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Static measures such as density and entropy, which are intimately con-

nected to structure, have featured prominently in modern thinking about the

dynamics of the liquid state. In this dissertation, we explore the connections

between self-diffusivity, density, available space, and excess entropy in two

non-trivial problems in liquid state theory, confined and supercooled liquids.

We present exact simulation data for the relationship between self-

diffusivity and excess entropy for a wide range of simple fluids (i.e. hard-

sphere, Lennard-Jones and square-well) confined to pores with a variety of

different sizes and fluid-wall interations. Our main finding is that, at a given

temperature, self-diffusivity of the confined fluids collapses onto the bulk be-

havior when plotted versus excess entropy. In other words, the only infor-

mation required to “predict” the implications of confinement for the single-

particle dynamics is the bulk fluid behavior at a given temperature and the
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excess entropy of the confined fluid. This should prove practically useful given

that the bulk behavior is well known for these fluid systems, and the excess

entropy of the confined fluids can be readily estimated from classical density

functional theory.

We also show that the self-diffusivity of the confined fluids approxi-

mately collapses onto the data for the corresponding bulk fluid when plotted

versus the average packing fraction (which is based on total, rather than cen-

ter accessible volume). For continuous interaction potentials such as Lennard-

Jones, calculation of effective packing fraction requires knowledge of both the

number density of the fluid and a temperature-dependent Boltzmann diameter

associated with the repulsive part of the interparticle interactions. We suggest

a way to calculate this effective diameter, which to a very good approximation,

collapse the temperature- and density-dependent data for the self-diffusivity

of the bulk Lennard-Jones fluid onto hard-sphere fluid data plotted versus the

fluid’s effective packing fraction.

Finally, we found that the self-diffusivities of several model systems

in their supercooled state also scale exponentially not only with the excess

entropy, but also with the two-body contribution to the excess entropy ob-

tained from the pair correlation function of the fluid. The latter observation

is particularly interesting because it provides direct evidence of a quantitative

link between the dynamics and the average structural order of supercooled

liquids. Whether such a connection could indeed be discovered is part of a

long-standing question in the study of liquids.
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Chapter 1

Introduction

In this thesis, we explore the fundamental connections between thermo-

dynamics, structure and dynamics for two non-trivial problems of the liquid

state. Specifically, we study the relationship between the excess entropy, pair-

correlation function, available space and self-diffusivity of confined and super-

cooled fluids. On one hand, the relationships found between these quantities

can be practically useful for predicting the kinetic properties of confined fluids

since theories for predicting thermodynamics / structure in confinement (e.g.,

density functional theory) are already very well developed. On the other hand,

recasting these connections in terms of well defined textbook quantities can

help resolve some of the outstanding issues related to the dynamical behav-

ior of supercooled liquids. In this chapter, first we briefly describe some the

important aspects of confined and supercooled fluid states along with some

of the interesting open questions that we have addressed in this work. we

will then outline the motivation and related background information for the

approach used here. Finally, we provide the organization of the rest of the

chapters along with a summary of each chapter and important findings of the

work described there.
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1.1 Confined Fluids

Confined fluids play an important role in a host of scientific phenom-

ena and technological applications. Examples range from the aqueous fluids

that fill the cytostructures of biological cells to the solvents that facilitate the

operation of nano- and micro-fluidic devices. More traditional chemical engi-

neering applications include membranes for separations and porous catalytic

materials. In many of these systems, confinement significantly modifies the

thermodynamic and kinetic behavior of the fluid relative to the bulk phase.

Such modifications are generally attributed to a collective effect of the size

and shape of the confined space and the interactions of the fluid with the con-

fining surface. However, isolating the individual contributions of these various

factors for a systematic experimental study can be a daunting task.

Given this difficulty, one alternative approach has been to use simplified

models that allow one to explore the effect of confinement in the absence of the

complicating details that are present in experimental systems. By using simple

systems, we can also determine the effect of each contribution separately. A

commonly investigated model is one with fluid confined between smooth and

parallel interacting walls (commonly referred to as “films” for walls in only

one direction and “pores” for walls in two directions). This is arguably the

most basic model that can capture the main entropic packing effects and also

the effect of fluid-wall interactions associated with fluids in confined spaces.

The characteristic inhomogeneous density profile for this model (normal to the

confining walls), which has been the primary focus of previous investigations,

2



is now qualitatively understood. Unfortunately, despite progress in elucidat-

ing some of the other properties of this system, a comprehensive picture for

precisely how confinement modifies the average thermodynamic and kinetic

behavior of the equilibrium fluid is yet to emerge.

Another interesting confinement model which can capture the effect

of the complicated geometry of real systems such as membranes and porous

catalysts is the “quenched-annealed” system [66]. Here, a part of the system

is dynamically frozen thus hindering the relaxation of the remaining moving

particles and thereby providing a simple model for flow through complicated

porous media. Although intuitively one would expect the flow behavior in

these model systems to be related to the geometrical characteristics of the

underlying quenched structure, even a qualitative relationship between these

quantities has been lacking.

1.2 Supercooled Liquids

Predicting the dynamic behavior of deeply supercooled liquids has been

a long-standing challenge in condensed matter theory [4, 23]. One of the main

conceptual hurdles is in understanding why the rapid decrease of fluid mo-

bility near the glass transition is not accompanied by an equally pronounced

change in the static structure. On one hand, this lack of an identifiable struc-

tural precursor for vitrification seems to support the perspective, embodied

in kinetically constrained models [41, 42], that relaxation processes of deeply

supercooled liquids are purely kinetic phenomena; i.e., they do not reflect an
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underlying static structural or thermodynamic singularity. On the other hand,

a well-known prediction connecting thermodynamics to dynamics appeared in

the seminal work of Adam and Gibbs (AG) [1], where semi-empirical argu-

ments led to an exponential relationship between the measure of mobility (or

its inverse, i.e. the relaxation time) and the molar configurational entropy.

The AG relation has been shown empirically to describe the behavior of a

variety of computer-simulated liquids in their supercooled states, including

models for silica [93] and water [98], a binary Lennard-Jones alloy [96], and

a monatomic model glass-former introduced by Dzugutov [43]. The AG rela-

tionship has also been validated through analysis of experimentally obtained

thermodynamic and kinetic data of various supercooled liquids [85]. One of

the major drawbacks of the AG approach is that there is no general agreement

on the definition of the involved thermodynamic quantity, i.e. the configura-

tional entropy. Moreover, the configurational entropy is not relevant at high

temperature and does not generally correlate with dynamics far above the

freezing transition. As a result, it cannot provide a comprehensive description

of liquid-state dynamics.

Then there is, the Mode coupling theory (MCT) [44], which utilizes

the static structure factor [or pair correlation function g(r)] as an input and

successfully predicts many of the nontrivial dynamic properties of supercooled

liquids. This suggests that mobility is, in fact, closely intertwined with the

equilibrium structure. But still, the increases in structural order reflected

by direct inspection of g(r) appears relatively modest in comparison to the
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pronounced increases in relaxation time upon supercooling. Therefore, a clear

physical picture for how static structural properties such as g(r) are connected

to the self-diffusivity of supercooled liquids have been elusive.

1.3 Background and Motivation

The self-diffusivity of several equilibrium bulk fluids, when cast in an

appropriately reduced form, show an approximate scaling with sex, the excess

entropy per particle of the fluid (relative to an ideal gas with the same number

density) [26, 86, 87]. This type of empirical scaling behavior has great practi-

cal value because it relates the diffusivity that can be difficult to predict, to

an experimentally-accessible thermodynamic quantity, sex, which can also be

calculated directly in a computer simulation [32, 71, 72] or estimated based on

knowledge of the pair-correlation function [8, 77, 78].

Entropy scaling laws for the transport coefficients of fluids were first

noticed by Rosenfeld [86] while studying the performance of a variational ther-

modynamic perturbation theory [68]. In particular, Rosenfeld observed that

the reduced diffusion coefficient DR = Dρ1/3
√

m/(kBT ) approximately obeyed

the relationship DR ≈ 0.58exp(Asex/kB) for several dense model fluids over

a wide range of equilibrium conditions. Here, ρ is number density, kB is the

Boltzmann constant, T is temperature, m is particle mass and A is a param-

eter that depends weakly on the species investigated (e.g., A = 0.65 and 0.8

approximately describe behavior for the HS and LJ fluids, respectively [86]).

Later, Dzugutov used a different conceptual starting point [26–28] to
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arrive at a similar scaling law. However, his proposed relationship provided a

seemingly “universal” (i.e., species-independent) connection between the re-

duced diffusivity DD = Dρ2/3Γ−1
E and excess entropy sex for equilibrium liq-

uids, DD ≈ .078 exp(sex/kB) [28]. The parameter ΓE = 4πσ2ρg(σ)
√

kBT/πm

is an effective Enskog interparticle collision frequency, σ is the interparticle

separation corresponding to the first peak in the radial distribution function,

and g(σ) is the magnitude of that first peak. Note that ΓE in the Dzugutov

scaling law is a microscopic quantity, whereas the reduction parameters in

the Rosenfeld scaling law are macroscopic in nature. Microscopic reduction

parameters such as ΓE are potentially useful because they can be related to

molecular-level processes, but macroscopic reduction parameters such as ρ or

T can also be advantageous because they are easy to determine via experiment

and have clear physical interpretations.

Notwithstanding the frequent use of the entropy scaling laws [10, 15,

28, 52, 64, 88, 94, 104, 119] and the various attempts to put them on a firmer

theoretical ground using either mode coupling theory [95] or cell-theory mod-

els [51], the precise origin of this apparent connection between thermodynamics

and dynamics of fluids is still uncertain. This view is perhaps best summarized

by Rosenfeld [87]:

The excess-entropy scaling relation is a semi-quantitative model

(like the van der Waals equation of state), rather than a theory.

Like any corresponding-states relationship that links non-scaling

force laws, it can only be approximate. However, in view of the ab-
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sence of a unifying quantitative description of atomic transport in

condensed matter, the excess-entropy scaling is important for esti-

mating unknown transport coefficients and for providing guidelines

for theoretical analysis.

1.4 Thesis Organization

In this thesis, we have used the ideas described above to propose a new

approach for relating the self-diffusivity, the excess entropy (and the associated

structural quantities) for the case of confined and supercooled fluids. We show

that this relationship can be used for predicting the fluid dynamics in simple

confinement such as 2- and 1-dimensional channels (Chapter 2, 3, 4) and more

complex systems such as model porous media (Chapter 5). Moreover, we find

that it highlights the underlying changes in the structure of supercooled liquids

to clarify its dynamical nature (Chapter 6). Below is an outline of the latter

chapters in this thesis:

Chapter 2: Thermodynamics predicts the dynamics of the confined

equilibrium hard-sphere fluid

We study how confining the equilibrium hard-sphere fluid to restrictive

one- and two-dimensional channels with smooth interacting walls modifies its

structure, dynamics, and entropy using molecular dynamics and transition-

matrix Monte Carlo simulations. Although confinement strongly affects local

structuring, we find that the relationships between self-diffusivity, excess en-

tropy, and average fluid density are, to an excellent approximation, indepen-
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dent of channel width or particle-wall interactions. Thus, thermodynamics can

be used to predict how confinement impacts dynamics.

Chapter 3: Average properties of the highly confined hard-sphere

fluid

We use grand canonical transition-matrix Monte Carlo and discontin-

uous molecular dynamics simulations to generate precise thermodynamic and

kinetic data for the equilibrium hard-sphere fluid confined between smooth

hard walls. These simulations show that the pronounced inhomogeneous struc-

turing of the fluid normal to the confining walls, often the primary focus of

density functional theory studies, has a negligible effect on many of its av-

erage properties over a surprisingly broad range of conditions. We present

one consequence of this insensitivity to confinement: a simple analytical equa-

tion relating the average density of the confined fluid to that of the bulk fluid

with equal activity. Nontrivial implications of confinement for average fluid

properties do emerge in this system, but only when the fluid is both (i) dense

and (ii) confined to a gap smaller than approximately three particle diame-

ters. For this limited set of conditions, we find that “in-phase” oscillatory

deviations in excess entropy and self-diffusivity (relative to the behavior of the

bulk fluid at the same average density) occur as a function of gap size. These

paired thermodynamic/kinetic deviations from bulk behavior appear to reflect

the geometric packing frustration that arises when the confined space cannot

naturally accommodate an integer number of particle layers.

Chapter 4: Self-diffusivity, packing fraction, and excess entropy of
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simple bulk and confined fluids

We explore the connections between self-diffusivity, density, and ex-

cess entropy in two of the most widely used models for “simple” liquids, the

equilibrium Lennard-Jones and square-well fluids, in both bulk and confined

environments. We find that the self-diffusivity data of the Lennard-Jones fluid

can be approximately collapsed onto a single curve (i) versus effective packing

fraction and (ii) in appropriately reduced form versus excess entropy, as sug-

gested by two well-known scaling laws. Similar data collapse does not occur

for the square-well fluid, a fact that can be understood based on the non-trivial

effects that temperature has on its static structure. Nonetheless, we show that

the implications of confinement for the self-diffusivity of both of these model

fluids, over a broad range of equilibrium conditions, can be predicted based on

knowledge of the bulk fluid behavior and either the effective packing fraction

(approximately) or the excess entropy (accurately) of the confined fluid.

Chapter 5: Fluid diffusivity in random porous media

We propose a simple equation for predicting self-diffusivity of fluids

embedded in random matrices of identical, but dynamically frozen, particles

(i.e., quenched-annealed systems). The only nontrivial input is the volume

available to mobile particles, which also can be predicted for two common

matrix types that reflect equilibrium and non-equilibrium fluid structures. The

proposed equation can account for the large differences in mobility exhibited

by quenched-annealed systems with indistinguishable static pair correlations,

illustrating the key role that available volume plays in transport.
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Chapter 6: Thermodynamics, static structure and dynamics of su-

percooled liquids

Here we provide, to our knowledge, the first evidence that excess en-

tropy also captures how supercooling a fluid modifies its diffusivity, suggesting

that dynamics, from ideal gas to glass, is related to a single, standard thermo-

dynamic quantity. Using standard thermodynamic expansion of excess entropy

in terms of particle distribution functions, we also show that this information

can be translated into a functional relationship between self-diffusivity and the

pair correlation function.
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Chapter 2

Thermodynamics predicts the dynamics of the

confined equilibrium hard-sphere fluid

2.1 Introduction

The molecular dynamics of fluids confined to small spaces can differ

significantly from the bulk. These differences have generated wide interest

because confined fluids feature prominantly in both nature and technology.

Examples include dynamics of water near proteins or in concentrated cellular

environments, transport processes across biological membranes, and fluid flows

encountered in micro- or nanofluidic devices, to mention a few. Given that

a significant fraction of the molecules in these systems populate highly inho-

mogeneous interfacial environments, it is easy to appreciate why confinement

has nontrivial consequences for their transport coefficients (e.g., diffusivity and

viscosity). Nonetheless, a theoretical framework that can reliably predict these

consequences has been slow to develop.

One logical starting point is to ask whether confinement induced modifi-

cations to equilibrium fluid properties, such as the density, can explain some of

the observed differences in dynamics [70, 76, 84]. For instance, if the presence of

a strongly attractive substrate increases the local fluid density near the fluid-
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substrate interface, one might naturally expect a corresponding decrease in

particle mobility near that interface, and vice versa. This type of argument is

physically intuitive, and it has been recently used to rationalize why nanoscale

materials exhibit glass transition temperatures that are shifted relative to their

bulk values [70]. However, it seems doubtful that average structural quantities

alone can account for the wide variety of dynamical behaviors observed in both

simulations and experiments of confined fluids [37, 56, 99]. As a result, it is

natural to ask whether other equilibrium measures, such as the entropy, can

provide additional insights. Unfortunately, it is currently difficult to obtain

the necessary experimental data for testing these possible connections between

thermodynamics and dynamics for confined fluids. Thus, simulation results

on simple and well-defined model systems are of great complementary value.

One reason to speculate that entropy could be a reliable predictor for

how confinement affects the diffusivity is its empirical success for capturing

the dynamical behavior of bulk materials. In particular, computer simulation

studies have demonstrated that the single-component HS and Lennard-Jones

fluids, along with a variety of models for liquid metals, exhibit, to a very

good approximation, a one-to-one relationship between diffusivity and excess

entropy over a broad range of thermodynamic conditions [10, 15, 29, 89, 90].

Excess entropy has also been shown to accurately capture the behavior of

diffusion phenomena in fluid mixtures [53, 94, 95] as well as those in solid-state

ionic conductor and quasicrystalline materials [29].

To explain the origin of the correspondence between excess entropy and
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diffusivity in bulk materials, several researchers have presented independent

derivations of apparent scaling laws relating the two quantities. The earliest

that we are aware of is due to Rosenfeld and is motivated by a variational

thermodynamic perturbation theory [89, 90]. Dzugutov later used arguments

based on kinetic theory to justify a similar scaling [29], and recently mode-

coupling theory has been employed to establish an approximate basis for the

observed connection [94, 95]. Despite the large amount of effort that has been

devoted to justifying these scaling laws theoretically and testing their validity

for bulk materials, to our knowledge the relationship between excess entropy

and diffusivity has never been tested in inhomogeneous fluids, nor has it been

used as a tool to understand how confinement affects dynamics.

In this Chapter, we advance the current understanding of the rela-

tion between thermodynamics and dynamics in inhomogeneous systems by

addressing the following two questions. (i) Can either the entropy or the av-

erage density be used to determine the extent to which confinement alters the

diffusivity of a hard-sphere (HS) fluid? (ii) If so, do the specific interactions

between particles and the channel boundaries significantly impact the result?

While the confined HS system represents arguably the most elementary and

well-studied model for inhomogeneous colloidal and molecular fluids, there is

still surprisingly little known about the possible connections between its ba-

sic thermodynamic and kinetic properties. If such connections do exist and

prove to be robust, it suggests that equilibrium theories for inhomogeneous flu-

ids might generally provide important information regarding how confinement

13



modifies the transport properties of fluids.

2.2 Simulation details

We studied how the structure, thermodynamics, and dynamics of the

single component HS fluid confined to restrictive two-dimensional (2d) or one-

dimensional (1d) channels bounded by smooth interacting walls differ from

those of the bulk system. We considered five different 2d channel sizes that

were effectively macroscopic in the x and y directions and had particle-center

accessible dimensions in the confining z direction of hz = 15, 10, 7.5, 5, and

2.5, repectively. We also considered three 1d channel sizes that were effectively

macroscopic in the x direction and had particle-center accessible dimensions

in the confining y and z directions of hy × hz = 7.5 × 7.5, 7.5 × 5, and 5 × 5,

respectively. To simplify the notation, we have implicitly non-dimensionalized

all lengths in this study by the HS particle diameter σ and all times by the

combination σ
√

mβ, where m is particle mass, β = 1/kBT , kB is Boltzmann’s

constant, and T is temperature. Consequently, all energies are given per unit

kBT . Position-dependent interations between the particles and the confining

channel walls u(ζ) were calculated using a square-well potential:

u(ζ) = ∞ ζ < 1/2

= εw 1/2 ≤ ζ < 1

= 0 ζ ≥ 1, (2.1)
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where ζ represents the shortest distance between a given particle center and the

wall of interest, and εw is the strength of the effective particle-wall interaction.

We considered five specific particle-wall interactions for the 2d channels: εw =

1 and εw = 0.5 representing repulsive walls, εw = 0 representing “hard” but

neutral walls, and εw = −0.5 and εw = −1 representing attractive walls. Only

the hard walls were considered for the three highly restrictive 1d channels. For

the conditions investigated here, none of the model systems exhibit anomalous

diffusion reported for some systems [75].

To monitor kinetic processes in these various systems, we performed a

series of event-driven molecular dynamics simulations [82] in the microcanoni-

cal ensemble using N = 4500 hard spheres. Periodic boundary conditions were

employed in the d “free” directions (i.e., directions not confined by walls). The

dimensions of the simulation cell in the periodic directions were set to various

values to simulate fluids with different average number densities that span the

stable equilibrium range, from the dilute gas to the fluid at its freezing tran-

sition. We extracted the self-diffusivity of the fluid D by fitting the long-time

(t � 1) behavior of the average mean-squared displacement of the particles to

the Einstein relation < ∆r2
d >= 2dDt, where ∆r2

d corresponds to the mean-

square displacement in the d periodic directions. We also calculated D for

several state points with both smaller (N = 3000) and larger (N = 6000)

particle numbers to verify that system size effects in the periodic directions

were negligible.

We determined the behavior of the excess entropy per particle sex using
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grand canonical transition-matrix Monte Carlo (GC-TMMC) simulations [33].

Here, sex is defined to be the difference between the entropy per particle of

the fluid and that of an ideal gas with the same spatial distribution of the

particle number density. GC-TMMC simulations require fixed values for the

activity ξ, the particle-center accessible dimensions {hx, hy, hz} that define the

volume of the simulation cell V = hxhyhz, and the reciprocal temperature β.

The activity is defined as ξ = exp(βµ)/Λ3, where µ is the chemical potential

and Λ is the de Broglie wavelength. For all simulations conducted here, we

set ξ = 1, β = 1, and we used the particle-wall interactions given by Eq. (2.1).

The values of hy × hz or hz are determined by the confining dimensions of

the 1d or 2d channels, respectively, and the remaining periodic dimension(s)

were chosen to satisfy V = 1000. Indistinguishable results were obtained for

systems of size V = 500.

The key quantities extracted from the GC-TMMC simulations were the

total particle number probability distribution Π(N), the excess configurational

energy U ex(N), and the N -specific spatial density distribution ρ(N, r), each

evaluated over a range of particle numbers spanning from N = 0 to N = 984.

Using basic arguments from statistical mechanics [21, 79], one can relate these

quantities to sex for the inhomogeneous HS fluid:

sex(N)/kB = N−1{ln[Π(N)/Π(0)] − N lnξ + ln N !

−N ln N + βU ex(N) +

∫

ρ(N, r) ln ρ(N, r)dr} (2.2)

Given that V = 1000 is fixed, Eq. (2.2) provides sex(ρh) within the range
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0 ≤ ρh ≤ 0.984, where ρh = N/V is the number density based on the particle-

center accessible volume.

2.3 Results and discussion

In this section, we first discuss our observations for the utility of excess

entropy sex in predicting how confinement affects dynamics. Next, we present

results which suggests that even a much simpler measure, i.e. density can also

be used to predict dynamics.

2.3.1 Self-diffusivity versus excess entropy

Fig. 2.1 shows a parametric plot of D versus −sex for the HS fluid both

in the bulk and confined to the 17 different 2d channels (hz = 2.5, 5, 10 with

εw = 1, 0.5, 0, -0.5, -1 and hz = 7.5, 15 with εw = 0). The data, which

encompasses the dynamic behavior of the equilibrium fluid from the dilute gas

to the freezing transition, spans three decades in D. The collapse of the data

onto a single master curve indicates that, to an excellent approximation, the

simple one-to-one correspondence between D and sex for the bulk HS fluid also

holds when the fluid is severely confined. Moreover, the quality of the data

collapse is largely independent of either channel width (including “particle

scale” channels with hz = 2.5) and the sign or magnitude of the particle-wall

interaction. Data for the HS fluid confined to the 3 rectanglular 1d channels

described above are superimposed in the Fig. 2.2. As can be seen, they also

approximately collapse onto the bulk HS relationship between D and sex. In
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Figure 2.1: Self-diffusivity D versus the negative of excess entropy per particle
−sex/kB for the bulk HS fluid (solid curve) and for the HS fluid in 2d channels
(symbols). The symbols correspond to hz = 2.5 (circle), 5 (square), 7.5 (plus),
10 (triangle up) and 15 (cross). The color codes are εw =1 (blue), 0.5 (cyan),
0 (red), -0.5 (yellow), and -1 (green).
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Figure 2.2: Self-diffusivity D versus the negative of excess entropy per particle
−sex/kB for the same data as shown in Fig. 2.1 with added points for the 1d
channels: 5 × 5, 7.5 × 7.5, and 5 × 7.5 shown by red diamonds.
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fact the diffusivities for approximately 50, 70, and 90% of the confined state

points shown in Fig. 2.2 are within 3, 5, and 10 % respectively of the bulk

value at the same excess entropy.

2.3.2 Self-diffusivity versus average density

Having established that sex, an equilibrium thermodynamic property,

can be used to predict how various confining environments impact the self-

diffusivity of the HS system, it is natural to press forward and ask whether

the same predictive information is contained in an even simpler structural

measure: the average density.

Here, one needs to be specific because there are two different definitions

of average density that are commonly used to characterize inhomogenenous HS

fluids (ρh = N/Vh and ρ = N/V ). The former is based on the particle-center-

accessible volume Vh = hxhyhz, while the latter is based on the total system

volume; i.e., V = hxhy(hz + 1) for 2d channels, and V = hx(hy + 1)(hz + 1)

for 1d channels. Schmidt and Löwen [102] and, later, Zangi and Rice [120]

demonstrated that ρ is in fact the relevant density for the lateral (i.e., periodic)

component(s) of the pressure, and thus ρ is also a natural independent variable

for the free energy of the system. Below, we investigate whether ρ is also an

accurate predictor for how confinement effects HS diffusivity.

Fig. 2.3 shows D as a function of ρ for the bulk HS fluid as well as for

the HS fluid confined to the 2d and 1d channels. The collapse of the data,

while not perfect, demonstrates a very strong correlation between D and ρ
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Figure 2.3: Self-diffusivity D vs average density ρ = N/V based on the the
total system volume V . Symbols are identical to those given in Fig. 2.2.
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that is nearly independent of the confining dimensions and the particle-wall

interactions. Approximately 70 and 90% of the diffusivities for the confined

state points shown in Fig. 2.3 are within 10 and 20%, respectively, of the bulk

value at the same average density. This is another significant result because,

unlike sex, ρ is intuitively simple to understand and trivial to determine in

simulations (e.g., it is specified in microcanonical and canonical simulations).

As is expected, the systems that exhibit the most noticeable deviation from

bulk behavior in Fig. 2.3 are the ones for which the fluid is under the most

severe confinement, i.e., channels with dimensions comparable to the particle

diameter. In these cases, it appears that specific fluid structuring (e.g., density

enhancements in the channel corners) acts to only slightly reduce the diffusivity

relative to what would be predicted by the average density ρ.

Now, we examine what conclusions regarding density follow if one in-

stead chooses to plot D versus the alternative definition for average density,

ρh = N/Vh, based on the total particle-center-accessible volume Vh. In par-

ticular, Fig. 2.4 compares the self-diffusivity for the HS fluid confined to 5

different 2d channels with hard walls (εw = 0) as a function of ρh. Unlike

when plotting versus ρ, there is no data collapse of D when plotting versus

ρh. Thus, one might consider ρ a more natural independent variable than ρh,

not only for thermodynamics of inhomogeneous fluids [102, 120], but also for

dynamics.
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Figure 2.4: Self-diffusivity D versus average density ρh = N/Vh based on the
the total particle-center accessible volume Vh. Systems shown include the bulk
HS fluid (solid curve) and the HS fluid confined to the 2d channels between
hard walls.

23



2.3.3 Local fluid structure versus diffusivity

Given the approximate collapse of the data in Fig. 2.3, it is natural

to wonder whether it is simply the particle structuring that is determining

the HS dynamics. To test this idea further, we examine in Fig. 2.5 the local

density profiles ρ(z) for a HS fluid confined to 2d channels of width hz = 2.5

but with three different particle-wall interactions: εw = 1 (repulsive walls),

εw = 0 (neutral walls), and εw = −1 (attractive walls). All three systems

exhibit the same average density ρ, and thus according to Fig. 2.3, display

approximately the same self-diffusivity D as the bulk fluid. Clearly there are

real and pronounced differences in the local structuring of the three confined

fluids, especially when compared to the uniform bulk material. These types of

structural differences are usually the main focus of studies of inhomogenenous

fluids by classical density functional theories. Interestingly, these pronounced

structural differences only slightly alter both sex and D when considering fluids

with the same average ρ.

2.4 Conclusions

To conclude, we have probed the structure, entropy, and diffusivity of

the HS fluid confined to 2d and 1d channels with a wide range of dimensions

and particle-boundary interactions. Our main finding is that the relationships

between diffusivity, excess entropy, and average density for the bulk HS fluid

also remain valid, to within an excellent approximation, for the HS fluid con-

fined to particle-scale geometries. Since statistical mechanical theories can
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Figure 2.5: Density profiles ρ(z) for HS fluids confined to a 2d channel of
width hz = 2.5. Although each system has different particle-wall interac-
tion strengths εw, they share a common average density ρ (dashed) and self-
diffusivity D.
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provide accurate estimates for how confinement modifies the excess entropy

and density, the robust connection between thermodynamics and dynamics

reported here should have far-reaching implications for the prediction of dy-

namics in confined systems. In next chapters, we will test whether similar

connections hold (i) for fluids with strong interparticle attractions that signif-

icantly affect local structuring, (ii) for the HS fluid in more general random

environments (e.g., in quenched media, etc.), (iii) for non-equilibrium super-

cooled fluid states.
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Chapter 3

Average properties of the highly confined

hard-sphere fluid

3.1 Introduction

In the previous chapter, we demonstrated via molecular simulation that

the self-diffusivity of the confined HS fluid parallel to the confining walls, over

a broad range of equilibrium conditions, is very similar to the bulk HS fluid if

the two systems are compared at the same value of density ρ = Nσ3/V . Here,

N refers to the number of particles, σ is the particle diameter, V = AH is

the total volume of the confined fluid (i.e., A is the area of a wall in contact

with the fluid, and H is the distance from “wall surface to wall surface”). In

other words, the specific details of the inhomogeneous packing structures have

only minor influence on the average single-particle dynamics of the confined

fluid, as long as one controls for the average overall density ρ. Alternatively, if

one instead compares the behaviors of the bulk and confined systems at equal

values of ρh = Nσ3/Vh, one arrives at the conclusion that confining a HS fluid

between hard walls has the effect of significantly speeding up its dynamics.

Here, Vh = Ah is the smaller volume accessible to the particle centers (i.e.,

h = H − σ). This latter artificial conclusion is related to the fact that N/A

must vanish if ρh is to remain constant in the limit H → σ. As a result, even
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if the numerical value of ρh is chosen to be indicative of a dense bulk fluid,

the actual average interparticle separation and particle mobility in the lateral

direction will generally be very large (e.g., comparable to a dilute gas) when

the fluid is confined to small enough H.

We are not aware of any systematic comparisons for how the thermo-

dynamic properties of this system depend on ρ and ρh, respectively. However,

even in the absence of such comparitive studies, it is easy to imagine that one

might indeed arrive at qualitatively different conclusions about the implica-

tions of confinement depending on whether ρ or ρh is chosen as the basis for

comparison. To appreciate this point, consider that ρh diverges in the limit

where the gap size H is reduced, at fixed N/A, to the size of one particle diam-

eter σ (i.e., the two-dimensional fluid limit), whereas ρ and many other fluid

properties of interest remain finite. This type of consideration alone hints that

ρ might be the more suitable density variable of the two for making compar-

isons to the bulk fluid, and indeed ρ naturally emerges in the thermodynamic

analysis of confined HS fluids [101, 120].

There is another important, but still poorly understood, conceptual

point concerning this model. Specifically, it has not been entirely clear how

one should compare the confined fluid to the bulk fluid in order to elucidate

the main effects of confinement. One obvious possibility is to compare the two

systems under conditions where they exhibit equal “average” density. The

argument for choosing this basis of comparison is straightforward. Packing

effects dominate the behavior of athermal systems, and average density is an
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important factor in determining how the particles pack. Moreover, if one

controls for average density in making the comparison, then one can hope to

isolate more subtle effects due to, e.g., the finite size of the confined system

(in one direction) and the shape of the density profile (i.e., the “layering”).

Another possibility is to compare the two systems at equal activity, where the

bulk and pore fluids exhibit different average densities. The advantage in doing

so is also obvious. Equality of activity is a relevant experimental constraint on

the chemical equilibrium that is established between the bulk and pore fluids.

The confinement model we use here is the equilibrium, monatomic hard-

sphere (HS) fluid confined between smooth and parallel hard walls. Unfortu-

nately, despite progress in elucidating some of the other properties of this

system (see, e.g., [7, 21, 25, 40, 49, 58, 73, 100, 101, 110, 120]), a comprehensive

picture for precisely how confinement modifies the average thermodynamic

and kinetic behavior of this model fluid has yet to emerge.

One of the most basic hurdles to constructing this picture has been the

lack of accurate molecular simulation data for the average properties of the

confined HS fluid, a fact that may seem surprising given the apparent simplic-

ity of the model. Ironically, the model’s simplicity has indirectly contributed

to the lack of simulation data because it has allowed the system to be readily

studied by approximate theories instead [67, 117], which are appealing because

they require only modest computational resources. While such theories are also

insightful, their predictions cannot be viewed as a replacement for molecular

simulation data because they are not quantitatively accurate for conditions
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of high fluid density and narrow confining geometries. Fortunately, the de-

velopment of efficient algorithms for investigating systems with discontinuous

potentials and the availability of fast computers have now made it feasible to

use molecular simulation to fully characterize the behavior of this model with

both accuracy and precision. One aim of the present study is to leverage these

resources to take an important step toward completing this characterization.

Here, we follow up on some of the initial observations of Chapter 2 by

presenting a more comprehensive study for how fluid density and confinement

(between hard walls) affect the thermodynamic and kinetic properties of the

HS fluid. We broadly focus our investigation on four main questions. The first

pertains to the equation of state of the confined fluid (i.e., how the average

transverse and normal components of its pressure tensor vary with average

density). Specifically, we are interested in how the behaviors of these pressure

components depend on the volume definition invoked, i.e., V versus Vh. Does

use of either defintion produce relationships similiar to the equation of state

the bulk HS fluid? Second, what are the effects of confinement and average

density on the transverse self-diffusivity of fluids confined to pores narrower

than those previously examined in Chapter 2 (i.e., H < 3.5σ)? Third, how

do the behaviors of the confined and bulk HS fluid systems compare under

conditions of equal activity as opposed to equal density? Finally, does the

robust relationship between excess entropy sex (relative to ideal gas) and self-

diffusivity D, previously discovered for fluids confined to gap sizes larger than

H = 3.5σ in this system [73], continue to hold for very narrow pores (H <
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3.5σ)? By addressing these four questions, we can make significant headway

not only in indentifying the regions in the H−ρ and H−ξ planes of parameter

space where the confined HS system significantly deviates from the bulk HS

fluid, but also in probing the microscopic mechanisms for such deviations.

3.2 Simulation Methods

To explore these issues, we have calculated the thermodynamic proper-

ties of confined and bulk HS fluids using grand canonical transition-matrix

Monte Carlo (GC-TMMC) simulations [30, 34], and we have tracked their

single-particle dynamics via discontinuous molecular dynamics (DMD) simula-

tions [82]. To simplify the notation, we have implicitly non-dimensionalized all

quantities by appropriate combinations of a characteristic length scale (which

we take to be the HS particle diameter σ) and time scale (which we choose

to be σ
√

mβ, where m is particle mass, β = [kBT ]−1, kB is the Boltzmann

constant, and T is temperature). As a result, all quantities with dimensions of

energy are understood to be “per kBT”, the only energy scale in the problem.

The DMD simulations each involved N = 1500 identical HS particles.

For the bulk fluid, the particle centers were contained within a cubic simulation

cell of Vh = N/ρh, and periodic boundary conditions were applied in all three

directions. For the confined fluid, particle centers were contained within a

rectangular parallelepiped simulation cell of Vh = hxhyhz, where hz = H − 1

and hx = hy = [N/(hzρh)]
1/2. Periodic boundary conditions were applied

in the x and y directions and perfectly reflecting, smooth hard walls were
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placed so that particle centers were trapped in the region 0 < z < hz. The

self-diffusivity D of the fluid was obtained by fitting the long-time (t � 1)

behavior of the average mean-squared displacement of the particles to the

Einstein relation 〈∆r2
d〉 = 2dDt, where ∆r2

d corresponds to the mean-square

displacement per particle in the d periodic directions (d = 2,3 for the confined

and bulk fluid, respectively). To verify that system-size effects in the periodic

directions on D were insignificant, we checked that our calculated values for

D for several state points compared favorably with those we obtained using

either N = 3000 or N = 4500 particles.

The GC-TMMC simulations each utilized a simulation cell of size Vh =

1000. For the bulk fluid, the cell was cubic with hx = hy = hz = 10. For the

confined fluid, the cell was a rectangular parallelepiped with hz = H − 1 and

hy = hz =
√

1000/hz. GC-TMMC simulations require a specified value for the

activity ξ (i.e., N is allowed to fluctuate), which is defined as ξ = exp(βµ)/Λ3,

where µ is the chemical potential and Λ is the de Broglie wavelength. For all

simulations conducted here, we set ξ = 1. The key quantities that we extracted

from the simulations were the normalized total particle number probability

distribution Π(N) and the N -specific spatial density distribution ρ(N, r), both

evaluated over a range of particle numbers spanning from N = 0 to N =

984. Thermodynamic properties at other values of activity ξ were readily

obtained via the histogram reweighting technique [38] to shift the original

Π(N) distribution to one representative of the particle numbers visited at the

selected ξ. We found that we obtained statistically indistinguishable results
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for systems with Vh = 500, indicating again that noticeable artifacts associated

with system size were not present.

By employing basic arguments from statistical mechanics [21, 79], one

can use the equilibrium information from GC-TMMC simulations to compute

thermodynamic properties of interest. Specifically, the grand potential Ω can

be calculated directly from the normalized particle number distribution [31,

79],

Ω = lnΠ(0). (3.1)

For the bulk HS fluid, we also have V = Vh, and thus ρ =
∑

N NΠ(N)/V = ρh.

Moreover, the pressure of the bulk fluid P is equal to the negative of the grand

potential density, P = −Ω/V . On the other hand, for the HS fluid confined

between hard walls, we have V = Vh/(1−H−1), and thus ρ =
∑

N NΠ(N)/V =

(1 − H−1)ρh. In this case, negative grand potential density −Ω/V represents

an average transverse pressure acting parallel to the confining walls [48]. In

the reduced units adopted here, the component of the pressure tensor acting

normal to the walls is equal to the local fluid density in contact with a hard

wall, Pz(N) = ρ(N, z = 0.5) = ρ(N, z = H − 0.5), a consequence of an exact

statistical mechanical sum rule for this system [39]. Finally, the molar excess

entropy sex = Sex/N is determined using the following expression [32, 73],

Sex(N) = ln[Π(N)/Π(0)] − N lnξ + ln N !

−N ln N +

∫

ρ(N, r) ln ρ(N, r)dr. (3.2)
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Below, we describe how the above methods were employed in this study to

characterize the behaviors of the confined and bulk HS fluids.

3.3 Results and Discussion

3.3.1 Volume definition and the equation of state

One of the most practically important and well-understood properties

of the bulk, equilibrium HS fluid is its equation of state P (ρ), which quantifies

how its pressure varies with density. For densities below the freezing transi-

tion, this relationship is accurately described by the semi-empirical Carnahan-

Starling equation P (ρ) ≈ PCS(ρ) = ρ(1 + φ + φ2 − φ3)/(1 − φ)3 [18], where

φ = πρ/6 is the packing fraction of the spheres.

Much less is known about the global behavior of the pressure tensor

for the HS fluid confined between smooth hard walls. One obvious question

is, do the relationships between the transverse and normal components of

the pressure tensor and “average” density (defined as either ρ or ρh) show

quantitative similarities to the equation of state of the bulk fluid? Although

the inhomogeneous structuring of the fluid might be expected to give rise

to some nontrivial deviations from bulk fluid behavior, the main qualitative

trends should be the same: compressing the fluid increases the interparticle

collision rate and, consequently, the individual components of the pressure

tensor.

In Fig. 3.1, we compare the bulk fluid equation of state to our GC-

TMMC simulation data for the average transverse and normal components of
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Figure 3.1: Equation of state of a confined HS fluid between hard walls sep-
arated by center-accessible distance H − 1. Top panels show the negative of
the grand potential density (average transverse pressure) versus average fluid
density calculated using (a) the center-accessible volume Vh and (b) the total
volume V . Bottom panels illustrate the normal pressure versus average density
calculated using (c) the center-accessible volume Vh and (d) the total volume
V .
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the pressure tensor. We focus here on confined fluids with H = 3.5, 6, 8.5,

and 16. In top panels (a) and (b), negative grand potential density is plotted

versus average density, adopting the Vh (center accessible) and V (total) vol-

ume conventions, respectively. The density dependencies of Pz are similarly

displayed in panels (c) and (d). Focusing on plots (a) and (c), one finds a fam-

ily of curves for −Ω/Vh and Pz that are qualitatively similar to the bulk fluid

behavior, with the main difference being that systems with smaller H have

weaker ρh dependencies (higher apparent compressibilities). This difference

appears logically consistent with the earlier observation [73] that confined HS

fluids also have faster single-particle dynamics as compared to the correspond-

ing bulk fluid with the same ρh.

Interestingly, the corresponding quantities plotted in (b) and (d) us-

ing the total volume V convention approximately collapse onto a single curve.

This means that the ρ dependencies of both −Ω/V and Pz, for each value of

H investigated, can approximately be described by the equation of state of

the bulk fluid P (ρ). This trend also appears consistent with the approximate

collapse of self-diffusivities for confined HS fluids onto the bulk behavior when

plotted together on a single graph versus ρ [73]. Although there are clearly

some quantitative deviations from bulk behavior for the smallest pores in pan-

els (b) and (d) of Fig. 3.1, we found that the following simple relationship can

describe the ρ dependence of the grand potential density to within at least

25% for H ≥ 3.5:

Ω(ρ, H)/V ≈ −PCS(ρ). (3.3)

36



We will use this approximate relationship below to help construct an analytical

model for predicting the excess adsorption of fluid in a model slit pore.

3.3.2 Interfacial free energy and excess adsorption

Given the approximate collapse of the thermodynamic data for the

confined HS fluid when plotted against average density ρ, it is natural to ask

whether there is a connection to the behavior of the interfacial free energy and

the surface excess adsorption of the fluid at a single hard wall.

The interfacial free energy of the HS fluid near a hard wall is defined

as the excess grand potential of the fluid (relative to bulk) per unit fluid-wall

contact area. Similar to average density, its numerical value depends on the

choice of dividing surface [16, 47]. If one chooses the plane of closest approach

of the particle centers to the wall as the dividing surface, then the following

expression yields the interfacial free energy:

γ∞
h = lim

H→∞

[

Ω(ρ, H)

Vh

+ Pb

]

(H − 1)

2
, (3.4)

where Pb is the pressure of the bulk fluid in equilibrium with the pore fluid.

Stated differently, ρ of the pore fluid is determined by H and the requirement

that it adopt the same activity ξ as the bulk HS fluid of pressure Pb. There

is an accurate approximate equation due to Henderson and Plischke [46] for

predicting how γ∞
h depends on the packing fraction of the bulk fluid φb =

πρb/6,

γ∞
h ≈ − 9

2π
φ2

b

[1 + (44/35)φb − (4/5)φ2
b]

(1 − φb)3
. (3.5)
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If one instead chooses the physical surface of the wall to be the dividing

surface, then a slightly different equation emerges:

γ∞ = lim
H→∞

[

Ω(ρ, H)

V
+ Pb

]

H

2
(3.6)

= γ∞
h + Pb/2 (3.7)

Substituting the Carnahan-Starling equation of state for Pb and Eq. 3.5 for

γ∞
h into Eq. 3.7 results in the following analytical estimate for γ∞,

γ∞ ≈ 3

π
φb

[1 − (1/2)φb − (31/35)φ2
b + (1/5)φ3

b]

(1 − φb)3
(3.8)

Given that we have already observed that other properties of the confined HS

fluid approximately collapse when plotted versus ρ (based on total volume V ),

we choose to focus from this point forward on γ∞, the interfacial free energy

that is also based on V .

As we demonstrated in the previous section, one can readily determine

the quantities on the right-hand side of Eq. 3.6 for finite values of H using

GC-TMMC simulations. As a result, these simulations might also provide a

reasonably accurate means for estimating γ∞, assuming that H can be chosen

large enough so that the perturbations to the fluid caused by the two confining

walls do not significantly interfere with one another (i.e., so that so-called

“finite-size” or frustration effects of confinement do not occur). Although, it

is not clear a priori how large H must be to achieve this, one might reasonably

expect that the pore would need to be at least several particle diameters in

width.
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Figure 3.2: The quantity (H/2) [Ω/V + Pb] calculated from our GC-TMMC
simulations for various H along with the H → ∞ limit, γ∞, computed using
Eq. 3.8. Data are plotted as a function of φb, the packing fraction of the bulk
HS fluid that is in equilibrium with the pore fluid.

As a test of this idea, we present in Fig. 3.2 values of the quantity

[Ω(ρ, H)/V + Pb] (H/2) calculated from our GC-TMMC simulations for vari-

ous H along with the single-wall quantity γ∞ of Eq. 3.8, which is the H → ∞

limit. All data are plotted as a function of bulk packing fraction φb. Interest-

ingly, the plot reveals that the simulated curves for H ≥ 3.5 all collapse, to

within an excellent approximation, onto that for γ∞. In other words,

γ∞ ≈
[

Ω(ρ, H)

V
+ Pb

]

H

2
(3.9)

independent of H for H ≥ 3.5. This implies that single-wall behavior such as

γ∞ can be estimated with great accuracy in this system from a simulated slit-
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pore of width H = 3.5, which can only accomodate a fluid film three particle

layers thick. This result, while very robust, is somewhat surprising because

the single-wall density profiles decay slowly enough to expect appreciable in-

terference or frustration effects at pore sizes as small as H = 3.5. However,

similar to the picture that emerged from the behavior of the equation of state

in the previous section, any interference that does occur apparently cancels

in determining the average properties of the confined HS fluid, which remain

remarkably “bulk-like” even for these very thin films.

So, when do interference effects due to packing frustration of the wall-

induced particle layers begin to occur? We can probe this issue by taking

the analysis one step further. Specifically, if one uses Eq. 3.3 to substitute

for Ω(ρ, H)/V in Eq. 3.9, differentiates both sides of Eq. 3.9 with repect to

chemical potential, and invokes the Gibbs adsorption equation ∂γ∞/∂µ =

−Γ∞, then upon rearranging one arrives at the following simple equation for

predicting the pore density ρ:

ρ ≈ ρb +
2Γ∞

H
(3.10)

The quantity Γ∞ is the standard surface excess density for a HS fluid next a

to single hard wall, and, within the above approximations, it is given by

Γ∞ = −3φb [1 + a1φb + a2φ
2
b + a3φ

3
b + a4φ

4
b]

π(1 + 4φb + 4φ2
b − 4φ3

b + φ4
b)

, (3.11)

where a1 = 1, a2 = −221/70, a3 = 4/5, and a4 = −1/5.

Fig. 3.3 shows the predictions of the simple analytical model of Eq. 3.10

and 3.11 compared to the simulated pore density ρ as a function of H. From
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Figure 3.3: Pore fluid density ρ as a function of pore width H at different values
of activity [ln ξ = 0.4, 4.4, and 8.8]. Filled and open symbols correspond to
the GC-TMMC data and the predictions of Eq. 3.10, respectively. The dashed
lines correspond to the bulk density ρb for a given activity ξ.
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the plot, it is evident that the average pore density can be predicted based

on knowledge of only the single-wall surface excess Γ∞ unless the fluid is both

dense and confined to pores narrower than approximately three particle di-

ameters. Under those restrictive conditions, the single-wall model misses the

emergence of oscillations in the pore density. These oscillations cannot be

solely attributed to single-wall “layering” in the density profile because pro-

nounced layering also occurs for dense fluids with H � 3, where the analytical

model is still very accurate. Rather, the oscillations must be due to packing

frustration associated with the interference of the layers emerging from the

two confining walls, which apparently becomes significant in this system only

for very narrow pores and high fluid density.

3.3.3 Comparing bulk and pore fluid self-diffusivities

The last two sections demonstrated that some of the average thermo-

dynamic properties of the confined HS fluid are very similar to those of the

bulk fluid if the two systems are compared at equal values of the average den-

sity ρ (based on the total system volume). Deviations occur only when the

fluid is both dense and confined to pores narrower than approximately three

particle diameters. In the previous chapter, we have also shown that the self-

diffusivity D of the confined HS fluid is approximately equal to that of the

bulk fluid with the same ρ for H > 3.5 over a fairly broad range of ρ. Here,

we carefully investigate the H-dependency of pore self-diffusivity at constant

ρ for narrow pores, with a focus on understanding when packing frustration
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causes the correlation between D and ρ to break down. We also investigate

the H-dependency of D for the confined fluid under the constraint of constant

imposed activity ξ. We find that this latter behavior can be essentially pre-

dicted in advance, given the known connection between D and ρ [73] and the

ability to predict ρ from ξ and H discussed in the previous section.

We begin here by examining how H affects D at constant ρ using the

DMD simulations described earlier. Specifically, we plot in Fig. 3.4 the self-

diffusivity D of the bulk and confined HS fluid for H = 2 to 5 and various

pore packing fractions (φ ≡ πρ/6 = 0.15, 0.30, 0.40, and 0.45). What is

plainly evident is that up to fairly dense packing fractions (φ < 0.40), D of

the confined fluid shows no significant deviations from bulk behavior (dashed

line) even when in very restrictive pores (e.g. H = 2). In fact, quantitative

deviations are prominent (> 25%) only in the high density (φ ≥ 0.4) and

small pore (H < 3) limit. Note that an equilibrium fluid at φ = 0.45 cannot

be accessed over the full H range because the system penetrates into the fluid-

solid coexistence region or the solid phase region on its phase diagram [40].

To gain a more physical understanding of the variations in D at con-

stant φ that occur under conditions of high φ and low H, we plot in Fig. 3.5

the 2D projections of instantaneous particle configurations of the confined HS

fluid for H = 2.0, 2.4, and 3.0 at φ = 0.40, state points that show very differ-

ent dynamical behaviors. We also present the corresponding density profiles

ρ(z) normal to the walls. This figure shows well-developed layering structures

for both H = 2.0 (two particle layers) and H = 3.0 (three particle layers).
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Figure 3.4: Self-diffusivity D as a function of pore width H at different pore
fluid packing fractions φ. For φ = 0.45, crosses mark regions for which the
confined system penetrates into the fluid-solid coexistence region or the solid
phase region on its equilibrium phase diagram [40].
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Figure 3.5: 2D projections of typical instantaneous particle configurations of
the confined HS fluid are shown (top) along with equilibrium density profiles
ρ(z) (bottom), where z represents the positional coordinate normal to the
walls.
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However, the system at H = 2.4 shows considerably more packing frustration.

In particular, the individual density peaks are reduced in this case because

the spacing is such that it is “in between” distances that naturally accomo-

date either two or three layers. The pore diffusivity is also lowest for φ = 0.4

at H = 2.4 as shown in Fig. 3.4. Similar oscillations in D, which are much

smaller in magnitude and decay with increasing H, occur at larger separa-

tions with the minima again coinciding with spacings that do not naturally

accommodate an integer number of particle layers. In short, for small enough

pores and high enough densities, the frustrated layering of particles normal to

the confining walls significantly slows down the single-particle dynamics in the

direction parallel to the walls.

The trend that increased layering leads to faster dynamics may initially

appear counter-intuitive, especially if one tries to understand it by drawing an

analogy with the bulk HS system. In the bulk HS system, compressing the

fluid increases the structural ordering [112, 113] but reduces the self-diffusivity.

In contrast, as can be clearly seen in Fig. 3.4 and 3.5, increased layering in

the normal direction (i.e., less uniform density profiles) correlates with faster

dynamics. However, these two represent fundamentally different systems un-

dergoing different changes. In the bulk HS system, increasing the density not

only increases the structural order, but it also reduces the entropy (or average

free volume) of the particles in the fluid. This compression-induced reduction

in free volume is not surprisingly correlated with slower dynamics. However,

the confined HS system actually maximizes its entropy (or average free vol-
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ume) at fixed average density and H by adopting an inhomogeneous density

profile with pronounced layering [59]. Our results show that, for constant ρ,

the values of (small) H that frustrate the ability of the system to form an in-

tegral number of particle layers also tend to reduce the single-particle mobility

in the direction parallel to the walls. We return to investigate the potential

connection between dynamics and entropy of the confined HS fluid in the next

section.

Another important point concerning the frustration-induced oscilla-

tions in D of Fig. 3.4 is that they are distinct from the oscillations in D

that occur as a function of H at constant activity ξ [67, 117]. The latter are

inevitably impacted by oscillations in average pore density, whereas the aver-

age density is being controlled for (held constant) in Fig. 3.4. Deviations from

bulk behavior at fixed average density are purely frustration-induced finite-

size effects, and the relative importance of these types of deviations has been

a long-standing question in the study of confined fluids [2].

Interestingly, if one compares the locations of the oscillations in D ver-

sus H at φ = 0.40 in Fig. 3.4 with the fluid-solid phase boundary of this

system presented in Fig. 2 of Ref. [40], one also finds a strong correlation be-

tween slow dynamics and proximity of the fluid to the phase boundary. In

other words, the same packing frustration that is giving rise to slow dynamics

also appears to ultimately promote the formation of an ordered solid phase.

This argues that the effect of confinement on the phase diagram of the system

can provide important insights into how confinement impacts single-particle
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dynamics. The consequences of this could be significant for the strategies that

are typically employed to study supercooled and confined liquids. For exam-

ple, weak polydispersity is commonly incorporated into model fluid systems

in order to study them under conditions where the corresponding monatomic

fluid would rapidly crystallize. A cautionary note that follows from the above

discussion is that one should not readily assume that the behaviors of the

polydisperse and monatomic systems are trivially related, and that the for-

mer only differs from the latter in that its liquid state is kinetically accessible

over a broader range of conditions. The phase diagrams of polydisperse ma-

terials are considerably more complex than monatomic systems (even in the

bulk [105]). Thus, one should expect confinement to impact the dynamics of

polydisperse systems in ways that are not easily relatable to the behavior of

the corresponding monatomic fluids.

We now turn our attention to the H-dependent diffusivity behavior of

the confined HS fluid at fixed activity ξ (i.e., in chemical equilibrium with the

bulk). As can be ascertained from the strong correspondence between D and

ρ in Fig. 3.4, the dynamical behavior at constant ξ can be largely predicted in

advance if one simply has knowledge of how H influences ρ at constant ξ (e.g.,

from simulation or the analytical model of Eq. 3.10 and 3.11). In Fig. 3.6,

we provide the H-dependent data along constant ξ paths for the quantities ρ

and D determined from GC-TMMC and DMD simulations, respectively. One

initial observation is that ρ is always less than ρb for finite H, and, as should

be expected based on this, D is larger in the pores than in the equilibrium bulk
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Figure 3.6: Average density ρ and self-diffusivity D as a function of pore size
H for the confined HS fluid in equilibrium with the bulk HS fluid at at a given
activity ξ [ln ξ = 0.4, 4.4, and 8.8]. Dashed lines correspond to the density ρb

and self-diffusivity D of the bulk HS fluid at the given activity ξ.
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fluid. Note that this type of physically-intuitive connection between average

density and dynamics would be completely lost, however, if one instead chooses

ρh as the definition for average density, which is significantly greater than

ρb for finite H. More generally, the reliability of approximate theories for

transport properties in inhomogeneous fluids could be particularly sensitive to

how averaging is handled, which might help to explain why an earlier kinetic

theory [117] predicts that confining a fluid at constant ξ significantly decreases

D, the opposite of what is seen in the MD simulation data of Fig. 3.6.

A second observation about the data in Fig. 3.6 is that there are neg-

ative oscillatory deviations in ρ (relative to bulk) with H at high ξ in small

pores, which one might expect to produce similar positive oscillations in D.

However, the frustration-induced negative deviations from bulk behavior in

the D versus H relationship at constant ρ shown in Fig. 3.4 appear to largely

cancel this effect. The net result is that D is strikingly similar to bulk behavior,

even for small H, along paths of constant (and sufficiently high) ξ.

3.3.4 Diffusivity and excess entropy

The oscillatory data in Fig. 3.4 clearly show that average density alone

cannot predict the self-diffusivity of the HS fluid if the fluid is both dense

and confined to a pore smaller than approximately three diameters. Is there

another thermodynamic quantity that can predict diffusivity behavior is these

narrow pores? One promising candidate is the excess entropy sex (relative to

ideal gas), which Chapter 2 results demostrate, to an excellent approximation,
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determines the self-diffusivity of the HS fluid confined between hard walls for

H > 3.5. Here, we explore its relationship to self-diffusivity in smaller pores.

Fig 3.7 shows the data for D and sex of the confined fluid collected

from our DMD and GC-TMMC simulations [data at fixed pore packing frac-

tion φ provided in panels (a) and (c), and data at fixed activity ξ provided

in (b) and (d)]. Irrespective of the thermodynamic path, strong qualitative

correspondence is observed between D and sex, including the “in-phase” os-

cillations that emerge at small H. In other words, self-diffusivity and excess

entropy appear to be affected in a very similar way by confinement, even for

the very narrow pores.

To scrutinize the quantitative accuracy of the relation between the two

variables, we also plot all data corresponding to constant pore packing fraction

φ (filled symbols) and constant ξ (empty symbols) paths in Fig 3.8 in the D-

sex plane. As can be seen, most of the data falls very close the curve for the

bulk HS fluid, indicating that excess entropy (a static quantity) can indeed

approximately predict the implications of confinement for self-diffusivity. The

largest deviations are for the fluid that has the highest pore packing fraction

of φ = 0.4.

This data is yet one more manifestation of a larger trend seen through-

out this chapter. Namely, that the confined HS fluid, by measure of many of

its average properties, has behavior very similar to that of the bulk fluid. It

changes character only under a fairly restrictive set of conditions, when the

pore fluid is dense (φ ≥ 0.4) and when it is confined to pores smaller than
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Figure 3.7: (a) Self-diffusivity D and (b) excess entropy sex as a function
of pore size H for the confined HS fluid at a given pore packing fraction
φ = πρ/6. Data from top to bottom correspond to φ = 0.15, 0.3, and 0.4. (c)
Self-diffusivity D and (d) excess entropy sex as a function of pore size H for the
confined HS fluid at a given activity ξ. Data from top to bottom correspond
to ln ξ = 0.4, 4.4, and 8.8.
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approximately three particle diameters in width.

3.4 Conclusions

In conclusion, we have presented new comprehensive simulation results

for the HS fluid confined between smooth hard walls. The results elucidate

thermodynamic and dynamic behavior of this system over a wide range of

system conditions, further clarifying the precise role of confinement on aver-

age fluid properties and the most useful way to define average density for this

system. One perhaps unexpected result is that, for most conditions, the av-

erage behavior of the confined HS fluid is very similar to that the bulk fluid.

Frustration-induced finite effects do emerge in this system, but they are only

prominent for very small pores (dimensions smaller than approximately three

particle diameters) and high fluid densities where the system approaches the

confinement-shifted fluid-solid phase boundary.
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Chapter 4

Self-diffusivity, packing fraction and excess

entropy of simple bulk and confined fluids

4.1 Introduction

Perturbation theories [9, 45, 57, 68, 91, 118, 121] are successful in pre-

dicting thermodynamic properties of dense, simple liquids because the pair-

wise structuring in those systems is primarily determined by the short-range

(approximately hard-core) repulsive interactions between the particles [19].

However, does the ability to approximate the structure of a simple liquid by

an effective hard-sphere (HS) reference fluid also have implications for under-

standing its single-particle dynamics? More specifically, should one expect the

self-diffusivity, D, of an atomic liquid to be approximately equal to that of a

HS fluid if compared at the same effective packing fraction? This intuitive line

of thinking appears promising, especially when one considers that diffusion is

intimately connected to interatomic “collisions”, which are in turn linked to

pair-wise structural correlations. In fact, ideas such as these have already led

to the development of a theoretical approach for predicting the dynamics of a

repulsive soft-sphere fluid [92]. Unfortunately, a number of attempts to further

extend this type of conceptual framework to compute D of the Lennard-Jones

(LJ) fluid have only been able to achieve qualitative agreement with simulation
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data [50, 62, 106, 109]. In addition, adjustments made to improve upon these

approaches have ultimately relied on semi-empirical corrections to account for

the presence of the attractive interactions [65, 106]. All of this would appear

to imply that attractions may have an effect on the single-particle dynam-

ics that is more subtle than one might surmise based on their approximately

“mean-field” contribution to the free energy.

On the other hand, it has been independently demonstrated that the

self-diffusivity of several simple liquids, when cast in an appropriately reduced

form, show an approximate scaling with sex, the excess entropy per particle of

the fluid (relative to an ideal gas with the same number density) [26, 86, 87].

Interestingly, excess entropy can also be used as a tool for predicting how

confinement modifies the single-particle dynamics of equilibrium fluids. In

particular, we showed in Chapter 2 and 3 via molecular simulation that while

confining the equilibrium HS fluid generally changes both its excess entropy

and self-diffusivity, the relationship between the two remains, to an excellent

approximation, unaltered. Since classical density functional theories for inho-

mogeneous fluids can be used to accurately estimate how confinement impacts

the excess entropy, the existence of this “master curve” for excess entropy and

self-diffusivity has potentially broad implications for using thermodynamics

to predict the dynamics of confined fluids. One of the main open questions

raised in previous chapters is whether these observations apply more generally

to other simple liquid systems with attractive interactions.

Here, we report results from extensive grand canonical transition matrix
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Monte Carlo and molecular dynamics simulations, which are used to explore

some basic questions regarding the thermodynamic and dynamic behaviors of

such simple fluids with attractive interactions. Our main focus is elucidat-

ing the various connections between the excess entropy, the effective packing

fraction, and the self-diffusivity of LJ and SW fluid systems in both bulk and

confined environments.

4.2 Model Systems and Simulation Methods

In order to simplify the notation, we implicitly non-dimensionalize all

quantities by appropriate combinations of the characteristic energy scale ε and

length scale σ corresponding to the stength of the interparticle attraction and

the particle diameter, respectively, in the pair potentials of the aforementioned

fluids. For example, all temperatures are implicitly per unit ε/kB, energies per

unit ε, entropies per unit kB, densities per unit σ−3, self-diffusivities per unit
√

εσ2/m, and so forth.

In the case of the LJ system, we describe the interactions between fluid

particles with a truncated and quadratically-shifted version of the pair poten-

tial for which the energy and force go continuously to zero at an interparticle

separation r equal to the cut-off distance, r = rc. The form of the potential is

given by [108],

V(r) = 4

{

r−12 − r−6 +
[

6r−12
c − 3r−6

c

]

(

r

rc

)2

− 7r−12
c + 4r−6

c

}

. (4.1)

In this work, we set rc = 2.5. For the confined LJ fluid, we consider parallel
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boundary walls that interact with fluid particles via the following external

field,

Vfw(z) = V9−3(z) + V9−3(Hz − z) (4.2)

where Hz is the particle center-accessible separation between the confining

walls (0 < z < Hz) and the single-wall “9-3” potential is given by

V9−3(z) = εfw

[

2

15

(σfw

z

)9

−
(σfw

z

)3
]

. (4.3)

Here, we set σfw = 1 for all cases, and we investigate the system for different

values of εfw (εfw > 0 for attractive walls). Because the fluid-wall repulsions are

steep in this potential, there will be finite regions near the walls that will not

be populated by the particle centers with any statistical significance at finite

temperature. We will return to this issue later in our discussion of the role

that the effective packing fraction of the confined fluid plays in determining

its average dynamic behavior.

The particles in the SW fluid that we explore interact with one another

via the following pair potential,

V(r) = ∞ r < 1

= −1 1 ≤ r < λ

= 0 r ≥ λ, (4.4)

and we take λ = 1.5. For the confined SW fluid, we also consider parallel

boundary walls that interact with fluid particles via the following SW poten-

tial,

Vfw(z) = VSW(z) + VSW(Hz − z), (4.5)
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where VSW(z) is given by

VSW(z) = ∞ z < 0

= −εfw 0 ≤ z < (λfw − 1)σfw

= 0 z ≥ (λfw − 1)σfw. (4.6)

As with the “9-3” wall potential, we set σfw = 1 for all cases, and we simulate

the system for different values of εfw (εfw > 0 for attractive walls and εfw < 0

for repulsive walls). Most of the confined systems that we investigate have

λfw = 1.5, but we also study a few systems with a shorter range fluid-wall

interaction (λfw = 1.1).

To monitor kinetic processes in the LJ fluid, we performed molecular

dynamics simulations of N = 1500 particles in the microcanonical ensemble

using the velocity Verlet algorithm [3]. We analyzed the dynamics of the the

HS and SW fluids using N = 4500 and N = 1000 particles, respectively, in the

microcanonical ensemble via discontinuous (event-driven) molecular dynam-

ics simulations [82]. Periodic boundary conditions were employed in all three

directions (x, y, and z) for the bulk fluid simulations and in the two “macro-

scopic” directions (x and y) for the simulations of the confined fluid films.

Self diffusion coefficients, D, were extracted by fitting the long-time (t � 1)

behavior of the average mean-squared displacement ∆r2
d of the particles in the

d periodic directions to the Einstein relation < ∆r2
d >= 2dDt.

The excess entropy per particle sex for each of these models was ob-

tained using grand-canonical transition-matrix Monte Carlo (GC-TMMC) sim-
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ulations [33]. In general, sex is defined to be the difference between the entropy

per particle of the fluid and that of an ideal gas with the same spatial distri-

bution of the particle number density. GC-TMMC simulations require fixed

values of the activity ξ, particle center-accessible volume of the simulation cell

Vh, and temperature T as inputs. The activity is defined as ξ = exp(µT−1)Λ−3,

where µ is the chemical potential and Λ is the thermal de Broglie wavelength.

For all GC-TMMC simulations employed here, we set Vh = 1000 and ξ = 1,

and we investigated the system as a function of temperature T . Thermody-

namic properties at other values of activity ξ were readily obtained via the

histogram reweighting technique [38].

The key quantities extracted from the GC-TMMC simulations were the

total particle number probability distribution Π(N), and the particle-number-

specific spatial density distribution ρ(N, r), and the excess configurational en-

ergy U ex(N), each evaluated over a range of particle numbers to span the

required density values. Using basic arguments from the statistical mechan-

ics [21, 79], one can relate these quantities to the excess entropy per particle

sex = Sex/N , which can be determined from the following relation [32, 72],

Sex(N) = U ex(N)/T + ln[Π(N)/Π(0)] − N lnξ + ln N !

−N lnN +

∫

ρ(N, r) ln ρ(N, r)dr. (4.7)

Given that Vh is fixed, Eq. 4.7 readily provides information for how excess

entropy is related to average density or packing fraction, a subject that we

will return to in the next section.
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4.3 Results and discussion

4.3.1 Effective packing fraction and self-diffusivity: Bulk fluids

The determination of the effective packing fraction φeff(T, ρ) of a bulk

fluid usually involves two steps. The first step is the separation of the inter-

molecular potential of the fluid into a repulsive, V0(r), and a perturbation,

V1(r), contribution [i.e., V(r) = V0(r) + V1(r)]. Here, we invoke the well-

known WCA method [19] for achieving this decomposition. The second step

is the determination of an effective HS diameter σHS(T, ρ) for the particles of

the bulk fluid [9, 11, 19], which is ultimately used to determine φeff(T, ρ) =

πρσ3
HS(T, ρ)/6. Perturbation theories have traditionally approached the cal-

culation of σHS(T, ρ) from the view that it should ensure some level of ther-

modynamic consistency between the free energy of the repulsive fluid with

potential V0(r) and that of a HS fluid of particles with effective diameter

σHS(T, ρ), which generally involves numerical minimization of an integral equa-

tion [19, 63]. However, a simpler approach for determining the effective HS di-

ameter called the “Boltzmann factor criterion” (BFC) has also been employed

in the study of liquids [11, 106]. In the BFC approach, σHS(T ) depends on

temperature only, and it is determined from the following basic equation,

V0(r = σHS) = aT. (4.8)

The physical interpretation of this criterion is that it finds a diameter such

that only a very small (a-dependent) fraction of interparticle “collisions” in the

model fluid will have sufficient kinetic energy to cause overlap of the effective
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hard cores (i.e., r < σHS(T )). A detailed discussion of the BFC can be found

in a recent article by Ben-Amotz and Stell [11]. Formal justifications for

choosing parameter values of a = 1, 1.5, and 2 in the BFC have been previously

advanced by Hsu, Chandler, and Loweden [54], Andrews [5], and Speedy et

al. [106], respectively. In this work, we calculate σHS(T ) of the bulk LJ fluid

using Eq. 4.8 and each of three aforementioned values of a.

Our main goal in carrying out this analysis is to provide, to our knowl-

edge, the first comprehensive test of whether the single-particle dynamics of

the equilibrium LJ fluid (as measured by self-diffusivity plotted versus effec-

tive packing fraction) are in fact significantly different than what would be

expected based on the behavior of the HS fluid. Fig. 4.1(a-c) shows data for

the product DT−1/2 versus φeff(T ) of Eq. 4.8 employing BFC parameter values

a = (a) 1, (b) 1.5, and (c) 2 discussed above. Temperatures and effective pack-

ing fractions over wide intervals 1 ≤ T ≤ 10 and 0 < φeff < 0.48, respectively,

are considered. By plotting the product of DT−1/2 instead of simply D, we

have removed the trivial differences in single-particle dynamics that arise due

to thermal velocity effects. The behavior of the bulk HS fluid is also presented

as a single solid curve in each of the three panels in Fig. 4.1 for comparison.

Perhaps the most striking aspect of Fig. 4.1 is that the data for DT−1/2

of the bulk LJ fluid, irrespective of the precise BFC “a” parameter employed,

approximately collapse onto a single curve when plotted in this fashion. More-

over, the collapsed data has a dependency on φeff(T ) that is consistent with

what would be expected based on the behavior of the HS fluid. In fact, by
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Figure 4.1: Scaled self diffusivity DT -1/2 of the bulk LJ fluid versus effective
packing fraction φeff defined using the Boltzmann factor criterion of Eq. 4.8
with parameter values, a = (a) 1, (b) 1.5, and (c) 2. Symbols correspond
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triangle left). The curve corresponds to data for the bulk HS fluid.
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choosing the parameter value a = 1 in the BFC to determine φeff(T ), one

would be able to use the bulk HS data alone to produce fairly accurate esti-

mates for the self-diffusivity of the bulk LJ fluid over an impressive range of

temperatures and densities. Interestingly, we were also recently able to employ

a similar analysis to successfully estimate the self-diffusivity of the LJ fluid in

a random matrix of quenched LJ particles from knowledge of the behavior of

an equivalent HS reference system [74]. When taken together with the data

provided in Fig. 4.1, this indicates that the single-particle dynamics of the LJ

model are essentially reflecting those of a HS system with the same effective

packing fraction.

Unfortunately, as we will see, the “collision” perspective provided by

the BFC outlined above does not provide a paricularly accurate mapping of

the T -depenedent SW fluid behavior onto a HS fluid with the same effective

packing fraction. The reason why is easy to understand. In the LJ fluid, the re-

pulsive part of the potential can be treated as an effective HS contribution with

a temperature-dependent diameter, and the slowly-varying (r−6) intermolecu-

lar attractions have only minor implications for local particle structuring and

collisions. In contrast, the attractions in the SW potential “turn off” via an

infinitely steep step function at the outer edge of the attractive well (r = λ),

a feature that can cause both the local structuring and the collisions in this

model to be qualitatively different from what is observed in the HS and LJ

fluids. We will return to this point in the next section when discussing the

differences between SW and HS fluid structures.
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The repulsive contribution to the SW potential simply comes from the

impenetrable diameter of the SW particle itself. In that sense, the actual

particle diameter of the SW potential represents the most obvious basis for

calculating the effective HS packing fraction, i.e., φeff = πρ/6. Using this

definition, we show our simulated SW fluid data for DT−1/2 plotted versus φeff

in Fig. 4.2. Again, wide ranges of temperature (0.8 ≤ T ≤ 10) and packing

fraction (0 < φeff < 0.45) are presented. As might be expected based on the

above discussion, the T -dependent data for the SW fluid do not collapse onto

a single curve as they do for the bulk LJ fluid, although the φeff dependencies

at each T appear qualitatively similar.

It is worth noting that Speedy et al. [106] have previously used molec-

ular simulation data to propose a simple empirical equation for relating the

T -dependent self-diffusivity of the SW fluid (DSW) to that of the HS fluid with

the same density (DHS). In particular, they proposed that one can estimate

the former by multiplying the latter by (1−αT−1), where α is a constant, i.e.,

DSW = DHS × (1 − αT−1). (4.9)

The inset of Fig. 4.2 shows a comprehensive test of this equation (using

α = 0.68, obtained by a least-squares fit) for the SW self-diffusivity data gen-

erated in this study. Although the proposed scale factor cannot quantitatively

account for all of the deviations apparent in the main panel, the empirical

expression does a remarkably good job given its simplicity. To appreciate the

physics that might underlie this type of empirical expression, first recall that
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Figure 4.2: Scaled self diffusivity DT -1/2 versus effective packing fraction φeff

for the SW fluid (symbols) at the various temperatures T described in the
legend. The black curve corresponds to the bulk HS data (or, equivalently,
the data for the SW fluid in the T → ∞ limit). Speedy et al. [106] proposed
that the T -dependent SW self-diffusivity data might collapse onto the HS curve
if divided by an empirical factor of the form (1−αT−1), where α is a constant.
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−1/2 that is predicted by applying
this type of normalization to the scaled SW diffusivity data, DSWT−1/2, in the
main panel [i.e., DHS = DSW/(1 − 0.68T−1)].
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the behavior of the SW fluid, at any given φeff, must approach that of the

HS fluid as T → ∞. However, as T is lowered, the diffusion coefficient of

the SW fluid becomes systematically reduced. One possible way to view this

trend is that the attractions of the SW potential cause the particles to take

on larger effective diameters (i.e., higher φeff), which naturally results in more

sluggish dynamics. Of course, attractive interactions could further impede

particle mobility in ways that are qualitatively different than the “crowding”

effect associated with larger HS particle diameters. At this stage, however, it

would be difficult to pin down any specific microscopic mechanisms, especially

in the absence of a more rigorous justification of the functional form presented

in Eq. 4.9.

To briefly summarize, the results presented in this section for the bulk

LJ and SW fluids provide some evidence that it is possible to relate the dy-

namics of these systems to those of a bulk HS fluid with an equivalent effective

packing fraction. This suggests that perturbation ideas for the thermodynam-

ics of simple attractive fluids might also have some value in understanding,

and eventually predicting, their single-particle dynamics. Unfortunately, the

relationships in both cases between the behaviors of the fluids and the cor-

responding HS system involve parameters that are, at least at present, not

known a priori. In the case of the LJ fluid, one needs to know the value of the

parameter a in the BFC used to obtain the effective packing fraction. Inter-

estingly though, as our data shows, collapse of the T -dependent self-diffusivity

of the bulk LJ fluid onto a single curve appears to be fairly insensitive to the
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precise value of a chosen. The situation for the SW fluid is not nearly as

clean. Both the functional form of the scale factor provided in Eq. 4.9 and the

value of the parameter α required to collapse the data, to our knowledge, lack

rigorous justification. In the next section, we explore the extent to which the

self-diffusivities of these bulk fluid systems might be alternatively predicted

using knowledge of their excess entropy.

4.3.2 Excess entropy and self-diffusivity: Bulk fluids

Below, we use our molecular dynamics and GC-TMMC simulation data

to put the excess entropy scalings of Rosenfeld [86] and Dzugutov [26] (see

section 1.3 for more detail) to stringent tests for the bulk LJ and SW flu-

ids examined in the previous section. Earlier studies provided preliminary

evidence that the scaling laws could indeed adequately describe the behav-

ior of the dense, equilibrium LJ fluid [26, 86], and we are not aware of any

tests of the scaling laws for the SW model. However, an important point to

keep in mind is that the GC-TMMC method used here, described in section

4.2, provides an accurate means for directly computing sex in our simula-

tions, and thus we were able to readily explore its behavior over a wide range

of thermodynamic conditions for these systems. In contrast, earlier studies

(e.g., [10, 15, 26, 28, 52, 64, 86, 88, 94, 119]) have relied on estimating sex via its

two-body approximation or by thermodynamic integration using approximate

equations of state or simulation data over a fairly limited set of conditions.

In short, the new data that we present here provide the first comprehensive
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picture for how self-diffusivity and excess entropy (calculated without approx-

imation) are related for these two basic model fluids.

The Rosenfeld scaling predicts the following approximate functional

relationship, DR ≈ 0.58exp(Asex), between the reduced diffusion coefficient

DR = DT−1/2ρ1/3 and the excess entropy per particle sex of dense, equilibrium

fluids. The parameter A has been found to be an O(1) number that varies

only slightly between different model fluids. Rosenfeld also pointed out that

this functional form must give way to a different behavior in the dilute gas

limit. In particular, he used Enskog theory for D and a virial expansion for

sex to argue that DR ≈ 0.37(−sex)−2/3 [87] for low-density fluids of soft-sphere

particles with potentials of the form r−n, where n > 3.

The “universal” entropy scaling law of Dzugutov is given by DD ≈

0.078 exp(sex) [28], and it relates a slightly different reduced self-diffusivity

DD = Dρ2/3Γ−1
E to the excess entropy per particle sex. The parameter ΓE =

4πρg(σ)
√

T/π is an effective Enskog interparticle collision frequency, σ is the

interparticle separation corresponding to the first peak in the radial distri-

bution function, and g(σ) is the magnitude of that first peak. As with the

Rosenfeld scaling, the available data suggests that it applies for dense, simple

liquids above their freezing temperature (or below their freezing density).

We begin here by examining the entropy scaling behavior for the self-

diffusivity of the bulk LJ fluid. Specifically, Fig. 4.3 shows the reduced self-

diffusivity as calculated based on the aforementioned Rosenfeld (top) and

Dzugutov (bottom) forms, respectively. The data span the same wide range
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Figure 4.3: Scaled self diffusivity data (symbols) versus negative excess entropy
per particle for the bulk LJ fluid using the (top) Rosenfeld and (bottom)
Dzugutov reduction parameters discussed in the text. In the top panel, the
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line represents the Dzugutov scaling law, 0.078exp(sex).
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of parameter space discussed in the previous section, i.e., 1 ≤ T ≤ 10 and

0 < φeff < 0.48. Three points are worth noting here. First, both reduced

forms appear to collapse the data, to a good approximation, onto single curves

when plotted versus −sex. Next, the scaling laws provided by Rosenfeld and

Dzugutov (shown in Fig. 4.3 by the black lines) capture the LJ model behavior

reasonably well in the interval 1.5 < −sex < 4, which spans the dense fluid

range [26, 86]. Finally, the low-densiy power-law scaling behavior derived by

Rosenfeld for repulsive soft-sphere fluids (dashed line) [87] appears to capture

the behavior of the attractive LJ fluid very well. This good agreement was not

necessarily expected in advance because attractions can have a pronounced

influence on fluid structure at low-to-intermediate densities. Nonetheless, the

key generic point of Fig. 4.3 is that a standard thermodynamic quantity, the

excess entropy, seems to determine the (reduced) self-diffusivity of the LJ fluid

over an extraordinarily broad range of conditions.

Now, we turn our attention to exploring the behavior of the bulk SW

fluid with respect to the Rosenfeld and Dzugutov entropy scaling laws. To

the best of our knowledge, Fig. 4.4 represents the first examination of the

dependencies of reduced self-diffusivity on −sex for this model. Interestingly,

there are significant deviations in the SW fluid behavior from the scaling laws of

both Rosenfeld (top) and Dzugutov (bottom), the latter of which was thought

to provide a “universal” description for the behavior of simple atomic fluids

such as this. In both cases, the deviations reflect the fact that, similar to what

was found in the packing fraction analysis of Section 4.3.1, temperature effects
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solid line represents the Rosenfeld scaling law, 0.58exp(0.78sex), for the dense
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on self-diffusivity of the bulk SW fluid cannot be collapsed in the same way

that they can for the bulk LJ fluid.

To try to understand the deviations of the SW fluid from the entropy

scaling laws, it may help to recall the basic arguments originally made in

justifying these approximate relationships. The scaling law of Rosenfeld was

motivated by the success of a variational perturbation theory that used the

excess entropy to parametrize the structure of simple equilibrium fluids [87].

Thus, one might expect it to lose validity for fluids that do not satisfy the basic

assumptions of perturbation theory, the most important being that the struc-

ture of the fluid can be adequately approximated by that of a HS reference

system. Indeed, as was discussed in the previous section, unlike the LJ fluid,

the SW fluid will fail in this basic assumption under certain thermodynamic

conditions. Specifically, its attractive interactions are not slowly-varying, and,

as a result, they can greatly impact fluid structure, especially at low temper-

ature and intermediate fluid densities. In fact, Fig. 4.5 illustrates the stark

contrast between the low-temperature SW fluid structure and that of the HS

fluid at the same density. Given these basic differences, it is perhaps not

too surprising that the Rosenfeld scaling fails to quantitatively describe the

temperature dependencies of the SW fluid behavior.

Similarly, the Dzugutov scaling assumes that the Enskog parameter ΓE

provides the relevant microscopic information about the collisional processes

that mediate self-diffusion in the fluid. However, since the Enskog approach

is intrinsically a hard-sphere collision theory that focuses on the first peak in
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for SW fluid). The bottom curve corresponds to g(r) for the HS fluid with the
same density. Curves for the SW fluid have been vertically shifted for clarity.
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g(r), then it also stands to reason that it might break down when the liquid

structure differs qualitatively from that of the HS fluid, as is it does for the

SW fluid at lower temperatures (Fig. 4.5). In fact, similar deviations from the

Dzugutov scaling have also been noticed for the Stillinger-Weber model of Si

and have been ascribed to the very different liquid structure of that fluid due

to its angular bonding [52].

The results presented above reinforce the notion, suggested in the last

section, that the single-particle dynamics of the bulk LJ fluid are effectively

mediated by HS-like collisions, which are connected to the effective HS-like

structuring of that system. As a result, like the HS fluid, the self-diffusivity

of the LJ fluid can be approximately determined a single static quantity that

is intimately tied to structure, the excess entropy. In this sense, the LJ fluid

is an extraordinarily “simple” liquid. However, as we have seen, a similar

description does not apply to the T -dependent behavior of the SW fluid. This

appears intimately connected to the fact that the SW fluid structure becomes

markedly different from the HS fluid at low T , which is itself tied to the fact

that its attractive interactions are not slowly-varying in r.

In the next section, we put the connections between self-diffusivity,

effective packing fraction, and excess entropy to a much more stringent test

for these systems. Namely, we explore how confinement of these attractive

fluids affects the various relationships between these basic quantities.
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Figure 4.6: Schematic showing a paricle confined in a slit-pore geometry. The
effective packing fraction of this system can be defined based either on the
volume that the particle centers access (Vh = Ah) or the “total” volume that
the particle surfaces access (V = AH), where A is the fluid contact area at a
single wall.

4.3.3 Effective packing fraction and self-diffusivity: Confined fluids

Here, we explore how the effective packing fraction approach for study-

ing the single-particle dynamics of bulk fluids introduced in Section 4.3.1 can

be extended to understand and predict the kinetic behavior of confined flu-

ids. Before moving forward, however, we first need to clarify what we mean

by the effective packing fraction of particles in a slit-pore geometry. Specifi-

cally, there are two different types of definitions that are commonly invoked:

φeff = Nπσ3
HS/6Vh and φeff = Nπσ3

HS/6V , where σHS is the Boltzmann di-

ameter of Eq. 4.8 associated with the repulsive interaction between two fluid

particles. The difference, shown in Fig. 4.6, is that Vh = Ah is the volume that

the particle centers effectively access (A is the contact area between a single

wall and the fluid), and V = AH is the larger “total” volume that the fluid
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particle surfaces access (i.e., H = h + σfw
HS, where σfw

HS is the Boltzmann diam-

eter of the fluid wall-interaction). While these two definitions must converge

in the limit H → ∞, they generally have very different numerical values for

severely confined fluids.

In Chapter 2, we presented some compelling arguments based on our

simulations of HS fluids confined to both thin film and square-channel geome-

tries that the most natural definition of the two is the one based on the total

volume [72]. Specifically, our results showed that D of the confined HS fluid,

over a wide range of equilibrium conditions, approximately collapsed onto

that of the bulk HS fluid if the two systems are compared at the same value

of φeff = πN/6V (recall that σfw
HS = σHS = 1 for the HS fluid confined between

hard walls). In other words, the microscopic details of the inhomogeneous

packing structures have only minor influence on the average single-particle

dynamics of the confined HS fluid, as long as one controls for the average

packing fraction based on V . Alternatively, if one instead compared the be-

haviors of the bulk and confined systems at equal values of packing fraction

based on Vh, one arrived at the conclusion that confining a HS fluid between

hard walls generally has the effect of significantly increasing its self-diffusivity.

Given this background, we now move on to explore whether the ef-

fective packing fraction of the LJ fluid confined between “9-3” walls sepa-

rated by a distance Hz (see model description in section 4.2) also provides

a good predictive measure for its single-particle dynamics. In this system,

the effective packing fraction based on the total (i.e., “particle surface” rather
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than “particle center”-accessible) volume is φeff(T ) = Nπσ3
HS(T )/[6AH], where

H = Hz − σfw
HS(T ). Here, we have used Eq. 4.8 and the repulsive WCA contri-

butions to the fluid-fluid and fluid-wall potentials of Eq. 4.1 and 4.3, respec-

tively, to determine σHS(T ) and σfw
HS(T ). We have employed a BFC parameter

of a = 1 in determining these diameters because of the excellent data collapse

that this choice produced for the bulk LJ fluid (recall Fig. 4.1a).

The predictions for the scaled self-diffusivity DT−1/2 versus φeff for the

confined LJ fluid are presented in Fig. 4.7. As for the bulk LJ fluid, data

have been generated for wide ranges of temperature and packing fraction,

0.8 ≤ T ≤ 10 and 0 < φeff < 0.48, respectively. Slit-pores with Hz = 5

and Hz = 10 and fluid-wall interaction parameters εfw = .01 and ε = 1 were

considered. In short, one can see that, although there is some visible deviation,

most of the data for the inhomogeneous systems fall very close to the collapsed

curves of the bulk LJ and HS fluids. Stated differently, the average packing

fraction φeff seems to approximately determine the single-particle dynamics of

the LJ and HS fluids, even when they are confined to thin films.

Can packing fraction provide similar insights into how confining the

SW fluid between interacting walls modifies its dynamics? One might initially

be skeptical given that the data for DT−1/2 versus φeff did not even collapse

for different T in the bulk SW fluid (recall Fig. 4.2). However, T dependencies

and confinement may be different issues altogether. As we discussed earlier,

the lack of a data collapse for the bulk fluid at various T is likely due to the

fact that lowering T causes pronounced structural changes in the SW fluid,
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Figure 4.7: Scaled self diffusivity DT -1/2 for bulk and confined LJ fluids ver-
sus effective packing fraction φeff(T ) based on the total (i.e., “particle surface”
rather than “particle center”-accessible) volume, as discussed in the text. Tem-
peratures for data points follow the color code shown in the legend. Various
fluid-wall interactions used are effective “hard wall” (HW, εfw = .01), and
neutral wall (NW, εfw = 1) both modeled by a 9-3 LJ interaction potential de-
scribed in the text. The symbols correspond to bulk (filled circle), HW:Hz = 5
(filled square), NW:Hz = 5 (filled diamond), and NW:Hz = 10 (asterisk). The
solid curve corresponds to the bulk HS fluid data.
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i.e., the fluid evolves from HS-like ordering at high T to qualitatively different

structuring at low T (recall Fig. 4.5). However, if we restrict ourselves to

making comparisons between SW fluid systems at the same temperature, it is

still possible that φeff might explain the implications of confinement for single-

particle dynamics.

To test this idea, we simulated the SW fluid confined between SW

walls separated by distances Hz = 2.5 and Hz = 7.5 with different values

of the fluid-wall energy parameter εfw: hard walls (εfw = 0), repulsive walls

(εfw = −1), and attractive walls (εfw = 1). We also considered two different

values of the fluid-wall potential range parameter (λfw = 1.5 and λfw = 1.1).

Here, φeff = Nπ/[6AH] again describes the packing fraction based on total

(i.e., “particle surface” rather than “particle center”-accessible) volume, where

H = Hz + 1. Recall that the full description of the fluid-wall interaction in

this model system is provided in methods section.

Fig. 4.8 shows the relationship between self-diffusivity D and φeff for the

bulk and confined SW fluids over a wide range of thermodynamic conditions.

The interesting point here is that, without any rescaling of the diffusion coeffi-

cient, the effective packing fraction of the SW fluid appears to account for the

main effects that confinement has on the single-particle dyamics at any given

temperature. Although the data along each isotherm in Fig. 4.8 does show

more scatter than is apparent for the LJ fluid presented in Fig. 4.7, the ability

of a single static quantity to approximately capture the diffusivity behavior is

still remarkable, especially considering the complexity of the local structuring

80



0.2 0.3 0.4
φeff

10-2

10-1D

Figure 4.8: Self diffusivity D of the confined SW fluid versus φeff based on the
total (i.e., “particle surface” rather than “particle center”-accessible) volume,
as discussed in the text. Temperatures for data points follow the color code
shown in the legend. Various fluid-wall interactions used are hard wall (HW,
εfw = 0), repulsive wall (RW, εfw = −1), attractive wall, (AW, εfw = 1). The
range of the fluid-wall potential is λfw = 1.5 except for a few data sets (SR)
where it is λfw = 1.1. Symbols correspond to bulk (filled circle), HW:Hz =
3.5 (filled square), HW:Hz = 8.5 (filled triangle up), RW:Hz = 3.5 (filled
diamond), RW:Hz = 8.5 (filled triangle left), AW:Hz = 3.5 (filled triangle
down), AW:Hz = 8.5 (filled triangle right), AW-SR:Hz = 3.5 (plus), and AW-
SR:Hz = 8.5 (times).
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of the SW fluid and the number of different types of confining environments

investigated. In this sense, confinement effects on dynamics of the SW fluid

are easier than temperature effects to understand and predict.

Given the results of this section and those presented earlier for bulk

fluids, it is natural wonder whether excess entropy can in fact capture the con-

finement effect for attractive liquids even more reliably than effective packing

fraction. In this next section, we explore that issue.

4.3.4 Excess entropy and self-diffusivity: Confined fluids

We examined in detail two different excess entropy scaling laws in Sec-

tion 4.3.2, both of which can be utilized to predict the (reduced) self-diffusivity

of the bulk LJ fluid from knowledge of its excess entropy. In this section, we

first first investigate whether the same scaling laws can also be used to collapse

the single-particle dynamics data of the bulk and confined LJ fluids.

Fig. 4.9 shows the reduced self-diffusivity data for both the bulk and

confined LJ fluids utilizing the Rosenfeld (top) and Dzugutov (bottom) reduc-

tion parameters discussed earlier. The conclusion from this plot is a simple

one: both scaling laws are able to collapse, to a very good approximation, the

data from all simulations onto a single curve. In other words, although con-

finement can change the the reduced self-diffusivity (in either form) and the

excess entropy of a fluid, the relationship between these two variables is appar-

ently preserved. This seems like a very powerful conclusion because the excess

entropy of confined LJ fluids can be predicted by classical density functional
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Figure 4.9: Scaled self diffusivity data (symbols) versus negative excess entropy
per particle for the bulk and confined LJ fluids using the (top) Rosenfeld and
(bottom) Dzugutov reduction parameters discussed in the text. Symbols are
the same as those presented in Fig. 4.7.
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theories, and thus one could use the “master curves” presented in Fig. 4.9 to

ascertain how confinement impacts the reduced self-diffusivity.

However, there are two potential issues with using the scaling laws for

studying the implications of confinement that need to be addressed. First,

one generally is interested in predicting the self-diffusivity itself and not the

reduced self-diffusivity. Second, one would also like to be able to make pre-

dictions about the effects of confinent for the dynamics of the SW fluid, and

we already know that the Rosenfeld and Dzugutov scalings break down for

that system. The natural solution is ask a different, but related, question.

Does confining a fluid at constant temperature affect the relationship between

the self-diffusivity itself (i.e., no reduction parameters) and excess entropy. If

not, than one can use accurate predictions about the latter (e.g., from density

functional theory) to infer information about the former.

As can be seen in Fig. 4.10, the relationship between the self-diffusivity

and excess entropy, for a given temperature, is indeed approximately unaltered

by cofinement for both the LJ and the SW fluids. Note that this is a much

more powerful conclusion than the one presented in the last section where the

effective packing fraction, instead of the excess entropy, was the independent

variable. The reason why is two-fold. First, the data shows much less scatter

when excess entropy is the independent variable in the plot. Second, effective

packing fraction relies on a definition for the Boltzmann diameters of the

system (e.g., the parameter a in the BFC given by Eq. 4.8), whereas the

excess entropy is a standard thermodynamic quantity that is unambiguously
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Figure 4.10: Self diffusivity versus negative excess entropy per particle. (a)
Bulk and confined LJ fluids at temperatures T = 1 and 3. Symbols and
color code are the same as in Fig. 4.7. (b) Bulk and confined SW fluids at
temperatures T = 1.2 and 2.5 from bottom to top curve. Various fluid-wall
interactions used are hard wall (RW, εfw = −1), repulsive wall (HW, εfw = 0),
attractive wall, (AW, εfw = +1). The range of the fluid-wall potential is
λfw = 1.5. Symbols correspond to bulk (line), RW:Hz = 4 (filled circle),
HW:Hz = 4 (filled square), AW:Hz = 4 (filled triangle down).
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defined, even for confined fluids.

4.4 Conclusions

In this chapter, we presented a systematic investigation of the relation-

ships between the self-diffusivity, effective packing fraction, and excess entropy

of the LJ and SW fluids in both bulk and confined environments. We find that

the entropy scaling laws of Rosenfeld and Dzugutov can collapse (appropri-

ately reduced) self-diffusivities of the bulk and confined LJ fluids as a function

of excess entropy over a wide range of thermodynamic conditions. Moreover,

the self-diffusivities of the LJ fluids can be approximately collapsed onto a

single, HS-like, curve versus effective packing fraction. Interestingly, the SW

fluid data cannot be collapsed by either the entropy scaling laws or the effec-

tive packing fraction. We explain how this can be understood based on the

non-trivial effects that temperature has on its static structure. Even still, we

show that the consequences of confinement for the self-diffusivity of both of

these liquids, over a broad range of equilibrium conditions, can be estimated

based on knowledge of the bulk fluid behavior and either the packing frac-

tion or the excess entropy of the confined fluid. Excess entropy is perhaps

the most preferable route since it is a standard, unambiguous thermodynamic

quantity that can be readily predicted via classical density functional theories

of inhomogeneous fluids.
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Chapter 5

Fluid diffusivity in random porous media

5.1 Introduction

Fluid transport in random porous media is central to a host of natural

phenomena and technological applications, from the function of biological cells

to the performance of materials for membrane separations and heterogeneous

catalysis. Although it is now appreciated that kinetic processes in these sys-

tems are intimately connected to their microstructures (pore volume, surface

area, connectivity, etc.) [111], determining the precise structure-property rela-

tionship for the transport property of interest remains a formidable challenge.

One promising line of inquiry has been the exploration of simple model

systems for which both transport properties and structure are amenable to the-

oretical analysis. In the case of diffusivity, earlier work has focused primarily

on single particle transport through random configurations of static obsta-

cles [17]. At low obstacle densities, particles show anomalous, sub-diffusive

motion over intermediate time and length scales but recover normal diffusive

behavior in the long time limit. On the other hand, sub-diffusive motion is

observed for all times at high obstacle densities. Similar behavior is predicted

for transport of single ions in disordered matrices of quenched charges [24].
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Self-diffusivities of highly coupled fluids in random media pose addi-

tional challenges and are also of great interest. Very recently, insightful molec-

ular dynamics simulation [20] and mode-coupling theory [61] studies have been

presented for the hard-sphere (HS) fluid embedded in disordered matrices of

obstacle spheres. This type of model, introduced originally by Madden and

Glandt [66], is referred to as a quenched-annealed (QA) system. To the best

of our knowledge, no simple theoretical relationship between self-diffusivity

of mobile particles, densities of mobile and matrix particles, and matrix mi-

crostructure has been proposed for QA media. As a result, a general consensus

on which physical parameters are most important for understanding mobility

in these model porous materials is lacking.

In this Chapter, we introduce one such approximate relationship that

we motivate by using a physical argument for how the matrix reduces the

volume available for diffusion of the mobile particles. We test its predictions

against the numerical results of molecular dynamics simulations for HS QA

systems with matrices that reflect equilibrium and non-equilibrium structures,

which serve as idealizations for two different classes of physically realizable

materials. We then demonstrate how the available volume in both types of

matrices can be accurately predicted directly from equilibrium properties of the

bulk HS fluid. Finally, we test our equation for diffusivity against simulation

results of QA systems comprising Lennard-Jones (LJ) particles. For all models

investigated, we find good agreement with simulations over a wide range of

parameters, with significant overpredictions of diffusivity occuring only for
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high matrix densities where limited connectivity of the available volume (not

accounted for in our approximate equation) also hinders transport.

5.2 Model and simulation details

The protocols that we use to generate static matrices represent two

of the most commonly employed in studies of QA systems [20, 66, 116]. In

the first, NM particles of diameter σ are initially equilibrated in a volume

V at temperature T . They are subsequently quenched (i.e., frozen in place)

in an equilibrium configuration, and a “fluid” (F) of NF identical particles

is added, equilibrated, and studied. This method of matrix generation is

referred to as QA-M because the matrix (M) itself reflects an equilibrium

configuration of density ρM = NMσ3/V for the bulk system. QA-M matrices

serve as elementary models of amorphous solid materials prepared, e.g, by very

rapidly cooling gel-forming suspensions of proteins or colloids [116].

The second matrix generation protocol we study is referred to as QA-

FM because it involves first equilibrating NF + NM identical particles of di-

ameter σ in a volume V at temperature T . Then, NM of the particles are

randomly selected and quenched to create the solid matrix. The other NF

particles constitute the mobile “fluid” of density ρF = NFσ3/V . QA-FM ma-

trices are idealized models for templated porous solids synthesized by depleting

a high density material of one of its components by, e.g., dissolution, reaction,

or desorption [116].

We performed molecular dynamics simulations [82] for HS QA-M and
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QA-FM systems in the microcanonical ensemble using NF = 1500 mobile par-

ticles and a periodically-replicated simulation cell. Runs were performed at

different values of NM and V/σ3 to obtain results for specific combinations of

ρF and ρM. We extracted self-diffusivity of the mobile particles D(ρF, ρM) by

fitting the long-time (t � 1) behavior of the average mean-squared displace-

ment to the Einstein relation 〈∆r2〉 = 6Dt.

5.3 Simple diffusion equation from scaling

Our approach for predicting the fluid self-diffusivities of these systems

is motivated by three basic observations about their behaviors. (i) The mobile

particle pair correlation functions of HS QA-M and QA-FM configurations,

averaged over matrix particles at the same total density ρF + ρM, are indistin-

guishable [20]. (ii) Yet, their fluid self-diffusivities generally differ significantly,

even when compared at the same ratio of matrix to mobile particles. This has

previously been interpreted as evidence that the differences in the dynam-

ics of QA media cannot be predicted based on static structural information

alone [20]. (iii) However, there is a key static property that distinguishes in-

dividual QA systems: the fraction of volume available to the mobile particle

centers in the matrix, V0/V [116]. As we demonstrate below, differences in this

quantity can largely account for the wide range of self-diffusivities exhibited

by QA materials that are otherwise “structurally similar”.

For example, contrast the behavior of a bulk HS fluid with density

ρ = ρF + ρM to a HS QA system (produced by either -M or -FM protocols)
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with matrix and mobile particle densities of ρM and ρF, respectively. The

binary collisions that mediate diffusion in these two systems are expected to

be comparable, since their pair correlation functions and mobile-particle ther-

mal velocities are the same. Nonetheless, mobile particles in the QA system

will diffuse over a shorter characteristic length scale per unit time compared

to those of the bulk because the volume available for diffusion (per particle)

in the QA matrix, V0/N , is smaller than V/N . If we assume that the char-

acteristic length scales for diffusion are proportional to the cube root of the

respective available volumes and, in turn, that the associated self-diffusivities

are proportional to the square of the length scales, we arrive at the following

approximate relationship:

D(ρF, ρM) ≈ D(ρF + ρM, 0) × (V0/V )2/3, (5.1)

where D(ρF, ρM) and D(ρF + ρM, 0) are the self-diffusivities of the mobile par-

ticles in QA and bulk fluid systems. As we show below, the appeal of this

relation is its ability to predict the self-diffusivity of non-trivial QA systems

from knowledge of well-characterized equilibrium properties of the bulk HS

fluid.

In order to predict HS QA diffusivity using Eq. 5.1, we now require

V0/V of both QA-M and QA-FM matrices and an expression for the self-

diffusivity of the bulk HS fluid, D(ρ, 0). For D(ρ, 0), we adopt Speedy’s em-

pirical fit to molecular dynamics simulation data [107],

D(ρ, 0) =
A

ρ

(

1 − ρ

1.09

)

[

1 + ρ2(0.4 − 0.83ρ2)
]

, (5.2)
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where A = 3/(8
√

π). We implicitly non-dimensionalized D(ρ, 0) of Eq. 5.2,

and all other self-diffusivities in this study, by σ2/τ , where τ = σ
√

m/kBT ,

kB is the Boltzmann’s constant, and m is particle mass. In the next section,

we explain in detail different routes to calculate V0/V .

5.4 Calculating available space

In HS QA-M systems, matrices are drawn from equilibrium configura-

tions of the bulk HS fluid with density ρM, and thus V0/V is given by [83]

V0/V = exp[−µex(ρM)/kBT ]. (5.3)

The excess chemical potential (relative to ideal gas) of the HS fluid, µex, can

be obtained analytically from, e.g., either scaled particle theory [83] or the

Carnahan-Starling (CS) equation of state [18] (here, we adopt the latter, which

is very accurate for ρM < 0.9).

In HS QA-FM media, however, the matrix structure is different than

that of an equilibrium HS fluid because it is quenched in the presence of mobile

particles. Nonetheless, as Van Tassel and co-workers [115, 116] have demon-

strated, because of the specific protocol by which “non-equilibrium” QA-FM

matrices are created, one can still apply equilibrium liquid-state approaches

(e.g., integral equation theories) to estimate V0/V . Here, we introduce an ac-

curate information-theory (IT) based stategy for accomplishing this task. As

we show, its main advantage is that it only requires knowledge of ρM, ρF, and

the pair correlation function g(r) of the bulk HS fluid.
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Figure 5.1: Schematic of a QA system. Equi-sized filled and empty circles are
matrix and fluid particles, respectively. The bigger circle is a window with
radius equal to the one particle diameter. Πi is the probability that it will be
occupied by exactly i matrix or fluid particle centers.

Our strategy implicitly uses the fact that the pair correlations of the

HS QA-FM system are indistinguishable from those of an equilibrium HS fluid

with density ρF + ρM. Since the QA-FM particle identities (matrix or mobile)

are randomly distributed, one can write down an exact expression for V0/V in

the QA-FM matrix in terms of equilibrium properties of bulk HS fluid:

V0/V =

∞
∑

i=0

Πi(ρM + ρF) ×
[

1 +
ρM

ρF

]−i

. (5.4)

Here Πi(ρM + ρF) represents the probability that a randomly placed spherical

window (with radius equal to one particle diameter) in a bulk HS fluid of

density ρF + ρM will contain precisely i particle centers (see Fig. 5.1). The

quantitiy [1 + ρM/ρF]−i is the probability that, in the structurally equivalent

QA-FM system, all of the i centers in the window would be fluid particles.

IT provides expressions for the Πi,

Πi = exp[λ0 + λ1i + λ2i
2]/i!, (5.5)

93



which maximize a relative information entropy subject to some experimental

constraints [55]. In particluar, λ0, λ1, and λ2 are Lagrange multipliers deter-

mined (see, e.g., [55]) by imposing the normalization condition
∑

i Πi = 1 and

the first two moments of the window occupancy, i and i2,

i = 4πρ/3,

i2 = i + ρ2

∫

w

dr

∫

w

dr′g(|r− r′|). (5.6)

Here, ρ = Nσ3/V , and the subscript w in the last expression indicates that the

integrals are constrained to the spherical observation window. Fig. 5.2 shows

a numerical comparison of V0/V predicted by Eq. 5.4 and 5.5 to the “exact”

results for V0/V obtained from applying the available space algorithm of Sastry

et al. [97] to HS QA-FM matrices. As is evident, the simple IT approach

provides accurate predictions over a wide range of matrix parameters.

5.5 Comparison between diffusion equation and exact

results

Fig. 5.3 (a,b) provides a fairly comprehensive comparison of D(ρF, ρM)

from Eq. 5.1 to the results of our molecular dynamics simulations. Interest-

ingly, the predictions show semi-quantitative agreement with simulations of

QA systems for matrix densities in the wide range 0 ≤ ρM ≤ 0.25, which

includes systems where matrix particles exclude mobile particle centers from

over 70% of the total volume (see, e.g., Fig. 5.2). Given that matrix particles

reduce D(ρF, ρM) by more than an order of magnitude across this range of
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densities, the success of Eq. 5.1 argues that available volume plays a primary

role in controlling the single-particle dynamics. For matrix densities greater

than ρM = 0.25 (i.e., systems with less than 30% of volume available to mobile

particle centers), Eq. 5.1 captures the qualitative trends, but it systematically

overpredicts the simulated self-diffusivities. However, this overprediction is

expected, given that Eq. 5.1 only accounts for the reduction of available vol-

ume and not the fact that available volume also becomes highly disconnected

(i.e., some pockets of available volume are inaccessible or are accessible by only

small number of paths) at high matrix densities [111], which acts to further

hinder transport.

In order to test whether the connection between diffusivity and avail-

able volume holds more generally for fluids confined to random media, we also

performed molecular dynamics simulations of QA-FM systems comprising LJ

particles (truncated and shifted with a quadratic function in r [108] to insure

that both the potential and its gradient vanish at rcut = 2.5). The details of

the simulations are identical to those of the HS QA systems described earlier,

except that the equations of motion were integrated via the velocity Verlet

algorithm [82], and NF = 1000 mobile particles were considered. The goal was

to test if one could employ techniques commonly used in thermodynamic per-

turbation theory to map the QA LJ system onto an equivalent QA HS system,

and then use Eq. 5.1 to predict the self-diffusivity. The specific mapping that

we used in this study is a Boltzmann factor criterion [11, 54], which determines

the temperature-dependent “effective” HS diameter σ(T ) (and hence the cor-
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responding reduced matrix and fluid denisties, ρM and ρF) of the LJ system

through the following relationship u0(r = σ) = kBT , where u0 is the repulsive

part of the Weeks-Chandler-Andersen decomposition of the pair potential [19].

The hypothesis is that LJ QA systems will exhibit similar reduced diffusivities

D(ρF, ρM) as HS QA systems when compared at the same values of ρF and ρM

(see section 4.3.1 for more detail).

As a first test of this idea, we compare in Fig. 5.4 (a) the diffusivi-

ties D(ρF, ρM) of the HS QA-FM and LJ QA-FM systems obtained by our

molecular dynamics simulations. In this plot, the LJ QA-FM system is at

a temperature T = ε/kB, where ε is the characteristic energy of the LJ pair

potential [108]. Except for at very low fluid densities (conditions for which

the LJ fluid structure is not accurately approximated by an equivalent HS

reference fluid [35]), the mapping brings the dynamics of the LJ and HS QA

systems into excellent agreement.

A final test is to check whether the simple aforementioned mapping

allows direct prediction of LJ QA-FM dynamics at other temperatures using

Eq. 5.1. Fig. 5.4 (b) shows the comparison of the predicted D(ρF, ρM) versus

the results of our molecular dynamics simulations at T = 3ε/kB. The agree-

ment between the predictions and the simulations again confirm the pivotal

role that available volume plays in controlling the single-particle dynamics of

fluids in porous media.
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Figure 5.4: (a) Fluid self-diffusivity D versus fluid density ρF for HS QA-FM
(circles) and LJ QA-FM (diamonds) systems obtained via molecular dynamics
simulations. The LJ QA-FM system is at T = ε/kB. Matrix densities of
ρM = 0.05, 0.15, 0.25, and 0.35 are presented. (b) Results for the LJ QA-FM
system at T = 3ε/kB: molecular dynamics simulations (circles) and Eq. 5.1
(curves). Matrix densities of ρM = 0.043, 0.128, 0.214, and 0.3 are presented.
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5.6 Conclusions

To conclude, we proposed a simple equation for predicting the self-

diffusivity of mobile particles in quenched-annealed systems that only requires

knowledge of the diffusivity of the bulk, homogeneous fluid and the statisti-

cal geometry of the matrix particles. Comparison between predictions of this

equation and the “exact” results obtained via molecular dynamics simulations

shows a very good agreement over a wide range of fluid densities. The gen-

eral applicability of this approach is demonstrated by analyzing diffusivity of

hard-sphere and Lennard-Jones mobile particles within different types of ran-

dom matrices which qualitatively correspond to different physically realizable

systems.
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Chapter 6

Thermodynamics, static structure and

dynamics of supercooled liquids

6.1 Introduction

We provided evidence in Chapter 2, 3, and 4 that the quasi-universal

scaling that links single-particle dynamics to excess entropy for the transport

coefficients of simple bulk [29, 89, 90] also holds for confined fluids above their

freezing points. But this relationship hasn’t been tested for supercooled liquids

and if found to be true will indicate that the empirical connection between

thermodynamics and dynamics for simple fluids is broader, perhaps spanning

from “from ideal gas to glass”. Moreover, excess entropy can be approximated

based on structural data from, e.g., scattering experiments, it also promises to

provide the elusive link between structure and dynamics of the liquid state.

In this Chapter, we explore the possibility of such a relationship be-

tween excess entropy and diffusivity via molecular simulations of two very dif-

ferent models of supercooled fluids, the Kob-Andersen binary Lennard-Jones

alloy [60] and a “core-softened” water-like model [22]. Further, we utilize the

entropy expansion to examine the feasibility of a relationship between the

pair-correlation function and diffusivity via molecular dynamics simulations of
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three different model systems two of which are known to display anomalous

structural, thermodynamic, and kinetic behaviors in their supecooled fluid

states: SPC/E water [12] and a recently introduced model for attractive col-

loids [80, 81].

6.2 Relationship between thermodynamics and dynam-

ics

The excess entropy sex is defined as the molar entropy of the liquid mi-

nus that of an ideal gas with the same number density. In systems interacting

with spherically-symmetric interparticle potentials, sex quantifies the entropic

penalty associated with the translational structural correlations that result

from the Boltzmann-sampled interparticle interactions. The physical idea is

that these static correlations reflect the local caging structures that surround

each particle and act as a barrier to the dynamic particle rearrangements re-

quired for self-diffusion.

Because the relationship investigated here involves sex instead of con-

figurational entropy sC (see section 1.2 for detail), it has three important

practical advantages over the AG relationship that make it a particularly in-

triguing subject of this investigation. First, unlike sC , the quantity is a stan-

dard thermodynamic variable that does not require knowledge of the detailed

topographical information about the potential energy landscape. Second, the

determination of the two-body approximation for sex, only requires knowledge

of the radial distribution function, which is an experimentally accessible quan-
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tity. As a result, may lend new insights into the elusive connection between

structure and dynamics of supercooled liquids as we discuss in the next section.

Third, while sC is not thought to be particularly relevant for the dynamics of

fluids above their freezing point, sex is known to provide scaling relationships

for the transport coefficients of simple equilibrium fluids.

6.2.1 Core-softenend water-like model

We first examine the behavior of a core-softened fluid that belongs to

a larger class of model potentials known to reproduce many of liquid waters

distinctive properties. In particular, we perform simulations for a broad range

of thermodynamic conditions where the model displays pronounced increases

in self-diffusivity D upon isothermal compression, a well-known experimental

signature of supercooled liquid waters dynamics.

To obtain self-diffusivity, we performed molecular dynamics simulations

of 1000 particles interacting via a core-softened potential (i.e., a Lennard-Jones

potential plus a Gaussian repulsion). We extracted self-diffusivity by fitting

the long-time (t � 1) behavior of the average mean-squared displacement to

the Einstein relation 〈∆r2〉 = 6Dt. We determined the behavior of the excess

entropy per particle sex using grand canonical transition-matrix Monte Carlo

(GC-TMMC) simulations [33]. Here, sex is defined to be the difference between

the entropy per particle of the fluid and that of an ideal gas at the particle

number density and temperature. A more detailed account on how this is done

can be found in section 2.2, 3.2 and 4.2.
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Figure 6.1(a, b) shows that the excess entropy sex and diffusivity D of

this fluid have strikingly similar dependencies on density ρ for a wide range of

temperatures T . In fact, when plotted along curves of constant ρ (Figure 6.2),

we find D ∝ exp[A(ρ)sex], where A(ρ) is a T -independent parameter.

6.2.2 Binary Lennard-Jones mixture

The second type of supercooled fluid that we examine in this section

is a well-studied model glass former and is a binary mixture of Lennard-Jones

particles. The individual as well as cross particle diameters σ and energy

parameters ε for this model has been parameterized to avoid freezing at the

time scale of the simulations. One proof of this model’s popularity is that

all the relevant data required for its thermodynamics and dynamic behavior

can be obtained easily from the literature over a very wide temprature and

density range. We obtained excess entropy from the semi-empirical free energy

and internal energy expressions reported in Ref. 18. The diffusivity has been

extracted from the Figure 3 in Ref. 18.

Figure 6.3 shows that the robust scaling based on sex is also exhibited

by this model binary alloy for conditions where it displays many of the exper-

imental characteristics of fragile supercooled liquids. This is a stringent test

since this alloy has become one of the most well-characterized model glass-

formers.

Adam-Gibbs theory predicts a different form of exponential relation-

ship between D and configurational entropy sC , , where is a T -independent
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Figure 6.1: (a, b) Excess entropy and diffusivity versus density obtained
from molecular dynamics simulations of 1000 particles interacting via a core-
softened potential (i.e., a Lennard-Jones potential plus a Gaussian repulsion).
Symbols are simulation data, and curves are guides to the eye.
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parameter. Since Adam-Gibbs relationship can adequately describe the diffu-

sivity for many liquids near the glass transition, it is natural to ask whether

and contain the same thermodynamic information about the supercooled fluid.

Indeed, the Figure 6.4 demonstrates that these quantities are linearly related

(at constant ) for the binary alloy over all conditions for which data is available.

6.3 Relationship between static structure and dynamics

In order to make a quantitative link to static liquid structure, one

can proceed to express sex as a sum of integrals over the N -body interpari-

cle correlation functions g(N), [8, 69, 77, 78] which generally quantify both the

translational and orientational interparticle correlations in the system. How-

ever, the translational correlations are believed to be of primary importance

for D, and, for practical reasons, one is often interested in dealing with struc-

ture at the level of the pair correlation function g(r). Working within these

constraints, the natural structure-property relationship to test along isochores

is D ∝ exp[As2], where A is again a density-dependent, but T -independent,

parameter, and s2 is the two-body, translational correlation contribution to

the excess entropy, given by [8, 78]

s2 = −kBρ

2

∫

dr{g(|r|) lng(|r|)− [g(|r|) − 1]}. (6.1)

Here, kB is the Boltzmann constant, ρ = N/V is number density, N is num-

ber of particles, and V is volume. It is worth emphasizing that this type of

relationship between D and s2 has already been tested for simple equilibrium
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fluids above their freezing points [29, 89, 90] to explore the effectiveness of var-

ious proposed scaling laws for their transport coefficients. However, in this

work, the goal is quite different. We want to put to a stringent numerical

test the hypothesis, formulated based on previous section results, that this re-

lationship provides a practical quantitative link between static structure and

dynamics of supercooled fluids.

6.3.1 SPC/E water model

First, we examine the behavior of SPC/E water [12], which remains

one of the most well-characterized models for liquid water in its supercooled

state. It is able to qualitatively reproduce many of liquid water’s anomalous

static structural, thermodynamic, and transport properties [34]. Of particular

relevance in this work is the fact that the translational self-diffusivity of super-

cooled SPC/E water increases when the liquid is isothermally compressed over

a wide range of pressures (see Fig. 1a). This anomalous volumetric response

is related to the fact that the compressed liquid cannot support the same ex-

tent of low-coordinated, hydrogen-bond networks that serve to cooperatively

impede molecular mobility in the liquid. In short, we are interested in whether

the structure-property relationship, D ∝ exp[As2], is able to account for this

unusual behavior.

To explore this issue, we performed canonical ensemble molecular dy-

namics of 500 SPC/E water molecules in a periodically-replicated cell using

GROMACS [114]. We focused on temperatures from T = 220 K to T = 300
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K and mass densities over the broad range 0.85 g/cm3 to 1.3 g/cm3. Constant

temperature conditions were imposed by Berendsen’s thermostat [13] with a

coupling time constant of 0.1 ps. The particle mesh Ewald method was em-

ployed to account for the electrostatic interactions with a grid spacing of 0.12

nm, 4th order spline interpolation, and a cutoff distance of 1 nm. A time step

of 2 fs was adopted for all the simulation runs. To calculate the mean square

displacement and g(r), each water molecule was taken to be “located” at the

center of its oxygen atom.

Comparison of Fig. 6.5a and 6.5b reveals that the anomalous density-

dependent trends in D for SPC/E water are directly reflected in s2 over the

entire range of conditions explored. In other words, the density dependence of

the translational structural correlations in SPC/E water are sufficient to quali-

tatively explain its single-particle dynamics. In fact, it becomes apparent that

this connection is quantitative when plotted along isochores, as in Fig. 6.6,

where a structure-property relationship of the form D ∝ exp[As2] provides an

excellent description of the simulation data. Of course, this structure-property

relation examined here has a practical advantage over the Adam-Gibbs equa-

tion due to its dependence on s2 rather than sC . Unlike sC , the quantity s2 is

trivially calculable from g(r), a standard experimentally-accessible quantity.

6.3.2 Short-range attractive (SRA) colloid model

The second type of supercooled fluid that we examine is a simplified

model suspension comprising colloidal particles of volume fraction φc and (im-
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plicit) non-adsorbing polymers of volume fraction φp [80, 81]. The effect of the

implicit polymers in this model is to induce an entropic depletion attraction be-

tween the otherwise repulsively interacting colloids. The depletion interaction

scales with kBT , increases in strength with increasing φp, and is short-ranged

compared to the colloidal particle diameter. We have considered this model

fluid with short-ranged attractions (SRA) in this letter because, like water, it

is known to exhibit the type of anomalous dynamical properties in its super-

cooled fluid state that can put our hypothesized structure-property relation,

D ∝ exp[As2], to a stringent test.

The steeply repulsive interactions between the colloids in the SRA pair

potential [80, 81] are of the virtually hard-sphere form. The depletion attrac-

tion vAO(r12) is modeled by the Asakura-Oosawa effective pair potential [6].

Here, r12 is the center-to-center distance between colloidal particles 1 and 2,

and a12 is the effective exclusion radius. To prevent crystallization, the par-

ticle radii are taken to be polydisperse with uniform distribution of mean a

and half-width ∆ = a/10. A longer-range soft repulsion is also added to the

interparticle potential to prevent fluid-fluid phase separation. The details of

this SRA potential and a comprehensive discussion of its physical significance

can be found elsewhere [80, 81].

This model shows a maximum in D when plotted as a function of φp

along lines of constant (and sufficiently high) φc (see Fig. 6.7a). To understand

why this type of behavior is indeed anomalous, consider that it is analogous

to a molecular fluid showing maxima in D as a function of T along isochores,
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meaning that cooling the fluid would enhance its single-molecule dynamics

under some conditions. This maximum in D is actually a more general char-

acteristic displayed by other supercooled SRA fluids [103], and it is a reflection

of the fact that they can form two different types of glasses: a repulsive glass

at low φp (repulsive particles) and an attractive glass at high φp (attractive

particles). Interestingly, mode-coupling theory, which incorporates the static

structure of the fluid, can capture these unusual dynamical behaviors [14, 36].

Here, we are interested in whether D ∝ exp[As2] can also quantitatively pre-

dict these distinctive trends in single-particle dynamics.

To examine this issue, we have performed micro-canonical ensemble

molecular dynamics simulations of 1500 SRA particles using periodic boundary

conditions. The equations of motion were integrated using the velocity-Verlet

scheme and a time step of 7.5 × 10−4. In reporting our results, we have

implicitly non-dimensionalized all quantities by the appropriate combinations

of the characteristic length scale a and time scale a
√

4m/(3kBT ) chosen in

the original studies [80, 81]. We have focused on colloidal volume fractions

of φc = 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 and polymer volume fractions

in the range 0 < φp < 0.45. In keeping with previous simulations using this

potential [80, 81], we evaluate the system at an average thermal velocity of
√

4/3.

An examination of Fig. 6.7a and 6.7b shows that the φp dependence of

s2 qualitatively mirrors the trends observed by D of the SRA fluid for all condi-

tions simulated, suggesting that the proposed structure-property relationship
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also captures the relevant physics for this system. In fact, Fig. 6.8 demon-

strates that the functional form D ∝ exp[As2] again provides an accurate fit

to the data, where A depends on φc but not φp. Here, we have separated the

data into that of the “repulsive” fluid (φp < 0.25, which forms a repulsive glass

upon compression) and that of the “attractive” fluid (φp ≥ 0.25, which forms

an attractive glass upon compression) [103]. Unlike the attractive fluid, the

data for the repulsive fluid approximately collapses onto a single curve, as is

also observed for simple equilibrium fluids away from their glass transition [29].

This is consistent with the fact that the attractive fluid is closer to its glass

transition under these conditions than the respulsive fluid [80, 81].

6.3.3 Monatomic glass former“Dzugutov” model

The third type of supercooled fluid that we examine is a monatomic

model glass former introduced by Dzugutov which promotes local icosahedral

arrangement thereby preventing formation of crystallites at low temperatures.

This is achived by introducing a seconadry minimum in the interaction po-

tential at a distance larger than any stable crytalline arrangement’s periodic

distance. In fact, the maximum in the potential between the two minimum is

adjusted to be in line with the most favorable periodic arrangement distance

which then avoids the formation of an arrangement at this particular distance.

To examine this model’s behavior, we have performed microcanoni-

cal ensemble molecular dynamics simulations of 3000 particles using peri-

odic boundary conditions. The equations of motion were integrated using
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the velocity-Verlet scheme and a time step of 3 × 10−3. In reporting our re-

sults, we have implicitly non-dimensionalized all quantities by the appropriate

combinations of the characteristic length scale a and time scale a
√

m/(kBT ).

We have simulated density of ρ = 0.85 over a temperature range T = .55 - 1.

Figure 6.9 demonstrates that the functional form D ∝ exp[As2] again provides

an accurate fit to the data.
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6.4 Conclusions

In conclusion, the results presented here represent, to our knowledge,

the first evidence that excess entropy , which provides a scaling for the diffu-

sivity of simple equilibrium fluids, also captures supercooled liquid dynamics.

we have also presented evidence that the supercooled fluid states of SPC/E

water as well as the “repulsive” and “attractive” supercooled fluid states of a

model for colloids with short-ranged attractions are characterized by the same

type functional relationship between their self-diffusivity and the pair correla-

tion function. The fact that this relationship is able to describe the nontrivial

behaviors of these very different types of supercooled liquids suggests that its

applicability may be far more general. At present, however, a general theory

that can predict these observed relationships from first principles is lacking.
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[100] M. Schmidt and H. Löwen. Freezing between two and three dimensions.

Phys. Rev. Lett., 76:4552, 1996.
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