) : θ(v) > θ(v′)} (3.1)

be the set of vehicles that arrived at the intersection before v on the same lane. Then

all v′ ∈ S̃v(t) must move before v due to FIFO, which may be written as

yv(t) ≤ 1−
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

M
(3.2)

If |S̃Γ−(v)(t)| −
∑

v′∈S̃v(t)

yv′(t) > 0 then at least one vehicle in front of v has not yet

moved, and the lane is blocked for v. These transformation result in the following IP.

Note that this program is for every time step t, so t is assumed fixed.
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max Z(y(t)) (3.3)

s.t
∑
v∈S(t)

yv(t)δ
c
v

Qc (Γ−(v))
≤ ∆t ∀c ∈ CP (3.4)

∑
v∈S(t)

yv(t)δ
j
v ≤ Rj(t) ∀j ∈ Γ+ (3.5)

yv(t) ≤ 1−
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

M
∀c ∈ CP (3.6)

yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.7)

where y(t) is the vector formed by the decision variables yv(t). Z(y(t)) is left unspec-

ified to admit arbitrary objectives.

3.3.2 Conflict region model

For computational efficiency, conflict points may be combined in the model into

conflict regions, illustrated in Figure 3.2. This combining could result in modeling a

conflict between two turning movements that do not intersect, but for a sufficiently

large conflict region it is likely that turning movements would intersect within it.

With the aggregation of conflict points into conflict regions, denoted by the set CR,

lanes may similarly be aggregated into links. Thus, from this point forward, Γ−(v)

and Γ+(v) refer to the incoming and outgoing links for vehicle v, respectively. Denote

by Li the number of lanes link i has. The number of lanes affects the FIFO constraint

because vehicles cannot enter the intersection unless they are at the front of a lane.

These modifications result in the following IP:

max Z(y(t)) (3.8)

s.t
∑
v∈S(t)

yv(t)δ
c
v

Qc (Γ−(v))
≤ ∆t ∀c ∈ CR (3.9)
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yv(t) ≤ 1 +
Q̃Γ−(v)− 1

M
∀v ∈ S(t) (3.10)∑

v∈S(t)

yv(t)δ
j
v ≤ Rj(t) ∀j ∈ Γ+ (3.11)

yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.12)

where

Q̃Γ−(v)(v) =

Qi −
∑

v∈S̃v(t)

yv(t)



LΓ−(v) −

(
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

)
LΓ−(v)

 (3.13)

Constraints (3.10) and (3.13) are the generalization of constraint (3.6) for multiple

lanes. When a vehicle blocks a lane due to a rejected reservation, the capacity for

vehicles behind is restricted. Lane-blocking is modeled by the function Q̃Γ−(v)(v),

which is the remaining capacity for v as a function of whether vehicles ahead of

v moved through the intersection. The number of lanes available for use for v is

LΓ−(v) −

(
|S̃v(t)| −

∑
v′∈S̃v(t)

yv′(t)

)
. Qi −

∑
v∈S̃v(t)

yv(t) is the remaining capacity of the

link, which is reduced proportionally by the number of available lanes remaining.

When Q̃Γ−(v)(v) ≥ 1, then yv(t) = 1 satisfies constraint (3.10). Note that Q̃Γ−(v)(v) <

0 is possible in a sufficiently large queue. If LΓ−(v) or more vehicles in front of v have

not moved, then Q̃Γ−(v)(v) ≤ 0, and v cannot enter the intersection. Nevertheless,

this IP always has a feasible solution. Let Y(t) be the set of feasible solutions to the

conflict region IP for time t.

Proposition 13. Y(t) 6= ∅.

Proof. Consider y(t) = 0. Rj(t) ≥ 0 and Qc∆t ≥ 0 , so constraints (3.11) and (3.12)

are satisfied. 1+
Q̃Γ− (v)−1

M
≥ 0 so constraint (3.9) is satisfied. Therefore 0 ∈ Y(t).
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3.4 Discussion

The purpose of this section is to discuss the use of the conflict region IP

(Section 3.3.2) in DTA. We begin by discussing the IP in the context of generic DTA

intersection models in Section 3.4.1, and derive some analytical results in the process.

3.4.1 Intersection modeling in dynamic traffic assignment

As an intersection model for DTA, it is relevant to study the conflict region IP

in equations (3.8) through (3.12) in the context of the requirements for generic DTA

intersection models described by Tampère et al. (2011):

1. general applicability

2. maximizing flows

3. non-negativity

4. conservation of vehicles

5. satisfying demand and supply constraints

6. obeying conservation of turning fractions

As stated, the conflict region IP satisfies all requirements except the invariance prin-

ciple. We show that the algorithm of Levin and Boyles (2015b), which satisfies the

invariance principle, creates a feasible solution for the IP, and in Section 3.4.2 we

present a heuristic for the general IP based on that algorithm.

For general applicability, we assume, as with Levin and Boyles (2015b), that

in the absence of other flow, flow between any (i, j) ∈ Γ−×Γ+ is constrained only by

sending and receiving flows. Let Qi be the capacity of link i; if Qi = Qj, then flow of

Qi should saturate the conflict region. This conflict region capacity behavior can be

satisfied by choosing

Qc = max
(i,j)∈Γ−×Γ+:c∈πij

{min{Qi, Qj}} (3.14)
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where πij is the set of conflict regions flow from i to j will pass through. With

Qc (Γ−(v)) = Qi, then flow of Qi∆t through any conflict region c will result in equality

on constraint (3.9) because Qc

Qi
Qi∆t = Qc∆t. Constraint (3.9) can then be written as

∑
v∈S(t)

yv(t)δ
c
v

Qc

QΓ−(v)

≤ Qc∆t ∀c ∈ CR (3.15)

Tampère et al. (2011) note that DTA intersection models should maximize

flow as drivers will move whenever possible. In a reservation-based context, vehicles

may be prevented from moving even if it is possible for them to move. However, it is

reasonable to assume that many practical intersection strategies will allow a vehicle

to move if its reservation request does not conflict with the reservation of another

vehicle and the downstream link has sufficient space. To achieve this behavior, the

objective function in (3.8) should satisfy the following:

Property 1. For any y(t),y′(t) ∈ Y(t), if for all v ∈ S(t) y′v(t) ≥ yv(t) and there

exists a v ∈ S(t) with y′v(t) > xv(t), then Z (y(t)) < Z (y′(t)).

Objective functions satisfying Property 1 yield the desired characteristic of the

solution to the conflict region IP:

Proposition 14. Let y∗(t) be an optimal solution to the conflict region IP and let

Z(·) satisfy Property 1. For any v ∈ S(t), if y∗v(t) = 0, form y′(t) with x′(t) = y∗(t)

except with y∗v(t) = 1. Then y′(t) is not feasible.

Proof. Suppose y′(t) is feasible. Since Z(·) satisfies Property 1, then Z (y′(t)) >

Z (y∗(t)), which contradicts y∗(t) being optimal.

Property 1 can be satisfied by Z (y(t)) = z · y(t) for some z > 0 or more

complex functions. It does not, however, require that the objective is to maximize

flow. For instance, FCFS can be modeled through the conflict region IP:

Proposition 15. The FCFS policy may be modeled through the IP in equations

(3.8) through (3.12). Specifically, there exists an objective function Z(·) satisfy-

ing the following: Let θ̂(v) be the reservation time of v. If, for all v1, v2 ∈ S(t),
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v1 6= v2 =⇒ θ̂(v1) 6= θ̂(v2) and y∗(t) is chosen by FCFS, then for all y ∈ Y,

Z (y(t)) ≤ Z (y∗(t)).

Proof. By induction on |S(t)|. Sort S(t) by reservation request so that for any indices

i, j, if i < j then θ̂(vi) < θ̂(vj). Let t∗ be the reservation time of the last vehicle, and

let

Z (y(t)) =
n∑
i=1

M t∗−θ̂(vi)yvi(t) (3.16)

be the objective function. (This objective satisfies Property 1). We show that

n∑
i=1

M t∗−θ̂(vi)y∗vi(t) ≥
n∑
i=1

M t∗−θ̂(vi)yvi(t) (3.17)

for all y(t) ∈ Y(t), for all 1 ≤ n ≤ |S|.

Base case: If v1 can move, then
1∑
i=1

M t∗−θ̂(vi)x∗vi(t) = M t∗−θ̂(v1) because FCFS priori-

tizes by request time, and M t∗−θ̂(v1) ≥
1∑
i=1

M t∗−θ̂(vi)y∗vi(t) for all y(t). If v1 is blocked,

then
1∑
i=1

M t∗−θ̂(vi)y∗vi(t) = 0 for all y(t).

Inductive step: If y∗vn+1
= 1 or y∗vi = 0 for all 1 ≤ i ≤ n+ 1, then Proposition 15 holds

trivially. The remaining case is that y∗vn+1
= 0 because of higher priority vehicle(s)

blocking its movement, i.e., if yvn+1 = 1 then for some vehicle i < n+ 1, yvi = 0.

M t∗−θ̂(vi) >
∑

v∈SΓ−(v),tv>tvi

M t∗−θ̂(v) (3.18)

so
n+1∑
j=i

M t∗−θ̂(vj)y∗vj >

n+1∑
j=i

M t∗−θ̂(vj)y∗vj (3.19)

Then by the inductive hypothesis,
n+1∑
j=i

M t∗−θ̂(vj)y∗vj >
n∑
j=i

M t∗−θ̂(vj)y∗vj .
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Proposition 15 proves that the oft-studied FCFS policy falls within the general

framework of the IP developed here. Setting M = ∆t should be sufficiently large,

although that may still result in impractically large numbers due to the exponential.

We prove in Proposition 18 that the polynomial-time algorithm of Levin and Boyles

(2015b) can find the optimal solution to the IP with FCFS objective (3.16).

The requirement of non-negativity (Tampère et al., 2011) is satisfied because

y(t) ≥ 0. Tracking discrete vehicles also satisfies conservation of flow and of turning

fractions. Demand constraints are satisfied by the implicit definition of the set of

sending flow, and supply constraints are explicitly satisfied by constraint (3.11).

The remaining requirement is the invariance principle, which essentially states

that the intersection flow should be invariant to the constraint on sending flow chang-

ing from the number of waiting vehicles to the link capacity. If |Si(t)| < Qi changes

to |S ′i(t)| = Qi, if one v ∈ S ′i − Si has a very high weight in the objective function,

the optimal solution to the conflict region IP may need to include v. Therefore, The

invariance principle may not be satisfied for general objective functions, although it

is for some objectives, including FCFS (Levin and Boyles, 2015b). The invariance

principle can be satisfied by an additional constraint (Tampère et al., 2011), or as a

corollary of alternate solution algorithms. For instance, the conflict region algorithm

of Levin and Boyles (2015b) satisfies the invariance principle. With a modification to

better model FIFO constraints, shown in Algorithm 2, the conflict region algorithm

finds a feasible solution to the conflict region IP. Specifically, L̃i tracks the number of

lanes blocked. These are combined in line 26 to satisfy constraint (3.13).

Proposition 16. The conflict region algorithm (Algorithm 2) produces a feasible

solution to the conflict region IP in equations (3.8) through (3.12).

Proof. For any v ∈ S(t), let V ′ be the set of vehicles considered before v in the loop

on line 11. If yv = 1, then v can move from i to j according to line 19. Line 14 results

in yi′j′ being the number of vehicles in v′ moving from i′ to j′. Consequently, line 26

requires that Rj ≥ 1 +
∑
v′∈V ′

δjv′yv′(t), so constraint (3.11) is satisfied. For all conflict
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regions c that v passes through, line 30 of requires that

Qc ≥
Qc

Qi

+
∑
v′∈V ′

δcv′yv′
Qc

QΓ−(v′)
(3.20)

satisfying constraint (3.9). Constraints (3.10) and (3.13) FIFO are satisfied because

vehicles either move through the intersection or block a lane (line 22). Blocked lanes

detract from outflow (line 26) and vehicles are considered for movement in FIFO

order. Finally, constraint (3.12) is satisfied because each vehicle is only considered

once in the loop on line 11.

The conflict region algorithm uses yij(t) to record flows between links i and j.

Throughout this dissertation, y is used to denote flows, whether they are specific to

a vehicle or to a cell or link.

Proposition 17. The running time of the conflict region algorithm (Algorithm 2) is

O
(
|CR||S(t)| log |S(t)|+ |Γ−||Γ+|

)
.

Proof. Initialization of V (lines 1 through 9) iterates through each vehicle in S(t)

once. Sorting V (line 10) is therefore O
(
|S(t)| log |S(t)|

)
. Initializing yij(t) requires

O
(
|Γ−||Γ+|

)
. Therefore initialization is O

(
|S(t)| log |S(t)|+ |Γ−||Γ+|

)
.

The main loop (lines 11 through 24) iterates through each vehicle at most

once, thereby scaling with |S(t)|. It may add vehicles to V in sorted order, requiring

O
(

log |S(t)|
)

time to find the appropriate index. For each vehicle, the destination

link and the conflict regions it passes through is checked once for conflicts in the

canMove subroutine, which is O
(
|CR|

)
. If canMove returns true, the flow through

each conflict region is updated, which is also O
(
|CR|

)
. Therefore, the main loop is

O
(
|CR||S(t)| log |S(t)|

)
.

Although the conflict region algorithm produces a feasible solution in polyno-

mial time, it may not be optimal. It takes as input some priority f(·) to each vehicle,

and moves the highest priority vehicle able to enter the intersection. It does not con-

sider the value of moving a vehicle to allow vehicles behind to cross the intersection

sooner. However, for specific objective functions, such as FCFS, the priority function

will result in an optimal solution to the IP.
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Algorithm 2 Conflict region algorithm

1: V := ∅
2: for all i ∈ Γ− do
3: Sort Si(t) by arrival time at i
4: Remove first Li vehicles in Si(t) and add them to V
5: L̃i := 0
6: for all j ∈ Γ+ do
7: yij(t) := 0
8: end for
9: end for

10: Sort V by f(v)
11: for all v ∈ V do
12: Let (i, j) be the turning movement of v
13: if canMove(i, j) then
14: yij(t) := yij(t) + 1
15: for all c ∈ CR

ij do

16: yc(t) := yc(t) + Qc

Qi

17: end for
18: Remove first vehicle in Si(t) and add it to V in sorted order
19: yv(t) := 1
20: else
21: yv(t) := 0
22: L̃i := L̃i + 1
23: end if
24: end for
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Algorithm 2 Conflict region algorithm (continued)

25: function canMove(i ∈ Γ−, j ∈ Γ+)

26: if Rj(t)−
∑
i′∈Γ−

yi′j(t) < 1 or

(
Qi −

∑
j′∈Γ+

yij′(t)

)
Li(t)−L̃i

Li(t)
< 1 then

27: return false
28: end if
29: for all c ∈ CR

ij do

30: if Qc − yc(t) < Qc

Qi
then

31: return false
32: end if
33: end for
34: return true
35: end function

Proposition 18. The conflict region algorithm, using reservation time as the prior-

itization (f(v) = θ̂(v)), produces an optimal solution for the FCFS policy.

Proof. From Proposition 16, the solution created by the conflict region algorithm

is feasible. Since vehicles cannot request a reservation unless they are not blocked

from entering the intersection, for any two vehicles v1, v2 ∈ S(t), θ(v1) < θ(v2) =⇒
f(v1) ≤ f(v2). Therefore, if v1 ∈ V and v2 6∈ V , then (v1) ≤ f(v2). Once at the front

of the intersection, reservations are ordered by f(·) for consideration. Therefore, if

the reservation of v1 is rejected, there must be some v2 with f(v2) ≤ f(v1) blocking

the movement of v1, which is the definition of FCFS.

3.4.2 Heuristic

Solving general IPs is an NP-hard problem, and it is easy to construct scenarios

in which non-integer flows result in a greater objective value for the conflict region

IP. The computational requirements of solving the conflict region IP on a single

intersection per time step are well within the capabilities of current computers due to

the limitations on sending flows, and if arbitrary strategies were deployed in practice,

each intersection manager might solve the IP exactly. For modeling purposes, though,

solving many such IPs per simulation, and simulating the network many times to
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solve for DUE, is computationally prohibitive. Certain objective functions can lead

to polynomial-time algorithms, such as FCFS. However, these limited cases are not

sufficient for arbitrary policy strategies. Therefore, in this section we propose a

polynomial-time greedy heuristic for objective functions of the form Z (y(t)) = z·y(t).

(The heuristic does not require that z > 0; because it is a greedy heuristic it will

move vehicles if their reservation request does not conflict with other vehicles.) Since

yv(t) ∈ {0, 1} for all v ∈ S(t), many potential policy strategies can be modeled by

this type of objective function.

The conflict region IP with objective z ·y(t) is similar to the class of problems

known as multiple-constraint knapsack (MCKS) problems (Kellerer et al.). In general,

MCKS problems on the set of sending flow are described as

max z · y(t) (3.21)

s.t. ωh · y(t) ≤ Ωh ∀1 ≤ h ≤ H (3.22)

yv(t) ∈ {0, 1} ∀v ∈ S(t) (3.23)

where vehicles moved are constrained by H resources. Each vehicle consumes some

ωhv ≥ 0 of resource h, with Ωh ≥ 0 available for use. The conflict region IP with

objective z ·y(t) is similar to this form as constraints (3.9) and (3.11) can be modeled

in the form of constraint (3.22). However, constraint (3.10) could have negative

coefficients on the decision variables.

Nevertheless, heuristics for MCKS problems have been studied in great detail,

and the similarities are useful for analyzing the conflict region IP. MCKS problems in

general are also NP-hard, and furthermore, no fully polynomial-time approximation

scheme exists (Kellerer et al.). The same proof that MCKS problems are NP-hard

may be applied to the conflict region IP where the number of lanes for each incoming

link are sufficiently large to be non-restrictive. Although pseudo-polynomial time al-

gorithms have been developed for the case in which ωh ∈ Z|S(t)|
+ , since the coefficients

in constraint (3.9) may not be integral, the computational requirements of such al-

gorithms are likely still prohibitive. However, greedy heuristics for MCKS problems

have also been studied, and the FIFO constraint can easily be incorporated into a
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greedy algorithm. The conflict region algorithm of Levin and Boyles (2015b), shown

in Algorithm 2, is in fact a greedy algorithm limited to a specific class of objective

functions. We generalize it into a heuristic for the conflict region IP with arbitrary

objective by including an efficiency ev, which is the value of moving vehicle v con-

sidering its resource consumption. Dobson (1982) studied the efficiency function of

ev =
zv

H∑
h=1

ωh
v

Ωh

(3.24)

for the MCKS problem. We propose using vehicle priority f(v) = ev in the conflict

region algorithm, and greedily selecting the vehicle with the greatest efficiency from

the set of vehicles able to enter the intersection.

Due to the FIFO constraint on link queues, there exist scenarios in which this

heuristic is suboptimal, such as having a high weighted vehicle behind a low weighted

vehicle on a single lane link. For many practical objectives, such as maximum effi-

ciency, such disparity in vehicle weights is unlikely to occur. The results demonstrate

significant overall improvement when applying this heuristic to city networks for an

efficiency objective.

3.4.3 Reservations with mixed traffic

For shared road models, the intersection control policy is an important ques-

tion. With 100% human vehicles, optimized traffic signals are the best option avail-

able. With 100% AVs, reservations can reduce delay beyond that of optimized sig-

nals (Fajardo et al., 2011). The difficulty is the choice of intersection control policy

for shared roads. Dresner and Stone (2007) showed that reservations subsume traffic

signals because the signal essentially reserves parts of the intersection. They propose

link- and lane-cycling signals, where each link or lane successively receives full access

to the intersection, and vehicles in other links or lanes may reserve non-conflicting

paths. However, blocking out large portions of the intersection for a signal greatly

restricts reservations from other links due to the possibility of conflict, even when

most vehicles are AVs. As a result, combining signal phases with reservations may
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not scale well when the proportion of AVs on the road becomes large. It is also an

open question whether link- or lane-cycling signals even outperform optimized traffic

signals.

Conde Bento et al. (2013) proposed the legacy early method for intelligent

traffic management (LEMITM). LEMITM reserves space-time for all possible turning

movements for non-AVs and also increases the safety margins to allow non-AVs to use

the reservation infrastructure. AVs still use conventional reservations, reserving only

the requested path. This protocol may be less efficient than traffic signals at small

proportions of AVs because of the extra space-time reserved to ensure safety. However,

as the proportion of AVs increases, LEMITM will devote less space-time to safety of

human vehicles because it is not constrained by protecting turning movements allowed

by traffic signals. As a result, LEMITM may scale at a higher rate. Therefore,

LEMITM is used in this dissertation to study how link and intersection capacity

scales with the proportion of AVs.

LEMITM makes two assumptions that we elaborate on here for the purposes

of describing the DTA model of LEMITM.

1. It separates vehicles into two groups: those that can establish digital com-

munications on reservation acceptance and adherence, and those that cannot.

The latter group consists of all non-AVs, although some AVs could conceivably

fall into that group as well. This assumption is reasonable in practice because

current technology can already determine whether a vehicle is waiting at the

intersection for actuated signals. Given that a vehicle is waiting, the inter-

section controller need only check whether the vehicle has established digital

communications, which can be determined if vehicles transmit their position to

the intersection controller along with reservation requests.

2. Due to the unpredictably of human behavior, the intersection controller must be

able to cancel granted reservations for AVs if a human is delayed in reacting to

permission to enter the intersection. Because this DTA model does not include

potential human errors and takes a more aggregate view of the intersection,

canceled reservations are not included in the model.
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Most studies on reservation-based controls use micro-simulation and are there-

fore not computationally tractable for the number of simulations required to solve

DTA. Section 3.3.2 simplified reservations using the idea of larger conflict regions to

distribute intersection capacity and receiving flows to sending flows for compatibil-

ity with general SBDTA models. Although the conflict region model is designed for

arbitrary vehicle prioritization, LEMITM requires the intersection controller to re-

serve additional space and therefore make additional availability checks. This section

details the modifications to the conflict region algorithm to accommodate LEMITM.

The conflict region model is a polynomial-time algorithm performed at each

intersection each time step to determine intersection movement. Vehicle movement

is restricted by capacity of each conflict region it passes through during its turning

movement. The purpose of the conflict region algorithm (Algorithm 2) is to deter-

mine which vehicles move subject to the constraints of sending flow, receiving flow,

and conflict region capacity. This section focuses on the modifications necessary to

implement LEMITM.

The conflict region model requires discretized flow because of the priority func-

tion. For instance, Dresner and Stone (2004) proposed a first-come-first-serve priority,

and Dresner and Stone (2006a) suggested priority for emergency vehicles. Modeling

such prioritization functions with continuous flow is an open question, so discretized

flow is used instead. These prioritization functions are orthogonal to the LEMITM

control policy, although the communications required for more complex prioritization

functions such as auctions may be difficult for human drivers.

Two modifications to the control algorithm presented in Section 3.4 are re-

quired to implement LEMITM. First, for non-AVs, movement from i to j across the

intersection requires available capacity for all possible turning movements from i be-

cause the vehicle cannot communicate its destination to the intersection controller.

The set of conflict regions a vehicle leaving link i could pass through is ∪j′∈Γ+CR
ij′ .

It is not specific to j because for a human vehicle, the intersection manager does

not know the vehicle’s destination link. Therefore the intersection controller must

check whether all such turning movements have space available. Second, when such

a reservation is accepted, space for all possible turning movements from i must be
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reserved. Denote by δAV
v ∈ {0, 1} whether vehicle v is autonomous. The modified CR

model is formalized in Algorithm 3.

3.5 Paradoxes of first-come-first-served reservations

This section presents and characterizes several scenarios in which the use of

FCFS reservations results in greater delays than signals. We present three theoreti-

cal examples, including a temporarily saturated arterial-local road intersection to a

demonstration that replacing signals with reservations can result in infinite queuing.

Overall, these results demonstrate that while reservations perform better than traffic

signals in certain situations, network-based analyses are necessary to detect adverse

route choices before reservations can be used to replace signals entirely. In particu-

lar, asymmetric intersections (e.g. local road-arterial intersections) can cause several

potential issues with reservation controls.

3.5.1 Theoretical examples

This section presents three examples in which FCFS reservations are less effi-

cient than signals. First, we show that the fairness of FCFS can increase total vehicle

delay for asymmetric intersections. Next, we discuss how reservations can disrupt

platoon progression that is possible through optimally timing signals on a corridor.

Finally, we demonstrate that replacing a signal with a reservation control can lead to

arbitrarily large increases in queue size due to selfish route choice.

3.5.1.1 Greater total delay due to fairness

We first present a simple example of a temporarily oversaturated arterial-local

road intersection. Clearly, some vehicles must be delayed due to crossing conflicts.

We show that the fairness goal of FCFS results in greater total delay. Consider the

intersection A shown in Figure 3.4. As described in Table 3.1, links 1 and 2 form a

three-lane arterial with total capacity of 3600 vph. Links 3 and 4 form a one-lane

local road with capacity 1200 vph. Using a time step of 6 seconds, which is typical for
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Algorithm 3 Conflict region algorithm for mixed AV/HV traffic

1: V := ∅
2: for all i ∈ Γ− do
3: Sort Si(t) by arrival time at i
4: Remove first Li vehicles in Si(t) and add them to V
5: L̃i := 0
6: for all j ∈ Γ+ do
7: yij(t) := 0
8: end for
9: end for

10: Sort V by f(v)
11: for all v ∈ V do
12: Let (i, j) be the turning movement of v
13: if canMove(i, j) then
14: yij(t) := yij(t) + 1
15: if δAV

v = 1 then
16: for all c ∈ CR

ij do

17: yc(t) := yc(t) + Qc

Qij

18: end for
19: else
20: for all c ∈ ∪j′∈Γ+CR

ij′ do

21: yc(t) := yc(t) + Qc

Qij

22: end for
23: end if
24: Remove first vehicle in Si(t) and add it to V in sorted order
25: yv(t) := 1
26: else
27: yv(t) := 0
28: L̃i := L̃i + 1
29: end if
30: end for
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Algorithm 3 Conflict region algorithm for mixed AV/HV traffic (continued)

31: function canMove(i ∈ Γ−, j ∈ Γ+)

32: if Rj −
∑
i′∈Γ−

yi′j < 1 or

(
Qi −

∑
j′∈Γ+

yij′

)
Li−L̃i

Li
< 1 then

33: return false
34: end if
35: if δAV

v = 1 then
36: for all c ∈ CR

ij do

37: if Qc − yc(t) < uf
iτv+L

uf
iτHV+L

Qc

Qij
then

38: return false
39: end if
40: end for
41: else
42: for all c ∈ ∪j′∈Γ+CR

ij′ do

43: if Qc − yc(t) < uf
iτv+L

uf
iτHV+L

Qc

Qij
then

44: return false
45: end if
46: end for
47: end if
48: return true
49: end function
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Figure 3.4: Network for Section 3.5.1.1

Table 3.1: Link parameters for Section 3.5.1.1

Link Free flow Capacity (vph) Demand per time step
travel time(s) (first 2 time steps)

1, 2 18 3600 6 vehicles
3, 4 18 1200 2 vehicles

the CTM (Daganzo, 1994, 1995a) used in simulation-based DTA, each time step six

vehicles can move from link 1 to link 2, or two vehicles from link 3 to link 4, or any

convex combination. Because the local road has lower capacity, moving one vehicle

from link 3 to link 4 reserves a capacity equivalent to moving three vehicles from link

1 to link 2.

The fairness property of FCFS can be exploited to cause greater delays. Sup-

pose that for the first two time steps, demand for moving from link 1 to link 2 is

six vehicles per time step, and demand for moving from link 3 to link 4 is two ve-

hicles per time step. There is no demand after two time steps. Intersection A has

greater demand than capacity in the first two time steps. Since the demand is finite,

all demand will be served after four time steps, but some demand will be delayed.

Which vehicles are delayed depends on the intersection control, and we show that the

fairness of FCFS reservations is less efficient for the system.

For a traffic signal, the majority of green time may reasonably be given to the

major approach — arterial links 1 and 2. Therefore, the typical pattern of vehicle

movement with signals is as follows: during the first two time steps, six vehicles per

time step move from link 1 to link 2. Those vehicles do not experience any delay.
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During the next two time steps, two vehicles per time step move from link 3 to link 4.

Those vehicles are each delayed by two time steps, or 12 seconds. The total vehicle

delay is 48 seconds.

For FCFS reservations, vehicles are prioritized according to their waiting time.

Therefore, the pattern of vehicle movement is to move three vehicles from link 1 to

link 2 and one vehicle from link 3 to link 4 each time step. This alternation is due to

the fairness attribute of FCFS: the queues on links 1 and 3 alternate between having

the longest waiting vehicle. The greater delay results from the fact that when one

vehicle moves from link 1 to link 2, two other vehicles can move with it due to the

greater capacity of the arterial. The vehicles moving in time steps 2 and 3 are each

delayed by one time step, and the vehicles moving in time step 4 are delayed by two

time steps. The resulting total vehicle delay is 96 seconds. Note that this delay does

not include the additional time required for vehicles to start moving from a full stop.

For signals, vehicles on the arterial need not stop at all, but for FCFS, most of the

vehicles experience some delay and might slow down accordingly.

These results occur despite asymmetric lane configuration. As mentioned in

the second property of FCFS (Section 3.2.1), vehicles at the front of their lane know

with certainty their arrival time at the intersection, and can therefore make a reser-

vation sooner than vehicles behind. Although the arterial has more lanes than the

local road, vehicles on the local road are still able to block vehicles on the arterial.

Previous work by Fajardo et al. (2011) and Li et al. (2013), which found that

FCFS reduced delays beyond optimized signals, only studied symmetric intersections

in which each approach had the same capacities and number of lanes. This example

demonstrates that for asymmetric intersections, FCFS increases total delay for some

demand scenarios. The greater delay results from how signals are likely to delay

vehicles on the local road longer to service vehicles on the arterial. On the other hand,

FCFS seeks fairness in waiting time, which results in less delay for some vehicles on the

local road but greater total delay. The fact that only a single simple intersection, with

a small and common demand scenario, is sufficient to increase total delay suggests that

this type of situation may be common when replacing signals with FCFS reservations.

Of course, policies besides FCFS may address this issue, and we discuss these further
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Figure 3.5: Network for Section 3.5.1.2

Table 3.2: Link parameters for Section 3.5.1.2

Link Free flow travel time(s) Capacity(vph)
1, 2, 3 12 3600

4, 5, 6, 7 18 1200

in Section 3.6.

3.5.1.2 Disruption of platoon progression

This scenario extends the previous example to a two intersection network in

which FCFS disrupts signal progression on an arterial, resulting in greater total delay.

Consider the network shown in Figure 3.5 with link parameters in Table 3.2. The

network consists of an arterial (links 1, 2, and 3) intersected by two local roads (links

4 & 5 and links 6 & 7). Demand is as follows: at time 0, six vehicles start traveling

the path [1, 2, 3]. At time 6, two vehicles start traveling the path [6, 7]. Assume that

no other demand is present. Therefore, all vehicles will experience free flow until

reaching intersection B, at which point some vehicles must be delayed due to the

crossing conflict.

When signals are used at A and B, the signals may be timed to allow pro-

gression along the arterial. Thus the six vehicles on path [1, 2, 3] experience free flow

whereas the vehicles on path [6, 7] are delayed by 6 seconds, for a total vehicle delay

of 12 seconds.
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For reservation controls, vehicles may request a reservation at the next inter-

section as soon as they can know their arrival time there. It is reasonable to assume

that vehicles will not request a reservation at an intersection until they enter an in-

coming link to that intersection, i.e. vehicles on link 1 traveling on path [1, 2, 3] will

not request a reservation at B. There are several reasons why vehicles might delay

their requests. First, unforeseen circumstances at intersection A, such as jaywalking

pedestrians, might delay vehicle movement across A. Second, vehicles using adaptive

routing to respond to congestion may not want to commit themselves to a turning

movement at B before getting closer to ascertain traffic conditions on outgoing links

of B. Even without this assumption, it is trivial to add additional demand on link

2 that prevents the vehicles on path [1, 2, 3] from requesting a reservation at B until

entering link 2. Under this condition, we find that reservations increase the total

delay.

When reservations are used, the vehicles on path [6, 7] can request a reservation

at B at time 6, when they enter link 6, because the link is at free flow. However, the

vehicles on path [1, 2, 3] cannot request a reservation until time 12, when they enter

link 2. With a time step of delay between reservations, any reservation policy that

does not account for future reservation requests — such as FCFS — will grant the

requests of vehicles on path [6, 7] because no conflicts are present at the time those

requests are made. Therefore, none of the six vehicles on path [1, 2, 3] can cross B at

time 24. These vehicles are delayed by 1 time step, resulting in a total vehicle delay

of 36 seconds.

Delaying acceptance of the reservation request until vehicles have moved closer

to the intersection may not completely solve the issue. In practice, more complex

reservation policies such as auctions must wait to collect all requests before making

a decision. However, the difference of 6 seconds in submitting reservation requests

in this example could easily be made greater by increasing the length of link 6.

Furthermore, vehicles may have to make late reservation requests due to traffic in

front, which reduces the margins the intersection manager has for delaying acceptance.

If the reservation policy were to anticipate future reservation requests, it could

avoid this situation. Traffic signals can “anticipate” these future requests by timing
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cycles to allow for progression. Therefore any reservation policy that operates only on

existing reservations, such as FCFS or auctions, will grant vehicles on path [6, 7] the

reservation before vehicles on path [1, 2, 3] have even submitted their request. Another

way to handle this type of situation is to retroactively deny a reservation. Retracting

permission to enter an intersection adds complexity to the protocol: the vehicle with

a previous reservation must confirm that it will not execute it. Still, such a protocol

could be useful to warn vehicles of impending hazards such as pedestrians or collisions.

However, selfish vehicle programming might choose to ignore the retroactive denial

message if used to shift reservation priorities to game the system. Retroactive denial

would also introduce potential safety issues.

3.5.1.3 Arbitrarily large queues due to route choice

In the previous two examples, FCFS caused greater delays due to being less

optimized for the network structure than traffic signals. This example combines that

lack of optimization with selfish route choice to cause potentially infinite queuing. We

make the typical assumption of DTA that vehicles choose routes to minimize their

own travel time. This behavior results in a DUE: a route assignment in which no

vehicle can improve travel time by changing routes. This Wardrop (1952) equilibrium

has been shown to cause paradoxes in which network improvements increase travel

time for all vehicles (Braess, 1968; Daganzo, 1998). This scenario is perhaps the most

difficult to avoid because to do so requires some additional delay or toll on the local

road, even when there is no conflicting demand from the arterial.

We present a network based on Daganzo (1998)’s paradox in which replacing

a signal with a FCFS reservation-based control results in potentially infinite queuing.

Consider the four link network shown in Figure 3.6 with link parameters shown in

Table 3.3. Vehicles can take arterial link 2 or local road 3 to travel between B and

C. Assume that turning movements from links 2 and 3 to 4 conflict at C, i.e. 2400

vph may travel from 3 to 4, or 1200 vph from 2 to 4, or any convex combination.

Also assume that the diverge at B has sufficient capacity to support any turning

proportion split. Suppose that demand from A to D is 1800 vph. Since link 2 is

an arterial, suppose intersection C is controlled by a signal with considerable delays
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for vehicle traveling from 3 to 4: the cycle is 60 seconds for movement from 2 to 4

then 10 seconds for movement from 3 to 4. Because of the average delay of nearly 30

seconds from the signal for vehicles traveling from 3 to 4, path [1, 3, 4] has an average

travel time of around 170 seconds. In contrast, path [1, 2, 4] has an average travel

time of around 140 seconds. Therefore, when all demand takes path [1, 2, 4], it is an

equilibrium, and the network is nearly at free flow.

Now suppose that the signal at C is replaced with a reservation control using

the FCFS policy. Because of the fairness attribute of FCFS, the expected delay for

vehicles moving from 3 to 4 is small: they can expect to alternate with vehicles

moving from 2 to 4. Because of this alternation, all demand on path [1, 2, 4] is not an

equilibrium, because path [1, 3, 4] has a travel time that is only slightly higher than

120 seconds — lower than the free flow time of path [1, 2, 4]. On the other hand, all

demand on path [1, 3, 4] is an equilibrium. Vehicles reaching B are presented with the

choice of taking link 2, with its free flow time of 80, or link 3, with its free flow time

of 60, and link 3 is always better. However, the 1200 vph capacity of link 3 creates a

queue on link 1. This queue can grow infinitely: if the demand of 1800 vph continues

for an infinite time, all demand on path [1, 3, 4] will still be the equilibrium, which

will result in the queue growing at the rate of 600 vph.

This scenario is similar to Daganzo (1998)’s paradox in that queuing before

the diverge results in vehicles choosing the least efficient route for the system. In

this example, once vehicles reach the diverge, they find free flow, or nearly free flow,

conditions on both alternative paths. Since link 3 has a much lower free flow time

than link 2, all vehicles choose the shorter link. When signals were in place this choice

was discouraged through an artificial delay placed on vehicles on link 3. With FCFS

reservations, the delay is removed in the interests of fairness.

From this example, we make the following conclusions: first, replacing a signal

with reservations can, in the worst case, result in arbitrarily long queues. Avoiding

this type of scenario is difficult because the queuing results from the choice of control

at C. In both scenarios, links 2, 3, and 4 are nearly at free flow. From the local

perspective of intersection C, both signals and reservations at C are managing demand

sufficiently. Identifying the congestion resulting from reservations at C requires a
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Figure 3.6: Network for Section 3.5.1.3

Table 3.3: Link parameters for Section 3.5.1.3

Link Free flow travel time(s) Capacity(vph)
1 30 2400
2 80 2400
3 60 1200
4 30 2400

network perspective.

To stabilize this scenario, the control at C must impose some delay on move-

ment from 3 to 4. If vehicles are given preference by time spent waiting (such as

with FCFS) or even by some more system-related objectives such as maximum flow,

the unstable situation results. Furthermore, it is necessary to delay vehicles moving

from 3 to 4 even when no vehicles are waiting on link 2. This delay is contrary to

the goal of most reservation policies to maximize utilization of intersection capacity.

However, this delay could also be in the form of waiting time or in a toll placed

on movements from 3 to 4. Previous work on intersection auctions (Schepperle and

Böhm, 2008) provides the technology necessary for tolling specific turning movements

or microtolling every link.

3.5.2 Realistic networks

Having demonstrated the potential for signals to perform better than FCFS

reservations through theoretical examples, we now investigate such situations in re-

alistic networks. For these studies, we use CTM (Daganzo, 1994, 1995a) for dynamic
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flow propagation with the conflict region algorithm (Section 3.4, which is consis-

tent with the constraints on general intersection models of Tampère et al. (2011) for

reservation-based control. Signals are modeled by calculating saturation flows for each

turning movement proportional to green times. We study three subnetworks of the

Austin regional network based on data from the Capital Area Metropolitan Planning

Organization. First, we present an arterial subnetwork and a highway subnetwork in

which signals or merges/diverges outperform reservations. Then, we compare FCFS

reservations to signals on the downtown Austin subnetwork, which includes both sig-

nals and merges/diverges. The positive results for this large network demonstrates

the potential benefits of reservations.

3.5.2.1 Arterial subnetwork

Lamar & 38th Street is the intersection between two arterials in Austin, shown

in Figure 3.7. It contains 5 signalized intersections and 21 links. The intersections

on Lamar (running southwest-northeast) do not have progression, but the two inter-

sections on 38th Street are timed for it.

Table 3.4 shows TSTT and travel time (TT) per vehicle at different demand

scenarios. (These results do not include the capacity and congested wave speed im-

provements discussed in Chapter 2.) Traffic signals consistently outperformed reser-

vations at all demand levels. Reservations appeared to scale somewhat worse with

demand as well. The worst performing links for reservations at 100% demand were

along the Lamar arterial. The southwestern region in particular had high travel

times with reservations. It is likely that FCFS reservations allowed vehicles entering

from local roads to delay vehicles traveling along the arterial, as discussed in Section

3.5.1.1. The intersections there are close together, and reduced intersection capacities

granted to the arterial by FCFS may have also resulted in queue spillback issues.

In addition, the progression on 38th Street was likely disrupted by the use of

reservation-based controls. In particular, in the DTA model vehicles do not request

a reservation from an intersection until after entering an incoming link. The gap

between the intersections of Lamar & 38th Street, and Medical Parkway and 38th

Street, is smaller than the length of the Medical Parkway link. This network topology
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Figure 3.7: Lamar & 38th St.

admits scenarios such as the one in Section 3.5.1.2 in which vehicles on Medical

Parkway could place a reservation before vehicles on 38th Street.

Table 3.4: Results on Lamar & 38th St.

Demand Scenario TSTT TT per vehicle
13841 Traffic signals 4060.8 hr 17.60 min
(85%) FCFS reservations 4560.4 hr 19.77 min
14655 Traffic signals 4937.0 hr 20.21 min
(90%) FCFS reservations 5778.5 hr 23.66 min
15469 Traffic signals 6160.6 hr 23.90 min
(95%) FCFS reservations 7189.4 hr 27.89 min
16284 Traffic signals 7159.5 hr 26.38 min

(100%) FCFS reservations 8809.1 hr 32.46 min

3.5.2.2 Freeway subnetwork

Most literature has considered replacing traffic signals with reservation-based

controls. However, the reservation protocol is general enough to be applied to any

intersection. Previous studies such as Hall and Tsao (1997) have considered using
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autonomous vehicle technologies to improve highway on- and off-ramps. In addi-

tion, ramp metering to reduce freeway congestion has been well-studied in the lit-

erature (Papageorgiou and Kotsialos, 2000), and reservations with AVs would allow

complete enforcement of ramp metering. Therefore, it is likely that researchers will

consider using reservations to control freeway access. In this subsection we present an

example on replacing conventional unsignalized merge/diverge behavior with FCFS

reservation controls.

In DTA, we model merging via constraints on the receiving flow. With normal

merging behavior, the receiving flow is distributed among the upstream links by

capacity, with leftover receiving flow given to saturated approaches. With FCFS

reservations, receiving flow is distributed according to the vehicle order of request.

The I–35 corridor, shown in Figure 3.8, is a freeway subnetwork with 220 links.

(Many of the on- and off-ramps are difficult to see due to the length of the corridor).

All intersections are merges or diverges; none are traffic signals. Table 3.5 shows

travel times at different levels of demand. (These results do not include the capacity

and congested wave speed improvements discussed in Chapter 2.) Merges/diverges

consistently outperformed reservations at all demand scenarios. At low demand,

the differences were small, but as demand increased, FCFS scaled much worse than

merges/diverges. An analysis of link travel times found that most of the delays

occurred from vehicles entering the freeway. It is not clear why FCFS reservations

made it more difficult for vehicles to enter the freeway. Possibly the greater number

of lanes on the freeway allowed freeway vehicles to submit requests at a greater rate

(vehicles could not submit requests unless they were not blocked from entering the

intersection by vehicles in front). These delays could be indicative of an asymmetry

issue where the three lane freeway intersects with one lane on- and off-ramps. Based

on the long queues for vehicles entering the freeway, it appears that FCFS reservations

in this case skew too much towards freeway traffic and do not provide enough capacity

to the on-ramps.
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Figure 3.8: I–35 corridor
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Table 3.5: Results on I–35 corridor

Demand Scenario TSTT TT per vehicle
64025 Merges/diverges 4089.7 hr 3.83 min
(50%) FCFS reservations 6023.4 hr 5.64 min
76830 Merges/diverges 5307.5 hr 4.14 min
(60%) FCFS reservations 11912.9 hr 9.30 min
89635 Merges/diverges 8049.8 hr 5.39 min
(70%) FCFS reservations 23248.8 hr 15.56 min

3.6 Pressure-based policies for intersection control

The examples in Section 3.5 demonstrate that while FCFS is effective in some

situations, in other scenarios a better policy is needed before signals can be replaced

with reservations.

3.6.1 Link model

Describing backpressure requires a slightly different link representation than

discussed in Chapter 2. Recall that the traffic network is G = (N,A), where N is

the set of nodes, and A is the set of links. Let V be the set of demand. Each link

is divided into cells via CTM. Cells for link a ∈ A have length ufa∆t , where ufa is

the free flow speed of link a and ∆t is the simulation time step. Therefore, vehicles

can traverse at most one cell per time step. Let Γ−i and Γ+
i be the incoming and

outgoing cells for i, respectively. Each cell is a FIFO queue of vehicles. Although the

hydrodynamic theory defines flow for continuous space and time, CTM approximates

the hydrodynamic theory by constraining flow between cells. As ∆t→ 0, the solution

to CTM approaches the solution to the hydrodynamic theory. CTM is commonly used

for large-scale or practical applications when solving the hydrodynamic theory exactly

is not tractable.
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3.6.1.1 Cell flow dynamics

Our CTM formulation differs somewhat from that of Daganzo (1994, 1995a)

due to the need to track individual vehicles. Let ni(t) be the set of specific vehicles,

which will be necessary for defining which vehicles move at each time step. Let

Si(t) ⊆ ni(t) be the sending flow — the set of vehicles in cell i at time t that would

leave i if there were no downstream constraints. Let Ri(t) ∈ R+ be the receiving flow

of cell i at time t – the number of vehicles that would enter if connected to a source

of infinite demand. Let yvij(t) ∈ {0, 1} indicate whether vehicle v ∈ ni(t) moves from

cell i to cell j at time t. We extend yvij(t) from intersection movements to movements

between cells. If yvij(t) = 1, v moves from i to j at t. v will not move from i to j

unless j ∈ pv, which is important for intersection dynamics. Flow between i and j is

further constrained: v cannot leave i at t unless v ∈ Si(t). Also, the total flow into j

cannot exceed Rj(t). Formally,∑
i∈Γ−j

∑
v∈Si(t)

yvij(t) ≤ Rj(t) (3.25)

for all cells j. Also,

|Si(t)| ≤ Qi∆t (3.26)

where Qi is the capacity of cell i, and

Rj(t) = min

{
Qj∆t,

wj
uf
j

(Nj − |nj(t)|)

}
(3.27)

where uf
j is the free flow speed, wj is the congested wave speed, andNj is the maximum

occupancy of cell j.

Vehicle movement is also constrained by the FIFO behavior of cell queues.

Vehicles cannot exit if blocked by a vehicle in front. Finally, flow between links may be

constrained by intersection conflicts. Let yij(t) denote a vector of vehicle movements

for vehicles in Si(t). Let Yn(x(t)) denote the set of feasible vehicle movements across

node n ∈ N at t when cell occupancies are given by the vector n(t). Yn(n(t)) is
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constrained by sending flow, receiving flow, path constraints, intersection conflicts,

and FIFO behavior.

Each yij(t) ∈ Yn(t) is an action that may be taken for moving flow. Let S(t)

be a vector of sending flows and Y(n(t)) be a vector of feasible movements across all

nodes at time t. A policy determines which vehicles are moved when the sending flow

is S(t).

The state of this system evolves according to conservation of flow:

nj(t+ 1) =nj(t) ∪ Vj(t) ∪

⋃
i∈Γ−j

{
v ∈ Si(t) : yvij(t) = 1

}
/

 ⋃
k∈Γ+

j

v ∈ Sj(t) : yvjk(t) = 1

 (3.28)

where Vj(t) ⊆ V is the set of vehicles departing from cell j at time t.

Flow between two cells on a link (as opposed to flow across an intersection) is

clearly defined by the CTM (Daganzo, 1994, 1995a) in accordance with the kinematic

wave theory. Recall that vehicles on each cell are stored in a FIFO queue. CTM

defines the quantity of flow, and a corresponding number of vehicles from the FIFO

queue are moved. Therefore, for cells i, j on the same link, Yij(t) = 1. Flow between

two cells across an intersection may have more possibilities due to the intersection

conflicts.

3.6.2 Backpressure policy for reservations

We adapt the backpressure policy (Tassiulas and Ephremides, 1992) for the

traffic network. Due to DUE route choice (Section 3.5.1.3), we cannot prove that this

policy is a maximum throughput method. Nevertheless, results on a city network

show significant improvement over the FCFS policy.
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3.6.2.1 Traffic network as constrained queuing system

A major difference between communications networks and traffic networks is

that in traffic networks, congestion creates regions of high-density, slower-moving

traffic. Communications networks are essentially point queues, and the size of the

queue does not affect link travel times. After a review of the communications network

of Tassiulas and Ephremides (1992), we show that our CTM traffic network is similar

to the constrained queueing systems that they studied. Each cell is a point queue,

and shockwaves in traffic flow are modeled through cell transition flows. This model

results in many queues — including multiple queues per link. Still, flows between

cells within a link are simple to handle because the feasible region is determined

exactly by cell transition flows. Of course, this relies on the CTM approximation to

the kinematic wave theory; the kinematic wave theory itself is continuous and can

be solved in continuous space (Yperman et al., 2005; Yperman, 2007). Nevertheless,

CTM is commonly used in large-scale DTA models, so using CTM to adapt the

backpressure policy is reasonable.

Although this cell model is equivalent to a communications network, there are

several issues that prevent proving that backpressure maximizes throughput. First,

queue sizes are bounded due to network geometry, and previous work on communi-

cations networks has required large queue sizes to ensure stability (Giaccone et al.,

2007; Le et al., 2012). While arbitrary queue sizes are possible in computer storage,

road lengths are not so arbitrary. Second, communications networks do not have

FIFO behavior. Due to different destinations, FIFO behavior at intersections limits

the feasible region of the control policy. For instance, a left-turning vehicle could

block a right-turning vehicle behind it, even though the right-turning vehicle could

otherwise move through the intersection. Finally, communications network policies

assume route choice is controlled by the system. However, in traffic networks, vehicles

typically choose routes individually, and DUE route choice can reduce efficiency.

Section 3.5.1.3 presented a counterexample to stabilizing the network via a

decentralized policy. Therefore, it is not possible to prove that any decentralized

pressure-based policy, including backpressure, is throughput optimal for a network

120



under UE route choice. It is true that previous work on applying backpressure (Zhang

et al., 2012a; Gregoire et al., 2014; Wongpiromsarn et al., 2014; Xiao et al., 2014)

were able to prove that backpressure was stable, if demand allowed it. However,

they assumed that turning proportions remained fixed, which is not true under DUE

behavior (Smith, 1979). The counterexample in Section 3.5.1.3 used DUE route choice

to create a situation in which the network can be stabilized, but will not be stabilized

under a decentralized pressure-based policy.

3.6.2.2 Maximum throughput heuristic

We adapt the backpressure policy of Tassiulas and Ephremides (1992) to the

CTM network. We cannot prove that backpressure maximizes throughput, but the in-

sights of backpressure control are used for this heuristic. Backpressure is an algorithm

executed each time step that determines intersection vehicle movements. Algorithm

4 gives a formal description of the backpressure policy. As with the algorithm of Tas-

siulas and Ephremides (1992), backpressure consists of three stages. Stage 1 selects

the weights on each vehicle based on cell queues. Stage 2 decides the combination of

vehicles to move given the vehicle weights. Note that the decision of which vehicles

to move can be separated by intersection: a system-wide controller is not necessary.

However, computing the vehicle weights in Stage 1 requires communication of queue

lengths between neighboring intersections.

For any node n, let Γ−n and Γ+
n be the sets of incoming and outgoing cells,

respectively. Also let Γ−v,n and Γ+
v,n be the incoming and outgoing cells for vehicle v

at n, respectively. To simplify the notation, let yvn(t) = yv
Γ−v,n,Γ

+
v,n

(t) denote whether

v moves through n at t.

The key insight is in the calculation of the pressure terms Dv
n(t) for each

vehicle v at node n at time t. For communications networks, the pressure is simply

proportional to the queue size because queues are unbounded. A key requirement of

Tassiulas and Ephremides (1992)’s proof is that Dv
n(t) can become arbitrarily large as

the queue grows. However, cell queues are bounded, so setting Dv
n(t) = |nΓ−v,n

(t)| does

not provide sufficient pressure. Instead, we define a congestion region of connected

congested cells, and sum the occupancies of all cells in the congestion region.
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Stage 1 This stage determines the vehicle weights Dv
n(t) for each vehicle v. Since

the queue at cell j could be bounded, to achieve unbounded pressures we must con-

sider cells behind j. Even link queue lengths might be too small to provide sufficient

pressure (Giaccone et al., 2007; Le et al., 2012). Define Cj to be the set of congested

cells leading up to j. Cj is defined recursively as

Cj = {j} ∪
{
i ∈ Γ−j′ : j′ ∈ Cj and |nj(t)| > Qj∆t

}
(3.29)

Equation (3.29) can be explained intuitively as follows: Cj is the set of congested cells

containing queued vehicles that might use cell j. We define cell j to be congested if

nj(t) > Qj∆t, which means that not all vehicles in j can exit in a single time step.

The queue at j is always considered, so j ∈ Cj. If j is not congested, Cj = j. If j is

congested, then Cj is the set of contiguous congested cells leading up to and including

j. If the network is sufficiently congested, then Cj will include one or more centroid

cells, which have unbounded queues. The pressure from the queues from the centroid

cell(s) will result in arbitrarily large pressure, which is one of the key features of the

backpressure policy.

Let pij(t) be the proportion of vehicles in cell i that have cell j in their path.

Clearly, pjj(t) = 1, and for any cell i preceding j on the same link, pij(t) = 1 also.

When queue spillback is present and i is on a different link than j, pij(t) < 1 is

possible.

Define the queue length for cell j at time t, Qj(t) to be

Qj(t) =
∑
i∈Cj

|ni(t)|pij(t) (3.30)

Qj is the number of vehicles in the congested region Cj waiting to use cell j. Now

define Dv
n(t) as follows:

Dv
n(t) =

(
QΓ+

v,n
(t)− QΓ−v,n

(t)
)

min
{
QΓ+

v,n
, QΓ−v,n

}
(3.31)

Dv
n(t) is the product of the difference in queue lengths for cells Γ−v,n and Γ+

v,n and
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the maximum flow rate between Γ−v,n and Γ+
v,n. This product is taken directly from

Tassiulas and Ephremides (1992). Note that when Γ+
v,n is a sink cell, QΓ+

v,n
= ∞

and QΓ+
v,n

(t) = 0 by definition. The difference is used because moving vehicles onto

a congested cell (if possible) is intuitively less efficient than moving vehicles onto

uncongested cells. Dv
n(t) does not depend on properties of v besides the path of v.

The vehicle index is retained for vector notation; let D(t) be the vector of vehicle-

specific weights.

Stage 2 Find a vehicle movement vector y∗(t) satisfying the following:

y∗(t) ∈ arg max
y(t)∈Y(t)

{D(t) · y(t)} (3.32)

Note that equation (3.32) can be solved for individual intersections because the choice

of flows at a single intersection does not affect the feasible flows for other intersections

at the same time step.

Stage 3 If y∗vn (t) = 1, then vehicle v is moved from Γ−v,n to Γ+
v,n at t. Otherwise, v

remains in Γ−v,n. This flow is feasible because y∗(t) ∈ Y(t).

Remarks Note that Stages 1 and 2 only need to be computed for incoming and

outgoing cells at nodes. For flow between two cells on the same link, there is only

one feasible solution as defined by the CTM transition flows (Daganzo, 1994, 1995a).

Stage 2 requires the solution of an integer program, which is NP-hard. For

reservation-based intersection control, vehicles may be allowed to move individually,

which could result in a large feasible region. |Yn(t)| is O
(
2|Sn(t)|). For tractability,

we use the polynomial-time greedy heuristic of Section 3.4.2 to find a decent solution.

In calculating the efficiency, we set z(t) = D(t) in equation (3.24).

3.6.2.3 A note on practical implementation

One potential concern is how to implement the backpressure policy in practice.

CTM is itself an approximation to the hydrodynamic theory, and defining the policy
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in terms of cell queues may not seem completely realistic. However, as ∆t → 0,

the predictions of CTM approach those of the hydrodynamic theory. Therefore, the

calculation of the intersection queue length from the queues in contiguous congested

cells becomes the length of the queues on intersection approaches. The size of these

queues may be determined through loop detectors.

A second issue with implementation is calculating the total length of queues

across queue spillback. In the backpressure, we assumed that we know vehicle routes,

and whether they will use any given cell. In practice, vehicle routes may not be

known, even for autonomous vehicles. Queues specific to a link could be estimated

by turning fractions when queue spillback is present. However, these turning fractions

may change over time due to DUE route choice.

Our traffic network model also assumes that centroid queues will grow ar-

bitrarily large if demand is sufficiently high. Realistically, travelers will probably

choose to depart later if queues are backed up to their origin. However, when de-

mand is modeled as elastic, boundedness of queue length is not an effective measure

of stability.

3.6.3 P0 policy for reservations

The backpressure policy is from a model where routing is determined by the

system (Tassiulas and Ephremides, 1992) and the counterexample to stability (Sec-

tion 3.5.1.3) shows that DUE route choice could prevent stability. In the worst case,

policies relying on local information could result in unbounded queues despite a sta-

bilizable demand. Therefore, we also adapt the P0 policy (Smith, 1980, 1981) to

reservations for comparison. P0 is an algorithm run at each time step, described

formally in Algorithm 5. P0 was designed to maximize network capacity under UE

route choice. However, proving that P0 maximizes capacity in the simulation-based

CTM is difficult because link travel times are not continuous with respect to inflow or

demand. P0 also uses a congestion-increased pressure term, but the pressure is based

on link travel times rather than queue lengths.

P0 was designed for a model using link performance functions for delay. Specif-
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Algorithm 4 Backpressure policy

1: for all a ∈ A do
2: Let j be the end cell of a
3: Set Cj = Find congested region(j)
4: for all v ∈ nj(t) do
5: Qj(t) :=

∑
i∈Cj

|ni(t)|pij(t)

6: end for
7: end for
8: for all n ∈N do
9: for all v ∈ Sn(t) do

10: f(v) :=
(
QΓ+

v,n
(t)− QΓ−v,n

(t)
)

min
{
QΓ+

v,n
, QΓ−v,n

}
11: end for
12: Conflict region algorithm(n)
13: end for
14:

15: procedure Find congested region(j)
16: Cj := {j}
17: if |nj(t)| > Qj(t) then
18: for all i ∈ Γ−j do
19: Cj := Cj∪ Find congested region(i)
20: end for
21: end if
22: return Cj
23: end procedure
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ically, P0 assumes that the travel time τa for link a ∈ A is of the form

τa = τ f
a + fa

(
ωa + µaQ̂a

)
(3.33)

where τ f
a is the free flow travel time, fa(·) is the delay function, ωa is the demand for

the link, Q̂a is saturation flow, and µa is the proportion of red time. For phase k at

node n ∈ N let Ak
n ⊆ A be the set of links given green time. For a link travel time

of this form, the resulting pressure ρkn for phase k is then

ρkn =
∑
a∈Ak

n

Q̂afa

(
ωa + µaQ̂a

)
(3.34)

Applying equation (3.34) to DTA requires evaluating the function fa(·), which is de-

termined through simulation in DTA. However, previous travel times are observable.

Let τ̄a(t) be the expected travel time for link a at time t, based on estimates from

vehicles that traversed a. Then we create an estimate of fa(·) at t, f̄a(t), by taking

f̄a(t) = τ̄a(t)− τ f
a (3.35)

We also replace saturation flow Q̂a with capacity Qa. In practice, these may not be

equivalent since many static models assume that link flows can exceed the saturation

flow at the cost of high delay. However, capacity is the flow constraint parameter for

DTA.

We adapt P0 to reservation-based intersection control, meaning that pressure

is specified for specific vehicles rather than phases. Since the pressure is based on the

link travel time, let a−1
v,n ∈ A be the incoming link for vehicle v at node n. (The link

a−1
v,n differs from the incoming cell because the pressure for P0 is based on the link

travel time, not the cell travel time). We use the following pressure Pvn(t) for vehicle

v at node n at time t using the P0 policy:

Pvn(t) = Qa−1
v,n

(
¯τa−1
v,n

(t)− τ f
a−1
v,n

)
(3.36)

Pvn (t) favors links with high capacity and/or with a high delay (travel time beyond
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the free flow time). Delay should greatly increase as the queue length increases.

Define the vector of pressures to be P(t) for all waiting vehicles. The objective

is then to find

y∗(t) ∈ arg max
y(t)∈Y(t)

{P(t) · y(t)} (3.37)

As with the backpressure policy, equation (3.37) can be determined locally for in-

dividual intersections. We also approximately solve equation 3.37 using the greedy

heuristic of Section 3.4.2. To calculate the efficiencies, we set z(t) = P(t) in equation

(3.24).

Algorithm 5 P0 policy

1: for all n ∈N do
2: for all v ∈ Sn(t) do

3: f(v) := Qa−1
v,n

(
¯τa−1
v,n

(t)− τ f
a−1
v,n

)
4: end for
5: Conflict region algorithm(n)
6: end for

3.7 Experimental results

We compared four types of intersection controls — traffic signals and reserva-

tions with FCFS, backpressure, and P0 — on the downtown Austin network, shown in

Figure 2.15. The network has 171 zones, 546 intersections, and 1247 links. Data was

from the Capital Area Metropolitan Planning Organization. The DNL used CTM

with a 6s time step, and the conflict region model for reservation-based intersection

control. Traffic signals were modeled by simulating phases and changing the capac-

ity of turning movements proportional to green time at each time step. Flow was

discretized and individual vehicles were tracked. We used the method of successive

averages (Levin et al., 2015b) to solve DTA to a 1% gap for all scenarios. To demon-

strate robustness, we considered demand levels from 70% to 100% at 10% increments.

Table 3.6 compares the travel times for all four intersection control policies at

different demand levels. Reservations using all policies (including FCFS) consistently
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had much lower TSTT than traffic signals. Although Section 3.5 discussed several

situations in which FCFS reservations would increase delay compared with signals,

there are also scenarios (such as symmetric intersections) in which FCFS is likely to

reduce delay (Fajardo et al., 2011; Li et al., 2013). Both backpressure and P0 made

significant improvements over FCFS as well. This result is not surprising because

FCFS does not prioritize links with higher demand, which could cause queues to

build up and spillback on such links. Backpressure also consistently performed slightly

better than P0. This result is probably because backpressure is more responsive to

current traffic conditions than P0. P0 was developed for a model with link performance

functions, in which travel times could be easily calculated. However, in simulation-

based DTA, travel times are determined by simulation. Therefore, high travel times

were only observed after vehicles had exited the link, which delayed the effect of

queuing on the P0 prioritization. In contrast, backpressure prioritized based on queue

lengths at the current time. Therefore, backpressure responded faster and more

dynamically to congestion and queueing.

3.8 Conclusions

This chapter developed and optimized a simplification of tile-based reserva-

tions (Dresner and Stone, 2004) for autonomous vehicles. We first formulated an IP

for the conflict point transformation of tile-based reservations (Zhu and Ukkusuri,

2015). After transforming the IP for use in SBDTA, the spacing constraints were

found to naturally reduce to capacity limitations on each conflict point. For com-

putational tractability on large networks, we aggregated conflict points into conflict

regions, resulting in a model similar to that of Levin and Boyles (2015b) formulated

as an IP. This IP admits arbitrary objective functions and can therefore be used

to optimize the order that vehicles cross the intersection for a more general class of

policies. Since IPs in general are NP-hard, we derived theoretical results about the

conflict region algorithm (Levin and Boyles, 2015b). It solves the IP for the FCFS ob-

jective, and admits a polynomial-time greedy heuristic based on the MCKS problem

for general objective functions.
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Table 3.6: Intersection control results on downtown Austin network

Demand Intersection policy TSTT (hr) Avg. TT per vehicle (min)
43965 Traffic signals 8552.2 11.67
(70%) FCFS 4276.6 5.84

Backpressure 3974.0 5.42
P0 4003.1 5.46

50290 Traffic signals 10771.5 12.9
(80%) FCFS 5550.4 6.62

Backpressure 4819.7 5.74
P0 4897.6 5.84

56592 Traffic signals 13776.0 14.61
(90%) FCFS 7116.0 7.55

Backpressure 6016.1 6.38
P0 6285.6 6.66

62847 Traffic signals 16971.6 16.20
(100%) FCFS 9334.2 8.91

Backpressure 7815.5 7.46
P0 8397.1 8.01

Results for signals and FCFS differ slightly from other reported numbers for the same network be-

cause the discrete vehicle trips were recreated from a dynamic trip table, resulting in some stochas-

ticity in the demand.
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To motivate optimization of reservations, this chapter presented a variety of

scenarios in which traffic signals and merges/diverges outperformed reservations. We

studied three theoretical situations using the different attributes of FCFS reservations

to increase delays. One example showed that decentralized reservation policies could

create a Daganzo (1998) paradox situation due to DUE route choice. We also pre-

sented two realistic networks from Capital Area Metropolitan Planning Organization

data in which traffic signals or merges/diverges outperformed reservations.

Finally, we adapted the backpressure (Tassiulas and Ephremides, 1992) and

P0 (Smith, 1980, 1981) policies for reservation-based intersection control in dynamic

traffic assignment. Neither can be proven to stabilize the network because they are

both decentralized policies. Nevertheless, results on the downtown Austin network

showed that backpressure and P0 performed significantly better than the first-come-

first-served policy, which has been used in most previous work on reservations. There-

fore, although backpressure and P0 are not throughput-optimal, they provide a better

alternative to existing policies.
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4 Applications

4.1 Introduction

Most previous studies of AVs have relied on microsimulators to capture AV

behavior differences, but micro-simulation is not tractable for large network analyses.

Carlino et al. (2012) simplified the reservation controls to simulate a city network,

but the capacity of the reservation mechanism was reduced and they did not include

route choice. Ideally, analyses of large networks would be based on DTA, which

includes the effects of selfish route choice. Chapter 2 developed a multiclass version

of the CTM (Daganzo, 1994, 1995a) with a corresponding car-following model that

predicts increases in capacity and backwards wave speed as reaction-time decreases,

and Chapter 3 developed a conflict region simplification of the reservation protocol

that is tractable for DTA. The purpose of this chapter is to use the resulting DNL

and DTA models to study how AVs affect congestion and travel demand on larger

networks.

4.1.1 Improved road efficiency

First, we study how increasing market penetration of AVs affects freeway,

arterial, and downtown network traffic. Since previous studies have relied on mi-

crosimulation, network size was limited by the computational intensity. Therefore,

it is both novel and relevant to practitioners to study how AVs might affect traffic

before including changes to travel demand.
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4.1.2 Empty repositioning trips

With regards to travel demand, Levin and Boyles (2015a) created a four-step

model including empty repositioning to the origin as a modal alternative to parking

for home-to-work trips. Results indicated that the significant additional vehicular

demand offset increased road efficiency, resulting in a net increase in congestion.

They found that empty repositioning increased the number of travelers choosing to

drive, and combined with the return trips from repositioning, resulted in nearly twice

as many total vehicular trips.

For policymakers, the results of Levin and Boyles (2015a) raise the question of

why to permit repositioning trips at all. However, their model was not very realistic

as it relied on a STA model to predict congestion. Their model could be improved in

several ways:

1. Because the model is based on STA, different departure times were not included.

By definition, empty repositioning from home-to-work trips should depart later

(after the traveler arrived at work). The later departure times might result in

an extended morning peak as opposed to a more concentrated one with greater

congestion (Levin, 2015).

2. The model did not include the potential benefits from reservation-based in-

tersection control. Having more AVs on the road could improve intersection

efficency, which is a major bottleneck in downtown networks.

3. The link capacity model — how AVs improve link capacity — was preliminary

and could be improved by the work in Chapter 2

4.1.3 Shared autonomous vehicles

An even more radical change in travel behavior is the use of SAVs instead of

personal vehicles. SAVs are a fleet of autonomous SAVs that provide low-cost service

to travelers, possibly replacing the need for personal vehicles. Previous studies (Fag-

nant and Kockelman, 2014; Burns et al., 2013) assuming that all travelers used SAVs

found that each SAV could service multiple travelers, reducing the number of vehicles
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needed in the SAV fleet. Although 100% SAV use is unlikely to occur in the near

future, previous results suggest great potential benefits when 100% SAVs becomes

viable. Strategies such as preemptive relocation of SAVs for expected demand (Fag-

nant and Kockelman, 2014) or dynamic ride-sharing (Fagnant and Kockelman, 2016)

are additional options for improving service.

However, a major limitation of previous studies is that many relied on custom

software packages with unspecified or unrealistic congestion models (Burns et al.,

2013; Fagnant and Kockelman, 2014, 2016; Spieser et al., 2014) and/or grid net-

works (Fagnant and Kockelman, 2014, 2016). Although these were important studies

for technology demonstration purposes, for accurate comparisons with personal ve-

hicle scenarios a common traffic flow model is necessary. This chapter develops a

framework compatible with existing traffic simulation models. This framework allows

practitioners to integrate SAVs into their current traffic models to evaluate whether

to fund public fleets of SAVs.

This framework admits a DNL model of SAVs using CTM (Daganzo, 1994,

1995a). We compare SAVs using heuristics for vehicle routing and dynamic ride-

sharing based on previous work (Fagnant and Kockelman, 2014, 2016) against per-

sonal vehicle scenarios. Heuristics are used because the vehicle-routing problem is

NP-hard (Toth and Vigo, 2001). The framework allows us to study SAV behaviors

using the DNL model developed in Chapters 3 and 2.

4.1.4 Contributions

The contributions of this chapter are as follows:

1. We analyze the effects of reservation controls and increased capacity from AV

technologies on freeway and arterial networks using DTA. We studied a variety

of congested subnetworks and drew conclusions that can be generalized to other

locations. For most scenarios, reservations improved over traffic signals for

arterial networks (and the freeway network that used signals to control access),

but were not effective at replacing merges/diverges. Reduced reaction times,

resulting in reduced following headways and increased capacity, improved travel
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times for all scenarios. We also studied the downtown Austin network, which

includes many route choice options, and found that the combination of these

AV technologies could reduce travel times by 78%.

2. We present a four-step model with departure time choice, using DTA, to study

how AVs affect travel demand. Link capacity increases and reservation-based

intersection control are included in DTA, and empty repositioning to the ori-

gin (as opposed to parking) is modeled as a mode choice using a nested logit

model. We use this model to study how empty repositioning trips affect traffic

on the downtown Austin city network during the morning peak. From a policy

perspective, we demonstrate two important conclusions: empty repositioning

trips can improve traffic by encouraging travelers to adopt AVs. Also, in the

scenario that all travelers have AVs, empty repositioning results in higher ve-

hicular demand and therefore greater congestion. Taken together, these results

suggest that allowing empty repositioning trips is worth consideration despite

the increase in vehicle trips.

4.1.5 Organization

The remainder of this chapter is organized as follows. Section 4.2 discusses

literature on planning models and SAVs. Section 4.3 studies how AVs affect arterial,

freeway, and downtown networks. The effects of repositioning trips are modeled

in Section 4.4. In Section 4.5, we develop a framework for implementing SAVs in

general traffic simulators, and perform a case study using our DNL model. Section

4.6 presents our conclusions.

4.2 Literature review

First, we review the literature on planning models in Section 4.2.1, which is

relevant to our study on empty repositioning trips. Then, we review work on SAVs

in Section 4.2.2 in anticipation of our SAV model.
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4.2.1 Planning and forecasting

Forecasting in practice has been based on the four-step planning model (Mc-

Nally, 2008) for decades. The four-step model traditionally uses STA, although DTA

admits more accurate predictions of flow propagation and more detailed models of

AV intersections. 90% of practitioners would like to incorporate DTA into their plan-

ning analyses (Chiu et al., 2011), and previous studies (Tung et al., 2010; Pool, 2012;

Duthie et al., 2013) have replaced STA with DTA by using average travel times for

feedback and an exogenous departure time profile to disaggregate demand by assign-

ment intervals. However, modeling departure time choice is critical for this chapter

because the distribution of vehicular trips — both from travelers and for empty repo-

sitioning — determines the level of congestion. Vovsha et al. (2012) considered a

time-dependent mode choice model, but still use a fixed time distribution profile,

which is a major issue with DTA planning models (Peeta and Ziliaskopoulos, 2001).

Most time profile literature focuses on simultaneous route and departure time choice

(SRDTC) (Li et al., 1999; Ziliaskopoulos and Rao, 1999; Friesz et al., 2001), which

typically exclude the trip distribution and mode choice of four-step models and are

focused on short-term behavior. For instance, Szeto and Lo (2004) and Han et al.

(2011) studied SRDTC models with cell-based DTA and elastic demand. However,

trip distribution and mode choice also predict transit ridership, which may decline

significantly with AVs (Levin and Boyles, 2015a). Levin et al. (2016a) proposed a

time-varying trip distribution based on the arrival time penalty function (Vickrey,

1969) which addresses the DTA integration issue by adding a time index to the rest

of the four-step model.

Activity-based modeling (ABM) (Bhat and Koppelman, 1999) is a relatively

recent alternative to the traditional four-step model that may be more effective at

modeling empty repositioning trips. In addition to avoiding parking costs, empty

repositioning can make an AV available to other household members, and the benefits

of household car sharing are better modeled through ABM. However, integrating

ABM with DTA requires more study, particularly in the feedback of DTA travel times

to ABM. Furthermore, the four-step model is well established among metropolitan
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planning organizations for long-range predictions. Therefore, this chapter uses the

four-step model.

4.2.2 Shared autonomous vehicles

Multiple studies have investigated the possibility of using a fleet of SAVs to

reduce reliance on personal vehicles and improve mobility and safety (Fagnant and

Kockelman, 2015). Fagnant and Kockelman (2014) estimated that one SAV could

provide service to around eleven travelers on a grid network approximation of Austin,

Texas with most travelers waiting at most 5 minutes for pick-up, although vehicle

travel time increased. Fagnant and Kockelman (2016) incorporated dynamic ride-

sharing, and found that it could offset the additional vehicle travel time. However,

only 10% of personal trips of Austin were included. Further studies on different cities

have supported indications that a smaller fleet of SAVs could provide service to all

travelers. Burns et al. (2013) studied a centrally dispatched SAV system in three

different urban and suburban environments. Their findings indicated that a much

smaller fleet of SAVs could provide service to all residents with acceptable waiting

times. Also, a slightly reduced fleet of taxicabs could improve on wait times and

vehicle utilization in Manhattan, New York. Spieser et al. (2014) found that a SAV

fleet one-third the size of the personal vehicle fleet was sufficient for providing service

to Singapore travelers.

Although the results of previous studies are encouraging, this chapter ad-

dresses some traffic modeling limitations of previous studies. All of them used cus-

tom simulation-based models, with many relying on grid-based networks. Many of the

traffic congestion models were unrealistic; Fagnant et al. (2015) used MATSim, but

many other studies did not specify the model or used fixed travel times. Section 4.5.3

demonstrates that SAVs could significantly increase congestion. Accurate congestion

modeling is necessary to evaluate whether replacing personal vehicles with SAVs im-

proves traffic. Furthermore, custom simulations would be difficult for practitioners

to integrate into their existing traffic models. To address these limitations, this chap-

ter presents an event-based framework that may be implemented on top of many

simulation-based traffic models. We demonstrate this framework by implementing it
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in a DTA simulator and comparing SAV results with those from DTA.

4.3 Effects of autonomous vehicles on network traffic

This section presents analyses on arterial (Section 4.3.1), freeway (Section

4.3.2), and downtown (Section 4.3.3) networks using the multiclass CTM of Chap-

ter 2 to propagate flow in DTA. The key features of these results are the multiclass

comparison of human and autonomous vehicles, and the analysis of how reservations

compare to signals. The fundamental diagram changes with space and time in re-

sponse to the proportion of AVs in each cell. When combined with discrete vehicles,

the fundamental diagram varies significantly between cells and time steps despite an

overall fixed proportion of AVs. Reservation-based intersection control also exhibited

unusual characteristics. Contrary to the results of Fajardo et al. (2011) and Li et al.

(2013), reservations performed worse than signals in many scenarios due to subopti-

mal vehicle priority. In addition, Braess (1968) and Daganzo (1998) showed that the

increased link capacity due to AVs does not necessarily result in improved network

performance.

The arterial and freeway networks do not have multiple available routes, so

all improvements are due to AV technologies. However, the downtown networks in-

clude many alternate routes, which admits paradoxes in which capacity improvements

increase congestion due to selfish route choice (Braess, 1968; Daganzo, 1998). The

reaction times of AVs was set to 0.5 seconds, which significantly increases capacity

(Figure 2.2). Smaller reaction times might be more realistic of automation, but could

result in backwards wave speed exceeding free flow speed, causing technical issues

with the cell transmission model. For all experiments, we recorded the TSTT as well

as the average travel time per vehicle.

4.3.1 Arterial networks

We first present results on two arterial networks, shown in Figure 4.1. The first

arterial network, Lamar & 38th Street, contains the intersection between the Lamar &

38th Street arterials, as well as 5 other local road intersections. This network contains
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Lamar & 38th Street Congress Avenue

Figure 4.1: Arterial networks

31 links, 17 nodes and 5 signals with a total demand of 16,284 vehicles over a 4 hour

time period. We also studied Congress Avenue in Austin, with a total of 25 signals

in the network, 216 links and 122 nodes with a total demand of 64,667 vehicles in a 4

hour period. These arterial networks used fixed-time signals for controlling flow along

the entire corridor. These networks were chosen for this experiment because they are

among the 100 most congested networks in Texas, which is useful for studying how

AVs affect congestion. By changing the demand on these networks, our analyses can

be generalized to less congested networks.

Travel time results are given in Tables 4.1 and 4.2. In the Lamar & 38th

Street network, the reservation protocol significantly decreased travel times for a 50%

demand simulation as compared to traffic signals at 50% demand; however, once

the demand was increased to 75%, reservations began increase travel times relative to

signals. This result is most likely due to the close proximity of the local road intersec-

tions. On local road-arterial intersections, the fairness attribute of FCFS reservations,
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Table 4.1: Lamar & 38th Street results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 421.6 3.11
Signals 50% 100% 237.2 1.75

Reservations 50% 100% 157.8 1.16
Signals 75% 0% 2566.7 12.61
Signals 75% 100% 372.7 1.83

Reservations 75% 100% 2212.5 10.78
Signals 85% 0% 3890.2 16.86
Signals 85% 25% 2097.2 9.09
Signals 85% 50% 504.8 2.19
Signals 85% 75% 477.8 2.07
Signals 85% 100% 476.8 2.07

Reservations 85% 100% 4472.8 19.39
Signals 100% 0% 7043.1 25.95
Signals 100% 100% 526.6 1.94

Reservations 100% 100% 8678.7 31.98

could give greater capacity to the local road than would traffic signals. Because these

intersections are so close together, reservations likely induced queue spillback on the

arterial. The longer travel times might also be influenced to reservations removing

signal progression on 38th Street. In high congestion, FCFS reservations tended to

be less optimized than signals for the local road-arterial intersections. On the other

hand, in low demand, intersection saturation was sufficiently low for reservations to

reduce delays.

The Lamar & 38th Street network responded well to an increase in the propor-

tion of AVs with dramatic decreases in travel times, due to the AV reaction times. At

85% demand and at 25% AVs, the total travel time was reduced by 50%, and when all

vehicles were AVs, the total travel time was reduced by 87%. As demand increased,

the improvements from reduced reaction times also increased. At 50% demand, re-

duced reaction times decreased travel time by 44%, whereas at 100% demand, reduced
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Table 4.2: Congress Avenue results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 1366.1 2.54
Signals 50% 100% 1220 2.26

Reservations 50% 100% 821.5 1.52
Signals 75% 0% 4306.1 5.33
Signals 75% 100% 1957.1 2.42

Reservations 75% 100% 1545.1 1.91
Signals 85% 0% 8976.8 9.8
Signals 85% 25% 3661.4 4
Signals 85% 50% 3303.3 3.61
Signals 85% 75% 2936.2 3.21
Signals 85% 100% 2956 3.23

Reservations 85% 100% 2934 3.2
Signals 100% 0% 21484.4 19.93
Signals 100% 100% 4038.2 3.75

Reservations 100% 100% 8673.6 8.05
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reaction times decreased travel time by 93%. The effect of greater capacity improved

as demand increased because as demand increased, the network became more limited

by intersection capacity. At low congestion (50% demand), signal delays dominated

travel times because reservations made significant improvements. At higher conges-

tion, intersection capacity was the major limitation, and therefore reduced reaction

times were of greater benefit.

Congress Avenue responded well to the introduction of reservations, showing

decreases in travel times at all demand scenarios. These improvements are due to the

large amount of streets intersecting Congress Avenue, each with a signal not timed

for progression. The switch to reservations therefore reduced the intersection delay.

However, the switch to reservations could result in greater demand on this arterial.

We include the effects of route choice in the downtown Austin network (Section 4.3.3).

AVs also improved travel times and congestion due to reduced reaction times.

At 85% demand, even a 25% proportion of AVs on roads decreased travel times

by almost 60%. This benefit increased to almost 70% when all vehicles were AVs.

As with Lamar & 38th Street, as demand increased, the improvements from AV

reaction times also increased. For example, at 50% demand, 100% AVs decreased

travel time by about 10%, but at 100% demand, using all AVs reduced the travel

time by nearly 82%. The reduced reaction times did not improve as much as the

reservation protocol, except for the 100% demand scenario. This experiment indicates

that at lower demands, travel time was primarily increased by signal delay, but was

still improved by AV reaction times.

Overall, these results consistently show significant improvements from reduced

reaction times of AVs at all demand scenarios. As shown in Figure 2.2, reducing the

reaction time to 0.5 seconds nearly doubles road and intersection capacity. However,

the effects of reservations were mixed. At low congestion, traffic signal delays had a

greater effect on travel time, and in these scenarios reservations improved. Reserva-

tions also improved when signals were not timed for progression (although this change

in protocol may be detrimental to the overall network). However, as seen on Lamar &

38th Street, at high demand reservations performed worse than signals, particularly

around local road-arterial intersections.
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Interstate 35

US-290 

Mopac

Figure 4.2: Freeway networks

4.3.2 Freeway networks

Next, we studied three freeway networks, shown in Figure 4.2. The first free-

way network is the I–35 corridor in the Austin region which includes 220 links and

220 nodes with a total demand of 128,051 vehicles within a 4 hour span. (Due to the

length, the on- and off-ramps are difficult to see in the figure.) All intersections are

off-ramps or on-ramps. The I–35 network is by far the most congested of the freeway

networks and one of the most congested freeways in all of Texas, especially in the

Austin region. We also studied the US–290 network in the Austin region with 97

links, 62 nodes, 5 signals and a total demand of 11,098 vehicles within 4 hours. Fi-

nally, we studied the Mopac Expressway in the Austin region with 45 links, 36 nodes,

and 4 signals with a total demand of 27,787 vehicles within 4 hours. This network

includes a mix of merging and diverging ramps and signals which allows some inter-

esting analyses. This network was chosen due to the large number of signals around

the freeway. All freeway networks are also among the 100 most congested roads in

Texas.

Results for the freeway networks are presented in Tables 4.3, 4.4, and 4.5.

142



Table 4.3: I–35 results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Signals 50% 0% 3998.9 3.75
Signals 50% 100% 3893.3 3.65

Reservations 50% 100% 3975.2 3.73
Signals 75% 0% 10087 6.3
Signals 75% 100% 5934.2 3.71

Reservations 75% 100% 9861.1 6.16
Signals 85% 0% 16127.7 8.89
Signals 85% 25% 16023.5 8.83
Signals 85% 50% 15944.3 8.79
Signals 85% 75% 14545.3 8.02
Signals 85% 100% 14101.6 7.77

Reservations 85% 100% 16084.7 8.87
Signals 100% 0% 31611.7 14.81
Signals 100% 100% 9063.3 4.25

Reservations 100% 100% 30211.3 14.16
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Table 4.4: US–290 results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 50% 0% 557.8 6.03
Traditional 50% 100% 547.5 5.92

Reservations 50% 100% 505.4 5.47
Traditional 75% 0% 845.7 6.1
Traditional 75% 100% 827.7 5.97

Reservations 75% 100% 759.8 5.48
Traditional 85% 0% 997.6 6.35
Traditional 85% 25% 952 6.06
Traditional 85% 50% 945.3 6.01
Traditional 85% 75% 942.5 6
Traditional 85% 100% 939.8 5.98

Reservations 85% 100% 860.6 5.47
Traditional 100% 0% 1518.5 8.21
Traditional 100% 100% 1108.8 5.99

Reservations 100% 100% 1014.1 5.48

Although there were some observed improvements in travel times for US–290 using

reservations, the improvements were modest. For I–35 and Mopac, reservations made

travel times worse for all demand scenarios. Most of the access on US–290 is controlled

by signals, which explains the improvements observed when reservations were used

there. Reservations seem to have worked more effectively with arterial networks,

probably because on- and off-ramps do not have signal delays. Therefore the potential

for improvement from reservations is smaller.

Overall, greater capacity from AVs reduced reaction times improved travel

times in all freeway networks tested, with better improvements at higher demands.

Reduced reaction times improved travel times by almost 72% at 100% demand on

I–35. On US–290 and I–35, as with the arterial networks, the improvement from AV

reaction times increased as demand increased. These benefits are because freeways

are primarily capacity restricted. On Mopac, reaction times had a smaller impact,
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Table 4.5: Mopac results

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 50% 0% 373.9 1.61
Traditional 50% 100% 363.6 1.57

Reservations 50% 100% 409.9 1.77
Traditional 75% 0% 576.6 1.66
Traditional 75% 100% 554.9 1.6

Reservations 75% 100% 616.1 1.77
Traditional 85% 0% 667.9 1.7
Traditional 85% 25% 651.1 1.65
Traditional 85% 50% 647.8 1.65
Traditional 85% 75% 645.2 1.64
Traditional 85% 100% 644.1 1.64

Reservations 85% 100% 698.7 1.77
Traditional 100% 0% 1288.3 2.78
Traditional 100% 100% 752.1 1.62

Reservations 100% 100% 825.4 1.78

but the network overall appeared to be less congested.

We also analyzed several groups of links and nodes in depth. Links and nodes

were chosen to study how reservations affected travel times at critical intersections,

such as high demand on- or off-ramps. For these specific links, we compared average

link travel times between 120 and 135 minutes into the simulation, at the peak of the

demand. We compared human vehicles, AVs with signals, and AVs with reservations

at 85% demand, which resulted in moderate congestion. In the I–35 network, very

few changes in travel times for the critical groups of links were observed from the

different intersection controls.

The differences seemed to be greater in the US–290 corridor with more over-

all improvements in critical groupings of links near intersections. Interestingly, the

largest improvements in travel times going from traffic signals to reservations occurred

at queues for right turns onto the freeway. A possible explanation for this result is

145



that making a right turn conflicts with less traffic than going straight or making a left

turn. Although signals often combine right-turn and straight movements, reservations

could combine turning movements in more flexible ways. Although larger improve-

ments in travel times occurred at the observed right turns, improvements at left turns

were also observed. Because US–290 has signals intermittently spaced throughout its

span, vehicles are frequently stopping for signal delays. Using the reservations sys-

tem, the flow of traffic is stopped less frequently, reducing congestion. The use of AVs

rather than HVs also helped travel times but by less than reservations. In most cases,

using reservations instead of signals doubled the improvements resulting from using

AVs. Reservations appear to have a positive effect on traffic flow and congestion in

networks (freeway and arterial) that use signals to control intersections.

4.3.3 Downtown network

Downtown Austin, shown in Figure 2.15, contains the downtown grid, several

major arterials, and part of I–35 on the east side. Overall, it has 171 zones, 546

intersections, 1247 links and 62836 trips. Network and demand data was from the

Capital Area Metropolitan Organization for the AM peak.

Downtown Austin is an useful test network because flow in the downtown grid

is primarily restricted by intersections. Unlike the previous two subnetworks, down-

town Austin contains different route options for vehicles. These route choices admit

scenarios like the Braess (1968) and Daganzo (1998) paradoxes, and the paradox of

Section 3.5.1.3. We considered two scenarios: first, using traditional intersections

(traffic signals and merges/diverges), and second, replacing all intersection controls

with FCFS reservations. To compare traditional intersections and reservations, we

first solved DTA using the method of successive averages. Both scenarios were solved

to a 2% gap.

Table 4.6 shows the results from solving DTA on downtown Austin. We tested

a variety of AV proportions. Despite the increased travel time observed around the

Lamar & 38th St. intersection in the subnetwork, FCFS reservations decreased overall

travel time significantly.

Flow through the downtown grid is primarily limited by intersection conflicts.
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The travel time reductions due to FCFS were similar for each demand scenario, but

exhibited a distinct decreasing trend. At 70% demand, FCFS reservations reduced

travel time by 58.4%. At 85% demand, the decrease was 56.1%, and at 100% de-

mand, the decrease was 51.4%. At lower demands, intersections are less saturated,

and more of the intersection delay is due to vehicles waiting for a green phase at a

undersaturated intersection. FCFS can perform better than signals in these under-

saturated scenarios by allowing vehicles on conflicting turning movements (Fajardo et

al., 2011). However, as the demand increases, intersection saturation also increases,

and FCFS reservations has less room to improve over signals. As intersection satura-

tion increases, FCFS reservations are also more likely to break progression (as in the

example in Section 3.5.1.2) and/or cause queue spillback.

The examples in Section 3.5.1.1 and 3.5.2.1 rely on temporary over-saturation

on asymmetric intersections to induce greater delays. When undersaturated, FCFS

reservations can allow all vehicles to move whereas signals could still delay vehicles

as they wait for a green phase. Also, the downtown grid has few asymmetric inter-

sections. Furthermore, with many parallel links, user equilibrium route choice could

encourage vehicles to avoid high delay intersections. FCFS reservations can break

progression and/or cause queue spillback, as seen in Sections 3.5.1.1 and 3.5.2.1.

However, when considering user equilibrium behavior in the downtown grid, vehicles

will avoid congested routes due to their higher travel times, and seek less saturated

intersections. Unless a paradox like that of Section 3.5.1.3 occurs, reservations are

likely to outperform signals when the intersection is undersaturated, and route choice

in grid networks distributes demand away from high delay intersections.

Overall, these city network results suggest that despite the potential issues

described in Section 3.5, reservations can significantly reduce congestion due to inter-

sections. Previous studies have compared signals with reservations on single intersec-

tions, or small groups of intersections, but not on a city network with user equilibrium

behavior. Table 4.6 shows that even FCFS reservations have great potential to reduce

city congestion, and optimized reservations are likely to further improve travel times.
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Table 4.6: Results on downtown Austin

Intersections Demand Proportion of TSTT Travel time per
AVs (hr) vehicle (min)

Traditional 100% 0% 18040.2 17.23
Traditional 100% 25% 13371.4 12.77
Traditional 100% 50% 11522.3 11
Traditional 100% 75% 9905.1 9.46
Traditional 100% 100% 8824.7 8.43

Reservations 100% 100% 3984.3 3.8

4.3.4 Discussion

Overall, we conclude that reservations using the FCFS policy have great po-

tential for replacing signals. However, in certain scenarios – local road-arterial in-

tersections that are close together, and at high demand – signals outperform FCFS

reservations. These delays might be improved by a reservation priority policy more

suited for the specific intersection. However, reservations were detrimental when used

in place of merges/diverges. Since merges/diverges do not require the same delays

as signals, reservations have limited ability to improve their use of capacity. Fur-

thermore, the FCFS policy could adversely affect the capacity allocation. Therefore,

FCFS reservations should not be used in place of merges/diverges, but other priority

policies for reservations might be considered.

The capacity increases due to reduced reaction times improved travel times

significantly on all networks. Furthermore, regardless of the intersection control,

intersection bottlenecks mostly benefited from increased capacity. These capacity

increases arise from permitting AVs to use computer reaction times to safely reduce

following headways. Although smaller headways might be disconcerting to human

drivers in a shared-road scenario, the potential benefits demonstrated here are a

significant incentive.
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4.4 Potential benefits of empty repositioning trips

4.4.1 Planning model

This section presents a four-step planning model with feedback, using DTA to

predict travel times. Section 4.4.1.1 describes in detail the AV behaviors considered

in this model and potential policy issues with their implementation. Then, Section

4.4.1.4 formalizes the planning model.

4.4.1.1 Autonomous vehicle behaviors

We consider three types of AV-specific behaviors that may be subject to reg-

ulation or require infrastructure investments:

1. Empty repositioning trips. After dropping off a passenger, AVs can make

empty trips to avoid parking at the destination or make the vehicle available

to other household members. Although such behavior potentially results in

two vehicle trips per passenger trip, the net impact of such repositioning on

the traffic network could be positive. Repositioning trips are likely to travel

in the opposite direction than most person-trips. For instance, in the morning

peak, while most people would be traveling to the downtown region, AVs on

repositioning trips would be leaving downtown to park elsewhere. Repositioning

trips are also likely to depart near work start times, when people arrive at work.

Therefore the impact on peak hour person-trips seeking to arrive before work

begins may be small. Levin and Boyles (2015a) found that repositioning trips

cause modest increases traffic congestion in a static model. Including departure

times may reduce the predicted congestion.

Repositioning trips could also reduce traffic in areas of high workplace density.

Searching for parking accounts for 34% of congestion in urban areas (Shoup

et al., 2005), and repositioning trips do not need to park. This behavior reduces

parking-related congestion because fewer vehicles are searching for parking and

more parking spots are available for travelers choosing to park.
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However, allowing repositioning trips may be controversial from a policy per-

spective. Empty trips (or trips without a certified driver) require that the AV

be responsible for safety in any incidents that may occur. Currently AVs are

only permitted to drive on public roads under the supervision of a test driver.

Nevertheless, greater confidence in AV safety is necessary to implement con-

trol procedures such as reservations that require computer precision, so empty

repositioning trips are a considerable but not guaranteed possibility.

2. Reduced following headways. Computer reaction times will allow AVs to

follow behind vehicles at reduced distances, increasing link capacity. These

reduced reaction times have primarily been studied in microsimulation (Kesting

et al., 2010; Shladover et al., 2012). For tractability, we use the multiclass CTM

from Chapter 2 to predict the flow of mixed AV/human vehicle traffic

3. AV-specific intersection control policies. Dresner and Stone (2004, 2006b)

introduced reservation-based intersection control, which uses the greater preci-

sion and communication complexity to reduce intersection delay beyond opti-

mized signals (Fajardo et al., 2011). Although reservations may be combined

with signals for shared roads (Dresner and Stone, 2007), it was only an im-

provement over signals at high proportions of AVs. However, accelerating the

adoption of AVs by permitting behaviors such as empty repositioning trips for

travelers may allow reservation-based intersection control to be effectively used

sooner.

This section models empty repositioning trips, increased link capacity, and reservation-

based intersection control in DTA. As in Levin and Boyles (2015a), we model the

choice between parking at the destination or repositioning to the origin as a mode

choice via a nested logit model (Figure 4.3). The first level models the choice between

transit and using a personal vehicle, and the second level (for personal vehicles) mod-

els the choice between parking and repositioning. The resulting model can study how

empty repositioning affects traffic when departure times and AV traffic efficiency are

accounted for.
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Figure 4.3: Nested logit model

4.4.1.2 Cost function

The four-step DTA planning model is based on the work of Levin et al. (2016a)

with modifications for AV behavior. The generalized cost function incorporates the

arrival time penalty (Levin et al., 2016a) for endogenous departure time choice with

the addition of fuel and parking costs to capture the trade-offs between mode options

of parking, repositioning, and transit. The arrival time penalty part of the generalized

cost function, common to all modes, is

cm,time
rst (t) = αtmrs + β

(
tpref
rs − (tmrs + t)

)+
+ γ

(
(t+ tmrs)− tpref

rs

)
(4.1)

where (·)+ = max{0, ·}, tmrs is the shortest path travel time from r to s departing

at t, tpref
rs is the preferred arrival time for trips from r to s, α is the disutility per

unit of in-vehicle travel time (IVTT), and β and γ are the penalties for early and

late arrival, respectively. We use t for travel time and t for departure times because

in DTA, departure times are typically aggregated into larger ASTs whereas average

travel time can be any positive real number.
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(
tpref
rs − (tmrs + t)

)+
and

(
(tmrs + t)− tpref

rs

)
are the early and late times, respec-

tively. The preferred arrival time is specific to the origin-destination (O-D) pair.

Therefore, the cost function (4.1) admits variations such as preferred arrival time

being the work start time at the destination.

Mode-specific travel costs include other monetary fees, so α, β, and γ are cho-

sen to convert travel, early, and late time, respectively, into monetary units. Transit

(denoted TR) requires a transit fee ςTR
rst for travel from r to s departing at t, which

requires travel time of tTR
rst for transit:

cTR
rst = cTR,time

rst (tTR
rst ) + ςTR

rst (4.2)

The parking mode (PK) (where the traveler parks the car at the destination) includes

both the parking fee ςPK
s and the fuel cost ς fuel per fuel consumed Frst. Minimum-

fuel routing (ecorouting) has been studied in static traffic assignment through fuel

consumption estimation functions (Gardner et al., 2013) that are monotone increasing

with respect to flow (Levin and Boyles, 2015a). However, ecorouting in DTA with

user equilibrium behavior admits more complex fuel consumption models, and is still

an open question. Therefore Frst refers to the fuel consumed on the shortest travel

time path from r to s departing at t. The minimum travel time when driving is

denoted by tDR
rst . The parking mode cost function is as follows:

cPK
rst = cDR,time

rst

(
tDR
rst

)
+ ςPK

s + ς fuelFrst (4.3)

where DR denotes driving a personal vehicle (and either parking or repositioning).

Repositioning trips (RP) replace the parking cost with the additional fuel cost

of the return trip, which departs at t+ tDR
rst :

cRP
rst = cDR,time

rst

(
tDR
rst

)
+ ς fuelFrst + ς fuelFsr(t+tDR

rst)
(4.4)

Repositioning trips do not incur a travel time cost on the repositioning leg because

no travelers are in the vehicle. Note that the fuel cost term Fsr(t+tDR
rst )

assumes that

the repositioning trip is from s to r departing at t+ tDR
rst .
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4.4.1.3 Fuel consumption

To determine fuel costs, this section builds on the model of Levin et al. (2014)

to estimate trip fuel consumption. From CTM, vehicle speeds in each cell are es-

timated based on the time spent in the cell. Accelerations are estimated from the

differences between cell-specific speeds. Speed and acceleration are used as inputs to

road power equations (Simpson, 2005) that determine the total power required of the

engine. The power required by the wheels is the sum of four parts:

Pwheel = (Paero + Proll + Pgrade + Paccel)
+ (4.5)

=

(
1

2
ρκDAu

3 + κRRmgu+ mgeu+ kmgau

)+

(4.6)

where Paero, Proll, Pgrade, Paccel are the power components necessary to overcome aero-

dynamic resistance, rolling resistance, road grade, and to provide the required accel-

eration, respectively. ρ is the density of air, κD is the aerodynamic drag coefficient,

A is the frontal area, κRR is the rolling resistance coefficient, m is the vehicle mass,

a is the acceleration, u is the vehicle speed, g is the acceleration due to gravity, e is

the road grade (%), and k is the rotational inertia.

Using an engine efficiency model (Simpson, 2005), the wheel power required

is converted to engine power:

Pactual = Pengine + Pengine loss (4.7)

Engine power is the sum of wheel power, drive loss, and accessory power

Pengine = Pwheel + Pdrive loss + Paccessory+ (4.8)

= Pwheel +
1− etrans

etrans

(Pwheel + mkau) + Paccessory (4.9)

and engine loss is defined by

Pengine loss =
1− eengine

eengine

Pengine (4.10)
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where etrans and eengine are the efficiencies of the transmission and engine, respectively.

Each time step of the CTM simulation, we calculate Pactual based on speed and

acceleration estimations. Fuel consumption is estimated using 36.44 kW/gal as the

energy content of gasoline.

4.4.1.4 Four-step planning model

We refer to McNally (2008) for a detailed discussion of the steps of the four-step

model. Let Zbe the set of zones. Trip generation typically uses a regression on survey

data to determine productions Pr and attractions As for all r, s ∈ Z. For this section,

we assume that the productions and attractions are given. The remaining three steps

are performed iteratively in a feedback loop to adjust trip and mode choice in response

to traffic network conditions. This iterative process is illustrated in Figure 4.4 (Levin

et al., 2016a). Departure times are grouped into a set of assignment intervals T. Then

trip distribution determines ODT specific demand Vrst proportional to productions,

attractions, and a monotone decreasing friction function φ(·) on the minimum travel

cost of any mode, denoted crst = min
{
cPK
rst , c

RP
rst , c

TR
rst

}
:

Vrst = ηrµsPrAsφ(crst) (4.11)

where µs and ηr are adjusted iteratively to

µs =
As∑

r∈Z

∑
t∈T

Vrst
(4.12)

ηr =
1∑

s∈Z

∑
t∈T

[µsAsφ(crst)]
(4.13)

to ensure consistency with total productions and attractions. Consistency requires

that for all s ∈ Z,
∑
r∈Z

∑
t∈T

Vrst = As and for all r ∈ Z,
∑
s∈Z

∑
t∈T

Vrst = Pr. The assign-

ment interval index with the incorporated arrival time penalty results in endogenous

departure time choice (Levin et al., 2016a).

Mode choice is determined by a nested logit function (Figure 4.3) as in Levin
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Figure 4.4: Four-step planning model with endogenous departure time choice (Levin
et al., 2016a)
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and Boyles (2015a) to avoid a disproportionate number of travelers choosing personal

vehicle modes, due to the independence of irrelevant alternatives property of the

multinomial logit model. The outer logit model chooses between transit and driving,

and the inner logit chooses between parking and repositioning trips. Formally,

VTR
rst =

exp
(
ψTR − cTR

rst

)
min {exp (−cPK

rst ) , exp (ψRP − cRP
rst )}+ exp (ψTR − cTR

rst )
Vrst (4.14)

VPK
rst =

exp
(
−cPK

rst

)
exp (−cPK

rst ) + exp (ψRP − cRP
rst )

(
Vrst − VTR

rst

)
(4.15)

VRP
rst = Vrst − VTR

rst − VRP
rst (4.16)

where ψm is the alternative specific constant for mode m and ψPK is set to 0 be-

cause only relative differences are relevant. When repositioning trips are not allowed,

VPK
rst = Vrst − VTR

rst .

To determine travel times for each mode, we solve DTA. DTA itself has received

considerable attention in the literature; for a review see Chiu et al. (2011). To model

AVs, DTA must be augmented with multiclass link flow (Chapter 2) and reservation-

based intersection control (Chapter 3).

4.4.1.5 Feedback process

Trip distribution and mode choice depend on travel costs from DTA, and travel

costs themselves depend on vehicle trips. Therefore the latter three steps of the four-

step model are performed in a feedback loop (Figure 4.4). The method of successive

averages (Boyce et al., 1994; Guo et al., 2010) is used for the feedback process. Evalua-

tion of convergence is necessary to understand how the planning framework performs

over multiple iterations. Pool (2012) and Levin et al. (2016a) used the root mean

squared error (RMSE) (Boyce et al., 1994) to measure convergence. The RMSE is
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defined as

εRMSE =

√√√√√ ∑
(r,s,t)∈(Z2×T)

(Vrst(i+ 1)− Vrst(i))
2

|Z2 × T|
(4.17)

where Vrst(i) is the demand from r to s departing at t at the ith iteration of the four-

step model. A gap function might be a more useful measure of convergence. However,

four-step planning with integrated DTA models is still an open area of research, and

an appropriate gap function has yet to be determined.

4.4.2 Experimental results

This section uses the downtown Austin network with 88 zones, 634 nodes, 1574

links, 62836 trips, and 84 bus routes, to compare the impacts of different combinations

of permitted behaviors. The preferred arrival times were fixed per destination and

sampled from a normal distribution with a mean of 8:30am and a standard deviation

of 15 minutes. In the lack of more specific data, parking costs were set at 5$ per node

per day. (There was no parking cost for repositioning).

Our results show the following:

1. When travelers own AVs to make repositioning trips (and use conventional vehi-

cles when parking at the destination), allowing repositioning trips can decrease

congestion due to the efficiency of AVs.

2. When all travelers use AVs, regardless of whether they park or reposition to the

origin, the congestion caused by allowing repositioning trips is still less than the

congestion using 100% conventional vehicles.

In addition, the results discuss useful measures for evaluating the effects of AV behav-

iors on the roads and demonstrate the importance of DTA in predicting the impact

of repositioning trips. However, the results are specific to the downtown Austin net-

work and may differ for other cities depending on topology and transit options. The

framework presented in Section 4.4.1 may be used to determine the best policies for

specific cities.
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Figure 4.5: Convergence of the four-step model

4.4.2.1 Convergence

First, the convergence of the proposed framework is verified. Levin et al.

(2016a) demonstrated that the four-step model without any AV behaviors converges

to the expected solution. Figure 4.5 shows that when all three AV behaviors (link ca-

pacity improvements, reservation-based intersection control, and repositioning trips)

were used, then the four-step model similarly converged. Similarly, DTA converged

for each scenario, although the convergence pattern was not monotone (Figure 4.6).

Computation times on an Intel Xeon processor at 3.47 GHz averaged 19.8 minutes

per iteration. After 15 iterations, requiring less than 5 hours for this city network, a

high degree of convergence was achieved.

4.4.3 Mixed traffic

We first show that in a mixed traffic scenario, allowing repositioning trips can

decrease congestion by encouraging use of AVs. We study three mode options in the

mixed traffic environment:

1. Drive a conventional vehicle and park at the destination.
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2. Drive an AV and reposition to the origin (if repositioning trips are allowed).

3. Transit (bus).

This scenario models the transition period from conventional vehicles to AVs. Trav-

elers who plan to reposition purchase AVs, but travelers who plan to park still use

conventional vehicles. If repositioning trips are not allowed, all travelers choose be-

tween transit and driving a conventional vehicle and parking at the destination.

Overall, average travel times per vehicle trip decreased from 14.75 minutes to

10.01 minutes when repositioning was allowed (Table 4.7). This decrease occurred

despite a massive increase in vehicular demand. The total number of vehicle trips

(including empty repositioning trips) increased from 57550 when repositioning trips

were not allowed to 86777 with repositioning allowed (Table 4.7). The increase was

primarily due to repositioning demand requiring two vehicle trips instead of one. In

addition, transit demand decreased slightly when repositioning was allowed, from 5377

to 4744 total trips (Table 4.8). A major cause of this reduction is the lack of parking

cost when the repositioning mode is used. Nevertheless, transit demand decreased

more at later departure times — past 8:15am (Figure 4.7). At later times, a greater

proportion of active vehicles were repositioning trips returning to the origin. The
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Table 4.7: Overall travel times for vehicle trips

Scenario Repositioning Total travel Average travel time Total
allowed? time (hr) per vehicle (min) vehicles

Mixed traffic no 14143.2 14.75 57550
yes 14483.0 10.01 86777

100% AVs no 4670.8 4.77 58736
yes 11103.9 7.27 91638

Table 4.8: Total transit demand

Scenario Repositioning allowed? Total transit demand
Mixed traffic no 5377

yes 4744
100% AVs no 4511

yes 3930

higher proportion of AVs also decreased travel congestion, making transit a relatively

less efficient option.

The peak hour distributions were surprisingly similar with and without repo-

sitioning trips (Figure 4.8). Vehicular demand peaked at around 8:15am with and

without repositioning, although allowing repositioning trips skewed the distribution

slightly to the right. Repositioning trips were assumed to depart immediately after

the traveler arrived at his or her destination. Therefore, most of the additional vehic-

ular demand is the return leg of repositioning trips for travelers that departed early.

Because of the similarity in the vehicular demand distributions, conventional and au-

tonomous vehicles were sharing the road during most of the peak period. Therefore,

the observed decrease in average travel times is due to the greater efficiency of AVs.

To study how repositioning affected the peak period, we also compared average

link speed ratios at different times. The speed ratio for link l at time t, ũl(t), is defined

as follows:

ũl(t) =
ūl(t)

uf
l

(4.18)

where ūl(t) is the average observed speed on link l at time t and uf
l is the free flow

speed of link l. Figures 4.9 and 4.10 show the speed ratios for the mixed traffic
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Figure 4.8: Vehicle trip distribution for the mixed traffic scenario
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Figure 4.9: Average link speed ratios for mixed traffic without repositioning

scenarios without and with repositioning, respectively. We grouped the links into

three categories for comparison: local roads, arterials and collectors, and freeways.

For much of the peak period (7:00am to 9:00am) the speed ratios were very

similar with and without repositioning. Local roads had the highest speed ratio, likely

because the low speed limit and capacity of local roads meant that most local road

traffic was for centroid access. Freeway links were moderately congested because the

freeway corridor is a highly used route for downtown access. Arterial and collector

links, which make up most of the downtown region, had a relatively low speed ratio

due to intersection delays.

The speed ratios exhibited a surprising pattern after 9:00am. Despite the

additional vehicular demand from repositioning trips returning to the origin (Figure

4.8), speed ratios were actually higher with repositioning. This result is because with

repositioning, after 9:00am a high proportion of traffic on the roads was AVs returning

to the origin. Without repositioning, traffic after 9:00am was travelers still trying to

reach work due to congestion. Therefore, allowing repositioning trips could actually

reduce the duration of the peak hour congestion.
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Figure 4.10: Average link speed ratios for mixed traffic with repositioning

4.4.3.1 All autonomous vehicle traffic

The mixed traffic scenario of Section 4.4.3 is ultimately likely to be temporary.

Eventually, most vehicles in use will be autonomous. Although allowing repositioning

trips in the mixed traffic scenario could decrease congestion by encouraging AV use,

it is important to study the congestion resulting from allowing repositioning after

all vehicles are autonomous. Therefore, we considered a 100% AV scenario with the

following mode choices:

1. Drive an AV and park at the destination.

2. Drive an AV and reposition to the origin (if repositioning trips are allowed).

3. Transit (bus).

This differs from the mixed traffic scenario in that travelers who park at the destina-

tion still use an AV with the corresponding traffic efficiency improvements. Since all

vehicles were autonomous, intersections were controlled by reservations (Chapter 3)

instead of traffic signals.

Table 4.7 shows that for the 100% AV scenario, average travel times increased

from 4.77 minutes to 7.27 minutes when repositioning was allowed. This result is
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Figure 4.11: Vehicular demand distribution for the 100% AV scenario

due to the significant increase in the total vehicular demand from 58736 trips to

91638 trips. Part of the increase in vehicular demand was due to the decrease in

transit demand (Table 4.8), again because repositioning avoids parking costs. Unlike

in the mixed traffic scenario, the decrease in transit demand was fairly steady across

all departure times due to the reduced congestion (Figure 4.12). As with the mixed

traffic scenario, the shape of the vehicular demand distribution remained similar when

repositioning is allowed (Figure 4.11). Therefore, the existing network infrastructure

was able to handle the higher demand from repositioning trips with acceptable level of

service due to the greater capacity and intersection efficiency from AVs. Nevertheless,

Table 4.7 shows that the level of service with repositioning trips and 100% AVs is

still better than in the mixed traffic scenarios.

Average link speed ratios with 100% AVs differed considerably from the mixed

traffic scenarios. Congestion on local roads was much lower, and local roads had very

little congestion after 9:15 AM. Similarly, arterial and collector road delays were

significantly reduced because intersections were controlled by reservations instead of

traffic signals. However, freeway congestion remained similar because merges/diverges

were little improved by reservations.
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Figure 4.12: Transit demand distribution for the 100% AV scenario

When repositioning trips were not allowed, speed ratios exhibited a significant

increase around 9:15 AM. This increase was much more pronounced in the 100% AV

scenario than in the mixed traffic scenario. Due to the reduced congestion from 100%

AVs, most vehicles could exit by 9:00 AM (which was the latest preferred arrival

time). Therefore, little demand remained after 9:00 AM. When repositioning was

allowed, a significant number of vehicles were still returning to the origin after 9:00

AM, so speed ratios were lower. However, congestion steadily decreased from 9:15 AM

to 9:45 AM. Therefore, allowing repositioning unsurprisingly extended the duration

of the peak hour congestion when all vehicles were AVs. However, overall congestion

was still lower than in any of the mixed traffic scenarios.

4.4.3.2 Policy implications

From the perspective of a policymaker, repositioning trips has several advan-

tages: repositioning can be beneficial to travelers by allowing them to share vehicles

with their household. Also, repositioning can reduce the amount of parking required

downtown. Repositioning comes at a cost, though — every traveler using reposition-

ing creates two vehicle trips instead of one. Allowing repositioning results in large
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Figure 4.13: Average link speed ratios for 100% AVs without repositioning
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Figure 4.14: Average link speed ratios for 100% AVs with repositioning
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increases in the number of vehicle trips.

However, AVs are also more efficient than conventional vehicles. Section 4.4.3

shows that the greater efficiency of AVs can reduce congestion when repositioning

encourages travelers to purchase AVs. Although repositioning resulted in many more

vehicle trips, the additional demand was more than offset by the improved efficiency.

In fact, allowing repositioning trips could reduce the duration of the peak hour con-

gestion. Most of the traffic on the road at later times could be AVs repositioning

to parking instead of travelers departing late to avoid earlier congestion. Even after

all travelers switch to AVs (Section 4.4.3.1), the congestion caused by allowing repo-

sitioning trips is less than congestion with 100% conventional vehicles. Therefore,

policymakers should consider allowing repositioning trips because repositioning could

accelerate adoption of AVs and correspondingly reduce congestion.

4.5 A general framework for modeling shared autonomous

vehicles

This section presents a framework for modeling SAVs behavior in the DNL

model. SAV behaviors differ from personal vehicle travel as follows:

• With personal vehicles, each traveler drives a vehicle from the origin to the

destination, then is assumed to park at the destination. Travelers choose routes

to minimize their own travel time, resulting in a DUE in which no vehicle can

improve travel cost by changing routes.

• With SAVs, all travelers are serviced by SAVs, and no personal vehicles are

used. When travel demand is ready to depart, an SAV drives to the origin,

takes the traveler to the destination, and then becomes available to service

other demand. This behavior may result in some empty repositioning trips

to reach travel demand, but the total number of vehicles on the road may be

reduced.

Mixed scenarios of SAVs and personal vehicles are more general and realistic. How-

ever, it is not yet known how to incorporate SAV behaviors into DTA with personal
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vehicles.

Naturally, SAV behavior raises cost and security issues. SAVs are essentially a

fleet of driverless taxis, and replacing personal vehicles with taxis is not cost-effective

for most travelers. However, because SAVs are driverless, the cost of travel is much

less and is more similar to the costs of vehicle ownership (Fagnant et al., 2015). SAVs

may also raise security concerns due to their vulnerability to hacking. However,

security issues with SAV implementation are outside the scope of this dissertation.

Complete replacement of personal vehicles by SAVs has been studied by previous

work (Fagnant and Kockelman, 2016; Fagnant et al., 2015), and the purpose of this

section is to improve the accuracy of such models. The contributions of this section

are as follows:

1. We propose an event-based framework for implementing SAVs in existing traffic

models. This framework can be adapted for macro-, meso-, or micro-scopic flow

models. Our results show that SAVs can cause significant congestion, so using

realistic traffic flow models is necessary for accurate estimations of SAV level of

service. Therefore, future work on SAVs should consider using this framework

or others to incorporate realistic network models.

2. We demonstrate this framework by studying congestion when SAVs are used to

service all travelers, using CTM to propagate flow. We also describe and study

a heuristic for dynamic ride-sharing on the downtown Austin city network and

compare it with personal vehicle results from DTA.

3. We compare SAV scenarios (including dynamic ride-sharing), with personal

vehicle scenarios. Overall, results show that a smaller SAV fleet can service

all travel demand in the AM peak. However, some SAV scenarios also in-

creased congestion because of the additional trips made to reach travelers’ ori-

gins. Therefore, it is important to model congestion when studying SAVs to

attain realistic estimates of quality of service. Furthermore, SAVs may be less

effective than previously predicted for peak hour scenarios. Nevertheless, SAVs

with dynamic ride-sharing provided service comparable to personal vehicles.
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4.5.1 Shared autonomous vehicle framework

This section presents a general framework for dynamic simulation of SAVs

to admit the latest developments in traffic flow modeling and SAV behavior. The

framework is built on two events that can be integrated into most existing simulation-

based traffic models. The purpose of this framework is to encourage future studies

on SAVs to make use of existing traffic models for effective comparisons with current

traffic conditions. As the case study will demonstrate, replacing personal vehicles

with SAVs for the same number of travelers could increase congestion. To determine

whether SAVs are beneficial, it is therefore necessary to compare SAV and personal

vehicle scenarios in the same traffic model.

This section discusses the key events defining this framework and the types

of responses they warrant. However, the specific responses depend on the dispatcher

logic, and for generality this framework does not require specific dispatcher behaviors.

Section 4 discusses the dispatcher logic used in our case study, including dynamic

ride-sharing.

This framework is based on a traffic simulator operating on a traffic network.

The network has a set of SAVs V that provide service to the travel demand D. Note

that D is in terms of person trips, not vehicle trips, since travelers will be serviced

by SAVs. The integration of the framework with the traffic simulator is illustrated

through the simulator logic in Figure 4.15, with simulator time t and time step ∆t.

Events and responses are indicated with double lines; the remainder is the standard

traffic simulator. The simulation steps are grouped into three modules: 1) demand; 2)

SAV dispatcher; and 3) traffic flow simulator. The remainder of this section discusses

these modules in greater detail.

4.5.1.1 Demand

The demand module introduces demand into the simulation. At each time t,

the demand module outputs the set of travelers that request a SAV at t. (This output

does not include already waiting travelers.) The demand module of existing traffic

simulators may be adapted for this purpose, with the caveat that the demand is in
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Figure 4.15: Event-based framework integrated into traffic simulator
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the form of travelers, not personal vehicles. If new demand appears at t, the new

demand triggers the corresponding event: a traveler calls a SAV.

Because SAV actions are triggered by a traveler calling a SAV, this framework

admits a very general class of demand models. The major requirement is that demand

must be separated into packets that spawn at a specific time with a specific origin and

destination. Although this section primarily refers to demand as individual travelers,

these packets could also represent a group of people traveling together. Demand

cannot be continuous over time because that would trigger a very large number of

events. However, in our case study demand and traffic flow are simulated at a timestep

of 6 seconds, which is demonstrated to be computationally tractable for city networks.

As a result, this framework can handle both real-time and pre-simulation de-

mand generation. Real-time demand may be randomly generated every simulation

step, triggering the event of a traveler calling a SAV when the demand is created. For

models with dynamic demand tables, each packet of demand spawns at its departure

time and calls a SAV then. In addition, if demand is assumed to be known prior

to its departure time, SAVs may choose to preemptively relocate before the traveler

appears. However, this relocation requires that travelers plan ahead to schedule a

SAV before they depart. A less restrictive assumption is that the productions at

each zone are known, and SAVs may preemptively relocate in response to expected

travelers. This behavior requires less specific information about the traveler, and trip

productions are usually predicted by metropolitan planning organizations.

4.5.1.2 SAV dispatcher

This framework assumes the existence of a central SAV dispatcher that knows

the status of all SAVs and can make route and passenger assignments. With the

range of wireless communication available today, the existence a central dispatcher is

a reasonable assumption for SAVs. However, if desired the dispatcher logic could also

be chosen to simulate SAVs making individual decisions on their limited information.

The SAV dispatcher module determines SAV behavior, including trip and route

choice, parking, and passenger service assignments. The dispatcher operates as an

event handler responding to the events of a traveler calling a SAV or a SAV arriving
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at a centroid, and takes as input the event details. The dispatcher is responsible for

ensuring that all active travelers are provided with SAV service.

The output of the dispatcher are the SAV behaviors in response to the event.

These include SAV vehicle trips (which are passed to the traffic flow simulator),

passenger pick-up and drop-off, and parking SAVs that are not needed. At any given

time, each SAV is either parked at a centroid or traveling. If a SAV is parked, its

exact location must be known.

This framework is event-based, meaning that SAV actions are assigned when

one of the following events occurs:

1. A traveler calls a SAV.

2. A SAV arrives at a centroid.

The first event is triggered in response to demand departing (or requesting to depart),

and the second is in response to a SAV completing its assigned trip. These can be

implemented in most simulation-based frameworks. Instead of a traveler departing

by creating a personal vehicle, the traveler calls a SAV. When a SAV completes travel

on a path (which should end in a centroid), its arrival also triggers an event so the

simulator can check for arriving or departing passengers at that centroid and assign

the SAV on its next trip.

A traveler calls a SAV When a traveler d ∈ D calls a SAV, the dispatcher should

ensure that the demand will be satisfied by a SAV. Satisfying demand could occur in

several ways:

1. If an empty SAV v ∈ V is parked at d’s origin, the dispatcher might assign v to

immediately pick up d.

2. If an empty SAV v ∈ V is parked elsewhere, the dispatcher may assign v to travel

to d’s origin. In this case, the dispatcher might choose to wait to optimize the

movement of SAVs. For instance, Fagnant and Kockelman (2014) use a heuristic

to move SAVs to a closer waiting traveler rather than the first waiting traveler.
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The dispatcher might also change the path of a traveling SAV to handle the

demand.

3. If a SAV v ∈ V is inbound to d’s location, the dispatcher might assign v to

service d if possible. However, the dispatcher should consider v’s estimated

time of arrival (ETA). If v’s ETA results in unacceptable waiting time for d,

the dispatcher may also send an empty SAV to d to reduce waiting time.

Regardless of the conditions chosen for each action, the dispatcher must ensure that

the demand will be handled.

A SAV arrives at a centroid When a SAV v ∈ V arrives at a centroid i ∈ Z, it

has finished its assigned trip. Its arrival should result in two types of actions. First,

if v is carrying any travelers destined for i, they should exit v. Second, the dispatcher

should assign v to park at i or depart on another trip. There are several possibilities

for this assignment:

1. If v still has passengers, it should continue to the next destination. If ride

sharing is allowed and the capacity of v permits it, other passengers at i may

wish to take v to reduce their waiting time.

2. If v is empty, and a traveler d ∈ D is waiting at i for a SAV, it is reason-

able to assign v to accept d. v may then proceed directly to d’s destination

or, if dynamic ride-sharing is allowed, to another centroid to pick up another

passenger.

3. If no travelers are waiting at i and v is empty, the dispatcher might assign v to

pick up a traveler at a different centroid.

4. The dispatcher could also assign v to wait at i until needed for future demand,

contingent on parking availability.

5. Finally, the dispatcher might assign v to preemptively relocate to handle pre-

dicted demand.
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The conditions given above are reasonable but may not be necessary. Optimizing the

assignment of actions for the existing and predicted demand could use the possible

actions in different ways. For example, v might be assigned to park at i to wait for the

expected demand even if v is already carrying passengers. This optimization problem

is similar to the class of vehicle routing problems, which are NP-hard. Therefore,

solving this optimization is outside the scope of this dissertation, but later sections

will present a heuristic.

4.5.1.3 Traffic flow simulator

The traffic flow simulator takes as input SAV trips and their departure times

and determines the arrival times of SAVs at centroids. The primary output of the

simulator is to trigger the event that an SAV arrived at a centroid at the appropriate

time.

Because the SAV framework is built on the events of a traveler calling a SAV,

and a SAV arriving at a centroid, the framework admits many flow propagation

models. The major requirement is that the model be integrated into simulation.

After departing, a SAV travels along its assigned path until reaching the destination

centroid, at which point it triggers the arrival event. Therefore, the framework must

track the SAV travel times to determine arrival times, but its travel time may be

evaluated by a variety of flow models. For instance, the travel time could be set as a

constant or through link performance functions. SAV movement may also be modeled

through micro- or meso-simulation. Any stochasticity in the traffic flow model is

compatible with this framework because the SAV triggers the event only after it

arrives at its destination. Note that this framework is compatible with other vehicles

on the road affecting congestion through link performance functions or simulation-

based flow propagation.

Therefore, this SAV framework can be implemented with existing traffic mod-

els by modifying them to trigger demand and centroid arrival events. To demonstrate

this flexibility, the case study in Section 4.5.2 implements this framework on the dy-

namic network loading model developed in Chapters 3 and 2.
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4.5.2 Case study: framework implementation

This section describes the implementation of the SAV framework on a cell

transmission model-based traffic simulator. Although Section 4.5.1 discussed how

to implement SAVs in existing traffic simulators, the responses of the dispatcher to

events were not specified for generality. The purpose of this section is to describe the

specific traffic flow simulator and dispatcher logic used in our case study, including the

heuristics for dynamic ride-sharing. Results using this implementation are presented

in Section 4.5.3.

This case study assumes that all vehicles are SAVs: travelers do not have

personal vehicles available. This assumption was chosen to study the feasibility of

switching to an entirely SAV-based travel model. Furthermore, a mix of SAVs and

personal vehicles would complicate the route choice. Finding routes for personal

vehicles would require solving DTA, and the many simulations needed to solve DTA

would add computation time and complexity to the theoretical model.

4.5.2.1 Demand

This case study used personal vehicle trip tables from the morning peak to

determine SAV traveler demand. Each vehicle trip was converted into a single traveler

trip with the same origin, destination, and departure time. Although some of these

vehicle trips may encompass multiple person trips, that information was not available.

Furthermore, multiple persons using the same vehicle would likely use the same SAV.

Therefore, it would only affect situations in which SAV capacity was a limitation,

such as dynamic ride-sharing.

For each trip, the demand module creates a traveler at the appropriate time.

Although the demand is fixed, the SAV dispatcher is not programmed to take ad-

vantage of demand information. The dispatcher only responds to demand when a

traveler was created.

In reality, travelers have more choices available. They could request a SAV

in advance, specify time windows for departure or arrival, or change their departure

time in response to expected travel times.
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4.5.2.2 Traffic flow simulator

The traffic flow simulator uses the CTM and flow-density relationship de-

veloped in Chapter 2. Because all vehicles are SAVs, intersections were controlled

using the reservation-based protocol of Dresner and Stone (2004, 2006b) for AVs.

For computational tractability, the simulator used the conflict region node model of

reservation-based intersection control of Chapter 3.

CTM has been used in, and allows direct comparisons with, large-scale meso-

scopic DTA simulators (Ziliaskopoulos and Waller, 2000). DTA models (Chiu et al.,

2011) typically assume that route choice is based on driver experience. Each vehicle

individually seeks its shortest route, resulting in a DUE. DTA algorithms typically

consist of three steps, performed iteratively, to find a DUE assignment (Levin et al.,

2015b). First, shortest paths are found for all origin-destination pairs. Then, a frac-

tion of demand is assigned to the new shortest paths. Finally, travel times under the

new assignment are evaluated through a mesoscopic flow model such as CTM.

Although DUE is based on the analytical STA models, it requires further study

to be formulated for SAV behavior due to stochasticity in the SAV trip table. We

assume that the SAV dispatcher does not know travel demand or SAV travel times

perfectly. Therefore, the list of free SAVs at any given time is stochastic, which results

in uncertainty in which SAV will be used to service new demand.

Therefore, we use a DNL-based route assignment. Let πrs be the path stored

by the dispatcher for travel from r to s. When a SAV departs to travel from r to s, it

is assigned to the stored path πrs. During simulation, when t ≡ 0 mod ∆T, where

∆T is the update interval, πrs is updated to be the shortest path from r to s based

on average link travel times over the interval [t−∆T, t). Our experiments use ∆T=

1 minute. Note that the path update interval (∆T= 1 minute) is different from the

traffic flow simulation time step (∆t = 6 seconds).

4.5.2.3 SAV dispatcher

This section describes the specific logic used to assign SAVs in our case study.

Although the algorithm used here is only a heuristic for the vehicle routing problem
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of servicing all travelers, vehicle routing problems in general are NP-hard and solving

them in real time is unrealistic. Instead, we describe reasonable behaviors that SAVs

could choose.

A traveler calls a SAV When a traveler d ∈ D calls a SAV at centroid i ∈ Z,

the dispatcher first checks whether there are any SAVs already enroute to i. If a SAV

enroute to i is free, or will drop off its last passenger at i, and its ETA at i is less

than 10 minutes away, that SAV is assigned to service d. These checks are made to

reduce congestion resulting from sending more SAVs. (As Section 5 will demonstrate,

moving SAVs more frequently can result in a net travel time increase while decreasing

waiting times due to congestion.) If there are multiple travelers waiting at i, travelers

are serviced in a FCFS order — with some exceptions for dynamic ride-sharing.

Therefore, we look at the ETA of the SAV that would be assigned to d, if one exists.

Otherwise, we search for the parked SAV that is closest (in travel time) to i. If

it could arrive sooner than the ETA of the appropriate enroute SAV, it is assigned to

travel to i to provide service to d. This heuristic is a FCFS policy: the traveler that

requests a SAV first will be the first to get picked up, even if the SAV could sooner

reach a traveler departing later. Although Fagnant and Kockelman (2014) initially

restricted SAV assignments to those within 5 minutes of travel to improve the system

efficiency, FCFS is also a reasonable policy for dispatching SAVs. If all SAVs are

busy, then d is added to the list of waiting travelers W.

A SAV arrives at a centroid If a SAV v ∈ V is free after reaching centroid i ∈ Z

(either because v is empty, or because v drops off all passengers at i), and there

are waiting travelers at i, then it is assigned to carry the longest waiting traveler.

Note that v may not be the same SAV that was dispatched to that traveler. Due to

stochasticity in the flow propagation model, it is possible that the order of arrival of

SAVs may differ. However, there is no significant difference between two free SAVs

in terms of carrying a single traveler. Therefore, we assign them to travelers in FCFS

order.

If v still has passengers after reaching i (which is possible when dynamic ride-
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sharing is permitted), then v is assigned to travel to the next passenger’s destination.

However, travelers waiting at i have the option of entering v if it makes sense for their

destination. Ride-sharing is discussed further in Section 4.5.2.4.

If v is free after reaching i and no demand is waiting at i, then v is dispatched

to the longest-waiting traveler in W. If multiple SAVs become free at the same time,

the one closest to the longest-waiting traveler in Wwill be sent. If W is empty, then

v will park at i until needed. We assume for this study that centroids have infinite

parking space, as there are no personal vehicles in this network. However, it would be

possible to model limited parking by assigning v to travel somewhere else if parking

was not available at i.

4.5.2.4 Dynamic ride-sharing

We also consider the possibility of dynamic ride-sharing. Following the prin-

ciple of FCFS, we give precedence to the longest-waiting traveler. However, we al-

low other passengers to enter the SAV if they are traveling to the same, or a close

destination. Specifically, suppose that the SAV v ∈ V is initially empty, and the

longest-waiting traveler at i ∈ Z is d0, traveling from i to j ∈ Z. If there is another

traveler d1 also traveling from i to j, then d1 may take the same SAV. If there is a

traveler d2 traveling from i to k ∈ Z, and there is room in the SAV, d2 will also take

the same SAV if the additional travel time is sufficiently low. Let tij be the expected

travel time from i to j. Then d2 will take the SAV if tij + tjk ≤ (1 + ε)tik. Otherwise,

d2 will wait at i. If d2 decides to take the SAV, then any other waiting travelers at i

also traveling from i to k may enter the SAV. Although ride-sharing violates FCFS,

it is permitted because it does not impose any additional travel time on the SAV.

This offer is extended, in FCFS order, for all travelers waiting at i until v is

full. For instance, suppose a passenger d3 departing after d2 is traveling from i to

l ∈ Z. Because of FCFS, v must service d2 first, but if tij + tjk + tkl ≤ (1 + ε)til, then

d3 will still take SAV v from i.

The logic is slightly different when v arrives at i already carrying a passenger.

In that case, precedence is given to all passengers already in v because they have been

traveling. However, travelers in i may enter v — at the back of the queue — if the
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additional travel time is less than ε of the direct travel time.

The problem of dynamic ride-sharing is a vehicle routing problem with all

SAVs. In general, vehicle routing problems can admit solutions in which a SAV picks

up several passengers before dropping any off. The heuristic in this case study is more

limited due to complexity, although that behavior could certainly be implemented

within this framework. In practice, due to the necessity of tractability when solving

vehicle routing problems in real-time in response to demand, similar simple heuristics

are likely to be used. Even with this restricted form of dynamic ride-sharing, the

benefits over non-ride-sharing SAVs are significant, as shown in Section 4.5.3.

4.5.3 Case study: experimental results

We performed several sets of experiments to study how SAVs (Sections 4.5.3.2

and 4.5.3.3) perform relative to personal vehicles (Section 4.5.3.1), and how the dy-

namic ride-sharing heuristic affects performance. Our experiments were performed on

the downtown Austin network, shown in Figure 2.15. The centroids are significantly

disaggregated for this downtown region, so we did not include intra-zonal trips in

the trip table. The data was provided by the Capital Area Metropolitan Planning

Organization.

Downtown Austin is only a subnetwork of the larger Austin region, which has

1.2 million trips. This subnetwork was used because computation times were around

30–40 seconds per scenario on an Intel Xeon running at 3.33 GHz (implemented

in Java), allowing many scenarios to be studied. However, many trips bound for the

downtown grid originate from outside the subnetwork region. We approximated them

as arriving from one of the subnetwork boundaries.

Initially, SAVs were distributed proportionally to productions: centroid i ∈ Z

started with

|Vi| = |V|
Pi∑

i′∈Z
Pi′

(4.19)

parked SAVs. Fagnant and Kockelman (2014) used a seeding run to determine the

minimum number of SAVs necessary to service all travelers. However, a seeding

run may have biased the number of SAVs to be lower. Instead of a seeding run,
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we performed sensitivity analyses to study how increasing numbers of SAVs affected

level of service. In some scenarios (such as dynamic ride-sharing) we observed that

fewer numbers of SAVs performed better due to lower congestion. In other scenarios,

greater numbers of SAVs improved service. The following charts contain experiments

using between 1000 and 60,000 SAVs, with increments of 500. For some scenarios,

the range was reduced to numbers of SAVs that could provide service to all travelers

within 6 hours because service was limited by having too few SAVs or too much

congestion.

4.5.3.1 Personal vehicles

For comparison, we also considered two personal vehicle scenarios on the down-

town Austin network:

1. All travelers drive personal non-autonomous vehicles. This scenario represents

current traffic conditions, and represents a base case.

2. All travelers use personal AVs, and use AV capacity and intersection improve-

ments. This scenario is an alternative to SAVs in which travelers own the AVs.

For the private vehicle scenarios, we assumed that travelers chose routes to minimize

their own travel time, resulting in a DUE. Therefore, we used DTA to find route

choice for personal vehicle scenarios.

One potential issue with comparing these personal vehicle scenarios with SAVs

is the different methods used for route choice. For personal vehicles, we assumed

DUE behavior, and for SAVs, we assumed DNL behavior determined by the SAV

dispatcher. DUE is widely accepted for modeling personal vehicle behavior (Chiu

et al., 2011). DNL was used for SAVs because the SAV dispatcher is modeled to react

to travel demand as it appears. Therefore, to handle stochastic demand, the SAV

dispatcher should rely on current rather than historical traffic conditions in its route

assignments. (Furthermore, a traffic assignment problem has not been formulated for

SAVs, and consequently it is not known how to solve DTA for SAVs.)

Results from personal vehicle scenarios are shown in Table 4.9. Overall, when

using personal vehicles with traffic signals, travelers experienced an average travel
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Table 4.9: Results from personal vehicle scenarios

Scenario Avg. travel time Vehicle miles traveled
Personal conventional vehicles 15.24 min 146096 mi
Personal autonomous vehicles 4.12 min 142455 mi

time of 15.24 minutes. When signals were replaced with reservation controls, av-

erage travel times were reduced to 4.12 minutes. Since the adoption of reservation

controls may be difficult or inefficient if a significant proportion of personal vehicles

are not autonomous, both personal vehicle scenarios may be reasonable for compar-

ison against SAVs. We assume that if SAVs were to replace all personal vehicles,

reservation controls would be used.

4.5.3.2 Shared autonomous vehicles

The initial SAV scenario did not include dynamic ride-sharing. Figure 4.16

shows travel time results with 17,500 to 60,000 total SAVs available. Fewer numbers

of SAVs were found to be insufficient to service the 2 hours of travel demand after

6 hours. Greater numbers of SAVs reduced both waiting time and in-vehicle travel

time. With more SAVs, more vehicles were available near traveler origins, and fewer

empty repositioning trips reduced congestion.

As the number of SAVs increased, waiting time decreased consistently, al-

though with diminishing returns. With 39,500 or more SAVs, average waiting times

were below 1 minute. Waiting times approached 0 because SAVs were assumed to

be initially distributed according to trip productions. Therefore, with 62,836 or more

SAVs, waiting times would be 0. Of course, one of the goals of SAVs is to reduce the

total number of vehicles in (Fagnant and Kockelman, 2014).

Because the demand is from the AM peak, much of the waiting time results

from SAVs carrying travelers to the downtown region then making an empty repo-

sitioning trip to the next traveler’s origin. However, waiting times were only 10.3

minutes with 17,500 SAVs. With 25,500 or more SAVs, average waiting times were

less than 5 minutes. These average waiting times could be acceptable to travelers.
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The average IVTT was higher than the personal vehicle scenarios at low num-

bers of SAVs. This result shows that a small SAV fleet requires many empty repo-

sitioning trips to service travelers. The empty repositioning trips result in greater

demand and therefore congestion. This behavior is particularly relevant for peak

hour scenarios, which result in the greatest number of empty repositioning trips be-

cause most trips are to or from the central business district. SAV models that do not

include realistic travel time predictions would not be able to predict the congestion

caused by a small SAV fleet.

This AM peak hour scenario required far more SAVs than 1 per 9.3 travel-

ers (Fagnant et al., 2015). 1 SAV could replace at most 3.6 personal vehicles, and

total travel time was significantly higher there. SAV fleet size is likely to be deter-

mined by peak hour demand because peak hour travel patterns are the most difficult

to serve with SAVs.

However, with only 22,000 SAVs, the average IVTT was less than the personal

non-AV scenario of 15.24 minutes (Table 4.9). The average IVTT never decreased

below 9.8 minutes — higher than the 4.12 minutes of the personal AV scenario, but

small enough to be feasible for travelers. The experienced travel times were probably

due to the route choice heuristic used in this scenario. Personal AVs used DUE

behavior, whereas SAVs did not. Better heuristics for SAV routing could therefore

decrease the IVTT further for SAVs. Still, the average IVTT was not substantially

higher than the personal AV scenario.

Vehicle miles traveled (VMT) and empty VMT — miles traveled while not car-

rying any passengers — decreased at the same rate as the number of SAVs increased

(Figure 4.16). This result indicates that the difference was primarily due to less repo-

sitioning trips to pick up the next traveler, rather than changes in route choice. It

is intuitive that as the number of SAVs increased, the average distance between a

waiting traveler and the nearest (in travel time) available SAV would decrease. The

average passenger miles traveled was consistently 2.27 miles.
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Figure 4.16: Travel time and VMT for the base SAV scenario
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4.5.3.3 Dynamic ride-sharing

Dynamic ride-sharing greatly affected level of service for travelers as shown in

Figure 4.17. With dynamic ride-sharing, 1000 SAVs were actually sufficient to service

all demand. Each SAV could carry up to 4 passengers, although they would travel

with less if no travelers were waiting. However, because most trips were to the central

business district, SAVs could easily combine trips because traveler destinations were

relatively close. Surprisingly, optimal service was provided with just 2000 SAVs, or a

ratio of 1 SAV to 31.4 travelers. This result is significantly higher than the 1 SAV to

9.3 travelers (Fagnant et al., 2015) although of course here each SAV was probably

carrying 3 to 4 passengers.

The least average total travel time was 6.46 minutes with 2000 SAVs, compa-

rable with the 4.12 minutes with the personal AV scenario (Table 4.9). 5.41 minutes

was due to IVTT, with 1.04 minutes due to waiting time. These travel and wait-

ing times might be further reduced with a better heuristic for dynamic ride-sharing.

Therefore, with such a low travel time, SAVs with dynamic ride-sharing could be an

effective replacement for personal AVs. Furthermore, the size of the SAV fleet used

is so small relative to the number of travelers that full replacement might be feasible.

The cost per traveler are also likely to be significantly reduced due to car-sharing

and the lack of driver. Further study in different demand scenarios and on different

networks is needed, but this result suggests that SAVs could be a cost-effective form

of paratransit with a high level of service.

Waiting times were consistently low with 2000 or more SAVs. These waiting

times were probably because most travelers had relatively close destinations, so ride-

sharing was frequently used. Strangely, IVTT peaked at 17.54 minutes with 11,000

SAVs. This result was likely because SAVs did not wait around for ride-sharing

with later-departing travelers. Therefore, the 11,000 SAVs made more trips, carrying

fewer travelers per trip, and increased congestion. Figure 4.18 shows that passenger

miles traveled increased as the number of SAVs increased because ride-sharing was

used less. With greater than 11,000 SAVs, travel times decreased because less empty

repositioning trips were needed, decreasing vehicle demand. VMT, and empty repo-
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sitioning miles traveled, was highest around 14,500 SAVs (Figure 4.17). With our

heuristic, a fleet of between 5500 and 17,500 SAVs was less efficient than a smaller

fleet. Therefore, future work on SAVs should study more effective heuristics for the

dynamic ride-sharing problem.

4.6 Conclusions

This chapter is the first study using the cell transmission model to study the

effects of reservation-based intersection control and reduced following headways for

AVs on large networks. In addition, we used the network-level simulations to study

travel demand behavior as well.

4.6.1 Effects on freeway, arterial, and downtown networks

Section 4.3 studied several arterial and freeway networks among the 100 most

congested roads in Texas to study how AVs affected congestion on different types of

roads. For arterial regions, reservations were beneficial in some situations but not

in others. On Congress Avenue, a long arterial without progression, reservations im-

proved travel times. However, on Lamar & 38th Street, reservations gave greater

priority to vehicles entering from local roads. Since intersections were so close to-

gether, this topology created queue spillback and greater congestion from using reser-

vation controls. The congestion was due to the FCFS policy: vehicles were prioritized

according to how long they had been waiting. In contrast, signals allowed more free-

dom in capacity allocation, and were optimized to give arterials a greater share of

the capacity. On freeway networks, the effects of reservations were again mixed. On

US–290, which uses signals to control access, reservations were an overall improve-

ment. In other freeway networks, reservations were worse than merges/diverges. In

the downtown Austin grid network, reservations resulted in great reductions in travel

times.

The negative results for FCFS reservations contradict the work of Fajardo

et al. (2011) and Li et al. (2013). However, the major issue with FCFS reservations

is that FCFS allocates capacity in different proportions and at different times than
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Figure 4.17: Travel time and VMT for the dynamic ride-sharing scenario
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Figure 4.18: Passenger miles traveled for the dynamic ride-sharing scenario

signals. On arterials, in high demand this policy resulted in greater capacity given to

local or collector roads. Furthermore, the lack of consistent timing for reservations

disrupted progression along arterials, increasing queues and causing queue spillback

at high demand.

Overall, we conclude that reservations using the FCFS policy have great po-

tential for replacing signals. However, in certain scenarios local road-arterial in-

tersections that are close together, and at high demand signals outperform FCFS

reservations. The delays from FCFS might be reduced by a reservation priority pol-

icy more suited for the specific intersection. However, reservations were detrimental

when used in place of merges/diverges. Since merges/diverges do not require the

same delays as signals, reservations have limited ability to improve their use of ca-

pacity. Furthermore, the FCFS policy could adversely affect the capacity allocation.

Therefore, FCFS reservations should not be used in place of merges/diverges, but

other priority policies for reservations might be considered.

The capacity increases due to reduced reaction times improved travel times

significantly on all networks. Furthermore, regardless of the intersection control,

intersection bottlenecks mostly benefited from increased capacity. These capacity
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increases arise from permitting AVs to use computer reaction times to safely reduce

following headways. Although reduced headways might be uncomfortable for passen-

gers, travelers will appreciate the benefits in travel times.

4.6.2 Empty repositioning trips

Section 4.4 constructed a four-step planning model, using DTA, to determine

how AVs making empty repositioning trips would affect AM peak traffic. We used

the endogenous departure time choice planning model of Levin et al. (2016a) to de-

termine dynamic travel demand. Using a nested logit model, travelers chose between

three mode options: transit, drive and park at the destination, and drive and empty

reposition to their origin. Empty repositioning trips increase the total number of per-

sonal vehicle trips. However, we also included two traffic improvements resulting from

AVs: first, reduced following headways from AVs result in capacity increasing with

the proportion of AVs on the road, modeled through the multiclass CTM (Chapter

2). Second, when all vehicles are AVs, reservation-based intersection control (Dresner

and Stone, 2004, 2006b) is used in place of traffic signals, modeled in DTA by the

conflict region node model (Chapter 3)

We used this model to study how repositioning trips affected AM peak traffic

on the downtown Austin city network. We considered two scenarios:

1. Only travelers choosing repositioning trips used AVs — all other travelers used

human-driven vehicles. Intersections were controlled by traffic signals, but AVs

proportionally improved capacity (Section 2.4).

In this scenario, allowing repositioning trips decreased average travel times. The

additional vehicle trips from repositioning departed later than many home-to-

work trips, so the vehicular demand at any point in time was not significantly

higher. Congestion was reduced because of the greater link efficiency from

having a significant proportion of AVs on the road.

2. All vehicle trips used AVs. Intersections were controlled by reservations (Dres-

ner and Stone, 2004, 2006b), and link efficiency was greatly increased due to

AV reaction times(Section 2.4).
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In this scenario, allowing repositioning trips increased average travel times. This

result was expected because repositioning increased the total vehicular demand

without adding any benefits (since all vehicles were already AVs). However, the

average travel time was much less than current conditions (all human-driven

vehicles, without repositioning).

We conclude that in the early stages of AV adoption, empty repositioning

trips could improve traffic by encouraging travelers to switch to AVs. Furthermore,

after all vehicle trips use AVs, the traffic congestion with empty repositioning trips is

still significantly better than current conditions due to the greater efficiency of AVs.

Therefore, allowing empty repositioning trips to increase AV adoption will not result

in unreasonable congestion after all vehicles are AVs.

4.6.3 Shared autonomous vehicles

Section 4.5 presented an event-based framework for implementing SAV be-

havior in existing traffic simulation models. The framework relies on two events:

travelers calling SAVs, and SAVs arriving at centroids, that are orthogonal to traf-

fic flow models. This framework allows comparisons with personal vehicle scenarios

through solving traffic assignment in the same simulator. We implemented this SAV

framework on a cell transmission model-based dynamic traffic assignment simulator

as well as a heuristic approach to dynamic ride-sharing. Then, we studied replacing

personal vehicles with SAVs in the downtown Austin network with AM peak demand.

Most SAV scenarios resulted in greater congestion due to empty repositioning trips

to reach travelers’ origins.

Using SAVs without dynamic ride-sharing resulted in higher travel time than

personal AVs. These levels of service appear to be lower than predicted by previous

studies. Furthermore, a much larger SAV fleet size was needed for the AM peak.

Although this chapter used heuristics to solve the vehicle routing problem, finding an

optimal solution in real-time in response to demand is impractical because the vehicle

routing problem is NP-hard. Furthermore, previous studies also used similar heuris-

tics. Therefore, these results demonstrate the importance of using realistic traffic flow
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models to study the additional congestion resulting from SAVs, and comparing SAVs

with personal vehicles with a common traffic flow model. This chapter also provides

the framework to integrate SAV behavior into such models.

However, dynamic ride-sharing was highly effective at reducing congestion by

combining traveler trips. Interestingly, ride-sharing had the best travel times when

the number of SAVs was small (2000 SAVs providing service to 62,836 travelers),

and these travel times were comparable or improved over personal vehicle scenarios.

These results show that with effective routing heuristics and the right fleet size, SAVs

could replace personal vehicles as paratransit or individual taxis.
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5 Conclusions

5.1 Summary of contributions

This dissertation developed a complete dynamic traffic assignment (DTA)

model of autonomous vehicle (AV) behavior. This model consists of new link and

node models of AV technology for DTA simulation. We used this model on several

networks to study how AV technology might affect traffic congestion.

5.1.1 Link model

The link model considered two aspects of AV technology: first, we anticipate

that AVs will have lower reaction times than human drivers, allowing them to safely

reduce following headways. Reduced following headways increase capacity (Marsden

et al., 2001; Van Arem et al., 2006; Kesting et al., 2010) and stability of traffic

flow (Schakel et al., 2010), and can be active at any market penetration of AVs.

Therefore, we developed a multiclass cell transmission model (CTM) (Daganzo, 1994,

1995a), a discrete approximation of the kinematic wave theory of traffic flow (Lighthill

and Whitham, 1955; Richards, 1956), to predict traffic flow at space and time-varying

proportions of AVs. The multiclass CTM admits a trapezoidal fundamental diagram

that changes at each cell-time. We also developed a car- following model based on

safe following distance, which yielded a fundamental diagram function that admits

any proportion of AVs. As the AV proportion increases, the capacity and backwards

wave speed correspondingly increase.

We also considered dynamic lane reversal (Hausknecht et al., 2011b) technol-

ogy. We developed a CTM in which the number of lanes can change per cell-time.
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(As dynamic lane reversal is only usable with full AV market penetration, the CTM

for dynamic lane reversal admits the fundamental diagram scaling from AV reaction

times). We formulated additional constraints on the number of lanes due to the

potential forced lane changing behavior.

We then studied two methods of optimizing DLR. First, we presented a mixed

integer linear program for DLR with system optimal behavior, based on the linear

program for system optimal DTA (Ziliaskopoulos, 2000; Li et al., 2003). However,

since system optimal routing may be too restrictive an assumption even for AVs, we

also studied a single-link DLR problem for use within user equilibrium routing. We

derived analytical results for when the demand is known perfectly, and used these to

inspire a heuristic for when demand is stochastic.

5.1.2 Node model

The node model approximates tile-based reservations (Dresner and Stone,

2004, 2006b) by replacing constraints on simultaneous tile occupancy with capacity

constraints on larger conflict regions. We formulated this node model as an integer

program per intersection and per time step with unspecified objective function. To

justify the conflict region model, we first formulated an integer program for the con-

flict point simplification (Zhu and Ukkusuri, 2015), then aggregated conflict points

into larger conflict regions. We then derived some analytical results about the integer

program. The conflict region model is based on sending and receiving flows, and can

therefore be combined with most mesoscopic link flow models (Tampère et al., 2011).

Since integer programs are in general NP-hard, we proposed a polynomial-time

heuristic. To motivate the utility of our integer program, we presented several theoret-

ical and realistic network examples in which the first-come-first-served (FCFS) policy

increases delay beyond traffic signals. In particular, we found that a decentralized

reservation policy could create a Daganzo (1998) paradox. Therefore, user equilib-

rium (UE) route choice prevents proving the stability of decentralized pressure-based

policies. However, pressure-based policies could still improve over existing policies.

We adapted the backpressure (Tassiulas and Ephremides, 1992) and P0 (Smith, 1980,

1981) policies to reservations. Results on a city network indicated significant im-
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provements over both traffic signals and FCFS.

5.1.3 Applications

Having developed a dynamic traffic simulation, we applied it to freeway, arteral,

and downtown Austin networks at different levels of demand to predict how AVs might

affect congestion. We included the effects of reduced reaction times and reservation-

based intersection control with FCFS policy. We observed that the effects of reduced

reaction times scaled well with the proportion of AVs, and made freeways and ar-

terials much more efficient. FCFS reservations performed similarly at low demand

levels. However, at higher demands, FCFS reservations sometimes performed worse

than optimized signals. FCFS gave less capacity to major arterials and also did not

provide progression. That resulted in queue spillback on the arterial and higher con-

gestion. However, on downtown Austin, with many alternate routes in the downtown

grid, FCFS reservations were still effective because vehicles could avoid high-delay

intersections.

5.2 Future work

With AV technologies still under development, and many existing or proposed

AV technologies not included in the models in this dissertation, there are many av-

enues for future work. We will discuss future work for link and node models, and

applications.

5.2.1 Link models

The multiclass CTM was limited to congested wave speeds that did not ex-

ceed free flow speed. However, connected vehicle technologies could result in smaller

reaction times and correspondingly larger congested wave speeds. Larger congested

wave speeds would necessitate that the CTM cell length be determined by the con-

gested wave speed due to the Courant et al. (1967) condition. This cell length would

introduce numerical errors into the uncongested regime. An alternative is to create
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a multiclass link transmission model (LTM) (Yperman et al., 2005; Yperman, 2007).

Because LTM does not discretize space, it admits higher congested wave speeds with-

out introducing numerical errors into shockwave propagation. Along those lines, the

car-following model assumed that capacities and congested wave speeds were deter-

mined by vehicle reaction times. In reality, micro-simulation models of AV and CV

technologies are more complex, and could be used to create a more accurate funda-

mental diagram.

The initial models of DLR demonstrated significant improvements in TSTT.

However, finding the optimal DLR policy is still an open question. The MILP for SO

DLR was limited to small networks due to computational requirements, and assumed

SO route choice. UE route choice is more realistic. However, the model of DLR

for even a single link had a large number of variables and possible states. Solving

DLR to optimality on a single link will therefore require more theoretical analysis and

simplification. Alternatively, approximate dynamic programming methods could be

studied to improve the DLR policy. Since DLR affects network route choice, solving

DLR for a single link is not enough; DLR policies should be studied with respect to

the entire network.

5.2.2 Node models

Reservations are now well-known in the literature, and it is likely that reser-

vations or some form of intersection control taking advantage of AV technologies will

eventually be implemented in practice. Reservations greatly expand the feasible re-

gion of intersection movements. However, the conflict region model is not a fully

accurate model of reservations because it does not enforce conflict region ordering

of vehicle movements, and instead constrains conflict regions only by capacity. Of

course, micro-simulation or conflict point ordering is intractable for DTA, but there

may exist an alternative simplification that is more accurate. Section 3.5 demon-

strated the necessity of optimizing reservations before implementing them, and it is

clear that optimizing reservations for city networks is still an open question.

The ideal solution is a decentralized control policy that provably stabilizes any

demand that can be stabilized. Previous work has created stable pressure-based traffic
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signal policies (Zhang et al., 2012a; Gregoire et al., 2014; Wongpiromsarn et al., 2014;

Xiao et al., 2014). However, Section 3.5.1.3 shows that any completely decentralized

policy will fail when considering DUE route choice. Therefore, any optimal policy

must account for conditions at other intersections in the network. Of course, optimally

controlling reservations over an entire city network is a difficult problem, and therefore

will require considerable work to address it.

5.2.3 Applications

There are many potential applications of the dynamic network loading model.

Planning organizations will find the model useful for predicting future traffic patterns

and infrastructure needs. Before that happens, though, there are many calibration

and testing questions remaining. This dissertation presented results on five arterial,

freeway, and downtown networks, but a larger sample could be used to more fully

study how AVs affect different types of roads. The models themselves have parameters

that must be calibrated, such as the perception reaction time, and these calibrations

will require observing and measuring AV technologies. The mesoscopic models should

also be compared with micro-simulation models of reservations, (cooperative) adap-

tive cruise control, and platooning.

Even less is known about travel behavior with AVs because travelers currently

do not have access. Empty repositioning trips are likely to occur in some form, as in

current Uber and taxi repositioning to reach new customers. However, traveler pref-

erences for repositioning or parking may depend on accessibility or other factors not

considered in this dissertation. For repositioning to alternate parking, such parking

need not be at the traveler’s home, but could be constructed near high-attraction

destinations to reduce the length of empty repositioning trips. Determining where to

construct these alternative parking spaces is a network design problem on the four-

step planning model. Shared autonomous vehicles (SAVs) could further change travel

demand patterns by reducing personal vehicle ownership. Still, complete replacement

of personal vehicles is likely unrealistic, so models combining SAVs and personal vehi-

cles should be developed. A major question is how to model route choice behavior in

these scenarios, as SAVs choose routes via a large-scale dial-a-ride problem whereas

195



personal vehicles still follow user equilibrium route choice. Once a combined model

is created, studying traveler mode choices between SAVs and personal vehicles is an

important question as Uber and other mobility-on-demand services start adopting

AVs.
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A Abbreviations

Abbreviation Definition

ABM activity-based modeling

ACC adaptive cruise control

AST assignment interval

AV autonomous vehicle

CTM cell transmission model

CV connected vehicle

DLR dynamic lane reversal

DNL dynamic network loading

DTA dynamic traffic assignment

DUE dynamic user equilibrium

FCFS first-come-first-served

FIFO first-in-first-out

IP integer program

IVTT in-vehicle travel time

HV conventional (human-driven) vehicle

LEMITM legacy early method for intelligent traffic management

LP linear program

LTM link transmission model

MCKS multiple-constraint knapsack problem

MDP Markov decision process

MILP mixed integer linear program

OD origin-destination tuple
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Abbreviation Definition

ODT origin-destination-AST tuple

RMSE root-mean-squared error

SAV shared autonomous vehicle

SBDTA simulation-based DTA

SO system optimal

SRDTC simultaneous route and departure time choice

STA static traffic assignment

TSTT total system travel time

TT travel time

UE user equilibrium

VMT vehicle miles traveled
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B Notations

Notation Definition

A set of links

As attractions for s ∈ Z

α disutility per unit of in-vehicle travel time

a vehicle acceleration

β penalty for early arrival

C set of cells

C̃ set of all cells in network

Cj set of congested contiguous cells leading up to cell j

C̃R ⊂ C̃ set of source cells

C̃S ⊂ C̃ set of sink cells

cmrst cost of mode m for ODT (r, s, t)

cm,time
rst (t) travel time component of cost for mode m for ODT (r, s, t)

δcv indicates whether vehicle v uses conflict point (region) c

δAV
v indicates whether vehicle v is autonomous

D set of traveler demand

D safe following distance

Dv
n(t) backpressure term for vehicle v at node n at time t

d vehicle length

drs(t) demand from r to s departing at t

d̂ queue length for a link

E set of cell connectors

εRMSE root-mean-squared error
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Notation Definition

Frst fuel consumption for ODT (r, s, t)

Γ− set of predecessors

Γ+ set of successors

G= (N,A) traffic network

γ penalty for late arrival

g(t) one-step costs for the DLR MDP

K jam density

k vehicular density

km vehicular density of class m ∈M

Li(t) number of lanes for cell i at time t

` maximum number of lanes

M set of vehicle classes

M a large positive constant (for linearization of the IP)

N set of nodes

N maximum cell occupancy

ni(t) vehicles in cell i at time t

nmi (t) vehicles in cell i at time t of class m ∈M

P̃ set of all pairs of parallel opposite cells

Pvn(t) P0 pressure term for vehicle v at node n at time t

Pr productions for r ∈ Z

π∗rst shortest path from r to s departing at t

πv path for vehicle v

φ(·) friction function

ψm alternative specific constant for mode m

Qj(t) queue length for cell j at time t

Q capacity

q vehicular flow

qm vehicular flow of class m ∈M

Ri(t) receiving flow for i at time t

S state space for the DLR MDP

201



Notation Definition

Si(t) sending flow for i at time t

ςTR
rst transit fee for ODT (r, s, t)

ςPK
s parking fee for destination s

ς fuel cost per unit fuel

T set of ASTs

∆T path update horizon for SAV dispatcher

T time horizon

τ reaction time

∆t time step

t time index

tpref
rs preferred arrival time for trips from r to s

U control space for the DLR MDP

u vehicle speed

uf free flow speed

V set of vehicular demand

Vrst vehicle demand specific to ODT (r, s, t)

V set of SAVs

W list of waiting travelers

w congested wave speed

∆x spatial discretization

ξ discount factor

x location in space along a link

Y(t) set of feasible solutions to the conflict region IP at time t

yi(t) flow from cell i to cell i+ 1 at t

ymi (t) flow of class m ∈M from cell i to cell i+ 1 at t

Z⊆N set of zones
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