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Abstract

I have studied representation theory of finite groups, in particular of the symmetric
group over fields of prime characteristic. Over C, there is a nice classification of the
simple representations of symmetric groups. Here I give a description of how the
standard representation behaves in prime characteristic, and I study the structure of
the group algebras of small symmetric groups in more detail.

The general subject of representation theory sits at the crossroads of a vast ar-
ray of subjects in mathematics, including algebraic geometry, module theory, an-
alytic number theory, differential geometry, operator theory, algebraic combina-
torics, topology, fourier analysis, and harmonic analysis. Modular Representation
theory, the study of representations of finite groups over a field of positive charac-
teristic, has in particular been used in the classification of finite simple groups, and
itself finds applications in a variety of areas of mathematics.
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Chapter 1

Basic Definitions and Theorems

In this paper, I will be studying representations of groups and group algebras, par-
ticularly the symmetric groups over fields of prime characteristic. We start off by
giving definitions and theorems relating to algebras and representations in a more
general context [1].

Definition 1. An associative algebra with identity over a field & is a vector space
A over k with an associative bilinear map, denoted by multiplication a,b — a - b,
withaunitl € Asuchthatl-a =a-1=aqafora € A.

Equivalently, an associative algebra with identity over & is a (possibly noncom-
mutative) ring A which contains a selected copy of £ in its center (namely, the span
k1, where 1 € A). In this paper when I use the term “algebra”, I will be referring to
an associative algebra with identity. An important example of an algebra is End(V'),
for V' a vector space over k. When V = k¢, this algebra is denoted Mat,(k), and
referred to as a “matrix algebra”.

Definition 2. Let A be an algebra over k. A representation of A is a vector space V
together with a homomorphism of rings p : A — End(V') (which maps the identity
to the identity). A subrepresentation of a representation p : A — End(V) is a
subspace W C V with p(a)W C W for every a € A. If v € V, then Av defines
the subrepresentation of V' spanned by v. If V' is any vector space over k, then we
can define the trivial representation on V' by mapping all of A to Id € End(V).

Fora € A,v € V, We use the shorthand av to denote p(a)v. This notation
suggests that a representation is nothing other than a left A-module, and indeed this
is the case. We say that A “acts linearly” on V. When a representation V is fixed,
we associate with each a € A the endomorphism p(a).

Definition 3. Let V, W be representations of A. Then the direct sum of repre-
sentations V & W is the direct sum of vector spaces with the action given by
a(v + w) = (av) + (aw). The tensor product of representations V ® W is the



tensor product of vector spaces with the action given by a(v ® w) = (av) ® (aw).
The dual representation VV* is a right module of A: fora € A, f € V*,v € V,
we define fa to be the functional given by (fa)v = f(av). If we identify a with
its associated endomorphism on V/, then the right action of A on V* is given by
composition of maps. Finally, End(V') is a representation of A with the action
given by (aE)v = a(FEwv), similarly defining a composition of maps. In fact,
End(V') has a two-sided module structure, with aEb = a o E o b for a,b € A,
E € End(V), and these two module structures commute with each other in the
sense that (aE)b = a(ED).

Note that a right A-module is the same thing as a left A°°-module, where AP
is the opposite ring. Also note that we have given End(V) both the structure of a
representation and that of an algebra itself.

Definition 4. Let V' C W be nested representations of A. Then the quotient rep-
resentation is the set of cosets W/V = {w + V | w € W} with the action given
bya(w+V)=aw+Vforae A,weW.

We now consider representations of groups. First, we give the classical defini-
tion.

Definition S. Let G be a group. A representation of GG over a field k is a vector
space V over k together with a homomorphism of groups ¢ : G — GL(V).

For g € G,v € V, we use the shorthand gv for ¢(g)v, and we say that G acts
linearly on V.

Definition 6. Define the set of formal sums kG = {)_ ., @y9 : oy € k}, together
with componentwise addition, and multiplication given by the group law for g, h €
G C kG and extended by distributivity.

Theorem 1. The above definition for kG makes it an algebra over k, known as the
“group algebra” or “group ring” of G.

Now we make explicit the correspondence between representations of the group
G and representations of the algebra kG.

Theorem 2. Let G be a group and ¢ : G — GL(V) be a representation of G
over the field k. The map ¢ : G — End(V') extends uniquely to a map of rings
kG — End(V), giving a representation of kG. Conversely, a representation p :
kG — End(V') of the algebra kG defines a representation of the group G, with the
homomorphism G — GL(V') given by restriction of the ring map to G C kG.

Notice that p(g) must be invertible, so p(G) C End(V)* = GL(V'). This shows
that representations of a group GG and representations of the group algebra kG are
in one-to-one correspondence. All definitions given for representations of algebras
extend accordingly to representations of a group.
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Definition 7. The regular representation of an algebra A is A considered as a
left-module over itself.

When A is a group algebra, this representation has a k-basis given by the ele-
ments of GG, and G permutes this basis in the obvious manner.

Definition 8. A nonzero representation V' of an algebra A is called simple or ir-
reducible if the only subrepresentations of V' are {0} and V. A nonzero repre-
sentation is called indecomposible if V' = W @ W’ implies either W = {0} or
W’ = {0}. A representation is semisimple if it is a direct sum of irreducible repre-
sentations.

We remarked earlier that if v € V, then we can consider the subrepresentation
generated by v, which is simply Av, the image under left multiplication. From this,
the following theorem is almost immediate:

Theorem 3. A representation V is irreducible if and only if every nonzero v € V
generates V, i.e., Av =V.

Proof. 1f V' is irreducible and v € V is nonzero, then Av gives a nonzero subrepre-
sentation of V', which must hence be all of V.
For the other direction, if a representation V fails to be irreducible, then let

W C V be a proper subrepresentation, let v € W be nonzero, and consider Av C
W CV. O

Definition 9. A homomorphism of representations ¢ : V' — W over an algebra
A is a homomorphism of modules. The kernel and image, ker ¢ and ¢(V), define
subrepresentations of V' and W. More generally, if V/ C V is a subrepresentation,
then ¢(V”) is a subrepresentation of W, and if W/ W is a subrepresentation, then
¢~ (W’) is a subrepresentation of V.

A homomorphism of group representations is one which “commutes” with the
action of G, i.e., ¢(gv) = gp(v).

Theorem 4. (Schur’s Lemma) Let V and W be irreducible representations of an
algebra A, and let ¢ : V' — W be a homomorphism. Then ¢ is either the zero map
or an isomorphism.

Proof. 1f ¢ is not the zero map, then ker ¢ is a proper subrepresentation of V, which
by irreducibility must be {0}, and ¢(V) is a nonzero subrepresentation of W, which
must be all of W. This shows that ¢ is an isomorphism. U

We will only be concerned with algebraically closed fields, so the following
version will be relevant:



Theorem 5. (Schur’s Lemma for Algebraically closed fields) If A is an algebra
over the algebraically closed field k, and ¢ : V — V is an endomorphism of the
irreducible representation V, then ¢ = \ld for some A € k.

Proof. Let X be an eigenvalue of ¢, and apply Schur’s Lemma to ¢ — Ald. 0J
All remaining theorems in this section require that k£ be algebraically closed.

Theorem 6. (Density Theorem) Let V' be an irreducible representation of A via
p: A — End(V). Forevery E € End(V') (endomorphisms of the vector space),
there exists a € A with av = Ev forv € V. That is, p is surjective.

The group algebras we will be considering here are, in particular, finite-dimensional
algebras, so the following definitions and theorems for finite-dimensional algebras
will be relevant.

Definition 10. Let A be a finite-dimensional algebra. Then Rad A is defined as the
elements of A which act on every irreducible representation of A by 0.

An ideal I in A is called nilpotent if /™ = 0 for some n.
Theorem 7. Rad A is the largest nilpotent two-sided ideal of A.

Theorem 8. There are finitely many simple representations of A, they are all finite-
dimensional, and we have an isomorphism of rings

A/Rad A = EB End(V).

V simple

Moreover, the isomorphism in theorem 8 is natural: for any fixed simple repre-
sentation V;, the projection

A A/RadA S @ End(V) - End(V;)
V simple

is given by
p:A— End(V;),

the map which defines the representation V; in the first place.

Finally, we see how the structure of A reflects the structure of all finite-dimensional
representations of A.

Theorem 9. (Artin-Wedderburn) The following are equivalent:
(1) Rad A =0
(2) Y (dimV)’=dimA

V simple



(3) A= EB Matgim, v (k) as algebras.

V simple
(4) Any finite-dimensional representation of A is semisimple.

(5) The regular representation of A is semisimple.

We give the theorem which determines whether or not a group algebra is semisim-
ple.

Theorem 10. (Maschke) Let k be an algebraically closed field and G a finite
group. The group algebra kG is semisimple if and only if the characteristic of k
does not divide |G|.



Chapter 2

Simple Representations in the
Regular Representation

Let G be any finite group, k£ any algebraically closed field, and V' any irreducible
finite-dimensional representation of GG over & viaa left action kGxV — V. We will
identify exactly how V' occurs as a subrepresentation of the regular representation
kG. Consider the representation V ® V*; for now G acts on V* trivially. In this
manner, if we let d be the dimension of V, then as representations,

d
V®V*gdvs@v.

i=1

We will give a natural injection of representations
VRV —=EG.

Recall that the left action of G on V induces a right action of GG on the dual
space V*, via (fg)v = f(gv), where f € V*,g € G,v € V, and that under
the identification of g with its corresponding endomorphism on V, the right action
of G on V™* is just composition of functions. Putting these together, we get that
V ® V* has a left action and a right action which commute with each other, given
by g(v ® f)h = (gv) ® (fh), where g, h € G,v € V, f € V*. Similarly, kG has a
left and a right action by GG given by left and right multiplication by G considered
as a subset of kG.

In general, if the group G acts on a set .S on the left, and the group H acts on S
on the right, and these actions commute with each other, then this induces a single
left action on S by G x H given by (g, h) - s = gsh™1, or similarly a right action
given by s - (g, h) = g 'sh. In this manner, we see that the two-sided action of G
on V ® V* makes V ® V* into a G x G representation.



Theorem 11. The map

O: VeV — kG
v f = Y [flgT')g

geG

defines an injective homomorphism of G x G representations, and V ® V* is an
irreducible representation of G x G.

To understand the map more explicitly, g~'v € V, and f(g~'v) is the scalar
coefficient of g in ®(v @ f) € kG.

Proof. The map @ is bilinear in v and f, so is well-defined. For z,y € G, consider:

(z(v® fly) = 2((zv) @ (fy))
= (fulg™'zv))g

=Y (fyg~'zv)g

and making the substitution yg~'z = h™!, we get

O(z(ve fy) = > (fh'v)zhy

h

=z (Z f(h_lv)h> Yy
h
=zP(v ® f)y.

Thus @ defines a homomorphism of representations of G x G. I now show
that V' ® V* defines an irreducible representation of G x G. This is equivalent to
showing that every nonzero vector in V ® V* is a generator for V @ V*. By Schur’s
lemma, it will follow that & is either the zero map or injective, and I will show it is
not the zero map.

It will be easier to show that V' ® V* is irreducible as a G x G representation

via the standard isomorphism V ® V* & End(V) which identifies v ® f with the
map

V -V
w = f(w).

By this identification, the left and right action of G on End(V') are given by left
and right composition gEh = go E o h for g,h € G, E € End(V). Also under
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this identification, we get ®(E) = >___; Tr(g™'E)g. Thus, to show that End(V')
defines an irreducible representation for G x G, we need only show that if £ €
End(V) is not the zero map, then the span of {gFEh : g,h € G} is all of End(V).
By the Density Theorem, the map kG — End(V') which sends each g € G to its
associated endomorphism is surjective. So we need only show that {AEB : A, B €
End(V')} spans End(V'). This follows because the only two-sided ideals of End(V)
are the zero ideal and all of End(V").

Finally, we show that there exists v @ f € V @ V* with (v ® f) # 0. For
any choice of nonzero v and f, since {gv : g € G} spans V, there exists a g such
that gv ¢ ker f, for otherwise f would have to be the zero map. Therefore the
coefficient of g™ in ®(v ® f) for such a g is nonzero, so ®(v ® f) # 0. This
completes the proof that ® is an inclusion of representations of G x G. Ll

If the group algebra is semisimple, then the domain (V ® V* = End(V)) and
image (®(End(V'))) are both rings. We will see, however, that ® itself is not neces-
sarily a map of rings, because it may not map identity to identity. Since we assume
k is algebraically closed, Schurr’s Lemma applied to ®op, where p : kG — End(V')
defines the representation V, implies that some multiple of ®(7) is an idempotent
of kG, where I is the identity endomorphism on V.

We make one last observation: under ®, I +— 3 _,Tr(g~')g, which is the
character of V* considered as a representation of G via gf = f o g~ L.



Chapter 3

Classification of Simple
Representations of the Symmetric
Groups over the Complex Numbers

Fulton and Harris’ [2] Theorem 4.5 gives a classification of the irreducible repre-
sentations of .S,, over C in the following manner: Each irreducible representation,
V/, can be identified with many subrepresentations of CS,,. Using a Young Tableau,
A, one is able to choose a generator, ¢y, (defined via two factors ¢y = byay), so that
V' can be identified with the specific subrepresentation CS,, - ¢y ¢ CS,,. The pro-
cess of using A to identify a single copy of V' in CS,, is asymmetric, unlike injecting
V ® V* = End(V) into kG, which does not involve making any choices.

Here we examine the nature of the classification theorem from this perspec-
tive in some special cases. For the trivial and sign representations, since they are
1-dimensional representations of S, they only occur once in the regular representa-
tion, and the ¢, given by Fulton and Harris is just the character. The first interesting
case is the standard representation V' of Sj.

Definition 11. Let & be any field (not necessarily algebraically closed). We define

the standard representation of S,, over k as follows: let k" be the representation

of 5, given by permuting the standard basis. This has a trivial subrepresentation
1

spanned by | : |. The standard representation is the quotient of k" by this subrep-

1
1
k/k
1

resentation, i.e.,
If the characteristic of k& does not divide n (as in the case k = C), there is a
subrepresentation complementary to the trivial one, characterized by the sum of the
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entries of the vector being 0, which identifies naturally with the quotient. In general,
regardless of whether a complement can be found in £", this standard representation
is spanned by vectors vy, - - - , v, whose only linear dependence is given by vy +- - -+
1
v, = 0, and S, acts directly on these vectors by permutation. Here v; = ¢;-+k | :
1
In the case when k = C, this representation is the symmetries of an n-symplex in
n — 1-dimensional space. In order to give concrete matrices, I will choose the basis
V1, ,Up fOr V.

Now we look at the standard representation V' of S;. Here the identity map I €
End(V') is associated by ® : End(V) — CSs3 from Theorem 8 with the character
of V, which is 2 — (123) — (132). The ¢, given by Fulton and Harris here is
cx=byay=(1+(12))(1 —(13))=1+(12)—(13) - (132).

We have two ways of understanding c: first, in terms of the surjection p :
CS3 —» End(V), and second, in terms of the inclusion ® : End(V) < CSj that
I have given above. The endomorphism induced by ¢ € CS3 on V carries v; —
V1 + vy — U3 —v3 = —3vs,vs — 0,v3 — vz + v3 —v; — vy = 3us, which is
given in terms of the above named basis, vy, v, by the matrix g 8 . In terms
10
1 0/
The observation to make here is that a 2-dimensional subrepresentation of the 4-
dimensional representation ®(End(V)) = End(V) is a choice of a 2 — 1 = 1-
dimensional kernel, and in this case the kernel is spanned by v,. In fact, this is the
kernel for the right factor a,.

The more general observation, for an irreducible d-dimensional representation
V of G over C, is that we have seen that V' occurs in CG as the representation
End(V). A single copy of V inside End(V) is the same thing as a minimal left
ideal of the ring End(V/), which is in turn simply a selection of a d — 1-dimensional
subspace U of V, so that the left ideal is given by {f : V' — V | U C ker f}, i.e,,
U is contained in the kernel of every endomorphism in the subrepresentation. We
will see what this common kernel is for the standard representation of S,, for all n.

For the standard representation of S,,,

ey = byay = ( > g) (1—(1n))

gesn—l

of ®, the endomorphism which is associated to c, is given by ®71(c,) = (

where S,,_; C S, is the set of permutations which fix n. Here we can see from
ay that the common kernel of CS,,(c,) includes vy, - - - , v,_1, because byv; = v; —
(1n)v; is zero for 1 < ¢ < n. Since this spans an (n — 2)-dimensional subspace of
the standard representation of dimension n — 1, this is the full kernel.
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Chapter 4

The Standard Representation of the
Symmetric Groups in Prime
Characteristic

We study the standard representation of .S,, over k = [, for a prime p, and some
particular choices of n > p (i.e., when p | n!). In the representation k" of S,,, the
matrix of an n-cycle is just a permutation matrix satisfying the polynomial equation
A" =], ie., 2" — 1 = 0. We will examine the structure of k" in the extreme cases
when z™ — 1 is purely inseparable (i.e., n = p™), and when z" — 1 is separabile (i.e.,
when p { n).

Consider n = p™. An n-cycle A : k™ — k™ in characteristic p satisfies the
polynomial A™ = I, so the minimal polynomial divides z*" — 1 = (z — 1)?" = 0.
This shows that 1 is the only eigenvalue for an n-cycle. An eigenvector under the
n-cycle with eigenvalue 1 must have adjacent entries equal to each other, so the

1
eigenspace is simply the span of | : |. It follows that the Jordan form of an n-
1
cycle is one full block with eigenvalue 1:
110 --- 00
o111 --- 00
001 --- 00
000 --- 11
000 --- 01
If we let ey, - -, e, be a basis with respect to which the n-cycle is identified with
this matrix, then the subspaces which are invariant under this n-cycle are exactly
the span of the first i vectors ey, -- - , ¢e; for each i < n (and we refer to the e; as
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“generalized eigenvectors”). This tells us how to get a restricted set of subspaces to
look for subrepresentations, since a subrepresentation must, in particular, be invari-
ant under the n-cycles. Furthermore, since the invariant subspaces of k™ under the
n-cycle are nested inside each other, it follows that k™ is always indecomposable,
as is every subspace and quotient of subspaces of k™. We will be able to describe
the structure of k™ in this context generally, but first we consider some special cases
of small order.

Forp = n = 2, 5, is the group of order 2. The unique non-identity element acts

on k? by the matrix . As noted already, the Jordan form of this matrix is

01

10
11 1\ . . 1) . . .

(0 1) , Where <1> 1s an eigenvector, and (0) is a generalized eigenvector. The

L . 1
only subrepresentation is the trivial one spanned by 1) The standard representa-

tion is given by permuting the two vectors (é) +k G) and <2> +k G) in the

quotient space; these are v; and vs. But these are the same vector, because the linear
dependence v; + vo = 0 expresses v; = v in characteristic 2. From this perspec-
tive, we can see that in characteristic p # 2, v; = —wv, are distinct and the standard
representation of S is the sign representation. In characteristic 2, however, we see
that the standard representation is the trivial representation.

1 0
For p = n = 3, the 3-cycles have generalized eigenvectors { 1|, 1 |,
1 -1
1
and | 1|, in order. The intermediate subspace spanned by the first two vectors is
0

invariant under Ss. I describe the structure of k2 in terms of a filtration: 0 C V; C

1
Vo C V3 where V3 = k2. Define V; = k { 1 | to be the trivial subrepresentation of
1

1 0
k*,andVo=k | 1) +k | 1 |,whichis the subspace of k* consisting of vectors
1 -1

whose entries in k£ add up to 0. These are all Ss-invariant subspaces (V, because
permuting the entries preserves the property of adding up to 0), and it remains to see
what the intermediate quotients are, i.e., what the simple representations V;/{0},
Va/Vi, and V3/V; are. Note that these are all degree 1 representations, and the
only degree 1 representations of S3 (over any field) are trivial and sign. We’ve
already seen that V; is the trivial representation. To see what V,/V; is, we see

13



what the action of a 2-cycle on [ 1 | + V] is: permuting the lower two entries

-1
0
gives | —1 } + V4, which is the negative of the original vector, so it’s the sign
1
1
representation. Finally, permuting the first two entries of | 1 | fixes the vector, so
0

V3/ V> must be trivial.

Theorem 12. Let p be a prime, n = p™ for some m > 0, k = Fp, and assume
n > 2. The subrepresentations of k™ are exactly {0} C V; C V, C k", where V; is
1

the trivial subrepresentation spanned by | : |, and V3 is the subrepresentation of

1
vectors whose entries add up to 0. The intermediate quotients are V, {0}, which is
the trivial representation, V,/V1, an irreducible (n—2)-dimensional representation,
and k™ [V, which is the trivial representation.

Note that p = n = 2 is a degenerate case.

Proof. 1t is clear that these are invariant subspaces, and that we need only show

that there is no representation strictly between V; and V5. By the observation about

the subspaces invariant under an n-cycle, any such representation V' must contain

every generalized eigenvector v with (A — Iv # 0 but (A — I)%2v = 0, when A
0

1
is an n-cycle. For the n-cycle (123---n), such a vector is given by

n—1
The subrepresentation generated by this vector includes all vectors obtained by per-
muting the entries. (Note that if m2 > 1, then the entries of this vector are not all
distinct. This does not pose a problem to the proof.) In particular, we can permute

;

1

any two adjacent entries, and subtracting gives 1

€ V,withalanda—1in

0
two adjacent entries, and 0’s elsewhere. These generate the (n — 1)-dimensional

subspace V2, which completes the proof that there is no properly intermediate sub-
representation.

14



To see that k™ / V5 is the trivial representation, consider the standard basis vectors
e; € k™, fori =1,---,n, and note that e; ¢ V5, as the entries of these vectors add
up to 1 # 0. Every 2-cycle (a b) fixes e; fori ¢ {a, b}. Since we assume n > 2, and
k™ /V, is 1-dimensional, it follows that every 2-cycle acts trivially on k" /V5,, which
proves the representation is trivial. O

Now we consider when p { n. In this case, we already know that k™ decom-
poses into the trivial subrepresentation and the standard subrepresentation, where
the standard subrepresentation consists of vectors whose entries add up to zero. I
first illustrate the structure of the group algebra in the case p = 2, n = 3.

Letw € Fybe a primitive cube root of unity (i.e., an element of Fy \ F5). The
three cycle (12 3) has eigenvalues equal to the powers of w, with eigenvectors

1 1 1
1],{w],|w?
1 w? w

Subsets of this set of three vectors span all of the subspaces of k* which are in-
variant under a three-cycle. But the 2-cycle (2 3) interchanges the latter two. Since
these span the standard representation, it follows that the standard representation is
simple.

In general, when p 1 n, we find that the roots of z™ — 1 in k, the eigenvalues of
an n-cycle, are all distinct, so an n-cycle diagonalizes. More explicitly, let { be a
primitive n'" root of unity in k. Then the eigenvalues of any n-cycle are exactly the
powers of (, and the eigenvectors for the n-cycle (123 - - n) corresponding to ™

G

can be given explicitly by ¢* |. Sothe subspaces which are invariant under
C(n.—l)i
the n-cycle (123 --n) are given by spans of these eigenvectors.

Theorem 13. Assume n > p and n, p are both prime. Then the standard represen-
tation of Sy, over I, is irreducible.

Proof. In this case, all of the eigenvectors of the standard representation are just

1
Cz
permutations of ¢* |, and therefore any one of them generates the rest as an
Cn.—l
Sy-representation. This implies the standard representation is irreducible. O
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Chapter 5

Structure of the Group Algebra of
Symmetric groups and Morita
Equivalence

Definition 12. Let A be a finite-dimensional algebra. A projective module is a
direct summand of a free module

D
1

That is, P is a projective module if there exists a module @ and a positive integer n
such that

PoQ=A"

A projective module can be decomposed into indecomposible projectives (as
long the pieces are not all indecomposable, keep splitting into direct sums). In
representation theory in characteristic 0, one studies the simple representations. In
characteristic p, one studies their projective covers [4]:

Definition 13. Let £ be an algebraically closed field, G a finite group, and V' a sim-
ple representation of £G. A projective cover of V' is an indecomposable, projective
representation P such that P —» V.

Theorem 14. Let k be an algebraically closed field, and G a finite group. Each sim-
ple representation V has a unique projective cover P, and this association gives a
1-1 correspondence between simple representations and indecomposible projective
representations.

In our context, the indecomposible projectives always occur as a summand of
the regular representation [3]. Here we study some cases of small order.
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We have already seen the full structure of £S5, when k is characteristic 2. Here
the projective cover of the trivial representation is the full regular representation
kSs.

For kS; when k has characteristic 2, we saw that the standard representation
V is irreducible, which implies by our work in chapter 2 that End(V') occurs as a
subrepresentation of k£S3. In fact, kS5 = kS; @ End(V) as rings, where the first
summand is generated by 1 + (123) + (132), and the second by (123) + (132).

For kS3; when k has characteristic 3, we saw that k* —» V,, the trivial repre-
sentation, so it is natural to think that ¥* may be the projective cover of the trivial
representation. It happens that this is indeed the case, and the projective cover for
the sign representation is given by Vjiz, @ k*. This comes from the decomposition of
the regular representation kS; = k* & k3 as representations, not as algebras. This
decomposition is not canonical; an example of a pair of generators for one decom-
position is 1 + (23) and 1 — (23). This shows that the indecomposable projective
representations are k% and k2 .

I now illustrate an alternative way of understanding these representations. We
have been describing them as left modules of kG. Let k be any algebraically closed

field and G any finite group. Let sy, - - - , s, be the pairwise nonisomorphic simple
modules of kG, and Py, - - - , P, be their projective covers. Denote by P the direct
sum

P:@Pi

of the projective indecomposable modules. Let A = End,c(P) be the set of kG-
endomorphisms of P, which is also an algebra over k£ (with multiplication given by
composition of maps). Let “kG-mod” denote the left modules of £G, and “mod-A”
denote the right modules of A.

Theorem 15. The functors

F: kG-mod — mod-A
M — Homyc(P, M)

and

H :mod-A — kG-mod
N> NsP

where
NR,sP=(N®P)/(na®p—n® ap)

are inverse equivalences of categories.
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The right module structure of Homyg (P, M) is given by composition of maps
ny for n € Homye(P, M) and ¢ € A = Endyg(P). The left module structure of
N ®4 P is given by b(n ® p) = n ® (bp) for b € kG,n € N,p € P. This is an
instance of Morita equivalence which we leave unproved in this paper. Instead, we
look at it in detail for a few cases.

5.1 Over a semisimple group algebra

When the regular representation of kG is semisimple, the projective covers of sim-
ple modules P; = s; are equal, and

P = End (EB si) = @Endk(;(si) = @k = k"

7

follows from Schur’s Lemma. By theorem 9, the representations of kG are all of
the form ¢16, @ -+ @ cu8n, ¢; > 0. These map by F to (c1k) @ --- @ (c,k)
(also by Schur’s Lemma), where the i copy of k acts directly on c;k. As this
computation suggests, a representation of A = k" is simply a sequence of k-vector
spaces Vi, - .-, V,, with the i copy of k acting on V; [1]. We can interpret this
result in terms of Quivers.

Definition 14. A Quiver is a directed graph. A representation of a quiver is a
vector space for each vertex together with a linear map of vector spaces for each
directed edge.

Using Quivers, we see that a representation of A is the same as a representation
of the Quiver with n isolated vertices:

®® .---0
N———

n

How the inverse map G works is a bit more interesting. Let Vi @ ---® V, bea
representation of A, with dim(V;) = ¢;. Then

HVi® - 0V)=(Vi0--- dVo) @ (51 @ s,) [~
= (@Vi@)sg) [~

and for ¢ # j,a € End(s;),v € V;, we have va # 0 but as; = 0, so the equivalence
relation quotients out all but the diagonal entries of the direct sum. It is easy to
verify that

18



H(Vl@...@vn)_—_@vi@si

satisfies the relations induced by A.
Now we consider the more interesting cases in characteristic p. This time we
use the inverse map H to discover what the £G-modules are.

5.2 Over the symmetric group on 2 elements in char-
acteristic 2
Let k = Fy and G = S,. Recall that kG is itself the unique projective cover for the

single trivial simple representation s;, so P; = kG. The endomorphisms of P = P;
include the identity endomorphism, and ¢ : P, — P; which carries a generator to

the trivial subrepresentation:
1 o 1
0 1/

This latter map satisfies €2 = 0. These two maps generate A as a k-vector space
(since A itself is actually only 2-dimensional, and a kG-map is determined by where
it sends a generator). So in fact A = k[xz]/(z?) = kle]. A representation of kG is
the same as a representation of the following quiver:

€ C ®
with the linear map associated to e squaring to the zero map. Such a map is given
in Jordan Canonical Form by a direct block sum of zero maps (0) and the block of

size 2, (8 (1)) We wish to see what kG modules these map to. Since the tensor

product over A distributes over direct sum, it is sufficient to see what H does to the
two summands.
For the zero map on £,

Hk)=k®4P/ ~,

where £ @4 €P = ke ® 4 P = 0 implies we take the quotient of P by the image €P,
which is the trivial subrepresentation, and the quotient is the trivial representation,
SO

is the trivial representation of kG.
For the block matrix, we have A acting on k2. Here, we get

HE) =@ P/ ~ .
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Recall that on k2, € carries

and on P, ¢ carries

So ~ identifies
with

and further identifies

(1) (o)
(1)e(o)= () ()

In this way, every element of H (k?) can be expressed in the form

(1) ()

with a, b € k, and the relations are all accounted for. So we get the projective cover
of the trivial representation in k.Ss.

Note that we saw before that k.S3 = kS, ® End(k?) as algebras, where End(k?)
represents the k-linear maps on the standard representation, which is irreducible in
characteristic 2. So representations of kS5 are the same as representations of the

quiver
e C . o

ie., they are given by direct sums of representations of kS and of End(k?).

with

5.3 Over the symmetric group on 3 elements in char-
acteristic 3

Let kK = F3 and G = S;. Let s; and s, be the trivial and sign representations,

respectively, and let P, = k® and P, = k? be their projective covers. To avoid

confusing the 3-vectors in P; and in P, I will mark vectors in each with a plus or a
minus on top respectively. Now we look at endomorphisms of P.

20



Define ¢; : P — P which sends P, to zero, and maps a generator of P,

N\t A
0} —» 11
0 1

to the trivial subrepresentation of P (this expresses the fact that P, has a maxi-
mal quotient and a subrepresentation both isomorphic to the trivial representation).
Define €5 : P — P similarly by

1 1
0 — |1 ,
0 1

carrying a generator to the sign subrepresentation. Both of these maps satisfy €2 =
€2 = 0.

There are also endomorphisms between P; and P,. Let 71,2 be a map which
vanishes on P, and carries

1\ " 0\~

0 — | 1 ,

0 -1
and similarly let 7, ; carry

1\ ~ 0\"

0] —» (| 1

0 -1

The interested reader can recall the filtration I have given in Chapter 4 on P;, and
determine the very similar filtration that can be given for P, to see an easy plausi-
bility argument for why these four maps are well-defined homomorphisms of rep-
resentations. For a proof, note that P = kG, and see where 1 € kG is sent.

These maps satisfy 72721 = €2 and 79,1712 = €1, and it can be verified that
all other pairwise compositions of these four maps give the zero map. These four
maps, together with the identity maps on P; and P, generate End(P) as a k-vector
space. For V' a representation of kG, the functor F' gives vector spaces M; =
Hom(P; & {0},V) and M, = Hom({0} @& P,, V) with the linear maps induced by
€1, €2, 71,2, M2,1 between them. If one looks back at the definition of F', one can see
that, for example, €, 5 induces a map from Mj to My, which is why I have reversed
the labels in the following quiver:

72,1

—A
(e e )e
e
m,2
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A representation of A is a representation of the quiver with the restriction that the
linear maps satisfy the relations I have stated in the previous paragraph, but with
the multiplication in the reverse order.

More explicitly, if V' is an irreducible representation of kG, then F(V) = M; &
M, where the elements of M, and M, are kG-maps m, : P, — V and my : P, —
V. We can put all of this together in a diagram indicating all the relevant maps:

72,1

«( PSR e

71,2
my m2

v

This quiver structure is significantly more complicated. Here we will see how
F' behaves on three specific representations, namely the three quotient represen-
tations of P, from the filtration {0} C V; C V, C P, seen in Chapter 4. That
is, we consider P, /V;, which is the trivial representation, P /V1, a 2-dimensional
representation which contains a sign subrepresentation and surjects onto a trivial
representation, and all of P;. Here I have only stated what M; and M, together
with the induced maps are. The interested reader can draw a diagram of the struc-
ture of P, and P, together with the four maps between them, and see how each of
the three quotient representations interact with these maps, in order to verify these
claims.

For the trivial representation P, /V5, there is a surjection my : Py —» P/V,,
so M, is a 1-dimensional vector space. There can be no nonzero map from P,
to P;/Vs, for that would imply P, surjects onto the trivial representation, which
contradicts P, being the projective cover of the nonisomorphic sign representation.
So M, is a 1-dimensional vector space and M, is the zero space. The induced maps
by 11,2, 72,1 and €, must be zero as a consequence. The map induced by ¢; is also
the zero map, since €; carries the generator of P; to the trivial subrepresentation of
Py, which is in the kernel of m;. So all four induced maps are zero.

For the next quotient P,/V;, there is again a surjection m; : P, — P, /W
which spans M;. If M; were 2-dimensional, then P; would have to surject onto the
sign part of P, /V;, which it doesn’t. However, there is a map my : P, — P,/V}
which surjects onto the sign part of P,/V}, so M, is 1-dimensional as well. As
before, the maps induced by €; and e, are zero, because the images of ¢; and e,
are in the kernel of m; and m,. The map induced by 7, 5 is zero, because T2
maps into ker my. The map induced by 74, on the other hand, is nonzero (so an
isomorphism): 7, ; maps P, into the sign part of P, which is then mapped by m4
into the sign subrepresentation of P, /V/.

Finally, for all of P, we have already seen what the maps from P; to itself are
and the maps from P, to P;. Namely, these are the identity map Mg P — P
and m; . = €1, which span M, and my = 1y spans M,. The map induced by e,
is still zero, but the map induced by €;, perhaps unsurprisingly, carries Mg 1O M1 ¢
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and m; . to 0. The map induced by 7, ; carries my to m; .. The map induced by 7 ;
carries m, ;q to my, and m; . to 0.

I end my analysis here, but there is plenty more work that can be done towards
getting a full understanding of the representations of £S3; here we’ve only seen
how some representations of k£S3 are converted into representations of the quiver,
but one could also go in the reverse direction, determining how the functor H con-
verts representations of A into representations of kS;, and work towards giving
a classification of representations of both algebras. Beyond that, one could con-
tinue examining the representations of larger groups in prime characteristic. In all
of our examples, A was actually isomorphic to kG (since kG = P, End(P)
Homys(kG, kG) = kG), but nevertheless provided an alternative perspective for
us to understand the representations. For larger groups, the algebra A may turn out
to be much simpler to study.
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