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In recent years, drilling automation has sparked significant interest in

both the upstream oil and gas industry and the drilling research community.

Automation of various drilling tasks can potentially allow for higher oper-

ational efficiency, increased consistency, and reduced risk of trouble events.

However, wide adoption of drilling automation has been slow. This can be

primarily attributed to the complex nature of drilling, and the high variability

in well types and rig specifications that prevent the deployment of off-the-shelf

automation solutions. Such complexities justify the need for an automation

system that can self-learn by interacting with the drilling environment to re-

duce uncertainty.

The aim of this dissertation is to determine how a drilling automation

system can learn from the environment and utilize this learning to control

drilling tasks optimally. To provide an answer, the importance of learning, as

well as its limitations in dealing with challenges such as insufficient training

data, are explored.

vii



A self-learning control system is presented that addresses the afore-

mentioned research question in the context of optimization, control, and event

detection. By adopting an action-driven learning approach, the control system

can learn the parameters that describe system dynamics. An action-driven ap-

proach is shown to also enable the learning of the relationship between control

actions and user-defined performance metrics. The resulting knowledge of this

learning process enables the system to make and execute optimal decisions

without relying on simplifying assumptions that are often made in the drilling

literature. Detection of trouble drilling events is explored, and methods for

reduction of false/missed alarms are presented to minimize false interruptions

of the drilling control system. The subcomponents of the self-learning con-

trol system are validated using simulated and actual field data from drilling

operations to ascertain the effectiveness of the proposed methods.
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Chapter 1

Introduction

Drilling of onshore and offshore oil and gas wells is practiced with the

aim of exploring for and extracting hydrocarbons to meet the world’s grow-

ing energy demands. During recent years, the exploration of more challenging

reservoirs such as high-pressure high-temperature, deep water, and those only

accessible through horizontal drilling techniques, has initiated a growing inter-

est in automated drilling solutions. Drilling efficiency and quality have been

major drivers of drilling automation. With the recent decline in oil prices,

it has become more desirable for oil and gas operators and drilling contrac-

tors to explore drilling automation to keep well construction costs as low as

possible, and remain profitable. Furthermore, operational safety, just like in

other industries such as mining and manufacturing, has been a key driver of

automation in oil and gas, particularly drilling, due to inherently hazardous

work conditions.

Despite promising value propositions, and the availability of rig site

computational power and sensing technologies, wide adoption and particularly,

successful implementation of holistic automation technologies has remained

slow. This can be attributed to several factors. First, development and com-
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missioning of an automation system on a drilling rig requires the integration

of several off-the-shelf technologies, supplied by various vendors. Inevitably

throughout this process, aggregation of data becomes a challenge, and the au-

tomation system has to often function with missing contextual information.

Second, each process of well construction is unique on its own in terms of

well design and geology, and therefore a commissioned rig automation system

might not work properly on different wells. Finally, from a theoretical stand-

point, the automation of a well construction process is challenging due to the

high level of uncertainty involved in the estimation of states that are difficult

if not impossible to measure, as well as slowly varying plant parameters within

the environment. In essence, a lot of the contextual and real-time information

required for successful implementation of a drilling automation system is of-

ten unavailable and/or inaccurate. This necessitates the automation system

to have its own learning capability.

1.1 Background

Drilling of an oil and gas well is performed with the purpose of creating

a wellbore, straight or directional, that is often several miles long to provide

access to hydrocarbon information and reservoirs (note that some wells are

drilled only for information purposes, e.g. most exploration wells). A drilling

rig, as portrayed in Figure 1.1 consists of many sub-systems that together

facilitate the drilling process. Drilling a hole consists of transferring rotary

power to a drill-bit through a drillstring, which consists of several stands of
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drill-pipes, drill-collars, and the bottom-hole-assembly (BHA). The drillstring

is supported by the rig structure on surface by a hoisting device (the draw-

works). To drill the wellbore, the driller controls two primary parameters from

the surface. One is the rotary speed of the drill-bit (RPM) which is transmit-

ted from a large motor (topdrive), also hoisted by the drawworks. The other

parameter is the axial downward force, the weight-on-bit (WOB), which is ex-

erted on the drill-bit to enable the normal force required for the cutting action

that fails the rock formation. Weight-on-bit is simply achieved by the weight

of the drill-pipes and the top-drive resting on the drill-bit, counterbalanced by

an upward force that is provided by the drawworks. The hole is then drilled

as the drill-bit cuts through the formation and generates small cuttings, all

of which are transmitted back to the surface through circulation of drilling

fluid in the drillstring and back up the wellbore through the annular space.

The rate of penetration (ROP), is usually an unknown and varying function of

the two drilling parameters WOB and RPM, and also depends on the type of

drill-bit used, as well as the particular formation (sandstone, shale, limestone,

granite, etc.) being drilled.
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Figure 1.1: Diagram of an onshore drilling rig. The drillstring (25) hangs
off the crown block (13), and the drawwork (7). While in this diagram the
rotary power is provided by a rotary drive (19), most modern drilling rigs use
a top drive, which hangs off the crown block as well. The swivel (18) enables
circulation of drilling fluid through the drill-pipe as it rotates. The mud pumps
(4) continuously circulate drilling mud from the mud tanks (1) through the
standpipe (8) down the drillstring. The cuttings are transferred to the surface
and separated from the drilling mud using the shale shakers (2).
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The drilling fluid plays an important role in the entire drilling process.

In addition to controlling the formation pressure, the drilling fluid helps to

keep the drill-bit cool, and lift the rock cuttings back to the surface. The fluid

is pumped from the mud tanks using several mud pumps, through the stand-

pipe and down the drill-string. It then travels up the annulus and through

the return line to the shale-shakers, where it is separated from the rock cut-

tings. The circulating pressure of the mud (ECD) should always remain in

an allowable pressure window to avoid kick (when formation fluids flow into

the wellbore) and lost circulation (when drilling fluid is lost to the formation)

events, where the maximum of this window is dictated by the fracture gradient

pressure, and the minimum by the formation pore pressure or the mud weight

required for wellbore stability, whichever quantity is higher.

After the drilling process has progressed to a certain depth, the drill-

string is pulled (tripped) back to the surface, in order to change the drill-bit

or the BHA, or to run casing. An interesting phenomena is the interaction

between axial drillstring dynamics and the drilling fluid when the pipe is being

tripped in/out of the hole. This interaction, also referred to as the swab/surge

effect, occurs when the movement of the pipe causes a so called “plunger”

effect, where the frictional interaction between the drillstring and the drilling

fluid causes transient pressure changes that can drastically affect the annular

pressure.

While there are several automation areas that can contribute to the

improvement of rig-site efficiency and safety, automation of the drilling hole
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process and pipe tripping are desirable in the industry. Automated drilling

involves surface inputs such as the top-drive rotary speed (RPM) and the

WOB, to ensure the well is drilled as fast as possible without jeopardizing

wellbore quality through mitigation of drilling dysfunctions. The goal for

tripping is to trip the drillstring as fast as possible without going outside the

allowable pressure constraints.

1.2 Research Question

This dissertation is devoted to answering the following question: How

can a drilling automation system learn about its environment, and control it

optimally? In developing a solution, we shall explain several essential aspects

of this question.

• The environment refers to the physical aspects of the drilling system

and more specifically, the drillstring dynamics and hydraulics of drilling

fluid from a swab/surge perspective. The drillstring interacts with the

wellbore through contact along the wellbore walls, as well as the rock-bit

interaction. The hydraulics of the drilling fluid are affected by the dy-

namics of the drillstring through frictional contact along the drillstring’s

outer surface.

• A drilling automation system receives a set of performance indices from

the user, most often regarding efficiency, quality and safety, and trans-

lates these into control inputs to the environment which are executed
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through sensory feedback. In doing so, the automation system has to ro-

bustly detect trouble events with a low rate of missed and false alarms,

to prevent reduced efficiency, as well as potentially severe and costly

consequences.

• Given the definition and scope of the environment, learning then implies:

– Uncovering the relationship between performance indices, including

operational constraints, and control inputs. An example is the rela-

tionship between the rate of penetration (ROP) and weight-on-bit

(WOB).

– Uncovering the relationship between control inputs and the environ-

ment. An example is the relationship between drawworks feed-rate

and the maximum downhole pressure change of the drilling fluid

due to swab/surge effects.

• Control is concerned with ensuring set-points derived from performance

indices are executed effectively. A major aspect of achieving acceptable

control performance is related to the controller’s understanding of the

environment and its dynamics, which we aim to solve through learning.

However, several other challenges remain. Learning in a real-world set-

ting inevitably comes with uncertainty, and the controller has to there-

fore be robust to both process and measurement uncertainty. In addition,

controlling downhole parameters such as WOB through actuation from

several thousand meters away presents challenges regarding delay that
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are difficult to address with simple control algorithms. Nonlinearity in

system dynamics is another complication, which requires careful analysis

and design of special control techniques that take this into account.

• Optimality in automation can refer to two control aspects:

– Optimization of control inputs in a tracking control problem,

– Optimization of control set-points in a performance maximization

problem.

Although we generally pay attention to the first idea when studying the

control problem, in the context of drilling automation, we are primarily

concerned with the latter. When the relationship between a cost function

and the manipulated variables is available, either linear or nonlinear op-

timization techniques can be used to arrive at the optimal combination of

the manipulated set. Depending on the complexity of this relationship,

heuristic techniques can often be faster but at the expense of obtaining

a sub-optimal solution. For a drilling automation system, the afore-

mentioned relationship is often unknown and changing, hence classical

techniques are not readily applicable.

1.3 Proposed Solution

The solution developed in this dissertation emphasizes the idea of action-

driven learning, which in broad terms is its main contribution to the existing

drilling automation literature. A graphical representation of this solution is
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portrayed in Figure 1.2. In the depicted architecture, all aspects of the au-

tomation system benefit from various forms of learning to enhance their per-

formance. Although some of this learning can come from historical data-sets

from offset wells, a special emphasis is made on the knowledge that can be

gained from the ongoing drilling process itself, through the actions taken by

the automation system.

The main idea behind action-driven learning is that a drilling automa-

tion system, through calculated actions, actively selects the right conditions

and learning actions to improve its understanding of the environment in vari-

ous ways, rather than solely relying on the knowledge supplied by its designer.

While most classical definitions of an automation system would consider the

optimizer, the controller and the event detector as primary aspects of the de-

sign, the architecture shown in Figure 1.2 introduces a virtual learning agent,

which becomes an integral part of the other three components. With the

system focused on action-driven learning, the actions taken by the optimizer

and the controller no longer strictly aim to maximize a performance index,

but also serve to maximize learning, which in turn would improve the overall

performance of the system.

The architecture in Figure 1.2 consists of several important subsys-

tems. The Learning Agent is an integrated physics-based model along with

the appropriate learning algorithms, that enable the system to use sensor mea-

surements and capture important knowledge about the dynamics of the envi-

ronment. The Optimizer determines the set-points that are assigned to process
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level controllers, including the drawworks feed-velocity, the WOB, and the top-

drive rotary speed. Instead of assuming full knowledge of its environment, the

Optimizer constantly has to decide whether to exploit its incomplete knowl-

edge to maximize user-defined performance indices, or whether to explore the

environment to enhance its understanding, and reach a globally optimal com-

bination of set-points. The Controller executes the set-points assigned by the

Optimizer. With sufficient a priori information, as well as the learning enabled

through the Learning Agent, the Controller uses surface measurements to con-

trol downhole drilling parameters. The Event Detector addresses the safety

concerns for a drilling automation system and informs the drilling automation

system about potential trouble events that require immediate attention.
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Optimizer

Controller

Environment

Event Detector

Learning Agent

Operator

Figure 1.2: The architecture of the proposed self-learning control system. The
connection between the operator and the critic represents the data exchange
for performance index specification and operational status reporting.

1.4 Scope

The scope of this dissertation revolves around demonstrating the pro-

posed solution on the processes of drilling the hole and pipe tripping. The

tracking control problem focuses on tracking weight-on-bit (WOB) set-points

assigned by the Optimizer, since control of bit RPM is primarily a vibration

mitigation problem, which is passively dealt with by the Optimizer through

avoidance of vibration inducing set-points.

The automation system’s event detection and its ability to minimize
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missed/false alarms focuses on kick and lost circulation events, which amongst

others, are difficult to detect, can be costly, and have hazardous consequences.

1.5 Dissertation Outline

This dissertation is structured as follows:

• Chapter 2 focuses on the Learning Agent, and addresses the problem

of learning a physics-based model from real-time data. The problem

is targeted in a probabilistic fashion, and various learning actions and

conditions are considered. The learning enabled by the approaches de-

veloped in this chapter aids: i) the Optimizer in Chapter 3 to predict the

system’s response to various set-points, and ensure constraint satisfac-

tion ii) the Controller in Chapter 4 to perform model-based self-tuning,

and estimate the unmeasurable states and output of the plant.

• Chapter 3 is focused on the Optimizer, and studies the problem of opti-

mization without a complete a priori understanding of the environment.

An iterative learning approach is proposed through comparison of two

different formulations. We then explore various strategies that help the

Optimizer deal with a changing environment. The chapter also includes

a discussion on how the Optimizer can address risk while determining

optimal set-points.

• Chapter 4 is devoted to the Controller, and explores techniques to best

execute the decisions of the Optimizer. The chapter addresses the chal-
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lenges of nonlinearity, uncertainty and latency that can affect the per-

formance of the Controller. The Controller is implemented on a high-

fidelity model to assess its handling of the aforementioned challenges.

• Chapter 5 presents the Event Detector, and argues the case that the

optimality of the drilling automation system is largely dependent on its

ability to avoid reacting to false alarms, while appropriately detecting

costly and hazardous events that require the attention of the operator.

Such a system is therefore required to have strong baseline performance,

and also leverage real-time learning to improve itself. Tools for robust

change identification, pattern recognition, and event classification are

presented. Data from various field events are used to validate the pre-

sented approach.
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Chapter 2

Learning Agent : Action-Driven Learning of

Physics-Based Drilling Models

In this chapter, we formulate the Learning Agent, and explore the prob-

lem of learning the parameters of physics-based drilling models in real-time

using appropriate actions. The goal of this chapter is to show that it is possible

to sufficiently learn a physics-based model of the drilling process which can

later aid the Optimizer in making decisions, and the Controller in executing

these decisions effectively. To remain consistent with the scope of this disserta-

tion, physics-based modeling will focus on an integrated model of the drilling

and tripping processes through their coupling in the axial domain (along the

direction of the drillstring). Suitable probabilistic learning algorithms are dis-

cussed and applied to the developed physics-based model. The learning of

certain model parameters is discussed in the context of optimal conditions

and actions that enhance the sequential learning task.

2.1 Introduction

A physics-based model of the drilling process is concerned with predict-

ing the behavior of the drill-bit and the drillstring in response to surface inputs,
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namely the drawworks axial speed and the top-drive rotary speed. The axial

and torsional domains are coupled through rock-bit interaction, when the axial

force applied on the bit (WOB) produces a torque on the bit (TOB). During

a tripping process, axial drillstring dynamics are coupled with drilling fluid

hydraulics, through frictional interaction between the annulus walls and the

drilling fluid, as well as the dynamics of changing volumes. Section 2.2 of this

chapter is devoted to establishing this model.

Based on the scope of this dissertation, we are interested in using the

physics-based model for two purposes: i) estimation of the velocities and forces

within the drillstring components to determine downhole WOB when drilling,

ii) downhole fluid pressure changes induced by an axially moving drillstring

when tripping. After the functional form of the physics-based model is estab-

lished, the problem of interest is learning the parameters of this model. While

there are several approaches that can be taken towards the parameter learn-

ing problem, a probabilistic approach is desirable as it enables uncertainty

quantification for the learned parameters. Probabilistic parameter estimation

is handled well by a dynamic Bayesian approach, which will be discussed in

detail later in this chapter.

Learning the parameters of a physics-based model has been a problem

of interest in the drilling automation community and the subject of active

research. However, the sequential learning of several parameters of a model

is a challenging task, and only possible when the parameter learning task is

conducted with the right conditions and appropriate system actions. This is
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the focus of the latter part of this chapter, where the appropriate learning

conditions are discussed.

2.1.1 Literature Review

2.1.1.1 Modeling of Drillstring Dynamics

From a drillstring dynamics perspective, earlier studies focused on drill-

string axial and torsional vibrations using a continuous beam model and solv-

ing the wave equation analytically (Bailey, 1960). These earlier studies ignored

the effects of lateral vibrations as well as the interaction between wellbore and

drillstring in inclined wells (Shor et al., 2014). Finite Element Models (FEM)

began to appear in the vibrations domain as deviated, horizontal, and ex-

tended reach wells became widespread. A paper by Heisig studied the natural

frequencies of the drillstring in lateral sections using a FEM model (Heisig

et al., 2000).

Dunayevsky et al. (1984) and Skaugen et al. (1987) proposed a model

that took into account the coupling between axial and lateral vibrations, and

Skaugen et al. (1987) analyzed the significance of rock-bit interaction in un-

derstanding frequency domain torsional vibrations. Lee presented a compre-

hensive investigation of axial vibrations while considering effects of hydraulic

damping as well as friction forces in inclined wells (Skaugen et al., 1987). A

transfer matrix approach was used to solve the frequency domain response of

the drillstring. More advanced FEM models such as the work by Hu et al.

(2012) enabled a more thorough analysis of the drillstring dynamics by con-
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sidering the special curvature of the drillstring for an inclined well as well as

the strain and bending within each drillstring element.

With the increased interest in automatic control of drilling operations

as well as real-time analysis and event detection, research was undertaken into

the development of control-oriented models of drilling processes by simplifying

the previously developed models through certain assumptions. In particular,

decoupling and discretizing mathematical models was shown to enable faster

computation time and analysis for controller design. In the vibrations domain

for instance, Navarro-López and Cortés (2007) demonstrated that an nth order

discretization of the wave equation, which was previously used for frequency

domain analysis can be used to design a sliding mode controller for active

stick-slip mitigation. Lumped-parameter models therefore, became popular

for real-time analysis and control of drilling dynamics, and became the basis

for development of several control methodologies such as fuzzy, neural network,

H-infinity and LMI controllers (Dashevskiy et al., 1999; Yilmaz et al., 2013;

Harris et al., 2014).

2.1.1.2 Modeling of Drilling Hydraulics

In the hydraulics domain, researchers began studying the problem of

predicting downhole pressure variations in response to a moving drillstring

during pipe tripping operations in 1961. Burkhardt et al. (1961) set the in-

dustry standard at the time by modeling the steady-state pressure changes

for both open-ended and closed-ended pipes in non-Newtonian drilling fluids.
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A dynamic extension of the work was also presented that took into account

the effects of pipe acceleration on the downhole pressure drop (Burkhardt

et al., 1961). A later study focused on analyzing frictional pressure drops as

a function of pipe movement for yield-power-law drilling fluids (Crespo et al.,

2012). Mitchell proposed a more elaborate hydraulics model of the tripping

process by exploring pressure dynamics and the effects of fluid compressibility

and wellbore elasticity (Mitchell et al., 1988). The one dimensional, partial-

differential equations were solved using a finite difference scheme, and it was

shown that pressure dynamics are in fact critical in understanding and pre-

dicting the transient downhole pressures during pipe tripping. To gain an

understanding of the effects of various drillstring-wellbore geometries, more

elaborate 2-dimensional models such as the one by Chin et al. (2011) were

developed. These models considered the effects of drillstring eccentricity as

well as pipe rotation on downhole pressure fluctuations. Several studies were

published that tested the validity of such models through laboratory and field

experimentation (Samuel et al., 2003).

With the emergence of managed pressure drilling (MPD) technology,

hydraulics modeling was extended into the multi-phase domain to accurately

capture the dynamics of both liquid and gas within the annulus. These mod-

els ranged from general two-phase CFD models to a more simplified drift-flux

model to describe the interaction between and liquid and gas particles (Lage

et al., 2000; Aarsnes et al., 2014). Active control of downhole pressure dur-

ing MPD subject to heave disturbances has been of particular interest. An
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early study in this area was presented by Kaasa et al. (2012) which showed

that pressure dynamics can be captured by writing the mass and momentum

balance equations for two control volumes and a controller can be designed

accordingly. Papers by Landet (2011) and Gjerstad et al. (2013) extended

this methodology by demonstrating that several control volumes are required

to sufficiently capture higher frequency pressure oscillations. Gjerstad et al.

(2013) also developed simplified explicit equations for the frictional forces

in laminar flow of Herschel Bulkley fluids, which were used along with the

lumped-parameter model for controller development. Exploration of lumped-

parameter models with higher number of control volumes led to the investi-

gation of hydraulic transmission-line models. These models were essentially

an infinite-dimensional representation of the lumped-parameter models, which

allowed for the modal analysis of the pressure dynamics in the frequency do-

main. In a study by Aarsnes et al. (2012), it was shown that the accuracy of

the lumped-parameter models drops as the number of control volumes used for

discretization is decreased. However, it was also demonstrated that depend-

ing on the length of the wellbore, a lumped-parameter model with 20 control

volumes might be sufficiently accurate.

2.1.1.3 Model Estimation

The problem of state and parameter estimation of dynamical systems

has been an active area of research in the engineering community for several

decades. With the advent of modern control theory, researchers have focused
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on deriving optimal estimation, and filtering techniques that allow the estima-

tion of unknown states of a dynamical system when the full state is unmeasur-

able. The simplest form of an estimation problem can be formulated as a least

square optimization problem, which aims to minimize the estimated process

and measurement disturbances in a least square sense. The optimal solution

to this least squares problem is used to compute the state estimate, given the

output measurements. The approach, however, is a non-sequential or batch es-

timation technique, in which it requires the solution of a least squares problem

using all previous output measurements. The least square recursive estimator

(LSRE) can also be formulated by the minimization of the mean square recon-

struction error, which is the difference between the actual and estimated state

(Muske and Edgar, 1997). The LSRE gives the minimum-variance estimate of

the state, if the process and sensor noise are independent, normally distributed

random variables with covariance Q and R. For linear Gaussian systems, this

technique has also been shown to produce the most probable or maximum like-

lihood estimate (Muske and Edgar, 1997). This recursive estimator is referred

to as the discrete Kalman filter, which provides an optimal estimation of the

states in the presence of sensor and process noise. The filter gain is computed

at each sampling time using the covariance of the state estimate. Another

possible approach is to use the recursive form of the batch state estimation

problem by formulating a moving horizon approach, where the state estimate

at time k is determined recursively from the solution of the least squares prob-

lem. This is done by using the predicted estimate at time k − n − 1 and the

20



most recent n + 1 output measurements (Muske and Edgar, 1997). However,

since the moving horizon produces the same estimates as the Kalman filter,

there is no incentive to use it due to additional required computational effort.

One benefit of the moving horizon estimator is that it allows the addition of

constraints on the estimated states and the disturbances. These constraints

can be applied to prevent physically unrealistic state estimates.

For nonlinear systems, additional complexity is introduced to the state

estimation problem, as the same optimal estimation framework is generally

not available for nonlinear systems. The optimal linear filter produces the

minimum variance and maximum likelihood estimate of the state of the linear

system. To develop a nonlinear analogy, one must first specify which estimate

is desired, since they may not be the same for a nonlinear stochastic system.

The minimum variance estimate is the conditional mean of the state. The

maximum likelihood or Bayesian estimate is the conditional mode or most

probable estimate. These estimates are determined from the conditional prob-

ability density of the state given the measurement. The conditional probability

density of a linear system with Gaussian noise is Gaussian, whereas for a non-

linear system it is not Gaussian even when the measurement and disturbances

are.

A simple approximation to the optimal nonlinear state estimation prob-

lem is to linearize the nonlinear model about a given operating point and ap-

ply optimal linear state estimation to the linearized system. The extended

Kalman filter computes a state estimate at each sampling time by the use of
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the Kalman filtering on a linearized model of the nonlinear system. This tech-

nique is justified if there exists a large region around the operating point in

which the linearized model is a good representation of the nonlinear system.

In addition, if the disturbances are well represented by a zero mean Gaussian

distribution, then the optimal estimate for the linearized system should also

be a reasonable approximation for the nonlinear system. In that scenario, the

extended Kalman filter is expected to produce an accurate estimate of the

state. A linearized model of the continuous system can be developed from

the Taylor series expansion of the system model and ignoring the higher order

terms. However, this covariance matrix can become a poor estimate, because

of the approximations made in the propagating the covariance matrix in the

EKF (Muske and Edgar, 1997).

To overcome the limitations of the EKF, the unscented Kalman filter

(UKF) was proposed using the concept of sample statistics. The UKF uses

a deterministic sampling technique to select a minimal set of sample points

around the current estimate (Wan and Van Der Merwe, 2000). These sample

points (called the sigma points), form a set of points that lie on the covariance

contour. These points are then propagated through the nonlinear system dy-

namics to compute a cloud of transformed points. The main idea behind this

approach is that it is easier to approximate a probability distribution than an

arbitrary nonlinear function. It has been demonstrated that the UKF results in

approximations that are accurate to the third order for all types of nonlinear-

ities. For non-Gaussian uncertainties, approximations are accurate to at least
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the second moment. A major advantage of UKF is that it avoids the explicit

computation of the Jacobian matrices (Wan and Van Der Merwe, 2000). The

cubature Kalman filter (CKF) was introduced by Arasaratnam and Haykin

(2009) as an improvement to the UKF, which is claimed to suffer from curse

of dimensionality and/or estimate divergence for high dimensional systems.

The cubature Kalman filter uses a spherical-radial cubature rule, which allows

the numerical computation of multivariate moment integrals encountered in

the nonlinear Bayesian filter.

To avoid the approximations made with non-Gaussian uncertainties,

particle filtering can be used to deal with state estimation problems aris-

ing from multi-modal, and non-Gaussian distributions (Johannes and Polson,

2007). A particle filter approximates multi-dimensional integration involved

in propagation and update steps of the estimation problem using Monte Carlo

sampling. The Ensemble Kalman filter, proposed by Evensen (2003), is an

example of a particle filtering technique. The filter is initialized by drawing N

particles from a suitable distribution. At each time step, N samples for sensor

and process noise are drawn using the distributions of measurement noise, and

state estimates. Similar to the UKF, this approach uses only the 1st and 2nd

order moments generated using ensemble integration, to estimate the Kalman

gain. The accuracy of the estimates therefore depends on the number of data

points. While particle filtering can, in theory, deal with all probability dis-

tributions of state, Daum and Huang (2003) points two major pitfalls, with

particle filters: 1) the algorithm suffers from curse of dimensionality like most
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other nonlinear filters developed under Bayesian framework, 2) if we end up

having a poor proposal density, then not all samples will be useful.

A limitation of the filtering algorithms discussed above is that they

can’t handle constraints systematically (Prakash et al., 2011). Nonlinear dy-

namic data reconciliation, and moving horizon estimation formulations, pro-

vide systematic approaches to handle bounds on states/parameters, or any

other algebraic constraints. The MHE problem is formulated as a constrained

nonlinear optimization problem defined over a moving time. This is, however,

difficult to perform in real-time since it requires large dimensional nonlinear

optimization to be solved. Zavala et al. (2008) proposed advanced step MHE

formulation, which performs the nonlinear dynamic optimization in the back-

ground and requires little online computation to update state and parameter

estimates. Vachhani et al. (2006) proposed a recursive constrained formu-

lation called recursive nonlinear dynamic data reconciliation. This approach

combines the advantages of recursive estimation while handling the constraints

on the variables. Vachhani et al. (2005) proposed a constrained version of the

UKF for state and parameter estimation in nonlinear systems. For constrained

particle filtering, Lang et al. (2007) proposed a version of sequential impor-

tance sampling particle filter that can handle constraints. This approach is

similar to using a truncated distribution to satisfy the constraints, which en-

sures that the posterior also satisfies the constraints. Prakash et al. (2010)

proposed using the constrained UKF to generate the distribution required on

particle filtering, and to deal with the requirement of generating particles con-
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sistent with the bounds.

Parameter estimation, also referred to as system identification, is the

problem of determining a nonlinear mapping from the input to the output. For

dynamical state space systems, a problem of interest is estimating both the

unobserved state as well as the model parameters which is referred to as the

dual estimation problem. A common approach to the dual estimation problem

is to have a separate state space representation for the states and the parame-

ters. Two Kalman filters are then run simultaneously for state and parameter

estimation (Wan et al., 1999). At every time step, the current estimate of the

parameters is used in the state filter as a given input. In a similar manner,

the current estimate of the state is used in the parameter filter. Another ap-

proach is referred to as the joint filtering problem, where the unknown system

state and parameters are concentrated into a single higher dimensional state

vector. A single filter is then run on the joint vector to produce simultane-

ous estimates of the states and the parameters (Wan et al., 1999). In the

joint and dual Bayesian approaches to solving parameter estimation problems,

it had been shown that the non-dynamics in the unknown parameters often

cause the degeneracy of the algorithm as the parameter space is only explored

at the initialization of the algorithm. Therefore, these algorithms are some-

times inefficient and after a few iterations the marginal posterior distribution

of the parameter is approximated by a single delta Dirac function (Andrieu

and Doucet, 2003).

From a non-Bayesian perspective, online expectation-maximization type
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algorithms have also been effective for the parameter estimation problem. Such

algorithms are primarily different from the Bayesian approach in that they do

not attempt to estimate the model covariance. In addition, EM algorithms

do not require a priori knowledge about the system (Ghahramani and Roweis,

1999). In the EM algorithm, the conditional expectation of the signal is com-

puted, given the data and the current estimate of the model (E-step). Then a

model is found that maximizes a function of this conditional mean (M-step).

For linear models, the M step can be solved in closed form and the E step is

computed with a Kalman smoother. However, for a nonlinear model the M

step can no longer be computed in closed-from and therefore a gradient-based

approach is used instead. The E step is usually approximated by an EKF

where a linearization of the model is used for backward propagation of the

state estimates (Ghahramani and Roweis, 1999). Wan et al. (1999) improved

the E step of the EM algorithm for nonlinear models by using an unscented

Kalman filter instead of an EKF to compute the forward and backward passes

in the Kalman smoother.

Within the oil and gas drilling space, state and parameter estimation of

drilling models have been approached with different techniques. To estimate

the bulk modulus in a hydraulics model, Kaasa et al. (2012) used a recursive

least squares technique. Gravdal et al. (2005) used the unscented Kalman fil-

ter for calibration of friction factors in a hydraulics model. Pixton et al. (2014)

employed the moving horizon estimator for calibrating friction factor and den-

sity in the annulus. Nonlinear adaptive observers were designed to estimate
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the friction factor and density (Stamnes et al., 2011). Aamo (2013) used a

back-stepping transformation observer design for estimating the states of a

transmission line model. Nikoofard et al. (2015) used an unscented Kalman

filter to tune the parameters of a drift flux model in under-balanced drilling.

Gjerstad et al. (2013) employed an ensemble Kalman filter to calibrate the fric-

tion parameters of a lumped parameter model for drilling, using measurement

data during pipe tripping with circulation.

2.1.1.4 Summary of Literature Review

Most of the physics-based models in the literature used for automated

drilling systems are deterministic, and fail to capture the uncertainties involved

in the drilling process and sensor measurements. Most of the parameters of a

deterministic drilling model are either unknown to begin with, or slowly vary

throughout the drilling operation. Although tuning of model parameters has

been practiced by several researches, a holistic approach to learning real-time

dynamical models is missing in the drilling literature. This becomes especially

important when such models are used for real-time control and optimization,

where inaccurate estimations can result in suboptimal performance and non-

productive time. Therefore, a learning approach is needed that has the ca-

pability to re-evaluate its environment, and make probabilistic estimations of

the environment’s operating conditions through the use of special actions in

specific conditions.
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2.2 An Integrated Mathematical Model of the Drilling
and Tripping Processes

This section presents a dynamic mathematical model of the drillstring

and its behavior when subject to a velocity input from the surface. In the

context of automated tripping, the pressure fluctuations of the drilling fluid

are also of importance, and the transient model is extended to capture this

pressure behavior. From an estimation problem perspective, this model forms

the transition function used for the prediction step of the filtering problem.

The estimation of this model’s parameters are thus the purpose of the learning

task.

2.2.1 Axial Drillstring Dynamics

Figure 2.1 portrays a mechanical diagram of the axial drillstring dy-

namics. The model is driven by a velocity input on the surface, vin using a

drawworks system. It is assumed that dynamics of the traveling block are

considered and handled by a stiff controller within the drawworks’ variable

frequency drive (VFD). Drill-pipes are represented using a beam element with

stiffness kds, and inertia mds. Similarly, drill-collars and the bottom hole as-

sembly are represented by stiffness kc, and inertia mc. The entire drillstring is

subject to nonlinear damping Ψ, which is caused by the friction between the

drillstring and the wellbore, as well as linear damping, b due to fluid interaction

and material hysteresis. Drill-bit and its interaction with the rock formation

is captured by another spring element, kfr, and vROP represents the velocity
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boundary condition which is a function of the applied weight-on-bit, angular

velocity Ω, and various bit and formation parameters. Although several exist-

ing models in the literature attempt to empirically capture this relationship,

in the context of feedback-control we treat this term as a disturbance, and

estimate it in real-time from measurements.

mds

mc

kc

kds

kfr

bds + Ψds(vds)

bc + Ψc(vc)

vds

vc

vin

vROP

Figure 2.1: A representation of axial drillstring dynamics using an equivalent
mass-spring-damper system. The sources of damping have linear and nonlinear
terms, which arise from the contact with the wellbore and the drilling fluid.

The simplest model representing drill-pipe dynamics can be written for

two-lumped elements:

Ḟds = kds(vin − vds) (2.1)
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v̇ds =
1

mds

(
Fds − Fc − bdsvds −Ψds(vds)

)
(2.2)

For improved model accuracy, higher order dynamics can be captured by di-

viding the drill-pipe section into higher number of elements, which in matrix

form can be written as:

ẋ = Anx +Bnu (2.3)

x =


F1

v1
...
Fn
vn

 ,u =
[
vin Ψds Fc

]T
, (2.4)

An =


0 −kn 0 . . . 0

1
mn
− bn
mn
− 1
mn

. . . 0

0 kn 0 −kn . . .
...

...
. . . . . .

...
. . . . . . . . . . . . 1

mn
− bn
mn

 , Bn =

 kn 0 0
...

...
...

0 − 1
mn
− 1
mn

 ,
(2.5)

where the nonlinear damping term, Ψds is approximated as a lumped source

term, and is given by:

Ψds =
|vds|
vds

N∑
i=1

µβBwLivn,i (2.6)

where µ, βB, w correspond to the coefficient of friction, coefficient of buoyancy

and unit drill-pipe weight respectively, and vn,i is a vector in the null space of

the unit vector v̂d,i defined by:

v̂d,i =
(hi+1 − hi), (zi+1 − zi)√

(hi+1 − hi)2 + (zi+1 − zi)2
(2.7)
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With the drillstring usually distributed over several thousand meters

it is important to assess the accuracy of using a lumped-parameter approach

for prediction, especially the drill-pipe section. For this assessment, a trans-

mission line approach can be used, which provides an exact solution for fully-

distributed input-output dynamics. The force and velocity distribution along

the drill-pipe is given by:

∂v

∂t
=

1

m̄

∂F

∂z
,

∂v

∂z
=

1

k̄

∂F

∂t
, (2.8)

where m̄ represents the mass of the drill-pipe per unit length, and k̄ is stiff-

ness of the drill-pipe times length. For simplicity, the damping coefficient is

neglected when solving for the solution of Equation 2.8, and will be treated as

a boundary condition in this model (Ma and Chen, 2015). The solution of the

coupled partial differential equations in 2.8 can then be found in the frequency

domain. For the force at the top of the drillstring, we have:

F (s, 0) = sech(Ts)F (s, Lds) + Zds tanh(Ts)v(s, 0) (2.9)

where T =
√

m̄
k̄
L, Zds =

√
m̄k̄ and F (s, Lds) represents the reaction force at

the end of the drill-pipe section. The solution for the velocity at the end of

the drill-pipe section is given by:

v(s, Lds) = − 1

Zds
tanh(Ts)F (s, Lds) + sech(Ts)v(s, 0) (2.10)

With sech(s) defined as 2
es+e−s , tanh(s) = e2s−1

e2s+1
, and noting the Laplace rela-

tionship L −1{e−asF (s)} = ua(t)F (t − a), the time-domain solution of Equa-

tions 2.9 and 2.10 can be written as time-delay equations such that:

F (t, 0) = 2F (t− T, Lds) + Zds
(
v(t, 0)− v(t− 2T, 0)

)
− F (t− 2T, 0) (2.11)
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v(t, Lds) = 2v(t−T, 0)− 1

Zds

(
F (t, Lds)−F (t−2T, Lds)

)
−v(t−2T, Lds) (2.12)

To account for the linear damping, bds is divided in half, rds = bds/2 and added

to the boundaries of Equations 2.11 and 2.12 so that (Ma and Chen, 2015):

Fds(t) = 2Fc(t−T )−Fds(t−2T )+(Zds+rds)vin(t)+(rds−Zds)vin(t−2T )+2rdsvds(t−T )

(2.13)

vds(t) =
rds

Zds + 1

(
2vin(t− T ) +

rdsvds(t− 2T )

Zds − 1
− Fc(t)− Fc(t− 2T )

Zds

)
(2.14)

In Figure 2.2, we demonstrate a comparison of drill-pipe step response

prediction of different order models. As shown, lower order representations

of the drill-string do not accurately capture the transient behavior well, while

also ignoring the initial delay associated with vds. In the comparison shown,

the 18th order model provides the closest approximation of the initial step

delay.

Due to the much shorter length of the drill-collars and the bottom-hole

assembly, vc and Fc can be written using a lumped model approximation such

that:

Ḟc = kc(vds − vc) (2.15)

v̇c =
1

mc

(
Fc − Ffr − bcvc −Ψc(vc)

)
(2.16)

The contact force with the formation can finally be written as:

Ḟfr = kfr(vc − vROP ) (2.17)
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In another simulation, the ability of various order models in approximating

drill-collar velocity is highlighted. As shown in Figure 2.3, all lumped approx-

imations of vc are over-estimates of the true transient velocity, due to reaction

force Fc being non-zero. The higher order approximations, however, can cap-

ture the initial delay adequately. While higher order approximations of the

the drill-pipe dynamics can be used in the construction of the state estimator,

it is important to use the exact model for testing the ability of the learning

algorithm to estimate model parameters, as well as in controller performance

assessment.

1 2 3 4 5 6 7 8

0

0.5

1

1.5

Figure 2.2: vds-step response comparison of the exact and lumped-parameter
models. The reaction force, Fc, is zero.
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Figure 2.3: vc-step response comparison of the exact and lumped-parameter
models. The reaction force, Fc, is non-zero.

2.2.2 Drilling Fluid Hydraulics

In the following section, the previously developed model of the axial

drillstring dynamics is extended to include the pressure and flow dynamics of

the drilling mud when the drill-string moves in and out of the wellbore. This

extension will provide the ability to predict allowable drill-string speeds while

tripping, to avoid unsafe swab and surge pressures. We establish a lumped-

parameter model that can be used for real-time learning, similar to the one

presented in (Gjerstad et al., 2013). The performance of this model is com-

pared to the results of a well-known infinite-dimensional model by Mitchell,

as well as published field test data (Mitchell et al., 1988). Finally, we demon-

strate that the integrated model presented in this dissertation can provide

more realistic estimations of downhole pressure in tripping operations, due its
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consideration of drillstring elasticity and damping.

To establish a hydraulic model of fluid flow, the drill-string and the

annulus are broken down into 5 control volumes as shown in Figure 2.4. These

control volumes enable the capturing of important cross-sectional changes in

the annulus. Transient pressure changes are captured by considering the com-

pressibility of the drilling fluid K. The pressure dynamics for the five control

volumes can be written as:

Ṗ1 =
K

V1

(
Qbit −Q1 − vcAc

)
(2.18)

Ṗ2 =
K

V2

(
Q1 −Q2 − vdsAds + vcAc

)
(2.19)

Ṗ3,4 =
K

V3,4

(
Q2,3 −Q3,4

)
(2.20)

Ṗds =
K

Vds

(
Qin −Qbit

)
(2.21)

The flow-rate through the drill-bit can be written using the quasi-steady rela-

tionship:

Qbit = CzAz
√

2(Pds − P1)/ρ (2.22)

For the case of mud-motors, the flow-rate can be calculated using steady,

empirical relationships given by the manufacturer. The flow-rate through each

control volume can be written as a function of the total hydraulic force at the

ends of the control volumes:

Q̇n =
1

Hn

(
Fn − Fn+1 − Ff

)
(2.23)
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where Hn =
mf,n

An
, Ff = PfAn, and Pf is the frictional pressure drop in each

control volume. The equations for frictional pressure drop inside the drillstring

and the annulus for Bingham Plastic fluids are summarized in Appendix B.

Gjerstad et al. (2013) also recommends modifying Fn by a correction term as

a function of Pf , in order to account for the effect of the pressure difference

created due to the moving cross-sectional area.

Figure 2.4: A schematic of the control volumes used for capturing various cross-
sectional area changes in the annulus. Since the pressure dynamics inside the
drillstring are not as important as the annulus, only one control volume is used
in the calculations.
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Figure 2.6 shows a comparison of simulation and field test results of a

pressure surge scenario with a 7-inch moving pipe inside a 9.625-inch casing,

with water-based mud of plastic viscosity 12cp, and yield point 7 lbf/100ft2.

The velocity profile of the drillstring during the tripping process is shown in

Figure 2.5. The lumped model results, which represent the model discussed

above, demonstrate an excellent match with both the infinite-dimensional

model of Mitchell, and the field test data. Despite the use of a finite con-

trol volume approximation, the lumped parameter approach can sufficiently

capture the transient pressure surges captured in the field data. An important

advantage of this model compared to that of Mitchell’s is that it is based on

ordinary-differential equations, and can therefore be used in the context of our

filtering problem.

0 2 4 6 8 10 12 14 16 18
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2

Figure 2.5: Velocity profile of the tripping process as published in Mitchell
et al. 1988.
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Figure 2.6: Comparison of downhole pressure change estimates by the lumped
and Mitchell’s PDE model, with field data published in Mitchell et al. 1988.

Another simulation is shown in Figure 2.7, where the effect of consid-

ering drillstring dynamics on pressure surges is demonstrated. As shown, the

elasticity of the string, as well as the frictional damping from the wellbore, can

alter the transient pressure surge behavior significantly. While in the demon-

strated scenario the impact of drillstring dynamics reduces the pressure surge

as compared to a rigid model, with an underdamped drillstring, the elastic-

ity effect could result in higher transient pressure surges. This highlights the

importance of an integrated dynamics-hydraulics model as presented in this

section, and suggests that prediction of optimal string speeds in tripping op-

erations require the use of an integrated model to avoid over/under estimating

dynamic pressure changes and achieve true optimality.
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Figure 2.7: Comparison of downhole pressure dynamics while tripping with
and without the effects of drillstring dynamics.

2.3 Probabilistic State and Parameter Estimation

In the previous section, a physics-based model of the drillstring behav-

ior in drilling and tripping operations was established. The presented model

based on ordinary differential equations will be the subject of parameter and

state estimation in the following section. In the first part of this section, we

introduce the Bayesian filtering problem. Various Kalman filtering techniques

are explored afterwards as a solution to the filtering problem, and the nonlin-

ear variations of the Kalman filter are shown. A Monte Carlo solution of the

filtering problem, known as the particle filter, is also studied and compared

to Kalman filtering techniques in terms of its applicability to the model of

interest. We then shift our focus to the idea of action driven learning, and

study the optimal actions/conditions that enable the learning task.
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2.3.1 Recursive Filtering Algorithms

From a mathematical perspective, the purpose of recursive filtering is

to estimate the hidden states and parameters of system, at each step, given a

likelihood using real-time measurements, and a prior using model estimates.

More precisely, the purpose is to compute the marginal posterior distribution

of the state xt at each time step t given the measurement zt. Two assumptions

are made here: (i) the states follow a first-order Markov process p(xt|x0:t−1) =

p(xt|xt−1) (ii) the measurements are independent of the states. Let Zt denote

the collection of measurements y0:t := {y0, ...yt}, and p(xt|Zt) the condition

probability distribution function of xt. From Baye’s rule it can be obtained

(Chen et al., 2003):

p(xt|Zt) =
p(Zt|xt)p(xt)

p(Zt)

=
p(zt, Zt−1|xt)p(xt)

p(zt, Zt−1)

=
p(zt|Zt−1,xt)p(Zt−1|xt)p(xt)

p(zt|Zt−1)p(Zt−1)

=
p(zt|Zt−1,xt)p(xt|Zt−1)p(Zt−1)p(xt)

p(zt|Zt−1)p(Zt−1)p(xt)

=
p(zt|xt)p(xt|Zt−1)

p(zt|Zt−1)

(2.24)

As evident in Equation 2.24, the posterior density p(xn|Zn) is described by

three important terms:

• The prior p(xt|Zt−1) which is the knowledge from our model obtained
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by:

p(xt|Zt−1) =

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1 (2.25)

where p(xt|xt−1) is the transition density of the state,

• The likelihood p(zt|xt) which essentially describes the measurement noise

model,

• The evidence which involves the integral:

p(zt|Zt−1) =

∫
p(zt|xt)p(xt|Zt−1)dxt. (2.26)

The purpose of recursive Bayesian estimation in dynamical systems is to calcu-

late/approximate the terms shown above. From an optimality perspective, the

optimal Bayesian filter in the context of this dissertation is one with minimum

mean-squared error (MMSE) which can be written as:

E[||xt − x̂t||2|zt] =

∫
||xt − x̂t||2p(xt|y0:t)dxt (2.27)

2.3.1.1 Kalman Filter Based Algorithms

The closed-form solution of the filtering problem outlined in Equation

2.24 can be obtained in the special case of a linear transition function, and

where the process and measurement are affected by random Gaussian pro-

cesses. Specifically, this closed-form solution is the well-known Kalman filter.

The Kalman filter is an iterative prediction-correction process, where an esti-

mate of the next time step state is obtained in the prediction step, and an up-

date is made to this estimate using the arriving measurement in the correction
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step. For the case of linear systems with Gaussian process and measurement

noise, the Kalman filter is the maximum a posteriori solution to the Bayesian

filter problem. For a closer look, in the prediction step of the algorithm, the a

priori state and covariance estimates are obtained by:

x̂t|t−1 = Ftxt−1|t−1 + Btut

Pt|t−1 = FtPt−1|t−1F
T + Qt

(2.28)

where F is the state transition matrix, and B is the input matrix. After a

measurement arrives, the algorithm performs a correction to x̂t and Pt. This is

done by calculating the innovation residual ỹt, and the innovation covariance,

St, and calculating the optimal Kalman gain as a function of the innovation

covariance and the a priori state covariance.

ỹt = zt −Htx̂t|t−1

St = Rt + HtPt|t−1H
T
t

Kt = Pt|t−1H
T
t S−1

t

(2.29)

The correction to the state and the covariance is then made such that:

x̂t|t = x̂t|t−1 + Ktỹt

Ptt = Pt|t−1 −KtHtPt|t−1

(2.30)

The Extended Kalman Filter For the purpose of our filtering problem

however, the use of the Kalman filter is limited by the nonlinearity of the

system. To remedy this problem, one can approximate time-propagation of

the covariance using a Taylor series expansion of the state transition and mea-

surement functions. This is the core idea behind the Extended Kalman filter.
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In the prediction step of the Extended Kalman filter, the mean of the state

vector is computed using the non-linear transition function such that (Chen

et al., 2003):

x̂t = f(xt−1) + g(ut)

Pt = F̂tPt−1F̂
T

t + Qt

(2.31)

where

F̂t =
df(x)

dx

∣∣
x=x̂t

(2.32)

In the correction step, the innovation and the optimal gain are computed

similar to the regular case, such that:

ỹt = zt − Ĥtx̂t

St = Rt + ĤtPtĤ
T

t

Kt = PtĤ
T

t S−1
t

(2.33)

where,

Ĥt =
dh(x)

dx

∣∣
x=x̂t

(2.34)

While the Extended Kalman filter allows one to apply the Kalman filter ap-

proach to non-linear systems, it still poses many limitations. The main limi-

tation concerning the filtering problem in this dissertation is that it requires

the transition and measurement functions to be differentiable. Secondly, com-

putation and programming of the Jacobian case, where the transition function

involves regression-based models, is error prone and impractical.

The Unscented Kalman Filter Another relatively recent approach to ap-

plying Kalman filtering to nonlinear problems is based on the idea of un-

43



scented transformation (UT) (Wan and Van Der Merwe, 2000). The Unscented

Kalman filter shies away from linearization of the state and measurement func-

tions, by directly trying to approximate the mean and covariance of the target

distribution. The philosophy behind UT is to deterministically select a fixed

number of sigma points that capture the mean and covariance of the original

distribution of x, such that:

χ
(0)
t−1 = xt−1

χ
(i)
t−1 = xt−1 +

√
L+ λ

[√
Pt−1

]
i

χ
(i+L)
t−1 = xt−1 −

√
L+ λ

[√
Pt−1

]
i
, i = 1...L

(2.35)

In the prediction step of the Unscented Kalman filter, the sigma points are

propagated through the nonlinear transition function:

χ
(i)
t = f(χ

(i)
t−1), i = 1...2L (2.36)

After propagation of the sigma points, the mean of the resulting distribution,

and its covariance are computed by:

x̄t =
2L∑
i=0

W
(m)
i χ̂it

P̄t =
2L∑
i=0

W
(c)
i (χ̂

(i)
t − x̄t)(χ̂

(i)
t − x̄t)

T + Qt−1

(2.37)

where W
(m)
i and W

(c)
i are constant weights given by:

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(L+ λ)

(2.38)
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where β is an additional parameter that can be used to incorporate prior

information about non-Gaussian distribution of x. In the update step of the

kalman filter, a new set of sigma points are formed by:

χ̄
(0)
t = x̄t

χ̄
(i)
t = x̄t +

√
L+ λ

[√
P̄t

]
i

χ̄
(i+L)
t = x̄t −

√
L+ λ

[√
P̄t

]
i
, i = 1...L

(2.39)

and propagated through the measurement model such that:

ξ̂
(i)
t = h(χ̄

(i)
t ), i = 1...2L (2.40)

The mean and covariance of the innovation are then computed using a similar

approach to the state vector:

µt =
2L∑
i=0

W
(m)
i ξ̂

(i)
t

St =
2L∑
i=0

W
(c)
i (ξ̂

(i)
t − µt)(ξ̂

(i)
t − µt)

T + Rk

Ct =
2L∑
i=0

W
(c)
i (χ̄

(i)
t − x̄t)(ξ̄

(i)
t − µt)

T

(2.41)

which can be finally used to perform the state and covariance correction

through calculation of the optimal Kalman gain:

Kt = CtS
−1
t

xt = x̄t + Kt[zt − µt]

Pt = P̄t −KtStK
T
t

(2.42)

The advantage of the Unscented Kalman filter over the Extended Kalman filter

is that it can capture higher order moments caused by the non-linear transform
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better than Taylor series (Wan and Van Der Merwe, 2000). However, the

covariance computation is only exact for first order polynomials. Also, despite

slightly higher computation cost, overall implementation is easier as it only

requires the knowledge of the exact transition and measurement functions.

2.3.1.2 Particle Filtering

The broadest class of Bayesian filtering algorithms are known as par-

ticle filters, where no assumptions regarding linearity or Gaussianity of the

problem are made. The main idea behind these algorithms is to use Monte

Carlo sampling to approximate the posterior distribution of state. The most

basic example is the sequential importance sampling technique (SIS), where

the posterior distribution at time t − 1, p(x0:t−1|z1:t−1) is approximated with

a weighted set of samples {xi0:t−1, w
i
t−1}Ni=1, and these samples are recursively

updated to get an approximation of the posterior distribution of p(x0:t|z1:t)

(Chen et al., 2003). Although the idea is similar to the case of the UT, the

number of required samples, or particles, are much greater in the case of par-

ticle filters. SIS is further based on importance sampling, where the target

distribution p(x) is approximated using samples drawn from a proposal dis-

tribution q(x). To account for the difference between the target and proposal

distributions, one has to weight every sample by xi by wi ∝ π(xi)/q(xi), where

π(x) is a function that is proportional to p(x). Applying this concept to the

filtering problem, we obtain:

p(x0:t−1|z1:t−1) ≈
N∑
i=1

wit−1δxi
0:t−1

(2.43)
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where δxi
0:t−1

is a delta function centered at xi0:t−1. The most important task

in particle filtering is updating the particles and particle weights, such that

they approximate the posterior distribution at the next time step (Chen et al.,

2003). To do so, a proposal distribution can be written as:

q(x0:t|z1:t) = q(xt|x0:t−1, z1:t)q(x0:t−1|z1:t−1) (2.44)

so that each particle can be augmented with a new step at time step t sampled

from q(xt|x0:t−1, z1:t). As noted, the weights are updated such that:

wit ∝
p(xi0:t|z1:t)

q(xi0:t|z1:t)
(2.45)

It can then be shown that the weight update can recursively be done in terms

of wit−1 such that (Chen et al., 2003):

wit ∝ wit−1

p(zt|xit)p(xit|xt−1)

q(xit|xi0:t−1, z1:t)
(2.46)

With the assumption of a Markov process, the update equations simplify to:

xit ' q(xt|xit−1, zt)

wit ∝ wit−1

p(zt|xit)p(xit|xt−1)

q(xit|xi0:t−1, zt)

(2.47)

In practical application of particle filters, iteration of updates in Equations

2.47 can result in degeneracy, where only some of the particles have a survival

weight, and all the other ones have very small weights. One way to deal with

this problem is through re-sampling whenever the effective sample size goes

below a certain limit. While most particle filtering algorithms fall under the

family of the SIS, several other variations have been proposed. The SIS al-

gorithm, for instance, uses the proposal distribution q(xn|xit−1, zn), which is
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taken to be the state transition distribution p(xn|xit−1) and resampling is done

at every iteration. Van Der Merwe et al. proposed the use of the Extended

or the Unscented Kalman filters as the proposal distribution instead of the

transition prior (Van Der Merwe et al., 2001). This enables more efficient

sampling by moving the particles towards regions of high likelihood. Conse-

quently, the problem of only a few particles surviving will be avoided. The

use of the EKF/UKF as the proposal requires the propagation of the sufficient

statistics of the EKF/UKF for each particle (Van Der Merwe et al., 2001).

2.3.2 Estimator Design for Drilling Models

The particle filtering methods discussed previously seem to enable us to

avoid any assumptions regarding linearity and Gaussianity of the model. How-

ever, this comes at the added cost of design , computation and implementation

complexity on field-level hardware. To put in perspective the performance of

the aforementioned recursive Bayesian filtering techniques in a non-linear, non

Gaussian setting, a comparison study is shown in Figure 2.8 (Van Der Merwe

et al., 2001). The process model is described by:

xt+1 = 1 + sin(πωt) + φxt + vt (2.48)

where ω and φ are scalar parameters, and vn is the process noise modeled by

a Gamma random process. The measurement equation is given by:

yt = φx2
t + rt t ≤ 30

yt = φxt − 2 + rt t > 30
(2.49)
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where rn is Gaussian measurement noise. In the first 30s of this comparison,

the particle filter based on the UKF proposal is the obvious winner, with the

EKF proposal performing similarly well. The interesting observation, however,

is that when the measurement equation behaves linearly with respect to x at

t = 30, the performance margin of particle filters is significantly reduced,

with the generic particle filter performing worse than the EKF and UKF. We

can therefore note that while the process model has remained nonlinear, the

nonlinearity of the measurement equation can motivate the use of particle

filters for greater accuracy. However, if the measurement model is somewhat

linear with respect to the state, and the process model is not severely nonlinear,

the use of the more involved particle filters is not practically justified.
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0.2

0.3

Figure 2.8: Comparison of several Bayesian filtering techniques on a system
with an unstationary measurement equation. At t = 30, the measurement
equation becomes linear (Van Der Merwe et al., 2001).

In designing real-time parameter learners of the drilling models, the

UKF is therefore a fair choice for two reasons: (i) given that the observation
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model is linear, the algorithm enables one to sufficiently deal with the non-

linearity that arises from the joint parameter estimation formulation without

resorting to the more involved particle filters, and (ii) as opposed to the EKF,

it avoids the Taylor series approximation involved in approximating the pos-

terior distribution and the use of a Jacobian. The UKF-based joint parameter

estimation can then be set up as follows:

dx = F (x, u, t)dt+ dβ (2.50a)

zk = Hx + v (2.50b)

where zk is the measurement vector, H is the measurement matrix, β is a

zero-mean random variable of variance q that represents process uncertainty,

and v is the measurement uncertainty which can be written as:

E[v] = 0, E[vvT ] = R = σ2
hkl (2.51)

where σ2
hkl is the variance of measurement error in the surface tension mea-

surement and,

H =
[
1 . . . 0

]
(2.52)
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The state vector x is given by:

x =



F1

v1
...
Fn−3

vn−3

Fc
vc
Ffr
θ1
...
θm



, (2.53)

and the transition function, f(x) by:

f(x) =



kq
(
vinput − v1

)
1
mq

(
F1 − F2 − bqv1

)
...

kq
(
vn−4 − vn−3

)
1
mq

(
Fn−3 − Fc − bqvn−3 −Ψds(vn−3)

)
kc
(
vn − vc

)
1
mc

(
Fc − Ffr − bcvc −Ψc(vc)

)
kfr
(
vc − vdisturbance

)
ε1
...
εm



(2.54)

vdisturbance = vROP = Γ(WOBapplied,Ω) (2.55)

The formulation above represents a generic setup for the parameter

learner. While n represents the number of lumped elements used to describe

the drill-pipe dynamics, m is the number of model parameters being simulta-

neously estimated. In the case where the drill-pipe parameters are sufficiently
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known, a more accurate formulation can help with improved estimation of pa-

rameters that are not related to the drill-pipe, including the formation stiffness

kfr. In this case, f(x) can be written as:

f(x) =



kc
(
vds − vc

)
1
mc

(
Fc − Ffr − bcvc −Ψc(vc)

)
kfr
(
vc − vdisturbance

)
ε1
...
εm


(2.56)

where vds is calculated using delay differential equations such that:

vds(t) =
rds

Zds + 1

(
2vin(t− T ) +

rdsvds(t− 2T )

Zds − 1
− Fc(t)− Fc(t− 2T )

Zds

)
(2.57)

The measurement equation is now given by:

z = 2Fc(t−T )−Fds(t−2T )+(Zds+rds)vin(t)+(rds−Zds)vin(t−2T )+2rdsvds(t−T )

(2.58)

However, by inspection of Equation 2.60, it can be noted that observation is

no longer a function of the state, but rather a delayed value of state given by

2Fc(t − T ). To overcome this issue, we introduce an approximation, in order

to predict the history of Fc such that:

Fc,delayed = Fc − Tkc
(
vds − vc

)
(2.59)

The new observation equation becomes:

z = 2Fc,delayed−Fds(t−2T )+(Zds+rds)vin(t)+(rds−Zds)vin(t−2T )+2rdsvds(t−T )

(2.60)
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In Figure 2.9, a comparison of the delay differential equation (DDE) based

estimator and the ordinary differential equation (ODE) based estimators are

shown. The estimators are estimating Fc, with a 10% uncertainty in rds and

5% uncertainty in Zds. As expected, the DDE estimator performs significantly

better than the ODE estimator, when the drill-string is subject to high fre-

quency inputs. Note that as mentioned previously, drill-pipe parameters need

to be sufficiently known before the DDE estimator can be used, as assumed

above with both rds and Zds.
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Figure 2.9: Comparison of state estimators based on ODE and DDE transition
functions. The discrepancy between the measurement and state estimates in
due to the measurement being based on surface value of Fds.

For estimation of hydraulic parameters and states. the transition func-

tion is given by:

53



f(x) =



Kds(Qin −Qbit)
Kcv1(Qbit −Q1)

1
M1

(P1A1 − P2A1 − Pf1A1)

Kcv2(Q1 −Q2)
1
M2

(P2A2 − P3A2 − Pf2A2)

Kcv3(Q2 −Q3)
1
M3

(P3A3 − P4A3 − Pf3A3)

Kcv4(Q3 −Q4)
1
M4

(P4A4 − Pf4A4)


(2.61)

zk = Pfds + x(1) + v (2.62)

where zk is the measurement vector, H is the measurement matrix, β is

a zero-mean random variable of variance q that represents process uncertainty,

and v is the measurement uncertainty which can be written as:

E[v] = 0, E[vvT ] = R = σ2
spp (2.63)

where σ2
spp is the variance of error in the standpipe pressure measurement, and
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the state vector x is given by:

x =



Pds
P1

Q1

P2

Q2

P3

Q3

P4

Q4

θ1
...
θm



, (2.64)

Since the initial learning task has to be undertaken by the ODE estima-

tor, the right choice of n is obviously of high importance, as already discussed

previously. To highlight this, let us refer to Figure 2.10, where different order

ODE learners are used to estimate the PDF of the drillstring mass parameter.

To perform this simulation, the UKF-based learner was deployed on a simula-

tor of the drillstring, based on the exact representation described in Equations

2.14 and 2.13. As shown, the lowest order formulation, with n + m = 7, is a

clear biased estimator of the mean, with both the initial guess, and the true

value of mds almost equally probable. Higher order estimators begin to do

a better job, with n + m = 21 being the least biased estimator of the true

parameter, and a smaller variance.
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Figure 2.10: Estimation of the drillstring mass parameter, using various order
UKF learners. Data for learning was generated using the infinite dimensional
model.

A similar result is obtained while estimating the mean value of kds as

shown in Figure 2.11. While the PDFs of all the estimators are closer in this

scenario, the higher order estimators perform better, with the exception of

n + m = 21 which underestimates the mean. While intuitively these results

motivate increasingly higher values of n, we found that numerical instabilities

can occur at values higher than n = 20. Implementation of higher order

learners can also become increasingly difficult due to higher costs of matrix

manipulation.
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Figure 2.11: Estimation of the drillstring stiffness parameter, using various
order UKF learners. Data for learning was generated using the infinite dimen-
sional model.

2.3.3 Ensemble Unscented Learner (EUL)

In Figures 2.11 and 2.10, it was shown that the UKF learner based on

an ODE transition function can effectively learn the parameters of the realistic

model, with the parameter mean moving from the initial guess towards the

true value of the parameter. While increasing the order of the transition

function allows a more accurate estimation, the resulted performance gain can

be minimal (as shown when n > 15). In this section, we explore the idea

of ensemble learning applied to the UKF learner, with the aim of reducing

estimation bias.

In the examples of Figures 2.10 and 2.11, the learner was initialized

using an initial guess value of mds and kds. In practice, however, it would
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make sense that the learner has knowledge regarding an initial distribution,

essentially a description of both the mean and variance associated with the

uncertain parameter. The idea behind EUL is that instead of using one UKF

learner initialized using the mean of the initial guess, one would employ many

UKF learners, each of them initialized with values sampled from the a priori

parameter distribution. Amongst these learners, inherently some will out-

perform the rest, with the best-performing being the one initialized with the

closest value to the true mean. When estimating two parameters simultane-

ously, the initial guess is essentially a two dimensional Gaussian distribution,

and the initialization of ensemble learners will be sampled from this distribu-

tion. With an ergodicity assumption, the best performer can be selected using

various criteria, including the time-series variance of each estimate, as well as

the total final uncertainty of the learner, by taking the trace of the covariance

matrix, P. The EUL can be summarized as follows:

1. Obtain an initial guess distribution of θ1 : θ2.

2. From the distribution in (1), randomly sample J different UKF learners.

3. Use time-series variance of each learner’s estimates, as well as trace(P),

to select best performing learner.

Of course the computational cost of EUL is proportional to the number of

random learners used, so in practice the use of EUL with many learners can

become computationally expensive. Each member of the ensemble can, how-

ever, work in lieu of the rest, so the algorithm can be implemented in a parallel
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fashion. In Figure 2.12, the performance results of the EUL are shown. In this

task, two parameters, kds and bds were estimated at the same time. Clearly,

the performance gain obtained by using up to 5 ensemble filters can be quite

significant. At values above 5, however, the use of more filters would not be

justified, as the reduction in estimation error becomes minimal.
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Figure 2.12: Performance of EUL with different number ensemble filters. Per-
formance was measured by taking an l2 norm of the normalized estimation
errors of kds and bds.

2.4 Considerations for Observability and Action Choices

In this section, the learning of particular parameters of the physics-

based models are explored and the following idea is repeatedly revisited: for

practical learning of model parameters, the learning agent must only estimate

parameters during certain time frames of the drilling process, using specific

actions designed to make the relevant parameters observable. Initially, the si-

multaneous learning of drillstring parameters are discussed, and results are

shown that verify the estimation ability of the learner. The learning of drilling
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fluid parameters are also discussed, and it is shown that the learner shall take

into account the flow regime of the drilling fluid to perform reliable estimation.

Based on these discussions, we summarize the set of actions, and drilling sce-

narios that the learning agent takes into account to systematically learn and

reduce the uncertainty in model parameters. In Table 2.1, model parameters

used for the studies in this section are presented.

Parameter Initial Estimate True Value
mds[kg] 8.86× 104 8.86× 104

kds[N/m] 1.53× 105 1.92× 105

bds[Ns/m] 8.34× 104 1.04× 105

mc[kg] 2.72× 104 2.72× 104

kc[N/m] 3.36× 107 4.19× 107

bc[Ns/m] 6.83× 105 8.54× 105

κ[N ] 0 2.40× 105

kfr[N/m] 0 1.00× 107

PV[cp] 25.6 32.0
YP[lb/100ft2] 8.80 11.0
K[GPa] 4.00 5.00

Table 2.1: Model parameters used for estimator initialization and data gener-
ation. Note that for the mass parameters, actual measurement is trivial when
the drillstring is not in slips. Hence initial estimates and true values for these
parameters are the same.

In Sections 2.3.2 and 2.3.3, an important assumption was that the mea-

surements contains relevant information about the parameters of interest. In

control theory notation, this is referred to as parameter observability, which is

a measure of how well the states and parameters of a model can be inferred,

by looking at the input and output signals of data. In the following section,
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we demonstrate that such an assumption does not always hold, and it is shown

that learning while the parameter of interest is unobservable can lead to esti-

mate degeneration. Let us consider the familiar state and parameter vector x

defined by:

x =



x1
...
xn
θ1
...
θm


(2.65)

The observation function is defined as:

z = h(x) (2.66)

and its higher order derivatives by:

z = h = L0
f (h)

ż = ḣ = L1
f (h)

...

zn+m−1 = Ln+m−1
f (h),

where Lf (h) is the Lie derivative of h along the f(x) vector field. An observ-

ability matrix can then be formulated as:

O =


∂L0

f (h)

∂x1
...

∂L0
f (h)

∂θm
...

. . .
...

∂Ln+m−1
f (h)

∂x1
...

∂Ln+m−1
f (h)

∂θm

 (2.68)

The observability matrix constructed in Equation 2.68 has to be full rank for

observability to hold. Therefore, if parameter learning of a certain parameter
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is performed when that particular parameter is unobservable, then the esti-

mate will degenerate over time. In addition, the observability matrix O might

sometimes be full rank, but still contain little information about the parameter

space. It is therefore important to have a real-time measure of such conditions,

in order to pause the estimation of the almost unobservable parameters, and

avoid estimation degeneracy. Such an estimate can be obtained by deriving

an observability index, which can be calculated by evaluating the condition

number of the observability matrix (Nakhaeinejad, 2010). The condition num-

ber of a matrix is obtained by performing a singular value decomposition, and

producing a basis for the row and column space of the matrix such that:

O = USV T (2.69)

where U is a unitary matrix of size m×m, S is a positive semi-definite diagonal

matrix, and V is an n× n unitary matrix. The condition number can then be

obtained by evaluating the maximum and minimum diagonal elements of S,

such that:

C =
σmax
σmin

(2.70)

where a large value of C would correspond to a less observable system. In

addition, each state/parameter corresponding to each singular value can be

obtained from the companion matrix V T . The column of V that corresponds

to the largest singular value σmax provides the most observable combination

of states/parameters. This procedure will therefore aid in the selection of the

right parameters/states to estimate at a single instance in time (Nakhaeinejad,

2010).
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2.4.1 Learning Drillstring Parameters

To explore the concept mentioned above, consider again the simulta-

neous learning of parameters bds and kds. In Figure 2.13, the agent executes

a trapezoidal sequence of actions with zero bias, as shown in the upper plot.

Since the input velocity comes back to zero within ten seconds, the learner fails

to estimate the parameter value. As indicated by the high condition number

prior to t = 30, the learner completely loses observability of the parameter

when the string velocity comes to zero. The new step change induces a short

period of correct estimation, but the estimation diverges again as soon as the

step input drops.

Better estimation results are obtained in the case of Figure 2.14, where

a similar sequence of actions are taken, but with a non-zero bias. At t > 20,

the learner begins to estimate the correct value of bds and its estimate does not

diverge afterwards. The stable condition number confirms these results, and

proves to be a useful measure that the agent can use to prevent estimation

degeneracy as in the case of Figure 2.13.
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Figure 2.13: Simultaneous estimation of kds and bds using a trapezoidal action
sequence with zero bias. Estimation results shown for bds.

A similar observation can be made for the kds parameter. By inspection

of the transition function in Equation 2.3.2, one can note the condition for

observability of kds, which is strictly when vin−vds is non-zero. As revealed in

Figure 2.15, a step-response type action fails to allow the learner to estimate

the stiffness parameter, due to the value of vin − vds quickly becoming zero.
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Figure 2.14: Simultaneous estimation of kds and bds using a trapezoidal action
sequence with non-zero bias. Estimation results shown for bds.

.

In Figure 2.16 however, a much better estimation performance is seen,

as the value of vin−vds is enforced to remain non-zero at all times. In fact, for

the short period where vin − vds approaches zeros, the estimate of kds slightly

diverges.
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Figure 2.15: Simultaneous estimation of kds and bds using a step action se-
quence. Estimation results shown for kds.

Learning κ, which is the nonlinear friction force, can be performed

in a similar manner from an actions perspective. However, observability of

this parameter is reduced, especially in shorter lateral sections, if the input

velocity is high. This is due to linear damping from the b term accounting for

the majority of the dissipative force. As shown in Figure 2.17, a more precise

estimate is obtained at a very low input velocity, even though with both input

velocities the learning task still converges. For the learning task shown in
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Figure 2.17, the DDE learner of Figure 2.9 was used for improved, unbiased

estimation. The reader should note, however, that the use of the DDE learner

is only an option if the drill-pipe parameters bds and kds have already been

estimated.
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Figure 2.16: Simultaneous estimation of kds and bds using a trapezoidal action
sequence with non-zero bias. Estimation results shown for kds.
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Figure 2.17: Estimation of the nonlinear friction parameter κ using two dif-
ferent step sequences. The learner used for this task was based on the DDE
transition function, since the drillstring parameters have already been suffi-
ciently identified.

2.4.2 Learning Drilling Fluid Parameters

The overall learning approach for hydraulic parameters is similar to the

one for drillstring parameters discussed above. The most uncertain hydraulic

parameters from an automation perspective are K the bulk modulus of elas-

ticity of the fluid, and the rheological fluid parameters, which in the case of

Bingham Plastic fluids are represented by the plastic viscosity (PV), and the

yield point (YP). The uncertainty in these parameters arises from poor initial

knowledge, as well as the influence of pressure and temperature.

The learning of the rheological parameters presents another interesting

lesson about observability. Consider the learning results shown in Figure 2.18.

While it is clear that a step-type input would provide the best action sequence

for learning (we learned this from the case of learning bds), the size of the
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step input seems to play an important role as well. As demonstrated, when

the flow regime is laminar, the learner performs the best job of estimating

these parameters. At higher Reynolds number with turbulent flow, the rheo-

logical parameters become significantly less observable, and hence estimation

divergence occurs as shown in Figure 2.18 with a 650gpm input. The learning

conditions for these parameters are dominated primarily by the flow regime

in the drillstring and the annulus, and specifically by the highest Reynolds

number amongst all control volumes.
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Figure 2.18: Simultaneous estimation of PV and YP using a trapezoidal action
sequence with different steady-state flow-rates.
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As evident in Figure 2.18, the learner has to actively use the highest

Reynolds number as a measure of learning condition, and stop the update step

of the algorithm as soon as the Reynolds number indicates turbulent flow. For

the case of K, it seems that theoretically the value of Qin − Qbit has to be

sustained at non-zero values at all times for observability conditions to hold,

and therefore a ramp-type input sequence would be optimal.
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Figure 2.19: Estimation the bulk modulus of elasticity of the drilling fluid
using ramp and step action sequences.

As shown in Figure 2.19, due to the slow settling of pressure dynamics,

a step action sequence works just as well as a ramp input for the estimation

task, and in fact it enables faster convergence to the true value. Therefore,

the observability conditions for the K parameter seem to play a less important

role when compared to other parameters.

2.4.3 Practical Learning Conditions

The simulation studies of Figures 2.13 to 2.17 reveal a common find-

ing; that the optimal sequence of actions to learn spring-type and resistive
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parameters are those that maintain prolonged periods of constant acceleration

and constant velocity. Interestingly, noting the process of tripping pipe, this

is exactly the sequence of actions pursued when a new string of pipe is tripped

into the hole. Therefore, the learning agent, without having to dedicate ad-

ditional time to learning, can systematically learn the drill-string parameters

while tripping.

The idea that the learning agent can take advantage of a tripping pro-

cess to learn about the model parameters before drilling begins opens up an

interesting avenue for systematic uncertainty reduction. Recalling that the

most uncertain model parameters are those listed in Table 2.1, the following

process can be undertaken by the agent to sequentially learn all the uncer-

tain parameters of interest. The process begins by tripping in the BHA and

the drill-collars. During this stage, only the first two parameters kc and bc

are subject of estimation, with the remaining parameters being non-existent.

With a reliable estimate of kc and bc, the learner can subsequently focus on

estimating kds and bds while the drillstring is still in the vertical section of the

hole. After the initial estimation of drillstring parameters has been completed,

future changes in these parameters can simply be extrapolated as a function of

increasing hole depth. With all stiffness and damping parameters estimated,

two uncertain parameters remain. κ can be estimated right before the drill-

string tags bottom, and kfr which is estimated while WOB is transferred to

the drill-bit. During the drilling process itself, only κ and kfr are expected

to change time to time, which can be estimated after every connection. The
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process described above is summarized in Table 2.2. This summary serves as

the main guideline in which the Learning Agent follows to sequentially learn

the parameters of the axial dynamics portion of the physics-based model. kc

and bc are learned when BDmd ≤ Lc because the dynamics observed in the

measurement data only represent the drill-collars and the BHA. Once these

dynamics are captured by the agent, kds and bds are estimated while tripping in

the vertical section of the hole, when BDmd = BDtvd. By performing this esti-

mation in the vertical section, the effects of linear damping are distinguishable

from dry friction. At BDmd ≈ HD, the nonlinear friction forces that represent

κ have fully appeared in the dynamics of the drillstring, and therefore the only

remaining unknown parameter to be estimated is κ. At the onset of drilling

the first stand after the tripping process, kfr can be estimated to assess the

stiffness of the formation.

Parameter
Learning
Condition

Learning
Action

kc BDmd ≤ Lc Trapezoid
bc BDmd ≤ Lc Trapezoid
kds BDmd = BDtvd Trapezoid
bds BDmd = BDtvd Trapezoid

κ
BDmd ≈ HD,

pumps on
Step

kfr BDmd = HD Ramp

Table 2.2: Learning conditions for drillstring parameters during a tripping-in
process.

To highlight the importance of condition-based sequential learning, the

case of learning the formation stiffness parameter kfr is portrayed in Figure
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2.20. In Case 1, the learner tries to simultaneously learn both the formation

stiffness and the drillstring stiffness parameter upon tagging bottom, as it

had failed to satisfy the kds learning condition in Table 2.2. As shown, not

only does the learner fail to estimate the true value of kds, its estimate of the

formation stiffness which is initially at 20% of its true value degrades further

through the estimation process. In comparison, Case 2 shows the scenario

where the learning condition of kds has been satisfied, and the learner has

estimated the value of kds with a 5% error, prior to attempting to learn kfr.

Therefore, the learning process is significantly improved in Case 2. Note the

estimation error present in kfr in Case 2 is due to the prior 5% uncertainty

in kds, as the estimation error propagates throughout the sequential learning

process.
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Figure 2.20: Estimation of formation stiffness after tripping in and tagging
bottom. Case 1 demonstrates the simultaneous learning of two stiffness pa-
rameters. Case 2 demonstrates sequential learning, where kds had already been
estimated earlier before the drillstring was fully tripped in.
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Similar to the sequential learning process described in above for axial

drillstring dynamics, the learning of drilling fluid parameters has to be per-

formed with the conditions that satisfy the considerations discussed in Section

2.4.2. Opposite to the case of drillstring parameters, however, the learning

task is completed at the end of a drilling cycle before a stand is tripped out of

the hole, while starting and stopping the pumps for a connection. The learning

sequence is summarized in Table 2.3

Parameter
Learning
Condition

Learning
Action

PV Re ≤ Returb Step
Y P Re ≤ Returb Step
K - Step/Ramp

Table 2.3: Learning conditions for drilling fluid parameters during a sequenced
pump-on process after a connection.

2.5 Conclusion

In this chapter, a detailed approach to parameter learning of physics-

based drilling models is presented. This approach which formed the basis for

the Learning Agent in architecture of Figure 1.2, uses Bayesian filtering to esti-

mate the unknown/uncertain parameters of the model sequentially in different

drilling scenarios. The parameters along with the model itself enable the rest

of the self-learning control system to make and execute optimal decisions in

real-time. The next chapter will discuss how the physics-based model can be

used for optimal decision making.
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Chapter 3

Optimizer : Action-Driven Drilling

Optimization

Chapter 2 addressed the problem of self-learning a physics-based model

for optimization and control. From an optimization perspective, however, this

model is only useful for prediction of the environment’s response to avoid

process constraints. A major aspect of the learning problem for the purpose of

optimization is yet to be addressed, which is concerned with the relationship

between the automation system’s commands and user-defined performance

metrics. Since the necessary data for this learning task has to be generated

by the automation system itself through interaction with the environment,

learning cannot be performed in a supervised-learning manner. This chapter

addresses this challenge, and proposes a method for iterative learning and

optimization of the drilling environment.

3.1 Introduction

During a drilling process, the rate at which a hole is drilled, the rate

of penetration (ROP) is usually an unknown and varying function of the two

drilling parameters WOB, and RPM, and depends on the type of drill-bit used,
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as well as the particular formation (sand, shale, limestone, etc.) being drilled.

From an optimization perspective, there are several factors that make drilling

optimization (to achieve optimal ROP for instance) a challenging, yet inter-

esting problem. First, modeling the subsurface environment is difficult since

the wellbore goes through different formations and the drill-bit encounters

unknown obstacles. In addition, certain combinations of surface parameters

induce undesired downhole vibrations. These result in accelerated damage

to the drill-bit and other downhole equipment, and reduce the quality of the

wellbore being drilled. The vibration constraints also change as a function of

the formation, drill-bit wear, and top-drive dynamics.

In this chapter, we approach drilling optimization from a reinforcement

learning (RL) perspective. In RL, an artificial agent learns how to behave

through interacting with the environment, as opposed to learning from la-

beled training data. This interaction provides the agent with discrete rewards

based on the set of actions that it takes at every time step. The idea of

learning to drill by interacting occurs to us when we think of how a human

naturally learns to drill. Rather than solely relying on information provided

by a teacher, the driller learns about the consequences of its actions through

direct feedback from the environment, and evolves into an expert through

accumulated experience over time.

The chapter is structured as follows: after presenting a study of ex-

isting literature, we present two formulations for the reinforcement learning

problem. First, the task is treated as a Markov Decision Process (MDP),
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where the drilling optimization task is represented by a tuple of states and

actions, < s, a >. The second formulation, which we refer to as qDrill, is

based only on a continuous action space, and makes the optimization task

more feasible by assuming that large action transitions are allowed, which

turns out to be a fairly practical assumption. With the latter formulation, the

results demonstrate superior performance in finding close-to-optimal actions,

but there are no theoretical guarantees, as the formulation is based on heuris-

tic search. The qDrill formulation is analyzed in regards to its learning and

optimization parameters, and tested for various scenarios. At the end of this

chapter, optimization of pipe tripping is explored, and a solution is presented

which utilizes the IMDT model from Chapter 1 to avoid the optimization

constraints.

3.1.1 Literature Review

Drilling automation with the purpose of ROP optimization involves two

main challenges: (1) modeling, or online learning of ROP as a function of bit

design, wellbore conditions, and the WOB and RPM parameters, (2) deter-

mining the operational constraints regarding torsional (stick-slip) and lateral

(whirl) vibrations (Gidh et al., 2012). In the drilling literature, researchers

have taken various approaches towards these challenges. Below we provide a

summary of these studies and how they relate to the approach done in this

dissertation.
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Caicedo et al. (2005) developed a model for drill-bit performance through

specific energy theory and calculation of the rock confined compressive strength

based on rock mechanics principles. Their results were in good agreement with

field data, but the required model parameters were often difficult to obtain in

practice. Although their work provides valuable insights to prediction of ROP

based on physical principles, it cannot be relied on by an automation system

due to the amount of uncertainty involved in the model parameters. For pre-

diction of bit instability due to torsional and lateral vibrations, Dunayevsky

et al. (1998) investigated the problem by considering the mechanical systems

that represent the string torsional movement, the bit lateral movement, and

the coupled torsional-lateral vibrations of the bit assembly. For each sys-

tem, the stable RPM and WOB regions were identified by performing a linear

stability analysis using the eigenvalue method. The applicability of their ap-

proach is limited however for real-time automation, as the model parameters

and boundary conditions are unknown in practice. Ambrus et al. (2015) built

on the aforementioned works, by providing a model-based methodology using

tabular methods to determine the safe operating drilling envelope and per-

forming ROP optimization using the physics-based techniques in (Dunayevsky

et al., 1998) and (Caicedo et al., 2005). Their approach is also limited for the

same reasons as the two previous works, as no online learning techniques are

employed.

Dunayevsky et al. (1998) also took a machine learning approach to

ROP optimization. They used a field dataset that involved various drilling
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scenarios in different lithologic units, and trained a dynamic neural network

with Bayesian regularization, to predict the dynamics of the bottom hole as-

sembly and drilling dysfunctions. Using the trained neural network, a model

predictive controller was then used to maximize ROP subject to the identified

constraints, over a finite horizon. The output of the controller was displayed

to the driller as a recommendation to enhance drilling performance. Although

their work overcomes the limitations of a physics-based approach with un-

known boundary conditions, the use of historical data for training the neural

network is limiting since that data might not necessarily represent the dynam-

ics encountered in future instances. Dunlop et al. (2011) demonstrated that

the drilling response of a PDC (polycrystalline diamond compact) bit can be

modeled as three distinct operating phases, each with a linear relationship

between weight-on-bit, bit torque, and depth-of-cut per revolution. Online

learning of each phase of the model was facilitated by the use of a Bayesian

change point detection, in order to determine which phase of the model to

train. Identification of the unsafe operating regions was done through both

surface and downhole measurements by a human driller. A follow-up paper

proposed a closed-loop controller to implement the ROP optimization scheme

automatically without the intervention of a driller (Chapman et al., 2012).

Although they provided promising results with significant increases in ROP in

field trials, their framework is not capable of avoiding vibration limit zones,

and the human needs to bring the system back into a stable region if signs of

undesired vibration are observed.
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In a more recent paper by ExxonMobil researchers, drilling optimization

was approached from a mechanical specific energy minimization perspective, to

limit the impact of drilling performance limiters, including drilling vibrations

(Payette et al., 2015). The researchers adopted a similar approach to those in

(Dunlop et al., 2011), but they additionally attempt to learn the unsafe drilling

envelope from real-time data by introducing a torsional severity index. Their

optimization scheme encouraged the human driller to perform drill-off tests

(a procedure to determine the ROP as function of RPM and WOB in steady-

state) to learn the unexplored regions of the RPM-WOB envelope, while paying

attention to the torsional severity index. Learning was achieved through the

use of decision trees and gradient accent optimization was used to recommend

the best set of operating parameters to the driller. The authors noted that the

optimization process involved a fundamental compromise between exploration

and exploitation, where it is necessary to manage the trade-offs associated with

conducting drill-off tests and leveraging the drill-off test results. This work is

the most complete in terms of considering both the ROP learning problem,

as well as avoiding zones with high vibrations that result in high MSE values.

However, their approach is limited as it does not leverage the availability of

prior models to accelerate learning, and does not have any means of avoiding

unobservable lateral vibrations. In addition, exploration of the WOB-RPM

space is only encouraged by the optimization system, and performed by the

human expert.

The model-based reinforcement learning technique employed in this
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chapter is capable of leveraging the physics-based approach used in Ambrus

et al. (2015) as a starting point for the drilling agent. The agent will then

be capable of exploring the WOB-RPM space, and learning the action values,

similar to the case of (Dunlop et al., 2011). Unlike their system however, the

RL agent will not require the intervention of a human to observe undesired

vibrations, and is capable of updating the value function based on a torsional

severity index. Finally, our RL agent is capable of balancing exploration vs.

exploitation, to learn about the regions of the state-space that can potentially

enhance its performance.

3.2 Problem Formulation

In this section, we devote some time to formulate the reinforcement

learning problem as both a MDP, and a k-arm Bandit problem, while noting

the major differences in these approaches. At the end of this section, the

reasons for the adopted formulation and the qDrill algorithm are explained.

3.2.1 Model of Environment

In order to implement the RL agent, a realistic representation of the

environment needs to be developed. For this purpose, we use the physics-based

approach used in (Dunayevsky et al., 1998) and (Caicedo et al., 2005), and the

aggregation methodology presented in (Ambrus et al., 2015) to create a tabular

representation of the environment. The tools presented in (Dunayevsky et al.,

1998) et al. enable the generation of a surface as a function of various WOB,
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RPM values that correspond to unstable torsional and lateral vibrations. Us-

ing this surface, along with the operational constraints of the top-drive, an

allowable operating region is obtained. This region can be mapped to the

ROP domain using the relationships proposed in Caicedo et al. (2005). Fig-

ure 3.1 demonstrates the various constraints that are combined to create a

representation of the WOB-RPM space.

Figure 3.1: A tabular representation of the environment’s ROP response in
the WOB, RPM space. The blue regions correspond to unallowable drilling
regions. The upper-left corner corresponds to the region of the state space that
results in stick-slip vibrations. The upper-right corner corresponds to the top-
drive performance constraints, and backward whirl vibrations. The lower-right
corner corresponds to forward whirl vibrations (Ambrus et al., 2015).

In our stimulated environment, the agent receives reward depending on

its location in the WOB-RPM space of Figure 3.1. In the actual environment,

the agent calculates a torsional severity index by observing the torque and

RPM sensor trends. Lateral vibrations are usually unobservable from surface
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sensor data. Therefore, the agent would either need access to downhole ac-

celerometer data, or to receive feedback from a modeled environment. ROP is

calculated by averaging the time derivative of bit displacement in the hole.

3.2.2 Formulation as a Markov Decision Process

The reinforcement learning problem can be formulated as a Markov

decision process (MDP), which can be written in terms of tuples 〈S,A,P,R, γ〉

consisting of S, the set of all states; A, the set of all actions; Ps
′
sa = Pr(s

′|s, a),

the transition probability from state s ∈ S to state s′ when action a ∈ A is

taken; Rsa = E{r|s, a}, the reward function giving the expected reward r when

action a is taken in the state s; and γ, the discount factor corresponding to the

weight of the future rewards versus that of the immediate reward. The actions

are taken at discrete time steps according to a policy π : S×A→ [0, 1], which

defines for each action the selection probability conditioned on the state.

For the drilling problem, we define the set of states S as a discrete set of

all possible combinations of WOB and RPM set points such that {wob, rpm} ∈

S. The set of actions is defined as A = {n, e, s, w} and corresponds to the agent

moving in the specified directions in the WOB-RPM space. At the beginning

of an episode, the agent starts at s = (0, 0) and explores the state-space to

collect as much reward as possible before the end of episode, defined as when

a depth of 90ft (the length of a “stand” of 3 singles of 30ft Range II drill-

pipe) has been drilled. The agent receives reward for every state, action pair.

Upon hitting a vibration boundary, it receives a large negative reward. In this
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formulation, we experiment with two different reward functions for the agent.

One is defined as:

r1 =

{
−1, for each time step
−10, for hitting a vibration boundary

and the other is:

r2 =

{
ROP, for each state
−10×ROP, for hitting a vibration boundary

In the case of r1, the agent’s aim is simply to finish an episode as quickly

as possible, to minimize negative returns. In the case or r2, the agent directly

receives the ROP associated with every state as reward, and its goal is to

therefore maximize positive returns. In the context of MDPs, an optimal policy

maximizes, for each state, the expected return, G, which is the discounted

cumulative reward:

G = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=1

γk−1rt+k

where rt+1 is the reward received after taking action at in state st at time step

t.

3.2.2.1 Model-based Reinforcement Learning: The Dyna Architec-
ture

For simultaneous learning and interacting with the subsurface environ-

ment, we use the Dyna architecture as described in Sutton and Barto (1998).

The Dyna architecture operates in a loop of interaction with the environment,
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and unifies all the aspects of model learning and direct reinforcement learn-

ing. The Dyna loop involves using a model to create simulated experience,

performing backups to improve policy, taking an action and reflecting the ob-

served outcome on the model. In planning, a backup refers to updating the

state-action and state value functions such that:

Q(s, a)← Rsa + γ
∑
s′

Ps
′

saV (s′) (3.1)

V (s)← max(Q(s, a)) (3.2)

In order to improve the efficiency at which simulated experience is generated,

it is possible to use a heuristic that selects backups which are expected to

produce a large value change. This efficient way of planning is referred to

as prioritized sweeping (PS) (Sutton and Barto, 1998). PS uses all previous

experiences to prioritize the sweeps and guide a more efficient exploration of

the state-space.

The Dyna approach, along with the PS algorithm, were used to imple-

ment the presented MDP formulation of the drilling optimization problem on

the environment in Figure 3.1 . In Figure 3.2, the learned state value func-

tion for the agent with the r1 reward function after 3000 time steps is shown.

With the agent receiving equal negative reward for every allowable state-action

pair, it can only learn the value of each state after it has finished an entire

episode. Therefore, it ends up exploring a wider area of the state-space during

each episode. Note that the agent only learns a negative value for each state,
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with more valued states being less negative. The value of impermissible states

remains at 0, given that the agent never gets a chance to try them.
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Figure 3.2: r1 agent’s learned state value function of the environment after
3000 timesteps.

The learned state value function for the agent with R = r2 is shown

in Figure 3.3. In this case, since the agent associates the value of each state

directly with the obtained ROP, it can update the value of each state-action

pair after every action. With that, the agent spends less time exploring low-

reward actions, and begins to discover higher-reward actions quicker.
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Figure 3.3: r2 agent’s learned state value function of the environment after
3000 timesteps.

In the case of both r1 and r2, the agent gets the opportunity to discover

a significant portion of the state space. However, the learning is still quite slow

(it took the agent 25 hours of drilling, with 30s spent in each state). In order to

speed up the agent’s learning, either the state-space has to be discretized with

a coarser grid, or the agent has to spend less time in each state. However,

none of these approaches seem desirable because a coarser grid results in a

poor approximation of the environment’s true operating region, and spending

less time in each state would cause the agent to not observe the true rewards

because of slow ROP dynamics.

3.2.3 Formulation as a k-arm Bandit: the qDrill algorithm

While the MDP formulation appeared to be a viable approach for solv-

ing the drilling optimization problem, its application can be limited because of

the many time steps it spends exploring non-optimal actions. It turns out that
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two main simplifying assumptions can be made that reduce the problem from

a MDP problem to a simpler k-arm bandit problem, where we only care about

actions, not states: i) at each time step, large action transitions can be made,

so that navigating the WOB-RPM space is not limited to incremental actions,

ii) the probability of transitioning to a particular (WOB, RPM) state is 1.

These two assumptions essentially imply that the state space of (WOB, RPM)

can simply become the action space, if the driller does not interact with the

environment directly, but rather through a controller that ensures a smooth,

successful transition from each action pair. This formulation is exactly what

was we proposed in Chapter 1 where, through feedback and state estimation

using IMDT, the controller ensures that critic’s set-points are accurately exe-

cuted.

In a k-arm bandit problem, the agent is repeatedly faced with the

option of k different actions to choose from. After each action is taken, a

numerical reward is received from a probability distribution. The objective

is to maximize the total expected payout over an extended time-period. In

the drilling problem, the action space is now a two dimensional continuous

space of (WOB, RPM) values, and the agent tries to maximize its payout

(total drilling time) by finding the optimal actions. The agent still faces the

dilemma of exploration vs. exploitation while deciding to choose the optimal

(greedy) action vs. learning about the reward associated with other actions

(Sutton and Barto, 1998).

While the problem has been simplified with the states removed, we
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still want to draw inspiration from the Dyna formulation in order to adopt the

concept of model-based reinforcement learning. Therefore, instead of simply

aiming to deploy an optimization routine on the actual environment, we de-

velop a model-based approach, where the agent simultaneously learns a model

of the environment, and then uses this model to find optimal actions. The

benefit of this approach compared to direct interaction with the environment

is obvious: through the use of a model it can benefit from apriori informa-

tion about the environment, which is often available from offset wells. We call

this approach the qDrill algorithm. The qDrill agent, uses model learning

(function approximation) to generalize its understanding of the action space,

rather than visiting every discrete action value. To find greedy actions in

feasible time, the qDrill agent uses heuristic optimization to avoid exhaustive

search. The qDrill algorithm is summarized as follows:

Do Forever:

1. act: the agent takes an action Awob,rpm and receives a numerical reward

Rt.

2. learn: the action-value modelQ(a) is retrained, whenQ(a) is augmented

with Qt+1 = Qt + α[R −Qt]

3. plan: Using heuristic search, find the greedy action such that: Agr =

arg maxaQ(a)

In Figure 3.4, we provide a preliminary comparison of the qDrill and

the MDP approach in terms of the time that it takes each approach to drill a
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90ft stand. Evidently, the qDrill formulation performs better than the MDP

approach, which can be attributed to its freedom to explore the action space

faster. In the following sections, we will therefore focus on the qDrill algorithm

and specifically on analyzing the learning and optimization tools used in the

qDrill algorithm, as well as various techniques to solve the exploration vs.

exploitation dilemma.
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Figure 3.4: A comparison of the learning curve of the two RL formulations for
drilling optimization.

3.3 Function Approximation of Action Values

When an action a is taken, the agent performs a re-run of the training

process which is referred to as an epoch. At time step t = 1, the action at=1

is taken, and a reward Rt=1 is received. In a non-stationary environment, the

action value function Q(a) is updated such that:

Qt+1 = Qt + α[R −Qt] (3.3)

where α is the learning rate. From the simulated model of the environment, we

have already learned that the relationship between an action a(wob, rpm) and
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its value is quite a nonlinear one, as portrayed by Figure 3.1. For the batch

learning of this relationship, we resort to a few nonlinear regression techniques.

We employ and compare the performance of three different techniques, the ar-

tificial neural network (ANN), the bagged tree regression (BTR), and support

vector regression (SVR).

For the learning task using an ANN, we used a three-layer network, an

input, one hidden layer with Nh nodes, and an output layer. The input layer

was augmented with a bias node. For the hidden layer activation a tanh()

function was used, and for output a linear activation function.

In a support vector regression framework, the basic idea is to find a

linear function:

f(x) = x′w + b (3.4)

where x is the training data, to be flat as possible (Smola and Schölkopf, 2004).

This can be written as a convex optimization problem

J(w) =
1

2
wTw (3.5)

subject to residuals having a margin less than ε such that:

|yn − (xTnw + b)| ≤ ε (3.6)

The linear ε-insensitive loss function ignores errors that are within the ε bound-

ary . The described optimization problem is effectively solved in the Lagrange

dual formulation, using the dual problem to obtain a lower bound to the so-

lution of the primal (Smola and Schölkopf, 2004).

91



Nonlinear regression using the support vector method can be achieved

using the kernel trick. such that the dot product xT1 x2 is replaced with a

nonlinear kernel function G(x1, x2) =< φ(x), φ(x2) > where φ(x) is a trans-

formation that maps x to a high-dimensional space (Huang et al., 2006). For

this task, we used a gaussian kernel such that:

G(xj, xk) = e(−||xj−xk||2) (3.7)

Tree based regression models are also popular nonlinear function ap-

proximation methods, due to their simplicity and efficiency. Regression trees

are trained using a fast divide and conquer algorithm that recursively parti-

tions the data into smaller subsets (Hastie and Tibshirani, 1990). A regression

tree can be viewed as an additive model of the form:

m(x) =
l∑

i=1

ki × (x ∈ Di) (3.8)

where k are the constants and I() is an indicator function returning 1 if its ar-

gument is true, and 0 if it is false and Di are disjoint partitions of the data. To

predict a response, the algorithm starts from the root of the tree down to a leaf

node. While individual regression trees tend to overfit, bootstrap-aggregated

(bagged) regression trees (BTR) can improve performance by combining the

results of many regression trees, which can improve generalization. Tree Bag-

ging selects a random subset of predictors to use at each decision split as in

the random forest algorithm (Breiman, 2001).

Prediction of the action values using a regression model is relatively

straightforward, given the action space is only two dimensional. In addition,
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the sufficiently long value of ∆T (> 30s) provides ample time for the agent to

perform batch learning at each time-step online, using data available up until

that time-step. An important consideration for the choice of the regression

model, however, is its ability to generalize well early on, to only a few data-

points, which will enable faster convergence to the optimal action set. In

Figure 3.5, 100 actions were sampled from a 50 × 50 discretization of the

environment’s ROP space , and used to train three different regression models.

With only a 100 actions, it is expected for much of the ROP space to remain

unrepresented. As evident in Figure 3.5, the ANN model with 20 hidden layer

neurons performs poorly relative to BTR and SVR.
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Figure 3.5: Agent’s action-value function after 100 time steps with random
actions.
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To conduct further analysis, we focus on comparing the SVR and BTR

methods and their performance with small and larger training data samples.

To determine the optimal number of trees in the BTR model with a larger

training data size, the study in Figure 3.6 was performed. As the prediction

results demonstrate, 50 bagged trees yielded the best results regarding MSE,

with > 50 number of trees slightly overfitting and providing sub-optimal per-

formance.
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Figure 3.6: Mean squared prediction error results of the bagged tree model
with various number of regression trees.

For a closer comparison of BTR and SVR, let us refer to the plot in Fig-

ure 3.7. As already evident from Figure 3.5, the SVR model performs better

than BTR when the data consists of 100 actions. However, the performance

of BTR with 1000 actions is improved drastically, while the SVR’s prediction

MSE decreases only by a small amount. This analysis tells us that the pre-

ferred method of regression learning for action values is the SVR method due

its superior performance at the early stages of learning. However, the BTR

method could also be used in the long-term, once the agent has obtained a
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sufficiently large data-set from the environment.
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Figure 3.7: Mean squared prediction error results of the BTR (50 trees) and
SVR models.

We have already noted that while training is performed online, the large

∆T between actions allows us to use batch learning in between the time-steps.

With that said, the training and prediction times of each algorithm are still of

considerable importance. In Figure 3.8, the better computational performance

of the SVR algorithm is highlighted regarding both training and prediction.
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Figure 3.8: Computational time requirements to train and predict with the
BTR and SVR models.
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With sufficient analysis, SVR has shown to be a better choice because

of its performance with small-size data, as well as its more favorable compu-

tational performance. Although the BTR method can be further explored for

field implementation and longer experiments, for the rest of this chapter we

will use the SVR to conduct the simulations.

3.4 Heuristic Search for Greedy Action Selection

In the planning stage of the qDrill algorithm, the agent has to find the

greedy action set using the action value function model that was learned using

the aforementioned regression techniques. For this purpose, we will resort

to a heuristic search technique for a few reasons, i) the models presented in

the previous technique are nonlinear, and therefore a closed-form solution for

the optimal action set does not exist, and ii) the heuristic search methods

do not require the knowledge of a gradient matrix (unlike gradient decent for

instance), and therefore the global solution can be found in feasible time.

Particle swarm optimization (PSO) is one popular heuristic search tech-

nique that is inspired by social behavior of birds flying in search of food re-

sources, and has been widely applied in engineering problems. While PSO

is not the only heuristic search technique for gradient-free optimization, it is

suited well to this particular problem. For instance, unlike the genetic al-

gorithm (GA), it is not meant for combinatorial optimization problems, and

therefore does not require the discretization of the solution space. In PSO, sev-

eral particles are randomly dispatched over the search space, and each particle
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is associated with a position vector x which represents a candidate solution.

At every iteration of the algorithm, the position of each particle is updated

based on its velocity, which is a function of the particle’s own best perfor-

mance, as well as the group’s best global performance (Bryson et al., 2016).

After many iterations, all the particles converge to the optimal solution which

is the group’s global best. Specifically, the velocity of the ith particle at time

t+ 1 is calculated as:

vit+1 = wvit + C1nr1(P
i
t − xit) + C2nr2(P

g
t − xit) (3.9)

where nr is a random number drawn from a uniform distribution from 0 to

1, and w, C1 and C2 are the inertia, self-confidence, and swarm influence

weighting terms respectively. To ensure convergence, the eigenvalues of the

dynamic PSO system have to be stable. For stability, the weighting factors

are bounded according to the following (Bryson et al., 2016):

0 < (C1 + C2) < 4 (3.10)

C1 + C2

2
− 1 < w < 1 (3.11)

The self-confidence parameter affects how much each particle explores a local

optimum before being influenced by the solutions found by other particles. A

swarm influence parameter that is too high, however, may result in all particles

converging too quickly to a sub-optimal solution. Figure 3.9 demonstrates

graphically the nature of the position update of a particle at each iteration.
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PSO

The PSO algorithm consists of a set of particles which each
have a position within the parameter space and which each repre-
sent a candidate solution to the problem being studied. Each parti-
cle has a velocity which is used to advance the particle position
through the parameter space using a series of discrete timesteps.
The velocity vector for each particle is adjusted at each timestep
according to the individual best performance of that particular
particle, as well as the best performance of the swarm as a whole.
The performance of each new candidate solution is quantified
using an objective function, and the process is repeated until con-
vergence criteria are met.

Define a vector, x, which comprises a particular set of parame-
ters within the set of all possible parameter choices contained in
the entire design space. In the PSO algorithm, this vector x is con-
sidered to be the position of a particle within the parameter space.
The position of a particular particle i at time t is given by xi

t, and
the velocity of particle i at time t is given by vi

t. An objective func-
tion, w(x), determines the performance of each particle’s position.
The global historical best position of any particle in the swarm up
to time t is given by Pg

t , while the historical best position for each
individual particle i up to time t is given by Pi

t.
The velocity of each particle is updated at each timestep

according to the following equation:

vi
tþ1 ¼ wvi

t þ C1nr1
ðPi

t $ xi
tÞ þ C2nr2

ðPg
t $ xi

tÞ (1)

where the nr1
and nr2

terms are the random numbers drawn from a
uniform distribution from 0 to 1, and the w, C1, and C2 terms are
the inertia, self-confidence, and swarm-influence weighting fac-
tors, respectively, which are used to adjust the behavior of the
algorithm. These weighting factors are bounded according to the
rules in Eq. (2) for algorithm convergence [16]

0 < C1 þ C2ð Þ < 4

C1 þ C2ð Þ
2

$ 1 < w < 1
(2)

The inertia term, w, determines how much of the velocity from
the previous timestep is carried over to the next timestep.
Increased inertia parameter values cause the particles to behave
more independently and explore the design space more thor-
oughly, while lower values cause faster swarm convergence. One
popular strategy for selecting the inertia term is to use a dynamic
factor that starts at a high value, but is gradually decremented dur-
ing the later stages of the algorithm. This approach brings the
advantages of timely convergence while still forcing the particles
to fully explore the space.

The self-confidence parameter, C1, multiplied by a random
number nr1

2 ½0; 1', determines the magnitude of the influence of
the historical best performance of each individual particle. The
swarm-influence parameter, C2, multiplied by a random number
nr2
2 ½0; 1', determines the magnitude of the influence of the

global historical best performance of all particles within the
swarm. A higher swarm-influence parameter causes the particles
to converge quickly to the best swarm position, but limits the indi-
vidual particle exploration. Higher self-confidence parameter
causes each particle to fully explore any local optimal regions
each particle encounters, but may hamper convergence. In prac-
tice, choosing the self-confidence parameter to be equal to or
slightly greater than the swarm-influence parameter (in the inter-
val of 1.5–2.5), while following the convergence criteria in Eq.
(2) leads to the best behavior of the PSO algorithm [16]. Figure 1
illustrates the velocity calculation of the PSO algorithm. Note
how the weighting factors w, C1, and C2 affect the magnitude of
the various component vectors which are combined into the result-
ant vi

tþ1.
After the tþ 1 velocity has been calculated, the position of each

particle is updated according to the following equation:

xi
tþ1 ¼ xi

t þ vi
tþ1 (3)

Robot Leg Model

A cable-driven robot leg is used to illustrate the application of
the methodology to a design problem. The robot leg is a 3DoF
design with two links: a thigh link and a shank link. The thigh link
is attached to the base by a universal joint (hip joint), and the
shank link is attached to the thigh link by a revolute joint (knee
joint). The joint angles of the robot leg [q1, q2, q3] are defined
with q1 in the direction of hip adduction, q2 in the direction of hip
flexion, and q3 in the knee extension direction, as shown in
Fig. 2(b).

Four cables are used to actuate the robot and are attached to the
robot using circular and semicircular cuffs. All cables are routed
through the waist cuff, two cables are attached to the thigh cuff,
and two cables are routed through the thigh cuff and attached to
the shank cuff. The waist cuff is fixed to the base frame, while the
thigh cuff and shank cuff are mounted to the thigh and shank links
of the leg, respectively. The radius and location of the waist,
thigh, and shank cuffs as well as the overall dimensions of the
robot are shown in Fig. 2(a).

The robot leg can be reconfigured to evaluate various cable
arrangements for leg exoskeletons. For this research, the angle of
the cable attachment points along each cuff is variable, with ihcm

describing the angle of cable m on the cuff of frame i as shown in
Fig. 2(c). There are a total of ten variable cable attachment angles
in the design. The thigh and shank cuff cable attachment angles
are variable from 0 deg to 180 deg, while the waist cuff cable
attachment angles are variable from 0 deg to 360 deg.

The cables are driven by overhead motors equipped with pul-
leys. Each of the joints on the robot is instrumented with encoders
to measure joint angles and each of the four cables is equipped
with a load cell at the distal anchor point to measure tension.

Equations of Motion of the Robot Leg. The equations of
motion of the robot leg can be derived using the Euler–Lagrange
method which yields the following equation:

DðqÞ€q þ Cðq; _qÞ _q þGðqÞ ¼ u (4)

where q¼ [q1, q2, q3]T are the generalized coordinates, u¼ [s1,
s2, s3]T are the joint torque inputs to the system, D(q) is the inertia

Fig. 1 Illustration of the PSO velocity calculation
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Figure 3.9: A visual representation of the PSO algorithm. At every iteration
of the PSO, a particle with position xt moves towards its position xt+1 with
a velocity vt+1 which is vector sum of its social (towards the global best, P g)
and personal (towards the personal best P i) velocities (Bryson et al., 2016).

Another important parameter β determines the population size, which

also affects the convergence time of the optimization algorithm. In Figure

3.10, the results of PSO applied to finding the optimal action set using a SVR

model trained with 1000 actions is shown. As already expected, the algorithm

converges to the optimal solution faster at higher values of β, which however,

comes at an added computational cost. Therefore, for this particular problem,

10 < β < 25 is a suitable choice.
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Figure 3.10: PSO convergence results with different values of population size
β.
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3.5 Exploration Strategies

In the previous sections of this chapter, we addressed how the agent

uses regression learning to learn a model of the action values, and how it

uses this model to find optimal action sets. An important aspect of the qDrill

algorithm that remains to be discussed is the action selection procedure, where

the agent has to deal with the dilemma of exploration vs. exploitation. At the

start of every iteration, the agent has two choices: either to select the greedy

action, or choose an action randomly. If at every iteration the greedy action

Agr is selected, the algorithm learns very little about its environment and gets

stuck in local optima. On the other hand, repeated selection of random actions

can affect short and long term performance of the agent, as the goal of the

agent is performance maximization after all. A simple strategy to handle this

dilemma, is an ε-greedy strategy, where (Sutton and Barto, 1998):

A←
{

arg maxaQ(a) , with probability 1− ε
random , with probability ε

The effect of different ε values on the performance of the qDrill algorithm is

explored in Figure 3.11. The top plot in Figure 3.11 corresponds to the total

reward accumulated by the agent, which is proportional to the total distance

drilled. In the lower plot of Figure 3.11, the derivative of the total reward is

shown. A trivial observation from Figure 3.11 is that with ε = 0.5, the agent

performs poorly relative to the other cases, as the it spends too much time

exploring low-value actions. With ε = 0.01, the agent quickly begins to exploit

its knowledge of ROP, and does not dedicate much effort to finding optimal
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actions (this is shown by the fairly steady reward plot, as compared to the

case of ε = 0.5). With ε = 0.25, the agent’s performance is interestingly less

predictable. Initially, it performs worse than both ε = 0.1 and ε = 0.01. Noting

the reward plot, the agent with ε = 0.25 begins to find more valuable actions

over time, slowly over-takes ε = 0.1, and at around t = 250, has eventually

found more optimal rewards than the agent with ε = 0.01.
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Figure 3.11: Performance results of 4 different qDrill agents with different ε-
greedy exploration strategies. The results are averaged from 10 experiments
for each agent.

The results shown in Figure 3.11 support the initial intuition we had

about the performance of various ε-greedy strategies. We had suspected that
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too much of exploration or exploitation would negatively impact the perfor-

mance of the agent, and that a “sweet spot ε” would yield to the best perfor-

mance.

Another way to improve the performance of an ε-greedy strategy is to

vary ε dynamically based on some heuristic. A simple heuristic can be the

number of time-steps since the agent began learning about its environment.

With a dynamic ε, the agent explores more initially, but slowly decreases its

exploration to focus on greedy actions. ε can also be changed dynamically as

a function of a particular event, such as a change in formation hardness.

In addition to a dynamic epsilon, it would also make sense for the agent

to explore regions of the search space where there is high potential for optimal

actions, rather than choosing random actions. In a tabular formulation, this

can be achieved through the use of the upper-confidence bound technique, NA

(the number of time-steps an action has been taken) is kept track of (Sutton

and Barto, 1998). This provides the agent with a measure of the uncertainty

in the value of a particular action. However, in the case of a continuous

formulation, the upper confidence bound technique is not applicable. We can,

however, analyze the record of past high performing actions through the use

of unsupervised learning techniques. The idea is simple. Every time the agent

decides to explore the environment, it first creates a two-dimensional cluster

of its past actions, rather than blindly choosing a random action. Amongst

these clusters, the best performing one (found by evaluating the value of the

centroid of a cluster) inevitably corresponds to the greedy region of the action-
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space, which has been exploited by the agent many times. The lower potential

clusters in rank correspond to the cluster of actions that have been tried before,

but were not as rewarding as the greedy action. The agent selects the top k

clusters, and samples a random action from the distribution spanned by the

members of these clusters.

The concept described above is visually described in Figure 3.12, where

the agent takes on two different exploration strategies, while learning the ROP

environment of Figure 3.5. The first strategy is ε-greedy with ε = 0.25, and

the second, called a Smart-greedy strategy, employs an initial ε of 0.5 for the

first 50 time steps, and a reduced ε of 0.1 after that. In addition, the agent

only samples its random actions from the highest performing of k = 6 past

cluster of actions.
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Figure 3.12: Performance results of two different qDrill agents with different
exploration strategies. The Smart greedy agent uses k-means clustering to
distinguish promising actions, and focuses its exploration efforts. The results
are averaged from 10 experiments for each agent.

Evidently, the initial high rate of exploration gives the Smart-greedy

agent the benefit of faster initial learning. With a reduced ε over time, as

well as the strategic focus on high potential regions of the ROP space, the

Smart-greedy algorithm easily outperforms the simpler ε-greedy strategy.
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3.6 Adaptation to Environment Changes

The strategies discussed above appear to have a clear winner: the

Smart-greedy strategy that picks the best performing cluster to explore within.

It would, however, be interesting to evaluate the performance of each strat-

egy in a non-stationary setting, where the environment goes through a ma-

jor change. After all, the whole purpose of the iterative qDrill algorithm is

to continuously adapt its behavior to address environment changes. In the

following section, we will apply qDrill to two scenarios: one where the envi-

ronment changes in a positive way (through formation change), and the other

where the environment changes in a negative way through the tightening of

the vibration constraints (through formation change, change in drill-bit cutter

characteristics, etc.). Figure 3.13 demonstrates 3-dimensional operating region

associated with each formation.
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Figure 3.13: A 3D WOB,RPM state space representation of two different
formations encountered by the agent. Formation A has wider vibration con-
straints, thereby allowing higher rates of penetration.
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When the environment changes for the worse, the agent immediately

observes the impact of this change upon its received reward. However if prior

to the environment change the agent has spent all of its time exploring high-

potential actions, its understanding of the rest of the state-space is weak.

Therefore, the agent will struggle to find rewarding actions after the environ-

ment changes. This idea is conveyed by the experiment shown in 3.14. Two

exploration strategies are used: first is the familiar ε-greedy strategy with

ε = 0.25, and the second is the described Smart-greedy strategy where Υ is

the probability that the agent emphasizes on the second best performing clus-

ter of past actions. Initially, before the environment changes, a lower value

of Υ is doing better since the agent is strictly focused on the best performing

cluster of past actions. However, after the change, the agent with Υ = 0.75

begins to collect non-zero rewards much faster, since it had taken the time

to learn a more diverse set of high performing actions. The learning of the

ε-greedy is slower than the Smart greedy strategy with Υ = 0.75 both before

and after the environment change.
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Figure 3.14: Performance results of three different qDrill agents with different
exploration strategies, in the case of transitioning from Formation A to B. The
Smart greedy agent give preference to second-best performing past actions with
probability Υ . The results are averaged from 10 experiments for each agent.

The opposite scenario is when the environment changes for the better

(more forgiving dysfunction constraints) from Formation B to Formation A.

In this case, as shown in Figure 3.15, all three agents identify the change and

begin to obtain higher reward immediately. In this case, however, the ε-greedy

agent is the worst performing of the three, both before and after the change.

The Υ = 0.75 agent beats the Υ = 0.25 agent after the formation change,

because of its more diverse understanding of past high-potential actions.
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Figure 3.15: Performance results of three different qDrill agents with different
exploration strategies, in the case of transitioning from Formation B to A. The
Smart greedy agents give preference to second-best performing past actions
with probability Υ . The results are averaged from 10 experiments for each
agent.

In essence, while the Smart greedy technique is still a better performing

technique than the simpler ε-greedy strategy, a modification to the idea was

required to ensure that it can effectively handle environment changes. It was

shown that exploration in the highest-performing cluster of past actions is not

the best choice, and that the agent actually performs best when it explores

promising past actions, but not the most promising.
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3.7 Tripping Optimization

In the last section of this chapter, the optimization problem is consid-

ered for the case of pipe tripping. The optimization process in tripping differs

from the drilling task in that it does not involve simultaneous learning since

no sensory feedback is available during this process. However, the physics-

based model of Chapter 2 can be reliably used for prediction and design of

an optimal tripping trajectory that satisfies downhole pressure constraints,

given that the parameter estimation of the model has been completed during

the pumps-on period (when standpipe pressure is available). Mathematically,

the virtual driller’s goal is to solve the following optimization problem before

tripping in/out of hole:

minimize ttrip(vdes, tramp)

subject to δPt(vdes, tramp) ≤ Pmax, t = 0, . . . , ttrip.
(3.12)

where ttrip is the total tripping time for each stand, vdes is the steady state

tripping velocity, tramp is the ramping time to the desired velocity, δPt is the

dynamic downhole pressure change due to tripping, and Pmax is the maximum

allowable pressure drop/gain that can be tolerated before the bottom-hole

pressure goes below the pore pressure, or exceeds the fracture gradient (the

pressure drop occurs when the drillstring is tripped out, and the pressure

gain occurs when the drillstring is tripped in) . The velocity trajectory of the

tripping process is assumed to be of a trapezoidal shape, where a stand of pipe

is accelerated to a constant desired velocity, and decelerated at the same rate

to a stop (In Chapter 2, this trajectory appeared to be optimal for parameter
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learning purposes). This trajectory can be designed such that the area of this

trapezoid is equal to the total length of a stand. δPt is an output of the learned

hydraulics model, and ttrip can be found as follows:

ttrip = tconst + 2tramp

tconst =
dconst
vdes

, dconst = dtrip − 2dramp

dramp =
φ1

4
t4ramp +

φ2

3
t3ramp +

φ3

2
t2ramp + φ4tramp

(3.13)

where dtrip ≈ 90ft is the length of a stand, and φ1...φ4 are the parameters of

a smooth cubic function, which are found by solving the following system of

linear equations:

Φtrip = A−1
tripbtrip (3.14)

where,

Φtrip =


φ1

φ2

φ3

φ4

 (3.15)

Atrip =


0 0 0 1
0 0 1 0
t3ramp t2ramp tramp 1
3t2ramp 2tramp 1 0

 , btrip =


0
0
vdes
0

 , (3.16)

The optimization problem presented in Equation 3.12 can be solved

through prediction using the learned hydraulics model, and the relationships

presented in Equations 3.13 through 3.16. Since the problem is inherently

nonlinear, no closed-form solution is available. The problem can, however,

be solved using the same heuristic search method the virtual driller employs
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while drilling, namely the PSO technique. The optimizer accepts as input a

pressure constraint, Pconst, and returns the optimal tripping trajectory that

satisfies this pressure constraint. In Figure 3.16, tripping optimization results

using the PSO technique are presented with Pconst = 150 psi. It can be seen

that the optimal trajectory converges to a time of 35.31 s, in 10 iterations

with β = 25 and 50. With a two-decimal point discretization of a 1m/s× 30s

search space, an exhaustive search would have required 3× 105 simulations to

find the optimal trajectory, as opposed to the 500 simulations performed by

the PSO with β = 50.
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Figure 3.16: PSO convergence results for tripping time optimization with dif-
ferent values of population size β.

3.7.1 Accounting for Uncertainty

The formulation above is a simple yet powerful approach that enables

time-optimal pipe tripping, without relying on real-time feedback during the

tripping process itself. However, the optimization results presented in Figure

3.16 assume deterministic model parameters when predicting the pressure re-

110



sponse of the environment. To address and overcome this assumption, let us

refer back to Chapter 2 and consider the unknown/uncertain hydraulic pa-

rameters, K, PV and YP. The estimated model parameters, through learning

can be approximated as:

K = µK ± σK

PV = µPV ± σPV

Y P = µY P ± σY P

(3.17)

where σ is the standard deviation of the parameter, approximated from its

time-domain estimation. Upon inspection of Equation 2.18, it is trivial to

see that a “95% worst case” pressure change scenario occurs when PV =

µPV + σPV , and Y P = µY P + σY P . Similarly, a “95% best-case” is obtained

when PV = µPV −σPV , and Y P = µY P −σY P . In the case of K however, the

effect on the maximum pressure change is not obvious as the the parameter

only affects the transient response of pressure, and not its steady state value.

A risk averse virtual driller therefore:

• For maximum risk (shortest trip time): solves the optimization

problem with PV = µPV − σPV , and Y P = µY P − σY P , with the maxi-

mum pressure evaluated at K = µK ± σK .

• For minimum risk (longest trip time): solves the optimization prob-

lem with PV = µPV + σPV , and Y P = µY P + σY P , with the maximum

pressure evaluated at K = µK ± σK .
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Figure 3.17 demonstrates the risk-averse tripping methodology. Through the

consideration of the uncertainty in the physics-based model’s parameters, and

based on the desired level of risk, the virtual driller can design three different

tripping trajectories, all of which satisfy the maximum pressure change of

150 psi. The best case solution is faster than the worst case solution by 1.5 s.
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Figure 3.17: Optimal tripping trajectories for three different cases of risk con-
sideration. To ensure the satisfaction of pressure constraints, the worst-case
solution is slower by 1.5 s. Each uncertain parameter of the hydraulic model
has a ±10% uncertainty.

The reader can easily see that the uncertainty of the pressure constraint

itself can be included in the risk-averse formulation, where Pmax is represented

by: µPmax ± σPmax . The base case scenario can then be evaluated at µPmax +
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σPmax , and worst case scenario at µPmax − σPmax .

3.8 Conclusion

In this chapter, a solution to drilling optimization without complete

a priori understanding of the drilling environment, specifically regarding the

relationship between control inputs and performance metrics, is presented.

The reinforcement learning approach enables the use of a regression model

(trained by the action values observed while interacting with the environment)

for real-time optimization. The solution is also shown to be effective in dealing

with a non-stationary environment, when various parameters such as formation

or drill-bit properties change. Additionally, a heuristic -based solution for the

tripping optimization was presented, which used the model learned in Chapter

2 to optimize the process with respect to time. In the next chapter, the problem

of tracking the Optimizer’s set-points is explored.
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Chapter 4

Controller : Robust, Closed-Loop Tracking of

Optimizer Set-points

In the previous chapter, we concluded that the qDrill formulation can-

not control the environment directly because of the assumption that taking a

desired action puts it into the state s = A, with P = 1. Therefore, as pro-

posed in Figure 1.2, the critic would first assign a set-point to the controller

and, through closed-loop feedback, the controller would ensure that the system

state does in fact become the same as the desired set-point. The controller

would have to ensure that a large transition in WOB and RPM is achievable.

While downhole RPM tracking and active mitigation of torsional stick-slip

vibrations is a popular research area in drilling, our emphasis in this disser-

tation will be on the complications that arise in controlling downhole WOB

by adjusting the drawworks feed-rate velocity1. Hence, we have assumed that

by avoiding drilling dysfunctions, and with the use of an appropriately tuned

top-drive controller, any downhole RPM is attainable.

1The work in Section 4.4.2 has been presented in the conference publication: P. Pour-
nazari, B. R. Fernandez, and E. van Oort. Robust weight-on-bit tracking in drilling oper-
ations: A stochastic, nonlinear approach. In ASME 2017 Dynamic Systems and Control
Conference, pages V003T43A003-V003T43A003. American Society of Mechanical Engi-
neers, 2017. The author of this dissertation contributed to that work through theoretical
analysis, controller design, and simulation studies.
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4.1 Introduction

Accurate WOB tracking is important for an automated drilling system,

not only due to its impact on the performance of ROP optimization routines,

but also because oscillatory action of downhole WOB results in bit torque

fluctuations that can potentially induce torsional vibrations. In a study by

Pastusek et al. (2016), the authors mention several shortcomings associated

with present-day auto-drillers (a closed-loop drilling controller that most com-

monly aims to track a desired WOB set-point by getting feedback from the

hook-load sensor). Most systems on the market rely on basic first-order dy-

namics and utilize controllers based on bang-bang or PID techniques. As a

result, such systems do not take into account the complex dynamics associ-

ated with the drillstring compliance, the wellbore friction forces, fluid viscosity,

and bit-rock interaction. Furthermore, uncertainty associated with hook-load

measurements is not quantified, and its effects on controller performance are

unknown. Finally, the controller gains have to be frequently tuned to provide

acceptable performance (Pastusek et al., 2016).

To investigate the problems regarding the relationship between poor

WOB control and torsional vibrations, the study in Figure 4.1 is conducted.

After tagging bottom and increasing WOB, the oscillatory behavior caused

by poor controller tuning results in severe torque-on-bit fluctuations. These

fluctuations force the bit into a stick-slip cycle, where the bit stores enough

energy to speed up to almost three times the RPM-set-point, and then decel-

erates back to zero where the sticking occurs. The stick-slip cycle essentially

115



continues until the WOB has stabilized.
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Figure 4.1: Simulation of torsional stick-slip vibrations (middle plot), as a
result of TOB fluctuations (lower plot), when the WOB controller behaves
poorly (upper plot).

A much better RPM response is observed in Figure 4.2, where the WOB

only marginally overshoots after tagging bottom. The torque-on-bit, as seen

in the lower plot of Figure 4.2, has a smoother transition to the steady-state
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torque. Therefore, the bit only experiences a < 30s stick-slip cycle.
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Figure 4.2: Simulation of torsional stick-slip vibrations (middle plot), as a
result of TOB fluctuations (lower plot), when the WOB controller behaves
well without significant overshoot (upper plot).

The simulations above demonstrate that the performance of a WOB

controller considerably affects torsional vibrations, which could result in poor

drilling performance and reduced bit life. Robust WOB tracking is therefore
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also important regarding its coupling to torsional dynamics.

This chapter will focus on developing the necessary tools that equip

the drilling automation system with the ability to perform robust set-point

tracking of downhole weight-on-bit (WOB). The idea in this chapter is that

through model learning (as addressed in Chapter 2), a model-based robust

controller can be automatically re-designed at every bit run. This controller

would then take into account the approximate dynamics of the system, and

enable robust WOB tracking. We begin by introducing the problem and sum-

marizing the motivation for a robust WOB controller. In Section 4.1.1, an

overview of various previously studied control approaches for WOB tracking is

presented. Section 4.3 presents several different control methodologies based

on linear control theory. A more elaborate nonlinear controller is then pre-

sented in Section 4.4, which improves system performance in the presence of

nonlinear frictional forces. In Section 4.5, we compare the performance of all

controllers in terms of robustness to parametric uncertainty and tracking ca-

pability. In the end of this chapter, we study the full control problem including

downhole disturbance rejection, and make recommendations for practical field

implementation.

4.1.1 Literature Review

Boyadjieff et al. (2003) presented a linear control system for WOB

tracking and a linearized plant model that includes an empirical ROP model

based on the work in Jorden et al. (1966). Their model also takes into ac-
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count the dynamics of the traveling equipment and the drawworks braking

system. Field test results in this paper demonstrate significant improvements

over similar wells without an auto-driller system. A shortcoming of this work

is the missing treatment of wellbore friction forces, which makes their ap-

proach inapplicable to directional drilling. In addition, the authors do not

address controller robustness when subject to plant variations such as changes

in formation hardness.

The work in Yigit and Christoforou (2006) considers a similar problem,

but from a bit-bounce mitigation perspective. The authors develop a lumped

parameter model of the drillstring, but bit-rock interaction is ignored since

they are only concerned with stabilizing the axial movement of the drill-bit.

Similar to the previous paper, consideration of nonlinear damping forces is

missing. A linear controller is presented based on pole-placement techniques,

but observer design (therefore treatment of disturbance from bit-rock interac-

tion) was not discussed.

The most recent advance in WOB control is achieved by Pink et al.

(2013) via the use of downhole WOB measurements and real-time data trans-

fer using wired-pipe telemetry. Even though the authors do not provide any

details on modeling and control system design, their results demonstrate signif-

icant gains in performance regarding downhole WOB stability and tracking.

Although the benefits of real-time downhole WOB measurements are well-

understood as they provide the ability for true feedback control, the economic

value of wired-pipe telemetry is not widely justified for lower cost well con-
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struction.

The work in this chapter adopts an approach similar to that of Boy-

adjieff et al. (2003), but relies on a more comprehensive model of drilling

dynamics to account for nonlinear friction forces during directional drilling.

From a controls perspective, we develop a nonlinear full-state feedback con-

troller as opposed to the linear method used in Yigit and Christoforou (2006)

to identify and feedback-linearize the nonlinear dry friction forces. Also in

comparison to the work of Yigit and Christoforou (2006), the controller in this

chapter does not assume available measurements along the drillstring, and

uses the Bayesian filtering technique outlined in Chapter 2 to estimate system

states. Finally, unlike Pink et al. (2013), we do not rely on real-time downhole

measurements for robust downhole tracking. With that said, in presence of

wired-drill telemetry, the presented controller in this chapter can be comple-

mented with real-time downhole data as well for improved performance.

4.2 Control Problem Formulation

The models used for controller design and testing were developed in

Chapter 2. In addition, we outlined the state estimation tools that can be used

to estimate unmeasurable states of the system from surface measurements.

Figure 4.3 describes the controller architecture of interest that is developed in

this chapter.
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Figure 4.3: Block diagram of the WOB feedback controller. The reduced-
order observer provides the system with an estimate of downhole WOB and
the disturbance.

Later in this chapter, for testing of various controllers, the infinite di-

mensional model of Chapter 2 is used as a model of the plant to provide a

realistic representation of the actual dynamics and delays of the environment.

The proposed UKF-based state estimator is used to provide the controller with

an estimate of the system states, with downhole WOB as the desired input to

the controller. The controller then outputs the appropriate drawworks feed-

rate to drive the system to the desired WOB set-point. For controller design,

a reduced-order model of the axial drillstring dynamics is given by:

dx = F (x, u, t)dt+ dβ (4.1a)

zk = Hx + v (4.1b)

where zk is the measurement vector, H is the measurement matrix, β is a

zero-mean random variable of variance q that represents process uncertainty,

and v is the measurement uncertainty which can be written as:

E[v] = 0, E[vvT ] = R = σ2
hkl (4.2)
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and,

H =
[
1 0 0 0 0

]
(4.3)

The state vector x is given by:

x =


Fds
vds
Fc
vc
Ffr

 (4.4)

and the transition function, F (x) by:

F (x) =


kds
(
vinput − vds

)
1

mds

(
Fds − Fc − bdsvds −Ψds(vds)

)
kc
(
vds − vc

)
1
mc

(
Fc − Ffr − bcvc −Ψc(vc)

)
kfr
(
vc − vdisturbance

)

 (4.5)

vdisturbance = Γ(WOBapplied,Ω) (4.6)

For nonlinear controller design, the goal is to design the system such that

model nonlinearities are explicitly handled by the controller. Therefore, no

approximations to the presented model are needed. For linear controller de-

sign, the system of equations can be linearized, and represented in state space

form, with A,B,C and D matrices given by:

A =


0 −kds 0 0 0
1

mds
− 1
mds

(
bds + ∂Ψds

∂x2

∣∣
x2,eq

)
− 1
mds

0 0

0 kc 0 −kc 0
0 0 1

mc
− 1
mc

(
bc + ∂Ψc

∂x4

∣∣
x4,eq

)
− 1
mc

0 0 0 kfr 0

 (4.7)

B =
[
kds 0 0 0 0

]T
, C =

[
0 0 0 0 1

]
, D = 0 (4.8)
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Since the desired control variable is Ffr, the C matrix is changed, such that

Ffr is treated as the virtual output, even though the actual output of the

system is the hook-load measurement Fds.

4.3 Linear Control Design

In the following section, several suitable control algorithms for WOB

tracking using the model described in the previous section are introduced. The

simplest linear control technique is the proportional-integral-derivative (PID)

control, which is also the most widely used controller for WOB tracking in

the drilling industry. The PID approach is based on classical control theory,

where a controller is designed for the transfer function of the system in the fre-

quency domain. Therefore the feedback loop is closed on the output variable

only. More sophisticated modern control techniques, including the LQI (lin-

ear quadratic integral) and the MPC (model-predictive control) theoretically

enable better performance, since they stabilize all of the system states. In

addition, the aforementioned techniques are designed by solving an optimiza-

tion problem that provides optimal control gains based on a user-specified cost

function. The MPC approach also enables the explicit handling of actuation

constraints, which is a problem of interest in this dissertation. The perfor-

mance of these controllers will be compared in the following sections, and will

be used for benchmarking with the nonlinear controller.
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4.3.0.1 PID Control

PID controllers are the most commonly used commercial controllers in

the drilling industry, and most of the existing auto-driller systems rely on them

for WOB tracking. The transfer function of a PID controller is given by:

Kp +
Ki

s
+Kds (4.9)

where Kp is the proportional gain, Ki is the integral gain, and Kd is the

derivative gain. To design a controller, we take note of the transfer function

of the axial system, given by:

G(s) =
K

s5 + a1s4 + a2s3 + a3s2 + a4s+ a5

(4.10)

and add an integrator to achieve zero steady-state tracking error. Since the

integrator adds an unstable zero to the system, a proportional term, Kp, is

then used to add a zero and stabilize the system. The gains Kp and Ki are then

chosen to achieve the desired time-domain performance, and provide sufficient

gain and phase margins for robustness. Several criteria exist for appropriate

tuning of PID control gains, including the root-locus approach. We used a

commercial software PID tuner by MATLAB to perform the tuning of the

PID controller in the rest of this chapter.

4.3.1 Linear-Quadratic-Integral (LQI) Control

LQI control is based on the linear quadratic regulator (LQR), with

integral action to improve controller robustness when the actual model of the
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environment differs from the model used for controller design (Zhou et al.,

1996). The LQR control problem is concerned with solving the infinite horizon,

continuous-time optimal control problem given by:

ẋ = Ax+Bu (4.11)

with the cost function defined as:

J =

∫ ∞
0

(xTQx+ uTRu+ 2xTNu)dt (4.12)

where Q and R are the weight matrices. The control law given by:

u = −Kx (4.13)

minimizes the value of the cost function in Equation 4.12, where K is given

by:

K = R−1(BTP +NT ) (4.14)

and P is obtained by solving the algebraic Riccati equation:

ATP + PA− (PB +N)R−1(BTP +NT ) +Q = 0 (4.15)

To incorporate integral action, the original state space can be augmented such

that:

d

dt

[
x
z

]
=

[
Ax+Bu
Cx− r

]
(4.16)

where the new state z is the integral of the error between the desired output

r and the actual output y. The LQR problem is then solved for the new

augmented system in order to find the controller gain K.
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An LQR controller for a single-input single-output plant is supposed

to possess a guaranteed gain margin of −6 to +∞, and phase margin of −60◦

to +60◦ in all channels (Zhou et al., 1996). The robustness of the controller

is an important criteria for the WOB tracking controller, especially regarding

uncertainty in model parameters, because of the learning process that was

outlined in Chapter 2. The frequency response of the closed-loop system with

a sample LQI controller, subject to plant perturbations is shown in Figures

4.4 through 4.6.
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Figure 4.4: Bode diagram of the closed-loop system response with various
levels of perturbations in the formation stiffness parameter, kfr.

The Bode plot in Figure 4.4 demonstrates the sensitivity of the closed-

loop system to perturbations in the formation stiffness kfr. While it is clear
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that the time-domain performance of the LQI controller deteriorates when

δ > ×20 as shown by the resonant peaks of the magnitude plot, the closed-

loop response becomes unstable at δ < ×0.005, as demonstrated by the shifted

cross-over frequency. Perturbations in the mass parameter of the drill-collars

and the BHA are analyzed in Figure 4.5. With the variation in phase response

in the high frequency range (100Hz), changes in the mc parameter are not ex-

pected to affect the time-domain response of the system significantly. Stability

of the system due to these perturbations is not affected.
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Figure 4.5: Bode diagram of the closed-loop system response with various
levels of perturbations in the drill-collar and BHA mass parameter, mc.

The maximum expected perturbations in the damping parameter asso-

ciated with the drill-collars and the BHA, bc, are shown in Figure 4.6. These
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changes do not impact the stability of the system, similar to the case of the

mass parameter. However, the time-domain response of the closed-loop system

is expected to become more oscillatory with negative variations, as demon-

strated by the gain plots.
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Figure 4.6: Bode diagram of the closed-loop system response with various
levels of perturbations in the drill-collar and BHA damping parameter, bc.

4.3.2 Model Predictive Control

The general objective of a discrete model predictive controller (MPC)

is to compute a trajectory of a future manipulated variable u to optimize the

future behavior of the plant output y. The difference in the optimization ap-

proach in MPC to that of the LQR is that the optimization is performed within
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a limited time window, by implementing the information at the beginning of

each window (Wang, 2009). Therefore, the optimal input to the plant is re-

computed for each window, and revised when feedback arrives. To solve the

optimization problem, the MPC uses a model of the environment to compute

its future behavior. To improve controller robustness when the model does

not match the exact behavior of the plant, the model is augmented with an

integrator, similar to the formulation in 4.24 but for a discrete state space

formulation.

The prediction of system behavior within an optimization window can

be performed using the state space model such that:

Y = Fx(ki) + φ∆U (4.17)

where

F =


CA
CA2

CA3

...
CANp

 ;φ =


CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
CANp−1B CANp−2B CANp−3B . . . CANp−NcB


(4.18)

where Np is the prediction horizon, and Nc is the control horizon. For uncon-

strained optimization, the cost function J can be defined as:

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U (4.19)

where RT
s = [11...1]r(ki) is the data vector that contains the set-point infor-

mation, and the optimal ∆U is found by setting the first derivative of J with
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respect to ∆U to zero, which yields:

∆U = (φTφ+ R̄)−1φT (Rs − Fx(ki)) (4.20)

An important capability of the MPC approach is the explicit handling

of input and output constrains (Wang, 2009). For the WOB control problem,

handling of actuation constraints can improve controller robustness, as the

output of the drawworks system is prone to saturation and has limited band-

width. The actuation limits can be added as linear inequality constraints in

the optimization problem, such that:

∆Umin ≤ ∆U ≤ ∆Umax (4.21)

and in matrix form: [
−I
I

]
∆U ≤

[
−∆Umin
∆Umax

]
(4.22)

In a similar manner for the saturation limits:

Umin ≤ U ≤ Umax (4.23)

and in matrix form: [
−I
I

]
U ≤

[
−Umin
Umax

]
(4.24)

Aggregation of all the constraints, into one compact expression results

in the following hard constraint expression for the optimization problem:

M∆U ≤ γ (4.25)

where M reflects the constraints, and γ the constraint values.
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Solving the optimization problem with inequality constraints is of course

a more involved process, and requires the use of numerical solutions. The

quadratic programming (QP) formulation provides a solution to the optimiza-

tion problem. In the QP notation, the problem of interest to be minimized

can be represented using the cost function:

J =
1

2
xTEx+ xTF (4.26)

Mx ≤ γ, (4.27)

where E, F , M and γ are compatible matrices and vectors in the QP prob-

lem. The simplest form of QP is to find the constrained minimum of a positive

definite quadratic function with equality constraints that each represent a hy-

perplane. With inequality constrains, however, the number of constrains could

be more than the number of decision variables, and may contain active and

inactive constraints (Wang, 2009). To handle this issue, a common approach

is to use Hildreth’s QP procedure for solving the dual problem that arises from

the Lagrangian formulation.

4.4 Nonlinear Control Design

To design a controller for the nonlinear system represented by:

ẋ = f(x) + g(x)u (4.28)
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We put the system in normal form such that:

y = h(x) = Ffr = L0
f (h) (4.29)

dy

dt
= Lf (h) (4.30)

d2y

dt2
= L2

f (h) (4.31)

d3y

dt3
= L3

f (h) (4.32)

d4y

dt4
= L4

f (h) (4.33)

d5y

dt5
= L5

f (h) + Lg(L
4
f (h))u (4.34)

(4.35)

where Lf () is the Lie derivative. Since the control term appears in the fifth

order output, no zero-dynamics remain to be stabilized (Isidori, 2013). Given

no unstable zero-dynamics exist to be stabilized, the nonlinear terms can be

feedback-linearized if the system is locally controllable and observable. A

controllability matrix can be constructed by using the Lie bracket, which is

defined as:

[f, g] =
∂g

∂x
f − ∂f

∂x
g (4.36)

(ad0
f , g) ≡ g (4.37)

(ad1
f , g) ≡ [f, g] (4.38)

(adkf , g) ≡ [f, adk−1
f , g)] (4.39)
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to yield the controllability matrix of Equation 4.40.

C =
[
g, ad0

f , g, ad
1
f , g...ad

5
f , g
]

(4.40)

The system is then locally controllable if matrix C is full rank. Similarly, an

observability matrix, O as in Equation 4.41 is constructed to ensure observ-

ability of all system states from surface measurements.

O =


∂L0

f (h)

∂x1
...

∂L0
f (h)

∂xn

... ... ...
∂Ln−1

f (h)

∂x1
...

∂Ln−1
f (h)

∂xn

 (4.41)

4.4.1 Pre-filter Design

The role of the pre-filter is to receive a static WOB set-point, and

output a carefully designed ramped set-point to ensure a smooth transition

from each set-point so that controller bandwidth restrictions are satisfied. The

reference is a generated as a function of the set-point WOBdes, and the desired

ramping time, tramp. (the cubic spline approach was discussed in Chapter 3).

The following system of the linear equations can be solved to determine the

cubic spline trajectory:

Φwob = A−1
wobbwob (4.42)

where,

Φwob =


φ1

φ2

φ3

φ4

 (4.43)
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Awob =


0 0 0 1
0 0 1 0
t3ramp t2ramp tramp 1
3t2ramp 2tramp 1 0

 , bwob =


0
0
WOBdes

0

 , (4.44)

Figure 4.7 shows a comparison of a simple set-point ramping trajectory,

and the cubic spline trajectory discussed above. As evident, the rate of change

of the WOB set-point in the cubic case is a non-constant smooth parabola,

which results in the second derivative of the set-point trajectory to not diverge

to very high values (unlike the linear case).
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Figure 4.7: Smooth, time-dependent WOB set-point generation using a cubic
spline function.
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4.4.2 Sliding Mode Control

In dealing with the uncertain terms and the nonlinearity of system

equations, we adopt the sliding mode approach for controller design. The

main benefits of using this control technique are the direct incorporation of

model nonlinearity and uncertainty into controller design (Slotine et al., 1991).

In addition, all of the dynamics and parameters of the system get directly in-

corporated inside the controller, thus minimizing the need for controller tuning

when the plant characteristics change. Developing a sliding mode controller

is achieved through designing a sliding surface, S(x1...xn), so that the relative

degree of the output S is one, and the controller input u appears explicitly in

the Ṡ expression. The goal of the design process is to make S = 0 an attrac-

tive surface that guarantees system stability through attracting, and forcing

the system to slide along the surface to zero. This can be mathematically

expressed as:

SṠ ≤ η1|S| (4.45)

After studying the system equations, we realize that to have matching con-

ditions for controller input and process uncertainty, the controller has to be

divided into two nested controllers, one that provides tracking for downhole

WOB=Ffr = x5, and another for Fc = x3. For x3, the control system input

u1 = vin, and an outer-loop sliding mode controller can be designed such that:

S1 = λ1ë1 + λ2ė1 + λ3e1 + λ4

∫
e1 (4.46)
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where

e1 = r1 − x3

ė1 = ṙ1 − kc(x2 − x4)

ë1 = r̈1 −
((

kc
(
x5 − x3 + bcx4 + aq2tanh(bq2x4)

))
/mc

−
(
kc
(
x3 − x1 + bdsx2 + aq1tanh(bq1x2)

))
/mds

)
and λ1 . . . λ4 are constants that determine the roots of the characteristic equa-

tion. For the drillstring and drill-collars, the aqtanh(bqx) terms serve as a

smooth approximation to the nonlinear friction terms, Ψ. Depending on the

position of the drill-pipes and and drill-collars in the wellbore, aq1, aq2, or

both can be zero. The goal of the sliding mode controller is to ensure:

Ṡ1 = −η1
|S1|
S1

(4.47)

The dynamics of the sliding surface can be described in terms of the error

states such that:

−η1
|S1|
S1

= λ1
...
e1 + λ2ë1 + λ3ė1 + λ4e1 (4.48)

Since the control input u1 shows up in
...
e1, the expression above can be rewritten

as:

−η1
|S1|
S1

= λ1(α1 + β1u1) + λ2ë1 + λ3ė1 + λ4e1 (4.49)

A second controller can be designed, with the control variable u2 = x3, such

that:

S2 = λ5ė2 + λ6e2 + λ7

∫
e2 (4.50)
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where

e2 = rwob − x5

ė2 = ṙwob − kfrx4

and λ5 . . . λ7 are constants that determine the roots of the characteristic equa-

tion. The goal of the sliding mode controller is to ensure:

Ṡ2 = −η2
|S2|
S2

(4.51)

−η2
|S2|
S2

= λ5ë2 + λ6ė2 + λ7e2 (4.52)

−η2
|S2|
S2

= λ5(α2 + β2u2) + λ6ė2 + λ7e2 (4.53)

where α2 includes all the nonlinear terms and the process uncertainty in

ë2 . Therefore, as long as the maximum uncertainty in the model is bounded

and less than η, attraction and sliding of the system dynamics along S is

guaranteed (Slotine et al., 1991).

With conventional sliding mode control, the |S|
S

term can cause high

chatter in the controller input. In order to avoid the high chattering in cases

where actuator bandwidth is low, the |S|
S

term can be replaced by tanh(cS)

with c equal to some large positive constant. Another solution to the chat-

ter avoidance problem is the super twisting sliding mode algorithm, STSMC,

where similar stability guarantees are provided, but the controller input is
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modulated by an integral term which grows larger with higher switching fre-

quencies (Shtessel et al., 2010). The STSMC algorithm is given by:

u = −c1

√
|S|sign(S) + v (4.54a)

v = −
∫
c2sign(S) (4.54b)

where c1 relates to the η parameter in the original SMC algorithm, and c2 is

related to the chatter reducing capability of the STSMC algorithm.

4.4.2.1 Simulation Results

To assess the applicability of the sliding mode approach, and its benefits

in minimizing the impacts of model uncertainty and dry friction, the discussed

sliding mode controller was used in a simulation study where its performance

was compared to a simple PID controller. The PID controller was designed to

produce a 60◦ phase margin for robustness, as shown in the Bode diagram of

Figure 4.8.
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Figure 4.8: Bode diagram of the closed-loop PID system, designed to have
infinite gain margin, and 60◦ phase margin (at 36.5 rad/s)

The effect of various of super-twisting algorithms is investigated in Fig-

ure 4.9, where a phase-plane analysis of the sliding behavior is shown. The

original sliding mode approach, shown in blue, provides the fastest conver-

gence to the sliding surface, followed by significant chatter when approaching

x1 = 0. The other three lines represent the super-twisting approach, where a

smaller ratio of c2 to c1 corresponds to higher twisting. With c2 = 0.5c1 and

c2 = 0.3c1, a smooth phase-plane behavior is observed, where a slower reaching

time is observed, but minimal chatter is present in comparison to the original
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SMC. In the case of c2 = 0.1c1 , a twisting effect that is too high results in

slow reaching time and high over-shoot, as obvious by the purple line crossing

zero velocity and high chatter around x1 = 0.
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Figure 4.9: Phase plane analysis of different SMC techniques, including the
super-twisting algorithms with varying c2/c1 ratios.

For a simple performance comparison to a PID controller, Figure 4.10

shows the step response of both controllers. The sliding mode controller avoids

the initial overshoot of the PID, and allows for a steady convergence to the

desired set-point. By doubling the nonlinear component of friction, the per-

formance difference between the two controllers is more obvious, as shown

in Figure 4.11. The PID controller takes much longer to reach the WOB

set-point, and continues to overshoot for a long period before converging at

t = 10.
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Figure 4.10: Step response of the PID and STSMC controllers, when the
coefficient of dry friction is 0.2
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Figure 4.11: Step response of the PID and STSMC controllers, when the
coefficient of dry friction is 0.4
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The results in Figure 4.11 support our initial intuition about the per-

formance of the sliding mode controller: that its performance margin becomes

more obvious when the plant behaves more nonlinearly. A robustness study

is shown in Figure 4.12, where the plant model is inaccurate by 200%, a

randomly distributed disturbance of variance 0.002m/s exists, and formation

stiffness changes by×5 from 15s to 17s. While the transient behavior of the

sliding mode controller is much better due to higher robustness to parameter

uncertainty, the steady state performance of both controllers is quite similar,

with both controllers reacting similarly to the formation stiffness change.
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Figure 4.12: Tracking performance comparison of the PID and STSMC con-
trollers, where there is a 200% perturbation in the drill-collar mass parameter,
and the formation stiffness changes from 15 < t < 17. The controller is subject
to a 0.002m/s randomly distributed disturbance.

4.4.2.2 Handling Process Delays

The infinite-gain concept of sliding mode control leads to the question

of how such a technique would handle a delay that arises from either delayed

actuation, delayed measurement, or both. This is an important consideration

for a field-level WOB controller, as measurement is often delayed due to the
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time it takes for downhole dynamics to be reflected in surface measurements.

While certain control techniques are better suited to handling delays, others

can significantly suffer and force the system into instability. In Figure 4.13, the

response of both sliding mode and PID controllers to a 500ms output delay

is shown. While the PID controller’s performance has clearly deteriorated

and exhibits a limit-cycle behavior, the sliding mode controller has become

unstable.
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Figure 4.13: Tracking response comparison of the controllers when exposed to
a 500ms input delay.

Sliding mode control can be made applicable in the presence of delays

by including a predictive element into the controller. This predictive element

would then cancel out the delayed response of the plant, and prevent the

system from going unstable. This is the idea behind a Smith Predictor, as

shown in Figure 4.14.
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Figure 4.14: Block diagram of a Smith predictor to handle known system
delays. K(s) corresponds to the controller, and e−sT represents the model of
the delay, where T is the known system delay.

The output of the controller in Figure 4.14 is sent to both the actual

and the model of the plant, where e−sT represents the process delay. Through

this prediction, the delay component of the output y is subtracted, and the

feedback now only consists of the impact of disturbance d, and the delay-

free response of the plant. The challenging aspect of implementing a Smith

predictor is that the model of the plant as well as the estimate of the process

delay have to be sufficiently accurate. In Figure 4.15, the performance of

the aforementioned controllers, both complemented with a Smith predictor is

shown with a 500ms process delay. When the model of the plant is fairly

representative of the actual plant, the original performance benefits of the

sliding mode controller are recovered. However, when the model of the plant

is inaccurate, Figure 4.15 demonstrates that the sliding mode controller only

performs marginally better in the transient state, followed by a poor settling
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time in comparison to the PID controller. The robustness of the sliding mode

approach therefore is only a major advantage when the plant does not contain

significant process delays that have to be mitigated using a Smith predictor

approach.
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Figure 4.15: Tracking response comparison of the controllers with a Smith
predictor, when exposed to a 500ms input delay, with various levels of model
uncertainty.

4.5 Performance Assessment on High Fidelity Plant Model

In the last part of this chapter, the control approaches that we explored

earlier are implemented on a realistic model of the plant that was developed

in Chapter 2. The use of this model exposes the WOB controller to latencies

present in the actual plant, and highlights the challenges involved in state

estimation and control of distributed drill-string dynamics.

We will briefly discuss some practical modifications to the nonlinear

controller presented in Section 4.4, as well as state estimation methodology

in Chapter 2, to handle the challenges of the infinite-dimensional model. The
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performance of the nonlinear control in various practical scenarios is explored,

and benchmarked against the linear control techniques discussed earlier in this

chapter.

4.5.1 Observer Considerations

The problem of state estimation for state-feedback control was already

addressed in Chapter 2. The role of the state estimator, or the “observer”,

is to provide an estimate of the un-measureable states of the plant, given the

input and output of the plant. As noted in Chapter 2, the infinite-dimensional

model can be estimated using any order of finite approximations, as well as

an infinite-dimensional estimator, called the DDE observer.

In the previous section, we also discussed the challenges associated

with controlling a system that has a combination of input/output and pro-

cess delays. In drilling, such delays are virtually present at all times, due to

communication complications as well as the distributed nature of the physical

system. Therefore, any control algorithm in the drilling environment has to be

amended with a predictive element to handle delays. The idea of a Smith pre-

dictor was to essentially erase the delayed-open loop response of the system,

and add a delay-free response based on a model of the system. The challenge

with employing such an idea is that if there are any discrepancies between the

model and the plant, robustness of the controlled is jeopardized. For a prac-

tical implementation of Smith prediction, a modified high-gain UKF observer

will be employed in the following section.
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The high-gain UKF observer utilizes a model of the same order as

the controller itself. In order to remove the delayed open-loop response of

the plant, the HG-UKF employs an arbitrary measurement noise, Rdelay, in

addition to the actual measurement noise R = σ2
hlk to increase the observer

gain. In this manner, the correction made to the estimate of the reduced-order

observer is limited to include only the effects of disturbances on the plant, and

the delayed-response of the plant is filtered.

4.5.2 Controller Modifications

For implementation on the high-fidelity model, several modifications

were made to the sliding mode controller proposed in the previous section.

First, the cascade formulation is reduced to a surface controller only, to mit-

igate the complications that arise from bandwidth matching of the two con-

trollers. To handle the matching conditions problem, the sliding surface of the

surface controller is modified, such that includes ef +
∫
ef , where ef is the

downhole tracking error represented by WOBref − Ffr.

Additionally, due to the uncertainty that arises in estimating the veloc-

ity terms of the plant model as well as velocity dependent force terms including

dry friction, the ufbl term of the surface controller now excludes these terms,

and instead usmc is modulated in real-time to cancel the dynamics associated

with these terms.
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4.5.3 WOB Tracking while Tagging Bottom

The first benchmarking experiment implements all 4 controllers on a

tagging-bottom scenario, where force control is enabled, and the WOB refer-

ence is increased initially to 100kN , followed by an increase to 200kN . The

plots in Figure 4.16 demonstrate the response and control effort of each con-

troller. In the first transient period, with t < 10, the STSMC controller has an

obvious superior performance. From a control effort perspective, the LQI con-

troller uses the least energy, but at the cost of slow settling time in comparison

to all other controllers. The best steady state performance is also achieved by

the STSMC controller, as evident in the magnified portion of the experiment

from 33 < t < 50. Due to a 0.5s discretization, the MPC controller inevitably

exhibits oscillatory behavior in the steady state, which is increased further in

the transient.

A summary of the performance of all controllers in this experiment is

shown in Table 4.1. For this task, the STSMC controller has a significantly

smaller mean squared error, followed by the LQI controller.

Controller MSE [N2]× 107

STSMC 0.67
MPC 29.56
LQI 9.23
PID 21.71

Table 4.1: Mean squared tracking error for all controllers in ideal conditions.
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Figure 4.16: WOB tracking response of the controllers with no disturbances.
The middle plot is a magnification of the upper plot from 34 to 50 seconds.
The lower plot shows the control inputs from 5 to 35 seconds, during the first
transient period.

4.5.4 Robustness to Parametric Uncertainty

An analysis of controller performance when there is major discrepancy

between the model used for controller and observer initialization and the actual
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plant, is essential for practical field level implementation, as well as to account

for the uncertainty that resulted from the learning of the model parameters

in Chapter 2. Figure 4.17 demonstrates such a scenario, beginning at t = 30,

where a 100% change in the parameters of the drill-collars and the BHA is

experienced by the control system. The highest robustness is demonstrated by

the STSMC approach, as minimal functions are observed when the mentioned

plant changes are enforced. The MPC controller is the least robust to plant

changes, as demonstrated by the prolonged oscillations.

In Table 4.2, the mean squared tracking error of all controllers is shown.

Controller MSE [N2]× 107

STSMC 0.65
MPC 30.54
LQI 8.98
PID 21.29

Table 4.2: Mean squared tracking error for all controllers when subject to
parametric uncertainty.

4.5.5 Robustness to Actuation Constraints

The high variability in rig-site equipment prevents the plug-&-play ap-

plication of control algorithms without considering equipment power limits.

In the case of a WOB controller, the power limits of a drawworks system

translates into both input acceleration and velocity limits. In Figure 4.18, we

demonstrate a scenario when the controller input saturates at 0.04m/s. As is

evident, the performance of all controllers, except the MPC controller, drasti-

cally suffers when the controller input saturates. The MPC controller is able
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to plan a better control trajectory and achieve the desired 200kN set-point

despite the input constraint, since it handles the actuation constraint explic-

itly at each optimization window. The STSMC controller performs the worst

in this scenario, and drives the system into instability.
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Figure 4.17: WOB tracking response of the controllers when exposed to plant
perturbations that result in parametric uncertainty. The middle plot is a
magnification of the upper plot from 31 to 38 seconds.
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Figure 4.18: WOB tracking response of the controllers with constrained actu-
ation power. The middle plot is a magnification of when the controllers try to
achieve the final desired set-point around t = 30s.

4.5.6 Disturbance Rejection

A fundamental assessment of the WOB controller is concerned with

the ability to handle disturbances that appear in the form of varying ROPs

when the applied WOB and RPM change. In Figure 4.19, an increase in
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ROP at t = 41s causes a slip of the drill-bit, and WOB decreases to 190kN .

All four controllers begin to force the system to the original WOB set-point.

Although the PID controller seems to converge faster to the original set-point,

this is due to the fact that the controller was originally operating above the

desired WOB set-point. Amongst the other controllers, the STSMC provides

the fastest WOB recovery. At t = 55s, ROP decreases and the WOB is now

increased to 220kN . Similar to the previous case of PID, the MPC returns

fastest to the WOB set-point, only because it was originally operating below

the WOB set-point. The STSMC recovers from the disturbance in 9s, followed

by the LQI and then the PID. The tracking error results of the disturbance

rejection scenario are shown in Table 4.3. The marginal performance difference

between the LQI and the STSMC controllers are now reduced compared to

the previous test.

Controller MSE [N2]× 107

STSMC 4.04
MPC 25.48
LQI 12.46
PID 17.85

Table 4.3: Mean squared tracking error for all controllers when subject to
slowly varying disturbance. The results were averaged from 10 experiments.
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Figure 4.19: Disturbance rejection ability of the controllers with a slowly vary-
ing ROP. The middle plot is a magnification of the upper plot from 42 to 68
seconds. The lower plot shows the control inputs from 42 to 68 seconds.

A final test for the WOB controllers is their ability to quickly handle

changing disturbances, and the effect of disturbance handling on variations in

angular velocity. The enforced disturbances are shown in the upper right plot

in Figure 4.20. As is evident from the estimation of the disturbances by the
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observer, the oscillatory behavior of all controllers can be attributed to the

noisy estimation of the disturbance, and not the controllers themselves.
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Figure 4.20: Disturbance rejection ability of the controllers with a fast vary-
ing ROP. The upper right plot demonstrates the actual and estimate of the
disturbance. The lower right plot demonstrates the fluctuations in bit angular
velocity, Ω, as a result of WOB variations.

In the context of recovery from quickly varying disturbances, the LQI

controller has now become the worst performing controller (as is evident from

results in Table 4.4) due to its slow transient performance. However, from
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a torsional vibrations perspective, the LQI controller seems to provide the

most damped response, especially in comparison to the MPC and STSMC

controllers, as shown in the lower right plot of Figure 4.20.

Controller MSE [N2]× 107

STSMC 6.73
MPC 13.35
LQI 14.81
PID 11.75

Table 4.4: Mean squared tracking error for all controllers when subject to
quickly varying disturbance. The results were averaged from 10 experiments.

4.6 Conclusion and Recommendations

In this chapter, a robust control methodology was developed for con-

trol of axial drillstring dynamics with the purpose of tracking the WOB set-

points that are assigned by the qDrill algorithm. We hypothesized that due to

the nonlinearities in drillstring dynamics, a robust nonlinear approach to the

tracking control problem would yield the best performance results. Through

development of several candidate controllers, it was shown that the proposed

nonlinear control technique is indeed the best approach from several perspec-

tives.

A summary of the findings from the analysis of all controllers is shown

in Table 4.5. As already noted, the STSMC approach offers high levels of

transient performance and robustness in comparison to the other linear con-

trol techniques. From a practical standpoint, however, the STSMC approach
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is not a fully model-based approach, and its design and commissioning might

require the involvement of a human expert. This arises from the fact that the

choice of controller parameters such as c1 and c2 has to be verified in simu-

lation prior to controller deployment. The inferior MPC approach despite its

less robust performance, can be easier to commission on rig-site systems, and

automatically re-tuned by the automation system itself. Future research work

should therefore explore more sophisticated variations of the MPC approach,

for comparison to STSMC in terms of robustness and tracking performance.

Controller Robustness
Tracking

Capability
Tuning

Difficulty
Computational
Power Needs

STSMC High High Medium Low
MPC Low Medium Low High
LQI Medium Medium Medium Medium
PID Medium Low High Low

Table 4.5: Comparison of all control techniques from a practical standpoint
for field-level implementation.
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Chapter 5

Event Detector : Missed/False Alarm

Minimization in Drilling Event Detection

During an automated drilling operation, various critical trouble events

can potentially require the attention of both the automation system and the

human operator. In the architecture shown in Figure 1.2, the Event Detector

was proposed for the detection of such events. In the case of an event where

its handling falls outside of the automation system’s scope, the role of the au-

tomation system is to simply bring its state to a halt, and give control to the

human operator. The Optimizer was presented in Chapter 3, which through

iterative learning addressed the drilling optimization problem. From an oper-

ational standpoint, however, the Optimizer can only become truly optimal if

it is not excessively interrupted by the Event Detector due to false alarms. We

explore this problem in this chapter1, and present an event detection system

that addresses the challenges of robust event detection. The Event Detector

1Most of the work in Chapter 5 has been presented in the conference publication: P.
Pournazari, P. Ashok, E. van Oort, S. Unrau, S. Lai, et al. Enhanced kick detection with
low-cost rig sensors through automated pattern recognition and real-time sensor calibration.
In SPE Middle East Intelligent Oil and Gas Conference and Exhibition. Society of Petroleum
Engineers, 2015b. The author of this dissertation contributed to that work through study
of the literature for kick detection systems, design of the event detection system, and data
analysis.
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focuses on kick and lost circulation events as they are amongst the most dif-

ficult drilling events to detect, and account for high false alarm rates on both

offshore and onshore drilling rigs.

5.1 Introduction

During a drilling operation, early detection of trouble events such as

kicks (an undesirable influx from downhole formation(s)) and lost circulation

(loss of drilling fluid to downhole formation(s)) is important in minimizing

the associated safety risks and non-productive time. Early detection of these

events depends mainly on the quality of mud circulation sensors and the ro-

bustness of the detection algorithm. The challenging aspect of this problem is

not necessarily detecting the gain/loss of fluid, but accurately distinguishing

undesirable gains/loss events from events that are similar in signature such as

wellbore breathing. Specifically, while wellbore breathing events also result in

mud gains during a drilling operation, the consequences are much less serious

than a kick. In wellbore breathing, mud gains occur as a result of the for-

mation fractures pushing back the drilling fluid that was keeping them open.

The signature of a wellbore breathing event differs from that of a kick due

to a decreasing pressure as the fractures close, which causes the pit volume

trend to increase with an exponentially decaying shape. Therefore, the event

detection system should not only be robust to unreliable sensor measurements,

but it should also be able to distinguish less important events such as wellbore

breathing from more serious ones such as kicks.
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This chapter is organized as follows: after presenting a review of various

techniques for kick and lost circulation detection, we present a solution based

on the idea of condition pattern regoncitnion that forms the basis of the Event

Detector. The various subsystems are explained in detailed, including the

change detection technique, and the pattern recognition approach. The fuzzy

logic based classifier is then presented, and the Event Detector is demonstrated

on field data for performance evaluation. Additionally, we explore the benefits

of self-learning for sensor calibration to enable the use of delta or processed-

flow methods for reduction of false/missed alarms.

5.1.1 Literature Review

In the past, the industry has experimented with several methodologies

to reduce missed/false alarms when detecting kick and lost circulation events.

Historically, variations of the pit volume have been relied upon extensively to

provide a clear indication of gains and losses from the wellbore (Anfinsen et al.,

1992; Maus et al., 1979). Theoretically, these changes should match the volume

of the drilled hole during drilling and the volume of the drillstring during pipe

tripping. Therefore, abnormal variations in the pit volume or the trip tank

are a direct sign of gain/loss problems. However, other drilling processes such

as addition and removal of drilling fluid by the drilling crew and variations

of the drilling fluid density (e.g. due to fluid compression and/or expansion)

also have effects on the pit volume and make event detection difficult. It has

been therefore common practice to monitor the flow-rate measurements out of
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the well and compare it to the flow-rate reading from the mud pumps to get

an indication of mud gain/losses (i.e the so-called delta-flow method) (Maus

et al., 1979). This method can be erroneous during transient periods when

the value of flow-in and flow-out do not match or when there is significant

noise associated with the flow measurements (Schafer et al., 1992). Obtaining

accurate flow readings from the high-pressure side of the mud circulation line is

difficult, since measurement typically relies on counting the mud pump strokes

and assuming an pump efficiency factor to derive volume pumped and flow

rate. Accurate flow-meters for the low-pressure side such as a Coriolis flow-

meter are costly and economically challenging for use on low cost drilling

operations. Therefore, it is still common to rely on low accuracy sensors such

as flow-paddles to have a measure of the flow-rate out of a well.

The use of pattern matching algorithms to identify gain patterns in the

flow-paddle readings has been proposed to reduce the false alarms associated

with using the delta-flow method for kick detection (Hargreaves et al., 2001).

Although experimentally verified, these methods have not been widely adopted

due to being computationally intensive for rig-site computers. Le Blay et al.

(2012) and Daireaux et al. (2013) later proposed the use of detailed hydraulic

models to calculate an estimate of the flow-rate out of the well and pit volume,

and comparing these to sensor readings to detect abnormal variations (i.e. the

processed-flow method). These methods are advantageous in that transients

can be predicted to avoid false alarms. However, detailed hydraulics models

require many well parameters to be entered and also require accurate flow-
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meters for reasonable comparisons.

The use of annular discharge pressure and standpipe pressure for event

detection was proposed by Reitsma et al. (2011) in order to avoid the use of a

Coriolis flow-meter. For instance, an increase in both standpipe pressure and

annular discharge pressure would signify the occurrence of a kick event. This

method, however, is more applicable to managed pressured drilling, where

the annulus is sealed and there is enough pressure build-up above the sensor

to get reliable readings. In conventional drilling, the pressure sensor is open

to the atmosphere. Therefore, it is difficult to obtain reliable readings of

the annular pressure. Downhole pressure sensors have also been accepted as a

reliable kick detection solution. The concept remains economically challenging

for most drilling operations, as downhole pressure sensing can be costly. In

addition, downhole pressure data is often only available during drilling when

communication is possible with the downhole tool.

Several other methods have shown potential for early kick detection,

but none of them has been widely adopted. Without being exhaustive, several

are mentioned below. Acoustic sensors, for instance, can be used to measure

the speed of a traveling pressure wave in the drilling fluid (Bang et al., 1994).

In the case of a gas influx, the pressure wave speed would vary and the ul-

trasonic sensor would then detect the kick. This method was only tested in a

laboratory environment, and was shown to work only for water-based drilling

fluids. Recently, the use of electrical capacitance measurements was demon-

strated for kick detection (Trivedi et al., 2014). By using a downhole tool,
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the capacitance of the drilling fluid was measured in real-time with a lower

capacitance signifying a kick. This method has not been field tested yet, and

requires re-calibration of the sensor with different drilling fluids.

Pit volume gain/loss and delta-flow methods are widely used in the

industry due to their relative simplicity and cost efficiency. Transient hydraulic

models and pattern matching algorithms have also been employed to help

reduce false alarms associated with these methods. However, there are two

main issues that complicate these attempts: 1) the available pattern-matching

methods alone appear insufficient in reducing false alarms, as they cannot

deal with transient phenomena and require a lot of computational power at

the rig-site; the transient hydraulics models can often be complex, requiring

a large amount of input information and computational power as well; 2) the

accuracy of an advanced hydraulics model must be matched with an accurate

flow-meter. In the case of most land rigs which use simple flow-meters such as

a flow paddle, the processed-flow method using an advanced hydraulics model

does not provide an advantage.

Moreover, in discussing the results of event detection systems, the lit-

erature has often lacked sufficient analysis of the results. Early kick detection

methodologies usually provide only a few examples of the algorithm detecting

a kick. Most discussions also fail to present the number of false alarms and

missed alarms of the detection algorithms. In the case of a rare event such

as a kick, a detection algorithm not only has to be accurate but also has to

minimize the number of false positives to e.g. avoid the “cry wolf” effect. A
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recent paper by Brakel et al. (2015) addressed this issue by examining the false

alarm rate of various kick detection indicators separately over a six months

time period. It was shown that the false alarm rate can vary significantly, de-

pending on the specific rig activity and the kick indicator used. It is therefore

important to provide performance measures more than just accuracy, i.e. a

measure of how the algorithm performs regarding both false and missed alarm

rates in presence of imbalanced data.

5.2 Solution Overview

The foundation for the Event Detector is the idea of conditional pattern

recognition (CPR). In CPR, pattern extraction and matching to pre-defined

models of sensor trends only occurs upon observation of statistically significant

change points in relevant signals. For example in the case of kick detection, a

positive change in flow-out has to be observed before the classification task is

conducted. Otherwise, events such as the intentional transfer of drilling fluid

by the crew could result in false alarms. Therefore, the solution in this chapter

employs a three-step process for detection of kick and lost circulation events

during circulation periods, which consists of:

• Statistical change detection to find abrupt changes in the mud circulation

sensors. This is an essential step to avoid false alarms that arise from

normal rig activities that emit the same trends as the trouble events.

Change detection triggers the pattern-marching and the classifier algo-

rithms.
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• Feature creation, specifically for the shape of the mud volume trend,

which reveals important information about the potential trouble event.

• Classification of events, based on the features created during the previous

step, as well as the dynamics of other mud circulation sensors.

In addition to event detection during circulation periods, a second module facil-

itates the detection of kick and wellbore breathing events during connections.

The module has a fingerprinting feature, which through the establishment of

a model, compares flowback trends at the onset of a connection to historical

flowbacks. Meanwhile, the same feature creation technique used during circu-

lation periods is used to assess the shape of the mud volume trend, and notify

the user of trends that might raise the concern of a true kick. Finally, the event

detection methodology in this chapter explores the concept of self-learning for

calibration of the flow-out sensor, in order for the system to have the ability

of performing a direct flow-in/flow-out comparison.

Figure 5.1 demonstrates the user interface of the RAPID EDS program,

which was developed to facilitate historical and real-time testing of the event

detection system at industry real-time operating centers. Aside from showing

the alarms associated with both circulation and connection events, the UI

allows the user to interact with the program and select various operation modes

of the fingerprinting module.
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Figure 5.1: Overview of the RAPID EDS user interface developed for deploy-
ment at industry real-time operating centers (RTOC).

5.3 Statistical Gain/Loss Detection

The role of gain/loss detection is to find the abrupt changes that oc-

cur in the mud circulation sensors. In drilling event detection, this step is

of paramount importance because the EDS shall only analyze mud volume

changes for their shape that correspond to true statistical changes in flow and

pressure sensors. Otherwise, other events such as pit transfers could be falsely

identified as kick or lost circulation. In the EDS program, change detection is

specifically applied to the flow-out, standpipe pressure and the flow-in sensors.

Later in this chapter, we will discuss how the combination of various changes

can be used to activate a different event classifier.
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Several methods are available for change detection in pattern recog-

nition literature. A simple method would use conventional outlier detection

techniques that rely on a moving average window, where a prediction at time

ti+1 is made based upon an average of the observations at ti : t(i + w) ,where

w is the window size:

xt+1 =
1

W
(xt + xt−1 + . . .+ xt−W−1) (5.1)

A gain alarm can then be raised by fitting a Gaussian distribution to the

selected window with mean, µ, and standard deviation, σ, and assessing if:

Alarm Level = φ(max(0,xt+1 − µ)/σ) (5.2)

where φ is the cumulative distribution function for N samples. This method,

however, can be prone to high false alarm rates if the level of noise and periodic

changes in the input signal is high (Gottman, 1981). This method can be

improved through various dimensionality reduction techniques that essentially

provide a filtering medium for the data (namely the SAX method, detailed in

the next section).

In comparison to frequentist methods, a Bayesian change point detector

focuses on causal inference through the generation of a distribution of the

next unseen datum in the data sequence. In this section, we will also adopt

an algorithm developed by Adams and MacKay (2007) to the problem of

detecting abrupt changes in the mud circulation sensor data. Let us assume

that a sequence of flow-out data is represented by x1, x2, ...xT , and that the
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data is divided into several partitions by change points, some of which might

correspond to the onset of the connection making period, or a kick event.

We can then assume that for each partition, ρ, the data points within are

independently represented by a distribution P (xt|ηp) where the parameters,

ηp, are assumed to be independent as well. We are now concerned with the

problem of estimating the posterior distribution over the current time since

the last change point, given the data observed so far.

The algorithm of Adams and MacKay (2007), is visually described in

Figure 5.2 which shows how a change point model is expressed in terms of run

lengths (duration of the signal before a change point occurs). In Figure 5.2(a),

an arbitrary univariate data is divided into three segments of run lengths 4,

6 and 4 respectively. These run lengths are shown as a function of time in

Figure 5.2(b) where they drop to zero when the change point occurs.
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Figure 5.2: Demonstration of Adam’s change point detection algorithm
(Adams and MacKay, 2007).

Figure 5.2(c) is a depiction of the algorithm, where solid lines indicate

that probability is being passed upwards and the run length increases as a

result. The dotted lines in turn demonstrate the possibility that the current

run is over and the run length changes to zero. The recursive estimation of

a run length is based on the idea of computing the predictive distribution,

conditional on a given run length rt. The algorithm then integrates over the

posterior distribution on the current run length to find the marginal predictive
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distribution given by:

π(t) = P (xt+1|X1:t) =
∑
rt

P (xt+1|rt, Xr
t , )P (rt|X1:t) (5.3)

Conjugate-exponential models are used in this algorithm for integrating with

the change point detection scheme. This is due their ability to allow inference

using sufficient statistics which can be incrementally calculated (Adams and

MacKay, 2007). For a univariate Gaussian distribution, the conjugate prior

for the precision is given by a gamma distribution of the form:

Gam(λ|a, b) =
1

γ(a)
baλa−1e−bλ (5.4)

where γ is the gamma function. With a univariate Gaussian together with

a Gamma prior and integrating out the precision, we obtain the marginal

distribution in the form of:

St(x|µ, λ, ϕ) =
γ(ϕ

2
+ 1

2
)

γ(ϕ
2
)

(
λ

πϕ
)1/2[1 +

λ(x− µ)

ϕ
]−

ϕ
2
− 1

2 (5.5)

which is known as the Student’s t-distribution (Bishop, 2007). In the equation

above, λ = a/b and ϕ = 2a. The Student’s t-distribution can be used for

the estimation of the predictive probability expression in Equation 5.3. In the

algorithm described here, the change point prior, P (rt|rt−1), takes the form of

(Adams and MacKay, 2007):

P (rt, rt−1) =


H(rt−1 + 1), if rt = 0

1−H(rt−1 + 1), if rt = rt−1 + 1

0, otherwise
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where H(τ) is the hazard function. In the case of a discrete exponential

distribution, H(τ) is given by: (Adams and MacKay, 2007):

H(τ) =
1

α
(5.6)

where α is a timescale constant. Given we have the expressions for the predic-

tive probability distribution, and the prior for run length growth and change

points, we can recursively estimate the growth and change point probabilities

by (Adams and MacKay, 2007):

P (Growth) = P (rt|rt−1 + 1, X1:t) = P (rt−1 + 1, X1:t−1)π(t)(1−H(rt−1 + 1))

(5.7)

P (Change) = P (rt = 0, X1:t) =
∑
rt−1

P (rt−1 + 1, X1:t−1)π(t)H(rt−1 + 1) (5.8)

Both the outlier detection and the Bayesian change detection algo-

rithms discussed above are implemented on 4 different cases of statistically

changing flow-out signals. Two cases are shown in Figure 5.3, where moderate

levels of noise on the scale of ±10% exist in the flow-out signal. Evidently,

both the SAX-based outlier detection and the CPD algorithm perform simi-

larly, with the outlier detection algorithm identifying false changes when the

noise levels increase around t = 1000s.
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Figure 5.3: Comparison of the SAX based outlier detection (shown in red)
and the change-point detection algorithms (shown in blue) with a moderately
noisy flow paddle signal. The dashed blue line represents the run-lengths of
the CPD algorithm.

In Figure 5.4, two different cases of flow-out changes are shown: the

one on the top portrays a case of severe noise, and the one on top bottom

shows very low noise levels of ±2%. In both cases of Figure 5.4, the outlier

detection algorithm performs significantly worse than the CPD, where it either

produces too many false change points, or fails to catch a subtly changing

flow-out trend. The performance benefits of the CPD algorithm are therefore

evident in a variety scenarios when the signals are either too noisy or when
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the changes are small and slow. Since robustness to such scenarios is key for

reduction in missed and false alarms, the CPD algorithm was selected for the

EDS program.

Figure 5.4: Comparison of the SAX based outlier detection (shown in red)
and the change-point detection algorithms (shown in blue) with both a highly
noisy (upper plot) and noise-free (lower plot) flow paddle signal. The dashed
blue line represents the run-lengths of the CPD algorithm.

5.4 Pattern Matching

The role of the pattern matching algorithm is to create the features used

by the classifier to perform event classification. Pattern matching requires a
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priori knowledge in regards to the shape of a sensor signal that corresponds to

a particular event. This prior knowledge can then be combined with observed

trends in the sensor signal segments at the classification stage for decision

making.The most important pattern feature is the shape of the mud volume

trend, which can indicate the difference between an influx and a wellbore

breathing event.

We propose the use of the Symbolic Aggregate Approximation (SAX)

method to perform this task. SAX has been recently adopted as a powerful

technique in time-series data mining because of its simplicity and allowing for

dimensionality reduction (Lin et al., 2007). The SAX method transforms a

time-series X of length n into a string of arbitrary length ω, where ω � n,

using an alphabet A of size a > 2. The SAX method relies on the fact that

normalized time-series signals have a high Gaussian distribution. By finding

the breakpoints that correspond to the alphabet size, we can obtain equal-

sized areas under the Gaussian curve. In the first step of the SAX algorithm,

the signal is normalized and transformed into a PAA (piecewise aggregate ap-

proximation). In PAA, the signal is divided into equal-sized frames, and the

mean value of the points that lie in every frame is computed (Lin et al., 2007).

The lower dimensional vector of the original time series signal is the vector

whose components are the means of all successive frames of the signal. Use of

PAA at the first step brings the advantage of a simple and efficient dimension-

ality reduction while providing the important lower bounding property. In the

last step, the PAA representation is discretized and converted into an alpha-
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Figure 5.5: SAX demonstration of various potential pit volume trends, includ-
ing linear (upper left), exponentially increasing (upper middle), and exponen-
tially decaying (upper right).

betical representation using a look-up table. Figure 5.5 demonstrates various

signal trends and their corresponding alphabetical representation. These al-

phabetical representations can be acquired in real-time for signal segments and

compared to a set of base alphabetical representations of known models for

signal.

Several measures can indicate a similarity between two signals. A co-

sine similarity, for instance, measures the cosine angle between two vectors.

A FFT (Fast Fourier Transform) analysis represents a non-periodic signal by

a continuous superposition of complex exponentials, thereby enabling a direct

comparison of the two signals. In this work, we employ the Edit Distance (ED)

algorithm to determine the similarity between two sensor signals. This algo-
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rithm builds on the benefits of the SAX method and compares the similarity

between two strings by counting the number of operations required to convert

one string to the other (Marzal and Vidal, 1993). These operations can include

the “insertion”, “deletion”, and “substitution” of a character. The algorithm

therefore starts at an initial state and finds the shortest path to converting

the first string to the second. Let us assume comparison to a linear trend as

shown in Figure 5.5. If the obtained signal has a growing exponential shape,

it will take 3 operations to convert the first string to the second. In the case

of a tanh signal, however, the number of operations to convert the two strings

is 4. The counting of operations can be performed in an automated manner

using dynamic programming.

5.5 Event Classification

Classification of specific trouble events can be made using a supervised-

learning type classifier, or a rule-based system. A trained classifier can be

simpler to design and implement, but it requires access to large training data,

with a balanced distribution of all the events of interest. Rule-based systems

require the designer to essentially think of all the various combinations of the

feature set, and associate each combination with the appropriate event. A

benefit of such a system is that expert knowledge can be directly built into

the system, and the need for training data is avoided.

Fuzzy classification based on fuzzy logic provides a comprehensive way

of embedding linguistic knowledge into a classifier and aggregating the feature
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set to arrive at a final outcome, with a quantifiable degree of certainty. Since

the problem of classifying hydraulic events does not involve a large feature

space, fuzzy logic is an appropriate framework for the classification task. In

addition, a fuzzy based classification allows for associating a degree of certainty

with each output decision.

In a Mamdani fuzzy inference system (FIS), fuzzy rules enable the

creation of linguistic statements that describe how the classifier should make

its decisions (Kuncheva, 2000). Through a fuzzification process, numerical

inputs from hydraulic sensors can be converted into linguistic terms using a set

of membership functions. These functions can represent fuzzy concepts such

as “small”, “large”, “high”. In making a fuzzy rule, these memberships can be

combined using conventional “and”, “or”, and “not” operators. For instance,

“and” can be computed using the product operator uA(x) × uB(x), where

uA(x) represents the membership in class A, and the “or” can be computed

using uA(x) + uB(x)− uA(x)× uB(x) (Kuncheva, 2000).

The classification of kick and lost circulation events is performed using

two different fuzzy inference systems. For the kick detection task, the input

variables include the shape and size of the mud volume change, the size of

the flow-out increase, and the sign of the standpipe pressure change. For the

lost circulation FIS, the input variables are the size and shape of the mud

volume change. Table 5.1 demonstrates the input and output variables of the

FIS systems, as well as the activation conditions for each FIS. For the Gain

FIS system to be activated, a positive change in the flow-out trend with no
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changes in flow-in must be observed within a certain time-frame. The Loss FIS

is similarly activated when both a negative change in flow-out and standpipe

pressure are observed.

FIS
Change

Activator
Input

Variables
Output

Variables

Gain +fout ∩ f̄in

mvsize,
mvshape,
sppsign,
fout,size

P (gas influx),
P (influx) ,
P (breathing)

Loss
(−fout ∩
−spp) ∩ f̄in

mvsize,
mvshape

P (loss)

Table 5.1: Activation conditions, and input/output variables of the fuzzy in-
ference systems for gains and losses.

The rule surface of the Loss FIS is simpler to display, because it only

has two input variables as shown in Figure 5.6 . To demonstrate how certain

events are inferred in the Gain FIS system, various input-output relationships

are shown in Figures 5.7 through 5.10. In Figure 5.7 for instance, the output

variables all display an event probability of less than 0.5, with all events being

similarly likely, due to the specific combination of the input variables,

Figure 5.6: Fuzzy decision surface for lost circulation classification.
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Figure 5.7: Particular combination of the input variables of the Gain FIS
system that results in all events having a probability less than 0.5.

In the case of Figure 5.8, the highest probability output is identified as

a wellbore breathing event, due to a positive sign of pressure change as well

as a decaying mud volume shape.
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Figure 5.8: Particular combination of the input variables of the Gain FIS
system that results in a wellbore breathing event being the most probable
event with P (breathing) = 0.5.

With a change in the shape of the mud volume trend to exponentially

increasing, the probability of the wellbore breathing is reduced, and the most

likely event becomes an influx, as shown in Figure 5.9.
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Figure 5.9: Particular combination of the input variables of the Gain FIS
system that results in an influx event being the most probable event with
P (influx) = 0.87.

Finally in Figure 5.10, a switch in the sign of the pressure change and

increased gain in flow-out and mud volume signals results in the inference of
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a gas influx event with a probability of 0.7.

Figure 5.10: Particular combination of the input variables of the Gain FIS
system that results in a gas influx event being the most probable event with
P (gas influx) = 0.7.
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5.6 Sensor Calibration for Direct Flow-in/Flow-out Com-
parison

As noted earlier in this chapter, a separate module in EDS is devoted

to performing sensor calibration, such that a direct comparison of the flow-

in and flow-out signals (delta-flow) can be performed. While the delta-flow

comparison is a popular method for identification of kick and lost circulation

events in the drilling literature, it is only possible when accurate flow sensors

are present both on the inlet and the outlet of the mud circulation loop. Most

commonly however, the measurement of the flow-out from the annulus is per-

formed using a flow-paddle sensor. A flow paddle measures the height of the

returning drilling mud from the annulus that is traveling in an open conduit.

Therefore, the measurement is performed in the units of [%] of a total height,

and does not directly translate to a flow-rate unit. For the calibration task,

we are therefore interested in learning a nonlinear mapping from flow-out in

[%] units to the actual value of flow-out in gpm. The target, which is the

flow-rate in gpm units, is available to us as the flow-in reading itself, given no

deviations between flow-in and flow-out trends exist. This assumption holds

true through the simple relationship of fin = fout in steady state conditions,

when no losses or gains are present in the mud circulation system. In Figure

5.11, the idea is that the steady state value of flow-out should match flow-in

during normal operation, except during the transient periods.

183



0 1000 2000 3000 4000 5000

0

20

40

60

80

0 1000 2000 3000 4000 5000

0

200

400

600

Figure 5.11: Uncalibrated flow-out (upper plot) and flow-in (lower plot) data
from drilling 10 stands. The majority of the data only covers a 400gpm to
600gpm range.

One way of performing this calibration task is to use the nonlinear

regression techniques already discussed in Chapter 3, and apply them to his-

torical data with the flow-out data in [%] as the input, and the flow-in data

in gpm as the target. A calibration performed in this manner should only

contain data since the last change in the rheological properties of the drilling

fluid. Figure 5.12 shows the results of this calibration, on data from 10 stands

of drilling activity. The calibration function was trained on the first 4 stands,

and tested on all 10 stands. Although the support vector method works suffi-

ciently well in comparison to the random forest and the ANN, the performance

of calibration task has room for improvement. Specifically, the imbalance in
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the “levels” of input and target data, seems to not present the learner with

enough examples to learn the true nonlinear function from.
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Figure 5.12: Calibrated flow-out measurements using various regression tech-
niques, and flow-in data from drilling 10 stands.

Consider the case of Figure 5.13. The training task for calibration is

performed on the first 80s of the data during an active period where the flow-

rate is ramped from 0 to 800gpm. The calibration is then used for prediction

of the flow-out signal for t > 200. With the training using examples only

from t < 80, the prediction results resemble the same performance depicted in

Figure 5.12. Similarly, the SVM with a polynomial kernel overestimates the

flow-out response, but still performs better than the other methods.
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Figure 5.13: Action-driven calibration of flow-out, using data from a flow-in
range of 0-200gpm. Training performed for t < 80.

When the training period is increased to include more training examples

that span a higher flow range, the prediction performance of the SVM method

is significantly improved. In the final case in Figure 5.15, where the training

includes the full flow range, all predictions have improved and can trivially

predict the flow-out response.
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Figure 5.14: Action-driven calibration of flow-out, using data from a flow-in
range of 0-400gpm. Training performed for t < 120.
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Figure 5.15: Action-driven calibration of flow-out, using data from a flow-in
range of 0-750gpm. Training performed for t < 180.

The finding from Figures 5.13 through Figure 5.15 is that while it is

preferred for the calibration task to use data from the full range of possible

flow values for optimum prediction results, it is also possible, by using the

right calibration method, to achieve sufficient results by training on at least

50% of the maximum expected flow range. This finding is also shown in Table

5.2, where the mean squared prediction results of all calibration methods are

shown. Not only is the SVM method the most accurate, but its performance

stays fairly consistent when going from 120s training to a 180s training. Due to

overfitting to the smaller range of data in 80s and 120s training, the ANN and

RF methods are not capable of predicting higher-than-experienced flow-rates,

and therefore only perform well when they are exposed to a 180s training.
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Learner 180s training 120s training 80s training
Random Forest 5.8510e+03 2.3484e+04 7.1722e+04
Neural Network 5.4972e+03 1.3974e+04 5.9870e+04
Support Vector

Regression
5.4782e+03 5.8731e+03 9.4354e+03

Table 5.2: Mean squared prediction error of three regression techniques for
calibration of the flow-out sensor.

To demonstrate the benefits of the delta-flow comparison, note the field

scenario in Figure 5.16. In this scenario, an accidental change in the flow-out

signal occurs just prior to when the crew begins adding mud to the pit tanks.

As is evident, a purely pattern-based logic would produce a false alarm, since

it associates the detected change in flow-out with the increase in mud volume.

However, a threshold-based comparison of flow-out and flow-in (50gpm in this

case) serving as an additional feature to the event classifier would prevent

the false alarm by highlighting the fact that the gain in flow-out is physically

insignificant.
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Figure 5.16: Demonstration of delta-flow method benefit for avoiding a false
alarm. The upper plot shows an uncalibrated flow-out, and a change-point
followed by mud transfer in the pits (shown in the middle plot). The bottom
plot shows the overlay of calibrated flow-out and flow-in trends, and the fact
that the change-point corresponds to a small change in absolute flow.

In essence, an active calibration of the flow-out sensor using a ramping

procedure shown in Figure 5.14 enables a direct flow-out/flow-in comparison.

This additional comparison can assist in false alarm avoidance by identifying
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changes in the flow-out signal that are statistically significant, but physically

negligible.

5.7 Flowback Fingerprinting

The fingerprinting feature of EDS enables historical analysis of mud

flowback trends during the onset of connections. The purpose of this analysis is

to distinguish between normally occurring flowbacks due to the mud in return

lines, and wellbore breathing events. Flowbacks due to the mud in return

lines are ideally repeatable, whereas wellbore breathing, while still having a

decaying trend, can be much bigger in volume. When the first flowback is

observed, the program fits an exponential model to the trend, using nonlinear

least squares. An error bar diagram is then created, as shown in Figure 5.17

which signifies the upper-bound of a safe-zone for consecutive flowback trends.

If future trends have a similar shape to the previous flowback, the model can be

automatically updated to take statistical variations into account. Otherwise,

the flowback is considered “abnormal”, and an alert is generated. The EDS

user can also discard flowback trends manually, or select a specific trend as

the sole reference for the model. A separate module continuously checks for

shape of the flowback trend, to ensure it does not show the signature of a kick.
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Figure 5.17: Flowback monitoring screen in the RAPID EDS program. The
main plot shows the mud gains during the onset of connection making. The
user can select a specific flowback trend from the past using the drop-down
menu as shown, or delete it if deemed irrelevant. Auto-referencing allows the
user to include all similar looking past flowbacks in derivation of the statistical
model. After the flowback “monitoring time” has ended, EDS continuously
checks if the connection flowback starts exhibiting an exponentially increasing
shape.

5.8 Case Studies

In the final section of this chapter, we discuss the testing results of the

EDS program on several data-sets from onshore and offshore drilling operations

that contain real kick, lost circulation and wellbore breathing events. These

data-sets were generously provided by the sponsors of the RAPID consortium,
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including the Hess Corporation, Pason Systems, and the Apache Corporation.

The scenario depicted in Figure 5.18 shows an example of a real influx being

detected. The influx triggers positive change-points in both the flow-out and

standpipe pressure signals, and shortly after a 2bbl gain in the mud volume

is observed. The system successfully ignores the mud transfer that occurs at

t = 1600s.

Figure 5.18: Demonstration of the 4 mud circulation sensor trends when an
influx occurs, and is detected by EDS.

192



Figure 5.19 is the case of a lost circulation event. Prior to catching

the event at t = 6300s, EDS encounters several periodic fluctuations in both

flow-out and mud volume, which could have potentially caused false alarms.

However, when a simultaneous negative change-point in flow-out and stand-

pipe pressure is detected at t = 6300s, the algorithm begins to look for losses

in mud volume. The severity of the alarm generated for this event is a function

of the shape and size of the loss, as already noted in Section 5.5.

Figure 5.19: Demonstration of the 4 mud circulation sensor trends when a lost
circulation event occurs, and is detected by EDS.

193



Figure 5.20 shows the output the EDS program in response to a gas

influx. The alerts for this event were generated at 7:23, roughly 2 minutes

before the pumps are shut off, in response to a rapidly increasing flow-out

and slowly dropping standpipe pressure. What is interesting to note is the

flowback signature at 6:54, when after 20 seconds the trend diverges from

the fingerprinting model and keeps increasing, only to be interrupted by the

starting of the pumps again. With access to a fingerprinting tool such as the

one in the EDS, an obvious divergence of the flowback signature could have

potentially provided an indication to the crew several minutes ahead of the

actual event.

Figure 5.20: Correct identification of a gas influx event with an 85% confidence.
Note the flowback at 6:54 demonstrates an abnormal signature compared to
the flowback model.
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Figure 5.21 depicts a scenario where a very large > 100bbl wellbore

breathing incident occurs during an offshore operation. The event is first

identified as an influx at 13:17 by EDS. Once the pumps are shut off however,

the mud volume keeps increasing. The circulation alerts of the EDS stop and

as shown, the connection alarms indicate a decaying a flowback trend, which

signifies correctly a wellbore breathing event.

Figure 5.21: Correct identification of a wellbore breathing event during pumps-
off, after initially indicating an influx event. The large gains continue well into
120s after the pumps are shut-off, but EDS shows a safe “decaying” status.

Figure 5.22 is another example of a much more subtle wellbore breath-

ing event. The connection fingerprinting feature has initially updated the

model to include the flowbacks that occurred at 10:24, and 12:10. Starting at
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14:03, all future flowbacks begin to fall outside the model’s safe zone. The rig

crew began reporting wellbore breathing prior to midnight.

Figure 5.22: Correct identification of wellbore breathing events during con-
nections using the flowback monitoring tool. After 14:03, all flowbacks have a
higher steady-state gain than the previous ones.

The RAPID EDS program has been tested on several historical data-

sets, as well as in real-time in industry RTOCs. The results obtained from

the historical testing are summarized in the Table 5.3. The highest rate of

false-alarms in testing was observed in Well G when the flow-out sensor was

severely noisy at ±30%. The missed alarms from datasets Well E and Well

K were due to data quality issues including saturating flow-out sensors that

did not exhibit the necessary change required to trigger the FIS system. The
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wellbore breathing event in Well H was detected during the connections and

corresponds to the example in Figure 5.22.

Dataset
Number
of Days

Number
of Events

Missed
Alarms

False
Alarms

Comments

Well A 12 0 0 0 -
Well B 2 1 (Influx) 0 0 -
Well C 3 1 (Loss) 0 0 -

Well D 4 0 0
1

(Influx)
-

Well E 3 1 (Influx) 1 0
Event not
visible in
RTC data

Well F 5 1 (Influx) 0
3

(Influx),
1(Loss)

Severely
noisy

flow-paddle

Well G 25
1 (Gas
Influx)

0 0 -

Well H 5
1 (Wellbore
Breathing)

0 0 -

Well I 15
1 (Gas
Influx)

0 0 -

Well J 56 0 0 1
Rig state

missclassifi-
cation

Well K 1
1 (Gas
Influx)

1 0
Saturating
flow-paddle

Table 5.3: Testing results summary of the RAPID EDS program on multiple
offshore and onshore wells.

The algorithmic details of event detection systems are usually not pub-

lished in drilling literature, and reproducing results from other similar systems

is not possible. However, several authors in recent years have begun to publish
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information on the missed/false alarm performance of their systems. Unrau

et al. (2017) for instance reported a false alarm rate of 1 per 5 hours for kicks,

and 1 per 10 hours for losses using tight alarm settings with their adaptive

alarms system. Andia et al. (2018) reported a false alarm rate of 1.53 per

12 hours using a model-based early kick detection system and flow-paddle

measurements. The results shown in Table 5.3 demonstrate the strong perfor-

mance of the EDS system and its ability to avoid false alarm generation. In

the worst example of Table 5.3 which corresponds to Well F, EDS produces 0.4

false alarms per 12 hours. In the best example of Table 5.3 which corresponds

to Well G, EDS produced 0 false alarms over a 25 day period while detecting

the true gas influx event.

5.9 Conclusion

In this chapter, we developed EDS, a set of tools that together form the

Event Detector. EDS is effective at detecting drilling trouble events with a low

rate of missed/false alarms. In addition, reduction of false alarms was shown

to be improved by sensor calibration, through the enabling of the delta-flow

method. The proposed Event Detector was tested on several data-sets from

field operations to demonstrate its feasibility for practical implementation.
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Chapter 6

Conclusion

This dissertation explores the problem of real-time learning for a drilling

automation system, and ways in which the automation system can leverage this

learning to enhance optimization, control and event detection performance. As

a solution to this problem, this dissertation described a self-learning control

methodology that encourages the system to actively learn about its environ-

ment by taking appropriate actions. The various subsystems of this control

system were developed and tested, and the importance of each subsystem to

the control system as a whole was highlighted.

Initially, it was shown that learning the parameters of a drilling physics-

based model requires suitable learning algorithms and the right transition

function structure to address the complexities of the drilling environment. In

addition, effective learning was shown to require a calculated sequential ap-

proach, in which the agent takes the appropriate actions in the right scenarios

for optimal learning.

Optimization was explored in Chapter 3, and it was shown that by

strategically striking the right balance between exploration and exploitation,

the Optimizer can perform iterative learning and optimization to find optimal
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drilling parameters. Through the use of the model learned in Chapter 2, Opti-

mizer was also shown to be capable of predicting the environment’s response

to control actions and ensure constraint satisfaction.

The closed-loop tracking of Optimizer set-points was targeted in Chap-

ter 4, and a nonlinear control methodology based on the sliding mode technique

was shown to handle the challenges of drilling process control better than linear

control techniques. Benchmarking was performed on a high-fidelity dynamics

model using various test cases.

The importance of the Event Detector and its ability to robustly avoid

missed/false alarms in drilling event detection was explored in Chapter 5. An

event detection system capable of leveraging real-time learning was developed,

and implemented for field data from drilling operations.

6.1 Contributions

Each individual chapter in this dissertation made the following contri-

butions to the existing drilling engineering literature:

• Chapter 2 presented an action-driven, sequential learning approach for

learning of physics-based drilling models. This methodology was applied

to a novel real-time physics-based model of the drilling environment,

which in accordance with the scope, focused on a coupled axial dynamics

and drilling fluid hydraulics model.

• Chapter 3 introduced a drilling optimization technique (named qDrill)
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that does not rely on complete a priori knowledge of the environment

and adapts itself to environment changes. Chapter 3 also formulated the

first predictive optimization procedure for automated tripping.

• Chapter 4 presented a nonlinear WOB controller to address the chal-

lenges of tracking the set-points of the Optimizer. This controller was

shown to perform better than conventional techniques from a tracking,

robustness and disturbance rejection perspective.

• Chapter 5 presented a drilling event detection system (named RAPID

EDS) that has proven to produce a very low number of missed/false

alarms in comparison to other popular event detection software in the

industry.

6.2 Recommendations and Future Work

The work presented in this dissertation is readily applicable to field

operations. For effective implementation, the following points should be con-

sidered.

The learning algorithms presented in Chapter 2 require complex mathe-

matical operations and high sampling rates, which are not attainable with rig-

site programmable logic controllers. Industrial embedded PC systems, how-

ever, can address both of the aforementioned requirements, as they allow direct

connectivity with rig sensors and can perform the required computations. The

nonlinear WOB process level control of Chapter 4 can be implemented directly
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on a PLC system, but it will require direct communication with the estimator

on the embedded PC. For a standalone controller/estimator layout without

the use of an embedded PC, a FPGA implementation can also be explored.

The event detection system of Chapter 5 has been successfully im-

plemented in an RTOC setting with the aid of a WITSML data acquisition

application. A similar approach can be taken for rig-site implementation, pro-

vided the rig has reliable internet connectivity. However, the WITSML data

communication protocol does not provide deterministic data transfer for ap-

plications that benefit from timely decisions. For early detection of trouble

events in critical applications such as offshore operations, it is recommended

that the EDS be implemented on a rig-site embedded PC system to avoid the

complications of the WITSML protocol.

The optimization algorithms of Chapter 3 require high computational

and memory power, but low communication speeds. They can therefore be

implemented on office computers, and communicate with the rig-site control

system through various existing protocols such as WITSML. Alternatively, an

additional onsite computer can be used for implementation of the optimization

algorithm in the case of no internet connectivity.

From an academic standpoint, it is recommended to focus future re-

search on:

• Laboratory experiments to further validate the action-driven learning

approach presented in Chapter 2.
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• Field implementation of the qDrill algorithm on an open industry appli-

cation platform to experimentally assess the proposed technique in real

drilling scenarios.

• Exploration of a look-up table based PID gain scheduling as an alterna-

tive to the proposed nonlinear controller for WOB control. If comparable

in terms of performance, rig-site implementation of such a control tech-

nique can be potentially less complicated than the rest of the control

techniques presented in this dissertation.

• Application of RAPID EDS to other drilling events in a variety of drilling

operational states.
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Appendix A

List of Symbols and Abbreviations

A.1 Symbols

Symbol Meaning

t time

z spatial coordinate along the vertical

z measurement vector

h spatial coordinate along the horizontal

x state variable

s Laplace variable

v velocity

P pressure

Q flow rate

Ω angular velocity

F force

m mass

m̄ mass per unit length

w weight per unit length

mf fluid mass

L length

b damping parameter

k stiffness parameter

k̄ stiffness times length
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K bulk modulus of elasticity

PV plastic viscosity of a Bingham plastic fluid

YP yield point of a Bingham plastic fluid

V volume

A cross-sectional area

Cz discharge efficiency

Ψ nonlinear damping function

κ nonlinear friction force

µ coefficient of friction

βB coefficient of bouyancy

Zds characteristic impedance of drillstring

T characteristic time delay

P state covariance matrix

Q process noise covariance matrix

R measurement noise covariance matrix

H linear observation matrix

R reward

P transition probability

α learning rate

ε probability of random action

Υ probability of selecting sub-optimal cluster

β PSO population parameter

S sliding surface

η sliding mode control paramater

c1 super-twisting sliding mode control paramater

c2 super-twisting sliding mode control paramater

λ characteristic equation root
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fout flow-rate out

fin flow-rate in

A.2 Subscripts

Subscript Meaning

ds drillstring

c drill collars

fr formation

in input

f frictional loss

hkl hook-load

spp standpipe pressure

n lumped model element

q lumped estimator element

md measured depth

tvd true vertical depth

A.3 Abbreviations

Abbreviation Meaning

WOB weight-on-bit

ROP rate of penetration

RPM revolutions per minute

CV control volume

EKF extended Kalman filter

UKF unscented Kalman filter

PF particle filter

EUL ensemble unscented learner
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ODE ordinary differential equation

DDE delay differential equation

BD bit depth

HD hole depth

SPP standpipe pressure

MDP markov decision process

ANN artificial neural network

SVR support vector regression

BTR bagged tree regression

RF random forest

MSE mean squared error

PSO particle swarm optimization

PID proportional integral derivative control

LQI linear quadratic integral control

MPC model predictive control

SMC sliding mode control

STSMC super-twisting sliding mode control

EDS event detection system

SAX symbolic aggregare approximation

CPD change point detection

RTC real-time centre

WITSML wellsite information transfer standard markup language
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Appendix B

Hydraulic Pressure Drop Calculations

For Bingham Plastic fluids, the pressure drop for a pipe of inner diam-

eter, D, in field units can be written as:

∆pf,lam =

(
µpv

1500D2
+

τ0

225D

)
∆L (B.1)

for laminar flow, and:

∆pf,turb =

(
ρ0.75v1.75µ0.25

p

18000D1.25

)
∆L (B.2)

for turbulent flow. For fluid flow inside the annulus, the pressure drop can be

written as:

∆pf,lam =

(
µpv

1000(D2 −D1)2
+

τ0

200(D2 −D1)

)
∆L (B.3)

for laminar flow, and:

∆pf,turb =

(
ρ0.75v1.75µ0.25

p

1396(D2 −D1)1.25

)
∆L (B.4)

for turbulent flow. The flow regime can be determined by evaluating the

Reynolds number. For inside the drillstring, the Reynolds number can be

written as:

NRe = 928
ρvD

µa
(B.5)
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where the apparent viscosity, µa, is given by:

µa = µp +
6.66τ0D

v
(B.6)

Similarly, the Reynolds number inside the annulus can be evaluated by:

NRe = 757
ρv(D2 −D1)

µa
(B.7)

where the apparent viscosity, µa, is given by:

µa = µp +
5τ0(D2 −D1)

v
(B.8)
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Appendix C

Published Work

1. A. Ambrus, P. Pournazari, P. Ashok, R. Shor, E. van Oort, et al. Over-

coming barriers to adoption of drilling automation: Moving towards au-

tomated well manufacturing. In SPE/IADC Drilling Conference and

Exhibition. Society of Petroleum Engineers, 2015.

2. P. Pournazari, P. Ashok, and E. van Oort. Modeling and control of

automated pipe hoisting in oil and gas well construction. In ASME

2015 Dynamic Systems and Control Conference, pages V002T20A004

V002T20A004. American Society of Mechanical Engineers, 2015a.

3. P. Pournazari, P. Ashok, E. van Oort, S. Unrau, S. Lai, et al. En-

hanced kick detection with low-cost rig sensors through automated pat-

tern recognition and real-time sensor calibration. In SPE Middle East

Intelligent Oil and Gas Conference and Exhibition. Society of Petroleum

Engineers, 2015b.

4. P. Pournazari, D. Adams, P. Ashok, E. v. Oort, K. Holliday, et al.

Realtime health monitoring of top drives for offshore operations using

physics based models and new sensor technology. In SPE Deepwater
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Drilling and Completions Conference. Society of Petroleum Engineers,

2016.

5. P. Pournazari, B. R. Fernandez, and E. van Oort. Robust weight-on-

bit tracking in drilling operations: A stochastic, nonlinear approach. In

ASME 2017 Dynamic Systems and Control Conference, pages V003T43A003-

V003T43A003. American Society of Mechanical Engineers, 2017.

6. E. Cayeux, R. Shor, A. Ambrus, P. Pournazari, P. Ashok, and E. van

Oort. From shallow horizontal drilling to erd wells: How scale af-

fects drillability and the management of drilling incidents. Journal of

Petroleum Science and Engineering, 160:91-105, 2018.

C.1 Planned Publications

1. P. Pournazari, P. Ashok, and E. van Oort. An Action-Drive, Self-

Learning Auto-Driller for Robust Weight-on-Bit Tracking and Real-Time

Drilling Optimization. ASME Journal of Dynamic Systems, Measure-

ment, and Control.

2. P. Pournazari, P. Ashok, and E. van Oort. False and Missed Alarm

Minimization in Drilling Event Detection. SPE Drilling & Completion

Journal.
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