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Supporting emerging mobile applications in densely populated environments

requires connecting mobile users and their devices with the surrounding digital land-

scape. Specifically, the volume of digitally-available data in such computing spaces

presents an imminent need for expressive mechanisms that enable humans and appli-

cations to share and search for relevant information within their digitally accessible

physical surroundings. Device-to-device communications will play a critical role in

facilitating transparent access to proximate digital resources. A wide variety of ap-

proaches exist that support device-to-device dissemination and query-driven data

access. Very few, however, capitalize on the contextual history of the shared data

itself to distribute additional data or to guide queries. This dissertation presents

Gander, an application substrate and mobile middleware designed to ease the burden

associated with creating applications that require support for sharing and searching

of hyper-localized data in situ. Gander employs a novel trajectory-driven model of

viii



spatiotemporal provenance that enriches shared data with its contextual history—

annotations that capture data’s geospatial and causal history across a lifetime of

device-to-device propagation. We demonstrate the value of spatiotemporal data

provenance as both a tool for improving ad hoc routing performance and for driving

complex application behavior. This dissertation discusses the design and implemen-

tation of Gander’s middleware model, which abstracts away tedious implementation

details by enabling developers to write high-level rules that govern when, where, and

how data is distributed and to execute expressive queries across proximate digital

resources. We evaluate Gander within several simulated large-scale environments

and one real-world deployment on the UT Austin campus. The goal of this research

is to provide formal constructs realized within a software framework that ease the

software engineering challenges encountered during the design and deployment of

several applications in emerging mobile environments.
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Chapter 1

Introduction

In pervasive computing spaces, people and devices are integrated with the

surrounding physical environment; wireless network connections support oppor-

tunistic interactions between humans, the devices they wear and carry, and in-

telligent sensors embedded in everyday objects and natural landscapes. This tight

integration of sensing, computation, and communication with the physical and so-

cial environment has the potential to generate large volumes of spatiotemporal data

that can be exploited by pervasive computing applications of the future. In these

settings, users and applications are interested in what is happening around them,

right here and right now.

Consider the following motivating examples. At an outdoor music festival

with thousands of attendees, festival-goers may use a pervasive computing applica-

tion to find nearby mobile vendors carrying particular food items, be alerted when

friends are near, discover popular photos of recent performances, receive coupons

from merchandise vendors, and be alerted about special events and limited product

offerings at festival sponsors’ tents. Vendors at the festival may likewise use the ap-

plication to disseminate special offerings and advertisements to attract customers.

Attendees at a large business convention may use a pervasive computing applica-

tion to connect with nearby colleagues and organization representatives or receive

1
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Figure 1.1: Graphical overview of the research contributions. This figure will be used as
a pictorial guide throughout this dissertation.

alerts about spontaneous events. A parade goer may be aided by an application

that recommends the closest available viewing spot in a shady area, helps users to

avoid footpaths that are congested, or finds live streaming video clips of a particular

parade attraction that are being captured by a nearby spectator.

To realize these interactions, it is essential to help users and applications

share, reason about, and search for hyper-localized data as they move through a

densely populated and rapidly changing information space. For many reasons, it is

becoming apparent that device-to-device interactions will play a pivotal role in con-

necting users’ devices with this hyper-localized information: the demand for fixed

network infrastructure resources (e.g., cellular upload bandwidth) could greatly ex-
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ceed available capacity; round trip times to the “cloud” may be too slow [152]; and

the battery constrained nature of users’ devices may make short-range network in-

terfaces far more advantageous than long-range ones in terms of energy/bandwidth

consumption [157]. This dissertation addresses formal and practical challenges asso-

ciated with sharing, reasoning about, and querying hyper-localized data via device-

to-device interactions.

The goal of this dissertation is Gander—a pervasive computing application

substrate with three dovetailing components (depicted in Figure 1.1): (i) expres-

sive and flexible models of spatiotemporally-enriched data (the vertical-striped box

in the upper left corner of Figure 1.1); (ii) distributed query and data dissemina-

tion constructs that support a search engine for pervasive computing spaces (the

horizontal-striped box in the upper right); and (iii) the systems contribution of an

application development framework that combines the two (the checkered box on the

bottom). Each objective presents unique challenges in pervasive computing spaces.

Next we enumerate some salient characteristics associated with these environments.

1.1 Characteristics of Pervasive Computing Spaces

The characteristics of the data in pervasive computing spaces present a set

of interesting challenges:

• Overwhelming Ratio of Data Available to Data Used: While the data in these

spaces is generated by humans and sensors at a unprecedented scale, only a

small fraction of it will be exploited by pervasive computing applications and

their users.

3



• Ephemeral Data: The information generated by people and sensors is spa-

tiotemporally relevant and as such may be useful only for a short period of

time; as time passes, devices and users move, physical phenomena evolve, and

social interactions shift, and a datum may no longer reflect the here and now.

Existing systems for acquiring localized information enable access to relatively

static data instead of the inherently ephemeral data of pervasive computing

spaces, which cannot be easily indexed outside of the here and now (e.g., in

the Internet).

• Data Sensitivity: In addition, much of the data generated in these spaces

captures information about people and their movements, interactions, and

intentions, which raises concerns about privacy. These concerns impact how

people are willing to share their data; studies have shown that people may be

willing to share with other co-located users (even unknown ones) what they

would not share publicly (i.e., on the Internet) [76,109].

• Heterogeneous Networks: Finally, people have differing degrees of access to

fixed network infrastructure over time, even in developed areas. While many

commuters in large metropolitan areas carry mobile phones, for example, it is

often difficult to connect to the Internet via the cellular network while riding

the subway. Supporting sharing and search of information that represents

the here and now requires a new perspective that takes advantage of both

opportunistic interactions between peer pervasive computing devices and the

emerging availability of localized infrastructure in the form of cloudlets [152].

4



Spaces exhibiting these types of characteristics are increasingly common

place, given the widespread embedding of computational, sensing, and communi-

cating technologies in our physical environments. Pervasive computing spaces can

and will generate vast amounts of spatiotemporally relevant data. As in the Internet,

large volumes of data motivate the need for expressive and efficient search mecha-

nisms to provide access to information relevant to a user and his needs. Clearly, such

mechanisms must be capable of leveraging the contextual dependencies of data. On

the other hand, to enable complex application-level reasoning, data must be able

to express its relationship to the context in which it was created. In this disser-

tation, we will look at both sides of this two-sided coin. Crucial to this goal is a

general-purpose data model with spatiotemporal underpinnings aimed at capturing

the ever-changing state of pervasive computing environments.

1.2 Enriching Shared Data with Spatiotemporal Provenance

Users and applications in pervasive computing environments rely on their

perceptions of the surrounding world to make decisions and adapt their behavior. A

key challenge lies in capturing and managing information that is subject to the high

levels of dynamics that characterize pervasive computing environments: time passes,

devices and users are constantly in motion, social patterns evolve, data is moved,

and information expires. At the same time, the data used by pervasive computing

applications is inherently spatiotemporal, i.e., its relevance to a particular user or ap-

plication is parameterized by both space and time. There are numerous mechanisms

designed to support the nuts and bolts of distributing messages in a device-to-device
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fashion, even over multiple hops, and even some of these mechanisms are “content

aware” (i.e., they distribute the data based on its own semantics). However, few

approaches tap into the contextual history of the shared data to distribute additional

information. In this dissertation, we propose an approach whose key tenet is that

knowing the context in which a piece of data was created and the contexts in which

it has been shared over its lifetime can help determine the future contexts in which

that data might be relevant.

We present two variants of a model that both enrich shared data with its

own spatiotemporal provenance—trajectory-based annotations that capture data ob-

jects’ contextual history over a lifetime of device-to-device propagation. The spa-

tiotemporal trajectory data type [44] uses trips and modes of travel to represent

the spatiotemporal path of a data item. Our approach is similarly motivated, but

targets a completely distributed approach, where the trajectory itself is defined by

properties of the space and time in which data exists and is shared. The first model

variant (shown as the box labeled Explicit Provenance Formal Model within the

vertical-striped box in Figure 1.1) employs an explicit coordinate system and anno-

tates data objects with timestamped spatial points that capture objects’ trajectories

(within the coordinate system) over time. We further extend this model to allow the

explicit spatiotemporal trajectories to be aggregated, fused, and queried on-the-fly.

The second variant (the box labeled Implicit Provenance Formal Model) considers an

implicit form of space that captures the causal propagation of data objects through

a time-varying network of mobile nodes. We describe spatiotemporal operators for

comparing implicit trajectories and drawing local inferences about the distributed
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state of knowledge.

Associating meta-information with data objects regarding the objects’ use

and evolution is sometimes referred to as data provenance [133], which has received

attention in both sensor networks [7] and cloud computing applications [111]; our

trajectory-based spatiotemporal annotations are a direct form of data provenance.

To our knowledge, this dissertation contains the first investigation into the design

and use of spatiotemporal data provenance for mobile and pervasive computing ap-

plications.

Pervasive computing applications inherently deal with data about real-world

phenomena. Accordingly, a significant portion of the development effort in creating

such applications typically deals with implementing data-driven behavior: for exam-

ple, creating structured digital data items from sensors, moving data items between

nodes, raising alerts when conditions are met, combining different types of data to

form higher level aggregate views, and eventually deleting stored information when

it is no longer needed. Rather than embedding such data-dependent logic through-

out an application, we describe how this behavior may be expressed as reactive

rules driven by data and its spatiotemporal provenance (the Reactive Data-Driven

Rules shown in Figure 1.1). These rules may even be attached to and transmitted

alongside shared data, which enables data to completely dictate when and how it

should be replicated, moved, and eventually deleted in a distributed environment.

In this dissertation, we show how such data-driven rules may be used as functional

building blocks to express and implement distributed data dissemination and query

protocols.
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1.3 Sharing and Querying Spatiotemporal Data

In emerging pervasive computing spaces, users and applications require trans-

parent access to digital data that exist directly within the proximate surroundings.

Data is disseminated and queried by leveraging proximally available resources in

the user’s or application’s immediate physical environment, via a localized cloudlet

infrastructure or dynamically formed wireless ad hoc networks. Given the spa-

tiotemporal nature of data in pervasive computing spaces, data’s spatiotemporal

provenance is exceptionally valuable for both driving data-dependent application

behavior and for informing ad hoc routing protocols.

This dissertation demonstrates the utility of historical contextual data an-

notations from two perspectives. First, from a software engineering perspective we

show how data-dependent application logic may be expressed as reactive rules (the

box labeled Programming with Reactive Data-Driven Rules within the horizontal-

striped box in Figure 1.1). These rules encapsulate logic that may otherwise be

embedded throughout the application, greatly simplifying application design. We

demonstrate how such rules may be parameterized by characteristics of spatiotem-

poral annotations and benchmark the overhead of our explicit provenance metadata

in a simulated pervasive computing environment. Second, we focus on a particular

task that is essential in pervasive computing applications: device-to-device routing.

A wide spectrum of approaches have been proposed that aim to provide

support for distributing data in a device-to-device fashion. Some of these solutions

are even “content aware” and exploit the semantics of data’s content to guide its

propagation. Of these many approaches, few leverage the contextual history of data
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itself to drive routing decisions and formulate higher-level conclusions. Spatiotem-

poral provenance provides a window into data’s contextual past—it reveals precisely

where data has traveled and when. Using empirical data sets of human proximity we

demonstrate the practical utility of implicit spatiotemporal annotations for making

bandwidth-saving routing decisions (Provenance as a Local Inference Tool in Fig-

ure 1.1): first, as a means for making local inferences about other nodes’ knowledge

and second, for identifying commonly co-located data-data and data-device pairs,

which may be used as substitute routing targets. Such spatiotemporally-informed

ad hoc routing strategies can also support in-network query protocols.

Existing systems that have enabled query-driven access to localized data pro-

vide only capabilities for searching relatively static data instead of the inherently

ephemeral data of pervasive computing spaces, which cannot be easily indexed out-

side of the here and now (e.g., in the cloud). Supporting the execution of queries

over data that represents the here and now requires a new perspective on the design

of the search engine architecture that relies on search execution capabilities that

take advantage of both opportunistic interactions between peer pervasive comput-

ing devices and the emerging availability of localized infrastructure in the form of

cloudlets. Enabling expressive search over dynamic data in the here and now also

requires understanding and efficiently collecting and representing the context of that

data in a pervasive computing space. That context has a significant impact on the

relevance of a particular data item to a particular search, which must be able to

be captured in a search engine for pervasive computing spaces. This relevance is

further influenced by intrinsic characteristics of data that populates pervasive com-
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puting spaces; elements of this data are inherently correlated with each other across

space and time, and those correlations (and their dynamics) can impact the ability

to resolve queries for that data.

To begin to address these needs, we introduced the Gander conceptual

model [101] (the Formal Conceptual Query Model within the horizontal-striped box

in Figure 1.1), which provides a foundation for precisely defining and reasoning

about search of the here and now, in the here and now. In this dissertation, we use

this conceptual model to explore the impact of the intrinsic spatial and temporal

correlations of data in pervasive computing spaces on the performance of in situ

query processing. To reify these goals and to shield application developers from

the complexities of deploying their applications in pervasive computing spaces, we

introduce a data sharing and query processing software framework, which aims to

provide an implementation of the spatiotemporal data models and distributed query

processing mechanisms.

1.4 Data Sharing and Query Processing Framework

A comprehensive implementation and evaluation of the Gander application

substrate is a key research component in this project, constitutes a major systems

contribution, and sets the stage for technology transfer. Key to our approach are

real-world application inputs in the form of data, mobility, search content, and

network traffic. This dissertation presents the Gander application framework (the

checkered box of Figure 1.1), which provides infrastructure support to enable spa-

tiotemporal data generation and expressive search in pervasive computing spaces.
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Figure 1.2: A high-level view of the Gander application framework (white objects).

This third and final aim addresses the concrete systems directions necessary to eval-

uate the formal foundations proposed by the first two aims and to deploy Gander

within real world pervasive computing applications.

Figure 1.2 illustrates the core features of the Gander application framework

(shown as white objects) and where they sit in the application stack (shown as gray

objects). Each piece of application data has associated with it spatiotemporal data

provenance (metadata), which captures both the (expected) dynamics of the real-

world phenomenon the datum represents and the (actual) dynamics of the datum.

This historical metadata enables complex reasoning about the context of data and

also provides a foundation for expressing how an application should react to the state

of its environment. Rather than embedding data-dependent logic throughout an

application, this behavior may be expressed as reactive rules over data’s content and

spatiotemporal provenance (e.g., when and how data should be created, replicated,
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moved, and eventually deleted). Gander’s query processing strategies are provided

as a middleware layer whose distributed protocols are implemented using reactive

rules that may be parameterized by data content, provenance metadata, or complex

combinations of the two. We evaluate the system performance and user-perceived

utility of Gander’s search strategies through a real-world deployment of a mobile

application on the UT Austin campus. The rest of this dissertation will study the

need for and realization of these components in detail.

1.5 Research Contributions

Parts of this dissertation have been published in peer-reviewed conferences

and journals [99–101, 104] It addresses challenges related to sharing and querying

spatiotemporal data in pervasive computing spaces by making the following contri-

butions:

Enriching Shared Data with Spatiotemporal Provenance (Figure 1.1, vertical-

striped box)

Research Contribution 1: We provide a formal model of explicit spatiotem-

poral data provenance for pervasive computing applications (Section 2.2).

The model is founded on the spatiotemporal trajectory data type, which

captures the dynamics of both digital data and the physical phenomena

they represent. Spatiotemporal provenance metadata may be attached

to application data to enable complex reasoning about data and the com-

putation of its past and present context.
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Research Contribution 2: We extend the model of explicit spatiotempo-

ral provenance and introduce a formal model of implicit spatiotempo-

ral data provenance (Section 2.3). Implicit data provenances employs a

more contextual form of space that captures the causal propagation of

data through a time-varying network. Our implicit model provides two

complementary views on data provenance: a data-dependent view (i.e.,

what data is about) and a data-agnostic view (i.e., how data moves).

By enhancing transmitted data with some degree of its causal history of

propagation, these two views enable a mobile application to gain local in-

sight into the overall spreading behavior of a piece of information, which

devices have received it, what other information it is commonly associ-

ated with, and the time-varying topology of the network. We describe

formal operators for comparing trajectories in meaningful ways.

Research Contribution 3: We describe how pervasive computing applica-

tion development can be simplified by expressing data-dependent applica-

tion behavior as reactive rules (Section 2.2.4). Rather than embed data-

dependent logic throughout an application, a developer may use these

rules to reason about and interact with spatiotemporal data in a general-

purpose way, providing a nice separation of concerns. Our rule-based

programming approach provides functional building blocks for the imple-

mentation of spatiotemporally-informed data dissemination and query

processing mechanisms.

Sharing and Querying Spatiotemporal Data (Figure 1.1, horizontal-striped box)
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Research Contribution 4: We create developer tools that enable the for-

mulation of reactive rules governing data creation, sharing, and dele-

tion (Section 3.1). Using these software components we benchmark the

overhead of explicit spatiotemporal data provenance with varying tra-

jectory resolution in a simulated pervasive computing environment (Sec-

tion 3.1.4). Different pervasive computing applications will likely require

different granularities of spatiotemporal data history. To gain a deeper

quantitative understanding of how trajectory resolution impacts system

performance we evaluate the system-level cost of explicit provenance an-

notations in terms of bandwidth and storage using a geospatial coordinate

system.

Research Contribution 5: Leveraging the formal operators introduced in

Research Contribution 2, we demonstrate the practical utility of implicit

spatiotemporal data provenance. Using real-world data sets of human

proximity, we benchmark the performance of causal data annotations as

a means of locally estimating global network characteristics and data

spreading dynamics (Section 3.2.1). Next, we showcase the inferential

power of causal provenance for making bandwidth-saving routing deci-

sions (Section 3.2.2): first, as a tool for detecting and eliminating redun-

dant device-to-device transmissions and second, for identifying commonly

co-located data-data and data-device pairs, which may be used as sub-

stitute routing targets within a targeted data dissemination protocol.

Research Contribution 6: We describe the Gander conceptual model of
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search for pervasive computing environments, which supports queries over

data and its spatiotemporal metadata. The relevance of real-world infor-

mation is inherently parameterized by both space and time. Therefore,

we assess the impact of data correlations in space and time on Gander’s

performance in simulation (Section 3.3). This task sheds light on how the

Gander query processing protocols perform when the degree of these data

correlations are varied; that is, we ask whether different degrees of cor-

relations impact the quality of the results achieved by a Gander search.

These results further validate the utility of spatiotemporal provenance

and aid in the design and implementation of developer tool support for

spatiotemporal trajectories and query processing protocols.

Data Sharing and Query Processing Framework (Figure 1.1, checkered box)

Research Contribution 7: We introduce a concrete mobile software frame-

work that provides high-level programming constructs for expressing data-

dependent application behavior in the form of reactive rules (Section 4.1).

As a use case, we present the design and implementation of a mobile ap-

plication created using the framework that distributes user content in a

device-to-device fashion across multiple network hops. The framework

abstracts away low-level implementation details regarding network com-

munication and data serialization enabling developers to focus on the

data-driven behavior unique to their application.

Research Contribution 8: We create and benchmark a resource discovery

service for cloudlet-supported pervasive computing environments (Sec-
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tion 4.2). Similar to a cloud computing resource, a cloudlet [152] hosts

services that perform the expensive computations required by a mobile

application. Unlike the cloud, however, cloudlets are inherently within

close physical proximity to the mobile devices that utilize their resources.

We leverage cloudlets to implement proximal discovery for applications

targeting densely populated and highly mobile physical spaces.

Research Contribution 9: We provide the Gander Framework, an extensi-

ble software framework to support data sharing and query processing in

pervasive computing environments (Section 4.3). This framework reifies

the formal foundations of spatiotemporal data provenance, Gander’s data

model, and search protocols and provides the systems support necessary

to evaluate and deploy Gander within real world pervasive computing

applications.

Research Contribution 10: We evaluate the system- and user-level utility

of the Gander search engine in a real-world deployment (Section 4.4).

Our ultimate goal is to provide expressive support for real applications

to share and search for data in pervasive computing spaces. This task

aims to explore the impact of our approaches under realistic conditions

that reflect the complexity of the rapidly changing physical environment

at a large scale, which would otherwise be difficult to observe in controlled

simulated settings.

The body of this dissertation is organized as follows. Chapter 2 lays the

foundation for models of spatiotemporally rich data generation. Building on this
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foundation, Chapter 3 describes formal methods and practical programming ap-

proaches for sharing and querying spatiotemporally-enhanced data. We introduce

the Gander conceptual model and describe distributed methods for querying per-

vasive spatiotemporal data. Chapter 4 outlines the Gander application framework,

which reifies the methods and mechanisms introduced in Chapters 2 and 3 within

an extensible software framework. We evaluate the system performance and user-

perceived utility of Gander’s constructs within a real-world deployment on the UT

Austin campus. Finally, Chapter 5 concludes and discusses directions of future work

that build on the contributions of this dissertation.
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Chapter 2

Enriching Shared Data with Spatiotemporal Provenance

In this chapter, we demonstrate the need for a general-purpose model for

metadata capable of capturing the spatial and temporal dynamics of ephemeral data

in pervasive computing spaces. We introduce two variants of such a model, both

which enrich shared data with spatiotemporal provenance—metadata annotations

that express data objects’ contextual history across a lifetime of device-to-device

propagation. The first model variant employs an explicit coordinate system to de-

fine space; the second variant uses an implcit form of space that captures data

objects’ causal propagation through a time-varying network. This chapter focuses

on the items illustrated within the vertical-striped box shown in the upper left of

Figure 1.1. Our proposed data models are founded on the spatiotemporal trajectory

data type, which enables applications to reason about relationships between real

world phenomena and the digital data that represents those phenomena.

Consider an example in which a boat collects observations of oil in coastal

waters. These observations are represented as digital data carried by a device on the

boat. Each of these datums moves in physical space as it is carried by the boat and

is therefore subject to the boats movement patterns; any one of these datums could

Portions of this chapter appear in [104] for which coauthors Christine Julien, Jamie Payton,
and Gruia-Catalin Roman provided advising and editing.
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also move by being passed from one device to another. The physical phenomenon

of interest also often exhibits spatiotemporal dynamics after its observation; in this

example, the observations are of a physical phenomenon subject to dynamics in both

space and time as coastal currents cause the oil to move and dissipate. A datums

spatiotemporal trajectory records these dynamics of the observation and the phys-

ical phenomenon of interest, allowing applications within the pervasive computing

network to create rules governing how datums capturing the phenomenon should

move, change, live, and die. Spatiotemporal trajectories also provide a foundation

for applications to reason about the impact of spatiotemporal dynamics on the use

of a datum.

In this chapter, after expositing necessary components of a spatiotemporal-

aware model for metadata annotations, we present two variants of such a model that

employ different definitions of space. We further demonstrate the utility of our ap-

proach from an engineering perspective through a set of use cases that demonstrate

how data-driven application behavior may be expressed as reactive rules triggered

by application data and its spatiotemporal annotations.

2.1 Motivating Spatiotemporal Data Provenance

Much attention has been paid to capturing context, enabling resource dis-

covery, delivering relevant information, and handling dynamics in pervasive com-

puting environments; far less has been devoted to composing and organizing such

systems [53]. Ultimately, resources and services will need to interoperate in real-

world deployments. Applications may need to seamlessly move tasks among envi-
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ronments [159], users may wish to aggregate information across resources [137], a

service might need to collaborate with others [18, 108]. A common glue, or lan-

guage, is needed to facilitate interoperability, enable composition, and maximize

resource use in pervasive computing networks. This underlying uniformity will be

best satisfied by embedding metadata within the data already communicated among

applications. A shared model of such metadata would greatly simplify application

development and support capture of richer contexts, enabling new classes of appli-

cations.

Context-awareness is a major theme in pervasive computing. From defining

it to leveraging it, context determines the modi operandi of most pervasive comput-

ing applications. A common approach is to explicitly define an application-specific

notion of context; determining what data is “relevant” rests solely with the appli-

cation. This is sufficient when data exists only instantaneously and is not shared

among applications. However, this is not the case in many pervasive computing

environments, which significantly increases the amount of data available. A far

better approach is to enable shared data itself to articulate the context in which

it was acquired to provide clues as to contexts in which it might be relevant. A

metadata model designed in this way would enable its associated data to exploit

its contextual dependencies, providing a separation of concerns and greatly easing

development burdens.

Traditional software models offer little support for the challenges that arise

due to the inherent dynamics of pervasive computing environments [43], and devel-

opers are often forced to address these facets at the application level. A general-
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purpose model capable of independently exploiting contextual dependencies that

could be shared across services would enormously simplify and facilitate pervasive

computing application development. Rather than impose a totalitarian framework

or middleware, we believe that these facilities are best addressed by and within the

data already used by applications.

User and application needs in pervasive computing are driven by real-world

phenomena; they are inevitably a product of the environment of the users’ interac-

tions [109]. This is evident in the popularity of location-based services. A general-

purpose metadata model should promote the separation of concerns called for in

pervasive computing and emphasize attributes present in all real-world phenomena,

namely, space and time.

Every action and event that captures one’s existence has both spatial and

temporal attributes, not merely one or the other [62,134]. Users, devices, and data

“move” through time. As time passes, they may move through space. Space and

time may be treated independently, but are inseparable as correlated attributes of

real-world phenomena. This is intuitive; the passage of time is naturally understood

in terms of perceived changes to objects in space [126]. We argue that space and

time are necessary (but not sufficient) to express context. Thus, a general-purpose

metadata model for pervasive computing must account for the inherent spatiotem-

poral characteristics of real-world phenomena. More to the point, space and time

must be first-class citizens of such a model.

We now introduce a formal model for spatiotemporal metadata that uses an

explicit coordinate system to define space. In Section 2.3 we introduce an alternate
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variant of this model that employs a implicit form of space.

2.2 A Model of Explicit Spatiotemporal Metadata

Existing work in pervasive computing focuses almost exclusively on how to

query data, presupposing an existing data-rich environment and neglecting questions

related to how data is created, replicated, moved around, stored, and destroyed.

Space and time must be first class citizens of our data model since pervasive

computing intrinsically entails interaction with the physical world, and phenomena

in this real world are inherently spatiotemporal. To bridge from the physical world

into the digital one, we distinguish reality from our perception of it. Reality is defined

by physical phenomena that can be sensed by the digital world (e.g., environmental

conditions, availability of resources, presence of humans). An observation is made

when a phenomenon is sensed. The observation is a digital representation of the

phenomenon as it is instantaneously captured through the sensing process and is

associated with an immutable spatiotemporal stamp. A datum is a digital represen-

tation of some quantum of knowledge about an observation. We want to expose the

relation between a datum and an associated phenomenon (especially as data moves

and time passes, i.e., as the datum experiences spatiotemporal dynamics). To facil-

itate this, we augment each datum with spatiotemporal metadata that represents

the dynamics of the datum and the associated phenomenon in space and time.

Associating historical metadata with data objects is often referred to as data

provenance, which has received recent attention in both distributed file systems [133]

and large-scale cloud stores [111] for tracking the logical history and evolution of data
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objects (e.g., modifications, domains of ownership, sources of contributed content,

etc.). In these application domains, provenance metadata is maintained to help ver-

ify the authenticity and integrity of anonymously shared data. Our proposed model

is a direct form of provenance, but aims to capture the physical contextual history of

data objects as they are generated and exchanged between proximal hosts and appli-

cations in pervasive computing spaces. Similar to existing provenance aware storage

systems [111], our spatiotemporal data provenance metadata may be used trace back

information to its origins and aid in deciding how much to trust it [7]. However,

we specifically target applications that deal with data about real world phenomena

and operate in inherently distributed environments with no central provenance au-

thority. To our knowledge, this dissertation represents the first investigation into

the use of data provenance for mobile and pervasive applications.

We employ a spatiotemporal trajectory data type for spatiotemporal data

provenance, which can capture both the (expected) dynamics of the phenomenon

and the (actual) dynamics of the datum. Applications that create and use the data

can define rules that use the trajectories to determine how data moves, changes,

lives, and dies. These rules are not part of our data model, but Section 2.2.4 gives

examples of rules that are obviously useful for spatiotemporal data in pervasive

computing. In a simple sense, one can relate a trajectory to spatiotemporal decay,

or the notion that the further a datum gets in space and time from its “genesis” the

“weaker” it is.
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2.2.1 From Physical Phenomenon to Digital Datum

The first challenge is the jump from the physical to the digital. A datum

represents an observation of a phenomenon digitally. We store datums as semi-

structured data [3, 47] that is self-descriptive in the sense that it consists of a set

of name-value pairs. We assume an underlying vocabulary for data that is shared

among all participants in the digital world.

Every phenomenon is associated with a “place” and “time.” The place

is a description of the spatial influence of the phenomenon; depending on a phe-

nomenon’s type, the shape and scope of its place may differ dramatically. Space can

be physical, logical, or even contextual (see Section 2.3). In this section, we assume

traditional two-dimensional physical spaces. A phenomenon’s time is a (potentially

open) range with a discrete beginning.

An observation logs a phenomenon and generates a datum. In the sim-

plest sense, a datum exists at exactly the phenomenon’s place for exactly the phe-

nomenon’s lifetime. This may not be possible or desirable for several reasons: (i) the

observation may not happen at the exact location of the phenomenon; (ii) there may

not be a digital device at the phenomenon’s place; (iii) the phenomenon’s place

may be larger than a single device; (iv) devices that store data may be dynamic

or unreliable; or (v) we may want to disseminate the datum more widely than the

phenomenon’s associated place.

In our model, each datum has a spatiotemporal trajectory that captures

the initial relationship between the datum and the phenomenon. Over time, the
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trajectory should also capture the evolution of this relationship by capturing the

evolution of the datum and the phenomenon in both space and time.

2.2.2 Spatiotemporal Trajectories

A datum’s spatiotemporal trajectory may evolve for many reasons: the phe-

nomenon may be expected to be dynamic, the device carrying the datum may move,

or the datum may be passed through the network. A datum’s spatiotemporal tra-

jectory should react to these dynamics and update itself. We separate how data

items are communicated, stored, or moved from the fact that, by existing and mov-

ing in pervasive computing networks, they generate “fields of influence” given by

their spatiotemporal availability. We begin with a simple yet expressive model of

spatiotemporal trajectories and give insights into how these trajectories can be used

to support a variety of expressive pervasive computing applications.

A datum is associated with a space-time stamp that marks where and when

the observation was made. Each datum’s trajectory is a sequence of vectors indi-

cating the movement of the datum in space and time relative to its phenomenon.

If the datum is carried by a mobile device, the vectors are defined by the path the

device takes. If the datum is communicated from one device to another, then the

trajectory contains a vector that traverses the distance between the devices at a

velocity defined by the time the exchange requires.

Consider a data item about an exhibit in a museum collected and carried by

the mobile device of a visitor:
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Phenomenon. the Mona Lisa is in room 6

Observation. (at location [x, y] and time t) the Mona Lisa is observed

Datum. 〈painting = ML, (loc = [x, y], time = t)〉
Trajectory. vectors of the visitor’s path in the museum

An application relying on this information to share information with visitors about

objects nearby them in the museum may use this trajectory to implement a form

of data decay in space. This datum may decay with space as the distance from the

painting grows. This notion of decay is similar to that captured by some existing

middleware for pervasive computing [93]. The information may not decay in time

since the painting is not expected to move or change. One could do something

similar with a datum that decays only in time but not in space (i.e., anything that

is true in all places but not at all times).

As another example, consider observations of the air quality (AQI) at a

particular place and time collected by users’ smartphones and shared via peer-to-

peer interactions:

Phenomenon. the particulate concentration is 40.5µg/m3

Observation. (at location [x, y] and time t) the AQI is 101

Datum. 〈AQI = 101, (loc = [x, y], time = t)〉
Trajectory. vectors of the movement of device(s) carrying the datum and passing

of the datum among devices

An application that uses these observations to provide the user a dynamic and

localized view of the air quality may degrade datums that are further in both space
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and time from their observations. Note that these first two simple examples only

employ the the observation’s space-time stamp and a representation of the “here

and now.” Our model is not limited to these situations, and our later examples will

show how the trajectory itself may be essential to the application.

A phenomenon itself may have some space-time behavior that must also be

associated with the datum. Consider the following, in which the presence of oil in

water is detected by a mobile collection point:

Phenomenon. oil in water moving at 32cm/s to the northwest

Observation. (at location [x, y] and time t) there is oil in water whose current

is 32cm/s to the northwest

Datum. 〈oil = true, speed = .32m/s, direction = 135◦, (loc = [x, y], time = t)〉
Trajectory. vectors of the movement of the mobile collection device and the

(expected) movement of the phenomenon

An application can use this information to, for example, make predictions about the

current location of the oil. The complete trajectory can also give information about

where the oil has been, enabling direction of cleanup efforts.

In this final example, the spatiotemporal dynamics of the phenomenon (the

oil in the water) are captured (as the current’s speed and direction) in a very

application-specific way. We have limited ourselves for now to a simple model of

two dimensional space; we also simplify our representation of a phenomenon’s spa-

tiotemporal dynamics as a single vector, whose starting point is given by loc and

time, and whose (expected) speed and direction are represented as part of the da-
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tum. In general, we can associate each phenomenon with its own trajectory that

starts from the observation (as measured by loc and time). This trajectory could be

simply a single vector as in the example, a series of vectors, or even some function

of time and context whose value is a series of vectors.

2.2.3 Computing with Trajectories
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Figure 2.1: Sample trajectory com-
putation

Associating a spatiotemporal trajectory

with an inherently spatiotemporal object is in-

tuitive, but it is also extremely powerful. In the

next section, we describe ways that this infor-

mation can be used to enable applications to

reason about and interact with the ephemeral

spatiotemporal data that characterizes their en-

vironments. First, we give a taste of the computations that can be done on our

spatiotemporal trajectories to enable additional application semantics. Ultimately,

the ability to perform these types of computations will be provided as part of a set of

development tools for spatiotemporal data provenance (as illustrated in Figure 1.1).

Smoothing Trajectories. Spatiotemporal trajectories associated with da-

tums that live and move for long periods of time or with high degrees of dynamics

may grow very long. Using vector addition, we can “smooth” trajectories, reducing

the resolution of the information about the datum’s spatiotemporal dynamics, at

the benefit of decreased size of the datum.
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Computations on Trajectories. Applications can also do relatively sim-

ple calculations using a datum’s spatiotemporal trajectory. For example, an appli-

cation could compute a decay value that numerically represents how “far” a datum

is in space and time from its phenomenon. Applications can also perform computa-

tions over multiple trajectories. For example, if a datum encounters another datum

that represents either the same or a different phenomenon, their trajectories can

both positively and negatively reinforce each other.

Consider our example of oil movement and the trajectory that captures the

spatiotemporal dynamics of the phenomenon (i.e., the speed and direction of the

current). If a datum d1 capturing an observation at location [x1, y1] and time t1

encounters a second datum d2 of the same type (i.e., oil in the water) whose location

[x2, y2] and time t2 lie on the trajectory defined by d1’s phenomenon’s trajectory,

then the trajectory in d1 can be updated to reflect new observations of the current.

Such a situation is shown in Figure 2.1, in which the trajectories (arrows) have been

simplified to depict only the movement of the phenomenon (omitting the potential

movement of the datums).

Aggregations of Observations. We can also extend our base model to

allow a datum to be an aggregation of one or more observations. Consider the

following example, where observations are made by vehicles moving in an urban

area:

Phenomenon. there is an available parking space on the south side of 3rd Street

between Pine Street and Oak Street
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Observation. (at location [x, y] and time t) there is an available parking space

Datum. 〈parking = 1, (loc = [x, y], time = t)〉
Trajectory. vectors of the vehicle’s movement

As the vehicle carrying the datum moves, it may observe additional available park-

ing. It may aggregate these observations into the original datum, incrementing the

counter parking and expanding the location and time. An application can use the

associated trajectory to discover a path along which available parking spaces lie.

Alternatively, the datum carried by one vehicle may encounter a datum from a

different vehicle measuring parking availability along a different trajectory. These

datums can be aggregated together in a more complex way to give a sense of overall

parking availability in a general area (e.g., by computing the bounding box of the

combination of the trajectories) or by representing the aggregate trajectory as a set

of trajectories, giving a web of spatiotemporal information.

2.2.4 Expressing Data-Dependent Behavior using Rules

Our spatiotemporal model for ephemeral data enables pervasive computing

applications to reason about the data they rely on, providing various ways to judge

the (spatiotemporal) quality of data. In this section, we give a handful of examples

of uses of this spatiotemporal model. Our model is not limited to these few uses;

instead we intend to give a flavor of the variety of possibilities that exist. Effectively,

each example is a way in which a pervasive computing application deployment pro-

vides a set of rules that dictate how the spatiotemporal trajectories associated with

datums can be used to determine how data in is used, moved, stored, changed, and
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destroyed. As part of the development tools for spatiotemporal data provenance

(Figure 1.1) we will provide support for specifying and executing such rules.

2.2.4.1 Data Death

The most obvious (and likely common) thing to do is to define a very thin

layer on the data model to control when datums are deleted. Such a layer should be

parameterized by both space and time; i.e., when a datum gets a certain distance

in space and time from its observation, it should be deleted. Consider the following

simple rule that a data death layer could use to periodically delete any data item d

that originated more than threshold units of distance away:

delete(d) if dist(myLoc, d.loc) > threshold

Similar rules could account for time or for location and time jointly. Rules can also

be defined over the entire trajectory; for example, if the sum of the trajectory’s

vectors indicates that the datum has traveled a certain distance, it could be deleted:

delete(d) if
( ∑
v∈d.traj

v.length
)
> threshold

These definitions are not themselves part of the data model but instead are enabled

by the availability of the spatiotemporal information the data model provides. In

31



fact, the definitions are highly application-dependent. Both thresholds on data

death and the definitions’ use of locations and trajectories will depend highly on the

application and its operating conditions.

2.2.4.2 Data Persistence

Many applications generate data that is relevant in a particular physical

space with the desire that the data stays in that space, even if the digital devices

that inhabit that space move (e.g., [120] and [177]). A carrier of a datum may desire

to transfer custody of the datum to another device if that device is closer to a target

location or has a higher degree of location stability (e.g., as computed based on local

context). For example, the rule:

transfer(d, h) if dist(h.loc, d.loc) < dist(myLoc, d.loc)

would transfer the custody of datum d to the device h if h is closer to d’s ini-

tial location than the current custodian. More complicated rules could also use

the trajectory to attempt to make a datum’s trajectory approximate the expected

trajectory of a phenomenon (e.g., in the oil example described above).

2.2.4.3 Supporting Fidelity Estimation

In addition to using the spatiotemporal trajectories to move, replicate, and

delete data, we can also use them to post-process data and potentially reason about

the quality of queries or applications it supports. We can define quality metrics
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that associate values with a datum, where the quality is determined based on space

and time. For example, data that moves quickly may be determined to have a high

fidelity (and a high positive potential impact on query resolution). The following

rule uses the trajectory to compute an average velocity of a datum based on the

velocities of the component vectors:

velocity(d) =

∑|d.traj |
i=1

d.traj [i].loc−d.traj [i−1].loc
d.traj [i].time−d.traj [i−1].time

|d.traj | − 1

Measures of fidelity could be based on how fast (or slow) data moves, how much

it moves, or even how widely it moves; the appropriate fidelity metric is clearly

application-dependent.

2.2.4.4 Directing Data and Queries

Using datums that have associated notions of spatiotemporal decay, we can

think of the digital world as having gradients defined by the movement of data

through space and time [93]. We can use these gradients to direct data, queries

searching for relevant data, and physical entities that traverse the space. For ex-

ample, given the (aggregate) datum that represents parking availability in an urban

area, an application on an automobile could send a reservation for the parking space

in the reverse direction of the datum’s trajectory.
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Figure 2.2: Query path defined
by gradient

Considering a datum that indicates the po-

tential propagation of a plume of oil in a large body

of water, subsequent queries about water tempera-

ture or the concentration of important ocean flora

can follow the gradients to the potentially highly

impacted areas. Figure 2.2 shows a simple such sit-

uation in which a single datum generates a reverse

query path; clearly multiple datums representing

observations of the same or similar phenomena may generate more complex result-

ing query paths.

2.2.4.5 Trust and Security

Space and time also have significant potential impacts on trust, privacy, and

security. For example, given that we can often control access to physical spaces, even

if only for brief periods of time, we can compute a spatiotemporal bounding box

to determine whether a particular datum has been compromised by exiting some

controlled space and time. The following rule defines a data time d as “safe” if

its entire trajectory is contained within locThresh distance of targetL and occurred

within timeThresh time of targetT:

safe(d) if ∀τ ∈ d.traj : dist(τ.loc, targetL) < locThresh

∧|τ.time − targetT | < timeThresh
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2.2.5 Related Work

Modeling spatiotemporal data, both in theory and in practice, is not new.

In fact, spatiotemporal data models have received prolific attention in the database

and Geographic Information System (GIS) communities. Within pervasive com-

puting applications, frameworks, and mechanisms, specifications pertaining to the

creation, storage, and death of data are either embedded throughout the application

or neglected altogether; an information-rich environment is typically presupposed.

The advent of Database Management Systems (DBMS) and, shortly there-

after, positioning and tracking technology (e.g., GPS) led to a boom of conceptual

and practical spatiotemporal modeling efforts, resulting in a plethora of spatiotem-

poral data models [52,55,60,123,170,172], Moving Object Databases (MOD) [37,39],

data stream management systems [1], spatiotemporal access methods [38], and rank-

ing and indexing techniques [11,82,95,164]. Detailed summaries of these and similar

approaches can be found in [70] and [126]. Recent work has focused on continued

development of spatiotemporal query languages [90], the analysis of movement pat-

terns [56], On-Line Analytical Processing [49], and even mobile extensions [109].

While these approaches have become well-accepted and have even produced new

standards in GIS and DBMS [118], they all rely on centralized resources (e.g., a

database) to catalog and intelligently index information. Valuable lessons can be

learned from these well-developed mechanisms, but unprecedented challenges arise

when an equivalent degree of spatiotemporal analysis must be performed in a dis-

tributed fashion on highly dynamic data with limited resources.

Pervasive computing applications are characterized by a desire to explicitly
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associate physical space with virtually accessible resources and information through

a window of context. DataSpace [71] is an envisioned spatially-addressed 3D global

network in which physical space is modeled as a collection of 80-bit addressed dat-

acubes. Querying and monitoring objects and dataflocks (cohesive groups of objects)

in DataSpace is then spatially driven and constrained. In the same vein, Enviro-

Track [2] is an extensive middleware in which events in an external environment are

the addressable entities. Context-specific computation and actuation tasks (e.g.,

recording, signaling other devices, etc.) can then be “attached” to event signatures

agnostic of where they are in physical space. Similarly, CASAMAS [17] is a model

for cooperative pervasive computing environments that makes cohesive cooperative

groups called communities first-class entities. Here, software agents within a com-

munity may remotely interact when they are “sensitive” to the fields emitted by

other agents. Field intensity is modulated by space according to a em diffusion

function and similarly, each agent type is characterized by a sensitivity function. In

addition to spatial locality, other approaches seek to leverage logical [108,114,169],

temporal [97, 153], and even social [27] locality to facilitate efficient resource ac-

cess. These approaches are indeed driven by a common need for resource access

parameterized by a notion of locality, be it space, time, or some product of the

two. However, they each address that need by embedding a model or mechanism

into the application itself. This is largely the case in existing pervasive computing

applications.

Discovery and use of embedded resources is paramount in pervasive com-

puting applications. Countless mechanisms have been developed to facilitate effi-
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cient and effective resource discovery in large-scale and dynamic networks requiring

decentralized control (e.g., peer-to-peer (P2P) networks, mobile ad hoc networks

(MANETs), etc.). Distributed Hash Table approaches [85, 145, 161, 175] provide

a distributed storage mechanism for structured spatiotemporal data enabling fast

resource lookup in P2P networks. Similarly, query-access mechanisms for spatiotem-

poral data in MANET networks [107, 137, 177] typically maintain a virtual overlay

network to handle dynamics. Rule and policy-based approaches, like TOTA [93],

TOTAM [156], and xDUCON [147], enable autonomous opportunistic data propa-

gation in MANET and P2P networks following a provided set of application-specific

rules or policies. In recent years, the publish/subscribe paradigm has enjoyed copi-

ous attention in pervasive computing applications [13, 28, 29, 40, 43]. Publish/sub-

scribe provides a high degree of decoupling, flexibility, and scalability while enabling

efficient event distribution making it fit content-driven P2P and MANET applica-

tions very well. This wide variety of techniques and models heavily reflects a funda-

mental need to discover and share pertinent information in large-scale and dynamic

networks. These and the many similar approaches all focus almost exclusively on

the retrieval, or querying, of information, presupposing a data-rich environment and

neglecting (or simply ignoring) questions related to how data is created, replicated,

stored, and destroyed. We believe these questions and reiterated needs necessitate

a flexible general-purpose metadata model that can be shared across services and

tailored to meet individual application requirements.

Our coordinate-based notion of space is useful for supporting pervasive com-

puting applications that rely on an explicit coordinate reference system, namely

37



geospatial. Coordinate-based models of spatiotemporal trajectories have mainly

been developed to store and index the motion of objects in spatial databases [127],

but have also been employed to coordinate efficient broadcast-based search proto-

cols in wireless sensor networks [94] and to route messages in dense mobile ad hoc

networks relative to a predefined Cartesian path [116] or along the motion path of

a particular node [89]. On the other hand, for many applications, especially those

involving battery-operated devices, localizing participants within an absolute coor-

dinate system may be beyond the capabilities of device hardware, require too much

energy, or simply be unnecessary. Therefore, in the next section, we introduce a

variant of our model of spatiotemporal data provenance that employs an implicit

form of space based on proximal network contacts rather than an explicit coordi-

nate system. The use of an implicit view of space is motivated by practicalities:

it is more general, it can support a wider range of resolutions, it does not require

potentially energy-intensive sensing, and it allows analysis to be restricted to a tem-

poral domain. We are also motivated by potential use cases: we target supporting

opportunistic routing protocols, which are often contact-driven.

2.3 A Model of Implicit Spatiotemporal Metadata

The sheer density of connected devices in users’ everyday environments is

rapidly growing. The Internet of Things (IoT), for example, envisions that every

“thing” we interact with will possess digital capabilities. Supporting emerging mo-

bile applications in these very dense deployments requires connecting devices and

their users to hyper-localized information. For many reasons, it is becoming ap-
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parent that device-to-device interactions will play a pivotal role in getting users

connected to this data. There are numerous mechanisms designed to support the

nuts and bolts of distributing messages in a device-to-device fashion, even over

multiple hops, and even some of these mechanisms are “content aware” (i.e., they

distribute the data based on its own semantics). However, few approaches tap into

the contextual history of the shared data to distribute additional information. In

this paper, we propose an approach whose key tenet is that knowing the context

in which a piece of data was created and the contexts in which it has been shared

over its lifetime can help determine the future contexts in which that data might be

relevant.

Consider the following IoT-style scenario that illustrates the utility of mes-

sages’ contextual history. At an outdoor music festival with thousands of attendees,

festival-goers may wish to find nearby mobile vendors carrying particular food items,

be alerted when friends are near, discover popular photos of recent performances,

receive coupons from merchandise vendors, and be alerted about special events and

limited product offerings at festival sponsors’ tents. In such a densely populated en-

vironment, connecting attendees’ devices with this hyper-localized information may

require device-to-device interactions: the demand for fixed network infrastructure

resources (e.g., cellular upload bandwidth) could greatly exceed available capacity;

round trip times to the “cloud” may be too slow [152]; and the battery constrained

nature of users’ devices may make short-range network interfaces far more advan-

tageous than long-range ones in terms of energy/bandwidth consumption [157]. As

a message is opportunistically propagated between festival goers’ devices it accu-
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mulates a contextual history comprising causal trajectories of the device-to-device

paths it traverses over space and time. For example, as a user’s query for “vendors

selling craft beer” is disseminated using an epidemic protocol, we can represent the

query’s complete contextual history as a partially ordered list of the timestamped

pairs of devices that capture a transmission of the query. Knowing this history

for one or more messages not only gives insight into the evolution of the network’s

time-varying topology (e.g., which may reveal the network diameter [22]), but also

indicates how those messages have moved through the network. If many users are

querying about craft beer, for example, the trajectories of previous queries may

help guide future queries to relevant results more efficiently. Likewise, vendors car-

rying craft beer may use these trajectories to pinpoint demand and distribute digital

coupons more effectively.

Similar scenarios are readily found in other domains. For example, cars in

vehicular networks [86] communicate in a device-to-device fashion with one another

and stationary roadside units to facilitate cooperative traffic monitoring, control

the flow of traffic, and generate alternate routes on-demand based on ground-level

traffic conditions. Alternatively, in a smart city [25] vehicles may communicate with

“smart” municipal entities like parking meters to guide cars to available parking

spaces; pedestrians may browse or search for hyper-localized information about

urban spaces (e.g., a coffee shop with the shortest queue length) shared by passerbys’

devices [120].

The primary design challenge for device-to-device mobile applications (e.g.,

mobile ad hoc networks [146], delay tolerant networks [132], and mobile social net-
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Figure 2.3: Transmission graphs. Panel (a) shows an interval graph representation of an
opportunistic network of mobile nodes where each solid black edge indicates 1-hop network
proximity and is labeled with the time interval in which the contact occurred. Solid green
and dashed blue arrows indicate transmission of message1 and message2 (respectively) over
a connection. Panel (b) gives a slightly more temporally-emphasized picture of the system,
where a line corresponds to an edge in (a) and the active interval is indicated. The position
of a numbered circle along the x-axis on an edge indicates the reception time of the corre-
sponding messages over that connection. The transmission networks of the two messages
are illustrated in (c) where a node’s position along the x-axis indicates the reception time.

works [80]) is operating under the intermittency of connections that result from

device mobility. Formal and empirical studies (e.g., [21, 121]) of human mobility

have driven the development of a wide spectrum of protocols that attempt to pro-

vide reliable and efficient dissemination of information within a dynamic network

topology. While most of these approaches focus on human mobility (and the mo-

bility of the devices the humans carry), we instead focus on data mobility, i.e., the

time-varying spatial and temporal properties that characterize the spreading of a

piece of data within an opportunistic network of mobile nodes. Real-world human

trajectory data sets and analysis have been exceptionally useful for understanding

the spatiotemporal dynamics of how humans move and interact. Data trajectories,

on the other hand, are subject to an entirely different set of barriers (e.g., phys-

ical, social, security) and can be very different from human paths. For example,

consider Figure 2.3, which visualizes the device-to-device propagation of two mes-
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sages (indicated by the solid green and dashed blue lines) through a transmission

graph representation [141] of an opportunistic network of mobile devices. The time-

varying proximities of the devices, shown in Figure 2.3(a) and 2.3(b), are a product

of (among other things) human mobility; as the humans carrying these devices move,

the devices come into contact with one another. However, the causal trajectories

of the two messages, shown in Figure 2.3(c), while enabled by device proximity,

extend beyond the bounds of any single device’s mobility—data mobility is rather a

product of device interactions. In Figure 2.3, for example, nodes a and g never come

into physical contact (e.g., as a result of physical, social, or temporal boundaries),

however both messages originating at a are eventually delivered to g. Harnessing the

inferential value of a message’s contextual lifetime directly within a highly mobile

environment requires a distributed approach that can express the causal structure

of message propagation.

In this section, we extend our model of spatiotemporal data provenance and

introduce a variant model that captures the implicit contextual history of device-

to-device propagated messages. Our model provides two complementary views on

data mobility: a data-dependent view (i.e., what data is about) and a data-agnostic

view (i.e., how data moves). For example, the transmission network in Figure 2.3

may be viewed in a data-dependent fashion in terms of message1’s trajectory (solid

green lines), message2’s trajectory (dashed blue lines), or a union of both. Alterna-

tively, the network’s time-varying edges may be considered in a data-agnostic view

irrespective of the data that has traversed across them. By enhancing transmitted

data with some degree of its contextual history, these two views enable a mobile
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application to gain local insight into the overall spreading behavior of a piece of

information, which devices have received it, what other information it is commonly

associated with, and the time-varying topology of the network. We describe spa-

tiotemporal operators for comparing trajectories and drawing inferences about the

state of knowledge.

2.3.1 Model & Terminology

Our model is based on the time-varying graph (TVG) formalism [20], which

we extend to support spatiotemporal trajectories. Whereas a graph is a natural

fit for representing a fixed network, a time-varying graph is a natural means for

representing the kind of highly-dynamic and infrastructure-less networks we tar-

get. The TVG formalism is advantageous for our purposes because it offers an

edge-centric analytical perspective on the evolution of the graph that enables, for

example, focusing on the dynamics of a single edge independent of the dynamics

of the entire graph. In this section, we overview the relevant concepts of the TVG

formalism. The core of the formalism is the notion of a time-varying graph, which

enhances a static underlying graph with time-dependent dynamics. Data propagated

between nodes in the graph follows journeys, a form of temporal reachability. We

represent the set of all journeys that a piece of data takes as a transmission net-

work. Acquiring a global view of a transmission network may be impractical in an

opportunistically-connected network. In our model, along side each piece of trans-

mitted data nodes share a spatiotemporal trajectory, a subset of the transmission
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network that captures the propagation of data along a causal path1. The extent of

each spatiotemporal trajectory’s coverage of the transmission network is determined

by an update strategy.

Time-Varying Graph. We represent an opportunistic network of mobile

nodes as a time-varying graph (TVG) G = (V,E, T , ρ, ζ,M) as follows. V is a set of

mobile nodes making contact with each other over the lifetime (T ⊆ T) of the net-

work. Here the temporal domain T corresponds to R+ (continuous-time). E ⊆ V 2 is

the set of intermittently available undirected edges defined by the contact between

nodes; (x, y) ∈ E ⇔ x and y are in contact at least once in T . For simplification,

we use undirected edges under the assumption that two nodes in contact can both

transmit to and receive from one another. In a real world system this assumption

may not hold (e.g., communication capability may not be symmetric, some devices

may be strictly transmitters or receivers, and not all devices may advertise their

identity). Our model easily generalizes to a directed graph; the temporal domain

creates its own level of direction. The presence function, ρ : E × T → {0, 1}, indi-

cates whether a given edge is available at a given time, and the latency function,

ζ : E × T → T, indicates the time it takes to propagate a message over a given

edge at a given time. For simplicity of presentation, we assume the latency function

to be fixed for all edges and times and denote it as a constant value ζ, which we

assume to be known by all nodes. The duration of edge presence, however, can be

arbitrarily long. To signify the time-dependent availability of an edge e, we use the

1We assume that mobile nodes can marshall spatiotemporal trajectories in and out of a serialized
form.
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notation ρ[t1,t2)(e) = 1, which indicates that ∀t ∈ [t1, t2), ρ(e, t) = 1. For example,

in the TVG shown in Figure 2.4 ρ[1,3)(ab) = 1. So far, this is the same definition of

TVG as in [20]. We enhance the TVG framework with M, a set containing triples

of the form (m, e, t), where each triple signifies the transmission of a message m

on edge e ∈ E at time t; to account for transmission times, all (m, e, t) ∈ M must

satisfy ρ[t,t+ζ)(e) = 1.

b 

a 

d c [1, 3) 

[0, 4) 

[2, 5) 

[5, 6)     [7, 8) ∪

Figure 2.4: A TVG G [20]. Edge labels represent
the time intervals during which those edges are
available, i.e., ∪(t ∈ T : ρ(e, t, ) = 1).

We assume that nodes have

unique identifiers and can detect the

appearance and disappearance of an

incident edge instantaneously. In

our model, each node maintains a

local TVG in which the node’s prox-

imate neighborhood and the duration of each neighbor’s contact are stored as first-

hand knowledge. Each transmitted message carries also the message’s contextual

history, which is extracted and locally stored by a receiving node as second-hand

knowledge. Local TVG maintenance is driven by dedicated operations triggered by

the appearance and disappearance of incident edges and the reception of messages

containing contextual history metadata (see Algorithm 1). We take an entirely dis-

tributed approach; the global TVG G only exists in a virtual sense (i.e., it is a global

virtual data structure [130]) and is a union of the local TVGs maintained by the

nodes in the network: G = ∪v∈V Gv.

Underlying Graph. We define G = (V,E) as the static counterpart of G

called the underlying graph. G can be thought of as the “footprint” of G if the time
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dimension were flattened.

Journey. We capture the notion of temporal reachability [168] through a

journey. A sequence of tuples J = ((e1, t1), (e2, t2), . . . , (ek, tk)), where e1, e2, . . . , ek

is a walk in G and ti + ζ ≤ ti+1 for 1 ≤ i < k, is a journey in G if and only if

ρ[ti,ti+ζ ] = 1. J(u,v) is a path over time from node u to node v. We denote J ∗G

as the set of all journeys in G and J ∗(u,v) ⊆ J
∗
G as those journeys starting at node

u and ending at node v. In other words, J ∗(u,v) is the set of all time-dependent

paths along which a message could travel from u to v. If a journey exists from u

to v, i.e., if J ∗(u,v) 6= ∅, then we say u can reach v, which we denote as u  v.

However, this relationship is not symmetric. For example, a  d via the journey

J(a,d) = ((ab, 1), (bc, 3), (cd, 7)) in Figure 2.4; however, no valid journey exists from

d to a.

Transmission Network. A transmission network represents the diffusion

of a piece of information through the opportunistic network, i.e., the set of jour-

neys that define the causal propagation of a message within G. The notion of a

transmission network was introduced in [73] to represent the causal structure of an

infection’s propagation, but the concept was not formalized. Here, we borrow the

concept and formally define the transmission network of m as J ∗G (m) ⊆ J ∗G , the set

of all journeys along which m traveled. While a single journey represents a time-

dependent path a message could take, a transmission network represents the set of

all journeys a message has actually taken.

Spatiotemporal Trajectory. To enable local insight into the contextual

history of a message, we introduce a novel spatiotemporal trajectory data type. In
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Figure 2.5: Spatiotemporal trajectory update strategies. Panel (a) shows a complete
transmission graph. Panels (b)–(d) illustrate a sample trajectory’s contents (darkened nodes
and edges) when updated per each of our three strategies.

our model, an outgoing message’s spatiotemporal trajectory T (m) ⊆ J ∗G (m) is up-

dated based on a strategy before its transmission and attached as metadata to the

message. We define three fundamental update strategies below; additional strate-

gies could be derived and integrated based on application or domain requirements.

A node receiving m extracts T (m) and inserts the contents into the local TVG

(see Algorithm 1). Conceptually, a spatiotemporal trajectory serves two purposes.

First, T (m) reveals a subset of nodes that have received m and when, which can be

useful input for an opportunistic routing protocol. Second, T (m) provides a data-
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dependent view on the evolution of G through m’s time-varying vicinity [128]. These

two uses are complementary because our model enables the causal propagation of

m to be investigated in terms of the context of G or vice-versa. As trajectories are

aggregated together within a node’s local TVG they may be used collectively to

make remote inferences about encountered nodes’ knowledge. For example, upon

coming into contact with node v for the first time, node u may inspect its local TVG

for trajectories containing v, which provides u with a glimpse of the kind(s) of data

v possesses and the topological context under which v sent or received that data.

A local collection of spatiotemporal trajectories may also indicate what types of

messages are commonly associated with other types of messages and nodes, which

can be used to determine viable “proxies” for particular types of messages. Mes-

sages about “craft beer,” for example, may frequently occur close in space and time

to messages about “pretzels” or perhaps node v may exist in many trajectories of

messages about “craft beer,” indicating that node u may use “pretzels” messages

and v as “proxies” for “craft beer.” We explore these two use cases in Section 3.2.

Update Strategies. Alongside each transmitted message a node appends a

spatiotemporal trajectory as metadata. The attached trajectory includes the node’s

local view of the message’s transmission network (the message’s causal past) as

well as a snapshot of the current state of the network from the node’s perspective.

Exactly what is included in this snapshot is determined by a trajectory update

strategy.

We introduce three strategies for updating an outgoing message’s trajec-

tory based on properties of the transmission network. These strategies capture the
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coverage of the message’s transmission network to varying degrees. Figure 2.5 il-

lustrates the differences between each of these strategies and their coverage of the

transmission network.

Neighbors: Before transmitting m at time t to k proximate neighboring nodes,

the transmitting node vTX generates a single new spatiotemporal trajectory

T (m) containing edges between itself and all k neighbors that will receive m,

i.e., T (m) = ∪i∈k((vTX , vRX i), t). The updated T (m) is then attached to m

and transmitted to each of the k proximate neighbors. This strategy produces

a T (m) strictly representing the first hand receivers (i.e., the “witnesses”) of

m at t (see Figure 2.5(b)).

Journey: Before transmitting m at time t to a single proximate neighboring node

vRX , the transmitting node vTX updates m’s trajectory T (m) (or generates a

new one if T (m) = ∅) by appending an edge between itself and the receiver,

i.e., T ′(m) = T (m)∪ ((vTX , vRX ), t). This strategy produces a trajectory that

is precisely a journey of m in G (see Figure 2.5(c)).

Journey+: This strategy effectively combines the first two. Before transmitting m

at time t to k proximate neighboring nodes, the transmitting node vTX updates

m’s trajectory T (m) (or generates a new one if T (m) = ∅) by appending

an edge between itself and each of the k receivers, i.e., T ′(m) = T (m) ∪i∈k

((vTX , vRX i), t). This strategy produces a journey of m enhanced with the

receivers of m at every transmission along the journey’s causal chain in G.

The result is that each node has a different (but potentially overlapping) view

of the trajectory (see Fig. 2.5(d)).
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When trajectories meet one another in the field (i.e., when a node receives

multiple copies of the same message via different causal paths) their knowledge

may be merged at the receiving node, producing a more complete local view of the

entire transmission network. For example, in Figure 2.5(d) when node y receives

the message via the journey that passes through node h, y will receive the edges

{(b, h), (h, n), (h, p)}, which are merged into y’s view of the message’s transmission

network. Each of these update strategies produce trajectories that vary in their

coverage of the global transmission network. The Neighbors strategy provides good

spatial coverage, but only at an instant in time. On the other hand, the Journey

strategy provides good temporal coverage, but only captures the propagation along

a single causal path. The Journey+ strategy combines the coverage strengths of

both the previous strategies but at the cost of added overhead. Applications must

take these tradeoffs into consideration when choosing a trajectory update strategy.

In Algorithm 1 we provide the dedicated operations used by a node u to

maintain its local TVG Gu. Initially, Gu only contains a single node u (itself); Eu, ρu,

and Mu are each empty. When u comes into contact with a node v, the onContact()

operation is triggered, which first ensures that v ∈ Vu and that e = (u, v) ∈ Eu

and finally updates ρu to indicate the presence of e. Upon node v moving out of

contact range the onTimeout() operation is triggered, which updates ρu to indicate

that e is no longer present. Both the onContact() and onTimeout() operations alter

Gu based on u’s first hand knowledge. The injection of second hand knowledge is

performed by the onReception() operation, which is triggered whenever a message m

is received. This operation extracts m’s spatiotemporal trajectory T (m) and inserts
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Algorithm 1: Local time-varying graph operations at mobile node u.
All operations are performed on u’s local TVG instance Gu.

1 Gu ← ({u}, ∅, [now(),∞), ∅, ζ, ∅)

2 onContact with a neighbor v at time t:

3 e = (u, v)
4 Vu ← Vu ∪ v
5 Eu ← Eu ∪ e
6 ρu,[t,∞)(e)← 1

7 onTimeout of a neighbor v at time t:

8 e = (u, v)
9 ρu,[t,∞)(e)← 0

10 onReception of a message m:

11 extract T (m) from m
12 foreach tuple (e = (i, j), t) in T (m) do
13 Vu ← Vu ∪ {i, j}
14 Eu ← Eu ∪ e
15 Mu ←Mu ∪ (m, e, t)
16 ρu,[t,t+ζ)(e)← 1

17 getTrajectory of a message m in window [t, t′):

18 return ∪{w ∈M : w.m = m ∧ t ≤ w.t ≤ (t′ + ζ)}

the trajectory’s contents into Gu tuple-by-tuple. Given trajectory tuples of the form

(e = (i, j), t), each tuple’s nodes and edge are added to Vu and Eu (respectively), ρu

is updated to indicate the presence of e for the duration of the transmission [t, t+ζ),

and a tuple (m, e, t) is added to Mu indicating the transmission of message m on

edge e at time t. Finally, u may retrieve the spatiotemporal trajectory of message

m within a time window using the getTrajectory() operation.
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2.3.2 Operating on Trajectories

So far we have presented the formal constructs of our model and how a

node uses those constructs to maintain its local TVG instance. At a local level, a

node’s TVG contains first hand knowledge of the nodes it encounters and second

hand knowledge of other nodes’ encounters through received messages’ trajecto-

ries. Though not practically obtainable, a system’s global TVG may be represented

by the union of all nodes’ local TVGs. This section describes practical operators

that are useful for comparing trajectories and drawing inferences about the state

of knowledge, both at a local and global level. In Section 3.2, we then use these

operators to benchmark the performance of our trajectory update strategies at the

global level using two real world data sets of human proximity.

The mobile environments we target are densely populated with sensing and

computing resources that disseminate large amounts of spatiotemporal information

about the environment. Given that such digitally-accessible spaces are rich with

data and their contextual histories, valuable inferences can be drawn not only from

individual trajectories, but also from the comparison of trajectories.

Consider, for example, two devices at the crowded outdoor music festival

that periodically broadcast digital special offers: a stationary device at a sponsor’s

merchandise tent and a mobile device carried by a beverage vendor. A mobile

node (e.g., an attendee’s smartphone) receiving one of these offers may inspect its

trajectory, which reveals, to an extent, where, when, and with whom the offer has

travelled; these are indicators of the offer’s spatiotemporal “about-ness” and the

time-varying state of knowledge about the offer across the network. Since both
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offers are propagated close in space and time, their contextual histories will likely

share a large overlap. A mobile node receiving both offers may infer from this overlap

that the offers pertain to a similar place and time. From a routing perspective, this

is useful information both for identifying where and when more of such offers may

be available and for propagating the offers towards contexts that they have not yet

visited. And yet, this information may be misleading due to the mobility of the

beverage vendor who is only transiently nearby the merchandise tent. Comparing

spatiotemporal trajectories in meaningful ways requires structured operators that

can be used in well-defined ways to draw accurate inferences. Here we describe

binary trajectory operators that may be used as inferential building blocks.

Since trajectories carry both spatial (structural) and temporal information,

our operators must be applicable along both these dimensions and also across

the combination of the two. Our representation of spatiotemporal trajectories as

causally-ordered sets of tuples naturally enables the use of set operations. Given two

trajectories T (m1) and T (m2), from here on shortened to T1 and T2 respectively,

we can apply any set operation ⊗ (e.g., union ∪, intersection ∩, complement \, and

symmetric difference4) across both the spatial and temporal dimensions as T1⊗T2.

Alternatively, we can focus only on the structure of the trajectories by restricting

⊗ to the spatial dimension:

T1 ⊗s T2 := ⊗{e : e ∈ T1 ⊗ T2} (2.1)

A spatial trajectory operator ⊗s flattens the temporal domain and produces a static

graph in G. Likewise, we can ignore the causal relationships embedded in the tra-
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jectories and restrict ⊗ to the temporal dimension:

T1 ⊗t T2 := ⊗{[t, t+ ζ) : t ∈ T1 ⊗ T2} (2.2)

Temporal operators ⊗t produce the kinds of timing information commonly used

within explanatory analysis techniques in the field of information diffusion [50].

These trajectory operators are binary but can easily be extended to weighted versions

akin to weighted set similarity metrics (e.g., Tanimoto coefficient).

Comparing trajectory similarity across the spatial and temporal dimensions

may be particularly useful input for opportunistic routing protocols. For example,

a protocol may favor data that is spatiotemporally diverse (about different places

and times) and choose to propagate data whose trajectories have small spatiotem-

poral overlap with local knowledge at each mobile node. At the crowded outdoor

music festival this kind of routing strategy may be useful for eliminating redundant

information and freeing up the wireless spectrum. We can measure spatiotemporal

similarity using the Jaccard similarity coefficient:

J(T1, T2) =
|T1 ∩ T2|
|T1 ∪ T2|

(2.3)

Completely independent of message contents (what their data is about),

trajectory similarity indicates the relationship between disparate messages’ contexts

(where and when their data is about). As an example, consider a message m that

arrives at a festival attendee’s mobile device u through a chain of device-to-device

propagations. The device u may inspect its local TVG Gu and retrieve all other

received messagesMsim ⊆M whose trajectories share high spatiotemporal similarity
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with m’s trajectory T (m). The similarity between these messages provides a local

window into remote devices’ probable knowledge. For example, when u comes into

contact with another device v, u may use T (m) and the trajectories of all other

spatiotemporally similar messages TMsim = ∪{T (msim) : msim ∈ Msim} to decide

whether or not to propagate m to v. Based on u’s knowledge of v’s spatiotemporal

proximity to any node in T (m)∪TMsim u may infer the likelihood that v has already

received m. If u determines that v very likely has received m then there is no reason

to waste energy and network resources sharing the redundant information.

So far these operations have been data-agnostic. A useful feature of our

model is the ability to additionally investigate spatiotemporal phenomena in a

data-dependent fashion. We can extend our spatiotemporal operators to a third

dimension to express data-dependent measurements:

T1 ⊗d T2 := ⊗{m : m ∈ T1 ⊗ T2} (2.4)

In a dynamic and distributed environment the data-dependent dimension

becomes more meaningful when associated with one or both of the previous two

dimensions. For example, a device may monitor the content of received messages

whose trajectories frequently share high spatiotemporal similarity and maintain sets

of such contextually similar data in a “contextual cache.” At the crowded festival,

perhaps an attendee’s mobile device detects that messages about “craft beer” com-

monly propagate at along similar causal paths and shortly after messages about

“hotdogs” (e.g., because the beer vendor is following the hotdog vendor). An oppor-

tunistic query protocol may leverage these contextual data-dependent similarities as
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substitutable routing targets. At the festival a user’s query for “hotdogs,” for exam-

ple, may be automatically extended to “hotdogs or craft beer” given their frequent

spatiotemporal similarity. We explore both of these use cases in Section 3.2.

2.3.3 Related Work

Emerging mobile applications increasingly require transparent access to digi-

tal resources in a user’s physical proximity. For example, Apple’s iBeacon technology

provides mobile users with hyper-localized alerts about nearby locations (e.g., spe-

cial offers from a nearby store in the mall); Google’s Physical Web project2 aims

to provide “walk up” mobile access to smart objects. Extending beyond just single

hop device-to-device connectivity, OpenGarden’s FireChat3 application constructs a

multi-hop mesh infrastructure to facilitate chat rooms between physically proximate

mobile users without the need for an Internet connection. More generally, these tech-

nologies and applications point towards the grand vision of the Internet of Things [4]

and Web of Things [58] wherein commonplace entities, from kitchen appliances to

vending machines to bus stops to billboards, are imbued with digital capabilities that

are seamlessly accessible through a user’s mobile device. The role of device-to-device

interactions (i.e., via short-range wireless protocols) becomes crucial in supporting

mobile users’ hyper-localized information needs in such densely populated environ-

ments of networked devices, particularly in scenarios where an Internet connection

is unavailable, infrastructure network resources are saturated, global-accessibility is

undesired, or use of a short-range network interface (e.g., Bluetooth Low Energy)

2http://google.github.io/physical-web/
3http://opengarden.com/firechat
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requires less overall energy than of a long-range network interface (e.g., cellular).

Multi-hop device-to-device routing mechanisms, which are still largely relegated to

the research domain, are necessary to unlock mobile users’ vicinity [129] and support

information needs that span both space and time.

Numerous approaches have been developed to support the mechanics of dis-

seminating data in a device-to-device fashion within dynamic networks of mobile

nodes. Epidemic routing schemes [32] mimic the spread of infectious agents (data

packets) to susceptible hosts (mobile nodes). Many publish/subscribe mechanisms

have been proposed and evaluated in the literature [27,117,158] and some are even

“content aware,” routing messages based on their own semantics [28, 43]. Other

dissemination approaches aim to provide high availability of data where it is spa-

tiotemporally relevant [120]. The TOTA middleware [93] gives an application devel-

oper great flexibility by providing adaptive context-aware programming constructs

that can be used to define reactive rules that govern how data diffuses. Predictive

mechanisms [174] leverage the cyclical nature of human movements by analyzing

contact (duration of an encounter between a pair of nodes) and inter-contact (du-

ration between consecutive encounters of the same pair of nodes) times. Still other

methods attempt to exploit the interplay between social networks, data diffusion,

and mobility patterns by routing messages to nodes with high social centrality [69]

or regularity [98]. Despite this wide spectrum of device-to-device communication

mechanisms, none directly capitalize on the contextual history (i.e., the causal struc-

ture) of transmitted data to distribute additional data. Likewise, most analytical

frameworks for data dissemination [54] employ stochastic models that compute mes-
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sage delay distributions (e.g., based on parameters describing inter-contact time and

transmission range) and do not specifically address the causal structure of message

propagation.

Studying and modeling the role of causality in the spreading of information

is of prime interest within online social networks like Twitter, Facebook, Reddit, and

Digg. These mediums play a huge role in how news stories, media, and informa-

tion in general spread at a global scale across the Internet, therefore there is great

interest in learning how particular information spreads. The field of information

diffusion [57] focuses on understanding and modeling how information “diffuses”

within these networks with the purpose of, for example, anticipating popular topics,

identifying influential information spreaders, and optimizing social marketing cam-

paigns. Explanatory approaches [50] attempt to infer the underlying tree of influence

representing who transmitted a piece of information to whom given only a set of

nodes ordered by the times at which those nodes “learned” the information. On the

other hand, predictive approaches [48] try to anticipate how a specific diffusion pro-

cess will unfold on a given network by learning from past diffusion traces. Valuable

lessons can be learned from these models. However, many of the techniques devel-

oped assume the underlying social network is globally accessible and either static or

only minimally dynamic. Neither of these assumptions holds in the highly mobile

and intermittently connected environments that we target in our work.

In the field of epidemiology, models that capture how diseases spread through

networks of human contacts [64,113] also have a significant potential relationship to

data movement in device-to-device communication networks. These models make no
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assumption about any underlying social network and have found many uses outside

of the study of diseases. For example, disease spreading models have been used to

probe the causal structure of data dissemination in networks of human proximity

with the motivation of uncovering human behavioral patterns that will aid in better

defining data routing strategies for device-to-device communication [73, 121]. The

motivation of these works is very similar to ours; however, their focus is on post-hoc

analysis over a global view of data’s spreading history. In this work, we introduce

a distributed model in which local information alone may be used to make in situ

inferences about data’s causal history. In Section 3.2 we demonstrate the utility

of the kinds of insights that may be derived from our model for informing routing

protocols at runtime.

The crux of our model is a spatiotemporal trajectory data type, which cap-

tures the time-dependent device-to-device propagation of a piece of information. Our

spatiotemporal trajectory is similar in spirit to the gradient abstraction developed

to guide queries and data in wireless sensor networks. In the directed diffusion [72]

paradigm, for example, a sink node conducts a sensing task by propagating interest

messages that establish gradients along which relevant events flow from source nodes

towards the sink. Whereas a complete gradient is defined at the network level by a

scalar field held at each node, an instance of our spatiotemporal trajectory directly

stores the time-dependent view of a network from the perspective of a single piece of

transmitted data, making a portion of the network-level knowledge locally available

to a receiving node.

The T-CLOCKS model [19] is a distributed tool that provides devices in
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delay tolerant networks with temporal views of other network participants (i.e., a

measure of the temporal and topological distance between nodes). Our trajectory

data type may be thought of as a topological enrichment of the T-CLOCKS temporal

view construct—a spatiotemporal trajectory expresses a data-dependent temporal

view in addition to the causal path of device-to-device propagation taken by a piece

of data. Similar to the T-CLOCKS tool, the change awareness measure [59] quan-

tifies information freshness in opportunistic networks. This metric captures how

much the latest information received from a node differs (in time) from the most

up-to-date information being propagated by that node. Computing change aware-

ness requires global knowledge of the network topology. Our model operates in a

distributed fashion and captures the time-dependent paths pieces of information

take through the network, providing greater local insight into the contextual history

of that information and the characteristics of the network as a whole.

2.4 Research Contributions

This chapter makes the following research contributions:

Research Contribution 1: We provide a formal model of explicit spatiotempo-

ral data provenance for pervasive computing applications (Section 2.2). The

model is founded on the spatiotemporal trajectory data type, which captures

the dynamics of both digital data and the physical phenomena they repre-

sent. Spatiotemporal provenance metadata may be attached to application

data to enable complex reasoning about data and the computation of its past

and present context.
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Research Contribution 2: We extend the model of explicit spatiotemporal prove-

nance and introduce a formal model of implicit spatiotemporal data prove-

nance (Section 2.3). Implicit data provenances employs a more contextual

form of space that captures the causal propagation of data through a time-

varying network. Our implicit model provides two complementary views on

data provenance: a data-dependent view (i.e., what data is about) and a

data-agnostic view (i.e., how data moves). By enhancing transmitted data

with some degree of its causal history of propagation, these two views enable

a mobile application to gain local insight into the overall spreading behavior of

a piece of information, which devices have received it, what other information

it is commonly associated with, and the time-varying topology of the network.

We describe formal operators for comparing trajectories in meaningful ways.

Research Contribution 3: We describe how pervasive computing application de-

velopment can be simplified by expressing data-dependent application behav-

ior as reactive rules (Section 2.2.4). Rather than embed data-dependent logic

throughout an application, a developer may use these rules to reason about and

interact with spatiotemporal data in a general-purpose way, providing a nice

separation of concerns. Our rule-based programming approach provides func-

tional building blocks for the implementation of spatiotemporally-informed

data dissemination and query processing mechanisms.
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2.5 Impact

Our work in this chapter is, to our knowledge, the first to conceptualize

and formalize models of spatiotemporal data provenance for pervasive computing

applications. Traditionally, provenance metadata is maintained to verify the au-

thenticity and integrity of data objects as they are shared, accessed, and edited

by many participants in large scale systems (e.g., distributed file systems [133] and

cloud data stores [111]). Our models of spatiotemporal provenance capture the con-

textual history of data objects across their lifetime as they are generated, replicated,

and exchanged between proximal hosts and applications in physical spaces.

2.6 Chapter Summary

This chapter motivated the need for a general-purpose model of metadata

to capture the spatiotemporal dynamics of shared application data in pervasive

computing spaces. We presented two variants of a model that annotates data ob-

jects with spatiotemporal trajectories, which provide the contextual history of objects

across a lifetime of device-to-device propagation. The first model variant employs an

explicit coordinate system to define space, which may be integrated into applications

that rely on an explicit form of space (e.g., geospatial coordinates). Applications may

then define expressive computations and behavior rules over data’s spatiotemporal

provenance. The second model variant uses an implicit form of space that captures

data objects’ causal relationship to their genesis within a time-varying network of

mobile nodes. Our implicit model provides two complementary views on data mo-

bility: a data-dependent view (i.e., what data is about) and a data-agnostic view
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(i.e., how data moves). We described spatiotemporal operators within our implicit

model for comparing trajectories in meaningful ways across spatial, temporal, and

data-dependent dimensions. In Chapter 3, we build on the formal foundations intro-

duced in this chapter and demonstrate the practical utility of our models’ constructs

for driving data-dependent application behavior and for improving ad hoc routing

performance. The next chapter also introduces a conceptual model for querying and

accessing short-lived data in opportunistic networks, which we use to directly inves-

tigate the impacts of spatial and temporal data correlations on distributed query

protocols.
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Chapter 3

Sharing and Querying Spatiotemporal Data

In pervasive computing spaces, users and applications share and search for

information about me, here, now. These fundamental tasks are resolved by inter-

actions that leverage proximally available resources directly within the immediate

surroundings, via a localized cloudlet infrastructure or dynamically formed wire-

less ad hoc networks. Many emerging mobile applications require support for such

interactions; however, the entry point for creating mobile applications that commu-

nicate with dynamic sets of peers (e.g., proximate devices) is still quite high and

often requires specialized knowledge of a particular wireless protocol or platform-

dependent networking libraries. In an effort to lower that development barrier, this

chapter presents the design and implementation of software tools and programming

constructs that aid in the development of mobile applications driven by heavily

data-dependent behavior and hyper-localized information needs. Using the models

introduced in Chapter 2 as a foundation, we introduce formal and practical con-

structs that aim to lower the programming barrier for applications that require

transparent access to hyper-localized digital data and resources. In the next chap-

ter (Chapter 4), we describe a concrete software framework that provides these

Portions of this chapter appear in [100] and [101] for which coauthors Christine Julien, Jamie
Payton, and Gruia-Catalin Roman provided advising and editing.
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constructs as extensible building blocks for application developers. This chapter fo-

cuses on the research items depicted within the horizontal-striped box in the upper

right of Figure 1.1.

Using the explicit model of spatiotemporal data provenance (Section 2.2), we

elaborate on the rule-based programming approach described in Section 2.2.4 and

concretely demonstrate how data-dependent application logic may be expressed as

reactive rules. This aim is motivated by software engineering principles—encapsulating

data-dependent behavior provides a separation of concerns and makes that behav-

ior more portable. We present the design and implementation of a middleware

that realizes our model of explicit spatiotemporal metadata and provides a rule-

based programming interface. The middleware may either be used to directly store

application data and automatically track data’s spatiotemporal provenance or to

supplement an existing data store, enriching application data with spatiotemporal

annotations. We conduct a case study using the middleware aimed at assessing

the tradeoffs between the overhead of spatiotemporal annotations and their effec-

tiveness at representing the changing state of a simulated environment. The case

study presents rules that govern data generation and the maintenance of data’s spa-

tiotemporal provenance. Rules may also express how and when data moves within

a dynamic network.

Next, we turn our attention to the implicit model of spatiotemporal prove-

nance introduced in Section 2.3 and use the formal operators presented in Sec-

tion 2.3.2 to demonstrate the practical utility of implicit provenance for making

inference-based routing decisions that significantly improve the performance of op-
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portunistic data dissemination. This task advances theoretical understanding of

time-varying graphs [20] through the lens of real-world uses cases. Our use cases

further shed light on the impact of spatial and temporal dynamics on the perfor-

mance of ad hoc routing protocols. Searching for data in dynamic networks requires

query mechanisms that are sensitive to the intrinsic spatiotemporal dynamics of

these systems.

Finally, we present the Gander conceptual model [101] for expressive search

in pervasive computing spaces. Gander supports queries with constraints specified

over data content, data’s spatiotemporal provenance, or combinations of the two. A

Gander query is resolved entirely in situ using distributed query mechanisms that

employ ad hoc network routing protocols. A number of query protocols may be

able to resolve a query for spatiotemporal data. However, the execution of a query

should reflect the user’s requirements in terms of the expected quality of query

results and the associated cost of query processing under the current operating

conditions. In an effort to guide developers in selecting appropriate search protocols

and settings for an operating environment, we study the impact of spatial and

temporal correlations within sensed data on Gander’s distributed query mechanisms.

This aim provides an experimental baseline for the system-level performance of

Gander’s formal constructs.

3.1 Programming with Reactive Data-Driven Rules

Creating pervasive computing applications requires a developer to exploit

real-world data by defining how that data is stored, manipulated, shared, and
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queried within the application. To alleviate the developer’s burden this section

presents the design and implementation of software tools to aid in the develop-

ment of applications with significant data-dependent behavior. Specifically, we

present the design and implementation of the explicit spatiotemporal metadata

model overviewed in Section 2.2. The model itself has been implemented within

a graph database framework and packaged into a Java middleware layer that can

be used to directly store application data and its spatiotemporal provenance or sim-

ply to enrich existing application data with spatiotemporal metadata. Finally, the

middleware’s API enables a developer to define data-dependent rules (as described

in Section 2.2.4) to govern how, when, and where data and its metadata is created,

moved, updated, and destroyed.

3.1.1 Explicit Spatiotemporal Metadata Model Implementation

We provide an implementation of our explicit spatiotemporal provenance

model within the TinkerPop Blueprints graph database framework1. The choices of

a graph-based solution and this particular framework were the result of a few key

constraints and requirements. First, graphs are an exceptionally flexible abstraction

tool for data modeling. Second, our implicit model of spatiotemporal provenance

is graph-based; implementing our explicit model within a graph database facilitates

reuse of high-level components. Finally, there are a plethora of open source graph

databases currently available, each with their own set of tradeoffs; our goal was

to avoid marrying our implementation to a specific backend as much as possible.

1http://www.tinkerpop.com/
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The Blueprints framework satisfies each of these requirements and provides a highly

portable foundation on which to build any graph database application.

Blueprints is a property graph model interface that provides a whole stack of

useful graph database tools (e.g., for dataflow processing, a traversal query language,

POJO-to-graph object mapper) and is entirely backend-agnostic. A property graph

is a special type of graph whose (i) vertices and edges may possess any number

key-value pairs (properties), (ii) edges are directed, and (iii) different edges may

represent different relations between vertices (i.e., the graph is multi-relational).

Any graph database that implements the Blueprints interfaces automatically sup-

ports any Blueprints-enabled application. In other words, a graph database applica-

tion implemented within the Blueprints interfaces can plug-and-play different graph

database backends without any code changes.

Figure 3.1: The application data (datum) and
spatiotemporal metadata (provenance) partitions.

Abstractly, our model of

data and its associated spatiotem-

poral metadata can be defined as

a graph with two logical partitions:

one partition comprises applica-

tion data (datums), the other com-

prises spatiotemporal data prove-

nance (spatiotemporal trajectories).

This abstraction is illustrated in Figure 3.1. Concretely, our graph is defined as

G = (V,E), where each vertex v ∈ V is either a datum vertex (the inner hexagonal

vertices in Figure 3.1) and is in the data partition (vd ∈ Vd) or is a spatiotemporal
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metadata vertex (the outer circular vertices in Figure 3.1) and is in the metadata

partition (vm ∈ Vm). An edge connecting two datum vertices e = (vd1, vd2) may

represent an arbitrary application-dependent data relation. Edges between meta-

data vertices e = (vm1, vm2) form our spatiotemporal trajectory data type by defin-

ing a doubly-linked list of space-time positions (this is discussed in greater detail

next). Finally, an edge that crosses the boundary between these two partitions

e = (vd1, vm1) associates a spatiotemporal trajectory with a particular datum. In

our model, each datum vd may only have one associated spatiotemporal trajectory

{vm1, vm2, · · · , vmn}.

We reify the explicit spatiotemporal trajectory data type as a doubly-linked

list of space-time position (i.e., spatiotemporal metadata) vertices. Each space-time

position vertex is a tuple vm = 〈(latitude, longitude), time〉. This implementation

uses a two-dimensional geospatial coordinate system for sake of concreteness. How-

ever, a space-time position vertex could easily be extended to represent a point

within any explicit coordinate system (e.g., three-dimensional geospatial by adding

a altitude). To map from graph objects to Java objects, and vice versa, Blueprints

provides Frames2, which enable a developer to “frame” a graph element in terms of

a particular Java interface, exposing the graph as a collection of interrelated well-

defined domain objects rather than a collection of raw key-value pairs. Listing 3.1

provides the pertinent elements of the framed space-time position vertex definition.

Each space-time position vertex possesses a location and a time property (indicated

by the @Property annotations) and directed references to a previous and a next

2https://github.com/tinkerpop/frames/wiki
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Listing 3.1: The Blueprints Frame definition of a space-time position vertex.

pub l i c i n t e r f a c e SpaceTimePosit ion extends VertexFrame {
@Property (” l o c a t i o n ”)
pub l i c f l o a t [ ] ge tLocat ion ( ) ;

@Property (” l o c a t i o n ”)
pub l i c void s e tLoca t i on ( f l o a t [ ] l a t l o n ) ;

@Property (” time ”)
pub l i c long getTime ( ) ;

@Property (” time ”)
pub l i c void setTime ( long time ) ;

@Adjacency ( l a b e l = ” next ” , d i r e c t i o n = Di r e c t i on .OUT)
pub l i c SpaceTimePosit ion getNext ( ) ;

@Adjacency ( l a b e l = ” next ” , d i r e c t i o n = Di r e c t i on .OUT)
pub l i c void setNext ( SpaceTimePosit ion pos ) ;

@Adjacency ( l a b e l = ” prev ious ” , d i r e c t i o n = Di r e c t i on . IN)
pub l i c SpaceTimePosit ion getPrev ious ( ) ;

@Adjacency ( l a b e l = ” prev ious ” , d i r e c t i o n = Di r e c t i on . IN)
pub l i c void s e tPrev i ous ( SpaceTimePosit ion pos ) ;

}
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Listing 3.2: The Blueprints Frame definition of a datum vertex.

pub l i c i n t e r f a c e Datum extends VertexFrame {
@Adjacency ( l a b e l = ” t r a j e c t o r y−head ”)
pub l i c SpaceTimePosit ion getTrajectoryHead ( ) ;

@Adjacency ( l a b e l = ” t r a j e c t o r y−head ”)
pub l i c void setTrajectoryHead ( SpaceTimePosit ion pos ) ;

}

SpaceTimePosition (indicated by the @Adjacency annotations). The Blueprints

Frames library takes care of type checking and conversion between raw graph vertex

objects and framed SpaceTimePosition objects. Not shown in the listing, for space

considerations, each space-time position also possesses a reference to its associated

datum vertex.

The definition of a datum vertex’s properties is left entirely to the applica-

tion (e.g., phenomenon location, time of creation, etc.). Instead, we simply require

that it possesses a reference to its spatiotemporal trajectory as shown in Listing 3.2.

An application may explicitly define required datum properties and relations (edges)

by extending the framed datum interface or simply by adding properties to datum

vertices and creating edges between them on-the-fly at runtime (a mechanism to do

so is detailed in Section 3.1.2). For example, the air quality example described in

Section 2.2.2 may wish to define datum properties to capture the measured concen-

trations of various airborne chemicals, sensed wind speed and direction, air temper-

ature, etc. Though not shown in Listing 3.2, the Datum interface also provides a

convenience method for pushing new SpaceTimePositions onto the datum’s spa-

tiotemporal trajectory. Blueprint’s Frames enable VertexFrame interfaces to imple-
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ment any of their methods annotated with @JavaHandler within a nested abstract

class, which is used to handle frame method calls.

Now that we have defined the constructs of our spatiotemporal metadata

model, it would be helpful if there were software components and tools to instanti-

ate and manage them. The next section describes a Java middleware layer created to

relieve applications from the responsibilities of generating, managing, and updating

application data and spatiotemporal metadata by exposing a rule-based program-

ming interface.

3.1.2 Middleware Architecture

To enable ease of use and deployment within an application we provide a

middleware layer that encapsulates the metadata model implementation described

in Section 3.1.1. The layer is implemented entirely in Java and may be used to

directly store application data (as framed Datum vertices) or simply to maintain

spatiotemporal provenance for existing application data. This middleware is publicly

available on GitHub3.

Figure 3.2 illustrates the middleware’s architecture. At a high level, the

middleware comprises our graph database implementation of the spatiotemporal

metadata model (the dashed box in Figure 3.2) and a family of interfaces to interact

with the database (the solid trapezoidal boxes surrounding the graph database).

At the core of the graph database itself is a BaseGraph interface, which is

the lowest level Blueprints interface on top of a concrete graph database backend.

3https://github.com/jonasrmichel/spatiotemporal-data
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Graph Database!

Indices!

Spatiotemporally-Enriched Data!

Base Graph!
Event Graph!

Framed Graph!

Data Factory!
Interface!

Rule Registry!
Interface!

Graph Wrapper Interfaces!

Figure 3.2: Graph database middleware architecture.

The BaseGraph is wrapped by two Blueprints WrapperGraphs: an EventGraph and

a FramedGraph. The EventGraph wrapper enables listeners to be attached to par-

ticular graph events (e.g., when vertices are added or properties change), which is

useful for triggering reactive behavior (e.g., data-driven rules). The FramedGraph

wrapper enables framed vertices (e.g., SpaceTimePoints and Datums) to be created,

inserted into, and extracted from the BaseGraph. The graph database also supports

pluggable external indices (e.g., Lucene4 and Elastic Search5). These may be used to

index data’s properties or spatiotemporal metadata’s geospatial locations to enable

4https://lucene.apache.org/
5http://www.elasticsearch.org/
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Listing 3.3: The middleware’s Datum Factory interface.

pub l i c i n t e r f a c e IDatumFactory {

pub l i c Datum addDatum( f l o a t [ ] l o ca t i on , long time ,
Map<Str ing , Object> prope r t i e s ,
L i s t<Rule> r u l e s ) ;

}

faster vertex lookups.

An application may wish to interact directly with the database’s graph or

either of its wrappers (e.g., for querying). The middleware exposes each of these

interfaces, shown in Figure 3.2 as the top-most trapezoid labeled Graph Wrapper

Interfaces. On the other hand, to simplify the creation and storage of datums and

their spatiotemporal metadata, the middleware exposes a Data Factory interface

(the trapezoidal box on the far right of Figure 3.2), which provides a single method

shown in Listing 3.3. The addDatum() method creates and inserts a new framed

Datum vertex populated with any key-value pairs provided in the properties pa-

rameter. This method also initializes the datum’s spatiotemporal trajectory with a

new framed SpaceTimePosition vertex using the location and time parameters.

In many circumstances, an application may require that datums’ spatiotemporal

trajectories be updated periodically, either per some time interval (e.g., every 10

minutes) or per some spatial interval, in other words, after the device running the

application has traveled a certain distance (e.g., every 100 meters). To relieve ap-

plications of this responsibility, our middleware enables rules to be defined and

attached to individual datums either using the final parameter of the addDatum()
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method or using the Rule Registry interface (the trapezoidal box on the far left of

Figure 3.2). These rules are described in detail in the next section.

3.1.3 Defining Data-Dependent Rules

Rather than create, update, maintain, and destroy data and its spatiotem-

poral provenance directly, the middleware layer enables an application to define

rules that implement this otherwise completely data-dependent logic. From an en-

gineering perspective, these rules provide a convenient separation of concerns, fully

encapsulating logic that might otherwise be scattered throughout an application.

Within the middleware, an abstract Rule class is provided that possesses

references to each of the graph wrapper interfaces, enabling the underlying graph

structures to be modified based on whatever necessary application criteria. Of par-

ticular import to mobile and pervasive applications is the ability to update data’s

spatiotemporal provenance automatically (e.g., periodically per some time or dis-

tance traveled interval). To support this sort of reactive behavior, the middleware

provides an abstract GraphChangedRule, which extends the Rule class and, when

created, will register itself as a Blueprints GraphChangedListener with the graph

database’s EventGraph interface. A GraphChangedRule can trigger data-dependent

behavior whenever the underlying graph’s structure or properties are altered (e.g.,

when a new vertex or edge is added or removed or when a vertex or edge property

is modified).

As a concrete example, consider a mobile application that requires all stored

datum’s spatiotemporal trajectories be updated with the operating device’s current

75



Listing 3.4: An example rule that updates spatiotemporal provenance whenever the user
has traveled more than 100 meters.

pub l i c c l a s s Spatia lUpdateRule extends GraphChangedRule {
f l o a t [ ] r e fLoc ;

// con s t ruc to r omitted f o r space

@Override
pub l i c void vertexPropertyChanged ( Vertex vertex ,

S t r ing key , Object oldValue ,
Object setValue ) {

i f ( ! ( ve r tex . hasProperty (” s p e c i a l−key ”) &&
key . equa l s (” l o c a t i o n ” ) ) ) {

// t h i s i s not the ” s p e c i a l ” l o c a t i o n ver tex
return ;

}

f l o a t [ ] myLoc = ( f l o a t [ ] ) setValue ;

i f ( d i s t (myLoc , r e fLoc ) > 100) {
f o r (Datum d : d e l e ga t e . getGoverns ( ) ) {

// convenience method provided by the datum
// i n t e r f a c e to update a datum ’ s t r a j e c t o r y
d . add (myLoc ) ;

}
r e fLoc = myLoc ;

}

p r i v a t e f l o a t d i s t ( f l o a t [ ] loc1 , f l o a t [ ] l o c2 ) {
// r e tu rn s the d i s t anc e in meters between
// two geographic coo rd ina t e s

}
}
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location whenever the device moves more than 100 meters (e.g., because the device

is carried by a human user). We could express this logic formally with the following

rule: ∀vd ∈ Vd, vd.add(vm(myLoc)) if dist(myLoc, refLoc) > 100m. To define this

rule within the the middleware we would first need to create and insert a “spe-

cial” vertex into the graph to represent the user’s current location (e.g., a vertex

vlocation = 〈special-key, location〉 where the location property’s value is a (latitude,

longitude) pair). Next, we would define the rule class shown in Listing 3.4. Once

instantiated, the above rule class will automatically maintain data’s spatiotempo-

ral provenance, appending a new SpaceTimePosition to each datum’s trajectory

whenever the device travels more than 100 meters.

An important feature to point out in the SpatialUpdateRule class is the

delegate variable that is referenced to obtain an iterator of associated Datums.

To activate a rule within the middleware it must be “registered” with the graph

database through the Rule Registry interface (Figure 3.2)6. When a rule is registered

it is actually stored in the graph database within a special RuleContainer framed

vertex. Each RuleContainer vertex possesses a reference (edge) to any Datum that

it “governs.” This enables a rule to quickly access the datums and spatiotemporal

trajectories it affects or is affected by. So, to complete the example, whenever a new

datum is created using the Datum Interface’s addDatum() method (Listing 3.3), we

would simply provide an instance of the SpatialUpdateRule within the method’s

rules parameter. The created Datum will then be autonomously “governed” by our

6Rule registration is automatically performed for rules provided to the Datum Factory interface’s
addDatum() method.
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SpatialUpdateRule’s behavior. We now employ our spatiotemporal provenance

middleware to conduct a case study that provides concrete examples of data-driven

rules and explores the accumulated storage overhead of spatiotemporal metadata

within a simulated pervasive computing application.

3.1.4 Case Study

In an effort to demonstrate the utility of spatiotemporal data provenance

and to conduct an assessment of the tradeoffs between spatiotemporal metadata’s

“cost” and “quality” this section presents a case study that directly employs the

middleware described in Section 3.1.1. Given that many pervasive computing appli-

cations must operate without reliance on an Internet connection and cloud resources,

a pervasive or mobile application interested in maintaining spatiotemporal prove-

nance will likely be constrained by devices’ physical storage capacity. Therefore,

when creating an application crucial design decisions include defining precisely how

much spatiotemporal metadata to maintain and for how long it should be stored. To

make these decisions, an application developer needs to know how much metadata

is “good enough” for the application and at what point data is no longer of any use

(i.e., when it becomes spatiotemporally irrelevant). In this section, we present a case

study that aims to provide evidence to assist a developer in making these decisions

by using data’s spatiotemporal provenance to evaluate the spatial and temporal “de-

cay” of knowledge in a simulated mobile environment as the environment’s mobility

and metadata spatiotemporal resolutions are varied. We demonstrate how notions

of information decay may be realized as concrete computations performed directly
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on data’s spatiotemporal trajectories as discussed in Section 2.2.3

3.1.4.1 Spatiotemporal Decay & Metadata Overhead

In pervasive computing spaces data is ephemeral and may have a very short

lifespan. Once a physical phenomenon is sensed by a particular device, both the

phenomenon and the representative digital datum may undergo dynamics—the phe-

nomenon may move or evolve, the device carrying the datum may move, the datum

may be transferred between devices. As these dynamics occur the datum’s quality

(i.e., how accurately it represents reality) may degrade or decay in both space and

time as the datum travels farther from its space-time point of genesis. The rate

at which the datum decays depends on both the degree of these dynamics and the

resolution of the datum’s spatiotemporal metadata.

time = t1 
locd = ( xd, yd ) 

datum!

phenomenon!

time = t1 
locp = ( xp, yp ) 

time = t2 
locp = ( xp

’, yp
’
 ) 

time = t2 
locd = ( xd

’, yd
’
 ) 

Figure 3.3: Spatial and temporal decay with varying trajectory resolution.

To illustrate the notion of decay more clearly, consider the scenario shown in
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Figure 3.3. At time t1 a phenomenon located at (xp, yp) (the triangle) is sensed by

some device located at (xd, yd), which generates a datum (the hexagon) representing

this phenomenon and its observed location at time t. At some later time t2 both

the phenomenon and datum have both moved—the phenomenon to (x′p, y
′
p) along

the dotted black path and the datum to (x′d, y
′
d) along the solid gray path. In this

scenario, we can compute the temporal decay of the datum as the delta between the

phenomenon’s observed location at time t1 and its actual location at time t2 as a

function of time:

decay(t1, t2) = distance
((
xp, yp

)
,
(
x′p, y

′
p

))
(3.1)

Similarly, we can compute the datum’s spatial decay using the same distance

delta, but instead parametrized by two notions of space. First, we can compute

a datum’s spatial decay as the distance between the phenomenon’s observed and

actuals locations as a function of the absolute distance traveled by the datum:

distance
((
xp, yp

)
,
(
xp(Ad), yp(Ad)

))
,

whereAd = distance
((
xd, yd

)
,
(
xd(t), yd(t)

))
(3.2)

We can also compute the datum’s spatial decay as a function of the cumulative

distance traveled by the datum, given by the sum of the distances between each of

its n space-time positions:

distance
((
xp, yp

)
,
(
xp(Cd), yp(Cd)

))
,

where Cd =
n∑
i=1

distance
((
xd(i), yd(i)

)
,
(
xd(i− 1), yd(i− 1)

))
(3.3)
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Figure 3.3 includes two trajectories of different resolutions that attempt to

capture the datum’s dynamics (the solid gray path). The higher resolution trajec-

tory (shown with solid black arrows) more accurately represents the datum’s actual

spatiotemporal dynamics and will experience a lower rate of decay between each of

its space-time positions; however, the higher resolution comes at a higher storage

cost (six space-time positions). On the other hand, the lower resolution trajectory

(depicted with dashed black arrows) will experience more significant decay between

each of its space-time positions, but consumes half as much storage space.

In an effort to illuminate these tradeoffs, we next present experimental re-

sults from a simulated pervasive computing environment of mobile hosts (represent-

ing user-carried smartphones, sensing devices, “smart” objects, etc.) and moving

phenomena (discrete entities that may be “sensed”). Each mobile host runs an in-

stance of our spatiotemporal metadata middleware and periodically “senses” prox-

imate mobile phenomena, which triggers the creation and storage of representative

datums and their associated spatiotemporal provenance. We investigate tradeoffs

between the rate of trajectory decay and its additional storage overhead while vary-

ing metadata resolution and the mobility of hosts and phenomena.

3.1.4.2 Experimental Setup

The simulated scenario comprises 50 mobile hosts and 375 mobile phenomena

moving around a 0.4km2 space (roughly the size of the University of Texas campus)

for 60 simulated minutes. Hosts and phenomena each follow their own synthetic

mobility trace generated using the MobiSim mobility trace generator [110] per the
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Levy-walk [140] mobility model7. Every five minutes each host “senses” all phenom-

ena that are within 30 meters8, creating a new digital datum for each that records

the phenomenon’s observed location at the current time. A “phenomenon” here

is simply an abstract placeholder for a moving object. For example, this scenario

could represent a mobile social application that periodically senses the presence of

nearby friends (e.g., FourSquare Swarm and Facebook’s “nearby friends” features),

a participatory application where users take pictures of animals or phenomena of

interest [16], or a wildlife research application where researchers in the wild period-

ically scan for nearby tagged animals (e.g., the Starkey Project9).

Each host runs an instance of our middleware on top of a Titan graph

database backend10, which implements the Blueprints interface stack (and hence, all

of our middleware’s constructs). Datums created by a host are stored indefinitely

in its graph database instance. As a host moves about the simulated space it up-

dates its collected datums’ spatiotemporal metadata per a spatially- or temporally-

modulated rule (similar to the rule shown in Listing 3.4). A spatially-modulated rule

updates datums’ spatiotemporal metadata when the host has traveled more than

a parameterized physical distance; a temporally-modulated rule updates metadata

after a parameterized time interval.

In an effort to tease out the tradeoffs between rate of decay and metadata

overhead we vary the degree of host and phenomenon mobility as well as the spatial

7Levy-walk mobility is considered to closely mimic human mobility.
8A sensing range of 30 meters was chosen to represent a typical outdoor Wi-Fi communication

range.
9http://www.fs.fed.us/pnw/starkey/index.shtml

10http://thinkaurelius.github.io/titan/

82



Table 3.1: Simulated Independent Variable Values

Variable Values Description

Host mobility
(m/s)
Phenomenon mobility
(m/s)

slow: 1-5
medium: 5-10
fast: 10-15

Ranges correspond to the minSpeed and
maxSpeed parameters of the Levy-walk mobil-
ity model. Slow, medium, and fast ranges cor-
respond to foot, bicycle, and automobile speeds
respectively.

Spatially-modulated
update resolutions
(meters)

low: 50
medium: 25
high: 10
very high: 5

After a datum has traveled resolution meters a
new space-time position with the current time
and its current location will be added to its
spatiotemporal trajectory.

Temporally-modulated
update resolutions
(seconds)

low: 600
medium: 300
high: 60
very high: 10

Every resolution seconds a new space-time
position with the current time and the da-
tums’s current location will be added to its
spatiotemporal trajectory.

and temporal resolutions of the metadata update rules. The simulated values of

these variables are shown in Table 3.1. In all cases, a variable’s medium value is

used when it is considered “fixed.”

3.1.4.3 Simulation Results

Spatiotemporal Metadata Overhead: We first investigate the additional

overhead induced by our spatiotemporal provenance under varying degrees of host

mobility and trajectory update resolutions. Figure 3.4 shows the storage overhead

rate (space-time positions per second) as the degree of host mobility is varied and

all other variables are fixed. The results illustrated by Figure 3.4 are quite obvious,

but are quantified here both as a sanity check and to help guide a pervasive com-

puting application developer in fine-tuning our middleware to meet his needs. We

see that higher host mobility has no effect on temporally-modulated spatiotemporal

metadata (i.e., trajectories that are updated per a time interval), but is directly pro-

portional to the amount of spatially-modulated metadata produced (i.e., trajectories
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Figure 3.4: Mean overhead of spatiotemporal data prove-
nance as the degree of host mobility varies.

that are updated when-

ever their datum has trav-

eled a certain distance).

In other words, the more

mobility hosts exhibit, the

more often their spatially-

modulated update rules

will be triggered.

To associate actual

byte values with these overhead results, we assume that a single space-time position

consumes 128 bytes (two 32-bit floating-point decimals for location and a 64-bit

long integer for time). Then, the spatially-modulated metadata at fast host mobility

generating 0.4 space-time positions per second shown in Figure 3.4 would consume

320 bytes per second or roughly 19 kilobytes per minute.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

low medium high very high 

Sp
ac

e-
Ti

m
e 

Po
si

tio
ns

 / 
Se

co
nd

 

Spatiotemporal Trajectory Update Resolution 

Spatially Modulated Temporally Modulated 

Figure 3.5: Mean overhead of spatiotemporal data prove-
nance as metadata update resolution is varied.

Next, Figure 3.5

shows the effects of vary-

ing metadata spatiotem-

poral update resolution

with host and phenomenon

mobilities fixed. At

least for the spatiotem-

poral resolution settings

used in this case study,
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spatially-modulated metadata is much more sensitive to adjustments than

temporally-modulated metadata. The takeaway from Figure 3.5 is that spatially-

modulated metadata update rules should be used with caution since they can induce

significantly more overhead than equivalent temporally-modulated update rules.

However, an application may have certain requirements for the spatial resolution

and decay of data that are only satisfied by maintaining higher resolutions of spa-

tiotemporal data provenance.

Spatial & Temporal Decay: We next explore how data decays in both

space and time within our simulated scenario. Figure 3.6 illustrates the effects of

host mobility on spatial and temporal decay (with fixed phenomenon mobility and

spatiotemporal update resolutions). Here (and in following the following charts),

temporal decay captures the mean distance of a datum’s representative phenomenon

from its initially observed location as a function of time (per equation (3.1)) nor-

malized by trajectory age—i.e., meters of decay per second. Spatial decay captures

the mean distance of a datum’s phenomenon from its observed location as a func-

tion of cumulative trajectory length (per equation (3.3))—i.e., meters of decay per

cumulative meter of datum travel. Figure 3.6(a) shows that data’s temporal decay

is relatively unaffected by host mobility, which is intuitive because host and phe-

nomenon mobility are independent in our simulated scenario. On the other hand,

data decays less in space as host mobility increases since hosts’ data are able to

travel farther relative to phenomena.

Not surprisingly, spatially-modulated metadata results in less spatial decay

than temporally- modulated metadata since it generates space-time positions at a
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Figure 3.6: (a) Mean spatial and temporal decay as
host mobility is varied. (b) Mean spatial and temporal
decay per space-time position as host mobility is varied.

higher rate than its temporally-

modulated counterpart (as

observed in Figure 3.5). This

observation is corroborated

by Figure 3.6(b), which shows

Figure 3.6(a)’s results nor-

malized by trajectory size

(number of space-time posi-

tions). This is effectively

the rate of decay per space-

time position. Figure 3.6(b)

quantifies the “bang for the

buck” achieved by our meta-

data update rules. In general,

spatially- modulated meta-

data, though much more costly, exhibits significantly lower spatiotemporal decay

than temporally-modulated metadata (about two orders of magnitude less).

Next, we investigate spatiotemporal decay as phenomenon mobility is varied,

holding host mobility and spatiotemporal update resolutions fixed (Figure 3.7). As

expected, Figure 3.7(a) shows an increase in temporal decay as phenomena become

increasingly mobile, which indicates that, in general, phenomena move farther away

from their points of observation as time progresses. However, data experiences a
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Figure 3.7: (a) Mean spatial and temporal decay as
phenomenon mobility is varied. (b) Mean spatial and
temporal decay per space-time position as phenomenon
mobility is varied.

drop in the spatial decay ob-

served by both spatially- and

temporally-modulated meta-

data when phenomenon mo-

bility is fast. This is a prod-

uct of the Levy-walk mobil-

ity model in which objects

make many short movements

in small geographic regions

and occasional long “leaps” to

new geographic regions. So,

for this particular combina-

tion of host and phenomenon

mobility (or rather their rel-

ative difference), as a digital

datum undergoes dynamics it may not always be the case that it is decaying in space

since its representative phenomenon may just be “hovering” around a particular ge-

ographic region. The takeaway here is that higher degrees of phenomena mobility do

not strictly necessitate higher resolution metadata to mitigate spatiotemporal de-

cay. This is crucial evidence for pervasive computing application developers. Given

the developer knows something about the relative difference between host and phe-

nomenon mobilities, he may be able to satisfy his application’s decay requirements

with less metadata than intuitively expected.
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Finally, we fix host and phenomenon mobility and observe spatiotemporal

decay as our metadata update resolutions are varied (Figure 3.8).
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Figure 3.8: (a) Mean spatial and temporal decay as
metadata spatiotemporal update resolution is varied.
(b) Mean spatial and temporal decay per space-time po-
sition as spatiotemporal update is varied.

Something very interesting

happens here: at low and

medium update resolutions

temporally-modulated meta-

data spatial decay is liter-

ally off the charts in Fig-

ure 3.8(a) and (b) and sub-

stantially drops as tempo-

ral resolution becomes higher.

This is simply a tale of cau-

tion to pervasive computing

application developers—there

is clearly a “sweet spot” of

temporal resolution for this

scenario and tuning temporal

update resolution poorly could have drastic impacts on data decay. Interestingly,

at very high resolution spatially- and temporally- modulated metadata achieve very

similar levels of spatial decay (Figure 3.8(a)). However, the spatial and temporal

rate of decay (Figure 3.8(b)) is still much higher for temporally-modulated metadata

(about 5x higher).

The middleware presented in this section provides concrete developer tools

88



and constructs that simplify the implementation of pervasive computing applica-

tions. Rather than embed data-driven logic throughout an application, the middle-

ware’s programming interfaces enable a developer to define rules that autonomously

react to data-dependent conditions. The case study demonstrates how such rules

may be used to govern the maintenance of explicit spatiotemporal data provenance

and provides developers with quantifiable insights to guide decisions regarding prove-

nance resolution. In summary, this section focused on development tools that lever-

age spatiotemporal data provenance, which are useful from an engineering perspec-

tive. In the next section, we turn our attention to the direct utility of spatiotemporal

provenance from a performance perspective and demonstrate how locally-available

provenance can be exploited to enhance distributed protocols that support sharing

and querying spatiotemporally-enhanced data.

3.2 Leveraging Spatiotemporal Provenance in Opportunistic Net-
works

In this section we step down a layer and shift our focus from simplifying

application development to enhancing routing protocols that support sharing and

querying of spatiotemporally-enhanced data. We demonstrate the practical utility

of spatiotemporal data provenance for making local inferences about global net-

work characteristics and remote nodes’ knowledge. Employing our implicit model

of data provenance (Section 2.3) we first benchmark the effectiveness of the model

as a tool for estimating characteristics of data objects’ propagation patterns using

only locally-available spatiotemporal provenance. We conduct performance analyses

driven by real-world data sets of human proximity that benchmark the effective-
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ness of provenance-based estimation and quantify the degree of distributed shared

knowledge supported by each of the implicit model’s update strategies under varying

network connectivity and dynamics. Motivated by results from these experiments,

we next demonstrate how nodes’ overlapping views of datas’ causal history (i.e.,

implicit spatiotemporal provenance) may be exploited to make powerful inferences.

Through two use cases, we demonstrate the practical utility of our model’s con-

structs for making intelligent routing decisions: first, as a means for making local

inferences about other nodes’ knowledge and second, for identifying commonly co-

located data-data and data-device pairs, which may be used as substitute routing

targets. Both use cases are directly applicable to ad hoc routing protocols that

support data sharing and querying in pervasive computing environments.

3.2.1 Benchmarking Trajectory Performance

Recall from the model of implicit spatiotemporal data provenance introduced

in Section 2.3.1, a spatiotemporal trajectory T (m) captures, to an extent, the spatial

and temporal history of m. A message’s complete spatiotemporal history is given

by its global transmission network J ∗G (m), of which T (m) is a subset. A node u that

receives m initially has a local view of the global transmission network J ∗Gu(m) =

T (m) However, u’s local view may expand to include more of J ∗G (m) if more copies

of m (via different causal paths) are received. In Section 2.3.1 we presented three

trajectory update strategies that each produce trajectories with varying degrees of

coverage of their transmission network. Here, we aim to quantify the coverage each

update strategy achieves and the impacts of that coverage.
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Given that a node u receiving m may not have complete knowledge of

m’s global transmission network J ∗G (m), we would like to measure how well struc-

tural and temporal characteristics of J ∗G (m) can be estimated using locally-available

J ∗Gu(m). Specifically, we compare the receivers per broadcast, transmission network

depth, transmissions per second, hops per second, and inter-transmission delay mea-

sured on local transmission networks to that of the same metric as measured on the

corresponding global transmission network of a given message. From a data-agnostic

perspective, these measurable characteristics shed light on network dynamics and

connectivity (e.g., density and contact frequency). Taking message content into

account, these characteristics reveal how particular data propagate through the net-

work. Both views on these metrics (data-agnostic and -dependent) may be useful

runtime input for an opportunistic data dissemination protocol. In addition to be-

ing indicators of data’s spatiotemporal “about-ness,” trajectories also describe the

distributed state of knowledge about the time-varying state of the network. Two

nodes u and v, for example, may respectively receive trajectories T (m) and T (m′)

where T (m)∩T (m′) 6= ∅ and may therefore be able to make similar inferences (pos-

sibly that they each have received m or m’). Our second series of benchmarks aims

to quantify the degree of data-agnostic knowledge convergence supported by each

of our update strategies.

3.2.1.1 Experimental Setup

We target dynamic operating environments densely populated with wire-

lessly communicating mobile devices. Events that draw large spontaneous crowds
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of people (e.g., music festivals, conferences, parades, etc.) represent an immediate

scenario where human users typically have hyper-localized information needs. How-

ever, cellular infrastructures often become saturated in these scenarios due to the

large burst of competition for network resources. In such spontaneously crowded

environments device-to-device communications may connect users and their devices

to digital data that exists within users’ surroundings.

To better understand how our model and its constructs perform in net-

works of wireless devices carried by human users we employ two real world contact

trace data sets of human proximity collected by the SocioPatterns project11. The

SocioPatterns sensing platform captures face-to-face human proximity through ex-

change of radio packets between RFID devices embedded in badges; a “contact”

occurs when two people are at close range (1-1.5 m) and facing each other. We use

proximity data collected from two SocioPatterns deployments, both of which are

described in detail and analyzed in [73] and [121]. The first deployment took place

at the Science Gallery (SG) in Dublin12 and lasted almost three months (we use

data from three days). The second deployment tracked human proximity of about

100 volunteers at the Hypertext 2009 (HT09) conference in Turin13, which lasted

about three days. The details of each of these data sets is listed in Table 4.1. Each

of these deployments vary in density and represent very different kinds of human

behavior. In a museum visitors spend a limited time on-site and generally follow

a pre-defined path. At a conference, on the other hand, attendees stay on-site for

11http://www.sociopatterns.org/
12http://dublin.sciencegallery.com/infectious/
13http://www.ht2009.org/
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most of the day and move at will between different parts of the conference venue.

We chose these data sets because of their density, scale, and focus on human inter-

actions. Ultimately, the networks we target are by no means limited to face-to-face

proximity. Wireless protocols like Bluetooth, Wi-Fi, and LTE Direct enable device-

to-device communications across ranges of tens to hundreds of meters. However, the

fine-grained level of human behavior and interactions captured by the SocioPatterns

deployments, which is the key driver of our evaluations here, would be present in a

network of human-carried devices connected by any wireless protocol.

Deployment Date Nodes Contacts Duration (h)
June 29 100 6,922 15.96

HT09 June 30 102 7,134 17.87
July 1 97 6,792 10.81

May 19 99 3,421 7.64
SG May 20 188 8,416 7.98

July 14 279 12,330 8.03

Table 3.2: SocioPatterns data set deployment details.

We simulate device-to-device propagation of messages and their spatiotem-

poral trajectories following an epidemic routing protocol. Given a contact trace, we

assume that each node in the trace represents a wireless device carried by a human

user and require that each node maintain its own local TVG instance. For each

simulation, we select a random subset of the nodes to be seeds, which periodically

inject data into the network. Once a seed becomes active (i.e., after it appears in

the network for the first time) every 60 seconds it transmits both a message and

the message’s spatiotemporal history to all other nodes the seed is in contact with

at transmit time (i.e., the message is flooded). Prior to transmitting the message,

the message’s spatiotemporal history is updated per a trajectory update strategy.
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For simplicity, we assume the latency of all transmissions to be one second (ζ = 1

s)14. Any node that receives a message first stores the message’s contents and all of

its attached contextual history in the local TVG then performs the same steps as

the seed: the receiver updates the spatiotemporal history according to the update

strategy, then propagates the message and its updated history to all nodes the re-

ceiver is currently in contact with. Intermediate receivers do not buffer messages;

if a receiving node does not have any active contacts at receive time, then it does

not propagate a received message. We do not impose any limit on the number of

hops a message can take – a message’s device-to-device diffusion continues until no

receivers having contacts at reception time remain.

3.2.1.2 Trajectories as an Estimation Tool

In a distributed deployment, it would be impractical to obtain a message’s

complete contextual history (i.e., its global transmission network). Therefore, our

first set of benchmark measurements investigates how well nodes’ partial (local)

knowledge of messages’ complete contextual history functions as a tool for estimating

global spreading dynamics and network characteristics. We use five spatiotemporal

metrics to measure messages’ propagation characteristics: receivers per broadcast,

transmission network depth, transmissions per second, hops per second, and inter-

transmission delay. When a message m is received by a node u at time t, for

each of our five metrics we compute the error between the metric as measured

14In a real world deployment, transmission time depends on payload size, the wireless proto-
col, available network bandwidth, etc. These realities are clearly non-negligible; however, in this
work our focus is on the utility of spatiotemporal trajectories at the application layer. We leave
investigations of the impacts of trajectory and data size as future work.
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on J ∗Gu(m, t) (u’s local view of m’s transmission network at t) and J ∗G (m, t) (m’s

global transmission network at t). We also measure how well u’s local view of

m’s transmission network covers the global transmission network using our Jaccard

spatiotemporal similarity operator from Section 2.3.2:

coverage(m,u, t) =
|J ∗Gu(m, t) ∩ J ∗G (m, t)|
|J ∗Gu(m, t) ∪ J ∗G (m, t)|

We first investigate how well each of our update strategies supports local

estimation of global network characteristics across deployments. Figure 3.9 shows

the mean per-message average of the coverage and estimation accuracy (1− error)

achieved by each of the update strategies measured on one day of each SocioPatterns

deployment. We use the mean per-message averages to account for varying trans-

mission network size. In both simulations, half of the nodes act as data-generating

seeds.

Not surprisingly, the Neighbors strategy achieves the poorest coverage of the

global transmission network since it only captures 1-hop contextual history. The

Journey and Journey+ strategies achieve much better coverage, and typically yield

more accurate estimations, since they both capture an entire causal chain of propa-

gation from seed to destination. Interestingly, spatiotemporal trajectories generally

produced more accurate estimations within the SG deployment (Figure 3.9(b)) than

within the HT09 deployment (Figure 3.9(a)). We can attribute this performance

difference to the nature of these two deployments. According to the temporal in-

vestigations of [73], nodes in the SG deployment (museum visitors) typically move

through the venue within 35 minutes and rarely interact with other visitors entering
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Figure 3.9: Mean per-message average transmission network coverage and estimation
accuracy of spatiotemporal metrics measured on nodes’ partial transmission networks.

the venue more than an hour after them. Moreover, SG visitors generally spend

more time in contact with few people. Message propagation in the SG deployment

is therefore restricted to groups of nodes that enter the venue around the same time,

which gives nodes in these cohesive groups more chances to acquire a message’s spa-

tiotemporal history. Contact activity in the HT09 deployment, on the other hand, is

extremely bursty [121] with spikes of activity occurring during the conference lunch

and coffee breaks. HT09 attendees do not follow a pre-defined path, but rather

move around the conference venue freely, spending less time interacting with more

people [73]. This diversity of node interaction means that messages do not have the

opportunity to propagate many hops in the HT09 deployment and therefore pos-
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sess less contextual history than in the SG deployment. Next, we investigate these

differences closer.

Figure 3.10 plots the coverage achieved by each update strategy as a func-

tion of the topological distance a message has travelled. Each point represents

the average coverage of the global transmission network of a message’s attached

spatiotemporal history as a function of the average number of hops from seed to

receiver aggregated across all receptions of the message. These figures corroborate

our earlier conclusions. Because of the contact diversity and burstiness messages

in the HT09 deployment generally don’t propagate more than one or two hops

from a seed (Figure 3.10(a)) and on average achieve a lower coverage per-hop of

the global transmission network than in the SG deployment (Figure 3.10(b)) where

nodes travel along similar spatiotemporal paths in cohesive groups. In this paper

we define space in a relative way. A message’s spatial context is based on a per-

ception of the surroundings—if that perception does not change, then the message’s

“space” does not change. The spatiotemporal cohesiveness of the SG network means
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Figure 3.10: Local transmission network coverage of messages’ global transmission net-
works as a function of topological distance from the seed.
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that, while nodes may be moving through physical space, their context changes at a

much slower rate, which is why we observe better estimation accuracy in SG than

in HG09. Next we explore how network dynamics and density within one of these

deployments affect nodes’ second hand perception of their context.

3.2.1.3 Knowledge Convergence

Completely ignoring a message’s content, its spatiotemporal trajectory pro-

vides a historical window into the time-varying topology of the network along the

message’s path of propagation. Depending on the trajectory update strategy in use

and the amount of shared data being generated, nodes may possess varying degrees

of “overlapping” historical knowledge about the structure of the network. Our sec-

ond set of benchmark measurements explores the degree to which nodes’ knowledge

of the network’s past states converges using each of our update strategies under

varying network conditions and volumes of shared data.

We investigate distributed knowledge convergence within windows of time

across our simulations. For a given simulation, we separate its duration into con-

secutive non-overlapping five minute time windows. Within each time window, we

compare the local knowledge of the network’s topological states possessed by each

node that was “active” (i.e., sent or received a message) in the window. A node u’s

local knowledge in a time window [t, t′) comprises all of the edges it learned about

(either directly as a contact or indirectly through a spatiotemporal trajectory) in

[t, t′). We quantify knowledge convergence in a time window by measuring intern-

ode knowledge, which captures the average similarity of local knowledge measured
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between every unique pair of active nodes in the window.

Figure 3.11 illustrates the degrees of internode knowledge convergence mea-

sured across each day of the two SocioPatterns deployments. From left to right,
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Figure 3.11: Knowledge convergence under varying net-
work size and dynamics. From left to right, deployment
days are ordered in increasing order of number of nodes and
contacts (refer to Table 4.1).

the days are ordered in in-

creasing order of number of

nodes and contacts. The

size and dynamics of the

network do not vary dras-

tically between each day

of the HT09 deployment

(Figure 3.11(a)). On the

other hand, the SG deploy-

ment (Figure 3.11(b)) ex-

hibits an increase of about

100 nodes and 4k con-

tacts each successive day.

We observe an inverse re-

lationship between intern-

ode knowledge and net-

work size. This is intu-

itive; the more topologi-

cal knowledge there is the

overlap of it there is between nodes. Interestingly, within the SG deployment the
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Neighbors update strategy yields the highest internode knowledge at low degrees of

network size and dynamics (May 19), but in the largest network the Journey+ strat-

egy prevails (July 14). This occurs because at low network densities where messages

propagate few hops the Neighbors strategy provides the most complete contextual

snapshot of the network state in a discrete window of time. In the HT09 deployment

(Figure 3.11(a)), where the network is as dense but about twice as active as SG May

19, this effect is amplified. Here the Neighbors strategy yields much higher degrees

of internode knowledge overlap than the other two strategies. However at higher

densities (e.g., SG May 20 and July 14) messages are able to propagate farther and

the Journey and Journey+ strategies are able to capture more complete contextual

snapshots than Neighbors.

These benchmark evaluations illustrate the extent to which each trajectory

update strategy captures a complete transmission network and how network size,

density, and dynamics affect messages’ contextual history, which, from a routing per-

spective, are useful for making distributed decisions. Given that nodes’ knowledge of

data’s causal propagation overlaps to an extent in both SocioPattern deployments,

we wish to exploit this implicitly shared knowledge to make data-dependent and

data-agnostic inferences. Next, we concretely demonstrate how our model and its

constructs may be used to improve the performance of opportunistic data dissemi-

nation by making inference-based decisions.
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3.2.2 Use Cases

This section demonstrates how spatiotemporal trajectories can be leveraged

to draw concrete higher level inferences at a local level through two practical use

cases. The second hand information carried by a trajectory directly indicates which

mobile nodes know (have received) a piece of data. Our first use case illustrates

how trajectories may be “stitched” together in a data-agnostic fashion to make

indirect data-dependent inferences about remote nodes’ knowledge with respect to

particular data. We demonstrate how knowledge inferences may be used to eliminate

transmission of redundant (already received) information within an opportunistic

data dissemination protocol. In the networks we target, the data generated and

exchanged between devices is highly contextual—it is a product of the place and

time in which it exists. Human mobility is no exception to this assumption; it

is highly spatiotemporally correlated. Our second use case showcases how such

spatiotemporal regularities may be exploited to direct data’s propagation. Given a

piece of target data, we first demonstrate how trajectories may be used to detect

other types of data and nodes that are commonly co-located with the target data.

In the event that knowledge about the target data is lacking, frequently co-located

data or nodes may be used as logical routing substitutes. We demonstrate the

effectiveness of such routing substitutes for carrying out targeted data dissemination.

3.2.2.1 Knowledge Inference

In addition to indicating where and when data is spatiotemporally “about,”

trajectories also provide a view into the network-wide state of knowledge of partic-
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ular data. Concretely, a trajectory explicitly details when and from whom a piece

of information was adopted along the causal chain of its device-to-device propaga-

tion. Given an application knows something about the underlying routing protocol

responsible for disseminating data (e.g., its probability of propagation), a partially-

complete trajectory can be inferentially supplemented with second hand knowledge

from other data’s trajectories. For example, an epidemic protocol may only propa-

gate messages to a subset of a node’s neighbors, modulo some probabilistic param-

eter. Alternatively, the wireless channel may be unreliable and drop a predictable

proportion of transmitted packets.

c 

b 
u a 

T1     Gu  
T2     Gu 
T2     Gu 

∈

∉

∈

Figure 3.12: Knowledge inference. Solid gray and black
arrows respectively indicate trajectory T1 and T2’s elements
that are known by node u (i.e., in u’s local TVG). The dashed
black arrow represents an element of T2 that is not known by
u (e.g., due to a non-flooding routing protocol, lossy wireless
medium, etc.), but which u can probabilistically infer by
“stitching” together T1 and T2.

As an example, con-

sider the simplified sce-

nario shown in Figure 3.12.

The figure shows two tra-

jectories, T1 and T2 (short-

hand for T (m1) and T (m2))

that are received via differ-

ent causal paths at node u.

Ignoring the temporal domain, from u’s perspective T1 (solid gray arrows) traverses

the upper walk (a, b, u), and T2 (solid black arrows) traverses the lower walk (a, c,

u). Node b receives both m1 and m2 from a. However, b only propagates m1 to u,

due to a global propagation probability Pp < 1 for example, so the walk (a, b, u) is

not included in T1.

Assuming node u knows Pp it can probabilistically infer the likelihood that
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b is in trajectory T2 by supplementing with spatiotemporal information from T1.

Since node a is in the intersection of T1 and T2, u knows that both m1 and m2

“passed through” a. If m2 arrived at a before m1 (or if a has no predecessor in

T1 or T2), which u can directly infer by comparing the temporal entries of T1 and

T2 containing a, then u knows there was a chance that a propagated m2 to b.

Under these circumstances u can derive the likelihood that a propagated m2 to b by

inspecting J ∗(a,b), the set of journeys from a to b. From u’s perspective P (b ∈ T2),

the probability that b received m2, is equal to the probabilistic union of Pp times

the topological length each of J(a,b) ∈ J ∗(a,b) such that each J(a,b) ∈ Gu (i.e., the

journey exists in u’s local TVG). For the example shown in Figure 3.12 there is only

a single journey from a to b known by u (via T1), so P (b ∈ T2) = Pp. The general

case of this claim is formalized in Claim 3.2.1.

Claim 3.2.1 Let u be a node, J ∗Gu(m1) and J ∗Gu(m2) be the transmission networks

of messages m1 and m2, respectively, and the global probability of message prop-

agation Pp < 1. If there exists a node n such that n ∈ J ∗Gu(m1) ∩ J ∗Gu(m2) and

there exists a node n′ such that n′ ∈ J ∗Gu(m1) \ J ∗Gu(m2) and arrivaln(J ∗Gu(m2)) ≤

arrivaln(J ∗Gu(m1)) or predecesor(n) in either J ∗Gu(m1) or J ∗Gu(m2) is ⊥, then P (n′ ∈

J ∗Gu(m2)) = ∪{Pp × |JGu(n, n′)|h : departuren(JGu(n, n′)) ≥ arrivaln(J ∗Gu(m2))}.

Here, we show how such probabilistically-guided local inferences of remote

nodes’ knowledge can be exploited to eliminate redundant overhead in an oppor-

tunistic data dissemination protocol. We run our device-to-device message propa-

gation simulations like before, but require that before transmitting a message m the
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source node u compute its confidence c that the destination v has already received

m (using local knowledge only). If c exceeds a confidence threshold cthresh, then u

infers v has already received m and will not transmit m to v. Otherwise, u transmits

m to v like normal and m’s propagation continues at v. We measure the proportion

of redundant transmissions ( |redundant||total| ) produced by an epidemic protocol and by

knowledge inference filtering supported by each update strategy. Additionally, for

knowledge inference, we measure the achieved false positive rate (i.e., the proportion

of incorrectly eliminated messages, |incorrectly eliminated||total| ).

We investigate the reduction of routing redundancy under varying global

propagation probability (Pp) and knowledge inference confidence threshold (cthresh).

Figure 3.13(a) illustrates the impact of varying Pp between 0.25 and 1 while keeping

cthresh fixed at 0.5. Across the board, knowledge inference supported by each of

our update strategies eliminates on average 96% of redundant transmissions relative

to the epidemic protocol. However, as Pp increases, the false positive rate (the

proportion of non-redundant transmissions eliminated) also increases, which means

that our cthresh may be too low resulting in overly-aggressive inference. This could be

a problem for opportunistic network applications that require high delivery fidelity

(e.g., because messages need to be delivered to as many nodes as possible). However,

for applications that can stand to sacrifice some portion of message deliveries or that

operate in networks with limited bandwidth, a lower cthresh setting could be a huge

boon to performance.

Figure 3.13(b) investigates the effects of varying cthresh with Pp fixed at 0.5

(i.e., at each hop a message is only propagated to half of the proximate receivers).
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Though not shown, since Pp is fixed the un-assisted epidemic protocol’s redundancy

is the same (44%) for each cthresh setting. As suspected, increasing cthresh nearly
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(a) Percentage routing redundancy under varying propaga-
tion probability settings. The confidence threshold (cthresh)
is set at 0.5.
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(b) Percentage routing redundancy under varying confidence
threshold settings. The propagation probability (Pp) is set at
0.5. Epidemic redundancy is 44%.

Figure 3.13: Reduction of routing redundancies in op-
portunistic data dissemination using knowledge inference in
HT09 June 30. These same trends are present in the SG
deployment.

eliminates false positives

altogether, but at the ex-

pense of some additional

redundancy when cthresh >

0.5. Not much varia-

tion exists between knowl-

edge inference supported

by the three trajectory up-

date strategies. However,

the drastic difference in

false positive rates between

cthresh ≤ 0.5 and cthresh >

0.5 stands out. In fact,

though not shown, this

jump in false positives oc-

curs precisely when cthresh

exceeds Pp. This is an in-

credibly important feature

of our knowledge inference

mechanism – given that an application knows the global Pp it can pick an appropri-

ate cthresh depending on how many false positives the application can tolerate.

105



The next and final use case extends our knowledge inference routing assis-

tance and demonstrates how local contextual history can be used to detect data

that frequently propagate in a similar spatiotemporal fashion, which can function

as logical substitutes in a targeted data dissemination application.

3.2.2.2 Routing Substitute Inference

Under the assumption that data generated in similar spatiotemporal contexts

will propagate along similar trajectories, we can detect data that are commonly co-

located by measuring the degree to which their locally-available trajectories overlap.

We refer to such data as data substitutes for reasons that will become clear in the

following sentences. Similarly, many mobile social network routing mechanisms [80]

leverage the heuristic that socially-related people tend to be regularly co-located [27].

Either a byproduct of regular co-location or of user interest, particular data may

commonly occur at particular nodes. In a similar fashion to detecting frequently

co-located types of data, we can use locally-available contextual history to detect

data that commonly occur at particular mobile nodes (node substitutes).

In a distributed environment where global knowledge is not available, pre-

dictable regularities like these are extremely valuable. Here, we demonstrate how

such regularities may logically extend an opportunistic dissemination protocol by

functioning as substitutable routing targets. A targeted data diffusion or query

protocol may wish to deliver a message m to nodes possessing a particular type of

target data dtarget. For example, at the music festival a mobile beverage vendor may

wish to deliver a digital coupon to attendees who have purchased salty snacks. Con-
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versely, a thirsty attendee may want to query for digital data about nearby vendors

selling cold drinks. Before propagating m, we can compute data and nodes that are

frequently co-located with dtarget (i.e., its data and node substitutes, respectively).

During m’s diffusion, if m reaches a node where sufficient knowledge about dtarget

is lacking, we can instead use one or more of its substitutes to direct m’s continued

propagation.

Our final use case demonstrates the effectiveness of routing substitutes for

carrying out targeted data diffusion. We use four target data selection policies: most

and least recently learned (M/LR) and most and least frequently learned (M/LF).

The first two selection policies (recentness) target data that are different spatiotem-

poral distances from the diffusing node; the last two selection policies (frequency)

target data that differ in availability. We simulate targeted data diffusion using a

greedy protocol that uses only substitutes to direct propagation. Initially, a seed is

responsible for choosing the target data dtarget per one of the selection policies. The

goal is to deliver a message m to as many nodes possessing dtarget as possible while

minimizing the number of transmissions. Given dtarget, a source node u will compute

dtarget’s data Dsub and node Nsub substitutes and their co-location frequencies from

available local knowledge at diffusion time t. The node u will then propagate m

using only the substitutes with co-location frequencies exceeding a threshold fthresh

as routing targets (D′sub ⊆ Dsub and N ′sub ⊆ Nsub). When data substitutes are being

used, a source node u will only transmit m to a destination node v if u’s confidence

that v has received at least one dsub ∈ D′sub exceeds a confidence threshold cthresh

(confidence is computed using knowledge inference). Likewise, for node substitutes,
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u will only transmit m to v if u’s confidence that v has received any message from

at least one nsub ∈ N ′sub exceeds cthresh.
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(a) Delivery “recall” measures the proportion of deliveries
made to nodes possessing dtarget out of all nodes possessing
dtarget.
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(b) Delivery “precision” captures the proportion of deliveries
to nodes possessing dtarget out of all diffusion deliveries made.

Figure 3.14: Mean per-message average delivery “recall”
and “precision” for targeted data diffusion using strictly
data substitutes supported by the Journey+ update strat-
egy within the HT09 June 30 deployment.

We simulate our

greedy substitute-guided data

diffusion alongside an un-

guided epidemic protocol

with Pp and cthresh both

fixed at 0.5 and report re-

sults for data substitutes

supported by the Jour-

ney+ update strategy on a

single day of the HT09 de-

ployment 15. To quantify

routing performance we

compute two metrics: de-

livery recall measures the

proportion of nodes pos-

sessing dtarget that success-

fully received m; delivery precision captures the proportion of nodes possessing

dtarget that received m out of all the nodes that received m. We vary fthresh from

0.25 to 1, which is interpreted as a percentile threshold. For example, using data

15Performance results between data and node substitutes differed by no more than 5%. Trends
were similar between all three trajectory update strategies and were consistent between the HT09
and the SG deployments.
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substitutes and an fthresh = 0.5, only the top 50% most commonly co-located data

would be used as routing substitutes for dtarget. An fthresh = 1 is equivalent to our

previous knowledge inference use case (i.e., no substitutes). Figure 3.14 shows our

results. Again we report the mean per-message average to weight our computed

metrics by transmission network size.

Figure 3.14(a) illustrates the delivery recall achieved under varying settings

of fthresh. Here, the un-guided epidemic protocol acts as a baseline, which is less than

1 simply because not all target nodes (i.e., nodes possessing dtarget) are reachable.

Impressively, substitutes achieve nearly the same delivery recall as the epidemic

protocol, which means that using strictly substitutes our greedy protocol is able

to deliver a message to almost as many target nodes as are physically possible.

Delivery recall is unaffected by fthresh under all dtarget selection policies except for

the most frequent policy, which decreases as fthresh increases. This means that, for

these settings, regardless of the quality of substitutes used the same proportion of

the target nodes is reached.

We next examine the delivery precision achieved by substitute-guided rout-

ing (Figure 3.14(b)). Routing precision captures the overhead required to deliver a

message to a set of target nodes (i.e., it expresses the proportion of successful target

deliveries out of all deliveries). Under all values of fthresh, substitute-guided rout-

ing achieves better precision than un-guided epidemic routing, meaning substitute-

guided routing is more accurate per-transmission than epidemic routing. This is a

byproduct of extending our knowledge inference mechanism, which we demonstrated

as being very effective in these deployments at “guessing” if an encountered node
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has received a piece of data or not. We observe that delivery precision increases with

fthresh, which is intuitive. When inferential decisions are based on higher quality

substitutes, more accurate inferences can be made.

Applications in emerging pervasive computing spaces, for example the crowded

music festival scenario used throughout this section, require practical support for

sharing and accessing hyper-localized data. These two fundamental tasks will play

huge roles in how users interact with their digital landscapes as heavily networked

environments become ubiquitous. This section presented experimental results that

showcased the practical utility of spatiotemporal data provenance for improving the

performance of distributed routing protocols that support data dissemination and

querying in pervasive computing spaces. In the next section, we focus entirely on the

task of searching for data in dynamic and opportunistically-connected environments.

We introduce a formal conceptual model that directly employs the epidemic-style

protocols studied in this section and use that model to explore the effects of spatial

and temporal correlations within searched data.

3.3 Conceptual Model of Search in Pervasive Computing Environ-
ments

The same fundamental need to share and discover information that fuels the

widespread use of existing Internet search engines is also an essential requirement for

in emerging pervasive computing environments. Visions of the Internet of Things,

for example, include massive numbers of distributed and digitally accessible objects

that represent the state of the world and its inhabitants. In these settings, wireless
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connections support opportunistic interactions between humans, the devices they

wear and carry, and intelligent sensors embedded in everyday objects and natural

landscapes. This tight integration of sensing, computation, and communication

with the physical and social environment results in large volumes of spatiotemporal

data generated at rapid rates. These pervasive computing spaces are an essential

component of the Internet of Things; as these spaces increasingly become a reality,

it becomes essential to provide approaches to help users find the information they

need—in a way that reflects what is around them, right here and now—as they move

through a densely populated and rapidly changing information space.

Consider the following situation, which contrasts the information needs in

using traditional Internet-based information retrieval versus searching for informa-

tion about the here and now in rapidly changing pervasive computing spaces. A

traditional Internet search engine may be used to follow news updates and social

feeds about a popular parade. While at the parade, a user might wish to know

which areas are the least crowded and provide the best views for children right now,

or what are the best foot traffic patterns for navigating to see a particular parade

attraction. A police officer may want to monitor patterns of movement or nearby

unruly crowds. In this situation, data is generated and shared by spectators, pa-

rade participants (e.g., marching bands), objects in the environment (e.g., parade

floats or city infrastructure) or police or other officials. Other examples similarly

highlight the contrast in Internet search needs versus those found in spaces that

contain spatiotemporally relevant data. Using the Internet, one may find available

train routes and timetables, whereas a traveler hurrying to board a crowded train
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may need to search for the closest available second class seat. The traveler’s search

may be supported by devices in the station, embedded in the train, or carried by

other passengers. When planning a trip to an amusement park, one may find direc-

tions and hours of operations using the Internet; visitors at the park may wish to

know which rides have the shortest wait right now, where their friends are, or which

nearby vendor is currently making a fresh batch of funnel cakes.

A key challenge to realizing this vision of search is that the information

available in these spaces is subject to high levels of dynamics; time passes, devices

and users are constantly in motion, social patterns evolve, data is moved, and in-

formation expires. In addition, the ratio of data used to data generated is quite

low. Existing systems that have enabled such access to localized data provide only

capabilities for searching relatively static data instead of the inherently ephemeral

data that will characterize the Internet of Things; much of this data cannot be eas-

ily indexed outside of the here and now. Supporting the execution of queries over

data that represents the here and now requires a new perspective on the design of

the search engine architecture that relies on search execution capabilities that take

advantage of both opportunistic interactions between peer computing devices and

the emerging availability of localized infrastructure in the form of cloudlets [152].

Enabling expressive search over dynamic data in the here and now also requires

understanding and efficiently collecting and representing the context of that data in

a pervasive computing space. That context has a significant impact on the relevance

of a particular data item to a particular search, which must be able to be captured in

the search engine. This relevance is further influenced by intrinsic characteristics of
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data that arises when one speaks of an Internet of Things; elements of this data are

inherently correlated with each other across space and time, and those correlations

(and their dynamics) can impact the ability to resolve queries for that data.

As a starting point to address these needs, we have previously introduced

the Gander conceptual model [101] for expressive search in the here and now. This

prior work formalized the Gander model and the search algorithms that underpin the

Gander search engine. In this section, we first review the Gander conceptual model,

which is essential to a rigorous understanding of the quality with which protocols

resolve users’ searches, and use it to evaluate the impacts of spatial and temporal

correlations within shared data on Gander’s distributed search mechanisms.

3.3.1 A Model of Queries in Pervasive Computing Spaces

We assume that hosts (e.g., mobile devices carried by users or smart objects

embedded in the environment) issue queries that are evaluated using information

provided by other hosts. A datum provides information about the here and now

(e.g., a measure of some condition of the environment) and is associated with meta-

data that describes its context (e.g., the device(s) that generated it, the location,

a timestamp, or even the data’s volatility or freshness). We have formalized the

Gander query model previously [101]; here we provide a comprehensive summary of

that model. Our model relies on partial functions, which are not required to be de-

fined for every element of their domains. Partial functions naturally lend themselves

to incremental query processing, which can consider additional datums as they are

discovered.
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Gander Queries. A Gander query is a partial function Gh : D → Φ; D

contains all datums in the entire pervasive computing space, Φ is the domain of

relevance, and h is the host issuing the query. A datum is a pair, (ν, d); ν is the

data value, and d is the value’s metadata. The metadata captures the context of

the datum (e.g., its relationship to the space and potentially to other datums that

inhabit that space). Though not an explicit requirement of our model, d could be

a spatiotemporal trajectory capturing the datum’s spatiotemporal provenance per

one of the metadata models introduced in Chapter 2.

Abstractly (and from a global perspective), the Gander query function ap-

plies a sequence of filters to all of the available datums and returns a list of datums,

sorted by increasing relevance. Every returned datum must be reachable (from a

networking perspective), either because the peer device owning the datum is con-

nected via a mobile ad hoc network or because the datum is stored in a locally

available cloudlet. Every valid result must “match” the search, which we refer to

as query resolution. A query can also include one or more constraints. While query

resolution focuses on the content of the datum (i.e., ν), evaluating constraints may

rely on context captured in the metadata, d. For example, query resolution may

identify datums indicating nearby park benches; constraints ensure that benches dis-

covered are in the shade. A relevance metric compares valid results to each other,

using information from both ν and d. A search for a shady bench could favor closer

benches or benches close to funnel cake vendors. A query can use multiple relevance

metrics evaluated independently or using weighted statistics.

Practically, a gander query is implemented using a distributed, multihop
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Figure 3.15: Query processing functions

query processing protocol, QPh, that distributes a query across the network. Infor-

mally, QPh((ν, d)) = (ν, d) if (ν, d) ∈ D is a “valid” result; otherwise QPh((ν,d)) is

undefined. More concretely, QPh is a filter on D with three pieces:

Reachability. The partial functionRh : D → D expresses whether (ν, d) is reachable

from h; if not, Rh((ν, d)) is not defined. We focus on query reachability, the ability

of host h to send a query to some other host h′ and receive a response [136]; R

depends on actual communication capabilities and the protocols used.

Query Resolution. The partial function S : D → D is defined for each (ν, d) ∈ D

that matches the search.

Query Constraint. The partial function C : D → D is defined for each (ν, d) ∈

D that satisfies the query constraints; C’s resolution may rely on the datum’s

metadata (d).

These functions filter D to the subset of reachable datums that satisfy the

search string and constraints; Figure 3.15 shows the composition, QPh = C ◦S ◦Rh,

assuming a snapshot of all available datums.
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Relevance. A relevance metric,Mi : D → φi gives the distance of a datum

(ν, d) from an ideal. A Gander query may entail more than one relevance metric; a

Gander query, Gh = K{M1,M2,...,Mn}◦C ◦S ◦Rh, is therefore a partial function maps

valid results on to the multidimensional space Φ = φ1×φ2×· · ·×φn. Gh((ν, d)) is not

defined if (ν, d) is not reachable or does not satisfy the search string or constraints;

otherwise Gh((ν, d)) is an n-tuple, where field i has the value Mi((ν, d)). We can

plot each valid result in a multidimensional space, where each axis represents one

of the n metrics16. We can apply different distance measures from a point in this

space to the origin. For example, datums can be ranked using a primary metric,

and later relevance metrics can break ties. We can also map each n-tuple to a single

value (e.g., m : Φ→ R) using different weights for different metrics.

3.3.2 A Model of Data in Pervasive Computing Spaces

From a query’s perspective, D is a global virtual data structure (GVDS) [130];

resolving a concrete Gander query requires accessing components of this global struc-

ture that are distributed in a dynamic and unpredictable network. Practically, D

is not constructed centrally; instead datums in D are generated by and stored at

devices distributed in the pervasive computing space. In a most basic sense, these

storage location are simply peer devices; Gander can also support cloudlet-style stor-

age locations [99], which allow lightweight, highly localized pieces of infrastructure

to support pervasive computing applications in the here and now.

16The origin could itself be relative to the results; this causes a translation of the axes of the
multidimensional space; the same distance functions apply.
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Gander assumes that each host (both peers and local cloudlet storage providers)

implements a local tuple space containing semi-structured data [8]. A datum’s ν is a

tuple that consists of an unordered set of name/value pairs. Metadata, d, is treated

similarly, but the tuple is constructed on-the-fly by assessing the instantaneous con-

text. Queries, constraints, and relevance are represented as patterns that restrict a

matching tuple’s fields and values or compute across multiple fields or tuples. Data

can be generated, destroyed, changed, and moved arbitrarily; Gander’s query model

is independent of these processes, however, we assume data is generated and stored

close in space and time to the phenomena it describes.

3.3.3 Processing Gander Queries

Acquiring a global view is infeasible in pervasive computing spaces; protocols

must instead operate only over locally available data. We relate query processing

to formal definitions of sampling the available data, which enables reasoning about

results’ quality. We resolve constraints and relevance metrics by inspecting a result’s

context, accessible through the metadata. Gander’s partial functions lend themselves

to incremental protocols, which gradually fill in the various filters defining Gh. These

protocols sample the information space to incrementally build a query result Q that

represents the desired result Gh. A Gander query processing protocol distributes a

query to other hosts in the space, including both peer devices and cloudlet-based

storage locations. Gander can use the query’s contents to direct how and to which

other hosts a query is distributed; ultimately the goal is to efficiently collect and

present only data that is most relevant.
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Figure 3.16: Query processing styles and sampling. Dashed lines are sent messages.
Darkened hosts respond to a given query. (a) Flooding. Every host in a given range (3
hops) retransmits the query; the target area is the shaded region. (b) Random. A receiving
host responds to the query with a given probability; a high quality search evenly samples
the shaded space. (c) Probabilistic. Every host that receives the query retransmits it with
a given probability; the likelihood of reception drops with distance from the query issuer.
(d) Greedy Gossip. Every host that receives the query retransmits it with a probability
dependent on the quality of its own local resolution of the query; a high quality local
resolution of the query results in a higher probability of its retransmission.

Gander exploits the relationship between existing query processing protocols

and their spatiotemporal sampling for search processing. Gander query protocols

must provide temporally-sensitive sampling, by processing queries on-demand, and

spatially-sensitive sampling, determined by the protocol that selects the space to

sample. A query is distributed to any host (peer or cloudlet device) located in or

responsible for the selected space at the time the query is issued. We quantify spatial

quality through coverage, which measures how much of the target space the query

sampled, and distribution, which measures how evenly the query sampled the space.

Gander provides four styles of sampling, which trade quality for cost, measured in

terms of latency of search processing and network overhead. Figure 3.16 shows the

styles and their relationships to spatial sampling.

Flooding. These protocols attempt to reach every host and examine every datum
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belonging to the space, i.e., they attempt to resolve the function Gh exactly.

However, because of the potential scale of pervasive computing spaces, Gander

employs constrained flooding, in which propagation is limited by network hops

(Figure 3.16(a)). Flooding attempts high coverage and reflects the actual evenness

(or unevenness) of the hosts’ distribution.

Random. Random sampling protocols propagate queries similarly to flooding but

reduce responses. In random sampling (Figure 3.16(b)), the likelihood of respond-

ing is parameterizable; the goal is for Q (the query result) to approximate Gh with

an even distribution across the pervasive computing space but a reduced coverage

(i.e., Q is smaller is total size than Gh but covers the same overall space).

Probabilistic. In probabilistic sampling (Figure 3.16(c)), each host that receives

a query probabilistically forwards it to peers; this reduces the overhead, but hosts

closer to the issuer are more likely to receive queries [135]. These protocols trade

cost for coverage at the edges of the target area, while maintaining even distribu-

tion near the query issuer. This style is similar to approaches used for sampling

in geographic information systems [30].

Greedy Gossip. In greedy gossip (Figure 3.16(d)), hosts receiving a query first

evaluate it then retransmit it with a probability dependent on the local result. The

intuition is that real-world events are tied to space and time [177], and therefore

effort should be spent “accelerating” a query towards spaces with more relevant

data and “decelerating” it when little relevant data is present. As such, this

strategy seeks to provide good coverage and distribution only where necessary. In
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relation to the formal Gander query Gh, greedy gossip attempts to intentionally

avoid collecting the pieces of Gh that would be rated lower with respect to the

query’s relevance metric.

Prior to this work, we have studied the ability of Gander’s spatiotemporal

sampling methods (i.e., the protocols depicted in Figure 3.16) to support search

of pervasive computing spaces [101]. This evaluation was done through a realis-

tic simulation involving 20,000 mobile visitors emulated in a day-long visit to an

amusement park, in which the visitors issued queries about the wait times for rides

using constraints based on distance from the querier and relative to other venues

(e.g., other attractions or food vendors). The key highlights of this evaluation were

that: (i) Gander queries, based on existing query protocol methods, were able to

pretty reliably reflect the ground truth of the sought information while substantially

reducing the communication overhead associated with collecting the query results;

(ii) that, in collecting and presenting query results, the specificity of the relevance

metric selected has a significant impact on the quality of the returned results; and

that (iii) the ability of query protocols to reflect on their own behavior and to op-

erate incrementally can improve Gander’s query performance in terms of the speed

with which Gander can return results and the communication overhead associated

with collecting those results. This last point motivates a key piece of future work:

the development of tailored query processing protocols that can use Gander query

constraint and relevance information, as well as information about the data that may

be available in the pervasive computing spaces, to direct query processing protocol

behavior. In the remainder of this section, we continue the thread of evaluating
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through simulation, using all four query processing protocols to assess how Gander

performs when the correlations of the pervasive computing environment’s data in

space and time are varied.

3.3.4 Effects of Spatial & Temporal Correlations on Pervasive Search

The relevance of real-world information is inherently parameterized by both

space and time. If the temperature is 7◦C in Austin, it is likely that it will be very

nearly 7◦C in Dallas. Further, if the temperature is 7◦C now, it will very likely be

7◦C in five minutes. In other words, temperature is a highly spatially and temporally

correlated phenomenon. Sound, on the other hand, is not; it is rapidly attenuated

over short distances and changes on a much shorter time scale. In this thread of

our evaluation, we aimed to investigate how the Gander query processing protocols

performed when the degree of these data correlations was varied; that is, we ask

whether different degrees of correlations impact the quality of the results achieved

by a Gander search.

To measure the quality, we use discounted cumulative gain (DCG) [74], which

compares how useful a result is to the user and its ranked position in the result set.

We also quantify the completeness of a Gander result with respect to the ground

truth using the Jaccard coefficient. In both cases, we compare the result of executing

a Gander query with the ground truth. We compute the DCG for a list of search

results as:

DCG =

p∑
i=1

reldi
log2(i+ 1)

,

where p is the size of the set of results returned by the Gander query, and reldi is
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an integer that reflects a given result’s position in the ground truth’s rankings. A

query result d returned with ranking i is graded on a scale from 1 (least relevant)

to n, where n is the number of items in the set of results in the ground truth. The

value of reldi is determined by the ranked position j of the item in the set of ground

truth results: reldi = n/j.

The Jaccard coefficient, on the other hand, allows us to measure the com-

pleteness of the Gander query in comparison to the ground truth. Specifically, the

Jaccard coefficient measures the similarity between the Gander query result and the

ground truth. We compute completeness as:

completeness =
|Gh ∩Q|
|Gh ∪Q|

,

where Gh is the ground truth and Q is the Gander query result.

In this evaluation, we assess Gander’s performance at a large scale by simu-

lating 400 mobile users in a 650m2 space (roughly the size of the UT Austin campus)

and varying the degrees to which available data is correlated in space and time. We

use the MobiSim mobility framework [110] to drive simulated users’ movement per

Levy-walk [140] mobility and populate our simulated environment with synthetically

generated data [75], which is “sensed” and locally stored for one minute by simulated

users as they move about the environment. For the duration of a simulation (15

minutes) exactly one half (i.e., 200) of the simulated users’ devices issue a query once

every 30 seconds for “Data within 5 units of my (the query issuer’s) most recently

sensed synthetic data value (v).” A query is processed using one of Gander’s four

distributed processing protocols (flooding, random, probabilistic, gossip) configured
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using the parameters as above. However, for flooding, random, and probabilistic,

we reduce the hop constraint to 5 hops to adjust for the smaller space and fewer

users. The greedy gossip’s forward probability is set to be 1 − avg % error . Query

results are ranked in ascending order of their data values’ absolute difference from

v, i.e., more similar results are deemed more relevant.

Data Correlation in Space. To draw out the effects of spatial correlations

on Gander’s performance, we vary a parameter (β) in the synthetic data generation

tool we use [75] to produce four levels of spatially correlated data—low (β = 0.33),

medium (β = 0.18), high (β = 0.08), and very high (β = 0.01)17—and run one sim-

ulation per setting (which corresponds to approximately 6000 unique queries). The

variations in search results’ DCG and completeness are shown in Figure 3.17(a,b).
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Figure 3.17: The effects of spatial correlations on query protocol performance.

In general, each processing style achieves better DCG as data becomes more

spatially correlated (Figure 3.17(a)). This is intuitive, since the query is interested

in data similar to a recently sensed piece of data. The flooding and probabilistic

protocols, however, experience a drop in DCG when synthetic data is very highly cor-

17The settings for different degrees of data correlation were chosen based on guidance from the
tool paper.
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related. This is explained in conjunction with the trends depicted in Figure 3.17(b),

which shows that when the data’s spatial correlation becomes very high, the com-

pleteness of Gander queries is unchanged for flooding, but drops for probabilistic.

The constant nature of the flooded queries’ completeness suggests that flooding

gathered an equal amount of results, but they were not necessarily the most rele-

vant results. On the other hand, the drop in the completeness of the probabilistic

query results reveals that this style actually gathers fewer relevant results when data

is highly spatially correlated, indicating that the most relevant data existed at the

outskirts of query issuers’ target spaces where this protocol is less likely to reach.

Here, the gossip protocol leverages spatial relationships between datums—as the

degree of spatial correlation increases, gossip’s greedy heuristic not only finds better

data (Figure 3.17(a)), but also more of it (Figure 3.17(b)).

This knowledge, coupled with application-level knowledge about the data

available in the particular type of deployment, can guide the proper selection and

tuning of Gander query processing protocols on a per-deployment or even per-query

basis. That is, if the Gander system has knowledge about the expected spatial

correlation of the data, it can select, even at runtime, the best suited protocol

settings to use to process a given query.

Data Correlation in Time. To investigate the impact of temporal corre-

lations on Gander’s processing styles, we modulated synthetic data values using a

Perlin noise function [35] parameterized by simulation time. Perlin noise is widely

used in computer graphics to generate “natural” (i.e., random) looking surfaces

and textures,. Thus, simulations can be repeated with the same time-parameterized
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“random” noise, allowing for comparability. We simulate each of the sampling styles

at four levels of data noise: low (approximately a 10% per-minute rate of change),

medium (15%), high (20%), and very high (25%). Figure 3.18(a,b) shows the results

of these experiments.
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Figure 3.18: The effects of temporal correlations on query protocol performance.

Both DCG and completeness drop as data becomes more temporally volatile.

Recall that the simulated query targets data values within a certain range of the

data value sensed by the query issuer at a particular point and time. As data

becomes more short-lived, it becomes increasingly difficult to gather and deliver

relevant information before it evolves. Impressively, the random protocol yields

the most correct results when data evolves very rapidly (Figure 3.18(b)), which

are approximately on par with the results for the probabilistic query processing

protocol. Recall that the random protocol also achieves a high level of coverage,

which likely bolsters its correctness; we will see evidence of this in the next chapter

as well (Section 4.4.2).
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3.4 Related Work

Sharing, computing on, and discovering information about the surrounding

environment are the fundamental activities of almost every pervasive computing

application. Therefore, a wide spectrum of mechanisms, systems, and middleware

have been proposed to support and facilitate the development and execution of dis-

tributed applications that target dynamic environments. The constructs described

in this chapter build on previously proposed approaches (e.g., rule-based program-

ming [93]), but are differentiated by their general-purpose-ness and explicit sensi-

tivity to spatial and temporal dynamics. This section highlights key areas of related

work in wireless sensor networks and context-aware applications.

Developer Support for Distributed Pervasive Applications. The

rule-based programming paradigm is by no means a novel concept. Several key

rule-based systems have been proposed for pervasive computing applications that

enable data-dependent application behavior to be encoded as reactive patterns over

data. Very similar to our rule-based programming approach, the Tuples On The Air

(TOTA) middleware infrastructure [93] aims to reduce the complexity of distributed

applications through patterns defined over spatially-distributed tuples. A developer

may define application-specific patterns parameterized by externally-sensed prop-

erties and data content that dictate how tuples move (i.e., are routed) within a

dynamic network. Similarly, the evolving tuples model [162] embeds this data-

dependent behavior directly within communicated data by attaching rules to tuples

that express how those tuples propagate and evolve over time. These and similar

tuple space infrastructures are extremely flexible, but implicitly require use of a
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tuple space data model [112]. Our rule-based programming constructs are truly

general-purpose and make no such assumptions about an application’s underlying

data model. We instead provide decoupled interfaces that explicitly separate what

data is about from how it is used.

The publish/subscribe paradigm has received significant attention in the

pervasive computing domain due to its high degrees of decoupling and flexibility.

Publish/subscribe can be viewed as a rule-based mechanism with an extremely lim-

ited selection of rules, in fact just two: publish and subscribe. Context-aware ex-

tensions have been proposed that enable these mechanisms to be parameterized by

complex formulations of context. For example, the SPCF protocol [28] supports

subscriptions to remotely sensed environmental conditions (e.g., a fire extinguisher

unit may subscribe to carbon monoxide levels sensed by a smoke detector unit).

The model proposed in [43] enables both publications and subscriptions to target

spatiotemporally defined regions (e.g., a vehicle may subscribe to traffic events pub-

lished by vehicles that are 10 minutes down its path of travel). Space and time are

likewise first class citizens in our programming constructs and are equally capable of

supporting context-aware parameterizations. However, we do not restrict applica-

tions to any mechanisms or require developers extend only a particular set of rules.

Although, publish/subscribe mechanisms could easily be implemented within our

rule middleware.

General-purpose approaches that facilitate the sharing and discovery of dig-

ital data and sensed environmental conditions are useful for creating applications

that must satisfy a wide variety of requirements. However, searching proximately-
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available resources for dynamic information calls for tailored approaches specifically

designed with query-driven data access in mind. We investigate search-driven work

next.

Resource Discovery and In-Network Search. Search has become one of

the most popular services on the Web and, in many cases, defines how users interact

with the World Wide Web on a daily basis. Just as users today rely on Web search to

find documents online, we argue that users in the future will demand this same sort

of on-demand access to real world information generated by their surroundings as

objects in those surroundings become increasingly digitally accessible. The Gander

search engine aims to provide the necessary support for IoT applications requiring

relevant information in rapidly changing, data-rich, networked spaces. Discovery,

acquisition, and administration of dynamic information produced in these environ-

ments is by no means a novel goal. Indeed, managing and coordinating access to

transiently available data and resources will inherently characterize most, if not all,

IoT applications. Gander, however, targets a specific type of scenario, where many

common assumptions about the network, data, and host behavior simply do not

hold. In this section, we overview prominent systems that, either explicitly or im-

plicitly, support the search for real-world information (i.e., information generated by

mobile devices, sensors, human users, etc.). Some have been designed with search as

a first class citizen; however, others provide mechanisms that could facilitate search.

A large body of work of is concerned with efficient data acquisition in wire-

less sensor networks (WSNs), where severely resource-constrained sensors deployed

for environmental monitoring, surveillance, phenomena tracking, etc. generate huge
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volumes of data. Data stream systems treat the sensory data collected by a WSN

as a set of continuous streams and provide distributed query processing mecha-

nisms to resolve queries in an energy-aware fashion. TinyDB [91] supplies a tool

bag of data stream-based query processing techniques that provide programmers

with on-demand access to the WSN through a SQL-like interface. Each TinyDB

query processing technique is characterized by power- and bandwidth-aware heuris-

tics that dictate where, when, and how data is physically acquired from sensors. The

Regiment macroprogramming system [115] enables developers to program a WSN

at the global level by specifying region streams, or representations of spatiotempo-

rally varying collections of node state, at compile time to access collective groups of

data from groups of sensors sharing geographic, topological, or logical relationships.

Similarly, logical neighborhoods [108] provide access to dynamically formed groups

of sensor nodes satisfying a set of logical constraints (e.g., communication costs and

node characteristics) as a single virtual node. These and similar stream-based sys-

tems provide the style of resource-aware data access we desire, but they presuppose

a relatively static network of nodes formed by a known set of sensors affixed in a

physical space and “rooted” at a base station (the network sink). In our target

environments, networks are formed opportunistically and comprise both stationary

(e.g., objects embedded in the environment) and mobile (e.g., smartphones carried

by human users) devices. In other words, neither the participating devices nor their

network topology may be known ahead of time.

In both the Internet of Things (IoT) [4] and Web of Things (WoT) [58],

ordinary objects are imbued with sensing, networking, and otherwise “smart” ca-

129



pabilities enabling their access via a network connection. Given such a world of

digitally accessible “things,” many recent systems have attempted to address en-

tity discovery18. Unlike data stream query processing where queries are resolved

over a given set of devices, entity discovery is concerned with searching for real-

world entities (i.e., people, places, things) and their representative sensors, poten-

tially in a desired state. Generally speaking, these systems support keyword search

over static or pseudo-static sensor metadata (e.g., Snoogle/Microsearch [163, 167],

MAX [77], SenseWeb [79]) or additionally over dynamic sensor states and loca-

tion (e.g., Dyser [119], IoT-SVK [34], CASSARAM [125]). Entity discovery shares

the same fundamental motivation as Gander, but each of these approaches pre-

sume searchable sensor resources are accessible via a reliable Internet connection

and therefore employ centralized resources to intelligently index sensors’ metadata,

location, and changing state (e.g., using prediction models [119]). No such assump-

tions can be made about device-to-device connectivity in our target environments—

Internet connectivity may be impractical, infeasible, or simply undesirable. There-

fore, Gander must operate in a purely distributed fashion without assuming complete

reliance on centralized resources.

Decentralization offers an inherent scalability and robustness to failures,

making it a natural design foundation for large-scale applications that target dy-

namic and unreliable networks. Data space and coordination models targeting dis-

tributed systems (e.g., tuple spaces [112], distributed databases [15], and distributed

hash tables [160]) attempt to abstract away the distributed and disconnected na-

18We refer the reader to [144] for an excellent survey of entity discovery systems.
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ture of resources (e.g., mobile devices) by providing access to them as if they were a

holistic global virtual data structure [130]. Similarly, distributed routing and loca-

tion systems (e.g., Tapestry [176], Pastry [145], and CAN [138]) emerged to tackle

the challenge of routing requests to pertinent content within large scale networks

where failures and periods of heavy loads are the norm. Members of this family

of systems typically employ statistical- or hash-based data replication to mitigate

failures and facilitate low latency interactions. These abstractions enable conve-

nient and simplified interfaces for an otherwise complex system but often require

significant overhead to accurately maintain distributed data structures, routing ta-

bles, roles, and schemas. The high degrees of network churn induced by real-world

dynamics and the sheer rate and volume of generated data in our target environ-

ments renders such approaches ineffective. Nevertheless, a key commonality among

these approaches is the implicit or explicit parameterization of interaction based on

locality (e.g., logical or physical).

In many pervasive computing systems, interaction is parameterized by some

notion of context in an effort to facilitate low latency data access, coordination, com-

munication, etc. Such context-aware systems may impose application-level overlays

to, for example, keep data about events close to where it will likely be spatiotempo-

rally relevant [177]. As described earlier, some systems enable developers to specify

application-specific patterns that dictate how and when data is moved and shared

(e.g., TOTA [93]), relieving applications from decisions regarding the physical trans-

port of data. Similarly, existing publish/subscribe frameworks parameterize event

distribution by social metrics [27], physical proximity [41], contextual relations [13],
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temporal properties [158], degree of interest matching [117], and even complex for-

mulations of context [28, 43]. The ability to represent, infer, then leverage some

notion of context has proved to be extremely beneficial in real-world applications

and remains an active area of research. While not always the case, a critical as-

sumption made by existing context-aware systems is that generated events and data

will, in general, be consumed by “interested” parties. In our targeted environments,

no such assumption can be made; there is no guarantee that data generated by a

human user or some smart object or embedded device will be “of interest” to an

application or another user. Indeed, the amount of data potentially produced by

real-world events vastly outweighs the amount of data consumed.

In summary, our target environments represent some of the most challeng-

ing conditions found in computing today—large scale heterogeneous networks, high

degrees of mobility and network churn, large volumes of information generated at

rapid rates, and a small ratio of data consumed to data generated. We position

Gander as a first cut search engine specifically designed to operate within in this

emerging cyber-physical space.

3.5 Research Contributions

This chapter makes the following research contributions:

Research Task 4: We create developer tools that enable the formulation of reac-

tive rules governing data creation, sharing, and deletion (Section 3.1). Using

these software components we benchmark the overhead of explicit spatiotem-

poral data provenance with varying trajectory resolution in a simulated per-
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vasive computing environment (Section 3.1.4). Different pervasive computing

applications will likely require different granularities of spatiotemporal data

history. To gain a deeper quantitative understanding of how trajectory resolu-

tion impacts system performance we evaluate the system-level cost of explicit

provenance annotations in terms of bandwidth and storage using a geospatial

coordinate system.

Research Task 5: Leveraging the formal operators introduced in Research Contri-

bution 2, we demonstrate the practical utility of implicit spatiotemporal data

provenance. Using real-world data sets of human proximity, we benchmark the

performance of causal data annotations as a means of locally estimating global

network characteristics and data spreading dynamics (Section 3.2.1). Next, we

showcase the inferential power of causal provenance for making bandwidth-

saving routing decisions (Section 3.2.2): first, as a tool for detecting and elim-

inating redundant device-to-device transmissions and second, for identifying

commonly co-located data-data and data-device pairs, which may be used as

substitute routing targets within a targeted data dissemination protocol.

Research Task 6: We describe the Gander conceptual model of search for perva-

sive computing environments, which supports queries over data and its spa-

tiotemporal metadata. The relevance of real-world information is inherently

parameterized by both space and time. Therefore, we assess the impact of

data correlations in space and time on Gander’s performance in simulation

(Section 3.3). This task sheds light on how the Gander query processing pro-

tocols perform when the degree of these data correlations are varied; that is,
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we ask whether different degrees of correlations impact the quality of the re-

sults achieved by a Gander search. These results further validate the utility

of spatiotemporal provenance and aid in the design and implementation of

developer tool support for spatiotemporal trajectories and query processing

protocols.

3.6 Impact

The spatiotemporal provenance middleware layer presented in Section 3.1

was successfully extended in [78] to assist in the implementation of a router that

provides geo-source routing of DTN bundles. The our knowledge, the experiments

in this chapter represent the first evaluation of historical spatiotemporal metadata

as a general-purpose routing assistance tool. The Gander conceptual model is the

first to formally integrate the notion of user-defied relevance directly with query

processing functions supported by ad hoc routing protocols. Gander’s search mech-

anisms are inherently sensitive to the spatial and temporal dynamics inherent in

pervasive computing spaces. Our investigations of these spatiotemporal sensitivi-

ties in this chapter are the first to benchmark the performance of ad hoc routing

protocols with respect to user-oriented relevance metics traditionally employed in

information retrieval.

3.7 Chapter Summary

In this chapter, we presented the design and implementation of our explicit

model of spatiotemporal data provenance within an extensible middleware. The

134



middleware provides programming interfaces that enable a developer to encapsulate

data-dependent logic within reactive “rules,” which may be parameterized based on

data or spatiotemporal metadata conditions. We showcased the middleware and its

programming constructs through a use case that benchmarked the tradeoffs between

storage space and the “decay” rate of geospatial data provenance. In this chapter

we also demonstrated the value of implicit model of spatiotemporal provenance as a

practical tool for estimating global network and data spreading characteristics using

only locally-available information. Next, we showed the inferential power inherent in

spatiotemporal provenance for making distributed routing decisions at run-time that

significantly improve the performance of opportunistic data dissemination protocols.

Our uses cases demonstrated direct applications of spatiotemporal annotations for

reducing redundant transmissions and directing targeted data diffusion, for example,

a distributed query protocol. Finally, we overviewed the Gander conceptual model of

search in pervasive computing spaces, which we previously introduced in [101]. Our

general approach is to treat search as a sampling task using spatially and temporally

sensitive distributed query processing protocols. We used the model to explore

the effects of spatial and temporal correlations in sensed data on Gander’s search

protocols. In the next chapter, we discuss the Gander application framework, which

unifies the formal foundations provided in Chapter 2 and the sharing and search

constructs described in this chapter within an extensible mobile software framework.

We use this framework to create a distributed search engine that supports expressive

user-input searches over data and spatiotemporal metadata generated by real-world

entities.
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Chapter 4

Data Sharing and Query Processing Framework

In addition to traditional approaches to benchmarking performance of al-

gorithms through simulation, a key challenge is to explore the impact of these ap-

proaches under realistic conditions that reflect the complexity of the rapidly chang-

ing physical environment at a large scale. Therefore, a major research component of

this dissertation is a comprehensive implementation and evaluation of the Gander

application substrate. Central to this effort is the creation of the myGander mobile

system, which allows users to create and control data and to pose queries and view

their results.

In this chapter, we discuss the final research aim of this dissertation, which

is shown as the checkered box at the bottom of Figure 1.1. We introduce the Gander

application framework, which reifies the conceptual model overviewed in Chapter 3

and allows hyper-localized data sharing and search resolution across both mobile ad

hoc network interactions and through localized cloudlets. In other words, Chapters 2

and 3 provide the formal foundations necessary to realize the Gander search engine;

in this chapter, we describe the systems directions and support necessary to evaluate

and deploy Gander within real world pervasive computing applications. We use the

Portions of this chapter appear in [99] and [100] for which coauthors Christine Julien and Jamie
Payton provided advising and editing.
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Gander framework to evaluate our distributed search mechanisms in real world

settings though the design and deployment of the myGander mobile system on The

University of Texas campus. The myGander system leverages localized cloudlets to

enable proximal mobile devices to form peer-to-peer connections.

4.1 A Rule-Based Data Sharing Middleware

Applications targeting emerging mobile environments require support for

hyper-localized data access through device-to-device interactions. For example, Ap-

ple’s iBeacon technology facilitates push notifications triggered by entities (e.g., a

store at a shopping center, a restaurant, a piece of art at a museum, etc.) on a

proximate users’ mobile device. Google’s Physical Web project1 aims to provide

“walk up” mobile access to smart objects. For example, a user may approach a

vending machine and purchase a snack using his smartphone through a website sev-

ered by the vending machine via a direct Bluetooth connection. Extending beyond

just single hop device-to-device connectivity, OpenGarden’s FireChat2 application

constructs a multi-hop mesh infrastructure to facilitate chat rooms between phys-

ically proximate mobile users without the need for an Internet connection. More

generally, these technologies and applications point towards the grand vision of the

Internet of Things [4] and Web of Things [58] wherein commonplace entities, from

kitchen appliances to vending machines to bus stops to billboards, are imbued with

digital capabilities that are seamlessly accessible through a user’s mobile device.

1http://google.github.io/physical-web/
2http://opengarden.com/firechat
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The role of device-to-device interactions (i.e., via short-range wireless protocols)

becomes crucial in supporting mobile users’ hyper-localized information needs in

densely populated environments of networked devices, for example, at a crowded

outdoor festival. Support for device-to-device data sharing becomes particularly

critical in scenarios where an Internet connection is unavailable, infrastructure net-

work resources are saturated, global-accessibility is undesired, or use of a short-range

network interface (e.g., Bluetooth Low Energy) requires less overall energy than of

a long-range network interface (e.g., cellular).

Motivated by these fundamental needs, we extend the data provenance mid-

dleware described in Section 3.1 to implement a real-world data sharing middleware.

Our data sharing middleware leverages ad hoc wireless protocols to “passively” dif-

fuse application data between proximate devices. We target mobile applications;

therefore, a key requirement of our middleware is that it support native mobile

applications with minimal setup and configuration. This section presents the archi-

tecture and implementation of our mobile middleware and concludes with several

real-world application examples.

4.1.1 Middleware Architecture & Implementation

In emerging mobile environments data is “everywhere;” users’ physical en-

vironments are a rich and dynamic landscape of digital information. Here, we aim

to provide practical support that enables real-world mobile applications to tap into

users’ digital landscape. We introduce a middleware that extends our implemen-

tation of the explicit model of spatiotemporal provenance (Section 3.1). Next, we
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Figure 4.1: Mobile device-to-device data sharing middleware architecture.

describe the architecture and implementation of our mobile middleware.

Figure 4.1 illustrates the high level design our middleware, which we have

implemented for the Android platform. The key components of the middleware are

two Android Services, both which may either be run on a device as standalone

applications or embedded within a mobile application. These services separate what

data is being shared from how. The dashed boxes with bolded text represent abstract

implementations of components that require application and network protocol -

specific implementations.

The Data Sharing Service (the second gray box from the top in Figure 4.1)

employs an instance of our spatiotemporal data provenance middleware (the dark-

ened gray box) and facilitates proximate data access via that middleware’s rule-
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based programming interface. Application-defined rules govern precisely what data

is exposed to proximate devices, when, and how often. For example, a native mobile

application may define a rule that periodically “sends” (we will define how send-

ing tasks are executed shortly) a user-input status update to all proximate devices.

This rule may be registered with the Data Sharing Service, which will autonomously

execute the rule’s behavior whenever its conditions are satisfied, for example, after

10 minutes have transpired since the last execution. We only require that an ap-

plication define two adapters that define how the application’s rule-governed data

are marshaled in and out of graph- and network-readable formats. If an application

wishes to store structured data within the middleware (e.g., so it may be sent peri-

odically) it must provide a Graph Adapter, which translates application data to and

from a graph-based format. To serialize and de-serialize application data to a byte

format, an application must also provide a Network Adapter. An application data

object is sent and received via the Network Output and Network Input interfaces,

respectfully, which employ the object’s corresponding Network Adapter to convert

between the application object and a serialized byte array. We provide abstract

implementations of these adapters, which an application may easily extend. Within

our middleware, JSON (JavaScript Object Notation3) is the default serialization

strategy.

The D2D Protocol Service (the second gray box from the bottom in Fig-

ure 4.1) defines how digital data is shared between proximate devices. Essentially,

this service acts as a bridge between the Data Sharing Service and one or more on-

3http://json.org/
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board device-to-device network interfaces (shown as dark gray boxes at the bottom

of the figure). To send and receive data via a particular device-to-device network

interface (e.g., Bluetooth, WiFi Direct, LTE Direct, NFC, etc.) we simply require

an application provide a concrete implementation of an abstract D2D Interface

Adapter, which dictates exactly how bytes are sent and received via that interface.

For the sake of demonstration, we implement a D2D Interface Adapter for

a custom WiFi-based device-to-device communication technology4 to share serial-

ized data between proximate devices. The architecture of this implementation is

illustrated in Figure 4.2 within the Beacon Interface Adapter dashed box. Interac-

tions with a device’s WiFi interface are managed by the WiFi Beacon Service shown

as the bottom-most box in Figure 4.2. The WiFi Beacon Service employs beacon-

stuffing [23] to communicate small data frames to proximate (i.e. in WiFi range)

devices without establishing explicit connections. Beacon-stuffing is a strategy that
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Figure 4.2: An implementation of a D2D Interface Adapter
for WiFi beacon stuffing.

exploits vendor-specific in-

formation elements (IEs)

in IEEE 802.11 beacon

packets. An IE (the grayed

field in Figure 4.3) is a 256

byte block of “extra” space

in the beacon packets that

are periodically broadcast by a WiFi access point (AP). Provided enough unused

space exists in a packet’s IE, arbitrary bytes can be “stuffed” into the IE, which are

4http://www.m-87.com/
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received by all client devices in range. In this way, beacon-stuffing operates as a low

bandwidth wireless communication protocol. This is precisely how we use the WiFi

Beacon Service to facilitate “passive” (connection-free) data sharing. To transmit

data, the WiFi Beacon Service places the transmitting device into AP-mode, forcing

the device to periodically broadcast beacon packets. A Network Interface Adapter

(i.e., our Beacon Interface Adapter) may then provide the WiFi Beacon Service with

“chunks” of bytes (32-256 bytes in size), which are each placed into a beacon packet.

To receive data, WiFi Beacon Service simply listens on a particular WiFi channel

and strips the IE contents from detected beacon packets. The remaining elements of

the Beacon Interface Adapter coordinate the decomposition of blocks of application

data into IE-sized chunks and the correct composition of IE-bytes back into their

application data block. We briefly describe these components next.

Beacon  
Interval"
(2 bytes)"

Time  
Stamp"

(8 bytes)"
SSID"

(32 bytes)"

Supported"
Rate"

(8 bytes)"

Capacity  
Info"

(2 bytes)"

Information  
Element"

(256 bytes)"
BSSID"

(6 bytes)"

Figure 4.3: Some fields in the IEEE 802.11 beacon packet [23].

The Beacon Interface Adapter’s Beacon Controller provides functional com-

ponents that compress application data blocks, support forward error correction,

and cache received IE byte chunks until all block chunks have been received. The

successive use of these components to transmit a piece of application data via the

WiFi Beacon Service is shown in Figure 4.4. We now use this figure to walk through

the entire sequence of steps involved in transmitting a piece of application data.

First, a piece of application data is serialized to a byte array by its application-

provided Network Adapter (within the Data Sharing Service shown in Figure 4.1).

142



Our middleware supports one or more associated rules to be optionally attached to

and transmitted alongside data (this functionality will be explained shortly). The

byte array is transferred to one or more Network Interface Adapters (the Beacon

Interface Adapter in our case) via an exchange between the Network Output and
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Figure 4.4: The functional sequence of steps com-
prising the transmission of application data using the
data sharing middleware.

Output Data Stream. The

Output Data Stream sends the

byte array to the Beacon In-

terface Adapter’s Beacon Con-

troller, which compresses the

bytes then applies forward error

correction5 to mitigate dropped

beacon packets in the event of a

lossy channel. The forward error

correction step breaks the com-

pressed data up into blocks com-

prised of fixed-sized chunks of

bytes. Each chunk is queued by

the Output Beacon Stream and

sent to the WiFi Beacon Ser-

vice, which places each chunk

into the IE of an outgoing bea-

5We employ OpenQ, an open source implementation of the RaptorQ digital fountain erasure
code (http://www.lasige.di.fc.ul.pt/openrq/).
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con packet. Information indicating a chunk’s block, sequence number, and data type

are encoded within a header also placed with the IE. The receiving process is essen-

tially the reverse of these steps, except that received chunks are cached within the

Block Cache (Figure 4.1) until enough are present to successfully decode an entire

piece of application data.

As mentioned earlier, we enable rules to be optionally transmitted alongside

application data. Any rules attached to received application data objects are im-

mediately registered in the receiver’s Data Sharing Service and executed, from the

receiver’s perspective, when their conditions are satisfied. Transmitting rules with

their data is useful, for example, for implementing a distributed routing protocol

without explicitly deploying the protocol’s code a-priori. In other words, trans-

mitting rules with their data enables data-dependent behavior to be deployed and

executed on-the-fly. We now describe real-world use cases of our data sharing mid-

dleware.

4.1.2 Application Examples

Our middleware supports emerging use cases that connect users and their

devices with the surrounding digital landscape. This section briefly describes two

real-world applications of our proximate data sharing middleware.

4.1.2.1 Hyper-Localized Social Application

Often, users that are congregated in the same place share similar interests

and information needs. For example, at a large business convention users may be
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(a) A user’s feed of received
“blinks.”

(b) The user may parametrize the
spatiotemporal device-to-device
propagation of a “blink.”

Figure 4.5: The Blinky hyper-localized mobile social application.

interested in connecting with nearby colleagues and organization representatives or

receiving alerts about spontaneous events. At a crowded music festival, festival par-

ticipants may likewise be interested in connecting face-to-face with their friends and

sharing photos. Vendors at the festival may wish to disseminate special offerings and

advertisements to attract customers. These example are perfect use cases for a so-

cial application that exploits users’ hyper-localized information needs. To that end,

we created a small demo application on top of our data sharing middleware called

Blinky. Blinky enables users to compose “blinks,” short text or picture messages,

and broadcast them to proximate devices, possibly across multiple network hops.

Blinks that are received over the proximate network are displayed in the user’s feed
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(Figure 4.5(a)). A user may optionally tailor the spatial and temporal characteristics

of how a blink is propagated between devices (Figure 4.5(b)). Specifically, the user

can parameterize any of the following: the temporal duration of a blink’s propaga-

tion, the temporal interval at which the blink is transmitted and re-transmitted, the

maximum geospatial distance from the location of creation the blink can propagate,

the geospatial distance of travel that will trigger a re-transmission of the blink, and

the maximum number of network hops from the creator the blink may propagate.

These parameters are reified within rules, which are registered with our middleware

and attached to transmitted blinks. We envision socially-driven mobile applications

like Blinky to become ubiquitous as developer constructs for device-to-device proto-

cols (e.g., Bluetooth Low Energy, LTE Direct) on mobile devices continue to receive

popular attention.

4.1.2.2 Efficiently Accessing Dynamic Data

In the previous application example, users broadcast static information.

However, an application may need to make dynamic information available, for ex-

ample, the sensed state of a real-world entity (e.g., the queue length at a cafe, a

parking space’s availability, the ambient noise level and available seating in a univer-

sity study lounge). LTE Direct6 (LTED) is an emerging communication technology

that enables device-to-device discovery and communication over long ranges (up to

500 kilometers). LTED employs a cloud-based entity to store the actual data to be

communicated; devices instead exchange hash codes (that map to that data) over

6http://ltedirect.qualcomm.com/
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Figure 4.6: Dynamic data access strategy in LTED-enabled networks.

the air in a device-to-device fashion. A device receiving one of these hash codes

must resolve the code’s data at the cloud-based entity over the Internet. While this

approach is useful for static data, communicating time-varying data over an LTED

network can become expensive—whenever the data changes it must be re-written

at the cloud entity, producing a new hash code, which must be re-resolved to the

changed data by devices receiving the new hash code. We propose a better approach:

the advertisement of static information (e.g., a cafe’s location, its menu, etc.) may

remain advertised over the LTED network; however, dynamic information (e.g., the

cafe’s current queue length) may be made available through our middleware.

As an example consider the scenario shown in Figure 4.6. The figure shows

four devices (w0—w3) that each possess both an LTED network interface and a

short-range device-to-device network interface (e.g., WiFi, Bluetooth). In this ex-

ample, device w0 is the provider of a time-varying data value d. For example,

perhaps w0 is a queue length sensing device at the cafe described earlier and d is the

current number of people waiting in line. Rather than advertising d over the LTED

network, which would require a multiple device-to-cloud transactions per proximate

device (i.e., w1 and w2) every time d changed, w0 may advertise d over a short-range
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device-to-device protocol (e.g., Bluetooth, WiFi). In Figure 4.6, cd represents an

LTED-assigned hash code that maps to a static description of d (e.g., “live queue

length”) and a secondary hash code hd that also maps to d. In other words, a device

receiving cd may resolve it to hd at the LTED cloud-based entity. In our scenario,

the device w0 advertises cd over LTED and hd over a short-range device-to-device

protocol. In Figure 4.6, a hop count and hop limit are also transmitted alongside hd.

Consider the device w1 that is in LTED-range receiving cd. Upon receiving cd, w1

may resolve cd to hd at the LTED cloud entity and listen on its short-range interface

for hd. If hd is received on the short-range interface, w1 may use the associated hop

count information to access d over the same short-range interface (e.g., by issuing

a request). The device w1 may re-advertise both cd (via LTED) and hd (via the

short-range interface, modifying the hop count), creating a daisy-chained route to

w0 and d. Devices farther down the chain (e.g., w2) may access d by issuing re-

quests that follow the gradient defined by decreasing hop counts to d. Devices that

receive cd, but not hd (e.g., w3) must give up or employ another cloud-based entity

to retrieve d over the Internet (e.g., via a peer-to-peer connection to w0). Accessing

time-varying data d in this fashion can greatly reduce the transactional load at the

LTED cloud-based entity.

This section presented the design and implementation of a middleware for

connecting users and their devices to hyper-localized digital data via device-to-device

interactions. It may not always be the case that device and application support for

ad hoc network communication exist. For example, LTE Direct is not a common

mobile technology yet; our WiFi Beacon Service requires root-level permissions to
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be fully functional. Given these limitations, the next section introduces a hyper-

localized discovery service that uses cloudlets to facilitate proximate device discovery

and communication.

4.2 Device-to-Device Interaction via Localized Cloudlets

Pervasive computing demands the ability to discover locally available re-

sources, whether data shared by nearby users or digital capabilities in the surround-

ings. More specifically, applications require a location-based discovery service that,

when provided a user’s or device’s location, can “look up” nearby (digital) resources.

In this section, we focus specifically on the need to discover resources relevant in a

particular user’s space and time; we are interested in finding digital resources that

are available in the user’s here and now.

Here, we introduce a hyper-localized discovery service that creates cloudlets

that are responsible for maintaining knowledge about the digital resources avail-

able in specific regions of space. Ultimately, this discovery service provides systems

support for the query processing proposed in Chapter 3. This point will be dis-

cussed in detail in Section 4.2.2. A cloudlet is a trusted computing resource with

good Internet connectivity that is available for use by physically nearby mobile

devices over a wireless LAN [152]. Essentially, a cloudlet has the same responsi-

bilities as the cloud—it hosts a service that performs the significant computation

required by a mobile application while enabling the mobile device to act as a thin

client with respect to the service. Cloudlets differ from the cloud in that they are

inherently within close physical proximity to the mobile devices that utilize their
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resources, which reduces network latency and jitter and mitigates peak bandwidth

demands [152]. Consequently, cloudlets service fewer users and keep data close to

where it originates.

We leverage cloudlets to implement proximal discovery for pervasive com-

puting applications that operate in densely populated and highly mobile physical

spaces. A cloudlet-based approach for co-located peer discovery becomes seriously

advantageous, perhaps even necessary, when applications need to operate in spaces

with hundreds of thousands of devices per square mile (e.g., as in the Internet of

Things [4]).

We present the architecture, implementation, and API for a cloudlet-based

proximal discovery service that leverages a physically dispersed infrastructure of

cloudlets, each of which provides the service for a specific geographic region. The

distributed nature of a cloudlet infrastructure mitigates the congestion and resource

contention of a centralized cloud-based mechanism. Moreover, the physical and log-

ical proximity of cloudlets to the clients they serve results in low one-hop network

latency. These factors combined provide the support required by mobile pervasive

applications targeting densely populated physical spaces. A key technical challenge

in the design of a cloudlet-based proximal discovery service is the synchronization

of information at the boundaries of bordering or overlapping cloudlet administra-

tive regions. As users and devices move around, they inevitably migrate between

cloudlets’ administrative regions. An application running on a device within the

fringe of one of these ambiguous spaces may request information that exists be-

yond the administrative boundary of its respective cloudlet’s administrative region,
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though the geographic relevance of that information may be physically close. We

evaluate our service’s performance in terms of the system-level cost and the quality

with which it performs proximal neighbor discovery under various bordering cloudlet

synchronization strategies.

4.2.1 Architecture & Implementation

Under the assumption that cloudlets will be deployed within an existing

Internet infrastructure [152], we implement our proximal discovery service as a Web

service intended to be hosted on a cloudlet computing resource and made available

through a RESTful API over HTTP. In Section 4.3.3 we describe how the discovery

may be used to support the query processing protocols discussed in Chapter 3. Here,

we focus on the implementation of the proximal discovery service itself.

4.2.1.1 The Proximal Discovery Service

Our proximal discovery service’s architecture is shown in Figure 4.7. The

service has two components that reside on a cloudlet: a spatial index to keep track

of resources’ locations and a REST API that enables remote storage and retrieval of

these resources via an Internet connection. A “resource” is anything that a particular

application wishes to associate with a geographic location—e.g., a user’s mobile

device, a sensor embedded in the environment, a location-dependent message, or a

mobile software agent that migrates between machines. We implement the spatial

index using a PostgreSQL7 database with PostGIS8 geospatial database extensions.

7http://postgresql.org
8http://postgis.net
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PostGIS employs an R-Tree [61] to intelligently index and efficiently query geospatial

data. Our service’s REST API is implemented in Node.js9, which is a particularly

good fit for our use case because of its small footprint and ability to efficiently handle

many simultaneous connections and requests.
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Figure 4.7: The proximal discov-
ery service architecture. Dashed ar-
rows are POST /devices requests;
the solid arrow is a GET /neighbors

request.

Our service exposes a minimalist REST

API with the following resource “routes.” We

aim solely to facilitate discovery of physically

nearby resources, leaving other application-

specific functions to applications themselves.

POST /devices A client (mobile device, embed-

ded sensor, software agent) issues this re-

quest to an instance of the discovery ser-

vice to create or update the resource rep-

resenting the client on the cloudlet.

GET /neighbors A client issues this request to

query a cloudlet for resources within its

vicinity. We parameterize the request with a range to limit the query’s

geographic search space. An application could further impose additional

application-specific parameters. Upon receiving this request, the cloudlet re-

sponds with a list of resources whose locations are believed to be within the

request’s range of the client.

9http://nodejs.org
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Our approach only provides an advantage over a centralized cloud-based LBS when

many independent instances are distributed across a geographic region, where each

instance assumes responsibility for a particular sub-region. However, important

challenges arise when clients physically move between these sub-regions or issue

queries that cross the boundaries of these sub-regions.

4.2.1.2 Distributed Cloudlet Synchronization

Our proximal discovery service supports pervasive computing applications

in densely populated physical spaces. To fully utilize the potential of a cloudlet

infrastructure and support large numbers of anticipated clients, many instances of

our service must be deployed in a geographic region, with each instance responsi-

ble for a particular sub-region. These spaces are highly mobile—people and their

devices move and inevitably migrate between adjacent cloudlet-administered sub-

regions; our proximal discovery service must address the distributed synchronization

of cloudlets governing these adjacent sub-regions.

0! 1! 2!

3! 4! 5!

6! 7! 8!

r!

Figure 4.8: A query for resources
within a range of r from a mobile
client.

Consider the scenario in Figure 4.8. A

space is decomposed into nine rectangular ad-

ministrative regions (AR). One cloudlet exists

in each AR and is responsible for responding to

cloudlet-bound requests for that region. The

solid dot represents a mobile client that has

traveled along the dashed path over a period

of time. As the client moves, it periodically is-
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sues a POST /devices with its current location to the cloudlet responsible for the

AR it occupies. At the point in time shown, this client wishes to discover nearby

resources within a range of r, so it issues a GET /neighbors query to cloudlet1.

However, the query’s range extends beyond the borders of cloudlet1’s AR and into

those of cloudlet0, cloudlet3, and cloudlet4. Without some means of synchroniza-

tion, cloudlet1 can only respond with the four resources in the shaded region of the

query’s target space (i.e., the resources within its AR). To facilitate this synchro-

nization, our proximal discovery service implements a third resource route:

POST /fringes A neighboring cloudlet issues this request to communicate knowl-

edge of resources that exist at or near the border of an adjacent AR.

To both capture and quantify “at or near the border,” we introduce the

concept of a fringe, illustrated in Figure 4.9. A fringe is a sliver of space of width δ

on the interior of an AR’s border. For simplicity, the ARs shown in Figure 4.9(a) are

δ
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Figure 4.9: Computing administrative region fringes.

rectangular, and therefore

the computed fringes are

also rectangular. In actu-

ality, ARs can be of any

shape and even overlap-

ping. ARi’s fringe with

ARj consists simply of

any point within ARi that is within a specified distance (δ) of ARj . Consider

the more complex pair of ARs in Figure 4.9(b). ARA overlaps ARB; any resource
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within the area marked X can report to either ARA or ARB (or both of them). The

fringe that ARB computes to create a digest for ARA contains all of the resources

it knows about located in Y and all of the resources it knows about located in X

(because they may not have also reported their locations to A). Fringes can also

overlap; consider the adjacency of ARB and ARC ; the fringe of ARB with respect

to ARC (not depicted) will include not only their overlapping area but also a sliver

adjacent to this area that also overlaps Y.

Periodically, our service computes each of its fringes’ digest—a snapshot of

the fringe’s resources—which it sends to the appropriate adjacent cloudlet via a POST

/fringes. In Figure 4.9(a), for example, cloudlet1 computes AR1’s fringe digest to

be (c, d, e, f), which it POSTs to cloudlet2.

Our service entails three variable deployment parameters, each which must

be tuned for a particular application’s needs:

µ The number of administrative regions (and correspondingly, cloudlets) that a

geographic region is decomposed into.

δ The width of administrative regions’ fringes.

T The interval of time between fringe digest computations.

A particular combination of parameters, represented by the tuple (µ, δ, T ), is a

synchronization strategy. In Section 4.2.3 we evaluate our service’s performance

under various synchronization strategies in terms of the quality with which proximal

discovery queries are satisfied and the system-level cost of the strategy.
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4.2.1.3 Operating Assumptions

We assume clients can localize themselves and have a labeled map of cloudlets

and their ARs. Localization may be too expensive a task for severely resource con-

strained devices (e.g., battery operated sensors); however, lightweight localization

methods are currently a very active area of research [9, 26, 105, 124]. Alternatively,

resource-constrained devices could communicate with cloudlets via less resource-

constrained gateways [58]. We also assume that cloudlets are aware of neighboring

cloudlets; in our implementation, clients and cloudlets each possess a copy of the

same labeled map.

4.2.2 Application Examples

We next provide some concrete examples of mobile and pervasive machine-

to-machine (M2M) applications that are enabled by our proximal discovery service,

how they can be built with our service, and the inherent advantages of doing so.

Location Based Services. Perhaps the most obvious application of our

service is to enhance location based services with hyper-localized capabilities (e.g.,

location-based social networking services, location sharing services, friend finders,

and spatial crowdsourcing [81]). Using our cloudlet-based service for localized dis-

covery, such services could target small and heavily crowded regions (e.g., music

festivals, parades, theme parks, university campuses, etc.) much more efficiently.

Instead of shipping application requests to a (physically and logically) distant cen-

tral cloud index, requests and users’ location information would be localized to the

geographic areas where they are inherently relevant, providing low-latency responses,

156



lighter server-side loads, and privacy gains through the distributed cloudlets [173].

P2P Network Overlays and Routing. Using a P2P routing and location

infrastructure like Tapestry [176] or Chord [160] to implement proximal resource dis-

covery requires new network participants to have advanced knowledge of at least one

peer already in the P2P overlay. This crucial discovery step could be performed with

our proximal discovery service, where the resource of interest is any peer already in

the overlay. The use of a cloudlet infrastructure, in this case, encourages and facil-

itates P2P interaction between devices that are physically near one another. Peer

physical proximity is not a requirement for these systems but can be advantageous

if the P2P overlay exists to store spatio-temporal events [177].

Mobile Ad Hoc and Opportunistic Networks. Our proximal discovery

service could also be used to construct virtual mobile ad hoc network (MANETs)

and opportunistic networks. In fact, this is precisely how the discovery service is

utilized by the Gander Middleware (Section 4.3.1). Beyond the ability to implement

MANET-style routing algorithms without a separate dedicated radio interface, vir-

tualization of MANETs has added security benefits [67]. Virtual MANETs could

be used to form on-demand mobile clouds [149], execute geographic routing [31],

implement location-based publish-subscribe [42], or enable wireless sensor network

(WSN) query-access mechanisms [45, 91, 108] across smartphones. The realization

of cloudlet-based virtual MANETs for mobile computing could conceivably lead to

a renaissance of techniques formerly developed for MANETs and WSNs.

Next, we introduce the Gander application framework, which leverages the

proximal discovery service in cloudlet-supported environments to create virtual
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MANETs and execute the distributed query processing protocols introduced in

Chapter 3.

4.2.3 Cost and Quality of Cloudlet Peer Discovery

We next benchmark the performance of our discovery service in terms of its

system-level cost and the quality with which the service performs proximal resource

discovery under various combinations of (µ, δ, T ) (number of administrative regions,

fringe width, fringe digest computation period), in an effort to guide application

developers in tuning our service’s parameters to meet application requirements. We

simulate mobile clients using two real-world and one simulated mobility trace data

sets (Table 4.1). Our framework is implemented in Python.

Table 4.1: Mobility Trace Data Sets

Data Set Geographic Region Description

UT-Real 640m2

UT Austin campus
24 hours of location information from
18 users of a mobile application de-
ployed on the UT Austin campus in
June 2013

UT-Sim 640m2

UT Austin campus
6 hours of simulated location informa-
tion for 200 nodes generated using Mo-
biSim [110] and Levy-walk [140] mobil-
ity

Cabspotting [131] 10km2

downtown San Francisco
6 hours of location information for∼500
taxi cabs in downtown San Francisco,
USA

We decompose a square geographic region into µ administrative regions

(ARs), assign each AR one instance of our discovery service, and generate a la-

beled map of these regions and their ARs; the clients and the µ service instances

each receive a copy of this map. Each simulated client moves about the region

and issues a POST /devices with its current location at most once per minute to
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the cloudlet-hosted service responsible for the AR it occupies. Every T seconds,

each of the µ instances of the discovery service computes the digest10 for each of

its fringes. The service instance then issues a POST /fringes containing the digest

to the respective neighboring service instance. During each simulation, we perform

periodic proximal resource discovery queries (i.e., cloudlet-bound GET /neighbors

requests): at 10 randomly chosen simulation times we randomly select 25 simulated

clients11 and issue three queries (r =[“near”, “medium”, “far”])12. For each data

set, we also generate an Oracle, which is effectively a central (cloud) server to which

every client posts its location once per minute.

Table 4.2: Evaluation Parameters

Parameter Value(s)

µ: number of cloudlets 4, 9, 16, (25), 36, 49, 64, 81, 100

δ: fringe width (fraction of width of an AR) 1
10 ,

1
9 ,

1
8 ,

1
7 ,

1
6 , (

1
5), 14 ,

1
3 ,

1
2

T : digest update period (in seconds) 60, 300, (900), 1800, 3600, 7200, 18000

t: client location update period (in seconds) 6013

u: location update size (in bytes) 80

Table 4.2 shows our evaluation parameters; in cases where we explored mul-

tiple values, the value in parentheses is the default. We first evaluate the quality of

our service in terms of the mean number of false positives (resources in a cloudlet

result and not in the corresponding Oracle result) and false negatives (resources not

in a cloudlet result, but in the corresponding Oracle result) produced per query

under various synchronization strategies. In both cases, we normalize the false pos-

10To prevent “stale” resources, we restrict digests to contain only resources that issued a POST

/devices within the last T seconds (i.e., since the last fringe digest).
11Only 18 clients were available in the UT-Real data set.
12We define the [“near”, “medium”, “far”] ranges as (25m, 50m, 75m) for the UT-Real and UT-

Sim data sets and (100m, 500m, 1000m) for the Cabspotting data set.
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itives and false negatives to the size of the Oracle result set. That is, a value of 0.1

for a normalized false negative score indicates that for every 10 items in the Oracle

result, there was one result missing from the cloudlet result.

(a) UT-Real

(b) Cabspotting

Figure 4.10: Impact of varying the number of cloudlets.

Figure 4.10 shows the false negative and false positive rates for varying the

number of cloudlets for the UT-Real and Cabspotting traces; we omit the results for

UT-Sim as they are very similar to the results for Cabspotting. Two observations are

relatively consistent across all data sets. First, the errors show a slight upward trend

as the number of cloudlets increases. As the cell sizes decrease, queries are increas-

ingly likely to rely on the digest from neighboring cloudlets for correct information,

and this information is more out of date than the local cloudlet’s information. Sec-

13The client update period was set to exactly 60 seconds for UT-Sim. For UT-Real and Cabspot-
ting, the period was determined by the data set but was close 60 seconds.
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ond, the false positive and false negative rates for “near” queries are significantly

better than for “medium” or “far.” This demonstrates (and begins to benchmark)

that the cloudlet-based approach is more suited for highly localized search and is

not as well suited to searching for information that is located further afield. Con-

sider a query in the UT-Real when µ is 64, where each cloudlet is responsible for a

10 x 10m2 area. A “medium” query, looking for resources within 50m, may match

resources that are not even located in an adjacent administrative region and will be

impossible to find using our service.

(a) µ = 25 (b) µ = 36

Figure 4.11: A “poor” choice of µ may split clusters.

Figure 4.10(a) also

shows an interplay be-

tween the behavior of real

users and the definition of

cloudlets. For µ values

of 36 and 49, the upward

trend of the error rates is

violated. The reason can be identified by examining the location traces of the users,

shown in Figure 4.11. In the case of µ = 36, the common areas where users clus-

ter (in this case, three buildings on the university campus) happen to lie entirely

within single administrative regions. In the case of µ = 25, these clusters cross the

boundaries of administrative regions. Users’ queries therefore also often cross these

boundaries, meaning that they increasingly rely on digests for correct query resolu-

tion. The conclusion from this observation is that defining administrative regions

should account for user mobility patterns and should not create artificial boundaries
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to separate users within natural congregation areas.

We next examine the impact of varying the fringe width. Figure 4.12 shows

the false positive and false negative rates for the UT-Real and Cabspotting traces;

we again omit the results for UT-Sim, which are again very similar to the results for

Cabspotting. Except within the (small) UT-Real data set, there is little relationship

between changing δ and false positives and false negatives. These figures again show

the significant difference in quality for “near,” “medium,” and “far” queries. While

the error (as measured by the false positive or false positive rate) is routinely below

10% for “near” queries, it grows up to nearly 50% for “far” queries. This again

demonstrates that the cloudlet based approach is particularly suited to very local

queries of the immediate surroundings.

(a) UT-Real

(b) Cabspotting

Figure 4.12: Impact of varying the fringe width.
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Finally, we examine the quality of our cloudlet based discovery service with

respect to the update interval for fringe digests in Figure 4.13. As T increases up to

50 minutes, quality degrades substantially. In the limit, the false positive rates also

decrease; this is a result of the fact that the digests are simply not updated well,

so they do not contain extra (irrelevant) information. However, we can also discern

that it is acceptable for the update interval to be larger than the frequency with

which the clients update their own cloudlets; specifically, any setting of T under 900

seconds has only a marginal impact on false negatives.

We also benchmark the system-level cost of a synchronization strategy in

terms of the mean overhead (in KB) for sending both individual location updates

to the local cloudlet and the cost of sending the fringes according to the update

period. Because individual location updates are sent every minute, the cost, per

minute, of sending individual location updates to the local cloudlet is computed as:

n× 80B× 1 hop× 1KB
1024B , where n is the number of clients sending location updates,

and 80 bytes is the size of a client location update (from Table 4.2). We assume that

each client is located within one network hop of the cloudlet server. We compute

the cost of sending the digests between cloudlet servers as:

4(µ+
√
µ)× sizedigestB× 1 hop× 1KB

1024B

where 4(µ+
√
µ) is the number of fringes in our square region and sizedigest is mea-

sured during execution. We assume a single network hop between adjacent cloudlet

servers. The total cost for the cloudlet approach is the sum of these two values.

We compare this to the system-level cost of the centralized approach, computed as:

n×80B×hhop× 1KB
1024B , where the only cost is sending the clients’ individual updates
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(a) UT-Real

(b) UT-Sim

(c) Cabspotting

Figure 4.13: Impact of varying the fringe digest update period.

to the central server. In the following results, we used the (conservative) assumption

of 10 hops to the central server14. Figure 4.14 shows the results, which include both

the absolute values of the overhead (measured in KB/min) for the cloudlet based

14The value of 10 hops is significantly below the values we measured using traceroutes to common
cloud servers, which were routinely above 15 hops. The number of network hops is not the only (or
necessarily “best”) measure of cost, but it gives a reasonable measure of the relative costs of these
two approaches.

164



(a) Varying µ

(b) Varying δ

(c) Varying T

Figure 4.14: Cloudlet overhead and comparison to Cloud based approach.

approach and the improvement of the cloudlet based approach over the centralized

approach.

Overhead increases with both increasing µ and increasing δ. As µ increases,

there are more digests to be sent because there are more fringes. Note, though, that

the overhead increases relatively slowly for increasing µ. Overhead increases with

δ simply because, as the fringe size increases, there are more resources within the
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fringe, so the size of the digest grows. Interestingly, the overhead falls off rapidly with

increasing T ; for all values of T greater than 60 seconds, we observed relatively low

overheads (and therefore significant improvements in comparison to the centralized

approach). The plots in Figure 4.14 show one additional interesting phenomenon.

The degree of improvement for the Cabspotting trace is consistently better than the

degree of improvement for the UT-Sim data set. In real situations, resources tend

to cluster in non-uniform ways, which the cloudlet-based approach is designed to

be sensitive to. This is in contrast to the manufactured UT-Sim case in which the

resources are uniformly distributed with no attention to how real users or resources

would be distributed in a real space.

Our evaluation of the cloudlet based proximal resource discovery service has

demonstrated the situations in which it can prove beneficial over a more traditional

cloud based approach. The cloudlet based approach may not always be the ideal

option (e.g., it does not have a high quality of query resolution for “far” queries, or

queries about resources that are multiple hops away in the local network). For appli-

cations searching for very local resources (i.e., resources in the immediate environs),

the cloudlet based proximal resource discovery provides high quality discovery at

significantly decreased costs (with respect to the amount of data transmitted within

the network in total). The use of digests to aid in discovering resources in neigh-

boring cloudlets can be beneficial, especially when the administrative regions are

defined not randomly, but with input about how they match with the real spaces

that people inhabit.
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4.2.4 Related Work

Existing location-dependent resource discovery approaches can generally be

classified into two categories: centralized methods, which rely on a single index to

resolve spatial queries, and distributed methods, which can further be decomposed

into infrastructure-dependent and infrastructureless (i.e., ad hoc) approaches.

Centralized Location-Dependent Discovery. Geographic information

systems (GIS) have emerged over the last few decades out of advancements in both

database management systems (DBMS) and positioning and tracking systems (e.g.,

GPS) (see [126] for an excellent survey of this work) and are now an industry

standard. A GIS is a collection of software geared at efficiently performing a wide

range of operations over geographic data, for example, resolving spatial queries,

generating maps, detecting geographic patterns over time, etc. [51]. GIS extensions

exist for most modern DBMS and are the enabling technology for location-based

services (LBS), which integrate a mobile device’s location with other (spatially-

dependent) information [154].

Google Latitude15, Foursquare16, Facebook Places17, and Follow Me [173]

are cloud-based examples of LBS that enable users to share their location with

friends. The NearMe wireless proximity server [84] compares clients’ Wi-Fi fin-

gerprints (observed access points and signal strengths) to compute their relative

proximity. MoCA (Mobile Collaboration Architecture) [148] is a client-server mid-

15http://latitude.google.com
16http://foursquare.com
17http://facebook.com/about/location
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dleware for developing and deploying context-aware applications; MoCA supports

mobility by monitoring a mobile client’s location and switching to the application

proxy (an intermediary between a mobile client and the application server that exists

at the edge of a wired network) closest to the user. Similarly, Hydra [150] facilitates

mobile pervasive application development by providing mobile agents that follow a

user about a pervasive environment and construct a virtual machine that meets a

user’s current needs based on her location, tasks, number of co-located people, etc.

These approaches employ a single point of lookup to store participants’

locations and resolve queries for location-based resources. Ypodimatopoulos and

Lippman point out that any system that centralizes user location information by

definition compromises user privacy [173], which can have potentially dangerous im-

plications (e.g., burglary18 and personal information inference [46]). For this reason

their Follow Me indoor location sharing service is intended to be implemented at

the per-building level instead of at a global level. We further argue that a com-

pletely centralized approach fails to meet the requirements of pervasive applications

that demand low latency and target densely populated physical spaces where hun-

dreds of thousands of devices may be carried by mobile users (e.g., Body Area

Networks [24]) and embedded in the environment (e.g., the Internet of Things [4]

and Web of Things [58]). These types of applications are more aptly supported by

computing resources that are physically near participating devices and do not rely

on a (potentially distant) single globally known resource to manage devices’ loca-

tion information. This flavor of approach both reduces network latency and keeps

18http://pleaserobme.com
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location availability as local as possible.

Distributed Location-Dependent Discovery. The efficient discovery

of “nearby” peers is an active area of interest in peer-to-peer (P2P) applications,

where nodes interact directly with one another in a decentralized and localized

fashion. Zero Configuration Networking (zeroconf)19 and the serverless messaging

extensions of the Extensible Messaging and Presence Protocol20 (XMPP) both en-

able automatic discovery of available services on a local area network (LAN). Friends

Radar [96] uses XMPP messaging to support P2P location sharing. Likewise, Vir-

tual Cloud [68] employs XMPP messages to facilitate forming on-demand mobile

clouds comprising co-located mobile devices. While zeroconf discovery over a wide-

area network (WAN) is possible, it requires advanced setup at each client. Our

proximal discovery service makes no assumptions about the type of network clients

are a part of, simply that they are reachable.

Still other P2P applications maintain network overlays and routing tables

to leverage logical locality. pSense [155] enables discovery of virtually visible peers

in position-based massively multiplayer online games (MMOGs) through localized

multicast; this eliminates the need to propagate players’ location updates to a global

resource. Proximal peer discovery could be implemented on top of a decentralized

routing and location infrastructure like Tapestry [176] or Chord [160]. These ap-

proaches could certainly be applied in scenarios where physical locality was the

citizen of interest. However, overlay and routing table based approaches require

19http://zeroconf.org
20http://xmpp.orgextensions/xep-0174.html
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knowledge of at least one peer already in the network who may act as an entrance

point for the new peer. In the implementation we present here, we require advanced

knowledge of cloudlets and their administrative regions. However, one could envi-

sion cloudlet resources existing at the edge of a wired network infrastructure (e.g.,

in physically dispersed wireless access points) [151], and a device would implicitly

interact with the cloudlet resource hosted on the Wi-Fi access point it was currently

connected to.

Purely ad hoc approaches are inherently localized in both space and time

due to the attenuation of radio signals as they propagate. FlashLinQ [171] is a

telecommunication technology that enables long-range (approximately two mile)

P2P discovery and operates in a licensed 5MHz spectrum. Other existing pieces

of work use short range communication to localize (and co-localize) mobile users.

Virtual Compass [9], for example, constructs a two dimensional graph of nearby

devices via periodic (Wi-Fi or Bluetooth) signal strength measurements. Clearly,

ad hoc strategies are advantageous in densely populated spaces as they eliminate

the need for a bottleneck centralized resource and keep device interaction entirely

local. Nevertheless, the maintenance of accurate routing tables, network overlays,

and distributed data structures becomes expensive in scenarios that exhibit heavy

churn in formation and high degrees of node mobility.

Distributed Spatial Indexes. Our work aims to combine characteris-

tics from both extremes: we desire the reliability and simplicity of centralized LBS

systems and the scalability of entirely distributed approaches. We adopt a similar

approach to that of distributed spatial indexing techniques [33,106], which leverage
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the hierarchical nature of a spatial index structure (e.g., an R-Tree [61]) to strate-

gically distribute portions of its hierarchy among networked peers. Rather than

distribute portions of a holistic data structure, our proximal discovery service dis-

tributes independent computing resources that each employ their own spatial index.

Moreover, our discovery service is designed under the assumption that pervasive

applications likely require localized device interaction; we dictate that a computing

resource monitoring device location information for a spatial region be physically

near or within that region. Therefore our discovery service is able to keep location

data about proximal peers as local as possible.

4.3 The Gander Application Framework

In this section, we deliver a systems contribution that unifies the goals of the

spatiotemporal data provenance implementation (Section 3.1), the rule-based mobile

middleware (Section 4.1), and the cloudlet-based discovery service (Section 4.2)

within a concrete software framework that enables sharing and querying of spa-

tiotemporally-enriched data via hyper-localized device interactions. We use this

framework to implement and deploy a mobile system enabling users to share and

search for digital information in their proximate surroundings. In the next section,

we conduct a user study to evaluate the system-level performance and user-perceived

utility of the framework’s distributed search mechanisms.

We have developed the Gander application framework as a Java library that

embodies the Gander conceptual model described in Chapter 3. Our framework

makes no assumptions about the underlying network(s) and transport mechanisms
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responsible for connecting Gander devices; instead, it provides interfaces and ab-

stract implementations as cues for developers to create concrete network-specific

implementations where necessary. In this section, we present a concrete middleware

implementation of the Gander framework for pervasive computing environments that

offer a wired/wireless Internet connection. To facilitate Gander’s query processing

amongst proximal devices in such settings, our distributed Gander middleware is

supplemented by the cloudlet-based Proximal Discovery Service (PDS) [99] intro-

duced in Section 4.2.

We choose to implement the Gander framework for Internet-connected envi-

ronments in this work for two reasons. First, for pragmatic reasons—current off-the-

shelf mobile operating systems’ support for localized device-to-device interaction is

weak, often requiring a dedicated radio interface (e.g., bluetooth) or administrative

device privileges to establish ad hoc networks, which is unreasonable for average

users. Second, for evaluation purposes—though not as scalable as purely ad hoc

communication, leveraging a centralized resource (i.e., the cloudlet-based PDS) to

administer virtual ad hoc communication enables us to log queries, responses, and

the use of the application over time to better measure system performance.

We next describe the design and operation of this specific Gander frame-

work implementation, followed by an assessment of its use in a real-world mobile

application (Section 4.4).
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4.3.1 System Architecture

Figure 4.15 shows the Gander system architecture. An instance of the Gan-

der Middleware, our implementation of the Gander framework, runs on each node

and exposes a minimal REST API to enable other proximal devices to query it. Re-

motely initiated queries, received by the Query Server, and locally created queries

Query Server!

Gander Device !
REST API!

LIGHTS!
Tuple Space!

DAQ!

Context!
Attribute!
Graph!

Data!
Attribute!
Graph!

Network !
Manager!

Network!
Handles!

Query Processor!

Query !
Handler!
Thread!

Gander Middleware


Proximal Discovery!
Cloudlet !
Service!

Nearby!
Gander!
Devices!

Internet!

Figure 4.15: The Gander system architecture.

are managed by the Query Proces-

sor, which delegates the query to

a dedicated Query Handler Thread.

Each thread attempts to resolve

its designated query using locally-

available knowledge about the host-

ing node’s current context (available

within the Context Attribute Graph)

or previously acquired information

(stored in the Tuple Space). Once a

query has been locally resolved, it is propagated to other nearby (i.e., reachable)

devices hosting their own instances of the Gander Middleware; this forwarding is ac-

complished via a Network Handle provided by the PDS. In a purely ad hoc networked

environment, detecting proximal devices and acquiring network handles would be

handled by the traditional network stack. Later in this section, we discuss how an

instance of the Gander Middleware uses the PDS to acquire “reachable” devices’

Network Handles to fulfill a distributed query processing protocol. First, we discuss

the implementation of the Gander data model.
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4.3.2 Data Model

The foundation of the Gander data model implementation is provided by the

LighTS tuple space framework [8]; this tuple space holds the concrete versions of

the datums, i.e., (ν, d) from the conceptual model presented in Chapter 3. LighTS

not only provides a flexible means of storing both the application data (ν) and the

contextual metadata (d), but also the expressive matching semantics necessary for

Gander’s query resolution (the function S in Chapter 3).

A common design task in pervasive computing applications requires com-

posing raw sensor data into higher-level semantic abstractions of context values.

For example, the occupancy of a room (a high-level context value) may be inferred

from infrared snapshots and noise level readings (raw sensor data). The Gander

framework aids in the generation of such structured semantic data by providing

mechanisms to configure reusable and composable application-specific data hooks.

These mechanisms act as datum marshalers, taking unstructured raw data, poten-

tially from multiple sources, and fusing that data into a structured datum.

Concretely, the Gander framework provides two semantically-related tuple

graphs, one for representing an application’s contextual hooks (the Context Attribute

Graph) and another for application data hooks (the Data Attribute Graph). The

vertices of each graph are Attributes, an extension of a LighTS tuple that also

specifies how the attribute tuple is composed, potentially using sub-attributes. A

directed edge from attribute a1 to a2 means that a1 is a sub-attribute of a2, or

that that a1’s fields may be used to compose a2’s tuple. An attribute representing

a room’s noise level, for example, may possess multiple sub-attributes representing
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Figure 4.16: The Gander data model.

ambient noise level sensor readings, which may be composed (e.g., aggregated) and

mapped to a semantic value (e.g., “quiet” or “low hum”). It may also be desirable

to associate particular contextual information with application data to describe

the data’s situation. Developers may also define inter-graph relations to attach

contextual attributes to application data attributes, effectively connecting a Gander

data value (ν) with its associated metadata (d).

Figure 4.16 illustrates how the Context and Data Attribute Graphs manage

the generation of structured datums. An attribute’s state is modified when the asso-

ciated underlying sensory data changes, triggering the attribute’s input(V) method.

In a Data Attribute Graph, a change in a data attribute triggers the generation of

a new datum formed by (i) composition actions on the Data Attribute Graph to

generate a new value, ν, and (ii) the acquisition of the associated metadata, d,

from the Context Attribute Graph, which is retrieved by calling getContext() for

each of the relations between the Data Attribute Graph and the Context Attribute
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Graph. The Data Acquisition Interface (DAQ) generates the final complete datum

and stores it in the Gander middleware’s local tuple space. This process applies to

the update of a single attribute value; since other attributes in the Context or Data

Attribute Graph may be dependent on this updated value, their update() methods

are triggered, and these attributes ultimately generate their own updated datums

via the same process.

4.3.3 Executing Queries

A GanderQuery is an extension of a LighTS BooleanTuple, which enables

pattern matching given arbitrary logical expressions over a tuple’s fields. Addition-

ally, a GanderQuery is defined by a maximum number k of desired results (datums),

a network hop limit ttl, the maximum time t a query may be executed in the network,

an ordered list of RelevanceMetrics, which each implement a datum comparator,

and a QueryProtocol. Each Gander QueryProtocol is defined by its implementa-

tion of (i) a sampling filter, which dictates if and when a participating device should

return its local results for the query, and (ii) a forwarding filter, which determines

if, when, and how to propagate the query to other reachable devices.

In this work, we opt to implement an Internet (i.e., HTTP) specific mid-

dleware. To accomplish this goal we extend the cloudlet-based Proximal Discovery

Service (PDS) introduced in [99] to facilitate the discovery of nearby Gander devices

and realize virtual opportunistic networks. In a nutshell, a PDS instance is a web

service that acts as a hyper-localized lookup mechanism for proximal peers; given

a request for peers parameterized by some distance d, a PDS instance will respond
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Figure 4.17: Issuing and propagating a Gander query.

with a list of the network

handles of peers physically

within d from the requesting

device.

In our implementa-

tion, Gander’s spatiotempo-

ral sampling is aided by local

instances of the PDS. Fig-

ure 4.17 illustrates the se-

quence of events for propa-

gating and resolving a query

supplemented by a PDS

cloudlet instance. The sole

purpose of the PDS is to

enable a device to “dis-

cover” directly reachable de-

vices (via one hop) providing their network handles. In our current implementation,

the Gander middleware determines the hop distance using a pre-specified param-

eter; in a deployment that relies only on ad hoc networking, this distance would

be determined by RF connectivity. A GanderQuery continues propagating until ttl

hops have been reached or the maximum in-network execution time t is reached.

Gander targets pervasive computing environments where hundreds, even

thousands, of devices exist in very close proximity. Practically, large scale test
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beds are challenging and expensive to deploy. Motivated by the desire to assess

Gander’s performance at a large scale, we next evaluate the performance of the

Gander framework and cloudlet-based proximal discovery service in simulated per-

vasive computing spaces.

4.4 Evaluation through a Real World Deployment

Our ultimate goal is to provide expressive support for real applications to

share and search for data in pervasive computing spaces. Therefore, we are tar-

geting large-scale deployments of pervasive computing applications that employ our

adaptive approaches to data sharing and search. In previous work [103], we have

connected pervasive computing application implementations to the OMNeT++ sim-

ulator [165] to enable us to run repeatable experiments using large pervasive com-

puting applications with controlled data generation, search initiation, and mobility

patterns. This allowed an interactive user (or users) to be part of the simulation, so

search queries could be automatically scripted, provided by the user(s), or both.

Motivated by the desire to evaluate the utility of the Gander search engine

within real-world scenarios, we used the results and feedback from our previous

study [103] to create myGander21, a mobile application for Android that enables

students to search for live information about people, places, and services around an

engineering building on the UT Austin campus. A myGander user can pose queries

like, “Which of my classmates are nearby?”, “How long is the queue for coffee?”, and

“Is there an available seat in the quietest part of the study lounge?”. We deployed

21http://mpc.ece.utexas.edu/mygander
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this application for 15 weeks and made it publicly and freely available to members

of the UT Austin community. myGander was downloaded a total of 124 times and

processed 705 queries issued by 63 devices. Next, we overview the myGander mobile

application and use it conduct a user study on the UT Austin campus.

4.4.1 The myGander Mobile Application

Figure 4.18 shows the core features of myGander. The Android application

hosts an instance of the Gander Middleware within an Android service, which runs

in the background even when the application is not in use; this enables the device

to participate in responses to other users’ queries even with the device’s user is not

actively querying. The myGander search interface resembles a faceted browser—a

user poses a query by selecting options from a list to place contrainsts on fields

(as opposed to creating a freeform query, as in [119])—enabling a straightforward

mapping of search terms and constraints onto the constructs of a GanderQuery. As

such, this deployment of myGander is tailored to the particular application of it

(i.e., local search on a university campus); in this sense myGander is an application

layer on top of the Gander system described previously.

Searching for people. myGander users can input information about them-

selves (e.g., course schedule, current activity, nickname, student club affiliations).

This user input generates locally-stored datums created by pre-configured Data At-

tribute Graph hooks. We employ the Funf Open Sensing Framework22 to attach

contextual information (e.g., device location and Wi-Fi fingerprint) to each user-

22http://code.google.com/p/funf-open-sensing-framework
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Figure 4.18: The myGander mobile application.

input datum via Context Attribute Graph hooks, creating connections between the

Context and Data Attribute Graphs as described in Section 4.3.2. This data repre-

sents the dynamic collection of searchable people data.

Searching for places and services. In pervasive computing spaces, data

is generated by humans as well as sensors embedded in the environment. In an

effort to investigate Gander’s performance in digitally accessible environments, we

have instrumented two heavily frequented spaces in an engineering building with

various sensors. Specifically, in a coffee shop and a study lounge, we have deployed

various sensors that allow us to sense noise level, occupancy, queue length, available

resources and to make this sensed information available to Gander queries. Because

many of our deployed sensors are severely energy and memory constrained, they

must report their sensory data to Sensor Gateways (similar to [119]), which each host

an instance of the Gander Middleware and are configured with contextual and ap-

plication data hooks to aggregate and convert raw sensor readings (e.g. noise=156)

into structured datums with semantic values (e.g., noiseLevel=chatter).
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4.4.2 User Study

To assess the user-perceived quality of Gander’s spatiotemporal sampling

methods, we conducted a user study on the UT Austin campus using the myGan-

der mobile application. Our study involved 88 participants; 29 were compensated

with credit to an online store. The compensated group of users, who are respon-

sible for the bulk of our reported results, consisted of 5 females and 24 males; 17

undergraduate and 12 graduate students. We report results from two weeks of use.

We educated our group of compensated users on the type of information

available in myGander and then encouraged them to integrate the app into their

activities on campus. When created, each myGander query was assigned a query

protocol chosen uniformly at random23. To assess the user-perceived quality of a

Gander query processed with a particular protocol, users were prompted with an

in-application pop-up upon performing a search and receiving results24. Specifically,

the user was presented with the Gander results for his query alongside the ground

truth results in a separate tab and asked to rate the Gander results in terms of three

user experience (UX) metrics: (i) their utility, (ii) confidence in the Gander results,

and (iii) overall satisfaction with the Gander results using the following prompts:

(i) How relevant, useful, and of interest are these results?

(ii) How confident are you in these results’ accuracy?

(iii) Overall, how satisfied are you with these results?

23We do not report user study results for the gossip protocol since our scenario did not elicit dense
enough data for the gossip protocol’s greedy heuristic to leverage spatiotemporal correlations.

24A user is prompted for ratings only when ground truth is available.
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Rating each metric constituted labeling it as: significant, some, none, don’t-know,

service-error. Users were also encouraged to provide an explanation of their rat-

ings in a comment field. During two weeks of use, 404 myGander queries were

issued, 42 of which were rated by the user (2 by non-compensated users). With

respect to the manner of query processing, of the rated queries, 16 were issued with

the flooding protocol, 14 with the random protocol, and 12 with probabilistic.

Table 4.3: Metrics of UX ratings.

R(Up) ω function definition

Rm,Rel(Up) ωm,Rel =


significant : 1

some : 0.5

none : 0

Rm,Prec(Up) ωm,Prec =


significant : 1

some : 1

none : 0

To compute the overall user-perceived performance of Gander with respect to

our UX metrics M , where M is the set {utility, confidence, satisfaction}, we adapt

an averaging function introduced in [122] originally used to compute the expected

utility of Web search result social annotations. Let U be the set of all user-rated

queries and Up be a subset of queries u ∈ U issued with query protocol p ∈ P (P is

the set {flooding, random, probabilistic}). We define Rm(Up) as the average

rating of each query in U issued with query protocol p and rated per metric m ∈M

as:

Rm(Up) =

∑
u∈Up ωm(u)

|Up|

where ω : J→ R maps ratings J to [0, 1]. We employ the same ω variants introduced
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in [122], listed in Table 4.3. Rm,Rel(Up) is a relevance25 function that assigns a

graded score to each rating for metric m. Rm,Prec(Up) uses a binary scale and is a

measure of precision for m. For our evaluation we omit the 21.4% of don’t-know

and service-error ratings.
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Figure 4.19: myGander user experience metrics per query protocol.

Figure 4.19 shows the overall graded relevance (ωm,Rel(Up)) and binary pre-

cision (ωm,Prec(Up)) scored UX metrics per query processing protocol. Overall, our

users labeled their Gander search results with a utility relevance of 0.548, a confi-

dence relevance of 0.536, and a satisfaction relevance of 0.476, indicating that they

found their results slightly useful and were marginally confident in them, but not

entirely satisfied. However, each individual query protocol influences utility, confi-

dence, and satisfaction in very different ways, as Figure 4.19 shows.

Figure 4.20 reveals system level performance metrics elicited in our user

study. We use the same DCG and completeness metrics defined in the previous

25Note that the use of the term “relevance” here is different from the relevance metric defined
for a Gander query.
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Figure 4.20: myGander query and result
set system metrics.

section. We also measure a Gander

query’s coverage as the proportion of tar-

get area devices that the query reached

and distribution as the number of net-

work hops from the query issuer the

query traveled. Because our deploy-

ment network is relatively sparse, many

queries travel very low numbers of hops

(often 0). Finally, the dwell time is a

measure of the amount of time the user

spends observing a set of results.

Figure 4.19 shows that users ex-

pressed significantly more confidence in

results gathered using the random proto-

col. Due to the relatively small scale of

our university campus deployment, none

of the processing styles varied signifi-

cantly in terms of network-imposed over-

head; the larger scale performance eval-

uation in [102] provides a more detailed study of performance metrics at scale. How-

ever, even in this small scale study, for approximately the same cost, the random

protocol achieved the highest distribution and coverage (Figure 4.20(b)), yielding

results with the greatest DCG (Figure 4.20(a)). This higher DCG is a reflection of
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the greater number of results gathered by the random style. Interestingly, random

queries produced the least complete results, but users spent longer looking at these

search results on average (Figure 4.20(c)). In other words, though random did not

acquire the best results, users were more confident (and marginally more satisfied)

being given more results.

Another trend evident in Figure 4.19 is that the flooding protocol con-

sistently elicits the greatest difference between the graded (ωm,Rel(Qp)) and binary

(ωm,Precl(Qp)) averaging metrics, indicating that users were more “lukewarm” about

flooding search results in comparison to results from the random or probabilistic

protocols. This same disparity is mirrored in the flooding search results’ measured

DCG and completeness (Figure 4.20(a))—flooding achieved the most complete

results with respect to the ground truth, but not the greatest number of results,

further indicating that users’ opinions become more ossified when presented with

more results, but not necessarily better results.

4.4.3 Lessons Learned

A significant amount of effort went into building, deploying, and servicing

the user study application described in Section 4.4.1 and used in Section 4.4.2. This

undertaking involved creating and deploying a non-trivial array of sensors, creating

a usable application, and recruiting and maintaining a user base. We encountered

(and survived) many of the well-known pitfalls of such a deployment, including live

bug resolution, maintaining user attention (e.g., through gift card competitions),

etc. In addition to these, our study comes with several additional lessons more
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specific to this style of pervasive search in the IoT.

It is well known that having a critical mass of users is important, if only for

generating “buzz” about the application or service being evaluated. In the specific

context of the Gander search engine, we found this to be even more important, since

the users themselves are the generators of much of the data (e.g., “who is around me,

now” is an important aspect to many of the Gander queries). By using a controlled

space, we aided the Gander search engine with some pre-installed sensors to measure

things like the occupancy of the study lounge instead of relying on users’ devices

for this information. Also on the user side, we discovered that asking a user about

his perception of the quality of a Gander search result required communicating the

“ground truth” to the user for comparison to the Gander query result. To achieve

this, we had to develop a back-end monitor that was omniscient with respect to all of

the data in a Gander deployment. This is counter to the general Gander philosophy

that users are in control of their own data and data is not stored centrally; however,

it was necessary for a user-centered evaluation.

On a related note, we did address users’ desires to control their own data and

not release potentially private information to be stored centrally. This results in the

need for local data storage at each device. We addressed this through a combination

of the tuple space abstraction (which has been widely used in previous work) and our

expressive graph based data structures, which enable drawing relationships between

datums even when those datums are not co-located.

Finally, from the inception of Gander, we have advocated a device-to-device

paradigm for query resolution. However, current device capabilities largely prevent
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these direct device-to-device connections (often for very fundamental and sound

security reasons), so the Gander architecture is designed to work around these lim-

itations by utilizing the cloudlet-based proximal discovery service. The use of the

cloudlet-based discovery service also enabled a significantly more expressive evalu-

ation, resulting in the strong conclusions we are able to draw about the potential

for the Gander search engine to satisfy users’ queries of the here and now using

data collected from the here and now. We maintained a strict separation of con-

cerns between the query resolution protocol and the query handling mechanisms

of the Gander search engine; given this design, we expect that switching between

cloudlet-based query resolution and device-to-device query resolution will be sim-

ple to support within Gander, particularly given the increasing interest in emerg-

ing technologies (e.g., Bluetooth Low Energy and WiFi Direct) that enable direct

device-to-device connections.

4.4.4 Related Work

Gander diverges from the vision of the Internet of Things [4, 12,36,83,119],

which focuses on getting all “things” connected across the globe. Instead, we focus

on locally accessible data data that is inherently transient and difficult to centrally

index. Furthermore, a key component of Gander is the ability to tailor the appli-

cation, for example by providing rules that govern the creation and maintenance of

spatiotemporal trajectories or by defining the structure of queries posed over the

here and now. This style of “user” programming has been explored in similar do-

mains. Extensions to Open Data Kit [63], e.g., ODK Sensors [14], provide program-
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ming constructs that simplify access to external sensors connected to smart devices.

Dandelion [87] and Gadgeteer [166] have similar motivations. These approaches are

at a lower abstraction layer; they represent a way to make data available to the

Gander data model. Once that data is available, we focus on how to maintain and

move it and how to enable expressive search over it.

The challenges of large-scale deployments of wireless sensor networks and

ubiquitous computing systems are frequently cited: these require significant expense

and engineering effort. However, as pointed out in [143], real-world deployments

and in situ evaluations provide context for analysis and uncover design issues; such

studies can have a significant impact on usability. To date, most pervasive com-

puting deployments are small-scale, relying on a handful of users in a laboratory

setting. Through evaluations of real-world physical deployments of sensor networks,

researchers have made several discoveries, including best practices for successful

deployment [10, 65], cross-layer approaches to model-driven data acquisition to re-

alize the promise of reduced energy consumption [139], and the use of event-based

routing structures that utilize the unpredictable dynamics of the environment [88],

and many others. Our final research aim also recognizes the value of large-scale

evaluations and deployments to evaluate our data generation and search algorithms

and builds upon the lessons learned from large-scale wireless sensor network deploy-

ments. We couple these real-world evaluations with a principled use of simulation

studies to benchmark, evaluate, and study our approaches to data generation and

search in pervasive computing environments.
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4.5 Research Contributions

This chapter makes the following contributions:

Research Task 7: We introduce a concrete mobile software framework that pro-

vides high-level programming constructs for expressing data-dependent appli-

cation behavior in the form of reactive rules (Section 4.1). As a use case, we

present the design and implementation of a mobile application created using

the framework that distributes user content in a device-to-device fashion across

multiple network hops. The framework abstracts away low-level implementa-

tion details regarding network communication and data serialization enabling

developers to focus on the data-driven behavior unique to their application.

Research Task 8: We create and benchmark a resource discovery service for cloudlet-

supported pervasive computing environments (Section 4.2). Similar to a cloud

computing resource, a cloudlet [152] hosts services that perform the expensive

computations required by a mobile application. Unlike the cloud, however,

cloudlets are inherently within close physical proximity to the mobile devices

that utilize their resources. We leverage cloudlets to implement proximal dis-

covery for applications targeting densely populated and highly mobile physical

spaces.

Research Task 9: We provide the Gander Framework, an extensible software frame-

work to support data sharing and query processing in pervasive computing

environments (Section 4.3). This framework reifies the formal foundations of

spatiotemporal data provenance, Gander’s data model, and search protocols
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and provides the systems support necessary to evaluate and deploy Gander

within real world pervasive computing applications.

Research Task 10: We evaluate the system- and user-level utility of the Gander

search engine in a real-world deployment (Section 4.4). Our ultimate goal

is to provide expressive support for real applications to share and search for

data in pervasive computing spaces. This task aims to explore the impact of

our approaches under realistic conditions that reflect the complexity of the

rapidly changing physical environment at a large scale, which would otherwise

be difficult to observe in controlled simulated settings.

4.6 Chapter Summary

In this chapter, I described the implementations and evaluations of a device-

to-device data sharing middleware, a hyper-localized resource discovery service for

cloudlet-supported environments, and the Gander middleware, all integral compo-

nents of the Gander application substrate. Our data sharing middleware directly

employs our implementation of explicit spatiotemporal data provenance (Section 3.1)

and supports data sharing and resource discovery via proximate mobile device inter-

actions. The middleware can easily be deployed on an Android device and integrated

into existing mobile applications. Rather than embed data-dependent sharing be-

havior throughout an application, our middleware simply requires an application

define and register rules with the middleware that autonomously govern what data

is shared, when, and how often. Our resource discovery service targets heavily pop-

ulated environments possessing an infrastructure of distributed cloudlets, dedicated
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computing resources that support pervasive computing applications in a nearby

physical region. We benchmarked the discovery service’s performance varying its

operating parameters and evaluated the system-level cost-quality tradeoff versus a

cloud-hosted service. Next, I introduced the Gander application framework and

described its architecture and operation. The framework’s programming interface

makes the specifics of the mode of network interaction entirely transparent to the

user, allowing search evaluation across both mobile ad hoc network interactions and

through localized cloudlets. Finally, we created the Gander middleware, a concrete

implementation of the Gander framework, and used it to create and deploy the

myGander mobile application on the UT Austin campus. We used this mobile ap-

plication to conduct a user study of 88 participants to assess the performance and

user-perceived utility of Gander in a real world setting. Our evaluation demon-

strates the feasibility of Gander for spatiotemporal search and explores the relative

merits of various Gander query processing protocols with varying spatial and tem-

poral correlation of data and different user requirements. These results provide

evidence that enable tailoring of spatiotemporal search deployments to specific data

dynamics, application situations, and user preferences.
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Chapter 5

Conclusion

In this dissertation, we explored formal and practical techniques with the

overarching aim of helping users and applications share, reason about, and search

for digital data as they move through a densely populated and rapidly changing

information space. In emerging pervasive computing spaces the sheer density of

data-sensing devices means that data is “everywhere;” the user’s physical surround-

ings are a rich and dynamic landscape of contextual digital information. There

are numerous mechanisms designed to support the nuts and bolts of distributing

messages in a device-to-device fashion, even over multiple hops, and even some of

these mechanisms are “content aware” (i.e., they distribute the data based on its

own semantics). However, few approaches tap into the contextual history of the

shared data to distribute additional information. We introduced a formal model

that enriches application data with its spatiotemporal provenance—a history of its

explicit (coordinate-based) and implicit (context-based) location over a lifetime of

device-to-device propagation. This dissertation presented formal constructs for in-

ferentially deriving global knowledge from spatiotemporal provenance, which we

demonstrated may drive runtime decisions that significantly improve routing proto-

cols in dynamic networks. We implemented software components and an extensible

middleware that reify these formal mechanisms and enable developers to share and
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query spatiotemporally-enriched data using a rule-based programming paradigm.

Sharing and searching for hyper-localized information are fundamental tasks

in emerging pervasive computing environments. Existing systems that have enabled

query-driven access to localized data provide only capabilities for searching rela-

tively static data instead of the inherently ephemeral data of pervasive computing

spaces, which cannot be easily indexed outside of the immediate environment. To

address these needs we introduced the Gander conceptual model, which provides a

foundation for precisely defining and reasoning about search of the here and now,

in the here and now. In this dissertation, we used this conceptual model to explore

the impact of the intrinsic spatial and temporal correlations of data in pervasive

computing spaces on the performance of in situ query processing.

Finally, this dissertation presented the Gander application substrate, which

provides a comprehensive implementation of the Gander search engine and both ad

hoc and cloudlet-based support for device-to-device interaction. This final aim ad-

dresses the concrete systems directions necessary to evaluate the formal foundations

proposed by the first two aims and to deploy Gander within real world pervasive

computing applications. We presented the Gander mobile middleware, which we em-

ployed to create the myGander mobile search system and conduct a real-world user

study on the UT Austin campus. Our results demonstrate the feasibility of Gander’s

distributed in-network query processing protocols for spatiotemporal search and pro-

vide evidence that will guide development of adaptive query processing mechanisms

in future work.
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5.1 Future Research Directions

This dissertation opens the door for many exciting future research possibili-

ties. The following is a selection of potential future work enabled by this dissertation.

5.1.1 Distributed Dynamic Network Algorithms and Protocols

This dissertation presented a model of causal data provenance using the

time-varying graph formalism [20] for dynamic networks. We used our model to

demonstrate methods of augmenting opportunistic routing protocols that reduce

transmission redundancy and improve delivery precision. The design and analysis

of distributed algorithms and protocols for time-varying graphs is in general an open

research area. We envision many more routing-based applications of spatiotemporal

provenance. For example, many mobile social network routing mechanisms [80] at-

tempt to exploit regularities in human behavior with predictive mechanisms [174].

Spatiotemporal data provenance could be directly employed to detect such behav-

ioral regularities beyond the scope of mobile nodes’ immediate perception (i.e., be-

yond a single network hop). Our contextual history annotations could also be used

to detect nodes with high social centrality [69] or regularity [98], both in a data-

dependent (with respect to particular data) or data-agnostic fashion, which have

been shown to be effective routing relays. The formal constructs necessary for these

mechanisms are already available in our provenance model.
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5.1.2 Improving Network Resource Allocation with Contextual History

In this dissertation, we strictly address distributed applications of spatiotem-

poral data provenance. However, a global (centralized) view of a network’s contex-

tual history could be an exceptionally valuable analysis tool. For example, in future

cellular networks users’ devices may periodically report their (anonymized) collected

transmission networks to a centralized resource in the cloud. A network operator

may combine devices’ partial views to form a historical global view of network state

and data propagation, which may be mined for patterns and regularities that assist

the operator in more effectively allocating network resources and triggering collabo-

rative device activities (e.g., offloading [142]). From a research perspective, a global

view of users’ and data’s causal history would foster investigations of time-varying

human interaction [66] and information diffusion [57] at a scale never before stud-

ied. Massive-scale studies like these may be crucial in solving routing and entity

discovery challenges [144] in the envisioned Internet of Things.

5.1.3 Adaptive Contextual Query Processing Mechanisms

This dissertation introduced the Gander search engine, whose distributed

query mechanisms are sensitive to data’s spatial and temporal interdependencies.

We envision that data’s spatiotemporal annotations may be further exploited to

drive adaptive query processing protocols that are able to react on-the-fly to dynamic

contextual relations between data. For example, a query should be able to express

a festival attendee’s search request for a beverage vendor near a food stand with

a short line. The constraints expressed within this query represent dynamic real-
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world contextual relationships (e.g., a beverage vendor may only be transiently

nearby a food stand; food stands’ queue lengths fluctuate over time). Altering the

order in which the contextual relationships are examined can significantly impact

the cost of query resolution within the current operational environment without

significantly impacting the intent of the user’s query. An exciting research direction

extending the Gander search engine would be exploiting spatiotemporally-enriched

data to design adaptive query processing and optimization techniques for dynamic

networks. Similar approaches have been studied in wireless sensor networks [5,6,92],

which use heuristics to generate alternative query plans and select the lowest-cost

plan; query plans are typically represented as graphs that describe ordered sets of

relational algebra operations for resolving a query, and structural properties are

exploited to optimize the query. However, the problem becomes significantly more

challenging in dynamic networks where nodes are mobile. This research direction

would directly build on the formal models of spatiotemporal data provenance, which

could be married with novel adaptive query mechanisms.

5.2 Dissertation Summary

In summary, this dissertation addresses formal and practical challenges of

sharing, reasoning about, and searching spatiotemporal data in emerging pervasive

computing environments. We introduce models of historical data provenance, which

annotate data with spatial and temporal semantics that illuminate how data moves

within dynamic networks. Our solutions represent the first investigation into the

design and use of spatiotemporal data provenance for mobile and pervasive com-
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puting applications. Building on these models we design rule-based programming

constructs to lower the development barrier for applications that require transpar-

ent access to hyper-localized digital data. We introduce a novel distributed search

engine whose query processing mechanisms resolve searches about a user’s environ-

ment directly with the environment using ad hoc device interactions and cloudlet

infrastructures. We provide a concrete software framework that reifies our models

of data provenance and pervasive search and conduct a user study that evaluates

the effectiveness and perceived utility of our approach. As mobile users’ physical

spaces become increasingly digitally-accessible, applications will require high-quality

support for resolving users’ hyper-localized information needs. This dissertation rep-

resents a significant step in the evolution of device-to-device networked systems and

paves the way for new and exciting research ideas that can be designed leveraging

our novel models and built using the Gander framework.
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