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With the discovery of water ice at the moon’s south pole, future human

lunar exploration will likely occur at polar sites and, therefore, require high incli-

nation orbits. Also of importance for human missions is the capability to abort if

unfavorable circumstances arise. This dissertation addresses both of these concerns

by creating an automated, systematic architecture for constructing minimum pro-

pellant lunar orbit insertion sequences while ensuring crew safety by maintaining

a ballistic Earth return trajectory. To ensure a maneuver-free abort option, the

spacecraft is required to depart Earth on a free return trajectory, which is a ballistic

Earth-moon-Earth segment that requires no propulsive maneuvers after translunar

injection. Because of the need for global lunar access, the required spacecraft plane

change at the moon may be large enough that a multi-maneuver sequence offers cost

savings. The combination of this orbit insertion sequence with the free return orbit

increases the likelihood of a safe Earth return for crew while not compromising the

ability to achieve any lunar orbit.
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A procedure for free return trajectory generation in a simplified Earth-moon

system is presented first. With two-body and circular restricted three-body models,

the algorithm constructs an initial guess of the translunar injection state and time

of flight. Once the initial trajectory is found, a square system of nonlinear equations

is solved numerically to target Earth entry interface conditions leading to feasible

free return trajectories. No trial and error is required to generate the initial esti-

mate. The automated algorithm is used to generate families of free return orbits for

analysis.

A targeting and optimization procedure is developed to transfer a spacecraft

from a free return trajectory to a closed lunar orbit through a multi-maneuver se-

quence in the circular restricted three-body model. The initial estimate procedure

is automated, and analytical gradients are implemented to facilitate optimization.

Cases are examined with minimum time, variable symmetric, and general free re-

turns. The algorithm is then upgraded to include a more realistic solar system

model with ephemeris-level dynamics. An impulsive engine model is used before

conversion to a finite thrust model. Optimal control theory is applied and the re-

sults are compared with the linearly steered thrust model. Trends in the flight time

and propellant for various orbit insertion sequences are analyzed.
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Chapter 1

Introduction

No matter what technology is developed, space travel is inherently more

dangerous for humans than travel on the surface of the Earth and within its at-

mosphere. Due to the challenges of surviving in space—including the hazards of

weightlessness, solar radiation, cosmic radiation, micrometeoroids, and tempera-

ture extremes—humans must be adequately shielded from the environment and be

equipped with supplies for the duration of the mission. If adverse circumstances

arise that threaten the spacecraft or the crew, it is necessary to return to Earth to

increase the probability of survival. Examples of adverse circumstances include in-

complete engine firing, loss of propulsive power, and shortage of crew consumables.

Due to these challenges, it is prudent to anticipate problems and design missions

with abort options that provide a safe return to Earth. On the Apollo 13 flight to

the moon, for example, an oxygen tank exploded on the service module (Fig. 1.1).

Had it not been for abort planning, the mission may have resulted in loss of life.

Mission abort planning, therefore, is a necessary component of human spaceflight;

it can also assuage the fears of those who question whether the risks of human space

exploration are worth the rewards.
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Figure 1.1: Apollo 13 service module after the explosion of an oxygen tank.1

Contingency planning is necessary for all phases of flight, including launch,

ascent, orbit, descent, and landing, for both Earth-orbiting missions and missions

beyond Earth orbit. This dissertation deals specifically with orbital abort planning

for human lunar missions. For these missions in the Earth-moon system, both

direct returns and lunar flybys can be used to return astronauts to Earth ahead

of the nominal return time. One abort option utilizes the free return trajectory,

a ballistic Earth-moon-Earth segment that requires no propulsive maneuvers after

Earth departure. Apollo 12–14 used a hybrid free return profile where the spacecraft

remained on a free return trajectory from translunar injection (TLI) until later

retargeting for lunar orbit insertion (LOI). Figure 1.2 shows an overview of the

hybrid mission where four maneuvers are used to transfer the spacecraft from the free

1Image available at http://www.jsc.nasa.gov/jscfeatures/photos/Apollo13_35th/

as13-59-8500.jpg [accessed 25 April 2012].
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return to the closed lunar parking orbit. The time spent on the free return—where

a maneuver-free Earth return is guaranteed—affords a period to evaluate spacecraft

systems before deciding to retarget for lunar orbit. Apollo missions targeted near-

equatorial lunar landing sites and, thus, did not require as much plane change as

may be necessary to reach high inclination orbits. The discovery of water ice at the

moon’s south pole [1–3], most recently confirmed by the Lunar Crater Observation

and Sensing Satellite mission [4,5], will likely focus future human lunar exploration

at polar sites and require high inclination lunar orbits [6]. Though many abort

strategies exist, the use of a free return trajectory is attractive because no propulsive

maneuvers are required to return to Earth. Thus, if all forces acting on the spacecraft

could be modeled perfectly, no maneuvers would be required for the spacecraft to

reach the targeted Earth entry interface conditions by flying on the free return. But

it is impossible to perfectly model all spacecraft perturbations; therefore, mid-course

trajectory correction maneuvers are required to achieve a specified final state. These

maneuvers, when performed beginning on a free return, will be smaller in magnitude

than those required for Earth return from a non-free return path [7].

Earth

Moon

Free return

TLI

LOI-0
LOI-1

LOI-2

LOI-3

Figure 1.2: Free return and lunar orbit insertion.
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1.1 Background

Much post-TLI abort planning and trajectory design for lunar missions was

done during the Apollo program since this was the only time to date where hu-

mans have traveled beyond low Earth orbit. In 1962, Braud [8] examined impulsive

aborts from a planar, circumlunar free return trajectory in the circular restricted

three-body problem (CRTBP) with a maximum propulsive capability of 2500 m/s.

Trends in time from abort to reentry, reentry velocity, and maximum distance from

Earth after abort were documented. Abort points were considered on both the

outbound and inbound legs of the free return. Braud found that aborts from the

inbound leg are inadvisable because of small reductions in return time and unaccept-

ably high reentry velocities. Kelly and Adornato [9] used an impulsive engine model

with two-body and four-body force models to study single-maneuver aborts from the

outbound leg of a circumlunar free return. Merrick and Callas [10] performed similar

work for aborts on both the outbound and inbound legs of a reference circumlunar

trajectory. In 1966, Foggatt [11] explored two-impulse time-critical abort trajec-

tories with a patched conic method. Laszlo [12] examined two- and three-impulse

transearth aborts from an elliptic lunar orbit following a partially failed LOI cap-

ture maneuver. Babb [13,14] studied the use of single- and multiple-impulse aborts

to a transearth trajectory in the event of LOI failure from a non-free return tra-

jectory. The analysis assumed a total loss of the service propulsion system (SPS)

main engine, requiring the use of the lunar module’s (LM) descent propulsion sys-

tem (DPS) that would nominally be used for descent to the lunar surface. Because

of the DPS’s limited performance capability relative to the SPS, Babb proposed

4



to jettison the entire service module (SM) to increase the effective ∆V produced

by the DPS, allowing the LM to perform the transearth injection (TEI) maneu-

ver. In 1968, Weber [15] analyzed contingency scenarios during and immediately

following the TLI maneuver, and Weber and Fuller [16] researched minimum time

and minimum fuel aborts. At the end of Apollo’s lunar missions, Hyle, Foggatt,

and Weber [17] summarized strategies for managing emergencies in every mission

phase, from launch through Earth return. This is not an exhaustive list of all abort

planning done during this period;2 for example, see Refs. [18–22]. More recently,

Senent [7, 23] considered the targeting of direct and lunar flyby return trajectories

during partially failed TLI, post-TLI, and partially failed LOI abort scenarios using

pseudostate theory [24].

Most of the aforementioned works focus on abort scenarios from a pre-

computed nominal trajectory—typically a circumlunar free return—without dis-

cussing the method of how the free return is constructed. Early work was done

by Egorov [25] who documented two-dimensional circumlunar trajectories in the

CRTBP. Work in the United States on lunar free returns supported the Apollo

requirement of a safe Earth return option for astronauts. Penzo [26] researched

circumlunar free returns with patched conic techniques. Schwaniger [27] targeted

free returns in the CRTBP, and Gibson [28] combined patched conic and multi-

body models to generate circumlunar free returns. More recently, Miele, Wang,

2In 1963, AT&T established Bellcomm, Inc. to support NASA with engineering analysis for
human spaceflight programs. The extensive research Bellcomm performed, including work on lunar
free returns and abort planning, was archived by the National Air and Space Museum. A listing
of the collection contents is available at http://www.nasm.si.edu/research/arch/findaids/

bellcomm/bci_sec_1.html [accessed 15 March 2012].
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and Mancuso [29] studied optimal lunar free return trajectories with the restricted

three-body model. Trends in the injection velocity and flight time of circumlunar

free returns have been extensively reported, but less discussion has been devoted to

free return generation. Gibson and Penzo outline schemes to construct posigrade,

circumlunar trajectories with a finite sphere of influence patched conic model. The

algorithm discussed in this dissertation is applicable to all symmetric and asymmet-

ric single-flyby free return types. The simplicity of this method relies on a Keplerian

initial estimate and a numerical algorithm that utilizes a continuation method to

adjust the altitude and orientation of the trajectory at lunar flyby.

Much LOI work was also done during the Apollo program. For example,

Corey [30] discussed the merits of one- and two-burn insertion strategies, and Jenk-

ins and Munford [31] used a two-body model to estimate propulsive requirements to

enter a retrograde lunar orbit. More recently, LOI strategies have been documented

for a series of robotic lunar missions, such as the Lunar Reconnaissance Orbiter [32]

and the Gravity Recovery and Interior Laboratory (GRAIL) mission [33]. The

GRAIL spacecraft used a modified ballistic lunar capture strategy for LOI [34–36].

Though this method reduces the propulsive requirements for LOI, it is probably

undesirable for human missions due to an increased flight time which increases the

amount of crew consumables and complicates problems such as propellant boil-

off [37, 38], if cryogenic fuels are used. With application to human lunar missions,

Garn, Qu, and Chrone, et al. [39] and Condon [40] explored the design and opti-

mization of three-burn LOI sequences for high latitude sites without a free return

requirement. A goal of the present research is to study the cost of using the hybrid
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free return trajectory for a range of target low lunar orbits, including high incli-

nation orbits. This dissertation will outline an automated, systematic architecture

for constructing minimum fuel LOI sequences while maintaining the ballistic Earth

return option and allowing the free return geometry to vary during the optimization

process.

1.2 Document Organization

This dissertation contains six chapters. The second describes the dynam-

ics of spacecraft in the Earth-moon system for each force model used. Chapter 3

presents an algorithm for the generation of lunar free returns and examines the

characteristics of a broad range of these trajectories, including circumlunar, cis-

lunar, and asymmetric free returns. A proof of the symmetry properties of the

CRTBP is given because the properties are useful in the generation of symmetric

free returns. The work on symmetric free returns was previously published by the

author in Ref. [41]. In Chapter 4, an overview of numerical optimization is given

along with the optimality conditions. The differential of a general n-segment trajec-

tory with n+ 1 state discontinuities is derived for later use in developing analytical

gradients. Numerical issues such as scaling and choice of optimizer are discussed.

Finally, the necessary conditions for the optimal control problem are presented along

with an adjoint control transformation to estimate the costates based on linearly

steered finite thrust maneuvers. Chapter 5 presents the optimization of lunar orbit

insertion from a free return trajectory in the CRTBP. The first case, published by

the author in Ref. [42], utilizes the minimum time free return that remains fixed
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throughout the optimization process. The second case, published by the author in

Ref. [43], requires the free return to remain symmetric but allows it to move out of

the Earth-moon plane and vary during optimization. The final case allows the free

return to vary asymmetrically. All cases in this chapter utilize an impulsive engine

model. Chapter 6 transitions optimal solutions from the CRTBP to the ephemeris

model and adds a finite thrust spacecraft engine. These results were presented by

the author in Ref. [44]. Example cases are also shown with a variable mission epoch

and the addition of accelerations due to an aspherical Earth and solar radiation

pressure. Finally, an optimal control propulsion model is applied to enable further

propellant savings.
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Chapter 2

Spacecraft Dynamics in the Earth-Moon System

This chapter presents the dynamics of spacecraft in the Earth-moon system

and develops the linearized variational equations associated with the dynamics. The

two primary dynamical models used in this investigation are the circular restricted

three-body problem (CRTBP) and the four-body problem. The CRTBP is used to

provide an adequate initial estimate of free returns and lunar orbit insertion (LOI)

sequences in the more realistic solar system model, and the four-body model captures

the primary forces affecting the spacecraft—the gravitational forces of the Earth,

moon, and sun. The forces due to the Earth’s oblateness and solar radiation pressure

are also considered. The chapter concludes with a discussion of the reference frames

used for numerical integration and visualization throughout this investigation.

2.1 Circular Restricted Three-Body Model

The motion of a spacecraft in the Earth-moon system is first approximated

with the CRTBP. The spacecraft of negligible mass travels under the gravitational

attraction of the Earth and moon, which move about their barycenter in circular

orbits at constant angular velocity. The origin of a rotating frame of reference is

placed at the Earth-moon barycenter with the x̂ŷ plane representing the plane of
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Earth and moon revolution about their center of mass. The x̂ axis is coincident

with the Earth-moon line, positive in the direction from the Earth to the moon; the

ŷ axis is positive in the direction of the moon’s velocity; and the ẑ axis completes

the right-handed coordinate system and is coincident with the system’s angular

momentum. The acceleration of a spacecraft in this system is

r̈ = − µE
r3
EP

rEP −
µM
r3
MP

rMP − 2ω × ṙ − ω × (ω × r) (2.1)

where µE and µM are the gravitational parameters of the Earth and moon, rEP

and rMP are the Earth-spacecraft and moon-spacecraft vectors, ω is the angular

velocity of the rotating frame, ṙ is the spacecraft velocity, and r is the spacecraft

position relative to the Earth-moon barycenter. The system’s angular velocity is

ω =

√
µE + µM
r3
EM

ẑ (2.2)

The physical constants used in this model are rEM = 384400 km, µE = 3.986 ×

105 km3/s2, µM = 4.9 × 103 km3/s2, RE = 6378 km, and RM = 1738 km, where

RE and RM are the radii of the Earth and moon.1 An extensive description of the

CRTBP is presented by Szebehely [45].

Because the eccentricity of the moon’s orbit about the Earth is approxi-

mately 0.05, and because of the sun’s influence, the circular model is inadequate

in accurately describing the Earth-moon system dynamics. This dissertation will

show, however, that the converged trajectories constructed in the CRTBP are ade-

quate as an initial estimate in the ephemeris model even with the addition of solar

1Data available at http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html [ac-
cessed 15 March 2012]
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x̂

ŷ
ẑ

E
M

ω

Figure 2.1: Barycentered CRTBP rotating reference frame.

gravity, Earth-oblateness effects, and solar radiation pressure. One advantage of

the CRTBP when transitioning to a more realistic model is the ability to scale the

Earth-moon distance to match the true value at any chosen epoch.

2.1.1 Scaling

The mass ratio µM/µE uniquely defines the system dynamics of the CRTBP.

If the Earth-moon distance changes while the mass ratio remains the same, an equiv-

alent trajectory in a system with rEM(t1) is a dilation of the equivalent trajectory

in the other system with rEM(t2) 6= rEM(t1). This is useful because a hybrid free

return and LOI trajectory in the base system with rEM = 384400 km can be scaled

to the actual Earth-moon distance at a given epoch.

In the CRTBP, the distance unit is the distance between the two primaries,

denoted rEM in the Earth-moon system. Because the moon’s orbit is not circular,

rEM is a function of time in the ephemeris model. Thus, the required scaling in

distance units from the Earth-moon system at time t1 to the system at time t2 is

DU2

DU1

=
rEM(t2)

rEM(t1)
(2.3)

where DUi represents the distance unit of the circular restricted system at ti. The
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time unit in the CRTBP is based on the system’s angular velocity. One time unit is

defined as TU = 1/ω. Thus, the time unit ratio between Earth-moon systems with

different values of rEM is given by

TU2

TU1

=
1
ω2

1
ω1

(2.4)

=

√
r3
EM (t2)

µE+µM√
r3
EM (t1)

µE+µM

(2.5)

=

(
rEM(t2)

rEM(t1)

) 3
2

(2.6)

Last, the velocity ratio that relates the dilated systems is given by

V U2

V U1

=
DU2

TU2

DU1

TU1

(2.7)

=
rEM(t2)

rEM(t1)

(
rEM(t1)

rEM(t2)

) 3
2

(2.8)

=

√
rEM(t1)

rEM(t2)
(2.9)

2.1.2 Variational Equations

If a state vector is defined as

x ≡
[
r
v

]
(2.10)

where the spacecraft position is r ≡ [x y z]> and the spacecraft velocity is v ≡

[vx vy vz]
>, then linearization about a nominal trajectory gives the variational

equations as

δẋ = F (t)δx (2.11)
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where F (t) is the state propagation matrix. The solution of Eq. (2.11) is

δx(t) = Φ(t, t0)δx(t0) (2.12)

where the state transition matrix Φ(t, t0) satisfies

Φ (t, t0) =
∂x(t)

∂x(t0)
(2.13)

The time derivative of the state transition matrix is

Φ̇ (t, t0) = F (t)Φ (t, t0) (2.14)

with initial condition Φ (t0, t0) = I. The state propagation matrix is

F (t) =
∂ẋ

∂x
=

[
0 I
G H

]
6×6

(2.15)

where the gravity gradient matrix G is

G =
µE
r3
ES

(
3rESr

>
ES

r2
ES

− I
)

+
µM
r3
MS

(
3rMSr

>
MS

r2
MS

− I
)
− ω × (ω × I) (2.16)

and the velocity gradient matrix H is

H = −2ω × I (2.17)

With Eq. (2.14), the state transition matrix can be computed numerically along each

continuous trajectory segment. A more thorough treatment of the state transition

matrix is given in Ref. [46].
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2.2 Four-Body Model

The four-body model includes the gravity of the spherical Earth, moon, and

sun. The equations of motion are derived with Newton’s universal law of gravitation

and Newton’s second law with the solar system barycenter assumed to be an inertial

point. The spacecraft acceleration in a non-rotating reference frame with origin at

the moon is

r̈ = −µM
r3
r − µE

[
r − rME

|r − rME|3
+
rME

r3
ME

]
− µS

[
r − rMS

|r − rMS|3
+
rMS

r3
MS

]
(2.18)

where r is the position relative to the moon, µS is the gravitational parameter of

the sun, and rME, rMS are the time-varying moon-Earth and moon-sun vectors. All

LOI segments are integrated in the non-rotating J2000 moon-centered frame, and the

free return segments are integrated in the non-rotating J2000 Earth-centered frame.

Numerical integration is performed with the DLSODE variable stepsize integrator [47].

The fundamental plane is the Earth’s equator at the J2000 epoch with ẑ axis normal

to the equator and positive in the direction of the north pole. The principal direction

along the positive x̂ axis points to the vernal equinox at the J2000 epoch. The ŷ axis

completes the right-handed system. Accurate celestial data are accessed with the

planetary and lunar ephemeris DE 421 [48]. In this system, ephemeris time is used

as the independent variable in the equations of motion. Ephemeris time measures

the number of seconds from the J2000 epoch, which corresponds to a Gregorian date

of 12:00 PM Jan. 1, 2000. Table 2.1 lists the physical constants used in this model.

In the ephemeris model, the moon’s orbit is no longer constant as was as-

sumed in the CRTBP. Figures 2.2(a)-2.2(b) show the variation of the moon’s dis-
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Table 2.1: Four-body model parameters [48]

Parameter Value Units
Earth gravitational parameter 398600.436233 km3/s2

Moon gravitational parameter 4902.800076 km3/s2

Sun gravitational parameter 132712440040.944000 km3/s2

Earth mean radius 6371.01 km
Moon mean radius 1737.4 km
Sun mean radius 696000.0 km

tance from the Earth and the moon’s orbital inclination relative to the Earth’s equa-

torial plane. During the calendar year 2024, the minimum Earth-moon distance is

approximately 356910 km, and the maximum distance is approximately 406510 km.

Between 2020 and 2040, the maximum lunar inclination is approximately 28.7 deg,

and the minimum inclination is approximately 18.1 deg. The cyclic variation of the

lunar inclination has a period of approximately 18.6 years and is called the Metonic

cycle.

(a) (b)

Figure 2.2: Lunar geometry variations: a) Earth-moon distance from Jan. 1, 2024
to Jan. 1, 2025, and b) lunar orbital inclination from Jan. 1, 2020 to Jan. 1, 2040.
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In the derivation of the four-body equations of motion, it was assumed that

the moon’s inertial acceleration is due entirely to the gravitational forces of the

Earth and sun. While these are the dominant drivers of the moon’s motion, other

factors such as planetary gravitational forces and tidal forces affect lunar motion. An

alternative means of determining lunar acceleration is to compute a finite difference

gradient of the moon’s velocity, tabulated in the ephemeris. Figure 2.3 shows the

difference between the assumed lunar acceleration along each axis and the finite

differenced values based on the tabulated velocity. The data span a 20 year period,

covering 2020–2040, and the average acceleration error along the x̂ axis is −2.94×

10−11 km/s2; the average acceleration error along the ŷ axis is −2.72×10−11 km/s2;

and the average acceleration error along the ẑ axis is −1.07 × 10−11 km/s2. The

maximum acceleration errors along the x̂, ŷ and ẑ axes are 2.96×10−10 km/s2, 2.94×

10−10 km/s2 and 1.17 × 10−10 km/s2. Because the Earth and sun’s gravitational

acceleration on the moon is at least 1000 times larger in each component than these

differences, the discrepancy is determined to be negligible. This may be an issue,

however, if high precision orbit determination is necessary, but this is not the case

in this dissertation since the aim here is only to analyze trends in free returns and

the hybrid LOI mission.

2.2.1 Variational Equations

The state propagation matrix in the four-body model is

F =
∂ẋ

∂x
=

[
0 I
G 0

]
(2.19)
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Figure 2.3: Lunar acceleration difference between four-body acceleration and finite-
differenced ephemeris velocities during the years 2020–2040.

where ∂r̈/∂ṙ = 0 since the spacecraft acceleration is not explicitly dependent on its

velocity. The gravity gradient matrix in the moon-centered frame is

G =
3µM
r5
rr> − µM

r3
I

+
3µE

|r − rME|5
(r − rME)(r − rME)> − µE

|r − rME|3
I

+
3µS

|r − rMS|5
(r − rMS)(r − rMS)> − µS

|r − rMS|3
I (2.20)

The spacecraft’s acceleration and associated gravity gradient matrix are similar

in the Earth-centered frame where the spacecraft experiences direct gravitational

acceleration from the Earth and both direct and indirect gravitational accelerations

from the moon and sun.
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2.3 Other Perturbations

The dominant forces acting on a spacecraft in cislunar space are the gravi-

tational forces of the Earth, moon, and sun. Other forces acting on the spacecraft

include perturbations from other planetary bodies, solar radiation pressure, disturb-

ing forces due to aspherical bodies, and possibly atmospheric drag, lift, and magnetic

effects. Because the present mission focuses on flight in the Earth-moon system and

does not require high precision orbit determination, disturbing forces from other

planetary bodies are ignored. Additionally, atmospheric drag is ignored since the

spacecraft spends little time near Earth. In fact, the targeted final conditions at

Earth entry interface (EEI) are chosen to be the point at which atmospheric entry

begins, and atmospheric flight is not modeled here. But for a more realistic simula-

tion, the effects of Earth’s oblateness and solar radiation pressure are considered.

2.3.1 Earth Oblateness

In the four-body model, all planets were assumed to be spherical and, thus,

gravitating as point masses. The asphericity of celestial bodies, however, can have

a significant effect on spacecraft trajectories, with the effects becoming more pro-

nounced with decreasing orbital radius. As derived in Appendix A, the general

expression for the gravitational potential of the Earth is

U =
µE
r
− µE

r

∞∑
`=1

(
RE

r

)`
P`(sinφ)J`

+
µE
r

∞∑
`=1

∑̀
m=1

(
RE

r

)`
P`,m(sinφ) [C`,m cosmλ+ S`,m sinmλ] (2.21)
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where r is the distance from the Earth’s center of mass to the spacecraft, P` is the

`th Legendre polynomial, J`, C`,m, and S`,m are gravity coefficients of degree ` and

order m, φ is the spacecraft’s geocentric latitude, and λ is the spacecraft’s longi-

tude. The Earth can be characterized as an oblate spheroid, indicating it is wider

at its equator than at its poles. Though higher order asphericities exist, the oblate-

ness produces the most pronounced effects. In the spherical harmonic expansion of

the gravitational potential, the second zonal harmonic, denoted J2, represents the

oblateness of the central body. An Earth satellite’s orbit will experience variation in

its longitude of the ascending node and argument of perigee due to oblateness [49].

The acceleration of the spacecraft due only to Earth’s oblateness is deter-

mined by taking the gradient of the oblateness potential function U2 with respect

to the spacecraft position r as

r̈J2 =

(
∂U2

∂r

)>
(2.22)

where the oblateness potential is

U2 = −3µEJ2

2r

(
RE

r

)2
[(
r>ẑ

r

)2

− 1

3

]
(2.23)

As shown in Appendix A, the spacecraft acceleration due only to J2 effects is

r̈J2 = −3

2
J2µE

R2
E

r5

(
J −

5
(
r>ẑ

)2

r2
I

)
r (2.24)

where J ≡ diag(1, 1, 3). As given in Ref. [49], the value of the second zonal har-

monic is J2 = 0.001082636.
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2.3.2 Solar Radiation Pressure

Photons of light that impact a spacecraft can impart momentum if absorbed

or reflected; thus, when a spacecraft is exposed to sunlight, it experiences a disturb-

ing force due to solar radiation. The acceleration due to this force is

r̈SRP =
pSRcRA

m
r̂SP (2.25)

where pSR = 4.51 × 10−6 N/m2 is the approximate solar pressure near the Earth,

cR is the coefficient of reflectivity, A is the spacecraft area exposed to the sun, m is

the spacecraft mass, and r̂SP is the sun-spacecraft unit vector [50]. The coefficient

of reflectivity is zero for a transparent body, one for a black body, and two for a

body that reflects all incoming radiation. This value is difficult to determine since

it requires knowledge of the material properties of the spacecraft and which surfaces

and materials are exposed to the sun at a given time.

2.3.3 Variational Equations

With the addition of Earth’s oblateness and solar radiation pressure, the

spacecraft acceleration in the moon-centered frame becomes

r̈ = −µM
r3
r − µE

[
r − rME

|r − rME|3
+
rME

r3
ME

]
− µS

[
r − rMS

|r − rMS|3
+
rMS

r3
MS

]
+−3

2
J2µER

2
E

(
J −

5
[
(r − rME)>ẑ

]2
|r − rME|2

I

)
r − rME

|r − rME|
+
pSRcRA

m

r − rMS

|r − rMS|
(2.26)

Note that since the Earth’s oblateness effects on the moon have been ignored, this

formulation cannot be used for high precision orbit propagation. The state propa-
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gation matrix with this model is

F =
∂ẋ

∂x
=

[
0 I
G 0

]
(2.27)

The gravity gradient matrix is

G = G4 +GJ2 +GSRP (2.28)

where G4 is the gravity gradient matrix associated with the four-body problem, GJ2

is the portion associated with Earth oblateness effects, and GSRP is the portion

associated with solar radiation pressure. Explicitly, the components are

GJ2 = −3

2
J2µER

2
E

[
J

(
I

r5
EP

− 5rEPr
>
EP

r7
EP

)
− 5(r>EP ẑ)2

r2
EP

(
I

r5
EP

− 5rEPr
>
EP

r7
EP

)
− rEP
r7
EP

(
10(r>EP ẑ)ẑ> − 10(r>EP ẑ)2r>EP

r2
EP

)]
(2.29)

and

GSRP =
pSRcRA

m

[
I

|r − rMS|
− (r − rMS) (r − rMS)>

|r − rMS|3

]
(2.30)

The gravity gradient matrix is similar in the Earth-centered frame.

2.4 Reference Frames

In the CRTBP, all numerical integration is performed in the barycentered

rotating frame. This frame is used for visualization along with Earth- and moon-

centered non-rotating frames. In the ephemeris model, integration and visualization

are performed in J2000 Earth- and moon-centered frames. Additionally, it is useful

to create a reference frame analogous to the rotating frame of the CRTBP. The
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principal direction is the Earth-moon line with corresponding unit vector given by

r̂(t) ≡ rEM(t)

|rEM(t)|
(2.31)

where rEM(t) is the time-dependent Earth-moon vector. The fundamental plane is

the moon’s instantaneous orbital plane about the Earth, and the unit vector normal

to this plane is

n̂(t) ≡ rEM(t)× vEM(t)

|rEM(t)× vEM(t)|
(2.32)

where vEM(t) is the moon’s velocity relative to the Earth. The right-handed coor-

dinate system is completed with

t̂(t) ≡ n̂(t)× r̂(t) (2.33)

where t̂(t) is not parallel to vEM(t) in general. If r̂, t̂, and n̂ are expressed in the

J2000 frame, the transformation matrix from the rotating frame to the non-rotating

frame is

R(t) =
[
r̂ t̂ n̂

]
3×3

(2.34)

where it is understood that r̂, t̂, and n̂ are functions of time. Since R is an

orthogonal matrix [51], the transformation matrix from the non-rotating frame to

the rotating frame is R>. This reference frame is shown in Fig. 2.4.

The Earth-moon distance is variable, so in an Earth-centered rotating frame,

the moon will oscillate on the r̂ axis. To fix the moon in this frame, each vector will

be scaled by the Earth-moon distance, rEM(t). The reference frame is now termed

a rotating-pulsating frame because the distance unit pulsates with time. A position
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Figure 2.4: Rotating reference frame.

vector in the rotating-pulsating frame is given by

rrtn =
1

rEM(t)
R>rxyz (2.35)

where rxyz is the position vector in the J2000 frame. Thus, the moon’s position in

this frame is
[
1 0 0

]>
.
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Chapter 3

Free-Return Trajectories in the Earth-Moon

System

In this chapter, single-flyby free return trajectories are generated and an-

alyzed in the circular restricted three-body problem (CRTBP). The free returns

are targeted with an automated technique that requires no user input. Trends in

round trip flight time, translunar injection (TLI) velocity impulse, and Earth entry

interface (EEI) velocity are presented. All symmetric single-flyby free returns are

examined within a lunar flyby altitude of 20000 km.

3.1 Background

The benefit of the free return orbit was realized during the Apollo program as

the first three Apollo missions to the moon flew free returns from TLI to lunar orbit

insertion (LOI) [52–54]. The next three missions performed a cislunar maneuver to

depart the free return path approximately one day after TLI to target conditions

more favorable for LOI; this translunar trajectory was called a hybrid non-free re-

turn profile [55–57]. Before LOI, the non-free return path was constrained to be

within the capability of the lunar module’s (LM) descent propulsion system (DPS)

to perform a transearth injection (TEI) maneuver sufficient for reentry. The final
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three missions did not use a free return trajectory; rather, their translunar coast

was required to remain within the TEI capability of the LM’s DPS or the command

and service module’s reaction control system [58–60].

Lunar free return trajectories similar to those utilized during Apollo missions

could prove useful for future human lunar missions, though different free returns

must be studied to accommodate the polar orbits necessary for exploration of high

latitude sites. Free returns also present utility for robotic missions. For example,

these trajectories provide the capability to alter geocentric orbits through lunar

gravity assist [61–64] as demonstrated when a lunar free return was used in 1998 to

reposition an errant communication spacecraft into a geosynchronous orbit [65]. A

free return for a robotic lunar mission could also provide the option of returning the

spacecraft for service in Earth orbit if a hardware problem occurred on the translu-

nar portion of the mission. Periodic free returns may prove useful for repeatedly

transporting cargo between the Earth and moon, or for continuous measurement

and observation of the Earth-moon system.

Lunar free returns include circumlunar and cislunar trajectories, departures

from posigrade and retrograde Earth orbits, and trajectories in and out of the Earth-

moon plane. Circumlunar free returns have lunar flyby on the far side of the moon

relative to Earth, and cislunar free returns have lunar flyby on the near side of the

moon relative to Earth. Posigrade free returns have h(tTLI) · ẑ > 0, and retro-

grade free returns have h(tTLI) · ẑ < 0, where h(tTLI) is the spacecraft’s angular

momentum at Earth departure, and the ẑ axis points in the direction of the moon’s

angular velocity about the Earth. Plotted in a frame of reference with its origin
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at the Earth-moon barycenter and rotating with the Earth-moon line, Fig. 3.1(a)

shows an example of a free return trajectory that departs Earth in a posigrade ori-

entation, circumnavigates the moon with a lunar flyby altitude of 100 km, arrives

at Earth at an altitude of 121 km, and has a round trip flight time of 5.6 days.

Figure 3.1(b) shows the same trajectory plotted in a non-rotating frame with its

origin at the Earth where the moon is plotted at the time of the free return’s lunar

flyby.

(a) (b)

Figure 3.1: Free return trajectory: a) barycentered rotating frame, and b) Earth-
centered non-rotating frame.

On any single-flyby free return, the time of flight from Earth departure to

Earth arrival is on the order of days while the time spent in the vicinity of the moon

is on the order of hours; thus, the initial velocity magnitude and orientation must

be selected such that the spacecraft encounters the moon at the proper time and

direction to ensure a post-flyby state that leads to the specified EEI conditions. In

the numerical generation of free returns, the initial estimate of the orbit geometry is

critical to attaining a converged solution because of the sensitivity of the final state

to the TLI maneuver, and flight time. If initial conditions can be generated that

produce a trajectory with geometry similar to the desired free return, an iterative
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numerical procedure can likely converge on a feasible free return. ‘Similar geometry’

is defined here as meeting both the Earth departure directional requirement (posi-

grade or retrograde) and the lunar encounter requirement (circumlunar or cislunar).

An analytical method of constructing feasible initial conditions for each free return

lying in the Earth-moon plane is discussed in this chapter along with a numerical

procedure that can produce any free return trajectory in or out of the Earth-moon

plane. The automated algorithm requires no user input other than the desired fea-

tures of the free return: altitude and orientation at lunar flyby, and altitude and

flight path angle at Earth return. The algorithm is later modified to remove the

symmetry constraint.

3.2 Theorem of Image Trajectories

The CRTBP exhibits symmetry useful in the generation of free return tra-

jectories. As shown in Ref. [66], additional valid trajectories in the rotating frame

may be obtained from a nominal trajectory through reflections across a plane or

rotations about an axis. A trajectory’s geometric image with respect to a reference

plane is obtained by reflecting it across that plane; this is equivalent to reversing

the sign of the position coordinate perpendicular to that plane. A trajectory’s geo-

metric image with respect to a reference axis is obtained by rotating the trajectory

180 deg about the reference axis, and this is equivalent to reversing the sign of the

two position coordinates perpendicular to that axis. To determine which image tra-

jectories are consistent with the equations of motion of the CRTBP, three position
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transformations and one time transformation are made as follows:

x∗ ≡ Ax y∗ ≡ By

z∗ ≡ Cz t∗ ≡ Dt
(3.1)

where valid values of the real scalars A, B, C, and D are to be determined. The

time transformation is included because the direction of motion in time of each

geometric image relative to the nominal trajectory is unknown. After making the

transformations, the resulting equations of motion are compared to the nominal

equations of motion to determine if the image trajectory is valid and establish all

permissible sets of transformations.

Rearranging Eq. (2.1), the equations of motion of the CRTBP become

r̈ + 2ω × ṙ + ω × (ω × r) +
µ1

r1
3
r1 +

µ2

r2
3
r2 = 0 (3.2)

where r is the barycentric spacecraft position, ω is the system’s angular velocity, µ1

and µ2 are the gravitational parameters of the first and secondary primary bodies,

and r1 and r2 are vectors from the first and second primary bodies to the spacecraft.

Expanding in three orthogonal coordinates,

ẍ− 2ωẏ − ω2x+
µ1

r1
3

(x− x1) +
µ2

r2
3

(x− x2) = 0 (3.3)

ÿ + 2ωẋ− ω2y +
µ1

r1
3
y +

µ2

r2
3
y = 0 (3.4)

z̈ +
µ1

r1
3
z +

µ2

r2
3
z = 0 (3.5)

After applying the transformations of Eqs. (3.1), the equations of motion become

r̈∗ + 2ω × ṙ∗ + ω × (ω × r∗) +
µ1

r1∗
3
r1∗ +

µ2

r2∗
3
r2∗ = 0 (3.6)

28



where r∗ ≡ [x∗ y∗ z∗]
> is the transformed position, ṙ∗ ≡ dr∗/dt∗ is the trans-

formed velocity, and r̈∗ ≡ d2r∗/dt
2
∗ is the transformed acceleration. Expanding

Eq. (3.6) gives

A

D2
ẍ− B

D
2ωẏ − Aω2x+

µ1

r1∗3
(Ax− x1) +

µ2

r2∗3
(Ax− x2) = 0 (3.7)

B

D2
ÿ +

A

D
2ωẋ−Bω2y +

µ1

r1∗3
By +

µ2

r2∗3
By = 0 (3.8)

C

D2
z̈ +

µ1

r1∗3
Cz +

µ2

r2∗3
Cz = 0 (3.9)

The magnitude of a transformed position vector relative to the ith body is

ri∗ =
√

(Ax− xi)2 + (By)2 + (Cz)2 (3.10)

so setting A = 1, B = ±1, C = ±1 satisfies ri∗ = ri. Examining the x̂ component,

the last three nonzero terms of Eq. (3.7) are now equal to the last three nonzero terms

of Eq. (3.3). For agreement between the second terms of Eq. (3.3) and Eq. (3.7), set

B = D. The first terms are already equivalent since A = 1 and D2 = 1. Examining

the ŷ components of the equations of motion, Eq. (3.4) and Eq. (3.8), these two

equations are already equivalent by the analysis done for the x̂ component equation.

If A = 1 and B = 1 = D, the equations are identical. If A = 1 and B = −1 = D,

the sign of each term of Eq. (3.8) is reversed, and the equations are again equivalent.

Examining the ẑ components of the equations of motion, Eq. (3.5) and Eq. (3.9),

equivalence is achieved since C = ±1 and D2 = 1.

Thus, the sets of scalar constants satisfying the equations of motion are

A = 1 B = D

C = ±1 D = ±1
(3.11)
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This result, known as the theorem of image trajectories and illustrated in Fig. 3.2,

gives four solution sets which represent four valid trajectories in the CRTBP. The

nominal trajectory is given by A = B = C = D = 1. The first image trajectory,

denoted as image 1 in Fig. 3.2, is given by A = B = 1, C = −1, and D = 1,

which is the reflection of the nominal trajectory across the x̂ŷ plane, flown in the

same direction as the nominal path. The second image trajectory, image 2, is given

by A = 1, B = −1, C = 1, and D = −1, which is the reflection of the nominal

trajectory across the x̂ẑ plane, flown in the opposite direction. The third image

trajectory, image 3, is given by A = 1 and B = C = D = −1, which represents the

rotation of the nominal trajectory about the x̂ axis, flown in the opposite direction.

This result is useful in the design of free returns since a trajectory from the Earth

to the moon with an orthogonal crossing of the x̂ axis or the x̂ẑ plane guarantees

a symmetric ballistic return from the moon to the Earth.

Figure 3.2: Image trajectories.
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3.3 Lunar Flyby Geometry

Free returns are constructed by shooting one or two segments from a point

near the moon, called the lunar flyby point, to the Earth. If a symmetric free

return is constructed, the lunar flyby velocity is perpendicular to either the Earth-

moon line or the vertical (x̂ẑ) plane. The flyby state of a symmetric free return is

parameterized by its lunar altitude h, latitude φ relative to the Earth-moon plane,

and velocity azimuth θ, measured east from north, where east and north are defined

as

ê ≡ ẑ × rMP

|ẑ × rMP |
n̂ ≡ rMP × ê

|rMP × ê|
(3.12)

and rMP is the flyby position relative to the moon. If an asymmetric free return

is targeted, the flyby state is parameterized by its altitude, latitude, azimuth, and

flight path angle γ. Figure 3.3 illustrates these quantities where v is the flyby

velocity and h is the angular momentum about the moon.

Moon
x̂

ẑ

rMP

φ

(a)

ê

n̂

v

θ

(b)

r̂MP

r̂MP × ĥ

v
γ

(c)

Figure 3.3: Lunar flyby parameterization: a) altitude and latitude, b) azimuth, and
c) flight path angle.
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The flyby position relative to the Earth-moon barycenter is

r = [xM + (RM + h) cosφ] x̂

+ (RM + h) sinφ ẑ (3.13)

where xM is the distance from the Earth-moon barycenter to the moon’s center,

and RM is the mean lunar radius. As shown in Appendix B, the velocity expressed

in the x̂ŷẑ basis is

v = v (cosφ sin γ − sinφ cos θ cos γ) x̂

+v (sin θ cos γ) ŷ

+v (sinφ sin γ + cosφ cos θ cos γ) ẑ (3.14)

where the velocity azimuth and flight path angle are measured in the rotating frame.

3.4 Initial Estimate

Utilizing a two-body Earth-spacecraft model where the terminal attraction

of the moon on the spacecraft is ignored, a simple targeting algorithm is developed

to construct an approximation for the free return outbound trajectory. First, define

a reference frame centered at the Earth with the î axis along the Earth-moon line at

the time of apogee on the Earth departure leg, the ĵ axis along the direction of the

moon’s velocity at that point, and the k̂ axis completing the right handed system.

Construct a Hohmann transfer with angular momentum about the Earth in the +k̂

direction and with a line of apsides coincident with the î axis. Also require perigee

to occur at an altitude hTLI above the Earth’s surface and apogee to occur at an
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altitude RM above the moon’s surface on the far side of the moon, to guarantee a

circumlunar passage. Figure 3.4(a) shows the moon at the time of apogee, and the

outbound trajectory, which is posigrade about the Earth at departure and has a

circumlunar passage. The position and velocity at perigee are

rTLI = −(RE + hTLI) î (3.15)

vTLI = −

√
2µE

(
1

rTLI
− 1

rTLI + rEM + 2RM

)
ĵ (3.16)

The flight time from perigee to apogee is

tf = π

√
a3

µE
(3.17)

where a = 1
2
(rTLI + rEM + 2RM) is the semi-major axis of the transfer ellipse. The

initial state is then transferred to the CRTBP and numerically propagated to tf in

the barycentered rotating frame.

This initial estimate targets a posigrade circumlunar free return, but other ge-

ometries are possible. The translunar portions of retrograde and cislunar free returns

are similarly approximated with the two-body model and are shown in Figs. 3.4(b)–

3.4(d). The only differences are the direction of flight and apogee location of the

transfer ellipse. An alternate approach in constructing the translunar trajectory is

a finite sphere of influence patched conic model where an Earth departure ellipse

is joined with a moon-focused hyperbola. This method was also implemented, but

the two-body model proved superior to the patched conic method in ensuring the

proper orientation of lunar passage.
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î
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(a) (b)

(c) (d)

Figure 3.4: Two-body initial estimate: a) posigrade circumlunar, b) posigrade cis-
lunar, c) retrograde circumlunar, and d) retrograde cislunar.

With the initial state and time of flight estimated, the trajectory is prop-

agated in the CRTBP where the gravity of the Earth and moon are active at all

times. Stopping conditions of | r · ŷ |< 50 km and ṙ · ŷ < 0 km/s are imposed on

the integration to determine the time of flight such that the trajectory terminates

near the Earth-moon line. While holding the TLI position and direction fixed, the

TLI velocity magnitude and flight time that produce an orthogonal crossing of the

Earth-moon line at lunar flyby are determined numerically with the root-finding

algorithm NS11,1 which solves a square system of nonlinear equations via Broyden’s

method [67]. With a perpendicular crossing of the x̂ axis, a symmetric free return

is guaranteed by the theorem of image trajectories.

1Information available at http://www.hsl.rl.ac.uk/archive/specs/ns11.pdf [accessed 15
March 2012]
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3.5 Numerical Targeting

Once the base free return has been constructed, all subsequent symmetric

free returns are generated with a method where a single trajectory is propagated

from lunar flyby to the Earth in the CRTBP. The lunar flyby position and velocity

are oriented to be consistent with the desired free return type. Note, however, that

free returns do not exist for all sets of flyby conditions; it will be seen that the

maximum feasible latitude and azimuth at lunar flyby are a function of the flyby

altitude. Once the flyby state is initialized, the root-finding algorithm varies the

flyby velocity magnitude and flight time to produce the desired altitude and flight

path angle at Earth. Once converged, this guarantees a free return since the state

at flyby necessitates a symmetric trajectory. This method, outlined in Ref. [27],

is advantageous because only the moon to Earth leg must be integrated on each

iteration. Also, the sensitivity is reduced by shooting the trajectory from the moon

into the larger gravity well of the Earth instead of propagating an entire Earth-

moon-Earth trajectory. Care must be exercised at Earth to ensure the trajectory

returns in the proper orientation.

The current problem is a system of two nonlinear equations with two un-

knowns, and the free parameters are

xp ≡
[
v

tEEI

]
(3.18)

where v is the velocity magnitude at lunar flyby and tEEI is the moon to Earth

flight time. The constraints to be satisfied are

c ≡
[
hEEI − hT2

γEEI − γT2

]
= 0 (3.19)
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Figure 3.5: Free parameters and constrained quantities for targeting all types of
symmetric free returns, including non-planar trajectories.

where hEEI and hT2 are the actual and targeted altitude at EEI, and γEEI and γT2

are the actual and targeted flight path angle at EEI. The free parameters and con-

strained quantities are shown in Fig. 3.5. The problem is solved with NS11 which

has proved through repeated trials to be stable given an initial orbit geometrically

similar to the desired result. Stability is improved by scaling the free parameters

and constraints to achieve scaled values on the order of one. Numerical integra-

tion is performed in the barycentered rotating reference frame of the CRTBP, and

convergence is determined when(
2∑
i=1

c2
i

)1/2

< 10−8 (3.20)

3.5.1 Continuation Method

After producing a converged planar free return, the lunar flyby altitude is

advanced in increments of ∆h until the desired flyby altitude is reached. Each

previously converged solution is used as the initial estimate for the next case with

a modified flyby altitude. Once the planar trajectory has been reached with the

desired value of h, the out-of-plane velocity angle at lunar flyby is advanced incre-
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mentally until the targeted value is reached. If symmetric free returns are targeted,

only the flyby velocity azimuth or the flyby latitude is incremented, and the flight

path angle is always zero. If asymmetric free returns are targeted, the latitude and

azimuth at lunar passage may be simultaneously nonzero, and the flight path angle

may be nonzero.

The maximum values of ∆h, ∆φ, and ∆θ are important parameters in en-

suring convergence. Increasing the stepsize will decrease the number of required

intermediate trajectories in the continuation procedure, but if any stepsize is too

large, the previously converged solution may not reconverge at the updated lunar

flyby state. A value of ∆h = 25 km is used for retrograde, cislunar free returns, and

∆h = 100 km is used for all other free returns. All angular values are incremented

in stepsizes of one degree. These stepsizes ensure convergence from the previous tra-

jectory for all free returns studied in this dissertation. The symmetric free return

targeting algorithm is outlined in Fig. 3.6.

3.6 Symmetric Free Returns

As indicated by the theorem of image trajectories, two classes of symmetric,

single-flyby circumlunar free returns exist, characterized by the orientation at lunar

passage. Type 1 free returns, illustrated in Fig. 3.7, exhibit rotational symmetry

about the Earth-moon line; the moon to Earth path is given by a rotation of 180 deg

of the Earth to moon path about the Earth-moon line. Type 2 free returns, illus-

trated in Fig. 3.8, have symmetry across the plane containing the Earth-moon line

and the system’s angular velocity vector, called the vertical plane; the moon to Earth
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Figure 3.6: Symmetric free return targeting algorithm.

38



path is given by a reflection of the Earth to moon path across this plane. Thus,

type 1 free returns must orthogonally intersect the Earth-moon line, and type 2

free returns must have a perpendicular crossing of the vertical plane. Type 0 free

returns remain in the Earth-moon plane and represent the intersection of type 1 and

type 2 free returns. Thus, type 0 free returns are symmetric about the Earth-moon

line and across the vertical plane. The symmetric free return with minimum TLI

impulse and flight time for a given lunar flyby altitude is the type 0 free return.

(a) (b)

Figure 3.7: Type 1 free return in barycentered rotating frame: a) oblique view, and
b) view normal to moon-Earth line illustrating symmetry.

(a) (b)

Figure 3.8: Type 2 free return in barycentered rotating frame: a) oblique view, and
b) view along moon-Earth line illustrating symmetry.
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Figures 3.9–3.10 show the four types of type 0 free returns. Each trajectory

has a lunar flyby altitude of 100 km, and the EEI conditions require an altitude of

121 km and a flight path angle of −6 deg, similar to the Apollo entry conditions [68].

Summarized in Table 3.1, the free return classification is based on symmetry, lunar

passage orientation, and Earth departure orientation. In the rotating frame, the

Table 3.1: Free return classification
Characteristic Value Definition
Symmetry 0 Symmetric across x̂ axis, remains in x̂ŷ plane

1 Symmetric under 180 deg rotation about x̂ axis
2 Symmetric under reflection across x̂ẑ plane

Lunar passage A Circumlunar
B Cislunar

Earth departure i Posigrade
ii Retrograde

trajectories are symmetric with respect to the Earth-moon line whereas in the non-

rotating frame the symmetry remains about the Earth-moon line at the time of

the lunar flyby. Before and after the close approach to the moon, the trajectory is

approximately an Earth-focused ellipse; in the vicinity of the moon, the trajectory

is approximately a moon-focused hyperbola. As seen in Figs. 3.9(b), 3.9(d), 3.10(b),

and 3.10(d), circumlunar free returns encounter the moon before reaching apogee

on the Earth departure ellipse, but cislunar free returns pass through apogee before

the lunar encounter and, thus, have a greater time of flight. Additionally, at this

flyby altitude, circumlunar free returns remain within 150000 km of the Earth-moon

line whereas cislunar free returns diverge from the Earth-moon line by more than

500000 km. This indicates that in a multibody force model, the solar perturbation

will be more significant for these cislunar free returns.
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(a) (b)

(c) (d)

Figure 3.9: Planar circumlunar free returns: a)–b) type 0Ai in rotating and non-
rotating frames, and c)–d) type 0Aii in rotating and non-rotating frames.

41



(a) (b)

(c) (d)

Figure 3.10: Planar cislunar free returns: a)–b) type 0Bi in rotating and non-
rotating frames, and c)–d) type 0Bii in rotating and non-rotating frames.
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Figures 3.11–3.12 show the four types of type 0 free return families with

flyby altitude spanning 100 km to 20000 km, along with the TLI velocity impulse

magnitude and round trip flight time plotted as a function of lunar flyby altitude.

The velocity impulse shown is the impulse required to transfer from a circular Earth

orbit at the same altitude. For type 0Ai trajectories, the required impulse decreases

with increasing flyby altitude, reaches a minimum near 13000 km, and increases

beyond that point. In general, for circumlunar flight, retrograde trajectories have a

higher flight time and TLI velocity impulse than posigrade trajectories at the same

flyby altitude. Circumlunar flight times increase with increasing altitude at the

moon, and cislunar flight times decrease with increasing altitude at the moon. The

minimum time type 0Ai free return occurs at h = 100 km, which is the minimum

flyby altitude allowed in this dissertation. The minimum impulse trajectory offers a

TLI savings of approximately 25 m/s while incurring a 65 hr increase in flight time

relative to the minimum time trajectory. Because of the required increase in the

amount of life support for increased flight time, and the delayed Earth return, the

minimum impulse trajectory would not be as advantageous for human missions.

Figures 3.13–3.14 show the four types of symmetric non-planar free returns

over the range of all possible lunar flyby orientations at a flyby altitude of 20000 km.

For each type, there exists a posigrade and retrograde solution at a given flyby angle.

In most cases, the posigrade free return has both a lower TLI velocity impulse and

round trip flight time. Type 1 free returns enable a flyby azimuth less than 12 deg

out of the Earth-moon plane whereas type 2 free returns allow any flyby latitude at

this altitude. The latitude range of type 2 free returns, however, is more restrictive
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(a) (b)

(c) (d)

Figure 3.11: Circumlunar free return families: a) type 0Ai family (rotating frame),
b) type 0Ai TLI impulse and flight time variation, c) type 0Aii family (rotating
frame), and d) type 0Aii TLI impulse and flight time variation.
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(a) (b)

(c) (d)

Figure 3.12: Cislunar free return families: a) type 0Bi family (rotating frame), b)
type 0Bi TLI impulse and flight time variation, c) type 0Bii family (rotating frame),
and d) type 0Bii TLI impulse and flight time variation.
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(a) (b)

(c) (d)

Figure 3.13: Type 1 free return surfaces: a) type 1A surface (rotating frame), b)
type 1A TLI impulse and flight time variation, c) type 1B surface (rotating frame),
and d) type 1B TLI impulse and flight time variation.
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(a) (b)

(c) (d)

Figure 3.14: Type 2 free return surfaces: a) type 2A surface (rotating frame), b)
type 2A TLI impulse and flight time variation, c) type 2B surface (rotating frame),
and d) type 2B TLI impulse and flight time variation.
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as the flyby altitude decreases. In general, the TLI velocity impulse increases as the

free return moves out of the Earth-moon plane for posigrade trajectories; the trend is

opposite for retrograde trajectories. The increase in TLI impulse between type 2Ai

free returns of latitude 0 deg and 90 deg, for example, is approximately 10 m/s.

Free returns with a flyby latitude near 90 deg may be useful for future hu-

man missions interested in exploration of the lunar poles. However, in the planning

of a realistic mission, limits on Earth launch azimuth must be considered. During

the Apollo 8 mission, for example, the launch azimuth at Kennedy Space Center,

measured east from north, was constrained to lie between 72 deg and 108 deg [69].

A similar range would be expected for future launches from this site. Other mis-

sions, launched from Vandenberg Air Force Base or the Baikonur Cosmodrome, for

example, will offer different launch azimuth ranges. This is of concern in the current

case because free returns that pass over the lunar poles require a TLI azimuth at

Earth that is nearly due north or due south relative to the Earth-moon plane.

3.7 General Free Returns

An asymmetric ballistic segment that departs Earth, encounters the moon,

and returns to Earth is called an asymmetric, or general, free return. If the latitude

and azimuth at lunar flyby are simultaneously nonzero, the free return will be asym-

metric since there will not be an orthogonal crossing of the Earth-moon line, and

there will not be a perpendicular crossing of the vertical plane. The free return will

always be asymmetric if the lunar flyby flight path angle is nonzero. Asymmetric

posigrade circumlunar free returns are targeted in this section. Other asymmetric
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free return types are not considered because they are not used in the remainder of

this investigation. The asymmetry allows targeting of unequal Earth departure and

return conditions; it also enables a broader range of geometry at lunar passage.

Because general free returns do not include a perpendicular crossing of the

Earth-moon line or the vertical plane, the theorem of image trajectories does not

apply. Therefore, a method with two trajectory segments is used where one segment

is propagated from flyby to EEI, and the other segment is propagated from the flyby

backwards in time to TLI. The state at lunar passage is continuous by the definition

of a free return. At TLI, a flight path angle of γT1 = 0 deg and an altitude of

hT1 = 350 km are targeted; at EEI, a flight path angle of γT2 = −6 deg and an

altitude of hT2 = 121 km are targeted. Thus, the constraints are

c ≡


hTLI − hT1

γTLI − γT1

hEEI − hT2

γEEI − γT2

 = 0 (3.21)

To satisfy all four constraints, four free parameters are specified. The lunar flyby

velocity magnitude and moon to Earth flight time on the EEI segment will be free, as

in the targeting of symmetric free returns. Since the TLI segment is now integrated

separately, its flight time is chosen as a free parameter. Finally, the flight path angle

at lunar flyby is chosen to be free, creating a system with four constraints and four

unknowns. The parameter vector is

xp ≡


v

tEEI
tTLI
γ

 (3.22)
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The problem is solved numerically with NS11, and the initial estimate is a type 0Ai

free return, constructed with the symmetric targeting algorithm. From the initial

trajectory, a continuation method is used to advance to a feasible free return with

the specified values of altitude, latitude, and azimuth at lunar flyby. The altitude is

advanced first; next, the latitude is advanced; finally, the flyby azimuth is advanced

to the desired value.

Figure 3.15 shows an example of a general free return. The altitude at lunar

flyby is 15000 km, the latitude is 50 deg, and the azimuth is 280 deg. The round trip

flight time is 9.45 days and the flight path angle at lunar flyby is −6.78 deg. The

asymmetry is apparent in Fig. 3.15(b) which shows that this free return is similar

to a type 2 free return with an elongated Earth to moon segment and a shortened

moon to Earth segment.

(a) (b)

Figure 3.15: General free return (rotating frame): a) view normal to x̂ŷ plane, and
b) view along moon-Earth line illustrating asymmetry.
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Figs. 3.16–3.18 show trends in round trip flight time, TLI impulse magnitude,

and EEI velocity magnitude. The vacant regions on the plots indicate that no

feasible single-flyby free return is possible at this combination of altitude, latitude,

and azimuth. At a flyby altitude of 100 km, the maximum possible latitude is

±13 deg with the range of feasible flyby azimuths decreasing as the magnitude of

the latitude increases. The region of feasibility in the latitude-azimuth plane is

similar at a flyby altitude of 1000 km. As the flyby altitude increases, however,

the feasible region grows, increasing to allow any latitude at h = 20000 km. At

this altitude, the range of possible azimuths increases with increasing flyby latitude.

Round trip flight time increases with increasing altitude at the moon, in general,

with some cases requiring a flight time of approximately 30 days near the boundary

of the feasibility region at h = 15000 km and h = 20000 km.

Figure 3.17 shows the variation in the TLI impulse magnitude. In this algo-

rithm, the location and orientation of TLI are free to float, subject to the targeted

conditions of altitude and flight path angle. The variation in the TLI impulse is

therefore a result of the post-TLI velocity magnitude since the pre-TLI orbit is al-

ways a circular orbit in the instantaneous plane of the free return at that point.

Knowledge of the TLI velocity magnitude is essential for mission design because the

capability of an Earth-departure booster may limit the choice of a given free return.

Figure 3.18 shows the EEI velocity as a function of the lunar flyby latitude and az-

imuth. The EEI velocity is also an important quantity in mission planning since the

reentry thermal protection system of the vehicle may not be able to withstand cer-

tain reentry velocities. It would therefore be ideal to find a free return with a low TLI
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requirement and a low EEI reentry velocity. By examining Figs. 3.17–3.18, it is seen

that at flyby altitudes of 100 km and 1000 km, the regions with the minimum TLI

requirements also incur the greatest reentry speeds. In the design of Apollo lunar

reentry trajectories, the maximum allowed reentry velocity was 11.0743 km/s [11];

the maximum reentry velocity during a mission was 11.0685 km/s on Apollo 10; and

the minimum was 11.0003 km/s on Apollo 17 [52]. All free returns shown here fall

under the Apollo maximum except for some cases near the boundary of the feasi-

bility region at a flyby altitude greater than or equal to 15000 km. The maximum

allowed reentry velocity will depend upon the capability of the heat shield.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: General free return flight time and feasibility region: a) h = 100 km,
b) h = 1000 km, c) h = 5000 km, d) h = 10000 km, e) h = 15000 km, and f)
h = 20000 km.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: General free return TLI impulse and feasibility region: a) h = 100 km,
b) h = 1000 km, c) h = 5000 km, d) h = 10000 km, e) h = 15000 km, and f)
h = 20000 km.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: General free return EEI velocity and feasibility region: a) h = 100 km,
b) h = 1000 km, c) h = 5000 km, d) h = 10000 km, e) h = 15000 km, and f)
h = 20000 km.
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Chapter 4

Optimal Spacecraft Trajectories

This chapter presents an overview of optimization techniques necessary for

the solution of the free return and lunar orbit insertion problem. The chapter

includes numerical optimization techniques and the supporting theory with an em-

phasis on the methods used in this investigation for nonlinear orbital trajectories. A

discussion on analytical gradients features the derivation of a closed-form expression

for computing gradients along an n-impulse trajectory in a completely general force

field. Also included are numerical issues such as scaling and comparing analytical

gradients to finite difference gradients. Finally, an overview of optimal control the-

ory is presented with the derivation of the accompanying variational equations and

an adjoint control transformation for estimating the costates of the optimal control

problem.

4.1 Introduction

Optimization is a mathematical technique for finding the best solution among

a set of alternative options. The criterion by which solutions are judged is user-

defined and is called the performance index, objective function, or cost function.

Typically, it may be desired to find the minimum value of some function subject
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to constraints that define what solutions are acceptable. An optimization problem

may include a nonlinear cost function and nonlinear constraints, as is often the case

in multibody trajectory optimization.

The numerical solution of optimization problems may be divided into di-

rect and indirect methods. Direct methods extremize a scalar performance index

subject to constraints. Indirect methods optimize a performance index by solving

a boundary value problem with differential constraints arising from the calculus

of variations. Optimization with direct methods relies on parameter optimization

and indirect optimization methods rely on optimal control theory. Hybrid solution

methods combine aspects of the direct and indirect approaches.

4.2 Parameter Optimization

The general parameter optimization problem is to minimize a performance

index subject to equality constraints and inequality constraints. The performance

index f(x) is a function of the n×1 parameter vector x. The m equality constraints

require

c(x) = 0 (4.1)

and the p inequality constraints require

d(x) > 0 (4.2)

The inequality constraints are converted to equality constraints with slack variables

by requiring

d(x)− s2 = 0 (4.3)
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where s ∈ Rp is a vector of slack variables and

s2 ≡ diag(s) s =


s1

s2

. . .

sp



s1

s2
...
sp

 =


s2

1

s2
2
...
s2
p

 (4.4)

Thus, if the constraint is off-boundary or “inactive,” di > 0 and si 6= 0. If the

constraint is on-boundary or “active,” di = 0 and si = 0.

The constraints are adjoined to the performance index to form the Lagrangian

as

L(x,µ,ν, s) = f(x) + µ>c(x) + ν>
(
d(x)− s2

)
(4.5)

where µ and ν are Lagrange multipliers. The necessary conditions require the first

derivative to vanish at an optimal point. Therefore, the following conditions must

be satisfied:

0> =
∂L

∂x
=
∂f

∂x
+ µ>

∂c

∂x
+ ν>

∂d

∂x
(4.6)

0> =
∂L

∂µ
= c>(x) (4.7)

0> =
∂L

∂ν
=
(
d(x)− s2

)>
(4.8)

0> =
∂L

∂s
= −2ν>S (4.9)

where S ≡ diag(s). These are known as the Kuhn-Tucker optimality conditions [70].

If the ith inequality constraint is inactive, si 6= 0 by Eq. (4.8), so Eq. (4.9) requires

νi = 0. If the ith inequality constraint is active, si = 0 by Eq. (4.8).
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4.2.1 Optimization Algorithms

Numerical optimization algorithms can be classified based on whether or not

the derivatives of the performance index and constraint functions are required. Ze-

roth order methods rely solely on evaluation of the performance index throughout

the solution space to determine the set of parameters that optimizes the perfor-

mance index. Examples of zeroth order methods include the grid search, the simplex

method [71], and genetic algorithms [72–75]. Alternatively, higher order methods

require at least the first derivatives of the performance index and the constraints.

Examples of these include the gradient method, Newton-Raphson algorithms, and

variable metric methods [76]. Direct comparison of the performance index and ex-

ploration of the solution space with a zeroth order method may produce a globally

optimal solution whereas a higher order method may locate only a locally optimal

solution in the vicinity of the initial point. Due to the size of the solution space

in multibody trajectory optimization problems, however, the use of gradient-based

methods instead of a zeroth order method is attractive because a global search of

the solution space may be time-prohibitive.

An optimizer that uses a gradient-based method can search for a parameter

vector x that satisfies the constraints and minimizes the cost by adjoining the active

constraints to the objective function and satisfying the Kuhn-Tucker optimality

conditions. At an optimal point, c(x) = 0, d(x) > 0, and f(x) is a local minimum

such that any perturbation in x in the neighborhood of the minimum that still

satisfies the constraints will increase the value of f . It is not possible to say without

a comprehensive exploration of the solution space, however, whether or not the
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solutions are globally optimal. An optimal solution using a gradient-based method

is understood to be a locally optimal solution.

An algorithm that on each iteration minimizes a quadratic approximation

of the performance index subject to linearized constraints is known as a sequential

quadratic programming (SQP) algorithm. The Lagrangian is

L(x,µ) = f(x) + µ>c(x) (4.10)

where active inequality constraints have been added to c. An active inequality

constraint means that di(x) = 0, so the inequality constraint is functioning as an

equality constraint. The quadratic approximation of the updated Lagrangian is

L(x+ ∆x,µ) ≈ L(x,µ) +
∂L

∂x
∆x+

1

2
∆x>

∂

∂x

(
∂L

∂x

)>
∆x (4.11)

where the first derivative, or Jacobian, and second derivative, or Hessian, of the

Lagrangian are evaluated at x and µ. The change in the value of the Lagrangian is

∆L = L(x+ ∆x,µ)− L(x,µ) (4.12)

∆L =
∂L

∂x
∆x+

1

2
∆x>

∂

∂x

(
∂L

∂x

)>
∆x (4.13)

The updated linearized constraints are given by

c(x+ ∆x) = c(x) +
∂c

∂x
∆x (4.14)

Since the updated constraints should be satisfied, set c(x + ∆x) = 0. Equa-

tion (4.14) becomes

∂c

∂x
∆x = −c(x) (4.15)
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Now the quadratic performance index ∆L of Eq. (4.13) is minimized subject to

the linearized constraints of Eq. (4.15). The Hessian of the Lagrangian is not al-

ways known, and it may be computationally expensive to calculate, so it is often

estimated [77–82].

The SQP algorithm VF13 is used for optimization in this dissertation.1 Also

considered was SNOPT, an SQP algorithm developed for problems with sparse Jaco-

bians [83]. Both algorithms were implemented to solve the problems in this inves-

tigation, but VF13 proved to be more consistent in locating the optimal solution.

The intrinsic ability of VF13 that allows the user to quickly and explicitly bound

individual inter-iteration parameter stepsizes is essential for convergence due to the

nonlinearities associated with the orbit insertion sequence.

4.2.2 Analytical Gradients

Problems involving trajectories in multibody gravitational fields may contain

nonlinear functions that do not have simple analytical derivatives, so these gradients

are typically estimated numerically with finite differencing, automatic differentia-

tion [84, 85], or complex-step differentiation [86, 87]. However, the gradients can be

derived analytically with linear perturbation theory in which the partial derivative

of the state at one time with respect to the state at another time is given by the

state transition matrix (STM). Derivatives computed in this manner are referred

to as “variational derivatives” or “analytical derivatives.” In most cases the STM

1Information available at http://www.hsl.rl.ac.uk/archive/specs/vf13.pdf [accessed 15
March 2012]
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must be numerically integrated, so the derivatives are not truly analytical. Some

simple cases do exist where an analytic expression exists for the STM, but this is

not the case for multibody gravitational fields.

The use of linear perturbation theory to compute gradients eliminates the

need for finite differencing to compute derivatives and offers advantages over dif-

ferencing techniques. First, to obtain accurate derivatives by finite differencing,

stepsizes must be chosen for each parameter that avoid truncation error and round-

off error. These stepsizes are different for each parameter, may be different for each

function, and may change during the optimization process. The process of com-

puting optimal stepsizes is not trivial; one method of determining suitable stepsizes

is given in Ref. [88]. Second, the computation of derivatives via finite differencing

may be more time intensive than STM-based derivatives since differencing requires

the independent perturbation of each parameter and integration through the final

time. While STM-based derivatives require the propagation of the full STM once

per iteration, central differencing, for example, requires full state propagation twice

per parameter on each iteration. So, even though integrating the STM necessi-

tates the numerical propagation of n + n2 quantities for an n-element state vector,

a time savings over finite differencing can be achieved depending on the number

of parameters. Third, within the linear region of the nominal trajectory, the only

error in the analytical gradients results from errors in numerical integration. The

most significant disadvantage of STM-based derivatives is the amount of work re-

quired to derive and implement the gradients. The formulation used here is based

on a generalized variational procedure described in Ref. [89]. Examples of success-
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ful implementation of analytical gradients are seen in studies on multi-impulse and

finite-burn lunar transearth injection [90, 91], and Earth-Saturn trajectories with

intermediate planetary gravity assist [92, 93].

The differential of a function f(x1, x2, . . . , xn) of n independent variables

satisfies

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + · · ·+ ∂f

∂xn
dxn (4.16)

The partial derivative of f with respect to any xi is determined by finding the

coefficient of dxi in the differential of f . Thus, if the total differential of a function

can be derived in terms of independent differentials, the gradients with respect

the free parameters may be determined. For some cases, the differential may be

computed directly; for complex spacecraft trajectories, linear perturbation theory is

required to compute the total differential of the spacecraft state at a given time.

Consider the simplified transfer segments shown in Fig. 4.1 with two ballistic

arcs and three state discontinuities. This can represent, for example, a ballistic

spacecraft trajectory with velocity impulse maneuvers at the initial, intermediate,

and final times. But the discontinuities may represent an impulsive change in any

state element, and the state vector x can be defined by the user to accommodate

other mission design scenarios. Regardless of how the state and discontinuities

are defined, the total differential of the final state is derived so that the partial

derivatives necessary for optimization may be obtained. The state at the final time

is

x+
2 = x−2 + ∆x2 (4.17)
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x−0

t−0

x+
0

x−1

x+
1

x−2

x+
2

t+2

∆x0

∆x1

∆x2

Figure 4.1: Transfer segments with three state discontinuities.

Taking the differential,

dx+
2 = dx−2 + d(∆x2) (4.18)

Substituting for the total differential at t−2 gives

dx+
2 = δx−2 + ẋ−2 dt2 + d(∆x2) (4.19)

Utilizing Eq. (2.12), the total differential becomes

dx+
2 = Φ(t2, t1)δx+

1 + ẋ−2 dt2 + d(∆x2) (4.20)

where it is understood that

Φ(ti, ti−1) ≡ Φ(t−i , t
+
i−1) (4.21)
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Continuing,

dx+
2 = Φ(t2, t1)

[
dx+

1 − ẋ+
1 dt1

]
+ ẋ−2 dt2 + d(∆x2) (4.22)

dx+
2 = Φ(t2, t1)

{
Φ(t1, t0)

[
dx+

0 − ẋ+
0 dt0

]
+ d(∆x1)−∆ẋ1dt1

}
+ ẋ−2 dt2 + d(∆x2)

(4.23)

dx+
2 = Φ(t2, t1)

{
Φ(t1, t0)

[
dx−0 + d(∆x0)− ẋ+

0 dt0
]

+ d(∆x1)−∆ẋ1dt1

}
+ ẋ−2 dt2 + d(∆x2) (4.24)

where

∆ẋi ≡ ẋ+
i − ẋ−i (4.25)

Rearranging Eq. (4.24) gives

dx+
2 =Φ(t2, t1)Φ(t1, t0)

[
dx−0 + d(∆x0)− ẋ+

0 dt0

]
+

Φ(t2, t1)
[
d(∆x1)−∆ẋ1dt1

]
+

ẋ−2 dt2 + d(∆x2) (4.26)

Equation (4.26) is used to determine the gradient of the final state with respect to

any state discontinuity or discontinuity time. For example, the gradient of the final

state with respect to the time of the intermediate discontinuity is

∂x+
2

∂t1
= −Φ(t2, t1)∆ẋ1 (4.27)

by finding the coefficient of dt1 in Eq. (4.26). The same procedure is used for the

remaining gradients. Next, consider the final state differential for a case with three
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ballistic arcs and four state discontinuities given by

dx+
3 =Φ(t3, t2)Φ(t2, t1)Φ(t1, t0)

[
dx−0 + d(∆x0)− ẋ+

0 dt0

]
+

Φ(t3, t2)Φ(t2, t1)
[
d(∆x1)−∆ẋ1dt1

]
+

Φ(t3, t2)
[
d(∆x2)−∆ẋ2dt2

]
+

ẋ−3 dt3 + d(∆x3) (4.28)

where the derivation is similar to that of the two arc case. Examining Eq. (4.26)

and Eq. (4.28), it is seen that differentials associated with the t0 node are multiplied

by each STM through the final node. Terms associated with internal nodes are

multiplied by each subsequent STM. Terms associated with the final node are not

multiplied by any STM. Extending this pattern through n ballistic arcs as shown

in Fig. 4.2, the general form of the final state differential with an impulsive state

discontinuity occurring at each node is

dx+
n =

[
n∏
i=1

Φ(ti−1, ti)

]−1(
dx−0 + d(∆x0)− ẋ+

0 dt0

)
+

n−1∑
i=1


[
n−1∏
j=i

Φ(tj, tj+1)

]−1(
d(∆xi)−∆ẋidti

)+ ẋ−n dtn + d(∆xn) (4.29)

for n > 1. This result allows the gradients of the spacecraft state at a given time

with respect to the free parameters to be obtained. The inverted coefficients in

Eq. (4.29) are used for notational brevity; but because it is known that

Φ−1(tj, ti) = Φ(ti, tj) (4.30)

no matrix inversion is necessary to compute the coefficients in Eq. (4.29).
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Figure 4.2: General transfer segments with n ballistic arcs and n + 1 state discon-
tinuities.

4.2.2.1 Gradient Validation

To validate the analytically derived gradients, they are compared to finite

difference gradients computed with a method that minimizes the roundoff error and

truncation error. This algorithm2 is essential when using parameters that cannot

always be intuitively estimated, such as the costates of the optimal control problem.

Once the analytical and finite difference gradients have been generated, a difference

metric is used to compare an analytic gradient α to a finite difference gradient β.

The chosen difference metric is

d ≡ 100 sign(αβ)
|α− β|
1 + |β|

(4.31)

which is similar to that suggested in Ref. [94]. This metric behaves as a relative

percent difference at large values of the gradient and as an absolute difference at

2Restrepo, R. L., “Gradient Tuning Algorithm,” Unpublished, Department of Aerospace Engi-
neering and Engineering Mechanics, University of Texas at Austin, Oct. 2011.
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small values of the gradient. An error is clearly indicated if d < 0 since this indicates

the gradients are of opposite sign, and experience has shown that there is usually

an error in the analytical gradient derivation or in the implementation if d > 2.

However, there is no unequivocal standard by which to know a gradient is incorrect.

The value of d can also be influenced by an inaccurate finite difference gradient

or by errors in numerical integration that affect both the analytical and numerical

gradient.

4.2.3 Scaling

Scaling the cost function, constraints, and free parameters is essential for

convergence of trajectory optimization problems. Various authors stress the im-

portance of scaling and suggest appropriate methods [94–96]. For most problems

presented here, it is sufficient to use a simple scaling scheme given by

f̃ =
1

sf
f (4.32)

x̃ = S−1
x x (4.33)

c̃ = S−1
c c (4.34)

d̃ = S−1
d d (4.35)

where f̃ , x̃, c̃, d̃ are the scaled objective function, parameters, equality constraints,

and inequality constraints; sf is cost scale, and Sx, Sc, Sd are diagonal matrices

consisting of the parameter scales, equality constraint scales, and inequality con-

straint scales, respectively. In an effort to achieve scaled parameter values on the

68



order of one, the scale of the ith parameter is chosen as

sxi =

{
10α if |xi0| > 1
1 if |xi0| 6 1

(4.36)

where xi0 is the initial value of the ith parameter and

α ≡ floor(log10 |xi0|) + 1) (4.37)

The scales for the objective function and constraints are chosen in the same manner.

For cases where the simple scaling scheme does not produce satisfactory

results, such as the hybrid optimal control problem, the geometric mean scaling

scheme suggested by Fourer [96] is used. This method simultaneously chooses the

parameter and constraint scales such that the Jacobian matrix of the constraints

has entries with a minimum magnitude difference between elements. The scaling

procedure is:

1. Compute the Jacobian of the constraints as

A ≡

 ∂c
∂x

∂d
∂x

 =


a11 a12 · · · a1n

a21 a22
...

a31
. . .

...
a(m+p)1 · · · a(m+p)n


(m+p)×n

(4.38)

2. Compute the maximum element magnitude ratio in each column of the Jaco-

bian and retain the maximum ratio ρ0 as

ρ0 = max
j

(
maxi |aij|
mini |aij|

)
(4.39)

for aij 6= 0 where i is the Jacobian row index and j is the Jacobian column

index. Set an index k = 1.
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3. Divide each row of A by that row’s geometric mean, which becomes the scale

of the ith constraint, given by

sci =

[(
min
j
|aij|

)(
max
j
|aij|

)] 1
2

(4.40)

4. Divide each column ofA by that column’s geometric mean, which is the inverse

scale of the jth parameter, given by

1

sxj
=
[(

min
i
|aij|

)(
max
i
|aij|

)] 1
2

(4.41)

5. Set the new maximum value of the maximum column element magnitude ratios

to

ρk = max
j

(
maxi |aij|
mini |aij|

)
(4.42)

for aij 6= 0.

6. If ρk > 0.99ρk−1, then scaling is complete; otherwise, set k = k + 1 and

return to step 3. When step 3 and step 4 are repeated, subsequent scales are

multiplied together.

This scaling scheme has proved effective when the optimizer does not make progress

with the simple scaling scheme and when the optimizer is near the optimal solution

but not converged.

4.3 Optimal Control Theory

Optimal control theory provides a method for extremizing a performance

index, the sum of a terminal cost function plus an integrated cost function over
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a continuous time domain. The theory establishes mathematical requirements on

a piecewise continuous control u(t) that drives the state x(t) from initial to final

conditions, subject to the system dynamics ẋ(t) = f(t,x,u), in such a way that the

performance index is optimized. At an optimal solution, the performance index is

stationary with respect to the control. This requirement that the first differential of

the performance index vanish imposes necessary conditions on the optimal solution.

The general optimal control problem is to minimize the performance index

given by

J = φ(tf ,xf ) +

∫ tf

t0

L(t,x(t),u(t))dt (4.43)

subject to the system dynamics

ẋ = f(t,x,u) (4.44)

the initial conditions

θ(t0,x0) = 0 (4.45)

and the final conditions

ψ(tf ,xf ) = 0 (4.46)

where φ is the terminal cost and L is the Lagrangian which determines the accu-

mulated cost [97]. Because the solution must satisfy the system dynamics and the

prescribed constraints, the minimization of J must be constrained such that it sat-

isfies these requirements. This is accomplished by adjoining the constraints to the

performance index with Lagrange multipliers to form an augmented performance

index, given by

J ′ = φ(tf ,xf )+ν>ψ(tf ,xf )+ξ>θ(t0,x0)+

∫ tf

t0

[
L(t,x,u) + λ>(f − ẋ)

]
dt (4.47)
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where ν, ξ, and λ(t) are Lagrange multipliers. The time varying multipliers λ(t) are

also called the costates of the optimal control problem. The augmented performance

index can be more succinctly written as

J ′ = G+

∫ tf

t0

[
H − λ>ẋ

]
dt (4.48)

where G is the endpoint function, defined as

G(tf ,xf ,ν, t0,x0, ξ) ≡ φ(tf ,xf ) + ν>ψ(tf ,xf ) + ξ>θ(t0,x0) (4.49)

and H is the Hamiltonian, defined as

H(t, x,u,λ) ≡ L(t,x,u) + λ>f(t,x,u) (4.50)

At a minimum point, it is necessary that the first differential of the performance

index is zero. Taking the differential of J ′ and requiring dJ ′ = 0 gives necessary

conditions for an optimal point. Collectively, the conditions that concern the state

evolution, costate evolution, and control history are called the Euler-Lagrange equa-

tions, and the conditions that specify the boundary conditions of the costates and

the Hamiltonian are called the natural boundary conditions or transversality condi-

tions.

As derived in Appendix C, the Euler-Lagrange equations are

ẋ = f (4.51)

λ̇ = −
(
∂H

∂x

)>
(4.52)

0 =

(
∂H

∂u

)>
(4.53)
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and the natural boundary conditions are

H0 =
∂G

∂t0
(4.54)

λ0 = −
(
∂G

∂x0

)>
(4.55)

Hf = −∂G
∂tf

(4.56)

λf =

(
∂G

∂xf

)>
(4.57)

Two common numerical solution methods for optimal control problems are

the indirect method and the hybrid method. In the indirect method, the perfor-

mance index is optimized indirectly by solving a square system of nonlinear equa-

tions comprised of the problem constraints and the natural boundary conditions.

The time evolution of the state, costates, and control is governed by the Euler-

Lagrange equations. Numerical convergence of the indirect method may be difficult

due to the sensitivity of the costate equations and the inability to generate an ini-

tial estimate within the convergence envelope of the algorithm. By contrast, the

hybrid method utilizes a parameter optimization algorithm to directly optimize the

performance index while the control is driven according to optimal control theory.

Thus, the transversality conditions will be satisfied implicitly when the performance

index is optimized. One advantage of the hybrid method is that state and control

constraints can be easily applied in a parameter optimization framework. Both

the indirect and hybrid method can be aided by an adjoint control transformation

which produces estimates of the costates based on physically meaningful quantities.
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In spacecraft trajectory optimization, it is customary to estimate the costates based

on the angular orientation of the thrust vector.

4.3.1 Optimal Thrust Pointing

Consider the minimization of a performance index given by

J ≡ m0 −mf (4.58)

where m0 is the initial spacecraft mass and mf is the final spacecraft mass; thus,

the total propellant mass is minimized. The spacecraft state is

x =

rv
m


7×1

(4.59)

where r, v, and m represent the spacecraft’s position, velocity, and mass; each

quantity is an implicit function of time. The state time derivative is

ẋ =


ṙ

v̇

ṁ

 =


v

g + T
m
û

−T
c

 (4.60)

where g is the position-dependent gravitational acceleration, which may be time-

varying, T is the thrust magnitude, û is the thrust direction, and c is the constant

exhaust velocity. The spacecraft state is controlled by specifying control histories

for T and û, where the controls are subject to the following constraints:

û>û− 1 = 0 (4.61)

(TMAX − T )T − α2 = 0 (4.62)
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where α is a slack variable. Forming the variational Hamiltonian of the optimal

control problem,

H = λ>r v + λ>v g + T

(
λ>v û

m
− λm

c

)
(4.63)

where λ is a vector of time-varying Lagrange multipliers. Adjoining the control

constraints to the Hamiltonian with Lagrange multipliers gives the extended Hamil-

tonian as

Ĥ = λ>r v + λ>v g + T

(
λ>v û

m
− λm

c

)
+ µ1

(
û>û− 1

)
+ µ2

[
(TMAX − T )T − α2

]
(4.64)

The Euler-Lagrange equations are

ẋ = f (4.65)

λ̇ = −

(
∂Ĥ

∂x

)>
(4.66)

0 =

(
∂Ĥ

∂u

)>
(4.67)

where u represents the controls. Expanding the costate equation,

λ̇r = −

(
∂Ĥ

∂r

)>
= −Gλv (4.68)

where G ≡ ∂g/∂r is the symmetric gravity gradient matrix. Continuing,

λ̇v = −

(
∂Ĥ

∂v

)>
= −λr (4.69)

Last,

λ̇m = −

(
∂Ĥ

∂m

)
=

T

m2
λ>v û (4.70)
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Expanding the control equation gives

0 =

(
∂Ĥ

∂û

)>
=
T

m
λv + 2µ1û (4.71)

0 =
∂Ĥ

∂T
=
λ>v û

m
− λm

c
+ µ2(TMAX − 2T ) (4.72)

0 =
∂Ĥ

∂α
= −2µ2α (4.73)

Solving Eq. (4.71) for û gives

û =
−T

2µ1m
λv (4.74)

Depending on the sign of µ1, û points either in the direction of λv or in the direction

of −λv. Pontryagin’s minimum principle [98] states that the optimal values of the

controls T and û minimize the Hamiltonian at all points along the optimal path.

To minimize H, û should be chosen as

û = −λv
λv

(4.75)

The Hamiltonian becomes

H = λ>r v + λ>v g − T
(
λv
m

+
λm
c

)
(4.76)

= λ>r v + λ>v g − ST (4.77)

where the switching function is defined as

S ≡ λv
m

+
λm
c

(4.78)

Since the thrust magnitude is limited to the range 0 6 T 6 TMAX , the value of

T that minimizes H depends on the value of the switching function. If S < 0, T
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should be minimized; if S = 0, T is free; and if S > 0, T should be maximized.

Thus, the optimal value of T is

T =


0 if S < 0

TMAX if S > 0
0 6 T 6 TMAX if S = 0

(4.79)

Now that the optimal values of û and T are known, the evolution of the mass costate

becomes

λ̇m = −Tλv
m2

(4.80)

4.3.1.1 Switching Function Evolution

Differentiating the switching function (Eq. (4.78)) with respect to time,

Ṡ =
λ̇v
m
− λv
m2

ṁ+
λ̇m
c

=
λ̇v
m

(4.81)

On a null-thrust arc, T = 0, so ṁ = 0. Integrating Ṡ on a null-thrust arc gives

S =
λv
m

+ C (4.82)

where C is a constant. Maximum thrusting occurs where S > 0; null-thrusting

occurs where S < 0. Thus, the propulsion system is activated when S = 0 and

Ṡ > 0; the propulsion system is deactivated when S = 0 and Ṡ < 0.

To understand the behavior of the switching function at the endpoints of a

transfer, consider the problem of minimizing the amount of propellant used for orbit

transfer where the departure time along the initial orbit is constrained. Figure 4.3

shows the orbit transfer where the departure time τ0, which specifies the elapsed
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τ0

Initial Orbit

t0

Final Orbit

τf

tf
Transfer

Figure 4.3: Orbit transfer problem.

time from a reference epoch on the first orbit, is required to be greater than some

minimum time. The objective function is

J = m0 −mf (4.83)

The position, velocity, and mass are required to be continuous for a valid orbit

transfer. Additionally, the constraint on the departure time is τ0 > τMIN , and if

this constraint is assumed to be active, τ0 − τMIN = 0. Therefore, the constraints

at the initial time are

θ =


r0 − r(τ0)
v0 − v(τ0)
m0 −m(τ0)
τ0 − τMIN

 = 0 (4.84)

where t0 is the initial time; r0, v0, and m0 are the initial position, velocity, and

mass on the transfer segment; and r(τ0), v(τ0), and m(τ0) are the position, velocity,

and mass at the departure point along the initial orbit. The kinematic constraints

at the final time require

ψ =

[
rf − r(τf )
vf − v(τf )

]
= 0 (4.85)
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where rf and vf are the position and velocity at the transfer orbit’s endpoint, and

r(τf ) and v(τf ) are the position and velocity at the endpoint along the final orbit;

the quantity τf is the elapsed time on the final orbit relative to a reference epoch.

The endpoint function is

G = m0 −mf + ξ>r [r0 − r(τ0)] + ξ>v [v0 − v(τ0)] + ξm[m0 −m(τ0)]

− ξt[τ0 − τMIN ] + ν>r [rf − r(τf )] + ν>v [vf − v(τf )] (4.86)

where the constraints have been adjoined to the cost function with Lagrange multi-

pliers. The Hamiltonian is

H = λ>r v + λ>v g − ST (4.87)

The transversality conditions require

λ0 = −
(
∂G

∂x0

)>
=

−ξr−ξv
−ξm

 (4.88)

and the condition on the parameter τ0 is

0 =
∂G

∂τ0

+

∫ tf

t0

∂H

∂τ0

dt (4.89)

0 = −ξ>r v(τ0)− ξ>v g(τ0)− ξt (4.90)

as shown in Appendix C. Applying the transversality conditions to Eq. (4.90) gives

λ>r0v(τ0) + λ>v0
g(τ0)− ξt = 0 (4.91)

Once the kinematic constraints are satisfied,

λ>r0v0 + λ>v0
g0 − ξt = 0 (4.92)
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The condition on the initial value of the Hamiltonian is

H0 =
∂G

∂t0
(4.93)

λ>r0v0 + λ>v0
g0 − S0T0 = 0 (4.94)

Combining Eq. (4.92) and Eq. (4.94) and solving for S0 gives

0 = ξt − S0T0 (4.95)

S0 =
ξt
T0

(4.96)

Thus, S0 is nonzero unless ξt = 0. To initiate the orbit transfer, T > 0, and if the

transfer is optimal, S > 0 while the engine is thrusting. It is expected, therefore,

that S0 will be nonzero and positive when the constraint on the departure time is

active.

At the final time, the transversality conditions require

λ>rfvf + λ>vfgf = 0 (4.97)

and the final value of the Hamiltonian is

Hf = −∂G
∂tf

(4.98)

λ>rfvf + λ>vfgf − SfTf = 0 (4.99)

Combining Eq. (4.97) and Eq. (4.99) gives

SfTf = 0 (4.100)

At the end of the transfer, the thrust should switch from TMAX to null thrust, so

Sf = 0 Ṡf < 0 (4.101)
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4.3.2 Adjoint Control Transformation

It was shown that the velocity costate points in the anti-thrust direction

along finite thrust arcs, and the negative position costate is the time derivative of

the velocity costate. The orientation of λr and the orientation of λv over null-thrust

arcs, however, do not have a simple physical interpretation. In order to estimate

these quantities, it is desired to derive a relationship between the costates and

physically meaningful quantities. The method chosen here uses the right ascension

and declination and corresponding rates of a linearly steered finite burn to estimate

the position and velocity costates.3

The thrust direction û must satisfy

û>û = 1 (4.102)

by the definition of a unit vector. Differentiating,

˙̂u
>
û+ û> ˙̂u = 0 (4.103)

˙̂u
>
û = 0 (4.104)

which simply indicates the velocity of a unit vector must be perpendicular to the

unit vector. Differentiating again,

¨̂u
>
û+ ˙̂u

> ˙̂u = 0 (4.105)

¨̂u
>
û = − ˙̂u

> ˙̂u (4.106)

3Ocampo, C. A., “Exact Impulsive to Time Optimal Finite Burn Trajectory Automation,”
Unpublished, Department of Aerospace Engineering and Engineering Mechanics, University of
Texas at Austin, Jun. 2011.
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Suppose a linearly steered finite thrust maneuver is specified in a non-rotating

frame with basis vectors x̂, ŷ, and ẑ. In terms of the finite burn’s initial right

ascension α, measured relative to the x̂ axis, and the initial declination β, measured

relative to the x̂ŷ plane, the thrust pointing vector is

û = cosα cos β x̂+ sinα cos β ŷ + sin β ẑ (4.107)

Differentiating,

˙̂u = (−α̇ sinα cos β − β̇ cosα sin β) x̂+ (α̇ cosα cos β − β̇ sinα sin β) ŷ + β̇ cos β ẑ

(4.108)

Differentiating again,

¨̂u =
(
− α̇2 cosα cos β + 2α̇β̇ sinα sin β − β̇2 cosα cos β

)
x̂

+
(
− α̇2 sinα cos β − 2α̇β̇ cosα sin β − β̇2 sinα cos β

)
ŷ

+
(
− β̇2 sin β

)
ẑ (4.109)

where α̈ and β̈ are set to zero.

At this point, given the initial right ascension and declination and rates, the

initial thrust direction, velocity, and acceleration are known. Application of the

Pontryagin minimum principle showed that the velocity costate is

λv = −λvû (4.110)

where the value of λv may be set to scale the magnitudes of the costates. Differen-

tiating Eq. (4.110) gives

λ̇v = −λ̇vû− λv ˙̂u (4.111)

λr = λ̇vû+ λv ˙̂u (4.112)
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where û and ˙̂u are known and λv is set, but λ̇v is unknown. Differentiating again,

λ̇r = λ̈vû+ λ̇v ˙̂u+ λ̇v ˙̂u+ λv ¨̂u (4.113)

−Gλv = λ̈vû+ 2λ̇v ˙̂u+ λv ¨̂u (4.114)

where ¨̂u is known. Substituting for λv,

λvGû = λ̈vû+ 2λ̇v ˙̂u+ λv ¨̂u (4.115)

Dotting each side with ˙̂u gives

λv(Gû)> ˙̂u = λ̈vû
> ˙̂u+ 2λ̇v ˙̂u

> ˙̂u+ λv ¨̂u
> ˙̂u (4.116)

By Eq. (4.104) it is known that ˙̂u
>
û = 0, so

λv(Gû)> ˙̂u = 2λ̇v ˙̂u
> ˙̂u+ λv ¨̂u

> ˙̂u (4.117)

Solving for λ̇v,

2λ̇v ˙̂u
> ˙̂u = λv(Gû)> ˙̂u− λv ¨̂u

> ˙̂u (4.118)

λ̇v =
λv

2 ˙̂u
> ˙̂u

[
λv(Gû)> ˙̂u− λv ¨̂u

> ˙̂u
]

(4.119)

Now λr and λv are known.

Finally, it is known that the switching function must be zero when a burn is

initiated or terminated at an internal switching point. If the activation or deactiva-

tion time is ti then

Si =
λvi
mi

+
λmi

c
= 0 (4.120)
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where the subscript i indicates the quantity is evaluated at ti. Solving for the mass

costate gives

λmi
= − c

mi

λvi (4.121)

Now λm is known in addition to λr and λv, so the adjoint control transformation is

complete.

4.3.3 Optimal Control Variational Equations

The optimal control variational equations are used to propagate the STM,

which is used for gradient computation. First, define the augmented state as

z ≡


r
v
m
λr
λv
λm


14×1

(4.122)

The time derivative of the augmented state is

ż =



v

g − T
m
λ̂v

−T
c

−Gλv
−λr
− T
m2λv

 (4.123)

The state propagation matrix is

∂ż

∂z
=



0 I 0 0 0 0

G 0 T
m2 λ̂v 0 ∂

∂λv

(
− T
m
λ̂v

)
0

0> 0> 0 0> 0> 0
− ∂
∂r

(Gλv) 0 0 0 −G 0
0 0 0 −I 0 0

0> 0> 2Tλv
m3 0> − T

m2 λ̂
>
v 0


14×14

(4.124)
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The partial of the thrust acceleration with respect to the velocity costate is

∂

∂λv

(
− T
m
λ̂v

)
= − T

m

∂

∂λv

[
λv
(
λ>v λv

)− 1
2

]
(4.125)

= − T
m

[
I

λv
− 1

2
λv
(
λ>v λv

)− 3
2 2λ>v

]
(4.126)

=
T

m

[
λvλ

>
v

λ3
v

− I

λv

]
(4.127)

The partial of the position costate rate with respect to the spacecraft position is

∂

∂r
(−Gλv) = −

[
∂G
∂x
λv

∂G
∂y
λv

∂G
∂z
λv
]

3×3
(4.128)

The gravity gradient matrix in moon-centered coordinates is

G =
3µM
r5
rr> − µM

r3
I +

3µE
r5
EP

rEPr
>
EP −

µE
r3
EP

I +
3µS
r5
SP

rSPr
>
SP −

µS
r3
SP

I (4.129)

The gradient of the first term in G with respect to x is

∂

∂x

(
3µM
r5
rr>

)
= 3µMrr

> ∂

∂x

(
r−5
)

+
3µM
r5

∂

∂x

(
rr>

)
(4.130)

= 3µMrr
> ∂

∂x

[(
x2 + y2 + z2

)− 5
2

]
+

3µM
r5

∂

∂x

x2 xy xz
xy y2 yz
xz yz z2


(4.131)

= 3µMrr
>
[
−5

2

(
x2 + y2 + z2

)− 7
2 2x

]
+

3µM
r5

2x y z
y 0 0
z 0 0

 (4.132)

=
−15µMx

r7
rr> +

3µM
r5

2x y z
y 0 0
z 0 0

 (4.133)
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The gradient of the second term in G with respect to x is

∂

∂x

(
−µM
r3
I
)

=
∂

∂x

[
−µM

(
x2 + y2 + z2

)− 3
2

]
I (4.134)

=
3

2

(
x2 + y2 + z2

)− 5
2 2xI (4.135)

=
3µMx

r5
I (4.136)

The gradient of the third term in G with respect to x is

∂

∂x

(
3µE
r5
EP

rEPr
>
EP

)
=
−15µExEP

r7
EP

rEPr
>
EP +

3µE
r5
EP

2xEP yEP zEP
yEP 0 0
zEP 0 0

 (4.137)

And the gradient of the fourth term in G with respect to x is

∂

∂x

(
− µE
r3
EP

I

)
=

3µExEP
r5
EP

I (4.138)

The gradients of the last two terms in G are similar. Thus, the derivative of G with

respect to x is

∂G

∂x
=

3µMx

r5
I − 15µMx

r7
rr> +

3µM
r5

2x y z
y 0 0
z 0 0


+

3µExEP
r5
EP

I − 15µExEP
r7
EP

rEPr
>
EP +

3µE
r5
EP

2xEP yEP zEP
yEP 0 0
zEP 0 0


+

3µSxSP
r5
SP

I − 15µSxSP
r7
SP

rSPr
>
SP +

3µS
r5
SP

2xSP ySP zSP
ySP 0 0
zSP 0 0

 (4.139)

The gradients of G with respect to y and z are similarly derived. Now that the

partial derivative of −Gλv with respect to r is known, the state propagation matrix

can be constructed, and the STM can be numerically integrated, which is necessary

for the analytical gradient formulation.
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Chapter 5

Lunar Orbit Insertion from a Free Return in the

Three-Body Model

In this chapter, the transfer of a spacecraft from a free return trajectory

to a closed lunar orbit is optimized in the circular restricted three-body problem

(CRTBP). An impulsive engine model is used, and the sum of the lunar orbit in-

sertion (LOI) maneuver magnitudes is minimized. First, an initial estimate of the

three-burn LOI sequence is developed in the two-body model. Optimal solutions

are then determined with a fixed, minimum time free return to establish baseline

propulsion requirements. The free return is then allowed to vary but must remain

symmetric. In the most general case, the free return may be asymmetric. Analytical

gradients are derived for each case to facilitate convergence.

The engine model in this chapter is said to be impulsive since it is capable

of producing an instantaneous change in the spacecraft’s velocity. In reality, a finite

amount of time is required to alter the spacecraft’s velocity. Impulsive changes in the

velocity, however, can provide an adequate estimate of finite thrust maneuvers if the

available thrust level is high enough that firing times do not constitute a significant

portion of the trajectory. The maximum thrust level of the Apollo service propulsion

system was approximately 90 kN [69], and the maximum thrust of the Orion crew
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vehicle currently under development is approximately 35 kN.1 It will subsequently

be shown for an example case of the free return and LOI optimization problem that

the longest continuous activation of a 35 kN finite thrust engine is about 0.05% of the

total flight time, indicating the impulsive maneuver approximation is appropriate.

5.1 Initial Estimate

The initial estimate of the LOI sequence is constructed by connecting the

incoming free return to the low lunar orbit (LLO) through an impulsive three-burn

sequence. The spacecraft state along the free return at its entry to the lunar sphere

of influence is determined numerically by propagating the base free return from

translunar injection (TLI) towards the moon and utilizing a root-finding routine

to determine the time at which the trajectory enters the lunar sphere of influence.

The radius of the sphere of influence used here is R = rEM(µM/µE)2/5 ≈ 66170

km, which is approximately 17% of the earth-moon distance [99]. The state is

then transferred to a moon-centered frame, and, if no maneuvers were performed, a

spacecraft following this trajectory would perform a hyperbolic flyby of the moon.

The goal here, however, is to transfer the spacecraft to a closed lunar parking orbit.

A feasible LOI sequence is constructed analytically with the Keplerian model by

ignoring Earth’s gravity and lunar motion over the time of LOI. Neither of these

conditions reflect reality, but the two-body targeting algorithm needs only to gen-

erate an LOI sequence that is near a feasible trajectory in the three-body model.

1Information available at http://www.nasa.gov/pdf/510449main_SLS_MPCV_90-day_

Report.pdf [accessed 15 March 2012]
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Once the Earth’s gravity is activated, the sequence will be integrated backwards

in time from the LLO, resulting in a position and velocity mismatch at the lunar

sphere of influence. By iterating on the LOI maneuvers and transfer times, state

continuity can be satisfied and the resultant feasible trajectory will be the initial

estimate for subsequent optimization.

Between the Earth and moon, the spacecraft performs a maneuver, LOI-0, to

depart the free return path and target a more favorable approach for parking orbit

insertion. At the moon, three maneuvers are performed. The first, LOI-1, produces

an orbit with negative Keplerian energy relative to the moon; the second, LOI-2,

performs the majority of the required plane change; and the third, LOI-3, circularizes

the trajectory. An overview is shown in Fig. 5.1. The incoming hyperbola will be

labeled orbit 0 or O0, the first transfer ellipse is orbit 1 or O1, the second transfer

ellipse is orbit 2 or O2, and the LLO is orbit 3 or O3.

E

M

TLI

LOI-0

(a)

M

LOI-3

LOI-2

LOI-1

(b)

Figure 5.1: Earth to moon transfer: a) Free return and cislunar maneuver, and b)
lunar orbit insertion.

Orbit 0 is a hyperbolic flyby of the moon. Its initial state is the free return

state relative to the moon at the point where the spacecraft enters the lunar sphere

of influence. This gives the incoming hyperbolic velocity v−∞ and the initial position
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r−∞ relative to the moon. The angular momentum direction of the hyperbolic flyby

trajectory is

ĥ∞ =
r−∞ × v−∞
|r−∞ × v−∞|

(5.1)

Next, it is necessary to determine the post-flyby hyperbolic velocity. The incoming

velocity v−∞ is rotated through the turning angle δ about ĥ∞. Define a set of axes

as

n̂1 ≡ ĥ∞ × v̂−∞ n̂2 ≡ v̂−∞ n̂3 ≡ n̂1 × n̂2 (5.2)

Define a second set of axes as

n̂′1 ≡ ĥ∞ × v̂+
∞ n̂′2 ≡ v̂+

∞ n̂′3 ≡ n̂′1 × n̂′2 (5.3)

The second set of axes is achieved by rotating the first set about n̂3 through an

angle of −δ as n̂′>1n̂′>2
n̂′>3


3×3

= R3(−δ)

n̂>1n̂>2
n̂>3


3×3

(5.4)

where Ri is the rotation matrix about the ith axis. Expanding,n̂′>1n̂′>2
n̂′>3

 =

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

n̂>1n̂>2
n̂>3

 (5.5)

=

cos δ n̂>1 − sin δ n̂>2
sin δ n̂>1 + cos δ n̂>2

n̂>3

 (5.6)

Now, the post-flyby hyperbolic velocity direction can be computed as

n̂′2 = sin δ n̂1 + cos δ n̂2 (5.7)

v̂+
∞ = sin δ (ĥ∞ × v̂−∞) + cos δ (v̂−∞) (5.8)
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where the turning angle is

δ = 2 sin−1 1

e0

(5.9)

and e0 is the eccentricity of the hyperbolic flyby. The eccentricity is the magnitude

of the eccentricity vector, which is given by

e0 =
v−∞ × h∞

µM
− r

−
∞
r−∞

(5.10)

With the pre- and post-flyby hyperbolic velocity vectors known, the periapsis direc-

tion of O0 is

p̂0 =
v−∞ − v+

∞
|v−∞ − v+

∞|
(5.11)

The LOI-1 capture maneuver is performed at the intersection of O0 and the

plane of O3, provided that −90 deg 6 ν1 6 90 deg where ν1 is the true anomaly

along O0 where LOI-1 is performed. LOI-1 is constructed such that O0 and O1 are

coplanar and the post-maneuver point is the periapsis point of a transfer ellipse with

a specified apoapsis radius. The periapsis direction of O1 is

p̂1 = ψ
ĥ3 × ĥ∞
|ĥ3 × ĥ∞|

(5.12)

where ĥ3 is the angular momentum direction of the LLO and

ψ ≡ sign

[(
ĥ3 × ĥ∞

)>
p̂0

]
(5.13)

The coefficient ψ keeps the magnitude of the true anomaly of the LOI-1 point along

O0 less than 90 deg. When this true anomaly is zero, there is no flight path angle

change across LOI-1 since this is always the periapsis of O1. As the magnitude of

ν1 increases, so does the flight path angle change across LOI-1 and, consequently,
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the ∆V requirement. This non-optimal flight path change over LOI-1 is the main

shortcoming of this initial estimate strategy, but because of the method’s simplicity

and the ability of the optimizer to later reduce the magnitude of this maneuver, it

is not judged as a major drawback.

The flight time from entry into the lunar sphere of influence to LOI-1 along

O0 is

t1 − t∞ =

√
(−a0)3

µM

[
(e0 sinhF1 − F1)− (e0 sinhF∞ − F∞)

]
(5.14)

where F∞ and F1 are the hyperbolic eccentric anomalies at lunar sphere of influence

entry and at LOI-1 [99]. These are given by

F∞ = − cosh−1

[
e0 + cos ν∞

1 + e0 cos ν∞

]
(5.15)

F1 = ξ cosh−1

[
e0 + cos ν1

1 + e0 cos ν1

]
(5.16)

and the true anomalies at lunar sphere of influence entry and LOI-1 along O0 are

given by

ν∞ = cos−1

[ p0

r∞
− 1

e0

]
(5.17)

ν1 = ξ cos−1(p̂>0 p̂1) (5.18)

where

ξ ≡ sign(p̂>1 v̂p0) (5.19)

The periapsis velocity direction on O0 is

v̂p0 =
v−∞ + v+

∞
|v−∞ + v+

∞|
(5.20)
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The velocity immediately before LOI-1 is

v−1 = −
√
µM
p0

sin ν1 p̂0 +

√
µM
p0

(e0 + cos ν1) q̂0 (5.21)

where

q̂0 ≡ ĥ∞ × p̂0 (5.22)

The semi-major axis of O0 is found by applying the vis-viva equation, which gives

−µM
2a0

=
v2
∞
2
− µM
r∞

(5.23)

a0 = −µM
2

(
v2
∞
2
− µM
r∞

)−1

(5.24)

where µM/r∞ 6= 0 since the lunar sphere of influence has a known, finite radius.

The semi-latus rectum of O0 is

p0 = a0

(
1− e2

0

)
(5.25)

The velocity immediately after LOI-1 on O1 is

v+
1 = −

√
µM
p1

sin 0 p̂1 +

√
µM
p1

(e1 + cos 0) q̂1 (5.26)

v+
1 =

√
µM
p1

(e1 + 1) q̂1 (5.27)

The eccentricity of O1 is

e1 =
ra1 − rp1

ra1 + rp1

(5.28)

where the apoapsis radius ra1 of O1 is set at 10000 km and

q̂1 ≡ ĥ1 × p̂1 (5.29)
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Because it is known that O0 and O1 are coplanar,

ĥ1 = ĥ∞ (5.30)

The periapsis radius of O1 is

rp1 =
p0

1 + e0 cos ν1

(5.31)

Now that v−1 and v+
1 are known, LOI-1 can be computed as

∆v1 = v+
1 − v−1 (5.32)

∆v1 =

√
µM
p1

(e1 + 1) q̂1 +

√
µM
p0

sin ν1 p̂0 −
√
µM
p0

(e0 + cos ν1) q̂0 (5.33)

Values of 20000 km and 30000 km were also considered for the apoapsis radius, but

although these are closer to the optimal solution, the increased apolune altitude

resulted in greater dispersion when changing from the two-body to the three-body

model. This incurred position errors significant enough that feasible trajectories

could not be found numerically in some cases when propagated with Earth’s gravity.

These errors result from the fact that both Earth gravity and lunar movement during

the period of LOI are neglected in the conic model.

The spacecraft travels from periapsis to apoapsis on O1; therefore, the time

of flight on O1 from LOI-1 to LOI-2 is

t12 = π

√
a3

1

µM
(5.34)

where

a1 =
1

2
(rp1 + ra1) (5.35)
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LOI-2 occurs at apoapsis of O1. The velocity immediately before LOI-2 is

v−2 = −
√
µM
p1

sin π p̂1 +

√
µM
p1

(e1 + cos π) q̂1 (5.36)

v−2 =

√
µM
p1

(e1 − 1) q̂1 (5.37)

All the plane change is performed by LOI-2 since O1 is in the plane of the incoming

hyperbola and O2 is in the plane of the LLO.

The Earth-moon plane is spanned by the x̂ŷ axes of the fixed, moon-centered

frame. These axes span the O3 plane after a rotation of +Ω about the ẑ axis and a

rotation of −i about the x̂′ axis. The transformation isx̂′′>ŷ′′>
ẑ′′>

 = R1(−i)R3(Ω)

x̂>ŷ>
ẑ>

 (5.38)

x̂′′>ŷ′′>
ẑ′′>

 =

1 0 0
0 cos i − sin i
0 sin i cos i

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

x̂>ŷ>
ẑ>

 (5.39)

x̂′′>ŷ′′>
ẑ′′>

 =

 cos Ω sin Ω 0
− sin Ω cos i cos Ω cos i − sin i
− sin Ω sin i cos Ω sin i cos i

x̂>ŷ>
ẑ>

 (5.40)

The longitude of the ascending node Ω is measured in the Earth-moon plane relative

to the Earth-moon line, and the inclination i is measured relative to the Earth-moon

plane, as seen in Fig. 5.2. The angular momentum of O2 is in the direction of ẑ′′.

Thus,

ĥ2 = ẑ′′ = − sin Ω sin i x̂+ cos Ω sin i ŷ + cos i ẑ (5.41)

Orbits 1 and 2 have the same periapsis direction, regardless of O0 and O3

geometry, so

p̂2 = p̂1 (5.42)
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ẑ

Ascending node
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Figure 5.2: LLO orientation.

The perilune radius of O2 is the radius of the LLO, which is given by

rp2 = RM + hMIN (5.43)

where RM is the mean lunar radius and hMIN = 100 km is the minimum allowed

parking orbit altitude. Determining p̂2 allows q̂2 to be calculated as

q̂2 = ĥ2 × p̂2 (5.44)

The velocity immediately after LOI-2 is

v+
2 = −

√
µM
p2

sin π p̂2 +

√
µM
p2

(e2 + cos π) q̂2 (5.45)

v+
2 =

√
µM
p2

(e2 − 1) q̂2 (5.46)

where

e2 =
ra2 − rp2

ra2 + rp2

(5.47)

ra2 = ra1 (5.48)
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and

a2 =
1

2
(rp2 + ra2) (5.49)

p2 = a2(1− e2
2) (5.50)

Now that v−2 and v+
2 are known, LOI-2 is

∆v2 = v+
2 − v−2 (5.51)

∆v2 =

√
µM
p2

(e2 − 1) q̂2 −
√
µM
p1

(e1 − 1) q̂1 (5.52)

The velocity immediately before LOI-3 is

v−3 = −
√
µM
p2

sin 0 p̂2 +

√
µM
p2

(e2 + cos 0) q̂2 (5.53)

v−3 =

√
µM
p2

(e2 + 1) q̂2 (5.54)

The time of flight from LOI-2 to LOI-3 along O2 is

t23 = π

√
a3

2

µM
(5.55)

The periapsis direction of O3 is undefined since the orbit is circular, but an

arbitrary periapsis direction is specified to coincide with the periapsis directions of

O1 and O2. Thus,

p̂3 ≡ p̂2 (5.56)

The remaining basis vectors of the perifocal coordinate system of O3 are

ĥ3 = ĥ2 (5.57)

q̂3 = ĥ3 × p̂3 (5.58)
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where the position at LOI-3 is

p3 = rp3p̂3 (5.59)

rp3 = RM + hMIN (5.60)

The velocity immediately after LOI-3 is

v+
3 = −

√
µM
p3

sin 0 p̂3 +

√
µM
p3

(e3 + cos 0) q̂3 (5.61)

v+
3 =

√
µM
p3

q̂3 (5.62)

Thus, LOI-3 is

∆v3 = v+
3 − v−3 (5.63)

∆v3 =

√
µM
p3

q̂3 −
√
µM
p2

(e2 + 1) q̂2 (5.64)

This initial estimate method is summarized in Fig. 5.3. In Fig. 5.3(a), the free

return is numerically integrated in the CRTBP until it intersects the lunar sphere

of influence. The position and velocity are then transferred to the two-body, moon-

centered model in Fig. 5.3(b) where the incoming trajectory is terminated upon

intersection with the LLO plane. Next, the LOI-1 maneuver is performed as shown

in Fig. 5.3(c). Finally, Fig. 5.3(d) shows the complete two-body LOI sequence.

The method has been tested through a parametric scan over the range of

interest of parking orbit orientations, and the method converges for all cases studied.

The algorithm is applied to circular, retrograde LLOs of 100 km altitude across a

five degree grid of longitude and inclination. The longitude of the ascending node

varies from 0 deg to 360 deg and the LLO inclination varies from 90 deg to 180 deg.
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(a) (b)

(c) (d)

Figure 5.3: Initial estimate: a) free return and lunar sphere of influence (rotating
frame), b) incoming hyperbola and LLO, c) capture maneuver, and d) complete LOI
sequence.
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Figure 5.4: Initial estimate cost.

Figure 5.4 shows the total ∆V cost of the three-burn LOI sequence in the Keplerian

model; the maximum LOI cost is 2630 m/s. For a given inclination, there are two

regions of increased cost, observed near Ω = 100 deg and Ω = 280 deg. This is not

a physical phenomenon but an artifact of the targeting method due to the change

in flight path angle across the LOI-1 maneuver. The minimum ∆V requirement for

a given inclination occurs when there is no change in flight path angle across LOI-1,

which happens when LOI-1 occurs at perilune of the incoming lunar hyperbola,

near Ω = 10 deg and Ω = 190 deg. It is anticipated that LOI-1 will move nearer to

perilune in the optimization process. The two-body targeter also allows entry into

posigrade lunar orbits where i < 90 deg, but because the free return is retrograde

with an inclination of 180 deg, entering a posigrade orbit results in a higher ∆V cost,

due to a required plane change greater than 90 deg. Because of this increased cost

and no apparent benefit over retrograde orbits for human missions, posigrade orbits

are not considered in this investigation. Retrograde orbits are also preferred over

posigrade orbits because of a decreased transearth injection (TEI) abort cost [40].
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Once an LOI sequence has been constructed in the Keplerian model, the

trajectories are propagated in the CRTBP where the Earth’s gravity is active at all

times. The LOI sequence is propagated backwards in time from the LLO ascending

node to LOI-0 to meet the outbound free return that is propagated from TLI to

LOI-0. The LOI trajectories deviate from the two-body idealization, producing a

state disparity at the lunar sphere of influence. State equality is enforced numer-

ically, resulting in a feasible trajectory after the addition of the LOI-0 maneuver

at the union of the free return and LOI trajectories. Figure 5.5 shows the cost of

the four-maneuver LOI sequence in the three-body model. The trend mirrors that

seen in Fig. 5.4, and each feasible trajectory in the three-body model was achieved

numerically in fewer than 10 iterations. The irregularities in Fig. 5.5 appear because

any feasible path is targeted, regardless of its LOI cost. The feasible transfer was

targeted first because it was found that the optimizer made better progress from

this starting point as compared to the infeasible starting transfer taken directly from

the initial estimate.

Figure 5.5: Feasible LOI sequence cost.
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5.2 Lunar Orbit Insertion from a Fixed Free Return

In this section, optimal trajectories are constructed to transport the space-

craft from a fixed lunar free return trajectory to a closed lunar orbit. The free

return chosen for this portion of the investigation is the minimum time type 0 free

return, which remains in the Earth-moon moon plane, has a round trip flight time

of 5.6 days, and has a lunar flyby altitude of 100 km. By studying the LOI cost

with the minimum time free return, a baseline is established which is later used to

compare with cases that allow variable free return geometry that enable a decreased

∆V cost at the expense of an increase in the free return flight time.

5.2.1 Optimization Algorithm

The goal of the optimization algorithm is to minimize the total velocity

impulse magnitude required to transfer the spacecraft from the free return trajectory

to a circular LLO. Nominally, this is executed with four impulsive maneuvers, each

free to vary in direction, magnitude, and time of activation. The objective function

is the sum of the magnitudes of the four maneuvers, given by

J ≡
3∑
i=0

∆vi (5.65)

where ∆vi is the magnitude of the ith maneuver. Nominally, the LOI maneuvers

would be performed by a crew vehicle whereas the TLI maneuver would be per-

formed by an Earth-departure booster. It is assumed that this booster has the

capability to place the spacecraft on any desired free return; therefore, the TLI ma-

neuver is not included in the objective function. Chapter 3 explored the variation

of this maneuver as a function of free return geometry.
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The free parameters are

xp ≡
[
tR t0 t1 t2 t3 ∆v>0 ∆v>1 ∆v>2 ∆v>3

]>
1×17

(5.66)

where tR is the time from TLI to LOI-0, ti is the time from the LLO ascending node

to the ith LOI maneuver, and ∆vi represents the ith LOI maneuver. The initial

value of each parameter except ∆v0 is taken from the two-body targeter; the initial

value of LOI-0 is determined when a feasible solution is found in the three-body

model.

A direct, multiple shooting method is used with two trajectory branches.

The outbound free return is propagated from TLI to LOI-0, and the LOI sequence

is propagated backwards in time from the LLO through LOI-0. Because this multiple

shooting produces a state discontinuity in cislunar space, equality constraints placed

on the optimization require the position and velocity along each trajectory segment

to be equal immediately before LOI-0. The equality constraints are

c =

[
r(tR)− r(t−0 )
v(tR)− v(t−0 )

]
6×1

= 0 (5.67)

where r(tR) and v(tR) are the position and velocity immediately before LOI-0,

integrated forward from TLI, and r(t−0 ) and v(t−0 ) are the position and velocity

immediately before LOI-0, integrated backwards in time from the LLO epoch. Since

the CRTBP in rotating coordinates is an autonomous system, it is not necessary to

match the times at LOI-0.

Other constraints placed on the optimization require the spacecraft to spend

a minimum amount of time on the outbound free return, enforce sequential times,

103



limit the time between the first and third LOI maneuvers, and bound the minimum

altitude at the moon. The inequality constraints are

d =



tR − tMIN

t1 − t0
t2 − t1
t3 − t2
−t3

tMAX − (t3 − t1)
hLOI − hMIN


7×1

> 0 (5.68)

where tMIN ≡ 1 day is the minimum amount of time that the spacecraft must

remain on the free return, tMAX ≡ 1 day is the maximum allowed flight time from

LOI-1 to LOI-3, hLOI is the osculating perilune altitude of the trajectory computed

immediately before LOI-1, and hMIN ≡ 100 km is the minimum allowed perilune

altitude of that trajectory. The constraint on the minimum outbound flight time

to LOI-0 is imposed because if tR = 0 and ∆v0 6= 0 then the outbound path is no

longer a free return trajectory. On a human lunar mission, this flight time on the

free return path would be used to evaluate the status of the spacecraft’s systems

before deciding to retarget for LOI. The constraint on t3 ensures the LOI sequence is

integrated backwards in time. Next, the LOI flight time constraint between LOI-1

and LOI-3 is necessary because the ∆V cost of changing orbital inclination goes

to zero as the radius goes to infinity in the two-body model, so the radius where

LOI-2 is performed will increase when optimizing LOI for minimum ∆V ; thus, this

flight time is bounded. The inequality constraint on hLOI is necessary to ensure the

spacecraft does not impact the lunar surface.
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5.2.2 Numerical Optimization Setup

Feasible trajectories will be optimized with the sequential quadratic program-

ming algorithm VF13.2 It allows specified maximum inter-iteration stepsizes for the

parameters, which will be used to ensure the iterations do not diverge from a fea-

sible solution. The optimizer has sufficient freedom to choose trajectories that will

not be acceptable solutions; for example, an unacceptable trajectory is an ‘escape’

trajectory that remains bounded to the moon. Maximum stepsizes are chosen in

a systematic manner to ensure the optimizer retains sufficient freedom and avoids

excessive iteration but is also prevented from moving away from the desired solu-

tion. Each maximum stepsize was determined by independently perturbing each

parameter and observing the change in position at LOI-0. The maximum stepsize

was set where the parameter perturbation resulted in a position deviation at LOI-0

of approximately 100 km. Because of the back propagation method used from the

LLO epoch to LOI-0, parameters closer to the LLO epoch were more sensitive than

parameters closer to LOI-0.

5.2.3 Analytical Gradients

The gradients of the cost and constraints are computed analytically using

linear perturbation theory where necessary. As discussed in Chapter 2, the state

transition matrix Φ maps the state perturbation δx (t0) at a reference time t0 to

2Information available at http://www.hsl.rl.ac.uk/archive/specs/vf13.pdf [accessed 15
March 2012]
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Figure 5.6: Transfer segments.

the state perturbation δx (t) at time t, to first order, as

δx (t) = Φ (t, t0) δx (t0) (5.69)

where the state transition matrix satisfies

Φ (t, t0) =
∂x(t)

∂x(t0)
(5.70)

and x is the spacecraft state.

Consider the simplified transfer trajectories from the LLO to the retargeting

maneuver shown in Figure 5.6. Here, four ballistic arcs are delineated by four

state discontinuities, each denoted by ∆xi occurring at ti. By Eq. (4.29), the total

differential at t−0 is

dx−0 = Φ(t0, t1)Φ(t1, t2)Φ(t2, t3)(∆ẋ3dt3 − d(∆x3))

+ Φ(t0, t1)Φ(t1, t2)(∆ẋ2dt2 − d(∆x2))

+ Φ(t0, t1)(∆ẋ1dt1 − d(∆x1)) + ẋ+
0 dt0 − d(∆x0) (5.71)

where the sequential order of the indices are reversed relative to Eq. (4.29) since the

LOI segments are integrated backwards in time from the LLO epoch through the

retargeting maneuver. Terms associated with t4 are zero since the spacecraft state
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at that time is fixed. Equation (5.71) enables the computation of gradients through

the LOI portion of the Earth to moon transfer.

The gradient of J with respect to the free parameters xp is

dJ

dxp
=
[
0>5×1 ∆v̂>0 ∆v̂>1 ∆v̂>2 ∆v̂>3

]
1×17

(5.72)

where

∆v̂i ≡
∆vi
|∆vi|

(5.73)

The gradient of the objective function with respect to each maneuver time is zero

because the maneuvers themselves are independent parameters, so their magnitude

does not depend on the time of activation.

The only equality constraints enforced in this problem require the position

and velocity of the forward propagated segment from the Earth to match the back-

wards propagated position and velocity from the moon immediately before LOI-0.

The gradient of these constraints with respect to the free parameters is

dc

dxp
=
[
∂x(tR)
∂tR

−∂x−0
∂t0

−∂x−0
∂t1

−∂x−0
∂t2

−∂x−0
∂t3

− ∂x−0
∂∆v0

− ∂x−0
∂∆v1

− ∂x−0
∂∆v2

− ∂x−0
∂∆v3

]
(5.74)

Substituting the derivatives from Equation (5.71) gives

∂x(tR)

∂tR
= ẋ(tR) (5.75)

−∂x
−
0

∂t0
= −ẋ+

0 (5.76)

−∂x
−
0

∂t1
= −Φ (t0, t1) ∆ẋ1 (5.77)
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−∂x
−
0

∂t2
= −Φ (t0, t1) Φ (t1, t2) ∆ẋ2 (5.78)

−∂x
−
0

∂t3
= −Φ (t0, t1) Φ (t1, t2) Φ (t2, t3) ∆ẋ3 (5.79)

− ∂x−0
∂∆v0

= IC3:6 (5.80)

− ∂x−0
∂∆v1

= Φ (t0, t1)C3:6 (5.81)

− ∂x−0
∂∆v2

= Φ (t0, t1) Φ (t1, t2)C3:6 (5.82)

− ∂x−0
∂∆v3

= Φ (t0, t1) Φ (t1, t2) Φ (t2, t3)C3:6 (5.83)

where

C3:6 ≡
[
03×3

I3×3

]
6×3

(5.84)

Post-multiplying an r× 6 matrix by C3:6 results in an r× 3 matrix that consists of

the last three columns of the original matrix, as discussed in Appendix D.

The gradients of the inequality constraints with respect to the free parameters

are

∂(tR − tMIN)

∂xp
=
[
1 0>16×1

]
(5.85)

∂(t1 − t0)

∂xp
=
[
0 −1 1 0>14×1

]
(5.86)

∂(t2 − t1)

∂xp
=
[
0 0 −1 1 0>13×1

]
(5.87)

∂(t3 − t2)

∂xp
=
[
0>3×1 −1 1 0>12×1

]
(5.88)

∂(−t3)

∂xp
=
[
0>4×1 −1 0>12×1

]
(5.89)
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∂(tMIN − (t3 − t1))

∂xp
=
[
0 0 1 0 −1 0>12×1

]
(5.90)

∂(hLOI − hMIN)

∂xp
=
[
0 0 ∂rp

∂t1

∂rp
∂t2

∂rp
∂t3

0>3×1
∂rp
∂∆v1

∂rp
∂∆v2

∂rp
∂∆v3

]
(5.91)

where rp is the osculating periapsis radius. Its gradient with respect to the spacecraft

position r relative to the central body is

∂rp
∂r

=
∂rp
∂a

∂a

∂r
+
∂rp
∂e

∂e

∂r
(5.92)

= (1− e) µ2

2E2r3
r> − a

[
h2

eµr3
r> +

2Eh

eµ2
ĥ> (I × v)

]
(5.93)

=
−rp2

er3
r> +

1

µe
h> (I × v) (5.94)

where e is the orbital eccentricity, µ is the central body gravitational parameter,

E is the spacecraft’s Keplerian energy, v is the spacecraft’s velocity relative to the

central body, h is the spacecraft’s angular momentum, and the 3× 3 matrix I × v

is constructed by crossing each column of I into v. Similarly, the gradient of the

periapsis radius with respect to the spacecraft velocity v relative to the central body

is

∂rp
∂v

=
∂rp
∂a

∂a

∂v
+
∂rp
∂e

∂e

∂v
(5.95)

= (1− e) µ

2E2
v> − a

[
h2

eµ2
v> +

2Eh

eµ2
ĥ> (r × I)

]
(5.96)

=
−rp2

µe
v> +

1

µe
h> (r × I) (5.97)

where the 3 × 3 matrix r × I is constructed by crossing r into each column of I.

For notational simplicity, define

Υ> ≡ ∂rp
∂x−1

=
[
∂rp

∂r−1

∂rp

∂v−1

]
1×6

(5.98)
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The nonzero gradients of rp are

∂rp
∂t1

=
∂rp
∂x−1

∂x−1
∂t1

= Υ>ẋ+
1 (5.99)

∂rp
∂t2

=
∂rp
∂x−1

∂x−1
∂t2

= Υ>Φ (t1, t2) ∆ẋ2 (5.100)

∂rp
∂t3

=
∂rp
∂x−1

∂x−1
∂t3

= Υ>Φ (t1, t2) Φ (t2, t3) ∆ẋ3 (5.101)

∂rp
∂∆v1

=
∂rp
∂x−1

∂x−1
∂∆v1

= −Υ>C3:6 (5.102)

∂rp
∂∆v2

=
∂rp
∂x−1

∂x−1
∂∆v2

= −Υ>Φ (t1, t2)C3:6 (5.103)

∂rp
∂∆v3

=
∂rp
∂x−1

∂x−1
∂∆v3

= −Υ>Φ (t1, t2) Φ (t2, t3)C3:6 (5.104)

5.2.4 Numerical Results

With all necessary gradients derived, the targeting and optimization pro-

cess is illustrated with an example for an LLO of orientation Ω = 225 deg and

i = 120 deg where Ω is measured in the Earth-moon plane relative to the rotating

Earth-moon line, and i is measured relative to the Earth-moon plane. The initial

estimate requires ∆V = 1735 m/s, and when propagated in the CRTBP, a position

discontinuity of 8600 km results at the lunar sphere of influence (Fig. 5.7(a)). Ta-

ble 5.1 shows the analytically generated initial parameters, and Table 5.2 shows the

initial values of the constraints. In the initial parameters, the retargeting maneuver

used to depart the free return is taken as ∆v0 = 0. The cost of the feasible trans-

fer is ∆V = 1727 m/s (Fig. 5.7(b)), and after optimization the minimized cost is

∆V = 1206 m/s (Fig. 5.8). For the optimal solution, tR decreased to one day, which
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is the limit imposed by the first inequality constraint. This means the retargeting

maneuver moved closer to TLI but was stopped at this point. Additionally, the op-

timal solution uses a full day from LOI-1 to LOI-3, which is the most time allowed.

The flight time from TLI to the LLO epoch is 94.7 hr or approximately four days.

(a) (b)

Figure 5.7: Transfer trajectories (rotating frame): a) initial LOI sequence, and b)
feasible LOI sequence.

To observe the change in LOI ∆V requirements for different LLO orienta-

tions, LLOs are parametrically scanned from Ω = 0 deg to Ω = 360 deg with

inclination varying from i = 90 deg to i = 180 deg, both in 10 deg increments,

and Figure 5.9 shows the results. The maximum value of ∆V = 1351 m/s occurs

at (Ω, i) =(30 deg, 90 deg) and (210 deg, 90 deg) whereas the minimum value of

∆V = 925 m/s occurs at any Ω with i = 180 deg. For each longitude, i = 90 deg is

the most costly case, and the total ∆V decreases with increasing inclination mag-

nitude. The hotspots of increased ∆V , centered at Ω = 30 deg and Ω = 210 deg

occur where the incoming velocity vector at the moon, v∞, is nearly perpendicular
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(a) (b)

(c) (d)

Figure 5.8: Optimal hybrid Earth to moon transfer (rotating frame): a) free return
and cislunar maneuver, b) view normal to x̂ŷ plane, c) view normal to x̂ẑ plane,
and d) view normal to ŷẑ plane.
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Table 5.1: Free parameters for fixed free return example case

Parameter Units Initial Feasible Optimal
tR s 194976 199784 86400
t0 s −101715 −96845 −254660
t1 s −50314 −50148 −91981
t2 s −27510 −27372 −62563
t3 s −7072 −7038 −5581

∆v0x km/s 0.000 0.034 −0.016
∆v0y km/s 0.000 0.006 −0.004
∆v0z km/s 0.000 0.002 0.023
∆v1x km/s 0.226 0.323 0.005
∆v1y km/s 0.785 0.701 0.235
∆v1z km/s 0.000 0.004 0.273
∆v2x km/s 0.186 0.189 0.232
∆v2y km/s −0.186 −0.188 0.011
∆v2z km/s −0.338 −0.338 −0.086
∆v3x km/s −0.173 −0.173 0.300
∆v3y km/s 0.173 0.173 0.478
∆v3z km/s −0.424 −0.424 −0.086

Table 5.2: Constraints for fixed free return example case

Constraint Units Initial Feasible Optimal
x− x0 = 0 km 7603.826 8.2× 10−4 −1.3× 10−4

y − y0 = 0 km 4050.006 3.6× 10−3 −3.0× 10−5

z − z0 = 0 km 97.596 1.0× 10−4 −1.1× 10−4

vx − vx0
= 0 km/s −0.151 6.8× 10−9 1.0× 10−9

vy − vy0
= 0 km/s −0.095 −8.3× 10−8 7.0× 10−10

vz − vz0 = 0 km/s −0.002 −1.8× 10−9 5.0× 10−10

tR − tMIN > 0 s 108576 113384 0
t1 − t0 > 0 s 51400 46696 162679
t2 − t1 > 0 s 22804 22777 29418
t3 − t2 > 0 s 20437 20334 56982
−t3 > 0 s 7073 7038 5581

tMAX − (t3 − t1) > 0 s 43159 43290 0
hP − hPMIN

> 0 km 886.684 1156.968 0.000
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to the LLO plane. The regions of lower ∆V result from LLO orientations where v∞

is nearly parallel to the LLO plane. Since the incoming free return trajectory has

an inclination of i = 180 deg, less plane change is required as the LLO inclination

approaches 180 deg, and thus the ∆V cost is lower. The trajectories converge to the

same LOI sequence at i = 180 deg because the LLO is unchanged regardless of what

Ω is specified. In these cases, a three-burn LOI sequence is not needed since a plane

change is not required. Cases near Ω = 130 deg and Ω = 310 deg of any inclination

were also observed to require little plane change because the retargeting maneuver

enabled a v∞ approach in or near the LLO plane. In these cases, LOI-2 tends to zero

in the optimization process and LOI-1 and LOI-3 occur at nearly the same point.

This indicates that a single burn LOI sequence may be optimal here. In each case

requiring a plane change maneuver at the moon, the retargeting maneuver moves

back to the one day limit imposed by the inequality constraint on tR. Additionally,

the time from LOI-1 to LOI-3 reaches the limit of one day in the optimal solution.

Another trend observed is the tendency of the lunar periapsis altitude to settle at

the minimum value of 100 km.

Though not utilized in this investigation, adding loiter time in lunar orbit

can be used to lower the total LOI ∆V cost. Because the Earth and moon revolve

about their common barycenter approximately once every 27 days, a fixed orbit’s

ascending node location will rotate by approximately 13 deg per day in the rotating

frame. Thus, a spacecraft may enter another parking orbit and allow the node line

to advance to the desired location at the desired time. Loiter time of up to seven

days was used in a recent LOI study to achieve LOI ∆V cost savings [39].
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Figure 5.9: Minimum LOI cost contours with fixed free return formulation.

5.2.5 Retargeting Time Variation

Recall that the retargeting time is the time at which the spacecraft activates

its propulsion system to depart the free return path and target a desired LLO. The

period spent on the free return affords time to assess spacecraft systems and maintain

an Earth return option. Selection of the retargeting time requires consideration of

crew scheduling and the amount of confidence in the lunar architecture. A minimum

retargeting time of one day after TLI was chosen as a baseline reference, but the

optimal location that minimizes the LOI cost may be located closer to TLI. To

study the variation of the retargeting maneuver’s magnitude, cases are examined

with three different LLO orientations and retargeting times ranging from one hour to

60 hours. Figure 5.10 shows the variation in ∆v0 and the overall LOI cost, including

the retargeting maneuver. Cases with Ω = 225 deg are shown with three different

LLO inclinations. The first example that was shown is seen at (225 deg, 120 deg)

with ∆V = 1206 m/s at a retargeting time of tR = 24 hr. At i = 120 deg, the

overall ∆V decreases with decreasing tR until tR ≈ 9.4 hr where ∆V = 1202 m/s, a
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(a) (b)

Figure 5.10: Effect of variable retargeting time: a) retargeting maneuver magnitude,
and b) overall LOI cost.

savings of 0.3% relative to the baseline case. Past this point, the ∆V cost increases

as ∆v0 approaches TLI. When the retargeting time is increased past one day, the

total ∆V increases. Similar trends are seen for i = 90 deg and i = 150 deg where

the optimal retargeting time is not at TLI but approximately one and 12 hours after

TLI, respectively. For i = 90 deg, the cost at tR = 60 hr increases over 8% relative

to the cost at tR = 24 hr. It is seen in these cases that the ∆V penalty of increasing

tR is greater than the ∆V savings from decreasing tR.

It may be expected that the retargeting maneuver would move as close to

TLI as possible since small perturbations near TLI can achieve large deviations at

the moon, resulting in a lower LOI cost. The algorithm, however, is choosing ∆v0,

not the TLI velocity itself, and the algorithm cannot change the TLI position. In

the cases studied here, it is optimal for the spacecraft to remain on the free return

for several hours before applying the retargeting maneuver.
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5.3 Lunar Orbit Insertion from a Variable Symmetric Free
Return

In this section, the optimization of a multiple impulse LOI sequence from a

symmetric free return trajectory is presented where both the inclination and altitude

at lunar flyby along the free return are variable during the optimization process. The

algorithm optimizes the orbit insertion sequence while simultaneously generating a

free return trajectory. Examples are presented for both classes of symmetric, posi-

grade circumlunar free returns, and a range of lunar orbit orientations is examined

to assess the impact on velocity impulse requirements.

5.3.1 Optimization Algorithm

The minimum impulse trajectory from the variable free return to the LLO

is computed within a parameter optimization framework. The multiple shooting

method is comprised of a forward-time segment from TLI to LOI-0, a backwards-

time segment from the LLO to LOI-0, and a forward-time segment from lunar flyby

to Earth entry interface (EEI). The free return is now variable, but it must remain

symmetric, which ensures the TLI to lunar flyby segment is an image of the lunar

flyby to EEI segment. Therefore, the TLI segment does not need to be numerically

integrated. The initial estimate is identical to that used in the fixed free return

case, and the cost function to be minimized is the sum of the magnitudes of the four

impulsive maneuvers.

The free parameters include the time, direction, and magnitude of each LOI

maneuver, and, because the free return is not fixed, four quantities associated with
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its orientation are added as optimization variables. The free parameters are

xp ≡
[
tR t0 t1 t2 t3 ∆v>0 ∆v>1 ∆v>2 ∆v>3 h φ v tEEI

]>
1×21

(5.105)

where h is the free return altitude at lunar flyby, φ is the lunar flyby angle, v is the

velocity magnitude at the flyby point, and tEEI is the time from the flyby to EEI. At

the onset of the optimization algorithm, the free return lies in the Earth-moon plane

with a lunar flyby altitude of h = 100 km and a lunar flyby angle of φ = 0 deg.

If type 1 free returns are used, φ represents the velocity azimuth at lunar flyby,

measured positive north from west; if type 2 free returns are used, φ represents

the latitude at lunar flyby, measured relative to the Earth-moon plane. The initial

estimates of the final two free parameters are taken from the previously converged

minimum time free return. The number of iterations is increased by the limits

placed on the inter-iteration stepsize of the optimization variables. For example,

the maximum free return flight time stepsize is 100 s. Because this flight time is

maximized in the optimal solution, extra iterations are incurred by the stepsize

bound.

Three equality constraints are imposed during the optimization process:

c ≡

x(tR)− x(t−0 )
hEEI − hT
γEEI − γT


8×1

= 0 (5.106)

The first equality constraint ensures continuity between the forward integrated TLI

segment from the Earth and the backwards integrated LOI segments from the moon.

The final two equality constraints target the specified altitude and flight path angle

at Earth on the free return. The targeted conditions at Earth are hT = 121 km and

γT = 0 deg.

118



The inequality constraints are given by

d ≡



tR − tMIN

t1 − t0
t2 − t1
t3 − t2
−t3

tMAX − (t3 − t1)
hLOI − hMIN

h− hMIN

φMAX − |φ|
TMAX/2− tEEI


10×1

> 0 (5.107)

The eighth inequality constraint requires the flyby altitude along the free return

to be greater than or equal to 100 km. The ninth constraint bounds the out-

of-plane free return angle, and the final inequality constraint imposes a 10 day

maximum round trip flight time on the free return. It will be seen in some cases

that increasing the free return flight time decreases the LOI cost; however, if a

mission abort scenario requires a return to Earth, the return time should be as

short as possible. Additionally, the spacecraft must possess sufficient life support

capability for the return voyage. Because of these reasons, the free return flight time

is bounded.

The maximum out-of-plane flyby angle of the free return is a function of

the altitude at that point. The behavior of φMAX is determined empirically by

incrementing the flyby angle by 0.01 deg, converging to a feasible free return using

the algorithm developed in Chapter 3, and repeating until a feasible solution is not

possible. The trends are fit with an exponential function of the form

φMAX(h) = aebh + cedh − 180 (5.108)
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where φMAX is in degrees. For type 1 free returns, the coefficients are given by

a = 1.951, b = −2.13× 10−5, c = 188.553, and d = −1.19× 10−7 (Fig. 5.11(a)). For

type 2 free returns with h 6 19450 km, a = 193.3, b = 1.276×10−5, c = 4.463×10−5,

and d = 6.743 × 10−4 (Fig. 5.11(b)). For type 2 free returns with h > 19450 km,

φMAX = 90 deg. The data are shown in Tables 5.3–5.4. Apparent in Fig. 5.11,

type 2 free returns offer a larger out-of-plane angle at lunar flyby. Applying this

knowledge of type 1 and type 2 free returns to constrain |φ| keeps the optimizer in

the domain of feasible free returns.

(a) (b)

Figure 5.11: Maximum out-of-plane free return angle: a) type 1 free returns, and
b) type 2 free returns.

5.3.2 Analytical Gradients

The gradient of the objective function is

dJ

dxp
=
[
0>5×1 ∆v̂>0 ∆v̂>1 ∆v̂>2 ∆v̂>3 0>4×1

]
1×21

(5.109)
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Table 5.3: Maximum flyby azimuth for type 1 free returns

Altitude [km] Max Azimuth [deg] Curve Fit [deg]
0 10.51 10.50

100 10.50 10.50
1000 10.44 10.44
10000 9.88 9.91
20000 9.37 9.38
30000 8.91 8.91
40000 8.49 8.49
50000 8.10 8.11
90000 6.79 6.83

Table 5.4: Maximum flyby latitude for type 2 free returns

Altitude [km] Max Latitude [deg] Curve Fit [deg]
100 13.41 13.55
1000 15.98 15.78
2500 19.90 19.57
5000 26.15 26.04
7500 32.54 32.72
10000 39.35 39.65
12500 46.92 46.93
15000 55.77 55.18
17500 67.48 67.61
19450 90.00 89.91
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The final four parameters control the geometry of the free return path, so an inde-

pendent perturbation of these quantities does not affect the LOI trajectories.

The gradients of the first equality constraint with respect to the maneuvers

and their activation times are identical to those in the fixed free return case. The

gradient of the first equality constraint with respect to the lunar flyby altitude of

the free return, for a type i free return, is

∂
(
x(tR)− x(t−0 )

)
∂h

=
∂x(tR)

∂xTLI

∂xTLI
∂xEEI

∂xEEI
∂xFR

∂xFRi

∂h
(5.110)

= ΦTLIKiΦFR
∂xFRi

∂h
(5.111)

where the matrices that transform the EEI spacecraft state to the TLI state are

K1 ≡ diag(1,−1,−1,−1, 1, 1) and K2 ≡ diag(1,−1, 1,−1, 1,−1) and the lunar

flyby states and state derivatives are

xFR1 =


xM +RM + h

0
0
0

−v cosφ
v sinφ

 xFR2 =


xM + (RM + h) cosφ

0
(RM + h) sinφ

0
−v
0

 (5.112)

∂xFR1

∂h
=


1
0
0
0


6×1

∂xFR2

∂h
=


cosφ

0
sinφ

0


6×1

(5.113)

Similarly, the gradient with respect to the lunar flyby angle of the free return is

given by

∂
(
x(tR)− x(t−0 )

)
∂φ

=
∂x(tR)

∂xTLI

∂xTLI
∂xEEI

∂xEEI
∂xFR

∂xFRi

∂φ
(5.114)

= ΦTLIKiΦFR
∂xFRi

∂φ
(5.115)
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where the lunar flyby state derivatives are

∂xFR1

∂φ
=


0
0

v sinφ
v cosφ


6×1

∂xFR2

∂φ
=


−(RM + h) sinφ

0
(RM + h) cosφ

0


6×1

(5.116)

Similarly,
∂
(
x(tR)− x(t−0 )

)
∂v

= ΦTLIKiΦFR

[
0
I

]
v̂ (5.117)

∂
(
x(tR)− x(t−0 )

)
∂tEEI

= ΦTLIKiẋEEI (5.118)

The altitude at Earth arrival is

hEEI = |rEP | −RE (5.119)

where rEP is the Earth-spacecraft vector at EEI, and the flight path angle at Earth

arrival is

γEEI = sin−1

(
vEEI · rEP
vEEI rEP

)
(5.120)

where vEEI is the velocity at EEI. The gradient of the EEI altitude with respect to

the free return flyby altitude is

∂hEEI
∂h

=
∂hEEI
∂xEEI

∂xEEI
∂xFR

∂xFRi

∂h
(5.121)

= α>ΦFR
∂xFRi

∂h
(5.122)

where

α> ≡
[
r̂>EP 0>

]
1×6

(5.123)

Similarly, the gradient of hEEI with respect to the free return flyby angle is

∂hEEI
∂φ

= α>ΦFR
∂xFRi

∂φ
(5.124)
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The gradients of the EEI flight path angle with respect to h and φ are

∂γEEI
∂h

= β>ΦFR
∂xFRi

∂h
(5.125)

∂γEEI
∂φ

= β>ΦFR
∂xFRi

∂φ
(5.126)

where

β> ≡
[
∂γEEI

∂rEEI

∂γEEI

∂vEEI

]
1×6

(5.127)

and

∂γEEI
∂rEEI

=
v̂>EEI

rEP
√

1− sin2 γEEI

[
I − r̂EP r̂>EP

]
(5.128)

∂γEEI
∂vEEI

=
r̂>EP

vEEI
√

1− sin2 γEEI

[
I − v̂EEI v̂>EEI

]
(5.129)

The gradient of the EEI altitude with respect to the free return flyby velocity

is

∂hEEI
∂v

=
∂hEEI
∂xEEI

∂xEEI
∂xFR

∂xFR
∂v

∂v

∂v
(5.130)

= α>ΦFR

[
0
I

]
v̂ (5.131)

Next,

∂hEEI
∂tEEI

=
∂hEEI
∂xEEI

∂xEEI
∂tEEI

= α>ẋEEI (5.132)

The gradient of the flight path angle with respect to the flyby velocity is

∂γEEI
∂v

=
∂γEEI
∂xEEI

∂xEEI
∂xFR

∂xFR
∂v

∂v

∂v
(5.133)

= β>ΦFR

[
0
I

]
v̂ (5.134)
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Finally,

∂γEEI
∂tEEI

=
∂γEEI
∂xEEI

∂xEEI
∂tEEI

= β>ẋEEI (5.135)

The gradients of the nonlinear inequality constraints with respect to the free

parameters are

∂(hLOI − hMIN)

∂xp
=
[
0 0 ∂rp

∂t1

∂rp
∂t2

∂rp
∂t3

0>3×1
∂rp
∂∆v1

∂rp
∂∆v2

∂rp
∂∆v3

0>4×1

]
(5.136)

∂(φMAX − |φ|)
∂xp

=
[
0>17×1

∂φMAXi

∂h
−sign(φ) 0 0

]
(5.137)

where

∂φMAXi

∂h
=

{
abebh + cdedh if φMAXi

6= 90 deg
0 if φMAXi

= 90 deg
(5.138)

The gradients of the osculating perilune radius of the LOI sequence are identical to

those shown in the fixed free return case.

5.3.3 Numerical Results

The optimization process is illustrated by targeting an LLO of orientation

(Ω, i) = (225 deg, 120 deg). Using the two-body targeting algorithm, an LOI se-

quence requiring ∆V = 1735 m/s is generated as the initial estimate. On the first

iteration of the optimization algorithm, the free return is in the Earth-moon plane

with a lunar flyby altitude of 100 km. Satisfying state continuity at the lunar sphere

of influence, the feasible initial solution in the CRTBP requires ∆V = 1727 m/s.

Optimization begins from this trajectory for both type 1 and type 2 free returns.

For LOI from a type 1 free return, the algorithm converges to a total cost

of ∆V = 1014 m/s, which represents a savings of nearly 200 m/s relative to the
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1206 m/s required for the fixed, type 0 minimum time free return case. The total

transfer time from TLI to LLO is 6.1 days whereas the transfer time was 3.9 days

with the minimum time free return. The optimal trajectory is shown in Fig. 5.12

with the optimal parameters shown in Table 5.5 and the final constraint values shown

in Table 5.6. Views in Earth-centered and moon-centered non-rotating frames are

presented in Figs. 5.12(c)–5.12(d). In these subfigures, the moon and Earth are plot-

ted at TLI (denoted M0 and E0), free return flyby, and EEI (denoted Mf and Ef).

As in the minimum time free return example, the time of the retargeting maneuver

backs up to the one day limit imposed by the inequality constraint. The osculat-

ing perilune altitude of the LOI sequence decreases to the minimum of 100 km.

Additionally, the altitude at free return flyby increases to 32233 km, which is the

maximum value allowed by the imposed limit of 10 days on the free return’s round

trip flight time. The time between LOI-1 and LOI-3 is maximized at one day. The

velocity azimuth at free return flyby is 4.9 deg, which is nearly 4 deg below the

maximum possible azimuth at this altitude.

The optimization results using a type 2 free return are shown in Fig. 5.13 and

Tables 5.5–5.6. The optimal solution requires ∆V = 1019 m/s, which is 5 m/s higher

than the type 1 case. The time of the retargeting maneuver and the LOI flight time

both reach the limits imposed by the inequality constraints. The altitude at free

return flyby increases to 32694 km, the limit required by the round trip flight time

constraint. The latitude at free return flyby is 11 deg even though the maximum

allowed latitude at this altitude is 90 deg. The transfer time from TLI to LLO is

6.1 days. The savings of nearly 200 m/s in ∆V over the type 0 minimum time free
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(a) (b)

(c) (d)

Figure 5.12: Type 1 free return and LOI into an LLO orientation of (Ω, i) = (225 deg,
120 deg): a) oblique view in barycentered rotating frame where the spacecraft’s path
is indicated with the thick line, and the free return is indicated with the thin line, b)
moon zoom in barycentered rotating frame, c) Earth-centered non-rotating frame
where the moon’s motion is indicated with the dashed line, and d) moon-centered
non-rotating frame where the Earth’s motion is indicated with the dashed line.
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return case is accompanied by an increase in the round trip free return flight time

of more than four days. For human missions, it is essential to ensure crew survival

through the time of Earth return; thus, the decreased LOI cost may not be worth

the required increase in life support supplies.

The effect of the maximum free return flight time constraint is shown in

Fig. 5.14. Targeting the same LLO as in the example cases with an orientation of

(Ω, i) = (225 deg, 120 deg), TMAX is reduced incrementally from 10 to six days

to observe trends in LOI cost. In each case here—though not true in general—

the optimal LOI sequence requires the free return to assume its maximum possible

flight time. The cost increases with decreasing free return flight time for both type 1

and type 2 free returns, as shown in Fig. 5.14(a). The cost trends are similar for

type 1 and type 2 free returns with type 2 free returns requiring a lower ∆V except

for cases where the round trip free return flight time is greater than nine days.

The incoming energy relative to the moon and the relative declination between the

incoming velocity and the LLO plane are shown in Fig. 5.14(b) and Fig. 5.14(c);

both quantities are computed immediately before LOI-1. Because the LLO has a

fixed negative Keplerian energy relative to the moon, an increased incoming energy

relative to the moon necessitates a larger ∆V to decelerate into the LLO; thus,

increasing the incoming energy will increase the magnitude of LOI-1. Likewise, the

larger the relative declination between the incoming velocity and the LLO plane,

the larger the required plane change; therefore, increasing the relative declination

will increase the magnitude of LOI-2, the maneuver responsible for a majority of the

plane change. Allowing the spacecraft to begin on a non-planar free return with an
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(a) (b)

(c) (d)

Figure 5.13: Type 2 free return and LOI into an LLO orientation of (Ω, i) = (225 deg,
120 deg): a) oblique view in barycentered rotating frame where the spacecraft’s path
is indicated with the thick line, and the free return is indicated with the thin line, b)
moon zoom in barycentered rotating frame, c) Earth-centered non-rotating frame
where the moon’s motion is indicated with the dashed line, and d) moon-centered
non-rotating frame where the Earth’s motion is indicated with the dashed line.
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Table 5.5: Optimal parameters for variable symmetric example

Parameter Units Type 1 Type 2
tR day 1.00 1.00
t0 day −5.10 −5.10
t1 day −1.06 −1.05
t2 day −0.73 −0.73
t3 day −0.06 −0.05

∆v0x m/s −64 −64
∆v0y m/s −38 −38
∆v0z m/s 11 −10
∆v1x m/s 66 52
∆v1y m/s 138 107
∆v1z m/s 208 220
∆v2x m/s 98 110
∆v2y m/s −45 −25
∆v2z m/s −26 −86
∆v3x m/s 401 399
∆v3y m/s 305 270
∆v3z m/s 266 304
h km 32233 32694
φ deg 4.9 11.1
v m/s 1107 1085

tEEI day 5.00 5.00

130



Table 5.6: Constraints for variable symmetric example

Constraint Units Type 1 Type 2
x− x0 = 0 km −1.2× 10−5 −2.9× 10−5

y − y0 = 0 km 2.3× 10−5 −3.8× 10−5

z − z0 = 0 km 1.2× 10−5 −3.9× 10−5

vx − vx0
= 0 m/s 1.0× 10−8 1.0× 10−7

vy − vy0
= 0 m/s 1.0× 10−8 3.0× 10−7

vz − vz0 = 0 m/s 1.0× 10−8 1.0× 10−8

hEEI − hT = 0 km 9.7× 10−7 7.4× 10−6

γEEI − γT = 0 deg −6.5× 10−8 2.1× 10−7

tR − tMIN > 0 day 0.00 0.00
t1 − t0 > 0 day 4.05 4.05
t2 − t1 > 0 day 0.32 0.32
t3 − t2 > 0 day 0.68 0.68
−t3 > 0 day 0.06 0.05

tMAX − (t3 − t1) > 0 day 0.00 0.00
hLOI − hMIN > 0 km −7.2× 10−6 4.5× 10−8

h− hMIN > 0 km 32133 32594
φMAX − |φ| > 0 deg 3.9 78.9

TMAX/2− tEEI > 0 day 0.00 0.00
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increased flight time enables a lower Keplerian energy at the moon and a reduced

relative declination, as compared to the type 0 case. This provides ∆V savings when

initiating LOI along a type 1 or type 2 free return.

(a) (b) (c)

Figure 5.14: Effect of maximum free return flight time on LOI optimization for
an LLO orientation of (Ω, i) = (225 deg, 120 deg): a) LOI ∆V cost, b) incoming
Keplerian energy relative to the moon, and c) relative declination.

To observe trends in the optimal LOI ∆V , transfers are optimized for all

retrograde LLOs from (Ω, i) = (0 deg, 90 deg) to (360 deg, 180 deg), both advanced

in 10 deg increments for a total of 370 cases for each free return type. The ∆V

contours for type 1 and type 2 free returns are shown in Figs. 5.15–5.16 where white

represents an optimal transfer requiring ∆V > 1200 m/s, and the darkest shade

represents an optimal transfer requiring ∆V 6 900 m/s. In all cases, the osculating

perilune altitude of the LOI sequence reaches the minimum of 100 km. For each

LLO orientation requiring a retargeting maneuver, the time of LOI-0 backs up to

the one day limit. For cases that require a plane change, the time from LOI-1 to

LOI-3 is maximized at one day. In the optimal solution, the flyby altitude may

be maximized, but the magnitude of the flyby angle is generally not maximized.

The maximum value of ∆V ≈ 1215 m/s is required for LLOs of orientation (0 deg,
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90 deg) and (180 deg, 90 deg), and the minimum requirement is ∆V ≈ 860 m/s.

Hotspots of increased ∆V are centered at Ω ≈ 0 deg and Ω ≈ 180 deg, indicating

that it is most difficult to enter a lunar orbit with its line of nodes coincident with

the Earth-moon line. Regions of lower ∆V , regardless of inclination, observed near

Ω = 90 deg and Ω = 270 deg, occur because the retargeting maneuver produces

an incoming velocity at the moon that can enter the LLO plane with little or no

plane change; achieving these LLOs may require only one LOI maneuver. These

regions are also observed with type 0 free returns, but with type 1 and type 2 free

returns, the regions of decreased ∆V are more expansive and are associated with

transfers that are approximately 50 m/s less costly than in the minimum time free

return case. Trends in the ∆V requirement are similar for type 1 and type 2 free

returns with both classes offering a lower cost than the minimum time free return

used previously by providing more control over the magnitude and orientation of

the incoming velocity at the moon. The ∆V requirements for type 1 and type 2 free

returns are always within 15 m/s with the type 1 free return offering the lower ∆V

on average. All LLOs studied here can be achieved within a ∆V budget of 1220 m/s

while providing one day of flight time on the outbound free return path.

5.4 Lunar Orbit Insertion from a General Free Return

The lunar orbit insertion problem using a general free return removes the

symmetry requirement and, thus, allows the lunar flyby velocity orientation to be

free. Therefore, a perpendicular crossing of the Earth-moon line or the vertical

plane is no longer required. As observed in Chapter 3, general free returns offer a
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Figure 5.15: Type 1 free return LOI ∆V contours.

Figure 5.16: Type 2 free return LOI ∆V contours.

134



wide range of Earth departure, lunar passage, and Earth return conditions. The

additional control over the incoming velocity at the moon provides further LOI cost

savings.

5.4.1 Optimization Algorithm

Since the free return no longer must be symmetric, two free return segments

are propagated from the lunar flyby point. One segment is propagated forward

in time to EEI while the other segment is propagated backwards in time to TLI.

The optimization variables associated with the LOI sequence are identical to the

previous cases, but the parameters associated with the free return are modified.

The free parameters are

xp ≡
[
tR t0 t1 t2 t3 ∆v>0 ∆v>1 ∆v>2 ∆v>3 h φ v> tTLI tEEI

]>
1×24

(5.139)

where tR is the time from lunar flyby to the retargeting maneuver, and the free return

flyby state is parameterized by its altitude h, latitude φ relative to the Earth-moon

plane, and velocity v; the time from lunar flyby on the free return to EEI is tEEI ,

and the time from lunar flyby on the free return to TLI is tTLI .

The equality constraint is

c ≡
[
x(tR)− x(t−0 )

]
6×1

= 0 (5.140)
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The inequality constraints are

d ≡



f(hTLI)
f(γTLI)
f(hEEI)
f(γEEI)

(tR − tTLI)− tMIN

t1 − t0
t2 − t1
t3 − t2
−t3

tMAX − (t3 − t1)
hLOI − hMIN

h− hMIN

TMAX − (tEEI − tTLI)
−tTLI
tEEI


15×1

> 0 (5.141)

where hTLI is the altitude at TLI, γTLI is the flight path angle at TLI, hFR is the

osculating lunar periapsis altitude calculated at the free return flyby point, and the

smooth function f(x) is given by

f(x) ≡ (x− xMIN)(xMAX − x) (5.142)

where xMIN and xMAX give the lower and upper bounds on variable x. Now that

the free return departure and approach characteristics may vary widely at the Earth

due to asymmetry, a range of acceptable altitudes and flight path angles are targeted

via the first four inequality constraints. The ranges are

300 km 6 hTLI 6 400 km (5.143)

7 deg 6 γTLI 6 9 deg (5.144)

120 km 6 hEEI 6 125 km (5.145)

−7 deg 6 γEEI 6 −6 deg (5.146)
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The numbers are based on Apollo mission data [52] as these are the only human lunar

missions to date. To streamline constraint implementation, the eight inequalities

bounding the TLI and EEI conditions, given in Eqs. (5.143)–(5.146), are reduced

to four inequalities by combining each pair as f(x) > 0. Requiring a non-negative

value of f(x) ensures that x is within the specified bounds. This technique reduces

the number of constraints and the amount of coding and computation time. The

locations of TLI and EEI are free to float, but actual mission requirements on

launch azimuth, return latitude and longitude, or maximum re-entry velocity, for

example, will further constrain the free return geometry, perhaps increasing the

LOI cost and possibly providing no feasible free return at certain epochs. However,

specific constraints were not placed on these quantities because it was not desired

to tie the analysis to any particular mission or launch site. The absence of the

constraints allows for a larger solution space that can be reduced later if it desired

to simulate a specific mission. Thus, the results obtained here should be viewed as

an overview of the free return abort space that may be diminished depending on

mission requirements.

5.4.2 Analytical Gradients

The derivation of the analytical gradients for the general free return problem

is similar to that of the fixed and variable symmetric problems. The only significant

difference is the addition of new inequality constraints that bound the altitude and

flight path angle at TLI and EEI. The gradient of the first inequality constraint is

∂f(hTLI)

∂xp
=
[
0>17×1

∂f(hTLI)
∂h

∂f(hTLI)
∂φ

∂f(hTLI)
∂v

∂f(hTLI)
∂tTLI

0
]

1×24
(5.147)
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The gradient of f(hTLI) with respect to h is

∂f(hTLI)

∂h
=

∂f

∂hTLI

∂hTLI
∂h

(5.148)

=
∂f

∂hTLI

∂hTLI
∂xTLI

∂xTLI
∂xFR

∂xFR
∂h

(5.149)

= (hMIN1 + hMAX1 − 2hTLI)α
>
TLIΦTLI


cosφ

0
sinφ

0


6×1

(5.150)

where hMIN1 is the minimum allowed TLI altitude, hMAX1 is the maximum allowed

TLI altitude, xTLI is the TLI spacecraft state, α>TLI is the gradient of the TLI

altitude with respect to the TLI state, and ΦTLI is the state transition matrix from

the lunar flyby point to TLI. The remaining nonzero gradients of the first inequality

constraint are

∂f(hTLI)

∂φ
= (hMIN1 + hMAX1 − 2hTLI)α

>
TLIΦTLI


−(RM + h) sinφ

0
(RM + h) cosφ

0


6×1

(5.151)

∂f(hTLI)

∂v
= (hMIN1 + hMAX1 − 2hTLI)α

>
TLIΦTLI

[
0
I

]
6×3

(5.152)

∂f(hTLI)

∂tTLI
= (hMIN1 + hMAX1 − 2hTLI)α

>
TLIẋTLI (5.153)

The gradients of f(γTLI), f(hEEI), and f(γEEI) are similar.

5.4.3 Numerical Results

The targeting and optimization procedure with a general free return is il-

lustrated with an example that targets an LLO of orientation (225 deg, 120 deg)

where the initial estimate used for this case is the same as in the fixed and vari-

able symmetric cases. Figure 5.17 shows the optimal free return and LOI sequence,
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Table 5.7 shows the initial and final values of the free parameters, and Table 5.8

shows the converged values of the constraints. The additional variability of the free

return lowers the LOI cost to 951 m/s, which is a savings of about 65 m/s over

the variable symmetric case and about 265 m/s over the fixed, minimum time free

return case. From Fig. 5.17(a), it is clear that the free return in this case in not

symmetric since the TLI to lunar flyby segment is longer than the lunar flyby to

EEI segment; the duration of the TLI segment is approximately 6.4 days, and the

duration of the EEI segment is approximately 3.6 days. Therefore, the round trip

free return flight time is maximized at 10 days. This flight time disparity between

the TLI and EEI legs is consistent with general free returns with a negative flight

path angle at lunar flyby, as seen in Fig. 5.17(b) and as discussed in Chapter 3. The

plane change maneuver, LOI-2, decreased to 40 m/s from approximately 250 m/s

in the fixed free return case because the asymmetry allows an approach trajectory

at the moon nearer to the LLO plane. The LOI-1 to LOI-3 flight time is maximized

at one day, and the time from TLI to the retargeting maneuver is minimized at one

day. Note in Table 5.8 that the free return flight time is maximized, but the flyby

altitude has decreased to under 20000 km. The asymmetry of the free return allows

increased flight time at a lower flyby altitude relative to symmetric free returns.

To assess the impact of the free return requirement, a non-free return out-

bound trajectory from Earth is used to optimize LOI for minimum ∆V using the

same LLO geometry. The optimal transfer costs 943 m/s which indicates the free

return requires approximately 10 m/s additional ∆V than the non-free return case.

The penalty may grow for other LLO orientations, and the additional ∆V costs
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should be weighed against the confidence of having a guaranteed trajectory back to

Earth with the free return.

Figure 5.18 shows the LOI cost contours as a function of LLO orientation.

The trend is similar to the variable symmetric case, but the LOI cost using a gen-

eral free return is, on average, 16 m/s cheaper than a type 1 free return and 19 m/s

cheaper than a type 2 free return. The maximum ∆V requirement using a gen-

eral free return is 1190 m/s to achieve an LLO of orientation (0 deg, 90 deg); the

minimum requirement is 860 m/s, which is necessary for any LLO with i = 180 deg.

These results show that removing the symmetry requirement decreases the

∆V cost of the mission. Allowing the free return to vary during optimization,

however, for both symmetric and asymmetric cases, incurred an increased round

trip free return flight time. Also, when the free return became non-planar, certain

cases required a polar or near-polar Earth departure azimuth, which may not be

feasible depending on the launch site location. Thus, an appropriate free return for

a given mission must satisfy both launch and return requirements and not exceed

the maximum flight time capability of the spacecraft.
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(a) (b)

(c) (d)

Figure 5.17: General free return and LOI into an LLO orientation of
(Ω, i) = (225 deg, 120 deg) in barycentered rotating frame: a) oblique view, b)
x̂ŷ plane view, c) x̂ŷ plane view at moon, and d) x̂ẑ plane view at moon.
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Figure 5.18: LOI cost contours with general free return formulation.

Table 5.7: Free parameters for general free return example case

Parameter Units Initial Optimal
tR s −52068 −469321
t0 s −101715 −559984
t1 s −50314 −91128
t2 s −27510 −61492
t3 s −7073 −4728

∆v0x km/s 0.000 −0.017
∆v0y km/s 0.000 −0.021
∆v0z km/s 0.000 −0.018
∆v1x km/s 0.226 0.136
∆v1y km/s 0.785 0.200
∆v1z km/s 0.000 0.192
∆v2x km/s 0.186 0.032
∆v2y km/s −0.186 −0.020
∆v2z km/s −0.338 −0.014
∆v3x km/s −0.173 0.397
∆v3y km/s 0.173 0.296
∆v3z km/s −0.424 0.280
h km 100 19885
φ deg 0.0 19.8
vx km/s 0.000 −0.374
vy km/s −2.563 −1.160
vz km/s 0.000 0.122
tTLI s −247044 −555721
tEEI s 247044 308279
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Table 5.8: Constraints for general free return example case targeting an LLO orien-
tation of (Ω, i) = (225 deg, 120 deg)

Constraint Units Value
x− x0 = 0 km −6.9× 10−5

y − y0 = 0 km −1.8× 10−4

z − z0 = 0 km −1.3× 10−4

vx − vx0 = 0 m/s −1.0× 10−10

vy − vy0 = 0 m/s 1.1× 10−9

vz − vz0 = 0 m/s −4.0× 10−10

f(hTLI) > 0 km2 −1.8× 10−4

f(γTLI) > 0 deg2 2.1× 10−9

f(hEEI) > 0 km2 −1.5× 10−5

f(γEEI) > 0 deg2 1.3× 10−9

(tR − tTLI)− tMIN > 0 day 0.00
t1 − t0 > 0 day 5.43
t2 − t1 > 0 day 0.34
t3 − t2 > 0 day 0.66
−t3 > 0 day 0.05

tMAX − (t3 − t1) > 0 day 0.00
hLOI − hMIN > 0 km 1.5× 10−6

h− hMIN > 0 km 18865
TMAX − (tEEI − tTLI) > 0 day 0.00

−tTLI > 0 day 6.43
tEEI > 0 day 3.57
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Chapter 6

Lunar Orbit Insertion from a Free Return in the

Four-Body Model

The previous optimal lunar orbit insertion (LOI) results were presented in

the circular restricted three-body problem (CRTBP) and, thus, are not valid in the

actual Earth-moon system. The simplified model ignored the eccentricity of the

moon’s orbit, solar gravity, and the nonspherical Earth. Additionally, the simplified

model assumed the spacecraft had the ability to instantaneously change its velocity

even though this change requires a finite amount of time. In this chapter, the

physical system is modeled more realistically by adding solar gravity to the equations

of motion and computing celestial geometry with an accurate ephemeris. The effects

of solar radiation pressure and the nonspherical Earth are also considered. Finally,

the spacecraft’s propulsion system is modeled with both linearly steered and optimal

control finite thrust engines.

6.1 Lunar Orbit Insertion with an Impulsive Engine Model

The spacecraft engine is initially assumed to be capable of producing infinite

thrust; thus, the spacecraft’s velocity may change instantly. The force field used for

both the impulsive and finite burn algorithms is the four-body model that includes
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the gravity of the spherical Earth, moon, and sun. The spacecraft acceleration in the

moon-centered frame is given by Eq. (2.18). This non-rotating J2000 frame is used

to integrate all LOI segments, and the free return segments are integrated in the

non-rotating J2000 Earth-centered frame. Recall that the fundamental plane is the

Earth’s equator at the J2000 epoch with ẑ axis normal to the equator and positive

in the direction of the north pole. The principal direction along the positive x̂ axis

points to the vernal equinox at the J2000 epoch. The ŷ axis completes the right-

handed system. Celestial data are accessed with the planetary and lunar ephemeris

DE 421 [48].

6.1.1 Numerical Algorithm

The spacecraft departs Earth on a free return trajectory and subsequently

achieves an orbit about the moon of specified orientation. As in the CRTBP, the

performance metric chosen to be minimized is the sum of the magnitudes of the four

impulsive maneuvers. The cost function is

J ≡
3∑
i=0

∆vi (6.1)

where ∆vi is the magnitude of the ith maneuver. The time, magnitude, and direction

of each maneuver are free to vary during optimization. The ballistic free return state

at lunar passage is also free, along with the times of translunar injection (TLI) and

Earth entry interface (EEI). The free parameters are given by

xp ≡
[
tR t0 · · · t4 ∆v>0 · · · ∆v>3 h φ v> tTLI tEEI

]>
1×25

(6.2)
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where t4 is the epoch along the low lunar orbit (LLO). This time was arbitrary in

the CRTBP; however, in the ephemeris model, t4 is a free parameter that affects

the planetary geometry.

Twenty two constraints placed on the optimization process ensure a feasible

transfer trajectory and target conditions consistent with a real-world lunar mission.

The equality constraints require state and time continuity at the patch point, which

joins the free return segment with the LOI segment. The equality constraints are

c ≡
[
xR − x−0
tR − t0

]
7×1

= 0 (6.3)

The inequality constraints are

d ≡



f(hTLI)
f(γTLI)
f(hEEI)
f(γEEI)

(tR − tTLI)− tMIN

t1 − t0
t2 − t1
t3 − t2
t4 − t3

tMAX − (t3 − t1)
hLOI − hMIN

hFR − hMIN

TMAX − (tEEI − tTLI)
tFR − tTLI
tEEI − tFR


15×1

> 0 (6.4)

The first four inequality constraints allow the TLI and EEI locations to float but

dictate acceptable ranges for the TLI and EEI altitudes and flight path angles. The

ranges, given in Eq. (5.143)–Eq. (5.146), are the same as in the general free return

case in the CRTBP. Again, actual mission requirements on launch azimuth or return
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latitude and longitude, for example, will further constrain the free return geometry,

perhaps increasing the LOI cost and possibly providing no feasible free return at

certain epochs. The remaining constraints require: that the spacecraft remain on

the outbound free return path at least one day after TLI; that the maximum time

between the first and third LOI maneuvers is one day; that the minimum altitude

at the moon is 100 km; and that the maximum free return flight time is 10 days.

6.1.2 Initial Estimate

The initial estimate of the parameter vector is constructed from the previ-

ously converged optimal general free return solution in the CRTBP. In that model,

the spacecraft is assumed to be of negligible mass, the moon’s orbit is assumed to be

circular, and all perturbations other than gravity from a spherical Earth and moon

are ignored. To transition from the CRTBP, the unit vectors of a reference frame

rotating with the Earth-moon line are defined by

r̂(t) ≡ rM(t)

rM(t)
t̂(t) ≡ n̂(t)× r̂(t) n̂(t) ≡ rM(t)× vM(t)

|rM(t)× vM(t)|
(6.5)

where rM(t) and vM(t) are the lunar position and velocity relative to Earth at

time t. The moon’s instantaneous orbital plane about the Earth, called the Earth-

moon plane, is the plane spanned by r̂ and t̂, and the vertical plane is defined as

the plane spanned by r̂ and n̂. The vector t̂ is not parallel to vM unless the moon is

at apogee or perigee. Since the moon’s position and velocity vectors are not always

perpendicular, there will be a discrepancy between the r̂t̂n̂ axes and the idealized

CRTBP axes.
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After propagation in the ephemeris model, the initial estimate produces tra-

jectories that are discontinuous at the patch point due to the solar perturbation and

the non-circular lunar orbit. Figure 6.1 shows contours of the position error at the

patch point as a function of LLO orientation where the longitude of the ascending

node is measured relative to the Earth-moon line and the inclination is measured

relative to the Earth-moon plane. The average discontinuity is 14900 km; elevated

values seen between longitudes of 0 deg and 90 deg and between 180 deg and 270 deg

occur when the LOI plane change is large and the round trip free return flight time

is at or near its maximum. These conditions lead to larger dispersions because of

an increased propagation time in the perturbed gravitational field. The maximum

position error is 62000 km, but this maximum is within the convergence envelope

of the optimization algorithm.

Figure 6.1: Initial estimate position error at patch point as a function of LLO
orientation.
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6.1.3 Free Return Targeting Strategy

The spacecraft’s trajectory along the free return is hyperbolic with respect

to the moon, and the hyperbolic path must intersect the vertical plane. This ver-

tical plane passage occurs on the far side of the moon relative to the Earth for a

circumlunar free return. The point of vertical plane passage is fixed at a time called

the free return epoch (FRE) which is nominally chosen to be 6:00 AM, Dec. 31,

2024, a time when the moon is near its maximum inclination relative to the Earth’s

equator and when the Earth-moon distance is near its average value of 384400 km.

The state at the FRE is free in the optimization process and is parameterized by

its altitude, latitude relative to the Earth-moon plane, and velocity. Though the

state here is free, it must have an osculating lunar periapsis altitude greater than

or equal to 100 km.

The free return is constructed with a multiple shooting strategy from the

moon to the Earth. The TLI segment is propagated backwards in time, targeting

an altitude and flight path angle at Earth within the specified bounds. The EEI

segment is propagated forward in time to target the EEI conditions at Earth. The

free return epoch state calculated from the CRTBP model provides an adequate

initial estimate for a feasible circumlunar free return in the ephemeris model.

6.1.4 Analytical Gradients

All gradients are derived analytically to reduce computation time and to

avoid the problems associated with finite differencing due to the sensitivity of the

problem. The decreased runtime comes at the cost of increased derivation and im-
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plementation time. Where necessary, linear perturbation theory is used to compute

the partial derivatives of the spacecraft state at one time with respect to the state

at another time with the state transition matrix (STM) as shown in Chapter 4. The

speedup factor observed with STM-based derivatives relative to central differences

for the present problem is about 11, which is greater than the speedup observed in

the CRTBP algorithm. The majority of the gradient derivations are similar to those

presented in Chapter 5, so they are omitted; however, the gradients with respect to

t4, the LLO ascending node time, are shown here.

The position and velocity at t4 in the moon-centered J2000 frame are

r4 = Rrrtn4 (6.6)

v4 = Rvrtn4 (6.7)

where the superscript rtn indicates a quantity in the r̂t̂n̂ frame, and the transfor-

mation matrix R from the rotating r̂t̂n̂ frame to the non-rotating frame is

R(t) =
[
r̂(t) t̂(t) n̂(t)

]
3×3

(6.8)

Thus, the spacecraft state at t4 is

x4 = Kxrtn4 (6.9)

where

K ≡
[
R 0
0 R

]
6×6

(6.10)
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The total differential at t4 is

dx4 =
∂x4

∂t4
dt4 (6.11)

=
∂

∂t4
(Kxrtn4 )dt4 (6.12)

= K̇xrtn4 dt4 (6.13)

where ẋrtn4 = 0 since xrtn4 is constant in the rotating frame, and

K̇ =

[
Ṙ 0

0 Ṙ

]
(6.14)

The time derivative of the transformation matrix is

Ṙ =
[

˙̂r ˙̂t ˙̂n
]

(6.15)

where

˙̂r =
vM
rM
− r

>
MvM
r3
M

rM (6.16)

˙̂t = ˙̂n× r̂ + n̂× ˙̂r (6.17)

˙̂n = ˙̂r × v̂M + r̂ ×
[
gM
vM
− v

>
MgM
v3
M

vM

]
(6.18)

The lunar acceleration gM is calculated by finite differencing the ephemeris-tabulated

lunar velocity. The time-fixed differential at t4 is

δx4 = dx4 − ẋ4dt4 (6.19)

=
(
K̇xrtn4 − ẋ

ijk
4

)
dt4 (6.20)

Thus,

∂(xR − x−0 )

∂t4
= −Φ(t0, t1)Φ(t1, t2)Φ(t2, t3)Φ(t3, t4)

(
K̇xrtn4 − ẋ

ijk
4

)
(6.21)
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The main point here is that since the CRTBP is an autonomous system, the mission

times are arbitrary; only the elapsed time between mission events is relevant. In

the ephemeris model, changing the time at which the spacecraft arrives in the LLO

changes the relative geometry of the Earth, moon, and sun. Thus, the gradient

given by Eq. (6.21) is nonzero since the LLO epoch time affects the geometry of the

integrated trajectory.

6.1.5 Numerical Results

To study the free return abort cost of missions targeting different orbits at

the moon, the orientation of the LLO is parametrically varied in its longitude of the

ascending node Ω and its inclination i. The longitude is measured in the Earth-moon

plane relative to the moon-Earth line (−r̂), and the inclination is measured relative

to the Earth-moon plane. Each LLO is retrograde relative to the n̂ axis and circular

with an altitude of 100 km. After the LLO orientation is set, the optimizer iterates

Figure 6.2: Minimum hybrid mission LOI cost contours as a function of LLO orien-
tation with an impulsive engine model.
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on the free parameters to minimize the cost and satisfy the constraints. The ∆V

cost of the optimal LOI sequences for the full range of LLOs is shown in Figure 6.2.

The average absolute difference between corresponding optimal LOI sequences in

the ephemeris model and in the CRTBP is 1.56 m/s. The maximum LOI cost of

1190 m/s occurs at an LLO orientation of (Ω, i) = (0 deg, 90 deg). This orientation

indicates the LLO is normal to the Earth-moon plane and the LLO ascending node

is on the Earth-moon line between the Earth and moon. The minimum LOI cost of

858 m/s occurs when the LLO has an inclination of 180 deg, indicating the LLO is

in the Earth-moon plane.

The optimal free return trajectory and LOI sequence for the maximum cost

LOI case are shown in Fig. 6.3; additional views of the mission are shown in Fig. 6.5.

The round trip free return time is maximized at 10 days, and the time between

LOI-1 and LOI-3 is maximized at one day to maximize the radius of the plane

change maneuver. A plane change is necessary in this case because the angle be-

tween the velocity immediately before LOI-1 and the LLO plane is nearly 70 deg.

The retargeting maneuver (LOI-0) has a magnitude of 30 m/s. The free return

and LOI sequence associated with the minimum ∆V case are shown in Figure 6.4;

additional views are shown in Fig. 6.6. The free return has a flight time of approxi-

mately 8 days and remains near the moon’s orbital plane about the Earth, indicated

by zero latitude at the FRE. An apparent one-burn sequence is used for LOI since

the trajectory approaches the moon in the LLO plane. The retargeting maneuver

magnitude is 32 m/s.
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One predictor of the cost of entering a particular orbit about the moon is the

relative declination between the incoming velocity and the LLO plane. The relative

declination is computed by determining the angle between the angular momentum

immediately before LOI-1 and the angular momentum at the LLO ascending node.

Consider the range of LLOs with inclination i = 90 deg; the ∆V cost of the optimal

LOI sequence and the relative declination are shown in Figure 6.7. Where the rela-

tive declination is minimized near Ω = 90 deg and Ω = 270 deg, the LOI cost is also

minimized. This geometry allows the spacecraft to enter the desired lunar orbit with

fewer than three maneuvers. Though the algorithm does not allow maneuvers and

segments to be removed, the optimizer is free to decrease any maneuver’s magnitude

to zero; this occurs for all cases with a relative declination below 4 deg. The free

return and LOI geometry are adjusted to reduce the relative declination and conse-

quently decrease the magnitude of the plane change maneuver. Where the relative

declination is above 7 deg, a three-burn sequence minimizes the ∆V necessary to

enter lunar orbit. It is difficult to predict how many maneuvers will minimize the

LOI cost at a declination of 5 ± 2 deg because cases in this range are observed to

utilize one-, two-, and three-burn sequences. To determine the minimum, it may be

necessary to calculate each and directly compare the LOI cost. Operational con-

siderations may also be a factor in determining the number of maneuvers. Though

a three-burn sequence may save ∆V , it may be desired to ignite the engine fewer

times. On the other hand, it may be desired to perform more than one maneuver if

errors in a single maneuver are likely to produce a trajectory that has an unaccept-

ably low or subsurface perilune altitude. This was the rationale behind using two
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maneuvers in the Apollo program. Even though less than 10 deg of plane change

was necessary and could be accomplished in one burn, potential errors in a single

maneuver were deemed to be undesirable. Some cases in this dissertation also utilize

a two-burn sequence where loiter time is used to produce a small plane change.

Next, consider the TLI to LLO flight time for i = 90 deg as shown in Fig-

ure 6.8. Observing the cost variation only, it is not obvious that the free return geom-

etry of the minimum impulse solution fundamentally changes between Ω = 170 deg

and Ω = 180 deg, transitioning from a “short” free return (round trip flight time

less than 10 days) to a “long” free return (round trip flight time of 10 days). The

short free return is shown in Figure 6.9(a) and the long free return is shown in Fig-

ure 6.9(b). The change in free return geometry from the short to the long solution

is indicated by a jump of approximately 3.5 days in TLI to LLO flight time between

Ω = 170 deg and Ω = 180 deg as seen in Figure 6.8. At both longitudes, there are

actually two local minima: a short free return and a long free return. This is seen

in Figure 6.10 where the free return time is varied from 5.7 days to 10 days. The

long solution represents the on-boundary minimum, and it requires more ∆V than

the short solution at a longitude of 170 deg. The on-boundary minimum, however,

becomes the global minimum in the solution space at 180 deg. This causes the

3.5 day flight time increase between Ω = 170 deg and Ω = 180 deg, and the same

jump is observed between Ω = 350 deg and Ω = 360 deg. The decreasing flight time

between Ω = 70 deg and Ω = 130 deg is due to the decreasing free return flight time

and the decreasing LOI flight time as the LOI sequence transitions from a three-

burn through a two-burn to a one-burn sequence. Though the spacecraft departs
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(a) (b)

Figure 6.3: Hybrid trajectory for the maximum ∆V requirement necessary to
achieve an LLO of orientation (0 deg, 90 deg): a) Free return without LOI seg-
ments, in Earth-centered non-rotating frame, and b) LOI sequence in moon-centered
non-rotating frame.

(a) (b)

Figure 6.4: Hybrid trajectory for the minimum ∆V requirement necessary to achieve
an LLO of orientation (90 deg, 180 deg): a) Free return without LOI segments, in
Earth-centered non-rotating frame, and b) LOI sequence in moon-centered non-
rotating frame.
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(a) (b)

(c)

Figure 6.5: Additional views for the maximum cost hybrid trajectory: a) Earth-
centered non-rotating frame, b) moon-centered non-rotating frame, and c) Earth-
centered rotating-pulsating frame.
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(a) (b)

(c)

Figure 6.6: Additional views for the minimum cost hybrid trajectory: a) moon-
centered non-rotating frame, b) LOI zoom in moon-centered non-rotating frame,
and c) Earth-centered rotating-pulsating frame.
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Figure 6.7: LOI cost and relative declination for LLOs at an inclination of 90 deg.

Figure 6.8: LOI cost and flight time for LLOs at an inclination of 90 deg.
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both short and long free returns after one day, the retargeting maneuver magnitude

is small enough that the pre-maneuver state is a significant factor in determining

the flight time required to reach the moon.

(a) (b)

Figure 6.9: Free return types: a) “short” free return solution for an LLO orientation
of (170 deg, 90 deg), and b) “long” free return solution for an LLO orientation of
(180 deg, 90 deg).

An increase in flight time of approximately one day is observed in Figure 6.8

between Ω = 130 deg and Ω = 140 deg. This occurs because the minimum impulse

solution is a one-burn LOI sequence at Ω = 130 deg while the minimum impulse

solution is a three-burn LOI sequence at Ω = 140 deg. The relative declination

is greater than 30 deg at Ω = 140 deg, indicating three maneuvers are optimal

for orbit insertion. To decrease the plane change cost, the radius of ∆v2 increases

until the time between LOI-1 and LOI-3 is maximized at one day as imposed by

the inequality constraint. This also accounts for the increased flight time between

Ω = 320 deg and Ω = 330 deg.
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Figure 6.10: LOI cost as a function of free return flight time for LLO longitudes of
170 deg and 180 deg at an inclination of 90 deg.

Figure 6.11: Retargeting maneuver magnitude as a function of the time after TLI
for an LLO of orientation (180 deg, 90 deg).
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For every case presented, the retargeting maneuver is performed one day af-

ter TLI. This limit was imposed in the optimization process to ensure the spacecraft

remained on the free return to provide an abort option for this minimum amount

of time. As was observed in the CRTBP, the time of the retargeting maneuver

decreased to this boundary during LOI cost minimization, suggesting that the ma-

neuver’s magnitude decreases as it moves closer to TLI. To investigate this trend,

the retargeting time is varied from 0.1 days to 3 days after TLI and the hybrid

trajectory is reoptimized. Figure 6.11 shows the cost of the retargeting maneuver

as a function of its activation time past TLI for an LLO orientation of (180 deg,

90 deg). The default post-TLI retargeting time of one day is indicated at 24 hrs

giving a retargeting cost of approximately 30 m/s. Past one day, the retargeting

cost rises at a rate of approximately 10 m/s/day. As expected, the magnitude of

LOI-0 decreases as it approaches TLI; however, the magnitude is minimized near

10 hrs and increases as it approaches TLI past that point. At 10 hrs after TLI on

this free return, the spacecraft is 115000 km from Earth.

6.1.6 Algorithm Extensions

In this subsection, the impulsive, four-body algorithm is extended to examine

the effects of variable mission epoch, an upgraded force model including J2 effects

and solar radiation pressure, and an alternate objective function which seeks to

maximize the time spent on the free return while simultaneously minimizing the

LOI cost.
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6.1.6.1 Epoch Variation

The FRE was initially chosen to be 6:00 AM, Dec. 31, 2024, but the algo-

rithm accommodates any mission epoch. In the CRTBP, the Earth-moon distance

was taken as 384400 km, but this distance actually fluctuates between approxi-

mately 357000 km and 407000 km. As shown in Chapter 2, when the mass ratio

of the primaries is constant but the inter-primary distance is changed, an equiva-

lent trajectory in one system can be attained through a dilation of a corresponding

trajectory in the other system. After the epoch is selected for a given mission, the

converged parameters from the CRTBP are scaled through the method outlined in

Chapter 2, where the ratios of distance units, time units, and velocity units are

DU2

DU1

=
rEM(t2)

rEM(t1)

TU2

TU1

=

(
rEM(t2)

rEM(t1)

) 3
2 V U2

V U1

=

√
rEM(t1)

rEM(t2)
(6.22)

One problem with this approach is that the radius of the moon does not scale

with the Earth-moon distance, so neither does the LLO with a fixed altitude of

100 km. An effective strategy to avoid this problem was implemented where the

free parameters associated with LOI-1, LOI-2, and LOI-3 are not scaled with the

Earth-moon distance, but all other parameters are. Because of the proximity of the

LOI sequence to the moon, these trajectories behave more as Keplerian orbits and

are not as sensitive to Earth’s gravitational perturbation. It was found that this

technique ensured the free return and LOI sequence were within the convergence

envelope of the optimization algorithm for all cases studied.

To examine the change in the LOI cost when the epoch is varied, 25 free

return epochs are chosen randomly between Jan. 1, 2020 and Jan. 1, 2030, and
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the hybrid sequence is optimized for insertion into an LLO of orientation (225 deg,

120 deg). Figure 6.12 shows the variation in the minimum LOI cost as a function

of the free return flyby time and the Earth-moon distance. The minimum cost is

950 m/s, which occurs on Mar. 4, 2028; the maximum cost is 965 m/s, which occurs

on Feb. 24, 2028; and the average LOI cost is 957 m/s. LOI cost, however, is not

the only consideration in selecting the mission date. Also necessary to consider are

launch site conditions, the timing of solar storms, and return site conditions.

(a) (b)

Figure 6.12: Epoch variation and LOI cost for an LLO of orientation (225 deg,
120 deg): a) LOI cost as a function of ephemeris time, and b) LOI cost as a function
of Earth-moon distance.

6.1.6.2 Force Model Extension

In this subsection, the effects of Earth’s oblateness and solar radiation pres-

sure are added to the dynamic model. The initial minimum LOI cost when targeting

an LLO of orientation of (225 deg, 120 deg) is 953.386 m/s, and the minimum cost

when J2 effects and solar radiation pressure are considered is 953.377 m/s, a differ-
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ence of 9 × 10−4 %. Thus, the effects on the LOI cost are small in this case, but

the effects on the trajectory displacement are more significant. Figure 6.13 shows

the difference in spacecraft position between the two dynamic models; the position

deviation at TLI is approximately 17 km, and the deviation at EEI is approximately

9 km. As seen in Fig. 6.13(b), the effects near the moon are less significant since the

maximum position deviation along the LOI segments is approximately 900 m. Ta-

ble 6.1 shows the accelerations on the spacecraft at EEI. The oblateness acceleration

of the Earth is the second most significant acceleration at this phase of the mission

near the Earth. The calculation of solar radiation pressure assumed a spacecraft

area of 80 m2, and a coefficient of reflectivity of 0.9.

(a) (b)

Figure 6.13: Effect of Earth oblateness and solar radiation pressure: a) position
deviation on free return, and b) position deviation on LOI segments.

6.1.6.3 Multi-Objective Optimization

The spacecraft is nominally constrained to remain on the free return path for

at least one day. This inequality constraint was active in each case to minimize the
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Table 6.1: Spacecraft accelerations at EEI

Source Acceleration Units

Earth (spherical) 9.35× 10−3 km/s
2

Earth (oblateness only) 1.30× 10−5 km/s
2

Moon 7.11× 10−10 km/s
2

Sun 5.14× 10−10 km/s
2

Solar radiation pressure 1.62× 10−11 km/s
2

LOI cost. It may be desired, however, to remain on the free return longer if the ∆V

capability of the spacecraft is sufficient to do so. To investigate hybrid trajectories

that offer a longer duration on the free return, and to understand the LOI cost

of these missions, the objective function of the algorithm is modified. The new

optimization problem seeks to minimize the LOI cost and maximize the time spent

on the free return. Representative quantities are summed into a scalar objective

function, given by

J ≡
3∑
i=0

∆vi +
tMIN

tR − tTLI
(6.23)

Because tMIN = 86400 s, the second term of J represents the inverse of the number

of days spent on the free return. This additional term and its effective weighting

were chosen so that the most expensive case has an LOI cost near 1250 m/s, an

assumed maximum ∆V capability. If a specific architecture is known, it may be

desired to change the relative weighting of the terms in J , or the maximum ∆V

capability could be bounded by an inequality constraint.

An example is presented that targets an LLO of orientation (0 deg, 90 deg).

The optimal solution, shown in Fig. 6.14, has an LOI cost of 1264 m/s and provides
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a flight time of 5.14 days on the free return. This represents an increase of about

75 m/s over the nominal case where the spacecraft remained on the free return

for only one day (Fig. 6.5). As confirmed by this example and by Fig. 6.11, the

penalties for increasing the flight time on the free return, when reoptimizing the

free return and LOI sequence, are not as severe as the penalties from remaining on

the free return longer without reoptimizing the free return (Fig. 5.10(a)). Thus, the

maximum LOI capability should be specified before a mission, and the spacecraft’s

flight time on the free return should be maximized within this capability.

6.2 Lunar Orbit Insertion with a Finite Thrust Engine Model

The impulsive model is converted to a constant thrust, linearly-steered finite

burn engine model. The cost function to be minimized is the propellant mass, given

by

J ≡ m0 −mf (6.24)

where the initial mass m0 is the post-TLI spacecraft mass, and the spacecraft mass

delivered to lunar orbit is fixed at mf = 20000 kg. The propellant mass is

m0 −mf = −
3∑
i=0

∆mi (6.25)

The change in mass across the ith burn is

∆mi = −T
c

∆ti (6.26)

where T = 35 kN is the fixed engine thrust, c is the exhaust velocity, and ∆ti

is the burn time. The exhaust velocity is c = Ispg0, where the specific impulse
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(a) (b)

(c)

Figure 6.14: Multi-objective optimization example for an LLO of orientation of
(0 deg, 90 deg): a) Earth-centered non-rotating frame, b) moon-centered non-
rotating frame, and c) Earth-centered rotating-pulsating frame.
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is Isp = 320 s, and the standard gravitational acceleration at Earth’s surface is

g0 = 9.80665× 10−3 km/s2 [100]. The cost function becomes

J =
T

c

3∑
i=0

∆ti (6.27)

During each thrust phase, the thrust direction is parameterized by α, the

initial right ascension of the thrust direction, β, the initial thrust declination, α̇,

the right ascension rate, and β̇, the declination rate. The vector of optimization

parameters is

xp ≡
[
t−0 t+0 · · · t4 α0 β0 α̇0 β̇0 · · · h φ v> tTLI tR tEEI

]>
1×33

(6.28)

where t−i and t+i indicate the start and end times of the ith burn, and t4 is the time

of the LLO ascending node. The state at the FRE is again parameterized by its

altitude h, latitude φ relative to the Earth-moon plane, and velocity v. The equality

constraints are

c ≡
[
xR − x−−0

tR − t−0

]
7×1

= 0 (6.29)

where xR is the state before the retargeting maneuver, integrated along the free

return, and x−−0 is the state before the retargeting maneuver, integrated from the

moon through the LOI sequence. The 19 inequality constraints require sequential

trajectory segments and enforce the same flight time and altitude conditions as in

the impulsive algorithm.
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6.2.1 Impulse Conversion

Each impulsive maneuver is converted to a linearly-steered finite burn with

a method that exactly reproduces the impulsive trajectory, except along thrust

arcs, as developed in Ref. [90]. Beginning at a point after the impulse time ti on

the impulsive trajectory, a finite thrust arc is initiated. This thrusting trajectory

begins at a time tB > ti and terminates at a time tA 6 ti. The finite thrust

arc conversion is initiated after the impulse time because the LOI trajectories are

integrated backwards in time from the LLO where the spacecraft has a fixed mass.

Using the ideal rocket equation (Appendix E), the burn time ∆t ≡ tB−tA is initially

estimated as

∆t =
c

T
mB

(
e∆v/c − 1

)
(6.30)

where mB is the post-burn mass and ∆v is the known impulse magnitude. It is

desired to match the position and velocity at the endpoints of the thrust arc to

any points along the ballistic trajectory before and after the impulse. Thus, it is

necessary to determine a finite burn trajectory that satisfies

c ≡ xf − xA = 0 (6.31)

where xA is the state on the reference ballistic trajectory at tA, and xf is the state

on the integrated finite burn trajectory at tA. To target the six element constraint

vector, a vector of free parameters is defined as

xp ≡



α
β
α̇

β̇√
∆tA√
∆tB

 (6.32)
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where

∆tA = ti − tA (6.33)

∆tB = tB − ti (6.34)

Initially, α and β are computed from the impulse direction, and both α̇ and β̇ are

set to zero. Since xp ∈ R6, ∆tA and ∆tB are required to be non-negative; this

guarantees tA 6 ti and ti 6 tB without imposing constraints to maintain sequential

times. The method, illustrated in Fig. 6.15, is used to convert the four impulsive

maneuvers from the previously optimized case to finite burns, and the resulting

feasible trajectory is used as the starting point for subsequent optimization.

6.2.2 System Dynamics

A state vector is defined to include the position, velocity, mass, and thrust

direction parameters. Though the right ascension rate and declination rate are con-

stant throughout each burn and irrelevant throughout each coast, these quantities

are added to the state vector so that each time the engine is switched on or off, the

event can be represented by a state impulse. The augmented state vector and its

time derivative are

z ≡


r
v
m
q


11×1

ż =


v

g + T
m
û

−T
c

q̇


11×1

(6.35)

where r is the spacecraft position, v is the velocity, m is the mass, q is a vector of

control parameters, g is the gravitational acceleration, and û is the thrust direction.
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tBtA

ti

(a)

∆tB
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−∆tA

xA

xf

(b)

(c)

Figure 6.15: Impulse to finite burn conversion: a) impulsive trajectory, b) finite
burn targeting, and c) continuous finite burn trajectory.
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The q vector and its time derivative are

q ≡


α
β
α̇

β̇

 q̇ =


α̇

β̇
0
0

 (6.36)

and the thrust direction is computed as

û = cosα cos β x̂+ sinα cos β ŷ + sin β ẑ (6.37)

6.2.3 Analytical Gradients

The partials of the cost and constraints with respect to the free parameters

are necessary for optimization with the chosen gradient-based method. With 33

free parameters, a cost function, and 26 constraints, 891 individual derivatives are

needed. Analytical gradients were derived previously for the impulsive LOI opti-

mization model in the CRTBP and the ephemeris model via a generalized procedure.

Because the free parameters that fully specify the thrust direction are now included

in the state vector, gradient derivation largely remains the same. This choice of

state vector allows a state impulse to represent an engine start or stop event, so

derivations are mathematically analogous to the previous derivations that consid-

ered only impulsive changes in spacecraft velocity. Impulsive changes in the thrust

direction parameters are now used to represent engine events. Relative to central

differencing, the algorithm with STM-based derivatives is approximately 13 times

faster.

The state transition matrix Φ of the system is propagated as

Φ̇ = FΦ (6.38)
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where the state propagation matrix is

F ≡ ∂ż

∂z
=


0 I 0 0
G 0 − T

m2 û
T
m
∂û
∂q

0> 0> 0 0>

0 0 0 ∂q̇
∂q


11×11

(6.39)

With moon-centered coordinates, the gravity gradient matrix is

G =
3µM
r5
rr> − µM

r3
I

+
3µE

|r − rME|5
(r − rME)(r − rME)> − µE

|r − rME|3
I

+
3µS

|r − rMS|5
(r − rMS)(r − rMS)> − µS

|r − rMS|3
I (6.40)

The derivative of the thrust direction with respect to the control vector is

∂û

∂q
=

− sinα cos β − cosα sin β 0 0
cosα cos β − sinα sin β 0 0

0 cos β 0 0

 (6.41)

and the derivative of the control vector rate with respect to the control vector is

∂q̇

∂q
=

[
0 I
0 0

]
4×4

(6.42)

The total differential of the pre-LOI-0 state is

dz−−0 = Φ(t−0 , t
+
0 )Φ(t+0 , t

−
1 ) · · ·Φ(t+3 , t4)δz4

+ Φ(t−0 , t
+
0 )Φ(t+0 , t

−
1 ) · · ·Φ(t−3 , t

+
3 )
[
−d(∆z+

3 ) + ∆ż+
3 dt

+
3

]
+ Φ(t−0 , t

+
0 )Φ(t+0 , t

−
1 ) · · ·Φ(t+2 , t

−
3 ))
[
−d(∆z−3 ) + ∆ż−3 dt

−
3

]
+ · · ·+ Φ(t−0 , t

+
0 )
[
−d(∆z+

0 ) + ∆ż+
0 dt

+
0

]
+ ż−0 dt

−
0 − d(∆z−0 ) (6.43)
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An engine start is represented as a state impulse of the form

∆z−i ≡ z−i − z−−i =



0
0
0
αi
βi
α̇i
β̇i


11×1

(6.44)

and an engine stop is represented as a state impulse of the form

∆z+
i ≡ z++

i − z+
i =



0
0
0

−(αi + α̇i∆ti)

−(βi + β̇i∆ti)
−α̇i
−β̇i


11×1

(6.45)

where t−−i and t−i represent the time immediately before and after the ith burn

begins, and t+i and t++
i represent the time immediately before and after the ith

burn ends. Figure 6.16 illustrates this nomenclature to distinguish the four times

associated with each finite burn.

The analytical gradient architecture is similar to the impulsive case, but

gradients with respect to the finite thrust control vectors are now needed for the

t−−i t−i t+i
t++
i

Finite Burn

Ballistic Trajectory

Figure 6.16: Finite burn node nomenclature.
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optimization process. Combining each group of thrust orientation parameters as qi

streamlines the notation for gradient derivation. The gradient of the first equality

constraint with respect to the q0 control vector associated with the retargeting

maneuver is

∂(xR − x−−0 )

∂q0

=
∂(−x−−0 )

∂z−−0

∂z−−0

∂∆z−0

∂∆z−0
∂q0

+
∂(−x−−0 )

∂z−−0

∂z−−0

∂∆z+
0

∂∆z+
0

∂q0

(6.46)

= R1:6IQ
−
0 +R1:6Φ(t−0 , t

+
0 )Q+

0 (6.47)

where

R1:6 =
[
I6×6 06×5

]
6×11

(6.48)

and

Q−i ≡
∂∆z−i
∂qi

=


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


11×4

(6.49)

Q+
i ≡

∂∆z+
i

∂qi
=


0 0 0 0
−1 0 −∆ti 0
0 −1 0 −∆ti
0 0 −1 0
0 0 0 −1


11×4

(6.50)

Pre-multiplying an 11× c matrix by R1:6 results in a 6× c matrix that consists of

the first six rows of the original matrix, as shown in Appendix D. The gradients of

the first equality constraint with respect to the remaining control vectors are

∂(xR − x−−0 )

∂q1

= R1:6Φ(t−0 , t
+
0 )Φ(t+0 , t

−
1 )

[
Q−1 + Φ(t−1 , t

+
1 )Q+

1

]
(6.51)

∂(xR − x−−0 )

∂q2

= R1:6Φ(t−0 , t
+
0 )Φ(t+0 , t

−
1 )Φ(t−1 , t

+
1 )Φ(t+1 , t

−
2 )

[
Q−2 + Φ(t−2 , t

+
2 )Q+

2

]
(6.52)
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∂(xR − x−−0 )

∂q3

= R1:6Φ(t−0 , t
+
0 )Φ(t+0 , t

−
1 ) · · ·Φ(t−2 , t

+
2 )Φ(t+2 , t

−
3 )

[
Q−3 + Φ(t−3 , t

+
3 )Q+

3

]
(6.53)

The osculating lunar periapsis altitude hLOI at t−−1 is required to be greater

than or equal to 100 km. The gradients of this constraint with respect to the first

two control vectors are

∂hLOI
∂q0

= 0>4×1 (6.54)

∂hLOI
∂q1

= −Υ>
[
Q−1 + Φ(t−1 , t

+
1 )Q+

1

]
(6.55)

where

Υ> ≡ ∂hLOI
∂z−−1

(6.56)

Similarly,

∂hLOI
∂q2

= −Υ>Φ(t−1 , t
+
1 )Φ(t+1 , t

−
2 )

[
Q−2 + Φ(t−2 , t

+
2 )Q+

2

]
(6.57)

∂hLOI
∂q3

= −Υ>Φ(t−1 , t
+
1 )Φ(t+1 , t

−
2 )Φ(t−2 , t

+
2 )Φ(t+2 , t

−
3 )

[
Q−3 + Φ(t−3 , t

+
3 )Q+

3

]
(6.58)

The remaining gradient derivations are similar to those previously shown.

6.2.4 Numerical Results

The LLO orientation is parametrically varied, and the hybrid TLI to LLO

sequence is optimized for minimum LOI propellant mass; Figure 6.18 shows the

results. The trends in the optimal values mirror the trends seen in the impulsive case,

and the necessary propellant mass is greatest where the relative declination is the

greatest. The maximum requirement, occurring at (0 deg, 90 deg), is 9255 kg, and

the minimum requirement is 6300 kg which occurs at i = 180 deg. The maximum
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propellant hybrid trajectory is shown in Fig. 6.17 in moon-centered and Earth-

centered rotating-pulsating frames. The engine thrust of 35 kN is high enough for

the finite burn solution to remain geometrically similar to the impulsive solution.

For the maximum propellant case, the maximum burn time is 360 s, which is 0.05%

of the TLI to LLO flight time. The maximum right ascension rate or declination

rate is 2× 10−4 deg/s. With burns of this duration and orientation, it is difficult to

differentiate the finite thrust segments from impulses when viewing the trajectories

on the scale of the Earth-moon distance.

Because of the similar character of the impulsive and finite burn solutions, it

is desired to compare the consumed propellant mass predicted by the ideal rocket

equation to the actual propellant mass as determined with the finite burn opti-

mization algorithm. Figure 6.19 shows the variation in required propellant mass

for LLOs with 90 deg inclination. The residuals plotted in Figure 6.19 show the

rocket equation under-predicts the actual mass in every case; the average difference

is −33 kg. The persistent negative bias indicates that gravity losses—unaccounted

for in the rocket equation—lead to an increased propellant cost. Even with this er-

ror, the maximum percent difference is −1.04 %. If this level of error is acceptable,

it would be advantageous to conduct optimization scans with the impulsive model

to reduce runtime and then convert to the finite burn algorithm for specific missions

of interest for a more realistic simulation.
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(a) (b)

(c)

Figure 6.17: Maximum propellant finite burn hybrid trajectory: a) moon-centered
non-rotating frame, b) LOI zoom in moon-centered non-rotating frame, and c)
Earth-centered rotating-pulsating frame.
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Figure 6.18: Minimum hybrid mission propellant mass contours.

Figure 6.19: Minimum propellant mass comparison with ideal rocket equation pre-
diction for LLOs of 90 deg inclination.
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6.2.5 One-Burn Lunar Orbit Insertion

Nominally, three finite thrust segments at the moon are included in the

algorithm. The optimizer may not add or remove segments or burns, but it is free

to decrease the duration of any coast segment to zero and decrease the duration of

any burn to zero. Therefore, the optimizer may effectively change the number of

propulsive maneuvers at the moon if it finds that it is optimal to do so. In cases

where less than four degrees of plane change is required at the moon, the optimizer

reverts to an approximate one-burn insertion, meaning that after the retargeting

maneuver, only one maneuver is used at the moon for orbit insertion. An example

is shown in Fig. 6.20(a) where LOI-3 has disappeared and LOI-1 and LOI-2 are

executed nearly at the same point; the LLO orientation is (130 deg, 90 deg), and

the required propellant mass is 7111 kg. Closer examination, however, shows that

this is a actually a two-maneuver sequence since the two burns used have different

thrust orientations, as seen in Fig. 6.20(b). To compare the cost of this two-burn

sequence with a true one-burn sequence, the problem is reformulated with LOI-1

and LOI-2 removed. In this case, shown in Fig. 6.21, the total LOI cost including

the retargeting maneuver decreases to 7047 kg, which is a decrease of 64 kg relative

to the two-burn case. Therefore, with the three-burn formulation, the optimizer

located a local minimum with the two-burn solution without reaching the optimal

one-burn solution.
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(a) (b)

Figure 6.20: Three-burn formulation in moon-centered non-rotating frame: a)
oblique view showing an apparent one-burn insertion, and b) view normal to x̂ẑ
plane showing the true two-burn insertion.

(a) (b)

Figure 6.21: One-burn formulation in moon-centered non-rotating frame: a) oblique
view, and b) view normal to the x̂ẑ plane.

182



6.3 Lunar Orbit Insertion with an Optimal Control Finite
Thrust Engine Model

The transfer from the free return to the closed lunar orbit is now optimized

with finite thrust segments which are guided with steering laws derived from optimal

control theory. As shown in Chapter 4, it is known that the thrust vector which

minimizes the cost function will point in the direction opposite the velocity costate.

A hybrid method is implemented to solve the optimal control problem where the cost

function will be directly minimized through sequential quadratic programming [101,

102]. The finite thrust segments are parameterized by the position and velocity

costates, so the transversality conditions are implicitly satisfied when the cost is

minimized. Due to the sensitivity of the costate equations of the optimal control

problem, convergence of the optimal control finite burn model is more difficult than

convergence of the linearly steered engine model.

6.3.1 System Dynamics

Both a one-burn and a three-burn formulation are implemented. The cost

function in both cases is the total consumed propellant mass, given by

J = m0 −mf (6.59)

=
T

c

∑
i

∆ti (6.60)

where m0 ≡ m(t−−0 ) and mf ≡ m(t4) ≡ 20000 kg. The ballistic state is augmented

with the costates of optimal control problem. The augmented state and its time
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derivative are

z ≡


r
v
m
λr
λv
λm


14×1

ż =



v

g − T
m
λ̂v

−T
c

−Gλv
−λr
− T
m2λv


14×1

(6.61)

It is observed that T > 0, m > 0, and λv > 0, so λ̇m 6 0 ∀ t.

The kinematic constraints at the initial time require

θ =

[
r−−0 − r(tR)
v−−0 − v(tR)

]
7×1

= 0 (6.62)

where r−−0 and v−−0 are the position and velocity along the LOI segment immediately

before LOI-0 begins; and r(tR) and v(tR) are the position and velocity along the

free return immediately before LOI-0 begins. The kinematic constraints at the final

time require

ψ =

 r+
3 − r(t++

3 )
v+

3 − v(t++
3 )

m+
3 −m(t++

3 )

 = 0 (6.63)

where r+
3 , v+

3 , and m+
3 are the position, velocity, and mass along the transfer seg-

ment immediately before LOI-3 terminates; and r(t++
3 ), v(t++

3 ), and m(t++
3 ) are

the position, velocity, and mass along the LLO immediately after LOI-3 terminates.

The endpoint function is

G = m0−mf +
[
ξ>r ξ>v

] [r−−0 − r(tR)
v−−0 − v(tR)

]
+
[
ν>r ν>v νm

]  r+
3 − r(t++

3 )
v+

3 − v(t++
3 )

m+
3 −m(t++

3 )

 (6.64)

Expanding,

G = m0 −mf + ξ>r [r−−0 − r(tR)] + ξ>v [v−−0 − v(tR)]

+ ν>r [r+
3 − r(t++

3 )] + ν>v [v+
3 − v(t++

3 )] + νm[m+
3 −m(t++

3 )] (6.65)
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By the transversality conditions, the initial costate is given by

λ−−0 = −
(

∂G

∂x−−0

)>
(6.66)

=

−ξr−ξv
−1

 (6.67)

and the final costate is

λ+
3 = −

(
∂G

∂x+
3

)>
(6.68)

=

νrνv
νm

 (6.69)

The initial value of the mass costate is negative one, and since it is known that

λ̇m < 0, the mass costate at t4 should be initialized to a value less than negative

one. Or, if the cost function is redefined as

J ≡ k(m0 −mf ) (6.70)

where k > 0, then λ−−m0
= −k, and the mass costate at t4 should be initialized to

some value less than −k.

6.3.2 One-Burn Formulation

The hybrid optimization method will be first implemented for a case requiring

only one LOI maneuver at the moon; the spacecraft still performs the retargeting

maneuver to depart the outbound free return trajectory at a point to be determined

by the optimizer.
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The vector of independent optimization variables is

xp ≡
[
t−0 t+0 t−3 t+3 t4 ∆λ+

0
>

∆λ+
3
>
λ>4 h φ v> tTLI tR tEEI

]>
1×31

(6.71)

where ∆λ+
i is the discontinuity in the position and velocity costates at t+i , and λ4

represents the position and velocity costates at t4 expressed in the r̂t̂n̂ frame. The

equality constraints require

c ≡


xR − x−−0

tR − t−0
∆λ+

0

∆λ+
3

S+
0


20×1

= 0 (6.72)

where S+
0 is the switching function at t+0 . If no errors were present in the problem

implementation, the value of the switching function should be exactly zero at the

time LOI-0 is deactivated. Due to numerical errors, however, this is not always the

case, so the final constraint is added to drive S to zero at that point. A constraint

requiring S = 0 at t−3 is not implemented because this point is near enough to the

starting point of numerical integration that it is zero upon convergence.

The initial estimates of all times and free return parameters are taken directly

from the previous finite burn formulation. To compute initial estimates of the

costates, the linearly steered finite burns of the previous formulation are converted

to the optimal control formulation via the adjoint control transformation developed

in Chapter 4. In summary, each finite thrust maneuver was specified by its initial

right ascension α and declination β and their respective rates, α̇ and β̇. The velocity

costate is

λv = −λvû (6.73)
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where λv is set, and the thrust direction is given by

û = cosα cos β x̂+ sinα cos β ŷ + sin β ẑ (6.74)

The position costate is

λr = λ̇vû+ λv ˙̂u (6.75)

where

λ̇v =
λv

2 ˙̂u
> ˙̂u

[
λv(Gû)> ˙̂u− λv ¨̂u

> ˙̂u
]

(6.76)

This adjoint control transformation gives the values of the position and velocity

costates at t+0 and t+3 . Also, the mass costate at t+3 is

λ+
m3

= − c

m+
3

λ+
v3

(6.77)

by requiring S+
3 = 0. The value of λ4 can be found by numerically integrating the

augmented state from t+3 , which is known, to t4.

6.3.2.1 Analytical Gradients

The gradients of the first constraint with respect to the new parameters are

∂(xR − x−−0 )

∂∆λ+
0

= −∂x
−−
0

∂z−−0

∂z−−0

∂∆z+
0

∂∆z+
0

∂∆λ+
0

(6.78)

= R1:6Φ(t−0 , t
+
0 )C8:13 (6.79)

∂(xR − x−−0 )

∂∆λ+
3

= R1:6Φ(t−0 , t
+
0 )Φ(t+0 , t

−
3 )Φ(t−3 , t

+
3 )C8:13 (6.80)

∂(xR − x−−0 )

∂λ4

= −R1:6Φ(t−0 , t
+
0 )Φ(t+0 , t

−
3 )Φ(t−3 , t

+
3 )Φ(t−3 , t4)KC8:13 (6.81)
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where the matrix that transforms the augmented state from the r̂t̂n̂ frame to the

x̂ŷẑ frame is

K ≡


R

R
1
R

R
1


14×14

(6.82)

The gradient of the final equality constraint is

∂S+
0

∂xp
=
[
0

∂S+
0

∂t+0

∂S+
0

∂t−3

∂S+
0

∂t+3

∂S+
0

∂t4

∂S+
0

∂∆λ+
0

∂S+
0

∂∆λ+
3

∂S+
0

∂λ4
0>8×1

]
(6.83)

The nonzero gradients are

∂S+
0

∂t+0
=

∂

∂t+0

(
λ+
v0

m+
0

+
λ+
m0

c

)
(6.84)

=
1

m+
0 λ

+
v0

(
R11:13ż

++
0

)>
(6.85)

∂S+
0

∂t−3
=

1

m+
0 λ

+
v0

(
R11:13Φ30∆ż−3

)>
λ+
v0

+
Tλ+

v0

cm+
0

2 +
1

c
R14:14Φ30∆ż−3 (6.86)

where Φji ≡ Φ(t+i , t
−
j ). Continuing,

∂S+
0

∂t+3
=

1

m+
0 λ

+
v0

(
R11:13Φ30Φ33∆ż+

3

)>
λ+
v0
−
Tλ+

v0

cm+
0

2 +
1

c
R14:14Φ30Φ33∆ż+

3 (6.87)

∂S+
0

∂t4
=

1

m+
0 λ

+
v0

(R11:13Φ30Φ33Φ43ζ)> λ+
v0

+
1

c
R14:14Φ30Φ33Φ43ζ (6.88)

where

ζ ≡ K̇zrtn − ż4 (6.89)
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and

∆ẋ−i =



0

− T
m
λ̂−v
−T

c

0
0

T
m2λ

−
v


14×1

(6.90)

∆ẋ+
i =



0
T
m
λ̂+
v

T
c

G+(λ+
v − λ++

v )
λ+
r − λ++

r

− T
m2λ

+
v


14×1

(6.91)

Finally,

∂S+
0

∂∆λ+
0

= − 1

m+
0 λ

+
v0

λ+
v0

>
(R11:13C8:13)− 1

c
R14:14C8:13 (6.92)

∂S+
0

∂∆λ+
3

= − 1

m+
0 λ

+
v0

λ+
v0

>
(R11:13Φ30Φ33C8:13)− 1

c
R14:14Φ30Φ33C8:13 (6.93)

∂S+
0

∂λ4

=
1

m+
0 λ

+
v0

λ+
v0

>
(R11:13Φ30Φ33Φ43KC8:13) +

1

c
R14:14Φ30Φ33Φ43KC8:13 (6.94)

6.3.2.2 Numerical Results

To illustrate the optimal control one-burn algorithm, an example is presented

for an LLO of orientation (130 deg, 90 deg). This case utilizes two maneuvers: one

to depart the free return and one to arrive in lunar orbit; it is referred to as a “one-

burn” insertion since only one maneuver is used at the moon. Figure 6.22 shows

the optimal LOI sequence with a total propellant cost of 7044 kg, a savings of 3 kg

over the linearly steered model. With an engine thrust of 35 kN, the linearly steered

optimal solution is within 0.05% of the optimal control solution. It is anticipated
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that the disparity will grow as the thrust magnitude is decreased since the burn

duration will increase. Figure 6.23 shows the evolution of the switching function

where the transfer time is normalized so that LOI-0 is initiated at a normalized

time of zero and LOI-3 is terminated at a normalized time of one. As expected,

S > 0 for the duration of LOI-0 and LOI-3 and S < 0 otherwise. The switching

function is zero at both internal switching nodes and at the terminal boundary since

the insertion location on the LLO is free. The switching function is nonzero at the

initial time since it abuts with the inequality constraint requiring LOI-0 to occur at

least one day after TLI.

(a) (b)

Figure 6.22: One-burn optimal control formulation in moon-centered non-rotating
frame: a) oblique view, and b) view normal to x̂ẑ plane.
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(a)

(b) (c)

Figure 6.23: Switching function evolution for one-burn formulation: a) overall evo-
lution and b) zoom at LOI-0 where the vertical line indicates the termination of the
maneuver, and c) zoom at LOI-3 where the vertical line indicates the initiation of
the maneuver.
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6.3.3 Three-Burn Formulation

In the most general case, three propulsive maneuvers are allowed at the moon,

and the propellant mass is again minimized. The costates of the optimal control

problem are computed with the adjoint control transformation based on the angles

and rates from the linearly steered model, and each finite burn points in the direction

opposite of the velocity costate orientation. Due to the sensitivity of the costate

equations, a new shooting scheme is used for optimization where one trajectory

branch is integrated backwards from the LLO to t−1 , and another trajectory branch

is integrated forward from t−0 to t−−1 . Full augmented state equality is enforced at

the t−1 patch point, and t−−1 is required to equal t−1 in the converged solution. With

three maneuvers at the moon and the modified shooting method, the vector of free

parameters expands to

xp ≡
[
t−0 t+0 t−−1 t−1 · · · t+3 t4 m−0 λ−0

>
∆λ+

1
> · · · λ>4 h · · · tEEI

]>
1×49

(6.95)

where λ−0 is the full costate at t−0 , and the free return parameters are the same as

those given in Eq. (6.28), except that tR is removed. The equality constraints are

c ≡



z−−1 − z−1
t−−1 − t−1

∆λ+
1

∆λ+
2

∆λ+
3

S+
0

S+
1

S+
2

S+
3


37×1

= 0 (6.96)

and the inequality constraints remain the same.
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With 49 optimization variables, 37 equality constraints, 17 inequality con-

straints, and a cost function, 2695 partials are required for optimization; all gradi-

ents are derived analytically. The algorithm with STM-based derivatives is approx-

imately 16 times faster than the algorithm with central differencing. The derivative

of the first equality constraint is

∂(z−−1 − z−1 )

∂t−0
= −Φ01Φ00∆ż−0 (6.97)

where Φ00 ≡ Φ(t+0 , t
−
0 ). Continuing,

∂(z−−1 − z−1 )

∂t+0
= −Φ01∆ż+

0 (6.98)

∂(z−−1 − z−1 )

∂t−−1

= ż−−1 (6.99)

∂(z−−1 − z−1 )

∂t−1
= −ż−1 (6.100)

∂(z−−1 − z−1 )

∂t+1
= −Φ11∆ż+

1 (6.101)

where Φ11 ≡ Φ(t−1 , t
+
1 ). Continuing,

∂(z−−1 − z−1 )

∂t−2
= −Φ11Φ21∆ż−2 (6.102)

∂(z−−1 − z−1 )

∂t+2
= −Φ11Φ21Φ22∆ż+

2 (6.103)

where Φ22 ≡ Φ(t−2 , t
+
2 ). Continuing,

∂(z−−1 − z−1 )

∂t−3
= −Φ11Φ21Φ22Φ32∆ż−3 (6.104)

∂(z−−1 − z−1 )

∂t+3
= −Φ11Φ21Φ22Φ32Φ33∆ż+

3 (6.105)
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where Φ33 ≡ Φ(t−3 , t
+
3 ). Continuing,

∂(z−−1 − z−1 )

∂t4
= −Φ11Φ21Φ22Φ32Φ33Φ43

δz4

dt4
(6.106)

∂(z−−1 − z−1 )

∂m−0
= −Φ01Φ00C7:7 (6.107)

∂(z−−1 − z−1 )

∂λ−0
= Φ01Φ00C8:14 (6.108)

∂(z−−1 − z−1 )

∂∆λ+
1

= Φ11C8:13 (6.109)

∂(z−−1 − z−1 )

∂∆λ+
2

= Φ11Φ21Φ22C8:13 (6.110)

∂(z−−1 − z−1 )

∂∆λ+
3

= Φ11Φ21Φ22Φ32Φ33C8:13 (6.111)

∂(z−−1 − z−1 )

∂λ4

= −Φ11Φ21Φ22Φ32Φ33Φ43KC8:13 (6.112)

The gradients of the first constraint with respect to the free return parameters are

∂(z−−1 − z−1 )

∂h
= Φ01Φ00ΦRK


cosφ

0
sinφ

0


14×1

(6.113)

∂(z−−1 − z−1 )

∂φ
= Φ01Φ00ΦRK


−(RM + h) sinφ

0
(RM + h) cosφ

0


14×1

(6.114)

∂(z−−1 − z−1 )

∂v
= Φ01Φ00ΦRK

03×3

I3×3

08×3

 (6.115)

∂(z−−1 − z−1 )

∂tTLI
= 0 (6.116)
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∂(z−−1 − z−1 )

∂tEEI
= 0 (6.117)

where ΦR ≡ Φ(t−−0 , tFR). The gradients of the switching function constraints are

similar to those of the one-burn formulation.

6.3.3.1 Numerical Results

An example is presented to illustrate the three-burn optimal control formu-

lation. The minimum propellant transfer from the variable free return to the LLO

of orientation (225 deg, 120 deg) is computed. Figures 6.24(a)–6.24(b) show the

optimal LOI sequence with a total propellant cost of 7117 kg, a savings of 10 kg

over the linearly steered model. Figure 6.24(c) shows the evolution of the switch-

ing function where the transfer time is normalized so that LOI-0 is initiated at a

normalized time of zero and LOI-3 is terminated at a normalized time of one. As

expected, S > 0 for the duration of each finite thrust segment and S < 0 otherwise.

The switching function is zero at all internal switching points and at the terminal

boundary since the insertion location on the LLO is free. The switching function

is nonzero at the initial time since it abuts with the inequality constraint requiring

LOI-0 to occur at least one day after TLI.
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(a) (b)

(c)

Figure 6.24: Three-burn optimal control formulation in moon-centered non-rotating
frame: a) oblique view, b) LOI zoom at moon, and c) switching function evolution.
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Chapter 7

Conclusions

7.1 Summary

The problem of optimal lunar orbit insertion in this dissertation was mo-

tivated primarily by applications to human missions. During such missions, it is

necessary to plan for adverse circumstances that may jeopardize crew safety. In

what is called a hybrid trajectory, the free return orbit was combined with the lu-

nar orbit insertion sequence to guarantee a ballistic Earth return trajectory. The

addition of this free return requirement complicates lunar orbit insertion and the

associated algorithms used to compute it.

After the problem background and an overview of the previous research were

presented in Chapter 1, the equations of motion in the circular restricted three-

body problem and the four-body ephemeris model were presented in Chapter 2.

Also discussed was the ability to scale trajectories in the circular model when the

inter-primary distance changes but the mass ratio of the primaries does not. The

dynamics of a spacecraft in the more realistic model were assumed to be affected

only by the Earth, moon, and sun since the spacecraft remains in the Earth-moon

system. The variational equations were presented for both dynamic models, and

the effects of Earth’s oblateness and solar radiation pressure were incorporated.
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Chapter 3 dealt with the construction and analysis of Earth-moon-Earth free

return trajectories. An original derivation of the theorem of image trajectories was

presented because the theorem is useful in the generation of symmetric free returns.

A strategy for constructing an initial estimate of different types of free returns was

developed with two-body and circular restricted three-body models. Free returns

were analyzed with posigrade and retrograde Earth departures, circumlunar and

cislunar flybys, in and out of the Earth-moon plane. A continuation method was

used to advance from the initial estimate to subsequent free returns. The algorithm

was extended to general free returns that are not symmetric. Free returns may now

be generated without a user-supplied initial guess.

An overview of optimization was provided in Chapter 4. The most important

content was the development of analytical gradients that utilized the state transition

matrix. A closed form expression for the state differential following n ballistic arcs

and n + 1 state discontinuities was derived. Practical numerical issues of gradient

validation and problem scaling were discussed. Chapter 4 also presented the basics

of optimal control theory along with an adjoint control transformation to estimate

the costates. Finally, the optimal control variational equations were derived.

Chapter 5 combined free returns and lunar orbit insertion sequences in the

circular restricted three-body model. A fully-automated initial estimate for lunar

orbit insertion was formulated and discussed. The orientation of a low lunar parking

orbit was parametrically varied, and the minimum impulse orbit insertion sequence

was found via a sequential quadratic programming algorithm with analytical gra-

dients. First, the minimum time symmetric free return was used. Next, the free
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return was allowed to vary during optimization but was required to remain symmet-

ric. Finally, the free return was allowed to be completely free, subject to a maximum

round trip flight time of 10 days and specified conditions at Earth departure and

return. In this chapter, the spacecraft employed an impulsive propulsion system

that allowed instantaneous changes in velocity.

Last, Chapter 6 extended the hybrid trajectory optimization algorithm from

the circular restricted three-body model to the ephemeris model with a force field

including the Earth, moon, and sun. The sum of the maneuver magnitudes re-

quired for lunar orbit insertion was minimized. The impulsive algorithm was then

transitioned to include a finite thrust engine model where the propellant mass was

minimized. For both engine models, the orientation of the target parking orbit

was parametrically varied over the domain of circular, retrograde low lunar orbits,

and the optimal hybrid transfer was computed for each case. Convergence of the

sequential quadratic programming algorithm was facilitated by utilizing a multiple

shooting method, and analytical gradients were implemented with both methods

to achieve a fast and robust optimization algorithm. The initial estimate provided

by the circular restricted three-body model was within the convergence envelope of

the optimization algorithm in the four-body ephemeris model. The optimal impul-

sive solution subsequently served as an adequate initial estimate for the finite burn

model. The linearly steered finite thrust model was then used as an initial estimate

in the optimal control model via the adjoint control transformation developed in

Chapter 4. The optimal control model realized savings over the linearly-steered

algorithm.
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7.2 Final Conclusions

As a result of this work, hybrid trajectories that combine free returns and

lunar orbit insertion sequences may now be generated automatically. This work

demonstrated that hybrid trajectories are feasible for a range of lunar parking orbit

orientations. The orbit insertion costs necessary to achieve retrograde parking orbits

with this method have been documented for impulsive, linearly steered finite thrust,

and optimal control finite burn engine models in both the three-body and four-body

models. The most favorable and least favorable parking orbit geometries in terms

of the overall orbit insertion cost were identified.

To achieve the results presented in this dissertation required intermediate

accomplishments. These included an automated method to generate free return

trajectories, which is applicable to all types of single-flyby free returns, including

circumlunar, cislunar, posigrade, retrograde, non-planar, and asymmetric free re-

turns. Additionally, an algorithm was created to automate the generation of an

initial estimate for lunar orbit insertion. Also helpful to the trajectory optimization

process was the development and implementation of analytic gradients. The explicit

n-segment state differential developed here will be useful in future applications of

gradient-based optimization. An automated method was implemented to convert

from the impulsive propulsion model to the finite burn model, and an adjoint con-

trol transformation was applied to the linearly steered burns to transition to an

optimal control formulation. Also developed was a strategy to dilate trajectories in

the circular restricted three-body model for transition to the four-body model.
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Because humans first traveled to the moon more than 40 years ago, some

assume that the task is not difficult or that everything possible to know about how

to do it is already known. But space travel will always be intrinsically dangerous

for humans, and the first trips to the moon accessed limited areas and favorable

landing sites. To conduct successful missions to new landing sites, including polar

sites, it is necessary to design abort trajectories that guarantee crew safety without

compromising global access. Building on the legacy of Apollo, the current work

extends hybrid trajectories to all retrograde low lunar orbits. Hybrid trajectories

provide an attractive architecture for human lunar missions because they offer a pe-

riod of maneuver-free Earth return capability. Where possible, a direct abort should

be performed. But in cases when this is impossible, such as the loss of propulsive

power, the free return is the most promising option. The methods developed here

allow a mission designer, without advance knowledge of the trajectory geometry, to

construct optimal, hybrid free return and lunar orbit insertion sequences for any

mission epoch in a realistic solar system model. The results presented in this dis-

sertation will be useful for future lunar mission planning.
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Appendix A

Gravitational Potential

A.1 Spherical Harmonics

Consider a central body of arbitrary shape with mass M and a spacecraft

with mass m̃ as shown in Fig. A.1. The gravitational potential of the body, with

m̃ ≡ 1, is

U = G

∫
M

dm′

ρ
(A.1)

where G is the universal constant of gravitation, dm′ is a differential piece of mass

in the body, and ρ is the distance between the differential mass and the spacecraft.

By the law of cosines,

ρ2 = r2 + r′
2 − 2rr′ cosψ (A.2)

ρ2 = r2

(
1 +

(
r′

r

)2

− 2

(
r′

r

)
cosψ

)
(A.3)

ρ = r

√
1 +

(
r′

r

)2

− 2

(
r′

r

)
cosψ (A.4)

where r is the distance from the body’s mass center to the spacecraft, r′ is the

distance from the body’s mass center to the differential mass, and ψ is the angle

between the spacecraft vector and the differential mass vector. Thus, Eq. (A.1)
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x̂

ŷ

ẑ

r

m̃
r′

dm′ ρ

φ

λ

ψ

M

Figure A.1: General gravitating body.

becomes

U =
G

r

∫
M

dm′√
1 +

(
r′

r

)2 − 2
(
r′

r

)
cosψ

(A.5)

where r was taken out of the integral since it is independent of the central body’s

mass distribution.

The denominator inside the integral can be rewritten with the binomial ex-

pansion. Consider the Taylor series expansion of an arbitrary function f(x) about

a point x0, given by

f(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)k (A.6)

= f(x0) + f ′(x0)(x− x0) + 1
2
f ′′(x0)(x− x0)2 + . . . (A.7)

Consider now the expansion of (1 + x)a about x0 = 0, given by

(1 + x)a = (1 + x0)a + a(1 + x0)a−1(x− x0) + 1
2
a(a− 1)(1 + x0)a−2(x− x0)2 + . . .

(A.8)

= 1 + ax+ 1
2
a(a− 1)x2 + . . . (A.9)
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Assuming (r′/r)2 − 2(r′/r) cosψ is small, the denominator of Eq. (A.5) can be ex-

panded with Eq. (A.9) as[
1 +

(
r′

r

)2 − 2
(
r′

r

)
cosψ

]−1
2

= 1 +−1
2

[
−2
(
r′

r

)
cosψ +

(
r′

r

)2
]

+ 1
2
(−1

2
)(−3

2
)
[
−2
(
r′

r

)
cosψ +

(
r′

r

)2
]2

+ . . . (A.10)

[
1 +

(
r′

r

)2 − 2
(
r′

r

)
cosψ

]−1
2

= 1 +
(
r′

r

)
cosψ − 1

2

(
r′

r

)2

+ 3
8

[
4
(
r′

r

)2
cos2 ψ − 4

(
r′

r

)3
cosψ +

(
r′

r

)4
]

+ . . .

(A.11)

Considering only the first four terms on the right hand side of Eq. (A.11),[
1 +

(
r′

r

)2 − 2
(
r′

r

)
cosψ

]−1
2

= 1 +
(
r′

r

)
cosψ − 1

2

(
r′

r

)2
+ 3

2

[(
r′

r

)2
cos2 ψ

]
+ . . .

(A.12)

= 1 +
(
r′

r

)
cosψ +

[
3
2

cos2 ψ − 1
2

] (
r′

r

)2
+ . . . (A.13)

The terms of the expansion can be grouped into terms called Legendre polynomials.

The first three Legendre polynomials are

P0(x) = 1 (A.14)

P1(x) = x (A.15)

P2(x) = 3
2
x2 − 1

2
(A.16)

Additional Legendre polynomials can be generated explicitly and recursively [103].

Rewriting Eq. (A.13) with Legendre polynomials gives[
1 +

(
r′

r

)2 − 2
(
r′

r

)
cosψ

]−1
2

= P0(cosψ) +
(
r′

r

)
P1(cosψ) +

(
r′

r

)2
P2(cosψ) + . . .

=
∞∑
`=0

(
r′

r

)`
P`(cosψ) (A.17)
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The gravitational potential of Eq. (A.5) can now be rewritten as

U =
G

r

∫
M

∞∑
`=0

(
r′

r

)`
P`(cosψ)dm′ (A.18)

The angle ψ represents the angular separation between the position vector

of the spacecraft and the position vector of the differential mass. It is beneficial,

however, to use the spacecraft’s latitude and longitude instead. To rewrite cosψ in

terms of latitude and longitude, consider the coordinates of the spacecraft and the

differential mass, given by

r = r cosφ cosλ x̂+ r cosφ sinλ ŷ + r sinφ ẑ (A.19)

r′ = r′ cosφ′ cosλ′ x̂+ r′ cosφ′ sinλ′ ŷ + r′ sinφ′ ẑ (A.20)

where φ and λ are the latitude and longitude of the spacecraft, and φ′ and λ′ are

the latitude and longitude of the differential mass. Now consider the dot product of

these two position vectors as

r>r′ = rr′ cosψ (A.21)

cosψ =
r>r′

rr′
(A.22)

Expanding the right hand side gives

cosψ =
rr′ cosφ cosφ′ cosλ cosλ′ + rr′ cosφ cosφ′ sinλ sinλ′ + rr′ sinφ sinφ′

rr′
(A.23)

= cosφ cosφ′ cosλ cosλ′ + cosφ cosφ′ sinλ sinλ′ + sinφ sinφ′ (A.24)

= cosφ cosφ′ cos(λ− λ′) + sinφ sinφ′ (A.25)
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By the Decomposition Formula [104], the `th Legendre polynomial evaluated at the

expanded value of cosψ becomes

P`(cosψ) = P`(cosφ cosφ′ cos(λ− λ′) + sinφ sinφ′) (A.26)

= P`(sinφ)P`(sinφ
′) + 2

∑̀
m=1

(`−m)!

(`+m)!
P`,m(sinφ)P`,m(sinφ′) cos(m(λ− λ′))

(A.27)

where P`,m is known as the associated Legendre function of degree ` and order m.

Substituting Eq. (A.27) into Eq. (A.18) gives

U =
G

r

∫
M

∞∑
`=0

(
r′

r

)` [
P`(sinφ)P`(sinφ

′)

+ 2
∑̀
m=1

(`−m)!

(`+m)!
P`,m(sinφ)P`,m(sinφ′) cos(m(λ− λ′))

]
dm′ (A.28)

Separating terms gives

U =
G

r

∫
M

∞∑
`=0

(
r′

r

)`
P`(sinφ)P`(sinφ

′)dm′

+
G

r

∫
M

∞∑
`=1

(
r′

r

)` ∑̀
m=1

(`−m)!
(`+m)!

P`,m(sinφ)P`,m(sinφ′)
[

cosmλ cosmλ′ + sinmλ sinmλ′
]
dm′

(A.29)

Continuing,

U =
G

r

∞∑
`=0

(
1
r

)`
P`(sinφ)

∫
M

(r′)
`
P`(sinφ

′)dm′

+
G

r

∞∑
`=1

(
1
r

)` ∑̀
m=1

2 (`−m)!
(`+m)!

P`,m(sinφ)

∫
M

(r′)
`
P`,m(sinφ′)

[
cosmλ cosmλ′ + sinmλ sinmλ′

]
dm′

(A.30)
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Define

a`,0 ≡
∫
M

(r′)
`
P`(sinφ

′)dm′ (A.31)

a`,m ≡ 2
(`−m)!

(`+m)!

∫
M

(r′)
`
P`,m(sinφ′) cosmλ′dm′ (A.32)

b`,m ≡ 2
(`−m)!

(`+m)!

∫
M

(r′)
`
P`,m(sinφ′) sinmλ′dm′ (A.33)

These coefficients describe the mass properties of the central body. Closed form

integrals may be possible for known shapes and mass distributions. For the Earth,

the coefficients are determined empirically from artificial satellite motion. After

substituting these coefficients into Eq. (A.30), the potential becomes

U =
G

r

∞∑
`=0

(
1

r

)`
P`(sinφ)a`,0+

G

r

∞∑
`=1

(
1

r

)` ∑̀
m=1

P`,m(sinφ) [a`,m cosmλ+ b`,m sinmλ]

(A.34)

Separating the ` = 0 term gives

U =
GM

r
+
G

r

∞∑
`=1

(
1

r

)`
P`(sinφ)a`,0

+
G

r

∞∑
`=1

(
1

r

)` ∑̀
m=1

P`,m(sinφ) [a`,m cosmλ+ b`,m sinmλ] (A.35)

Define nondimensional coefficients as

C`,0 ≡
a`,0
M∗a`e

(A.36)

C`,m ≡
a`,m
M∗a`e

(A.37)

S`,m ≡
b`,m
M∗a`e

(A.38)

where ae is the characteristic distance, and M∗ is the characteristic mass, usually

taken as the best estimate of the central body’s mass. With the Earth as the central
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body, ae will be the mean equatorial radius and M∗ will be M , the mass of the Earth.

Substituting the nondimensional coefficients into Eq. (A.35) gives

U =
GM

r
+
GM

r

∞∑
`=1

(ae
r

)`
P`(sinφ)C`,0

+
GM

r

∞∑
`=1

∑̀
m=1

(ae
r

)`
P`,m(sinφ) [C`,m cosmλ+ S`,m sinmλ] (A.39)

Furthermore, defining J` ≡ −C`,0 gives

U =
GM

r
− GM

r

∞∑
`=1

(ae
r

)`
P`(sinφ)J`

+
GM

r

∞∑
`=1

∑̀
m=1

(ae
r

)`
P`,m(sinφ) [C`,m cosmλ+ S`,m sinmλ] (A.40)

The effects of this nonspherical central body gravitational potential on satellite

motion are presented by Kaula [105].

A.2 Oblateness Acceleration

The general expression of the gravitational potential in terms of spherical

coordinates (Eq. (A.40)) contains an infinite number of terms. The first term to the

right of the equals sign is the spherical gravitational term, which is the dominant

term for quasi-spherical bodies, such as the planets of the solar system. Higher order

terms define the gravitational potential due to the asphericity of the central body.

If the origin of the reference frame is chosen at the center of mass of the central

body, the degree one coefficients (` = 1) in the gravitational potential are zero.

The degree two coefficients (` = 2) are related to the central body’s moments and

products of inertia. For the Earth, which is an oblate spheroid, the most significant
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higher order term is called the second zonal harmonic, which corresponds to the

term in U containing the coefficient J2.

The gravitational potential due only to the J2 term is

U2 = −GM
r

(ae
r

)2

P2(sinφ)J2 (A.41)

= −µa
2
eJ2

r3
P2

(
r>ẑ

r

)
(A.42)

= −µa
2
eJ2

r3

[
3

2

(
r>ẑ

r

)2

− 1

2

]
(A.43)

= −3µJ2

2r

(ae
r

)2
[(
r>ẑ

r

)2

− 1

3

]
(A.44)

The force on the spacecraft due only to this potential is

fJ2 = m̃

(
∂U2

∂r

)>
(A.45)

The partial of the potential with respect to the spacecraft position is

∂U2

∂r
=

∂

∂r

{
−3µJ2

2r

(ae
r

)2
[(
r>ẑ

r

)2

− 1

3

]}
(A.46)

=
∂

∂r

{
−3µJ2a

2
e

2

(
r>r

)− 3
2

[(
r>ẑ

(
r>r

)− 1
2

)2

− 1

3

]}
(A.47)

=
9J2µa

2
e

2r5
r>

[(
r>ẑ

r

)2

− 1

3

]
− 3J2µa

2
e

r3

[(
r>ẑ

r

)(
ẑ>

r
− r

>ẑ

r3
r>
)]

(A.48)

Continuing,(
∂U2

∂r

)>
= −3J2µa

2
e

2r5

[
−5

(
r>ẑ

r

)2

r + Ir + 2
(
r>ẑ

)
Iẑ

]
(A.49)

With m̃ ≡ 1, the acceleration on the spacecraft due to J2 effects becomes

r̈J2 = −3J2µa
2
e

2r5

1 0 0
0 1 0
0 0 3

− 5

(
r>ẑ

r

)2

I

 r (A.50)
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Appendix B

Lunar Flyby Velocity

The reference frame associated with the rotating basis vectors of the CRTBP

is referred to as the x̂ŷẑ frame, where x̂ is along the Earth-moon line, and ŷ is

in the direction of the moon’s velocity. Since the free return lunar flyby velocity

orientation is completely specified by the latitude φ relative to the Earth-moon

plane, the velocity azimuth θ, and the flight path angle γ, it is convenient to develop

an expression for the velocity in terms of the x̂ŷẑ basis as a function of these three

angles.

First, rotate the x̂ axis so it is coincident with rMP , the lunar flyby posi-

tion relative to the moon; this is equivalent to a rotation of −φ about the ŷ axis

(Fig. B.1(a)). Next, rotate ẑ′ through an azimuth of θ; this is equivalent to a rotation

of −θ about the x̂′ axis since the azimuth is measured east from north (Fig. B.1(b)).

Finally, perform a rotation of γ about the ŷ′′ axis to rotate the ẑ′′ axis so it is coin-

cident with the flyby velocity vector (Fig. B.1(c)). Thus, the transformation from

the x̂ŷẑ frame to the t̂ûv̂ frame is t̂>û>
v̂>

 = R2(γ)R1(−θ)R2(−φ)

x̂>ŷ>
ẑ>

 (B.1)

211



x̂

x̂′ ŷ,ŷ′
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Figure B.1: Basis transformation: a) latitude rotation, b) azimuth rotation, and c)
flight path angle rotation.
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The inverse transformation isx̂>ŷ>
ẑ>

 = R>2 (−φ)R>1 (−θ)R>2 (γ)

 t̂>û>
v̂>

 (B.2)

Expanding,x̂>ŷ>
ẑ>

 =

 cos−φ 0 sin−φ
0 1 0

− sin−φ 0 cos−φ

1 0 0
0 cos−θ − sin−θ
0 sin−θ cos−θ

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 t̂>û>
v̂>


(B.3)x̂>ŷ>

ẑ>

 =

cosφ sinφ sin θ − sinφ cos θ
0 cos θ sin θ

sinφ − cosφ sin θ cosφ cos θ

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 t̂>û>
v̂>

 (B.4)

x̂>ŷ>
ẑ>

 =

cosφ cos γ + sinφ cos θ sin γ sinφ sin θ cosφ sin γ − sinφ cos θ cos γ
− sin θ sin γ cos θ sin θ cos γ

sinφ cos γ − cosφ cos θ sin γ − cosφ sin θ sinφ sin γ + cosφ cos θ cos γ

 t̂>û>
v̂>


(B.5)

Thus, any vector written in the t̂ûv̂ basis can be expressed in the x̂ŷẑ basis by

multiplying the vector by the transformation matrix in Eq. (B.5). Since the flyby

velocity is v = vv̂, the velocity expressed in the x̂ŷẑ basis is

v = v (cosφ sin γ − sinφ cos θ cos γ) x̂

+v (sin θ cos γ) ŷ

+v (sinφ sin γ + cosφ cos θ cos γ) ẑ (B.6)

213



Appendix C

Optimal Control Necessary Conditions

Consider the problem of choosing a control history u(t) that minimizes a

scalar performance index given by

J = φ(t0,x0, tf ,xf ,a) +

∫ tf

t0

L(t,x,u,a)dt (C.1)

where φ is the scalar cost, L is the Lagrangian which determines the accumulated

cost, x is the state, and a is a vector of parameters. The minimization of the

performance index is subject to the system dynamics given by

ẋ = f(t,x,u,a) (C.2)

In general, constraints placed on the initial conditions are given by

θ(t0,x0,a) = 0 (C.3)

and constraints on the final conditions are given by

ψ(tf ,xf ,a) = 0 (C.4)

Augmenting the performance index with the constraints gives

J ′ = φ(t0,x0, tf ,xf ,a) + ν>ψ(tf ,xf ,a) + ξ>θ(t0,x0,a)

+

∫ tf

t0

[
L(t,x,u,a) + λ>(f − ẋ)

]
dt (C.5)
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where ν, ξ, and λ(t) are Lagrange multipliers. Define the endpoint function as

G(tf ,xf ,ν, t0,x0, ξ,a) ≡ φ(t0,x0, tf ,xf ,a)+ν>ψ(tf ,xf ,a)+ξ>θ(t0,x0,a) (C.6)

and the Hamiltonian as

H(t, x,u,λ,a) ≡ L(t,x,u,a) + λ>f(t,x,u,a) (C.7)

Substituting these definitions into Eq. (C.5) gives

J ′ = G(tf ,xf ,ν, t0,x0, ξ,a) +

∫ tf

t0

[
H(t, x,u,λ,a)− λ>ẋ

]
dt (C.8)

At a minimum point, it is necessary that the first differential of the performance

index is zero. Taking the differential of J ′ gives

dJ ′ = Gtfdtf +Gxf
dxf +Gνdν +Gt0dt0 +Gx0dx0 +Gξdξ +Gada+

[
H − λ>ẋ

]
dt

∣∣∣∣tf
t0

+

∫ tf

t0

[
Hxδx+Huδu+Hλδλ+Hada− δλ>ẋ− λ>δẋ

]
dt (C.9)

where subscripts indicate partial derivatives for notational simplicity; for example,

Gtf ≡ ∂G/∂tf . It is seen that Gν = ψ> = 0> and Gξ = θ> = 0>. Also, Hλ = f>,

so Hλδλ− δλ>ẋ = 0. Integrating the last term in the integral of Eq. (C.9) by parts

gives

−
∫ tf

t0

λ>δẋdt = −

[
λ>δx

∣∣∣∣tf
t0

−
∫ tf

t0

λ̇>δx dt

]
(C.10)

Inserting these results into Eq. (C.9) gives

dJ ′ = Gtfdtf +Gxf
dxf +Gt0dt0 +Gx0dx0 +Gada+

[
H − λ>ẋ

]
dt

∣∣∣∣tf
t0

− λ>δx
∣∣∣∣tf
t0

+

∫ tf

t0

[
Hxδx+Huδu+Hada+ λ̇>δx

]
dt (C.11)
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Expanding,

dJ ′ = Gtfdtf +Gxf
dxf +Gt0dt0 +Gx0dx0 +Gada+

∫ tf

t0

Hadt da

+Hfdtf − λ>f ẋfdtf −H0dt0 + λ>0 ẋ0dt0

− λ>f δxf + λ>0 δx0 +

∫ tf

t0

[
(Hx + λ̇>)δx+Huδu

]
dt (C.12)

dJ ′ = Gtfdtf +Gxf
dxf +Gt0dt0 +Gx0dx0 +Gada+

∫ tf

t0

Hadt da

+Hfdtf − λ>f ẋfdtf −H0dt0 + λ>0 ẋ0dt0

− λ>f (dxf − ẋfdtf ) + λ>0 (dx0 − ẋ0dt0) +

∫ tf

t0

[
(Hx + λ̇>)δx+Huδu

]
dt

(C.13)

Grouping terms,

dJ ′ = (Gtf +Hf )dtf + (Gxf
− λ>f )dxf + (Gt0 −H0)dt0 + (Gx0 + λ>0 )dx0

+

(
Ga +

∫ tf

t0

Hadt

)
da+

∫ tf

t0

[
(Hx + λ̇>)δx+Huδu

]
dt (C.14)

Since dJ ′ = 0 on an optimal path, choose the Lagrange multipliers such that

Hf = −Gtf (C.15)

λ>f = Gxf
(C.16)

H0 = Gt0 (C.17)

λ>0 = −Gx0 (C.18)

λ̇> = −Hx (C.19)

Also require

Ga +

∫ tf

t0

Hadt = 0> (C.20)
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Thus, the differential of the augmented performance index becomes

dJ ′ =

∫ tf

t0

Huδudt (C.21)

For the first differential to be zero,

Hu = 0> (C.22)

Equations (C.15)–(C.20) and Eq. (C.22) are necessary, but not sufficient, conditions

for a minimum. In summary, the conditions given by

ẋ = f (C.23)

λ̇ = −
(
∂H

∂x

)>
(C.24)

0 =

(
∂H

∂u

)>
(C.25)

are called the Euler-Lagrange equations, and the conditions given by

H0 =
∂G

∂t0
(C.26)

λ0 = −
(
∂G

∂x0

)>
(C.27)

Hf = −∂G
∂tf

(C.28)

λf =

(
∂G

∂xf

)>
(C.29)

are called the natural boundary conditions or the transversality conditions. The

parameter conditions require

Ga +

∫ tf

t0

Hadt = 0> (C.30)

The derivation of the Euler-Lagrange equations and the natural boundary conditions

is discussed in more detail by Hull [97].
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Appendix D

R and C Matrix Notation

The R and C matrix nomenclature is developed for notational simplicity. In

this dissertation, the notation is used extensively in analytical gradient derivations.

The purpose of these matrices is to extract specified rows and columns of a target

matrix. An R matrix, denoted Rr1:r2 , is an (r2 − r1 + 1)× r matrix where r is the

number of rows of the target matrix. Pre-multiplying a matrix with Rr1:r2 keeps

rows r1 through r2 of the target matrix. The matrix Rr1:r2 is given by

Rr1:r2 ≡
[
0nr×(r1−1) Inr×nr 0nr×(r−r2)

]
nr×r

(D.1)

where

nr ≡ r2 − r1 + 1 (D.2)

is the number of remaining rows after multiplying Rr1:r2 with the target matrix.

Similarly, a C matrix, denoted Cc1:c2 , is a c × (c2 − c1 + 1) matrix where c

is the number of columns of the target matrix. Post-multiplying a matrix by Cc1:c2

keeps columns c1 through c2 of the target matrix. The matrix Cc1:c2 is given by

Cc1:c2 ≡

0(c1−1)×nc

Inc×nc

0(c−c2)×nc


c×nc

(D.3)

where

nc ≡ c2 − c1 + 1 (D.4)
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is the number of remaining columns after post-multiplying the target matrix by

Cr1:r2 . It is unnecessary to explicitly specify the dimensions of R and C matrices

since one dimension is defined by the number of target rows or columns, and the

other dimension is dictated by the dimension of the target matrix. If r1 = r2, then

Rr1:r2 is a row vector, and if c1 = c2, then Cc1:c2 is a column vector.
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Appendix E

Ideal Rocket Equation

E.1 Changing Mass Systems

The impulse-momentum principle states that the change in the linear mo-

mentum of a system equals the applied linear impulse [106]. Symbolically,

p(t1) +

∫ t2

t1

fdt = p(t2) (E.1)

where p(ti) is the linear momentum at time ti, and f is the vector sum of the

external forces. Consider the changing mass system shown in Fig. E.1. At time t,

the linear momentum of the system is

p(t) = ∆miṙi + (M + ∆mo)ṙ(t) (E.2)

M + ∆mo M + ∆mi
ṙ(t)

ṙ(t+ ∆t)

∆mi
∆mo

ṙi ṙo

f

Figure E.1: Changing mass system.
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where ∆mi is incoming mass, ṙi is the velocity of the incoming mass, M + ∆mo is

the total mass of the control volume at time t, and ṙ(t) is the velocity of all particles

in the main control volume. An impulse is applied over a time period of ∆t, and

the linear momentum of the system becomes

p(t+ ∆t) = (M + ∆mi)ṙ(t+ ∆t) + ∆moṙo (E.3)

where M + ∆mi is the mass of the control volume at time t+ ∆t, ṙ(t+ ∆t) is the

velocity of all the particles in the control volume, ∆mo is the outgoing mass, and

ṙo is the velocity of the outgoing mass. By Eq. (E.1),

∆miṙi + (M + ∆mo)ṙ(t) + f∆t = (M + ∆mi)ṙ(t+ ∆t) + ∆moṙo (E.4)

Solving for f ,

f∆t = (M + ∆mi)ṙ(t+ ∆t) + ∆moṙo − [∆miṙi + (M + ∆mo)ṙ(t)] (E.5)

f∆t = M [ṙ(t+ ∆t)− ṙ(t)] + ∆mi(ṙ(t+ ∆t)− ṙi) + ∆mo(ṙo − ṙ(t)) (E.6)

f = M
ṙ(t+ ∆t)− ṙ(t)

∆t
+

∆mi

∆t
(ṙ(t+ ∆t)− ṙi) +

∆mo

∆t
(ṙo − ṙ(t)) (E.7)

Taking the limit as ∆t→ 0 gives

f = M r̈ + ṁi(ṙ − ṙi)− ṁo(ṙ − ṙo) (E.8)

where r̈ is the acceleration of the control volume, ṁi is the incoming mass flow rate,

and ṁo is the outgoing mass flow rate. This is Newton’s second law for a changing

mass system. The derivation closely follows that given by Bennighof.1

1Bennighof, J. K., Lecture Notes for EM 381 Advanced Dynamics, Department of Aerospace
Engineering and Engineering Mechanics, University of Texas at Austin, Jan. 2008.
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E.2 Rocket Equation

Consider a rocket in flight with no external forces as shown in Fig. E.2. The

rocket is traveling in the ĵ direction with a velocity v while exhausting mass at a

velocity of vE. Applying Newton’s second law for a changing mass system gives

0 = M r̈ + ṁo(ṙo − ṙ) (E.9)

−M r̈ = ṁo(vE − v) (E.10)

where the terms f and ṁi of Eq. (E.8) are zero since there are no external forces

and since there is no mass being added to the system. The total mass of the system

is

M = m∗ −mo (E.11)

where m∗ is the initial rocket mass, and mo is the mass that has been expelled from

the rocket. Differentiating with respect to time,

dM

dt
= −ṁo (E.12)

Substituting Eq. (E.12) into Eq. (E.10) gives

−Mdv

dt
= −dM

dt
(vE − v) (E.13)

Mdv = dM(vE − v) (E.14)

The velocity of the exhaust relative to the velocity of the rocket is defined to be a

constant given by −c ĵ. This gives

Mdv = dM(−c ĵ) (E.15)
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v

vE

î

ĵ

Figure E.2: Rocket and control volume.

Since all motion is along the ĵ axis, it is necessary to consider only scalar variables.

Continuing,

Mdv = dM(−c) (E.16)

dv = −cdM
M

(E.17)

Integrating with respect to time, from t1 to t2 where t2 > t1, gives∫ t2

t1

dv = −c
∫ t2

t1

dM

M
(E.18)

v
∣∣∣t2
t1

= −c ln |m|
∣∣∣t2
t1

(E.19)

Since the rocket’s mass must always be positive, |m| = m. Continuing,

v(t2)− v(t1) = −c [lnm(t2)− lnm(t1)] (E.20)

∆v = −c ln
m2

m1

(E.21)

∆v = c ln
m1

m2

(E.22)
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Equation (E.22) is known as the ideal rocket equation and gives an estimate of

the change in the rocket’s velocity based on its change in mass. It is seen that a

mass loss (m2 < m1) due to exhausted material produces an increase in the rocket’s

velocity, as expected.

If the change in velocity is known, and it is desired to approximate the mass

loss by the ideal rocket equation, Eq.(E.22) can be solved for the post-velocity

impulse mass as

e
∆v
c =

m1

m2

(E.23)

m2 = m1e
−∆v

c (E.24)

This result is known as the fuel equation. A more detailed presentation of ideal

rockets is given by Sutton [107].
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