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Polymer Nanocomposites (PNC) are a new class of materials characterized

by their large interfacial areas between the host polymer and nanofiller. This

unique feature, due to the size of the nanofiller, is understood to be the cause

of enhanced mechanical, electrical, optical, and barrier properties observed

of PNCs, relative to the properties of the unfilled polymer. This interface

can determine the miscibility of the nanofiller in the polymer, which, in turn,

influences the PNC’s properties. In addition, this interface alters the polymer’s

structure near the surface of the nanofiller resulting in heterogeneity of local

properties that can be expressed at the macroscopic level.

Considering the polymer-nanoparticle interface significantly influences
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PNC properties, it is apparent that some atomistic level of detail is required

to accurately predict the behavior of PNCs. Though an all-atom simulation

of a PNC would be able to accomplish the latter, it is an impractical ap-

proach to pursue even with the most advanced computational resources cur-

rently available. In this contribution, we develop (1) an equilibrium coarse-

graining method to predict nanoparticle dispersion in a polymer melt, (2) a

dynamic coarse-graining method to predict rheological properties of polymer-

nanoparticle melt mixtures, and (3) a numerical approach that includes inter-

facial layer effects and polymer rigidity when predicting barrier properties of

PNCs.

In addition to the above, we study how particle and polymer char-

acteristics affect the interfacial layer thickness as well as how the polymer-

nanoparticle interface may influence the entanglement network in a polymer

melt. More specifically, we use a mean-field theory approach to discern how

the concentration of a semiflexible polymer, its rigidity and the particle’s size

determine the interfacial layer thickness, and the scaling laws to describe this

dependency. We also utilize molecular dynamics and simulation techniques

on a model PNC to determine if the polymer-nanoparticle interaction can

influence the entanglement network of a polymer melt.
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Chapter 1

Introduction

Polymer nanocomposites (PNC) are a relatively new class of composite ma-

terial synthetically made first in the late 1980s by Toyota, who ultimately

created a timing belt case with superior mechanical properties and enhanced

resistance to thermal expansion [1, 2]. Since this discovery, a general defini-

tion for PNCs has been adopted: a polymer, polymer blend, or copolymer

embedded with nanofillers that have at least one dimension on the length

scale of nanometers. These nanofillers can be spherical nanoparticles, carbon

nanotubes, nanoplatelets, or nanofibers.

There is no shortage of scientific evidence claiming PNCs with out-

standing mechanical [3, 4, 5, 6, 7], electrical [8, 9, 7], thermal [7, 10], barrier

[11, 12, 13, 14, 7, 10], and optical [15] properties. Typically, such enhancements

in properties manifest at low loadings of nanofiller. This is in contrast to tra-

ditional polymer composites (TC) where usually the filler (having dimensions

on the order of microns) is required at much larger loadings to accomplish

desired property augmentation. Needless to say, the use of PNCs would be

advantageous in many applications. However, the synthesis and processing of

PNCs are not trivial. In fact, the main culprit preventing the use of PNCs is
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the agglomeration of the nanofillers, which generally leads to poor property

enhancements, if any at all. Such affinity between nanofillers can even occur

at low loadings [16]!

Experimentalists have fortunately developed methods to increase the

miscibility of the nanofiller in the polymer. For instance, the surface of

nanofillers have been altered by chemically attaching aliphatic chains to make

it more hydrophobic and, thus, more likely to disperse [17, 18, 19, 20]. An-

other strategy is to apply an external field (stress, electrical, etc.) to pro-

mote the orientation of nanofillers in the host polymer [4, 21, 22]. There are

even instances when the two constituents naturally interact favorably with

one another to generate nanofiller dispersion [23]. These strategies have led

to many advanced materials, though have not allowed for any general meth-

ods or rules for creating a PNC material with its maximized enhancements at

an optimal, low-weight loading. Fortunately, this provides an opportunity for

computational methods. Towards this, a method for predicting the nanofiller

dispersion and, then, the PNC properties is a prerequisite.

One objective of this thesis is to develop a coarse-graining method to ac-

curately predict nanoparticle dispersion in a polymer melt. The use of different

length scales here is required due to the length scales spanned by the PNCs.

Specifically, the atomistic interactions at the interface between nanoparticle

and polymer govern the dispersion of the nanoparticle at an intermediate

length scale (mesoscale) between atomistic and macroscopic. Moreover, the

incorporation of such atomistic interactions in a full simulation of a PNC is not
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pragmatic with the computational resources currently available nor is a theo-

retical framework able to accomplish such a feat for a realistic system. Thus,

our idea is to extract the essential structural information of the polymer at

the atomistic scale to use at the mesoscale so that a full PNC simulation is

permissible and nanofiller dispersion is predictable. We accomplish this by de-

veloping a coarse-graining procedure for polymer-nanoparticle melt mixtures

that accurately takes into account the polymer-nanoparticle interaction and

accurately predicts nanoparticle dispersion while requiring less computational

resources.

The second objective of this thesis is to predict, from a mesoscopic res-

olution, the rheological response of a PNC to oscillatory strain. This is a chal-

lenge considering that experiments effect such strains at a macroscopic scale.

Fortunately, simulations of material under strain can be accomplished at the

mesoscale due to previously developed simulation techniques [120, 121, 123].

However, the challenge here is what dynamic information needs to be trans-

lated from the atomistic scale to the mesoscale to account for dynamical effects

at the mesoscale. This was achieved by utilizing coarse-grain interactions

derived from our equilibrium coarse-graining procedure for predicting PNC

structure alongside dissipative forces in dissipative particle dynamics (DPD)

simulations. These dissipative forces were linked to characteristic relaxation

times that can be derived from atomistic simulations.

The third objective of this thesis is to shed light on the impact the

polymer-nanoparticle interface has on particular microscopic and macroscopic
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quantities. This interface does not only affect dispersion of the nanoparticle,

it also influences how the polymer packs near the surface of the nanoparticle.

This leads to variations in local properties of the polymer relative to the bulk

and is termed the interfacial layer. This is an important aspect of PNCs due to

their large interfacial area (relative to TCs), which can result in large volume

fractions of heterogeneity that, ultimately, can have a pronounced effect at

the macroscopic scale. Furthermore, this heterogeneity in local properties can

also be caused by confinement of the polymer if the nanofiller concentration

becomes high enough, effectively “overlapping” the interfacial layers in the sys-

tem. This latter point is a critical one, as we discovered that this interfacial

layer overlap can also influence nanoparticle dispersion. It is clear the interfa-

cial layer as well as the polymer-nanoparticle interface are key characteristics

of PNCs, and are critical to understand their effects.

In the following sections, we go into more detail about our objectives

that are achieved in the following chapters. Also, some experimental evidence

is provided for the aspects we include in our overall multiscale approach for

PNCs. Furthermore, we discuss some of the questions that will be addressed

in the rest of the thesis.
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1.1 Determining Nanofiller Dispersion and Rhe-

ological Properties in Polymer Melts

The surface chemistry between the two constituents of a PNC can promote

or inhibit the nanofiller’s miscibility at equilibrium. The phase behavior of

the PNC can thus be altered by a chemical adjustment of this interface. For

instance, Fornes et al. found that by attaching aliphatic chains to the surface

of montmorillonite (MMT) and dispersing this altered MMT in Nylon, the dis-

persion of the MMT could be tuned [17]. More specifically, the altered MMT

surface included site attachments of varying number of alkyl chains, effectively

changing the grafting density. This detail is important because they discov-

ered that the dispersion depended nonlinearly on the number of alkyl chains

attached per site. Such a result indicates that nontrivial surface chemistry can

play an important role in determining macroscopic properties. This finding

as well as others [18, 19, 20, 23] verifies that accounting for the polymer-

nanofiller interaction is required to accurately predict nanofiller dispersion at

equilibrium.

There has been theoretical work on the phase behavior of PNCs, helping

to elucidate what are the optimal conditions for exfoliation of nanofillers. To

accomplish this, polymer reactive interaction site method (PRISM) theory

[24, 25, 26], self-consistent field theory (SCFT) [27, 28, 29, 30], and field-

theoretic [31] approaches have all been used. However, such studies have

been restricted to generic systems that are useful for elucidating physics, but
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of no direct help when predicting properties of realistic PNCs. In addition,

simulations have also been reduced to such model systems when studying PNC

dispersion due to computational constraints [32].

One of the goals of this thesis work is to develop a coarse-graining

method that includes the effects of the polymer-nanoparticle interaction on dis-

persion. In this effort, atoms are grouped into coarse-grained units to be repre-

sented at a more efficient, but less detailed, mesoscopic resolution. More specif-

ically, coarse-grain units composing the polymer chain will represent groups of

monomers and the nanoparticles embedded within this coarse-grain polymer

are represented as spherical units. Our coarse-grain method generates the ef-

fective polymer-polymer, polymer-nanoparticle, and nanoparticle-nanoparticle

interactions for this new, coarse description of the PNC. The original polymer-

nanoparticle interaction at the atomistic level will be captured in the method

with which we coarse-grain these interactions. One challenge to overcome is

the multicomponent nature of the PNC and the order in which to coarse-grain

the above three interaction types. Also, it is not apparent what is the op-

timal choice for the number of atoms to be grouped as a coarse-grain unit.

Moreover, it is not guaranteed that the resulting coarse-grained interactions

be applicable for different nanoparticle volume fractions. Most importantly,

the simulations, from which the atomistic information is gathered for input to

our coarse-grain method, must be practical in size to execute in a reasonable

amount of computational time. More obviously, the coarse-grained interaction

must in the end save on required computational resources.
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Another strategy for dispersing nanofillers includes how the mixture

is processed. This can be accomplished by applying a stress [4] or magnetic

[21, 22] field to the PNC. Such an approach is likely to work if the nanofillers

remain kinetically trapped in a dispersed state. While this is an important

challenge we do no directly address this issue in this work. However, we

do augment our coarse-graining method by developing a way to incorporate

dynamical effects occurring at the mesoscopic length scale. We aim to validate

our method by ensuring that coarse-grained simulations can reproduce the

rheological properties of a reference model PNC.

1.2 Interfacial Layer Effects in Polymer Nanocom-

posites

Not only does degree of nanofiller dispersion directly influence PNC properties,

but the interfacial layers around the nanofillers can also become influential at

the macroscopic scale. What is more, this layer most likely has a gradient

in local properties. The range of this layer can be influenced by the particle

and polymer size, polymer and particle concentration, polymer rigidity, and

thermodynamic conditions.

Direct experimental measurement of interfacial layer properties is very

difficult to obtain. There has been experimental proof of a different phase

near nanoparticles by Berriot et al.[33], who revealed a third glassy phase

encompassing nanoparticles. In the latter study, they also assumed a gradient
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in glass transition temperature near the surface of the nanoparticles, which

allowed them to accurately model the mechanical response displayed by rubber

embedded with silica nanoparticles [33]. There have been more studies where

an interfacial layer has been assumed to explain property trends [34, 35].

While it is difficult with experiments to understand what is exactly

occurring at the molecular level near the polymer-nanofiller interface, com-

putational and theoretical approaches do provide insight to this. One and

two nanofillers have been simulated in a polymer to determine the structural

aspects of the polymer near the surface and in confinement [36, 37, 38]. Simi-

larly, theoretical work has taken a similar one or two nanofiller approach, but

have been restricted to model systems of PNCs [39, 40, 41]. Such approaches

provide insight not only on the polymer structure at the interface, but also the

range of the perturbation away from the nanofiller’s surface and a basis from

which local properties can be derived from the local structure. In addition,

the information obtained from the above approaches have also been fed into

continuum models and theories to predict PNC properties [36, 42]. However,

these approaches do not attempt to accurately account for nanofiller arrange-

ment, as typically homogeneous dispersion is assumed and not determined

from any input from the atomistic scale.

A goal of this thesis is to provide insight into what influences interfacial

layer characteristics as well as how this can affect certain microscopic and

macroscopic quantities. We utilize a mean-field theory approach to discern

the dependence of how the interfacial layer’s thickness depends upon particle
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size, polymer rigidity, and polymer concentration. With this approach, we

were able to obtain a scaling dependency of interfacial layer thickness on the

latter list of parameters. This approach also provides the local density profile

of this interfacial layer, which was used as input to a numerical approach we

develop to predict barrier properties of PNCs. We investigate how interfacial

layers and their overlap can influence the diffusion of a penetrant in model PNC

membranes. Finally, we look at how the polymer-nanoparticle interface, and

its resulting interfacial layer, may play a role in determining the entanglement

length of a polymer melt.

1.3 Thesis Organization

Chapter 2: Many-body Interactions and Coarse-Grained Simula-

tions of Structure of Nanoparticle-Polymer Melt Mixtures

This chapter present a computational approach for coarse-grained simulations

of nanoparticle-polymer melt mixtures. We first examine the accuracy of an

effective one-component approach based on a pair interaction approximation

to polymer-mediated interactions, and demonstrate that even at low parti-

cle volume fractions, the polymer-mediated many-body interaction effects can

prove significant in determining the structural characteristics of mixtures of

nanoparticles and polymer melts. The origin of such effects are shown to

arise from the extent of polymer perturbations resulting from the presence of

the nanoparticles. To account for such effects, we propose a new simulation

approach which employs a coarse-grained representation of the polymers to
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capture the many-body corrections to the polymer-mediated pair interaction

potentials. The results of the coarse-grained simulations are shown to be in

good quantitative agreement with the reference simulations. The method de-

veloped in this article is proposed as a tractable approach to coarse-grain and

effect computer simulations of atomistic descriptions of polymer-nanoparticle

systems.

Chapter 3:Predicting Rheological Properties of Polymer-Nanoparticle

Melt Mixtures

The cause of rheological property enhancements can be attributed to the

large interfacial area of PNCs that can influence the dynamics of the poly-

mer near the vicinity of the nanofiller. Taking this into account, we develop a

method which augments our equilibrium coarse-graining scheme that predicts

nanofiller dispersion by appropriately preserving the dynamical effects that oc-

cur at the mesoscale. The challenge here is what atomistic information needs

to be translated to the mesoscale. We propose that the relaxation time of the

coarse-grained segments comprising the coarse-grained polymer nanocompos-

ite should match the relaxation of the center-of-mass of the group of monomers

it is intended to represent. We account for two types of relaxation times in

this method: (1) relaxation time in the bulk polymer and (2) relaxation time

near the surface of the nanoparticle.

Chapter 4: Equilibrium Characteristics of Semiflexible Polymer So-

lutions Near Probe Particles
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A numerical analysis of the mean-field theory for the structure of semiflex-

ible polymer solutions near spherical surfaces is presented in this chapter.

This framework is used to study the depletion characteristics of semiflexible

polymers near colloids and nanoparticles. Our results suggest that the de-

pletion characteristics depend sensitively on the polymer concentrations, the

persistence lengths and the radius of the particles. Broadly, two categories of

features are identified based on the relative ratios of the persistence lengths to

the correlation length of the polymer solution. For the limit where the correla-

tion length is larger than the persistence length, the correlation length proves

to be the critical length scale governing both the depletion thickness and the

curvature effects. In contrast, for the opposite limit, the depletion thickness

and the curvature effects are dependent on a length scale determined by an in-

terplay between the persistence length and the correlation length. This leads

to nontrivial (numerical) scaling laws governing the concentration and radii

dependence of the depletion thicknesses. Our study also highlights the man-

ner by which the preceding features rationalize the parametric dependencies

of insertion free energies of small probes in semiflexible polymer solutions.

Chapter 5: Influence of Interfacial Layers upon the Barrier Proper-

ties of Polymer Nanocomposites

In this chapter, we present a numerical approach which: (i) Uses a microscop-

ically based polymer model to determine the characteristics of such interfacial

layers; (ii) Embeds the so-determined interfacial characteristics into a numer-

ical homogenization procedure which accounts for the overlap of interfacial
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layers (approximately) and multibody interactions (exactly). The numerical

approach is used to elucidate the influence of polymer matrix stiffness, particle

sizes and particle volume fractions upon the penetrant diffusivity properties

of PNCs.

Chapter 6 On Entanglements in Polymer Nanocomposites

In this chapter, an investigation is presented of the effects of polymer-nanoparticle

interaction and confinement on the entanglement length of a polymer melt.

Experimental studies have shown that nanoparticles can influence mechanical

properties of which this alteration can be explained by a change in the num-

ber of entanglements [43, 44] though this explanation is not conclusive [45].

In an attempt to rationalize this behavior a computationally efficient model

polymer nanocomposite is simulated with molecular dynamics to obtain equi-

librium structures from which an entanglement length is calculated. The latter

calculation is performed via primitive path analysis developed by Everaers and

co-workers [46, 47]. The polymer-nanoparticle interaction is varied in an at-

tempt to deduce its influence on the entanglement length of the polymer melt.

Also, the nanoparticle volume fraction is changed to induce confinement effects

in the system to help elucidate their role in the entanglement network.
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Chapter 2

Many-body Interactions and

Coarse-Grained Simulations of

Structure of Nanoparticle-Polymer

Melt Mixtures

2.1 Introduction

Development of nanoscale multicomponent materials such as PNCs involves

an interplay of constituent selection, fabrication, processing and performance.

A key question in this regard is the manner in which the polymer-polymer,

polymer-filler, filler-filler interactions control the structure, dispersion features

and the properties of the PNCs. Interest in this issue arises from the fact that

experiments have unequivocally confirmed that the structural characteristics

of the fillers dispersed in the polymer matrix proves critical in controlling prop-

erty enhancements in PNCs. For instance, experimental studies have shown

the mechanical properties of PNCs filled with clay particles are correlated to

the degree of exfoliation or intercalation of fillers.[17, 48] Also, the barrier
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properties of PNCs containing clay platelets have been shown to be very sen-

sitive to the dispersion and orientation of the fillers. [20] Similarly, addition

of carbon nanotubes have been shown to dramatically enhance polymer con-

ductivities only upon the percolation of the filler in the polymer matrix.[8] It

is evident that an outstanding issue for achieving the potential of PNCs for

applications is to be able to apriori predict the structural characteristics of

the fillers dispersed in the polymer.[49, 50]

Theoretical models and computer simulations provide an attractive

means to address the interrelationship between the chemical details of the

polymer and the filler on the one hand and the macroscopic structure of the

filler and properties of the PNC on the other hand. Not surprisingly, a number

of theoretical contributions have already addressed many elements of this issue.

For instance, the polymer reference interaction site model (PRISM)[51, 52, 53,

54] has been used to study how polymers pack near a hard surface,[55] the effec-

tive interactions between nanoparticles,[56, 57, 39, 58] and the phase behavior

exhibited of nanoparticle-polymer mixtures.[24, 25] Density functional theories

(DFT) have also proved popular,[59, 55, 60] and have been used to study the

packing of polymers near surfaces and the interactions between nanoparticles

in polymer matrices.[61] On a more coarse-grained level, pioneering theoretical

research of Giannelis and Balazs has shed light on the important thermody-

namic features governing the structural state of nanofillers dispersed in poly-

mer matrices. Vaia and Giannelis used lattice-based models to suggest that an

interplay of polymer entropic and polymer-filler energetic factors determines

14



the equilibrium state of polymer-filler mixtures.[62, 63] Balazs and coworkers,

and other have used a combination of self-consistent field calculations and/or

density functional theories to investigate the interactions and phase behavior

of plate and rod-like particles in polymer melts and solutions, and delineated

optimal conditions for creating stable dispersed composites.[64, 65, 66, 29, 30]

Despite the insights derived from the above studies, successful use of

such developments have been limited due to the emphasis of only modeling the

physics on a coarse-grained scale.[67] Explicitly, in such models, the polymer

is typically modeled as a connected sequence of segments, where each segment

is understood to represent a collection of molecules or atoms.[68] Moreover,

the polymer chain is typically assumed to be flexible and behave as an elastic

spring or a Gaussian coil. The particle fillers in such models are represented

as hard spherical or anisotropic objects. Thus, the specific chemical identities

of the monomers and the fillers are ignored in these approximations. Instead,

simpler model interaction potentials are used to characterize the interactions

between segments of the polymer and the particle fillers. While insights derived

from such models are valuable, there is still a lack of theoretical methods by

which one can incorporate features relating to the detailed chemistry of the

polymer and its interactions with the fillers (and functionalizers, if any) to

predict their interplay in determining the state of dispersion of the nanofillers.

On the other hand, computer simulations coupled with accurate force-

field parametrizations[68] may provide a means to quantify the connections

between the chemical details of the different components and the filler dis-
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persion and property characteristics. However, such a detailed approach is

still not tractable due to the length and time scales which span many orders of

magnitude in PNCs. Because of this issue, fully atomistic simulations of PNCs

have been restricted to situations where there are only one[36] or two[37] fillers

in the polymer matrix. While these one or two filler simulations do provide

valuable insights into the local structure[36, 37] and dynamics[69, 70, 71, 72]

of the polymer near the fillers, direct information on the filler dispersion char-

acteristics is elusive in such approaches.

Many prior researchers have proposed and developed methods of coarse-

graining (CG) as a way to enable computer simulations to predict structure and

properties of materials while incorporating information at the atomistic level

of detail.[73, 74, 75, 76, 77] The idea behind such coarse-graining techniques is

to map atomistic (or finer resolution) systems onto a coarser resolution system

(i.e. a mesoscopic length scale) so as to facilitate simulations and/or models of

larger systems over possibly longer time scales and/or with less computational

resources. The main task in such coarse-graining schemes is to determine the

interactions between the mesoscale units such that they accurately capture the

interaction features of the corresponding units at the atomistic scale. Com-

monly, the latter is ensured by positing that the interactions at the mesoscale

level are chosen to either match the structural[74, 77, 78] or the thermody-

namic properties[79, 80, 81] or the forces[82, 83] between the corresponding

units at the atomistic scale. A variety of studies have detailed application

of the above-mentioned CG methods to simple fluids,[84, 78, 85, 75] poly-
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mer solutions,[86] polymer melts,[74, 87, 88, 89, 90, 91, 92, 93, 94, 95] and

lipids.[76, 96, 97, 80, 79, 98]

Unfortunately for PNCs, the body of work on coarse-graining techniques

is not as well-developed as it is for pure polymeric systems. Although some

preliminary steps have been taken towards developing multiscale methods to

link the filler-polymer interactions to the filler morphology in PNCs,[24, 99,

100] to our knowledge, no prior studies have examined the manner in which

the above coarse-graining ideas can be adapted or modified to address issues

specific to PNCs. Some issues specific to the PNCs are the following:

(i) PNCs are inherently multicomponent, and an outstanding question

is the manner (and even the order) in which the different interactions need

to be coarse-grained. Related to this feature is that the multicomponent na-

ture brings to fore several length (and time) scales, which include the size of

the fillers, the size of the polymers, the length scale over which the interfacial

effects of the fillers extend etc. An outstanding question is: what is the ap-

propriate length and time scale over which the physics can be coarse-grained

without losing accuracy on the properties of interest?

(ii) Another challenge involved in CGing PNCs is in deciding the min-

imal amount of atomistic simulations required to obtain the interactions at

the mesoscopic level. Current CG methods typically require structural infor-

mation from atomistic simulations at the same thermodynamic conditions as a

means for determining the coarse-grained interactions. For PNCs, this would

suggest effecting atomistic simulations at the same temperature, density of
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polymers and the volume fraction of fillers! Since such a task is intractable

for PNCs, it is of interest to explore if a more minimal CGed representation

derived by using atomistic simulations (containing at most one or two fillers)

can still accurately predict the structure of the PNC.

In this work, our objective is to develop a CG method for PNCs that (1)

can be parametrized using atomistic simulations; (2) accounts for the multi-

component nature of PNCs in a systematic manner; (3) requires only a minimal

amount of information as input from atomistic simulations; and (4) accurately

predicts filler dispersion using the mesoscale simulations. A crucial ingredient

in our work is the validation of the CG proposals by a direct comparison of ex-

act “atomistic” simulation results with results from CG mesoscale simulations.

However, since it is intractable to simulate a realistic atomistic description of

a PNC to perform such validation tests, we use a simpler system as our “atom-

istic” model, chosen such that the PNC simulations can be effected at both the

atomistic and the mesoscopic levels. Using such a model system, we address

the issues detailed above. By validating our algorithm in this chapter, the ap-

plication of this algorithm to a more realistic system (for which the atomistic

predictions cannot be obtained) is straightforward, though we do not attempt

this here. As a note, due to our choice of reference system, the algorithm may

have to be refined for realistic systems that have intramolecular interactions,

which may need to be rigorously accounted for.

Towards the above objective, we first examine the applicability of the

simplest CG approach for PNCs, viz., the use of a pair interaction potential
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based on an effective one-component approximation. In this methodology,

the polymer degrees of freedom are formally integrated out, and consideration

is restricted to the particle degrees of freedom which interact by polymer-

mediated forces in addition to their bare interactions. While the preceding

step can be effected in a formally exact manner[101] it is common to approx-

imate the polymer-mediated forces as a sum of pair interaction forces corre-

sponding to the polymer-mediated potential of mean forces (PMF) deduced at

the dilute limit of particle concentrations.[102] While such an approximation

renders computer simulations and modeling of PNCs tractable, our results

demonstrate that as a consequence of the influence of many-body interactions

this approximation fails for PNCs even at low volume fractions.

The above results are used to motivate the new CG approach proposed,

which involves a mesoscale simulation involving the fillers along with a CG rep-

resentation of the polymer molecules. After discussing the algorithmic details

of the CG procedure, we present results exploring the robustness of the method

in predicting NP dispersion. Specifically, we seek to address the following ques-

tions: To what extent does the mesoscopic resolution affect the accuracy of the

NP dispersion prediction ? How sensitive are the coarse-grained interactions

and the predictions to the particle volume fraction ? How do NP-polymer

interactions influence the accuracy of particle dispersion predictions ? How

much computational time is saved upon implementing our CG method ? We

present results suggesting that the accuracy of our CG approach in predicting

NP dispersion is robust to NP loading, NP-polymer interaction, and meso-
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scopic resolution. In addition, our CG approach reduces computational time

by an order of magnitude compared to simulations of our “atomistic” system.

The outline of the rest of the chapter is as follows: Section 2.2 details

the model of our “atomistic” PNC. In Section 2.3 we present results regarding

the applicability of the effective one-component approach. Section 2.4 details

different algorithmic aspects of the CG procedure. Results from our coarse-

grained simulations are compared to the exact predictions in Sec. 2.5. We

conclude with a summary and outlook in Sec. 2.6.

2.2 Simulation details of the reference system

For reasons stated in the introduction, we use a simple model system for

our “atomistic” representation and henceforth denote this as our “reference”

system. This reference system is simple enough to allow for a measurement

of the filler structure, which can be compared with the predictions of the

coarse-grained scale to test for the accuracy of our proposed CG method. In

this model, the “atomistic” polymer is chosen as a bead-spring polymer and

the nanoparticle as a spherical Lennard-Jones (LJ) particle of different size

than the beads in the polymer. In our simulations, we fixed the polymer

chain length at N = 100, and for the pure polymer simulations the monomer

number density was set to ρ = 0.85 and the simulation box length was 16.03.

We used a finite extensible nonlinear elastic (FENE) bond potential to model

20



the intramolecular bonded interactions in the polymer,[103]

Ub(r) = −KR
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where we set K = 30. and R0 = 1.5. The monomer-monomer intramolecular

and intermolecular pairwise potentials (Umm) were chosen to be LJ interactions

of the form:
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, for r ≤ ∆+Rc, (2.2)

where σ and ǫ were set to unity, ∆ was set to zero, the cutoff Rc was fixed

at 1.12, and ULJ(r) is zero for r > ∆ + Rc. The NP-monomer interaction

(Unm) was also of the form specified by eq. 2.2 with σnm = 1 and ∆nm = 2.

However, ǫnm and Rc,nm were varied as a means to test the accuracy of CG

method to different polymer-nanofiller interactions. Specifically, we considered

the following different cases: (1) Weak attractive interactions : ǫnm = 2 and

Rc,nm = 2.5; (2) Strong attractive interactions : ǫnm = 4 and Rc,nm = 2.5; and

(3) Repulsive interactions : ǫnm = 2 and Rc,nm = 1.12. The NP-NP interaction

(Unn) was also chosen to be of the form of Eq. 2.2 with the parameters: ∆nn =

4, ǫnn = 2, σnn = 1, and Rc,nn = 1.12; this parameter choice results in the

NP radius (Rp = ∆nm + σ/2) to be 2.5. The thermal energy kBT and the

monomer mass (m) were both set to unity, while the NP mass was set to 125.

The NP volume fractions (φ = 4πNpR
3
p/3L

3, where L is the length of the

simulation box and was set to 23.17, and Np is the number of nanoparticles in
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the simulation) for these simulations were varied such that φ = 0.05, 0.10, 0.15,

or 0.20. The number of NPs in the simulation box for φ = 0.05 was 10, with the

number of chains being 100. From the latter PNC simulation specifications,

polymer chains were removed as NPs were added for higher volume fraction

simulations; this was done to keep the pressure near 5, which is what the

pressure was for the pure polymer simulation.

All MD simulations were performed in an NVT ensemble, and ac-

complished with LAMMPS (Large-scale Atomic/Molecular Massively Parallel

Simulator).[104, 105] All runs were long enough that the center of mass of the

polymer moved a few Rg, for both equilibration and production periods. For

the mesoscopic simulations, we also chose to utilize MD simulations to obtain

a measure of the equilibrium NP dispersion. This is an appropriate choice

since in this study no dynamic properties are being studied, and hence the

actual dynamics and the time scales are irrelevant.

2.3 Many Body Interactions and Accuracy of

Effective One Component Approach

In this section, we present results examining the validity of a common ap-

proach for coarse-graining PNCs, termed the “effective one-component ap-

proach.” This approach is based on integrating out the polymer degrees of

freedom to map the two component polymer-nanoparticle system to a one

component system of just the particles interacting with polymer-mediated in-
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teractions in addition to their original or bare interactions.[65, 66, 29, 30, 101]

At a formal level, such polymer-mediated interactions embody all levels of in-

terparticle interactions including pairwise interactions, three-body interactions

and higher order multibody interactions. However, it is common to simplify

such a framework further by an approximation which hypothesizes that the

structural characteristics of the particles in the PNC dispersion, even at finite

loadings, is determined by just the pairwise component of polymer-mediated

potentials of mean forces (PMF) deduced at the dilute limit of particle concen-

trations (i.e. between two particles immersed in the polymer matrix, denoted

henceforth as UPM
2 ).[100, 29] Such an assumption can be expected to be rea-

sonable when either (i) the influence of the third (or more) particles on UPM
2

is negligible; or (ii) configurations where three or more particles interact si-

multaneously within the range of UPM
2 occur only rarely. Since the range

of UPM
2 is expected to be of the order of correlation length of the polymer

melt matrix, the range of UPM
2 (r) is of the order of polymer monomer sizes in

polymer melts. Since in typical situations, the polymer monomers are smaller

than the particle sizes, one may speculate that the above assumption would

be applicable (due to condition (ii) above) except for very high loadings of the

particles.

The simplifications arising from the preceding assumption, if applica-

ble, are considerable. Computer simulations of PNCs where the polymers and

fillers are treated on an equal footing require the equilibration of both com-

ponents, making this approach almost intractable. In contrast, the preceding
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approximation allows the use of an effective “one-component” representation

in which the polymer-nanoparticle mixtures are reduced to one involving just

the particles interacting by an additional pairwise interaction arising from

polymer-mediated PMFs deduced at the limit of dilute filler concentrations.

Explicitly, by eliminating the polymer degrees of freedom (except for deter-

mining the PMFs for the dilute particle limit), such an approach renders sim-

ulations of the filler structural features feasible. Moreover, reduction to a one-

component particulate system also facilitates the use of liquid state and colloid

physics theories and approximations to shed light on the thermodynamics and

structure of the filler suspension.[29, 66, 65, 30, 61, 106, 86, 61, 100]

Since the above framework constitutes the “simplest” approach for

coarse-graining PNCs, in this work, we first examine the applicability of the

above assumption for the model system detailed in Section 2.2. To quantify the

accuracy of the one-component approach and the importance of many-body

interactions we compare two quantities:

(i) UPM
2 (r): The polymer-mediated PMF obtained at dilute particle

concentrations. These were determined by using configurations from a MD

simulation where the two NPs were fixed a distance r apart in an equilibrated

polymer melt. The (time) averaged polymer-NP force projected along the

interparticle axis was determined and was used to obtain the effective polymer-

mediated interparticle potential UPM
2 (r);

(ii) UMB
2 (r;φ): Defined as the “effective” interparticle pair potential,

which in a one-component approximation is capable of reproducing the struc-
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Figure 2.1: (a) and (c) pertain to the strongly attractive system and (b) and

(d) are for the repulsive system. (a) and (b) A comparison of UPM
2 (r) and the

volume fraction φ dependent UMB
2 (r;φ); (c) and (d) A comparison of gNN (r) at φ =

0.05 between the reference PNC system and that in the one-component approach

(indicated by the legend 2-body).

ture of the NPs dispersed in the polymer melt. The latter was determined

by simulations involving just the particles, where the interparticle interaction

potentials were iteratively refined (details of such iterative refinement proce-

dures are elaborated in the following section) such that the interparticle radial

distribution functions gNN(r) in such simulations match with that in the ref-

erence polymer-particle mixture.[74] Since gNN(r) depends on φ, UMB
2 (r;φ)

was determined by implementing the iterative procedure for different φ’s.

Shown in Figs. 2.1a-b (for the sake of brevity, we display results only

for the cases of strong attraction (ǫnm = 4 and Rc,nm = 2.5) and repulsion

(ǫnm = 2 and Rc,nm = 1.12)) is a comparison of UPM
2 (r) with UMB

2 (r;φ).
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As expected, both cases (strong attraction and repulsion) show UMB
2 (r;φ)

not varying much at high volume fractions (φ = 0.10 and 0.15) — a fact

consistent with the increased importance of excluded volume interparticle in-

teractions at higher loadings. More interestingly, both PMFs in Figs. 2.1a-b

differ considerably from their UMB
2 (r;φ) counterparts. Surprisingly, this dis-

parity is even seen at particle volume fractions as low as φ = 0.05, for which

it is expected that UMB
2 (r;φ = 0.05) ≈ UPM

2 (r); the latter results suggest

that multibody effects manifest in our reference system at extremely low vol-

ume fractions. For repulsive interactions (Fig. 2.1b) the deviations between

UPM
2 (r) and UMB

2 (r;φ) become more pronounced at higher volume fractions,

and the resulting increase in the first well-depth is suggestive of aggregated

particle structures not captured in UPM
2 (r). These discrepancies in the inter-

particle potentials are also reflected in a comparison of the actual gNN(r) and

the values predicted by using a one-component approach with the interparticle

potential UPM
2 (r) (Figs. 2.1c and d).

The origins of the above discrepancies and the implied importance

of many-body interactions may be understood by examining the range of

particle-induced perturbations of the polymer’s structure, and whether indeed

the length scales are much smaller than the size of the particles. Shown in

Figs. 2.2a-b are results for the polymer densities around the particles, from

which it can be seen that the polymer densities deviate from their bulk values

up to distances of the order of the particle sizes themselves. This feature is

expected to be generically true for the nanoparticle regimes where the particle
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Figure 2.2: Local polymer density profiles around a nanoparticle for (a)
strongly attractive and (b) repulsive cases.

sizes are typically only a few times the size of the polymer monomers.[39, 69] It

is evident that due to the size scale of such polymer-particle interfacial zones,

many-body overlap of such polymer perturbations can occur at extremely

low particle volume fractions — thereby explaining the results presented in

Figs. 2.1a - d.

2.4 Coarse-Graining Method

2.4.1 Rationale

As an outcome of the results of the preceding section, it is evident that sim-

ulations and/or models based on polymer mediated interparticle potentials

of mean forces cannot prove adequate for accurate prediction of the particle

structure characteristics. While simulations involving polymers and particles

on an equal footing does incorporate the influence of many-body interactions,

it is at the expense of being almost intractable for equilibration due to the wide
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spectrum of length and time scales. An outstanding issue is whether one can

devise a tractable methodology by which one can incorporate the influence of

many-body interactions in predictions of the particle structure characteristics

in PNCs.

To address the above issue, we propose a new methodology based on

the hypothesis that the polymer-mediated forces responsible for the particle

structure has two parts: (i) The polymer-mediated PMF, UPM
2 (r), which ex-

hibits features on the length scale of the polymer monomers (i.e. the correlation

length of the polymer melt); and (ii) The many-body corrections to UPM
2 (r),

which arises from the interfacial overlap of multiple particles. We hypothesize

that the latter exhibits variations only on length scales larger than the polymer

monomer sizes, and therefore to capture such effects, it would suffice to use a

CG representation of the polymer molecules.

Based on the above reasoning, our proposal for PNC simulations is to

directly incorporate UPM
2 (r) within the interparticle forces and use a coarse-

grained (CG) representation of the polymer molecules to correct for the many-

body interactions absent in UPM
2 (r). Incorporating UPM

2 (r) in such simula-

tions is a critical feature, since the polymer-mediated interaction effects man-

ifest on the length scale of polymer monomers and are not expected to be

captured accurately by the CG polymer representation. Since the range of

many-body interactions and particle sizes are usually at least a few monomer

diameters, a relatively coarse polymer representation is expected to suffice for

capturing the many-body interaction effects. This feature is expected to lead
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Figure 2.3: Schematic illustration of a blob and its representation in terms of
the monomers at the atomistic scale.

to sufficient acceleration of PNC computer simulations compared to that of

the atomistically realistic polymer representation.

Below we describe the details of implementation and validation of this

idea. The objective of this CG procedure is to map the reference system of

polymer and filler to a system of fillers along with coarse-grained polymers. To

effect this mapping, the interactions between CG polymer segments and the

polymer segment-filler interactions need to be deduced based on information

from the reference (atomistic) system. As a model for CG polymers, we use

a simple representation where a collection of monomers at the reference scale

(referred to henceforth as “blob”) is replaced by a single unit (referred to

henceforth as “segment”) at the mesoscale (see Fig. 2.3). We also use the

terminology “nanoparticles” (NPs) and “particles” respectively to identify the

fillers at the reference and the mesoscopic scales.
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2.4.2 Polymer-Polymer Interactions

The first step of our CG procedure quantifies the bonded and the nonbonded

segment-segment interactions. The interactions and the accuracy of the CG

representation is expected to depend on the resolution of the blob (see Fig. 2.3

for a depiction), defined in this study as the number of monomers per blob

(Nb). To explore the manner in which the resolution affects the predictions

of NP structure, in this work we explored four different choices for Nb: 2,

5, 10, and 50. We note that Nb = 50 corresponds to coarse-graining the

polymer as a “dumbbell.” The latter is included as a probe on the lim-

its of accuracy and resolution dependence of the coarse-graining procedure.

After adopting a specific choice for Nb, we used a “structure-matching” ap-

proach to coarse-grain the polymer such that it is represented by two new CG

interactions: bonded and nonbonded segment-segment interactions. Specifi-

cally, we determine the CG segment-segment bond interaction (Ubond) by con-

straining the segment-segment bond probability distribution Pss to match the

blob-blob bond probability distribution Pbb. In a similar manner, the CG

segment-segment nonbonded interactions (Uss) are determined by constrain-

ing the nonbonded segment-segment RDF (gss) to match the blob-blob RDF

(gbb).

To effect the above matching, MD simulations of a reference, bead-

spring polymer melt (having parameters stated in Sec. 2.2) is performed to

obtain Pbb and gbb. In characterizing the RDFs (and probability distributions)

involving the blobs, we defined the blob’s position at the center of mass of
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the monomers composing the blob. Following the analysis of this polymer

reference system, a CG simulation of a system of just polymers composed of

segments is performed. The initial “guesses” for the CG interactions for this

mesoscopic system are calculated from Pbb and gbb by a simple Boltzmann prob-

ability ansatz.[84, 89, 74] Specifically, the segment-segment bond interaction

was chosen as:

Ubond(r) = −kBT ln [Pbb(r)] , (2.3)

the segment-segment nonbonded interaction as,

Uss = −kBT ln [gbb(r)] . (2.4)

Ubnond was fit to a harmonic potential,

Ubond(r) = KH(r − RH)
2, (2.5)

and is used alongside Uss (which was instead represented in tabular form) to

define the CG simulation. Once the CG simulation is complete, results for Pss

and gss were obtained and compared to their reference counterparts to deter-

mine the error in the predictions of the polymer structure. For quantifying

the error in Ubond, we used the measure

ferr =

∫

[Pss,i(r)− Pbb(r)]
2dr, (2.6)

where i indicates the current iteration of a sequential set of CG simulations.
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Figure 2.4: A comparison of the atomistic blob-blob bond probability distribu-
tions with the segment-segment bond probability distributions resulting from
the initial guess for Ubond. The inset displays the harmonic bond potentials
Ubond for various resolutions (Nb = 2, 5, 10 and 50).

In all the cases and resolutions examined in our simulations, the initial “guess”

for Ubond produced a ferr of O(10
−2) or less, and hence was not updated further.

A comparison between Pss and Pbb is shown for Nb = 5 in Fig. 2.4. As can be

seen from the inset of Fig. 2.4, the CG bonded potentials become softer with

increase in Nb. The latter can be rationalized by noting that since the blob

represents the averaged positions of a few monomers, the blob-blob probability

distributions are expected to be softer relative to the corresponding monomer

distributions.

The error for Uss was determined using a definition similar to Eq. (2.6),

with however the bond probability distributions Pss and Pbb(r) replaced re-

spectively by the corresponding intermolecular segment-segment and blob-blob

RDFs gss and gbb. The error for the initial guess Uss was however much more
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significant than the error for the initial Ubond. To obtain a Uss that produces

the correct RDF, Uss was refined using a procedure commonly termed the

iterative Boltzmann inversion method,[74]

Uss,i+1(r) = Uss,i(r) + αkBT ln[gss,i(r)/gbb(r)], (2.7)

where i indicates the current iteration and α is a “pseudo time-step” that was

set to unity. In the above, Uss,i(r) and Uss,i+1(r) represent the intersegment

interactions at the end of steps i and i + 1 respectively, and gss,i denotes the

intermolecular segment-segment RDF at the end of step i. gbb(r) denotes the

“target” RDF corresponding to the intermolecular blob-blob distributions at

the reference scale. The above iterative procedure was effected until a conver-

gence ferr ∼ O(10−2) was achieved. Figure 2.5(a) illustrates the results of this

iterative process by displaying gss and Uss for the first and fourth iterations

for Nb = 5. Figure 2.5(b) depicts a comparison between the converged Uss

with the original monomer potentials for different Nb. Yet again, Uss is seen

to become softer with increasing Nb, a result which can be understood to be

a consequence of the possibility for the segments to interpenetrate.

2.4.3 Segment-Particle Interactions

As mentioned in the introduction of this paper, filler dispersion in PNCs has

been shown to be heavily influenced by the polymer-filler interactions. Thus,

an accurate representation of this interaction at the mesoscopic length scale is
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Figure 2.5: (a) Convergence of segment-segment RDF (gss) and (inset) inter-
action (Uss) for a resolution of five monomers per blob. The blob-blob RDF
(gbb), which is shown in black, was calculated from a MD simulation of bead-
spring polymers interacting with a pairwise potential Umm between monomers
shown in the inset with a black line. The other colored lines (red and green)
correspond to different iterations, and the plots are color coordinated to match
RDFs with the segment-segment potential that generated it. (b) Comparison
of mesoscopic segment-segment potentials derived via the iterative Boltzmann
procedure. Mesoscopic potentials are shown for different CG resolutions, i.e.
number of monomers per blob (Nb). Each mesoscopic potential was deemed
converged after ferr ∼ O(10−2). The black line is the monomer-monomer
potential and is provided for comparison.
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expected to be essential for capturing the filler structure in CG simulations. In

order to parametrize the interactions between the CG polymer segments and

the particle, again structure matching ideas were used.[107] Explicitly, the CG

segment-particle interactions were chosen by constraining the RDF of segment-

particle to match that of the blob-NP. This entailed simulating the reference

system with one NP in the polymer matrix, with the interactions between the

polymer monomer and NP chosen in the form specified in Sec. 2.2. This sim-

ulation was used to obtain the RDF between the NP and the blobs (gnb). The

coarse-grained particle-segment interaction (Ups) was determined by requiring

gps arising from a mesoscopic simulation of one particle in a CG polymer melt

to reproduce this target gnb. The intra and intersegment interactions for the

CG polymer were parametrized as detailed in Sec. 2.4.2. The initial guess for

Ups was chosen as the potential of mean force (i.e., Ups = −kBT ln [gnb(r)]),

and was then iterated upon with Eq. 2.7 with the appropriate subscripts sub-

stituted.

In Fig. 2.6, the results of the above iterative procedure are displayed

for two NP-monomer interactions: (a) Repulsion (ǫnm = 2 and Rc,nm = 1.12)

and (b) Strong Attraction (ǫnm = 4 and Rc,nm = 2.5). (Recall that we also

studied a Weak Attraction case, where ǫnm = 2 and Rc,nm = 2.5, which will

be referenced later but is not shown in Fig. 2.6.) The reference potentials for

these two cases are shown for comparison with their mesoscopic counterparts

for varying resolutions (Nb = 2, 5, 10, and 50). Similar to the segment-segment

interactions, the coarse-grained particle-segment interactions are seen to be
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Figure 2.6: Dependence of particle-segment potential on CG resolution and
its comparison to the corresponding NP-monomer potential. The black lines
correspond to NP-monomer interactions while the other colored lines represent
the particle-segment interactions at different resolutions for the case where the
nanoparticle-monomer interaction is (a) repulsive and (b) strongly attractive.

softer than the original NP-monomer interaction. The fact that the coarse-

grained potential also maintains somewhat of a hard repulsion is expected since

the identity of the particles remains unchanged and hence there is expected to

be a hard repulsion between the center of mass of the blob and the particles.

2.4.4 Particle-Particle Interaction

The third interaction to be included in the mesoscopic simulations is the

particle-particle interaction. Since the goal of our CG methodology is to

be able to “predict” the particle structure using CG simulations for situa-

tions where such information cannot be obtained from atomistic simulations,

a “structure-matching” approach to deduce the CG interparticle interactions

would not in general be feasible. On the other hand, since the NPs are them-

selves not being CGed, one may speculate that the particle-particle interac-
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tions in the mesoscale simulation should just match the corresponding refer-

ence interactions. However, such a hypothesis ignores the fact that due to the

coarse-graining of the polymer molecules, the polymer-mediated potential of

mean-force between the particles will differ between the reference and meso-

scopic scales. To illustrate this, in Fig. 2.7 we compare the polymer-mediated

potential of mean forces for the reference and CG polymer representations. To

determine the latter, we utilize configurations from a MD simulation where the

two particles are fixed in a CGed polymer melt a distance r apart. The bonded

and nonbonded segment-segment interactions Uss, Ubond, and the particle-

segment interaction Ups were chosen based on the parametrizations detailed in

the preceding sections. Subsequently, the averaged force projected along the

interparticle axis experienced by the particles due to the surrounding polymer

segments was obtained and used to determine the potential of mean-force.

From the results displayed in Figs. 2.7(a)-(b) it is seen that in the (a) weakly

attractive and (b) repulsive cases, the polymer-mediated interparticle forces

at the mesoscale level are substantially different from the reference level. Al-

though we do not display the same results for the strongly attractive case,

they display similar trends as the weakly attractive case.

The origins of the above differences can be understood by noting that

the magnitude and range of the polymer-mediated forces depend on the mag-

nitudes and ranges of both the polymer-polymer and the polymer-particle

interactions. As demonstrated in earlier sections, features of the CG interac-

tions arise on the scale of segment sizes, whereas in the atomistic simulations
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Figure 2.7: (a),(b) Polymer-mediated forces for different NP-monomer inter-
actions, length scale, and CG resolution. Plot (a) is for the weakly attractive
case and plot (b) is for the repulsive case. Each plot displays polymer-mediated
force from both reference and mesoscopic simulations. (c),(d) Particle-particle
RDFs from reference and mesoscopic simulations. Plot (c) is for the weakly
attractive case and plot (d) is for the repulsive case. Both plots are for a
NP volume fraction of 0.20. The CG resolutions shown are for Nb = 2 (red),
Nb = 5 (green), and Nb = 10 (blue) monomers per blob.
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the corresponding features arise on the scale of monomer sizes. Moreover, the

magnitudes of both the segment-segment and segment-particle interactions

are considerably weaker relative to the atomistic monomer-monomer and the

monomer-NP interactions. Not surprisingly, the polymer-mediated potential

of mean forces also become considerably mitigated with a CG polymer repre-

sentation.

Since such polymer-mediated forces (at the appropriate length scales)

play a crucial role in determining the overall structure of the nanoparticle

dispersion, it is evident that using a CG polymer representation in conjunc-

tion with just the original NP-NP interactions, would lead to inaccurate pre-

dictions for the particle structure characteristics. To demonstrate this, in

Fig. 2.7(c)-(d), we present results from a CG simulation where the correctly

parametrized polymer-polymer and polymer-particle interactions were used,

but the particle-particle interactions at the mesoscale were kept identical to

the original LJ interaction between NPs (Eq. 2.2). In Fig. 2.7, the reference

NP-NP RDF is plotted alongside the CG particle-particle RDF for two dif-

ferent Unm interactions: (c) weakly attractive and (d) repulsive. It is clearly

evident that inclusion of the CG polymer with the original NP-NP interactions

do not yield the correct RDFs at the mesoscale.

The above results highlight the physics underlying the CG approach

proposed in this work. Recall, that a key aspect of our approach is to use

the CG polymer only as a means to account for the many-body corrections to

polymer mediated forces. Explicitly, our idea was to incorporate the “exact”
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UPM
2 (r) in the coarse-grained simulation, and proposed that the CG polymer

would suffice to capture the influence of many-body effects absent in UPM
2 (r).

In this framework, the particle-particle interactions Upp(r) at a coarse-grained

level are to be adopted as:

Upp(r) = Unn(r) + UPM
2 (r)− UPM

2,CG(r), (2.8)

where Upp is the total interaction between particles a distance r apart. Unn(r)

denotes the NP-NP interactions in the reference system (Eq. (2.2)). UPM
2 (r)

denotes the polymer mediated potential of mean force obtained for the ref-

erence (“atomistic”) system. Finally, UPM
2,CG(r) denotes the polymer mediated

potential of mean force obtained for the CG system. The latter is included

to avoid double counting the CG particle-segment interaction forces which are

directly incorporated by using the CG polymer representation. In the fol-

lowing section, we present results examining the accuracy of our above CG

proposal (eq. 2.8) in predicting the particle structure characteristics of differ-

ent particle-polymer interactions and concentrations of the particles.

2.5 Results and Discussion

In order to validate the different aspects of the CG method proposed, we com-

pare the particle-particle RDFs provided from mesoscopic simulations to NP-

NP RDFs calculated from simulations of our reference system. To recall, Uss

and Ups were both determined by requiring the segment-segment and segment-

40



particle structure to match the corresponding blob-blob and blob-NP structure

of our reference system containing either no or just one particle. Moreover,

Upp was also obtained as the PMF at the infinite dilution limit of the particle

concentrations. Therefore, using gnn at finite volume fractions to quantify the

accuracy of our CG method is an appropriate procedure for validation of the

algorithmic details. We discuss our results for three types of NP-polymer inter-

actions: weak attraction (Fig. 2.8), strong attraction (Fig. 2.9), and repulsion

(Fig. 2.10). For each of these interaction types, we studied the following cases

for the particle volume fraction: (a) 0.05, (b) 0.10, (c) 0.15, and (d) 0.20.

2.5.1 Effect of nanoparticle loading

We first consider the results for the effects of particle loading and showcase the

results by considering the situation where there is a weak attraction between

NP and polymer (Fig. 2.8). It is seen that the predictions from the CGed

simulations quantitatively capture the oscillatory nature of the RDF as well

as improve upon the prediction of the first peak seen in the reference simula-

tions. There are minor discrepancies in the prediction of the first peak of the

RDF, but such errors become diminished as the volume fraction of the parti-

cles is increased. We recall that either ignoring the polymer-mediated forces

(see Fig. 2.7(c)-(d)) or not incorporating the CG polymer representation (see

2.1(c)-(d)) led to considerable error in predicting both the oscillatory nature

and the height of the peaks. Thus, the predictions of the CG approach can be

seen to be a significant improvement over the other predictions.
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Figure 2.8: Comparison of particle-particle and NP-NP RDFs for a weakly
attractive NP-polymer interaction for various volume fractions: (a) 0.05, (b)
0.10, (c) 0.15, and (d) 0.20. The black points are the NP-NP RDFs generated
by our reference simulations, while the red, green, blue, and orange points are
particle-particle RDFs from mesoscopic simulations at different CG resolutions
indicated in the legend.
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Figure 2.9: Comparison of particle-particle and NP-NP RDFs for a strongly
attractive NP-polymer interaction for various volume fractions: (a) 0.05, (b)
0.10, (c) 0.15, and (d) 0.20. The black points are the NP-NP RDFs generated
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indicated in the legend.
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Figure 2.10: Comparison of particle-particle and NP-NP RDFs for a repulsive
NP-polymer interaction for various volume fractions: (a) 0.05, (b) 0.10, (c)
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indicated in the legend. The insets show a zoomed in version of the RDF
comparison plot to display the prediction accuracy at longer distances.
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In comparing the volume fraction dependent RDFs for other particle-

polymer interactions (Figs. 2.9 and 2.10), it is evident that the trends seen

in Fig. 2.8 apply equally well for such situations. Moreover, the discrepancies

noted in the first peak in Fig. 2.8 become less significant for the other NP-

polymer interactions, suggesting that the CG simulations prove accurate in

capturing the interparticle structural effects for different polymer-nanoparticle

interactions even up to reasonably high volume fractions.

2.5.2 Dependence on nanoparticle-polymer interaction

Considering that the NP-polymer interfacial effects can dramatically influence

the manner in which the NPs are dispersed in a PNC (as can be seen by com-

paring Fig. 2.8(a) and Fig. 2.10(a)), it is important that our CG method be

robust to such variations. Comparing the RDFs displayed in Figs. 2.8-2.10,

it is evident that the quantitative accuracy of our CG simulations is insensi-

tive to the different polymer-particle interaction types studied. Indeed, our

CG method captures the structural characteristics for the situation where the

particles are well-dispersed (Fig. 2.8 and Fig. 2.9) as well as for the case where

the NPs exhibit an agglomerated structure (Fig. 2.10). The fact that these

disparate features can be accommodated within the CG approach is a conse-

quence of the incorporation of the polymer-mediated forces at the mesoscale.
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2.5.3 Influence of blob resolution on the mesoscopic length

scale

The CG blob units in this study varied from Nb = 2 to Nb = 50. Despite

the fact that the different interactions were sensitive to the blob resolution, it

is evident from the results displayed in Fig. 2.8, Fig. 2.9 and Fig. 2.10 that

for resolutions Nb = 2 − 10, there are no noticeable differences in accuracies

of the predicted NP structure. We believe that this feature is again a result

of the direct inclusion of the polymer-mediated forces UPM
2 at the mesoscale.

Interestingly, in Figs. 2.8 and 2.9, we observe that even an extremely coarse

resolution Nb = 50 is seen to enable quantitatively accurate predictions for

the attractive case. The latter corroborates our hypothesis that multibody

corrections are expected to vary on much larger length scales, especially for

well-dispersed systems such as for attractive polymer-particle interactions.

2.5.4 Transferability of Interactions

As mentioned in the introduction, CG schemes suffer from the drawback that

the CG interactions are typically only applicable to the thermodynamic con-

ditions at which they were derived. It is of interest to probe the impact of

such transferability issues upon our coarse-graining scheme, and specifically,

whether such issues are particle loading, polymer-particle interactions and/or

polymer resolution dependent.

To probe the transferability of the interactions, we applied our CG in-

teractions to different thermodynamic state points to test their sensitivity to
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temperature and density. This was completed by running the reference and

mesoscopic simulations at various temperatures while keeping all the interac-

tions the same as outlined above. More specifically, the reference system was

defined by the interactions detailed in Sec. 2.2 and the mesoscale simulations

were defined by the interactions deduced in Secs. 2.4.2- 2.4.4. (It should be

noted that the CG interactions were unaltered when utilized for these differ-

ent thermodynamic state points.) The accuracy of our NP structure predic-

tions was again determined by comparing the RDFs between particles at the

mesoscale and NPs at the reference scale. We explored the temperature and

density dependence by (1) fixing the density at 0.85 and setting T = 0.8 and

T = 2.0 (Figs. 2.11- 2.13) and (2) fixing the temperature at T = 1.0 and

setting ρ = 0.60 and ρ = 1.00 (Figs. 2.14- 2.16); for each set, two volume

fractions were investigated: φ = 0.05 and φ = 0.20.

To explore the temperature sensitivity of the CG interactions we set T =

0.8 and T = 2.0, separately, and varied the interaction potential between the

polymer and particle. The results for the weakly attractive case is presented

in Fig. 2.11, the strongly attractive case in 2.12, and the repulsive case in 2.13;

each figure displays the temperature and volume fraction associated with the

simulations and all coarse-grained simulations were held at resolution of Nb =

5. Fig. 2.11 and Fig. 2.12 show that the CG interactions accurately predict

the NP structure for T = 2.0, but not as well for T = 0.8. In contrast, for the

repulsive case (Fig. 2.13) this trend is opposite; the lower temperature shows

better results. Whereas the former result can be explained as a consequence
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for repulsion between NP and polymer.

50



0

2

4

6

8

ref
CG: N

b
 = 10

5 6 7 8

r

0

2

4

6

g nn
, g

pp

5 6 7 8 9

(a) ρ = 0.6, φ = 0.05 (b) ρ = 0.6, φ = 0.20

(c) ρ = 1.0, φ = 0.05 (d) ρ = 1.0, φ = 0.20

Figure 2.14: Density comparison of particle-particle and NP-NP RDFs for
weak attraction between NP and polymer.

51



0

5

10

15

20

25

30

ref
CG: N

b
 = 10

5 6 7 8

r

0

2

4

6

8g nn
, g

pp

5 6 7 8 9

(a) ρ = 0.6, φ = 0.05 (b) ρ = 0.6, φ = 0.20

(c) ρ = 1.0, φ = 0.05 (d) ρ = 1.0, φ = 0.20

Figure 2.15: Density comparison of particle-particle and NP-NP RDFs for
strong attraction between NP and polymer.

52



0

10

20

30

40

50

ref
CG: N

b
 = 10

4 5 6 7

r

0

10

20

30

g nn
, g

pp

4 5 6 7 8

(a) ρ = 0.6, φ = 0.05 (b) ρ = 0.6, φ = 0.20

(c) ρ = 1.0, φ = 0.05 (d) ρ = 1.0, φ = 0.20

Figure 2.16: Density comparison of particle-particle and NP-NP RDFs for
repulsion between NP and polymer.

53



of the fact that at higher temperatures the polymer-mediated interactions are

less important since thermal energy and repulsive interactions tend to be the

predominant structural determinent, we do not have an explanation for the

latter results and believe it to be fortuitous.

The influence of density on our NP structure predictions was investi-

gated by simulations at ρ = 0.60 and ρ = 1.00. These results are given at

a resolution of Nb = 10 for different polymer-particle interactions: weak at-

traction (Fig. 2.14), strong attraction (Fig. 2.15), and repulsion (Fig. 2.16).

From the displayed results, it is evident that the NP structure predictions are

very sensitive to density changes in the PNC system, and that our CG scheme

is not able to capture such changes. Indeed, for the low density case, a long

range structure is predicted in reference RDFs which contrasts with the re-

sults for the reference simulations. In contrast, the higher density reference

system exhibits longer range structure than predicted from our coarse-grained

simulations. In hindsight, such results are not wholly surprising considering

the sensitive dependence of the polymer-mediated interparticle forces upon the

overall polymer density.

We summarize that the intention of this portion of our study was not

to develop a rigorous scheme for ensuring the transferability of the potentials.

Rather, our motivation to explore the sensitivity of the CG interactions to

temperature and polymer density changes. In this regard, our results do point

to the CG interactions being more sensitive when applied at different den-

sities than different temperatures. Also, though all CG resolutions are not
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explored, it is expected that different resolutions will show similar trends as

the resolutions investigated here.

2.5.5 Reduction of Computational Resource Require-

ments

The main goal of CG is to reduce (relative to a full atomistic simulation of

the system at a finite concentration of particles) the amount of computational

resources required to simulate a system while still keeping intact certain prop-

erties of the system. In the previous sections, we have already discussed the

manner in which the latter was accomplished. In this section, we briefly com-

ment on the computational advantages derived in using the coarse-grained

approach. Explicitly, to simulate our reference simulation in parallel on 16

processors took approximately 48 hours. In contrast, the mesoscopic simula-

tions needed only 5 hours on a single processor. A second implicit advantage

to our CG scheme was that it requires at most a reference simulation involv-

ing two NPs fixed in a polymer matrix — which is considerably more feasible

than simulating a fully atomistic PNC. In fact, such two-particle simulations

for much more realistic atomistic potentials have already been achieved, sug-

gesting that our methodology can be translated directly to such systems.[37]
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2.6 Discussion and Outlook

In this chapter, a coarse-graining method was developed with an aim to

accurately predict NP dispersion in PNCs. The CGing procedure involved

mesoscale simulations of NPs dispersed in a CG representation of the polymer

matrix. The mapping of the reference (“atomistic”) scale to the mesoscale was

accomplished by (1) requiring that mesoscale polymer-polymer and polymer-

particle interactions reproduce (at a predetermined resolution) the polymer

structure in the bulk and near the NP surfaces; and (2) including the exact

polymer-mediated interparticle interactions from the reference level. The CG

method introduced and tested on PNCs in this study is shown to accurately

predict NP structure while being robust to the changes in NP loading and

NP-polymer interactions. We were able to (1) reduce the computational time

required to predict the NP structure by an order of magnitude and (2) reduce

the most computationally expensive input of our CG method to an atomistic

simulation containing only a polymer melt and two nanoparticles.

The approach proposed in this chapter was motivated by demonstrating

the influence of polymer-mediated many-body interactions upon the particle

structure characteristics in PNCs. We note that the influence of many-body

interactions has been demonstrated earlier in the context of dilute polymer

solutions.[86, 108] In such studies the variation of both UPM
2 (r) and its many-

body corrections occur on the length scale of the correlation length of the

solution which corresponds to the size of the polymer coils in the dilute con-

centration limit. The melt situation considered in our study contrasts with the
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above in that the correlation length is expected to be of the same scale as the

monomer size. In such situations, one would typically expect the many-body

effects to not be relevant until dense volume fractions of particles. However,

we provided evidence for the non intuitive result that even in the melt situ-

ation, many body effects can indeed be significant in influencing the overall

structure of the nanoparticles. More surprisingly, such effects were shown to

be relevant at extremely low volume fractions of particles!

Along similar lines, we note that earlier work by Bolhuis et al. for

mixtures of colloid-(dilute) polymer solution mixtures uses a methodology su-

perficially similar to the approach proposed in this work.[109, 108, 110, 111,

112, 107, 41, 86] Explicitly, they use a “soft-colloid” CG representation of the

polymer for addressing the thermodynamics of the mixture. In our notation,

this is equivalent to a case where each polymer molecule is coarse-grained to

a single degree of freedom. However, an important difference in this earlier

work is the absence of UPM
2 (r) in the mesoscale simulations. This relates to

the fact that in a (dilute) solution the correlation length of the polymer solu-

tion is of the order of the radius of gyration of the polymer (Rg). Hence, all

polymer scale effects, including the polymer-mediated interparticle potentials

of mean forces, arise on the scale of Rg. Whence, coarse-graining the polymer

on the scale of Rg and using a soft-sphere representation suffices to capture,

even with the uncorrected particle-particle interactions, the influence of the

polymers upon the particle structural characteristics. In contrast, in our sys-

tem of polymer melt, the correlation length of the polymer matrix and the
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features of UPM
2 (r) occur on the scale of the monomer sizes. So, any coarse-

graining of the polymer which does not correct the interparticle interactions

would necessarily miss effects arising from the polymer-mediated interactions

(as was demonstrated in Figs. 2.7(c)-(d)).

The main focus of this work was to develop a minimal CG scheme by

which the nanoparticle structural characteristics at finite loadings could be

deduced by using atomistic information involving at most one or two par-

ticles in the polymer melt. While we demonstrated the robustness of our

procedure for different polymer-particle interactions and particle loadings, a

related question was the transferability of such interactions to other ther-

modynamic conditions. Strictly speaking, the CG interactions derived are

expected to be only applicable at the thermodynamic conditions for which

it was derived.[113, 114, 115, 116, 117, 118] Indeed, our investigation of the

CG interactions over a range of densities and temperatures follows this rule.

The instances where we did see the CG interactions be applicable to other

thermodynamic conditions can be merely explained as fortuitous.

Although this study was restricted to a simplistic model of bead-spring

polymer embedded with LJ NPs, the methods that comprise our CG approach

have been previously shown to work well for fully atomistic polymers. Thus,

we are hopeful that our CG method would be applicable to an atomistically

detailed representation of the PNCs with the same level of accuracy shown

here. We point out that in a more realistic representation of a PNC, additional

detailed intramolecular interactions may be required; for instance, alongside
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bond interaction, angle and torsional interactions may be necessary to produce

the same accuracy we see in this study. We note that the approach proposed

here can also be wrapped into property prediction approaches which require

particle structure as an input (see Chapter 5). Moreover, with appropriate

matching of time scales, our method can potentially be extended to investigate

the dynamical properties of PNCs. More generally, the ideas demonstrated in

this chapter may provide a means to incorporate many-body interactions in the

simulation of other particle containing complex fluids where a coarse-grained

representation of the permeating fluid may be used as a means to correct the

potential of mean-forces deduced in the dilute limit.
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Chapter 3

Predicting Rheological Properties of

Polymer-Nanoparticle Melt Mixtures

3.1 Introduction

The addition of nanofillers into polymers can create an enhancement in the

rheological response of the nanocomposite [45, 43, 44]. Moreover, this compli-

cated response has the ability to influence the way the nanofillers are arranged.

In this chapter, we explain a method that augments the equilibrium coarse-

graining method explained in Chapter 2 to include the dynamical effects at the

mesoscopic resolution. To determine the validity of our method, we compare

a reference system (the same used in Chapter 2) simulated with molecular

dynamics with a CGed system simulated with dissipative particle dynamics.

This comparison is realized by comparing each length scale’s stress response.

Specifically, an oscillatory shear is applied to both the reference and CG sys-

tems and the storage (G′) and loss (G′′) modulus are compared. We find upon

using the method explained in this chapter that these moduli are predicted

semiquantitatively with CG DPD simulations
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3.2 Simulation Details of Reference System

For reasons stated in the introduction of Chapter 2, we use a simple model

system for our “atomistic” representation and refer to it as our “reference”

system. This reference system is simple enough to allow for a measurement

of the storage and loss moduli, which can be compared with the predictions

for the same quantities from our mesoscopic simulations of the CGed PNC.

Such a comparison will elucidate the accuracy of the extension proposed here

(denoted as dynamic CG method) to the previously elaborated equilibrium

CG method. We use the same reference system in Chapter 2, namely, a bead-

spring polymer interacting with Lennard-Jones particles of different size. We

do highlight here the details of the polymer-nanoparticle interactions since

they are of importance in this study. However, polymer-polymer and particle-

particle interactions are the same as described in Chapter 2. The nanoparticle-

monomer intramolecular and intermolecular pairwise potentials (Unm) were

chosen to be LJ interactions of the form:

ULJ(r) = 4ǫ

[

(

σ

r −∆

)12

−
(

σ

r −∆

)6
]

, for r ≤ ∆+Rc, (3.1)

where σ = 1, ∆ = 2, and ULJ(r) is shifted so that it is zero at Rc and for

r > ∆ + Rc. To vary the monomer-nanoparticle interaction we study three

cases: (1) weak attraction, Rc = 2.5 and ǫ = 2; (2) strong attraction, Rc = 2.5

and ǫ = 4; (3) repulsion, Rc = 1.12 and ǫ = 2. The NP volume fraction

was determined in the same manner as Chapter 2 and was varied such that
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φ = 0.05 and φ = 0.15.

To apply an oscillatory shear to our reference system, we begin with an

equilibrated configuration of our reference PNC and perform non-equilibrium

MD (NEMD) simulations in LAMMPS [105, 104]. Specifically, a Nose/Hoover

thermostat is coupled with the SLLOD equations of motion [119], and the sim-

ulation box is tilted with a specified frequency (ω) having a max deformation

of 10% of the simulation box length. The frequency is defined by ω = 2π/Tp,

where Tp is the period of strain oscillation and was set to 100, 500, 1000, and

5000. The rest of the simulation parameters (temperature, simulation box

length, etc.) remain unchanged from our reference system in Chapter 2. From

these simulations, we measured the stress as a function of time (σ(t)) of the

system and calculated the storage (G′) and loss (G′′) moduli:

G′ =

∫ npTp

0
sin(ωt)σ(t)dt

λ0
∫ nTp

0
sin2(ωt)dt

(3.2)

and

G′′ =

∫ npTp

0
cost(ωt)σ(t)dt

λ0
∫ nTp

0
cos2(ωt)dt

, (3.3)

where λ0 is the max strain (10%), t is time, and np is the number of oscillations

periods. The results for G′ and G′′ obtained from this method were used to

validate the predictions of these moduli from our DPD simulations of CG

PNCs.
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3.3 Simulation Details of Coarse-Grained Sim-

ulations

We utilized Dissipative Particle Dynamics (DPD) [120] to simulate our CG

PNC system to properly conserve momentum when CG segment units of the

chain collide with other CG segments or particles. Such collisions are inelastic

and DPD is built to take into account this transfer of internal energy upon

collision. Moreover, DPD has already been successfully applied to model PNC

systems [121, 122].

In general, all DPD particles experience a total force (F) that includes

contributions from three distinct forces,

F =
∑

i

(

Fc
i + FR

i + FD
i

)

, (3.4)

where Fc
i is the conservative force, FR

i is random force, and FD
i is a dissipa-

tive force. The conservative forces can be obtained from the CG interactions

we derived in Chapter 2 and here we stick to a resolution of on CG seg-

ment on a CGed polymer chain representing 10 monomers. The random force

is a stochastic force with a functional form determined by the fluctuation-

dissipation theorem (see Ref [121] for the functional form used in this study).

The dissipative force is to account for the inelastic collisions occurring at this

CGed length scale. Specifically, the CG segments comprising the CGed poly-

mer chain experiences a velocity dependent dissipative force acting along the

vector defined by its center-of-mass and the other object’s (segment’s or parti-
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cle’s) center-of-mass. The particle, however, experiences the latter plus a rota-

tional dissipative force (this concept is borrowed from Ref [122]). Both velocity

dependent and rotational dissipative forces are characterized by a single fric-

tion factor (γ). In particular, we are interested in linking the segment-segment

(γss) and particle-segment (γps) friction factors to a dynamic quantity, which

can be derived from atomistic (or in our case reference) simulations. How this

is accomplished is detailed below.

After ensuring the CGed PNC was equilibrated and gave the same tem-

perature and pressure as our CG simulations in Chapter 2 1, an oscillatory

strain was applied to the system. To accomplish this, a nonequlibrium method

is used which adds a force to the equations of motion in the x-direction and

utilizes Lees-Edwards Boundary condition [123]. The frequency (ω) applied to

our simulations are the same as our reference simulations. Though the dynam-

ics of such CGed systems will inherently be faster than our reference system,

such a choice for ω is acceptable since by utilizing our dynamic CG method

(detailed below) time is rescaled appropriately.

3.4 Dynamic Coarse-Graining Method

As mentioned in the previous section the PNC is described by three forces.

The conservative force is derived by a coarse-graining method that has been

proven to accurately predict the equilibrium dispersion of spherical particles

1The simulation box was varied so that the pressure of the CG simulations in Chapter 2
could be reproduced. This resulted in simulation box lengths of our CG simulations to be
slightly different (±1) than our reference system.
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in a polymer melt where the particle-polymer interaction can be varied from

repulsive to attractive (see Chapter 2). While the details are not repeated in

this chapter, we do mention that the aforementioned method ensures that the

polymer’s atomistic structure in the bulk and near the particle inclusions are

reproduced at the mesoscale as well as includes the potential of mean force

that incorporates particle structural fluctuations occurring at a monomeric

resolution.

Here, we explain the dynamic coarse-graining method that augments

our previously developed equilibrium coarse-graining method. We link the

dissipative (an in turn the conservative) forces to atomistic quantities. (Such

an approach is akin to the approach we used for the conservative forces in the

fact that the mesoscopic description is derived from the atomistic resolution.)

Specifically, the frictional parameters of the dissipative forces are related to

the relaxation time of the blobs at an atomistic resolution. Two relaxation

times are calculated from reference simulations here: (1) τbb, the relaxation

time of blobs in a purely polymer melt simulation and (2) τnb, the relaxation

time of blobs near the surface of a nanoparticle. Both relaxation times are

obtained from the self-intermediate scattering function (Is(q, t)),

Is(q, t) =
1

N

〈

∑

j

eiq·rj(t)

〉

, (3.5)

where q is the wave vector, rj(t) is the blob’s center-of-mass displacement as

a function of time (t), and 〈..〉 indicates an ensemble average. The relaxation

times were extracted at a given q when Is(q, t) is equal to 0.1. We use the
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Figure 3.1: Self-scattering function for blobs in a polymer melt obtained from
reference simulation. Is(q, t) is given for each polymer-nanoparticle interaction
type.

“interfacial layer” thickness (Li), determined from the valley of the first peak

of the particle-blob radial distribution function, to obtain the wave vector (or

length scale) q = 2π/Li at which this relaxation time is extracted. A plot of

Is(q, t) for blobs in a polymer melt reference simulation is given in Fig. 3.1

with the various curves indicating different length scales determined by the

interfacial layer thickness for each polymer-particle interaction.

To determine the relaxation time of the blob near the nanoparticle sur-

face, we used Eq. 3.5 but tracked the blob’s center-of-mass displacement (rj(t))

in a different manner. Specifically, we only track the blobs that are within the

interfacial layer thickness and their motion in the plane that is normal to the

initial position vector of the blob. The plot of this scattering function is given

in Fig. 3.2, and we can see that Is(q, t) is of exponential form like the bulk
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Figure 3.2: Self-scattering function for blobs near a nanoparticle obtained
from a reference simulation. Is(q, t) is given for each polymer-nanoparticle
interaction type.

Interaction Type Li τbb τnb

Weak Attraction 1.65 14.9 15.5
Strong Attraction 1.50 11.9 16.7
Repulsion 1.75 18.8 24.9

Table 3.1: Blob relaxation times in bulk and near a nanoparticle for various
polymer-nanoparticle interactions.

measurements. The interfacial layer thicknesses for each interaction type as

well as the associated blob relaxation times in the bulk and near a nanoparticle

extracted from Fig. 3.1 and Fig. 3.2, respectively, are given in Table 3.1.

We utilize the knowledge of the above blob relaxation times from refer-

ence simulations to determine the corresponding friction factors for our DPD

simulations of the CGed PNC. Namely, we determine the segment-segment

(γss) and particle-segment friction factors (γps). To determine γss, we run

DPD simulations of the pure CGed polymer for arbitrarily chosen segment-
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Figure 3.3: Segment relaxation time in bulk CGed polymer as a function of
segment-segment friction factor.

segment friction factors, and subsequently determine Is(q, t) for the segments

with the same method used for the blobs in the reference simulations. A plot of

τss as a function of γss is shown in Fig. 3.3, which clearly shows that these two

quantities are linearly related and this relationship is provided in the plot. We

use this linear relationship as well as τbb provided in Table 3.1 to calculate the

values for γss for each polymer-nanoparticle interaction type. Subsequently,

we proposed a simple relationship between the ratio of blob relaxation times

near the nanoparticle and in bulk to the ratio of the friction factors of the

segment near the particle and in the bulk,

τps
τss

=
γps
γss

. (3.6)

The values for γss and γps are provided in Table 3.2 for the different polymer-
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Interaction Type γss γps

Weak Attraction 153.2 159.6
Strong Attraction 118.7 165.6
Repulsion 157.5 208.6

Table 3.2: Blob friction factors for different polymer-nanoparticle interaction
types.

nanoparticle interaction types studied.

3.5 Results and Discussion

Now that the connection between the DPD friction factors for the segment and

the relaxation times of blobs from reference simulations has been clarified, we

now show results of the storage modulus (G′) and loss modulus (G′′) resulting

from using these friction factors. Specifically, we compare theG′ andG′′ results

from reference simulations to those predicted from DPD simulations.

The G′ results for a strong attraction between monomer and particle

are shown in Figs. 3.4-3.5 while the data for a repulsive monomer-particle

interaction are shown in Figs. 3.6-3.7. Fig. 3.4 shows a quantitative match

between ref and CG systems for a particle volume fraction of 5%, however,

for φ = 0.15 in Fig. 3.5 the match is much less quantitative. This trend is

opposite for the repulsive case; G′ results for φ = 0.05 (Fig. 3.6) are less

accurate than φ = 0.15 (Fig. 3.5). The inconsistent matching mentioned here

can be attributed to a lack of averaging G′ calculations over different initial

equilibrated trajectories as well as number of periods. Specifically, only one

initial equilibrium configuration was simulated for each CG data point, and the
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Figure 3.4: A comparison of storage modulus (G′) predictions for reference and
CGed PNC simulations (φ = 0.05) with a strong attraction between monomer
and particle.

lower frequencies were only averaged over approximately 10Tp after a week of

simulation time. Thus, we suggest that averaging over many initial different

configurations to calculate G′ may improve the matching between reference

and CGed systems.

The G′′ results given in Figs. 3.8-3.10 are more quantitative in matching

the CG simulations to the reference simulations. G′′ results for attractive

monomer-particle interaction are given in Fig. 3.8 and Fig. 3.9 for φ = 0.05 and

φ = 0.15, respectively. For a monomer-particle repulsion, the G′′ comparison

is shown in Fig. 3.10 (φ = 0.05) and Fig. 3.11 (φ = 0.15). As expected, the G′′

results show the worst match across length scales at lower ω, which is a result

of lower number of periods to average over when calculating G′′ from Eq. 3.3.
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Figure 3.5: A comparison of storage modulus (G′) predictions for reference and
CGed PNC simulations (φ = 0.15) with a strong attraction between monomer
and particle.
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Figure 3.6: A comparison of storage modulus (G′) predictions for reference
and CGed PNC simulations (φ = 0.05) with a repulsive interaction between
monomer and particle.
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Figure 3.7: A comparison of storage modulus (G′) predictions for reference
and CGed PNC simulations (φ = 0.15) with a repulsive interaction between
monomer and particle.
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Figure 3.8: A comparison of loss modulus (G′′) predictions for reference and
CGed PNC simulations (φ = 0.05) with a strong attraction between monomer
and particle.
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Figure 3.9: A comparison of loss modulus (G′′) predictions for reference and
CGed PNC simulations (φ = 0.15) with a strong attraction between monomer
and particle.
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Figure 3.10: A comparison of loss modulus (G′′) predictions for reference
and CGed PNC simulations (φ = 0.05) with a repulsive interaction between
monomer and particle.
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Figure 3.11: A comparison of loss modulus (G′′) predictions for reference
and CGed PNC simulations (φ = 0.15) with a repulsive interaction between
monomer and particle.

3.6 Conclusion

In this chapter, we present a method to augment our CG method that was

shown to quantitatively predict particle structure via CG simulations. To ac-

complish this, we linked a mesoscopic quantity (the friction factor that char-

acterizes the dissipative forces in DPD simulations) to the relaxation time of

blobs (or groups of monomers) in our reference simulation. It turned out that

the relationship between blob relaxation time and DPD friction factor was

linear. Technically, these blob relaxation time (in the bulk and near a particle

surface) could be extracted from atomistic simulations. Thus, our method

could straightforwardly be applicable to more realistic all-atom PNCs. More-

over, we were able to see a semiquantitative match between reference and CG

simulations for G′ and G′′. We suggest that our semiquantitative accuracy
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may be improved upon averaging these moduli predictions over a larger num-

ber of strain oscillation periods as well as initial equilibrated configurations of

the CGed PNC.
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Chapter 4

Interfacial Layer Characteristics of

Semiflexible Polymer Solutions Near

Spherical Particles

4.1 Introduction

Pertinent to predicting the behavior of polymer nanocomposites (PNCs) is

an understanding of the interfacial layer characteristics around its inclusions.

The overlap of these layers can be influential in determining the nanofiller

dispersion in a PNC, as seen in the previous chapter. In addition, the prop-

erties in these layers can manifest at the macroscale as has been suggested by

experiments, and elucidated further for PNC barrier properties in the chapter

proceeding this one. This chapter focuses on understanding what polymer and

particle characteristics can influence the structure of the interfacial layer and

how these characteristics can determine its length. Also, in the process, we

learn how the interfacial layer thickness affects the insertion free energy of the

particle in the semiflexible polymeric solution.

Many researches have examined the structure of flexible polymer so-
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lutions around spherical particles, and pertinent results have been obtained

using a variety of analytical, numerical and simulation methods.[124, 125,

126, 127, 128, 129, 130, 41] In contrast to the situation for flexible polymers,

much less theoretical advances have occurred in the more biologically and

experimentally relevant context of mixtures of semiflexible/rodlike polymer

solutions and spherical particles. Studies so far have only considered the be-

haviors of an isolated semiflexible polymer chain[131] and dilute solutions of

rodlike polymers near spherical particles.[132, 133, 134, 135] Scaling analysis

and mean field theories have been presented for the structure of semiflexible

polymer solutions and melts near flat surfaces.[136, 137, 40] To the best of

our knowledge, there are no prior theoretical/numerical results which quantify

the structure of semiflexible polymer solutions (at finite concentrations) near

spherical particles.

This chapter presents a polymer self-consistent field theory based nu-

merical analysis of the structure of semiflexible polymer solutions around

spherical particles. We focus on the case where the polymers do not have

any energetic interactions with the particle, and hence the model we consider

is the case of a hard sphere inserted into a solution of semiflexible polymers.

The polymers are expected to be depleted around the particle leading to an

energetic cost of insertion of the particle. The present study is motivated by

two issues:

(i) We desire to develop a fundamental understanding of the polymer

concentration, polymer flexibility and particle size dependencies of the inser-
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tion free energies of spherical probes in semiflexible polymer solutions. In-

deed, many models for protein stability, partitioning and diffusion coefficients

require knowledge of the insertion free energy and its scaling with sizes and

concentrations.[138, 139, 140] We note in this regard that experiments which

have examined properties such as the solubility of small particles in semiflex-

ible polymer solutions have come to varied conclusions on their parametric

dependcy upon the particle size R and polymer segment concentration ψ. Ex-

plicitly, quantities (P ) such as solubility, insertion probability and particle

mobility (related to the exponential of the insertion free energy) have been

described by functional forms:[140, 141, 142]

P = exp(−αRβψγ) (4.1)

with the exponents β ≃ 1− 2 and γ ≃ 0.5− 1, and α a numerical constant. A

clear explanation for the range of experimental results noted, and theoretical

predictions for P does not exist. In this work we address this question explicitly

and present numerically determined scaling laws which sheds light (at a mean-

field level) on the range of exponents reported in experiments.

(ii) A second motivation for this chapter is to present a numerical appo-

rach for the solution of the self-consistent field theory equations for semiflexible

polymer solutions around spherical particles. SCFT equations for semiflexible

polymers have been presented and numerically solved in earlier contexts relat-

ing to block copolymers,[143] polymer solutions[144] and polymer melts near

flat surfaces.[40] However, to our knowledge there has been no earlier work
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which has presented the numerical solution of the equations for situations em-

bodying spherical symmetry. As we demonstrate later, spherical symmetry

brings in some new features to the formulation and the resulting equations

to be solved. We present the theoretical details and the numerical solution

procedure for the resulting model.

The rest of this chapter is organized as follows: In section 4.2 we present

our model for semiflexible polymers, the formulation accounting for the spher-

ical symmetry and the numerical solution procedure. The next two sections

focus on the density profiles and the depletion thicknesses around a flat plate

and a spherical particle. The results in the context of flat plates provide

important insights on the different length scales and their interplay in deter-

mining the overall depletion thickness. We invoke physical arguments based

on random phase approximation to extract numerical scaling laws describing

the dependencies of the depletion thicknesses as a function of the different

parameters. In the section 4.5 we present our results for insertion free energies

of spherical particles and conclude with a few comments on the implications

of our results for the context of above-mentioned experiments.

4.2 Model and Numerical Details

4.2.1 Model and Mean Field Limit

We consider a model for a solution of semiflexible polymers in the presence

of a single spherical particle. We adopt a grand canonical formalism for the
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polymer solution and use the Kratky-Porod model (KP) to describe the confor-

mations of the semiflexible polymers.[145, 146] In the KP model, the polymer

chains are represented by continuous space curves Ri(s), where, i indexes the

different polymer chains, and s denotes the arc length variable running from

0 to the contour length L. The bonded interactions in the KP model are

quantified by an elastic bending energy of the form:

βU0 =
λ

2

∞
∑

i=0

∫ L

0

ds

∣

∣

∣

∣

dui(s)

ds

∣

∣

∣

∣

2

, (4.2)

where u(s) ≡ dR/ds represents the tangent vector to the chain at the contour

location s and is constrained to be a unit vector. λ represents the bending

elasticity of the polymer, and is in turn directly proportional to its persis-

tence length. To describe the excluded volume interactions between the dif-

ferent segments of the chain, we adopt the commonly used binary interaction

model:[147]

βU1 =
v

2

∞
∑

i=0

∞
∑

j=0

∫ L

0

ds

∫ L

0

ds′δ[Ri(s)−Rj(s
′)], (4.3)

where δ(· · · ) represents the delta function enforcing locally the exclusion of

overlaps of monomers, and v represents the strength of the excluded volume

interactions.

In the grand canonical framework, the partition function of the polymer
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solution at a activity coefficient zp can be expressed as:[146, 148]

Ξ(zp, V, T ) =

∞
∑

n=0

znp
n!

∫ n
∏

i=1

dRi(s)exp[−U0−U1]
∏

s

δ

(

ui(s)−
dR

ds

)

δ(|ui(s)|−1).

(4.4)

The above represents a functional integral over the different space curves Ri(s)

statistically weighted by the Boltzmann factor corresponding to the energetic

interactions U0 and U1. The first δ function above is used to enforce the con-

straint that u(s) represents the tangent vector at the chain at the location s,

whereas the second delta function enforces the fact that u(s) is of magnitude

unity. The above partition function can be transformed by using standard

functional integral methods into a field theory where the fundamental degrees

of freedom is a fluctuating potential field w(r):[148]

Ξ =

∫ i∞

−i∞

Dwexp(−βH [w(r)]), (4.5)

where

−βH [w(r)] =
1

2B

∫

dr w2 +
α

B

∫

dr w + Ze−αQ(w). (4.6)

In the above, all length scales have been nondimensionalized by L. The con-

stants B ≡ vN2/Ld and Z ≡ zpL
d represents the nondimensional excluded

volume parameter and the activity coefficient of the polymer solution. The

constant α satisfies α = BZexp(−α), and is chosen so as to subtract out the

free energy corresponding to a homogeneous polymer solution. Q represents

the partition function of a single chain in the external potential field w(r), and
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is given as:

Q =

∫

q(r,u, 1) drdu, (4.7)

where the field q(r,u, s) satisfies the equation:[145, 146]

∂q(r, s)

∂s
= −u · ∇rq +

1

2µ
∇2

u
q(r, s)− w(r)q; q(r,u, s = 0) = 1. (4.8)

Physically, q(r,u, s) quantifies the statistical weight that a wormlike chain ex-

periencing a potential w(r) has its segment s at position r and with orientation

u. In the above equation, µ ≡ λ/N and represents the persistence length of

the polymer expressed in units of the total contour length L. Using standard

thermodynamic identities, the average homogeneous polymer solution density

(nondimensionalized as C ≡ ψLd/N) can be expressed in terms of the chemical

potential Z as: C = Zexp(−α).

Polymer self-consistent field theory (SCFT) corresponds to a saddle

point approximation of the above field theory.[148] In this framework, the

integral over the potential field w(r) in eq. (4.5) is replaced by the value of the

exponent evaluated at its saddle point. Explicitly, the saddle point field w∗(r)

is given as:

w∗(r) = BC[φ(r)− 1], (4.9)

where the volume fraction field φ(r) is obtained from q(r,u, s) as[146]

φ(r) =
1

4π

∫

du

∫ 1

0

ds q(r,u, s; [w∗])q(r,−u, 1− s; [w∗]). (4.10)
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Implementation of SCFT for different situations require the iterative solu-

tion of w∗(r) which simultaneously satistifies eqs. (4.9) and (4.10) [recall that

q(r,u, s) depends on w(r) through eq. (4.8)] subject to appropriate externally

imposed constraints. In the specific case of polymer solutions near spherical

particles, the influence of the particle is transformed as a boundary condition,

q(r = R,u, s) = 0 (4.11)

imposed on the surface of the sphere.[149] The self-consistent solution of

eqs. (4.8) - (4.11) then provides a mean-field approach to compute the grand

canonical partition function H [w∗(r)] and the polymer volume fraction pro-

files φ(r) as a function of the polymer chemical potential Z and the excluded

volume parameter B. Knowledge of φ(r) allows us to determine an overall

depletion thickness ∆ defined as the equivalent radius of a shell over which a

step function profile for the polymer density would be depleted.[150] In other

words ∆ is defined through:

4π

3
[(R +∆)3 − R3] = 4π

∫ ∞

R

dr r2[φ(r)− 1]. (4.12)

4.2.2 Numerical Solution Procedure

In general, the diffusion equation (4.8) does not admit an analytical solution.

For the limit N → ∞, an approach termed as ground-state dominance allows

one to simplify the equations and obtain analytical solutions for a few special
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cases.[124, 137] Since our objective in this chapter is to examine the depletion

characteristics for a range of particle sizes and concentration conditions, we

resort to a numerical solution of eq. (4.8). In solving eq. (4.8) for polymer

solution near a spherical particle, we exploit the fact that q(r,u, s) possesses

the symmetry

q(r,u, s) ≡ q(r,u · er, s), (4.13)

where r denotes the radial distance from the center of the sphere and er

represents the unit radial vector (relative to an origin placed at the center of

the sphere) at the location r. By adopting a local coordinate system centered

on r with er representing the Z axis and u · er = cos θ, we can transform

equation (4.8) as:

∂q(r, θ, s)

∂s
= − cos θ

∂q

∂r
+
sin θ

r

∂q

∂θ
+

1

2µ

1

sin θ

∂

∂θ

(

sin θ
∂q

∂θ

)

−w(r)q; q(r, θ, s = 0) = 1.

(4.14)

Equation (4.14) forms the starting point for analyzing the configurations

of semiflexible polymers in situations embodying spherical symmetry. We note

that a convenient way to solve eq. (4.14) is by expanding q(r, θ, s) in Legendre

polynomials as:[151]

q(r, θ, s) =
∑

l

ql(r, s)Pl(cos θ), (4.15)

where Pl represents the lth order Legendre polynomial. By using the properties
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of Pl, equation (4.14) can be transformed as:[151]

∂ql
∂s

= − l + 1

2l + 3

∂ql+1

∂r
− l

2l − 1

∂ql−1

∂r
−(l + 1)(l + 2)

2l + 3

ql+1

r
+
l(l − 1)

2l − 1

ql−1

r
− l(l + 1)

2µ
ql−w(r)ql,

(4.16)

subject to

ql(r = R, s) = 0

ql(r, s = 0) = δl,0.

(4.17)

Moreover, eq. (4.10) can be recast in terms of ql(r, s) as:

φ =

∫ 1

0

ds
∑

l

[

ql(r, s)q
†
l (r, 1− s)

2l + 1

]

, (4.18)

where q†l (r, s) satisfies

∂q†l
∂s

=
l + 1

2l + 3

∂q†l+1

∂r
+

l

2l − 1

∂q†l−1

∂r
+
(l + 1)(l + 2)

2l + 3

q†l+1

r
− l(l − 1)

2l − 1

q†l−1

r
− l(l + 1)

2µ
q†l−w(r)q

†
l ,

(4.19)

subject to

q†l (r = R, s) = 0

q†l (r, s = 0) = δl,0.

(4.20)

Our model is governed by three parameters: the nondimensionalized

radius of the particle R, persistence length µ, the excluded volume parameter

B and the bulk concentration of the polymer C. As seen from the above
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equations, in the mean-field limit, the parameters B and C appear only as the

combination BC in determining the density profiles φ(r). For the numerical

results presented in the subsequent sections, we varied R (nondimensionalized

by L) in the range 0.01 − 5, µ in the range 0.001 − 1 and BC in the range

0.01−100. This range of parameters allowed us to cover the regimes of particle

sizes where R was the smallest length scale to the regime where the curvature

of the particle was inconsequential. Moreover, the range of µ chosen allowed

us to span the regimes of flexible to rodlike polymers. The values of B and C

covered the regimes ranging from dilute to concentrated polymer solutions.

The numerical results for φ(r) (methodology discussed below) are em-

bedded within an iterative loop for determining the mean-field potential w∗(r).

The latter is accomplished by a real-space procedure identical to the one pro-

posed by Fredrickson and Drolet,[152] where w∗
i (r), the guess for w

∗(r) at the

ith step is evolved as:

w∗
i+1(r) = w∗

i (r) + ǫ
(

BC[φ(r;w∗
i (r))− 1]− w∗

i (r)
)

. (4.21)

An ǫ = 0.005 allowed us to attain convergence within few thousand iterations

when starting from random initial conditions.

To obtain φ(r) for a given potential field w∗
i (r), we solved equations

(4.16) and (4.19) numerically by using a two-step Lax-Wenderoff (LW) method

similar to the one suggested in Daoulas and coworkers.[40, 153] Truncation of

the Legendre polynomial expansion eq. (4.15) at l = 12 was found to ensure

sufficient convergence of the density profiles. The presence of the discontin-
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Figure 4.1: An illustration of the numerical issues and our procedure to resolve it.

(a) Representative volume fraction profiles φ(r) for R = 0.1 and µ values indicated

in the figure; (b) Smoothed density profiles corresponding to the numerical results

of (a).

uous boundary condition at r = R leads to numerical oscillations near the

surface, which is a well-known artifact in the solution of hyperbolic partial dif-

ferential equations.[154] To lucidate this, we display in Fig. 4.1a representative

volume fraction profiles determined for radius R = 0.1 and persistence lengths

µ = 0.001, 0.01, 0.1 and 1.0. While the physical differences between the be-

haviors for these parameters constitute the focus of subsequent sections, the

above discussed oscillations are certainly visible in the numerical results. We

note that such artifacts become less pronounced for situations involving larger

radii and/or smaller rigidity. Within the numerical schemes explored for this

work, we were never able to completely eliminate such numerical oscillations.

Instead, we adopted a two pronged strategy to account for such oscillations:

(i) We used a one step Lax method close to the surface which is transitioned

to the two step LW method [153]; (ii) We used a numerical smoothing proce-

dure which averages out the oscillations to deduce a smooth variation in the
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density profile. We repeated the preceding steps with different discretizations

to ensure numerical accuracy. The equations were typically solved by using a

r discretization in the range 1− 2.5× 10−3 and a δs = 1/2000. The resulting

density profiles were used to determine the depletion thicknesses which are

discussed in the subsequent sections. In Fig. 4.1b we display the “smoothed”

density plots corresponding to the original figures displayed in Figs. 4.1a.

4.3 Depletion Near Flat Surfaces

In this section, we present the numerical results for depletion thicknesses

around large spherical objects and flat plates. In such a case, the polymer

solution density profiles are independent of R and hence,

∆f = f(BC, µ). (4.22)

Shown in Fig. 4.2 are our numerical results for ∆f displayed as a function

of BC for different values of persistence lengths µ. We observe that at very

low concentrations, the depletion thicknesses plateaus to a concentration in-

dependent value. Upon increasing the polymer concentrations, ∆f is seen

to decrease monotonically with concentration. Qualitatively, ∆f(C → 0) is

expected to be representative of the size of an isolated semiflexible polymer

chain, and hence, it is easy to understand that an increase in the rigidity of

the polymer segments (the parameter µ) leads to a corresponding increase in

the depletion thickness ∆f . The influence of polymer concentrations can also
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Figure 4.2: Depletion thicknesses ∆f near flat plates as a function of the parameter

BC for different persistence lengths µ.

be rationalized by noting that at higher concentrations the depletion thickness

is expected to become related to the correlation length of density fluctuations

in the polymer solution. The latter monotonically decreases with increasing

polymer concentrations thereby explaining the behavior of the depletion thick-

ness.

How do the quantitative details of the behavior observed in Fig. 4.2

compare with corresponding theoretical predictions ? We first compare our

numerical results ∆(C → 0) with the theoretical prediction for the nondimen-

sional size of a semiflexible polymer chain:[155]

Rg(µ) = µ1/2

[

1

9
− µ

3
+

2

3
µ2 +

2

3

(

− 1 + exp(−1/µ)
)

µ3

]1/2

. (4.23)
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In Fig. 4.3a, we compare ∆(C → 0) alongside the above result, and observe

that eq. (4.23) provides an excellent fit to our results. This confirms our

hypothesis that for dilute solutions, the depletion thickness is proportional to

the size of the polymer chain and is given (the prefactor determined based on

the fit to numerical data) as:

∆f (C → 0) = 1.7µ1/2

[

1

9
− µ

3
+

2

3
µ2 +

2

3

(

− 1 + exp(−1/µ)
)

µ3

]1/2

. (4.24)

To understand quantitatively the origins of the concentration depen-

dence of ∆f , we note that for flexible polymer solutions, previous theoretical

researches have confirmed that a correlation length derived based on random

phase approximation (RPA) accurately models the mean-field concentration

dependence of the depletion thickness near flat plates. Whence, it is of in-

terest to compare our above results to the corresponding RPA predictions of

correlation lengths for semiflexible polymer solutions, ξRPA. Doi and coworkers

considered the KP model for semiflexible polymers and derived a prediction

for ξRPA as (in our notation and nondimensional variables):[155]

ξRPA ∝ Rg(µ)(BC + 1)−1/2, (4.25)

where Rg(µ) is given by eq. (4.23). In Fig. 4.3b, we compare the above with our

numerical results by considering the ratio ∆f/∆f(C → 0) (thereby normalizing

the factor Rg(µ)) as a function of BC. It is seen that that our numerical results
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Figure 4.3: (a) A comparison of ∆f (C → 0) (displayed as points) with the the-

oretical predictions for the size of a semiflexible polymer chain (solid line); (b)

∆f/∆f (C → 0) for polymer solutions of different persistence lengths. Dotted line

represents the theoretical prediction for ξRPA/ξRPA(C → 0).
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are not consistent with the behavior expected for ξRPA. Explicitly, we observe

for large µ the concentration decay is stronger than predicted, while for smaller

persistence length µ the concentration decay is weaker than that expected for

ξRPA. These results suggest that the depletion thicknesses exhibits a much

more complex dependence on µ and BC than that embodied in the RPA

prediction for the correlation length ξRPA.

To gain more insight into the above discrepancies, we consider the RPA

approximation for the density correlation function gRPA(q) for semiflexible

polymer solutions. While an exact expression for gRPA(q) does not exist, ap-

proximate functional forms have been proposed in Marques and Fredrickson[156]

and Netz et al.[157] We adopt the results of Netz et al. which yields (in units

of q normalized as qL)

g−1
RPA(q) =

α(µ)q2

1 + α(µ)q/
√
6π

+BC + 1, (4.26)

where the function α(µ) is given as:

α(µ) = µ

[

1

9
− µ

3
+

2

3
µ2 +

2

3

(

− 1 + exp(−1/µ)
)

µ3

]

, (4.27)

and is identical to the functional form for nondimensional R2
g(µ) (eq. (4.23)).

From eq. (4.26) we deduce that

gRPA(q) ∼















(q
√
6π +BC + 1)−1 qα≫ 1

(q2α+ BC + 1)−1 qα ≪ 1.

(4.28)
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Figure 4.4: A test of the scaling proposal of eqs. (4.29) and (4.30).

From eq. (4.28) it is evident that gRPA is a function of three nondimen-

sional length scales: ξRPA ≡ α(µ)1/2(BC + 1)−1/2, α(µ) and (BC + 1)−1. For

α/ξRPA < 1, the decay behavior of gRPA is dominated by ξRPA ≡ α1/2(µ)(BC+

1)−1/2. Using eqs. (4.25) and (4.27) we observe that this regime occurs when

the correlation length ξRPA is larger than the persistence length of polymer,

which corresponds to the “flexible” limit of the semiflexible polymer solution.

In such a case, we expect the depletion thickness to be closely related to ξRPA.

In contrast, for α/ξRPA > 1 the decay behavior of gRPA is determined by an

interplay of the length scales, ξRPA and (BC + 1)−1 ≡ ξ2RPA/α. This regime

ccurs for ξRPA . µ or the “rigid” limit of the semiflexible polymer solution. In

such a case, we might expect the depletion thickness also to reflect an interplay

between the preceding two length scales.

The above reasoning can be encapsulated in a scaling proposal for the
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depletion thickness ∆f as:

∆f

α
= f(

α

ξRPA
), (4.29)

with f(x) expected to behave as:

f(x) ∼















x−1, x≪ 1,

x−2 x≫ 1.

(4.30)

This hypothesis is tested in Fig. 4.4 by considering the ratio ∆f/α as a function

of α/ξRPA (to ensure consistency, we used the numerical values for ∆f(C → 0)

in place of α1/2). It is observed that in the above representation, f(x) exhibits a

behavior of x−0.97 for x < 1 which crosses over to x−1.47 for x > 1. While we do

not observe the crossover to the exponent −2 predicted for x≫ 1, we speculate

that the transition from the exponent −1 to −1.47 is strongly suggestive of the

crossover to the asymptotic scaling behavior and hence consider the numerical

results in Fig. 4.4 to be in good agreement with the hypothesis and scaling

predictions underlying eq. (4.30).

In summary, our numerical results for the depletion of semiflexible poly-

mers near flat objects suggests a complex interplay between the persistence

length µ and the correlation length of the semiflexible polymer ξRPA. Explic-

itly, for the flexible limit of semiflexible polymers, we predict that the depletion

thickness scales as the correlation length of the polymer solution. In contrast,

for the limit of rigid polymers and rod solutions, our numerical results suggests

that the density profiles exhibits an interplay between two length scales. Over-
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all, this results in a scaling collapse of the depletion thickness as a function of

the ratio α/ξRPA, and provides a quantitative prediction for use in experiments

measuring the depletion thicknesses of semiflexible polymers near flat plates.

4.4 Depletion near Spherical Objects

Next, we consider the depletion characteristics of semiflexible polymers around

spherical objects which brings to fore an additional length scale, viz., the

radius of the particle R. It is commonly supposed that for particle sizes

R much larger than the flat plate depletion thickness ∆f , curvature effects

are negligible and that the depletion thickness around the spherical particles

∆R ≃ ∆f .[126] The issue we address in this section is whether this considera-

tion is indeed true for solutions of semiflexible polymers, and the implications

of the persistence length-correlation length interplay noted in the preceding

section. Due to numerical limitations however, we could only probe regimes

such that R/∆f ≥ 0.3. Consequently, while we were able to address the rele-

vance of curvature effects, our results do not allow us to draw concrete scaling

conclusions regarding the behavior of depletion thicknesses for very small radii.

To render the parameter space tractable, we work in nondimensional

variables. Explicitly, based on the parametric considerations discussed in the

preceding section, we expect that

∆R = f(BC, µ,R). (4.31)
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Using the fact that ∆f is a function of the parameters BC and µ, the above

can be rewritten as:

∆R = f(∆f , µ, R). (4.32)

Since we expect that the different quantities become independent of the con-

tour length for large contour lenghts, the above representation can be expressed

in terms of three nondimensional combinations, ∆R/R,R/∆f and R/µ as:

∆R

R
= f(

R

∆f

,
R

µ
). (4.33)

(we adopt this representation since it provides a better physical representation

of some of the scaling collapses discussed below).

In Fig. 4.5 we display our numerical results for depletion thicknesses

∆R/R as a function of R/∆f for different values of R/µ. To aid in the discus-

sion, we have separated these results into three regimes:

(a) Figure 4.5a pertains to the results for R/∆f > 10 and for the entire

range ofR/µ examined. It is seen that all the data forR/∆f > 10 collapse onto

a single curve which is independent of the value of R/µ and has a power-law

slope of ≃ −1. This suggests that for this regime

∆R

R
≃ ∆f

R
, (4.34)

or ∆f ≃ ∆R. This result reinforces the intuitive expectation that for very

large particles (relative to the depletion thickness in the flat plate regime) the

depletion thickness is independent of the curvature of the particles.
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Figure 4.5: Depletion thicknesses ∆R normalized by the radius R represented as a

function of the depletion thicknesses near a flat plate (inversely normalized by R):

(a) Numerical results for R/∆f > 10 for different radii R and persistence lengths µ

(to maintain clarity, we do not distinguish the different µ values by specific symbols);

(b) Numerical results for R/∆f < 10 for different R/µ indicated; (c) Numerical

results for R/∆f < 10 for different R/µ indicated. Numbers in the parenthesis

correspond to the exponents of a power law fit of the data.
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(b) Figure 4.5b displays the results of ∆R/R for 0.3 < R/∆f < 10 for

the regime R/µ & 4. We observe that our numerical results exhibit a scaling

collapse of the form:

∆R

R
≃

(

∆f

R

)−0.93

, (4.35)

which is independent of the R/µ considered. Whence we conclude that for

large values of R/µ, the curvature of the particles has only a small influence

on the depletion thickness even upto the regime R ≃ ∆f , and

∆R ≃ ∆f . (4.36)

(c) Figure 4.5c displays the results of ∆R/R for the regime 0.3 <

R/∆f < 10 for the regime R/µ . 4. In contrast to the behavior noted for

larger values of R/µ, we observe that ∆R/R now displays a strong dependence

on the radius relative to the persistence length of the polymer. Explicitly, we

observe that the ∆R/R exhibits a scaling of the form:

∆R

R
≃

(

R

∆f

)−ν

, (4.37)

with an exponent ν < 1 (quantifying the deviation from the flat plate be-

havior), decreasing monotonically with lowering of R/µ. Moreover, it is seen

that the radius at which the depletion thicknesses start to deviate from the

flat plate regime also explicitly depends upon the ratio R/µ, with deviations

observed at larger radii for smaller R/µ values.

A physical basis for the above trends can be obtained by combining the
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insights gleaned in the preceding section with the hypothesis that curvature

effects manifest when the radius of the particles becomes comparable to length

scales at which density variations occur near a flat plate. For the case where µ

is small (the “flexible” limit of the semiflexible polymer), we suggested that the

density profiles near a flat plate exhibit variations on a single length scale ξRPA

and hence ∆f ≃ ξRPA. In such regimes, curvature effects are also expected to

occur only when R ≃ ξRPA ≡ ∆f . Moreover, curvature effects are expected to

be only a function of R/∆f and hence independent of the ratio R/µ (except

insofar as the µ dependence embodied in ∆f ). This reasoning rationalizes the

behavior noted in Fig. 4.5b where for large values of R/µ the curvature effects

did not impact the depletion thickness up until the regime R ≃ ∆f , and the

deviation from the flat plate scaling (an exponent of 0.93 vs an exponent of

1.0) was independent of R/µ.

In contrast, for larger µ (the rigid polymer limit), we suggested that

the density profiles near a flat plate might exhibit a two length scale behavior

which depends on ξRPA and ξ2RPA/α(µ) with ∆f determined by their interplay

(cf. eq.(4.30)). Since the density profiles exhibit variations on the length scale

ξRPA, in this regime also we may expect curvature-induced deviations to begin

when R ≃ ξRPA. Since the length scales follow the hierarchy ξRPA > ∆f >

ξ2RPA/α, the curvature induced deviations occur for R > ∆f . Moreover, using

eq. (4.30) we have

R

∆f

=
R

ξ

(

ξ

α(µ)

)β

,

with β < 0 (β = −0.47 in our numerical results, and expected to be −1 in the
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asymptotic scaling regime). When R ≃ ξ, we have

R

∆f
≃

(

R

α(µ)

)β

. (4.38)

Since α(µ) is a monotonically increasing function of µ (see eq. (4.27)), the

above suggests that the curvature-induced deviations in this regime occur at

larger values of R/∆f for systems with smaller values of R/µ. This reasoning

rationalizes the behavior observed in Fig. 4.5c, where indeed stronger devia-

tions beginning at larger values of R/∆f where noted for systems with smaller

R/µ values.

Due to the complex two parameter scaling expected for the regime de-

picted in Fig. 4.5c, we are unable to propose a simple scaling collapse of the

data. However, for the purposes of quantitative comparisons, we empirically

fitted the data for R/µ . 2 and extracted a power law profile of the form (fit

displayed in Fig. 4.6):

∆R

R
≃

(

R

∆f

)−0.86(
R

µ

)0.17

, 0.1 < R/∆f < 10. (4.39)

Considering the nonanalytic nature of the different exponents above, we spec-

ulate that the above scaling is not a manifestation of a distinct physical phe-

nomena but rather a reflection of the crossover to the situation of very small

particles. Unfortunately, due to numerical limitations we are unable to probe

the latter regime to determine the precise asymptotic scaling laws.

In sum, our numerical results for the curvature dependence of the de-
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Figure 4.6: Empirical fit of ∆R/R to the parameter R/|Deltaf .

pletion thickness indicates novel behavior which sensistively depends on the

persistence length of the polymer relative to the radius of the particle. For the

case when the persistence length of the polymer is smaller than the radii,

the depletion thickness was shown to exhibit very little curvature depen-

dence, even for radii as small as R/∆f and R/ξRPA ≃ 0.5. In contrast, for

R/µ . 1 and R/∆f ≤ 10, the depletion thickness starts to exhibit a curvature

dependence for radii R ≃ O(µ), with the intensity of the curvature dependence

monotonically increasing with an increase in the ratio µ/R.

The above results serve to higlight the subtleties in the depletion char-

acteristics involving semiflexible polymers and small probes. Explicitly, the

flexible limit is shown to behave quite differently from the rigid limit of the

semiflexible polymers in their respective curvature dependencies of the deple-
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tion thickness (and correspondingly the free energies of insertion, as demon-

strated in the next section). This revises the accepted wisdom that the cur-

vature dependence of depletion thicknesses for polymer solutions occurs for

particle sizes comparable to or smaller than the the depletion thicknesses for

flat plates. Instead, we suggest that the such a notion is true only for solutions

of flexible semiflexible polymers. In contrast, for rigid semiflexible polymer so-

lutions, due to the disparity between the correlation length and the depletion

thickness of the polymer solution, curvature effects manifest at a length scale

much larger than the depletion thickness for flat plates.

4.5 Insertion Free Energy

In this final section, we consider the dependence of the insertion free energy

of the particles as a function of the different parameters in the system. As

we will demonstrate, the insertion free energy of small particles is intimately

tied to the depletion thickness ∆R. Whence, the understanding developed in

the preceding sections proves crucial in explaining the characteristics of the

insertion free energies.

To deduce the insertion free energies, the free energy expression eq. (4.6)

is computed relative to the homogeneous solution for different parameters. The

insertion free energy F1 of a particle of size R can be expected to be expressed

as:[114]

F1 = Π
4

3
πR3 + 4πR2γ. (4.40)
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In the above, the first term represents the volumetric energy contribution aris-

ing from the work needed to create a cavity of size R, and is expressed as

the osmotic pressure of the solution Π multiplying the volume of the parti-

cle. For the mean-field situation considered in this chapter, we have for the

nondimensionalized osmotic pressure

ΠRd
g

kBT
= C +

BC2

2
, (4.41)

and hence the parametric dependence of the first term in eq. (4.40) can be

considered as understood. The second term in eq. (4.40) represents the energy

penalty arising from the interfacial tension γ. The latter arises explicitly due to

inhomogeneous density variations induced by the introduction of the particle,

and is expected to dominate the insertion free energy for small particles.

In this section, we consider the numerical results for the interfacial

tension term γ and rationalize our results by considering the explicit depen-

dence of γ on the other parameters. Explicitly, we expect that for regimes

where curvature effects do not play a significant role (see previous section), γ

itself will be independent of R and only dependent on B,C and µ. In con-

trast, we expect that in regimes where curvature effects manifest γ would also

become dependent on the curvature in a manner similar to the Tolman cor-

rections noted for the curvature dependence of surface tension for gas-liquid

interfaces.[114, 158] To render the analysis tractable, we again resort to a

nondimensional framework, and nondimensionalize γ with the variable ΠR.

103



0.0001

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10

0.01

0.04

0.1

0.25

0.5

1.0

5.0

 

RR /!

Fit

Figure 4.7: Numerical results for the normalized interfacial tension Γ as function of

∆R/R for different radii. The results exihibit only little dependence on the specific

µ values (chosen in the range 0.001 − 1). Hence, to maintain clarity we do not

distinguish the different µ values in the plot. The above results are well-fit by an

indicated quadratic function of the form: f(x) = 0.65x + 2.28x2.

Using ∆R = f(BC, µ,R), we expect:

Γ ≡ γ

ΠR
= f(

∆R

R
,
µ

R
). (4.42)

In Fig. 4.7 we display our results for Γ as a function of ∆R/R for different

radii. We observe that in this representation, the γ values collapse onto a single

universal curve which is (practically) independent of the specific µ/R values.

Moreover, we observe that the functional form of the curve can be well fit to
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a quadratic of the form:

Γ = a

(

∆R

R

)

+ b

(

∆R

R

)2

, (4.43)

where a and b are O(1) constants determined by fitting our data. On physi-

cal terms, the above results can be understood based on the arguments used

to motivate the nondimensionalization of γ. One way to think about the

interfacial tension term is to think of it physically as the osmotic pressure

contribution arising from the evacuation of polymers from a layer of thickness

∆R surrounding the particle. For ∆R < R, we expect this energetic term to

be of the form 4πR2∆RΠ, i.e. γ ≃ ∆RΠ. These considerations lead to

Γ ≃ ∆R

R
, (4.44)

a functional form which is close to the result obtained by fitting our data.

The second term in the fit of our numerical results can be understood as a

manifestation of the curvature effects on γ which arises for the case when the

depletion thicknesses become comparable to or larger than the radius of the

particle.

We now discuss the implications of our results in the context of the

experimental observations mentioned in the introduction. Explicitly, our nu-

merical results indicate that the insertion free energy for a spherical particle
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in a semiflexible polymer solution follows a functional relationship of the form:

F1 = Π
4

3
πR3

[

1 + 1.95
∆R

R
+ 6.8

(∆R

R

)2
]

for
∆R

R
≤ 3.0. (4.45)

It can be see that the size dependence of the insertion free energy exhibits

a complex functional form which depends on R through through both the

osmotic pressure and interfacial tension term. For large particles, the first

term above is expected to dominate and the insertion free energy scales as R3

and will exhibit a concentration dependence identical to that of the osmotic

pressure. For smaller particles, the interfacial tension terms are expected to

dominate and the insertion free energy is expected to be a function of ∆R/R.

In such a case, using the results discerned in eqs. (4.29), (4.30) and (4.39) we

can deduce that depending on the regime of values for ∆R/R, F1 can exhibit

a particle size scaling dependence of the form Rβ with β in the range 1−2. In

a similar manner, the concentration dependence of the insertion free energy is

also expected to exhibit a complex dependency on the parameters BC and µ

whose functional form (not expressible as a simple power law) depends on the

value of radius of the particle relative to the depletion thickness. These insights

may serve to explain the different functional forms and exponents noted in the

experimental literature regarding the solubility and mobility of small particles

and proteins in semiflexible polymer solutions.[140]
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4.6 Conclusions and Outlook

In this chapter, we presented a numerical approach to the solution of the

self-consistent field theory for the structure of semiflexible polymer solutions

near spherical surfaces. We used the framework to study the depletion charac-

teristics of semiflexible polymers near colloids and nanoparticles. Our results

suggest that the depletion characteristics of semiflexible polymers exhibit more

complex parametric dependencies than their flexible counterparts. Explicitly,

the polymer density profiles (and the depletion thicknesses) were shown to be

depend sensitively on the polymer concentrations, the persistence lengths and

the radius of the particles. Broadly, two categories of features were identified

based on the relative ratios of the persistence lengths to the correlation length

of the polymer solution. For the flexible limit of semiflexible polymers, the

correlation length proves to be the critical length scale governing both the

depletion thickness and the curvature effects. In contrast, for the rigid limit of

the semiflexible polymer solutions the depletion thickness and the curvature

effects were shown to be dependent on a length scale which was determined by

an interplay between the persistence lengths and the correlation length. This

led to nontrivial scaling laws governing the concentration and radii dependence

of the depletion thicknesses. Our study also highlighted the manner in which

the above features impact upon the insertion free energies of small probes in

semiflexible polymer solutions.

Several directions present itself for future study. The framework pre-

sented in this chapter can be straightforwardly used to address the properties
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of confined semiflexible polymers and their solutions. Another extension of

the present study would be to address the effect of attractive interactions be-

tween the polymer and probes. Such effects are bound to be of importance in

biological contexts, and compared to the case of flexible polymers, the results

for semiflexible polymers are still lacking. As an immediate extension to this

study, in the following chapter, the density profiles near the particles (provided

by this numerical approach) are utilized as input to a predictive method for

barrier properties of polymer composites.
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Chapter 5

Influence of Interfacial Layers upon

the Barrier Properties of Polymer

Nanocomposites

5.1 Introduction

There has been a long history of development of theoretical models for pre-

dicting the effective properties of “composites” comprising of one or more

dispersed phases in a homogeneous matrix.[159, 160] At the simplest level,

such models concern with the question “what are the effective properties of

the medium for specified properties of the matrix and the dispersed phases

?” A variety of theoretical techniques ranging from volume averaging meth-

ods, cluster expansions and renormalization group theories have been used to

predict the mechanical, electrical, rheological and barrier properties of media

made up of statistically homogeneous and ordered dispersions.[160, 161, 162]

The present work was motivated by a desire to explore a “numerical

homogenization” framework which which allows the prediction of macroscopic

effective properties of composite media for a specified (in principle, arbitrary)
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distribution of local properties. Motivation for such a framework arose from

the many recent observations of polymer nanocomposites (PNCs) where clas-

sical models of effective properties of composite media have been shown to fail

in predicting their macroscopic property charcteristics.[163, 49, 164] While the

reasons for such failure has not been conclusively established, it has been spec-

ulated that such discrepancies arise primarily due to two features missing in

the classical composite theories:

(i) The complex structural characteristics of the PNCs: Many of the

common nanofillers used in PNCs are characterized by strong van der waals

interparticle attractions which promote their aggregation [165]. Moreover, the

effective interactions between nanofillers are also influenced by the polymer-

filler interactions, and if the latter are unfavorable it leads to conditions favor-

ing the agglomeration of the fillers. Many of the classical composite theories

assume either statistically homogeneous or ordered dispersions, and do not ac-

count for the complex structural characteristics arising due to the aggregation

of the fillers.

(ii) Interfacial property characteristics: A significant feature which dis-

tinguishes PNCs from traditional composites are the presence of significant

amounts of polymer-filler interfaces and their influence upon the macroscopic

properties. Indeed, many experiments have clearly demonstrated that polymer-

surface interactions can lead to properties for polymer layers which are signif-

icantly different from that of the bulk polymeric material [166]. Most classical

models for dispersed media and composites treat the interface between dis-
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persed media either as a boundary condition for the field equations or by

incorporating a fictitious “interfacial phase” characterized by properties dif-

ferent from that of the bulk polymer. Such approaches are expected to be

reasonable only for situations where the length scale of variation of the in-

terfacial properties is much smaller than both the radii of the fillers and the

variations in the macroscopic fields (stress, electrical fields etc.) set up due to

the introduction of the filler. Whereas, in reality, the interfacial layer may ex-

hibit a continuous gradation in its properties extending to significant distances

relative to the size of the fillers.[167, 168, 169, 170] It has been suggested that

the lack of such effects in the classical composite models is a possible reason

for their shortcoming in modeling the properties of PNCs.

In this work, we wish to go beyond approximate analytical approaches

and instead seek to develop a direct numerical approach which can poten-

tially incorporate both arbitrary structural information of the fillers and spec-

ified interfacial characteristics to predict the macroscopic properties of PNCs.

Specifically, our objective is to develop a methodology which can take in as

input the structural characteristics of the particles (determined either exper-

imentally or from theoretical models and/or simulations) and information for

the local, interfacial properties and ultimately be able to predict the effec-

tive macroscopic properties of the dispersion. In this chapter, we demonstrate

such a methodology by its application to the context of barrier properties of

polymer nanocomposite membranes, an issue which has attracted significant

attention in the recent literature due to reports of observations counterintutive
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to composite theories (reviewed in the next section). However, our framework

can also be readily extended to predict the role of interfaces upon macro-

scopic properties such as the mechanical moduli, conductivity etc. of polymer

nanocomposites.

5.2 Barrier Properties of PNC membranes

Polymer membranes have long been used as barrier materials to inhibit the

transport of gas and/or vapors. This property has greatly been exploited in

the food packaging industry, where typically it is critical to limit the exposure

of water vapor and oxygen from different foods.[171] Polymer membranes have

also been used in the gas separation industry, where the preferential transport

of gases in a mixture through polymer membranes provides an avenue for their

separation.[172, 173, 174, 175] In such applications, the barrier properties of

polymers are quantified by a quantity termed the permeability (P ) of the

polymer to a penetrant. Explicitly, the solution-diffusion model breaks these

contributions to permeability down as: P = DS, with D being the diffusivity

of the gas (measuring the mobility of the gas in the polymer) and S defined as

the solubility of the gas in the polymer (quantifying the amount of gas dissolved

in the polymer). Methods to tune the barrier properties and selectivity of

polymer membranes usually focus on means to tune either the solubility of the

penetrant in the membrane, or alternatively, hinder the diffusional transport

of the penetrant.[176, 177, 178, 179]

A common approach to tune the diffusional transport of penetrants in
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polymer membranes involves incorporating fillers with sizes on the order of

microns.[176] It is believed that such fillers block the diffusion paths avail-

able for the penetrants and thereby enhance the barrier properties of mem-

branes. Based on this physical picture many theoretical models have also been

proposed which incorporate particle and polymer properties, and predictively

quantify the diffusivity of penetrants in polymer-particle composites.[159, 180,

181, 182] Counterintuitive to such expectations, recent experiments have dis-

covered that in certain scenarios, using spherical fillers of sizes of the order of a

few nanometers in a polymer membrane may enhance the membrane’s perme-

ability and selectivity to large molecule penetrants.[183, 184, 185] Specifically,

experiments by Merkel et al.[11] revealed that upon embedding glassy poly(4-

methyl-2-pentyne) (PMP) with fumed silica nanoparticles (NP), the perme-

ability of the membrane to methane was enhanced. Moreover, the addition

of such NPs was also shown to increase the selectivity of the membrane to n-

butane (larger molecule) over methane (smaller molecule). (Such non-intuitive

penetrant size favorability in the selectivity of a membrane is characteristic of

what are termed reverse-selective membranes.) The original observations were

rationalized on physical grounds by suggesting that the NPs disrupt the pack-

ing of the polymers in the polymer-particle interfacial region, which in turn

causes the layers of polymer around the NP to have higher free volume than

the bulk regions of unperturbed polymer. It was speculated that the latter

was responsible for the enhanced diffusion transport of penetrants relative to

the bulk polymer membrane. Evidence supporting such claims were provided
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by measurements demonstrating a reduction in density upon the addition of

NPs (where the density reduction was measured relative to an additive den-

sity calculated by considering volume contributions of the polymer and particle

densities).[186] Also, positron annihilation lifetime spectroscopy measurements

have shown a shift towards larger values of void sizes as the NP loading was

increased.[11]

Subsequent to the above experiments, there have been some theoreti-

cal investigations into the origins of the non-intuitive behavior of composite

membranes made of mixtures of polymers and nanofillers (PNCs). Contin-

uum mechanical composite theories such as the Maxwell’s effective medium

model (MM) for the effective diffusivity of a 2-phase dispersed system,[159,

180, 187, 188] considers only the presence of two phases, viz., the particle and

the medium (polymer phase) with their specific properties. Since the parti-

cles in the membranes are usually nonporous, the fillers only function as an

obstacle to the penetrant. Thus, trends from such 2-phase models can only

predict a decrease in membrane permeability upon addition of fillers. To over-

come this limitation, research efforts have probed the role of modified polymer

interfacial properties by the use of 3-phase models which posit the presence

of three well-defined phases, the particle, polymer medium and an “interfacial

region” which is assumed to have its own physical properties.[189, 190, 36]

One such model was used by Xue et al.[191] who modeled the PNC membrane

as a two dimensional (2D) system having a certain configuration of parti-

cles (modeled as disks) possessing interfacial layers with designated interfacial
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thickness and penetrant diffusivity. Using this approach they demonstrated

that the penetrant diffusivity grew exponentially with particle area fraction

and increased with increasing interfacial layer thickness. Moreover, their study

revealed anisotropic networks of particles (i.e. irregular connections of parti-

cles linked by overlapping interfacial regions) and percolation of interfacial

layers enhanced diffusivity more substantially than dispersed non-overlapping

interfacial layers. While such a model was able to study the effects of the in-

terfacial layer thickness and the impact of percolation of such layers upon the

macroscopic diffusivity, details regarding the origin of the interfacial layers, its

properties and the consequences of potential overlap of interfacial layers were

ignored. Moreover, the methodology was implemented in a 2D framework,

and hence quantitative applicability of the results to three dimensional (3D)

systems is not known.

A more detailed undertaking for the above experimental results was the

model proposed by Hill.[35, 192] In this model, a relation between local free

volume and local density was used to argue that the reduction in polymer den-

sity near surfaces was responsible for the enhanced diffusivity of penetrants

in the interfacial layer. The depletion density profiles for polymer solutions

was embedded (albeit, with a depletion thickness which was considered as a

fitting parameter) within a hydrodynamic theory which accounted up to the

influence of two-body interactions. Within this model, the effects of particle

and penetrant size were incorporated, and trends representative of experimen-

tal results (including the reverse-selectivity effect) were reported in qualitative
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agreement with the experiments. Despite capturing most of the qualitative

physics accurately, Hill’s model[35, 192] utilizes density profiles based on the-

ories for polymer solutions near flat surfaces whose applicability for polymer

melts near highly curved surfaces (such as NPs) is suspect. Moreover, con-

sidering the perturbative manner by which the interparticle interactions are

treated and the neglect of effects arising from the overlap of interfacial layers,

the model is expected to be applicable only for low to moderate concentrations

of fillers.

As elaborated in the preceding section, the present work is motivated

by the desire to develop a framework which goes beyond the approximate

analytical approaches and instead seek a more direct numerical approach to

quantify the impact of both structural complexities of the dispersion and the

interfacial characteristics upon the macroscopic properties of PNCs.[193, 9,

194] Specifically, in the context of the above experiments, our goal is to develop

a “homogenization” procedure which allows us to predict the macroscopic

effective diffusivity for a specified (in principle, arbitrary) distribution of local

penetrant diffusivities. We demonstrate that this methodology can be used

fruitfully to (numerically) characterize the effects of multibody interactions,

role of continuously varying interfacial layers and the impact of overlap of

interfacial layers.

A second, related objective of this work is to use the above approach to

improve some of the deficiencies elaborated in the context of the earlier research

efforts on barrier properties of PNCs. Specifically, we wish to address:
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(i) The role of polymer matrix rigidities: Most highly permeable membranes

tend to be composed of rigid amorphous polymers with high free volumes.[195,

196, 197] Nanofillers have been speculated to disrupt the packing of rigid poly-

mers more significantly compared to their flexible analogs. In fact, Merkel et

al.[198] explicitly invoke polymer rigidity as an important factor in rationaliz-

ing and contrasting their observations with earlier results. We wish to address

whether indeed the rigidity of the polymer plays an important role in modu-

lating the barrier property behaviors observed in PNCs.

(ii) The role of particle curvatures: Our interest in this issue arises from the

contrasting behaviors exhibited by PNCs and traditional composites (referring

to composites having fillers with dimensions much larger than nanometers).[11]

While these differences have typically been rationalized by invoking the sizes

of the interfacial layers relative to the particle size, such explanations ignore

the possible curvature dependence of the interfacial layers themselves. We

propose to account for such effects to discern quantitatively the interplay of

curvature and interfacial characteristics upon the macroscopic barrier.

In this work, we propose to broadly retain the physical picture proposed

in the work of Hill[35, 192] which ascribes the interfacial properties to free vol-

ume effects resulting from the reduced polymer densities near particle surfaces.

However, we use the results of a more realistic model of a compressible, semi-

flexible polymer melt near a spherical particle to deduce the polymer density

profiles near particle surfaces.[40] This model allows us to account for the poly-

mer rigidity in a systematic manner and, thereby, probe the interplay between
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polymer packing and the curvature of the particle in determining the density

profiles of the polymer. The results of this approach is fed into a multibody

simulation methodology which accounts approximately for the overlap of the

polymer density profiles (and hence the local penetrant diffusivities via a free

volume model identical to that employed in Hill[35]). However, the simulation

approach rigorously accommodates the multibody particle interaction effects

which influence the effective macroscopic diffusivities. Using such a framework

we calculate the effect of various parameters upon the penetrant diffusivities

in PNC membranes. Our results indicate that an increase in polymer rigidity

and/or a decrease in particle size greatly contribute to the depletion of poly-

mer near the surface of a NP, as well as significantly enhance the diffusion of

a penetrant in a PNC. In addition, we find that at moderate particle concen-

trations, multibody effects become appreciable for the rigid polymer and/or

small particle regimes.

The rest of this chapter is split into three main sections. Following this

introductory section we define our model and outline the manner by which

the local interfacial properties are obtained (section 5.3.1) and utilized in a 3D

framework to capture the multibody effects of PNCs (sections 5.3.2 - 5.3.4).

In section 5.4, the results of our study are presented where the effects of

particle size (section 5.4.1), polymer rigidity (section 5.4.2), and penetrant

size (section 5.4.3) on the macroscopic penetrant diffusivities in PNCs are

discussed. Our results are also compared to existing experimental data in

section 5.4.4, while our multiscale method is discussed with regards to earlier
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developed theoretical efforts in section 5.4.5. The final section (5.5) provides

a summary of our findings and highlights some potential future directions.

5.3 Description of Modeling and Simulation

Framework

The overall modeling/simulation framework we use involves three components:

(i) Obtaining the interfacial layer characteristics using a microscopic polymer

model; (ii) Creating a polymer density/diffusivity landscape for a configuration

of particles; (iii) Obtaining the macroscopic penetrant diffusivity for a specified

local diffusivity landscape. Each of these steps are elaborated in the sections

below.

5.3.1 Obtaining Interfacial Layer Characteristics

Inherent to our framework is the idea that polymer densities are modified (rel-

ative to the bulk density) near the particles, and such changes lead to the

modified penetrant diffusivities near the particles. We note that most mem-

branes are used in their glassy, nonequilibrium state,[197] for which predictive

models characterizing polymer packing are not established. As an approxi-

mate means to characterize the polymer packing (and density profiles) near

the surfaces, we propose to use the model of compressible, semiflexible poly-

mer melts. Such a model utilizes a coarse-grained framework, where details

on the scale of monomers are eschewed and instead the the polymer chains are
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represented on the scale of the Kuhn segment lengths.[146] In such models,

the density profiles near surfaces exhibits smooth, nonoscillatory variations

from the bulk values to a surface value determined by the interaction of the

polymers with the particle. The local density of the polymer can in turn be

related to the local free volumes and hence the local penetrant diffusivities.

Recently, we have developed a self-consistent field theory (SCFT) based

approach for a single spherical particle in semiflexible polymer solutions.[199]

In this SCFT based model, there was assumed to be no energetic interactions

between the particles and the polymers, and thus the particle was modeled as

a hard sphere which excludes polymer conformations penetrating its surface.

The polymer was modeled as a worm-like chain[200, 146] and the entire system

was modeled within a grand canonical framework which allowed us to maintain

a prescribed solution concentration. Using such a model, the local polymer

segment density profiles near the particle predicted by our theory revealed an

interfacial layer surrounding the particle that was depleted of polymer seg-

ments (relative to the bulk density). These density profiles, characterized by

an interfacial thickness (∆), were shown to vary in a complex manner upon

changing the polymer rigidities and particle sizes. Since the numerical and for-

mulation of this model was presented in detail in Chapter 4, below we mainly

highlight the modifications used for this work and the parameters explored for

the present study.

The above model is pertinent to the present study in view of our ob-

jective to study the impact of conformational rigidity upon the overall barrier
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properties of PNCs. Towards this goal, we extended our earlier model which

was restricted to polymer solutions to treat the case of compressible polymer

melts with density fluctuations characterized by a simple free energy functional

of the form:[201, 201, 202]

F =

∫

drκ−1

(

ρ(r)

ρb
− 1

)2

, (5.1)

where ρb stands for the bulk density of the polymer and κ represents a measure

of the compressibility of the polymer melt. With the above modification, our

model is characterized by three parameters: κ, the radius of the particles (R),

and the persistence length (µ) of the polymer. In the present work, we fix the

κ parameter at a nondimensional value of κRd
g/N

2 = 0.1 where Rg denotes the

radius of gyration of the polymer and N the number of polymer segments in

the polymer. Alternative choices for κ parameter led to a modification of the

results only at a quantitative level. To discern the effects of particle curvature,

R (nondimensionalized by polymer contour length) was varied from 0.1 to 5

while µ (nondimensionalized by polymer contour length) was chosen to be

between 0.001 and 1.0. We note that µ quantifies the rigidity of the polymer,

and a value of 0.001 represents a situation more akin to flexible polymers,

whereas a value of 1.0 represents a situation corresponding to rigid polymers.

A selection of local density profiles for the semiflexible polymer melt

near a particle are shown in Fig. 5.1 for the µ = 0.1 as a function of R

(Fig. 5.1(a)) and for R = 0.25 as a function of µ (Fig. 5.1(b)). All the param-

eter sets shown in Fig. 5.1 have similar qualitative behavior: at the surface of
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Figure 5.1: Local density profiles generated by SCFT based simulations for a com-
pressible semiflexible polymer melt surrounding a particle. In plot (a) the persistence
length (µ) was held fixed at 0.1 while the particle radius (R) was altered from 0.1
to 5. In plot (b) R was fixed at 0.25 and µ was varied from 0.001 to 1.
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the particle, the normalized polymer density vanishes. On moving away from

the surface of the particle, the density increases to the normalized bulk den-

sity value of unity. These results support the hypothesis that introduction of

particle fillers lead to regions of depleted polymer, which may in turn promote

the enhanced penetrant movement in the polymer composite.

We note that many of the earlier models incorporate interfacial effects

through an interfacial “layer” of specified thickness and properties.[189, 190,

36, 191] To facilitate a comparison with such approaches, from our numerical

density profiles we computed a depletion thicknesses ∆ defined by the equation:

4

3
π
[

(R +∆)3 − R3
]

= 4π

∫ ∞

R

[1− φ(r)] r2dr, (5.2)

where φ(r)(≡ ρ(r)/ρb) is the local density of polymer segments normalized

by its bulk density. Eq. (5.2) calculates the volume that the number of

monomers depleted (relative to bulk) around the NP would occupy at bulk

density. Figs. 5.2(a) and 5.2(b) present the results for ∆/R and ∆ as a func-

tion of µ for different particle sizes. It is seen that the ratio ∆/R is very

small for large particles (e.g. R = 5) but becomes O(1) for smaller particles

(R = 0.1). This result confirms that the volume of the interfacial layers be-

come substantial (relative to the particle volume) for the case of nanoparticles.

However, Fig. 5.2 (b) clearly demonstrates that there is also an inherent cur-

vature effect, viz., that ∆ values do become smaller for smaller particles. This

result is seen visually in Fig. 5.1(a), where the depletion of polymer increases

as R is increased from 0.1 to 5. Considered in the context of Fig. 5.2(a) our
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Figure 5.2: Interfacial layer thickness dependence upon particle radius (R) and
polymer rigidity (µ), where in (a) ∆ is scaled by the particle’s radius and in (b) ∆
is scaled by the polymer’s contour length.

results demonstrates that the relative volumetric effect of the depletion layers

dominate the curvature effect for the range of radii and rigidities probed in

our simulations.

A second result, which is evident from Fig. 5.2(a), shows that the in-

terfacial thicknesses become larger upon increasing the rigidity of the polymer

matrices. This effect is visually observed in Fig. 5.1(b), when holding R = 0.25,

an increase in the depletion near the particle surface can be seen upon chang-

ing µ from 0.001 to 0.1 (in other words, upon transitioning from the flexible

polymer limit to the more rigid polymer limit). This result confirms that
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introduction of particles lead to a longer length scale disruption of polymer

packing in rigid polymers relative to flexible polymers.

5.3.2 Role of Multibody Effects

An important outcome of the results presented in the preceding subsection is

that it highlights that multibody interactions may potentially play a significant

role in influencing the magnitudes of the macroscopic diffusivities. To elucidate

this issue, we first note that for rigid polymers, the interfacial density profiles

display long ranged variations in density profiles relative to the size of the

particle. Indeed, it is seen from the density profiles displayed in Fig. 5.1(b) for

R = 0.25 that while the density profiles are perturbed up to a distance ∼ 0.1R

for µ = 0.001, such profiles display a perturbation extending up to ∼ 0.5R for

µ = 0.1. While the origins of these perturbations were discussed in Chapter 4,

below we point out its implications in the context of the problem considered

in this chapter.

The above long ranged variations in densities can lead to two kinds

of multibody body effects which influence macroscopic properties such as the

penetrant diffusivities. The first kind (MB1) is purely a particle interaction

effect and manifests even in the absence of the interfacial layers. This effect

arises from the impact of the presence of a second (or more) particles upon

the penetrant concentration fields set up by a single particle. The latter is

responsible for the particle concentration dependence of the penetrant diffu-

sivity noted in models such as the 2-phase MM.[35, 192, 203, 204] In the case
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when the particles have an interfacial layer, MB1 effects can be expected to

manifest when the penetrant concentration profile set up by a single particle

along with its interfacial layer start to overlap with the concentration fields set

up by other particles (with their interfacial layers). However, such MB1 effects

are now expected to manifest at a concentration determined by the volume of

the “pseudo particle” comprising of the particle along with its interfacial layer.

Due to the relative expanse of the interfacial layers, the particle concentrations

at which such MB1 effects manifest are expected to be significantly lower than

in the absence of such interfacial layers.

A second kind of multibody effect (MB2) arises due to the potential

overlap of polymer interfacial layers. Indeed, the polymer density profiles

depicted in Fig. 5.1 are expected to be modified upon the introduction of a

second (or more particles) in the vicinity of the first particle.[149] Such effects

are expected to become important if the particle concentrations are such that

the range of perturbations of the polymer densities around particles start to

overlap. Yet again, we expect such effects to manifest at very low particle

concentrations for cases involving small particles and/or rigid polymers!

The above observations point to the need to accurately capture the effects

of multibody interactions upon macroscopic properties especially for situations

involving rigid polymers and/or small particles. Explicitly, the above argu-

ments suggest that an accurate quantification of the interfacial effects upon

the diffusivity of penetrants requires an approach to obtain: (i) The polymer

density (and penetrant diffusivity) map for a given concentration and con-
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figuration of particles while accounting for the overlap of interfacial layers;

(ii) The macroscopic diffusivity arising from such a complex polymer den-

sity/diffusivity landscape. In the following sections, we detail our approach to

address these issues.

As an aside, we note that the above discussed long range effects are

severely underestimated in interfacial shell models. Indeed, it is seen from the

results depicted Fig 5.2(a) that for R = 0.25 and µ = 1.0 we have ∆ = 0.11R

(in contrast to the density perturbations that extend up to ∼ 0.5R). The

latter illustrates the pitfall of such shell models, wherein the range of per-

turbations are underestimated. Consequently, establishing a correspondence

to experimental results typically requires the assumption that the interfacial

properties differ significantly from the bulk value.[191, 205, 36] We provide

more clearer demonstrations of this breakdown in the section on results and

discussion where we compare the results of the multibody simulation frame-

work to the corresponding results from the 3-phase MMs which uses such a

shell-like description of the interfacial layer.

5.3.3 Transforming Interfacial Layer Properties into A

Diffusivity Landscape

We propose a unified framework which incorporates continuously varying in-

terfacial layer properties, overlap of interfacial layers, and free volume the-

ory to estimate the diffusivity landscape for a penetrant. In principle, struc-

turally representative samples of the particle dispersion can be created using
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either experimental input and/or simulations wherein the interactions between

the nanofillers are specified. For the present work, we relied on a random

configuration of particles generated via a Molecular Dynamics simulation of

Lennard-Jones particles with potential parameters,1 σ and ǫ, and mass set to

unity.[123]The simulations were run in an NVT ensemble, and several snap-

shots were saved throughout each simulation. This allowed access to different

configurations of particles so that the final predictions for the composite’s

macroscopic diffusivity (details for this given later in the section) could be

averaged over these configurations. Also, using this approach ensured con-

figurations of non-overlapping particles and set the 3D layout for which the

interfacial layers would be mapped onto.

The first step in determining the local penetrant diffusivities was to

assign the local polymer densities at an arbitrary location in the system. While

the interfacial layer’s density profiles deduced in SCFT simulations provide

information about the local polymer arrangement around a single particle,

such densities need to be corrected to account for the superposition effects

arising from the neighboring particles. In order to generate 3D density profiles

of particles with these overlapping interfacial regions, the composite system is

represented as a grid of points, each having a local normalized density (φ(r))

associated with it. The grid size was chosen to be 5% the radius of the NP;

this choice assumes any resolution of an interfacial layer below this threshold

1The MD simulations generated configurations of simple, non-overlapping particles by
using a Langevin thermostat with the temperature set at 1.0ǫ/k and the friction coefficient
set to 0.5τ−1, where τ = σ(m/ǫ)1/2 with m defined as the mass. The length of the cubic
simulation box was held at 3.75σ.
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is unnecessary to capture in this model. The SCFT local density profiles are

then superposed on top of the 3D particle configurations using a superposition

approximation:

φ(r) =

N
∏

i=1

φi(|r− ri|), (5.3)

where φ(r) denotes the prediction for the normalized density at a position r

and φi(|r − ri|) represents the SCFT determined normalized density profiles

at a distance |r − ri| from the ith particle (cf. Fig. 5.1). The above product

rule has been previously shown to accurately predict the concentration profile

between two spheres immersed in an ideal polymer solution, and we extend

the idea here to the case of a polymer melt and for the situation involving

many particles.[206]

Combining the local interfacial density profiles with a 3D particle con-

figuration results in a 3D density profile for the polymer composite system.

A representative 2D slice of such a density profile is shown in Fig. 5.3; note

that the density inside a particle is zero because no monomers exist in this

volume. Such 3D density profiles are generated for different parameters R, µ

and particle volume fractions (φd) for different particle configurations. 1

Once the 3D density profiles are created, the next step is to transform

this to a 3D penetrant diffusivity map as input to the homogenization proce-

dure described in the next section. In this regard, our model is identical to

that of Hill[35, 207] where the local polymer density is related the local free

1We note that in reality, the particle size was actually fixed and R effects were accounted
through the superposition of appropriate local density profiles for the specific value of R (as
well as µ).
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Figure 5.3: A two-dimensional slice of a three-dimensional normalized local density
profile for R = 0.1, µ = 0.1, and ∆ = 0.025.

volume of the matrix, and in turn to the local diffusivity of a penetrant (albeit,

Hill implemented this in the context of one body density profiles). Explicitly,

D(r)

Db
= exp

[

− vmφ
∗(φ(r)− 1)

(1 − φ∗φ(r))(1− φ∗)

]

, (5.4)

where D(r) is the local penetrant diffusivity, Db is the diffusivity in a bulk

polymeric material with a homogeneous density, vm is a parameter that scales

as the ratio of the penetrant’s volume to the average atomic volume compos-

ing the polymer, and 1 − φ∗ represents the fractional free volume of the pure

polymer. In the present study, 1−φ∗ was fixed at 0.29, which is the fractional

free volume of poly-[1-(trimethylsilyl)-1-propyne] (PTMSP). PTMSP was cho-

sen since it was shown experimentally to have an enhancement in free volume

upon adding fumed silica NPs.[163] We allow vm to be 0.7 and 1.6 to study

penetrant size effects. Upon choosing these parameters Eq. (5.4), allows the
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Figure 5.4: A two-dimensional slice of a three-dimensional diffusivity profile at-
tained from using Eq. (5.4) on the 3D local density profile in Fig. 5.3 and setting
vm to 1.6 and 1− φ∗ to 0.29.

3D density map to be trivially converted into a 3D diffusivity map (Fig. 5.4).

The latter represents the penetrant diffusivity landscape accounting for con-

tinuously varying interfacial layer properties and the multibody effects (MB2)

arising from the overlap of interfacial layers (in an approximate manner within

the framework of Eq. (5.3)).

As an aside, we note that the functional forms relating the local solu-

bility to the local density can also be used in the above construct to generate

a solubility and hence a permeability map. The local permeabilities, can then

be embedded in a framework similar to that described in the next section to

deduce a macroscopic permeability. In this work however, we restrict ourselves

to study the characteristics of the macroscopic diffusivities of penetrants.
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5.3.4 From a Diffusivity Map to Macroscopic Diffusiv-

ity

To obtain the macroscopic diffusivity for a specified diffusivity map, we use a

method termed as the random walker (RW) simulation method. This method,

proposed by Van Siclen,[208] has been developed and implemented earlier to

predict transport coefficients for finite composite materials (without any inter-

facial layers). This simulation technique views a composite system as a grid

of local properties (in this case local diffusivities) and lets a random walker

roam these grid points. Movements of this RW are determined by probabilities

proportional to local diffusivities of nearest neighbors,

Pij =
Dj

Di +Dj

, (5.5)

where Pij is the probability to move from site i on the diffusivity grid to site j

and Di and Dj are the local diffusivities of sites i and j. The diffusion of the

walker (Dw) is then extracted from the Einstein’s relation,[123]

Dw =
〈R2〉
6t

, (5.6)

where t is the time the walker has traveled and 〈R2〉 is the mean-squared

distance the walker has traveled. With the walker’s diffusivity one can achieve

a prediction of the macroscopic diffusivity for the local diffusivities by the

simple relation D = Dw〈D(r)〉, where 〈D(r)〉 is the volume average of the
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local diffusivities from the 3D grid.

A RW simulation was performed on each 3D diffusivity map generated

from the procedure stated above in this section. For each parameter set, four

different particle configurations and hence diffusivity maps were created, and

used in separate simulations allowing for an average of the macroscopic diffu-

sivity. To explicitly delineate the influence of interfacial effects we considered

the results of three models:

(i.) Full Scale Model : A polymer composite was modeled as particles sur-

rounded by a continuously varying interfacial layer, with the density and

diffusivity profiles generated as described in the preceding section.

(ii.) 3-Phase Model : Interfacial layers modeled as shells with a specified

thickness (∆) and interfacial diffusivity. Regions outside the interfa-

cial region were assumed to have bulk properties. ∆ was calculated by

using the density profiles (generated from our SCFT based simulations)

in Eq,( 5.2). The interfacial diffusivity of this region was obtained by

setting φ(r) equal to zero in Eq. (5.4). This model mimics the construct

used in the 3-phase MM for which it has been predicted that[190]

D3PMM

Db

=
Deff + 2Db − 2(φd + φI)(Db −Deff )

Deff + 2Db + (φd + φI)(Db −Deff)
, (5.7)

where D3PMM is the macroscopic diffusivity determined by the 3-phase

MM (3PMM), φd is the volume fraction of particles, φI is the volume

fraction of interfacial layers, and Deff is the effective diffusivity of the

133



particle and interfacial layer combined. This effective diffusivity Deff is

determined as

Deff = DI
1− φs

1 + φs/2
, (5.8)

with DI being the interfacial diffusivity determined from Eq. (5.4) (upon

setting φ(r) = 0 in the interfacial region) and φs = φd/(φd + φI).

With the knowledge of ∆ from Fig. 5.2(b) (which was calculated from

Eq. (5.2)), φI can easily be determined. As we discuss below, for rep-

resentative parameters, the results of our RW simulation (when viewed

from this shell-like framework) matched very closely with the results of

the above 3PMM (Eq. (5.7)). Whence, in the subsequent sections we

directly compare our numerical results for the full scale model with that

of the analytical result Eq. (5.7).

(iii.) 2-Phase Model : In this model, there is no interfacial layer, and the sys-

tem is composed of two phases: particle and polymer, with the particle

being impenetrable and the polymer phase having bulk properties. This

scenario is representative of classical composite models that are typically

used to predict the reduction in barrier properties, and whose magnitude

depends only upon the volume fraction of fillers. The equation defin-

ing this model is given by Eq. (5.8) except in this case φs = φd and

DI = Db. Again, below we demonstrate that upon sing 3D penetrant

diffusivity profiles mimicking this setup, the results of our RW simula-

tion approach matched very closely with the predictions of the above

2-phase MM (2PMM) (Eq. (5.8)) and hence in subsequent sections we
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directly compare our numerical results with the analytical prediction of

Eq. (5.8).

We tested the RW simulations in a 2-phase scenario (involving just

the particles dispersed in a homogeneous polymer system) as well as a 3-

phase scenario (where the particles were surrounded by an interfacial layer

of specified diffusivity), the numerical results displayed in Fig. 5.5 are seen to

match very well with the respective predictions of the 2PMM and 3PMM. The

deviations apparent for ∆/R = 0.25 may be rationalized as arising due to the

overlap of interfacial layers, an effect not included in the 3PMM. In sum, the

results in Fig. 5.5 suggest that the RW simulations can be used fruitfully to

obtain the macroscopic diffusivities in our system.
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As an aside, we note that alternate numerical homogenization tech-

niques similar in spirit have also been proposed. Notable among these are the

RW simulation method developed even earlier by Torquato et al.[209, 210],

who used the first-passage-time technique to reduce the computational time

required for simulations and applied it with success even to random digitized

media. In fact, Torquato and coworkers have criticized the RW method of Van

Siclen as being inaccurate for the scenario involving very large fluctuations in

local properties.[211] However, since the techniques of Torquato et al. are

harder to generalize to our system, and moreover, since our system does not

exhibit such large fluctuations in properties we decided to adopt the method

of Van Siclen. Moreover, the quantitative comparisons presented in Fig. 5.5

to the analytical predictions of 2PMM and 3PMM confirm the applicability of

our RW method to the situations considered in this chapter.

5.4 Results and Discussion

In this section we discuss the results obtained for the parametric dependencies

of the macroscopic penetrant diffusivities as a function of the particle radius

(R), persistence length (µ), penetrant size (vm), and the particle volume frac-

tion (φd).
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5.4.1 Nanoparticle size effect

In Fig. 5.6, the variation of the macroscopic penetrant diffusivity (relative

to its value in a homogeneous polymer matrix) is displayed as a function

of the volume fraction of the fillers for different particle radii R, and the

inset to this plot gives the same diffusion data for a fixed particle loading

corresponding to φd = 0.1. In the results displayed, µ (in units of polymer

contour length) is held constant at unity and vm is set to 1.6, while R (in units

of polymer contour length) is varied from 0.1 to 5. We have also probed the

same particle size parameter range for other set values of µ (ranging from 0.001

to 1), however, we eschew presenting these results here since their behavior is

qualitatively similar to the data displayed for µ = 1 (Moreover, the following

section discusses explicitly the persistence length effects at a fixed radii). On

the same plot, results corresponding to the 3PMM defined by Eq. (5.7) and

the 2PMM, defined by Eq. (5.8) are also displayed.

Overall, we observe an interesting dependence of the macroscopic pene-

trant diffusivity upon the particle size: for a given particle volume fraction φd,

as the particle size R is reduced, we observe that the macroscopic diffusivity of

the penetrant in the composite is enhanced (this trend is easily viewed in the

inset of Fig. 5.6). Moreover, for the case of small particles, the penetrant diffu-

sivities are seen to exhibit values higher than the diffusivities of the penetrant

in the pure polymer matrix, an observation consistent with the “counterintu-

itive” experimental observations noted in the introduction.[183, 184, 185, 11]

To understand the origins of these effects, we note that the role of particle
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Figure 5.6: Effect of particle radius (R) on the macroscopic diffusivity of a PNC
for µ = 1. R was set to various values: 0.1, 0.25, 0.5, and 5; vm was kept at
1.6. The filled symbols represent predictions from our multiscale model while the
unfilled symbols represent predictions from both two-phase (2P) and three-phase
(3P) Maxwell models (MMs). The diffusivities for φd = 0.1 are shown in the inset
as a function of the particle’s radius. All R values are given with respect to the
polymer’s contour length.
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fillers manifest in two competing roles: (1) the effect of its volume being an

“obstacle” for a penetrant; and (2) the effect of particle generating regions “de-

pleted” of polymers that promote penetrant movement. Moreover, Fig. 5.2(a)

demonstrates that the depletion volume (or more explicitly, ∆/R) increases

with a reduction in the particle size R. Hence we can conclude that as R de-

creases (at a constant φd), the depletion effects become more enhanced, leading

to a corresponding increase in the macroscopic penetrant diffusivities that is

seen in the inset of Fig. 5.6. For very small particles, the latter effect becomes

dominant and leads to penetrant diffusivities which are much higher than the

pure polymer matrix.

In comparing the results of our multibody simulations with that of the

simplified 2- and 3-phase models, we note that for the case where R = 5, both

our simulations and the 3PMM show quantitatively comparable results. From

our discussion above, it is evident that this situation is representative of the

“obstacle” effect, for which case, the interfacial effects, albeit present, are small

relative to the overall obstruction offered by the particle. Moreover, due to the

relatively small volumes of the interfacial layers, effects arising from the overlap

of interfacial layers are also practically unimportant and do not manifest until

much higher volume fractions. These features explain the semiquantitative

accuracy with which the 2PMM and 3PMM predict our simulation results for

large particles.

In contrast, for R = 0.1 (particles small relative to the polymers), a sit-

uation for which we observe a large enhancement in the macroscopic penetrant
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diffusivities upon the addition of particles, it is also apparent that our results

deviate significantly from the predictions of the 2PMM and 3PMM. While the

deviations from the 2-phase model can be straightforwardly explained as re-

sulting from lack of inclusion of the interfacial characteristics, the deviations

from the 3-phase model is indicative of two effects: (i) the long ranged nature

of the interfacial layers which are not accurately captured within the interfa-

cial shell model; (ii) the substantial overlap of the interfacial regions and the

corresponding multibody effects not captured in Maxwell like models. Paren-

thetically, we note that 3-phase models in other contexts have also had to some

times use unphysically large parametric values for the interfacial properties to

match the experimental results.[191, 205] Our results are consistent with such

characteristics and shed light on the underlying reasons for such parameter

fits.

Finally, for the case of R = 0.5 (particles comparable to the size of the

polymers) we observe an interplay between the obstruction and the interfacial

effects discussed above. Indeed, the results are representative of the scenario

where the contrasting effects of “obstruction” vs “enhancement” balance each

other for low volume fractions, after which the interfacial effects seem to dom-

inate slightly (leading to an enhancement in the overall penetrant diffusivity

by roughly 10% for φd = 0.15). As might be expected from the smaller ex-

tent and effects of interfacial regions, the overall results are semiquantitatively

captured by the 3PMM.
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5.4.2 Effects of Polymer Rigidity

To probe the influence of polymer rigidity we fixed vm = 1.6, and varied the

persistence length from the flexible limit (µ = 0.001) to the more rigid limit

(µ = 0.1). We consider the results for the small particle sizes R = 0.1 and

larger particles R = 0.5 (results displayed in Fig. 5.7). The insets in Fig. 5.7

show the same diffusion data viewed from the φd = 0.1 plane. For R = 0.1,

Fig. 5.7(a), we observe that the macroscopic diffusivity is larger than the bulk

value for all the rigidities (µ) probed. In addition, the inset of Fig. 5.7(a)

clearly supports the idea that increasing the rigidity can lead to significant

increases in the penetrant’s macroscopic diffusivity. Indeed, it is already ap-

parent from Fig. 5.2(a) that for the small particle limit, the particles are effi-

cient in disturbing the packing of the polymers (an effect which increases with

increasing rigidity) and consequently the depletion thicknesses are typically

comparable to the radius of the particle. Consequently, it is not surprising

for such small particles that the “obstruction” effect is overwhelmed by the

“enhancement” effects.

Also shown in Fig. 5.7(a) is a comparison to the 3PMM (Eq. (5.7)).

It is evident that the 2MM cannot predict the enhancements in diffusivities,

and hence we refrain from presenting predictions for parameters where the

simulations show no such effects. Overall, we observe that situations for which

there are large interfacial layers (such as for µ = 0.01 and µ = 0.1), the 3PMM

tends to under predict the results. The latter arises from the underestimation

of the range of polymer density perturbation and the neglect of overlap effects
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Figure 5.7: Effect of polymer rigidity (µ) on the macroscopic diffusivity of a PNC
for (a) R = 0.1 and (b) R = 0.5. In each plot µ was varied from 0.001 to 0.1 while
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in the shell models which were discussed earlier. In contrast, for systems which

show smaller interfacial layers (µ = 0.001), the 3PMM models tend to capture

the results better.

For larger sized particles (R = 0.5, Fig. 5.7(b)), we observe an interest-

ing interplay of the obstruction and interfacial effects. For the flexible limit,

the interfacial perturbations are reduced and the overall effect of the filler is to

act as an obstruction to the penetrant diffusivity. This leads to a lowering of

the diffusivity similar to the effects of conventional particle filled membranes.

In contrast, for more rigid polymers it is evident that the interfacial effect

becomes dominant, leading to an enhancement in the penetrant diffusivities

for all filler concentrations. The enhancements in penetrant diffusivity caused

by increased polymer rigidity in this larger particle limit is shown in the inset

of Fig. 5.7(b), though these enhancements are not as substantial as the case

where R = 0.1 (inset of Fig. 5.7(a)). These results highlight the subtle, albeit

important, role played by the polymer matrix rigidity in influencing the free

volume and hence the diffusivity landscapes. Here again the correspondence

with the 3PMM follows the general trends noted in the comparisons presented

earlier, except that the 3PMM model predictions is found to be less accurate

overall for this situation. We believe that this is not necessarily due to any

specific feature associated with µ or R values probed, but rather just reflects

the fact that the 3PMM tends to overestimate certain effects (such as the

strength of the interfacial layer) and underestimate certain effects (such as the

range and overlap of the interfacial layers), and hence its quantitative accuracy
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depends sensitively on the many parameters which determine the behavior of

the macroscopic penetrant diffusivities.

5.4.3 Penetrant size effects

The final effect we probed is that of the size of the penetrant, for which the

results are displayed in Fig. 5.8 for µ = 0.1 at two different R values: 0.1 and

1. The results displayed in Fig. 5.8 resembles the experimental observations

of reverse selectivity in nanocomposite membranes wherein the diffusivities

of larger penetrants are more enhanced compared to the smaller penetrants.

The origin of this result (first proposed by Hill[35]) lies in the amplification of

the interfacial effects with an increase in the penetrant sizes. We recall that

the main role of vm is in modulating the dependence of the diffusivity in the

interfacial layers on the penetrant size. Indeed, in the model we have adopted

(Eq. (5.4)), a penetrant with a larger vm experiences a greater enhancement

in its diffusivity in the interfacial regions relative to a penetrant with smaller

vm. Physically, this can be understood as an effect arising from the opening of

pathways which were highly restricted to a larger penetrant. In contrast, for a

penetrant with smaller vm, much of these openings were already accessible and

hence the effect of lowered polymer densities is much less substantial (a more

quantitative way to see this is to consider the derivative dD/dvm, which can

be seen to increase monotonically with vm). Whence, for smaller penetrants

and larger particles (from Fig. 5.8 the case where vm = 0.7 and R = 1),

the interfacial effects are weak and the particles act more or less as obstacles
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1.6 and R from 0.1 to 1, while µ was held constant at 0.1.

to the diffusion of penetrants. In contrast, for larger vm and/or smaller R,

the interfacial effects become enhanced and overwhelms the role of particles

as obstacles to the penetrant. Interestingly, it is observed from the data for

R = 1 that for appropriate parameters the same nanofiller composite may act

as obstacles to smaller penetrants but may instead promote the diffusivity of

larger penetrants (relative to their bulk polymer values). The comparisons to

the 3PMM parallels the discussions in the other contexts, and hence we avoid

repeating them here.

5.4.4 Comparison to Experiments

One of the main results from our model is that the role of the particle trans-

forms from being an obstacle in the flexible polymer/large particle regime to
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a promoter of penetrant movement in the semi-rigid polymer/small particle

regime. Such a transition was explicitly shown in work from Merkel et al.[11]

where permeability of methane increased in a PMP and fumed silica PNC,

whereas propane permeability decreased in a natural rubber and ZnO filler

composite.[176] The results of the latter experiments were shown to follow the

trend predicted by the 2PMM whereas the former followed trends similar to

the ones showed in our model. The other parameters of our study are also

comparable to the experimental situation. Explicitly, in Merkel et al.[11] the

NP was measured to be 13nm, which is approximately an order of magnitude

smaller than the typical polymer contour length, thus, making R (relative to

the contour length) for these experiments to be possibly near 0.1 (for which

our results are shown in Fig. 5.7(a)). The enhancement factor in diffusivity

for µ = 0.01 and R = 0.1 at φd = 0.15 was around 2.5 in our model, which

is comparable to the enhancement factor of permeability noted for the fumed

silica/PMP PNC at φd = 0.20. Therefore, our predictions of our diffusivity

enhancements are in the range of results noted in experiments. Moreover, we

observe that the reverse selective behavior is also captured in our model as a

consequence of the more sensitive dependence of the large penetrant diffusiv-

ities to the local polymer densities.

Another effect seen from our results that mimics behavior seen experi-

mentally is the influence of rigidity. Our results demonstrated that as the par-

ticle size decreases, the effect of the polymer’s rigidity upon diffusion becomes

significant enough to enhance the macroscopic diffusivity of the penetrant.
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This explanation was also invoked by Merkel et al.[198] who speculated that

while flexible polymers may accommodate the volume occupancy of fillers,

stiffer polymers may lead to a more substantial disruption of the packing of

the polymer’s segments. Indeed, in a latter study Merkel et al.[11] used this

explanation to rationalize their observations on the particle size dependencies

of the enhancements in penetrant diffusivities. The results of our molecular

model and the macroscopic penetrant diffusivities are seen to lend support to

this hypothesis.

5.4.5 Comparison to Earlier Theoretical Efforts

As noted in the section 5.2, earlier theoretical research by Hill [35, 192] incor-

porates many of the ingredients we have used in the present effort to model

the barrier properties of PNCs. We note that Hill’s model also captures many

of the experimental observations discussed in the preceding section. Indeed,

his results also embody the transformation of the particle from being an ob-

stacle in the large particle regime to a promoter of penetrant movement in

the small particle regime. Moreover, since the penetrant diffusivity model we

have adopted is identical to that of Hill, the reverse selective behavior is also

captured in Hill’s model. Finally, we note that Hill demonstrates that the

experimental results can be quantitatively fitted by adopting realistic values

for parameters in his model.

Owing to the different microscopic polymer model and parameters em-

ployed, a quantitative comparison of our results with Hill’s model is not possi-
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ble. Our research improves upon Hill’s work (i) by incorporating a more accu-

rate treatment of the polymer density profiles which accounts for the meltlike

nature of the matrix, the rigidity of the polymer chains and the curvature of

the dispersed fillers; and (ii) by incorporating a more accurate treatment of

the multibody effects arising due to the particle interactions and the overlap

of the interfacial layers. The first feature allowed us to explicitly comment on

the effect of rigidity, especially its role in influencing the transition from the

obstacle to the promoter regimes. These results lend credence to speculations

offered by experimentalists (discussed in the preceding section) for explaining

the role of rigidity and packing effects. With regards to the second feature, we

note that at the low volume fractions probed by experiments, direct multibody

effects arising from the particle interactions (MB1) are expected to be less sig-

nificant. Hence the particle loading dependencies of our diffusivity values can

be roughly fitted by a linear or quadratic function similar to the analytical

model predictions of Hill. However, as we clearly demonstrated through den-

sity profiles and by comparison to the results of 3PMM, effects arising overlap

of interfacial layers (absent in Hill’s model) do play a significant role in influ-

encing the quantitative details of the results.

Admittedly, the results presented in this chapter improves only the

quantitative details of results presented in the earlier model of Hill. How-

ever, the methodology we have presented (one of the main objectives of this

work) offers the potential to treat complexities not directly addressable by

the approximate analytical theories. Explicitly, we note that while our re-
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sults were based on a random configuration of the particles created through

molecular dynamics simulations, in principle, the methodology was equally

applicable to the case where the particle dispersion exhibits structural com-

plexities such as arising from aggregation of the fillers. Also, our numerical

methodology is straighforwardly extended to situations involving anisotropic

fillers. In contrast, development of continuum composite theories for disper-

sions of anisotropic fillers proves considerably more difficult relative to their

spherical counterparts.[182] Overall, these features highlight the potential of

our numerical approach to go beyond the capablities of analytical theories for

capturing characteristics representative of experimental situations.

5.5 Conclusion and Future Outlook

In this contribution, a model that included interfacial layer properties in pre-

dictions of barrier properties for PNCs and traditional composites was intro-

duced and compared to existing composite theories. The model assembles MD

simulations, SCFT based simulations, free volume theory, and a numerical ho-

mogenization approach to generate predictions of barrier properties for poly-

mer composites. Our predictions incorporate the influence of polymer rigidity,

filler size, penetrant size, and filler volume fraction. By including such effects,

we were able to demonstrate that interfacial layers play a significant role upon

the macroscopic diffusivity of the penetrant — a result the 2PMM does not

capture. Due to the inclusion of continuously varying interfacial layer prop-

erties, this predictive model is also able to include the effects of overlapping

149



interfacial regions, which cannot be accounted for in the 3PMM. Most impor-

tantly, the results predicted by our model mirrored trends seen in experimental

studies. Overall, our model demonstrates that a combination of highly rigid

polymers and/or small NPs are favorable to produce enhancements in diffu-

sivity. Moreover, with the inclusion of penetrant size effects in our model, we

were able to see behavior similar to the reverse selective membranes revealed

by experiments.

Our approach to predict barrier properties was intended as an illustra-

tion of a numerical approach to predict the properties of PNCs. Our approach

allows for incorporating more complex structural information about the disper-

sion, an effect which may prove critical for modeling the properties of PNCs

(see Chapter 2). One can also envision extension of our approach to other

properties such as conductivity and solubility. For such properties, we note

that the local polymer density profiles still serve as a measure of the local

properties, and with an appropriate model to quantify such a relationship,

many aspects of the present chapter directly carry over to such models.
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Chapter 6

On entanglements in polymer

nanocomposites

6.1 Introduction

Nanofillers have been shown to have a significant effect on the mechanical

properties of polymer nanocomposites (PNC) [23, 45, 43]. It is possible that

such effects arise from a change in polymer entanglement length (Ne), a mi-

croscopic quantity indicating the number of monomers between entanglement

points in the polymer caused by the chain’s inability to cross other chains (or,

if present, inclusions). The mechanism by which the above occurs is not yet

known, though there are viable explanations that have been proposed. One

idea is that the polymer can become “stuck” to the surface of the nanofiller

which can increase the number of entanglements in the system [43] or even

cause bridging of nanofillers [30, 23]. Another idea proposes the nanofiller

is an additional “obstacle” that can’t be crossed by the polymer, therefore,

generating more potential for entanglements [23, 212]. In contrast to these ex-

planations, there is also an idea that a glassy phase around the nanofiller exists
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with superior mechanical properties, relative to that of the bulk polymer, that

is the cause of this mechanical property enhancement in PNCs [34, 33, 213]

While experimental studies only allow for an indirect description of

the topology of the polymer network governing entanglements, simulations

can provide direct access to polymer configurations. In fact, computational

algorithms have been developed to obtain Ne directly from simulation data

[46, 47, 214, 215]. In this chapter, an approach is taken to see if simula-

tions can shed light on how nanofillers influence the entanglements in PNCs.

We use a model PNC composed of bead-spring polymers embedded with LJ

nanoparticles (of different size), and the polymer-particle interaction between

the two is varied from attraction to repulsion for various volume fractions.

This model system is chosen since detailed all-atom simulations of a realistic

PNC is not pragmatic due to the large length and long time scales inherit of

PNCs. Indeed, simplistic models of polymers have shown to accurately explain

the critical physics governing such systems [46], and so we leverage this idea

here as well.

With our approach, we first investigate if the particle-nanoparticle in-

teraction type can influence the entanglement length of the polymer. In this

regard, some questions to consider are: If the polymer becomes physically

stuck to the surface of the polymer (with an attractive interaction), will the

entanglements of the polymer increase as has been suggested others ? If there

are no enthalpic effects from the polymer-particle interaction (repulsive inter-

action), will there be no alteration in entanglement length, which has also been
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claimed ? Secondly, we investigate if increasing the nanoparticle concentration

(i.e. increasing confinement) will decrease the entanglement length. If indeed

the nanoparticles are creating entanglements by being obstacles for the poly-

mer, then there should be some dependence of Ne on the nanoparticle volume

fraction.

Following this introduction, the simulation methods are detailed in

Sec. 6.2. After this, the results are presented with a discussion in Sec. 6.3.

Finally, a conclusion and future outlook is given in Sec 6.4.

6.2 Simulation Methods

The model PNC used in our simulations was comprised of a bead-spring poly-

mer interacting with an LJ particle of a different size than the monomers.

The bead-spring polymer was composed of monomers interacting with other

monomers via an LJ interaction,

ULJ(r) = 4ǫ

[

(

σ

r −∆

)12

−
(

σ

r −∆

)6
]

, for r ≤ ∆+Rc, (6.1)

where ǫ, σ, and the monomer mass (m) were set to unity, Rc = 1.12, ∆ was

set to zero, ULJ(r) was shifted so that it is zero at r = ∆ + Rc, and ULJ(r)

is zero at r > ∆ + Rc. All units of measure are relative to ǫ, σ, and m of

the monomer. The monomers were held together via a FENE potential of the

form,

Ub(r) = −KR
2
o

2
ln

[

1−
(

r

Ro

)2
]

, (6.2)
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where K = 30 and Ro = 1.5. The monomer-particle interaction also had

the form of Eq. 6.1, with σmp = 1, ǫmp = 2, and ∆mp = 1.5. For the at-

tractive interaction Rc,mp = 2.5 while for the repulsive interaction the cutoff

was Rc,mp = 1.12. This potential was used to account for the differences in

size of the particle and monomer. The particles themselves do not see one

another, were randomly dispersed in the simulation box, and were fixed. Each

simulation were composed of 250 chains each having a length of N = 200

monomers. The volume fractions investigated were 0.1%, 5%, and 10%, with

their simulations having 2, 100, and 200 nanoparticles, respectively.

To obtain equilibrium configurations of the PNC, a few steps were taken.

First, a pure bead-spring melt was simulated with a Langevin thermostat at

a number density (ρ) of 0.85 and temperature (T ) of unity, and allowed to

equilibrate over a time of t = 492, 000. The pressure was averaged over a

production run of t = 120, 000 and was calculated to be 4.92. Following this

run, an NPT ensemble was used to drive the pressure of each PNC simulation

run from P = 0.3 to the average pressure obtained from the pure melt sim-

ulations over a simulation time of t = 6, 000. Afterwards, from a simulation

run of t = 6, 000, a configuration is chosen with the closest pressure to the

pressure observed in the melt simulation for the start of an NVT simulation

with a Langevin thermostat. The time allowed for each PNC to equilibrate

was t = 492, 000, which was long enough for the center of mass of the poly-

mers to move on average many times the size of the polymer. Configurations

following this step were then used in the primitive path analysis.

154



Previous work by Sukumaran et al.[47, 46] on a primitive path analy-

sis (PPA) for the calculation of polymer entanglement length is utilized here.

Whereas in the aforementioned study this method was implemented for pure

polymer scenarios, here it is used for polymer-particle melt mixtures. A brief

explanation of this method is provided here, but we refer the reader to Ref [47]

for further details. For each equilibrated configuration obtained from the above

described process, the ends of the polymer chains are fixed and the intrachain

repulsive LJ interactions removed, while the interchain repulsive LJ interac-

tions between monomers are retained. The temperature is then slowly reduced

to nearly zero to allow for the polymer to assume the “primitive path”. (Note,

the parameters used for this method can be found in Ref [47]) To allow this

procedure to work for a PNC, we just removed the attractive tail (if any ex-

isted) between the particle-monomer interaction and kept the particles fixed

in the simulation. Since the entangled configurations are expected to develop

during the equilibration portion of the simulation, the contribution to the en-

tanglement length from the attractive tail during the PPA is assumed here

to be negligible. Finally, PPA was performed separately on 100 equilibrium

snapshots, providing an average of Ne to be calculated.

6.3 Results and Discussion

To ensure the PPA was being correctly implemented, a pure polymer system

was used to determine the entanglement length (Ne), which turned out to be

Ne,b = 63 ± 2. This is commensurate with what was obtained by Sukumaran
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et al. [46] Not only did we want to see how the particle-monomer interaction

affected Ne,c (the entanglement length for the PNC), but we also investigated

how nanoparticle volume fraction (φ) played a role on entanglements. To

elucidate how φ increased the confinement in the system we calculated the

average interparticle distance hp as

hp = 2Rp

[

(

0.7

φ

)
1

3

− 1

]

, (6.3)

where Rp = ∆mp+σmp/2 is the particle’s radius and φ is the volume fraction of

particles; here Rp = 2. This interparticle distance was rescaled by an estimate

of the distance between entanglements in the pure polymer: be =
√

Ne,bR2
b/N ,

where R2
b is the polymer chain’s end-to-end distance from the pure polymer

simulation.

The entanglement length results for different volume fractions of nanopar-

ticles are shown in Table 6.1. The second column provides the ratio hp/be corre-

sponding to each φ as a measure of confinement in the composite, whereas the

third and fourth columns provide Ne for an attractive and repulsive monomer-

particle interaction, respectively. Our approach was not able to see any en-

tanglement difference for the attractive case. This could be attributed to a

possible weak attractive interaction between the monomers and particles. The

repulsive case also showed little change in Ne. This result, however, is com-

mensurate with the results discovered by Mackay et al.[45], which also had

a ratio Rp/Rg = 0.3 (where Rg is the radius of gyration) as we did in our

simulations.
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Ne

φ hp/be Attractive Repulsive

0.001 2.18 64± 3 60± 3
0.05 0.39 63± 2 63± 3
0.10 0.25 64± 2 63± 3

Table 6.1: Entanglement predictions for both attractive and repulsive
monomer-particle interactions.

To check if the parameters chosen for the attractive/repulsive polymer-

nanoparticle interactions actually promoted wetting/dewetting of the polymer,

we decided to measure the adsorption characteristics of the polymer. This was

done by studying a very similar system, but with one fixed particle in a polymer

melt with smaller chain length (500 chains with N = 20); this was done

to reduce the computational time to accomplish the simulations. A smaller

chain length is also reasonable since we do not expect he polymer’s molecular

weight to significantly influence the adsorption characteristics of the system.

The particle-monomer (attractive/repulsive) interaction and polymer-polymer

interactions were all kept the same, as well as the pressure and temperature of

the system. To measure adsorption, the surface excess[41, 216, 217, 130] was

calculated by

Γs =
1

R2
p

∫ ∞

Rp

(gpm(r)− 1) r2 dr, (6.4)

where gpm(r) is the radial distribution function between the particle and

monomers. When Γs > 0 this indicates wetting and when Γs < 0 this indicates

dewetting. Performing this calculation for both the attractive and repulsive

cases, we obtain Γs(attractive) = 0.0076 and Γs(repulsive) = −0.0976. This
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measurement clearly indicates the polymer-nanoparticle interaction is creat-

ing the effect we intended between the polymer and nanoparticle. However,

comparing the order of magnitude of Γs between interactions types suggests

that the attraction may not have been strong enough.

What is more surprising in Table 6.1 is the lack of confinement effects

on Ne, even for hp/be = 0.25. To draw more concrete explanations from

this set of results, more parameters for particle size, polymer-nanoparticle

interaction, and nanoparticle volume fraction must be performed to see their

effects on Ne. We speculate the nanoparticles were perhaps too small in size

to induce any significant confinement and, perhaps, acted more like a solution

than a filler. The nanoparticle size may also explain the lack of effect from

the polymer-nanoparticle interaction, as the interfacial area per nanoparticle

was too small to generate a significant contribution of polymer attachments

to the nanoparticle surface. We reiterate that the above explanations are only

speculative, and that a more thorough investigation of the parameters in the

PNC system would need to be explored in order to support such claims.

6.4 Conclusions and Outlook

In this chapter, we utilize MD simulations of a model PNC composed of

bead-spring polymers and LJ nanoparticles to assess the latter’s effect on the

polymer melt’s entanglement length. The polymer-nanoparticle interaction

was varied between attraction and repulsion and the nanoparticle’s volume

fraction was varied to induce confinement in the system. It was found that
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neither the polymer-nanoparticle interaction or nanoparticle volume fraction

affect the entanglement length of the polymer melt for the parameters in this

study. However, to draw more conclusive statements, a more extensive pa-

rameter set must be evaluated for nanoparticle size and volume fraction as

well as polymer-nanoparticle interaction. Results elucidating the adsorption

of the polymer onto the nanoparticle surface suggests that perhaps the polymer

wetting was not strong enough to influence entanglements. Again, this is spec-

ulative as a more detailed study of attraction strength should be performed

before claiming the above statement.
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Chapter 7

Future Work

While this research utilized a simplistic model of a PNC to develop the meth-

ods to predict structure and properties in PNCs, a more thorough investigation

of their applicability to realistic PNC systems is required. For instance, uti-

lizing the coarse-graining method on a realistic PNC to predict its mesoscale

structure and, then, utilize this structure as input in our numerical approach

to calculate the PNC’s barrier properties, ultimately comparing these results

to experimental measurements. In addition, rheological property predictions

of an actual PNC can be directly compared to experimental measurements.

Such studies would clarify the accuracy of our approach and whether addi-

tional features to our coarse-graining method and/or numerical approach are

required. A potential obstacle may be that in a more realistic representation

of a PNC, additional detailed intramolecular interactions may be required; for

instance, angle and torsional interactions may be necessary to produce the

same accuracy we see in our coarse-graining method. Also, the extension of

our numerical approach to predict properties such as solubility and conductiv-

ity would help reveal if our approach is applicable for more than just penetrant

diffusion. Another effort in this regard is to develop relationships between local
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structure and local properties so that interfacial layer properties can be taken

into account when calculating macroscopic properties. More generally, the

ideas derived from our coarse-graining method may provide a means to incor-

porate many-body interactions in the simulation of other particle containing

complex fluids where a coarse-grained representation of the permeating fluid

may be used as a means to correct the potential of mean-forces deduced in the

dilute limit.
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