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Abstract 

 

A Bayesian Network Classifier for Quantifying Design and Performance 

Flexibility with Application to a Hierarchical Metamaterial Design 

Problem 

 

Jordan Lauren Matthews, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor: Carolyn C. Seepersad 

 

 

Design problems in engineering are typically complex, and are therefore 

decomposed into a hierarchy of smaller, simpler design problems by the design 

management. It is often the case in a hierarchical design problem that an upstream design 

team’s achievable performance space becomes the design space for a downstream design 

team. A Bayesian network classifier is proposed in this research to map and classify a 

design team’s attainable performance space. The classifier will allow for enhanced 

collaboration between design teams, letting an upstream design team efficiently identify 

and share their attainable performance space with a downstream design team. The goal is 
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that design teams can work concurrently, rather than sequentially, thereby reducing lead 

time and design costs. 

In converging to a design solution, intelligently narrowing the design space allows 

for resources to be focused in the most beneficial regions. However, the process of 

narrowing the design space is non-trivial, as each design team must make performance 

trade-offs that may unknowingly affect other design teams. The performance space 

mapping provided by the Bayesian network classifier allows designers to better 

understand the consequences of narrowing the design space. This knowledge allows 

design decisions to be made at the system-level, and be propagated down to the 

subsystem-level, leading to higher quality designs. 

The proposed methods of mapping the performance space are then applied to a 

hierarchical, multi-level metamaterial design problem. The design problem explores the 

possibility of designing and fabricating composite materials that have desirable macro-

scale mechanical properties as a result of embedded micro-scale inclusions. The designed 

metamaterial is found to have stiffness and loss properties that surpass those of 

conventional composite materials. 
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Chapter 1: Introduction 

Effective design of complex systems requires proper organization, starting from 

the first day of the design process. The complex design problem must first be 

decomposed into a hierarchy of smaller, more manageable design problems. A design 

team is assigned responsibility for each decomposed design problem, and must be 

coordinated by top-level management to work concurrently or sequentially with each 

other. Each design team must meet performance criteria unique to each team, while 

collectively meeting top-level performance criteria. The process of then converging to a 

final satisfactory design is non-trivial, as each design team must make performance trade-

offs that may unknowingly affect other design teams. In this thesis, a tool is developed to 

allow design teams to accurately map and communicate knowledge of their design spaces 

and performance capabilities as a means of collaborating with other designers. 

1.1 The Modern Engineering Designer’s Perspective 

Everyday engineering companies strive to deliver higher quality products at low 

costs to the consumer, in order to stay competitive. Consumers now demand that a 

product meet a wide range of customer performance criteria, leading to crucial decisions 

of designing “one-size-fits-all” products or allowing consumers to purchase customized 

products. At the same time, engineers are forced to meet compressed timelines in order to 

shorten the product’s design time. These challenges must be overcome while mitigating 

the never-ending uncertainty that is inherent in every stage of the design process. 
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Although the human race has repeatedly shown the intellectual capability of designing 

extremely complex and beneficial products such as airplanes and skyscrapers, the 

frequency of product failures brings the age-old advertiser’s expression to mind: “We 

design our products fast, good, and cheap. You may choose any two qualities.” 

Many of the difficulties in engineering design are the result of a constant increase 

in product complexity. An increase in product complexity has especially been seen over 

the past 100-200 years due to vast improvements in manufacturing and communication. 

Inventor Ray Kursweil famously recognized that technological evolution follows an 

exponential growth because the latest technology is used to create the next generation 

products (Kursweil, 2008). Advances in engineering numerical simulation software, such 

as Finite Element Analysis, which may currently require hours or days to complete a 

single simulation, were unimaginable a half a century ago. Correspondingly, a simulation 

that took days to run a decade ago can now be completed in minutes. Engineers now have 

the capability to use tools that were once a “final check” before prototyping, as tools to 

find better designs. 

No longer is it the case that a single engineering team can design a large-scale 

system on their own, as a wide range of varying expertise is necessary. While there is not 

a universal definition of product complexity, several characteristics are common to 

complex products. In addition to difficulty and novelty, complexity in engineering 

systems design is characterized as having high interdependencies between 

disciplines/departments, as well as having a high number of parts, functions, and 

disciplines (Kim & Wilecon, 2009). The quintessential example of a large-scale complex 
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system is the modern-day airplane, which has recently seen dramatic complexity 

increases. The F-16 fighter jet, which was developed in 1974, had 15 subsystems and an 

order of 10
3
 interfaces, while the F-35 fighter jet, which completed development in 2006, 

had 130 subsystems and an order of 10
5
 interfaces (Becz et al., 2010). As a result of this 

complexity increase, the development of Lockheed Martin’s F-35 has had production 

delays of 1-3 years and an unexpected increase of 7%-10% in its lowest rate unit cost 

(Gertler, 2012). The failings in the F-35 design process have been shared by commercial 

aircraft design processes as well. Airbus’s A380 overran its scheduled design time by 18 

months, which was still better than Boeing’s development of the 787 Dreamliner, which 

saw production delayed by 28 months (Becz et al., 2010). 

These recent design process inadequacies represent a multitude of interlaced 

flaws, many of which are unique to each design process. However, acting Pentagon 

Acquisition Chief, Frank Kendall, specifically recognized Lockheed Martin’s inability to 

effectively work concurrently between design teams as the fundamental cause for delays 

(Sweetman, 2012). Kendall added that Lockheed Martin held far too optimistic 

expectations that satisfactory performance criteria would be met after compiling the 

design selections from each design team. Nevertheless, if indeed Lockheed Martin held 

overly optimistic expectations of their system-level performance capabilities, the question 

remains: “What performance values should have been expected?”  

The designer’s tool presented in this thesis will give design teams at every 

hierarchical level the means to accurately communicate their performance capabilities 

with each other. High-level design teams can utilize this knowledge to make performance 
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tradeoff decisions for design teams lower on the decomposition hierarchy in order to best 

benefit the overall performance of the product.  Additionally, in an effort to efficiently 

converge on a final, overall design, a method to quantify each design team’s flexibility is 

drawn from this tool. 

1.2 Enhancing Collaboration in Set-Based Design 

As design engineers work to converge to a single solution, adopting a set-based 

strategy in which design teams maintain flexibility by sharing ranged sets of solutions (as 

opposed to point solutions), is a widely accepted strategy to mitigate the effects of 

unforeseen events in the design process. A set-based design process allows design teams 

to delay decision making until their design space is better understood, giving 

collaborating design teams more accurate depictions of each other’s knowledge at the 

current state. Game theoretic techniques have been applied to show that design processes 

in which design teams poorly communicate their design objectives will converge to a 

sub-optimal solution point, called the “Nash Equilibrium” (Gurnani & Lewis, 2008). 

Thus, creating a design process environment wherein design teams can collaborate on 

design decision making can lead to improved system-wide performances. 

In order to better understand the benefits of concurrent engineering, a brief 

discussion on terminology is presented here, in preparation for the remainder of this 

thesis. The variables controlled by design teams, such as the diameter of a rod, are termed 

design variables. Similarly, the specific features for gauging the quality of a design, such 

as motor horsepower or efficiency, are termed performance variables. The set of all 
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possible design variable combinations is termed the design space, and is typically made 

finite by assigning lower and upper bounds to each design variable. The set of all possible 

performance variable combinations is termed the performance space. The finite subset of 

the performance space that can be mapped from the bounded design space is termed the 

attainable performance space. Within the attainable performance space designers seek to 

find designs that meet certain criteria or thresholds; for example, management may state 

that the fuel efficiency must be greater than 38 miles per gallon. The set of performance 

variables that meet all performance criteria is termed the satisfactory performance space, 

and the exploitation of this subspace is the fundamental task of all design processes. The 

challenge in design is to develop an understanding of the relationships between design 

variables, specifically, the relationships that correspond to designs within the satisfactory 

performance space.  

The recent concurrent design process failures in industry have stemmed from poor 

communication between design teams, and have resulted in highly iterative point-based 

design processes. The point-based design process approach can be visualized as 

sequential decision making, in which design teams optimize their controlled design 

variables and only share their latest design configuration with each other. In contrast, a 

concurrent set-based design process approach can be thought of as design teams working 

in parallel, sharing information in order to minimize the chance of design iterations. 

These approaches are illustrated in Figures 1.1 and 1.2. 
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Figure 1.1. A depiction of a point-based design process approach where design teams 

work in sequence. 

 

Figure 1.2. A depiction of a concurrent set-based design process approach where design 

teams work in parallel. 

The results of a hypothetical design process that adopts a point-based approach 

are illustrated in Figure 1.3. In this example, there are two design teams, each controlling 

one design variable and one performance variable. The goal of the design teams is to 

iterate until a solution is found that meets both design teams’ criteria for satisfactory 

performance. The first design found that meets the performance acceptability criteria can 

conclude the design process; however, a better design can likely be found if resources 

permit further iteration. The point-based design process results in 5 design iterations 

before a mutually satisfactory design was found, and 7 iterations before a superior design 
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was agreed upon by both parties. Although there are several methods for optimizing 

multilevel, decomposed design problems, such as Analytical Target Cascading and 

Concurrent Sub Space Optimization, they can be computationally expensive and require 

precise system-wide coordination and management that is often unattainable in non-

automated processes, which quickly devolve into a guess-and-check method (H. M. Kim, 

Michelena, Papalambros, & Jiang, 2003; Wujek, Renaud, Batill, & Brockman, 1996). 

The key takeaway of a point-based design approach is that it necessitates design 

iterations, which can become the primary cause of developmental delays in later stages of 

the design process. 

 

Figure 1.3. The design space (left) and performance space (right) of a point-based design 

process. 

Set-based collaborative design is based on spending extra time and resources 

early in the design process, in order to reduce the chance of iterations in later phases of 

the design process. The benefits of an effective collaborative design process are 
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exemplified by Toyota’s adoption of set-based concurrent engineering practices in the 

1990’s, which led to remarkable reductions in lead time and design costs (Clark & 

Fujimoto, 1991; Sobek, Ward, & Liker, 1999; Ward, Liker, Cristiano, & Sobek, 1995). A 

research study by Sobek et al. identifies three key principles of Toyota’s concurrent 

engineering practices as the basis of their success: (1) Map the design space, (2) Integrate 

by intersection, and (3) Establish feasibility before commitment (Sobek et al., 1999). 

Essentially, these principles address the most basic goal of developing the best product 

that can be feasibly created. However, the basic nature of these principles emphasizes the 

difficulty of a large-scale concurrent design process.  

The capability of a set-based design approach to excel at the principles proposed 

by Sobek et al. can be understood by comparing a hypothetical set-based concurrent 

design process with the point-based design process shown in Figure 1.3. The same 

example design process is shown again in Figure 1.4, but with the design teams sharing 

sets of information, as opposed to single design points. In the examples shown in Figures 

1.3 and 1.4, the two performance variables,    and   , are attempted to be minimized, 

with the target values              and             , representing the maximum satisfactory 

performance value for design team 1 and 2, respectively. Following the principles 

proposed by Sobek et al., each design team first samples its own design space to 

understand performance tradeoffs and their locations in the design space. As each design 

team continues to sample design alternatives, sharing the sets of designs values that are 

known to produce feasible and satisfactory results focuses the search on designs that are 

known to have superior performance characteristics. Through the process of sampling 
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design alternatives, a mapping of the performance space is created, and the attainable 

performance space can be distinguished. Once an accurate mapping of the attainable 

performance space has been created, the two design teams simply need to look within the 

intersection of each other’s satisfactory design spaces to search for a final solution. 

 

Figure 1.4. The design space (left) and performance space (right) of a set-based design 

process. 

By helping designers better understand where promising regions of the design 

space exist before making constricting design decisions, set-based design also allows for 

the mitigation of unexpected occurrences in the design process. Unexpected occurrences 

are common in large-scale design processes, and may be the result of changing 

performance requirements, imprecision in design decisions, and even mistakes made by 

fellow designers (Antonsson & Otto, 1995; Devendorf & Lewis, 2008; Ilkka, 1985). The 

fundamental reason that a set-based design approach can adapt to changes in both design 
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space constraints as well as performance criteria, is that flexibility is maintained until the 

late stages of the design process. 

Flexibility has many connotations in design research, but is generally regarded as 

“a property that promotes change in both the design and performance spaces” (Ferguson, 

Siddiqi, Lewis, & de Weck, 2007). Additionally, flexibility has separate meanings in the 

design and performance spaces. In the design space, design flexibility is defined for this 

research as the size of the subspace that produces satisfactory designs (Suh, 1990). 

Essentially, design flexibility can be understood as the degree to which a design can be 

changed while still remaining in the satisfactory performance space (Simpson, Rosen, 

Allen, & Mistree, 1996). Similarly in regards to the performance space, performance 

flexibility is defined as the size of the satisfactory performance space associated with a 

specific set of designs. Performance flexibility can be thought of as a measure of 

insensitivity to changes in performance criteria. Sets of designs with high performance 

flexibility can meet a wide range of performance requirements, and thus easily adapt to 

changes in performance criteria. 

Taguchi’s robust design method, published in 1993, is a very commonly used 

method to develop high quality products by leveraging flexibility (Chang, Ward, Lee, & 

Jacox, 1994; Taguchi & Cariapa, 1993). However, in complex design problems it is 

difficult to determine how much flexibility is needed. Furthermore, it is even more 

difficult to quantitatively determine if a design has an appropriate amount of flexibility. A 

method to quantify flexibility has been recognized as an insufficiently answered research 

question for over two decades, and a flexible systems review paper stated in 2007 that a 
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standardized approach to quantifying flexibility still needs to be discovered (Ferguson et 

al., 2007; Gupta & Goyal, 1990; Toni & Tonchia, 1998). Several approaches to 

quantifying design and performance flexibility are reviewed in chapter two, but it should 

be noted that all of the previously proposed approaches have significant deficiencies in 

practice. 

A fundamental difficulty in approximation of the satisfactory design and 

performance spaces is that they must be done based on limited information. Obviously 

taking a copious number of sample points can make the size and shape of this space clear; 

however, engineers rarely have the computing power or time to perform an exhaustive 

sampling process. A hypothetical performance space is shown in Figure 1.5, and 

illustrates the challenges in developing a standardized method for mapping and 

quantifying regions that are known to be arbitrarily shaped. The most common approach 

to approximating the performance space is to use intervals (Chen & Ward, 1995). 

However, complex relationships that exist in engineering can rarely be captured by 

rectangular shape. Figure 1.5 depicts two intervals, one being overly generous in 

approximating the design’s performance capabilities, and the other being overly 

conservative. The overly generous interval is seen to misclassify portions of the 

unattainable performance region as feasible, and conversely, the overly conservative is 

seen to misclassify portions of the feasible performance space as either unattainable or 

infeasible. The obvious augmentation to interval classification, to improve its accuracy, is 

to divide the performance space into many separate intervals or bins. However, 

classification using bins is also inherently limited because it is a very simplistic 
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representation of the design space that does not capture confidence levels of the 

classification or guide subsequent sampling of the design space.  

 

Figure 1.5. Two performance spaces showing the error resulting from a conservative 

(left), and generous (right) interval approximation. 

A recently proposed method for classifying arbitrarily shaped regions of the 

design space uses a Bayesian network classifier to capture the knowledge of the design 

space gained from sample points (Shahan & Seepersad, 2012). To approximate the 

decision boundary between the satisfactory and unsatisfactory regions in the design space 

Shahan and Seepersad create a probability density function for each class (satisfactory 

and unsatisfactory). The probability density function is created by assigning a kernel of 

normal distribution on each sample point, and the kernels are subsequently summed over 

all sample points for each class. An unknown design point is classified as satisfactory if 

the class conditional probability density function for the satisfactory class of sample 
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points is greater than that of the unsatisfactory class at that point. The method can classify 

regions of arbitrary shape and connectivity, and it can guide sequential sampling and 

search.  A more in depth discussion of the Bayesian network classifier method, as well as 

other methods for classification is given in Chapter 2. 

The research presented in this thesis extends the work of Shahan and Seepersad, 

and uses a Bayesian network classifier to map arbitrarily shaped regions of the 

performance space. The major difference between the design and performance spaces, 

which is addressed by the method proposed in this thesis, is that while all points in the 

design space can be linked to points in the performance space, the converse is rarely true 

(Klein, Sayama, Faratin, & Bar-Yam, 2003). Therefore, in addition to differentiating the 

feasible and infeasible regions of the performance space, it is also necessary to 

distinguish the attainable versus unattainable regions of the performance space. These 

extensions of Shahan and Seepersad’s work are required for multilevel design, in which 

top-down, performance-driven, multilevel design requires back propagation across 

multiple levels.  

 

Figure 1.6. An example of a multi-level design problem. 

In the multilevel design problem shown in Figure 1.6, the vector of design 

variables, x, is the input to a small scale problem, whose output, y, is the input to a large 

scale problem, with performance parameters, z. This design process structure is common 
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in engineering and is interesting because the design space of the large scale design team 

is defined by the feasible performance space of the small scale design team. Figure 1.7 

shows for a two dimensional problem, how large scale candidate designs, y, are classified 

according to their large scale performance, z, and that classification is then used to 

identify high-performance candidate designs, x, at the small scale. 

 

Figure 1.7. The backward propagation of requirements across levels of a multi-level 

design problem. 

Complex systems are inherently multilevel design problems, having system-level 

performance requirements, as well as subsystem performance targets that must first be 

met. For the subsystem design team, it is initially sufficient to map the satisfactory design 

space, comprised of combinations of independent design variable values that offer 

satisfactory performance with respect to one or more dependent performance parameters. 

Subsequently in order to solve the system-level design problem, it is also necessary to 
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map the subsystem’s satisfactory performance space of dependent variable values, as 

those dependent variables also serve as input to system-level design. For example, in 

Figures 1.6 and 1.7, the output of the small scale problem, y, also serves as input to the 

large scale problem. Accordingly, it is important to create a design space mapping of the 

combinations of y1 and y2 values that provide satisfactory values of z at the large scale, 

but also a performance space mapping of the combinations of y1 and y2 values that can be 

feasibly achieved by varying x1 and x2 at the small scale, so that the design and 

performance space mappings of y1 and y2 values can be intersected during the design 

exploration process.  

 

Figure 1.8. An example of before (1) and after (2) narrowing the design space by 

constricting the satisfactory performance threshold values. 

To conclude a design process, the design space must be narrowed to a single, 

satisfactory point before a product can be made. As it is impossible to have complete 

knowledge of the overall design space, narrowing the design space allows a design team 
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to concentrate its resources to develop a better understanding of that smaller region 

(Wood & Agogino, 2005). Narrowing the design space is ideally equivalent to tightening 

the performance targets, as shown in Figure 1.8, leading to a narrowed satisfactory 

performance space. Timing is critical when narrowing the design space, as narrowing it 

too quickly can possibly exclude the most desirable regions of the design space, 

especially if the interactions between design variables are not well understood yet. 

Furthermore, in a multilevel design problem, the design decisions made by lower level 

design teams may make it more difficult, or impossible for an upper level design team to 

find a satisfactory design. In the case that a downstream design team cannot find a 

satisfactory design, iterations must take place between the design teams, increasing the 

product lead time (Shahan & Seepersad, 2010). An accurate mapping of the performance 

space allows a design team to intelligently narrow its design space, by understanding 

exactly how its design decisions restrict its design and performance flexibility.  

1.3 Research Overview 

The goal of this research is to create a tool that designers can use to better 

understand the performance capabilities of a design, based on the results of experiments 

and/or computational simulations. Using a Bayesian network classifier, a method is 

proposed to map the desirable regions of the performance space. The performance space 

mapping is then used to quantify performance flexibility. The research objectives for this 

thesis are presented in Table 1.1. 
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Table 1.1. Research Objectives 

1. 

Provide designers with a tool to map and classify arbitrarily shaped regions 

of the performance space 

2. 

Provide designers with a tool to autonomously quantify the flexibility of 

the design and performance space 

3. 

Demonstrate the utility of design and performance space Bayesian network 

classifiers, in a multi-level design case study 

 

The methods presented in this thesis form a tool to allow designers to better 

address Sobek et al.’s three fundamental set-based design principles: (1) Map the design 

space, (2) Integrate by intersection, and (3) Establish feasibility before commitment 

(Sobek et al., 1999). The first and second guidelines are addressed by the first research 

objective in Table 1.1: the creation of a method to map the performance space, as one 

design team’s performance space can often represent a downstream design team’s design 

space. Additionally, as seen in Figure 7, the mapping tool allows design teams to 

intersect one another’s design spaces in order to find system level satisfactory designs. 

The third design principle is addressed by the second research objective in Table 1.1: the 

creation of a tool to quantify performance flexibility, which can be used to intelligently 

determine when to fix design variables once the performance capabilities are well 

understood. 
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The research objectives are explored in a series of chapters in this thesis.  The 

second chapter reviews the recent advances in concurrent engineering design research in 

order to understand how the research tools presented may impact different aspects of 

concurrent design. Specifically, advances in representing sets of designs and parameters 

are discussed, in addition to reviewing the most state-of-the-art methods to quantify 

flexibility. The third chapter addresses the first research objective in Table 1.1, by 

providing the necessary framework to map the performance space using Bayesian 

network classifiers. The fourth chapter addresses the second research objective in Table 

1.1, by presenting several methods to quantify the size of the feasible regions of the 

design and performance space. The goal of the methods presented in Chapter 4 is to 

create robust convergence criteria, such that the design and performance flexibility 

quantification can be autonomously performed.  

The fifth chapter applies the methods presented in Chapters 3 and 4 to a 

hierarchical design problem to examine its effectiveness. The design problem explores 

the possibility of designing and fabricating composite materials that have macroscopic 

mechanical stiffness and loss properties that surpass those of conventional composites. It 

has been previously theorized that this can be done by embedding small volume fractions 

of high loss micro-scale inclusions in a continuous host material (Lakes, 2001). 

Achieving high stiffness and loss from these materials by design, however, is a nontrivial 

task. To solve this design problem, a hierarchical multilevel material model is presented, 

coupled with a hierarchical design approach using Bayesian network classifiers to map 

the design and performance spaces at each hierarchical level. Length scales range from 
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the behavior of the structured microscale inclusions to the effective properties of 

mesoscale composite materials to the performance of an illustrative macroscale 

component, a vibrating cantilever beam that has been coated with the designed composite 

material. 

  



20 

 

Chapter 2: Foundational Research in Set-Based Design 

Design teams that engage in a set-based design paradigm have been shown to 

produce higher quality products in shorter lead times, especially in the design of complex 

systems (Sobek, Ward, & Liker, 1999). A set-based design approach allows for better 

collaboration between design teams, and gives designers the opportunity to delay 

important design decisions until the impact of those decisions are better understood. A 

primary challenge in set-based design is defining the set of designs, as information about 

how design variable values correlate to performance values is typically incomplete and 

abstract (Pacheco, Amon, & Finger, 2003; Wood & Agogino, 2005). The focus of this 

thesis is to develop a means (1) to represent or map a set of designs accurately in both 

design and performance space and (2) to quantify the design and performance flexibility 

embodied in the set of designs. This chapter is segmented by these goals, and reviews 

several prominent techniques and methodologies previously presented to achieve these 

goals. 

Section 2.1 reviews methods used to represent sets of designs in performance 

space. The method of using Bayesian network classifiers to map the design space is also 

described in this section, to highlight the necessary extensions required to use this method 

in representing sets of designs in performance space, which is the novel method presented 

in Chapter 3. Section 2.2 reviews methods to quantify the design and performance 

flexibility embodied in a set of designs. 
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2.1 Representing Sets of Performances 

Methods to represent performance sets consider how design teams can use 

knowledge of the design space, obtained by experimentation, simulation, and expert 

knowledge, to represent or map the space of attainable performance. An accurate map of 

an attainable performance space has many benefits to a design process. One design 

team’s set of attainable performances values could also be the set of designs that a 

downstream design team is able to choose from in a multilevel design problem. An 

inaccurate representation of an upstream design team’s performance space can result in 

the downstream design team selecting a design that may not be attainable. Another use of 

mapping the set of attainable performance values is in the development of product 

families. A product family is akin to a set of performance capabilities that can be mapped 

from a set of platform-based products that share many of the same design variable values 

(Simpson, Maier, & Mistree, 2001). 

Sets of performance parameter values can be represented by discrete values, 

continuous ranges, or discontinuous ranges, as well as with non-exact, probabilistic 

parameters, as shown in Figure 2.1. Discrete values are not effective at performance set 

representation because they do not give any insight on the attainability of in between 

values. Unfortunately, discrete attainable performance values are typically how engineers 

receive their information. Conducting a computationally intensive design analysis 

requires specifying a single design to be inputted, and results in a single performance 

output. For an effective capture of knowledge gained from simulations, the discrete 

sample values of the performance space must be extended to continuous or discontinuous 
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ranges. Uncertainty in the extension from discrete points to continuous or discontinuous 

ranges is the fundamental problem to be addressed in all set-based design methods. An 

overly generous extension between discrete performance sample points may lead 

designers to believe they can achieve performance values beyond their capable limits, 

and conversely an overly conservative extension between points may lead designers to 

abandon research in a technology for a lack of potential.  

 

Figure 2.1. Several examples of set representations 

2.1.1 Fuzzy Sets 

One proposed method to mitigate the uncertainty associated with mapping the 

performance space is to allow the designers themselves to capture this uncertainty using 

fuzzy logic. The Method of Imprecision (MoI) uses fuzzy logic to capture a designer’s 

preferences among performance values (Antonsson & Otto, 1995; Wood & Antonsson, 
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1989). This method attempts to improve trade-off decision making between design teams 

by allowing each design team to define a fuzzy preference function. The fuzzy preference 

function maps the performance space by assigning every performance point a value 

between zero and one, in which a value of zero corresponds to a certain unsatisfactory 

performance value, and a value of one corresponds to a certain satisfactory performance 

value. Attainability of the performance space is incorporated into the fuzzy preference 

function by assigning a value of zero to unattainable performance points. Design teams 

then can share performance variable sets by sharing the performance values that have 

non-zero preference function values. 

A fuzzy preference function for the performance space allows design teams to 

intersect one another’s preference functions to find a design with the highest likelihood of 

mutual satisfaction, thus minimizing the risk of additional iterations between design 

teams. Using fuzzy logic to define performance preferences has been combined with 

genetic algorithms, and has been shown capable of solving highly complex design 

problems with many design teams (Saridakis & Dentsoras, 2006). Mapping the 

performance space using fuzzy logic, however, does not aid in the determination of 

performance variable attainability, and therefore is typically combined with other set 

representation methods. In fact, the study done by Saradakis and Dentsoras assumes that 

each design team has complete knowledge of its attainable performance space, thus side-

stepping the challenge of defining this boundary. 
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2.1.2 Interval Sets 

The most common method to represent the performance space is by using interval 

sets – a method that gained notoriety during Toyota’s set-based design studies (Ward, 

Liker, Cristiano, & Sobek, 1995). Intervals treat each variable independently, and by 

defining an upper and lower bound a continuous ranged set is created for each variable, 

as shown in Figure 2.2. Intervals do not provide an accurate representation of an 

irregularly shaped space, such as the one shown in Figure 2.1, and results in either an 

overly generous or conservative representation.  Combining the intervals from each 

performance variable creates a mapping of the performance space, and forms a 

hyperrectangular ranged set (Chen & Ward, 1995). Intervals are very applicable to large 

scale, complex design problems by making use of interval calculus methods (Davis, 

1987; Reddy & Mistree, 1992). Ward et al. extended these interval calculus methods into 

Labeled Interval Calculus (Ward, Lozano-Perez, & Seering, 1990), which served as a set 

of rules to cascade design and performance sets among design teams (Finch & Ward, 

1997) and across hierarchical levels (Panchal & Allen, 2005). 
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Figure 2.2. Two performance spaces showing the error resulting from a conservative 

(left), and generous (right) interval approximation. 

Intervals can be created with various goals in mind, for example to minimize the 

number of falsely classified attainable performances in the interval, as shown in the left 

interval of Figure 2.2, or to minimize the number of falsely classified unattainable 

performances in an interval, as shown in the right interval of Figure 2.2. Interval 

techniques are subject to error, however, because intervals assume linear relationships 

between design variables, and have been thus shown to poorly capture feasible regions in 

the design space (Shahan & Seepersad, 2010). The Interval-based Constraint Satisfaction 

method (IBCS) proposed by Panchal et al. increases the effectiveness of interval 

classification, by beginning at a generous interval and slowly converging to a narrow 

interval as information about the system is gained (Panchal & Allen, 2005; Panchal, Gero 

Fernandez, Paredis, Allen, & Mistree, 2007). IBCS makes use of the set-based design 
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guideline of utilizing flexibility in the early stages of design, and the method presented in 

this thesis is targeted to be used in a similar manner, but with improved classification 

accuracy relative to intervals. 

The ability of intervals to more accurately capture regions of attainability can be 

enhanced by decomposing each variable into interval bins. However, discretizing the 

performance space leads to assumptions on how one sample point’s attainability can be 

extended to regions around it. The accuracy of interval bins is thus highly dependent on 

the size of the bins, as well as the shape of the actual attainable performance space. Liu et 

al. proposed a method that incorporated clustering of performance points to create 

multiple, independent intervals (Liu, Chen, Scott, & Qureshi, 2008). The method 

proposed by Liu et al. significantly improves the accuracy of intervals, while still 

utilizing the benefits of interval calculus. Although this method can theoretically provide 

an accurate mapping at the limit of infinitesimally small interval bins, an inability to 

extrapolate the attainability of one training point to the region around it limits the 

minimum bin size in practice. Additionally, the assumption of variable independence 

induces an error that cannot be reduced by decreasing the bin sizes. 

2.1.3 Probabilistic Sets 

The uncertainty associated with mapping design and performance spaces is well 

suited for probabilistic methods. A design team can map a probability density functions 

(PDF) onto the performance space, to represent the likely attainability of performance 

variable values. Representing sets of design and performance values using PDF’s allows 
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designers to assign a varying degree of belief that a particular design or performance 

point belongs in that set. PDF’s can easily capture designer’s uncertainty that may 

originate from manufacturing tolerances.  Robust design techniques can be used to 

minimize uncertainty due to noise factors, and/or uncertainty due to variations in design 

variables, the latter of which applies to mapping the performance space (Chen & Yuan, 

1998). Applying robust design to design variable uncertainty attempts to reduce the 

probability of iteration between design teams by finding design and performance sets that 

are insensitive to the decisions of other design teams (Parkinson, Sorensen, & 

Pourhassan, 1993; Tsui, Allen, Chen, & Mistree, 1996).  

Methods proposed for robust design have shown that developing a performance 

space mapping involves more than just mapping attainability. Wood and Agogino (2005) 

use a joint PDF among performance variables to map heterogeneous design spaces, in 

which some areas of the design space are less achievable than others due to external, 

uncontrollable factors. Work by Otto and Antonsson (1993) has shown the need to 

capture constraints in applying probabilistic-based robust design. Additionally, work by 

Parkinson et al. have highlighted the need to focus on feasibility robustness, wherein a 

satisfactory design must also be robust to changes in constraints (Parkinson et al., 1993). 

Probabilistic sets have some advantages over interval methods in that multiple probability 

functions can be created, for example a PDF of attainability can be multiplied by a PDF 

of performance preference, and then shared between design teams (Eggert & Mayne, 

1993).  
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The probabilistic methods proposed above suffer much of the same classification 

errors as the interval classification methods because they model each variable 

independently. Performance variables nearly always have some coupling, which is 

exhibited by performance tradeoffs, for instance engine weight and power. The Inductive 

Design Exploration Method (IDEM) creates a multivariate PDF by discretizing the 

design space into an n-dimensional grid, and placing a sample point at each grid 

intersection (Choi et al., 2007). Each sample point is then put through a complete 

experimental or simulated evaluation. A multivariate feasibility classification PDF is 

developed by placing an n-dimensional Gaussian kernel on each sample point that meets 

the feasibility criteria. The IDEM uses a genetic algorithm to generate the next generation 

of sampling points based on the highest performing design points from the previous 

generation. The IDEM method facilitates collaborative design by allowing design teams 

to perform analyses in parallel, but is very computationally expensive due to the number 

of sample evaluations required to populate the n-dimensional grid. The Bayesian network 

classifiers introduced in the next section provides a significantly more efficient means of 

creating a multivariate design space PDF, and the work presented in subsequent chapters 

of this thesis extends this method to the mapping of the performance space. 

2.1.4 Bayesian Network Classifiers 

The methods described thus far are used to classify a ranged set of independent 

design variables between design teams. The assumption that variables in engineering 

systems independently affect the performance of the overall system is instinctively poor, 
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as engineering problems typically exhibit complex nonlinear relationships. Shahan and 

Seepersad proposed using Bayesian network classifiers to identify the satisfactory 

region(s) of each design team’s design space (Shahan & Seepersad, 2010). The potential 

advantages of the Bayesian network classifier design tool are its ability to: (1) capture 

arbitrarily shaped regions of the design space, (2) combine prior expert knowledge with 

results from design space sampling, (3) interface with and/or provide a search process for 

exploring the design space by easily updating the classifier with new sample data, and (4) 

break from the assumption of variable independence. Bayesian network classifiers have 

also recently been shown to be effective at classifying a discrete design space (Backlund, 

2012), in addition to the continuous spaces studied by Shahan and Seepersad. This 

section presents an overview of Bayesian network classifiers, and identifies the aspects of 

this method that will be extended in subsequent chapters of this thesis.  

The Bayesian network classifier uses probability distributions for its 

classification, and is based upon previous research from several groups (Friedman, 

Geiger, & Goldszmidt, 1997; Hoffmann & Tresp, 1996; John & Langley, 1995; Pérez, 

Larrañaga, & Inza, 2009). Shahan and Seepersad proposed creating two classes, one for 

the satisfactory design space and one for the unsatisfactory design space. For an n 

variable design space, a PDF is created for each class by centering an n-dimensional 

Gaussian probability distribution on each sample point in the class (John & Langley, 

1995; Scott, 1992). The Gaussian probability distributions of each class are aggregated 

into a weighted sum called a kernel density estimate (KDE) (Shawe-Taylor & Cristianini, 

2004). The resulting KDE is used to represent the likelihood that an unknown point in the 
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design space belongs to the satisfactory or unsatisfactory class. The unknown point is 

classified according to the class conditional PDF that has a larger value at that unknown 

point. Points in the design space that have equal probability densities with respect to both 

KDE’s are on the decision boundary between satisfactory and unsatisfactory regions of 

the design space. 

The shape of the performance space is distinctly different than that of the design 

space, and extending the work of Shahan and Seepersad’s Bayesian network mapping of 

the design space to map the performance space requires several augmentations. The 

design space typically has upper and lower bounds assigned for each design variable, and 

therefore a design can theoretically be created by selecting any point from this 

hyperrectangular space. The shape of the performance space, however, is typically 

unknown. While each point,   , in the design space corresponds to a point,   , in the 

performance space through an objective function     , the points in the performance 

space do not share this same quality in mapping back to the design space. One point in 

the performance space may correspond to multiple points in the design space or none at 

all. The subset of the performance space that can be mapped from the design space is the 

image of the objective function, and it represents the attainable performance space. It is 

important to map this performance space, especially in cases of multilevel or hierarchical 

design, in which the output (performance space) of a lower-level problem may become 

the input (design space) of an upper-level problem, and it is important to identify 

mutually attainable designs. An example of this type of design process is shown in Figure 

2.3, where the small scale performance space corresponds to the large scale design space. 
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The large scale design team must limit is search space to the attainable and feasible small 

scale performance space. Defining the attainable performance space using Bayesian 

network classifiers is the primary challenge addressed in Chapter 3. 

 

Figure 2.3. An example of a multi-level design problem. 

2.2 Quantifying Flexibility 

The set-based design paradigm gained notoriety from the evidence presented by 

Toyota in the 1990’s of significantly reduced product lead times (Sobek et al., 1999). 

Studies of Toyota’s design practices found that these outcomes were a result of delaying 

its design decisions longer than its competitors (Ward et al., 1995). Specifically, the 

decisions that Toyota delayed were those that narrowed the size of the design space that 

was used to search for new and improved designs. As knowledge of the design space is 

very limited early in the design process, arbitrarily reducing the size of the design space 

at that point in time may ultimately result in the exclusion of superior designs. 

Developing a greater breadth of knowledge of the design space also allows designs to be 

easily adapted upon changes to performance requirements. An effective set-based design 

approach gradually narrows the design space by developing balance between exploration 

of large regions, and exploitation of localized regions of the design space (Sobek et al., 
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1999). In the context of this thesis, delaying design decisions is synonymous with 

maintaining design and performance flexibility. 

Design flexibility is generally regarded as a measure of the size of the design 

space that satisfies a given set of performance requirements (Suh, 1990). The size of the 

satisfactory design space is an indication of the amount of variation design variables can 

undergo while still meeting the performance requirements. Similarly, performance 

flexibility is a measure of a design team’s ability to produce satisfactory designs even if 

performance requirements change. Performance flexibility is therefore a measure of the 

size of the attainable performance space that meets the performance requirements. While 

numerous methods and metrics have been proposed to quantify design and performance 

flexibility, an agreed upon method has yet to be developed (Ferguson, Siddiqi, Lewis, & 

de Weck, 2007). In general, the methods to quantify flexibility are associated with the 

ability to satisfy a set of performance requirements, and the deviations between 

quantification methods is primarily a result of varying techniques used to represent 

performance sets and performance requirements. 

2.2.1 Developing Performance Requirements 

Developing performance requirements is a nontrivial task, as the requirements 

represent a designer’s subjective assessment of performance preference. An additional 

challenge in defining performance requirements is incorporating multiple preferences, for 

instance manufacturing, safety, and cost preferences, into an aggregate preference 

function. Thurston extended a method developed by von Neumann and Morgenstern to 
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use utility theory to model preference functions (Thurston, 1991; von Neumann & 

Morgenstern, 1947). A utility preference function can combine multiple, nonlinear 

preference functions into an overall measure of a design’s worth. A performance 

requirement using a utility preference function is created by defining a minimum utility 

value to determine if a design is satisfactory or not, which unfortunately reintroduces 

subjectivity into the requirements.  

Wallace et al. (1996) proposed assigning each performance variable a probability 

distribution measuring a designer’s belief that a design will be satisfactory. In a similar 

approach, fuzzy preference functions have been used to capture a designer’s uncertainty 

in setting performance requirements to specific threshold values by creating a function on 

each performance variable measuring the belief that each performance value will result in 

a satisfactory design (Antonsson & Otto, 1995). Fuzzy and probabilistic preference 

functions share a similar concept, but differ in their effectiveness in propagating their 

preference functions across design teams in defining system wide design satisfaction. A 

design process that implements fuzzy or probabilistic preference functions typically takes 

a negotiation approach, in which design teams seek to maximize the system-wide 

probability of a design being satisfactory. This type of approach results in a highly 

iterative point-based design process, but can be converted to a set-based design process 

by defining a satisfactory probability threshold. For instance, a performance set created 

from a fuzzy preference function and threshold value of 0.75 identifies the performance 

values having a preference function of greater than 0.75, and represents the set of 

attainable performance values having a 75% probability of being satisfactory. Defining 
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performance requirements by a probability threshold also allows a design team to 

gradually narrow down their design space by selecting a low initial probability threshold, 

and slowly raising the threshold until a final, satisfactory design is agreed upon. 

While there are many different methods to represent performance preferences, 

precise satisfactory performance requirements are necessary to be used in set-based 

design. In the remainder of this thesis it is assumed that design teams have been given 

performance requirements or thresholds that can be used to classify designs as 

satisfactory or not.  

2.2.2 Flexibility Metrics 

In design literature the terms design flexibility and performance flexibility are 

often interchanged, and nearly always refers to what is called performance flexibility in 

this thesis. This is presumably due to the focus of design research on developing a range 

of performance capabilities for mass customization (Jiao & Tseng, 2004) through design 

paradigms such as product platforms, which develop a product line achieving a range of 

performances while sharing common design modules (Simpson et al., 2001), and 

reconfigurable systems, which can adaptively change its physical shape to achieve 

desired performance under predictable situations (Ferguson & Lewis, 2006). Achieving a 

range of performance capabilities following Sobek et al.’s set-based design guidelines 

requires intelligent narrowing of the design space, which calls for an accurate metric of 

design flexibility (Sobek et al., 1999).  
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 One method in the literature that attempts to quantify design flexibility is a metric 

termed Information Certainty (IC) (Simpson, Rosen, Allen, & Mistree, 1998). In this 

metric, Simpson et al. recognize the need to develop a balance between the uncertainties 

in the final selection of design variables in addition to exploring the achievable system 

level performance capabilities. IC measures the uncertainty of design variable selection, 

and is defined as the extent to which a design variable value is known precisely at a 

certain point in the design timeline, as is calculated by Equation 2.1. 

   
 

 
    

   

       
 

 

   

 

(

2.1) 

Where m is the number of design variables, Δxi is the range of the i
th

 design 

variable that produces acceptable performance specifications, and xiu and xil, correspond 

to the initial upper and lower bounds placed on the i
th

 design variable. The implication of 

Equation 2.1 is that by the time the design process is finished, a single design point has 

been chosen, and the IC becomes unity. Conversely, when the range of design variables 

encompasses the entire lower to upper range of the design variable, no decisions have 

been made to narrow the design space, and the IC is 0. By treating each design variable 

independently, the IC metric uses an interval representation of the design space. 

Representing design variable sets as intervals has inherent classification errors, and can 

be improved by utilizing Bayesian network  classifiers (Shahan & Seepersad, 2012). 

In addition to quantifying design flexibility, there have been numerous metrics 

proposed to quantify performance flexibility. One of the earliest metrics proposed to 

quantify performance flexibility is Suh’s Information Axiom (Suh, 1990). Suh defines a 
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metric Information Content (I) that quantifies the relationship between the range of 

achievable performances and range of performances that satisfy system performance 

requirements. The I metric is presented in Equation 2.2, and is intended to quantify the 

probability that a set of designs will satisfy a set of performance requirements. 

      
            

            
   

(

2.2) 

The system range in Equation 2.2 is the achievable performance range that the set 

of designs can achieve, and the common range is defined as the intersection range of the 

achievable performance range and the target performance range. In this metric, the case 

where there is no common range between the achievable and target ranges, I is equal to 

infinity and there is no knowledge of how to create an acceptable design. At the other 

extreme when there is complete overlap between the achievable performance range and 

the target range, I is at a minimum and is equal to 0. Suh believed that by minimizing I a 

design team could focus on simplicity by searching for designs having minimal 

information content. Additionally, Suh’s quantification metric treats each performance 

variable independently and suffers the classification inaccuracy inherent to intervals. 

Suh’s information content metric was modified by Simpson et al. to attempt to 

quantify performance flexibility on a range from 0 to 1 (Simpson et al., 1998). The 

modified information content metric was termed Design Freedom  (DF) by Simpson et 

al, and quantified the amount a system can change while still maintaining acceptable 

performance metrics (Simpson et al., 1998). The metric for DF is given in Equation 2.3. 
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Where n is the number of performance specifications, TRi is the target range of the i
th

 

performance specification, and PRi is the performance range which is attainable as well 

as satisfactory. From this definition, DF is equal to 1 at the start of the design process and 

then subsequently decreases towards 0 as the satisfactory design space is narrowed. The 

novelty in Simpson et al.’s DF metric is that it can be combined with their IC metric to 

intelligently narrow the design space (Panchal et al., 2007). However, both the IC and DF 

metrics utilize interval representations of the design and performance spaces, and suffer 

classification errors that could potentially lead to a design process that does not converge 

to a satisfactory solution. 

In a similar performance flexibility metric to DF, Chen et al. proposes Design 

Capability Indices (DCI) that use a probabilistic representation of the attainable 

performance set (W. Chen, Simpson, Allen, & Mistree, 1996). This method assigns a 

Gaussian PDF to the value each performance variable will take by calculating the mean 

and variance of each performance variable within the selected performance set. The DCI 

is then equal to the difference between the mean of the PDF and the lower and upper 

bounds of the performance requirements, divided by a maximum defect rate represented 

by a standard deviation. Chen and Yuan combine DCI with a performance utility 

preference function to form a Design Preference Index (DPI) (W. Chen & Yuan, 1998). 

The DPI metric allows a design team to determine if a design is considered feasible, 

based on whether or not the manufacturing tolerances are greater than the variance in the 
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design variable set. The limitations of DCI and DPI come in the approximation of each 

performance variable’s PDF, wherein the PDF is used to model performance uncertainty 

rather than performance capability. These probabilistic-based set representation methods 

are therefore more tailored for use in robust design approaches, rather than for mapping 

the performance space in a set-based design approach.  

Olewnik and Lewis proposed a more abstract metric of performance flexibility 

that analyzed a design set’s performance Pareto frontier, rather than the entire attainable 

performance space (Olewnik & Lewis, 2006). A Pareto set occurs when there are 

multiple competing performance variables; for any member of the Pareto set, 

performance can be improved with respect to one performance variable only by 

degrading another performance variable (Pareto, 1971). Pareto sets are therefore very 

useful in analyzing the tradeoffs between design concepts, and have been used in the 

selection of design concepts having dissimilar design variables (Mattson & Messac, 

2003). The performance flexibility metric proposed by Olewnik and Lewis is defined as 

the “distance” between the extreme points of the Pareto performance set, or the sum of 

pair-wise distances in cases with more than two performance variables (Olewnik & 

Lewis, 2006). The extreme points in a Pareto set represent the most preferred design with 

respect to each performance variable, and the distance between them represents the 

performance variability that can occur within a set of designs. The basic idea of using the 

extreme Pareto point performance flexibility metric is that as the design space is 

narrowed the flexibility also decreases to zero. However, this method ignores the non-

Pareto set performance points, and thus quantifies only one aspect of performance 
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flexibility. Furthermore, this flexibility metric is not applicable in a multilevel design 

problem, in which a high-level design team may choose non-Pareto points from a low-

level design team if they improve high-level performance.   

In an effort to determine the potential of finding a satisfactory solution within a 

design space, Clevenger and Haymaker adopt a frequentist approach to approximating 

performance flexibility (Clevenger & Haymaker, 2011). In this metric, performance 

flexibility is approximated as the ratio of the number of satisfactory sample points to 

unsatisfactory sample points. Although this method requires an extremely high number of 

sample points to achieve an accurate performance flexibility approximation, it may in 

fact be a better approximation of performance flexibility than using interval set 

representations. The method proposed in this thesis to quantify performance flexibility is 

relatively similar to this frequentist method, but incorporates a method to infer 

performance attainability between known sample points. Therefore, the method proposed 

in this thesis will be able to achieve higher classification accuracy in fewer sample point 

evaluations than this approach. 

2.3 Discussion 

A set-based design paradigm is a relatively new concept, and the methods 

reviewed in this chapter lack the capability to be employed in a complex design problem. 

Prior methods of set representation have inherent error associated with them, and are 

therefore not suitable to be used in practice. The recent Bayesian network classifier 

method to map the design space has been shown to vastly outperform the interval and 



40 

 

probabilistic representations of the design space, but has not yet been applied to the 

performance space. Chapter 3 will address this need by introducing extensions of the 

Bayesian network classifier method necessary to map the performance space. 

An effective set-based design process also requires an accurate approximation of 

design and performance flexibility, which has yet to be proposed. The quantification 

accuracy of design and performance flexibility is reliant on the method of set 

representation. A method for the quantification of design and performance flexibility is 

introduced in Chapter 4, which uses a Bayesian network classifier for its set 

representation. The combination of an accurate representation of the performance space 

and the quantification of design and performance flexibility will be the focus of the 

remainder of this research. These methods will then be demonstrated on a hierarchical 

material design problem in Chapter 5. 
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Chapter 3: Representing and Classifying the Performance Space 

In a single-level design problem it is only necessary to map the satisfactory design 

space, which corresponds to the set of design variable values that meet a set of 

performance requirements. Typically in a single-level design problem, the design space is 

constrained by placing lower and upper bounds on each design variable to create a 

hyperrectangular space. In a multi-level design process, however, the design space can be 

arbitrarily shaped, as a result of the design space for an upper-level design team 

corresponding to the feasible performance space for a lower-level design team. A two-

level design process is illustrated in Figure 3.1, displaying how the large-scale design 

team’s design space is irregularly shaped as a consequence of it being defined by the 

feasible small-scale performance space. Therefore, in a multi-level design process it is 

necessary to create a mapping of the feasible performance space, in addition to the 

satisfactory design space. A multi-level mapping of each design team’s design and 

performance spaces facilitates an effective concurrent collaborative design by allowing 

design teams to share their feasible sets of designs, which can be intersected to find a 

mutually feasible design.  
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Figure 3.1. The backward propagation of requirements across levels of a multi-level 

design problem. 

The performance space can be classified into a hierarchy of subspaces, as 

depicted in Figure 3.2. The attainable performance space is a subspace of the overall 

performance space, representing all possible function mappings from the design space. 

The existence of constraints in the design process, such as manufacturing tolerances, 

divides the attainable performance space into a feasible performance space and an 

infeasible performance space. The performance point of a design is classified as feasible 

if it does not violate any constraints, and infeasible otherwise. The feasible performance 

space can also be then divided into two subspaces based on meeting a set of performance 

requirements. The set of feasible sets of designs in the performance space that meet all of 
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the performance requirements are classified as satisfactory, and those that do not are 

classified as unsatisfactory. 

 

Figure 3.2. Illustration of the classifications in a generalized performance space 

In a generalized design problem, a designer explores the design space in search of 

a design that corresponds to a point in the performance space that meets the designer’s 

performance requirements. Using the nomenclature defined in Table 3.1, a design can be 

mapped to a corresponding performance, represented as a vector of m performance 

variables,                  
      , corresponding to a unique point in the m-

dimensional, attainable performance space. A function that maps points in the design 

space to points in the attainable performance space,      
   ,  typically represents a 

computational simulation or physical experiment.  
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Table 3.1 Nomenclature 

  Number of performance variables 

  Number of training points 

  A design instance, where                

  A performance instance, where                

     Set of performance requirements 

   Classification category k 

   Design space 

  
   Performance space belonging to class k 

 

The classifier introduced in this chapter is based on previous research in Bayesian 

networks (Pearl, 1988), and uses kernel density estimation techniques (Fukunaga, n.d.; 

John & Langley, 1995; Katkovnik & Shmulevich, 2002; Ledl, 2002; Parzen, 1962; Scott, 

1992; Shawe-Taylor & Cristianini, 2004) to produce a probability density function(s) 

from a set of designs in the performance space of known classification, called training 

points. Developing the kernel-based BNC allows a designer to classify an arbitrarily 

shaped satisfactory performance space, and update it easily with additional training points 

(John & Langley, 1995; Pérez, Larrañaga, & Inza, 2009). The proposed classifier 
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specifically extends the work of Shahan and Seepersad’s BNC mapping of the design 

space (Shahan & Seepersad, 2012), by adding necessary augmentations to facilitate a 

BNC mapping of the performance space. Shahan and Seepersad’s design space BNC 

sought to classify the satisfactory design space, corresponding to designs that meet all 

performance requirements. In the performance space, however, determining if a 

performance point is satisfactory or not is trivial, as the performance requirements are 

explicitly given in terms of the performance space. The challenge in classifying the 

performance space is to: (1) distinguish the attainable performance space from the 

unattainable performance space, and (2) distinguish the feasible performance space from 

the infeasible performance space. 

A background of Bayesian decision theory and the mathematical formulation of 

the proposed BNC are presented in Section 3.1.  The BNC produces a probability 

distribution that is used to extrapolate knowledge between training points, and is 

employed in Section 3.2 to define the boundary of the feasible versus infeasible regions 

of the performance space. The BNC will then be used in Section 3.3 to classify the 

attainable performance space versus the unattainable performance space. The goal of the 

proposed classifier is to map a feasible performance space of arbitrary shape that 

converges in classification accuracy as additional training points are introduced. 

3.1 The Bayesian Performance Space Classifier 

Evaluating a design concept, through experimentation or computational 

simulation, gives designers knowledge of the corresponding performance value for each 
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evaluated concept. The known sets of designs in the performance space can each be 

assigned a categorical classification, based on meeting performance requirements and 

design constraints. The proposed classifier aids designers’ mapping of the performance 

space by replacing intuition with a more robust mathematical formulation. The classifier 

is given a finite set of known designs in the performance space, each represented in an m-

dimensional vector  , and outputs one probability density function for each defined class, 

to be used to classify unknown points.  

The set of training points can then be used to create a class conditional probability 

of a performance point given a class, expressed as       . The conditional probability of 

the class given a performance point,       , however, is the desired conditional 

probability used to predict the classification of a performance point of unknown class. 

Bayes formula is used to transform the unknown posterior probability,       , into an 

expression involving the known likelihood,       , according to Equation 3.1. 

The denominator of Equation 3.1 represents the evidence factor, and is essentially 

a normalization scale factor used to ensure the posterior probabilities from all classes sum 

to 1. The evidence factor is found by summing the numerator of the right side of Equation 

3.1 for each class, according to Equation 3.2. 

       
          

    
 

(

3.1) 

                  
 

   
 

(

3.2) 
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The prior probability,     , is approximated as the ratio of training points 

belonging to each class, as shown in Equation 3.3 where   is the total number of training 

points, and    is total the number of training points belonging to class  . The frequency 

of occurrence of each class is given a “padding” of one occurrence in order to improve 

the approximation accuracy for classes with low sample sizes, by smoothing the changes 

of the approximation as    increases. 

Classifying an unknown performance instance,  , is performed according to 

Bayes decision rule, by finding the class that has the largest class conditional posterior 

probability,       , according to Equation 3.4.  

The decision rule in Equation 3.4 is demonstrated in Figure 3.3, showing the 

conditional probability of the class given a performance point, for a classifier having two 

classes in a univariate performance space. 

     
    

   
 

(

3.3) 

Decide    if                   for      ,     
(

3.4) 
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Figure 3.3. Demonstration of Bayes decision rule on classifying a univariate performance 

space 

The classification decision is simplified by neglecting the evidence scale factor, 

    , and is shown for the two class case in Equation 3.5. A loss factor,    , describing 

the risk in misclassifying a performance point as belonging to class    when it actually 

belongs to class    can be incorporated into the decision rule of Equation 3.4, according 

to Equation 3.5. The loss factor can be introduced to reduce the misclassification error, 

which can be approximated by cross-validating the classifier, by precluding training 

points from the classifier and subsequently determining if the excluded points were 

accurately classified or not. If there is insufficient data to approximate the loss factor, or 

if it is believed that the error is symmetric across all classes, the loss factors can all be set 

to 1. 
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The decision boundary between class    and    occurs when both sides of 

Equation 3.5 are equal. The loss factors have the effect of scaling the posterior 

probabilities of Equation 3.4 by ratio of loss factors between classes, thereby extending 

the classification boundary. The following section provides the mathematical framework 

to translate a training set into a likelihood probability distribution,       . 

3.2 Capturing the Knowledge from Training Points 

Designers achieve a better understanding of the design and performance space by 

evaluating the performance of new design concepts. With each concept evaluation, a 

challenge to designers is to capture and quantify this acquisition of new information. The 

proposed BNC uses the concept evaluations as a training set to determine the conditional 

probability of each performance variable given the class label,        . Then in order to 

determine the overall likelihood function,       , the conditional dependence between 

performance variables given the class must be specified. Performance variable    is 

defined to be conditionally dependent on    given the class, if Equation 3.6 holds true for 

all values of   ,   , and  , and       .  The performance variables    and    are 

defined to be conditionally independent given the class if Equation 3.6 is not true. 

Decide     if                                  

(

3.5) 

                   

(

3.6) 
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The conditional dependence between performance variables is typically 

represented as directed acyclic graphs (DAG), as seen in Figure 3.4 (Pearl, 1988). In 

DAG’s, nodes correspond to a unique performance variable, and arrows correspond to 

conditional dependence between variables. A node with a departing arrow is defined to 

be the parent of the child node at which the arrow ends. A performance variable    is 

dependent on the set of its parent variables, represented as    , and independent of all 

non-descendent performance variables.  

 

Figure 3.4 Directed Acyclic Graph of a Fully Independent (left) and Fully Dependent 

(right) networks. 

From the creation of a DAG model of the dependence between performance 

variables, an overall joint probability distribution can be calculated according to Equation 

3.7. 
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The two extremes of variable dependencies are illustrated by the DAG’s in Figure 

3.4. The fully dependent network occurs when each performance variable,   , is 

conditionally dependent on the performance variables having a lower ordinal number,   , 

… ,     . The fully independent network is a network where each performance variable is 

conditionally independent of all other performance variables given the class. The fully 

independent network is also referred to as a Naïve Bayes classifier due to its strong 

independence assumption, and has been seen to yield surprisingly accurate classification, 

even in networks having inherent dependence between variables (Friedman, Geiger, & 

Goldszmidt, 1997). Additionally, the fully independent network allows for the 

simplification of Equation 3.7 into the form shown in Equation 3.8. For these reasons, the 

networks examined in this thesis are all modeled as fully independent networks. 

A kernel density estimate (KDE) technique is used to calculate the conditional 

probabilities at each node of the Bayesian network (Parzen, 1962; Shahan & Seepersad, 

2012). Kernel density estimation is a nonparametric technique for estimating the 

probability density function, relying only on the values in the training set, and can 

therefore be generically applied and tuned to unique design problems without needing to 

change the underlying algorithm. KDE’s are also a computationally efficient density 

estimation technique, requiring only a polynomial increase in computational resources for 

an exponential increase in dimensionality (Shawe-Taylor & Cristianini, 2004). The KDE 

places an m-dimensional kernel probability distribution at each training point, which 

                            

 

   

 

(

3.8) 



52 

 

when summed forms a continuous probability density function over the performance 

space. The basic equation for a KDE evaluated at a point   in the performance space is 

given in Equation 3.9 (Rosenblatt, 1956). 

where   represents the number of training points,     is an     vector of the i
th

 training 

point, and   is the kernel function. The value returned by the kernel function is 

dependent on the geometric distance between the performance point of interest,  , and 

each training point,    , as well as a set of kernel parameters,  . For the methods 

presented in this thesis, a Gaussian kernel function is used, which has only one kernel 

parameter: the covariance matrix,  . The Gaussian distribution function is shown in 

Equation 3.10, where the kernel mean vector,  , is centered on training point,    , in 

Equation 3.9. 

Assuming a diagonal covariance matrix, the entries of the covariance matrix,  , 

are determined by Equations 3.11 and 3.12. 
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Where    is the standard deviation of the kernel function along the i
th

 dimension. The 

kernel function’s standard deviation is also referred to as the kernel bandwidth in 

literature, and will be referred to as such in the remainder of this thesis in order to clearly 

differentiate the kernel’s standard deviation from the standard deviation of the training 

set. The kernel bandwidth serves as a smoothing parameter to adjust the region of 

influence of the training points on the unsampled space around them. The effect of the 

kernel bandwidth on the overall KDE is demonstrated in Figure 3.5. In this example, a 

training set of 10 points has been sampled from a univariate normal distribution having a 

mean of 0 and a standard deviation of 1. Low values for the kernel bandwidth results in a 

noisy KDE that has distinct characteristics from each individual training point. 

Conversely, high values for the kernel bandwidth results in smoothed out KDE that 

combines the influence of each training point to give a single peaked distribution. 

 

Figure 3.5. Kernel density estimates for several values of kernel bandwidth. 
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The kernel probability distributions for a single training point from Figure 3.5 are 

shown in Figure 3.6. A kernel with a low bandwidth is seen to have a high probability 

peak directly over the training point that diminishes quickly as the distance from the 

training point is increased. In the limit that the kernel bandwidth approaches zero the 

resulting KDE will be zero for all values except for the training point values. Conversely, 

in the limit that the kernel bandwidth approaches infinity, the resulting KDE will be 

constant over the entire performance space. Clearly, neither extreme case of the kernel 

bandwidth will provide beneficial insights to designers. 

 

Figure 3.6. Kernel probability distributions of one training point with several values of 

kernel bandwidth. 

The kernel bandwidth parameter should be chosen so that the resulting KDE 

accurately captures the underlying distribution of the performance space. In practice, 

however, the underlying distribution is not known. The KDE should therefore capture the 
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points. In the example shown in Figure 3.5, the set of training points are drawn from the 

same distribution, but they have two clusters: one primary cluster around -0.5 and a 

secondary cluster around 1.5. The resulting KDE should therefore retain this 

characteristic, and not necessarily match the underlying distribution from which the 

training points were sampled.  As more samples are generated, the KDE should 

approximate the underlying distribution more precisely. Heuristics for setting the kernel 

bandwidth are discussed in depth in Section 3.3. 

Following the assumption of a diagonal covariance matrix, the kernel equation 

from Equation 3.10 simplifies to Equation 3.13, which replaces the center point of the 

kernel,  , with the value of the i
th

 training point,    . 

The KDE equation from Equation 3.9 can now be written in the full form shown 

in Equation 3.14.  

The KDE in Equations 3.9 and 3.14 weights each training point equally, however 

a weighted average function can be utilized to assign unique weights to each training 

point, subject to the constraint given in Equation 3.16. The weighted average KDE 

equation is given in Equation 3.15, where    represents the weight assigned to the i
th
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The class conditional probability of a point in the performance space,       , can 

be calculated using the KDE technique given in Equation 3.15, for each class. A KDE is 

generated for a given class, according to Equation 3.17, from the set of training points 

belonging to that class. 

Where    is the number of training points belonging to class  , and    is an array of 

weightings specific to class   and follows the constraint of Equation 3.16. In the 

following section, the likelihood function is used to classify the feasible performance 

space and distinguish it from the infeasible performance space. 

3.3 Distinguishing the Feasible Performance Space 

As designers build up knowledge of the performance space, through sampling and 

evaluating points in the design space, the BNC outlined in the previous section can then 

be used to compile and summarize this information into a useful form. This section 

discusses how the BNC is used to classify the feasible performance space. Using a two-

class system,    represents the feasible region, and    represents the infeasible region of 

the performance space. A point in the performance space is classified as belonging to 
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either    or    according to the Bayesian decision rule in Equation 3.4 and 3.5, using the 

class conditional probability distribution evaluated according to Equation 3.17. 

 The classification accuracy of the BNC is largely dependent on how well the 

probability distributions that are generated by the KDE capture the space’s underlying 

distribution. The kernel bandwidth smoothing parameter allows the KDE technique to be 

tuned to improve the density estimation, and is regarded by researchers in the field as the 

most influential parameter on the KDE’s accuracy (Scott, 1992). Methods to set the 

kernel bandwidth can be categorized into adaptive methods and heuristic-based methods. 

Adaptive methods to set the kernel bandwidth are typically formulated as an optimization 

problem to minimize the classification error, found through cross-validation. In general, 

adaptively setting the kernel bandwidth yields improved classification accuracy over 

heuristic-based methods, but can also be significantly more computationally expensive 

(Dudda, Hart, & Stork, 2001; Fukunaga, 1990; Scott, 1992). Additionally, adaptive 

methods of setting the kernel bandwidth have been studied quite extensively in literature, 

as summarized in (Jones, Marron, & Sheather, 1996), and are therefore not investigated 

in this research. Several heuristics have been proposed for setting the kernel bandwidth, 

and are desirable because they require minimal computational expense and have been 

shown to perform very well (Shahan & Seepersad, 2010a). 

The Normal reference rule has been introduced as a method to set the kernel 

bandwidth, and is derived by minimizing the asymptotic mean integrated square error 

(AMISE) of a multivariate Gaussian distribution using Gaussian kernel functions (Scott, 

1992; Silverman, 1986). The normal reference rule is given in Equation 3.18, and is seen 
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to be a function of the number of dimensions of the performance space,  , the number of 

training points belonging to class  ,   , and the standard deviation of all training points 

in the i
th

 dimension,    . 

 The first part of Equation 3.18 only depends on the number of dimensions of the 

performance space, and acts as a constant for the normal reference rule. This constant 

increases asymptotically to 1 as   goes to infinity, and is never less than 0.924 (Scott, 

1992). Approximating this constant as equal to 1 leads to Scott’s rule for setting the 

kernel bandwidth, according to Equation 3.19. 

 The Normal reference rule and Scott’s rule are both derived from maximizing the 

KDE’s accuracy in approximating a Gaussian distribution; however, the problems 

encountered in engineering design rarely follow such a “regular” distribution. Shahan and 

Seepersad found that the Normal reference rule and Scott’s rule did not reduce the kernel 

bandwidth fast enough with respect to the number of training points (Shahan & 

Seepersad, 2010b). A similar heuristic for setting the kernel bandwidth, proposed by John 

and Langley, was found by Shahan and Seepersad to perform better than Scott’s rule, and 

is given in Equation 3.20. In the heuristic proposed by John and Langley, the scaling 
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constant   is set to 1, while Shahan and Seepersad found better results from setting   to 

0.4. 

 The heuristic given in Equation 3.20 for setting the kernel bandwidth will be used 

in this research, with several modifications.  Equation 3.20 assumes that the performance 

space has been scaled by the range of each dimension,              . The range of 

values in the performance space, however, is typically unknown, and it is therefore more 

reasonable to scale each dimension by the standard deviation of the training points along 

that dimension. The standard deviation can be related to the range, by a scaling factor 

representing the ratio between the standard deviation of a uniform distribution to the 

standard deviation of a normal distribution, as shown in Equation 3.21.  

There are several errors that may be encountered with using this approach for 

setting the kernel bandwidth. If one class contains a disproportionately high number of 

training points, Equation 3.20 will define the kernel bandwidth for the class with a high 

number of training points to be smaller than the other class. Noting that larger kernel 

bandwidths have a smaller maximum probability, the KDE of the class with fewer 

training points may become dwarfed by the KDE of the other class. Additionally, having 

a different kernel bandwidth for each class can lead to classification errors occurring in 

the tail ends of the probability distributions, due to a larger kernel bandwidth having a 

smaller rate of decay as the distance from the kernel’s mean is increased. Equation 3.21 

modifies the heuristic shown in Equation 3.20 to alleviate these issues, and will be used 
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in the remainder of this thesis. The parameter   in Equation 3.21 is a tuning parameter to 

increase the classification accuracy of the BNC.  

To demonstrate the BNC’s classification of the feasible and infeasible 

performance spaces, a simple spring design problem is used. The design problem is 

described in Appendix A, and is taken from (Juvinall & Marshak, 2000; Shahan & 

Seepersad, 2012). The spring design problem has two design variables, two performance 

variables, a performance target for each performance variable, and two constraints, 

making it a simple yet thorough demonstration problem. This example is used through 

the remainder of Chapter 3 and Chapter 4 to demonstrate the methods presented in this 

thesis. The Matlab
®
 code used to implement this method is included in Appendix B. 

Training points are selected from the design space based on the pseudo-random 

Halton sequence (Freeman & Halton, 1951), and are then evaluated to determine if they 

are feasible or infeasible. The results from selecting and evaluating 50 training points are 

shown plotted in the design and performance spaces in Figure 3.7. A comparison of the 

design and performance spaces in Figure 3.7 shows that a relatively uniformly distributed 

set of points in the design space translates to an irregular distribution of points in the 

performance space. 
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Figure 3.7. The design space (left) and performance space (right) showing 50 training 

points classified by feasible (blue square) and infeasible (red triangle). 

Once a set of training points have been evaluated the class conditional probability 

distribution,        , is determined for each class according to Equation 3.17, and the 

prior probability,      , is calculated for each class according to Equation 3.3. From the 

likelihood and prior probabilities, the BNC can classify the performance space according 

to Equation 3.5. The resulting probability distributions for each class are plotted in Figure 

3.8 with   set to 0.4.  
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Figure 3.8. The posterior probability distributions for the feasible (blue) and infeasible 

(red) classes. 

The decision boundary separating the feasible and infeasible classes occurs where 

two probability distributions are equal in Figure 3.8. Alternatively for the two-class BNC, 

a single normalized decision surface can be determined from the difference of the 

posterior probability distributions of the feasible and infeasible classes. The difference of 

the class posterior probability distributions is plotted in Figure 3.9, with a class decision 

boundary where the z-axis is equal to 0. The BNC mapping of the feasible and infeasible 

performance spaces is shown in a top-down, 2-D view in Figure 3.10. The decision 

boundary drawn as a solid black line in Figure 3.10 separates the infeasible performance 

region to the left from the feasible performance region on the right. 
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Figure 3.9. The normalized posterior probability decision surface. 

 

Figure 3.10. A 2-D mapping of the feasible performance space.  

To test the classifier’s accuracy, a set of known performance values and 
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classified by the BNC as feasible but is actually infeasible represents a false feasible 

classification. Similarly, a performance point that is classified by the BNC as infeasible 

but is actually feasible represents a false infeasible classification. The classifier’s error 

rate is defined to be the fraction of false feasible/infeasible points to the total number of 

evaluated performance points. A test set of 1,000 points, drawn from the Halton 

sequence, is sampled from the design space and evaluated to examine the BNC’s 

accuracy. Since the classifier’s training points were also drawn from the Halton sequence, 

points in the test set that also appeared in the classifier’s training set were removed from 

the test set.  The false feasible and false infeasible error rates of the BNC having 50 

training points are plotted as a function of   in Figure 3.11. For values of   less than 1, 

the error rates of both the false feasible and infeasible classifications are about 5%. As   

is increased past 1, the false infeasible error rate decreases to less than 1% and the false 

feasible error rate steadily increases.  

As with most classifiers, the accuracy of the BNC is heavily dependent on the 

number of training points. Figure 3.12 demonstrates how the BNC converges its accuracy 

with an increasing number of training points, for several values of  . After about 40 

training points the BNC converges to an error rate below 10% for both the feasible and 

infeasible classifications, and decreases below 5% after 100 training points. 
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Figure 3.11. False feasible and infeasible classification error rate for a BNC with 50 

training points. 

 

Figure 3.12. False feasible and infeasible classification error rate as a function of the 

number of training points. 
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The trend of the kernel bandwidth to classification accuracy from this spring 

design case study is that higher values of   result in lower false infeasible error rates and 

higher false feasible error rates. Although the error rate fluctuates in Figure 3.12 as the 

number of training points is increased, moderate values of  , such as in the range of 0.4-

0.6, tend to yield more consistent and lower error rates. For this reason, the rule of thumb 

prescribed by Shahan and Seepersad of setting   to 0.4 is adopted. A supplementary 

strategy to improve the accuracy of the feasible decision boundary is to introduce a loss 

factor associated with each class, as defined by Equation 3.5, which scales the feasible 

and infeasible posterior probability distributions relative to each other. 

3.4 Distinguishing the Attainable Performance Space 

Although all of the points in the design space can be translated to points in the 

performance space, not all of the points in the performance space can be translated back 

to points in the design space. Therefore, in addition to classifying the feasible and 

infeasible performance spaces, the regions of the performance space that do not map to 

feasible or infeasible points within the design space must be classified as unattainable. 

This classification is particularly necessary to prevent designers from believing that they 

can attain higher performance values than they actually can. A second decision boundary 

for the performance space must be defined to separate the attainable and unattainable 

regions. That decision boundary is determined by first building a KDE on the attainable 

points using Equation 3.17, but since a KDE cannot be built on non-existent unattainable 

points, the boundary of the attainable space is set according to a probability threshold. A 
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point in the performance space is classified as attainable if the value of its KDE exceeds 

the probability threshold defined by Equation 3.22.  

Where the variable β adjusts the influence of each known attainable point to the region 

around it. Increasing the value of β results in extending the attainable boundary outwards 

from a known attainable point, and thus increasing the percent of falsely classified 

attainable points in the performance space. Conversely, decreasing the value of β shrinks 

the attainable boundary inward, thereby increasing the percent of falsely classified 

unattainable performance points. The variable     in Equation 3.22 represents the standard 

deviation of the training points in the i
th

 dimension.  Due to the expectedly non-uniform 

spacing of training points in the performance space, β should be set based on the 

designer’s preference in mapping either unknown, or well-studied regions of the space. 

Mapping unknown and sparsely populated regions of the performance space requires a 

high value for β, in order to extrapolate more from the training points. Conversely, in 

order to put less emphasis on the outlying training points and map well-studied regions, β 

should be set low because less extrapolation between points is needed. 

Figure 3.13 depicts the posterior probability distributions of the feasible and 

infeasible classes, as well as the attainable probability threshold surface defined with   

set to 2. Figure 3.14 shows the complete BNC classification of the performance space of 

both the feasible decision boundary and the attainable decision boundary. Decreasing   
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will result in the probability threshold shown in Figure 3.13 to move vertically upwards 

and shrink the attainable space in Figure 3.14. 

 

Figure 3.13. The posterior probability distributions for the feasible (blue) and infeasible 

(red) classes, in addition to the attainable probability threshold (grey). 

 

Figure 3.14. The BNC classification of the feasible and attainable boundaries. 

 𝑡 𝑟 𝑠 𝑜𝑙𝑑  
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To examine the accuracy of the classification of the attainable performance space, 

a set of 20,000 test points were drawn from a uniform distribution of the performance 

space. The test points were then compared to an approximated correct attainable 

boundary. The correct attainable boundary was approximated for this study by the set of 

outermost points in the performance space, based on a set of 100,000 samples drawn 

from a uniform distribution of the design space. For the accuracy study in this section, a 

point that has been classified by the BNC as attainable but is actually unattainable is 

defined to be a false attainable point. False unattainable points are defined to be classified 

by the BNC to be unattainable but are actually attainable. Figure 3.15 presents a summary 

of the false attainable and unattainable error rates as a function of the number of training 

points, for several values of  .  

 

Figure 3.15. False attainable (left) and unattainable (right) classification error rates as a 

function of the number of training points. 
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The false attainable error rate decreases, as expected, as   decreases, which 

essentially shrinks the classified attainable space. The false unattainable error rate is low 

relative to the false attainable error rate, but experiences a rapid increase as   is 

decreased below 2 as a result of an overly conservative attainable boundary. From the 

false attainable error rate in Figure 3.15, it is inferred that an accurate attainable decision 

boundary requires more training points than defining the feasible/infeasible boundary, as 

the false attainable error rate continues to decrease after 100 training points. Setting the 

value for   will ultimately depend on the designer’s preference on minimizing the false 

attainable vs. false unattainable errors. 

3.5 Discussion 

The BNC introduced in this chapter uses a set of training points to classify the 

performance space into feasible, infeasible, and unattainable regions. The classifier’s 

tuning parameters of the kernel bandwidth,  , and the attainable probability threshold 

parameter,  , can be utilized to minimize the classifier’s error. However, there is always 

going to be a tradeoff between minimizing the errors of each class. Additionally, the 

tuning parameters   and   do not act independently of each other. The interaction 

between   and   is examined in the study summarized in Figures 3.16 and 3.17, which 

uniformly sampled the performance space similar to the error rate calculation in Section 

3.4 with a BNC having 50 training points, and defines the error rate of a particular class 

to be the ratio of the total number of misclassifications to the total number of samples. 

The false feasible and false infeasible error rates shown in Figure 3.16 show that at very 
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low values of   the error rates decrease to zero; however, this is due to the BNC 

classifying the entire space as unattainable, which causes the false unattainable error rate 

to increase as seen in Figure 3.17. A similar effect is seen for low values of  , which 

results in low false feasible error rates due to the peaky KDE that has probability values 

greater than the attainable threshold only at or very near to training points. 

 

Figure 3.16. Total false feasible and infeasible classification error rates. 
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Figure 3.17. Total false unattainable classification error rate. 

To maximize the usefulness of the proposed BNC, designers should define a cost 

of misclassification matrix, where the entry in row i and column j represents the cost of 

the BNC assigning class i when the actual class is j (Pearl, 1988). The cost of 

misclassification matrix can then be used as a metric for designers to consult when 

varying the tuning parameters   and  . For example, in the early stages of a design 

process it is desired to have a search space that includes all feasible designs even if some 

infeasible designs are included, too, in the interests of searching a broad design space. In 

this example, the cost of misclassifying a feasible design as infeasible should be set high 

while the cost of misclassifying an infeasible design as feasible should be set very low. 

According to Shawe-Taylor and Cristianni (2004), an effective classification 

algorithm must exhibit three characteristics to be considered effective:  (1) computational 

efficiency, (2) robustness to noise and error, and (3) statistical stability. In regards to the 
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computational efficiency of the method, to classify an unknown point using the BNC the 

probability distributions of both the feasible and infeasible classes must be computed. 

The computation of the probability distributions requires looping through all   training 

points, as well as an inner loop through all   dimensions of the performance space, 

according to Equation 3.17. This calculation yields a computational expense of order 

     , which may be negligible but can become computationally expensive as   and   

increase together, commonly referred to as the “curse of dimensionality”. The method 

effectively extracts pattern from noise, which can be seen by the decision boundaries 

capturing the irregularly shaped regions of the performance space with relatively low 

error rates. Additionally, the classifier has been seen to minimize the error as more 

training points are evaluated. The results shown by the proposed classifier meet the 

criteria defined by Shawe-Taylor and Cristianni, but more investigation is necessary to 

verify these claims under more intensive case studies. 
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Chapter 4: Quantifying Design and Performance Flexibility 

A set-based design approach has been shown to be capable of adapting to changes 

in both design space constraints as well as performance criteria by maintaining flexibility 

until the late stages of the design process (Chang, Ward, Lee, & Jacox, 1994; Taguchi & 

Cariapa, 1993). Defining a set of designs that are feasible and satisfy a set of performance 

targets adheres to Sobek et al.’s (1999) set-based design guidelines, which then requires 

intelligent narrowing of the design space. In order to intelligently narrow the design space 

a method to accurately measure design and performance flexibility is needed. This 

chapter builds off of the techniques introduced in Chapter 3, which provided a framework 

to accurately represent and map a set of designs in both the design and performance 

space, to quantify the design and performance flexibility embodied in the set of designs. 

Narrowing the design space can be a result of tightening performance criteria, 

resulting in a reduced set of designs that meet the tightened criteria. Tightening 

performance criteria prior to a thorough exploration of the design space may result in 

excluding high quality designs from ever being discovered. To intelligently narrow the 

design space, the performance criteria should be gradually tightened, so that resources 

can be focused on investigating the high performance region of the design space while 

only excluding the lowest quality designs. The design space may also be narrowed as a 

result of fixing one or more design variables. Fixing one or more design variables reduces 

the dimension of the design space, and allows for more efficient investigation of the 

design space, but should only be performed if it will not overly restrict the ability to find 
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satisfactory designs. A metric for design and performance flexibility must inform 

designers to the possible effects that narrowing the design space may have. 

 “Flexibility” has taken many definitions in design research, but in general is 

regarded as a sensitivity measure of the changes that can occur during the design process, 

while still maintaining the ability to find a satisfactory design (Ferguson, Siddiqi, Lewis, 

& de Weck, 2007). A metric for design flexibility should capture the degree to which a 

design can be changed while remaining feasible and satisfying a set of performance 

criteria. Following the work by Suh (1990), design flexibility is defined for this research 

as the proportion of the design space that produces satisfactory designs, relative to the 

size of the initial design space. Design flexibility, represented by   , can be calculated 

according to Equation 4.1, where     
     represents the size of the satisfactory design 

space and     
      represents the size of the initial design space. 

Design flexibility is a measure of the amount that the design space has been 

narrowed, and is equal to 1 at the start of the design process and is equal to 0 once the 

design space has been narrowed to a single point. This definition of design flexibility is 

the inverse of the Information Content (IC) metric defined by Simpson et al. (1998), 

which quantified a designer’s knowledge of the final design at a particular point in the 

design process. The two design spaces illustrated in Figure 4.1 exhibit two extremes of 

design flexibility, with the design space on the left of Figure 4.1 having high design 
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flexibility in both    and   , and the design space on the right of Figure 4.1 having low 

overall design flexibility but high design flexibility in   .  

 

Figure 4.1 Illustration of a design space with high (left) and low (right) design flexibility. 

In the performance space, a metric for flexibility should capture the ability of a set 

of designs to meet a ranged set of solutions, allowing for mitigation of unexpected 

changes in performance criteria (Chen & Yuan, 1998; Liu, Chen, Scott, & Qureshi, 

2008). Sets of designs with high performance flexibility can meet a wide range of 

performance requirements, and thus easily adapt to changes in performance criteria. In 

this thesis, performance flexibility is defined as the proportional size of the feasible 

performance space associated with a set of designs that meets the set of performance 

requirements, relative to the size of the desired performance space.  
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The desired performance space is the space of performance variable values that 

designers want to achieve. Typically in a set-based design paradigm, designers seek to 

achieve a wide range of performance values in order to easily adapt to changes in 

performance requirements. The ability to meet a wide range of performance values also 

allows for enhanced product customizability. In some cases designers may simply define 

the desired performance space by assigning an upper and lower bound to each design 

variable. Designers can also move beyond the assumption of variable independence and 

take into account performance tradeoffs between variables and define an arbitrarily 

shaped desired performance space. In cases such as a multi-level design problem, the 

desired performance space may be defined by the feasible performance space of another 

design team, and have an irregular shape itself. Performance flexibility, represented as 

  , is determined according to Equation 4.2, as a function of the size of the satisfactory 

performance space,     
    , and the size of the desired performance space,     

    . 

Performance flexibility gives designers an intuition of the consequences of a 

change in performance requirements. The performance space illustrated in the left of 

Figure 4.2 has high performance flexibility, because a large change in performance 

criteria,           and          , can occur while still maintaining a set of designs that meet 

the new performance criteria. Conversely, the performance space illustrated in the right 

of Figure 4.2 has low performance flexibility, as a moderate change in performance 

criteria,          , will result in an empty set of designs that meet the new set of 
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performance targets. Variable    shown in the performance space in the right of Figure 

4.2 individually has high performance flexibility, because a wide range of desirable    

values are achievable.  Knowledge of performance flexibility with respect to each 

performance variable, and coupled relationships between performance variables, is 

helpful to designers in making decisions of where to focus their resources. 

 

Figure 4.2. Illustration of a performance space with high performance flexibility in both 

Y1 and Y2 (left), and a performance space with low performance flexibility in Y1 and high 

performance flexibility in Y2 (right). 
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Classification accuracy has been found to be directly dependent on the method of 

set representation (Shahan & Seepersad, 2012). Consequently, the method of set 

representation directly impacts the accuracy of flexibility quantification. Section 4.1 

presents the mathematical framework to quantify the size of a generic space. It will be 

seen that for the irregularly shaped spaces inherent to the satisfactory design and 

performance spaces, approximations will need to be made in order to follow the 

quantification framework in Section 4.1. Section 4.2 provides examples of two interval 

approximation techniques to quantify an irregularly shaped space, and highlights the 

limitations of interval methods of set representation. The Bayesian network classifier set 

representation method has been shown to have improved classification accuracy over the 

interval and probabilistic set representation methods, and will be used in a combination 

with a Monte Carlo integration method to quantify design and performance flexibility in 

Section 4.3. Following the method proposed in Section 4.3, a discussion on how to 

interpret and utilize the knowledge provided by an accurate quantification of design and 

performance flexibility is provided in Section 4.4. 

4.1 Framework for Quantification 

The “size” of a space is equivalent to the area of a space in two-dimensions, and 

volume in three-dimensions, and will be referred to as the hypervolume. The 

hypervolume,  , of a space,  ,can be represented as a multivariate integral form 

according to Equation 4.3. 
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For an irregularly shaped and possibly discontinuous space, the bounds placed on 

the definite integral in Equation 4.3 are not likely to define a hyperrectangle. Instead, the 

hypervolume of   can be determined as a function of a space of known size,   , that 

contains the space of interest,  . The space of known size,   , can easily be created by 

assigning upper and lower bounds on each variable, thereby creating a hyperrectangular 

space. The hypervolume of the hyperrectangular space,   , can be determined by the 

definite integral in Equation 4.4, where the lower,   
   ,and upper,   

   ,bounds on each 

variable,   , define the integration bounds. 

The function that is being integrated in Equations 4.3 and 4.4 is a constant of 1 

over the entire space, however, in order to determine the hypervolume of   as a subset of 

the hypervolume of    , an indicator function,     , is defined according to Equation 

4.5. 

The hypervolume of the irregularly shaped space can now be written as an 

integral over space   , according to Equation 4.6. 
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The challenge in integrating Equation 4.6 is that the indicator function typically 

cannot be written in a closed form. The following methods presented in this Chapter 

make approximations for integrating Equation 4.6. It will be seen that an effective 

method to quantify design and performance flexibility must have an accurate 

approximation for integrating Equation 4.6 in a computationally efficient way. 

4.2 The Need for an Efficient High Fidelity Quantification Method 

There are slight differences in the methods to quantify design flexibility and 

performance flexibility. In both cases, the flexibility metrics are framed as ratios of the 

size of the satisfactory space to the size of the  “whole” space – the primary difference 

between the metrics being the definition of the “whole” space. In the design space, the 

“whole” space is the initial design space. Often the initial design space is a 

hyperrectangular space defined by placing minimum and maximum bounds on each 

design variable. However, in cases such as a multi-level design process, the initial design 

space may be specified as the feasible performance space from a lower-level design team, 

and may take an irregular shape. In the performance space, the “whole” space is the 

desired performance space corresponding to the range of performance values that meet 

the performance requirements. The desired performance space may have bounds placed 

on it from another design team, but if not, finite bounds must be assigned by the designer.  

          𝑑 
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This section will demonstrate the limitations of interval and grid set 

representation methods in quantifying the size of an irregularly shaped space using a 

helical spring design problem, which is defined in Appendix A. In this example spring 

problem the design variables    and    correspond to the spring’s coil diameter and wire 

diameter, respectively. The performance variables for the spring design problem,    and 

  , represent the spring compression under a target loading and the total spring width, 

respectively. For this design problem both performance variables,    and   , are 

attempted to be minimized, with satisfactory designs having performance values lesser 

than the performance targets,           and          . Additionally, constraints    and    

correspond to the maximum allowable shear stress and minimum allowable spring index, 

respectively, which are used to define a design’s feasibility. 

A BNC of the design and performance spaces is created following the methods 

described in Chapter 3 of this thesis, with tuning parameters   and   set to 0.3 and 2, 

respectively. The BNC was trained by 100 sample points drawn from a uniform 

distribution in the design space according to the Halton sequence (Freeman & Halton, 

1951). The bounds to the design and performance space are given in Table 4.1, which are 

then used to normalize each design and performance variable to range from 0 to 1.  

Table 4.1. Design and performance variable bounds. 

    (m)    (m)    (m)    (m) 

Minimum 0.0178 0.0033 0.0000 0.0200 

Maximum 0.0033 0.0048 0.3500 0.0430 
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Normalization of the design and performance spaces allows for each variable to 

be equally weighted in the quantification of the space. Normalization is especially crucial 

when variables have widely varying units and ranges. Assigning bounds to the 

performance space must be somewhat arbitrarily made because the attainable range of 

each performance variable is typically not known at the start of the design process. An 

approximation of the bounds of the performance space is adequate, and can always be 

updated as more knowledge of the space is gained.  

 

Figure 4.3. The BNC mapping of the design space (left) and performance space (right) of 

the spring design problem with 100 training points. 

The design and performance space mappings for the spring design problem are 

shown in Figure 4.3, with the blue square points corresponding to the feasible designs 

that also meet the performance requirements, the cyan circle points corresponding to 

feasible designs that do not meet the performance requirements, and the red triangle 
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points corresponding to the infeasible points that violated one or more constraints. In the 

design space shown in Figure 4.3, the light blue background represents the satisfactory 

design space and the light red background represents the unsatisfactory design space, as 

defined by the BNC mapping. In the performance space in Figure 4.3, the light blue 

background represents the feasible performance space, the light red background 

represents the infeasible performance space, and the grey background represents the 

unattainable performance space, as defined by the BNC. From the feasible performance 

space the satisfactory performance space can be trivially identified, as the values of 

performance variables, Y1 and Y2, that are less than specified performance requirements, 

which are defined in the performance space. 

The most common and elementary method for quantification of the design space 

is through intervals. Intervals are defined by assigning a range for each variable 

independently. Intervals are often used in defining a hyperrectangular initial design 

space, but suffer errors when used to quantify an irregularly shaped space. For instance, 

an interval of the satisfactory design space in the helical spring problem, shown in Figure 

4.3, is typically defined by the minimum and maximum parameter values for known 

satisfactory designs.  

The volume of the satisfactory design space,     
    , can be approximated for an 

m-dimensional design space using an interval according to Equation 4.7. Letting      

represent the set of satisfactory designs, with each design instance being composed of an 

m-dimensional array,               , the variable   
    in Equation 4.7 represents an 

array corresponding to i
th

 variable values from the set of satisfactory designs. 
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The satisfactory design space of the helical spring problem is shown in Figure 4.4 

with an interval representation drawn according to Equation 4.7 as well as the boundary 

defined by the BNC as shown in Figure 4.3. The interval in Figure 4.4 defines a 

satisfactory design space that is much larger than the actual satisfactory design space, as 

the falsely classified satisfactory design space is nearly as large as the correctly classified 

satisfactory design space. A more conservative interval could be used to define this 

interval, but would then increase the size of the falsely classified unsatisfactory design 

space. 

 

Figure 4.4. Interval quantification of the satisfactory design space. 
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The accuracy of the interval representation can be improved by dividing the space 

into an m-dimensional hyperrectangular grid. Each grid segment can be classified 

according to various criteria, such as whether or not a satisfactory training point exists 

within that sub-interval, whether there are more satisfactory training points than 

unsatisfactory training points within that sub-interval, etc. For the purpose of this 

demonstration, a sample point is generated at the geometric center of each grid segment, 

and is classified using the BNC. The sub-interval is then classified according to the class 

of the sample point returned by the BNC, which provides a more accurate interpretation 

of the space than the set of training points alone (Shahan & Seepersad, 2012). 

To use the grid method to quantify the size of the satisfactory design space, each 

of the   design variables is first divided into   segments. The overall space is then 

divided into    hyperrectangular spaces, requiring      sample points. If the design 

space has been normalized such that the total volume is equal to 1, then the volume of 

each grid segment is equal to     . The volume of the satisfactory design space can then 

be approximated as the number of sample points that were classified as satisfactory, 

multiplied by the volume of an individual grid segment, according to Equation 4.8.  

Where the variable,  , represents the number of sample points that were classified as 

satisfactory. Using the indicator function defined in Equation 4.5, which is equal to 1 if 

the sample point is classified as satisfactory and equal to 0 otherwise, the value of   can 

be calculated according to Equation 4.9. 
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The satisfactory design space of the helical spring problem is quantified using the 

grid method in Figure 4.5. The grid method is seen to have a reduction in false 

unsatisfactory classification relative to the interval method. Additionally, by comparison 

of the quantification with 5 divisions per variable and 10 divisions per variable, it is clear 

that the error can be decreased further by increasing the number of divisions per variable, 

 . However, a major drawback of the deterministic grid sampling method is that once the 

number of divisions has been set, it is difficult to change this without creating a 

completely new grid and resampling the new points. 

 

Figure 4.5. Grid quantification of the satisfactory design space with 5(left) and 10 (right) 

divisions per variable. 
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The upper bound of the absolute error,  , for the volume approximation in 

Equation 4.8 can be defined as a function of the boundary surface area of the space, 

    
    , and the number of divisions along each variable,  , according to Equation 4.10 

(Fishman, 1996). Although the boundary surface area,     
    , will be likely unknown, a 

generous approximation for it will allow Equation 4.9 to be approximated. 

 Therefore, in order to guarantee an absolute error no larger than  , the total 

number of sample points required can be determined by Equation 4.11. The operator     

in Equation 4.11 rounds up the value of   to the next integer, and is necessary to ensure 

that Equation 4.10 returns a non-fractional number of samples.  

To analyze the efficiency of this method, suppose that the dimensionality of the 

space,  , is increased while maintaining a constant surface area of the space. In order to 

maintain the same maximum absolute error, it can be inferred from Equation 4.11 that the 

number of divisions,  , of each variable remains constant. However, the number of 

samples required grows exponentially by order       . This exponential growth in 

samples required highlights the limitation of this quantification method for moderate and 

large number of variables,  . Additionally, in this thought experiment the boundary 

surface area of the space was held constant, which is a very conservative estimate. If the 
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boundary surface area increases with  , the number of samples required grows even 

faster. 

The computational limitation to the grid approach for representing and 

quantifying an irregularly shaped space further motivates the use of the BNC to map the 

space. Additionally, without using the BNC to classify the sample points in the grid 

quantification method, there is an inherent maximum number of divisions per variable. If 

the grid sample points are classified based on whether or not a satisfactory training point 

lies within a sample’s grid space, the number of divisions per axis will be limited by 

requiring a training point to fall within each grid space. The benefit of the BNC is clearly 

seen here as it provides an accurate interpolation of knowledge to unexplored regions of 

the design space. Although the BNC could be used in conjunction with the grid 

quantification method to achieve high quantification accuracy, the following section 

presents a significantly more computationally efficient method to do this. 

4.3 A Monte Carlo Method for Quantifying Design and Performance Flexibility Using 

Bayesian Network Classifiers 

The Monte Carlo (MC) method provides a framework to approximate the 

hypervolume integral in Equation 4.3 through statistical sampling. The MC method to 

approximating the integral in Equation 4.3 is similar to the grid approximation method 

described in Section 4.2, with the deterministic sample points in the grid approximation 

method replaced by a sequence of stochastic samples. The sample points are then 

classified using the BNC. The MC error in approximating the integral in Equation 4.3 
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decreases as the number of samples,  , is increased at the rate of      , and is 

independent of the dimensionality of the problem (Evans & Swartz, 2000; Hammersley, 

1960). This property of the MC method presents a substantial efficiency improvement 

over the grid method, which decreases in error roughly at the rate of      , especially as 

the number of variables,  , becomes large. 

To approximate the hypervolume of a generic space,  , as a subset of a 

normalized  -dimensional space,   , using the MC method, a sequence of independent 

random samples must be drawn from a uniform probability distribution. Each sample is 

evaluated and classified with the BNC, which is used to define the value of the indicator 

function,      , according to Equation 4.5. As a consequence of the sequence of samples 

being random and independent, the indicator function,     , in Equation 4.12 is an 

independent Bernoulli random variable. The indicator function therefore has the 

properties given in Equations 4.12 and 4.13, regarding the probability of the value that 

the indicator function will take for a random sample   .  

 The sum of the indicator function values,  , across the set of    samples is defined 

in the same manner as it was in the grid quantification method, according to Equation 4.9. 

By definition, the sum of a sequence of Bernoulli random variables,  , follows a binomial 
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distribution. As a property of a binomial distribution, the probability that   will equal a 

number  , after   samples is defined by Equation 4.14. 

 Additionally, the expected value of the binomial distribution,  , is defined 

according to Equations 4.15. 

 From the expected value of   in Equation 4.15, the hypervolume of   can be 

approximated after   samples according to Equation 4.16. 

 According to the law of large numbers, as   is increased to infinity the 

approximation of the hypervolume,      , in Equation 4.16 converges to the actual 

hypervolume,      (Fishman, 1996). Therefore,       is an unbiased, strongly 

consistent estimator of     .  

The standard error of the approximated hypervolume,      , serves as a rough 

estimate of the statistical error associated with this approximation. The standard error is 

defined as the square root of the approximated variance in the approximated 

hypervolume, according to Equation 4.17 (Fishman, 1996). 
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 The standard error is essentially a measure of how much the approximated 

hypervolume changes with each subsequent sample. Although there is no definitive rule 

correlating the standard error to the true error, it can be inferred that a lower value of the 

standard error requires less samples before       becomes a good approximation of 

    . The ability to approximate the error in the approximated hypervolume of   is a 

very useful property in order to know when to stop taking samples. There are additional 

metrics that are not discussed in this thesis, but can be found in (Fishman, 1996), that 

give error bounds to       as well as give a worst case estimate of the number of samples 

necessary to have an absolute error less than a given value,  . 

The MC method is applied to approximating the design flexibility of the helical 

spring design problem according to Equation 4.16. Figure 4.6 shows the design space 

after 100 samples (left) and 500 samples (right), with the indicator function      

coloring the sample points as blue if they are inside the satisfactory design space and red 

otherwise. The sample points were drawn from the pseudorandom Halton sequence. To 

prevent any of the sample points to correspond to any of the training points, which were 

also drawn from the Halton sequence, the first 1,000 points in the Halton sequence were 

discarded for the MC samples. The use of the Halton sequence to generate the MC 

sample points has the benefit over a purely random sequence in that it is a space filling 

algorithm, and does not cluster points together. This modification to the basic MC 

algorithm increases the efficiency of the number of sample point evaluations required to 
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converge to an accurate approximation of the integral in Equation 4.6. The Matlab
®
 code 

used to implement this method is included in Appendix B. 

 

Figure 4.6. Monte Carlo samples of satisfactory design space 100 samples (left) and 500 

samples (right). 

The MC method presented to approximate the size of the satisfactory design and 

performance spaces samples the BNC mapping rather than performing new concept 

evaluations. Sampling the BNC requires minimal computational expense compared to the 

concept evaluation process, but limits the accuracy of the MC approximation to the 

accuracy of the BNC mapping. To isolate and analyze the error of the MC algorithm 

alone, the “true” quantification value is taken to be the value returned by the MC 

algorithm after 50,000 sample points. The true error is therefore taken to be the difference 

between the size of the space approximated by the MC algorithm to the size of the space 

defined by the BNC mapping. 
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The design flexibility of the helical spring problem was found to be 0.104. The 

MC approximation of the design flexibility is shown in Figure 4.7 to be fairly accurate 

even after 10 samples, and converges to better than 99% accuracy after 10,000 samples. 

The true error plot in the Figure 4.7 has frequent dips in error, which occurs when the 

samples happen to very accurately predict the design flexibility. The dips in error, 

however, are random in nature, and therefore the peaks in the error plot are a more 

accurate depiction of the true error. The predicted reduction in error as a function of 

training points,      , is plotted in the dashed black line in the right plot of Figure 4.7, 

and very accurately approximates the true error. The standard error, plotted in blue, 

approximates the true error very closely too, but is an underestimation. 

 

Figure 4.7. Monte Carlo approximation of the design flexibility (left) and error (right) as 

a function of the number of samples. 
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The MC approximation of the performance flexibility of the helical spring 

problem is demonstrated in Figure 4.8. The desired performance space is shown 

highlighted in light blue in the left plot in Figure 4.8, and normalized in the right plot in 

Figure 4.8. The MC samples were drawn from the same Halton sequence as in the design 

space. The desired performance space shown in the right plot of Figure 4.8 illustrates 

how the indicator function only captures the satisfactory performance space, and lumps 

the infeasible and unattainable performance spaces together as shown in red. 

 

Figure 4.8. Monte Carlo samples of attainable performance space (left) and satisfactory 

performance space (right), each with 500 sample points. 

The performance flexibility of the helical spring problem was found to converge 

to roughly 0.107 after 10,000 samples, as shown in Figure 4.9. The standard error is seen 

to again underestimate the true error in the performance flexibility, with the error 

prediction of      , proving to be an excellent estimation of the true error. Although both 
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the design flexibility and performance flexibility were found to be very similar in this 

helical spring problem, this relationship is coincidental. The performance flexibility is 

measured as a percentage of the size of the satisfactory performance space to the desired 

performance space, in which the lower bounds to the desired performance space were 

somewhat arbitrarily approximated, and could be easily changed.  

 

Figure 4.9. Estimate error of Monte Carlo approximation with standard error. 

 The MC method to quantify design and performance flexibility using a BNC 

mapping of the space is both accurate and computationally efficient. While the error in 

the flexibility quantification method can come from both the BNC mapping and the MC 

algorithm, with enough sample points for the MC algorithm the error can be isolated to 

the BNC mapping alone. The use of the Halton sequence to generate the stochastic 

sample points for the MC algorithm increases the efficiency of the algorithm by reducing 

the variance of the MC integral approximation. Many other variance reduction methods 
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exist to intelligently choose samples, thereby requiring less samples to attain a 

comparable accuracy (Skowronski & Turner, 1997). The MC method can also give 

designers real time feedback on the accuracy of the design/performance flexibility, 

allowing for custom bounds to be placed on the maximum error. 

4.4 Discussion 

The MC method of sampling the BNC mapping of the design and performance 

spaces gives designers an ability to leverage design and performance flexibility in 

intelligently narrowing the design space. As the design space is narrowed, the design and 

performance flexibility metrics can be used to minimize any adverse effects. Ideally the 

decision to narrow the design space can be framed as a multi-objective optimization 

problem, in which the designer seeks to reduce design flexibility while maximizing 

performance flexibility.  One way to do this is to perform a parameter sweep across the 

performance requirement thresholds, while keeping track of the resulting design and 

performance flexibility values. Figure 4.10 shows a zoomed in view of the desired 

performance space, with design and performance flexibility contours drawn equal to 

75%, 50%, and 25% of the original design and performance flexibility. The reduction in 

design flexibility in each of the contours in Figure 4.10 results from tightening the 

performance requirements, and having fewer training points being classified as 

satisfactory. The differences in the contours of design and performance flexibility in 

Figure 4.10 are due to the difference in distribution of training points in the design and 
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performance spaces. These differences can be exploited to narrow the design space in an 

intelligent manner. 

 

Figure 4.10. Contours of constant design and performance flexibility, shown in a 

normalized, zoomed-in desired performance space. 

Adhering to the goal of maximizing performance flexibility when narrowing the 

design space, the circles with an asterisk plotted in Figure 4.10 represent the largest value 

of performance flexibility on the contour of constant design flexibility. Therefore, the 

points identified by the circle and asterisk are the points the values that a designer should 

assign to the performance requirements in order to gradually narrow the design space. 

The performance flexibility values at these points, corresponding to design flexibility 

values of 0.75, 0.50, and 0.25, are 0.92, 0.75, and 0.30, respectively. This demonstrates a 

considerable benefit in performance flexibility when narrowing the design space, if the 

performance requirements are tightened in this manner. The corresponding design and 
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performance spaces for this example of tightening performance requirements are shown 

in Figure 4.11. This example of intelligently narrowing the design space would not have 

been possible without an effective flexibility quantification method. 

 

Figure 4.11. Updated design and performance spaces resulting from a change in 

performance requirements. 

Design and performance flexibility can also be used as a sensitivity measure by 

artificially changing performance requirements to observe the impact of a single or 

coupled change in one or more performance criteria. The performance flexibility during a 

sensitivity analysis can give insights as to the most vulnerable performance criteria to 

unexpected changes. Similarly, design flexibility gives insight into how much the 

satisfactory design space may be narrowed as a result of a change in performance criteria. 
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In a design process, a designer cannot be satisfied with a set of designs that have very low 

performance flexibility. Consumer demands can change both unexpectedly and 

drastically. A change in performance criteria that reduces performance flexibility to zero 

will likely cause a timely setback to the design process, forcing the designer to expand 

the design space. It may be cost effective to spend extra resources in exploring regions of 

the design space that will increase performance flexibility, and prevent potential setbacks 

in the later stages of the design process. The key is to plan ahead, prepare for untimely 

and undesired events, and do not wait until it is too late to leverage flexibility. 
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Chapter 5: Hierarchical Materials Modeling and Design Study 

The applications of the Bayesian network classifier (BNC) proposed in this thesis 

have thus far been limited to mapping the performance space of a single-level problem. 

In a single-level design problem, it is sufficient to map the regions of the design space 

that offer satisfactory performance values. In a multi-level design problem, however, 

where the performance space of an upstream design team corresponds to the design space 

of a downstream design team, it becomes necessary to create a mapping of the 

satisfactory performance space of the upstream design team. As part of a set-based design 

strategy (Sobek, Ward, & Liker, 1999), BNCs are coupled with an exploratory search to 

identify and map regions of the design space with desirable characteristics at each 

hierarchical level. Those maps are then intersected across hierarchical levels to identify 

satisfactory system-wide designs. As opposed to bottom-up, deductive hierarchical 

modeling, the BNC approach is a top-down, inductive design approach that is driven by 

meeting high-level system performance requirements. 

This chapter demonstrates the utility of the BNC performance space mapping 

through a multi-level material design problem. The BNC approach yields significant 

insights about the behavior of the material system at each level, and supports rapid 

identification and exploration of promising multi-scale solutions. The following section 

presents the technical background for the composite material design problem and outlines 

the modeling that will be conducted at each hierarchical level.  
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5.1 Background of Hierarchical Material Modeling 

Composites consisting of negative stiffness particulate heterogeneities embedded 

in a continuous viscoelastic host material have been theoretically (Lakes, 2001) and 

experimentally (Lakes, Lee, Bersie, & Wang, 2001) shown to display drastic 

enhancements in effective damping with the potential to maintain or even increase the 

overall stiffness of the host material. These types of materials are of significant interest to 

the engineering community because of their potential for improving the vibro-acoustic 

performance of structures in aerospace, automotive, and marine industries (Haberman, 

Berthelot, & Cherkaoui, 2006; Koutsawa, Haberman, Daya, & Cherkaoui, 2008). 

Modeling and design of these material systems must occur on three distinct 

scales: the micro-, meso-, and macroscales, as illustrated in Figures 5.1 and 5.2. The 

microscale is defined by the smallest-scale geometry of interest: the internal structure of 

the negative stiffness inclusions. The microscale inclusions exploit the unique non-

monotonic force-displacement nature of bistable systems to produce highly absorptive 

composite materials. Such bistable systems are exemplified by an axially compressed 

beam, which, under transverse loading, initially exhibits positive stiffness until it buckles 

and consequently “snaps-through” to its second stable configuration. During this 

transition, the beam exhibits negative stiffness when loaded with displacement control. 

Taking inspiration from a buckled beam, the inclusion design presented here mimics such 

a system on four of its six cubic faces to induce negative stiffness in two orthogonal 

directions. This negative stiffness behavior leads to high levels of energy absorption and 

mechanical loss when the composite material is subjected to vibro-acoustic loading. The 
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microscale inclusions presented in this paper are unique in that they employ a thermal 

expansion mismatch to induce negative stiffness behavior. More details of the geometry 

and fabrication of the inclusions are included in Section 5.2.1 and a detailed derivation of 

the multi-scale material model can be found in Klatt and Haberman (2013). 

Finite element (FE) based representative volume element (RVE) homogenization 

is performed at the microscale to determine the effective mesoscopic stiffness of the 

material inclusions, with some of the components of the effective stiffness tensor 

possessing negative values by design. The structure-driven mechanical behavior of the 

negative stiffness elements is indicative of a new class of materials, which have been 

labeled mechanically transforming metamaterials (MTM) as a result of their bistable 

effective constitutive behavior (Haberman, Klatt, Wilson, & Seepersad 2012). 

 

Figure 5.1. An illustration of the hierarchical levels of the composite material, with 

micro-, meso-, and macro-scales indicated by the subscripts , m, and M, respectively. 

The negative stiffness inclusion is illustrated in the upper left, and the beam coating 

application is illustrated on the right. 
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At the mesoscale, effective medium theories are used to determine the effective 

behavior of a composite material consisting of a homogeneous matrix material containing 

negative stiffness inclusions. Mesoscale models consider the effective stiffness of the 

inclusions, as well as their geometry, orientation, and volume fraction to determine the 

effective stiffness and loss factor of the composite material. It is ultimately the 

microstructure that leads to mesoscopic negative stiffness behavior and significant 

increases in absorptive capacity on the macroscopic scale (Klatt & Haberman, 2013).  

The effective stiffness and loss properties predicted by the mesoscale models 

serve as input to a macroscopic model for a layered, composite beam application. A 

layered beam is coated with the composite material containing negative stiffness 

domains, and layered plate models from composite beam theory are used to predict the 

overall stiffness and loss properties of the beam (Ross, Ungar, & Kerwin, 1959). This 

application investigates the ability of microstructural changes to influence the damped 

vibration response of a composite beam. The goal is to significantly increase the loss 

factor of the beam without decreasing its effective stiffness upon application of a layer of 

negative stiffness composite material. 

The design of composite materials with microscale, negative stiffness inclusions 

is challenging from several perspectives. First, the design space is complex. The full 

multiscale material model must consider the geometry and material properties of the 

microstructure as well as the volume fraction, morphology, and orientation distribution of 

the MTM inclusions at the mesoscale, and the relationships between these variables are 

sometimes highly nonlinear. Furthermore, computationally expensive FE methods are 
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required to model the constitutive mesoscale properties of the MTM, and these models 

are difficult to automate. Similarly, some micromechanical effective medium approaches 

for modeling the meso- to macro-scale transition can display numerical instability, which 

prevents full automation of the design exploration process. In addition, the design space 

includes discrete variables, such as alternative topologies of the MTM inclusions, and 

highly nonlinear relationships between the geometric characteristics of those inclusions 

and the macroscopic loss behavior. Uncertainty also plays an important role, for example, 

in the impact of process-induced variations in the geometry of MTM inclusions on their 

mesoscale behavior. Though this variation is not explored in this study, it is a nontrivial 

component of the design of these types of materials and the modeling and design strategy 

must therefore be of appropriate generality to consider fabrication. All of these 

characteristics, plus the inherently multilevel nature of the design problem, motivate the 

need for a comprehensive approach for multilevel design of these material systems.  

The hierarchical modeling and design process followed in this Chapter is outlined 

in the flowchart shown in Figure 5.2. The inclusion geometry parameters are the design 

variables for the micro- to meso-scale model. The outcome of the micro- to meso-scale 

model is the inclusion’s effective stiffness tensor, which represents the performance 

variables for this level. The inclusion’s effective stiffness tensor is then combined with 

several matrix properties, as shown in Figure 5.2 to constitute the meso- to macro-scale 

design variables. The meso- to macro-scale model then implements a homogenization 

technique to approximate the composite material’s effective stiffness and loss factor. The 

composite metamaterial’s effective stiffness and loss represents the performance 
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variables in the meso- to macro- model, and are then introduced as design variables for a 

beam coating study, along with the beam parameters shown in Figure 5.2. The composite 

coated beam is then subjected to static and dynamic analyses to determine the 

composite’s effective stiffness, loss factor, and damping ratio, which represent the beam 

coating study’s performance variables. The consistent transition of lower-level 

performance variables to upper-level design variables makes this hierarchical design 

problem challenging, and thus provides an excellent case study to demonstrate the 

effectiveness of the Bayesian network classifier introduced in previous Chapters. 

 

Figure 5.2. Flowchart of hierarchical modeling including variable inputs and outputs at 

each level. 

The micro- to meso-scale and meso- to macro-scale models are presented in 

Sections 5.2 and 5.3, respectively, along with accompanying design space maps derived 
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from BNCs. The results from Sections 5.2 and 5.3 are then used to design a coated beam 

in Section 5.4. 

5.2 Micro- to Meso-Scale Modeling and Design Space Mapping 

In the micro- to meso-scale model, the geometries of the inclusions are designed 

to provide negative stiffness in at least one direction. The parameterization of a candidate 

inclusion and the homogenization approach for predicting its properties is described in 

Section 5.2.1. Mappings of the design and performance spaces are described in Section 

5.2.2. 

5.2.1 Layout and Modeling of the Negative Stiffness Inclusions 

A candidate geometry for the negative stiffness inclusion is depicted in Figure 

5.3. The inclusion is intended to be manufactured using a micro co-extrusion process, in 

which successive extrusions of a green part reduce the inclusion's external and internal 

dimensions from millimeter to micrometer scale (Kovar, King, Trice, & Halloran, 1997). 

During the extrusion process, voids are filled with a carbon black material. Post-

extrusion, a high-temperature sintering process pyrolizes the carbon black from the 

extrudate, which leaves voids within the inclusion. The inclusion is comprised of two 

materials—alumina and yttria tetragonal zirconia polycrystals (YTZP)—whose 

coefficients of thermal expansion differ. Differential contraction during the sintering 

process axially compresses the four alumina beams in Figure 5.3 so that they assume the 

outwardly buckled, bistable states depicted on the right of Figure 5.3. When the inclusion 

is embedded in a matrix material and mechanically loaded, the negative stiffness 
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inclusions lead to greater localized strains, and hence greater stiffness and damping, than 

positive stiffness inclusions. 

 

Figure 5.3. A candidate MTM inclusion design showing FE modeling. 

Figure 5.4 illustrates the geometric parameters that define the inclusion. The 

external boundary of the inclusion, and the mesoscale, is defined by the parameter 𝐿. The 

parameter    defines the height of a T-shaped interface which transfers loading from the 

surrounding matrix to the center-point of the buckled element. The parameter   defines 

the width of the connection between the interface and the buckled element. The 

parameter 𝐿  locates the midpoint of the inclusion, 
 

 
   . The parameter B defines the 

height of the buckled element and the voided region below it. Finally, 𝐿  defines the 

buckled element length. To reduce the dimensionality of the problem, non-dimensional 

ratios are used to adjust the inclusion geometry. The ratios of interest are      
,   , and 

    , as defined by Equations 5.1-5.3. 



109 

 

 

Figure 5.4. Cross-sectional view of parameterized inclusion geometry with all critical 

parameters. YTZP shown in light blue, with Alumina elements in dark blue. 

To relate the geometric parameters of the inclusion to the effective elastic 

properties of the inclusion, a two-step, nonlinear, multi-scale material homogenization 

method, similar to that suggested by Odegard (2004), is applied to the inclusion is applied 

to the inclusion. Nonlinear finite element analysis is used to simulate the force-

displacement behavior of the structured inclusion for a series of boundary conditions. The 
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nonlinear finite element model considers both the geometric nonlinearity of the inclusion 

structure and the loading induced by differential thermal contraction during the sintering 

process. The methodology then assumes that the nonlinear stress and strain behavior 

resulting from the inclusion structure can be well-represented as a continuous elastic solid 

inclusion with nonlinear mesoscopic effective elastic properties, 𝐂         , where 𝐂      

is the effective nonlinear mesoscopic stiffness tensor and    is the mesoscopic Green’s 

strain tensor evaluated on the boundaries of the MTM element. Elements of the effective 

nonlinear mesoscopic stiffness tensor are calculated from the curvature of the inclusion's 

strain energy versus Green's strain relationship, using energy methods. The mesoscopic 

stiffness tensor is then used as a strain-dependent input to the meso- to macroscale 

transition model in Section 5.3. 

5.2.2 Mapping the Micro- to Meso-scale Design Space 

The micro- to meso-scale design problem has three design variables, 

corresponding to the dimensionless parameters in Equations 5.1-5.3, and six performance 

parameters, corresponding to elements of the mesoscopic effective stiffness tensor, 

𝐂     . The performance parameters of particular interest in this example are two of the 

elements of the stiffness tensor,    
     

 and    
     

, which are directly related to the plane-

strain bulk modulus of the inclusions. Values of the performance parameters are divided 

into two classifications. The high performance class captures designs that exhibit 

negative stiffness in the first principal direction: a negative value for    
     

. Low 

performance designs do not exhibit negative stiffness in the first principal direction. Data 
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from the finite element-based homogenization procedure serve as training points for 

Bayesian network classifiers of the design and performance spaces, with resulting maps 

illustrated in Figures 5.5 and 5.6. The training points were defined as the first 1,000 

points of the Halton sequence (Freeman & Halton, 1951), interpolated to span the bounds 

of each non-dimensional geometric ratio specified in Table 5.1.  

Table 5.1. Inclusion geometric parameter bounds. 

Geometric Ratio Minimum Maximum 

     
 0.60 0.99 

   0.10 0.98 

     0.05 0.20 

 

Figure 5.5. Micro- to meso-scale design space mapping. 
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A two-dimensional plot of the micro-scale design space in Figure 5.5 maps the 

high performance design points that exhibit negative values for    
     

. High (low) 

performance points are blue (red), and the black line represents the decision boundary 

between high and low performance designs. Some of the points within the high 

performance decision boundary are low performance points, indicated by the red points 

within the blue region. These points appear to be falsely classified because the three 

dimensional design space has been reduced to two dimensions in this plot. The      

design variable has only a minor influence on    
     

, but changes in its value account for 

the apparent misclassification of points in Figure 5.5, which could be eliminated with a 

three-dimensional plot.  

The high performance points in Figure 5.5 relate to designs in which the four 

alumina beams shown in Figure 5.3 buckle due to the induced strains during the thermal 

contraction of YTZP. The absence of high performance points in the upper left quadrant 

of Figure 5.5 indicates that the induced strain on the beams is insufficient to cause 

buckling, and supports the notion that a short and thick beam will not buckle. Although 

not plotted in Figure 5.5, the design variable      controls the width of the connector 

between the alumina beam and the YTZP. This parameter has been bounded to prevent 

inaccurate point-loading simulation results at the lower bound and to prevent detrimental 

effects to the beam buckling characteristics at the upper bound; otherwise, it has little 

effect on the performance of the inclusion.  

To test the accuracy of the BNC mapping, the classifier in Figure 5.5 was 

retrained, and the decision boundary was redrawn after omitting the last 10% of the 
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Halton sequence of design points. Then, those omitted points were classified by the 

retrained classifier, and their classifications were compared to simulated levels of 

performance. The classifier correctly classified 89% of all the training points, but 

misclassified 52% of the high performance points as low performance. For this 

exploratory design space mapping, the classifier is intended to capture the entire high 

performance space, and err on the side of misclassifying low performance points as high 

performance. Adhering to this goal, the high performance class loss factor ratio,   , was 

increased from unity to 6, resulting in correctly classifying 84% of all the training points, 

and 89% of the high performance points. This high level of accuracy is significant, given 

that only 11% of the design space is classified as high performance, and the boundary of 

that high performance region is very irregularly shaped. Those features make it very 

difficult to map the high performance region with other approaches, such as interval-

based classifiers, which would result in either overly conservative or overly liberal 

classification of points. 
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Figure 5.6. Micro- to meso-scale performance space mapping. 

All of the design points in Figure 5.5 map to performance points in Figure 5.6, 

with high performance designs again represented by blue dots. The black lines in Figure 

5.6 represent the boundary of the attainable space, which represents the combinations of 

performance parameter (   
     

 and    
     

) values that correspond to feasible 

combinations of design variable (     
,   ,     ) values. The micro- to meso-scale 

performance space mapping shown in Figure 5.6 makes it evident that only a small 

fraction of the design space maps to high performance designs (shown in blue), with 

attainable    
     

 values ranging from 4,000 MPa in positive stiffness to only -80 MPa in 

negative stiffness.  

When exploring the multi-level design problem, this performance space mapping 

is intersected with the design space mapping for the meso- to macro-scale model, thereby 

identifying points that are simultaneously attainable at the micro- to meso-level and 

linked to satisfactory performance at the meso- to macro-level. For this purpose, it is 

important to have an accurate mapping of the performance space. The parameter   

controls the region of influence of each attainable point, as described in Chapter 3, where 

a smaller value of   pulls the decision boundary closer to the known attainable design 

points, reducing the probability of falsely classifying an untested point as attainable but 

also increasing the probability of falsely classifying an untested point as unattainable. 

The attainable probability threshold for the performance space mapping shown in Figure 

5.6 was determined by setting   to 3. By applying the same cross-validation technique as 
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in the design space, the classifier trained with 90% of the training points was found to 

correctly classify 95% of the omitted points, and 100% of the omitted points in the high 

performance space (   
       ). The mapping of the attainable high performance space 

was optimized by finding the smallest value for   such that the cross-validation accuracy 

of the high performance points remained at 100%. The optimization resulted in a   value 

of -0.45, and is illustrated in Figure 5.7. In this mapping, a negative value of   indicates 

that the high performance training points are clustered closer together than the training 

points as a whole.  

 

Figure 5.7. Micro- to meso-scale high performance space mapping. 

5.3. Meso- to Macro-scale Modeling and Design Space Mapping 

In the meso- to macro-scale model, the effective stiffness and effective loss factor 

are modeled for a composite material, consisting of the negative stiffness inclusions 
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modeled in the preceding section, dispersed within a viscoelastic matrix. As described in 

Section 5.3.1, effective medium theory is used to model the effective stiffness and loss 

properties of the composite. Mappings of the design and performance spaces are 

described in Section 5.3.2. 

5.3.1 Modeling the Performance of the Composite with Negative Stiffness Inclusions 

The inputs to the meso- to macro-scale model are the volume fraction, 

morphology, and orientation of the inclusions within the viscoelastic matrix; the material 

properties of the matrix; and the effective mesoscale stiffness tensor for the inclusion, 

quantified with the FEA approach described in Section 5.2.1. Micromechanical effective 

medium theory (EMT) is used to predict the macroscale effective stiffness and loss 

properties of the homogenized composite material. EMT is a very general modeling 

approach for estimating quasi-static macroscale stiffness and loss behavior of viscoelastic 

composite materials (Haberman et al., 2006). Figure 5.8 depicts the meso- to macro-scale 

transition used in this work. The mesoscale RVE containing a matrix with stiffness   , 

an inclusion with stiffness   , and an inclusion coating with stiffness    is homogenized 

into a macroscale element with stiffness       . 

Using these traditionally static models, stiffness and loss behavior of the 

composite under dynamic loading can be modeled via the elastic-viscoelastic 

correspondence principle, as long as the inclusions remain much smaller than  the 

wavelengths induced in the matrix material by dynamic loading (Milton, 2002). The 

elastic-viscoelastic correspondence principle states that the stiffness tensor of the 
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homogenized composite can be represented with complex valued entities according to 

Equation 5.4: 

Where C is the complex stiffness tensor consisting of storage, 𝐂 , and loss, 𝐂  , 

components, I is the identity tensor, and   is the loss factor tensor. Under this principle, 

the usual operations applicable to EMT hold and the overall absorptive properties of the 

composite can be estimated (Haberman et al., 2006). 

 

Figure 5.8. Conceptual schematic of the homogenization approach of the Self-Consistent 

micromechanical model. 

In this study, the orientation averaged composite stiffness is determined using a 

0.2% volume fraction of inclusions relative to the matrix material. The relevant matrix 

material properties used in this study are given in Table 5.2. 

 

 

𝐂  𝐂   𝐂   𝐂        

(

5.4) 
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Table 5.2. Meso- to macro-scale modeling parameters. 

Parameter Variable Value 

Matrix Young's Modulus    30 MPa 

Matrix Poison's Ratio 𝜈  0.3 

Matrix Loss Factor 𝜂  0.005 

Inclusion Volume Fraction    0.2% 

5.3.2 Mapping the Meso- to Macro-scale Design Space 

The meso- to macro-scale model's design variables include the    
     

 and    
     

 

elements of the effective mesoscale stiffness tensor, 𝐂     , for the inclusion; these two 

elements are assumed to have the largest performance impact on macroscale 

performance. The model has two performance variables, namely, the effective stiffness, 

      , and effective loss factor, 𝜂     , of the composite material. The effective stiffness 

and effective loss factor are defined by the real and imaginary component of the complex 

valued stiffness tensor of the homogenized composite described in Equation 5.4. 

The mapping of the meso- to macro-scale model classifies the design and 

performance spaces into high performance, low performance, and unattainable regions. 
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High performance designs provide a loss factor greater than twice that of the matrix 

material. For the meso- to macro-scale mapping, 1,200 training points are defined by 

cascading the Halton sequence sampling of the micro- to meso-scale model. Points are 

evaluated by the meso- to macro-scale model only if they are classified as high 

performance by the micro-to meso-scale classifier.  Using the micro- to meso-scale 

classifier to filter the training point selection resulted in a 78% reduction in the number of 

points cascaded to the meso- to macro-scale and limited them to only those points with 

negative    
     

 values. 

 

Figure 5.9. Meso- to macro-scale design space mapping. 

The meso- to macro-scale design space mapping is illustrated in Figure 5.9, with 

the attainable probability threshold defined by a   of 3. The solid black lines indicate the 

boundary of the attainable space, and the dotted black lines indicating the high/low 

performance class boundary. Within that attainable space, the red dots indicate low 
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performance designs that do not meet the loss factor threshold. The blue and green dots 

represent designs with high performance, with the blue dots also meeting a minimum 

threshold for effective stiffness of the homogenized composite (specifically, the effective 

stiffness of the composite must be greater than or equal to that of the matrix material). 

The design space mapping illustrates the narrow band of designs that provide high 

macroscopic performance, wherein only 5% of the meso- to macro-scale training points 

are classified as high performance.  

To test its accuracy, the meso- to macro-scale design space classifier was 

reclassified with 90% of the training points and accurately classified 76% of the omitted 

high performance test points, 85% of the omitted low performance test points, and 84% 

of all the omitted test points.  Accuracy could be improved by increasing the number of 

training points. 

Further analysis of the high performance design space of the meso- to macro-scale 

model demonstrates intriguing trends. Setting the    
     

 stiffness value equal to -20 MPa 

and unilaterally progressing along the    
     

 stiffness value yields the plot shown in 

Figure 5.10. The bell-shaped normalized loss curve (𝜂      𝜂 ) in Figure 510 is to be 

expected, as the loss factor increases as the design gets closer to its ‘sweet spot’. The 

stiffness curve (         ) in Figure 5.10 is surprising in that it decreases prior to the 

‘sweet spot’ and increases afterwards–a trend that has been shown by Lakes (2001). 

Knowledge of these trends aids designers as they search for designs with a combination 

of high loss and high stiffness. 
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Figure 5.10. The effective stiffness and loss ratio of the composite as a function of    
     

, 

with    
          MPa. 

The narrow high performance bands shown in Figure 5.9 indicate a linear 

relationship between    
     

 and    
     

 for high performance designs. This trend is 

explicitly shown in Figure 5.11. The trend line relates the high performance space to a 

constant sum of    
     

 and    
     

. Noting the relationship between    
     

 and    
     

 and 

the plane-strain bulk modulus,    , given by Equation 5.5, these results suggest that the 

high performing designs exhibit a target value for the plain strain bulk modulus which 

yields desirable overall combinations of stiffness and loss. It is very interesting to note 

that the results shown in Figures 5.10 and 5.11, echo results previously published by 

Lakes (2001), which indicate that specific ratios of inclusion to matrix shear moduli 

result in drastic increases in the loss factor of the composite. 
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The y-intercept of the linear trend shown in Figure 5.11 is specific to the 

particular matrix stiffness chosen in this experiment. One observes that the intercept 

essentially determines the plane-strain bulk modulus of the inclusion that yields 

significant increases in the overall lossy behavior of the composite. For this particular 

case, the ratio of the plane-strain bulk modulus of the inclusion to the bulk modulus of 

the matrix is approximately      . This ratio may be a useful target for enhanced 

performance in future studies, although the matrix Poisson’s ratio and anisotropy likely 

influence this value. In general, however, these results provide very interesting insight 

into the relationship between the plain strain bulk modulus of MTM inclusions and 

matrix stiffness, which can give designers an intelligent search strategy to find a high loss 

design for a different matrix material.  
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Figure 5.11. A trend line of the negative sloping meso- to macro-scale design space. 

The performance map for the meso- to macro-scale model is illustrated in Figure 

5.12. The colors of the design points correspond to those in the design space map in 

Figure 5.9. The macro-scale performance space exemplifies the benefits of loss and 

stiffness gained in the high performance class, as well as the small fraction of points that 

fall into this class. The attainable probability threshold is defined by setting   to 10, 

which captures all of the high performance training points within its attainable space. For 

this mapping, a high value of   is necessary to accurately capture the high performance 

space, which has 10x fewer training points than the low performance class, and covers a 

10x larger range of normalized loss factor. The classifier was retrained with 90% of the 

training points, and found to accurately classify 97% of the omitted training points. With 

respect to high and low performance class individually, the low performance class had 

much higher accuracy; the retrained classifier accurately classified 99% of the omitted 

low performance points, while accurately classifying 74% of the omitted high 

performance points. 
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Figure 5.12. Macro-scale performance space mapping. 

The next step is to utilize the micro- to meso-scale and meso- to macro-scale 

mappings to design a component. This step involves intersecting the smaller-scale 

performance space mapping with the larger-scale design space mapping to identify 

multiscale sets of designs that achieve a set of performance requirements for the 

component. Section 5.4 applies the knowledge of the hierarchical design and 

performance spaces to the design of a composite coating for passive damping of a 

structural beam. 

5.3.3 Backpropagating the BNC Mappings 

The preceding sections followed a forward, bottom-up modeling and sampling 

approach to populate the BNC design and performance space mappings at each 

hierarchical level. These mappings provide an intuitive understanding of the 

combinations of design variables that yield satisfactory, high performance values at each 

level, as well as the ranges of performance values that can ultimately be achieved. The 
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next step is to utilize the micro- to meso-scale and meso- to macro-scale mappings to 

design a component, in an inductive, top-down approach. This involves backpropagating 

the high performance regions in the meso- to macro-scale performance space down to the 

micro- to meso-scale design space. 

The first step to developing this top-down design strategy is to intersect the 

attainable micro- to meso-scale performance space with the high performance meso- to 

macro-scale design space. This mapping is shown in Figure 5.13, with the attainable 

micro- to meso-scale performance space shown in green, and the high performance meso- 

to macro-scale design space shown in blue. 

The intersected high performance region shown in Figure 5.13 is then used to 

redefine the high performance micro- to meso-scale class, which was previously defined 

as designs that merely have negative stiffness in the first principle direction. The micro- 

to meso-scale BNC mapping is then retrained using this updated, stricter performance 

requirement to determine the micro-to meso-scale design variable combinations that yield 

macroscale high performance values. The retrained micro- to meso-scale design space 

mapping is shown in Figure 5.14, with the original high performance micro- to meso-

scale design space shown in light blue and the new high performance micro- to meso-

scale design space shown in dark blue. 



126 

 

 

Figure 5.13. The high performance meso- to macro-scale design space intersected with 

the attainable micro- to meso-scale performance space. 

 

Figure 5.14. The micro- to meso-scale design space mapping with backpropagated 

performance requirements from the meso- to macro-scale. 
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The micro- to meso-scale design space shown in Figure 5.14 is used to identify 

multi-scale sets of designs that meet top-level performance requirements. The 

backpropagating of the multi-scale design and performance maps in this section is 

computationally efficient in that it does not require any new concept evaluations to be 

performed, and can easily be repeated if changes are made to the meso- to macro-scale 

performance requirements. Section 5.4 applies this multi-scale knowledge to design a 

composite coating for passive damping of a structural beam. 

5.4. Beam Coating Design Case Study 

In this section, the design and performance space mappings from Sections 5.2 and 

5.3 are used to design a multilayer, cantilever beam with the composite metamaterial as a 

coating layer for the beam. Section 5.4.1 describes the model for passive viscoelastic 

damping in a multilayer beam. Section 5.4.2 explores the impact of the design of the 

composite metamaterial on the beam's shock response.  

Throughout this section, two different coatings are investigated—a high 

performance coating and a low performance coating—to illustrate the benefit of the 

classifier-based approach in Section 5.3. The high performance coating corresponds to a 

design on the border of the blue and green points of Figures 5.9 and 5.12, while the low 

performance coating corresponds to a red design point in Figures 5.9 and 5.12. 

Specifically, the selected high performance design has an effective coating loss factor, 

𝜂 , of 0.060, and the low performance design has an effective coating loss factor of 

     . The high and low performance designs both have equal magnitude effective 
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stiffness,   , of 33 MPa. The underlying beam is assigned a Young’s modulus,   , of 

1,000 MPa and is assumed to be an idealized lossless material. 

5.5.1 Loss Factor and Stiffness of a Multilayer Cantilever Beam 

Figure 5.15 illustrates a structural beam coated with a viscoelastic material with 

microscale inclusions. Ross, Kerwin, and Ungar (Ross et al., 1959) provide a relationship 

between the loss factor of the composite beam, 𝜂   , and that of the viscoelastic coating 

material, 𝜂 , according to Equation 5.6. 

Where           𝜂    ,     is the distance between neutral axes of the 

two components, ri is the radius of gyration, 𝑟  
  

   
, and         , where        , 

   is the real part of the Young’s modulus, and    is the cross-sectional area of layer i. 

The height of the coating is related to the height of the beam by the coefficient, 𝛾, 

according to Equation 5.7. 
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Figure 5.15. Illustration of a beam with a composite coating. 

The potential structural benefits of the coating are shown in Figure 5.16, which 

displays the normalized effective stiffness of the composite beam versus effective loss 

factor as a function of coating-to-beam height ratio, 𝛾. The effective stiffness,     , of the 

composite beam was calculated using the Voigt approximation (Voigt, 1889), and is 

normalized by the beam stiffness,   , in order to demonstrate the effect of the coating on 

the overall stiffness of the composite beam. The effective loss factor of the composite, 

𝜂   , was determined from Equation 5.6. 
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Figure 5.16. Normalized stiffness vs. effective composite loss factor with varying coating 

thicknesses. 

As shown in Figure 5.16, the composite beam's loss factor increases with 

increasing coating thickness. For the high performance coating, this increase occurs at a 

much greater rate relative to the low performance coating, while both high and low 

performance coatings experience equivalent decreases in the overall stiffness of the 

beam. This trend is expected because the high and low performance designs were chosen 

to have equivalent effective stiffness but with very different effective loss factors.  

A designer can use Figure 5.16 to select a coating-to-beam height ratio based on 

application specific stiffness and loss requirements. At a coating-to-beam height ratio, 𝛾, 

of 0.2, the effective composite stiffness is decreased by 19%, with a loss factor, 𝜂   , of 

the high performance composite equal to 0.0017, and a loss factor of the low performance 

coating of 0.00014. Similarly, if the coating-to-beam height ratio, 𝛾 is increased to 0.5, 

Increasing γ 
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the effective composite stiffness of both designs are decreased by 48%, with a loss factor 

of the high performance composite of          and a loss factor of the low 

performance coating of         .  

5.5.2 Transient Response of the Multilayer Cantilever Beam to an Impulsive Load 

The coated beam is assembled in a cantilever orientation, as shown in Figure 5.17, 

and subjected to an impulsive load at its free end. The length, L, and width, W, of the 

cantilever beam are 1 m and 0.2 m, respectively. The overall cross-sectional height of the 

beam, H1 + H2, is 0.1 m, and the individual heights of the beam and viscoelastic material 

are determined by γ in Eq. 8. The density of the beam is 1000 kg/m2, and the density of 

the viscoelastic material is 200 kg/m2. Although the cantilever beam is an idealized 

structural component, it helps illustrate the potential value of the negative stiffness 

composite for vibro-acoustic dampening applications. 

 

Figure 5.17. An illustration of the coated cantilever beam with an impulsive load imposed 

at its free end at t = 0. 

The coating-to-beam thickness ratio for this demonstration study is chosen based 

on Figure 5.16 to exhibit one order of magnitude decrease in stiffness over the beam 

  
  

  

     F(t) 
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alone, which corresponds to 𝛾      . Although it is not desired to decrease the effective 

composite stiffness, this coating-to-beam thickness ratio will highlight the high damping 

capabilities of the coating. For the choice of coating, the loss factors for the high and low 

performance composites are       and       , respectively. For this experiment, the 

beam tip is subjected to a 10 g magnitude versine shock input with a 25 ms duration 

starting at t = 0. The resulting tip displacement for two cases of interest is plotted in 

Figure 5.18. 

 

Figure 5.18. The coated and uncoated cantilever beam shock response. 

As shown in Figure 5.18, the tip displacements of the two composite beams 

exhibit oscillating ringdown, because neither composite approaches critical damping. The 

high performance coating causes the beam to ring down significantly faster than the low 

performance coating, however, and both are a profound improvement over the underlying 

beam alone, which would theoretically oscillate forever. The high performance composite 
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has a damping ratio, 𝜁      , of 0.75, while the low performance composite has a 

damping ratio, 𝜁     , of 0.065. This is equivalent to a log decrement of -0.047 for the 

high performance composite and -0.0041 for the poor performance composite. The high 

performance composite attenuates the acceleration to 0.7% of its initial acceleration 

amplitude after 10 seconds, while the poor performance coating composite attenuates its 

acceleration amplitude to only 65% of its initial amplitude during the same time period. 

The acceleration attenuation of the high performance composite equates to a time 

constant of 2.04, while the poor performance composite has a time constant of 23.5. 

5.6. Discussion 

The materials design approach presented in this Chapter uses BNC’s for mapping 

design and performance spaces at each hierarchical level and then intersecting the 

mappings to identify high-performance system level designs in a top-down, inductive, 

design strategy. The sampling that is required to create the BNC-based mappings at each 

level can be performed concurrently across the levels, although creating the models 

sequentially allows mappings from one level to be used to bound the design or 

performance space for another level. After sampling is performed at each level, it is 

almost trivial to identify multi-level designs that meet specific high-level performance 

requirements by propagating high-performance thresholds from the highest to the lowest 

level. Characterization of the space of high performance designs at the highest materials 

level also allows product design to be decoupled from the design of the material. 
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The multi-scale design approach using BNC mappings significantly reduces the 

computational expense of the hierarchical materials design example in this Chapter. 

Capturing the knowledge of the micro- to meso-scale modeling, in which only 11% of 

designs resulted in a negative stiffness inclusion, allowed the meso- to macro-scale 

modeling to narrow its candidate design space to only a few feasible designs. The meso- 

to macro-scale model, for which only 10% of the design space resulted in satisfactory 

macroscale performance, reinforced the necessity for a top-down cascading of 

performance requirements. A trial-and-error bottom-up design approach, in which a 

specific inclusion geometry is propagated through three levels of modeling, would have 

resulted in over 99% of the analyzed designs having unsatisfactory macroscale 

performance. Similarly, a purely optimization based approach, such as one of the 

Multidisciplinary Design Optimization approaches reviewed in Chapter 2, would have 

required extensive nested iteration and tight coordination between the levels, neither of 

which is required for the approach proposed here. 

The set-based design approach facilitated by the use of BNC maps allowed for the 

decomposition of this design problem into multiple hierarchical levels. By assigning a 

conservative performance requirement to the micro- to meso-scale level, design and 

performance flexibility was maintained. Following this explorative phase of the design 

process, a designer can then set arbitrary meso- to macro-scale performance requirements 

and easily backpropagate the new high performance regions down to the micro- to meso-

scale design space, as detailed in Section 4.3.3. Further exploration of designs having 

high meso- to macro-scale performance can be attained by sampling from this 
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backpropagated micro- to meso-scale high performance design space. A designer can 

additionally use the design and performance flexibility metrics proposed in Chapter 4 to 

intelligently narrow the meso- to macro-scale performance requirements. 

The micro- to meso-scale level is found to have a design flexibility of 0.22, which 

is slightly higher than the percent of designs that were found to be classified as high 

performance (11%). This discrepancy is due to the collapsing of the micro- to meso-scale 

design space from three to two dimensions, which resulted in some low performance 

designs being misclassified as high performance. To determine the micro- to meso-scale 

performance flexibility, the desired micro- to meso-scale performance space is defined by 

placing a lower and upper bound on    
     

 of -100 MPa and 0 MPa, respectively, and a 

lower and upper bound on    
     

 of -40 MPa and 120 MPa, respectively. The micro- to 

meso-scale level is found to have a performance flexibility of 0.65, representing the 

attainable percentage of the desired micro- to meso-scale performance space.  

The high performance region of the meso- to macro-scale design space, which 

corresponds to the attainable micro- to meso-scale performance space, is found to have a 

design flexibility of 0.022. The meso- to macro-scale desired performance space is 

defined by placing a lower and upper bound on           of 0.95 and 1.05, respectively, 

and a lower and upper bound on 𝜂      𝜂  of 2 and 15, respectively. The meso- to 

macro-scale is found to have performance flexibility of 0.079. By backpropagating the 

meso- to macro-scale high performance requirements down to the micro- to meso-scale 

design space, as detailed in Section 5.3.3, the micro- to meso-scale is found to have 

design flexibility of 0.037. 
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To demonstrate the effect of narrowing the meso- to macro-scale performance 

requirements on the design and performance flexibility metrics at each hierarchical level, 

a new meso- to macro-scale performance requirement is defined. This particular meso- to 

macro-scale performance requirement is selected to isolate and examine the outer ring of 

high performance values in the meso- to macro-scale performance space, and 

demonstrates the ability of the BNC to accept nonlinear performance requirements. The 

new meso- to macro-scale performance requirement is shown by the blue highlighted 

region in Figure 5.19, with the training points plotted in blue if they meet the new 

performance and in red if they do not. As a measure of the reduction in the ability to meet 

the new performance requirements, the meso- to macro-scale performance flexibility is 

now found to be 0.038, roughly half the value found using the original performance 

requirements. 

 

Figure 5.19. Meso- to macro-scale performance space with new performance 

requirements highlighted in blue. 
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The BNC is then retrained using the new meso- to macro-scale performance 

requirement to define the high and low performance classes at each hierarchical level. 

Figure 5.20 shows the meso- to macro-scale design space mapping, as classified by the 

new performance requirement. The updated high performance meso- to macro-scale 

design space has eliminated the positive sloping portion of the high performance design 

space seen in Figure 5.9. This result affirms that the best designs occur when the 

microscale inclusion exhibits negative stiffness in its first principle direction. The meso- 

to macro-scale design flexibility is found to be 0.011, which, similar to the meso- to 

macro-scale performance flexibility, is roughly half the value found using the original 

performance requirements. This result indicates that there is a strong correlation between 

changes in design and performance flexibility. 

 

Figure 5.20. Meso- to macro-scale design space reclassified with new performance 

requirements. 
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The sets of designs meeting the new meso- to macro-scale performance 

requirements are then backpropagated down to the micro- to meso-scale design space, 

shown in Figure 5.21. The narrow regions of high performance designs, backpropagated 

to micro- to meso-scale design space in Figure 5.21, further demonstrate the nonlinearity 

of this design problem, and the difficulty that a designer would face in trying to solve this 

problem using a traditional design approach. By first populating the BNC maps at each 

hierarchical level, the top-level performance requirements can be easily altered and 

backpropagated to the bottom-level design space, without any additional concept 

evaluations required. 

 

Figure 5.21. The micro- to meso-scale design space mapping backpropagated from the 

updated meso- to macro-scale performance requirements. 

The BNC maps also provided an effective means of capturing the information 

gained from the multilevel modeling in this example, and allowed the designers to build 
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intuitive knowledge of the multi-level design space. Designers used the BNC maps to 

determine where good solutions lie, as well as to discover trends in the design space, as 

seen in the meso- to macro-scale mappings. The knowledge captured in the BNC maps 

allowed the beam application to be solved as an independent problem, without requiring 

additional material modeling. With the aid of BNC maps, choosing a composite coating 

for the beam application was trivial, as designs could be quickly chosen by selecting a 

desirable combination of stiffness and loss from the macroscale performance space. The 

chosen composite coating design could then be backpropagated using the BNC maps to 

determine the corresponding microscale inclusion parameters.  

The effectiveness of the BNC for classifying arbitrarily shaped regions of interest 

in the design space has been shown in the two-dimensional mapping plots, however the 

underlying equations are readily extensible to a multivariate problem. Additionally, the 

probability distributions generated by the BNC mapping can also be used to guide a 

sampling strategy of the design space, such as to exploit the likely high performance 

regions of the design space, or to explore regions of the design space that have very little 

data available. A sampling strategy based on the probability distributions could 

potentially uncover high performance designs with significantly reduced computational 

time; however, an effective strategy to progress from exploration to exploitation is a topic 

for future work.  
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Chapter 6: Closure 

The research presented in previous chapters of this thesis serves to provide a 

higher fidelity representation of design and performance spaces than the previously 

proposed methods discussed in Chapter 2. The methods presented are building blocks 

that improve the ability to achieve a set-based design process, as outlined by Sobek et al. 

(1999), to better equip designers with the tools to work concurrently, rather than 

sequentially. The method presented uses a Bayesian network classifier, which uses 

concept evaluations as training points to develop an accurate set representation of the 

attainable and satisfactory design and performance spaces. 

6.1 Summary 

The use of a Bayesian network classifier has recently been proposed to create a 

mapping of the satisfactory design space (Shahan & Seepersad, 2012). The method 

proposed in Chapter 3 extends this work to create a mapping of the performance space, 

which has several fundamentally different properties than the design space. While the 

primary challenge in creating a mapping of the design space is to identify the satisfactory 

design space, the challenge in creating a mapping of the performance space is to identify 

the attainable regions that map back to combinations of design variables. This challenge 

was not encountered in developing the design space mapping because the entire design 

space can typically be sampled. The bounds on the design space, combined with 

nonlinearities in the performance models, limit the set of attainable performance values. 

The method to classify the attainable from unattainable performance spaces utilized a 
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kernel density estimation technique, which translated the set of training points into a 

probability distribution spanning the entire performance space, and defined a minimum 

probability threshold for a performance point to be classified as attainable. The threshold 

probability can also be used as a tuning parameter to accurately map irregularly 

distributed spaces. 

The attainable performance space is then further classified into a feasible set of 

designs that meet a set of constraints, and an infeasible set that does not. This 

classification utilizes the probability distributions returned by the kernel density 

estimation technique to create a class conditional probability distribution for both the 

feasible and infeasible classes. The class conditional probability distributions are then 

used to create a Bayesian network classifier to identify whether an unknown point in the 

performance space is more likely to be feasible or infeasible. The feasible set of designs 

in the performance space can also be further narrowed by assigning performance 

requirements that designs must meet to be classified as feasible. Classifying the 

performance space into an attainable set, and then further extending the attainable 

performance mapping into a feasible and infeasible subset provides a complete mapping 

of the performance space. 

Error rate simulations were performed to analyze the classifier’s convergence as 

new training points were added to the classifier, and it was seen that for the two-variable 

problem examined in Chapter 3, the error converged to less than 5% after 100 training 

points. This convergence to a low error rate demonstrates the effectiveness of the 

Bayesian network classifier at representing the design and performance spaces. The 
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classifier is also computationally efficient, requiring a linear increase in computational 

expense as the number of training points is increased for a fixed number of variables. 

Prior methods to quantify design and performance flexibility were reviewed in 

Chapter 2, and it was found that the quantification accuracy was directly dependent on 

the method for set representation. The reliable and accurate mappings provided by the 

Bayesian network classifier were then utilized in Chapter 4 to quantify design and 

performance flexibility. The probability distributions returned by the Bayesian network 

classifier were sampled using a Monte Carlo method to approximate the size of the 

satisfactory design and performance spaces. This Monte Carlo method of flexibility 

quantification was shown in Chapter 4 to be both more accurate than interval methods 

and more computationally efficient. This achievement provides a significant contribution 

to the set-based design research, which has lacked a consensus on an accurate and 

effective design and performance flexibility quantification (Ferguson, Siddiqi, Lewis, & 

de Weck, 2007). 

The final contribution of this research was a demonstration of the Bayesian 

network classifier’s mapping of the design and performance spaces, in a multi-level 

material design problem. The small-scale design of the composite metamaterial involves 

the geometrical design of a microscopic inclusion, which is then analyzed to evaluate the 

effective stiffness of the inclusion. The large-scale design takes the effective inclusion 

stiffness, along with matrix properties, to arrive at a macroscopic stiffness and loss of the 

composite metamaterial. The Bayesian network classifier allows for designs to be easily 

propagated from the macroscopic performance space all the way down to the microscopic 



143 

 

design space, without requiring further simulations. The classifier also provides a means 

to visualize the spaces in two dimensions, and extract trends of the satisfactory design 

and performance spaces. The use of the Bayesian network classifier in this design 

problem allows for a reduced number of simulations required to find a set of satisfactory 

macroscopic parameters, which corresponds to less than 1% of the microscopic design 

space. 

6.2 Future Work 

The research presented in this thesis provides a beneficial improvement in the 

methods necessary to have a fully concurrent set-based design process; however, there 

are a number of ways that these methods could be improved. The proposed Bayesian 

network classifier uses a kernel density estimation technique to approximate the class 

conditional probability distribution, using Gaussian kernels. Future work on this classifier 

should analyze alternative Gaussian kernel probability distribution parameters, which 

may better capture the underlying distributions that it attempts to model. Adding 

additional parameters of kurtosis and skew may lead to increased accuracy; however, 

these parameters cannot be trivially introduced, and must be combined with a clustering 

algorithm to vary the parameters within the design and performance spaces. Additionally, 

alternative kernel probability distributions should be analyzed, such as the lognormal 

asymmetric probability distribution. Perhaps a library of kernel probability distributions 

can be drawn from, allowing designers to choose the best kernel to fit their specific 

problem. 
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Additional work must be done to analyze the effectiveness of the Bayesian 

network classifier under a large number of design and performance variables. The “curse 

of dimensionality” has been well documented in literature, and results from decreasingly 

small values of the probability distribution, as the dimensionality of a space increases. 

Varying the assumption of variable dependence has been recently shown to increase the 

effectiveness of the Bayesian network classifier in mapping a large dimensional space, 

and should be explored further (Backlund, 2012). Additionally, in regards to the 

assumption of variable dependence, a method to extract the variable dependence from the 

Naïve Bayesian network classifier could also be beneficial to this research. 

The effectiveness of the Bayesian network classifier can also be improved by 

intelligently defining the prior probability, which was approximated in this research as a 

function of the class occurrence frequency of the training points. The prior probability 

can be used to capture expert knowledge from designers, to give the classifier a better 

accuracy than the training points alone. Although the expert knowledge may not always 

be correct, the classifier should be able to mitigate poor assumptions given a large 

enough set of training points. 

The performance space mapping provided by the Bayesian network classifier 

provides a good approximation of the Pareto frontier, with relatively few training points 

required. This is a significant achievement, as the Pareto set is typically difficult to 

define, but can give designers an understanding of the performance potential that exists 

within a set of designs. Designers always make tradeoff decisions, but they are typically 

delayed to the end of the design process, when more complete information about the 
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tradeoff is known. By obtaining an approximation for the tradeoffs that will be 

encountered, designers can focus more resources in making an optimal tradeoff decision. 

Future work can focus on utilizing the approximated Pareto frontier to inform decisions 

in the early stages of the design process. 

The set-based design guidelines provided by Sobek et al. (1999) state that the 

design space should be intelligently narrowed. The flexibility quantification methods 

proposed in this research should next be analyzed to determine an optimal relationship 

between design and performance flexibility to provide an intelligent narrowing of the 

design space. This task can be coupled with an informed sampling strategy that uses the 

probability distributions provided by the Bayesian network classifier to focus the 

sampling on regions of high potential. This form of guided sampling has recently been 

proposed by Backlund (Backlund, 2012), and has been shown to perform better than 

other global search algorithms, such as a genetic algorithm. While the method proposed 

by Backlund shows high potential, future work is needed to optimize the framework for 

balancing exploration and exploitation in the guided sampling approach. 
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Appendix A 

The helical spring design problem used in Chapters 3 and 4 is defined in this 

appendix. This problem has been adapted from Shahan and Seepersad (2012), with a 

background on the problem found in a machine elements textbook (Juvinall & Marshak, 

2000). The helical spring is illustrated in Figure A.1, showing the two design variables, 

   and   , shown as the coil diameter,  , and wire diameter, 𝑑, respectively. 

 

Figure A.1. Diagram of the helical spring. 

The design space is confined by upper and lower bounds placed on the design 

variables,    and   , which are defined in table A.1. 

Table A.1. Helical Spring Design Variable Bounds. 

    (m)    (m) 

Lower Bound 0.19 0.13 

Upper Bound 1.30 0.70 
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This design problem has two constraints. The first constraint,   , defines the 

maximum allowable shear stress, according to Equation A.1, to not exceed 45% of the 

ultimate strength of the material under a maximum load,  𝑠. The loading on the spring is 

applied at the end of the spring, as illustrated in Figure A.2. The second constraint,    , 

defines the minimum ratio of the coil diameter to wire diameter, according to Equation 

A.2. In the context of helical springs, the constraint    is referred to as the spring index, 

and is an important manufacturing consideration. 

               
     

   
       

  

  
           

(

A.1) 

     
  

  
   

(

A.2) 

The helical spring design problem has two performance variables. The first 

performance variable,   , represents the maximum allowable compression, 𝐿𝑡, under a 

target load,  𝑡. The loading and compression is defined according to Figure A.2. The 

spring compression, and performance variable   , is defined according to Equation A.3. 

The second performance variable,   , represents the total width of the spring, and is 

defined according to Equation A.4. The total spring width is important for this design 

problem because the spring must be able to fit into a pre-manufactured slot. 
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Figure A.2. An illustration of the helical spring loading and compression. 

   𝐿   
  

  

   
  

      
   𝐿 

 
 

(A.3) 

          𝑑 (A.4) 

There is also one performance target for each performance variable. A design is 

considered to be satisfactory if it meets both performance targets. The performance 

requirements are defined for    and   , according to Equation A.5 and A.6, respectively. 

            (A.5) 

            (A.6) 

There are a set of constants for this design problem, which define the material 

properties and target loadings. These constants are defined in Table A.2. 
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Table A.2. Helical spring design problem constants. 

Parameter Variable Value 

Spring Stiffness   15,761 N/m 

Target Loading    266.9 N 

Maximum Loading    513.8 N 

Material Ultimate Strength    1.45 GPa 

Shear Modulus   792.9 GPa 

 

  



150 

 

Appendix B 

The Matlab
®
 code for developing the Bayesian network classifier (BNC) applied 

to the helical spring design problem in Chapters 3 and 4 is presented in this appendix. 

Much of this code is credited to the assistance of Dr. David Shahan. Table B.1 provides a 

list of the functions included, and a description of what each function does. Basic plotting 

functions of the design and performance spaces are included, and are modular with their 

inputs to be able to generate many of the plots included in this thesis. 

Table B.1. List of Matlab
®
 functions for creating and using a Bayesian network classifier. 

demo_Spring( ) A demo file for using the BNC 

kbnInit_Spring( ) Generates an empty BNC structure  

systemsKBN_Spring( ) Provides system-level organization for adding training points 

kbnAddData_Spring( ) Adds training points to the BNC 

kbnEvalDesign( ) Calculates the probability distribution at a design point 

kbnEvalPerf( ) Calculates the probability distribution at a performance point 

kbnEvalHd( ) Calculates the kernel bandwidth for the design space 

kbnEvalHp( ) Calculates the kernel bandwidth for the performance space 

kbnEvalPerfUnattP( ) Calculates the attainable performance probability threshold 

kbnMonteCarlo( ) Performs a monte carlo integration 

plotDSpace( ) Plotting function for the design space 

plotPSpace( ) Plotting function for the performance space 

halton( ) Generates the Halton sequence 
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function n=demo_Spring(varargin) 

 
% Train the BNC 
M=100; % Number of training points 
n = struct([]); 
for i=1:M 
    n = systemsKBN_Spring(n,1); % Collect training points 
end 

  
% Set alpha and beta 
alpha = .4; 
beta = 3; 
n.hdalpha = alpha*sqrt(12); 
n.hd = kbnEvalHd(n); 
n.hpalpha = alpha*sqrt(12); 
n.hp = kbnEvalHp(n); 
n.hpbeta = beta*sqrt(12); 

  
% Plot the design Space 
divs = [100 100]; 
classAmp = [1 1]; 
plotDSpace(n,divs,classAmp); 

 
% Plot the satisfactory design space 
divs = [100 100]; 
classAmp = [1 1]; 
plotPSpace(n,divs,classAmp,'Orientation','2D','LegendLoc','NorthEast', 

    ...'DataPoints','off'); 

 

% Perform Monte Carlo Estimate of design flexibility 

numSamples = 10000; 

classAmp = [1 1]; 
classSat = 1; 

classAll = [1,2,3]; 

MC_sat = kbnMonteCarlo(n,'d',1,numSamples,classAmp); 

MC_all = kbnMonteCarlo(n,'d',[1, 2, 3],numSamples,classAmp); 

designFlexibility = MC_sat.volume / MC_all.volume; 

 

% Perform Monte Carlo Estimate of performance flexibility 

numSamples = 10000; 

classAmp = [1 1]; 
classSat = 1; 

classAll = [1,2,3]; 

MC_sat = kbnMonteCarlo(n,'p',classSat,numSamples,classAmp); 

MC_all = kbnMonteCarlo(n,'p',classAll,numSamples,classAmp); 

perfFlexibility = MC_sat.volume / MC_all.volume; 

 
end 
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function n=kbnInit_Spring(Din, Dout, Dcon, Cd, Cp, dbnd, pbnd, ptarg,   

ptargS) 
% Initializes the structure for the training points n 

  
n.Din=Din; % # of dimensions of design variables 
n.Dout=Dout; % # of performance variables 
n.Dcon=Dcon; % # of contstraints 

  
n.Cd = Cd; 
n.Cp = Cp; 

  
n.N=0; % Number of training points taken - Initialized to 0 
n.Nc=zeros(1,3);   % Number of data points in each general class 
n.Ncd=zeros(1,2); % Number of data points in design space classes 
n.Ncp=zeros(1,2); % Number of data points in performance space classes 

  
n.dValues=[]; % Holds the training point design variables 
n.cValues=[]; % Holds the inequality constraint values 
n.pValues=[]; % Holds the training point performance values 

  
n.hd = []; % Kernel standard deviation for design space points 
n.hp=[];   % Kernel standard deviation for performance space points 
n.stdD=[]; % Standard deviation of design space points 
n.stdP=[]; % Standard deviation of performance space points 

  
n.w = []; %weights, N by C 
n.wd=[]; 
n.wp=[]; 

  
n.hdAlpha=1; 
n.hpAlpha=1; 
n.hpBeta = 1; 

  
% Set the boundary of Design Space 
n.dbnd = dbnd; 
n.dscale = 1./(n.dbnd(2,:)-n.dbnd(1,:)); 
n.dshift = n.dbnd(1,:); 

  
% Set the approximate boundary of the performance space 
n.pbnd=pbnd; 
n.pscale = 1./(n.pbnd(2,:)-n.pbnd(1,:)); 
n.pshift = n.pbnd(1,:); 

  
% Set the approximate boundary of the satisfactory performance space 
n.ptarg=ptarg; 
n.ptargS=ptargS; 

  
end 
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function n=systemsKBN_Spring(n,M,varargin) 
% This function creates a KBN classifier, and adds 'M' training points 

% to it. Sample points will be chosen from a halton sequence, or from a 

% test set inputted into 'varargin'. Note: 'varargin' must include     

% entire test set, and the n.N+1 point will be selected for the next   

% training point 

  
% Initialize new Network 
if isempty(n) 
    % Experiment Parameters 
    Din=2; 
    Dout=2; 
    Dcon=2; 
    Cd=2; 
    Cp=2; 
    dbnd_metric=[.0178 .0033; .033 .0048]; 
    pbnd=[0 .02;.35 .043]; 
    ptarg=[.0635 .0381]; 
    ptargS={'min', 'min'}; 

     
    % Create training point database 
    n = kbnInit_Spring(Din,Dout,Dcon,Cd,Cp,dbnd_metric,pbnd,ptarg,... 

        ptargS);  

    n.hpAlpha=sqrt(12)*0.4; 
    n.hpBeta = 3; 
end 

  
% Add M new points to the Network 
for i=1:M   
    % Sample a new design point 
    if isempty(varargin) 
        xhalton = halton(n.Din,n.N+1); 
        xNext = xhalton(n.N+1,:)./n.dscale+n.dshift; 
        [yNext cNext] = functionEval_Spring(xNext); 
    else 
        xs = varargin{1}; 
        xNext = xs(n.N+1,:); 
        ys = varargin{2}; 
        yNext = ys(n.N+1,:); 
        cs = varargin{3}; 
        cNext = cs(n.N+1,:); 
    end 

  
    % Update the BNC 
    n = kbnAddData_Spring(n, xNext, yNext, cNext); 
end 

  
end 
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function n = kbnAddData_Spring(n,dVal,pVal,cVal) 
% Adds a new data point to the structure n, which holds all points and 

% all information pertaining to those points. 
% Inputs: 
%   n = structure variable containing all info about all training        

%       points 
%   dVal = new design point values 
%   cVal = new design point constraint values 
%   pVal = new design point performance values 
% Outputs: 
%   n = updated structure variable with new point information 

  
% Number of new data point(s) to be added (usually only 1) 
M = size(dVal,1);  

  
% Add blank new data points to list of points 
n.dValues = [n.dValues; zeros(M,n.Din)];  
n.cValues = [n.cValues; zeros(M,n.Dcon)]; 
n.pValues = [n.pValues; zeros(M,n.Dout)]; 
n.w = [n.w; zeros(M,3)]; 
n.wd = [n.wd; zeros(M,2)]; 
n.wp = [n.wp;zeros(M,2)]; 

  
% Add M data point(s) to n 
for i=1:M 
    % Increment counter of # of data points 
    n.N = n.N+1;  

     
    % Store the new data point 
    n.dValues(n.N,1:n.Din) = dVal(i,1:n.Din);  
    n.pValues(n.N,1:n.Dout) = pVal(i,1:n.Dout); 
    n.cValues(n.N,1:n.Dout) = cVal(i,1:n.Dcon); 

     
    % Update the standard deviation of the design and performance 

    % values 
    n.stdD=[std(n.dValues(:,1)) std(n.dValues(:,2))]; 
    n.stdP=[std(n.pValues(:,1)) std(n.pValues(:,2))]; 
    n.hd = kbnEvalHd(n); 
    n.hp = kbnEvalHp(n); 

     
    % Classify the new design point 
    [c cd cp] = classifyDesign(n,pVal(i,:),cVal(i,:)); 

     
    % Update previous weights 
    n.w(:,c) = n.w(:,c).*n.Nc(c)/(n.Nc(c)+1); 
    n.wd(:,cd)=n.wd(:,cd).*n.Ncd(cd)/(n.Ncd(cd)+1); 
    n.wp(:,cp)=n.wp(:,cp).*n.Ncp(cp)/(n.Ncp(cp)+1); 

     
    % Increment class counters 
    n.Nc(c) = n.Nc(c)+1;  
    n.Ncd(cd)=n.Ncd(cd)+1; 
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    n.Ncp(cp)=n.Ncp(cp)+1; 

     
    % Add weights for new design 
    n.w(n.N,c) = 1/n.Nc(c); 
    n.wd(n.N,cd)=1/n.Ncd(cd); 
    n.wp(n.N,cp)=1/n.Ncp(cp); 
end 

  
end 

 

 

 

 

function kde = kbnEvalDesign(n,xs,varargin) 
% This function calculates the kernel density estimates of the the 
% design space. 
% 
% Note: xs must be un-normalized 

  
if ~isempty(varargin) 
    s=varargin{1}; 
else 
    s=n.hd; 
end 

  
pk = zeros(1,2); 
for k=1:2 
    for j=1:n.N 
        pj=ones(1,2); 
        for i=1:n.Din 
            xsi=xs(1,i); 
            xdi=n.dValues(j,i); 
            pji=(1/(2*(s(k,i)^2)*pi())^.5)*exp(-(xsi-xdi)^2 / ...  

                (2*s(k,i)^2)); % Normal gaussian distribution 
            pj(k)=pj(k)*pji; 
        end 
        pk(k)=pk(k)+n.wd(j,k)*pj(k); 
    end 
end 
kde=[pk(1) pk(2)]; 

 

end 

 

 

 

 

function p = kbnEvalPerf(n,ys,varargin) 
% This function calculates the kernel density estimates of the the 
% performance space. 
% 
% Note: ys must be un-normalized 

  



156 

 

if ~isempty(varargin) 
    s=varargin{1}; 
else 
    s=n.hp; 
end 

  
kde=zeros(1,2); 
for k=1:2 
    for j=1:n.N 
        pj=ones(1,2); 
        for i=1:n.Dout 
            ysi=ys(1,i); 
            ydi=n.pValues(j,i); 
            pji=(1/(s(k,i)*(2*pi())^.5)) * exp(-0.5*((ysi-ydi) / ...  

                (s(k,i)))^2); % Normal gaussian distribution 
            pj(k)=pj(k)*pji; 
        end 
        kde(k)=kde(k)+n.wp(j,k)*pj(k); 
    end 
end 

  
p=kde; 

end 

 

 

 

 
function h = kbnEvalHd(n) 
% Evaluates the standard deviation of the kernels in the performance  

% space. 

  
if n.N<=0 
    h = ones(1,n.Cd).*n.hdAlpha; % Sets h = [.4 .4] 
else 
        h = (n.stdD.*n.hdAlpha)./(n.N.^(1/(n.Din))); %=[.4/N^.5] 
        h = [h;h]; 
end 

  
end 

 

 

 

 

function h = kbnEvalHp(n,varargin) 
% Evaluates the standard deviation of the kernels in the performance  

% space. 

 
if n.N<=0 
    h = ones(1,n.Cp).*n.hpAlpha; 
else 
    h1=(n.stdP.*n.hpAlpha)./(n.Ncp(1)^(1/n.Dout)); 
    h2=(n.stdP.*n.hpAlpha)./(n.Ncp(2)^(1/n.Dout)); 
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    h=[h1;h2]; 
end 

  
end 

 

 

 

 

function p_thresh = kbnPerfUnattP(n,varargin) 

  
if isempty(varargin) 
    type = 'stdAll'; 
else 
    type = varargin{1}; 
end 

  
switch type 
    case 'stdAll' 
        p_thresh = 1; 
        h = n.stdP; 
        for i = 1:n.Dout 
            p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))*... 

                exp(-n.hpBeta/2)); 
        end 
    case 'stdSat' 
        ysat=[]; 
        for i = 1:n.N 
            if n.wp(i,1)>0 && n.wd(i,1)>0 
                ysat = [ysat;n.pValues(i,:)]; 
            end 
        end 
        p_thresh = 1; 
        h = std(ysat); 
        for i = 1:n.Dout 
            p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))* ... 

                exp(-n.hpBeta/2)); 
        end 
    case 'kernelS' 
        p_thresh = 1; 
        h = n.hp(1,:); 
        for i = 1:n.Dout 
            p_thresh = p_thresh*(((1/(sqrt(2*pi)*h(i)))*... 

                exp(-n.hpBeta/2))/n.Ncp(1)); 
        end 
    case 'kernelL' 
        p_thresh = 1; 
        h = n.hp(1,:); 
        for i = 1:n.Dout 
            p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))*... 

                exp(-n.hpBeta/2)); 
        end 
    otherwise 
        fprintf('%','Error in calculating unattainable pthresh'); 
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end 

 

 

 

 

function figHandle = plotDSpace(n,divs,sf,varargin) 
% Plot the Design Space 

  
if nargin == 0 
    load('nDemo100.mat'); 
    n = nDemo100; 
    divs = [40 40]; 
    sf = [1 1]; 
end 

  
% Define Preset Plotting Parameters 
presetParams.figNum=0; 
presetParams.LegendLoc = 'best'; 
presetParams.axes = [n.dbnd(1,1) n.dbnd(2,1) n.dbnd(1,2) n.dbnd(2,2)]; 
inputParams = varargin; 
plotParams = getPlotParams(presetParams,inputParams); 

  
figHandle=figure(plotParams.figNum); 
clf 

  
% Plot the data points 
Pc1 = (n.Ncd(1)+1)/(n.N+2); 
Pc2 = (n.Ncd(2)+1)/(n.N+2); 
if plotParams.DataPoints 
    for j=1:n.N 
        if strcmp(plotParams.ClassifyData,'actual') 
            if n.w(j,1)>0 
                plot(n.dValues(j,1),n.dValues(j,2),... 

                    'bs','MarkerFaceColor',... 
                    'b','MarkerSize',8); hold on; 
            elseif n.w(j,2)>0 
                plot(n.dValues(j,1),n.dValues(j,2),... 

                    'co','MarkerFaceColor',... 
                    'c','MarkerSize',8); hold on; 
            else 
                plot(n.dValues(j,1),n.dValues(j,2),... 

                    'r<','MarkerFaceColor',... 
                    'r','MarkerSize',8); hold on; 
            end 
        elseif strcmp(plotParams.ClassifyData,'classifier') 
            pTemp = kbnEval_Spring(n,n.d(j,1:n.Din)); 
            pDiff = (Pc1*pTemp(1)-Pc2*pTemp(2)); 
            if pDiff>0 
                plot(n.d(j,1),n.d(j,2),'b<','MarkerFaceColor','b',... 
                    'MarkerSize',8); hold on; 
            else 
                plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r',... 
                    'MarkerSize',8); hold on; 
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            end 
        else 
            display('Invalid Data Point Classification Parameter'); 
        end 
    end 
end 

  
% Plot the surfaces 
if plotParams.ClassSurf || plotParams.ClassBoundary 
    step = [plotParams.axes(2)-plotParams.axes(1) ... 

        plotParams.axes(4)-plotParams.axes(3)]./divs; 
    x1 = plotParams.axes(1):step(1):plotParams.axes(2); 
    x1Count = divs(1)+1; 
    x2 = plotParams.axes(3):step(2):plotParams.axes(4); 
    x2Count = divs(2)+1; 
    x = [x1' x2']; 
    kde = zeros(x2Count,x1Count,2); 
    dkde = zeros(x2Count,x1Count); 
    for i=1:x1Count 
        for j=1:x2Count 
            kde(j,i,:) = kbnEvalDesign(n,[x(i,1) x(j,2)]); 
            dkde(j,i) = (Pc1*sf(1)*kde(j,i,1)-Pc2*sf(2)*kde(j,i,2))/... 
                (Pc1*sf(1)*kde(j,i,1)+Pc2*sf(2)*kde(j,i,2)); 
        end 
    end 
    if strcmp(plotParams.Orientation,'3D') 
        shiftZ = 0; 
    else 
        shiftZ = max(max(max([Pc1*sf(1)*kde(:,:,1); ... 

            Pc2*sf(2)*kde(:,:,2)])))*1.05; 
    end 
end 

  
if plotParams.ClassSurf 
    FaceAlpha = plotParams.ClassSurfFaceAlpha; 
    EdgeAlpha = plotParams.ClassSurfEdgeAlpha; 
    blue = plotParams.Color.blue; 
    red = plotParams.Color.red; 
    surface(x(:,1),x(:,2),Pc1*kde(:,:,1)-shiftZ,... 

       'FaceAlpha',FaceAlpha,'EdgeColor',... 
        blue,'FaceColor',blue,'EdgeAlpha',EdgeAlpha); hold on; 
    surface(x(:,1),x(:,2),Pc2*kde(:,:,2)-shiftZ,'FaceAlpha',... 

        FaceAlpha,'EdgeColor',red,'FaceColor',red,'EdgeAlpha',... 

        EdgeAlpha); hold on; 
end 

  
% Plot the decision boundary 
if plotParams.ClassBoundary 
    contour(x(:,1),x(:,2),dkde,[0 0],'k--','LineWidth',2); hold on; 
end 

  
% Set plot parameters 
axis(plotParams.axes); 
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xlabel('X_1','FontSize',12) 
ylabel('X_2','FontSize',12) 
legend('Satisfactory','Feasible','Infeasible','Location',... 

    plotParams.LegendLoc); 

 
end 

  
% ------------------- Imbeded Function -------------------------------- 
function plotParams = getPlotParams(presetParams,varargin) 
% Define the parameters of the plotPSpace() function of variable input 

  
plotParams = initPlotParams(); 

  
% Set the preset params in code above 
fields = fieldnames(presetParams);  
for i = 1:numel(fields) 
    plotParams.(fields{i}) = presetParams.(fields{i}); 
end 

  
% Set the params inputted into master plotPSpace(varargin) 
inputParams = varargin{1}; 
if ~isempty(inputParams) 
    if max(strcmp(inputParams(:),'Orientation'))>0 
        ind = find(strcmp(inputParams(:),'Orientation')>0)+1; 
        plotParams = paramPreset(plotParams,inputParams(ind)); 
    end 
    for i = 1:2:length(varargin)-1 
        if isfield(plotParams,varargin{i}) 
            plotParams.(varargin{i}) = varargin{i+1}; 
        else 
            fprintf('Incorrect Plot Parameter: %s.\n',varargin{i}); 
        end 
    end 
end 

  
% Set figure number to new figure unless specified 
if plotParams.figNum < 1 
    ag = findobj; 
    nf = max(ag(find(ag==fix(ag)))); 
    plotParams.figNum = nf+1; 
end 

  
% Change on/off strings to boolean variables 
fields = fieldnames(plotParams);  
for i = 1:numel(fields) 
    if isa(plotParams.(fields{i}),'char') 
        if strcmp(plotParams.(fields{i}),'on') 
            plotParams.(fields{i}) = true; 
        elseif strcmp(plotParams.(fields{i}),'off') 
            plotParams.(fields{i}) = false; 
        end 
    end 
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end 

  
% Set Color Properties 
if strcmp(plotParams.Orientation,'3D') 
    plotParams.Color.blue = [0 0 1]; 
    plotParams.Color.red = [1 0 0]; 
    plotParams.Color.green = [0 1 0]; 
    plotParams.Color.grey = [.8 .8 .8]; 
elseif strcmp(plotParams.Orientation,'2D') 
    plotParams.Color.blue = [.49 .682 1]; 
    plotParams.Color.red = [1 .565 .576]; 
    plotParams.Color.green = [.808 1 .690]; 
    plotParams.Color.grey = [.8 .8 .8]; 
end 

     
end 

  
function p = initPlotParams() 
% Set the default plotting parameters 
    p.DataPoints='on'; 
    p.ClassifyData='actual'; 
    p.ClassSurf='on'; 
    p.ClassSurfEdgeAlpha=0; 
    p.ClassSurfFaceAlpha=1; 
    p.ClassBoundary='on'; 
    p.Targets='off'; 
    p.Orientation='2D'; 
    p.figNum=0; 
    p.interval='off'; 
end 

  
function p = paramPreset(p,str) 
    str = str{1}; 
    if strcmp(str,'3D') 
        p.DataPoints='on'; 
        p.ClassifyData='actual'; 
        p.ClassSurf='on'; 
        p.ClassSurfEdgeAlpha=1; 
        p.ClassSurfFaceAlpha=.1; 
        p.ClassBoundary='on'; 

  
        p.Targets='off'; 
    elseif strcmp(str,'2D') 
        p.DataPoints='on'; 
        p.ClassifyData='actual'; 
        p.ClassSurf='on'; 
        p.ClassSurfEdgeAlpha=0; 
        p.ClassSurfFaceAlpha=1; 
        p.ClassBoundary='on'; 
        p.Orientation='2D'; 
    end 
end 
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function figHandle = plotPSpace(n,divs,sf,varargin) 
% Plot the performance space. Input 'ZoomSatisfactory' to limit to 
% satisfacotry performance space 

  
if nargin == 0 
    load('nDemo100.mat'); 
    n = nDemo100; 
    divs = [40 40]; 
    sf = [1 1]; 
end 

  
% Define Preset Plotting Parameters 
inputParams = varargin; 
if max(strcmp(inputParams(:),'ZoomSatisfactory'))>0 
    presetParams.axes = [n.pbnd(1,1) n.ptarg(1) n.pbnd(1,2) ... 

        n.ptarg(2)]; 
    inputParams = deleteParam(inputParams,'ZoomSatisfactory'); 
else 
    presetParams.axes = [n.pbnd(1,1) n.pbnd(2,1) n.pbnd(1,2)... 

        n.pbnd(2,2)]; 
end 
presetParams.figNum = 0; % Setting to 0 will create a new figure 
presetParams.LegendLoc = 'best'; 
plotParams = getPlotParams(presetParams,inputParams); 

  
figHandle=figure(plotParams.figNum); 
clf 

  
% Plot the data points 
if plotParams.DataPoints 
    if plotParams.satPoints 
        for j=1:n.N 
            if n.w(j,1)>0 
                plot(n.pValues(j,1),n.pValues(j,2),... 

                    'bs','MarkerFaceColor','b',... 
                    'MarkerSize',6); hold on; 
            elseif n.w(j,2)>0 
                plot(n.pValues(j,1),n.pValues(j,2),... 

                    'co','MarkerFaceColor','c',... 
                    'MarkerSize',6); hold on; 
            else 
                plot(n.pValues(j,1),n.pValues(j,2),... 

                    'r<','MarkerFaceColor','r',... 
                    'MarkerSize',6); hold on; 
            end 
        end 
    else 
        for j=1:n.N 
            if n.w(j,1)>0 || n.w(j,2)>0 
                plot(n.pValues(j,1),n.pValues(j,2),... 
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                    'bs','MarkerFaceColor','b',... 
                    'MarkerSize',6); hold on; 
            else 
                plot(n.pValues(j,1),n.pValues(j,2),... 

                    'r<','MarkerFaceColor','r',... 
                    'MarkerSize',6); hold on; 
            end 
        end 
    end 
end 

  
% Plot Performance Targets 
if plotParams.Targets 
    plot([n.ptarg(1) n.ptarg(1)],[n.pbnd(1,2) n.ptarg(2)],'b--',... 
        'LineWidth',2);hold on;  
    plot([n.pbnd(1,1) n.ptarg(1)],[n.ptarg(2) n.ptarg(2)],'b--',... 
        'LineWidth',2);hold on; 
end 

  
% Calculate the Class and Unattainable Surface Data 
if plotParams.ClassSurf || plotParams.ClassBoundary || 

plotParams.UnattainableSurf || plotParams.UnattainableBoundary 
    step = [plotParams.axes(2)-plotParams.axes(1) ... 

        plotParams.axes(4)-plotParams.axes(3)]./divs; 
    y1 = plotParams.axes(1):step(1):plotParams.axes(2); 
    y1Count = divs(1)+1; 
    y2 = plotParams.axes(3):step(2):plotParams.axes(4); 
    y2Count = divs(2)+1; 
    y = [y1' y2']; 
    n.Cp=2; 
    c=1:n.Cp; 
    kde = zeros(y2Count,y1Count,n.Cp); 
    dkde = zeros(y2Count,y1Count); 

     
    dkde_Unattainable = zeros(y1Count,y1Count); 
    kde_Unattainable = kbnPerfUnattP(n); 
    Pc = (n.Ncp(c)+1)/(n.N+2); 
    for i=1:y1Count 
        for j=1:y2Count 
            kde(j,i,c) = kbnEvalPerf(n,[y(i,1) y(j,2)]); 
            if n.Cp > 1 
                dkde(j,i) = (Pc(1)*sf(1)*kde(j,i,1)-... 

                    Pc(2)*sf(2)*kde(j,i,2))/... 
                    (Pc(1)*sf(1)*kde(j,i,1)+Pc(2)*sf(2)*kde(j,i,2)); 
                if Pc(1)*sf(1)*kde(j,i,1) > Pc(2)*sf(2)*kde(j,i,2) 
                    dkde_Unattainable(j,i) = Pc(1)*sf(1)*... 

                        kde(j,i,1) -kde_Unattainable; 
                else 
                    dkde_Unattainable(j,i) = Pc(2)*sf(2)*... 

                        kde(j,i,2) - kde_Unattainable; 
                end 
            else 
                dkde_Unattainable(j,i) = Pc*sf(1)*kde(j,i) -... 
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                    kde_Unattainable; 
            end 
        end 
    end 

     
    if strcmp(plotParams.Orientation,'3D') 
        shiftZ = 0; 
    else 
        if n.Cp > 1 
            shiftZ = max(max(max([Pc(1)*sf(1)*kde(:,:,1); ... 

                Pc(2)*sf(2)*kde(:,:,2)])))*1.05; 
        else 
            shiftZ = max(max(Pc*sf(1)*kde(:,:,1))); 
        end 
    end 
end 

  
if plotParams.ClassSurf 
    FaceAlpha = plotParams.ClassSurfFaceAlpha; 
    EdgeAlpha = plotParams.ClassSurfEdgeAlpha; 
    blue = plotParams.Color.blue; 
    red = plotParams.Color.red; 
    green = plotParams.Color.green; 
    if n.Cp > 1 
        surface(y(:,1),y(:,2),Pc(1)*kde(:,:,1)-shiftZ,'FaceAlpha',... 

            FaceAlpha,'EdgeColor',blue,'FaceColor',blue,'EdgeAlpha',... 

            EdgeAlpha); hold on; 
        surface(y(:,1),y(:,2),Pc(2)*kde(:,:,2)-shiftZ,'FaceAlpha',... 

            FaceAlpha,'EdgeColor',red,'FaceColor',red,'EdgeAlpha',... 

            EdgeAlpha); hold on; 
    else 
        surface(y(:,1),y(:,2),Pc(1)*kde(:,:,1)-shiftZ,'FaceAlpha',... 

            FaceAlpha,'EdgeColor',green,'FaceColor',green,... 

           'EdgeAlpha',EdgeAlpha); hold on; 
    end 
end 

  
% Plot the feasible/infeasible decision boundary 
if plotParams.ClassBoundary 
    contour(y(:,1),y(:,2),dkde,[0 0],'k--','LineWidth',2); hold on; 
end 

  
% Plot the unachievable space 
if plotParams.UnattainableSurf 
    FaceAlpha = plotParams.UnattainableSurfFaceAlpha; 
    EdgeAlpha = plotParams.UnattainableSurfEdgeAlpha; 
    grey = plotParams.Color.grey; 
    divsUnatt = [40 40]; 
    xUnach=linspace(plotParams.axes(1), plotParams.axes(2),... 

        divsUnatt(1)+1); 
    yUnach=linspace(plotParams.axes(3), plotParams.axes(4),... 

        divsUnatt(2)+1); 
    zUnach=ones(divsUnatt(1)+1,divsUnatt(2)+1).*kde_Unattainable; 
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    surface(xUnach,yUnach,zUnach-shiftZ,'FaceAlpha',FaceAlpha,... 

        'EdgeAlpha',EdgeAlpha,'FaceColor',grey); hold on; 
end 

  
if plotParams.UnattainableBoundary 
    contour(y(:,1),y(:,2),dkde_Unattainable,[0 0],'k-',... 

        'LineWidth',2); hold on; 
end 

  
% Set plot parameters 
axis(plotParams.axes); 
xlabel('Y_1','FontSize',12) 
ylabel('Y_2','FontSize',12) 
if plotParams.Legend 
    legend('Satisfactory','Feasible','Infeasible',... 

        'Location',plotParams.LegendLoc); 
end 
view(plotParams.view); 

  
end 
% ------------------- Imbeded Function -------------------------------- 
function plotParams = getPlotParams(presetParams,varargin) 
% Define the parameters of the plotPSpace() function of variable input 

  
plotParams = initPlotParams(); 

  
% Set the preset params in code above 
fields = fieldnames(presetParams);  
for i = 1:numel(fields) 
    plotParams.(fields{i}) = presetParams.(fields{i}); 
end 

  
% Set the params inputted into master plotPSpace(varargin) 
inputParams = varargin{1}; 
if ~isempty(inputParams) 
    if max(strcmp(inputParams(:),'Orientation'))>0 
        ind = find(strcmp(inputParams(:),'Orientation')>0)+1; 
        plotParams = paramPreset(plotParams,inputParams(ind)); 
    end 
    for i = 1:2:length(inputParams)-1 
        if isfield(plotParams,inputParams{i}) 
            plotParams.(inputParams{i}) = inputParams{i+1}; 
        else 
            fprintf('Incorrect Plot Parameter: %s.\n',varargin{i}); 
        end 
    end 
end 

  
% Set figure number to new figure unless specified 
if plotParams.figNum < 1 
    ag = findobj; 
    nf = max(ag(find(ag==fix(ag)))); 
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    plotParams.figNum = nf+1; 
end 

  
% Change on/off strings to boolean variables 
fields = fieldnames(plotParams);  
for i = 1:numel(fields) 
    if isa(plotParams.(fields{i}),'char') 
        if strcmp(plotParams.(fields{i}),'on') 
            plotParams.(fields{i}) = true; 
        elseif strcmp(plotParams.(fields{i}),'off') 
            plotParams.(fields{i}) = false; 
        end 
    end 
end 

  
% Set Color Properties 
if strcmp(plotParams.Orientation,'3D') 
    plotParams.Color.blue = [0 0 1]; 
    plotParams.Color.red = [1 0 0]; 
    plotParams.Color.green = [0 1 0]; 
    plotParams.Color.grey = [.4 .4 .4]; 
elseif strcmp(plotParams.Orientation,'2D') 
    plotParams.Color.blue = [.49 .682 1]; 
    plotParams.Color.red = [1 .565 .576]; 
    plotParams.Color.green = [.808 1 .690]; 
    plotParams.Color.grey = [.8 .8 .8]; 
end 

     
end 

  
function p = initPlotParams() 
% Set the default plotting parameters 
    p.DataPoints='on'; 
    p.ClassSurf='on'; 
    p.ClassSurfEdgeAlpha=0; 
    p.ClassSurfFaceAlpha=1; 
    p.ClassBoundary='on'; 
    p.UnattainableSurf='on'; 
    p.UnattainableSurfEdgeAlpha=.2; 
    p.UnattainableSurfFaceAlpha=1; 
    p.UnattainableBoundary='on'; 
    p.Targets='off'; 
    p.Orientation='2D'; 
    p.view=3; 
    p.figNum=0; 
    p.Legend='on'; 
    p.satPoints='on'; 
end 

  
function p = paramPreset(p,str) 
    str = str{1}; 
    if strcmp(str,'3D') 
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        p.DataPoints='on'; 
        p.ClassSurf='on'; 
        p.ClassSurfEdgeAlpha=1; 
        p.ClassSurfFaceAlpha=.1; 
        p.ClassBoundary='on'; 
        p.UnattainableSurf='on'; 
        p.UnattainableSurfEdgeAlpha=.1; 
        p.UnattainableSurfFaceAlpha=.2; 
        p.UnattainableBoundary='on'; 
        p.Targets='off'; 
        p.view=3; 
    elseif strcmp(str,'2D') 
        p.DataPoints='on'; 
        p.ClassSurf='on'; 
        p.ClassSurfEdgeAlpha=0; 
        p.ClassSurfFaceAlpha=1; 
        p.ClassBoundary='on'; 
        p.UnattainableSurf='on'; 
        p.UnattainableSurfEdgeAlpha=.2; 
        p.UnattainableSurfFaceAlpha=1; 
        p.UnattainableBoundary='on'; 
        p.Targets='off'; 
        p.Orientation='2D'; 
        p.view=2; 
    end 

  
end 

  
function p = deleteParam(p,param2Delete) 
    ind = find(strcmp(p(:),param2Delete)>0); 
    if ind == 1 
        if numel(p) == 1 
            p = {}; 
        else 
            p = p(2:end); 
        end 
    else 
        if numel(p) == ind 
            p = p(1:end-1); 
        else 
            ptemp(1:ind-1) = p(1:ind-1); 
            ptemp(ind+1:end) = p(ind+1:end); 
            p=ptemp; 
        end 
    end 

     
end 

 

 

 

 

 

function MC = kbnMonteCarlo(n,spaceEval,classEval,N,sf) 
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% Perform Monte Carlo volume integration of design/performance space 
% 
% Inputs: 
%   spaceEval = 'd' - design space 
%             = 'p' - performance space 
%   classEvak = '1' - satisfactory space (feasible and meets  

%                     constraints) 
%             = '2' - feasible, but not meet constraints 
%             = '3' - Infeasible 
%             = [1,3] - Infeasible AND satisfactory (put multiple  

%                       classes 
%                       in a sorted array) 
%   N = Number of sample evaluations for the Monte Carlo 
%   sf = Scaling Factor for classes 

  
pDesiredSpace = 1; 
pAllSpace = ~pDesiredSpace; 

  
MC = struct('sum',0); 
MC.tally = []; 

  
MC.volume = 0; 
MC.volumeSummary = []; 
MC.variance = []; 
MC.varianceSummary = []; 

  

  
% Get constant kbn variable values 
numKbnClasses = 2; % For 2 classes 
c = 1:numKbnClasses; 
switch spaceEval 
    case 'd' 
        Pc = (n.Ncd(c)+1)./(n.N+2); 
        scale = n.dscale; 
        shift = n.dshift; 
    case 'p' 
        if pDesiredSpace 
            pbnd = [n.pbnd(1,:); n.ptarg]; 
            scale = 1./(pbnd(2,:)-pbnd(1,:)); 
            shift = pbnd(1,:); 
        end 
        if pAllSpace 
            scale = n.pscale; 
            shift = n.pshift; 
        end 

         
        attainableProbBnd = kbnPerfUnattP(n); 
        Pc = (n.Ncp(c)+1)./(n.N+2); 
    otherwise 
        fprintf('Invalid spaceEval in kbnMonteCarlo()'); 
end 
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numVars = 2; % Number of variables / Number of dimensions of space 
testVars = halton(numVars,N+1000); 
testVars = testVars(1001:end,:); 

  
for i = 1:N 
    switch spaceEval 
        case 'd' 
            pTemp = kbnEvalDesign(n,testVars(i,:)./scale + shift); 
        case 'p' 
            pTemp = kbnEvalPerf(n,testVars(i,:)./scale + shift); 
    end 

     
    pDiff = (sf(1)*Pc(1)*pTemp(1)-sf(2)*Pc(2)*pTemp(2)); 

     
    switch spaceEval 
        case 'd' 
            if pDiff >= 0 && max(classEval==1)==1 
                MC = updateInsideMC(MC); 
            elseif pDiff < 0 && (max(classEval==2)==1 ||      

max(classEval==3)==1) 
                MC = updateInsideMC(MC); 
            else 
                MC = updateOutsideMC(MC); 
            end 
        case 'p' 
            if pDiff >= 0 && max(pTemp)*Pc(1)*sf(1)>=attainableProbBnd 
                if isSatisfactory(n,testVars(i,:)) && 

max(classEval==1)==1  
                    MC = updateInsideMC(MC); 
                elseif ~isSatisfactory(n,testVars(i,:)) && 

max(classEval==1)==1  
                    MC = updateInsideMC(MC); 
                end 
            elseif pDiff <= 0 && 

max(pTemp)*Pc(2)*sf(2)>=attainableProbBnd && max(classEval==3)==1 
                MC = updateInsideMC(MC); 
            else 
                MC = updateOutsideMC(MC); 
            end 
    end 
end 

  
end 

  
function newMC = updateInsideMC(MC) 
% Update MC for a new sample inside 
    newMC = MC; 

  
    newMC.sum = newMC.sum + 1; 
    if isfield(MC,'tally') 
        newMC.tally = [newMC.tally; 1]; 
    end 
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    if isfield(MC,'volume') 
        newMC.volume = newMC.sum/length(MC.tally); 
    end 
    if isfield(MC,'volumeSummary') 
        newMC.volumeSummary = [MC.volumeSummary; newMC.volume]; 
    end 
    if isfield(MC,'variance') 
        newMC.variance = (newMC.volume*(1 - newMC.volume))/... 

            (length(MC.tally)-1); 
    end 
    if isfield(MC,'varianceSummary') 
        newMC.varianceSummary = [newMC.varianceSummary; ... 

            newMC.variance]; 
    end 
end 

  
function newMC = updateOutsideMC(MC) 
% Update MC for a new sample outside 
    newMC = MC; 

     
    if isfield(MC,'tally') 
        newMC.tally = [newMC.tally; 0]; 
    end 
    if isfield(MC,'volume') 
        newMC.volume = newMC.sum/length(MC.tally); 
    end 
    if isfield(MC,'volumeSummary') 
        newMC.volumeSummary = [newMC.volumeSummary; newMC.volume]; 
    end 
    if isfield(MC,'variance') 
        newMC.variance = (newMC.volume*(1 - newMC.volume))/... 

            (length(MC.tally)-1); 
    end 
    if isfield(MC,'varianceSummary') 
        newMC.varianceSummary = [newMC.varianceSummary; ... 

            newMC.variance]; 
    end 
end 

  
function YES = isSatisfactory(n,yi) 
    YES = true; 

     
    for i = size(yi,2); 
        if yi(i) > (n.ptarg(i)-n.pshift(i))*n.pscale(i) 
            YES = false; 
        end 
    end 
end 

 

 

 

 

function xs = halton(D,N) 
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% Finds a Halton sequence of data points in the D dimensional design  

% space for N data points.  All points are between 0 and 1 for all  

% variables. 

  
xs = zeros(N,D);  % Initialize xs to hold N data points 
primes10=primes(30); % Returns the first 10 prime numbers 
ps = primes10(1:D);  % ps is the first D prime numbers 

  
for j = 1:N % Fill out xs 
   x = zeros(1,D); 
   base = ps; 
   index = j*ones(1,D); 
   while any(index) 
       digit = mod(index,ps); % This line is a problem for D>2 
       x = x + digit./base; 
       index = (index-digit)./ps; 
       base = base.*ps; 
   end 
   xs(j,:) = x; 
end 

  
end 
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