

Copyright

by

Jordan Lauren Matthews

2013

The Thesis Committee for Jordan Lauren Matthews

Certifies that this is the approved version of the following thesis:

A Bayesian Network Classifier for Quantifying Design and Performance

Flexibility with Application to a Hierarchical Metamaterial Design

Problem

APPROVED BY

SUPERVISING COMMITTEE:

Carolyn C. Seepersad

Michael R. Haberman

Supervisor:

A Bayesian Network Classifier for Quantifying Design and Performance

Flexibility with Application to a Hierarchical Metamaterial Design

Problem

by

Jordan Lauren Matthews, B.S.

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2013

 Dedication

To Science!

v

Acknowledgements

I would first and foremost like to acknowledge and thank my advisor, Dr. Carolyn

Seepersad, for her guidance and support since I came to the University of Texas. Dr.

Seepersad was an ideal role model for me – she has helped shape my work ethic as well

develop a healthy work/life balance. Whether it was spending many long hours reviewing

my research progress in order to give me exhaustive feedback, or inviting me for a burger

to relieve some stress, Dr. Seepersad gave me no excuses to achieve anything short of

excellence. I would also like to thank Dr. Haberman’s help in developing my thesis, and

especially thank him for his willingness to teach me about subjects inside, and outside the

scope of this research.

I am very thankful of everyone that I was able to interact with over the past

several years at the University of Texas. I would like to thank my fellow lab mates for

their guidance in my transition to becoming a successful graduate student. I would like to

particularly acknowledge the hard work done my fellow lab mate, Tim Klatt, for his help

in developing and sharing the code that I used for the metameterial design problem in my

thesis. I am also very thankful for the opportunity to interact with and learn from Dr.

David Shahan. The research in my thesis largely extends the prior work done by Dr.

Shahan for his PhD, and without his help this work would not have been possible.

Finally, I would like to thank my family – my mom for fostering my interest in

science since before I can remember, and my dad for helping me maintain a proper

outlook for having a happy and fruitful life.

vi

Abstract

A Bayesian Network Classifier for Quantifying Design and Performance

Flexibility with Application to a Hierarchical Metamaterial Design

Problem

Jordan Lauren Matthews, M.S.E.

The University of Texas at Austin, 2013

Supervisor: Carolyn C. Seepersad

Design problems in engineering are typically complex, and are therefore

decomposed into a hierarchy of smaller, simpler design problems by the design

management. It is often the case in a hierarchical design problem that an upstream design

team’s achievable performance space becomes the design space for a downstream design

team. A Bayesian network classifier is proposed in this research to map and classify a

design team’s attainable performance space. The classifier will allow for enhanced

collaboration between design teams, letting an upstream design team efficiently identify

and share their attainable performance space with a downstream design team. The goal is

vii

that design teams can work concurrently, rather than sequentially, thereby reducing lead

time and design costs.

In converging to a design solution, intelligently narrowing the design space allows

for resources to be focused in the most beneficial regions. However, the process of

narrowing the design space is non-trivial, as each design team must make performance

trade-offs that may unknowingly affect other design teams. The performance space

mapping provided by the Bayesian network classifier allows designers to better

understand the consequences of narrowing the design space. This knowledge allows

design decisions to be made at the system-level, and be propagated down to the

subsystem-level, leading to higher quality designs.

The proposed methods of mapping the performance space are then applied to a

hierarchical, multi-level metamaterial design problem. The design problem explores the

possibility of designing and fabricating composite materials that have desirable macro-

scale mechanical properties as a result of embedded micro-scale inclusions. The designed

metamaterial is found to have stiffness and loss properties that surpass those of

conventional composite materials.

viii

Table of Contents

Table of Contents ... viii

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ..1

1.1 The Modern Engineering Designer’s Perspective1

1.2 Enhancing Collaboration in Set-Based Design ...4

1.3 Research Overview ...16

Chapter 2: Foundational Research in Set-Based Design20

2.1 Representing Sets of Performances ..21

2.1.1 Fuzzy Sets ...22

2.1.2 Interval Sets ..24

2.1.3 Probabilistic Sets ...26

2.1.4 Bayesian Network Classifiers ...28

2.2 Quantifying Flexibility..31

2.2.1 Developing Performance Requirements32

ix

2.2.2 Flexibility Metrics ...34

2.3 Discussion ...39

Chapter 3: Representing and Classifying the Performance Space41

3.1 The Bayesian Performance Space Classifier ..45

3.2 Capturing the Knowledge from Training Points49

3.3 Distinguishing the Feasible Performance Space56

3.4 Distinguishing the Attainable Performance Space66

3.5 Discussion ...70

Chapter 4: Quantifying Design and Performance Flexibility74

4.1 Framework for Quantification ..79

4.2 The Need for an Efficient High Fidelity Quantification Method81

4.3 A Monte Carlo Method for Quantifying Design and Performance Flexibility

Using Bayesian Network Classifiers ...89

4.4 Discussion ...97

Chapter 5: Hierarchical Materials Modeling and Design Study101

5.1 Background of Hierarchical Material Modeling102

5.2 Micro- to Meso-Scale Modeling and Design Space Mapping107

x

5.2.1 Layout and Modeling of the Negative Stiffness Inclusions107

5.2.2 Mapping the Micro- to Meso-scale Design Space110

5.3. Meso- to Macro-scale Modeling and Design Space Mapping115

5.3.1 Modeling the Performance of the Composite with Negative Stiffness

Inclusions ..116

5.3.2 Mapping the Meso- to Macro-scale Design Space118

5.3.3 Backpropagating the BNC Mappings124

5.4. Beam Coating Design Case Study ...127

5.5.1 Loss Factor and Stiffness of a Multilayer Cantilever Beam128

5.5.2 Transient Response of the Multilayer Cantilever Beam to an

Impulsive Load ...131

5.6. Discussion ..133

Chapter 6: Closure ...140

6.1 Summary ...140

6.2 Future Work ..143

xi

Appendix A ..146

Appendix B ..150

Bibliography ..172

xii

List of Tables

Table 1.1. Research Objectives ..17

Table 3.1 Nomenclature ...44

Table 4.1. Design and performance variable bounds. ..82

Table 5.1. Inclusion geometric parameter bounds. ..111

Table 5.2. Meso- to macro-scale modeling parameters.118

Table A.1. Helical Spring Design Variable Bounds. ...146

Table A.2. Helical spring design problem constants. ..149

Table B.1. List of Matlab
®
 functions for creating and using a Bayesian network

classifier. ...150

xiii

List of Figures

Figure 1.1. A depiction of a point-based design process approach where design teams

work in sequence...6

Figure 1.2. A depiction of a concurrent set-based design process approach where

design teams work in parallel. ..6

Figure 1.3. The design space (left) and performance space (right) of a point-based

design process. ..7

Figure 1.4. The design space (left) and performance space (right) of a set-based

design process. ..9

Figure 1.5. Two performance spaces showing the error resulting from a conservative

(left), and generous (right) interval approximation...........................12

Figure 1.6. An example of a multi-level design problem.13

Figure 1.7. The backward propagation of requirements across levels of a multi-level

design problem. ...14

Figure 1.8. An example of before (1) and after (2) narrowing the design space by

constricting the satisfactory performance threshold values.15

Figure 2.1. Several examples of set representations ..22

Figure 2.2. Two performance spaces showing the error resulting from a conservative

(left), and generous (right) interval approximation...........................25

Figure 2.3. An example of a multi-level design problem.31

Figure 3.1. The backward propagation of requirements across levels of a multi-level

design problem. ...42

Figure 3.2. Illustration of the classifications in a generalized performance space 43

xiv

Figure 3.3. Demonstration of Bayes decision rule on classifying a univariate

performance space ..48

Figure 3.4 Directed Acyclic Graph of a Fully Independent (left) and Fully Dependent

(right) networks. ..50

Figure 3.5. Kernel density estimates for several values of kernel bandwidth.53

Figure 3.6. Kernel probability distributions of one training point with several values

of kernel bandwidth. ...54

Figure 3.7. The design space (left) and performance space (right) showing 50 training

points classified by feasible (blue square) and infeasible (red triangle).

...61

Figure 3.8. The posterior probability distributions for the feasible (blue) and

infeasible (red) classes. ...62

Figure 3.9. The normalized posterior probability decision surface.63

Figure 3.10. A 2-D mapping of the feasible performance space.63

Figure 3.11. False feasible and infeasible classification error rate for a BNC with 50

training points. ..65

Figure 3.12. False feasible and infeasible classification error rate as a function of the

number of training points. ...65

Figure 3.13. The posterior probability distributions for the feasible (blue) and

infeasible (red) classes, in addition to the attainable probability threshold

(grey). ..68

Figure 3.14. The BNC classification of the feasible and attainable boundaries. ...68

xv

Figure 3.15. False attainable (left) and unattainable (right) classification error rates as

a function of the number of training points.69

Figure 3.16. Total false feasible and infeasible classification error rates.71

Figure 3.17. Total false unattainable classification error rate.72

Figure 4.1 Illustration of a design space with high (left) and low (right) design

flexibility. ..76

Figure 4.2. Illustration of a performance space with high performance flexibility in

both Y1 and Y2 (left), and a performance space with low performance

flexibility in Y1 and high performance flexibility in Y2 (right).78

Figure 4.3. The BNC mapping of the design space (left) and performance space

(right) of the spring design problem with 100 training points.83

Figure 4.4. Interval quantification of the satisfactory design space.85

Figure 4.5. Grid quantification of the satisfactory design space with 5(left) and 10

(right) divisions per variable. ..87

Figure 4.6. Monte Carlo samples of satisfactory design space 100 samples (left) and

500 samples (right). ..93

Figure 4.7. Monte Carlo approximation of the design flexibility (left) and error (right)

as a function of the number of samples. ...94

Figure 4.8. Monte Carlo samples of attainable performance space (left) and

satisfactory performance space (right), each with 500 sample points.95

Figure 4.9. Estimate error of Monte Carlo approximation with standard error.96

Figure 4.10. Contours of constant design and performance flexibility, shown in a

normalized, zoomed-in desired performance space.98

xvi

Figure 4.11. Updated design and performance spaces resulting from a change in

performance requirements. ...99

Figure 5.1. An illustration of the hierarchical levels of the composite material, with

micro-, meso-, and macro-scales indicated by the subscripts , m, and

M, respectively. The negative stiffness inclusion is illustrated in the

upper left, and the beam coating application is illustrated on the right.

...103

Figure 5.2. Flowchart of hierarchical modeling including variable inputs and outputs

at each level...106

Figure 5.3. A candidate MTM inclusion design showing FE modeling.108

Figure 5.4. Cross-sectional view of parameterized inclusion geometry with all critical

parameters. YTZP shown in light blue, with Alumina elements in dark

blue. ...109

Figure 5.5. Micro- to meso-scale design space mapping.111

Figure 5.6. Micro- to meso-scale performance space mapping.114

Figure 5.7. Micro- to meso-scale high performance space mapping.115

Figure 5.8. Conceptual schematic of the homogenization approach of the Self-

Consistent micromechanical model. ...117

Figure 5.9. Meso- to macro-scale design space mapping.119

Figure 5.10. The effective stiffness and loss ratio of the composite as a function of

 , with MPa. ..121

Figure 5.11. A trend line of the negative sloping meso- to macro-scale design space.

...123

xvii

Figure 5.12. Macro-scale performance space mapping.124

Figure 5.13. The high performance meso- to macro-scale design space intersected

with the attainable micro- to meso-scale performance space.126

Figure 5.14. The micro- to meso-scale design space mapping with backpropagated

performance requirements from the meso- to macro-scale.126

Figure 5.15. Illustration of a beam with a composite coating.129

Figure 5.16. Normalized stiffness vs. effective composite loss factor with varying

coating thicknesses..130

Figure 5.17. An illustration of the coated cantilever beam with an impulsive load

imposed at its free end at t = 0. ...131

Figure 5.18. The coated and uncoated cantilever beam shock response.132

Figure 5.19. Meso- to macro-scale performance space with new performance

requirements highlighted in blue. ...136

Figure 5.20. Meso- to macro-scale design space reclassified with new performance

requirements. ...137

Figure 5.21. The micro- to meso-scale design space mapping backpropagated from

the updated meso- to macro-scale performance requirements.138

Figure A.1. Diagram of the helical spring. ..146

Figure A.2. An illustration of the helical spring loading and compression.148

1

Chapter 1: Introduction

Effective design of complex systems requires proper organization, starting from

the first day of the design process. The complex design problem must first be

decomposed into a hierarchy of smaller, more manageable design problems. A design

team is assigned responsibility for each decomposed design problem, and must be

coordinated by top-level management to work concurrently or sequentially with each

other. Each design team must meet performance criteria unique to each team, while

collectively meeting top-level performance criteria. The process of then converging to a

final satisfactory design is non-trivial, as each design team must make performance trade-

offs that may unknowingly affect other design teams. In this thesis, a tool is developed to

allow design teams to accurately map and communicate knowledge of their design spaces

and performance capabilities as a means of collaborating with other designers.

1.1 The Modern Engineering Designer’s Perspective

Everyday engineering companies strive to deliver higher quality products at low

costs to the consumer, in order to stay competitive. Consumers now demand that a

product meet a wide range of customer performance criteria, leading to crucial decisions

of designing “one-size-fits-all” products or allowing consumers to purchase customized

products. At the same time, engineers are forced to meet compressed timelines in order to

shorten the product’s design time. These challenges must be overcome while mitigating

the never-ending uncertainty that is inherent in every stage of the design process.

2

Although the human race has repeatedly shown the intellectual capability of designing

extremely complex and beneficial products such as airplanes and skyscrapers, the

frequency of product failures brings the age-old advertiser’s expression to mind: “We

design our products fast, good, and cheap. You may choose any two qualities.”

Many of the difficulties in engineering design are the result of a constant increase

in product complexity. An increase in product complexity has especially been seen over

the past 100-200 years due to vast improvements in manufacturing and communication.

Inventor Ray Kursweil famously recognized that technological evolution follows an

exponential growth because the latest technology is used to create the next generation

products (Kursweil, 2008). Advances in engineering numerical simulation software, such

as Finite Element Analysis, which may currently require hours or days to complete a

single simulation, were unimaginable a half a century ago. Correspondingly, a simulation

that took days to run a decade ago can now be completed in minutes. Engineers now have

the capability to use tools that were once a “final check” before prototyping, as tools to

find better designs.

No longer is it the case that a single engineering team can design a large-scale

system on their own, as a wide range of varying expertise is necessary. While there is not

a universal definition of product complexity, several characteristics are common to

complex products. In addition to difficulty and novelty, complexity in engineering

systems design is characterized as having high interdependencies between

disciplines/departments, as well as having a high number of parts, functions, and

disciplines (Kim & Wilecon, 2009). The quintessential example of a large-scale complex

3

system is the modern-day airplane, which has recently seen dramatic complexity

increases. The F-16 fighter jet, which was developed in 1974, had 15 subsystems and an

order of 10
3
 interfaces, while the F-35 fighter jet, which completed development in 2006,

had 130 subsystems and an order of 10
5
 interfaces (Becz et al., 2010). As a result of this

complexity increase, the development of Lockheed Martin’s F-35 has had production

delays of 1-3 years and an unexpected increase of 7%-10% in its lowest rate unit cost

(Gertler, 2012). The failings in the F-35 design process have been shared by commercial

aircraft design processes as well. Airbus’s A380 overran its scheduled design time by 18

months, which was still better than Boeing’s development of the 787 Dreamliner, which

saw production delayed by 28 months (Becz et al., 2010).

These recent design process inadequacies represent a multitude of interlaced

flaws, many of which are unique to each design process. However, acting Pentagon

Acquisition Chief, Frank Kendall, specifically recognized Lockheed Martin’s inability to

effectively work concurrently between design teams as the fundamental cause for delays

(Sweetman, 2012). Kendall added that Lockheed Martin held far too optimistic

expectations that satisfactory performance criteria would be met after compiling the

design selections from each design team. Nevertheless, if indeed Lockheed Martin held

overly optimistic expectations of their system-level performance capabilities, the question

remains: “What performance values should have been expected?”

The designer’s tool presented in this thesis will give design teams at every

hierarchical level the means to accurately communicate their performance capabilities

with each other. High-level design teams can utilize this knowledge to make performance

4

tradeoff decisions for design teams lower on the decomposition hierarchy in order to best

benefit the overall performance of the product. Additionally, in an effort to efficiently

converge on a final, overall design, a method to quantify each design team’s flexibility is

drawn from this tool.

1.2 Enhancing Collaboration in Set-Based Design

As design engineers work to converge to a single solution, adopting a set-based

strategy in which design teams maintain flexibility by sharing ranged sets of solutions (as

opposed to point solutions), is a widely accepted strategy to mitigate the effects of

unforeseen events in the design process. A set-based design process allows design teams

to delay decision making until their design space is better understood, giving

collaborating design teams more accurate depictions of each other’s knowledge at the

current state. Game theoretic techniques have been applied to show that design processes

in which design teams poorly communicate their design objectives will converge to a

sub-optimal solution point, called the “Nash Equilibrium” (Gurnani & Lewis, 2008).

Thus, creating a design process environment wherein design teams can collaborate on

design decision making can lead to improved system-wide performances.

In order to better understand the benefits of concurrent engineering, a brief

discussion on terminology is presented here, in preparation for the remainder of this

thesis. The variables controlled by design teams, such as the diameter of a rod, are termed

design variables. Similarly, the specific features for gauging the quality of a design, such

as motor horsepower or efficiency, are termed performance variables. The set of all

5

possible design variable combinations is termed the design space, and is typically made

finite by assigning lower and upper bounds to each design variable. The set of all possible

performance variable combinations is termed the performance space. The finite subset of

the performance space that can be mapped from the bounded design space is termed the

attainable performance space. Within the attainable performance space designers seek to

find designs that meet certain criteria or thresholds; for example, management may state

that the fuel efficiency must be greater than 38 miles per gallon. The set of performance

variables that meet all performance criteria is termed the satisfactory performance space,

and the exploitation of this subspace is the fundamental task of all design processes. The

challenge in design is to develop an understanding of the relationships between design

variables, specifically, the relationships that correspond to designs within the satisfactory

performance space.

The recent concurrent design process failures in industry have stemmed from poor

communication between design teams, and have resulted in highly iterative point-based

design processes. The point-based design process approach can be visualized as

sequential decision making, in which design teams optimize their controlled design

variables and only share their latest design configuration with each other. In contrast, a

concurrent set-based design process approach can be thought of as design teams working

in parallel, sharing information in order to minimize the chance of design iterations.

These approaches are illustrated in Figures 1.1 and 1.2.

6

Figure 1.1. A depiction of a point-based design process approach where design teams

work in sequence.

Figure 1.2. A depiction of a concurrent set-based design process approach where design

teams work in parallel.

The results of a hypothetical design process that adopts a point-based approach

are illustrated in Figure 1.3. In this example, there are two design teams, each controlling

one design variable and one performance variable. The goal of the design teams is to

iterate until a solution is found that meets both design teams’ criteria for satisfactory

performance. The first design found that meets the performance acceptability criteria can

conclude the design process; however, a better design can likely be found if resources

permit further iteration. The point-based design process results in 5 design iterations

before a mutually satisfactory design was found, and 7 iterations before a superior design

7

was agreed upon by both parties. Although there are several methods for optimizing

multilevel, decomposed design problems, such as Analytical Target Cascading and

Concurrent Sub Space Optimization, they can be computationally expensive and require

precise system-wide coordination and management that is often unattainable in non-

automated processes, which quickly devolve into a guess-and-check method (H. M. Kim,

Michelena, Papalambros, & Jiang, 2003; Wujek, Renaud, Batill, & Brockman, 1996).

The key takeaway of a point-based design approach is that it necessitates design

iterations, which can become the primary cause of developmental delays in later stages of

the design process.

Figure 1.3. The design space (left) and performance space (right) of a point-based design

process.

Set-based collaborative design is based on spending extra time and resources

early in the design process, in order to reduce the chance of iterations in later phases of

the design process. The benefits of an effective collaborative design process are

8

exemplified by Toyota’s adoption of set-based concurrent engineering practices in the

1990’s, which led to remarkable reductions in lead time and design costs (Clark &

Fujimoto, 1991; Sobek, Ward, & Liker, 1999; Ward, Liker, Cristiano, & Sobek, 1995). A

research study by Sobek et al. identifies three key principles of Toyota’s concurrent

engineering practices as the basis of their success: (1) Map the design space, (2) Integrate

by intersection, and (3) Establish feasibility before commitment (Sobek et al., 1999).

Essentially, these principles address the most basic goal of developing the best product

that can be feasibly created. However, the basic nature of these principles emphasizes the

difficulty of a large-scale concurrent design process.

The capability of a set-based design approach to excel at the principles proposed

by Sobek et al. can be understood by comparing a hypothetical set-based concurrent

design process with the point-based design process shown in Figure 1.3. The same

example design process is shown again in Figure 1.4, but with the design teams sharing

sets of information, as opposed to single design points. In the examples shown in Figures

1.3 and 1.4, the two performance variables, and , are attempted to be minimized,

with the target values and , representing the maximum satisfactory

performance value for design team 1 and 2, respectively. Following the principles

proposed by Sobek et al., each design team first samples its own design space to

understand performance tradeoffs and their locations in the design space. As each design

team continues to sample design alternatives, sharing the sets of designs values that are

known to produce feasible and satisfactory results focuses the search on designs that are

known to have superior performance characteristics. Through the process of sampling

9

design alternatives, a mapping of the performance space is created, and the attainable

performance space can be distinguished. Once an accurate mapping of the attainable

performance space has been created, the two design teams simply need to look within the

intersection of each other’s satisfactory design spaces to search for a final solution.

Figure 1.4. The design space (left) and performance space (right) of a set-based design

process.

By helping designers better understand where promising regions of the design

space exist before making constricting design decisions, set-based design also allows for

the mitigation of unexpected occurrences in the design process. Unexpected occurrences

are common in large-scale design processes, and may be the result of changing

performance requirements, imprecision in design decisions, and even mistakes made by

fellow designers (Antonsson & Otto, 1995; Devendorf & Lewis, 2008; Ilkka, 1985). The

fundamental reason that a set-based design approach can adapt to changes in both design

10

space constraints as well as performance criteria, is that flexibility is maintained until the

late stages of the design process.

Flexibility has many connotations in design research, but is generally regarded as

“a property that promotes change in both the design and performance spaces” (Ferguson,

Siddiqi, Lewis, & de Weck, 2007). Additionally, flexibility has separate meanings in the

design and performance spaces. In the design space, design flexibility is defined for this

research as the size of the subspace that produces satisfactory designs (Suh, 1990).

Essentially, design flexibility can be understood as the degree to which a design can be

changed while still remaining in the satisfactory performance space (Simpson, Rosen,

Allen, & Mistree, 1996). Similarly in regards to the performance space, performance

flexibility is defined as the size of the satisfactory performance space associated with a

specific set of designs. Performance flexibility can be thought of as a measure of

insensitivity to changes in performance criteria. Sets of designs with high performance

flexibility can meet a wide range of performance requirements, and thus easily adapt to

changes in performance criteria.

Taguchi’s robust design method, published in 1993, is a very commonly used

method to develop high quality products by leveraging flexibility (Chang, Ward, Lee, &

Jacox, 1994; Taguchi & Cariapa, 1993). However, in complex design problems it is

difficult to determine how much flexibility is needed. Furthermore, it is even more

difficult to quantitatively determine if a design has an appropriate amount of flexibility. A

method to quantify flexibility has been recognized as an insufficiently answered research

question for over two decades, and a flexible systems review paper stated in 2007 that a

11

standardized approach to quantifying flexibility still needs to be discovered (Ferguson et

al., 2007; Gupta & Goyal, 1990; Toni & Tonchia, 1998). Several approaches to

quantifying design and performance flexibility are reviewed in chapter two, but it should

be noted that all of the previously proposed approaches have significant deficiencies in

practice.

A fundamental difficulty in approximation of the satisfactory design and

performance spaces is that they must be done based on limited information. Obviously

taking a copious number of sample points can make the size and shape of this space clear;

however, engineers rarely have the computing power or time to perform an exhaustive

sampling process. A hypothetical performance space is shown in Figure 1.5, and

illustrates the challenges in developing a standardized method for mapping and

quantifying regions that are known to be arbitrarily shaped. The most common approach

to approximating the performance space is to use intervals (Chen & Ward, 1995).

However, complex relationships that exist in engineering can rarely be captured by

rectangular shape. Figure 1.5 depicts two intervals, one being overly generous in

approximating the design’s performance capabilities, and the other being overly

conservative. The overly generous interval is seen to misclassify portions of the

unattainable performance region as feasible, and conversely, the overly conservative is

seen to misclassify portions of the feasible performance space as either unattainable or

infeasible. The obvious augmentation to interval classification, to improve its accuracy, is

to divide the performance space into many separate intervals or bins. However,

classification using bins is also inherently limited because it is a very simplistic

12

representation of the design space that does not capture confidence levels of the

classification or guide subsequent sampling of the design space.

Figure 1.5. Two performance spaces showing the error resulting from a conservative

(left), and generous (right) interval approximation.

A recently proposed method for classifying arbitrarily shaped regions of the

design space uses a Bayesian network classifier to capture the knowledge of the design

space gained from sample points (Shahan & Seepersad, 2012). To approximate the

decision boundary between the satisfactory and unsatisfactory regions in the design space

Shahan and Seepersad create a probability density function for each class (satisfactory

and unsatisfactory). The probability density function is created by assigning a kernel of

normal distribution on each sample point, and the kernels are subsequently summed over

all sample points for each class. An unknown design point is classified as satisfactory if

the class conditional probability density function for the satisfactory class of sample

13

points is greater than that of the unsatisfactory class at that point. The method can classify

regions of arbitrary shape and connectivity, and it can guide sequential sampling and

search. A more in depth discussion of the Bayesian network classifier method, as well as

other methods for classification is given in Chapter 2.

The research presented in this thesis extends the work of Shahan and Seepersad,

and uses a Bayesian network classifier to map arbitrarily shaped regions of the

performance space. The major difference between the design and performance spaces,

which is addressed by the method proposed in this thesis, is that while all points in the

design space can be linked to points in the performance space, the converse is rarely true

(Klein, Sayama, Faratin, & Bar-Yam, 2003). Therefore, in addition to differentiating the

feasible and infeasible regions of the performance space, it is also necessary to

distinguish the attainable versus unattainable regions of the performance space. These

extensions of Shahan and Seepersad’s work are required for multilevel design, in which

top-down, performance-driven, multilevel design requires back propagation across

multiple levels.

Figure 1.6. An example of a multi-level design problem.

In the multilevel design problem shown in Figure 1.6, the vector of design

variables, x, is the input to a small scale problem, whose output, y, is the input to a large

scale problem, with performance parameters, z. This design process structure is common

 Small Scale

Problem

Large Scale

Problem

14

in engineering and is interesting because the design space of the large scale design team

is defined by the feasible performance space of the small scale design team. Figure 1.7

shows for a two dimensional problem, how large scale candidate designs, y, are classified

according to their large scale performance, z, and that classification is then used to

identify high-performance candidate designs, x, at the small scale.

Figure 1.7. The backward propagation of requirements across levels of a multi-level

design problem.

Complex systems are inherently multilevel design problems, having system-level

performance requirements, as well as subsystem performance targets that must first be

met. For the subsystem design team, it is initially sufficient to map the satisfactory design

space, comprised of combinations of independent design variable values that offer

satisfactory performance with respect to one or more dependent performance parameters.

Subsequently in order to solve the system-level design problem, it is also necessary to

Unsatisfactory

z values

Satisfactory

z values

Unsatisfactory

y values at the

small scale
Satisfactory

y values at the

small scale

classifier boundary for large

scale problem requirements on z

values

classifier boundaries for small scale

problem requirements on y values

Designs with: Designs with:

combined classifier boundary identifying

design alternatives that meet problem

requirements on y and z values

classifier boundary of

attainable values of y1 and y2

Small Scale Design Space Small Scale Performance Space /

Large Scale Design Space

15

map the subsystem’s satisfactory performance space of dependent variable values, as

those dependent variables also serve as input to system-level design. For example, in

Figures 1.6 and 1.7, the output of the small scale problem, y, also serves as input to the

large scale problem. Accordingly, it is important to create a design space mapping of the

combinations of y1 and y2 values that provide satisfactory values of z at the large scale,

but also a performance space mapping of the combinations of y1 and y2 values that can be

feasibly achieved by varying x1 and x2 at the small scale, so that the design and

performance space mappings of y1 and y2 values can be intersected during the design

exploration process.

Figure 1.8. An example of before (1) and after (2) narrowing the design space by

constricting the satisfactory performance threshold values.

To conclude a design process, the design space must be narrowed to a single,

satisfactory point before a product can be made. As it is impossible to have complete

knowledge of the overall design space, narrowing the design space allows a design team

16

to concentrate its resources to develop a better understanding of that smaller region

(Wood & Agogino, 2005). Narrowing the design space is ideally equivalent to tightening

the performance targets, as shown in Figure 1.8, leading to a narrowed satisfactory

performance space. Timing is critical when narrowing the design space, as narrowing it

too quickly can possibly exclude the most desirable regions of the design space,

especially if the interactions between design variables are not well understood yet.

Furthermore, in a multilevel design problem, the design decisions made by lower level

design teams may make it more difficult, or impossible for an upper level design team to

find a satisfactory design. In the case that a downstream design team cannot find a

satisfactory design, iterations must take place between the design teams, increasing the

product lead time (Shahan & Seepersad, 2010). An accurate mapping of the performance

space allows a design team to intelligently narrow its design space, by understanding

exactly how its design decisions restrict its design and performance flexibility.

1.3 Research Overview

The goal of this research is to create a tool that designers can use to better

understand the performance capabilities of a design, based on the results of experiments

and/or computational simulations. Using a Bayesian network classifier, a method is

proposed to map the desirable regions of the performance space. The performance space

mapping is then used to quantify performance flexibility. The research objectives for this

thesis are presented in Table 1.1.

17

Table 1.1. Research Objectives

1.

Provide designers with a tool to map and classify arbitrarily shaped regions

of the performance space

2.

Provide designers with a tool to autonomously quantify the flexibility of

the design and performance space

3.

Demonstrate the utility of design and performance space Bayesian network

classifiers, in a multi-level design case study

The methods presented in this thesis form a tool to allow designers to better

address Sobek et al.’s three fundamental set-based design principles: (1) Map the design

space, (2) Integrate by intersection, and (3) Establish feasibility before commitment

(Sobek et al., 1999). The first and second guidelines are addressed by the first research

objective in Table 1.1: the creation of a method to map the performance space, as one

design team’s performance space can often represent a downstream design team’s design

space. Additionally, as seen in Figure 7, the mapping tool allows design teams to

intersect one another’s design spaces in order to find system level satisfactory designs.

The third design principle is addressed by the second research objective in Table 1.1: the

creation of a tool to quantify performance flexibility, which can be used to intelligently

determine when to fix design variables once the performance capabilities are well

understood.

18

The research objectives are explored in a series of chapters in this thesis. The

second chapter reviews the recent advances in concurrent engineering design research in

order to understand how the research tools presented may impact different aspects of

concurrent design. Specifically, advances in representing sets of designs and parameters

are discussed, in addition to reviewing the most state-of-the-art methods to quantify

flexibility. The third chapter addresses the first research objective in Table 1.1, by

providing the necessary framework to map the performance space using Bayesian

network classifiers. The fourth chapter addresses the second research objective in Table

1.1, by presenting several methods to quantify the size of the feasible regions of the

design and performance space. The goal of the methods presented in Chapter 4 is to

create robust convergence criteria, such that the design and performance flexibility

quantification can be autonomously performed.

The fifth chapter applies the methods presented in Chapters 3 and 4 to a

hierarchical design problem to examine its effectiveness. The design problem explores

the possibility of designing and fabricating composite materials that have macroscopic

mechanical stiffness and loss properties that surpass those of conventional composites. It

has been previously theorized that this can be done by embedding small volume fractions

of high loss micro-scale inclusions in a continuous host material (Lakes, 2001).

Achieving high stiffness and loss from these materials by design, however, is a nontrivial

task. To solve this design problem, a hierarchical multilevel material model is presented,

coupled with a hierarchical design approach using Bayesian network classifiers to map

the design and performance spaces at each hierarchical level. Length scales range from

19

the behavior of the structured microscale inclusions to the effective properties of

mesoscale composite materials to the performance of an illustrative macroscale

component, a vibrating cantilever beam that has been coated with the designed composite

material.

20

Chapter 2: Foundational Research in Set-Based Design

Design teams that engage in a set-based design paradigm have been shown to

produce higher quality products in shorter lead times, especially in the design of complex

systems (Sobek, Ward, & Liker, 1999). A set-based design approach allows for better

collaboration between design teams, and gives designers the opportunity to delay

important design decisions until the impact of those decisions are better understood. A

primary challenge in set-based design is defining the set of designs, as information about

how design variable values correlate to performance values is typically incomplete and

abstract (Pacheco, Amon, & Finger, 2003; Wood & Agogino, 2005). The focus of this

thesis is to develop a means (1) to represent or map a set of designs accurately in both

design and performance space and (2) to quantify the design and performance flexibility

embodied in the set of designs. This chapter is segmented by these goals, and reviews

several prominent techniques and methodologies previously presented to achieve these

goals.

Section 2.1 reviews methods used to represent sets of designs in performance

space. The method of using Bayesian network classifiers to map the design space is also

described in this section, to highlight the necessary extensions required to use this method

in representing sets of designs in performance space, which is the novel method presented

in Chapter 3. Section 2.2 reviews methods to quantify the design and performance

flexibility embodied in a set of designs.

21

2.1 Representing Sets of Performances

Methods to represent performance sets consider how design teams can use

knowledge of the design space, obtained by experimentation, simulation, and expert

knowledge, to represent or map the space of attainable performance. An accurate map of

an attainable performance space has many benefits to a design process. One design

team’s set of attainable performances values could also be the set of designs that a

downstream design team is able to choose from in a multilevel design problem. An

inaccurate representation of an upstream design team’s performance space can result in

the downstream design team selecting a design that may not be attainable. Another use of

mapping the set of attainable performance values is in the development of product

families. A product family is akin to a set of performance capabilities that can be mapped

from a set of platform-based products that share many of the same design variable values

(Simpson, Maier, & Mistree, 2001).

Sets of performance parameter values can be represented by discrete values,

continuous ranges, or discontinuous ranges, as well as with non-exact, probabilistic

parameters, as shown in Figure 2.1. Discrete values are not effective at performance set

representation because they do not give any insight on the attainability of in between

values. Unfortunately, discrete attainable performance values are typically how engineers

receive their information. Conducting a computationally intensive design analysis

requires specifying a single design to be inputted, and results in a single performance

output. For an effective capture of knowledge gained from simulations, the discrete

sample values of the performance space must be extended to continuous or discontinuous

22

ranges. Uncertainty in the extension from discrete points to continuous or discontinuous

ranges is the fundamental problem to be addressed in all set-based design methods. An

overly generous extension between discrete performance sample points may lead

designers to believe they can achieve performance values beyond their capable limits,

and conversely an overly conservative extension between points may lead designers to

abandon research in a technology for a lack of potential.

Figure 2.1. Several examples of set representations

2.1.1 Fuzzy Sets

One proposed method to mitigate the uncertainty associated with mapping the

performance space is to allow the designers themselves to capture this uncertainty using

fuzzy logic. The Method of Imprecision (MoI) uses fuzzy logic to capture a designer’s

preferences among performance values (Antonsson & Otto, 1995; Wood & Antonsson,

 Y

0 1 2 3 4 5 6 7

Discrete

Y
0 1 2 3 4 5 6 7

Continuous

Y
0 1 2 3 4 5 6 7

Discontinuous

Y
0 1 2 3 4 5 6 7

Probabilistic

p(Y)

23

1989). This method attempts to improve trade-off decision making between design teams

by allowing each design team to define a fuzzy preference function. The fuzzy preference

function maps the performance space by assigning every performance point a value

between zero and one, in which a value of zero corresponds to a certain unsatisfactory

performance value, and a value of one corresponds to a certain satisfactory performance

value. Attainability of the performance space is incorporated into the fuzzy preference

function by assigning a value of zero to unattainable performance points. Design teams

then can share performance variable sets by sharing the performance values that have

non-zero preference function values.

A fuzzy preference function for the performance space allows design teams to

intersect one another’s preference functions to find a design with the highest likelihood of

mutual satisfaction, thus minimizing the risk of additional iterations between design

teams. Using fuzzy logic to define performance preferences has been combined with

genetic algorithms, and has been shown capable of solving highly complex design

problems with many design teams (Saridakis & Dentsoras, 2006). Mapping the

performance space using fuzzy logic, however, does not aid in the determination of

performance variable attainability, and therefore is typically combined with other set

representation methods. In fact, the study done by Saradakis and Dentsoras assumes that

each design team has complete knowledge of its attainable performance space, thus side-

stepping the challenge of defining this boundary.

24

2.1.2 Interval Sets

The most common method to represent the performance space is by using interval

sets – a method that gained notoriety during Toyota’s set-based design studies (Ward,

Liker, Cristiano, & Sobek, 1995). Intervals treat each variable independently, and by

defining an upper and lower bound a continuous ranged set is created for each variable,

as shown in Figure 2.2. Intervals do not provide an accurate representation of an

irregularly shaped space, such as the one shown in Figure 2.1, and results in either an

overly generous or conservative representation. Combining the intervals from each

performance variable creates a mapping of the performance space, and forms a

hyperrectangular ranged set (Chen & Ward, 1995). Intervals are very applicable to large

scale, complex design problems by making use of interval calculus methods (Davis,

1987; Reddy & Mistree, 1992). Ward et al. extended these interval calculus methods into

Labeled Interval Calculus (Ward, Lozano-Perez, & Seering, 1990), which served as a set

of rules to cascade design and performance sets among design teams (Finch & Ward,

1997) and across hierarchical levels (Panchal & Allen, 2005).

25

Figure 2.2. Two performance spaces showing the error resulting from a conservative

(left), and generous (right) interval approximation.

Intervals can be created with various goals in mind, for example to minimize the

number of falsely classified attainable performances in the interval, as shown in the left

interval of Figure 2.2, or to minimize the number of falsely classified unattainable

performances in an interval, as shown in the right interval of Figure 2.2. Interval

techniques are subject to error, however, because intervals assume linear relationships

between design variables, and have been thus shown to poorly capture feasible regions in

the design space (Shahan & Seepersad, 2010). The Interval-based Constraint Satisfaction

method (IBCS) proposed by Panchal et al. increases the effectiveness of interval

classification, by beginning at a generous interval and slowly converging to a narrow

interval as information about the system is gained (Panchal & Allen, 2005; Panchal, Gero

Fernandez, Paredis, Allen, & Mistree, 2007). IBCS makes use of the set-based design

26

guideline of utilizing flexibility in the early stages of design, and the method presented in

this thesis is targeted to be used in a similar manner, but with improved classification

accuracy relative to intervals.

The ability of intervals to more accurately capture regions of attainability can be

enhanced by decomposing each variable into interval bins. However, discretizing the

performance space leads to assumptions on how one sample point’s attainability can be

extended to regions around it. The accuracy of interval bins is thus highly dependent on

the size of the bins, as well as the shape of the actual attainable performance space. Liu et

al. proposed a method that incorporated clustering of performance points to create

multiple, independent intervals (Liu, Chen, Scott, & Qureshi, 2008). The method

proposed by Liu et al. significantly improves the accuracy of intervals, while still

utilizing the benefits of interval calculus. Although this method can theoretically provide

an accurate mapping at the limit of infinitesimally small interval bins, an inability to

extrapolate the attainability of one training point to the region around it limits the

minimum bin size in practice. Additionally, the assumption of variable independence

induces an error that cannot be reduced by decreasing the bin sizes.

2.1.3 Probabilistic Sets

The uncertainty associated with mapping design and performance spaces is well

suited for probabilistic methods. A design team can map a probability density functions

(PDF) onto the performance space, to represent the likely attainability of performance

variable values. Representing sets of design and performance values using PDF’s allows

27

designers to assign a varying degree of belief that a particular design or performance

point belongs in that set. PDF’s can easily capture designer’s uncertainty that may

originate from manufacturing tolerances. Robust design techniques can be used to

minimize uncertainty due to noise factors, and/or uncertainty due to variations in design

variables, the latter of which applies to mapping the performance space (Chen & Yuan,

1998). Applying robust design to design variable uncertainty attempts to reduce the

probability of iteration between design teams by finding design and performance sets that

are insensitive to the decisions of other design teams (Parkinson, Sorensen, &

Pourhassan, 1993; Tsui, Allen, Chen, & Mistree, 1996).

Methods proposed for robust design have shown that developing a performance

space mapping involves more than just mapping attainability. Wood and Agogino (2005)

use a joint PDF among performance variables to map heterogeneous design spaces, in

which some areas of the design space are less achievable than others due to external,

uncontrollable factors. Work by Otto and Antonsson (1993) has shown the need to

capture constraints in applying probabilistic-based robust design. Additionally, work by

Parkinson et al. have highlighted the need to focus on feasibility robustness, wherein a

satisfactory design must also be robust to changes in constraints (Parkinson et al., 1993).

Probabilistic sets have some advantages over interval methods in that multiple probability

functions can be created, for example a PDF of attainability can be multiplied by a PDF

of performance preference, and then shared between design teams (Eggert & Mayne,

1993).

28

The probabilistic methods proposed above suffer much of the same classification

errors as the interval classification methods because they model each variable

independently. Performance variables nearly always have some coupling, which is

exhibited by performance tradeoffs, for instance engine weight and power. The Inductive

Design Exploration Method (IDEM) creates a multivariate PDF by discretizing the

design space into an n-dimensional grid, and placing a sample point at each grid

intersection (Choi et al., 2007). Each sample point is then put through a complete

experimental or simulated evaluation. A multivariate feasibility classification PDF is

developed by placing an n-dimensional Gaussian kernel on each sample point that meets

the feasibility criteria. The IDEM uses a genetic algorithm to generate the next generation

of sampling points based on the highest performing design points from the previous

generation. The IDEM method facilitates collaborative design by allowing design teams

to perform analyses in parallel, but is very computationally expensive due to the number

of sample evaluations required to populate the n-dimensional grid. The Bayesian network

classifiers introduced in the next section provides a significantly more efficient means of

creating a multivariate design space PDF, and the work presented in subsequent chapters

of this thesis extends this method to the mapping of the performance space.

2.1.4 Bayesian Network Classifiers

The methods described thus far are used to classify a ranged set of independent

design variables between design teams. The assumption that variables in engineering

systems independently affect the performance of the overall system is instinctively poor,

29

as engineering problems typically exhibit complex nonlinear relationships. Shahan and

Seepersad proposed using Bayesian network classifiers to identify the satisfactory

region(s) of each design team’s design space (Shahan & Seepersad, 2010). The potential

advantages of the Bayesian network classifier design tool are its ability to: (1) capture

arbitrarily shaped regions of the design space, (2) combine prior expert knowledge with

results from design space sampling, (3) interface with and/or provide a search process for

exploring the design space by easily updating the classifier with new sample data, and (4)

break from the assumption of variable independence. Bayesian network classifiers have

also recently been shown to be effective at classifying a discrete design space (Backlund,

2012), in addition to the continuous spaces studied by Shahan and Seepersad. This

section presents an overview of Bayesian network classifiers, and identifies the aspects of

this method that will be extended in subsequent chapters of this thesis.

The Bayesian network classifier uses probability distributions for its

classification, and is based upon previous research from several groups (Friedman,

Geiger, & Goldszmidt, 1997; Hoffmann & Tresp, 1996; John & Langley, 1995; Pérez,

Larrañaga, & Inza, 2009). Shahan and Seepersad proposed creating two classes, one for

the satisfactory design space and one for the unsatisfactory design space. For an n

variable design space, a PDF is created for each class by centering an n-dimensional

Gaussian probability distribution on each sample point in the class (John & Langley,

1995; Scott, 1992). The Gaussian probability distributions of each class are aggregated

into a weighted sum called a kernel density estimate (KDE) (Shawe-Taylor & Cristianini,

2004). The resulting KDE is used to represent the likelihood that an unknown point in the

30

design space belongs to the satisfactory or unsatisfactory class. The unknown point is

classified according to the class conditional PDF that has a larger value at that unknown

point. Points in the design space that have equal probability densities with respect to both

KDE’s are on the decision boundary between satisfactory and unsatisfactory regions of

the design space.

The shape of the performance space is distinctly different than that of the design

space, and extending the work of Shahan and Seepersad’s Bayesian network mapping of

the design space to map the performance space requires several augmentations. The

design space typically has upper and lower bounds assigned for each design variable, and

therefore a design can theoretically be created by selecting any point from this

hyperrectangular space. The shape of the performance space, however, is typically

unknown. While each point, , in the design space corresponds to a point, , in the

performance space through an objective function , the points in the performance

space do not share this same quality in mapping back to the design space. One point in

the performance space may correspond to multiple points in the design space or none at

all. The subset of the performance space that can be mapped from the design space is the

image of the objective function, and it represents the attainable performance space. It is

important to map this performance space, especially in cases of multilevel or hierarchical

design, in which the output (performance space) of a lower-level problem may become

the input (design space) of an upper-level problem, and it is important to identify

mutually attainable designs. An example of this type of design process is shown in Figure

2.3, where the small scale performance space corresponds to the large scale design space.

31

The large scale design team must limit is search space to the attainable and feasible small

scale performance space. Defining the attainable performance space using Bayesian

network classifiers is the primary challenge addressed in Chapter 3.

Figure 2.3. An example of a multi-level design problem.

2.2 Quantifying Flexibility

The set-based design paradigm gained notoriety from the evidence presented by

Toyota in the 1990’s of significantly reduced product lead times (Sobek et al., 1999).

Studies of Toyota’s design practices found that these outcomes were a result of delaying

its design decisions longer than its competitors (Ward et al., 1995). Specifically, the

decisions that Toyota delayed were those that narrowed the size of the design space that

was used to search for new and improved designs. As knowledge of the design space is

very limited early in the design process, arbitrarily reducing the size of the design space

at that point in time may ultimately result in the exclusion of superior designs.

Developing a greater breadth of knowledge of the design space also allows designs to be

easily adapted upon changes to performance requirements. An effective set-based design

approach gradually narrows the design space by developing balance between exploration

of large regions, and exploitation of localized regions of the design space (Sobek et al.,

 Small Scale

Problem

Large Scale

Problem

32

1999). In the context of this thesis, delaying design decisions is synonymous with

maintaining design and performance flexibility.

Design flexibility is generally regarded as a measure of the size of the design

space that satisfies a given set of performance requirements (Suh, 1990). The size of the

satisfactory design space is an indication of the amount of variation design variables can

undergo while still meeting the performance requirements. Similarly, performance

flexibility is a measure of a design team’s ability to produce satisfactory designs even if

performance requirements change. Performance flexibility is therefore a measure of the

size of the attainable performance space that meets the performance requirements. While

numerous methods and metrics have been proposed to quantify design and performance

flexibility, an agreed upon method has yet to be developed (Ferguson, Siddiqi, Lewis, &

de Weck, 2007). In general, the methods to quantify flexibility are associated with the

ability to satisfy a set of performance requirements, and the deviations between

quantification methods is primarily a result of varying techniques used to represent

performance sets and performance requirements.

2.2.1 Developing Performance Requirements

Developing performance requirements is a nontrivial task, as the requirements

represent a designer’s subjective assessment of performance preference. An additional

challenge in defining performance requirements is incorporating multiple preferences, for

instance manufacturing, safety, and cost preferences, into an aggregate preference

function. Thurston extended a method developed by von Neumann and Morgenstern to

33

use utility theory to model preference functions (Thurston, 1991; von Neumann &

Morgenstern, 1947). A utility preference function can combine multiple, nonlinear

preference functions into an overall measure of a design’s worth. A performance

requirement using a utility preference function is created by defining a minimum utility

value to determine if a design is satisfactory or not, which unfortunately reintroduces

subjectivity into the requirements.

Wallace et al. (1996) proposed assigning each performance variable a probability

distribution measuring a designer’s belief that a design will be satisfactory. In a similar

approach, fuzzy preference functions have been used to capture a designer’s uncertainty

in setting performance requirements to specific threshold values by creating a function on

each performance variable measuring the belief that each performance value will result in

a satisfactory design (Antonsson & Otto, 1995). Fuzzy and probabilistic preference

functions share a similar concept, but differ in their effectiveness in propagating their

preference functions across design teams in defining system wide design satisfaction. A

design process that implements fuzzy or probabilistic preference functions typically takes

a negotiation approach, in which design teams seek to maximize the system-wide

probability of a design being satisfactory. This type of approach results in a highly

iterative point-based design process, but can be converted to a set-based design process

by defining a satisfactory probability threshold. For instance, a performance set created

from a fuzzy preference function and threshold value of 0.75 identifies the performance

values having a preference function of greater than 0.75, and represents the set of

attainable performance values having a 75% probability of being satisfactory. Defining

34

performance requirements by a probability threshold also allows a design team to

gradually narrow down their design space by selecting a low initial probability threshold,

and slowly raising the threshold until a final, satisfactory design is agreed upon.

While there are many different methods to represent performance preferences,

precise satisfactory performance requirements are necessary to be used in set-based

design. In the remainder of this thesis it is assumed that design teams have been given

performance requirements or thresholds that can be used to classify designs as

satisfactory or not.

2.2.2 Flexibility Metrics

In design literature the terms design flexibility and performance flexibility are

often interchanged, and nearly always refers to what is called performance flexibility in

this thesis. This is presumably due to the focus of design research on developing a range

of performance capabilities for mass customization (Jiao & Tseng, 2004) through design

paradigms such as product platforms, which develop a product line achieving a range of

performances while sharing common design modules (Simpson et al., 2001), and

reconfigurable systems, which can adaptively change its physical shape to achieve

desired performance under predictable situations (Ferguson & Lewis, 2006). Achieving a

range of performance capabilities following Sobek et al.’s set-based design guidelines

requires intelligent narrowing of the design space, which calls for an accurate metric of

design flexibility (Sobek et al., 1999).

35

 One method in the literature that attempts to quantify design flexibility is a metric

termed Information Certainty (IC) (Simpson, Rosen, Allen, & Mistree, 1998). In this

metric, Simpson et al. recognize the need to develop a balance between the uncertainties

in the final selection of design variables in addition to exploring the achievable system

level performance capabilities. IC measures the uncertainty of design variable selection,

and is defined as the extent to which a design variable value is known precisely at a

certain point in the design timeline, as is calculated by Equation 2.1.

(

2.1)

Where m is the number of design variables, Δxi is the range of the i
th

 design

variable that produces acceptable performance specifications, and xiu and xil, correspond

to the initial upper and lower bounds placed on the i
th

 design variable. The implication of

Equation 2.1 is that by the time the design process is finished, a single design point has

been chosen, and the IC becomes unity. Conversely, when the range of design variables

encompasses the entire lower to upper range of the design variable, no decisions have

been made to narrow the design space, and the IC is 0. By treating each design variable

independently, the IC metric uses an interval representation of the design space.

Representing design variable sets as intervals has inherent classification errors, and can

be improved by utilizing Bayesian network classifiers (Shahan & Seepersad, 2012).

In addition to quantifying design flexibility, there have been numerous metrics

proposed to quantify performance flexibility. One of the earliest metrics proposed to

quantify performance flexibility is Suh’s Information Axiom (Suh, 1990). Suh defines a

36

metric Information Content (I) that quantifies the relationship between the range of

achievable performances and range of performances that satisfy system performance

requirements. The I metric is presented in Equation 2.2, and is intended to quantify the

probability that a set of designs will satisfy a set of performance requirements.

(

2.2)

The system range in Equation 2.2 is the achievable performance range that the set

of designs can achieve, and the common range is defined as the intersection range of the

achievable performance range and the target performance range. In this metric, the case

where there is no common range between the achievable and target ranges, I is equal to

infinity and there is no knowledge of how to create an acceptable design. At the other

extreme when there is complete overlap between the achievable performance range and

the target range, I is at a minimum and is equal to 0. Suh believed that by minimizing I a

design team could focus on simplicity by searching for designs having minimal

information content. Additionally, Suh’s quantification metric treats each performance

variable independently and suffers the classification inaccuracy inherent to intervals.

Suh’s information content metric was modified by Simpson et al. to attempt to

quantify performance flexibility on a range from 0 to 1 (Simpson et al., 1998). The

modified information content metric was termed Design Freedom (DF) by Simpson et

al, and quantified the amount a system can change while still maintaining acceptable

performance metrics (Simpson et al., 1998). The metric for DF is given in Equation 2.3.

37

(

2.3)

Where n is the number of performance specifications, TRi is the target range of the i
th

performance specification, and PRi is the performance range which is attainable as well

as satisfactory. From this definition, DF is equal to 1 at the start of the design process and

then subsequently decreases towards 0 as the satisfactory design space is narrowed. The

novelty in Simpson et al.’s DF metric is that it can be combined with their IC metric to

intelligently narrow the design space (Panchal et al., 2007). However, both the IC and DF

metrics utilize interval representations of the design and performance spaces, and suffer

classification errors that could potentially lead to a design process that does not converge

to a satisfactory solution.

In a similar performance flexibility metric to DF, Chen et al. proposes Design

Capability Indices (DCI) that use a probabilistic representation of the attainable

performance set (W. Chen, Simpson, Allen, & Mistree, 1996). This method assigns a

Gaussian PDF to the value each performance variable will take by calculating the mean

and variance of each performance variable within the selected performance set. The DCI

is then equal to the difference between the mean of the PDF and the lower and upper

bounds of the performance requirements, divided by a maximum defect rate represented

by a standard deviation. Chen and Yuan combine DCI with a performance utility

preference function to form a Design Preference Index (DPI) (W. Chen & Yuan, 1998).

The DPI metric allows a design team to determine if a design is considered feasible,

based on whether or not the manufacturing tolerances are greater than the variance in the

38

design variable set. The limitations of DCI and DPI come in the approximation of each

performance variable’s PDF, wherein the PDF is used to model performance uncertainty

rather than performance capability. These probabilistic-based set representation methods

are therefore more tailored for use in robust design approaches, rather than for mapping

the performance space in a set-based design approach.

Olewnik and Lewis proposed a more abstract metric of performance flexibility

that analyzed a design set’s performance Pareto frontier, rather than the entire attainable

performance space (Olewnik & Lewis, 2006). A Pareto set occurs when there are

multiple competing performance variables; for any member of the Pareto set,

performance can be improved with respect to one performance variable only by

degrading another performance variable (Pareto, 1971). Pareto sets are therefore very

useful in analyzing the tradeoffs between design concepts, and have been used in the

selection of design concepts having dissimilar design variables (Mattson & Messac,

2003). The performance flexibility metric proposed by Olewnik and Lewis is defined as

the “distance” between the extreme points of the Pareto performance set, or the sum of

pair-wise distances in cases with more than two performance variables (Olewnik &

Lewis, 2006). The extreme points in a Pareto set represent the most preferred design with

respect to each performance variable, and the distance between them represents the

performance variability that can occur within a set of designs. The basic idea of using the

extreme Pareto point performance flexibility metric is that as the design space is

narrowed the flexibility also decreases to zero. However, this method ignores the non-

Pareto set performance points, and thus quantifies only one aspect of performance

39

flexibility. Furthermore, this flexibility metric is not applicable in a multilevel design

problem, in which a high-level design team may choose non-Pareto points from a low-

level design team if they improve high-level performance.

In an effort to determine the potential of finding a satisfactory solution within a

design space, Clevenger and Haymaker adopt a frequentist approach to approximating

performance flexibility (Clevenger & Haymaker, 2011). In this metric, performance

flexibility is approximated as the ratio of the number of satisfactory sample points to

unsatisfactory sample points. Although this method requires an extremely high number of

sample points to achieve an accurate performance flexibility approximation, it may in

fact be a better approximation of performance flexibility than using interval set

representations. The method proposed in this thesis to quantify performance flexibility is

relatively similar to this frequentist method, but incorporates a method to infer

performance attainability between known sample points. Therefore, the method proposed

in this thesis will be able to achieve higher classification accuracy in fewer sample point

evaluations than this approach.

2.3 Discussion

A set-based design paradigm is a relatively new concept, and the methods

reviewed in this chapter lack the capability to be employed in a complex design problem.

Prior methods of set representation have inherent error associated with them, and are

therefore not suitable to be used in practice. The recent Bayesian network classifier

method to map the design space has been shown to vastly outperform the interval and

40

probabilistic representations of the design space, but has not yet been applied to the

performance space. Chapter 3 will address this need by introducing extensions of the

Bayesian network classifier method necessary to map the performance space.

An effective set-based design process also requires an accurate approximation of

design and performance flexibility, which has yet to be proposed. The quantification

accuracy of design and performance flexibility is reliant on the method of set

representation. A method for the quantification of design and performance flexibility is

introduced in Chapter 4, which uses a Bayesian network classifier for its set

representation. The combination of an accurate representation of the performance space

and the quantification of design and performance flexibility will be the focus of the

remainder of this research. These methods will then be demonstrated on a hierarchical

material design problem in Chapter 5.

41

Chapter 3: Representing and Classifying the Performance Space

In a single-level design problem it is only necessary to map the satisfactory design

space, which corresponds to the set of design variable values that meet a set of

performance requirements. Typically in a single-level design problem, the design space is

constrained by placing lower and upper bounds on each design variable to create a

hyperrectangular space. In a multi-level design process, however, the design space can be

arbitrarily shaped, as a result of the design space for an upper-level design team

corresponding to the feasible performance space for a lower-level design team. A two-

level design process is illustrated in Figure 3.1, displaying how the large-scale design

team’s design space is irregularly shaped as a consequence of it being defined by the

feasible small-scale performance space. Therefore, in a multi-level design process it is

necessary to create a mapping of the feasible performance space, in addition to the

satisfactory design space. A multi-level mapping of each design team’s design and

performance spaces facilitates an effective concurrent collaborative design by allowing

design teams to share their feasible sets of designs, which can be intersected to find a

mutually feasible design.

42

Figure 3.1. The backward propagation of requirements across levels of a multi-level

design problem.

The performance space can be classified into a hierarchy of subspaces, as

depicted in Figure 3.2. The attainable performance space is a subspace of the overall

performance space, representing all possible function mappings from the design space.

The existence of constraints in the design process, such as manufacturing tolerances,

divides the attainable performance space into a feasible performance space and an

infeasible performance space. The performance point of a design is classified as feasible

if it does not violate any constraints, and infeasible otherwise. The feasible performance

space can also be then divided into two subspaces based on meeting a set of performance

requirements. The set of feasible sets of designs in the performance space that meet all of

 Small Scale

Problem

Large Scale

Problem

Unsatisfactory

y values at the

small scale
Satisfactory

y values at the

small scale

classifier boundary for large

scale problem requirements on z

values

classifier boundaries for small scale

problem requirements on y values

Designs with:

combined classifier boundary identifying

design alternatives that meet problem

requirements on y and z values

classifier boundary of

attainable values of y1 and y2

Small Scale Design Space Small Scale Performance Space /

Large Scale Design Space

43

the performance requirements are classified as satisfactory, and those that do not are

classified as unsatisfactory.

Figure 3.2. Illustration of the classifications in a generalized performance space

In a generalized design problem, a designer explores the design space in search of

a design that corresponds to a point in the performance space that meets the designer’s

performance requirements. Using the nomenclature defined in Table 3.1, a design can be

mapped to a corresponding performance, represented as a vector of m performance

variables,
 , corresponding to a unique point in the m-

dimensional, attainable performance space. A function that maps points in the design

space to points in the attainable performance space,
 , typically represents a

computational simulation or physical experiment.

44

Table 3.1 Nomenclature

 Number of performance variables

 Number of training points

 A design instance, where

 A performance instance, where

 Set of performance requirements

 Classification category k

 Design space

 Performance space belonging to class k

The classifier introduced in this chapter is based on previous research in Bayesian

networks (Pearl, 1988), and uses kernel density estimation techniques (Fukunaga, n.d.;

John & Langley, 1995; Katkovnik & Shmulevich, 2002; Ledl, 2002; Parzen, 1962; Scott,

1992; Shawe-Taylor & Cristianini, 2004) to produce a probability density function(s)

from a set of designs in the performance space of known classification, called training

points. Developing the kernel-based BNC allows a designer to classify an arbitrarily

shaped satisfactory performance space, and update it easily with additional training points

(John & Langley, 1995; Pérez, Larrañaga, & Inza, 2009). The proposed classifier

45

specifically extends the work of Shahan and Seepersad’s BNC mapping of the design

space (Shahan & Seepersad, 2012), by adding necessary augmentations to facilitate a

BNC mapping of the performance space. Shahan and Seepersad’s design space BNC

sought to classify the satisfactory design space, corresponding to designs that meet all

performance requirements. In the performance space, however, determining if a

performance point is satisfactory or not is trivial, as the performance requirements are

explicitly given in terms of the performance space. The challenge in classifying the

performance space is to: (1) distinguish the attainable performance space from the

unattainable performance space, and (2) distinguish the feasible performance space from

the infeasible performance space.

A background of Bayesian decision theory and the mathematical formulation of

the proposed BNC are presented in Section 3.1. The BNC produces a probability

distribution that is used to extrapolate knowledge between training points, and is

employed in Section 3.2 to define the boundary of the feasible versus infeasible regions

of the performance space. The BNC will then be used in Section 3.3 to classify the

attainable performance space versus the unattainable performance space. The goal of the

proposed classifier is to map a feasible performance space of arbitrary shape that

converges in classification accuracy as additional training points are introduced.

3.1 The Bayesian Performance Space Classifier

Evaluating a design concept, through experimentation or computational

simulation, gives designers knowledge of the corresponding performance value for each

46

evaluated concept. The known sets of designs in the performance space can each be

assigned a categorical classification, based on meeting performance requirements and

design constraints. The proposed classifier aids designers’ mapping of the performance

space by replacing intuition with a more robust mathematical formulation. The classifier

is given a finite set of known designs in the performance space, each represented in an m-

dimensional vector , and outputs one probability density function for each defined class,

to be used to classify unknown points.

The set of training points can then be used to create a class conditional probability

of a performance point given a class, expressed as . The conditional probability of

the class given a performance point, , however, is the desired conditional

probability used to predict the classification of a performance point of unknown class.

Bayes formula is used to transform the unknown posterior probability, , into an

expression involving the known likelihood, , according to Equation 3.1.

The denominator of Equation 3.1 represents the evidence factor, and is essentially

a normalization scale factor used to ensure the posterior probabilities from all classes sum

to 1. The evidence factor is found by summing the numerator of the right side of Equation

3.1 for each class, according to Equation 3.2.

(

3.1)

(

3.2)

47

The prior probability, , is approximated as the ratio of training points

belonging to each class, as shown in Equation 3.3 where is the total number of training

points, and is total the number of training points belonging to class . The frequency

of occurrence of each class is given a “padding” of one occurrence in order to improve

the approximation accuracy for classes with low sample sizes, by smoothing the changes

of the approximation as increases.

Classifying an unknown performance instance, , is performed according to

Bayes decision rule, by finding the class that has the largest class conditional posterior

probability, , according to Equation 3.4.

The decision rule in Equation 3.4 is demonstrated in Figure 3.3, showing the

conditional probability of the class given a performance point, for a classifier having two

classes in a univariate performance space.

(

3.3)

Decide if for ,
(

3.4)

48

Figure 3.3. Demonstration of Bayes decision rule on classifying a univariate performance

space

The classification decision is simplified by neglecting the evidence scale factor,

 , and is shown for the two class case in Equation 3.5. A loss factor, , describing

the risk in misclassifying a performance point as belonging to class when it actually

belongs to class can be incorporated into the decision rule of Equation 3.4, according

to Equation 3.5. The loss factor can be introduced to reduce the misclassification error,

which can be approximated by cross-validating the classifier, by precluding training

points from the classifier and subsequently determining if the excluded points were

accurately classified or not. If there is insufficient data to approximate the loss factor, or

if it is believed that the error is symmetric across all classes, the loss factors can all be set

to 1.

-2 -1 0 1 2 3 4
0

0.5

1

1.5

2

p
(c

i|y
)

Y

p(c
1
| y) > p(c

2
| y) p(c

1
| y) < p(c

2
| y)

p(c
1
| y)

p(c
2
| y)

49

The decision boundary between class and occurs when both sides of

Equation 3.5 are equal. The loss factors have the effect of scaling the posterior

probabilities of Equation 3.4 by ratio of loss factors between classes, thereby extending

the classification boundary. The following section provides the mathematical framework

to translate a training set into a likelihood probability distribution, .

3.2 Capturing the Knowledge from Training Points

Designers achieve a better understanding of the design and performance space by

evaluating the performance of new design concepts. With each concept evaluation, a

challenge to designers is to capture and quantify this acquisition of new information. The

proposed BNC uses the concept evaluations as a training set to determine the conditional

probability of each performance variable given the class label, . Then in order to

determine the overall likelihood function, , the conditional dependence between

performance variables given the class must be specified. Performance variable is

defined to be conditionally dependent on given the class, if Equation 3.6 holds true for

all values of , , and , and . The performance variables and are

defined to be conditionally independent given the class if Equation 3.6 is not true.

Decide if

(

3.5)

(

3.6)

50

The conditional dependence between performance variables is typically

represented as directed acyclic graphs (DAG), as seen in Figure 3.4 (Pearl, 1988). In

DAG’s, nodes correspond to a unique performance variable, and arrows correspond to

conditional dependence between variables. A node with a departing arrow is defined to

be the parent of the child node at which the arrow ends. A performance variable is

dependent on the set of its parent variables, represented as , and independent of all

non-descendent performance variables.

Figure 3.4 Directed Acyclic Graph of a Fully Independent (left) and Fully Dependent

(right) networks.

From the creation of a DAG model of the dependence between performance

variables, an overall joint probability distribution can be calculated according to Equation

3.7.

(

3.7)

…

…

51

The two extremes of variable dependencies are illustrated by the DAG’s in Figure

3.4. The fully dependent network occurs when each performance variable, , is

conditionally dependent on the performance variables having a lower ordinal number, ,

… , . The fully independent network is a network where each performance variable is

conditionally independent of all other performance variables given the class. The fully

independent network is also referred to as a Naïve Bayes classifier due to its strong

independence assumption, and has been seen to yield surprisingly accurate classification,

even in networks having inherent dependence between variables (Friedman, Geiger, &

Goldszmidt, 1997). Additionally, the fully independent network allows for the

simplification of Equation 3.7 into the form shown in Equation 3.8. For these reasons, the

networks examined in this thesis are all modeled as fully independent networks.

A kernel density estimate (KDE) technique is used to calculate the conditional

probabilities at each node of the Bayesian network (Parzen, 1962; Shahan & Seepersad,

2012). Kernel density estimation is a nonparametric technique for estimating the

probability density function, relying only on the values in the training set, and can

therefore be generically applied and tuned to unique design problems without needing to

change the underlying algorithm. KDE’s are also a computationally efficient density

estimation technique, requiring only a polynomial increase in computational resources for

an exponential increase in dimensionality (Shawe-Taylor & Cristianini, 2004). The KDE

places an m-dimensional kernel probability distribution at each training point, which

(

3.8)

52

when summed forms a continuous probability density function over the performance

space. The basic equation for a KDE evaluated at a point in the performance space is

given in Equation 3.9 (Rosenblatt, 1956).

where represents the number of training points, is an vector of the i
th

 training

point, and is the kernel function. The value returned by the kernel function is

dependent on the geometric distance between the performance point of interest, , and

each training point, , as well as a set of kernel parameters, . For the methods

presented in this thesis, a Gaussian kernel function is used, which has only one kernel

parameter: the covariance matrix, . The Gaussian distribution function is shown in

Equation 3.10, where the kernel mean vector, , is centered on training point, , in

Equation 3.9.

Assuming a diagonal covariance matrix, the entries of the covariance matrix, ,

are determined by Equations 3.11 and 3.12.

(

3.9)

(

3.10)

(

3.11)

 , where (

53

Where is the standard deviation of the kernel function along the i
th

 dimension. The

kernel function’s standard deviation is also referred to as the kernel bandwidth in

literature, and will be referred to as such in the remainder of this thesis in order to clearly

differentiate the kernel’s standard deviation from the standard deviation of the training

set. The kernel bandwidth serves as a smoothing parameter to adjust the region of

influence of the training points on the unsampled space around them. The effect of the

kernel bandwidth on the overall KDE is demonstrated in Figure 3.5. In this example, a

training set of 10 points has been sampled from a univariate normal distribution having a

mean of 0 and a standard deviation of 1. Low values for the kernel bandwidth results in a

noisy KDE that has distinct characteristics from each individual training point.

Conversely, high values for the kernel bandwidth results in smoothed out KDE that

combines the influence of each training point to give a single peaked distribution.

Figure 3.5. Kernel density estimates for several values of kernel bandwidth.

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Y

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Training Points

Sampled Distribution

h = 0.25

h = 0.5

h = 0.75

h = 1.0

h = 2.0

3.12)

54

The kernel probability distributions for a single training point from Figure 3.5 are

shown in Figure 3.6. A kernel with a low bandwidth is seen to have a high probability

peak directly over the training point that diminishes quickly as the distance from the

training point is increased. In the limit that the kernel bandwidth approaches zero the

resulting KDE will be zero for all values except for the training point values. Conversely,

in the limit that the kernel bandwidth approaches infinity, the resulting KDE will be

constant over the entire performance space. Clearly, neither extreme case of the kernel

bandwidth will provide beneficial insights to designers.

Figure 3.6. Kernel probability distributions of one training point with several values of

kernel bandwidth.

The kernel bandwidth parameter should be chosen so that the resulting KDE

accurately captures the underlying distribution of the performance space. In practice,

however, the underlying distribution is not known. The KDE should therefore capture the

designer’s knowledge of the performance space, which is contained in the set of training

-3 -2 -1 0 1 2 3
0

0.02

0.04

0.06

0.08

Y

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

Training Point

h = 0.25

h = 0.5

h = 0.75

h = 1.0

h = 2.0

55

points. In the example shown in Figure 3.5, the set of training points are drawn from the

same distribution, but they have two clusters: one primary cluster around -0.5 and a

secondary cluster around 1.5. The resulting KDE should therefore retain this

characteristic, and not necessarily match the underlying distribution from which the

training points were sampled. As more samples are generated, the KDE should

approximate the underlying distribution more precisely. Heuristics for setting the kernel

bandwidth are discussed in depth in Section 3.3.

Following the assumption of a diagonal covariance matrix, the kernel equation

from Equation 3.10 simplifies to Equation 3.13, which replaces the center point of the

kernel, , with the value of the i
th

 training point, .

The KDE equation from Equation 3.9 can now be written in the full form shown

in Equation 3.14.

The KDE in Equations 3.9 and 3.14 weights each training point equally, however

a weighted average function can be utilized to assign unique weights to each training

point, subject to the constraint given in Equation 3.16. The weighted average KDE

equation is given in Equation 3.15, where represents the weight assigned to the i
th

training point.

(

3.13)

(

3.14)

56

The class conditional probability of a point in the performance space, , can

be calculated using the KDE technique given in Equation 3.15, for each class. A KDE is

generated for a given class, according to Equation 3.17, from the set of training points

belonging to that class.

Where is the number of training points belonging to class , and is an array of

weightings specific to class and follows the constraint of Equation 3.16. In the

following section, the likelihood function is used to classify the feasible performance

space and distinguish it from the infeasible performance space.

3.3 Distinguishing the Feasible Performance Space

As designers build up knowledge of the performance space, through sampling and

evaluating points in the design space, the BNC outlined in the previous section can then

be used to compile and summarize this information into a useful form. This section

discusses how the BNC is used to classify the feasible performance space. Using a two-

class system, represents the feasible region, and represents the infeasible region of

the performance space. A point in the performance space is classified as belonging to

(

3.15)

(

3.16)

(

3.17)

57

either or according to the Bayesian decision rule in Equation 3.4 and 3.5, using the

class conditional probability distribution evaluated according to Equation 3.17.

 The classification accuracy of the BNC is largely dependent on how well the

probability distributions that are generated by the KDE capture the space’s underlying

distribution. The kernel bandwidth smoothing parameter allows the KDE technique to be

tuned to improve the density estimation, and is regarded by researchers in the field as the

most influential parameter on the KDE’s accuracy (Scott, 1992). Methods to set the

kernel bandwidth can be categorized into adaptive methods and heuristic-based methods.

Adaptive methods to set the kernel bandwidth are typically formulated as an optimization

problem to minimize the classification error, found through cross-validation. In general,

adaptively setting the kernel bandwidth yields improved classification accuracy over

heuristic-based methods, but can also be significantly more computationally expensive

(Dudda, Hart, & Stork, 2001; Fukunaga, 1990; Scott, 1992). Additionally, adaptive

methods of setting the kernel bandwidth have been studied quite extensively in literature,

as summarized in (Jones, Marron, & Sheather, 1996), and are therefore not investigated

in this research. Several heuristics have been proposed for setting the kernel bandwidth,

and are desirable because they require minimal computational expense and have been

shown to perform very well (Shahan & Seepersad, 2010a).

The Normal reference rule has been introduced as a method to set the kernel

bandwidth, and is derived by minimizing the asymptotic mean integrated square error

(AMISE) of a multivariate Gaussian distribution using Gaussian kernel functions (Scott,

1992; Silverman, 1986). The normal reference rule is given in Equation 3.18, and is seen

58

to be a function of the number of dimensions of the performance space, , the number of

training points belonging to class , , and the standard deviation of all training points

in the i
th

 dimension, .

 The first part of Equation 3.18 only depends on the number of dimensions of the

performance space, and acts as a constant for the normal reference rule. This constant

increases asymptotically to 1 as goes to infinity, and is never less than 0.924 (Scott,

1992). Approximating this constant as equal to 1 leads to Scott’s rule for setting the

kernel bandwidth, according to Equation 3.19.

 The Normal reference rule and Scott’s rule are both derived from maximizing the

KDE’s accuracy in approximating a Gaussian distribution; however, the problems

encountered in engineering design rarely follow such a “regular” distribution. Shahan and

Seepersad found that the Normal reference rule and Scott’s rule did not reduce the kernel

bandwidth fast enough with respect to the number of training points (Shahan &

Seepersad, 2010b). A similar heuristic for setting the kernel bandwidth, proposed by John

and Langley, was found by Shahan and Seepersad to perform better than Scott’s rule, and

is given in Equation 3.20. In the heuristic proposed by John and Langley, the scaling

(

3.18)

(

3.19)

59

constant is set to 1, while Shahan and Seepersad found better results from setting to

0.4.

 The heuristic given in Equation 3.20 for setting the kernel bandwidth will be used

in this research, with several modifications. Equation 3.20 assumes that the performance

space has been scaled by the range of each dimension, . The range of

values in the performance space, however, is typically unknown, and it is therefore more

reasonable to scale each dimension by the standard deviation of the training points along

that dimension. The standard deviation can be related to the range, by a scaling factor

representing the ratio between the standard deviation of a uniform distribution to the

standard deviation of a normal distribution, as shown in Equation 3.21.

There are several errors that may be encountered with using this approach for

setting the kernel bandwidth. If one class contains a disproportionately high number of

training points, Equation 3.20 will define the kernel bandwidth for the class with a high

number of training points to be smaller than the other class. Noting that larger kernel

bandwidths have a smaller maximum probability, the KDE of the class with fewer

training points may become dwarfed by the KDE of the other class. Additionally, having

a different kernel bandwidth for each class can lead to classification errors occurring in

the tail ends of the probability distributions, due to a larger kernel bandwidth having a

smaller rate of decay as the distance from the kernel’s mean is increased. Equation 3.21

modifies the heuristic shown in Equation 3.20 to alleviate these issues, and will be used

(

3.20)

60

in the remainder of this thesis. The parameter in Equation 3.21 is a tuning parameter to

increase the classification accuracy of the BNC.

To demonstrate the BNC’s classification of the feasible and infeasible

performance spaces, a simple spring design problem is used. The design problem is

described in Appendix A, and is taken from (Juvinall & Marshak, 2000; Shahan &

Seepersad, 2012). The spring design problem has two design variables, two performance

variables, a performance target for each performance variable, and two constraints,

making it a simple yet thorough demonstration problem. This example is used through

the remainder of Chapter 3 and Chapter 4 to demonstrate the methods presented in this

thesis. The Matlab
®
 code used to implement this method is included in Appendix B.

Training points are selected from the design space based on the pseudo-random

Halton sequence (Freeman & Halton, 1951), and are then evaluated to determine if they

are feasible or infeasible. The results from selecting and evaluating 50 training points are

shown plotted in the design and performance spaces in Figure 3.7. A comparison of the

design and performance spaces in Figure 3.7 shows that a relatively uniformly distributed

set of points in the design space translates to an irregular distribution of points in the

performance space.

(

3.21)

61

Figure 3.7. The design space (left) and performance space (right) showing 50 training

points classified by feasible (blue square) and infeasible (red triangle).

Once a set of training points have been evaluated the class conditional probability

distribution, , is determined for each class according to Equation 3.17, and the

prior probability, , is calculated for each class according to Equation 3.3. From the

likelihood and prior probabilities, the BNC can classify the performance space according

to Equation 3.5. The resulting probability distributions for each class are plotted in Figure

3.8 with set to 0.4.

0.02 0.025 0.03

3.4

3.6

3.8

4

4.2

4.4

4.6

x 10
-3

X
1

X
2

0 0.1 0.2 0.3
0.02

0.025

0.03

0.035

0.04

Y
1

Y
2

Feasible

Infeasible

Design Space Performance Space

62

Figure 3.8. The posterior probability distributions for the feasible (blue) and infeasible

(red) classes.

The decision boundary separating the feasible and infeasible classes occurs where

two probability distributions are equal in Figure 3.8. Alternatively for the two-class BNC,

a single normalized decision surface can be determined from the difference of the

posterior probability distributions of the feasible and infeasible classes. The difference of

the class posterior probability distributions is plotted in Figure 3.9, with a class decision

boundary where the z-axis is equal to 0. The BNC mapping of the feasible and infeasible

performance spaces is shown in a top-down, 2-D view in Figure 3.10. The decision

boundary drawn as a solid black line in Figure 3.10 separates the infeasible performance

region to the left from the feasible performance region on the right.

 | 1 1
 | 2 2

63

Figure 3.9. The normalized posterior probability decision surface.

Figure 3.10. A 2-D mapping of the feasible performance space.

To test the classifier’s accuracy, a set of known performance values and

corresponding class distinctions is evaluated by the BNC. A performance point that is

0 0.05 0.1 0.15 0.2 0.25 0.3
0.02

0.025

0.03

0.035

0.04

Y
1

Y
2

Feasible

Infeasible

 | 1 1 | 2 2

 | 1 1 + | 2 2

64

classified by the BNC as feasible but is actually infeasible represents a false feasible

classification. Similarly, a performance point that is classified by the BNC as infeasible

but is actually feasible represents a false infeasible classification. The classifier’s error

rate is defined to be the fraction of false feasible/infeasible points to the total number of

evaluated performance points. A test set of 1,000 points, drawn from the Halton

sequence, is sampled from the design space and evaluated to examine the BNC’s

accuracy. Since the classifier’s training points were also drawn from the Halton sequence,

points in the test set that also appeared in the classifier’s training set were removed from

the test set. The false feasible and false infeasible error rates of the BNC having 50

training points are plotted as a function of in Figure 3.11. For values of less than 1,

the error rates of both the false feasible and infeasible classifications are about 5%. As

is increased past 1, the false infeasible error rate decreases to less than 1% and the false

feasible error rate steadily increases.

As with most classifiers, the accuracy of the BNC is heavily dependent on the

number of training points. Figure 3.12 demonstrates how the BNC converges its accuracy

with an increasing number of training points, for several values of . After about 40

training points the BNC converges to an error rate below 10% for both the feasible and

infeasible classifications, and decreases below 5% after 100 training points.

65

Figure 3.11. False feasible and infeasible classification error rate for a BNC with 50

training points.

Figure 3.12. False feasible and infeasible classification error rate as a function of the

number of training points.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5



E
rr

o
r

R
a

te

False Feasible

False Infeasible

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Number of Training Points

E
rr

o
r

R
a

te

False Feasible

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

Number of Training Points

E
rr

o
r

R
a

te

False Feasible

=0.2 =0.4 =0.6 =0.8 =1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Number of Training Points

False Infeasible

66

The trend of the kernel bandwidth to classification accuracy from this spring

design case study is that higher values of result in lower false infeasible error rates and

higher false feasible error rates. Although the error rate fluctuates in Figure 3.12 as the

number of training points is increased, moderate values of , such as in the range of 0.4-

0.6, tend to yield more consistent and lower error rates. For this reason, the rule of thumb

prescribed by Shahan and Seepersad of setting to 0.4 is adopted. A supplementary

strategy to improve the accuracy of the feasible decision boundary is to introduce a loss

factor associated with each class, as defined by Equation 3.5, which scales the feasible

and infeasible posterior probability distributions relative to each other.

3.4 Distinguishing the Attainable Performance Space

Although all of the points in the design space can be translated to points in the

performance space, not all of the points in the performance space can be translated back

to points in the design space. Therefore, in addition to classifying the feasible and

infeasible performance spaces, the regions of the performance space that do not map to

feasible or infeasible points within the design space must be classified as unattainable.

This classification is particularly necessary to prevent designers from believing that they

can attain higher performance values than they actually can. A second decision boundary

for the performance space must be defined to separate the attainable and unattainable

regions. That decision boundary is determined by first building a KDE on the attainable

points using Equation 3.17, but since a KDE cannot be built on non-existent unattainable

points, the boundary of the attainable space is set according to a probability threshold. A

67

point in the performance space is classified as attainable if the value of its KDE exceeds

the probability threshold defined by Equation 3.22.

Where the variable β adjusts the influence of each known attainable point to the region

around it. Increasing the value of β results in extending the attainable boundary outwards

from a known attainable point, and thus increasing the percent of falsely classified

attainable points in the performance space. Conversely, decreasing the value of β shrinks

the attainable boundary inward, thereby increasing the percent of falsely classified

unattainable performance points. The variable in Equation 3.22 represents the standard

deviation of the training points in the i
th

 dimension. Due to the expectedly non-uniform

spacing of training points in the performance space, β should be set based on the

designer’s preference in mapping either unknown, or well-studied regions of the space.

Mapping unknown and sparsely populated regions of the performance space requires a

high value for β, in order to extrapolate more from the training points. Conversely, in

order to put less emphasis on the outlying training points and map well-studied regions, β

should be set low because less extrapolation between points is needed.

Figure 3.13 depicts the posterior probability distributions of the feasible and

infeasible classes, as well as the attainable probability threshold surface defined with

set to 2. Figure 3.14 shows the complete BNC classification of the performance space of

both the feasible decision boundary and the attainable decision boundary. Decreasing

(

3.22)

68

will result in the probability threshold shown in Figure 3.13 to move vertically upwards

and shrink the attainable space in Figure 3.14.

Figure 3.13. The posterior probability distributions for the feasible (blue) and infeasible

(red) classes, in addition to the attainable probability threshold (grey).

Figure 3.14. The BNC classification of the feasible and attainable boundaries.

 𝑡 𝑟 𝑠 𝑜𝑙𝑑

69

To examine the accuracy of the classification of the attainable performance space,

a set of 20,000 test points were drawn from a uniform distribution of the performance

space. The test points were then compared to an approximated correct attainable

boundary. The correct attainable boundary was approximated for this study by the set of

outermost points in the performance space, based on a set of 100,000 samples drawn

from a uniform distribution of the design space. For the accuracy study in this section, a

point that has been classified by the BNC as attainable but is actually unattainable is

defined to be a false attainable point. False unattainable points are defined to be classified

by the BNC to be unattainable but are actually attainable. Figure 3.15 presents a summary

of the false attainable and unattainable error rates as a function of the number of training

points, for several values of .

Figure 3.15. False attainable (left) and unattainable (right) classification error rates as a

function of the number of training points.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Number of Training Points

E
rr

o
r

R
a

te

False Attainable

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Number of Training Points

False Unattainable

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Training Points

E
rr

o
r

R
a

te

False Attainable

=1 =2 =3 =4 =5 =6
=1 =2 =3 =4 =5 =6

70

The false attainable error rate decreases, as expected, as decreases, which

essentially shrinks the classified attainable space. The false unattainable error rate is low

relative to the false attainable error rate, but experiences a rapid increase as is

decreased below 2 as a result of an overly conservative attainable boundary. From the

false attainable error rate in Figure 3.15, it is inferred that an accurate attainable decision

boundary requires more training points than defining the feasible/infeasible boundary, as

the false attainable error rate continues to decrease after 100 training points. Setting the

value for will ultimately depend on the designer’s preference on minimizing the false

attainable vs. false unattainable errors.

3.5 Discussion

The BNC introduced in this chapter uses a set of training points to classify the

performance space into feasible, infeasible, and unattainable regions. The classifier’s

tuning parameters of the kernel bandwidth, , and the attainable probability threshold

parameter, , can be utilized to minimize the classifier’s error. However, there is always

going to be a tradeoff between minimizing the errors of each class. Additionally, the

tuning parameters and do not act independently of each other. The interaction

between and is examined in the study summarized in Figures 3.16 and 3.17, which

uniformly sampled the performance space similar to the error rate calculation in Section

3.4 with a BNC having 50 training points, and defines the error rate of a particular class

to be the ratio of the total number of misclassifications to the total number of samples.

The false feasible and false infeasible error rates shown in Figure 3.16 show that at very

71

low values of the error rates decrease to zero; however, this is due to the BNC

classifying the entire space as unattainable, which causes the false unattainable error rate

to increase as seen in Figure 3.17. A similar effect is seen for low values of , which

results in low false feasible error rates due to the peaky KDE that has probability values

greater than the attainable threshold only at or very near to training points.

Figure 3.16. Total false feasible and infeasible classification error rates.





0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1





0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

False Feasible Classification Error Rate False Infeasible Classification Error Rate False Feasible Classification Error Rate False Infeasible Classification Error Rate

72

Figure 3.17. Total false unattainable classification error rate.

To maximize the usefulness of the proposed BNC, designers should define a cost

of misclassification matrix, where the entry in row i and column j represents the cost of

the BNC assigning class i when the actual class is j (Pearl, 1988). The cost of

misclassification matrix can then be used as a metric for designers to consult when

varying the tuning parameters and . For example, in the early stages of a design

process it is desired to have a search space that includes all feasible designs even if some

infeasible designs are included, too, in the interests of searching a broad design space. In

this example, the cost of misclassifying a feasible design as infeasible should be set high

while the cost of misclassifying an infeasible design as feasible should be set very low.

According to Shawe-Taylor and Cristianni (2004), an effective classification

algorithm must exhibit three characteristics to be considered effective: (1) computational

efficiency, (2) robustness to noise and error, and (3) statistical stability. In regards to the





0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

0

0.02

0.04

0.06

0.08

0.1

73

computational efficiency of the method, to classify an unknown point using the BNC the

probability distributions of both the feasible and infeasible classes must be computed.

The computation of the probability distributions requires looping through all training

points, as well as an inner loop through all dimensions of the performance space,

according to Equation 3.17. This calculation yields a computational expense of order

 , which may be negligible but can become computationally expensive as and

increase together, commonly referred to as the “curse of dimensionality”. The method

effectively extracts pattern from noise, which can be seen by the decision boundaries

capturing the irregularly shaped regions of the performance space with relatively low

error rates. Additionally, the classifier has been seen to minimize the error as more

training points are evaluated. The results shown by the proposed classifier meet the

criteria defined by Shawe-Taylor and Cristianni, but more investigation is necessary to

verify these claims under more intensive case studies.

74

Chapter 4: Quantifying Design and Performance Flexibility

A set-based design approach has been shown to be capable of adapting to changes

in both design space constraints as well as performance criteria by maintaining flexibility

until the late stages of the design process (Chang, Ward, Lee, & Jacox, 1994; Taguchi &

Cariapa, 1993). Defining a set of designs that are feasible and satisfy a set of performance

targets adheres to Sobek et al.’s (1999) set-based design guidelines, which then requires

intelligent narrowing of the design space. In order to intelligently narrow the design space

a method to accurately measure design and performance flexibility is needed. This

chapter builds off of the techniques introduced in Chapter 3, which provided a framework

to accurately represent and map a set of designs in both the design and performance

space, to quantify the design and performance flexibility embodied in the set of designs.

Narrowing the design space can be a result of tightening performance criteria,

resulting in a reduced set of designs that meet the tightened criteria. Tightening

performance criteria prior to a thorough exploration of the design space may result in

excluding high quality designs from ever being discovered. To intelligently narrow the

design space, the performance criteria should be gradually tightened, so that resources

can be focused on investigating the high performance region of the design space while

only excluding the lowest quality designs. The design space may also be narrowed as a

result of fixing one or more design variables. Fixing one or more design variables reduces

the dimension of the design space, and allows for more efficient investigation of the

design space, but should only be performed if it will not overly restrict the ability to find

75

satisfactory designs. A metric for design and performance flexibility must inform

designers to the possible effects that narrowing the design space may have.

 “Flexibility” has taken many definitions in design research, but in general is

regarded as a sensitivity measure of the changes that can occur during the design process,

while still maintaining the ability to find a satisfactory design (Ferguson, Siddiqi, Lewis,

& de Weck, 2007). A metric for design flexibility should capture the degree to which a

design can be changed while remaining feasible and satisfying a set of performance

criteria. Following the work by Suh (1990), design flexibility is defined for this research

as the proportion of the design space that produces satisfactory designs, relative to the

size of the initial design space. Design flexibility, represented by , can be calculated

according to Equation 4.1, where
 represents the size of the satisfactory design

space and
 represents the size of the initial design space.

Design flexibility is a measure of the amount that the design space has been

narrowed, and is equal to 1 at the start of the design process and is equal to 0 once the

design space has been narrowed to a single point. This definition of design flexibility is

the inverse of the Information Content (IC) metric defined by Simpson et al. (1998),

which quantified a designer’s knowledge of the final design at a particular point in the

design process. The two design spaces illustrated in Figure 4.1 exhibit two extremes of

design flexibility, with the design space on the left of Figure 4.1 having high design

(

4.1)

76

flexibility in both and , and the design space on the right of Figure 4.1 having low

overall design flexibility but high design flexibility in .

Figure 4.1 Illustration of a design space with high (left) and low (right) design flexibility.

In the performance space, a metric for flexibility should capture the ability of a set

of designs to meet a ranged set of solutions, allowing for mitigation of unexpected

changes in performance criteria (Chen & Yuan, 1998; Liu, Chen, Scott, & Qureshi,

2008). Sets of designs with high performance flexibility can meet a wide range of

performance requirements, and thus easily adapt to changes in performance criteria. In

this thesis, performance flexibility is defined as the proportional size of the feasible

performance space associated with a set of designs that meets the set of performance

requirements, relative to the size of the desired performance space.

X
1

X
2

Satisfactory

Design Space

Unsatisfactory

Design Space

X
1

X
2

77

The desired performance space is the space of performance variable values that

designers want to achieve. Typically in a set-based design paradigm, designers seek to

achieve a wide range of performance values in order to easily adapt to changes in

performance requirements. The ability to meet a wide range of performance values also

allows for enhanced product customizability. In some cases designers may simply define

the desired performance space by assigning an upper and lower bound to each design

variable. Designers can also move beyond the assumption of variable independence and

take into account performance tradeoffs between variables and define an arbitrarily

shaped desired performance space. In cases such as a multi-level design problem, the

desired performance space may be defined by the feasible performance space of another

design team, and have an irregular shape itself. Performance flexibility, represented as

 , is determined according to Equation 4.2, as a function of the size of the satisfactory

performance space,
 , and the size of the desired performance space,

 .

Performance flexibility gives designers an intuition of the consequences of a

change in performance requirements. The performance space illustrated in the left of

Figure 4.2 has high performance flexibility, because a large change in performance

criteria, and , can occur while still maintaining a set of designs that meet

the new performance criteria. Conversely, the performance space illustrated in the right

of Figure 4.2 has low performance flexibility, as a moderate change in performance

criteria, , will result in an empty set of designs that meet the new set of

(

4.2)

78

performance targets. Variable shown in the performance space in the right of Figure

4.2 individually has high performance flexibility, because a wide range of desirable

values are achievable. Knowledge of performance flexibility with respect to each

performance variable, and coupled relationships between performance variables, is

helpful to designers in making decisions of where to focus their resources.

Figure 4.2. Illustration of a performance space with high performance flexibility in both

Y1 and Y2 (left), and a performance space with low performance flexibility in Y1 and high

performance flexibility in Y2 (right).

Y
1

Y
2

Satisfactory

Performance

Space

Unsatisfactory

Performance

Space

Y2,target

Y1,target
Y

1

Y
2

Y2,target

Y1,target

Unattainable

Performance

Space

Desired

Performance

Space

79

Classification accuracy has been found to be directly dependent on the method of

set representation (Shahan & Seepersad, 2012). Consequently, the method of set

representation directly impacts the accuracy of flexibility quantification. Section 4.1

presents the mathematical framework to quantify the size of a generic space. It will be

seen that for the irregularly shaped spaces inherent to the satisfactory design and

performance spaces, approximations will need to be made in order to follow the

quantification framework in Section 4.1. Section 4.2 provides examples of two interval

approximation techniques to quantify an irregularly shaped space, and highlights the

limitations of interval methods of set representation. The Bayesian network classifier set

representation method has been shown to have improved classification accuracy over the

interval and probabilistic set representation methods, and will be used in a combination

with a Monte Carlo integration method to quantify design and performance flexibility in

Section 4.3. Following the method proposed in Section 4.3, a discussion on how to

interpret and utilize the knowledge provided by an accurate quantification of design and

performance flexibility is provided in Section 4.4.

4.1 Framework for Quantification

The “size” of a space is equivalent to the area of a space in two-dimensions, and

volume in three-dimensions, and will be referred to as the hypervolume. The

hypervolume, , of a space, ,can be represented as a multivariate integral form

according to Equation 4.3.

80

For an irregularly shaped and possibly discontinuous space, the bounds placed on

the definite integral in Equation 4.3 are not likely to define a hyperrectangle. Instead, the

hypervolume of can be determined as a function of a space of known size, , that

contains the space of interest, . The space of known size, , can easily be created by

assigning upper and lower bounds on each variable, thereby creating a hyperrectangular

space. The hypervolume of the hyperrectangular space, , can be determined by the

definite integral in Equation 4.4, where the lower,
 ,and upper,

 ,bounds on each

variable, , define the integration bounds.

The function that is being integrated in Equations 4.3 and 4.4 is a constant of 1

over the entire space, however, in order to determine the hypervolume of as a subset of

the hypervolume of , an indicator function, , is defined according to Equation

4.5.

The hypervolume of the irregularly shaped space can now be written as an

integral over space , according to Equation 4.6.

 𝑑

(

4.3)

 𝑑 𝑑

 𝑑

(

4.4)

(

4.5)

81

The challenge in integrating Equation 4.6 is that the indicator function typically

cannot be written in a closed form. The following methods presented in this Chapter

make approximations for integrating Equation 4.6. It will be seen that an effective

method to quantify design and performance flexibility must have an accurate

approximation for integrating Equation 4.6 in a computationally efficient way.

4.2 The Need for an Efficient High Fidelity Quantification Method

There are slight differences in the methods to quantify design flexibility and

performance flexibility. In both cases, the flexibility metrics are framed as ratios of the

size of the satisfactory space to the size of the “whole” space – the primary difference

between the metrics being the definition of the “whole” space. In the design space, the

“whole” space is the initial design space. Often the initial design space is a

hyperrectangular space defined by placing minimum and maximum bounds on each

design variable. However, in cases such as a multi-level design process, the initial design

space may be specified as the feasible performance space from a lower-level design team,

and may take an irregular shape. In the performance space, the “whole” space is the

desired performance space corresponding to the range of performance values that meet

the performance requirements. The desired performance space may have bounds placed

on it from another design team, but if not, finite bounds must be assigned by the designer.

 𝑑

(

4.6)

82

This section will demonstrate the limitations of interval and grid set

representation methods in quantifying the size of an irregularly shaped space using a

helical spring design problem, which is defined in Appendix A. In this example spring

problem the design variables and correspond to the spring’s coil diameter and wire

diameter, respectively. The performance variables for the spring design problem, and

 , represent the spring compression under a target loading and the total spring width,

respectively. For this design problem both performance variables, and , are

attempted to be minimized, with satisfactory designs having performance values lesser

than the performance targets, and . Additionally, constraints and

correspond to the maximum allowable shear stress and minimum allowable spring index,

respectively, which are used to define a design’s feasibility.

A BNC of the design and performance spaces is created following the methods

described in Chapter 3 of this thesis, with tuning parameters and set to 0.3 and 2,

respectively. The BNC was trained by 100 sample points drawn from a uniform

distribution in the design space according to the Halton sequence (Freeman & Halton,

1951). The bounds to the design and performance space are given in Table 4.1, which are

then used to normalize each design and performance variable to range from 0 to 1.

Table 4.1. Design and performance variable bounds.

 (m) (m) (m) (m)

Minimum 0.0178 0.0033 0.0000 0.0200

Maximum 0.0033 0.0048 0.3500 0.0430

83

Normalization of the design and performance spaces allows for each variable to

be equally weighted in the quantification of the space. Normalization is especially crucial

when variables have widely varying units and ranges. Assigning bounds to the

performance space must be somewhat arbitrarily made because the attainable range of

each performance variable is typically not known at the start of the design process. An

approximation of the bounds of the performance space is adequate, and can always be

updated as more knowledge of the space is gained.

Figure 4.3. The BNC mapping of the design space (left) and performance space (right) of

the spring design problem with 100 training points.

The design and performance space mappings for the spring design problem are

shown in Figure 4.3, with the blue square points corresponding to the feasible designs

that also meet the performance requirements, the cyan circle points corresponding to

feasible designs that do not meet the performance requirements, and the red triangle

84

points corresponding to the infeasible points that violated one or more constraints. In the

design space shown in Figure 4.3, the light blue background represents the satisfactory

design space and the light red background represents the unsatisfactory design space, as

defined by the BNC mapping. In the performance space in Figure 4.3, the light blue

background represents the feasible performance space, the light red background

represents the infeasible performance space, and the grey background represents the

unattainable performance space, as defined by the BNC. From the feasible performance

space the satisfactory performance space can be trivially identified, as the values of

performance variables, Y1 and Y2, that are less than specified performance requirements,

which are defined in the performance space.

The most common and elementary method for quantification of the design space

is through intervals. Intervals are defined by assigning a range for each variable

independently. Intervals are often used in defining a hyperrectangular initial design

space, but suffer errors when used to quantify an irregularly shaped space. For instance,

an interval of the satisfactory design space in the helical spring problem, shown in Figure

4.3, is typically defined by the minimum and maximum parameter values for known

satisfactory designs.

The volume of the satisfactory design space,
 , can be approximated for an

m-dimensional design space using an interval according to Equation 4.7. Letting

represent the set of satisfactory designs, with each design instance being composed of an

m-dimensional array, , the variable
 in Equation 4.7 represents an

array corresponding to i
th

 variable values from the set of satisfactory designs.

85

The satisfactory design space of the helical spring problem is shown in Figure 4.4

with an interval representation drawn according to Equation 4.7 as well as the boundary

defined by the BNC as shown in Figure 4.3. The interval in Figure 4.4 defines a

satisfactory design space that is much larger than the actual satisfactory design space, as

the falsely classified satisfactory design space is nearly as large as the correctly classified

satisfactory design space. A more conservative interval could be used to define this

interval, but would then increase the size of the falsely classified unsatisfactory design

space.

Figure 4.4. Interval quantification of the satisfactory design space.

 𝑑 𝑑

 𝑑

(

4.7)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

Correct Satisfactory

False Satisfactory

Correct Unsatisfactory

False Unsatisfactory

Interval Boundary

BNC Boundary

86

The accuracy of the interval representation can be improved by dividing the space

into an m-dimensional hyperrectangular grid. Each grid segment can be classified

according to various criteria, such as whether or not a satisfactory training point exists

within that sub-interval, whether there are more satisfactory training points than

unsatisfactory training points within that sub-interval, etc. For the purpose of this

demonstration, a sample point is generated at the geometric center of each grid segment,

and is classified using the BNC. The sub-interval is then classified according to the class

of the sample point returned by the BNC, which provides a more accurate interpretation

of the space than the set of training points alone (Shahan & Seepersad, 2012).

To use the grid method to quantify the size of the satisfactory design space, each

of the design variables is first divided into segments. The overall space is then

divided into hyperrectangular spaces, requiring sample points. If the design

space has been normalized such that the total volume is equal to 1, then the volume of

each grid segment is equal to . The volume of the satisfactory design space can then

be approximated as the number of sample points that were classified as satisfactory,

multiplied by the volume of an individual grid segment, according to Equation 4.8.

Where the variable, , represents the number of sample points that were classified as

satisfactory. Using the indicator function defined in Equation 4.5, which is equal to 1 if

the sample point is classified as satisfactory and equal to 0 otherwise, the value of can

be calculated according to Equation 4.9.

(

4.8)

87

The satisfactory design space of the helical spring problem is quantified using the

grid method in Figure 4.5. The grid method is seen to have a reduction in false

unsatisfactory classification relative to the interval method. Additionally, by comparison

of the quantification with 5 divisions per variable and 10 divisions per variable, it is clear

that the error can be decreased further by increasing the number of divisions per variable,

 . However, a major drawback of the deterministic grid sampling method is that once the

number of divisions has been set, it is difficult to change this without creating a

completely new grid and resampling the new points.

Figure 4.5. Grid quantification of the satisfactory design space with 5(left) and 10 (right)

divisions per variable.

(

4.9)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

10 Divisions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

5 Divisions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

Correct Satisfactory

False Satisfactory

Correct Unsatisfactory

False Unsatisfactory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

Correct Satisfactory

False Satisfactory

Correct Unsatisfactory

False Unsatisfactory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

Correct Satisfactory

False Satisfactory

Correct Unsatisfactory

False Unsatisfactory

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
1

X
2

Correct Satisfactory

False Satisfactory

Correct Unsatisfactory

False Unsatisfactory

88

The upper bound of the absolute error, , for the volume approximation in

Equation 4.8 can be defined as a function of the boundary surface area of the space,

 , and the number of divisions along each variable, , according to Equation 4.10

(Fishman, 1996). Although the boundary surface area,
 , will be likely unknown, a

generous approximation for it will allow Equation 4.9 to be approximated.

 Therefore, in order to guarantee an absolute error no larger than , the total

number of sample points required can be determined by Equation 4.11. The operator

in Equation 4.11 rounds up the value of to the next integer, and is necessary to ensure

that Equation 4.10 returns a non-fractional number of samples.

To analyze the efficiency of this method, suppose that the dimensionality of the

space, , is increased while maintaining a constant surface area of the space. In order to

maintain the same maximum absolute error, it can be inferred from Equation 4.11 that the

number of divisions, , of each variable remains constant. However, the number of

samples required grows exponentially by order . This exponential growth in

samples required highlights the limitation of this quantification method for moderate and

large number of variables, . Additionally, in this thought experiment the boundary

surface area of the space was held constant, which is a very conservative estimate. If the

(

4.10)

(

4.11)

89

boundary surface area increases with , the number of samples required grows even

faster.

The computational limitation to the grid approach for representing and

quantifying an irregularly shaped space further motivates the use of the BNC to map the

space. Additionally, without using the BNC to classify the sample points in the grid

quantification method, there is an inherent maximum number of divisions per variable. If

the grid sample points are classified based on whether or not a satisfactory training point

lies within a sample’s grid space, the number of divisions per axis will be limited by

requiring a training point to fall within each grid space. The benefit of the BNC is clearly

seen here as it provides an accurate interpolation of knowledge to unexplored regions of

the design space. Although the BNC could be used in conjunction with the grid

quantification method to achieve high quantification accuracy, the following section

presents a significantly more computationally efficient method to do this.

4.3 A Monte Carlo Method for Quantifying Design and Performance Flexibility Using

Bayesian Network Classifiers

The Monte Carlo (MC) method provides a framework to approximate the

hypervolume integral in Equation 4.3 through statistical sampling. The MC method to

approximating the integral in Equation 4.3 is similar to the grid approximation method

described in Section 4.2, with the deterministic sample points in the grid approximation

method replaced by a sequence of stochastic samples. The sample points are then

classified using the BNC. The MC error in approximating the integral in Equation 4.3

90

decreases as the number of samples, , is increased at the rate of , and is

independent of the dimensionality of the problem (Evans & Swartz, 2000; Hammersley,

1960). This property of the MC method presents a substantial efficiency improvement

over the grid method, which decreases in error roughly at the rate of , especially as

the number of variables, , becomes large.

To approximate the hypervolume of a generic space, , as a subset of a

normalized -dimensional space, , using the MC method, a sequence of independent

random samples must be drawn from a uniform probability distribution. Each sample is

evaluated and classified with the BNC, which is used to define the value of the indicator

function, , according to Equation 4.5. As a consequence of the sequence of samples

being random and independent, the indicator function, , in Equation 4.12 is an

independent Bernoulli random variable. The indicator function therefore has the

properties given in Equations 4.12 and 4.13, regarding the probability of the value that

the indicator function will take for a random sample .

 The sum of the indicator function values, , across the set of samples is defined

in the same manner as it was in the grid quantification method, according to Equation 4.9.

By definition, the sum of a sequence of Bernoulli random variables, , follows a binomial

 𝑑

(

4.12)

 𝑑

 𝑑

(

4.13)

91

distribution. As a property of a binomial distribution, the probability that will equal a

number , after samples is defined by Equation 4.14.

 Additionally, the expected value of the binomial distribution, , is defined

according to Equations 4.15.

 From the expected value of in Equation 4.15, the hypervolume of can be

approximated after samples according to Equation 4.16.

 According to the law of large numbers, as is increased to infinity the

approximation of the hypervolume, , in Equation 4.16 converges to the actual

hypervolume, (Fishman, 1996). Therefore, is an unbiased, strongly

consistent estimator of .

The standard error of the approximated hypervolume, , serves as a rough

estimate of the statistical error associated with this approximation. The standard error is

defined as the square root of the approximated variance in the approximated

hypervolume, according to Equation 4.17 (Fishman, 1996).

(

4.14)

(

4.15)

(

4.16)

92

 The standard error is essentially a measure of how much the approximated

hypervolume changes with each subsequent sample. Although there is no definitive rule

correlating the standard error to the true error, it can be inferred that a lower value of the

standard error requires less samples before becomes a good approximation of

 . The ability to approximate the error in the approximated hypervolume of is a

very useful property in order to know when to stop taking samples. There are additional

metrics that are not discussed in this thesis, but can be found in (Fishman, 1996), that

give error bounds to as well as give a worst case estimate of the number of samples

necessary to have an absolute error less than a given value, .

The MC method is applied to approximating the design flexibility of the helical

spring design problem according to Equation 4.16. Figure 4.6 shows the design space

after 100 samples (left) and 500 samples (right), with the indicator function

coloring the sample points as blue if they are inside the satisfactory design space and red

otherwise. The sample points were drawn from the pseudorandom Halton sequence. To

prevent any of the sample points to correspond to any of the training points, which were

also drawn from the Halton sequence, the first 1,000 points in the Halton sequence were

discarded for the MC samples. The use of the Halton sequence to generate the MC

sample points has the benefit over a purely random sequence in that it is a space filling

algorithm, and does not cluster points together. This modification to the basic MC

algorithm increases the efficiency of the number of sample point evaluations required to

 𝑟

(

4.17)

93

converge to an accurate approximation of the integral in Equation 4.6. The Matlab
®
 code

used to implement this method is included in Appendix B.

Figure 4.6. Monte Carlo samples of satisfactory design space 100 samples (left) and 500

samples (right).

The MC method presented to approximate the size of the satisfactory design and

performance spaces samples the BNC mapping rather than performing new concept

evaluations. Sampling the BNC requires minimal computational expense compared to the

concept evaluation process, but limits the accuracy of the MC approximation to the

accuracy of the BNC mapping. To isolate and analyze the error of the MC algorithm

alone, the “true” quantification value is taken to be the value returned by the MC

algorithm after 50,000 sample points. The true error is therefore taken to be the difference

between the size of the space approximated by the MC algorithm to the size of the space

defined by the BNC mapping.

94

The design flexibility of the helical spring problem was found to be 0.104. The

MC approximation of the design flexibility is shown in Figure 4.7 to be fairly accurate

even after 10 samples, and converges to better than 99% accuracy after 10,000 samples.

The true error plot in the Figure 4.7 has frequent dips in error, which occurs when the

samples happen to very accurately predict the design flexibility. The dips in error,

however, are random in nature, and therefore the peaks in the error plot are a more

accurate depiction of the true error. The predicted reduction in error as a function of

training points, , is plotted in the dashed black line in the right plot of Figure 4.7,

and very accurately approximates the true error. The standard error, plotted in blue,

approximates the true error very closely too, but is an underestimation.

Figure 4.7. Monte Carlo approximation of the design flexibility (left) and error (right) as

a function of the number of samples.

95

The MC approximation of the performance flexibility of the helical spring

problem is demonstrated in Figure 4.8. The desired performance space is shown

highlighted in light blue in the left plot in Figure 4.8, and normalized in the right plot in

Figure 4.8. The MC samples were drawn from the same Halton sequence as in the design

space. The desired performance space shown in the right plot of Figure 4.8 illustrates

how the indicator function only captures the satisfactory performance space, and lumps

the infeasible and unattainable performance spaces together as shown in red.

Figure 4.8. Monte Carlo samples of attainable performance space (left) and satisfactory

performance space (right), each with 500 sample points.

The performance flexibility of the helical spring problem was found to converge

to roughly 0.107 after 10,000 samples, as shown in Figure 4.9. The standard error is seen

to again underestimate the true error in the performance flexibility, with the error

prediction of , proving to be an excellent estimation of the true error. Although both

96

the design flexibility and performance flexibility were found to be very similar in this

helical spring problem, this relationship is coincidental. The performance flexibility is

measured as a percentage of the size of the satisfactory performance space to the desired

performance space, in which the lower bounds to the desired performance space were

somewhat arbitrarily approximated, and could be easily changed.

Figure 4.9. Estimate error of Monte Carlo approximation with standard error.

 The MC method to quantify design and performance flexibility using a BNC

mapping of the space is both accurate and computationally efficient. While the error in

the flexibility quantification method can come from both the BNC mapping and the MC

algorithm, with enough sample points for the MC algorithm the error can be isolated to

the BNC mapping alone. The use of the Halton sequence to generate the stochastic

sample points for the MC algorithm increases the efficiency of the algorithm by reducing

the variance of the MC integral approximation. Many other variance reduction methods

97

exist to intelligently choose samples, thereby requiring less samples to attain a

comparable accuracy (Skowronski & Turner, 1997). The MC method can also give

designers real time feedback on the accuracy of the design/performance flexibility,

allowing for custom bounds to be placed on the maximum error.

4.4 Discussion

The MC method of sampling the BNC mapping of the design and performance

spaces gives designers an ability to leverage design and performance flexibility in

intelligently narrowing the design space. As the design space is narrowed, the design and

performance flexibility metrics can be used to minimize any adverse effects. Ideally the

decision to narrow the design space can be framed as a multi-objective optimization

problem, in which the designer seeks to reduce design flexibility while maximizing

performance flexibility. One way to do this is to perform a parameter sweep across the

performance requirement thresholds, while keeping track of the resulting design and

performance flexibility values. Figure 4.10 shows a zoomed in view of the desired

performance space, with design and performance flexibility contours drawn equal to

75%, 50%, and 25% of the original design and performance flexibility. The reduction in

design flexibility in each of the contours in Figure 4.10 results from tightening the

performance requirements, and having fewer training points being classified as

satisfactory. The differences in the contours of design and performance flexibility in

Figure 4.10 are due to the difference in distribution of training points in the design and

98

performance spaces. These differences can be exploited to narrow the design space in an

intelligent manner.

Figure 4.10. Contours of constant design and performance flexibility, shown in a

normalized, zoomed-in desired performance space.

Adhering to the goal of maximizing performance flexibility when narrowing the

design space, the circles with an asterisk plotted in Figure 4.10 represent the largest value

of performance flexibility on the contour of constant design flexibility. Therefore, the

points identified by the circle and asterisk are the points the values that a designer should

assign to the performance requirements in order to gradually narrow the design space.

The performance flexibility values at these points, corresponding to design flexibility

values of 0.75, 0.50, and 0.25, are 0.92, 0.75, and 0.30, respectively. This demonstrates a

considerable benefit in performance flexibility when narrowing the design space, if the

performance requirements are tightened in this manner. The corresponding design and

0.7 0.8 0.9 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y
1,target

Y
2
,t

a
rg

e
t

75% Performance Flexibility

75% Design Flexibility

50% Performance Flexibility

50% Design Flexibility

25% Performance Flexibility

25% Design Flexibility

Attainable Boundary

99

performance spaces for this example of tightening performance requirements are shown

in Figure 4.11. This example of intelligently narrowing the design space would not have

been possible without an effective flexibility quantification method.

Figure 4.11. Updated design and performance spaces resulting from a change in

performance requirements.

Design and performance flexibility can also be used as a sensitivity measure by

artificially changing performance requirements to observe the impact of a single or

coupled change in one or more performance criteria. The performance flexibility during a

sensitivity analysis can give insights as to the most vulnerable performance criteria to

unexpected changes. Similarly, design flexibility gives insight into how much the

satisfactory design space may be narrowed as a result of a change in performance criteria.

100

In a design process, a designer cannot be satisfied with a set of designs that have very low

performance flexibility. Consumer demands can change both unexpectedly and

drastically. A change in performance criteria that reduces performance flexibility to zero

will likely cause a timely setback to the design process, forcing the designer to expand

the design space. It may be cost effective to spend extra resources in exploring regions of

the design space that will increase performance flexibility, and prevent potential setbacks

in the later stages of the design process. The key is to plan ahead, prepare for untimely

and undesired events, and do not wait until it is too late to leverage flexibility.

101

Chapter 5: Hierarchical Materials Modeling and Design Study

The applications of the Bayesian network classifier (BNC) proposed in this thesis

have thus far been limited to mapping the performance space of a single-level problem.

In a single-level design problem, it is sufficient to map the regions of the design space

that offer satisfactory performance values. In a multi-level design problem, however,

where the performance space of an upstream design team corresponds to the design space

of a downstream design team, it becomes necessary to create a mapping of the

satisfactory performance space of the upstream design team. As part of a set-based design

strategy (Sobek, Ward, & Liker, 1999), BNCs are coupled with an exploratory search to

identify and map regions of the design space with desirable characteristics at each

hierarchical level. Those maps are then intersected across hierarchical levels to identify

satisfactory system-wide designs. As opposed to bottom-up, deductive hierarchical

modeling, the BNC approach is a top-down, inductive design approach that is driven by

meeting high-level system performance requirements.

This chapter demonstrates the utility of the BNC performance space mapping

through a multi-level material design problem. The BNC approach yields significant

insights about the behavior of the material system at each level, and supports rapid

identification and exploration of promising multi-scale solutions. The following section

presents the technical background for the composite material design problem and outlines

the modeling that will be conducted at each hierarchical level.

102

5.1 Background of Hierarchical Material Modeling

Composites consisting of negative stiffness particulate heterogeneities embedded

in a continuous viscoelastic host material have been theoretically (Lakes, 2001) and

experimentally (Lakes, Lee, Bersie, & Wang, 2001) shown to display drastic

enhancements in effective damping with the potential to maintain or even increase the

overall stiffness of the host material. These types of materials are of significant interest to

the engineering community because of their potential for improving the vibro-acoustic

performance of structures in aerospace, automotive, and marine industries (Haberman,

Berthelot, & Cherkaoui, 2006; Koutsawa, Haberman, Daya, & Cherkaoui, 2008).

Modeling and design of these material systems must occur on three distinct

scales: the micro-, meso-, and macroscales, as illustrated in Figures 5.1 and 5.2. The

microscale is defined by the smallest-scale geometry of interest: the internal structure of

the negative stiffness inclusions. The microscale inclusions exploit the unique non-

monotonic force-displacement nature of bistable systems to produce highly absorptive

composite materials. Such bistable systems are exemplified by an axially compressed

beam, which, under transverse loading, initially exhibits positive stiffness until it buckles

and consequently “snaps-through” to its second stable configuration. During this

transition, the beam exhibits negative stiffness when loaded with displacement control.

Taking inspiration from a buckled beam, the inclusion design presented here mimics such

a system on four of its six cubic faces to induce negative stiffness in two orthogonal

directions. This negative stiffness behavior leads to high levels of energy absorption and

mechanical loss when the composite material is subjected to vibro-acoustic loading. The

103

microscale inclusions presented in this paper are unique in that they employ a thermal

expansion mismatch to induce negative stiffness behavior. More details of the geometry

and fabrication of the inclusions are included in Section 5.2.1 and a detailed derivation of

the multi-scale material model can be found in Klatt and Haberman (2013).

Finite element (FE) based representative volume element (RVE) homogenization

is performed at the microscale to determine the effective mesoscopic stiffness of the

material inclusions, with some of the components of the effective stiffness tensor

possessing negative values by design. The structure-driven mechanical behavior of the

negative stiffness elements is indicative of a new class of materials, which have been

labeled mechanically transforming metamaterials (MTM) as a result of their bistable

effective constitutive behavior (Haberman, Klatt, Wilson, & Seepersad 2012).

Figure 5.1. An illustration of the hierarchical levels of the composite material, with

micro-, meso-, and macro-scales indicated by the subscripts , m, and M, respectively.

The negative stiffness inclusion is illustrated in the upper left, and the beam coating

application is illustrated on the right.

104

At the mesoscale, effective medium theories are used to determine the effective

behavior of a composite material consisting of a homogeneous matrix material containing

negative stiffness inclusions. Mesoscale models consider the effective stiffness of the

inclusions, as well as their geometry, orientation, and volume fraction to determine the

effective stiffness and loss factor of the composite material. It is ultimately the

microstructure that leads to mesoscopic negative stiffness behavior and significant

increases in absorptive capacity on the macroscopic scale (Klatt & Haberman, 2013).

The effective stiffness and loss properties predicted by the mesoscale models

serve as input to a macroscopic model for a layered, composite beam application. A

layered beam is coated with the composite material containing negative stiffness

domains, and layered plate models from composite beam theory are used to predict the

overall stiffness and loss properties of the beam (Ross, Ungar, & Kerwin, 1959). This

application investigates the ability of microstructural changes to influence the damped

vibration response of a composite beam. The goal is to significantly increase the loss

factor of the beam without decreasing its effective stiffness upon application of a layer of

negative stiffness composite material.

The design of composite materials with microscale, negative stiffness inclusions

is challenging from several perspectives. First, the design space is complex. The full

multiscale material model must consider the geometry and material properties of the

microstructure as well as the volume fraction, morphology, and orientation distribution of

the MTM inclusions at the mesoscale, and the relationships between these variables are

sometimes highly nonlinear. Furthermore, computationally expensive FE methods are

105

required to model the constitutive mesoscale properties of the MTM, and these models

are difficult to automate. Similarly, some micromechanical effective medium approaches

for modeling the meso- to macro-scale transition can display numerical instability, which

prevents full automation of the design exploration process. In addition, the design space

includes discrete variables, such as alternative topologies of the MTM inclusions, and

highly nonlinear relationships between the geometric characteristics of those inclusions

and the macroscopic loss behavior. Uncertainty also plays an important role, for example,

in the impact of process-induced variations in the geometry of MTM inclusions on their

mesoscale behavior. Though this variation is not explored in this study, it is a nontrivial

component of the design of these types of materials and the modeling and design strategy

must therefore be of appropriate generality to consider fabrication. All of these

characteristics, plus the inherently multilevel nature of the design problem, motivate the

need for a comprehensive approach for multilevel design of these material systems.

The hierarchical modeling and design process followed in this Chapter is outlined

in the flowchart shown in Figure 5.2. The inclusion geometry parameters are the design

variables for the micro- to meso-scale model. The outcome of the micro- to meso-scale

model is the inclusion’s effective stiffness tensor, which represents the performance

variables for this level. The inclusion’s effective stiffness tensor is then combined with

several matrix properties, as shown in Figure 5.2 to constitute the meso- to macro-scale

design variables. The meso- to macro-scale model then implements a homogenization

technique to approximate the composite material’s effective stiffness and loss factor. The

composite metamaterial’s effective stiffness and loss represents the performance

106

variables in the meso- to macro- model, and are then introduced as design variables for a

beam coating study, along with the beam parameters shown in Figure 5.2. The composite

coated beam is then subjected to static and dynamic analyses to determine the

composite’s effective stiffness, loss factor, and damping ratio, which represent the beam

coating study’s performance variables. The consistent transition of lower-level

performance variables to upper-level design variables makes this hierarchical design

problem challenging, and thus provides an excellent case study to demonstrate the

effectiveness of the Bayesian network classifier introduced in previous Chapters.

Figure 5.2. Flowchart of hierarchical modeling including variable inputs and outputs at

each level.

The micro- to meso-scale and meso- to macro-scale models are presented in

Sections 5.2 and 5.3, respectively, along with accompanying design space maps derived

Inputs Outputs

Micro- to Meso-

scale Model

Meso- to Macro-

scale Model

Beam Coating

Study

𝐂m,eff 𝐿1𝐿2
, 𝐵 , 𝐿2

𝐂m,eff , 𝑀, 𝜈M , 𝜂M , , , 𝜂g,eff

 , , 𝜂g,eff , 𝐵, 𝜂B , 𝛾 , 𝜂eff , 𝜁

Inclusion Geometry
Effective Mesoscopic

Stiffness Tensor

Effective Mesoscopic

Stiffness Tensor,

Matrix Properties

Effective Macroscopic

Stiffness and Loss

Effective Macroscopic

Stiffness and Loss, Beam

Parameters

Composite Stiffness,

Loss, and Damping Ratio

107

from BNCs. The results from Sections 5.2 and 5.3 are then used to design a coated beam

in Section 5.4.

5.2 Micro- to Meso-Scale Modeling and Design Space Mapping

In the micro- to meso-scale model, the geometries of the inclusions are designed

to provide negative stiffness in at least one direction. The parameterization of a candidate

inclusion and the homogenization approach for predicting its properties is described in

Section 5.2.1. Mappings of the design and performance spaces are described in Section

5.2.2.

5.2.1 Layout and Modeling of the Negative Stiffness Inclusions

A candidate geometry for the negative stiffness inclusion is depicted in Figure

5.3. The inclusion is intended to be manufactured using a micro co-extrusion process, in

which successive extrusions of a green part reduce the inclusion's external and internal

dimensions from millimeter to micrometer scale (Kovar, King, Trice, & Halloran, 1997).

During the extrusion process, voids are filled with a carbon black material. Post-

extrusion, a high-temperature sintering process pyrolizes the carbon black from the

extrudate, which leaves voids within the inclusion. The inclusion is comprised of two

materials—alumina and yttria tetragonal zirconia polycrystals (YTZP)—whose

coefficients of thermal expansion differ. Differential contraction during the sintering

process axially compresses the four alumina beams in Figure 5.3 so that they assume the

outwardly buckled, bistable states depicted on the right of Figure 5.3. When the inclusion

is embedded in a matrix material and mechanically loaded, the negative stiffness

108

inclusions lead to greater localized strains, and hence greater stiffness and damping, than

positive stiffness inclusions.

Figure 5.3. A candidate MTM inclusion design showing FE modeling.

Figure 5.4 illustrates the geometric parameters that define the inclusion. The

external boundary of the inclusion, and the mesoscale, is defined by the parameter 𝐿. The

parameter defines the height of a T-shaped interface which transfers loading from the

surrounding matrix to the center-point of the buckled element. The parameter defines

the width of the connection between the interface and the buckled element. The

parameter 𝐿 locates the midpoint of the inclusion,

 . The parameter B defines the

height of the buckled element and the voided region below it. Finally, 𝐿 defines the

buckled element length. To reduce the dimensionality of the problem, non-dimensional

ratios are used to adjust the inclusion geometry. The ratios of interest are
, , and

 , as defined by Equations 5.1-5.3.

109

Figure 5.4. Cross-sectional view of parameterized inclusion geometry with all critical

parameters. YTZP shown in light blue, with Alumina elements in dark blue.

To relate the geometric parameters of the inclusion to the effective elastic

properties of the inclusion, a two-step, nonlinear, multi-scale material homogenization

method, similar to that suggested by Odegard (2004), is applied to the inclusion is applied

to the inclusion. Nonlinear finite element analysis is used to simulate the force-

displacement behavior of the structured inclusion for a series of boundary conditions. The

 𝐿 𝐿

(

5.1)

 𝐵 𝐿 𝐿

(

5.2)

 𝐿

(

5.3)

110

nonlinear finite element model considers both the geometric nonlinearity of the inclusion

structure and the loading induced by differential thermal contraction during the sintering

process. The methodology then assumes that the nonlinear stress and strain behavior

resulting from the inclusion structure can be well-represented as a continuous elastic solid

inclusion with nonlinear mesoscopic effective elastic properties, 𝐂 , where 𝐂

is the effective nonlinear mesoscopic stiffness tensor and is the mesoscopic Green’s

strain tensor evaluated on the boundaries of the MTM element. Elements of the effective

nonlinear mesoscopic stiffness tensor are calculated from the curvature of the inclusion's

strain energy versus Green's strain relationship, using energy methods. The mesoscopic

stiffness tensor is then used as a strain-dependent input to the meso- to macroscale

transition model in Section 5.3.

5.2.2 Mapping the Micro- to Meso-scale Design Space

The micro- to meso-scale design problem has three design variables,

corresponding to the dimensionless parameters in Equations 5.1-5.3, and six performance

parameters, corresponding to elements of the mesoscopic effective stiffness tensor,

𝐂 . The performance parameters of particular interest in this example are two of the

elements of the stiffness tensor,

 and

, which are directly related to the plane-

strain bulk modulus of the inclusions. Values of the performance parameters are divided

into two classifications. The high performance class captures designs that exhibit

negative stiffness in the first principal direction: a negative value for

. Low

performance designs do not exhibit negative stiffness in the first principal direction. Data

111

from the finite element-based homogenization procedure serve as training points for

Bayesian network classifiers of the design and performance spaces, with resulting maps

illustrated in Figures 5.5 and 5.6. The training points were defined as the first 1,000

points of the Halton sequence (Freeman & Halton, 1951), interpolated to span the bounds

of each non-dimensional geometric ratio specified in Table 5.1.

Table 5.1. Inclusion geometric parameter bounds.

Geometric Ratio Minimum Maximum

 0.60 0.99

 0.10 0.98

 0.05 0.20

Figure 5.5. Micro- to meso-scale design space mapping.

112

A two-dimensional plot of the micro-scale design space in Figure 5.5 maps the

high performance design points that exhibit negative values for

. High (low)

performance points are blue (red), and the black line represents the decision boundary

between high and low performance designs. Some of the points within the high

performance decision boundary are low performance points, indicated by the red points

within the blue region. These points appear to be falsely classified because the three

dimensional design space has been reduced to two dimensions in this plot. The

design variable has only a minor influence on

, but changes in its value account for

the apparent misclassification of points in Figure 5.5, which could be eliminated with a

three-dimensional plot.

The high performance points in Figure 5.5 relate to designs in which the four

alumina beams shown in Figure 5.3 buckle due to the induced strains during the thermal

contraction of YTZP. The absence of high performance points in the upper left quadrant

of Figure 5.5 indicates that the induced strain on the beams is insufficient to cause

buckling, and supports the notion that a short and thick beam will not buckle. Although

not plotted in Figure 5.5, the design variable controls the width of the connector

between the alumina beam and the YTZP. This parameter has been bounded to prevent

inaccurate point-loading simulation results at the lower bound and to prevent detrimental

effects to the beam buckling characteristics at the upper bound; otherwise, it has little

effect on the performance of the inclusion.

To test the accuracy of the BNC mapping, the classifier in Figure 5.5 was

retrained, and the decision boundary was redrawn after omitting the last 10% of the

113

Halton sequence of design points. Then, those omitted points were classified by the

retrained classifier, and their classifications were compared to simulated levels of

performance. The classifier correctly classified 89% of all the training points, but

misclassified 52% of the high performance points as low performance. For this

exploratory design space mapping, the classifier is intended to capture the entire high

performance space, and err on the side of misclassifying low performance points as high

performance. Adhering to this goal, the high performance class loss factor ratio, , was

increased from unity to 6, resulting in correctly classifying 84% of all the training points,

and 89% of the high performance points. This high level of accuracy is significant, given

that only 11% of the design space is classified as high performance, and the boundary of

that high performance region is very irregularly shaped. Those features make it very

difficult to map the high performance region with other approaches, such as interval-

based classifiers, which would result in either overly conservative or overly liberal

classification of points.

114

Figure 5.6. Micro- to meso-scale performance space mapping.

All of the design points in Figure 5.5 map to performance points in Figure 5.6,

with high performance designs again represented by blue dots. The black lines in Figure

5.6 represent the boundary of the attainable space, which represents the combinations of

performance parameter (

 and

) values that correspond to feasible

combinations of design variable (
, ,) values. The micro- to meso-scale

performance space mapping shown in Figure 5.6 makes it evident that only a small

fraction of the design space maps to high performance designs (shown in blue), with

attainable

 values ranging from 4,000 MPa in positive stiffness to only -80 MPa in

negative stiffness.

When exploring the multi-level design problem, this performance space mapping

is intersected with the design space mapping for the meso- to macro-scale model, thereby

identifying points that are simultaneously attainable at the micro- to meso-level and

linked to satisfactory performance at the meso- to macro-level. For this purpose, it is

important to have an accurate mapping of the performance space. The parameter

controls the region of influence of each attainable point, as described in Chapter 3, where

a smaller value of pulls the decision boundary closer to the known attainable design

points, reducing the probability of falsely classifying an untested point as attainable but

also increasing the probability of falsely classifying an untested point as unattainable.

The attainable probability threshold for the performance space mapping shown in Figure

5.6 was determined by setting to 3. By applying the same cross-validation technique as

115

in the design space, the classifier trained with 90% of the training points was found to

correctly classify 95% of the omitted points, and 100% of the omitted points in the high

performance space (
). The mapping of the attainable high performance space

was optimized by finding the smallest value for such that the cross-validation accuracy

of the high performance points remained at 100%. The optimization resulted in a value

of -0.45, and is illustrated in Figure 5.7. In this mapping, a negative value of indicates

that the high performance training points are clustered closer together than the training

points as a whole.

Figure 5.7. Micro- to meso-scale high performance space mapping.

5.3. Meso- to Macro-scale Modeling and Design Space Mapping

In the meso- to macro-scale model, the effective stiffness and effective loss factor

are modeled for a composite material, consisting of the negative stiffness inclusions

116

modeled in the preceding section, dispersed within a viscoelastic matrix. As described in

Section 5.3.1, effective medium theory is used to model the effective stiffness and loss

properties of the composite. Mappings of the design and performance spaces are

described in Section 5.3.2.

5.3.1 Modeling the Performance of the Composite with Negative Stiffness Inclusions

The inputs to the meso- to macro-scale model are the volume fraction,

morphology, and orientation of the inclusions within the viscoelastic matrix; the material

properties of the matrix; and the effective mesoscale stiffness tensor for the inclusion,

quantified with the FEA approach described in Section 5.2.1. Micromechanical effective

medium theory (EMT) is used to predict the macroscale effective stiffness and loss

properties of the homogenized composite material. EMT is a very general modeling

approach for estimating quasi-static macroscale stiffness and loss behavior of viscoelastic

composite materials (Haberman et al., 2006). Figure 5.8 depicts the meso- to macro-scale

transition used in this work. The mesoscale RVE containing a matrix with stiffness ,

an inclusion with stiffness , and an inclusion coating with stiffness is homogenized

into a macroscale element with stiffness .

Using these traditionally static models, stiffness and loss behavior of the

composite under dynamic loading can be modeled via the elastic-viscoelastic

correspondence principle, as long as the inclusions remain much smaller than the

wavelengths induced in the matrix material by dynamic loading (Milton, 2002). The

elastic-viscoelastic correspondence principle states that the stiffness tensor of the

117

homogenized composite can be represented with complex valued entities according to

Equation 5.4:

Where C is the complex stiffness tensor consisting of storage, 𝐂 , and loss, 𝐂 ,

components, I is the identity tensor, and is the loss factor tensor. Under this principle,

the usual operations applicable to EMT hold and the overall absorptive properties of the

composite can be estimated (Haberman et al., 2006).

Figure 5.8. Conceptual schematic of the homogenization approach of the Self-Consistent

micromechanical model.

In this study, the orientation averaged composite stiffness is determined using a

0.2% volume fraction of inclusions relative to the matrix material. The relevant matrix

material properties used in this study are given in Table 5.2.

𝐂 𝐂 𝐂 𝐂

(

5.4)

118

Table 5.2. Meso- to macro-scale modeling parameters.

Parameter Variable Value

Matrix Young's Modulus 30 MPa

Matrix Poison's Ratio 𝜈 0.3

Matrix Loss Factor 𝜂 0.005

Inclusion Volume Fraction 0.2%

5.3.2 Mapping the Meso- to Macro-scale Design Space

The meso- to macro-scale model's design variables include the

 and

elements of the effective mesoscale stiffness tensor, 𝐂 , for the inclusion; these two

elements are assumed to have the largest performance impact on macroscale

performance. The model has two performance variables, namely, the effective stiffness,

 , and effective loss factor, 𝜂 , of the composite material. The effective stiffness

and effective loss factor are defined by the real and imaginary component of the complex

valued stiffness tensor of the homogenized composite described in Equation 5.4.

The mapping of the meso- to macro-scale model classifies the design and

performance spaces into high performance, low performance, and unattainable regions.

119

High performance designs provide a loss factor greater than twice that of the matrix

material. For the meso- to macro-scale mapping, 1,200 training points are defined by

cascading the Halton sequence sampling of the micro- to meso-scale model. Points are

evaluated by the meso- to macro-scale model only if they are classified as high

performance by the micro-to meso-scale classifier. Using the micro- to meso-scale

classifier to filter the training point selection resulted in a 78% reduction in the number of

points cascaded to the meso- to macro-scale and limited them to only those points with

negative

 values.

Figure 5.9. Meso- to macro-scale design space mapping.

The meso- to macro-scale design space mapping is illustrated in Figure 5.9, with

the attainable probability threshold defined by a of 3. The solid black lines indicate the

boundary of the attainable space, and the dotted black lines indicating the high/low

performance class boundary. Within that attainable space, the red dots indicate low

120

performance designs that do not meet the loss factor threshold. The blue and green dots

represent designs with high performance, with the blue dots also meeting a minimum

threshold for effective stiffness of the homogenized composite (specifically, the effective

stiffness of the composite must be greater than or equal to that of the matrix material).

The design space mapping illustrates the narrow band of designs that provide high

macroscopic performance, wherein only 5% of the meso- to macro-scale training points

are classified as high performance.

To test its accuracy, the meso- to macro-scale design space classifier was

reclassified with 90% of the training points and accurately classified 76% of the omitted

high performance test points, 85% of the omitted low performance test points, and 84%

of all the omitted test points. Accuracy could be improved by increasing the number of

training points.

Further analysis of the high performance design space of the meso- to macro-scale

model demonstrates intriguing trends. Setting the

 stiffness value equal to -20 MPa

and unilaterally progressing along the

 stiffness value yields the plot shown in

Figure 5.10. The bell-shaped normalized loss curve (𝜂 𝜂) in Figure 510 is to be

expected, as the loss factor increases as the design gets closer to its ‘sweet spot’. The

stiffness curve () in Figure 5.10 is surprising in that it decreases prior to the

‘sweet spot’ and increases afterwards–a trend that has been shown by Lakes (2001).

Knowledge of these trends aids designers as they search for designs with a combination

of high loss and high stiffness.

121

Figure 5.10. The effective stiffness and loss ratio of the composite as a function of

,

with
 MPa.

The narrow high performance bands shown in Figure 5.9 indicate a linear

relationship between

 and

 for high performance designs. This trend is

explicitly shown in Figure 5.11. The trend line relates the high performance space to a

constant sum of

 and

. Noting the relationship between

 and

 and

the plane-strain bulk modulus, , given by Equation 5.5, these results suggest that the

high performing designs exhibit a target value for the plain strain bulk modulus which

yields desirable overall combinations of stiffness and loss. It is very interesting to note

that the results shown in Figures 5.10 and 5.11, echo results previously published by

Lakes (2001), which indicate that specific ratios of inclusion to matrix shear moduli

result in drastic increases in the loss factor of the composite.

 11
m,eff (MPa)

E
g

,e
ff

/E
M

𝜂
g

,e
ff

/𝜂
M

122

The y-intercept of the linear trend shown in Figure 5.11 is specific to the

particular matrix stiffness chosen in this experiment. One observes that the intercept

essentially determines the plane-strain bulk modulus of the inclusion that yields

significant increases in the overall lossy behavior of the composite. For this particular

case, the ratio of the plane-strain bulk modulus of the inclusion to the bulk modulus of

the matrix is approximately . This ratio may be a useful target for enhanced

performance in future studies, although the matrix Poisson’s ratio and anisotropy likely

influence this value. In general, however, these results provide very interesting insight

into the relationship between the plain strain bulk modulus of MTM inclusions and

matrix stiffness, which can give designers an intelligent search strategy to find a high loss

design for a different matrix material.

-80 -70 -60 -50 -40 -30 -20 -10 0
-20

-10

0

10

20

30

40

C
11

m, eff
 (MPa)

C
1
2

m
,
e

ff
 (

M
P

a
)

Trendline Equation:

C
11

m, eff
 = -1.0053C

11

m, eff
 - 39.6 (MPa)

R
2
 = 0.9892

(

5.5)

123

Figure 5.11. A trend line of the negative sloping meso- to macro-scale design space.

The performance map for the meso- to macro-scale model is illustrated in Figure

5.12. The colors of the design points correspond to those in the design space map in

Figure 5.9. The macro-scale performance space exemplifies the benefits of loss and

stiffness gained in the high performance class, as well as the small fraction of points that

fall into this class. The attainable probability threshold is defined by setting to 10,

which captures all of the high performance training points within its attainable space. For

this mapping, a high value of is necessary to accurately capture the high performance

space, which has 10x fewer training points than the low performance class, and covers a

10x larger range of normalized loss factor. The classifier was retrained with 90% of the

training points, and found to accurately classify 97% of the omitted training points. With

respect to high and low performance class individually, the low performance class had

much higher accuracy; the retrained classifier accurately classified 99% of the omitted

low performance points, while accurately classifying 74% of the omitted high

performance points.

124

Figure 5.12. Macro-scale performance space mapping.

The next step is to utilize the micro- to meso-scale and meso- to macro-scale

mappings to design a component. This step involves intersecting the smaller-scale

performance space mapping with the larger-scale design space mapping to identify

multiscale sets of designs that achieve a set of performance requirements for the

component. Section 5.4 applies the knowledge of the hierarchical design and

performance spaces to the design of a composite coating for passive damping of a

structural beam.

5.3.3 Backpropagating the BNC Mappings

The preceding sections followed a forward, bottom-up modeling and sampling

approach to populate the BNC design and performance space mappings at each

hierarchical level. These mappings provide an intuitive understanding of the

combinations of design variables that yield satisfactory, high performance values at each

level, as well as the ranges of performance values that can ultimately be achieved. The

125

next step is to utilize the micro- to meso-scale and meso- to macro-scale mappings to

design a component, in an inductive, top-down approach. This involves backpropagating

the high performance regions in the meso- to macro-scale performance space down to the

micro- to meso-scale design space.

The first step to developing this top-down design strategy is to intersect the

attainable micro- to meso-scale performance space with the high performance meso- to

macro-scale design space. This mapping is shown in Figure 5.13, with the attainable

micro- to meso-scale performance space shown in green, and the high performance meso-

to macro-scale design space shown in blue.

The intersected high performance region shown in Figure 5.13 is then used to

redefine the high performance micro- to meso-scale class, which was previously defined

as designs that merely have negative stiffness in the first principle direction. The micro-

to meso-scale BNC mapping is then retrained using this updated, stricter performance

requirement to determine the micro-to meso-scale design variable combinations that yield

macroscale high performance values. The retrained micro- to meso-scale design space

mapping is shown in Figure 5.14, with the original high performance micro- to meso-

scale design space shown in light blue and the new high performance micro- to meso-

scale design space shown in dark blue.

126

Figure 5.13. The high performance meso- to macro-scale design space intersected with

the attainable micro- to meso-scale performance space.

Figure 5.14. The micro- to meso-scale design space mapping with backpropagated

performance requirements from the meso- to macro-scale.

0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

R
L

1
L

2

R
B

High Performance at
the Micro- to Meso-scale

High Performance at
the Meso- to Macro-scale

Unsatisfactory

127

The micro- to meso-scale design space shown in Figure 5.14 is used to identify

multi-scale sets of designs that meet top-level performance requirements. The

backpropagating of the multi-scale design and performance maps in this section is

computationally efficient in that it does not require any new concept evaluations to be

performed, and can easily be repeated if changes are made to the meso- to macro-scale

performance requirements. Section 5.4 applies this multi-scale knowledge to design a

composite coating for passive damping of a structural beam.

5.4. Beam Coating Design Case Study

In this section, the design and performance space mappings from Sections 5.2 and

5.3 are used to design a multilayer, cantilever beam with the composite metamaterial as a

coating layer for the beam. Section 5.4.1 describes the model for passive viscoelastic

damping in a multilayer beam. Section 5.4.2 explores the impact of the design of the

composite metamaterial on the beam's shock response.

Throughout this section, two different coatings are investigated—a high

performance coating and a low performance coating—to illustrate the benefit of the

classifier-based approach in Section 5.3. The high performance coating corresponds to a

design on the border of the blue and green points of Figures 5.9 and 5.12, while the low

performance coating corresponds to a red design point in Figures 5.9 and 5.12.

Specifically, the selected high performance design has an effective coating loss factor,

𝜂 , of 0.060, and the low performance design has an effective coating loss factor of

 . The high and low performance designs both have equal magnitude effective

128

stiffness, , of 33 MPa. The underlying beam is assigned a Young’s modulus, , of

1,000 MPa and is assumed to be an idealized lossless material.

5.5.1 Loss Factor and Stiffness of a Multilayer Cantilever Beam

Figure 5.15 illustrates a structural beam coated with a viscoelastic material with

microscale inclusions. Ross, Kerwin, and Ungar (Ross et al., 1959) provide a relationship

between the loss factor of the composite beam, 𝜂 , and that of the viscoelastic coating

material, 𝜂 , according to Equation 5.6.

Where 𝜂 , is the distance between neutral axes of the

two components, ri is the radius of gyration, 𝑟

, and , where ,

 is the real part of the Young’s modulus, and is the cross-sectional area of layer i.

The height of the coating is related to the height of the beam by the coefficient, 𝛾,

according to Equation 5.7.

𝜂

𝜂

 𝜂

𝑟

𝑟

(

5.6)

𝛾

(

5.7)

129

Figure 5.15. Illustration of a beam with a composite coating.

The potential structural benefits of the coating are shown in Figure 5.16, which

displays the normalized effective stiffness of the composite beam versus effective loss

factor as a function of coating-to-beam height ratio, 𝛾. The effective stiffness, , of the

composite beam was calculated using the Voigt approximation (Voigt, 1889), and is

normalized by the beam stiffness, , in order to demonstrate the effect of the coating on

the overall stiffness of the composite beam. The effective loss factor of the composite,

𝜂 , was determined from Equation 5.6.

Damping material

Beam

W

H
2

H
1

H
12

130

Figure 5.16. Normalized stiffness vs. effective composite loss factor with varying coating

thicknesses.

As shown in Figure 5.16, the composite beam's loss factor increases with

increasing coating thickness. For the high performance coating, this increase occurs at a

much greater rate relative to the low performance coating, while both high and low

performance coatings experience equivalent decreases in the overall stiffness of the

beam. This trend is expected because the high and low performance designs were chosen

to have equivalent effective stiffness but with very different effective loss factors.

A designer can use Figure 5.16 to select a coating-to-beam height ratio based on

application specific stiffness and loss requirements. At a coating-to-beam height ratio, 𝛾,

of 0.2, the effective composite stiffness is decreased by 19%, with a loss factor, 𝜂 , of

the high performance composite equal to 0.0017, and a loss factor of the low performance

coating of 0.00014. Similarly, if the coating-to-beam height ratio, 𝛾 is increased to 0.5,

Increasing γ

131

the effective composite stiffness of both designs are decreased by 48%, with a loss factor

of the high performance composite of and a loss factor of the low

performance coating of .

5.5.2 Transient Response of the Multilayer Cantilever Beam to an Impulsive Load

The coated beam is assembled in a cantilever orientation, as shown in Figure 5.17,

and subjected to an impulsive load at its free end. The length, L, and width, W, of the

cantilever beam are 1 m and 0.2 m, respectively. The overall cross-sectional height of the

beam, H1 + H2, is 0.1 m, and the individual heights of the beam and viscoelastic material

are determined by γ in Eq. 8. The density of the beam is 1000 kg/m2, and the density of

the viscoelastic material is 200 kg/m2. Although the cantilever beam is an idealized

structural component, it helps illustrate the potential value of the negative stiffness

composite for vibro-acoustic dampening applications.

Figure 5.17. An illustration of the coated cantilever beam with an impulsive load imposed

at its free end at t = 0.

The coating-to-beam thickness ratio for this demonstration study is chosen based

on Figure 5.16 to exhibit one order of magnitude decrease in stiffness over the beam

 F(t)

132

alone, which corresponds to 𝛾 . Although it is not desired to decrease the effective

composite stiffness, this coating-to-beam thickness ratio will highlight the high damping

capabilities of the coating. For the choice of coating, the loss factors for the high and low

performance composites are and , respectively. For this experiment, the

beam tip is subjected to a 10 g magnitude versine shock input with a 25 ms duration

starting at t = 0. The resulting tip displacement for two cases of interest is plotted in

Figure 5.18.

Figure 5.18. The coated and uncoated cantilever beam shock response.

As shown in Figure 5.18, the tip displacements of the two composite beams

exhibit oscillating ringdown, because neither composite approaches critical damping. The

high performance coating causes the beam to ring down significantly faster than the low

performance coating, however, and both are a profound improvement over the underlying

beam alone, which would theoretically oscillate forever. The high performance composite

133

has a damping ratio, 𝜁 , of 0.75, while the low performance composite has a

damping ratio, 𝜁 , of 0.065. This is equivalent to a log decrement of -0.047 for the

high performance composite and -0.0041 for the poor performance composite. The high

performance composite attenuates the acceleration to 0.7% of its initial acceleration

amplitude after 10 seconds, while the poor performance coating composite attenuates its

acceleration amplitude to only 65% of its initial amplitude during the same time period.

The acceleration attenuation of the high performance composite equates to a time

constant of 2.04, while the poor performance composite has a time constant of 23.5.

5.6. Discussion

The materials design approach presented in this Chapter uses BNC’s for mapping

design and performance spaces at each hierarchical level and then intersecting the

mappings to identify high-performance system level designs in a top-down, inductive,

design strategy. The sampling that is required to create the BNC-based mappings at each

level can be performed concurrently across the levels, although creating the models

sequentially allows mappings from one level to be used to bound the design or

performance space for another level. After sampling is performed at each level, it is

almost trivial to identify multi-level designs that meet specific high-level performance

requirements by propagating high-performance thresholds from the highest to the lowest

level. Characterization of the space of high performance designs at the highest materials

level also allows product design to be decoupled from the design of the material.

134

The multi-scale design approach using BNC mappings significantly reduces the

computational expense of the hierarchical materials design example in this Chapter.

Capturing the knowledge of the micro- to meso-scale modeling, in which only 11% of

designs resulted in a negative stiffness inclusion, allowed the meso- to macro-scale

modeling to narrow its candidate design space to only a few feasible designs. The meso-

to macro-scale model, for which only 10% of the design space resulted in satisfactory

macroscale performance, reinforced the necessity for a top-down cascading of

performance requirements. A trial-and-error bottom-up design approach, in which a

specific inclusion geometry is propagated through three levels of modeling, would have

resulted in over 99% of the analyzed designs having unsatisfactory macroscale

performance. Similarly, a purely optimization based approach, such as one of the

Multidisciplinary Design Optimization approaches reviewed in Chapter 2, would have

required extensive nested iteration and tight coordination between the levels, neither of

which is required for the approach proposed here.

The set-based design approach facilitated by the use of BNC maps allowed for the

decomposition of this design problem into multiple hierarchical levels. By assigning a

conservative performance requirement to the micro- to meso-scale level, design and

performance flexibility was maintained. Following this explorative phase of the design

process, a designer can then set arbitrary meso- to macro-scale performance requirements

and easily backpropagate the new high performance regions down to the micro- to meso-

scale design space, as detailed in Section 4.3.3. Further exploration of designs having

high meso- to macro-scale performance can be attained by sampling from this

135

backpropagated micro- to meso-scale high performance design space. A designer can

additionally use the design and performance flexibility metrics proposed in Chapter 4 to

intelligently narrow the meso- to macro-scale performance requirements.

The micro- to meso-scale level is found to have a design flexibility of 0.22, which

is slightly higher than the percent of designs that were found to be classified as high

performance (11%). This discrepancy is due to the collapsing of the micro- to meso-scale

design space from three to two dimensions, which resulted in some low performance

designs being misclassified as high performance. To determine the micro- to meso-scale

performance flexibility, the desired micro- to meso-scale performance space is defined by

placing a lower and upper bound on

 of -100 MPa and 0 MPa, respectively, and a

lower and upper bound on

 of -40 MPa and 120 MPa, respectively. The micro- to

meso-scale level is found to have a performance flexibility of 0.65, representing the

attainable percentage of the desired micro- to meso-scale performance space.

The high performance region of the meso- to macro-scale design space, which

corresponds to the attainable micro- to meso-scale performance space, is found to have a

design flexibility of 0.022. The meso- to macro-scale desired performance space is

defined by placing a lower and upper bound on of 0.95 and 1.05, respectively,

and a lower and upper bound on 𝜂 𝜂 of 2 and 15, respectively. The meso- to

macro-scale is found to have performance flexibility of 0.079. By backpropagating the

meso- to macro-scale high performance requirements down to the micro- to meso-scale

design space, as detailed in Section 5.3.3, the micro- to meso-scale is found to have

design flexibility of 0.037.

136

To demonstrate the effect of narrowing the meso- to macro-scale performance

requirements on the design and performance flexibility metrics at each hierarchical level,

a new meso- to macro-scale performance requirement is defined. This particular meso- to

macro-scale performance requirement is selected to isolate and examine the outer ring of

high performance values in the meso- to macro-scale performance space, and

demonstrates the ability of the BNC to accept nonlinear performance requirements. The

new meso- to macro-scale performance requirement is shown by the blue highlighted

region in Figure 5.19, with the training points plotted in blue if they meet the new

performance and in red if they do not. As a measure of the reduction in the ability to meet

the new performance requirements, the meso- to macro-scale performance flexibility is

now found to be 0.038, roughly half the value found using the original performance

requirements.

Figure 5.19. Meso- to macro-scale performance space with new performance

requirements highlighted in blue.

137

The BNC is then retrained using the new meso- to macro-scale performance

requirement to define the high and low performance classes at each hierarchical level.

Figure 5.20 shows the meso- to macro-scale design space mapping, as classified by the

new performance requirement. The updated high performance meso- to macro-scale

design space has eliminated the positive sloping portion of the high performance design

space seen in Figure 5.9. This result affirms that the best designs occur when the

microscale inclusion exhibits negative stiffness in its first principle direction. The meso-

to macro-scale design flexibility is found to be 0.011, which, similar to the meso- to

macro-scale performance flexibility, is roughly half the value found using the original

performance requirements. This result indicates that there is a strong correlation between

changes in design and performance flexibility.

Figure 5.20. Meso- to macro-scale design space reclassified with new performance

requirements.

138

The sets of designs meeting the new meso- to macro-scale performance

requirements are then backpropagated down to the micro- to meso-scale design space,

shown in Figure 5.21. The narrow regions of high performance designs, backpropagated

to micro- to meso-scale design space in Figure 5.21, further demonstrate the nonlinearity

of this design problem, and the difficulty that a designer would face in trying to solve this

problem using a traditional design approach. By first populating the BNC maps at each

hierarchical level, the top-level performance requirements can be easily altered and

backpropagated to the bottom-level design space, without any additional concept

evaluations required.

Figure 5.21. The micro- to meso-scale design space mapping backpropagated from the

updated meso- to macro-scale performance requirements.

The BNC maps also provided an effective means of capturing the information

gained from the multilevel modeling in this example, and allowed the designers to build

0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

R
L

1
L

2

R
B

High Performance at
the Micro- to Meso-scale

High Performance at
the Meso- to Macro-scale

Unsatisfactory

139

intuitive knowledge of the multi-level design space. Designers used the BNC maps to

determine where good solutions lie, as well as to discover trends in the design space, as

seen in the meso- to macro-scale mappings. The knowledge captured in the BNC maps

allowed the beam application to be solved as an independent problem, without requiring

additional material modeling. With the aid of BNC maps, choosing a composite coating

for the beam application was trivial, as designs could be quickly chosen by selecting a

desirable combination of stiffness and loss from the macroscale performance space. The

chosen composite coating design could then be backpropagated using the BNC maps to

determine the corresponding microscale inclusion parameters.

The effectiveness of the BNC for classifying arbitrarily shaped regions of interest

in the design space has been shown in the two-dimensional mapping plots, however the

underlying equations are readily extensible to a multivariate problem. Additionally, the

probability distributions generated by the BNC mapping can also be used to guide a

sampling strategy of the design space, such as to exploit the likely high performance

regions of the design space, or to explore regions of the design space that have very little

data available. A sampling strategy based on the probability distributions could

potentially uncover high performance designs with significantly reduced computational

time; however, an effective strategy to progress from exploration to exploitation is a topic

for future work.

140

Chapter 6: Closure

The research presented in previous chapters of this thesis serves to provide a

higher fidelity representation of design and performance spaces than the previously

proposed methods discussed in Chapter 2. The methods presented are building blocks

that improve the ability to achieve a set-based design process, as outlined by Sobek et al.

(1999), to better equip designers with the tools to work concurrently, rather than

sequentially. The method presented uses a Bayesian network classifier, which uses

concept evaluations as training points to develop an accurate set representation of the

attainable and satisfactory design and performance spaces.

6.1 Summary

The use of a Bayesian network classifier has recently been proposed to create a

mapping of the satisfactory design space (Shahan & Seepersad, 2012). The method

proposed in Chapter 3 extends this work to create a mapping of the performance space,

which has several fundamentally different properties than the design space. While the

primary challenge in creating a mapping of the design space is to identify the satisfactory

design space, the challenge in creating a mapping of the performance space is to identify

the attainable regions that map back to combinations of design variables. This challenge

was not encountered in developing the design space mapping because the entire design

space can typically be sampled. The bounds on the design space, combined with

nonlinearities in the performance models, limit the set of attainable performance values.

The method to classify the attainable from unattainable performance spaces utilized a

141

kernel density estimation technique, which translated the set of training points into a

probability distribution spanning the entire performance space, and defined a minimum

probability threshold for a performance point to be classified as attainable. The threshold

probability can also be used as a tuning parameter to accurately map irregularly

distributed spaces.

The attainable performance space is then further classified into a feasible set of

designs that meet a set of constraints, and an infeasible set that does not. This

classification utilizes the probability distributions returned by the kernel density

estimation technique to create a class conditional probability distribution for both the

feasible and infeasible classes. The class conditional probability distributions are then

used to create a Bayesian network classifier to identify whether an unknown point in the

performance space is more likely to be feasible or infeasible. The feasible set of designs

in the performance space can also be further narrowed by assigning performance

requirements that designs must meet to be classified as feasible. Classifying the

performance space into an attainable set, and then further extending the attainable

performance mapping into a feasible and infeasible subset provides a complete mapping

of the performance space.

Error rate simulations were performed to analyze the classifier’s convergence as

new training points were added to the classifier, and it was seen that for the two-variable

problem examined in Chapter 3, the error converged to less than 5% after 100 training

points. This convergence to a low error rate demonstrates the effectiveness of the

Bayesian network classifier at representing the design and performance spaces. The

142

classifier is also computationally efficient, requiring a linear increase in computational

expense as the number of training points is increased for a fixed number of variables.

Prior methods to quantify design and performance flexibility were reviewed in

Chapter 2, and it was found that the quantification accuracy was directly dependent on

the method for set representation. The reliable and accurate mappings provided by the

Bayesian network classifier were then utilized in Chapter 4 to quantify design and

performance flexibility. The probability distributions returned by the Bayesian network

classifier were sampled using a Monte Carlo method to approximate the size of the

satisfactory design and performance spaces. This Monte Carlo method of flexibility

quantification was shown in Chapter 4 to be both more accurate than interval methods

and more computationally efficient. This achievement provides a significant contribution

to the set-based design research, which has lacked a consensus on an accurate and

effective design and performance flexibility quantification (Ferguson, Siddiqi, Lewis, &

de Weck, 2007).

The final contribution of this research was a demonstration of the Bayesian

network classifier’s mapping of the design and performance spaces, in a multi-level

material design problem. The small-scale design of the composite metamaterial involves

the geometrical design of a microscopic inclusion, which is then analyzed to evaluate the

effective stiffness of the inclusion. The large-scale design takes the effective inclusion

stiffness, along with matrix properties, to arrive at a macroscopic stiffness and loss of the

composite metamaterial. The Bayesian network classifier allows for designs to be easily

propagated from the macroscopic performance space all the way down to the microscopic

143

design space, without requiring further simulations. The classifier also provides a means

to visualize the spaces in two dimensions, and extract trends of the satisfactory design

and performance spaces. The use of the Bayesian network classifier in this design

problem allows for a reduced number of simulations required to find a set of satisfactory

macroscopic parameters, which corresponds to less than 1% of the microscopic design

space.

6.2 Future Work

The research presented in this thesis provides a beneficial improvement in the

methods necessary to have a fully concurrent set-based design process; however, there

are a number of ways that these methods could be improved. The proposed Bayesian

network classifier uses a kernel density estimation technique to approximate the class

conditional probability distribution, using Gaussian kernels. Future work on this classifier

should analyze alternative Gaussian kernel probability distribution parameters, which

may better capture the underlying distributions that it attempts to model. Adding

additional parameters of kurtosis and skew may lead to increased accuracy; however,

these parameters cannot be trivially introduced, and must be combined with a clustering

algorithm to vary the parameters within the design and performance spaces. Additionally,

alternative kernel probability distributions should be analyzed, such as the lognormal

asymmetric probability distribution. Perhaps a library of kernel probability distributions

can be drawn from, allowing designers to choose the best kernel to fit their specific

problem.

144

Additional work must be done to analyze the effectiveness of the Bayesian

network classifier under a large number of design and performance variables. The “curse

of dimensionality” has been well documented in literature, and results from decreasingly

small values of the probability distribution, as the dimensionality of a space increases.

Varying the assumption of variable dependence has been recently shown to increase the

effectiveness of the Bayesian network classifier in mapping a large dimensional space,

and should be explored further (Backlund, 2012). Additionally, in regards to the

assumption of variable dependence, a method to extract the variable dependence from the

Naïve Bayesian network classifier could also be beneficial to this research.

The effectiveness of the Bayesian network classifier can also be improved by

intelligently defining the prior probability, which was approximated in this research as a

function of the class occurrence frequency of the training points. The prior probability

can be used to capture expert knowledge from designers, to give the classifier a better

accuracy than the training points alone. Although the expert knowledge may not always

be correct, the classifier should be able to mitigate poor assumptions given a large

enough set of training points.

The performance space mapping provided by the Bayesian network classifier

provides a good approximation of the Pareto frontier, with relatively few training points

required. This is a significant achievement, as the Pareto set is typically difficult to

define, but can give designers an understanding of the performance potential that exists

within a set of designs. Designers always make tradeoff decisions, but they are typically

delayed to the end of the design process, when more complete information about the

145

tradeoff is known. By obtaining an approximation for the tradeoffs that will be

encountered, designers can focus more resources in making an optimal tradeoff decision.

Future work can focus on utilizing the approximated Pareto frontier to inform decisions

in the early stages of the design process.

The set-based design guidelines provided by Sobek et al. (1999) state that the

design space should be intelligently narrowed. The flexibility quantification methods

proposed in this research should next be analyzed to determine an optimal relationship

between design and performance flexibility to provide an intelligent narrowing of the

design space. This task can be coupled with an informed sampling strategy that uses the

probability distributions provided by the Bayesian network classifier to focus the

sampling on regions of high potential. This form of guided sampling has recently been

proposed by Backlund (Backlund, 2012), and has been shown to perform better than

other global search algorithms, such as a genetic algorithm. While the method proposed

by Backlund shows high potential, future work is needed to optimize the framework for

balancing exploration and exploitation in the guided sampling approach.

146

Appendix A

The helical spring design problem used in Chapters 3 and 4 is defined in this

appendix. This problem has been adapted from Shahan and Seepersad (2012), with a

background on the problem found in a machine elements textbook (Juvinall & Marshak,

2000). The helical spring is illustrated in Figure A.1, showing the two design variables,

 and , shown as the coil diameter, , and wire diameter, 𝑑, respectively.

Figure A.1. Diagram of the helical spring.

The design space is confined by upper and lower bounds placed on the design

variables, and , which are defined in table A.1.

Table A.1. Helical Spring Design Variable Bounds.

 (m) (m)

Lower Bound 0.19 0.13

Upper Bound 1.30 0.70

147

This design problem has two constraints. The first constraint, , defines the

maximum allowable shear stress, according to Equation A.1, to not exceed 45% of the

ultimate strength of the material under a maximum load, 𝑠. The loading on the spring is

applied at the end of the spring, as illustrated in Figure A.2. The second constraint, ,

defines the minimum ratio of the coil diameter to wire diameter, according to Equation

A.2. In the context of helical springs, the constraint is referred to as the spring index,

and is an important manufacturing consideration.

(

A.1)

(

A.2)

The helical spring design problem has two performance variables. The first

performance variable, , represents the maximum allowable compression, 𝐿𝑡, under a

target load, 𝑡. The loading and compression is defined according to Figure A.2. The

spring compression, and performance variable , is defined according to Equation A.3.

The second performance variable, , represents the total width of the spring, and is

defined according to Equation A.4. The total spring width is important for this design

problem because the spring must be able to fit into a pre-manufactured slot.

148

Figure A.2. An illustration of the helical spring loading and compression.

 𝐿

 𝐿

(A.3)

 𝑑 (A.4)

There is also one performance target for each performance variable. A design is

considered to be satisfactory if it meets both performance targets. The performance

requirements are defined for and , according to Equation A.5 and A.6, respectively.

 (A.5)

 (A.6)

There are a set of constants for this design problem, which define the material

properties and target loadings. These constants are defined in Table A.2.

149

Table A.2. Helical spring design problem constants.

Parameter Variable Value

Spring Stiffness 15,761 N/m

Target Loading 266.9 N

Maximum Loading 513.8 N

Material Ultimate Strength 1.45 GPa

Shear Modulus 792.9 GPa

150

Appendix B

The Matlab
®
 code for developing the Bayesian network classifier (BNC) applied

to the helical spring design problem in Chapters 3 and 4 is presented in this appendix.

Much of this code is credited to the assistance of Dr. David Shahan. Table B.1 provides a

list of the functions included, and a description of what each function does. Basic plotting

functions of the design and performance spaces are included, and are modular with their

inputs to be able to generate many of the plots included in this thesis.

Table B.1. List of Matlab
®
 functions for creating and using a Bayesian network classifier.

demo_Spring() A demo file for using the BNC

kbnInit_Spring() Generates an empty BNC structure

systemsKBN_Spring() Provides system-level organization for adding training points

kbnAddData_Spring() Adds training points to the BNC

kbnEvalDesign() Calculates the probability distribution at a design point

kbnEvalPerf() Calculates the probability distribution at a performance point

kbnEvalHd() Calculates the kernel bandwidth for the design space

kbnEvalHp() Calculates the kernel bandwidth for the performance space

kbnEvalPerfUnattP() Calculates the attainable performance probability threshold

kbnMonteCarlo() Performs a monte carlo integration

plotDSpace() Plotting function for the design space

plotPSpace() Plotting function for the performance space

halton() Generates the Halton sequence

151

function n=demo_Spring(varargin)

% Train the BNC
M=100; % Number of training points
n = struct([]);
for i=1:M
 n = systemsKBN_Spring(n,1); % Collect training points
end

% Set alpha and beta
alpha = .4;
beta = 3;
n.hdalpha = alpha*sqrt(12);
n.hd = kbnEvalHd(n);
n.hpalpha = alpha*sqrt(12);
n.hp = kbnEvalHp(n);
n.hpbeta = beta*sqrt(12);

% Plot the design Space
divs = [100 100];
classAmp = [1 1];
plotDSpace(n,divs,classAmp);

% Plot the satisfactory design space
divs = [100 100];
classAmp = [1 1];
plotPSpace(n,divs,classAmp,'Orientation','2D','LegendLoc','NorthEast',

 ...'DataPoints','off');

% Perform Monte Carlo Estimate of design flexibility

numSamples = 10000;

classAmp = [1 1];
classSat = 1;

classAll = [1,2,3];

MC_sat = kbnMonteCarlo(n,'d',1,numSamples,classAmp);

MC_all = kbnMonteCarlo(n,'d',[1, 2, 3],numSamples,classAmp);

designFlexibility = MC_sat.volume / MC_all.volume;

% Perform Monte Carlo Estimate of performance flexibility

numSamples = 10000;

classAmp = [1 1];
classSat = 1;

classAll = [1,2,3];

MC_sat = kbnMonteCarlo(n,'p',classSat,numSamples,classAmp);

MC_all = kbnMonteCarlo(n,'p',classAll,numSamples,classAmp);

perfFlexibility = MC_sat.volume / MC_all.volume;

end

152

function n=kbnInit_Spring(Din, Dout, Dcon, Cd, Cp, dbnd, pbnd, ptarg,

ptargS)
% Initializes the structure for the training points n

n.Din=Din; % # of dimensions of design variables
n.Dout=Dout; % # of performance variables
n.Dcon=Dcon; % # of contstraints

n.Cd = Cd;
n.Cp = Cp;

n.N=0; % Number of training points taken - Initialized to 0
n.Nc=zeros(1,3); % Number of data points in each general class
n.Ncd=zeros(1,2); % Number of data points in design space classes
n.Ncp=zeros(1,2); % Number of data points in performance space classes

n.dValues=[]; % Holds the training point design variables
n.cValues=[]; % Holds the inequality constraint values
n.pValues=[]; % Holds the training point performance values

n.hd = []; % Kernel standard deviation for design space points
n.hp=[]; % Kernel standard deviation for performance space points
n.stdD=[]; % Standard deviation of design space points
n.stdP=[]; % Standard deviation of performance space points

n.w = []; %weights, N by C
n.wd=[];
n.wp=[];

n.hdAlpha=1;
n.hpAlpha=1;
n.hpBeta = 1;

% Set the boundary of Design Space
n.dbnd = dbnd;
n.dscale = 1./(n.dbnd(2,:)-n.dbnd(1,:));
n.dshift = n.dbnd(1,:);

% Set the approximate boundary of the performance space
n.pbnd=pbnd;
n.pscale = 1./(n.pbnd(2,:)-n.pbnd(1,:));
n.pshift = n.pbnd(1,:);

% Set the approximate boundary of the satisfactory performance space
n.ptarg=ptarg;
n.ptargS=ptargS;

end

153

function n=systemsKBN_Spring(n,M,varargin)
% This function creates a KBN classifier, and adds 'M' training points

% to it. Sample points will be chosen from a halton sequence, or from a

% test set inputted into 'varargin'. Note: 'varargin' must include

% entire test set, and the n.N+1 point will be selected for the next

% training point

% Initialize new Network
if isempty(n)
 % Experiment Parameters
 Din=2;
 Dout=2;
 Dcon=2;
 Cd=2;
 Cp=2;
 dbnd_metric=[.0178 .0033; .033 .0048];
 pbnd=[0 .02;.35 .043];
 ptarg=[.0635 .0381];
 ptargS={'min', 'min'};

 % Create training point database
 n = kbnInit_Spring(Din,Dout,Dcon,Cd,Cp,dbnd_metric,pbnd,ptarg,...

 ptargS);

 n.hpAlpha=sqrt(12)*0.4;
 n.hpBeta = 3;
end

% Add M new points to the Network
for i=1:M
 % Sample a new design point
 if isempty(varargin)
 xhalton = halton(n.Din,n.N+1);
 xNext = xhalton(n.N+1,:)./n.dscale+n.dshift;
 [yNext cNext] = functionEval_Spring(xNext);
 else
 xs = varargin{1};
 xNext = xs(n.N+1,:);
 ys = varargin{2};
 yNext = ys(n.N+1,:);
 cs = varargin{3};
 cNext = cs(n.N+1,:);
 end

 % Update the BNC
 n = kbnAddData_Spring(n, xNext, yNext, cNext);
end

end

154

function n = kbnAddData_Spring(n,dVal,pVal,cVal)
% Adds a new data point to the structure n, which holds all points and

% all information pertaining to those points.
% Inputs:
% n = structure variable containing all info about all training

% points
% dVal = new design point values
% cVal = new design point constraint values
% pVal = new design point performance values
% Outputs:
% n = updated structure variable with new point information

% Number of new data point(s) to be added (usually only 1)
M = size(dVal,1);

% Add blank new data points to list of points
n.dValues = [n.dValues; zeros(M,n.Din)];
n.cValues = [n.cValues; zeros(M,n.Dcon)];
n.pValues = [n.pValues; zeros(M,n.Dout)];
n.w = [n.w; zeros(M,3)];
n.wd = [n.wd; zeros(M,2)];
n.wp = [n.wp;zeros(M,2)];

% Add M data point(s) to n
for i=1:M
 % Increment counter of # of data points
 n.N = n.N+1;

 % Store the new data point
 n.dValues(n.N,1:n.Din) = dVal(i,1:n.Din);
 n.pValues(n.N,1:n.Dout) = pVal(i,1:n.Dout);
 n.cValues(n.N,1:n.Dout) = cVal(i,1:n.Dcon);

 % Update the standard deviation of the design and performance

 % values
 n.stdD=[std(n.dValues(:,1)) std(n.dValues(:,2))];
 n.stdP=[std(n.pValues(:,1)) std(n.pValues(:,2))];
 n.hd = kbnEvalHd(n);
 n.hp = kbnEvalHp(n);

 % Classify the new design point
 [c cd cp] = classifyDesign(n,pVal(i,:),cVal(i,:));

 % Update previous weights
 n.w(:,c) = n.w(:,c).*n.Nc(c)/(n.Nc(c)+1);
 n.wd(:,cd)=n.wd(:,cd).*n.Ncd(cd)/(n.Ncd(cd)+1);
 n.wp(:,cp)=n.wp(:,cp).*n.Ncp(cp)/(n.Ncp(cp)+1);

 % Increment class counters
 n.Nc(c) = n.Nc(c)+1;
 n.Ncd(cd)=n.Ncd(cd)+1;

155

 n.Ncp(cp)=n.Ncp(cp)+1;

 % Add weights for new design
 n.w(n.N,c) = 1/n.Nc(c);
 n.wd(n.N,cd)=1/n.Ncd(cd);
 n.wp(n.N,cp)=1/n.Ncp(cp);
end

end

function kde = kbnEvalDesign(n,xs,varargin)
% This function calculates the kernel density estimates of the the
% design space.
%
% Note: xs must be un-normalized

if ~isempty(varargin)
 s=varargin{1};
else
 s=n.hd;
end

pk = zeros(1,2);
for k=1:2
 for j=1:n.N
 pj=ones(1,2);
 for i=1:n.Din
 xsi=xs(1,i);
 xdi=n.dValues(j,i);
 pji=(1/(2*(s(k,i)^2)*pi())^.5)*exp(-(xsi-xdi)^2 / ...

 (2*s(k,i)^2)); % Normal gaussian distribution
 pj(k)=pj(k)*pji;
 end
 pk(k)=pk(k)+n.wd(j,k)*pj(k);
 end
end
kde=[pk(1) pk(2)];

end

function p = kbnEvalPerf(n,ys,varargin)
% This function calculates the kernel density estimates of the the
% performance space.
%
% Note: ys must be un-normalized

156

if ~isempty(varargin)
 s=varargin{1};
else
 s=n.hp;
end

kde=zeros(1,2);
for k=1:2
 for j=1:n.N
 pj=ones(1,2);
 for i=1:n.Dout
 ysi=ys(1,i);
 ydi=n.pValues(j,i);
 pji=(1/(s(k,i)*(2*pi())^.5)) * exp(-0.5*((ysi-ydi) / ...

 (s(k,i)))^2); % Normal gaussian distribution
 pj(k)=pj(k)*pji;
 end
 kde(k)=kde(k)+n.wp(j,k)*pj(k);
 end
end

p=kde;

end

function h = kbnEvalHd(n)
% Evaluates the standard deviation of the kernels in the performance

% space.

if n.N<=0
 h = ones(1,n.Cd).*n.hdAlpha; % Sets h = [.4 .4]
else
 h = (n.stdD.*n.hdAlpha)./(n.N.^(1/(n.Din))); %=[.4/N^.5]
 h = [h;h];
end

end

function h = kbnEvalHp(n,varargin)
% Evaluates the standard deviation of the kernels in the performance

% space.

if n.N<=0
 h = ones(1,n.Cp).*n.hpAlpha;
else
 h1=(n.stdP.*n.hpAlpha)./(n.Ncp(1)^(1/n.Dout));
 h2=(n.stdP.*n.hpAlpha)./(n.Ncp(2)^(1/n.Dout));

157

 h=[h1;h2];
end

end

function p_thresh = kbnPerfUnattP(n,varargin)

if isempty(varargin)
 type = 'stdAll';
else
 type = varargin{1};
end

switch type
 case 'stdAll'
 p_thresh = 1;
 h = n.stdP;
 for i = 1:n.Dout
 p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))*...

 exp(-n.hpBeta/2));
 end
 case 'stdSat'
 ysat=[];
 for i = 1:n.N
 if n.wp(i,1)>0 && n.wd(i,1)>0
 ysat = [ysat;n.pValues(i,:)];
 end
 end
 p_thresh = 1;
 h = std(ysat);
 for i = 1:n.Dout
 p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))* ...

 exp(-n.hpBeta/2));
 end
 case 'kernelS'
 p_thresh = 1;
 h = n.hp(1,:);
 for i = 1:n.Dout
 p_thresh = p_thresh*(((1/(sqrt(2*pi)*h(i)))*...

 exp(-n.hpBeta/2))/n.Ncp(1));
 end
 case 'kernelL'
 p_thresh = 1;
 h = n.hp(1,:);
 for i = 1:n.Dout
 p_thresh = p_thresh*((1/(sqrt(2*pi)*h(i)))*...

 exp(-n.hpBeta/2));
 end
 otherwise
 fprintf('%','Error in calculating unattainable pthresh');

158

end

function figHandle = plotDSpace(n,divs,sf,varargin)
% Plot the Design Space

if nargin == 0
 load('nDemo100.mat');
 n = nDemo100;
 divs = [40 40];
 sf = [1 1];
end

% Define Preset Plotting Parameters
presetParams.figNum=0;
presetParams.LegendLoc = 'best';
presetParams.axes = [n.dbnd(1,1) n.dbnd(2,1) n.dbnd(1,2) n.dbnd(2,2)];
inputParams = varargin;
plotParams = getPlotParams(presetParams,inputParams);

figHandle=figure(plotParams.figNum);
clf

% Plot the data points
Pc1 = (n.Ncd(1)+1)/(n.N+2);
Pc2 = (n.Ncd(2)+1)/(n.N+2);
if plotParams.DataPoints
 for j=1:n.N
 if strcmp(plotParams.ClassifyData,'actual')
 if n.w(j,1)>0
 plot(n.dValues(j,1),n.dValues(j,2),...

 'bs','MarkerFaceColor',...
 'b','MarkerSize',8); hold on;
 elseif n.w(j,2)>0
 plot(n.dValues(j,1),n.dValues(j,2),...

 'co','MarkerFaceColor',...
 'c','MarkerSize',8); hold on;
 else
 plot(n.dValues(j,1),n.dValues(j,2),...

 'r<','MarkerFaceColor',...
 'r','MarkerSize',8); hold on;
 end
 elseif strcmp(plotParams.ClassifyData,'classifier')
 pTemp = kbnEval_Spring(n,n.d(j,1:n.Din));
 pDiff = (Pc1*pTemp(1)-Pc2*pTemp(2));
 if pDiff>0
 plot(n.d(j,1),n.d(j,2),'b<','MarkerFaceColor','b',...
 'MarkerSize',8); hold on;
 else
 plot(n.d(j,1),n.d(j,2),'r<','MarkerFaceColor','r',...
 'MarkerSize',8); hold on;

159

 end
 else
 display('Invalid Data Point Classification Parameter');
 end
 end
end

% Plot the surfaces
if plotParams.ClassSurf || plotParams.ClassBoundary
 step = [plotParams.axes(2)-plotParams.axes(1) ...

 plotParams.axes(4)-plotParams.axes(3)]./divs;
 x1 = plotParams.axes(1):step(1):plotParams.axes(2);
 x1Count = divs(1)+1;
 x2 = plotParams.axes(3):step(2):plotParams.axes(4);
 x2Count = divs(2)+1;
 x = [x1' x2'];
 kde = zeros(x2Count,x1Count,2);
 dkde = zeros(x2Count,x1Count);
 for i=1:x1Count
 for j=1:x2Count
 kde(j,i,:) = kbnEvalDesign(n,[x(i,1) x(j,2)]);
 dkde(j,i) = (Pc1*sf(1)*kde(j,i,1)-Pc2*sf(2)*kde(j,i,2))/...
 (Pc1*sf(1)*kde(j,i,1)+Pc2*sf(2)*kde(j,i,2));
 end
 end
 if strcmp(plotParams.Orientation,'3D')
 shiftZ = 0;
 else
 shiftZ = max(max(max([Pc1*sf(1)*kde(:,:,1); ...

 Pc2*sf(2)*kde(:,:,2)])))*1.05;
 end
end

if plotParams.ClassSurf
 FaceAlpha = plotParams.ClassSurfFaceAlpha;
 EdgeAlpha = plotParams.ClassSurfEdgeAlpha;
 blue = plotParams.Color.blue;
 red = plotParams.Color.red;
 surface(x(:,1),x(:,2),Pc1*kde(:,:,1)-shiftZ,...

 'FaceAlpha',FaceAlpha,'EdgeColor',...
 blue,'FaceColor',blue,'EdgeAlpha',EdgeAlpha); hold on;
 surface(x(:,1),x(:,2),Pc2*kde(:,:,2)-shiftZ,'FaceAlpha',...

 FaceAlpha,'EdgeColor',red,'FaceColor',red,'EdgeAlpha',...

 EdgeAlpha); hold on;
end

% Plot the decision boundary
if plotParams.ClassBoundary
 contour(x(:,1),x(:,2),dkde,[0 0],'k--','LineWidth',2); hold on;
end

% Set plot parameters
axis(plotParams.axes);

160

xlabel('X_1','FontSize',12)
ylabel('X_2','FontSize',12)
legend('Satisfactory','Feasible','Infeasible','Location',...

 plotParams.LegendLoc);

end

% ------------------- Imbeded Function --------------------------------
function plotParams = getPlotParams(presetParams,varargin)
% Define the parameters of the plotPSpace() function of variable input

plotParams = initPlotParams();

% Set the preset params in code above
fields = fieldnames(presetParams);
for i = 1:numel(fields)
 plotParams.(fields{i}) = presetParams.(fields{i});
end

% Set the params inputted into master plotPSpace(varargin)
inputParams = varargin{1};
if ~isempty(inputParams)
 if max(strcmp(inputParams(:),'Orientation'))>0
 ind = find(strcmp(inputParams(:),'Orientation')>0)+1;
 plotParams = paramPreset(plotParams,inputParams(ind));
 end
 for i = 1:2:length(varargin)-1
 if isfield(plotParams,varargin{i})
 plotParams.(varargin{i}) = varargin{i+1};
 else
 fprintf('Incorrect Plot Parameter: %s.\n',varargin{i});
 end
 end
end

% Set figure number to new figure unless specified
if plotParams.figNum < 1
 ag = findobj;
 nf = max(ag(find(ag==fix(ag))));
 plotParams.figNum = nf+1;
end

% Change on/off strings to boolean variables
fields = fieldnames(plotParams);
for i = 1:numel(fields)
 if isa(plotParams.(fields{i}),'char')
 if strcmp(plotParams.(fields{i}),'on')
 plotParams.(fields{i}) = true;
 elseif strcmp(plotParams.(fields{i}),'off')
 plotParams.(fields{i}) = false;
 end
 end

161

end

% Set Color Properties
if strcmp(plotParams.Orientation,'3D')
 plotParams.Color.blue = [0 0 1];
 plotParams.Color.red = [1 0 0];
 plotParams.Color.green = [0 1 0];
 plotParams.Color.grey = [.8 .8 .8];
elseif strcmp(plotParams.Orientation,'2D')
 plotParams.Color.blue = [.49 .682 1];
 plotParams.Color.red = [1 .565 .576];
 plotParams.Color.green = [.808 1 .690];
 plotParams.Color.grey = [.8 .8 .8];
end

end

function p = initPlotParams()
% Set the default plotting parameters
 p.DataPoints='on';
 p.ClassifyData='actual';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=0;
 p.ClassSurfFaceAlpha=1;
 p.ClassBoundary='on';
 p.Targets='off';
 p.Orientation='2D';
 p.figNum=0;
 p.interval='off';
end

function p = paramPreset(p,str)
 str = str{1};
 if strcmp(str,'3D')
 p.DataPoints='on';
 p.ClassifyData='actual';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=1;
 p.ClassSurfFaceAlpha=.1;
 p.ClassBoundary='on';

 p.Targets='off';
 elseif strcmp(str,'2D')
 p.DataPoints='on';
 p.ClassifyData='actual';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=0;
 p.ClassSurfFaceAlpha=1;
 p.ClassBoundary='on';
 p.Orientation='2D';
 end
end

162

function figHandle = plotPSpace(n,divs,sf,varargin)
% Plot the performance space. Input 'ZoomSatisfactory' to limit to
% satisfacotry performance space

if nargin == 0
 load('nDemo100.mat');
 n = nDemo100;
 divs = [40 40];
 sf = [1 1];
end

% Define Preset Plotting Parameters
inputParams = varargin;
if max(strcmp(inputParams(:),'ZoomSatisfactory'))>0
 presetParams.axes = [n.pbnd(1,1) n.ptarg(1) n.pbnd(1,2) ...

 n.ptarg(2)];
 inputParams = deleteParam(inputParams,'ZoomSatisfactory');
else
 presetParams.axes = [n.pbnd(1,1) n.pbnd(2,1) n.pbnd(1,2)...

 n.pbnd(2,2)];
end
presetParams.figNum = 0; % Setting to 0 will create a new figure
presetParams.LegendLoc = 'best';
plotParams = getPlotParams(presetParams,inputParams);

figHandle=figure(plotParams.figNum);
clf

% Plot the data points
if plotParams.DataPoints
 if plotParams.satPoints
 for j=1:n.N
 if n.w(j,1)>0
 plot(n.pValues(j,1),n.pValues(j,2),...

 'bs','MarkerFaceColor','b',...
 'MarkerSize',6); hold on;
 elseif n.w(j,2)>0
 plot(n.pValues(j,1),n.pValues(j,2),...

 'co','MarkerFaceColor','c',...
 'MarkerSize',6); hold on;
 else
 plot(n.pValues(j,1),n.pValues(j,2),...

 'r<','MarkerFaceColor','r',...
 'MarkerSize',6); hold on;
 end
 end
 else
 for j=1:n.N
 if n.w(j,1)>0 || n.w(j,2)>0
 plot(n.pValues(j,1),n.pValues(j,2),...

163

 'bs','MarkerFaceColor','b',...
 'MarkerSize',6); hold on;
 else
 plot(n.pValues(j,1),n.pValues(j,2),...

 'r<','MarkerFaceColor','r',...
 'MarkerSize',6); hold on;
 end
 end
 end
end

% Plot Performance Targets
if plotParams.Targets
 plot([n.ptarg(1) n.ptarg(1)],[n.pbnd(1,2) n.ptarg(2)],'b--',...
 'LineWidth',2);hold on;
 plot([n.pbnd(1,1) n.ptarg(1)],[n.ptarg(2) n.ptarg(2)],'b--',...
 'LineWidth',2);hold on;
end

% Calculate the Class and Unattainable Surface Data
if plotParams.ClassSurf || plotParams.ClassBoundary ||

plotParams.UnattainableSurf || plotParams.UnattainableBoundary
 step = [plotParams.axes(2)-plotParams.axes(1) ...

 plotParams.axes(4)-plotParams.axes(3)]./divs;
 y1 = plotParams.axes(1):step(1):plotParams.axes(2);
 y1Count = divs(1)+1;
 y2 = plotParams.axes(3):step(2):plotParams.axes(4);
 y2Count = divs(2)+1;
 y = [y1' y2'];
 n.Cp=2;
 c=1:n.Cp;
 kde = zeros(y2Count,y1Count,n.Cp);
 dkde = zeros(y2Count,y1Count);

 dkde_Unattainable = zeros(y1Count,y1Count);
 kde_Unattainable = kbnPerfUnattP(n);
 Pc = (n.Ncp(c)+1)/(n.N+2);
 for i=1:y1Count
 for j=1:y2Count
 kde(j,i,c) = kbnEvalPerf(n,[y(i,1) y(j,2)]);
 if n.Cp > 1
 dkde(j,i) = (Pc(1)*sf(1)*kde(j,i,1)-...

 Pc(2)*sf(2)*kde(j,i,2))/...
 (Pc(1)*sf(1)*kde(j,i,1)+Pc(2)*sf(2)*kde(j,i,2));
 if Pc(1)*sf(1)*kde(j,i,1) > Pc(2)*sf(2)*kde(j,i,2)
 dkde_Unattainable(j,i) = Pc(1)*sf(1)*...

 kde(j,i,1) -kde_Unattainable;
 else
 dkde_Unattainable(j,i) = Pc(2)*sf(2)*...

 kde(j,i,2) - kde_Unattainable;
 end
 else
 dkde_Unattainable(j,i) = Pc*sf(1)*kde(j,i) -...

164

 kde_Unattainable;
 end
 end
 end

 if strcmp(plotParams.Orientation,'3D')
 shiftZ = 0;
 else
 if n.Cp > 1
 shiftZ = max(max(max([Pc(1)*sf(1)*kde(:,:,1); ...

 Pc(2)*sf(2)*kde(:,:,2)])))*1.05;
 else
 shiftZ = max(max(Pc*sf(1)*kde(:,:,1)));
 end
 end
end

if plotParams.ClassSurf
 FaceAlpha = plotParams.ClassSurfFaceAlpha;
 EdgeAlpha = plotParams.ClassSurfEdgeAlpha;
 blue = plotParams.Color.blue;
 red = plotParams.Color.red;
 green = plotParams.Color.green;
 if n.Cp > 1
 surface(y(:,1),y(:,2),Pc(1)*kde(:,:,1)-shiftZ,'FaceAlpha',...

 FaceAlpha,'EdgeColor',blue,'FaceColor',blue,'EdgeAlpha',...

 EdgeAlpha); hold on;
 surface(y(:,1),y(:,2),Pc(2)*kde(:,:,2)-shiftZ,'FaceAlpha',...

 FaceAlpha,'EdgeColor',red,'FaceColor',red,'EdgeAlpha',...

 EdgeAlpha); hold on;
 else
 surface(y(:,1),y(:,2),Pc(1)*kde(:,:,1)-shiftZ,'FaceAlpha',...

 FaceAlpha,'EdgeColor',green,'FaceColor',green,...

 'EdgeAlpha',EdgeAlpha); hold on;
 end
end

% Plot the feasible/infeasible decision boundary
if plotParams.ClassBoundary
 contour(y(:,1),y(:,2),dkde,[0 0],'k--','LineWidth',2); hold on;
end

% Plot the unachievable space
if plotParams.UnattainableSurf
 FaceAlpha = plotParams.UnattainableSurfFaceAlpha;
 EdgeAlpha = plotParams.UnattainableSurfEdgeAlpha;
 grey = plotParams.Color.grey;
 divsUnatt = [40 40];
 xUnach=linspace(plotParams.axes(1), plotParams.axes(2),...

 divsUnatt(1)+1);
 yUnach=linspace(plotParams.axes(3), plotParams.axes(4),...

 divsUnatt(2)+1);
 zUnach=ones(divsUnatt(1)+1,divsUnatt(2)+1).*kde_Unattainable;

165

 surface(xUnach,yUnach,zUnach-shiftZ,'FaceAlpha',FaceAlpha,...

 'EdgeAlpha',EdgeAlpha,'FaceColor',grey); hold on;
end

if plotParams.UnattainableBoundary
 contour(y(:,1),y(:,2),dkde_Unattainable,[0 0],'k-',...

 'LineWidth',2); hold on;
end

% Set plot parameters
axis(plotParams.axes);
xlabel('Y_1','FontSize',12)
ylabel('Y_2','FontSize',12)
if plotParams.Legend
 legend('Satisfactory','Feasible','Infeasible',...

 'Location',plotParams.LegendLoc);
end
view(plotParams.view);

end
% ------------------- Imbeded Function --------------------------------
function plotParams = getPlotParams(presetParams,varargin)
% Define the parameters of the plotPSpace() function of variable input

plotParams = initPlotParams();

% Set the preset params in code above
fields = fieldnames(presetParams);
for i = 1:numel(fields)
 plotParams.(fields{i}) = presetParams.(fields{i});
end

% Set the params inputted into master plotPSpace(varargin)
inputParams = varargin{1};
if ~isempty(inputParams)
 if max(strcmp(inputParams(:),'Orientation'))>0
 ind = find(strcmp(inputParams(:),'Orientation')>0)+1;
 plotParams = paramPreset(plotParams,inputParams(ind));
 end
 for i = 1:2:length(inputParams)-1
 if isfield(plotParams,inputParams{i})
 plotParams.(inputParams{i}) = inputParams{i+1};
 else
 fprintf('Incorrect Plot Parameter: %s.\n',varargin{i});
 end
 end
end

% Set figure number to new figure unless specified
if plotParams.figNum < 1
 ag = findobj;
 nf = max(ag(find(ag==fix(ag))));

166

 plotParams.figNum = nf+1;
end

% Change on/off strings to boolean variables
fields = fieldnames(plotParams);
for i = 1:numel(fields)
 if isa(plotParams.(fields{i}),'char')
 if strcmp(plotParams.(fields{i}),'on')
 plotParams.(fields{i}) = true;
 elseif strcmp(plotParams.(fields{i}),'off')
 plotParams.(fields{i}) = false;
 end
 end
end

% Set Color Properties
if strcmp(plotParams.Orientation,'3D')
 plotParams.Color.blue = [0 0 1];
 plotParams.Color.red = [1 0 0];
 plotParams.Color.green = [0 1 0];
 plotParams.Color.grey = [.4 .4 .4];
elseif strcmp(plotParams.Orientation,'2D')
 plotParams.Color.blue = [.49 .682 1];
 plotParams.Color.red = [1 .565 .576];
 plotParams.Color.green = [.808 1 .690];
 plotParams.Color.grey = [.8 .8 .8];
end

end

function p = initPlotParams()
% Set the default plotting parameters
 p.DataPoints='on';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=0;
 p.ClassSurfFaceAlpha=1;
 p.ClassBoundary='on';
 p.UnattainableSurf='on';
 p.UnattainableSurfEdgeAlpha=.2;
 p.UnattainableSurfFaceAlpha=1;
 p.UnattainableBoundary='on';
 p.Targets='off';
 p.Orientation='2D';
 p.view=3;
 p.figNum=0;
 p.Legend='on';
 p.satPoints='on';
end

function p = paramPreset(p,str)
 str = str{1};
 if strcmp(str,'3D')

167

 p.DataPoints='on';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=1;
 p.ClassSurfFaceAlpha=.1;
 p.ClassBoundary='on';
 p.UnattainableSurf='on';
 p.UnattainableSurfEdgeAlpha=.1;
 p.UnattainableSurfFaceAlpha=.2;
 p.UnattainableBoundary='on';
 p.Targets='off';
 p.view=3;
 elseif strcmp(str,'2D')
 p.DataPoints='on';
 p.ClassSurf='on';
 p.ClassSurfEdgeAlpha=0;
 p.ClassSurfFaceAlpha=1;
 p.ClassBoundary='on';
 p.UnattainableSurf='on';
 p.UnattainableSurfEdgeAlpha=.2;
 p.UnattainableSurfFaceAlpha=1;
 p.UnattainableBoundary='on';
 p.Targets='off';
 p.Orientation='2D';
 p.view=2;
 end

end

function p = deleteParam(p,param2Delete)
 ind = find(strcmp(p(:),param2Delete)>0);
 if ind == 1
 if numel(p) == 1
 p = {};
 else
 p = p(2:end);
 end
 else
 if numel(p) == ind
 p = p(1:end-1);
 else
 ptemp(1:ind-1) = p(1:ind-1);
 ptemp(ind+1:end) = p(ind+1:end);
 p=ptemp;
 end
 end

end

function MC = kbnMonteCarlo(n,spaceEval,classEval,N,sf)

168

% Perform Monte Carlo volume integration of design/performance space
%
% Inputs:
% spaceEval = 'd' - design space
% = 'p' - performance space
% classEvak = '1' - satisfactory space (feasible and meets

% constraints)
% = '2' - feasible, but not meet constraints
% = '3' - Infeasible
% = [1,3] - Infeasible AND satisfactory (put multiple

% classes
% in a sorted array)
% N = Number of sample evaluations for the Monte Carlo
% sf = Scaling Factor for classes

pDesiredSpace = 1;
pAllSpace = ~pDesiredSpace;

MC = struct('sum',0);
MC.tally = [];

MC.volume = 0;
MC.volumeSummary = [];
MC.variance = [];
MC.varianceSummary = [];

% Get constant kbn variable values
numKbnClasses = 2; % For 2 classes
c = 1:numKbnClasses;
switch spaceEval
 case 'd'
 Pc = (n.Ncd(c)+1)./(n.N+2);
 scale = n.dscale;
 shift = n.dshift;
 case 'p'
 if pDesiredSpace
 pbnd = [n.pbnd(1,:); n.ptarg];
 scale = 1./(pbnd(2,:)-pbnd(1,:));
 shift = pbnd(1,:);
 end
 if pAllSpace
 scale = n.pscale;
 shift = n.pshift;
 end

 attainableProbBnd = kbnPerfUnattP(n);
 Pc = (n.Ncp(c)+1)./(n.N+2);
 otherwise
 fprintf('Invalid spaceEval in kbnMonteCarlo()');
end

169

numVars = 2; % Number of variables / Number of dimensions of space
testVars = halton(numVars,N+1000);
testVars = testVars(1001:end,:);

for i = 1:N
 switch spaceEval
 case 'd'
 pTemp = kbnEvalDesign(n,testVars(i,:)./scale + shift);
 case 'p'
 pTemp = kbnEvalPerf(n,testVars(i,:)./scale + shift);
 end

 pDiff = (sf(1)*Pc(1)*pTemp(1)-sf(2)*Pc(2)*pTemp(2));

 switch spaceEval
 case 'd'
 if pDiff >= 0 && max(classEval==1)==1
 MC = updateInsideMC(MC);
 elseif pDiff < 0 && (max(classEval==2)==1 ||

max(classEval==3)==1)
 MC = updateInsideMC(MC);
 else
 MC = updateOutsideMC(MC);
 end
 case 'p'
 if pDiff >= 0 && max(pTemp)*Pc(1)*sf(1)>=attainableProbBnd
 if isSatisfactory(n,testVars(i,:)) &&

max(classEval==1)==1
 MC = updateInsideMC(MC);
 elseif ~isSatisfactory(n,testVars(i,:)) &&

max(classEval==1)==1
 MC = updateInsideMC(MC);
 end
 elseif pDiff <= 0 &&

max(pTemp)*Pc(2)*sf(2)>=attainableProbBnd && max(classEval==3)==1
 MC = updateInsideMC(MC);
 else
 MC = updateOutsideMC(MC);
 end
 end
end

end

function newMC = updateInsideMC(MC)
% Update MC for a new sample inside
 newMC = MC;

 newMC.sum = newMC.sum + 1;
 if isfield(MC,'tally')
 newMC.tally = [newMC.tally; 1];
 end

170

 if isfield(MC,'volume')
 newMC.volume = newMC.sum/length(MC.tally);
 end
 if isfield(MC,'volumeSummary')
 newMC.volumeSummary = [MC.volumeSummary; newMC.volume];
 end
 if isfield(MC,'variance')
 newMC.variance = (newMC.volume*(1 - newMC.volume))/...

 (length(MC.tally)-1);
 end
 if isfield(MC,'varianceSummary')
 newMC.varianceSummary = [newMC.varianceSummary; ...

 newMC.variance];
 end
end

function newMC = updateOutsideMC(MC)
% Update MC for a new sample outside
 newMC = MC;

 if isfield(MC,'tally')
 newMC.tally = [newMC.tally; 0];
 end
 if isfield(MC,'volume')
 newMC.volume = newMC.sum/length(MC.tally);
 end
 if isfield(MC,'volumeSummary')
 newMC.volumeSummary = [newMC.volumeSummary; newMC.volume];
 end
 if isfield(MC,'variance')
 newMC.variance = (newMC.volume*(1 - newMC.volume))/...

 (length(MC.tally)-1);
 end
 if isfield(MC,'varianceSummary')
 newMC.varianceSummary = [newMC.varianceSummary; ...

 newMC.variance];
 end
end

function YES = isSatisfactory(n,yi)
 YES = true;

 for i = size(yi,2);
 if yi(i) > (n.ptarg(i)-n.pshift(i))*n.pscale(i)
 YES = false;
 end
 end
end

function xs = halton(D,N)

171

% Finds a Halton sequence of data points in the D dimensional design

% space for N data points. All points are between 0 and 1 for all

% variables.

xs = zeros(N,D); % Initialize xs to hold N data points
primes10=primes(30); % Returns the first 10 prime numbers
ps = primes10(1:D); % ps is the first D prime numbers

for j = 1:N % Fill out xs
 x = zeros(1,D);
 base = ps;
 index = j*ones(1,D);
 while any(index)
 digit = mod(index,ps); % This line is a problem for D>2
 x = x + digit./base;
 index = (index-digit)./ps;
 base = base.*ps;
 end
 xs(j,:) = x;
end

end

172

Bibliography

Antonsson, E. K., & Otto, K. N. (1995). Imprecision in Engineering Design. Journal of

Mechanical Design, 117(B), 25–32. Retrieved from

http://design.caltech.edu/Research/Imprecise/Papers/94g.pdf

Backlund, P. B. (2012). A Classifier-Guided Sampling Method for Early-Stage Design of

Shipboard Energy Systems. University of Texas at Austin.

Becz, S., Se, L., Street, D., Ma, U., Pinto, A., Zeidner, L. E., Khire, R., et al. (2010).

Design System for Managing Complexity in Aerospace Systems. AIAA

ATIO/ISSMO Conference (pp. 1–7).

Bosman, P., & Thierens, D. (2000). IDEAs Based on the Normal Kernels Probability

Density Function. Utrecht University Technical Report, (UU-CS-2000-11).

Retrieved from http://igitur-archive.library.uu.nl/math/2001-0220-

120742/UUindex.html

Chang, T. S., Ward, A. C., Lee, J., & Jacox, E. H. (1994). Conceptual Robustness in

Simultaneous Engineering: An Extension of Taguchi’s Parameter Design.

Research in Engineering Design, 6(4), 211–222. Retrieved from

http://www.springerlink.com/index/R481L6U484407265.pdf

Chen, R., & Ward, A. C. (1995). The RANGE family of propagation operations for

Intervals on simultaneous linear equations. Artificial Intelligence for Engineering,

Design, Analysis and Manufacturing, 9, 183–196.

Chen, W., Simpson, T. W., Allen, J. K., & Mistree, F. (1996). Using Design Capability

Indices to satisfy Ranged Set of Design Requirements. In ASME Design

173

Engineering Technical Conferences and Computers in Engineering Conference

(pp. 1–11). Retrieved from

http://www.srl.gatech.edu/publications/1996/fm.ja.chen.confpro.DAC-

1090.1996.pdf

Chen, W., & Yuan, C. (1998). A Probabilistic-Based Design Model for Achieving

Flexibility in Design. ASME Journal of Mechanical Design, (312), 1–33.

Chen, W. (1999). A Robust Design Approach for Achieving Flexibility in

Multidisciplinary Design. AIAA Journal, 37(8), 982–989.

Chen, W., Yin, X., Lee, S., & Liu, W. K. (2010). A Multiscale Design Methodology for

Hierarchical Systems With Random Field Uncertainty. Journal of Mechanical

Design, 132(4), 041006 (11 pages). doi:10.1115/1.4001210

Choi, H., McDowell, D. L., Allen, J. K., Rosen, D., & Mistree, F. (2008). An inductive

design exploration method for robust multiscale materials design. Journal of

Mechanical Design, 130, 031402.

Clark, K. B., & Fujimoto, T. (1991). Product Development Performance: Strategy,

Organization, and Management in the World Auto Industry. Boston, MA:

Harvard Business Press.

Clevenger, C., & Haymaker, J. (2011). Metrics to Assess Design Guidance. Design

Studies, 32(5), 431–456. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0142694X11000135

Davis, E. (1987). Constraint Propagation with Interval Labels. Artificial Intelligence,

32(3), 281–331. doi:10.1016/0004-3702(87)90091-9

174

Devendorf, E., & Lewis, K. (2008). Planning on Mistakes: An Approach to Incorporate

Error Checking into the Design Process. ASME International Design Engineering

Technical Conferences (pp. 1–12). Brooklyn, New York.

Dudda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification (2nd ed.). New

York: John Wiley & Sons.

Eggert, R. J., & Mayne, R. W. (1993). Probabilistic Optimal Design Using Successive

Surrogate Probability Density Functions. Journal of Mechanical Design,

115(September), 385–391.

Evans, M., & Swartz, T. (2000). Approximating Integrals via Monte Carlo and

Deterministic Methods. Oxford: Oxford University Press. Retrieved from

http://books.google.com/books?id=GMHKfx84L4MC&pg=PA276&dq=monte+c

arlo+berger&hl=en&sa=X&ei=AwDiUfDFMcXLyQG5noGQBg&ved=0CD0Q6

wEwAg#v=onepage&q=monte carlo berger&f=false

Ferguson, S., & Lewis, K. (2006). Effective Development of Reconfigurable Systems

Using Linear State-Feedback Control. AIAA Journal, 44(4), 868–878.

doi:10.2514/1.17147

Ferguson, S., Siddiqi, A., Lewis, K., & de Weck, O. (2007). Flexible and reconfigurable

systems: Nomenclature and review. 2007 ASME DETC and CIE Conferences, 1–

15. Retrieved from

http://people.engr.ncsu.edu/smfergu2/sites/default/files/papers/DETC2007-

35745.pdf

175

Finch, W., & Ward, A. (1997). A Set-Based System for Eliminating Infeasible Designs in

Engineering Problems Dominated by Uncertainty. ASME Design Engineering

Technical Conferences, 1–12. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.156&rep=rep1&typ

e=pdf

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications. New

York: Springer-Verlag New York, Inc.

Freeman, G., & Halton, J. (1951). Note on an Exact Treatment of Contingency, Goodness

of Fit and Other Problems of Significance. Biometrika, 38(1/2), 141–149.

Retrieved from http://www.jstor.org/stable/10.2307/2332323

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers.

Machine Learning, 29, 131–163.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd ed.). San

Diego, CA: Academic Press.

Gertler, J. (2012). F-35 Joint Strike Fighter (JSF) Program. Washington, D.C.

Gupta, Y. P., & Goyal, S. (1990). Flexibility of Manufacturing Systems: Concepts and

Measurements. European Journal of Operational Research, 43(2), 119–135.

Gurnani, A., & Lewis, K. L. (2008). Collaborative, Decentralized Engineering Design at

the Edge of Rationality. Journal of Mechanical Design, 130(12), 121101.

doi:10.1115/1.2988479

Haberman, M. R., Klatt, T. D., Wilson, P. S., & Seepersad, C. C., (2012). Negative

Stiffness Metamaterials and Periodic Composites. J. Acoust. Soc. Am., 131(4).

176

Haberman, M. R., Berthelot, Y. H., & Cherkaoui, M. (2006). Micromechanical Modeling

of Particulate Composites for Damping of Acoustic Waves. Journal of

Engineering Materials and Technology, 128(3), 320. doi:10.1115/1.2204943

Haftka, R. T. (1985). Simultaneous Analysis and Design. AIAA Journal, 23(7), 1099–

1103. doi:10.2514/3.9043

Hammersley, J. (1960). Monte Carlo Methods for Solving Multivariable Problems.

Annals of the New York Academy of Sciences, 86, 844–874. Retrieved from

http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.1960.tb42846.x/abstract

Hoffmann, R., & Tresp, V. (1996). Discovering Structure in Continuous Variables Using

Bayesian Networks. Advances in Neural Information Processing Systems, 500–

506. Retrieved from http://www.tresp.org/papers/bayes.pdf

Ilkka, A. (1985). Criteria Changes Across Product Development Stages. Industrial

Marketing Management, 14, 171–178.

Jiao, J., & Tseng, M. M. (2004). Customizability Analysis in Design for Mass

Customization. Computer-Aided Design, 36(8), 745–757.

doi:10.1016/j.cad.2003.09.012

John, G., & Langley, P. (1995). Estimating Continuous Distributions in Bayesian

Classifiers. Proceedings of the Eleventh Conference on Uncertainty in Artificial

Intelligence, 338–345. Retrieved from http://dl.acm.org/citation.cfm?id=2074196

Jones, M., Marron, J., & Sheather, S. (1996). A brief survey of bandwidth selection for

density estimation. Journal of the American Statistical Association, 91(433), 401–

177

407. Retrieved from

http://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476701

Juvinall, R. C., & Marshak, K. M. (2000). Fundamentals of Machine Component Design

(3rd ed.). New York: John Wiley & Sons, Inc.

Kalsi, M., Hacker, K., & Lewis, K. (1999). A Comprehensive Robust Design Approach

for Decision Trade-offs in Complex Systems Design. ASME Design Engineering

Technical Conferences and Computers in Engineering Conference, 1–12.

Retrieved from http://link.aip.org/link/?JMDEDB/123/1/1

Katkovnik, V., & Shmulevich, I. (2002). Kernel density estimation with adaptive varying

window size. Pattern Recognition Letters, 23(14), 1641–1648.

doi:10.1016/S0167-8655(02)00127-7

Kim, H. M., Michelena, N. F., Papalambros, P. Y., & Jiang, T. (2003). Target Cascading

in Optimal System Design. Journal of Mechanical Design, 125(3), 474.

doi:10.1115/1.1582501

Kim, J., & Wilecon, D. (2009). An Empirical Investigation of Complexity and its

Management in New Product Development. Technology Analysis & Strategic

Management, 21(4), 547–564.

Klatt, T., & Haberman, M. R. (2013). A nonlinear negative stiffness metamaterial unit

cell and small-on-large multiscale material model. Journal of Applied Physics,

114(3), 033503-033503.

178

Klein, M., Sayama, H., Faratin, P., & Bar-Yam, Y. (2003). The Dynamics of

Collaborative Design: Insights from Complex Systems and Negotiation Research.

Concurrent Engineering, 11(3), 201–209. doi:10.1177/106329303038029

Koutsawa, Y., Haberman, M. R., Daya, E. M., & Cherkaoui, M. (2008). Multiscale

Design of a Rectangular Sandwich Plate with Viscoelastic Core and Supported at

Extents by Viscoelastic Materials. International Journal of Mechanics and

Materials in Design, 5(1), 29–44. doi:10.1007/s10999-008-9084-0

Kovar, D., King, B. H., Trice, R. W., & Halloran, J. W. (1997). Fibrous Monolithic

Ceramics. Journal of the American Ceramic Society, 80(10), 2471–2487.

Kroo, I., Altus, S., Braun, R., Gage, P., & Sobieski, I. (1994). Multidisciplinary

Optimization Methods for Aircraft Preliminary Design. 5th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, (AIAA Paper 94-4325), 697–707. Retrieved from

http://aero.stanford.edu/reports/mdo94.html

Kursweil, R. (2008). The Coming Merging of Mind and Machine. Scientific American,

18, 20–25.

Lakes, R. (2001). Extreme Damping in Composite Materials with a Negative Stiffness

Phase. Physical Review Letters, 86(13), 2897–2900.

doi:10.1103/PhysRevLett.86.2897

Lakes, R. S., Lee, T., Bersie, A., & Wang, Y. C. (2001). Extreme Damping in Composite

Materials with Negative-Stiffness Inclusions. Nature, 410(6828), 565–7.

doi:10.1038/35069035

179

Ledl, T. (2004). Kernel density estimation: theory and application in discriminant

analysis. Austrian journal of statistics, 33(3), 267-279.

Liu, H., Chen, W., Scott, M. J., & Qureshi, K. (2008). Determination of Ranged Sets of

Design Specifications by Incorporating Design-Space Heterogeneity. Engineering

Optimization, 40(11), 1011–1029. Retrieved from

http://www.tandfonline.com/doi/abs/10.1080/03052150802378558

Mattson, C. A., & Messac, A. (2003). Concept Selection using s-Pareto Frontiers

Concept Selection Using s-Pareto Frontiers. AIAA, 41(6), 1190–1198.

Milton, G. W. (2002). The Theory of Composites. New York: Cambridge University

Press.

Odegard, G. M. (2004). Constitutive Modeling of Piezoelectric Polymer Composites.

Acta Materialia, 52(18), 5315–5330. doi:10.1016/j.actamat.2004.07.037

Olewnik, A., & Lewis, K. (2006). A Decision Support Framework for Flexible System

Design. Journal of Engineering Design, 17(1), 75–97.

doi:10.1080/09544820500274019

Otto, K., & Antonsson, E. (1993). Extensions to the Taguchi Method of Product Design.

Journal of Mechanical Design, 115(1), 5–15. Retrieved from

http://design.caltech.edu/Research/Publications/90f.pdf

Pacheco, J. E., Amon, C. H., & Finger, S. (2003). Bayesian Surrogates Applied to

Conceptual Stages of the Engineering Design Process. Journal of Mechanical

Design, 125(4), 664. doi:10.1115/1.1631580

180

Panchal, J. H., & Allen, J. (2005). An Interval-Based Focalization Method for Decision-

Making in Decentralized, Multi-Functional Design. In ASME Design Engineering

Technical Conferences and Computers in Engineering Conference (pp. 1–14).

Retrieved from

http://www.srl.gatech.edu/publications/2005/ja.cp.fm.panchal.fernandez.confpro.

DETC85322.pdf

Panchal, J. H., Fernandez, M. G., Paredis, C. J., Allen, J. K., & Mistree, F. (2007). An

Interval-based Constraint Satisfaction (IBCS) Method for Decentralized,

Collaborative Multifunctional Design. Concurrent Engineering: Research and

Applications, 15(3), 309–323. doi:10.1177/1063293X07083083

Pareto, V. (1971). Manual of Political Economy, (Translated into English by A.S.

Schwier. Original Work Published 1906 Manuale di Econòmica Polìttica). Milan,

Italy: Macmillan.

Parkinson, A., Sorensen, C., & Pourhassan, N. (1993). A General Approach for Robust

Optimal Design. Journal of Mechanical Design, (March), 4–10.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals

of mathematical statistics, 225(21), 1065–1076. Retrieved from

http://www.jstor.org/stable/10.2307/2237880

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausble

Inference. San Francisco, CA: Morgan Kaufmann Publishers, Inc.

181

Pérez, A., Larrañaga, P., & Inza, I. (2009). Bayesian Classifiers Based on Kernel Density

Estimation: Flexible Classifier. International Journal of Approximate Reasoning,

50(2), 341–362. doi:10.1016/j.ijar.2008.08.008

Reddy, R., & Mistree, F. (1992). Modeling Uncertainty in Selection Using Exact Interval

Arithmetic. Design Theory and Methodology, ASME DE-Vo, 193–201. Retrieved

from

http://www.srl.gatech.edu/publications/1992/fm.peddy.confpro.ASME.1992.pdf

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function.

The Annals of Mathematical Statistics, 27(3), 832–837. Retrieved from

http://www.jstor.org/stable/10.2307/2237390

Ross, D., Ungar, E., & Kerwin, E. (1959). Damping of Plate Flexural Vibrations by

Means of Viscoelastic Laminae. Structural damping, 3, 44–87. Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Damping+of+P

late+Flexural+Vibrations+by+Means+of+Viscoelastic+Laminae#0

Saridakis, K. M., & Dentsoras, A. J. (2006). Integration of fuzzy logic, genetic algorithms

and neural networks in collaborative parametric design. Advanced Engineering

Informatics, 20(4), 379–399. doi:10.1016/j.aei.2006.06.001

Scott, D. W. (1992). Multivariate Density Estimates. New York: John Wiley & Sons.

Shahan, D.W., & Seepersad, C. C. (2010a). Implications of Alternative Multilevel Design

Methods for Design Process Management. Concurrent Engineering, (512), 1–35.

Retrieved from http://cer.sagepub.com/content/18/1/5.short

182

Shahan, D.W., & Seepersad, C. C. (2010b). Bayesian Network Classifiers for Set-based

Collaborative Design. In ASME Design Engineering Technical Conferences and

Computers in Engineering Conference (pp. 1–11). ASME. Retrieved from

http://link.aip.org/link/abstract/ASMECP/v2010/i44090/p523/s1

Shahan, D. W., & Seepersad, C. C. (2012). Bayesian Network Classifiers for Set-Based

Collaborative Design. Journal of Mechanical Design, 134(7), 071001.

doi:10.1115/1.4006323

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel Methods for Pattern Analysis (1st ed.).

Cambridge, UK: Cambridge University Press.

Silverman, B. (1986). Density Estimation for Statistics and Data Analysis. London:

Chapman and Hall.

Simpson, T., Maier, J., & Mistree, F. (2001). Product Platform Design: Method and

Application. Research in engineering Design, 13(1), 2–22. Retrieved from

http://www.springerlink.com/index/pdf/10.1007/s001630100002

Simpson, T., Rosen, D., Allen, J., & Mistree, F. (1998). Metrics for Assessing Design

Freedom and Information Certainty in the Early Stages of Design. Journal of

Mechanical Design, 120(4), 628–635. Retrieved from

http://www.srl.gatech.edu/publications/1996/fm.dr.ja.simpson.confpro.DTM1521.

1996.pdf

Skowronski, V. J., & Turner, J. U. (1997). Using Monte-Carlo variance reduction in

statistical tolerance synthesis. Computer-Aided Design, 29(1), 63–69.

doi:10.1016/S0010-4485(96)00050-4

183

Sobek, D. K., Ward, A. C., & Liker, J. K. (1999). Toyota’s Principles of Set-Based

Concurrent Engineering. Sloan Management Review, 40(2), 67–84. Retrieved

from http://6sigma.mty.itesm.mx/Toyotas.pdf

Sobieszczanski-Sobieski, J, & Kodiyalam, S. (1999). BLISS/S: A New Method for Two-

Level Structural Optimization. AIAA/ASME/ASCE/AHS/ASC Structural

Dynamics, and Materials Conference (Vol. 21, pp. 1–13). St. Louis, MO.

Retrieved from http://www.springerlink.com/index/DDPDB7DB7NY71CKN.pdf

Sobieszczanski-Sobieski, Jaroslaw. (1988). Optimization by Decomposition: A Step from

Hierarchic to Non-Hierarchic Systems. Second NASA/Air Force Symposium on

Recent Advances in Multidisciplinary Analysis and Optimization (p. NASA TM–

101494. NASA CP–3031.). Hampton, VA. Retrieved from

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015775_1989015775.pd

f#page=64

Suh, N. (1990). The Principles of Design. New York: Oxford University Press.

Sweetman, B. (2012). JSF Acquisition Malpractice. Aviation Weekly/Ares Blog.

Retrieved October 10, 2012, from

http://www.aviationweek.com/Blogs.aspx?plckBlogId=Blog:27ec4a53-dcc8-

42d0-bd3a-

01329aef79a7&plckController=Blog&plckScript=blogScript&plckElementId=blo

gDest&plckBlogPage=BlogViewPost&plckPostId=Blog%3A27ec4a53-dcc8-

42d0-bd3a-01329aef79a7Post%3A2a8f87e0-ad8d-4b78-97ac-f87851e1e0c0

184

Taguchi, G., & Cariapa, V. (1993). Taguchi on Robust Technology Development. Journal

of Pressure Vessel Technology, 115(August), 336–337. Retrieved from

http://link.aip.org/link/?JPVTAS/115/336/1

Thurston, D. L. (1991). A Formal Method for Subjective Design Evaluation with

Multiple Attributes. Research in Engineering Design, 3(2), 105–122.

doi:10.1007/BF01581343

Toni, A. De, & Tonchia, S. (1998). Manufacturing flexibility: a literature review.

International Journal of Production …, (November 2012), 37–41. Retrieved from

http://www.tandfonline.com/doi/abs/10.1080/002075498193183

Tsui, K. L., Allen, J. K., Chen, W., & Mistree, F. (1996). A Procedure for Robust Design:

Minimizing Variations Caused by Noise Factors and Control Factors. ASME

Journal of Mechanical Design, 118, 478–485. Retrieved from

http://www.srl.gatech.edu/publications/1996/fm.ja.chen.journ.ASME.vol118.1996

.pdf

Voigt, W. (1889). Uber die Beziehung Zurischen den Beiden Elastizitäts Konstanten

Isotroperkörper. Wied. Ann, 38, pp. 573–587.

von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior.

Princeton University, Princeton (2nd ed.). Princeton, NJ: Princeton University

Press. Retrieved from http://library.wur.nl/WebQuery/clc/482840

Wallace, D. R., Jakiela, M. J., & Flowers, W. C. (1996). Design search under

probabilistic specifications using genetic algorithms. Computer-Aided Design,

28(5), 405–421.

185

Ward, A. C., Lozano-Perez, T., & Seering, W. (1990). Extending the Constraint

Propagation of Intervals. Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, 4(1), 47–54. Retrieved from

http://journals.cambridge.org/production/action/cjoGetFulltext?fulltextid=419868

8

Ward, A. C., Liker, J., Cristiano, J., & Sobek, D. (1995). The Second Toyota Paradox:

How Delaying Decisions Can Make Better Cars Faster. Sloan Management …,

36(3), 43–61. Retrieved from

http://www.columbia.edu/itc/sociology/watts/g9058/client_edit/ward_et_al.pdf

Wood, K. L., & Antonsson, E. K. (1989). Computations with imprecise parameters in

engineering design: background and theory. ASME Journal of Mechanisms,

Transmissions, and Automation in Design, 111(4), 616–625. Retrieved from

http://www.design.caltech.edu/Research/Publications/88a.pdf

Wood, W. H., & Agogino, A. M. (2005). Decision-Based Conceptual Design: Modeling

and Navigating Heterogeneous Design Spaces. Journal of Mechanical Design,

127(1), 2. doi:10.1115/1.1799612

Wujek, B. A., Renaud, J. E., Batill, S. M., & Brockman, J. B. (1996). Concurrent

Subspace Optimization Using Design Variable Sharing in a Distributed

Computing Environment. Concurrent Engineering, 4(4), 361–377.

