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In Chapter 1, I investigate whether returns of strategies based on asset pricing

anomalies exhibit time series persistence which can be attributed to flow-induced

trading by mutual funds. I find persistence for thirteen characteristics, which is

statistically significant for five including size, corporate investment, and bankruptcy

likelihood. The persistence is not explained by individual stock momentum and is

not limited to certain calendar months. The return predictability can be used to

construct new trading strategies, which on average earn 4.5% annually. A price

pressure measure of mutual fund flow-driven trading explains a substantial part of

the strategy performance persistence.

In Chapter 2, we propose a new approach for estimating expected returns

on individual stocks from firm characteristics. We treat expected returns as latent

variables and develop a procedure that filters them out using the characteristics as

signals and imposing restrictions implied by a one factor asset pricing model. The

estimates of expected returns obtained by applying our method to thirteen asset

pricing anomalies generate a wide cross-sectional dispersion of realized returns. Our
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results provide evidence of strong commonality in the anomalies. The use of portfolios

based on the filtered expectations as test assets increases the power of asset pricing

tests.

In Chapter 3, we examine the sensitivity of fourteen asset pricing anomalies

to extreme observations using robust regression methods. We find that although all

anomalies except size are strong and robust for stocks with presumably low returns,

most of them are sensitive to individual influential observations for stocks with pre-

sumably high returns. For some anomalies, extreme observations distort regression

results for all stocks and even portfolio returns. When the impact of such obser-

vations is mitigated, eight anomalies become positively related to expected returns

for stocks with low characteristics meaning that these anomalies have an inverted

J-shaped form. Chapter 4 concludes by summarizing the main contributions of three

chapters and their implications.
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Chapter 1

Strategy Performance Persistence and Mutual

Fund Price Pressure

1.1 Introduction

Predictability of asset prices is one of the most important and challenging

questions in financial economics. In particular, substantial work has focused on

the understanding of the relative performance of common stocks of US companies.

Beginning with the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and

Lintner (1965), rational models have postulated that differences in expected stock

returns should reflect only their loadings on risk factors. However, research has

uncovered a substantial number of characteristics which predict future stock returns,

even after controlling for known measures of risk.1 Whether capturing additional

sources of risk or originating from behavioral biases, these characteristics can be

used to create implementable strategies. Such strategies are becoming increasingly

popular among institutional and retail investors.

In this study, I investigate whether flow-induced trading by mutual funds gen-

erates persistence in returns of fourteen characteristic-based strategies. Specifically,

1Subrahmanyam (2010) surveys the literature and cites more than 50 variables used to forecast
returns. McLean and Pontiff (2013) study the robustness of 82 anomalies following the initial
publication, and Hand, Green, and Zhang (2012) study the properties of more than 330 predictive
variables.
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when a particular strategy performs well, retail clients invest in the funds following

this strategy. In turn, funds increase their holdings of the strategy, creating price

pressure and driving up its future performance. As a consequence, the future returns

of a strategy can be predicted by its past returns and a measure of expected price

pressure based on the mutual fund prior performance and holdings.

The strategy performance arises as a consequence of institutional frictions

faced by mutual fund managers. Previous literature shows that fund flows are pre-

dictable, as retail clients, due to rational or behavioral reasons, tend to invest in

funds based on their past performance.1 Hence, returns of a particular strategy pre-

dict flows into funds, to the extent that these funds follow this strategy. However,

mutual funds are restricted in their ability to respond to expected inflows and out-

flows as they are constrained in borrowing to scale up their positions or to return cash

to their investors. As fund managers are also discouraged from keeping any part of

their portfolio in cash, they can only react to flows by increasing or decreasing their

existing stock holdings. As funds are likely to maintain the same portfolio weights,

their flow-driven buying or selling of a particular strategy is predictable by its past

performance. In the presence of imperfect stock liquidity this flow-induced trading

may create price pressure, which may explain the continuation in the performance

of the strategy.

To test the prediction of short-term strategy performance persistence, for

each characteristic I regress the return of the strategy in the current month on its

1See Chevalier and Ellison (1997) and Sirri and Tufano (1998)
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cumulative return over the past twelve months. The coefficient is positive for almost

all fourteen anomalies and economically and statistically significant for five including

strategies based on size, asset growth, investment-to-assets ratio, abnormal capital

investments, and bankruptcy likelihood. The continuation is also not concentrated in

any particular calendar month, although it is most strong in December. On average,

the persistence is significant for four lags and insignificant for higher lags, which is

consistent with the short-term underreaction.

The strategy performance persistence is not explained by the momentum of

individual stocks as I still find it after adjusting strategy returns for momentum in

stocks comprising the strategy. In addition, I randomly split the set of all firms into

two nonoverlapping samples and for each characteristic construct two strategies based

on these two subsamples. Then, I use the past return of one subsample strategy to

predict the current return of the other one. I find very similar predictability, which

implies that most of the persistence comes from strategy stocks predicting returns

of one another and not only from stocks predicting their own returns.

I conduct these analyses for fourteen prominent asset pricing anomalies which

can be divided into five groups. The first group contains the three most researched

anomalies: size, book-to-market, and momentum. The second group contains three

corporate investment anomalies: total asset growth, investments-to-assets ratio, and

abnormal capital investments. The third group contains two financing anomalies:

net stock issues and composite stock issuance. The fourth group contains three

accounting anomalies: accruals, net operating assets, and profitability. The fifth

and last group contains three anomalies broadly related to uncertainty about the
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firm: idiosyncratic volatility, Ohlson’s score measuring the bankruptcy likelihood,

and dispersion in analysts’ forecasts.1

To gauge the economic significance of performance persistence, I investigate

whether it can be used to create new trading strategies based upon the underlying

strategies. I construct new persistence strategies, which consist of buying underlying

strategies following positive prior returns and selling them otherwise. I adjust the

prior twelve month return by its trailing median to ensure that a persistence strategy

holds and shorts the underlying strategy in equal proportion. Otherwise, a positive or

negative average exposure to the base strategy will imply significant average returns

for a persistence strategy even in the absence of return predictability. The persistence

strategy with the highest average return of 72 bps per month (t-statistic=3.28) is

based on size. Across all characteristics, the average raw return for the new strategies

is 37 bps (t-statistic=3.40), and the book-to-market-size-momentum adjusted return

is 24 bps (t-statistic=2.98).

Next, I examine whether flow-induced trading by mutual funds is responsible

for the strategy performance persistence. I compute a measure of expected price

pressure for each strategy. I use previous fund performance as a predictor of future

flows and assume that flows are allocated in accordance with prior portfolio weights.

Since the strategy performance and price pressure are highly correlated, I first regress

the return of the strategy on the price pressure, and then I regress residuals from this

regression on the prior strategy return. I find that for all characteristics the coefficient

1A very similar set of characteristics is studied in different contexts by Stambaugh, Yu, and
Yuan (2012), Lewellen (2013), and Hou, Xue, and Zhang (2012).
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on the prior strategy return becomes lower, and, on average, its magnitude is reduced

by two-thirds. The findings are stronger in the second half of the sample, when

mutual funds became more important. In this subperiod, expected price pressure

renders prior strategy return insignificant and close to zero.

Among institutional investors, mutual funds are particularly sensitive to cap-

ital flow shocks. Hence, other institutions such as hedge funds, pension funds, and

insurance companies may provide liquidity to mutual funds by taking the other

side of flow-induced trades. I investigate this possibility by considering the aggre-

gate institutional investors’ demand in response to the past strategy performance.

Specifically, I regress the institutional demand for each strategy on the prior twelve

month cumulative return of the strategy. I find the coefficient to be positive for

almost all characteristics and statistically significant for ten out of fourteen. Thus,

in aggregate, institutional investors appear to trade in the same direction as mutual

funds, possibly contributing to the price pressure.

The research in this chapter is related to several strands of literature. One

strand studies the price impact of institutional flows on individual stocks (Coval and

Stafford, 2007; Frazzini and Lamont, 2008; Lou, 2012). I build on these results by

looking at the implications of fund flows at the strategy level. I argue that the same

mechanism is responsible for the persistence in returns of strategies. I show that this

persistence is different from individual stock momentum, which previous research also

attempted to explain with flows (Lou, 2012). Another strand of literature studies the

predictability of returns of characteristic-based portfolios. Moskowitz and Grinblatt

(1999) find momentum in industry portfolios: the past winning industries continue
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to outperform past losing industries. Lewellen (2002) uncovers momentum among

book-to-market and size sorted portfolios.1 To my knowledge, all previous research

only considered book-to-market and size anomalies, and this is the first study to

show that the time series performance persistence of strategies is pervasive among a

much larger set of characteristics.

The rest of this chapter is organized as follows. Section 1.2 describes the data

and characteristic-based portfolios. Section 1.3 establishes strategy performance per-

sistence. Section 1.4 explores the connection between strategy performance persis-

tence and trading by mutual funds and institutional investors.

1.2 Characteristics, Data, and Average Strategy Returns

1.2.1 Characteristics

The fourteen characteristics are divided into five groups. The classical group

consists of size S, book-to-market B/M , and momentum Mom. These three char-

acteristics underlie the Fama and French (1993) three factor model and are used

to construct DGTW benchmark portfolios. Size anomaly captures the tendency for

small stocks to outperform large stocks (Banz, 1981; Reinganum, 1981). Book-to-

market ratio is a measure of the fundamental value to the market price. High value

stocks have on average higher returns than low value (growth) stocks (Rosenberg,

Reid, and Lanstein, 1985). Jegadeesh and Titman (1993) documented the interme-

diate term momentum, i.e. the ability of stocks with relatively high prior returns

1See also Chen and Bondt (2004) and Wahal and Yavuz (2013).
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(winners) to continue outperforming stocks with relatively low prior returns (losers).

Investment variables capture the firm’s capital investment. This group con-

sists of total asset growth AG, abnormal capital investments CI, and investments-to-

assets ratio I/A. Cooper, Gulen, and Schill (2008) suggested total asset growth as a

comprehensive measure of investment, while abnormal capital investments (Titman,

Wei, and Xie, 2004) is equal to the deviation of the recent capital expenditures from

their historical mean, and investments-to-assets ratio (Lyandres, Sun, and Zhang,

2008) is the capital investment in the prior year. All three characteristics are nega-

tively related to future stock returns.

Issuance characteristics capture the firm’s equity issuance activity with net

stock issues NS and composite stock issuance ι. Net stock issues (Pontiff and

Woodgate, 2008) measures the issuance in the previous year and composite stock

issuance (Daniel and Titman, 2006) in the previous five years. Both are negatively

related to future stock returns.

Two accounting anomalies capture the firm’s earnings management and its

cumulative effect on the balance sheet with accruals Acc (Sloan, 1996) and net oper-

ating assets NOA (Hirshleifer, Hou, Teoh, and Zhang, 2004), respectively. Both are

negatively related to future stock returns. Return on assets ROA (Fama and French,

2006, 2008; Chen, Novy-Marx, and Zhang, 2010), an accounting measure of the firm’s

performance, also belongs to this group, but is positively related to stock returns.

Idiosyncratic volatility IdV ol, Ohlson’s O-score, and dispersion in analysts’ forecasts

D are grouped together as they broadly quantify uncertainty about the firm. The

idiosyncratic volatility anomaly was first documented by Ang, Hodrick, Xing, and
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Zhang (2006) as the tendency of stocks with high residual daily return volatility to

deliver relatively low future returns. Ohlson’s O-score measures the likelihood of

financial distress. Dichev (1998) found that distressed firms underperform healthier

firms on average. Diether, Malloy, and Scherbina (2002) demonstrate that firms with

more disagreement among analysts about future earnings tend to have lower future

returns. The details of the construction of all characteristics are provided in the

Appendix.

1.2.2 Data and Sample Construction for Characteristics and Stocks

This subsection describes the data sources and sample construction for stock

characteristics and returns. All characteristics except dispersion in analysts’ forecasts

are constructed using Center for Research in Security Prices (CRSP) and Compustat

datasets. Dispersion in analysts’ forecasts is based on the data from Institutional

Brokers Estimate System (I/B/E/S).

The CRSP sample includes only firms traded on NYSE, AMEX, and NAS-

DAQ (CRSP EXCHCD = 1, 2, or 3) with common stocks (CRSP SHRCD = 10 or

11). The sample excludes financial firms (CRSP SICCD between 6000 and 6999) as

they are excluded for the majority of the considered characteristic variables. These

screens are set for returns in month t based on the data available at the end of

month t − 1. Portfolio returns are based on the monthly individual stock returns

with dividends (CRSP RET) adjusted by the delisting return (CRSP DLRET).

In some tests, individual stock returns are adjusted for their size, book-to-

market, and momentum benchmarks following the methodology of Daniel, Grin-
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blatt, Titman, and Wermers (1997) (abbreviated DGTW) and Wermers (2004).1

The resulting returns are denoted DGTW-adjusted. The basic methodology is as

follows: DGTW create 125 benchmark portfolios by sorting sequentially stocks into

five groups based on size, book-to-market, and momentum. They use only NYSE

firms to compute portfolio breakpoints for each characteristic variable and value-

weight portfolio returns. The DGTW-adjusted return for each stock is equal to its

raw return minus the return of the corresponding benchmark.

Compustat annual data in calendar year t are taken from reports with fiscal

year ends in year t−1 (based on the Compustat date variable DATADATE). I use a six

month gap to allow for the possible late submission of accounting statements. Thus,

annual accounting variables are used from the end of June of year t through the end

of May of year t+ 1. All characteristics based on the Compustat annual data follow

this rule with the addition of composite stock issuance. Compustat quarterly data

are taken from the most recent quarterly earnings report (based on the Compustat

date variable RDQ) and are used for the following three months or until the next

report, whichever comes sooner. All characteristic variables are separately matched

with the stock returns in the current month to compute portfolio returns. Therefore,

the sample of firms used to construct portfolios varies by the characteristic.

Characteristics book-to-market, total asset growth, abnormal capital invest-

ments, investments-to-assets ratio, net stock issues, composite stock issuance, accru-

als, and net operating assets are updated annually at the end of June. Size, mo-

1The DGTW benchmarks are available for download on Russ Wermers’ website.
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mentum, idiosyncratic volatility, and dispersion in analysts’ forecasts are updated

monthly, and return on assets and O-score quarterly. Portfolio returns are computed

from July 1976 to December 2011 for all characteristics except O-score and disper-

sion in analysts’ forecasts. For these characteristics, the time-series of returns start

in January 1977 and 1978, respectively.

To reduce the dataset errors for abnormal capital investments and total asset

growth, the samples of these two characteristics are truncated each month by dis-

carding the one percent of observations with the lowest and the one percent with the

highest values of these variables. To reduce the effect of bid-ask bounce on momen-

tum and idiosyncratic volatility, stocks with prices below or equal to $5 at the end

of the previous month are excluded for the samples of these two characteristics.

Daily and monthly risk-free rateRFt, Fama and French (1993) factorsMKTRFt,

SMBt, HMLt, and the Carhart (1997) momentum factor UMDt are downloaded

from Wharton Research Data Services (WRDS).1

1.2.3 Mutual Fund and Institutional Data

This subsection explains mutual fund and institutional holdings data sources.

Mutual fund equity holdings come from Thomson Financial, and mutual fund re-

turns and characteristics are taken from the CRSP Survivor-Bias-Free Mutual Fund

database. These two datasets are combined using the Mutual Fund Links (MFLINKS)

matching dataset originally constructed by Russ Wermers.

1WRDS obtained these data from Ken French’s website.
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Thomson Financial compiled holdings from SEC N–30D form filings, which

are required to be submitted semi-annually, although some funds voluntarily report

quarterly. If the recorded report date is different from the end-of-quarter filing date,

I assume that the manager did not trade between the report and filing dates.

Mutual fund gross monthly return is equal to the sum of the net return

(CRSP MRET) and 1/12 of the expense ratio (CRSP EXP RATIO). CRSP data are

aggregated for funds with multiple share classes. Specifically, fund’s total net assets

(CRSP TNA) is equal to the sum of the TNAs of all share classes. Similarly, the

fund return is the average of returns of its share classes weighted by their TNA. The

time period for mutual fund holdings starts in the quarter ending in December 1979

and ends in the quarter ending in September 2011 for a total of 128 quarters.

Institutional equity holdings come from Thomson Financial, which collects

quarterly 13F filings of investment managers to the SEC. According to Securities

Exchange Act Section 3(a)(9) and Section 13(f)(5)(A), an institutional investment

manager is an entity that has investment discretion over the funds that it does not

directly own. This broad definition captures banks, insurance companies, mutual

fund companies, pension funds, and university endowments. Companies managing

several mutual funds file holdings aggregated across all their funds and other ac-

counts. Only managers with a portfolio valued at $100 million or more are required

to file 13F form to disclose their holdings. They can omit small holdings (less than

10,000 shares or $200,000) and securities not included on the 13F disclosure list,

which mostly consists of equities. To use the most recent holdings only reports filed

at the end of the quarter are used, which eliminates about 5% of the observations.
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The time period for 13F holdings starts in the quarter ending in March 1980 and

ends in the quarter ending in December 2011 for a total of 128 quarters.

1.2.4 Average Returns of Characteristic-based Portfolios

This subsection reports average portfolio returns for characteristic-based port-

folios. Using a particular characteristic, firms are sorted at the end of month t − 1

to form quintile portfolios P1 to P5. Following Fama and French (2008), portfolio

breakpoints are determined using all stocks except for the micro group. The market

capitalization of micro stocks is in the lowest market capitalization quintile of firms

traded on the NYSE. Equal-weighted average raw and DGTW–adjusted returns are

computed at the end of month t for each portfolio and characteristic. Long-short

zero-cost portfolio P1-P5 is created by investing $1 in portfolio P1 and selling $1

of portfolio P5. As I explained in the construction of the characteristics, standard

definitions of book-to-market, momentum, and return on assets are multiplied by

negative one to make the return of portfolio P1-P5 consistently positive across all

anomalies.

This methodology is a compromise between equal-weighting and value-weighting

portfolios using all stocks for breakpoints. As firm size is highly skewed, value-

weighting tends to put the most weight on a few very large firms. Hence, for most

characteristics, average returns are sensitive to the value-weighting methodology,

which may reduce statistical power in the tests below. On the other hand, equal-

weighted portfolios are likely to consist mostly of extremely small less liquid stocks,

which account for 60% of all stocks, but only for 3% of aggregate market capitaliza-
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tion (Fama and French, 2008). Since the dispersion in the characteristic variables is

higher among micro stocks, excluding them from the breakpoint sample ensures that

they do not dominate portfolios P1 and P5, therefore these portfolios contain more

medium and large firms.

Panel A of Table 1.1 shows average raw monthly returns for each portfolio. To

be included in the sample, each portfolio is required to have twelve months of previous

returns. Thus, the sample period is the same as in tests which use the cumulative

return over the previous twelve months as an independent variable. In line with the

previous research, all considered characteristics are strongly negatively related to

raw stock returns, as evidenced by the highly statistically significant average returns

for almost all long-short portfolios P1-P5. As discussed previously, since the sample

used to set portfolio breakpoints excludes micro stocks, the extreme portfolios contain

more large stocks with lower returns, making the average return of portfolio P1-P5

lower in some cases. Notably, the return spread for S is 33 bps per month with a

t-statistic of 1.36. If all stocks are used for setting portfolio breakpoints, then the

spread for the size is much higher at 93 bps with a t-statistic of 3.14 for the same time

period. Similarly, the return spread for IdV ol is 41 bps, which is lower than found in

the previous literature. The returns decrease relatively monotonically from portfolio

P1 to P5 for most characteristics. However, the characteristic-return relationship

tends to be nonlinear with the most variation coming from portfolios P1 and P5,

and much less from P2 to P4. For example, for book-to-market B/M the average

return for P1-P5 is 105 bps, but for P2-P4 is 39 bps. Thus, the rest of the chapter

focuses on the returns of portfolios P1-P5.
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Panel B shows the average portfolio returns adjusted for size, book-to-market,

and momentum. The DGTW-adjusted returns of portfolios P1 to P5 noticeably

decrease, but the average return of P1-P5 does not decrease as much and is still

significant for most characteristics. For example, for AG, the average return of

portfolio P1 decreases from 172 bps to 47 bps and P5 from 74 bps to -29 bps,

but P1-P5 is reduced from 98 bps to a still high 76 bps. Overall, all examined

characteristics are different from the three prominent anomalies forming the basis

for the most popular factor model of Fama and French (1993).

Both average raw and DGTW-adjusted returns vary across fourteen char-

acteristics, even though they are computed almost over the same periods. This is

not surprising in light of varying economic motivations and explanations for consid-

ered anomalies. Hence, studying only one time-series of average characteristic-based

portfolios P1-P5 is likely to ignore the variation across these portfolios for different

anomalies. Thus, in the subsequent analysis the time-series properties of portfolios

P1-P5 are investigated separately for each of the fourteen characteristics as well as

in combination.

1.3 Persistence in the Performance of Characteristic-based
Strategies

1.3.1 Short-term Performance Persistence of Strategies

This subsection considers whether the cumulative return of portfolio P1-P5

over the previous twelve months can predict its return in the current month. For
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each characteristic the following regression model is estimated

Rt = α0 + α1 ∗Rt−12,t−1 + εt,

where Rt is the return of the long-short portfolio P1-P5 in month t, and Rt−12,t−1 is

the cumulative return over the previous twelve months of this portfolio. Table 1.2

presents the intercept α0 and regression coefficient α1 (both multiplied by 100) from

this regression. In the first two columns raw returns are used both on the left-hand

side and right-hand side. Thus, this specification is headed (raw, raw). Standard

errors are adjusted for autocorrelation in residuals for up to three lags following

Newey and West (1987).1. *, **, and *** indicate statistical significance at 10%, 5%,

and 1% level, respectively.

The null hypothesis of no predictability is rejected for five characteristics (size

S, total asset growth AG, abnormal capital investments CI, investments-to-assets

ratio I/A, and Ohlson’s O-score O) by the corresponding statistically significant

coefficients α1. The coefficient is positive but insignificant for eight more charac-

teristics (book-to-market B/M , momentum Mom, net stock issues NS, composite

stock issuance ι, accruals Acc, net operating assets NOA, return on assets ROA,

and dispersion in analysts’ forecasts D). The remaining characteristic, idiosyncratic

volatility IdV ol, has a negative but statistically insignificant coefficient.

Significant α1 estimates vary from 1.49 for net operating assets NOA to 3.23

for total asset growth AG. A coefficient of persistence α1 of 2.27 for size S implies that

1Regression residuals are heteroskedastic so weighted least squares may improve the efficiency
of estimates, which is what I find, when the weights are set to be inversely proportional to the
residuals.
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if its prior twelve month return Rt−12,t−1 increases by its standard deviation of 23%,

current month return Rt increases by 52.2 bps on average. The last row All shows

coefficients from panel regressions using all fourteen strategies with year-month fixed

effects and standard errors clustered by strategy. This methodology controls both

for possible cross sectional correlation and serial correlation in regression residuals

(Petersen, 2009). The null hypothesis of no persistence for all strategies is rejected at

a 1% level with a coefficient of 1.65 and a t-statistic of 5.88. Overall, the short-term

persistence in the performance of strategies is pervasive and economically meaningful.

The average portfolio return, reported in Table 1.1, is equal to the sum of α0

and α1 multiplied by the average return in the previous twelve months. It follows

that how much the intercept α0 is lower than the average return depends on the

strength of the persistence and the magnitude of the prior twelve month return.

This intuition is confirmed in the first column, showing the reduced intercept α0 for

most characteristics.

When the cumulative return of portfolio P1-P5 over the previous twelve

months Rt−12,t−1 is positive, portfolios P1 and P5 tend to hold individual stocks

with high and low cumulative returns, respectively. A similar intuition applies when

Rt−12,t−1 is negative. Thus, it appears that the persistence in the returns of the

strategies may be driven by the momentum in individual stocks (Jegadeesh and Tit-

man, 1993). In addition, the persistence may come from the correlation with size

S and book-to-market B/M , which themselves exhibit persistence with coefficients

of 2.27 and 2.26, respectively.1 Some evidence for this correlation, discussed in sub-

1Specifically, suppose that Rt = at + γ ∗ ft, where ft is a risk factor, and at is the residual.
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section 1.2.4, is that average returns of characteristic-based portfolios P1-P5 are

still significant, but are slightly lower after adjustment for size, book-to-market, and

momentum.

To address this possibility in the next specification, the left-hand side returns

are adjusted for size, book-to-market, and momentum (DGTW-adjusted). Hence,

this specification is denoted (DGTW , raw) with size S, book-to-market B/M , and

momentum Mom excluded. While the magnitude of the α1 coefficients is somewhat

lower, the same characteristics remain significant. The panel regression confirms

that persistence is robust to this adjustment with only a slightly lower coefficient

of 1.33 (t-statistic=5.01). To explore this adjustment further, the next specification

(DGTW , DGTW ) uses DGTW-adjusted on both the left-hand side and right-hand

side with consistent results.

Conceptually, strategy performance persistence is different from momentum

in individual stocks if it can be substantially attributed to strategy stocks predicting

returns of one another and not only to stocks predicting their own returns. To test

this explanation the set of all firms is randomly split into two nonoverlapping samples

to construct two strategies R1
t and R2

t for each characteristic. Then, the following

time series regression for each characteristic is executed

R1
t = α0 + α1 ∗R2

t−12,t−1 + εt

along with a panel regression using all fourteen strategies with year-month fixed

Cov(Rt, Rt−1) = Cov(at, at−1)+γ(Cov(ft, at−1)+Cov(ft−1, at))+γ
2Cov(ft, ft−1). Hence, portfolio

P1-P5 persistence Cov(Rt, Rt−1) > 0 can stem from the factor portfolio persistence Cov(ft, ft−1) >
0.

17



effects. R1
t is the return in month t of the long-short portfolio P1-P5 based on the

first sample, and R2
t−12,t−1 is the cumulative return over the previous twelve months

of the long-short portfolio based on the second sample. This procedure is repeated

1000 times. Table 1.3 reports average coefficients and average t-statistics of the

corresponding 1000 estimates. For most characteristics coefficients α1 are virtually

identical to the full sample estimates reported in Table 1.2. For example, in the

(raw,raw) specification for size S the average persistence coefficient is 2.24, which is

very close to 2.27 for the whole sample test results. For the same specification the

panel coefficient estimate is 1.58, similarly close to 1.65 for the whole sample. The

Figure 1.1 shows histograms of coefficients from 1000 repetitions. The plots display

tight distributions of estimates with only a small proportion being negative, which

implies that strong persistence is found in most random splits. Overall, strategy

performance persistence cannot be fully attributed to individual stock momentum

and is robust to the adjustment for size and book-to-market anomalies.

1.3.2 Persistence Strategies based on Characteristic-based Strategies

To gauge the economic significance of performance persistence, I investigate

whether it can be used to construct new persistence strategies based upon the under-

lying strategies. Perhaps the simplest persistence trading strategy consists of buying

the underlying strategy following positive prior returns and selling it otherwise. How-

ever, positive or negative average exposure to the base strategy implies significant

average returns for the new strategy even in the absence of persistence. Hence, it

is important that a persistence strategy holds and shorts the underlying strategy in
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equal proportion.

Motivated by this observation, in Panel A of Table 1.4 I test an alternative

specification for the short-term persistence

Rt = α0 + α1 ∗ sign(Rt−12,t−1 −MedRt−12,t−1) + εt,

whereRt is the return in month t of the long-short portfolio P1-P5, and sign(Rt−12,t−1−

MedRt−12,t−1) is the sign of the cumulative return over the previous twelve months of

this portfolio after subtracting its time-series median. Raw portfolio returns are used

on the left-hand side and right-hand side. In the ‘In Sample’ specification the median

is computed using the full time series of cumulative returns. Thus, by construction,

the sign of the median-adjusted prior return is equal to 1 or -1 exactly half the time.

Based on this specification, the average return of holding the underlying strategy is

equal to .5(α0 + α1) + .5(α0 − α1) = α0. Thus, the intercepts α0 are equal exactly

to the average strategy returns, which were previously reported in Table 1.1. The

average return of a persistence strategy is equal to .5(α0 + α1) − .5(α0 − α1) = α1.

Intuitively, half the time the return of the strategy is higher by α1 than the average

α0, and half the time it is lower by α1. Note that the average return of the persistence

strategy is independent of the average return of the underlying strategy.

The results in Table 1.4 are consistent with the evidence in the previous sub-

section. For the ‘In Sample’ specification coefficients α1 are positive for all charac-

teristics and significant for six (size S, total asset growth AG, investments-to-assets

ratio I/A, net operating assets NOA, return on assets ROA, and Ohlson’s O-score

O). The coefficient α1 estimates vary from 11 bps for net stock issues NS to 72 bps
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for size S. The panel coefficient is 30 bps (t-statistic=5.31).

However, the persistence strategies implied by these results are not imple-

mentable as they require knowledge of the future data. To address this issue in the

‘Out of Sample’ specification the median is based only on the cumulative returns

available in month t − 1. For the first five years of cumulative returns, the ‘Out of

Sample’ median is set equal to zero. The ‘Out of Sample’ coefficients α1 in the fourth

column differ only slightly from the ‘In Sample’ estimates.

Panel B shows the raw and DGTW-adjusted average returns of persistence

strategies. The median is computed as in the ‘Out of Sample’ specification. As pre-

viously argued, if the median is computed precisely, a persistence strategy holds the

underlying strategy exactly half the time, and its average return is equal to the cor-

responding coefficient α1 in Panel A. Column ‘months long’ displays the percentage

of months a given persistence strategy buys the underlying strategy. The average

across all characteristics is 53.1% (row ‘Average’) with the lowest 44.4% for net stock

issues NS and the highest 62.2% for total asset growth AG. Thus, on average, im-

plementable persistence strategies have a slight exposure to the underlying strategy.

The ‘Average’ persistence strategy every month averages the returns of fourteen per-

sistence strategies. The average raw and DGTW-adjusted returns of this persistence

strategy are statistically significant 37 bps and 24 bps, respectively. Overall, the

short-term performance persistence of characteristic-based strategies is economically

significant, as evidenced by significant average returns for the persistence strategies.

To explore the time series dynamics of characteristic-based strategies and

persistence strategies, Table 1.5 shows their average returns in various subperiods.
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In Panel A for each characteristic the full sample is split based on the publication

date of the first academic study describing the anomaly. More attention to the

characteristic may reduce its predictive power, particularly if it arises from behavioral

biases of investors. Column ‘first post year’ shows the first year of the post period

which is set to the year before the publication date. One year adjustment is due

to papers typically receiving significant publicity before appearing in journals. On

average, strategies continue to earn significant returns after the publication, with

the average return decreasing slightly from 67 bps to 56 bps. Similarly, the average

performance of persistence strategies shows a minor change from 40 bps to 39 bps.

However, it is difficult to interpret the returns of the Average strategy, be-

cause the number of anomalies it contains changes over time. This explains why

the average of the reported persistence strategy returns is 54 bps before the publi-

cation and 13 bps after it. To address this concern, in Panel B the time series is

divided into pre and post 1995 subperiods for all characteristics. Interestingly, for

characteristic-based strategies the results are similar with a slight decrease in the

post 1995 period from 68 bps to 57 bps. However, the decline is more dramatic for

the persistence strategies from 44 bps to 29 bps. The potential explanation for this

decline is explored in further analysis below.

1.3.3 Seasonal Patterns

Next, I consider whether there are seasonal patterns in the predictability in

returns of strategies. For example, in January the size effect is particularly strong

(Keim, 1983; Reinganum, 1983), and momentum is particularly weak (Jegadeesh and
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Titman, 1993). To the extent that persistence correlates with these effects, January

results may be weaker or stronger. Since Compustat annual data are updated at the

end of June, returns of Compustat-based characteristics (book-to-market B/M , total

asset growth AG, abnormal capital investments CI, investments-to-assets ratio I/A,

net stock issues NS, composite stock issuance ι, accruals Acc, and net operating

assets NOA) in July may be higher, improving the predictability. Overall, it is

interesting to see whether persistence is restricted to or stronger in certain calendar

months.

To this end, Table 1.6 displays average returns of persistence strategies in

each calendar month. For each characteristic a persistence strategy buys an under-

lying strategy when its ‘Out of Sample’ median-adjusted prior cumulative return

Rt−12,t−1 −MedRt−12,t−1 is positive and sells it otherwise. Raw portfolio returns are

used on the left-hand side and right-hand side. Note that as the number of months in

each regression is reduced by a factor of twelve, the statistical power is substantially

lowered.

In January, six characteristics are positive with two being significant (total

asset growth AG and investments-to-assets ratio I/A), making the return of the

average strategy close to zero with 4 bps. In July ten are positive with four of them

significant (total asset growth AG, net operating assets NOA, return on assets ROA,

and dispersion in analysts’ forecasts D). For the Average strategy, the strongest

months are February (109 bps), September (56 bps), and December (107 bps). The

high return in December may be the result of window dressing by mutual fund

managers at the strategy level at the end of the year. Overall, despite some variation,
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the persistence does not appear to be concentrated in a single month or a small subset

of months with ten months showing positive returns for the Average strategy.

1.3.4 Long-term Performance Persistence of Strategies

In this subsection I test whether persistence of characteristic-based strategies

exists over a horizon of more than one month. Specifically, Panel A of Table 1.7 and

Figure 1.2 show the regression coefficient α1 for each characteristic from the time

series monthly regression

Rt = α0 + α1 ∗Rt−11−k,t−k + εt,

where Rt is the return in month t of the long-short portfolio P1-P5, and Rt−11−k,t−k

is the cumulative return of this portfolio over the period t − 11 − k to t − k with

the lag number k varying from 1 to 12. In both panels, raw returns are used on the

left-hand side and right-hand side. The first column reproduces coefficients α1 from

Table 1.2.

Eleven characteristics continue to be positive at the second lag, and three

are significant (total asset growth AG, investments-to-assets ratio I/A, and Ohlson’s

O-score). The panel regression coefficient is .76 for the second lag, .81 for the third,

and .70 for the fourth. For lags five through seven, I cannot reject the null hypothesis

that the coefficient is zero. Beginning with lag eight there is evidence of reversal with

significantly negative coefficients.

Panel B shows average returns of the persistence strategies, discussed in sub-

section 1.3.2. For each characteristic, a persistence strategy buys an underlying strat-
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egy when its median-adjusted prior cumulative return Rt−11−k,t−k −MedRt−11−k,t−k

is positive and sells it otherwise. The median is based only on the data available in

month t− k. For the first five years of cumulative returns the median is set equal to

zero. The last row shows returns of the Average persistence strategy, which every

month averages the returns of fourteen persistence strategies for a given lag. The

returns of the Average persistence strategy decrease almost monotonically from a

statistically significant 37 bps at lag 1 to an insignificant -3 bps at lag 12. A sim-

ilar pattern is observed for individual strategies. However, there is no reversal at

higher lags, suggesting that this is not a robust finding. Overall, characteristic-based

strategies exhibit significant performance persistence for four to six months.

1.4 Mutual Fund Price Pressure and Institutional Demand

1.4.1 Strategy Performance Persistence and Mutual Fund Price Pressure

Next, I examine more directly the relation between prior strategy returns,

expected fund flows into strategies, and subsequent strategy returns. In order to do

so, I need to compute a measure of mutual fund trading in response to flows. I follow

Lou, 2012 and Shive and Yun, 2013 in the construction of flow-induced trading at

the stock level. Under the assumption that all flows and trading occur at the end of

the quarter, the dollar flow into the mutual fund i in the current quarter is defined

as

fund flowi,t+2 = TNAi,t+2 − TNAi,t−1 ∗ (1 + reti,t+2),

where TNA is measured at the end of months t− 1 and t+ 2, and reti,t+2 is the fund

return measured over the current quarter, i.e. over three months t, t+ 1, and t+ 2.
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To construct a measure of flow-driven trading for a given fund, I also assume

that managers invest all flows in accordance with prior portfolio weights, and the

stock price does not change over the quarter. Under these assumptions, the dollar

value of additional holdings is equal to the product of dollar flows and portfolio

weight. Thus, the number of shares of stock j that may be bought or sold due to

the flows is

stock flowi,j,t+2 =
wi,j,t−1 ∗ fund flowi,t+2

pricei,j,t−1

,

where wi,j,t−1 is the weight of stock j in the mutual fund portfolio and pricei,j,t−1 is

the stock price at the end of month t− 1.

To capture the overall trading due to flows, I aggregate flow-driven buys and

sells across all funds holding a given stock. I scale it by the prior total mutual fund

ownership to control for the liquidity of the stock as mutual funds tend to hold more

liquid assets (Lou, 2012). Therefore, the aggregate flow-driven trading of stock j is

stock flowj,t+2 =
∑
i

stock flowi,j,t+2∑
i sharesi,j,t−1

=
∑
i

sharesi,j,t−1 ∗ fund flow TNAi,t+2∑
i sharesi,j,t−1

,

where fund flow TNAi,t+2 is fund flowi,t+2 scaled by TNAi,t−1, and sharesi,j,t−1

is the number of shares of stock j owned by fund i at the end of month t− 1.

I use the prior fund performance as a predictor of fund flows. Thus, the

expected aggregate flow into stock j is

Et−1[stock flowj,t+2] =
∑
i

sharesi,j,t−1 ∗ Et−1[fund flow TNAi,t+2]∑
i sharesi,j,t−1

,

where Et−1[fund flow TNAi,t+2] is equal to the fund four factor alpha αi,t−1 from

the rolling-window regression over the previous twelve months. Specifically, αi,t−1
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comes from the regression

retm−RFm = αi,t−1+βMKTRF
i,t−1 MKTRFm+βSMB

i,t−1 SMBm+βHML
i,t−1 HMLm+βUMD

i,t−1 UMDm+εm,

where month m = t− 12 to t− 1, retm is the gross monthly fund return, RFm is the

monthly risk-free rate, MKTRFm, SMBm, HMLm are Fama and French (1993)

factors, and UMDm is the Carhart (1997) momentum factor.

The expected fund flow into a characteristic-based strategyEt−1[Strategy F lowt]

is calculated as follows: first, the individual stock level measure is averaged across all

firms in portfolios P1 and P5. Then, portfolio level measure P5 is subtracted from

P1. This procedure mimics the computation of returns for the long-short portfolio

P1-P5. Fund holdings are updated quarterly and returns monthly.

To test whether price pressure from fund flow-driven trading explains the per-

formance persistence of strategies, I estimate the following two time-series regression

models for each characteristic

Rt = α1
0 + α1 ∗ Et−1[Strategy F lowt] + ε1t ,

ε1t = α2
0 + α2 ∗Rt−12,t−1 + εt,

where Rt is the return in month t of the long-short portfolio P1-P5, and Rt−12,t−1 is

the cumulative return of this portfolio over previous twelve months. Raw or DGTW-

adjusted returns are used on the left-hand side and raw returns on the right-hand

side. Table 1.8 presents intercepts α1
0 and α2

0 and regression coefficients α1 and α2

from these regressions.
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Panel A reports estimates based on the full sample 1980-2011. The coefficient

α1 is positive for thirteen characteristics and statistically significant for four (total

asset growth AG, abnormal capital investments CI, investments-to-assets ratio I/A,

and net operating assets NOA). The panel regression coefficient in column All is

equal to 2.31 with a t-statistic of 4.60. At the same time, the coefficient α2 on

the prior strategy return is reduced by two-thirds to .58 compared with Table 1.2.

Similar results are obtained when DGTW-adjusted portfolio returns are used on the

left-hand side.

In Panel B estimation is performed separately for pre 1995 and post 1995

periods. In the second half of the sample mutual funds became more important

market participants as evidenced by the share of the market they held (Lou, 2012).

Accordingly, I find that the price pressure measure in this subperiod renders the prior

return close to zero.1 It is possible that several factors are responsible for strategy

return persistence before 1995, which explains the significant coefficient on the prior

return in the earlier period and overall. However, in the latter subperiod trading by

mutual funds is the dominant explanation for the persistence, which makes the prior

return a noisier predictor of future strategy returns. Overall, this evidence implies

that the price pressure measure substantially reduces the predictive power of prior

strategy returns. These findings support the conjecture that predictable flow-driven

trading is at least partially responsible for the strategy performance persistence.

1Without controlling first for the price pressure, the coefficient on the prior return is 1.00 (t-
statistic=4.1).
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1.4.2 Aggregate Institutional Demand and Prior Strategy Performance

Institutions such as hedge funds, pension funds, and insurance companies

are not as sensitive to the return chasing flows as mutual funds. Hence, they may

alleviate the flow-induced price pressure by trading with mutual funds. To explore

this possibility, I compute the institutional demand for each characteristic-based

strategy, and examine how it depends on the prior strategy returns.

For a given stock i, total institutional ownership sharesi,t is equal to the sum

of the number of shares (Thomson SHARES) held by all 13F institutions at the end

of month t. Institutional holdings are updated quarterly. The institutional demand

for stock i in the current quarter is calculated as

Demandi,t+2 = 100 ∗ shares adji,t+2 − sharesi,t−1

shrouti,t−1

where shares adji,t+2 is sharesi,t+2 corrected for stock splits and stock dividends in

the current quarter using the CRSP adjustment factor (CRSP CFACSHR). shrouti,t−1

is the number of shares outstanding at the end of month t− 1 (CRSP SHROUT).

The institutional demand for a characteristic-based strategy Strategy Demandt+2

is calculated as follows: first, the individual stock demand is averaged across all firms

in portfolios P1 and P5. Then, portfolio level demand P5 is subtracted from P1.

This procedure mimics the computation of returns and expected price pressure for

the long-short portfolio P1-P5.

To study how the institutional demand for a strategy depends on its prior

return, the following regression model is estimated for each characteristic

Strategy Demandt+2 = α0 + α1 ∗Rt−12,t−1 + εt,
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where Rt−12,t−1 is the cumulative return of the long-short portfolio P1-P5 over the

previous twelve months. Table 1.9 presents the intercept α0 and regression coefficient

α1 (both multiplied by 100) from this regression.

Panel A reports estimates based on the full sample 1980-2011. In the second

column the coefficient α1 is positive for all but one characteristic (abnormal capital

investments CI) and is significant for eleven (book-to-market B/M , momentum

Mom, total asset growth AG, net stock issues NS, composite stock issuance ι,

accruals Acc, net operating assets NOA, idiosyncratic volatility IdV ol, Ohlson’s O-

score, and dispersion in analysts’ forecasts D). The panel regression coefficient is

1.22 (t-statistic=4.87). The coefficient α1 = 1.14 for book-to-market implies that an

increase in one standard deviation of prior returns Rt−12,t−1 equal to 19% leads to

an increase in the aggregate demand of .22% of shares outstanding.

The intercept α0 is the fitted institutional demand when the prior returns of

a strategy are zero. It is negative and significant for nine characteristics (book-to-

marketB/M , total asset growth AG, investments-to-assets ratio I/A, net stock issues

NS, composite stock issuance ι, net operating assets NOA, idiosyncratic volatility

IdV ol, Ohlson’s O-score, and dispersion in analysts’ forecasts D). This implies that

institutional investors tend to sell the strategy when it underperforms in the previous

twelve months.

To test whether the demand for strategies based on size S, book-to-market

B/M , and momentum Mom may explain the results for other characteristics, the

demand for each stock is adjusted for the average demand for these three character-

istics. Following a methodology similar to Daniel, Grinblatt, Titman, and Wermers
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(1997), I use Wermers’ individual stock assignments to size, book-to-market, and

momentum quintile portfolios and compute average institutional demand for each of

the 125 portfolios. Then, from each stock’s individual demand I subtract the corre-

sponding size-book-to-market-momentum portfolio demand to calculate the adjusted

demand. The results are shown in the specification ‘Adjusted’ of Table 1.9. The α1

coefficients are reduced in magnitude, but four out of nine individual characteris-

tics and the panel regression coefficient remain statistically significant. In Panel B,

estimation is performed separately for pre 1995 and post 1995 periods with results

being consistent across both subperiods. Overall, institutional demand for strategies

is economically and statistically higher following positive strategy returns.
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Table 1.1: Mean Returns of Characteristic-based Portfolios

Each month stocks are sorted on each of fourteen variables into quintile portfolios P1 to P5 with portfolio breakpoints based

on the sample of all but micro stocks. The market capitalization of micro stocks is in the lowest market capitalization

quintile of firms traded on the NYSE. For portfolios P1 to P5 and zero-cost portfolio P1-P5 equal-weighted raw and

DGTW-adjusted returns are calculated. Panel A and Panel B display averages of monthly time-series of raw and DGTW-

adjusted returns for each portfolio, respectively. Returns are multiplied by 100. Standard errors of the means are

adjusted for autocorrelation in residuals for up to three lags following Newey and West (1987). The t-statistics are shown

in parentheses.

Panel A: Mean Raw Portfolio Returns

S −B/M −Mom AG CI I/A NS ι Acc NOA −ROA IdV ol O D

P1 1.33 1.70 1.73 1.72 1.46 1.60 1.32 1.48 1.41 1.68 1.83 1.18 1.41 1.38

(3.43) (5.11) (4.67) (4.48) (4.17) (4.29) (4.18) (6.20) (3.69) (4.02) (5.75) (6.39) (4.50) (5.03)

P2 1.25 1.45 1.40 1.46 1.45 1.58 1.43 1.39 1.55 1.56 1.56 1.35 1.48 1.26

(3.86) (4.70) (5.17) (5.25) (4.90) (5.18) (4.82) (5.52) (5.06) (4.65) (5.53) (5.47) (4.96) (4.55)

P3 1.21 1.39 1.26 1.42 1.39 1.41 1.54 1.47 1.40 1.46 1.46 1.38 1.51 1.22

(4.08) (4.34) (5.09) (5.13) (4.94) (4.73) (4.78) (5.06) (4.84) (4.86) (5.35) (4.91) (4.81) (3.91)

P4 1.10 1.06 1.12 1.28 1.34 1.33 1.34 1.51 1.39 1.29 1.31 1.38 1.32 1.20

(4.05) (2.98) (4.23) (4.22) (4.63) (4.31) (3.72) (4.40) (4.53) (4.27) (4.52) (4.17) (4.12) (3.46)

P5 1.00 0.65 0.62 0.74 1.27 0.80 0.77 1.07 1.17 0.77 0.82 0.77 1.05 0.90

(4.30) (1.52) (1.83) (1.97) (3.94) (2.21) (1.90) (2.76) (3.33) (2.28) (1.82) (1.94) (2.61) (2.16)

P1-P5 0.33 1.05 1.11 0.98 0.19 0.80 0.54 0.41 0.24 0.91 1.01 0.41 0.36 0.47

(1.36) (5.07) (4.39) (6.51) (2.40) (6.65) (3.60) (1.85) (2.42) (4.38) (4.37) (1.43) (1.94) (2.18)

Panel B: Mean DGTW-adjusted Portfolio Returns

S −B/M −Mom AG CI I/A NS ι Acc NOA −ROA IdV ol O D

P1 0.47 0.25 0.35 0.28 0.20 0.24 0.58 0.72 -0.01 0.36 0.25

(3.70) (3.04) (3.27) (4.15) (2.52) (2.16) (3.47) (12.73) (-0.15) (5.10) (3.82)

P2 0.22 0.21 0.37 0.20 0.12 0.32 0.32 0.41 0.15 0.38 0.16

(3.92) (3.76) (3.42) (3.18) (1.67) (4.68) (4.09) (8.80) (2.80) (7.23) (2.98)

P3 0.21 0.18 0.22 0.36 0.22 0.21 0.20 0.25 0.18 0.32 0.14

(4.06) (3.64) (3.87) (3.66) (3.38) (3.20) (3.39) (4.83) (4.00) (5.69) (2.45)

P4 0.14 0.16 0.18 0.24 0.33 0.17 0.06 0.08 0.21 0.14 0.17

(2.67) (2.81) (3.00) (2.64) (4.47) (3.07) (0.93) (1.33) (4.68) (2.35) (2.20)

P5 -0.29 0.07 -0.26 -0.26 -0.01 0.03 -0.32 -0.21 -0.26 -0.05 -0.07

(-2.68) (1.01) (-2.54) (-1.93) (-0.14) (0.35) (-3.42) (-1.22) (-3.13) (-0.36) (-0.57)

P1-P5 0.76 0.18 0.61 0.54 0.21 0.21 0.90 0.94 0.24 0.40 0.32

(6.18) (2.77) (5.87) (3.95) (1.46) (2.24) (4.98) (5.25) (1.57) (3.12) (2.02)
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Table 1.2: Short-term Performance Persistence of Characteristic-based Strategies

The table presents the intercept α0 and regression coefficient α1 for each characteristic from the

time series monthly regression Rt = α0 +α1 ∗Rt−12,t−1 +εt, where Rt is the return in month t of the

long-short portfolio P1-P5, and Rt−12,t−1 is the cumulative return over the previous twelve months

of this portfolio. (raw, raw) indicates that raw portfolio returns are used on the left-hand and right-

hand side. Similarly, (DGTW , raw) indicates that DGTW-adjusted portfolio returns are used on

the left-hand and raw portfolio returns on the right-hand side. The intercept α0 and regression

coefficient α1 are multiplied by 100. The last row All shows coefficients from panel regressions using

all fourteen strategies with year-month fixed effects and standard errors clustered by strategy. For

individual characteristics, standard errors are adjusted for autocorrelation in residuals for up to

three lags following Newey and West (1987). The t-statistics are shown in parentheses. *, **, and

*** indicate statistical significance at 10%, 5%, and 1% level, respectively.

Anomaly
(raw, raw) (DGTW , raw) (DGTW , DGTW )

int Rt−12,t−1 int Rt−12,t−1 int Rt−12,t−1

S 0.20 2.27**

(0.83) (2.40)

−B/M 0.72** 2.26

(2.07) (1.49)

−Mom 1.01*** 0.67

(3.28) (0.36)

AG 0.51*** 3.23*** 0.42*** 2.35*** 0.46*** 3.17***

(2.94) (3.30) (3.10) (3.40) (3.38) (2.92)

CI 0.12 2.15* 0.11 2.04** 0.10 3.26**

(1.46) (1.68) (1.63) (2.14) (1.44) (2.39)

I/A 0.46*** 2.87** 0.32** 2.47** 0.33** 3.84**

(2.83) (2.11) (2.30) (2.00) (2.33) (1.98)

NS 0.46** 1.15 0.45** 1.20 0.48*** 0.91

(2.16) (0.62) (2.57) (0.71) (2.72) (0.38)

ι 0.36 0.89 0.18 0.61 0.20 0.61

(1.33) (0.47) (1.06) (0.52) (1.22) (0.30)

Acc 0.20** 1.18 0.16* 1.27 0.15* 2.02

(2.14) (0.86) (1.94) (0.95) (1.83) (1.30)

NOA 0.71*** 1.49 0.69*** 1.50 0.55*** 3.05

(3.35) (0.77) (3.87) (0.95) (2.96) (1.42)

−ROA 0.80** 1.70 0.78*** 1.23 0.79** 1.33

(2.27) (1.01) (3.00) (1.03) (2.23) (0.60)

IdV ol 0.41 -0.02 0.28 -0.72 0.32 -2.84

(1.13) (-0.01) (1.42) (-0.48) (1.55) (-0.86)

O 0.27 2.55*** 0.33*** 1.91*** 0.28** 2.66**

(1.59) (2.75) (2.90) (2.87) (2.38) (2.14)

D 0.38 1.56 0.26 1.00 0.24 2.24

(1.59) (1.11) (1.53) (1.02) (1.40) (1.38)

All 1.65*** 1.33*** 2.60***

(5.88) (5.01) (9.18)
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Table 1.3: Short-term Performance Persistence, Sample Split Test

The set of all firms is randomly split into two nonoverlapping samples to construct two strategies

R1
t and R2

t for each characteristic. Then, the following time series regression for each characteristic

is executed R1
t = α0 +α1 ∗R2

t−12,t−1 + εt along with a panel regression using all fourteen strategies

with year-month fixed effects. R1
t is the return in month t of the long-short portfolio P1-P5 based on

the first sample, and R2
t−12,t−1 is the cumulative return over the previous twelve months of the long-

short portfolio based the second sample. This procedure is repeated 1000 times. The table reports

average coefficients and average t-statistics of the corresponding 1000 estimates. The intercept α0

and regression coefficient α1 are multiplied by 100. The t-statistics are shown in parentheses. *,

**, and *** indicate statistical significance at 10%, 5%, and 1% level, respectively.

Anomaly
(raw, raw) (DGTW , raw) (DGTW , DGTW )

int Rt−12,t−1 int Rt−12,t−1 int Rt−12,t−1

S 0.20 2.24**

(0.83) (2.37)

−B/M 0.72** 2.27

(2.08) (1.51)

−Mom 1.02*** 0.64

(3.32) (0.36)

AG 0.54*** 3.00*** 0.44*** 2.21*** 0.48*** 2.92**

(2.96) (3.05) (2.94) (3.00) (3.25) (2.56)

CI 0.13 1.96 0.12 1.80* 0.12 2.70*

(1.40) (1.56) (1.52) (1.77) (1.43) (1.91)

I/A 0.48*** 2.75** 0.34** 2.35** 0.35** 3.50*

(2.83) (2.07) (2.33) (1.96) (2.47) (1.93)

NS 0.47** 1.02 0.46*** 1.06 0.48*** 0.82

(2.23) (0.57) (2.58) (0.66) (2.77) (0.36)

ι 0.36 0.86 0.19 0.58 0.20 0.58

(1.35) (0.46) (1.06) (0.48) (1.23) (0.29)

Acc 0.21** 0.90 0.18* 0.96 0.17* 1.53

(2.04) (0.95) (1.86) (1.03) (1.77) (1.23)

NOA 0.71*** 1.43 0.69*** 1.44 0.57*** 2.86

(3.35) (0.76) (3.77) (0.94) (3.10) (1.40)

−ROA 0.79** 1.73 0.77*** 1.28 0.77** 1.48

(2.28) (1.07) (2.94) (1.09) (2.23) (0.68)

IdV ol 0.44 -0.03 0.30 -0.73 0.34 -2.77

(1.19) (-0.01) (1.49) (-0.49) (1.64) (-0.88)

O 0.28 2.48*** 0.34*** 1.86*** 0.29** 2.51**

(1.57) (2.66) (2.78) (2.70) (2.34) (1.98)

D 0.39 1.60 0.27 1.05 0.25 2.22

(1.61) (1.17) (1.52) (1.07) (1.41) (1.39)

All 1.58*** 1.27*** 2.38***

(5.58) (4.73) (7.23)
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Table 1.4: Persistence Strategies based on Characteristic-based Strategies

Panel A presents coefficients from the regression Rt = α0 +α1 ∗sign(Rt−12,t−1−MedRt−12,t−1)+ εt,

where sign(Rt−12,t−1 −MedRt−12,t−1) is the sign of the cumulative return over the previous twelve

months of the left-hand side long-short portfolio P1-P5 after subtracting its time-series median.

In the ‘In Sample’ specification the median is computed using the full time series of cumulative

returns. In the ‘Out of Sample’ specification the median is based only on the data available in

month t − 1. Raw portfolio returns are used on the left-hand side and right-hand side. The last

row All shows coefficients from panel regressions using all fourteen strategies with year-month fixed

effects. Panel B shows the raw and DGTW-adjusted average returns of new persistence strategies.

For each characteristic a persistence strategy buys an underlying strategy, when its ‘Out of Sample’

median-adjusted prior cumulative return Rt−12,t−1−MedRt−12,t−1 is positive and sells it otherwise.

Column ‘months long’ displays the percentage of months a given persistence strategy buys the

underlying strategy. The last row Average shows the average percentage across all characteristics.

The other two columns of the last row show returns of the Average persistence strategy, which

every month averages the returns of fourteen persistence strategies. Returns are multiplied by 100.

Standard errors are adjusted for autocorrelation in residuals for up to three lags following Newey

and West (1987) except for panel regressions, where they are clustered by strategy. The t-statistics

are shown in parentheses.

Panel A: Short-term Performance Persistence

Anomaly
In Sample Out of Sample

int sign(Rt−12,t−1) int sign(Rt−12,t−1)
S 0.33 0.72*** 0.37 0.74***

(1.45) (3.34) (1.63) (3.40)
−B/M 1.05*** 0.33 1.02*** 0.41**

(5.21) (1.64) (4.95) (1.98)
−Mom 1.11*** 0.36 1.14*** 0.31

(4.48) (1.45) (4.45) (1.26)
AG 0.98*** 0.52*** 0.87*** 0.44***

(7.22) (3.66) (6.42) (3.08)
CI 0.19** 0.11 0.20** 0.12

(2.46) (1.40) (2.55) (1.52)
I/A 0.80*** 0.44*** 0.75*** 0.40***

(7.29) (3.83) (6.77) (3.52)
NS 0.54*** 0.11 0.55*** 0.09

(3.64) (0.75) (3.68) (0.61)
ι 0.41* 0.25 0.40* 0.27

(1.88) (1.18) (1.83) (1.22)
Acc 0.24** 0.13 0.23** 0.13

(2.47) (1.29) (2.42) (1.34)
NOA 0.91*** 0.40* 0.88*** 0.40**

(4.51) (1.96) (4.54) (2.11)
−ROA 1.01*** 0.37* 0.93*** 0.40

(4.49) (1.68) (3.79) (1.64)
IdV ol 0.41 0.17 0.40 0.11

(1.44) (0.64) (1.33) (0.37)
O 0.36** 0.44*** 0.30* 0.47***

(2.04) (2.67) (1.71) (2.82)
D 0.47** 0.31 0.46** 0.28

(2.23) (1.58) (2.15) (1.47)
All 0.30*** 0.32***

(5.31) (5.81)
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Table 1.4: (Continued)

Panel B: Persistence Strategies

Anomaly months long raw DGTW

S 47.2% 0.72**

(3.28)

−B/M 53.5% 0.48**

(2.17)

−Mom 46.5% 0.23

(0.89)

AG 62.2% 0.65** 0.46**

(4.04) (3.58)

CI 47.2% 0.11 0.08

(1.36) (1.27)

I/A 56.1% 0.49** 0.37**

(3.72) (3.34)

NS 44.4% 0.03 -0.03

(0.18) (-0.21)

ι 51.4% 0.28 0.17

(1.27) (1.13)

Acc 52.8% 0.14 0.16*

(1.43) (1.71)

NOA 54.0% 0.47** 0.36*

(2.20) (1.85)

−ROA 60.1% 0.59** 0.51**

(2.52) (2.75)

IdV ol 56.6% 0.16 -0.02

(0.57) (-0.12)

O 56.4% 0.51** 0.40**

(3.01) (3.44)

D 52.7% 0.31 0.21

(1.57) (1.44)

Average 53.1% 0.37** 0.24**

(3.40) (2.98)
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Table 1.5: Persistence Strategies, Subperiods

The table shows average returns of characteristic-based strategies and persistence strategies based

on them in various subperiods. For each characteristic a persistence strategy buys an underlying

strategy, when its ‘Out of Sample’ median-adjusted prior cumulative return Rt−12,t−1−MedRt−12,t−1

is positive and sells it otherwise. In Panel A, for each characteristic the full sample is split based on

the publication date of the academic study describing the anomaly. Column ‘first post year’ shows

the first year of the post period which is set to the year before the publication date. In Panel B,

the time series is divided into pre and post 1995 subperiods for all characteristics. The last row

shows the returns of the Average persistence strategy, which every month averages the returns of

fourteen persistence strategies. Returns are multiplied by 100. Standard errors are adjusted for

autocorrelation in residuals for up to three lags following Newey and West (1987). The t-statistics

are shown in parentheses. *, **, and *** indicate statistical significance at 10%, 5%, and 1% level,

respectively.

Panel A: Pre and Post Publication

Anomaly

first raw returns DGTW-adjusted returns

post year
strategy persistence strategy persistence

pre post pre post pre post pre post

S 1980 2.02** 0.15 2.02** 0.58**

(3.79) (0.57) (3.79) (2.49)

−B/M 1979 0.88** 1.07** 0.88** 0.45*

(2.25) (4.81) (2.25) (1.91)

−Mom 1992 1.46** 0.85** 0.33 0.16

(6.03) (2.08) (1.14) (0.39)

AG 2007 1.07** 0.42 0.74** 0.07 0.83** 0.37 0.53** 0.06

(6.65) (1.08) (4.24) (0.19) (6.14) (1.30) (3.69) (0.23)

CI 2003 0.25** 0.03 0.15 -0.02 0.22** 0.07 0.10 0.02

(2.63) (0.22) (1.60) (-0.15) (2.85) (0.56) (1.35) (0.13)

I/A 2007 0.88** 0.28 0.55** 0.13 0.67** 0.29 0.41** 0.16

(6.87) (0.92) (3.79) (0.44) (6.02) (0.98) (3.38) (0.56)

NS 2007 0.57** 0.41 0.14 -0.64** 0.57** 0.34 0.09 -0.79**

(3.40) (1.21) (0.79) (-2.24) (3.78) (1.16) (0.57) (-2.39)

ι 2005 0.36 0.58 0.41 -0.27 0.16 0.45 0.27 -0.24

(1.42) (1.46) (1.60) (-0.75) (0.92) (1.57) (1.56) (-0.93)

Acc 1995 0.16 0.33** 0.11 0.18 0.11 0.31** 0.12 0.21

(1.14) (2.33) (0.82) (1.21) (0.85) (2.47) (0.88) (1.60)

NOA 2003 1.11** 0.33 0.55** 0.25 1.07** 0.38 0.44* 0.13

(4.57) (0.85) (2.09) (0.75) (5.06) (1.18) (1.84) (0.44)

−ROA 1995 1.25** 0.75* 0.76** 0.41 1.19** 0.66* 0.62** 0.39

(7.14) (1.70) (3.54) (0.94) (11.78) (1.87) (4.00) (1.12)

IdV ol 2005 0.38 0.53 0.29 -0.38 0.23 0.31 0.03 -0.22

(1.14) (1.04) (0.92) (-0.71) (1.27) (1.02) (0.17) (-0.71)

O 1997 0.39** 0.33 0.57** 0.43 0.42** 0.39 0.36** 0.46**

(2.04) (0.92) (3.22) (1.34) (3.41) (1.51) (3.10) (2.02)

D 2001 0.66** 0.07 0.33 0.26 0.47** 0.02 0.27* 0.10

(2.98) (0.14) (1.56) (0.64) (2.90) (0.06) (1.68) (0.33)

Average 0.67** 0.56** 0.40** 0.39** 0.51** 0.50** 0.27** 0.20

(7.47) (5.61) (2.99) (2.76) (7.86) (3.70) (2.76) (1.28)
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Table 1.5: (Continued)

Panel B: Pre and Post 1995

Anomaly

raw returns DGTW-adjusted returns

strategy persistence strategy persistence

1976-1994 1995-2011 1976-1994 1995-2011 1976-1994 1995-2011 1976-1994 1995-2011

S 0.30 0.36 0.88*** 0.54

(0.98) (0.95) (3.18) (1.58)

−B/M 1.11*** 0.99*** 0.63** 0.32

(4.45) (2.92) (2.34) (0.90)

−Mom 1.39*** 0.81* 0.12 0.36

(6.28) (1.72) (0.46) (0.76)

AG 0.84*** 1.13*** 0.62*** 0.68** 0.64*** 0.89*** 0.41** 0.53**

(4.57) (4.70) (3.26) (2.57) (4.04) (4.72) (2.54) (2.54)

CI 0.21** 0.17 0.24** -0.03 0.18** 0.17* 0.17** -0.02

(2.01) (1.40) (2.40) (-0.22) (2.05) (1.87) (2.11) (-0.22)

I/A 0.84*** 0.76*** 0.51*** 0.46** 0.59*** 0.64*** 0.28** 0.48**

(6.53) (3.63) (3.35) (2.13) (6.38) (3.29) (2.51) (2.40)

NS 0.70*** 0.38 0.19 -0.15 0.57*** 0.51* 0.05 -0.12

(6.07) (1.31) (1.35) (-0.50) (5.45) (1.93) (0.39) (-0.41)

ι 0.49** 0.31 0.58*** -0.05 0.24 0.18 0.39*** -0.07

(2.26) (0.80) (2.80) (-0.13) (1.63) (0.71) (2.77) (-0.27)

Acc 0.16 0.33** 0.11 0.18 0.11 0.31** 0.12 0.21

(1.14) (2.33) (0.82) (1.21) (0.85) (2.47) (0.88) (1.60)

NOA 0.81*** 1.02** 0.49*** 0.46 0.74*** 1.07*** 0.39** 0.33

(5.35) (2.53) (2.88) (1.12) (4.91) (3.18) (2.30) (0.91)

−ROA 1.25*** 0.75* 0.76*** 0.41 1.19*** 0.66* 0.62*** 0.39

(7.14) (1.70) (3.54) (0.94) (11.78) (1.87) (4.00) (1.12)

IdV ol 0.35 0.48 0.12 0.19 0.27* 0.21 -0.03 -0.01

(1.32) (0.91) (0.47) (0.39) (1.94) (0.73) (-0.18) (-0.04)

O 0.37* 0.36 0.63*** 0.37 0.43*** 0.38 0.40*** 0.41*

(1.83) (1.11) (3.49) (1.30) (3.52) (1.62) (3.47) (1.95)

D 0.75*** 0.19 0.28 0.34 0.60*** 0.04 0.22 0.21

(4.06) (0.50) (1.39) (0.99) (4.49) (0.15) (1.42) (0.83)

Average 0.68*** 0.57*** 0.44*** 0.29 0.50*** 0.46*** 0.27*** 0.21

(10.78) (4.38) (5.19) (1.41) (8.88) (4.03) (5.52) (1.31)
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Table 1.6: Short-term Performance Persistence by Calendar Month

The table shows raw average returns of persistence strategies in each calendar month. For each characteristic a persistence

strategy buys an underlying strategy when its ‘Out of Sample’ median-adjusted prior cumulative return Rt−12,t−1 −
MedRt−12,t−1 is positive and sells it otherwise. The last row shows the returns of the Average persistence strategy, which

every month averages the returns of fourteen persistence strategies. Returns are multiplied by 100. Standard errors are

adjusted for autocorrelation in residuals for up to three lags following Newey and West (1987). The t-statistics are shown

in parentheses. *, **, and *** indicate statistical significance at 10%, 5%, and 1% level, respectively.

Anomaly
calendar month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S -0.03 0.07 0.57 0.08 1.11 0.89 0.14 1.19** 0.87** 0.53 1.63*** 1.52**
(-0.02) (0.12) (1.00) (0.12) (1.43) (1.61) (0.35) (2.43) (2.16) (0.84) (3.19) (2.19)

−B/M -0.25 2.19** 0.90** 0.10 0.62 -0.01 -0.09 -0.07 0.46 -0.18 1.05 1.05*
(-0.38) (2.24) (2.15) (0.18) (1.37) (-0.02) (-0.22) (-0.11) (1.09) (-0.27) (1.11) (1.68)

−Mom 0.48 0.68 -1.09** -0.28 -0.42 1.24 -0.80* 0.98** 0.26 -0.14 0.28 1.61*
(0.65) (0.66) (-2.22) (-0.26) (-0.58) (0.97) (-1.67) (2.15) (0.57) (-0.23) (0.29) (1.93)

AG 1.87*** 1.55** 0.40 0.51 0.74* 0.51 1.06** -0.46 0.81** 0.50 0.25 0.08
(2.66) (2.14) (0.99) (1.48) (1.93) (1.25) (2.17) (-1.12) (2.07) (0.69) (0.61) (0.25)

CI 0.35 0.33** -0.22 -0.02 -0.18 0.18 -0.13 0.27 -0.00 -0.01 0.32* 0.43
(1.05) (2.10) (-0.91) (-0.10) (-1.00) (1.05) (-0.62) (1.64) (-0.02) (-0.03) (1.74) (1.27)

I/A 0.85* 0.62 0.51 0.49* 0.83*** 0.25 0.52 -0.31 0.00 0.65* 1.01** 0.44
(1.88) (1.37) (1.64) (1.95) (3.08) (0.73) (1.44) (-0.88) (0.00) (1.86) (2.20) (1.58)

NS 0.11 0.96 0.15 -0.66 -0.76 0.69 -0.33 0.51 0.35 -0.70* -0.92* 0.95**
(0.22) (1.25) (0.41) (-1.55) (-1.54) (1.62) (-0.83) (1.18) (0.84) (-1.76) (-1.77) (2.32)

ι -0.92 1.52 0.53 -0.42 0.10 0.27 -0.00 1.01** 1.18* -0.99 -0.13 1.16
(-0.79) (1.47) (1.42) (-0.75) (0.15) (0.40) (-0.01) (2.05) (1.84) (-1.41) (-0.15) (1.60)

Acc -0.22 0.49* 0.46** 0.33 -0.24 0.24 0.28 -0.02 0.51*** -0.36 -0.44* 0.71***
(-0.79) (1.82) (2.04) (1.41) (-1.05) (1.06) (0.83) (-0.09) (2.59) (-0.68) (-1.95) (3.74)

NOA 0.76 1.32 0.31 -0.62 0.30 0.96** 0.66** 0.63** 0.58* 0.36 0.33 0.13
(1.21) (1.23) (0.85) (-0.87) (0.77) (2.12) (1.97) (2.13) (1.77) (0.58) (0.67) (0.23)

−ROA -1.33 1.32 0.62* 0.41 -0.13 0.69 0.96** -0.05 0.44 0.60 1.12 2.36***
(-1.29) (1.27) (1.72) (0.56) (-0.19) (1.39) (2.57) (-0.12) (0.77) (1.08) (1.48) (3.10)

IdV ol -0.03 2.78* -0.17 -1.60 -1.14 -0.14 0.14 0.92 0.60 -1.71* 1.06 1.13
(-0.04) (1.71) (-0.29) (-1.44) (-1.46) (-0.15) (0.22) (1.04) (1.07) (-1.95) (0.88) (1.60)

O -0.43 0.04 0.10 0.10 0.45 0.80 0.11 0.25 1.03*** 1.29** 0.55 1.81***
(-0.34) (0.09) (0.30) (0.20) (0.92) (1.57) (0.41) (0.45) (2.86) (2.20) (1.06) (2.73)

D -0.76 1.38 -0.06 -0.82 0.46 0.93 1.00* 0.31 0.92 -0.62 -0.63 1.63***
(-1.45) (1.61) (-0.20) (-1.22) (0.93) (1.45) (1.87) (0.62) (1.47) (-1.01) (-0.59) (3.40)

Average 0.04 1.09* 0.22 -0.17 0.13 0.53 0.25 0.37 0.56** -0.06 0.40 1.07***
(0.10) (1.70) (1.42) (-0.51) (0.51) (1.24) (1.47) (1.46) (2.37) (-0.21) (1.10) (2.89)
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Table 1.7: Long-term Performance Persistence of Characteristic-based Strategies

Panel A presents coefficients from the time series monthly regression Rt = α0 +α1 ∗Rt−11−k,t−k + εt, where Rt is the return in month
t of the long-short portfolio P1-P5, and Rt−11−k,t−k is the cumulative return of this portfolio over the period t − 11 − k to t − k
with the lag number k varying from 1 to 12. Panel B shows average returns of the persistence strategies. For each characteristic, a
persistence strategy buys an underlying strategy when its median-adjusted prior cumulative return Rt−11−k,t−k −MedRt−11−k,t−k

is
positive and sells it otherwise. In both panels raw returns are used on the left-hand side and right-hand side. Regression coefficients
in Panel A and returns in Panel B are multiplied by 100.

Panel A: Long-term Performance Persistence

Anomaly
lag number

1 2 3 4 5 6 7 8 9 10 11 12

S 2.27** 1.27 1.03 0.88 0.67 0.53 0.56 0.32 0.24 0.52 0.53 0.28

(2.40) (1.31) (1.04) (0.90) (0.69) (0.56) (0.58) (0.34) (0.24) (0.47) (0.48) (0.28)

−B/M 2.26 1.12 0.92 0.32 -0.55 -0.65 -0.84 -1.14 -1.33 -0.71 -1.06 -2.03

(1.49) (0.70) (0.57) (0.22) (-0.39) (-0.44) (-0.55) (-0.65) (-0.74) (-0.45) (-0.67) (-1.29)

−Mom 0.67 -0.04 -0.11 0.17 -1.21 -0.03 -0.96 -1.00 -1.10 -1.43 -1.46 -0.88

(0.36) (-0.02) (-0.07) (0.12) (-0.97) (-0.03) (-0.81) (-0.83) (-0.86) (-1.17) (-1.04) (-0.89)

AG 3.23*** 2.47*** 2.28** 2.13** 1.68** 1.60* 1.46* 1.55** 1.58** 1.12 0.91 0.57

(3.30) (2.58) (2.44) (2.41) (2.01) (1.95) (1.88) (2.02) (2.05) (1.41) (1.08) (0.63)

CI 2.15* 1.42 1.19 1.25 1.00 1.12 1.00 0.57 0.78 0.60 0.41 -0.05

(1.68) (1.08) (0.99) (1.10) (0.92) (1.13) (1.03) (0.56) (0.76) (0.57) (0.38) (-0.04)

I/A 2.87** 2.23* 2.03* 1.91** 1.49* 1.28 1.29* 1.17 1.13 1.27 1.22 0.77

(2.11) (1.78) (1.88) (2.00) (1.69) (1.55) (1.67) (1.44) (1.36) (1.53) (1.45) (0.85)

NS 1.15 0.04 0.17 -0.07 -0.25 -0.44 -1.12 -1.54 -1.87 -1.21 -1.13 -1.68

(0.62) (0.02) (0.11) (-0.05) (-0.17) (-0.32) (-0.76) (-0.92) (-1.14) (-0.73) (-0.66) (-1.19)

ι 0.89 -0.20 0.04 -0.37 -0.41 -0.37 -1.19 -1.52 -1.41 -0.65 -0.29 -1.05

(0.47) (-0.11) (0.03) (-0.25) (-0.28) (-0.27) (-0.80) (-0.93) (-0.88) (-0.41) (-0.19) (-0.88)

Acc 1.18 0.54 0.09 -0.50 -0.87 -1.05 -0.65 -0.69 -1.01 -0.48 -0.18 -0.56

(0.86) (0.46) (0.07) (-0.48) (-0.83) (-1.02) (-0.79) (-0.90) (-1.30) (-0.55) (-0.19) (-0.58)

NOA 1.49 0.85 0.82 0.61 -0.15 -0.20 -0.69 -1.03 -1.32* -0.83 -0.69 -1.13*

(0.77) (0.47) (0.58) (0.50) (-0.15) (-0.20) (-0.91) (-1.36) (-1.76) (-1.12) (-0.99) (-1.67)

−ROA 1.70 0.69 1.14 1.03 0.43 0.16 -0.40 -1.54 -2.07 -0.49 0.34 -1.17

(1.01) (0.38) (0.80) (0.90) (0.40) (0.16) (-0.30) (-0.92) (-1.11) (-0.30) (0.20) (-0.97)

IdV ol -0.02 -1.80 -1.12 -0.78 -1.68 -0.64 -1.96 -2.98 -2.77 -1.63 -2.20 -3.15

(-0.01) (-0.65) (-0.52) (-0.42) (-1.01) (-0.41) (-1.02) (-1.19) (-1.12) (-0.91) (-1.23) (-1.49)

O 2.55*** 2.32** 1.93* 1.68 0.82 0.94 0.59 0.45 -0.06 0.06 -0.07 -0.08

(2.75) (2.46) (1.94) (1.58) (0.74) (0.88) (0.58) (0.46) (-0.06) (0.07) (-0.08) (-0.10)

D 1.56 0.46 0.57 0.32 0.11 -0.10 -0.63 -1.12 -1.49 -0.77 -0.70 -1.61

(1.11) (0.31) (0.44) (0.27) (0.10) (-0.10) (-0.57) (-0.85) (-1.05) (-0.59) (-0.54) (-1.33)

All 1.65*** 0.76** 0.81*** 0.70*** 0.05 0.20 -0.30 -0.73** -0.87** -0.37 -0.39 -0.82**

(5.88) (2.30) (2.89) (2.91) (0.16) (0.91) (-1.01) (-2.09) (-2.46) (-1.22) (-1.09) (-2.40)
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Table 1.7: (Continued)

Panel B: Persistence Strategies

Anomaly
lag number

1 2 3 4 5 6 7 8 9 10 11 12

S 0.72*** 0.44* 0.52** 0.51** 0.51** 0.41* 0.35 0.27 0.28 0.18 0.06 0.15

(3.28) (1.79) (2.22) (2.16) (2.17) (1.67) (1.45) (1.09) (1.11) (0.72) (0.24) (0.62)

−B/M 0.48** 0.23 0.40* 0.23 0.10 0.12 0.08 0.07 0.09 0.06 -0.03 -0.09

(2.17) (0.98) (1.70) (1.06) (0.46) (0.52) (0.34) (0.31) (0.38) (0.28) (-0.12) (-0.41)

−Mom 0.23 0.21 0.00 0.05 -0.02 -0.11 0.04 0.03 -0.21 -0.21 0.08 -0.17

(0.89) (0.79) (0.00) (0.19) (-0.07) (-0.39) (0.15) (0.10) (-0.76) (-0.80) (0.28) (-0.66)

AG 0.65*** 0.67*** 0.60*** 0.58*** 0.57*** 0.68*** 0.70*** 0.70*** 0.48*** 0.40** 0.40** 0.38**

(4.04) (3.99) (3.69) (3.48) (3.50) (4.36) (4.34) (4.22) (2.85) (2.20) (2.38) (2.32)

CI 0.11 0.09 0.04 0.00 -0.01 0.04 0.01 0.05 0.05 0.07 0.01 0.02

(1.36) (1.15) (0.49) (-0.02) (-0.11) (0.45) (0.11) (0.67) (0.66) (0.88) (0.08) (0.26)

I/A 0.49*** 0.47*** 0.40*** 0.36*** 0.31** 0.29** 0.25* 0.26* 0.27** 0.28** 0.22 0.23

(3.72) (3.63) (3.04) (2.68) (2.31) (2.11) (1.79) (1.87) (1.97) (1.97) (1.59) (1.60)

NS 0.03 0.00 0.10 -0.03 -0.04 -0.01 -0.02 -0.13 -0.06 -0.03 0.04 0.05

(0.18) (-0.02) (0.58) (-0.17) (-0.27) (-0.06) (-0.15) (-0.83) (-0.37) (-0.19) (0.21) (0.32)

ι 0.28 0.13 0.18 0.05 0.10 0.18 0.21 0.09 -0.03 -0.32 -0.19 -0.20

(1.27) (0.54) (0.81) (0.24) (0.43) (0.81) (1.01) (0.45) (-0.17) (-1.33) (-0.78) (-0.86)

Acc 0.14 0.18* 0.07 -0.01 -0.04 -0.09 -0.05 -0.04 0.04 0.11 0.07 0.10

(1.43) (1.93) (0.77) (-0.06) (-0.40) (-0.92) (-0.53) (-0.39) (0.36) (1.11) (0.66) (0.99)

NOA 0.47** 0.47** 0.38* 0.31 0.30 0.34 0.21 0.19 0.01 0.00 0.01 0.01

(2.20) (2.24) (1.73) (1.41) (1.42) (1.62) (0.96) (0.85) (0.04) (0.02) (0.06) (0.04)

−ROA 0.59** 0.66*** 0.47* 0.35 0.46* 0.42* 0.24 0.18 0.05 0.16 0.03 -0.02

(2.52) (2.86) (1.93) (1.28) (1.86) (1.78) (1.01) (0.74) (0.22) (0.62) (0.13) (-0.07)

IdV ol 0.16 0.12 -0.03 -0.04 -0.12 0.02 -0.07 -0.42 -0.27 -0.64** -0.53** -0.45

(0.57) (0.44) (-0.09) (-0.15) (-0.41) (0.06) (-0.28) (-1.60) (-1.01) (-1.98) (-1.96) (-1.59)

O 0.51*** 0.40** 0.34* 0.28 0.22 0.34* 0.27 0.09 0.12 0.10 0.05 0.04

(3.01) (2.35) (1.90) (1.58) (1.17) (1.75) (1.40) (0.46) (0.63) (0.53) (0.29) (0.22)

D 0.31 0.09 0.27 0.02 -0.03 -0.05 -0.10 -0.03 -0.17 -0.35* -0.34 -0.45**

(1.57) (0.40) (1.18) (0.08) (-0.15) (-0.21) (-0.48) (-0.16) (-0.80) (-1.66) (-1.52) (-2.14)

Average 0.37*** 0.30*** 0.27** 0.19* 0.17 0.19* 0.15 0.10 0.05 -0.01 -0.01 -0.03

(3.40) (2.69) (2.38) (1.80) (1.56) (1.78) (1.55) (0.97) (0.49) (-0.10) (-0.07) (-0.31)
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Table 1.8: Strategy Performance Persistence and Mutual Fund Price Pressure

The table presents intercepts α1
0 and α2

0 and regression coefficients α1 and α2 for each characteristic

from the time series monthly regressions Rt = α1
0 + α1 ∗ Et−1[Strategy F lowt] + ε1t and ε1t =

α2
0+α2∗Rt−12,t−1+εt, where Rt is the return in month t of the long-short portfolio P1-P5, Rt−12,t−1

is the cumulative return over the previous twelve months of this portfolio, and Et−1[Strategy F lowt]

is the measure of price pressure created by mutual fund flow-driven trading at the strategy level.

This measure uses fund performance as a predictor of future flows and assumes that flows are

allocated in accordance with prior portfolio weights. Panel A reports estimates based on the full

sample 1980-2011. In Panel B estimation is performed separately for pre 1995 and post 1995 periods.

Raw and DGTW-adjusted portfolio returns are used on the left-hand and raw portfolio returns on

the right-hand side. Intercepts α1
0 and α2

0 and regression coefficients α1 and α2 are multiplied by

100. The last row All shows coefficients from panel regressions using all fourteen strategies with

year-month fixed effects and standard errors clustered by strategy. For individual characteristics,

standard errors are adjusted for autocorrelation in residuals for up to three lags following Newey

and West (1987). The t-statistics are shown in parentheses. *, **, and *** indicate statistical

significance at 10%, 5%, and 1% level, respectively.

Panel A: The Full Sample, 1980-2011

Anomaly
raw DGTW-adjusted

int E[Flow] int Rt−12,t−1 int E[Flow] int Rt−12,t−1

S 0.16 0.68 -0.05 1.50

(0.62) (0.43) (-0.20) (1.51)

−B/M 1.10*** 1.18 -0.24 1.65

(4.77) (0.86) (-0.66) (1.07)

−Mom 0.64 3.09 0.03 -0.19

(1.54) (0.87) (0.09) (-0.10)

AG 1.06*** 2.09* -0.43** 2.81*** 0.83*** 1.73* -0.31** 2.01***

(6.65) (1.89) (-2.31) (2.89) (6.30) (1.70) (-2.07) (2.92)

CI 0.22** 5.59*** -0.02 0.84 0.22*** 4.62*** -0.03 1.12

(2.51) (3.32) (-0.28) (0.59) (3.14) (3.42) (-0.46) (1.06)

I/A 0.84*** 2.28** -0.29* 2.38* 0.66*** 1.86** -0.25* 2.05*

(6.56) (2.21) (-1.70) (1.79) (5.89) (2.33) (-1.69) (1.68)

NS 0.41* 3.04 -0.01 0.20 0.46** 2.91 -0.03 0.40

(1.94) (1.25) (-0.06) (0.11) (2.54) (1.39) (-0.14) (0.23)

ι 0.40 1.77 -0.01 0.25 0.20 1.42 -0.01 0.12

(1.37) (0.75) (-0.05) (0.13) (1.09) (1.00) (-0.04) (0.10)

Acc 0.23** 0.92 -0.04 1.08 0.19* 0.30 -0.04 1.25

(2.11) (0.61) (-0.38) (0.78) (1.87) (0.21) (-0.48) (0.92)

NOA 0.91*** 8.78*** -0.09 0.61 0.91*** 7.54*** -0.11 0.73

(4.67) (2.84) (-0.39) (0.32) (5.49) (2.80) (-0.55) (0.48)

−ROA 0.77** 3.91 -0.13 0.94 0.71*** 3.28* -0.09 0.67

(2.36) (1.63) (-0.33) (0.55) (2.81) (1.76) (-0.32) (0.55)

IdV ol 0.52* -0.10 0.01 -0.14 0.28* 0.61 0.05 -0.85

(1.76) (-0.03) (0.02) (-0.05) (1.74) (0.33) (0.24) (-0.55)

O 0.35* 1.95 -0.08 1.70* 0.34*** 1.47 -0.07 1.50**

(1.92) (1.15) (-0.47) (1.80) (2.76) (1.21) (-0.59) (2.31)

D 0.41 3.67 -0.05 0.85 0.25 3.17* -0.03 0.41

(1.59) (1.34) (-0.21) (0.59) (1.33) (1.69) (-0.14) (0.43)

All 2.31*** 0.58** 2.75*** 0.55**

(4.60) (2.48) (5.23) (2.53)
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Table 1.8: (Continued)

Panel B: Subperiods

Anomaly

raw returns DGTW-adjusted returns

1980-1994 1995-2011 1980-1994 1995-2011

E[Flow] Rt−12,t−1 E[Flow] Rt−12,t−1 E[Flow] Rt−12,t−1 E[Flow] Rt−12,t−1

S 3.48* 0.80 -1.58 1.14

(1.87) (0.42) (-0.68) (0.98)

−B/M 0.34 3.08 2.62 0.24

(0.24) (1.38) (0.97) (0.12)

−Mom -2.39 -1.00 5.46 -0.90

(-1.32) (-0.54) (0.99) (-0.36)

AG 1.03 2.65** 4.47** 3.22** 0.93 1.63* 3.54* 2.46***

(0.78) (2.19) (2.03) (2.49) (0.71) (1.86) (1.89) (2.74)

CI 6.29*** 3.14** 5.24* -2.28 5.23*** 2.74** 4.32** -1.06

(3.17) (2.35) (1.89) (-1.11) (2.95) (2.18) (2.04) (-0.85)

I/A 1.52 2.13 4.67** 2.66 1.13 1.09 3.82** 2.66

(1.30) (1.63) (2.36) (1.49) (1.44) (1.21) (2.04) (1.57)

NS 2.31** 0.91 3.62 -0.31 2.04** 0.45 3.55 0.24

(2.11) (0.70) (0.90) (-0.13) (2.04) (0.36) (1.02) (0.10)

ι 1.39 3.67** 1.83 -1.20 0.52 2.49** 2.09 -0.94

(0.93) (2.50) (0.45) (-0.47) (0.53) (2.49) (0.85) (-0.59)

Acc -0.70 -0.93 7.08*** 2.22 -1.14 -1.37 5.73** 2.66**

(-0.42) (-0.33) (2.60) (1.52) (-0.71) (-0.48) (2.18) (2.08)

NOA 2.54 0.48 13.29*** 0.56 2.30 0.76 11.23*** 0.65

(1.30) (0.34) (2.81) (0.27) (1.16) (0.58) (2.75) (0.39)

−ROA -0.61 1.73 10.75* 0.05 -0.62 -0.11 8.92* 0.06

(-0.44) (0.98) (1.73) (0.02) (-0.74) (-0.10) (1.87) (0.04)

IdV ol -0.25 0.20 -0.04 -0.22 -0.22 -0.84 1.09 -0.91

(-0.13) (0.10) (-0.01) (-0.07) (-0.20) (-0.74) (0.38) (-0.47)

O 1.65 2.35 2.10 1.54 0.06 1.93* 2.83 1.22*

(1.36) (1.29) (0.61) (1.37) (0.07) (1.73) (1.20) (1.66)

D 0.98 0.68 6.56 0.50 0.84 0.32 5.61 0.06

(0.70) (0.41) (1.06) (0.28) (0.70) (0.26) (1.39) (0.05)

All 1.41*** 1.32*** 3.27** 0.01 0.83** 0.94** 4.98*** 0.23

(2.66) (3.36) (2.55) (0.03) (2.34) (2.01) (4.41) (1.20)
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Table 1.9: Aggregate Institutional Demand and Prior Strategy Performance

The table presents the intercept α0 and regression coefficient α1 for each characteristic from

the time series quarterly regression Strategy Demandt+2 = α0 + α1 ∗ Rt−12,t−1 + εt, where

Strategy Demandt+2 is the institutional demand in the current quarter for the long-short portfolio

P1-P5, and Rt−12,t−1 is the cumulative return over the previous twelve months of this portfolio.

The portfolio demand is computed by averaging demand for stocks comprising the portfolio. The

institutional demand Demandt+2 for a given stock is equal to the change in the number of shares

held by all 13F institutions over the quarter, adjusted for stock splits and scaled by the number of

shares outstanding. Panel A reports estimates based on the full sample 1980-2011. In Panel B es-

timation is performed separately for pre 1995 and post 1995 periods. In the ‘adjusted’ specification

the individual stock demand is adjusted for the average demand for the size, book-to-market, and

momentum. Raw portfolio returns are used on the right-hand side. The intercept α0 and regression

coefficient α1 are multiplied by 100. The last row All shows coefficients from panel regressions using

all fourteen strategies with year-month fixed effects and standard errors clustered by strategy. For

individual characteristics, standard errors are adjusted for autocorrelation in residuals for up to

three lags following Newey and West (1987). The t-statistics are shown in parentheses. *, **, and

*** indicate statistical significance at 10%, 5%, and 1% level, respectively.

Panel A: The Full Sample, 1980-2011

Anomaly
raw adjusted

int Rt−12,t−1 int Rt−12,t−1

S 0.38*** 0.72
(2.64) (0.91)

−B/M -0.70*** 1.14**
(-5.46) (2.27)

−Mom 1.41*** 0.90*
(10.92) (1.82)

AG -0.25** 0.90** -0.28*** 0.14
(-2.41) (2.11) (-2.97) (0.47)

CI 0.22*** -1.11 0.03 -1.44
(3.03) (-1.15) (0.42) (-1.30)

I/A -0.16* 0.37 -0.27*** 0.09
(-1.72) (0.69) (-3.30) (0.24)

NS -0.82*** 1.85*** -0.61*** 1.08***
(-10.4) (5.16) (-10.1) (4.15)

ι -0.70*** 1.03** -0.37*** 0.27
(-7.82) (2.57) (-6.55) (1.00)

Acc 0.03 1.73*** -0.05 1.44**
(0.48) (3.32) (-0.87) (2.41)

NOA -0.15* 0.90*** -0.25*** 0.59***
(-1.74) (4.09) (-3.84) (3.04)

−ROA 0.21 1.02 0.21** 0.28
(1.61) (1.58) (2.38) (0.67)

IdV ol -1.05*** 1.48* -0.22*** 0.42
(-7.97) (1.92) (-3.23) (0.95)

O -0.27** 1.62*** 0.00 0.64
(-2.46) (2.76) (0.01) (1.45)

D -0.23** 1.57*** 0.00 0.62*
(-2.12) (3.02) (0.02) (1.81)

All -0.46 1.22*** -0.45** 0.36***
(-1.37) (4.87) (-2.25) (3.41)
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Table 1.9: (Continued)

Panel B: Pre and Post 1995

Anomaly
raw adjusted

1980-1994 1995-2011 1980-1994 1995-2011
int Rt−12,t−1 int Rt−12,t−1 int Rt−12,t−1 int Rt−12,t−1

S 0.36*** 0.12 0.38 1.01
(2.86) (0.19) (1.45) (0.89)

−B/M -0.58*** 1.05 -0.81*** 1.17*
(-3.17) (1.37) (-4.72) (1.93)

−Mom 1.05*** 1.20* 1.67*** 1.09*
(5.72) (1.82) (10.10) (1.83)

AG -0.15 0.86 -0.37** 1.03* -0.13 0.11 -0.44*** 0.32
(-1.08) (1.26) (-2.39) (1.94) (-0.90) (0.16) (-3.79) (1.02)

CI 0.24** -2.28 0.19** 0.33 0.09 -1.94 -0.04 -0.77
(2.19) (-1.60) (2.47) (0.32) (0.78) (-1.10) (-0.71) (-1.05)

I/A -0.11 0.73 -0.22** 0.18 -0.18 0.41 -0.37*** -0.10
(-0.81) (1.16) (-1.99) (0.30) (-1.35) (0.65) (-3.86) (-0.25)

NS -0.70*** 1.90** -0.93*** 1.66*** -0.51*** 0.72 -0.68*** 1.08***
(-6.08) (2.55) (-8.19) (3.62) (-4.05) (1.10) (-10.2) (3.39)

ι -0.50*** 1.27 -0.90*** 0.77* -0.29*** 0.54 -0.47*** 0.09
(-3.98) (1.62) (-7.37) (1.76) (-2.64) (0.84) (-6.67) (0.34)

Acc 0.04 0.33 -0.02 2.61*** 0.01 0.16 -0.14* 2.39***
(0.55) (0.33) (-0.27) (6.16) (0.17) (0.18) (-1.90) (4.68)

NOA -0.10 0.22 -0.11 0.96*** -0.19*** 0.10 -0.26** 0.63***
(-1.19) (0.47) (-0.72) (4.02) (-3.18) (0.26) (-2.27) (3.03)

−ROA 0.12 1.77*** 0.18 0.85 -0.01 1.53** 0.19** 0.07
(0.67) (2.80) (1.15) (1.14) (-0.03) (2.43) (1.99) (0.15)

IdV ol -0.69*** 2.46*** -1.45*** 1.22* -0.08 0.96*** -0.38*** 0.29
(-4.98) (3.18) (-8.19) (1.74) (-1.30) (2.91) (-3.71) (0.67)

O -0.23* 2.37** -0.36** 1.31** -0.15 1.86** 0.06 0.35
(-1.80) (2.54) (-2.13) (2.02) (-1.64) (2.42) (0.56) (0.85)

D 0.02 1.07 -0.40** 1.37** -0.03 1.29** -0.04 0.46
(0.11) (1.11) (-2.51) (2.18) (-0.46) (2.21) (-0.45) (1.24)

All -0.21 1.31* -0.45 1.19*** -0.21** 0.54* -0.44** 0.31**
(-1.21) (1.90) (-1.37) (8.00) (-2.11) (1.71) (-2.21) (2.34)
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Figure 1.1: Short-term Performance Persistence, Sample Split Test

The figure presents a histogram of coefficients α1 for each characteristic from 1000 repetitions of

a time series monthly regression R1
t = α0 + α1 ∗ R2

t−12,t−1 + εt, where R1
t is the return in month

t of the long-short portfolio P1-P5 constructed using one randomly selected half of all firms, and

R2
t−12,t−1 is the cumulative return over the previous twelve months of the long-short portfolio based

on the second subsample. The Panel All shows coefficients from panel regressions using all fourteen

strategies with year-month fixed effects.
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Figure 1.2: Long-term Performance Persistence of Characteristic-based Strategies

The figure presents the regression coefficient α1 (y-axis) for each characteristic from the time series

monthly regression Rt = α0 + α1 ∗ Rt−11−k,t−k + εt, where Rt is the return in month t of the

long-short portfolio P1-P5, and Rt−11−k,t−k is the cumulative twelve month return of this portfolio

over the period t− 11− k to t− k with the lag number k varying from 1 to 12 (x-axis). The Panel

All shows coefficients from panel regressions using all fourteen strategies with year-month fixed

effects.
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Chapter 2

Aggregation of Information About the Cross

Section of Stock Returns: A Latent Variable

Approach

(joint with Nathaniel Light and Oleg Rytchkov)

2.1 Introduction

Any rational asset pricing theory implies that expected stock returns admit

a beta representation, where betas are computed with respect to a discount factor

(Cochrane, 2005). However, the nature of the discount factor remains elusive despite

several decades of active academic research: many initially promising theories such

as the CAPM or the Fama-French three-factor model cannot fully explain the cross

section of stock returns. Instead, there is a large and still growing body of empirical

evidence suggesting that expected returns tend to line up with various firm char-

acteristics. Such patterns, known as asset pricing anomalies, have received much

attention in the literature and now seem ubiquitous. Subrahmanyam (2010) reviews

the literature and finds that more than 50 variables are correlated with future stock

returns in the cross section. Harvey, Liu, and Zhu (2013) catalogue 314 different fac-

tors, although some of them are highly correlated. Green, Hand, and Zhang (2013)

conduct an extensive search for “return predictive signals” in the accounting and

finance literature and find that 330 of them have been reported.
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In his AFA 2011 Presidential Address, Cochrane (2011) argues that the ex-

istence of multiple anomalies is a multidimensional challenge and conjectures that

to address many questions on the relation between firm characteristics and expected

stock returns “... in the zoo of new variables ... we will have to use different meth-

ods.” Specifically, the variety of variables related to expected returns poses two main

questions neither of which has a complete answer in the literature. First, which firm

characteristics contain complementary information about returns? Numerous papers

compared various characteristics pairwise and in small groups but the big picture is

frustratingly missing.1 Nevertheless, there is some evidence that many anomalies are

distinct from each other. Fama and French (2008) find that all seven characteristics

that they consider have unique information about future returns. The most com-

prehensive up-to-date study of this question is Green, Hand, and Zhang (2014) who

simultaneously examine almost 100 “return predictive signals” and document that

24 of them are not subsumed by the others.

The second question stemming from the variety of the anomalies and their

complementarity is how to aggregate information contained in various firm charac-

teristics and construct the most precise estimates of expected returns on individual

stocks. Such aggregation can facilitate the study of the properties of expected re-

1This literature is voluminous but often inconclusive. For example, Anderson and Garcia-Feijóo
(2006) provide evidence that the value anomaly weakens substantially after controlling for growth
in capital expenditures. In contrast, Cooper, Gulen, and Schill (2008) and Fama and French (2008)
find that the asset growth effect explains little of the book-to-market effect and that the anomalies
are distinct. Desai, Rajgopal, and Venkatachalam (2004) show that the ability of accruals to explain
future returns is subsumed by the operating cash flows-to-price ratio and claim that the accruals
anomaly is closely related to the value anomaly. However, Cheng and Thomas (2006) demonstrate
that abnormal accruals relate to future annual returns even after controlling for the operating cash
flows-to-price ratio.
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turns in the cross section (e.g., Lewellen, 2013), provide a characteristic-based cost

of capital as well as a benchmark for portfolio performance evaluation (e.g., Chan,

Dimmock, and Lakonishok, 2009), allow researchers to form basis assets that would

increase the power of asset pricing tests (e.g., Haugen and Baker, 1996), and help

to identify possible mispricing (e.g., Cao and Han, 2013; Stambaugh, Yu, and Yuan,

2013). The most common approach to aggregation is to use fitted values from Fama-

MacBeth regressions of realized returns on all available characteristics. However,

this approach has several shortcomings when the number of characteristics to be

aggregated is large. First, the regression coefficients are estimated imprecisely be-

cause their computation effectively requires the estimation of the variance-covariance

matrix of all regressors, whose size grows quadratically with the number of regres-

sors. Second, the regression requires the availability of all regressors for the same

observation and this is a very restrictive condition on firm characteristics. Third,

many characteristics are highly correlated and the regression suffers from the multi-

collinearity problem.

In this chapter, we propose a novel approach to aggregating information about

stock returns from a large number of firm characteristics, which does not have the

above limitations. The approach is based on two main premises. First, we explicitly

acknowledge that conditional expected returns on individual stocks and their condi-

tional betas are unobservable to an econometrician.1 Unobservability of true betas

1The unobservability of betas and risk factors is also explicitly recognized in asset pricing models
with latent variables (e.g., Gibbons and Ferson, 1985; Ferson, 1990; Ferson, Foerster, and Keim,
1993). However, this literature attempts to explain the time series of expected returns using a small
number of expected risk premia, whereas our analysis investigates the cross section of expected stock
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is recognized in the literature as one of the possible origins of asset pricing anomalies

(e.g., Lin and Zhang, 2012) and can be caused by either mismeasurement of risk fac-

tors (e.g., Black, Jensen, and Scholes, 1972; Roll, 1977), or imprecision of the beta

estimates themselves. True betas of conditional linear factor models are theoretically

infeasible because they depend on the information available to investors, but not to

an econometrician (Hansen and Richard, 1987). Moreover, betas tend to vary over

time (e.g., Harvey, 1989; Ferson and Harvey, 1991; Lewellen and Nagel, 2006; Li and

Yang, 2011; Ang and Kristensen, 2012) and this further complicates their estimation.

The cornerstone of our approach is the second assumption that unobserv-

able expected returns are described by a single-beta rational asset pricing model

and numerous observable firm characteristics can be viewed as proxies for the same

unobservable beta. This assumption is motivated by the literature that establishes

theoretical links between various firm characteristics and betas and shows that many

characteristics can predict future returns even when the expected returns are de-

scribed by a single-beta model. For example, Gomes, Kogan, and Zhang (2003) and

Carlson, Fisher, and Giammarino (2004) relate size and book-to-market to condi-

tional betas. Within a q-theory framework, the expected returns have been linked

to book-to-market (Zhang, 2005), investments (Cochrane, 1996), equity issuance (Li,

Livdan, and Zhang, 2009), and accruals (Wu, Zhang, and Zhang, 2010). In a recent

paper, Babenko, Boguth, and Tserlukevich (2013) argue that cash flow shocks change

conditional betas because they change relative weights of various firm divisions with

different betas and, as a result, any characteristic correlated with the history of cash

returns.
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flow shocks can be successful in explaining expected stock returns.1

Under our assumptions, the problem of an econometrician is to use firm char-

acteristics as signals to construct the best estimate of the latent expected returns

on individual stocks. To solve it, we propose an intuitive and easily implementable

procedure, which delivers consistent estimates (up to a common multiplicative fac-

tor) when the number of stocks and characteristics is sufficiently large. Because this

procedure reveals a cross section of a latent variable by combining a large number of

observables, we refer to it as the high-dimensional cross-sectional filter (HCF). HCF

is implemented as a sequence of two regressions. In the first step, realized returns

are regressed on each lagged standardized characteristic individually (these are cross-

sectional regressions that use all stocks for which the characteristic is available). The

obtained slopes, whose number is equal to the number of characteristics, are used in

the second step: for each individual stock, all currently available firm characteristics

are regressed on the slopes obtained in the first step. We prove that the slopes from

the second-step regressions are asymptotically proportional to cross-sectionally de-

meaned expected returns on individual stocks. It should be emphasized that HCF

is a purely cross-sectional procedure that does not rely on the availability of a long

history of characteristics.

Our approach to estimation of expected returns deserves several comments.

First, our assumptions are broad and valid irrespective of which single-beta asset pric-

1Although our approach is motivated by a beta representation of expected returns, it is also
valid when characteristics are related to future returns because they are all associated with the
same psychological bias responsible for multiple anomalies.
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ing model really explains expected returns. Moreover, they are consistent with the

heterogeneous information quality of characteristics (the loadings of characteristics

on betas as well as the amount of noise in them can vary across the characteristics).

Nevertheless, HCF explicitly uses the restrictions implied by the underlying asset

pricing model, which allows only one common component of the characteristics to

be related to expected returns in the cross section. The incorporation of this model

restriction into estimation of expected returns is the unique feature of our approach,

which is responsible for its advantages over aggregation using the Fama-MacBeth

regression.

Our estimator relies on the existence of the common component in charac-

teristics that is related to expected returns. On the one hand, this may reduce the

applicability of our approach and make it less efficient than the aggregation by the

Fama-MacBeth regression if our model is misspecified. On the other hand, the abil-

ity of the HCF estimates to predict future returns would unambiguously indicate the

presence of the common component in at least some of the characteristics. Thus, our

approach also provides a test for the commonality in asset pricing anomalies. Note

that the presence of a common component does not mean that all characteristics

have the same information about returns, so using all of them is likely to make the

estimates of expected returns more precise.

Having developed the aggregation procedure, we apply it to thirteen firm

characteristics that are known to be related to stock returns and associated with the

most prominent asset pricing anomalies. The first group of considered characteristics

contains the three most researched anomalies: size, book-to-market, and momentum.
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The second group contains two corporate investment anomalies: total asset growth

and abnormal capital investments. The third group contains two financing anomalies:

net stock issues and composite stock issuance. The fourth group contains three

accounting anomalies: accruals, net operating assets, and profitability. The fifth

and last group contains three anomalies broadly related to uncertainty about the

firm: idiosyncratic volatility, Ohlson’s score measuring the bankruptcy likelihood,

and dispersion in analysts’ forecasts. From these characteristics, we construct a

new variable that aggregates information from all of them, and we refer to it as

the aggregate filtered expected returns (AFER). To examine the cross-sectional

dispersion of stock returns produced by AFER, we form portfolios based on AFER

and compute average returns on them. We find that the difference in monthly returns

on top and bottom decile equally-weighted AFER portfolios is around 3%. This

spread is highly statistically significant (the t-statistic is 10.98) and substantially

exceeds those produced by individual characteristics. The result is weaker for value-

weighted portfolios, but the spread is still wide (2% per month with the t-statistic

of 6.98).

Our empirical results have several implications. First of all, it is already re-

markable that AFER has at least some predictive power for future returns. By

construction, the HCF procedure estimates the common component in the charac-

teristics that is related to stock returns. Hence, the dispersion of returns on the

AFER portfolios implies that such a component exists and there is a strong com-

monality in the considered anomalies. The presence of the common component also

alleviates the concern that asset pricing anomalies represent a result of data mining:
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it is very unlikely that spurious anomalies would have a common component even

if each of the characteristics were correlated with returns. Second, the dispersion of

returns produced by AFER is larger than that produced by individual anomalies

meaning that various firm characteristics do contain complementary information and

its aggregation is fully justified. Third, in many specifications of the model AFER

is more informative about future returns than fitted values of the Fama-MacBeth

regression, so the additional theory-motivated assumptions used by HCF can help

to improve the estimation efficiency.

Our estimation approach is applicable not only to all considered character-

istics, but also to a subsample of them. In particular, it can be used for test-

ing whether a group of anomalies have a common origin (the filtered expectations

would be useless for predicting returns in the absence of a common component in

the characteristics) and examining whether the information in the characteristics is

complementary (when the characteristics are subsumed by each other, the filtered

expected returns would not be better than individual characteristics for predicting

returns). We conduct such an analysis on the characteristics related to firm growth.

Using HCF, we construct a new variable dubbed the growth-based filtered expected

returns (GFER) that aggregates information about expected returns from total as-

set growth, abnormal capital investments, accruals, net stock issues, and composite

stock issuance. We find that the spread in returns produced by GFER is statistically

detectable but comparable with that produced by its individual components and is

typically below 1% per month. Thus, various growth-associated anomalies are likely
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to capture different aspects of the same phenomenon.1

We also perform numerous additional tests to demonstrate the validity and

robustness of our results. In particular, we i) build filtered expectations and perform

tests using both raw returns and Fama-French risk adjusted returns; ii) explore the

strength of AFER and GFER in various subsamples of stocks and time periods;

iii) consider alternative model specifications; iv) conduct the Gibbons, Ross, and

Shanken (1989) test (GRS test) of several standard asset pricing models using AFER

portfolios as test assets to show that the latter can help to increase the power of the

test.

This study is related to several strands in the literature. In particular, it

is close to the papers that examine the joint ability of multiple firm characteristics

to predict stock returns (e.g., Haugen and Baker, 1996; Hanna and Ready, 2005;

Lewellen, 2013; Green, Hand, and Zhang, 2014). In contrast to these papers, which

primarily rely on Fama-MacBeth regressions, our study develops a new econometric

approach to aggregating information from multiple firm characteristics. Also, our

analysis is related to several studies that examine various trading strategies based on

firm fundamentals. For example, Ou and Penman (1989) show how a logit model that

aggregates numerous items from financial statements can predict future earnings and

returns. Abarbanell and Bushee (1998) employ OLS regression to build portfolios

that take into account a number of fundamental signals. Piotroski (2000) constructs

1This conclusion is consistent with Lipson, Mortal, and Schill (2012) who examine a variety of
asset growth measures and argue that the total asset growth measure of Cooper, Gulen, and Schill
(2008) largely subsumes the majority of them.
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a new variable (F SCORE) that combines nine accounting signals and has an ability

to predict returns of value firms. A similar score (GSCORE) has been developed

by Mohanram (2005) for growth stocks. Compared to these studies, our approach

has a better theoretical motivation. Brandt, Santa-Clara, and Valkanov (2009) solve

a portfolio optimization problem by allowing portfolio weights to depend directly

on the size, book-to-market, and momentum characteristics. Thus, they do not

construct estimates of expected returns of individual stocks using characteristics,

which is the focus of our method.

This study also belongs to the growing literature that promotes a holistic

approach to asset pricing anomalies. Fama and French (2008) examine the strength

of seven anomalies across size groups. Stambaugh, Yu, and Yuan (2012) find that

eleven anomalies appear to be stronger following periods of high investor sentiment.

Avramov, Chordia, Jostova, and Philipov (2010) document that many anomalies are

concentrated in firms with low credit ratings and the profitability of those anoma-

lies (except asset growth) derives from credit rating downgrades. Chordia, Sub-

rahmanyam, and Tong (2013) reconsider twelve popular anomalies and argue that

their returns diminished in recent years because of a decline in trading costs and

an increase in trading activity. McLean and Pontiff (2013) compare pre- and post-

publication returns on 82 anomalies and find that the profitability of anomalies tends

to decline after their publication. Kogan and Tian (2012) examine how easy it is to

explain 27 asset pricing anomalies by a three-factor model in which two factors are

return spreads produced by anomalous characteristics.

The idea that expected returns are unobservable variables that should be
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filtered out from available signals makes this study close to the recent literature on

time series predictability of aggregate stock returns by filtered expectations.1 In

contrast to this literature, we use disaggregated firm characteristics for predicting

the cross-sectional distribution of expected stock returns rather than the level of

aggregate stock returns.

The rest of this chapter is organized as follows. In Section 2.2 we present

our framework. We construct the HCF estimators of unobservable expected returns,

discuss their properties, and compare them with several alternative aggregation tech-

niques. Section 2.3 contains the results of our empirical analysis, in which we apply

the methodology to a set of characteristics and construct filtered expected returns.

2.2 Methodology

2.2.1 Latent Variable Approach

Consider a set of N stocks whose characteristics and returns are observed

in T periods. By definition, the best predictor of returns on stock i at time t is

expected return µit = E[Rit+1|Ft], where Ft is all information available to market

participants. We assume that expected returns are described by an asset pricing

model that admits a single-beta representation:

µit − rt = βitγt,

1An incomplete list of papers includes Conrad and Kaul (1988), Brandt and Kang (2004), Pástor
and Stambaugh (2009), van Binsbergen and Koijen (2010), Piatti and Trojani (2012), Romero
(2012), Rytchkov (2012), Kelly and Pruitt (2012a), and Kelly and Pruitt (2012b). Various expecta-
tions are modeled as unobservable state variables also in Hamilton (1985), Balke and Wohar (2002),
and Rytchkov (2010).

57



where βit is the beta with respect to some risk factor, γt is the factor risk premium,

and rt is the risk-free rate. By definition of the expectation, the realized return on

stock i can be written as

Rit+1 = µit + εit+1, (2.1)

where E[εit+1|Ft] = 0, but in general E[εit+1εjt+1|Ft] 6= 0 for i 6= j. We assume that

econometricians lack some information contained in Ft and do not know the nature of

the priced factor, so neither µit nor βit are observable to them.1 Instead, they observe

A firm characteristics Xa
it, a = 1, . . . , A, such that {Xa

it−s, s ≥ 0, a = 1, . . . , A, i =

1, . . . , N} ⊂ Ft. In practice, relevant firm characteristics may describe different as-

pects of a firm and have incomparable measurement scales. To take this into account,

the following discussion assumes that all characteristics have been cross-sectionally

demeaned and standardized, so that each of them has a unit cross-sectional variance

at each moment. Implementing the interpretation of firm characteristics as proxies

for conditional betas, we assume that the demeaned characteristics Xa
it, a = 1, . . . , A

are related to demeaned betas βit − β̄t as

Xa
it = δat γt(βit − β̄t) + uait, (2.2)

where δat γt measures the sensitivity of characteristic a to current betas and β̄t is

the cross-sectional average of betas at time t. By construction, the cross-sectional

average of the components uait is zero. Note that the parameters δat and γt are allowed

to change from period to period, so the informativeness of characteristics may vary

1We are agnostic about whether market participants observe the parameters of the asset pricing
model, which is the main issue in Adrian and Franzoni (2009) and Armstrong, Banerjee, and Corona
(2013).
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over time. This flexibility makes our framework consistent with abundant empirical

evidence that the strength of market anomalies varies over time.

The definition of the slope in Eq. (2.2) deliberately includes γt because with-

out losing generality Eq. (2.2) can be rewritten in terms of demeaned expected

returns:

Xa
it = δat (µit − µ̄t) + uait, (2.3)

where µ̄t is the cross-sectional average of expected returns at time t. The latter

representation of characteristics is more convenient for subsequent analysis. Note

that the characteristics can be equivalently interpreted as signals about betas or

signals about expected returns only if expected returns are described by a one-factor

model.

For future convenience, we introduce the following notation. Denote the sam-

ple cross-sectional variance and covariance as V ar and Cov, respectively, and reserve

Ṽ ar and C̃ov for the sample variance and covariance in the characteristic space. Note

that the standardization of characteristics implies that V ar(Xa
it) = 1 in each period

t. To make the model identifiable, we need the following additional assumptions:

Assumption 1. (Distribution of expected returns) In each period t, t =

1, . . . , T ,

µ̄t =
1

N

N∑
i=1

µit
p−→ µt and V ar(µit) =

1

N

N∑
i=1

(µit − µ̄t)2 p−→ Vt as N →∞,

where Vt > 0.
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Assumption 2. (Distribution of characteristic loadings) In each period t,

t = 1, . . . , T ,

δ̃t =
1

A

A∑
a=1

δat
p−→ δt and Ṽ ar(δat ) =

1

A

A∑
a=1

(δat − δ̃t)2 p−→ Λt, t as A→∞,

where Λt, t > 0. Also, for consecutive periods t− 1 and t

C̃ov(δat−1, δ
a
t ) =

1

A

A∑
a=1

(δat−1 − δ̃t−1)(δat − δ̃t)
p−→ Λt−1, t as A→∞,

where Λt−1, t > 0.

Assumption 3. (Orthogonality of errors and expected returns) In each pe-

riod t, t = 1, . . . , T and for each characteristic a, a = 1, . . . , A,

Cov(µit, u
a
it) =

1

N

N∑
i=1

(µit − µ̄t)(uait − ūat )
p−→ 0 as N →∞.

Assumption 4. (Orthogonality of errors and characteristic loadings) In each

period t, t = 2, . . . , T and for each stock i, i = 1, . . . , N ,

C̃ov(δat−1, u
a
it) =

1

A

A∑
a=1

(δat−1 − δ̃t−1)(uait − ũit)
p−→ 0 as A→∞.

Assumption 1 formalizes a natural condition that the cross-sectional distri-

bution of expected stock returns has a finite expectation and a positive standard

deviation. Similarly, Assumption 2 implies that the population distribution of the

vector of characteristic loadings (δat−1, δ
a
t ) has finite and non-zero second moments. It

can be interpreted as a condition that when the number of characteristics increases,
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their average informativeness stays the same.1 Assumption 3 states that there is

no cross-sectional relation between uait and the individual expected stock returns.

In other words, all available information about the cross-section of stock returns is

captured by µit. Assumption 4 implies that there is no systematic relation between

the past sensitivity of each characteristic to expected returns and the part of the

characteristic unrelated to expected returns. Given that typically the time variation

in the characteristic loadings is low, the assumption is also likely to hold for the

contemporaneous loadings δat .

It should be emphasized that our assumptions impose restrictions on neither

the cross-sectional correlations of εit nor the cross-characteristic or cross-sectional

correlations of uait. In general, the error components can be correlated even asymp-

totically. In particular, εit may have a factor structure underlying the cross-sectional

correlations of realized returns (e.g., with the return on the market as a factor). The

correlations between u’s imply that Xa
it may have a complex correlation structure

with multiple factors in the characteristics space and that µit is just one of them.

Note that because of the correlations between the returns-unrelated components of

the characteristics, a simple averaging of the characteristics in general would provide

an inconsistent estimate for expected stock returns.

The main problem of an econometrician is to estimate µit using all observable

characteristics Xa
it. In order to solve it, we propose a simple procedure, which can

be implemented as a sequence of standard OLS regressions. Because it uncovers a

1A disproportionate number of useless characteristics would shift the density of the distribution
of δt to zero and decrease Λt, t.
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cross-section of latent variables using a large number of observables, we refer to it as

the high-dimensional cross-sectional filter (HCF). The main steps of HCF at time t

are as follows:

Step 1. Run separate cross-sectional regressions of Rit, i = 1, . . . , N , on each

individual firm characteristic Xa
it−1, i = 1, . . . , N for a = 1, . . . , A and denote the

obtained slopes as λat .

Step 2. For each firm i, i = 1, . . . , N run a regression of Xa
it on λat , a =

1, . . . , A, and denote the obtained slopes as µ̂it.

The steps of the HCF procedure admit an intuitive interpretation. Running

regressions of current returns on each past characteristic at Step 1, we effectively

estimate the loadings of characteristics on expected returns in the previous time

period (up to a scalar multiplicative factor), so λat can be viewed as a proxy for δat−1.

If the loadings are persistent, they represent good estimates for current loadings

δat . Running a regression of current characteristics of each stock on the estimated

loadings at Step 2, we find the slope in Eq. (2.3) (again, up to a multiplicative factor

that is the same for all stocks), which coincides with the current demeaned expected

return on the stock.

Note that λat and µ̂it are determined only by realized returns on all stocks

at time t and all characteristics of all stocks at times t and t − 1. Obviously, all

needed information is available when the expected returns are estimated. Hence, the

procedure does not suffer from a look-ahead bias, and all computations are performed

in real time. Also note that the HCF procedure uses information on characteristics
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and returns from two periods only, so it does not rely on the availability of a long

history of observations.

The following Proposition states one the main econometric results of this

chapter.

Proposition 1. If Assumptions 1 – 4 hold, the described two-step procedure (HCF)

asymptotically uncovers the cross section of expected stock returns up to an unob-

servable time-varying factor Ft, which is the same for all stocks, i.e.,

plim
A→∞

plim
N→∞

µ̂it = Ft(µit − µt), where Ft =
Λt−1,t

Λt−1,t−1Vt−1

,

and Λt−1,t, Λt,t, and Vt−1 are defined in Assumptions 1 and 2.

Proof. See Appendix, Section 2.4.

Proposition 1 implies that when the number of stocks and characteristics is

sufficiently large, the HCF estimates µ̂it contain all information about the cross-

sectional dispersion of expected stock returns up to a scaling factor. Thus, asymp-

totically the cross-sectional ranking of stocks based on µ̂it coincides with that of

based on µit, and sorting stocks in portfolios using µ̂it should deliver the highest

dispersion of future realized portfolio returns.

Proposition 1 says that the expected returns are revealed in a sequential limit:

N goes to infinity first, and then the limit with respect to A is taken. Note that

in general this limit may differ from that obtained when the limits are taken in the
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opposite order or when N and A tend to infinity simultaneously.1 However, this does

not diminish the relevance of our analysis. In practice the number of firms typically

exceeds the number of their characteristics, and this is consistent with taking the

limit with respect to N first.

For the next step of our analysis, we introduce matrix notation. Denote by

Rt, µt−1, and εt the N × 1 matrices of all realized returns at time t, all expected

returns at time t−1, and all unexpected returns at time t, respectively. The vector of

HCF estimates of expected returns at time t is µ̂t. The N ×A matrix Xt represents

all characteristics available at time t and the characteristic loadings are denoted by

an 1× A vector δt.

We previously described the construction of µ̂it in terms of a sequence of OLS

regressions. However, when all characteristics are available for all stocks, µ̂it admits

an explicit analytical representation, which is given by Proposition 2.

Proposition 2. The vector µ̂t can be found as

µ̂t = N(R′tMNXt−1MAX
′
t−1MNRt)

−1XtMAX
′
t−1MNRt, (2.4)

where MN and MA are standard projectors on the spaces orthogonal to N- and A-

dimensional vectors of ones ιN and ιA:

MN = IN −
1

N
ιN ι
′
N , MA = IA −

1

A
ιAι
′
A.

IN and IA are identity matrices of the sizes N and A, respectively.

1See Bai (2003) for a discussion of various types of asymptotic convergence when random vari-
ables are labeled by two indexes.
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Proof. See Appendix, Section 2.4.

Proposition 2 implies that µ̂t is proportional to XtMAX
′
t−1MNRt, and only

this matrix needs to be computed to estimate the cross-section of stock returns

(the factor N(R′tMNXt−1MAX
′
t−1MNRt)

−1 is a scalar, which is irrelevant because µ̂t

estimates µt up to a multiplicative factor). This reduces the computational intensity

of the procedure and facilitates the simulation analysis discussed below.

Our methodology admits multiple modifications and extensions. To predict

the dispersion of returns at time t + 1, the baseline procedure uses only realized

returns at time t and characteristics measured at times t and t − 1. However, in

practice much longer time series of characteristics and returns are available, and

their use may increase the efficiency of the estimates. Extensions 1 and 2 describe

the two major ways in which the availability of observations in other periods can be

exploited.

Extension 1. If the relative relations among expected returns in the

cross section are stable over time, past realizations of the characteristics Xa
it−s, s =

1, . . . , L − 1 can also be used on par with Xa
it (if Assumptions 2, 3, and 4 hold for

them). This multiplies the number of observables A and makes the asymptotic result

from Proposition 1 more reliable.

Extension 2. If the relations between characteristics and expected returns

are stable over time or have a particular time series pattern (e.g., δat is constant for

all i), a modification of Step 2 can improve the efficiency of the whole procedure.
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Indeed, instead of using λat at Step 2 it is possible to use averages of λas that take the

time series pattern in to account. In particular, when δat is constant we can average

the lambdas computed for all previous periods. Because λat is a proxy for δat , an

average of lambdas is a better estimate for the constant δa, and its use improves the

precision of the estimates.

In practice, it is unlikely that the assumptions of Extensions 1 and 2 hold

exactly. However, expected returns on individual stocks are highly persistent and it

is reasonable to assume that there are no abrupt changes in the relations between

characteristics and expected returns. In this case, past characteristics can be added as

observables, but their history should be limited. In our empirical analysis, we assume

that expected returns can be treated as constant on horizons of up to one year. Thus,

we set L = 12 and use Xa
it−s, s = 1, . . . , L at Step 1 and Xa

it−s, s = 0, . . . , L − 1

at Step 2. In our applications, we also use Extension 2. In particular, we average

lambdas computed at the same month in all previous years (we also add the most

recent lambdas when we compute the averages). There is evidence of a seasonal

variation in the factor risk premia (Keloharju, Linnainmaa, and Nyberg, 2013), and

in the absence of seasonal variation in firm characteristics the suggested averaging

takes the seasonality in the risk premia into account.

Eq. (2.3) assumes a linear relation between characteristics and expected re-

turns (i.e., δat does not depend on i). However, it is well known that the strength of

many asset pricing anomalies depends on the range of the anomalous characteristic.

For example, many anomalies tend to be stronger in the short end (e.g., Stambaugh,
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Yu, and Yuan, 2012) and for small stocks (e.g., Fama and French, 2008). It means

that practically, the slopes δat can depend on characteristic a itself as well as on

other characteristics (denote them as −a). Our procedure can be modified to take

into account this possibility, and this modification is described in Extension 3.

Extension 3. Assume that δat (X
a
it, X

−a
it ) is piece-wise constant in the char-

acteristic space. Then, its components are estimated at Step 1 by running regressions

on each subsample of stocks for which δat is constant. In this way, several estimates

of λat are obtained for each characteristic that correspond to different ranges of the

characteristics’ values. At Step 2, for each stock i with the set of characteristics Xa
it

the appropriate lambdas corresponding exactly to Xa
it should be chosen.

The implementation of Extension 3 brings up an important tradeoff. On the

one hand, it may improve the quality of the estimates because the non-linear model

is likely to suffer less from misspecification compared to its linear analog and better

capture the information from each characteristic. On the other hand, a non-linear

model is more demanding in terms of the availability of data and the noise may offset

the benefits of improved specification.

2.2.2 HCF and Alternative Aggregation Techniques

The most common approach to estimating expected returns from multiple

characteristics is to use fitted values from the Fama-MacBeth regression (effectively,

a cross-sectional OLS regression) of realized returns on all available characteristics

(e.g., Haugen and Baker, 1996; Chan, Dimmock, and Lakonishok, 2009; Lewellen,
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2013). On the one hand, the OLS regression, which does not rely on any factor

structure of the characteristics, is more robust and may deliver consistent estimates

even when the assumptions of our model are violated and HCF may demonstrate

poor performance. On the other hand, HCF has several advantages over OLS, which

become particularly pronounced when the number of characteristics is large.

The key assumption of our approach is that all characteristics are proxies to

the same beta, so there is only one factor in the space of all characteristics that is

related to expected returns. This restriction is formalized by Eqs. (2.1) and (2.3)

together with Assumptions 3 and 4 and the returns-related factor is denoted by

µit. Even though there may exist multiple factors in the characteristic space and

there are no restrictions on the covariances of the characteristics, our assumption

puts more structure on the model than the standard linear regression does. When

our assumption actually holds, HCF explicitly exploits it and is likely to provide

asymptotically more efficient estimates than the OLS regression.

HCF is particularly advantageous over OLS when the number of characteris-

tics is large. The coefficients of the OLS regression (X ′t−1Xt−1)−1X ′t−1Rt effectively

require the estimation of the variance-covariance matrix of all regressors X ′t−1Xt−1,

whose size grows with the number of characteristics as A2. When A is relatively large,

the estimate becomes imprecise and even does not exist when there are more char-

acteristics than stocks.1 In contrast, HCF does not involve the variance-covariance

1The techniques designed to deal with a large number of regressors include sliced inverse regres-
sion (e.g., Li, 1991), and sparse regression models (e.g., Huang, Horowitz, and Ma, 2008; Belloni,
Chernozhukov, and Hansen, 2011). The methods of forecasting of a single time series when there
are many predictors are reviewed by Stock and Watson (2006).
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matrix of all characteristics but estimates only the loadings δa and expected returns

themselves. As a result, it even benefits from a large number of characteristics.

Meanwhile, when there are only few characteristics the estimates of their common

component may be imprecise and HCF may be dominated by OLS.

Another detrimental consequence for the OLS regression from includingX ′t−1Xt−1

is the inability to handle highly correlated characteristics due to the multicollinearity

problem. As a result, a researcher should make a judgment about which characteris-

tic among those that are highly correlated is the most informative about returns and

use only this characteristic in the regression. HCF does not suffer from this issue

and can easily aggregate information about expected returns from two characteristics

even when the characteristics are highly correlated.

The OLS regression has an undesirable requirement that all characteristics are

available for each stock. This is a very restrictive condition because the elimination of

stocks with missing characteristics significantly reduces the sample size.1 In contrast,

HCF can naturally handle stocks with only a few characteristics. Indeed, the first

step of our approach considers the characteristics one by one and, hence, uses all

stocks for which the given characteristic is available. As a result, the estimates of

lambdas are based on the maximum amount of information. The second step of our

procedure runs a regression of all characteristics available for the given stock at the

given moment on the slopes of these characteristics obtained at the first step. This

1To alleviate this problem, it is common to impute missing observations by assigning cross-
sectional averages of non-missing observations to them (e.g., Haugen and Baker, 1996; Green,
Hand, and Zhang, 2014).
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is again a univariate regression in which the number of characteristics corresponds to

the number of observations. If several characteristics are missing for the given stock,

this simply reduces the sample size in the regression (and possibly the precision of

the inference) but does not prevent running the regression as in the case of OLS

regressions of returns on all characteristics.

The objective of HCF to uncover a common component from a set of char-

acteristics resembles the objective of factor analysis. However, these techniques are

different in terms of their applicability as well as their outcomes. Factor analysis

uses the covariance structure of characteristics only, so it may reveal a factor that

explains the commonality in characteristics but is silent about expected returns. In

contrast, HCF by construction focuses only on the common component in character-

istics that is related to future returns, even though there may exist other factors in

characteristics that strongly affect the correlations among the characteristics them-

selves. Because of that, HCF and factor analysis generally would deliver different

estimates for expected returns, and those provided by factor analysis are inconsistent

unless the characteristics are described by a one-factor model.

The HCF procedure also bears some relation to a partial least squares regres-

sion (PLS).1 Similar to the main framework of PLS, the dependent variable (realized

returns) and independent variables (characteristics) are related to each other through

a latent structure (expected returns). However, in contrast to the classic PLS tech-

nique, our results rely on the availability of a large number of observables. Our pro-

1Various aspects of PLS are presented in Vinzi, Chin, Henseler, and Wang (2010).
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cedure also resembles the three-pass regression filter developed by Kelly and Pruitt

(2012b) but has a different objective: the latter is designed to find the best predic-

tor for one time series having a long history of multiple observables, whereas HCF

uncovers the cross-sectional distribution of unobservable expected stock returns.

2.2.3 Simulation Analysis

Our theoretical results show how the proposed estimator of expected returns

behaves for a large number of characteristics and stocks. To assess its behavior in

finite samples and to examine how the estimator quality depends on model parame-

ters such as the signal to noise ratio of observables and the distribution of the slopes

δ, we use Monte Carlo simulations. We also compare the performance of our esti-

mator with that of fitted OLS values and factors revealed by the factor analysis and

illustrate how a large number of anomalies improves the performance of HCF.

We assume that the cross-sectional distribution of expected returns is normal

with a mean of 1% and a standard deviation of σ(µi) = 0.8%. This calibration is

consistent with the estimates obtained for actual monthly expected returns on stocks

(e.g., Lewellen, 2013). Unexpected returns εi are assumed to be normally distributed

with a zero mean and a standard deviation of 10%, which is the order of magnitude

for a monthly volatility of individual stock returns. In the baseline analysis we ignore

the cross-sectional correlation of unexpected returns and model them as i.i.d. shocks.

It is harder to calibrate the loadings of characteristics δat and the distribution

of the returns-unrelated components uait. Given that the relations between charac-

teristics and expected returns tend to be relatively stable, we treat δa as constant
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over time, i.e., δat−1 = δat . We also assume that the distribution of δa is normal with

a unit mean and a standard deviation of σδ. To examine how σδ affects the quality

of the HCF estimates, we consider three specifications for it: σδ = 0.5, σδ = 1, and

σδ = 2. The components uait have a normal distribution as well with zero mean.

In the simplest case, they are independent across characteristics and across stocks.

The standard deviation of uait determines the informativeness of a characteristics

about expected stock returns. However, for each characteristic this informativeness

is also affected by the realized δa (for each characteristic a, the signal-to-noise ratio

is θa = σ(δaµi)/σ(uait)). To separate these two effects, we set σ(uait) = |δa|σ(µi)/θ

and consider three values for the parameter θ: 0.2, 0.5, and 1.

To study the impact of the number of observations and characteristics on the

HCF performance, we examine various combinations of N and A. In particular, we

consider 100, 500, 1, 000, and 3, 000 as the values of N and 10, 50, 100, and 500 as

the values of A. For each combination of the model parameters and for the chosen

N and A, we generate B = 1, 000 pseudo-samples of characteristics Xa
it−1, Xa

it, and

returns Rit, and compute the HCF estimates of expected returns µ̂
(b)
i , b = 1, . . . , B.

As a metric of the estimation precision, we use an average cross-sectional

correlation between the estimated expected returns µ̂
(b)
i and the actual expected

returns µi. In particular, we compute ρ(b) = corr(µ̂
(b)
i , µ

(b)
i ) for each simulated sample

b = 1, . . . , B and then find their average: ρ =
∑B

b=1 ρ
(b)/B. Note that the correlation

is the most appropriate metric in our framework because HCF reveals expected

returns up to a multiplicative factor which has no effect on the correlations. The

average correlations obtained by HCF and OLS in the baseline model are reported
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in Table 2.1.

Table 2.1 delivers several observations. First, the quality of the HCF estimates

increases with the number of characteristics. For example, when σδ = 1, θ = 0.5,

and N = 1, 000 the correlation of the HCF estimates with the true values increases

from 0.48 to 0.97 as A increases from 10 to 500. Moreover, HCF provides reasonable

estimates even when A exceeds N .

Second, Table 2.1 shows how the quality of the HCF estimates depends on

the dispersion of characteristic loadings σδ. Because the second step of HCF is

a regression of firm characteristics on the proxies for characteristic loadings, the

obtained estimates should be more precise when the dispersion of the loadings is

high. This is clearly demonstrated by the correlations in Table 2.1. When σδ = 0.5

the HCF correlations are relatively small, especially when only few characteristics

are available (they do not exceed 0.13 for A = 10). However, all HCF correlations

are much higher when σδ = 2. For example, they increase from 0.13 to 0.75 when

N = 3, 000 and A = 10, and they approach 0.99 when N = 3, 000 and A = 500.

Third, Table 2.1 illustrates the dependence of the HCF correlations on the

signal-to-noise ratio θ. When θ is high, the characteristics are more informative

about expected returns, so the correlations should increase with θ. This intuition

is confirmed by Table 2.1: the HCF estimates become more precise with θ. For

example, when N = 1, 000 and A = 10 the HCF correlation rises from 0.13 to 0.71

as θ increases from 0.2 to 1.

Table 2.1 also compares the performance of HCF and OLS estimates for ex-
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pected returns, where the latter are obtained by running cross-sectional regressions

of realized returns Rit on the past characteristics Xa
it−1 and using the fitted values

based on Xa
it as the estimates. Our results show that in the vast majority of cases

the estimates obtained by HCF are more precise than those based on OLS and the

difference can be dramatic. For example, when θ = 0.5, σδ = 1, N = 1, 000, and

A = 500 the HCF correlation is 0.97, whereas the corresponding correlation of the

OLS estimate is only 0.08. Moreover, in contrast to HCF the quality of the OLS

estimates notably decreases with the number of characteristics. In particular, when

σδ = 1, θ = 0.5, N = 1, 000, and A increases from 10 to 500 the correlation drops

from 0.48 to 0.08. When A exceeds N , OLS estimates do not exist.

The OLS estimates also demonstrate different dependence on model parame-

ters. In stark contrast to the HCF estimates, the OLS estimates have no sensitivity

to σδ. Even though both HCF and OLS estimates become more precise with θ, the

improvement is much less pronounced for OLS than for HCF, and for the former

it almost disappears when the number of characteristics is large. In the case when

N = 1, 000 and A = 10 the OLS correlation rises only from 0.21 to 0.56 as θ increases

from 0.2 to 1. A similar HCF gain is from 0.13 to 0.71.

Although in the baseline simulations we assume that the realized returns are

independent, actual returns are strongly correlated with returns on the market being

the dominant common factor. To examine how this correlation affects the quality of

the HCF estimates, we repeat the simulations assuming that the unexpected returns

are generated as εi = f ε + νi, where f ε is a normally distributed common factor

with a zero mean and a standard deviation of σ(f ε). The idiosyncratic unexpected
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returns νi are also normally distributed with zero mean and are uncorrelated with

the factor and with each other. We characterize the importance of the factor with

the ratio θf = σ(f ε)/σ(νi), where σ(νi) is the standard deviation of the idiosyncratic

component. We consider three values for the parameter θf : 0.2, 0.5, and 1. To

ensure that the total volatility of returns is the same as in the baseline case (10%),

we set σ(f ε) = 0.1θf/
√

1 + θ2
f and σ(νi) = 0.1/

√
1 + θ2

f . The other parameters are

σδ = 1 and θ = 0.5.

The correlations between µ̂i and µi in the presence of a factor in unexpected

returns are also reported in Table 2.1. In general, the obtained correlations are

similar to those without the factor and all previous conclusions hold. The only new

observation is that the quality of the estimates tends to increase with the importance

of the factor. This finding admits an intuitive explanation: when the proportion of

the volatility of returns attributed to the factor is high, the cross-sectional dispersion

of realized returns is determined largely by the cross-sectional dispersion of expected

returns rather than by the cross-sectional dispersion of the realized idiosyncratic

returns. Hence, the confounding effect of the unexpected returns decreases, and the

estimates of expected returns become more precise.

A common factor unrelated to expected returns can also be present in the

characteristics. We assume that uait = fuit + ηait, where fuit is an additional factor

in the characteristics of stock i uncorrelated with ηait. This factor is normally dis-

tributed with zero mean and standard deviation σ(fuit). Neither the factors nor the

idiosyncratic components ηait are correlated across stocks or over time. As before, we

measure the strength of the factor by the ratio θf = σ(fuit)/σ(ηit), where σ(ηit) is the
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standard deviation of the idiosyncratic component. To avoid confounding effects, we

assume that the total volatility of uait is the same for all stocks and characteristics

and set to be σ(uait) = 0.05. Note that in contrast to the baseline specification, σ(uait)

is assumed to be independent of the realizations of δa. To maintain the same volatil-

ity of uait for different values of θf , the volatilities of the factor and the idiosyncratic

component are computed as σ(fuit) = σ(uait)θf/
√

1 + θ2
f and σ(ηit) = σ(uait)/

√
1 + θ2

f .

As before, we set σδ = 1 and consider three values for θf : 0.2, 0.5, and 1.

Table 2.2 reports the correlations between actual expected returns and their

estimates obtained by HCF in the presence of an additional factor in characteristics.

It shows that the quality of the HCF estimates tends to increase with the strength

of the additional factor θf , and this pattern has an intuitive explanation. A common

factor in u’s has no effect on the outcome of the cross-sectional regressions of returns

on individual characteristics that are run at Step 1. However, it reduces the cross-

characteristic dispersion of errors uait for each stock, and this affects the regression

slopes at Step 2. When the factor is strong, the dispersion in observed characteristics

of stock i should be largely attributed to the dispersion of factor loadings rather

than to the errors uait. As a result, the regression slope, which is proportional to the

expected return on stock i, is estimated more precisely, and this explains the increase

in the correlations between µ̂i and µi.

Under our assumption that there is only one factor in the characteristics re-

lated to expected returns, a viable alternative to HCF could be extracting a common

factor from firm characteristics by factor analysis and considering it as a proxy for

expected returns. This approach would obviously provide consistent estimates when

76



there is only one factor in characteristics that corresponds to expected returns (i.e.,

the errors uait are uncorrelated across characteristics), although it is more computa-

tionally intensive than HCF, especially when the number of available characteristics

is large. However, when firm characteristics contain several common factors (e.g.,

there is also a common factor in uait for each stock), the comparison of HCF and

factor analysis is non-trivial. On the one hand, HCF extracts only the factor related

to expected returns and ignores all others. On the other hand, HCF uses realized

returns and characteristics from the past period, so when returns-unrelated factors

are weak it may be less precise than factor analysis, which extracts the factor directly

from the current characteristics.

To compare HCF and factor analysis, we augment Table 2.2 with the cor-

relations between actual expected returns and their estimates obtained by factor

analysis in the presence of an additional factor in characteristics. A comparison of

these estimates with their HCF analogs reveals that factor analysis produces more

precise estimates than HCF when the common factor in the errors uait is weak (when

θf is low), but tends to underperform when the common factor is strong. Indeed,

when the relation to expected stock returns is the main source of correlations among

characteristics of a stock, the factor analysis uncovers the common component associ-

ated with expected returns relatively precisely. However, when the returns-irrelevant

factor in characteristics is strong, it erroneously dominates the estimate of expected

returns produced by factor analysis and makes the estimate less precise. In contrast,

HCF uncovers only the common factor in characteristics that contains information

about future returns and ignores all others.
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Table 2.2 also demonstrates how the quality of the HCF and factor analysis

estimates changes with the number of stocks and characteristics. Not surprisingly,

both of them become more precise as N grows, but the effect is stronger for the HCF

estimates: they are consistent and tend to converge to the true values, whereas the

factor analysis estimates are misspecified. A similar pattern holds for the number of

available characteristics A.

2.3 Empirical Analysis

In this section, we illustrate how HCF works for real data by applying it to

thirteen firm characteristics that are known to be related to expected stock returns.

2.3.1 Data

Our data come from standard sources. Stock returns, stock prices, and the

number of shares outstanding are from CRSP monthly files, while accounting data

are from Compustat Fundamentals annual files. We exclude financial firms and

consider only NYSE, AMEX, and NASDAQ firms with common stocks. Returns are

monthly stock returns with dividends adjusted for delisting. We consider both raw

and risk-adjusted returns, and use the Fama-French three-factor model to adjust

for risk. We compute risk-adjusted returns r̃it on security i in month t following

Brennan, Chordia, and Subrahmanyam (1998) and Avramov and Chordia (2006):

r̃it = rit − rft − βMKT
i ×MKTt − βHML

i ×HMLt − βSMB
i × SMBt.

Individual stock betas are estimated every month by regressing excess stock returns

on a constant and the Fama-French factors. We use the previous 60 months of
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observations, requiring that at least 24 months of return data are available.

As signals about expected stock returns, we use thirteen characteristics that

are associated with prominent asset pricing anomalies. The characteristics can be

divided into five groups. The classical group consists of size S, book-to-market B/M ,

and momentum Mom. Investment variables capture the firm’s capital investment.

This group consists of total asset growth AG and abnormal capital investments CI.

Issuance characteristics capture the firm’s equity issuance activity with net stock

issues NS and composite stock issuance ι. Two accounting anomalies capture the

firm’s earnings management and its cumulative effect on the balance sheet with ac-

cruals Acc and net operating assets NOA, respectively. Return on assets ROA, an

accounting measure of the firm’s performance, also belongs to this group. Idiosyn-

cratic volatility IdV ol, Ohlson’s O-score O, and dispersion in analysts’ forecasts

D are grouped together as they broadly quantify uncertainty about the firm. The

detailed construction of each characteristic is described in the Appendix.

Our sample covers the period from January 1965 to December 2012 for all

characteristics except the return on assets, O-score, and analysts’ forecast disper-

sion, for which the sample starts in January 1975, January 1976, and January 1983,

respectively.

2.3.2 Individual Anomalies

We start our analysis by confirming that the selected characteristics are re-

lated to expected stock returns. We sort stocks with respect to each characteristic,

form decile portfolios, and compute average raw and risk-adjusted monthly returns on

79



them. For the book-to-market, asset growth, abnormal capital investments, accruals,

net operating assets, net stock issues, and composite stock issuance the portfolios are

formed once a year at the end of June. They are held for one year and rebalanced at

the end of next June. Portfolios based on size, momentum, idiosyncratic volatility,

and dispersion in analysts forecasts are created at the end of each month, whereas

portfolios based on return on assets and O-score are updated quarterly. Anomalous

returns are produced by a strategy with a long position in the top portfolio and a

short position in the bottom portfolio. In order to identify the contribution of small

stocks into abnormal returns, we compute both equal-weighted and value-weighted

portfolio returns. Table 2.3 reports the results.

In general, Table 2.3 confirms the existence of the considered anomalies and

implies that the thirteen characteristics contain some information about future re-

turns. For instance, Panel A shows that all hedge returns based on equal-weighted

portfolios are highly statistically significant and the majority of them exceed 50 basis

points per month. In the considered sample, the widest dispersion of raw returns is

produced by size, momentum, and the value anomalies. The absolute values of t-

statistics range from 3.00 for the O-score to 7.30 for the total asset growth, and more

than half of them are greater than 4. Note that this variation in the t-statistics across

anomalies is driven by the dispersion both in expected returns and in the volatility

of anomalous returns, which ranges from 2.24% for abnormal capital investments to

7.58% for size.

Panel B shows that the anomalies survive the adjustment for risk based on the

Fama-French three factor model. Moreover, the risk adjustment does not eliminate
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the dispersion in expected returns even across size and book-to-market portfolios,

although it halves the value premium. This result echoes the findings of Brennan,

Chordia, and Subrahmanyam (1998) and shows that the conclusions are sensitive

to whether the risk adjustment is conducted at the portfolio level or at the level of

individual securities.

Consistent with the literature, Panels C and D show that the abnormal returns

tend to be weaker when computed for value-weighted portfolios. The reduction in

hedge returns is particularly pronounced for the value anomaly, the total asset growth

anomaly, and the abnormal capital investments anomaly, which even becomes sta-

tistically insignificant for risk-adjusted returns. Also note that the distress anomaly

and the analysts’ forecasts anomaly disappear for raw returns and value-weighted

portfolios but retain their strength for risk-adjusted returns.

2.3.3 Filtered Expected Returns

In order to aggregate information on individual expected stock returns con-

tained in multiple characteristics, we apply the HCF procedure. We construct the

estimates of expected returns µ̂it using the two-step procedure described in Sub-

section 2.2.1. These estimates can be viewed as new firm characteristics related to

actual stock returns, and we refer to them as filtered expected returns.

We introduce two types of filtered expected returns. First, we construct a

proxy for expected returns that unifies the information from all thirteen characteris-

tics discussed above and denote it as AFER (the abbreviation stands for “aggregate

filtered expected returns”). It aggregates the information from different sources (fun-
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damental data, price data, analysts’ forecasts data, etc.) and it may be hard to give

it a particular economic interpretation. However, this is exactly the characteristic

that investors should optimally use to build portfolios with the highest dispersion of

expected return.

Our second aggregate estimate of expected returns captures the information

associated with various aspects of firms’ growth. Conceivably, the relations between

various growth-related firm characteristics and expected returns have the same eco-

nomic explanation, and various growth anomalies capture its different aspects. To

some extent, this logic is the same as in Cooper, Gulen, and Schill (2008), where the

authors motivate the use of the total asset growth as a single variable that unifies

many subcomponents of growth from both the financing and investment sides. To

construct the characteristic that aggregates various growth anomalies (we denote it

as GFER, which is an abbreviation for growth-based filtered expected returns), we

combine asset growth, accruals, capital investments, net stock issues, and composite

stock issuance.

To aggregate characteristics, we use their ability to predict raw returns. How-

ever, many of the considered characteristics have become prominent due to their abil-

ity to predict returns adjusted for risk using the Fama-French three factor model.

Because of that, we also consider versions of aggregate expected returns that are

built as predictors of risk-adjusted returns. The latter filtered returns are denoted as

AFER(a) and GFER(a) (a stands for “adjusted”), whereas the expectations based

on raw returns are denoted as AFER(r) and GFER(r) (r stands for “raw”).

In the practical implementation, we augment the two-step procedure with
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several additional conventions. First, as mentioned in Subsection 2.2.1, we use not

only the values of the characteristics available in month t for predicting returns in

month t+ 1 but also the values of the characteristics from L− 1 previous months as

additional signals (although not all lagged characteristics contain new information

because several of them are revised annually). In the baseline case we set L = 12

and consider the sensitivity of the results to this choice among other robustness tests

in Subsection 2.3.5. Second, we adjust the procedure for a seasonal variation in

the strength of anomalies and use averaged lambdas, i.e., for predicting returns in

month m we average lambdas computed for all previous months m and the most

recent lambda computed in month m − 1. Third, we run the regression at Step 2

only if the sample of available characteristics of firm i and the corresponding lambdas

computed at Step 1 contains more than seven data points. Otherwise, the expected

return for firm i in the given period is deemed unavailable.

Table 2.4 reports the average returns on decile portfolios formed on the basis

of the four filtered expected returns constructed by HCF. To ensure that our results

are not driven by risk adjustment, we examine the predictability of both raw returns

and risk-adjusted returns. Also, as in the case of individual anomalies, we compute

equal-weighted and value-weighted portfolio returns.

Table 2.4 provides several observations. First, both AFER and GFER pro-

duce a strong dispersion in expected stock returns, and the average portfolio returns

tend to increase monotonically with the portfolio number. The only exception is the

risk-adjusted returns onGFER(r) computed for value-weighted portfolios, which can

be explained by poor behavior of the total asset growth anomaly and the abnormal
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capital investments anomaly on risk-adjusted returns and value-weighted portfolios

(cf. Table 2.3).

Second, the comparison of Tables 2.3 and 2.4 reveals that AFER produces

hedge returns that substantially exceed those on individual anomalies. In particular,

Panel A of Table 2.4 shows that the spread between top and bottom decile portfolios

for AFER(r) is 3.02% per month with the t-statistic of 10.98, whereas the highest

return on individual anomaly is 1.88% (the size anomaly). The result is robust and

holds for both AFER(r) and AFER(a), raw and risk-adjusted returns, and equal-

weighted and value-weighted portfolios. Moreover, the hedge returns on AFER

tend to have higher t-statistics, implying that high expected returns are generated

without a commensurate increase in the volatility of returns. Thus, various firm

characteristics indeed contain complementary information about stock returns, and

the HCF procedure reveals it.

Third, the result is different for GFER. Even though the dispersion of re-

turns produced by it is statistically detectable in the majority of specifications, it

does not generate hedge returns that are larger than those on its individual compo-

nents. For example, the spreads in raw returns on equal-weighted decile portfolios

for GFER(r) and GFER(a) are 1.06% and 0.78%, respectively, whereas the similar

spread produced by total asset growth alone is 1.13%. This lack of improvement can

occur for several reasons. First, different components of growth might not contain

substantial complementary information about future returns. Second, the model

may be misspecified due to non-linearities in the relations between characteristics

and returns, and the misspecification reduced the forecasting power of the filtered
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expected returns. Third, the individual growth-related anomalies may be largely

driven by individual influential returns whose impact is reduced in the two-step pro-

cedure. Fourth, the HCF procedure may bring additional noise to the estimation of

expected returns. To identify the exact reason, more research is needed.

Consistent with the pattern in hedge returns for individual anomalies, the pre-

diction power of filtered expectations is weaker for risk-adjusted returns and value-

weighted portfolios. For example, AFER(r) produces a spread of 3.02% per month

for raw returns and equal-weighted portfolios, but only 1.31% for risk-adjusted re-

turns and value portfolios. Nevertheless, the latter is still comparably high and

statistically significant with the t-statistic of 6.24. Hence, the dispersion of expected

stock returns produced by filtered expectations is not confined to small stocks and

cannot be explained by the Fama-French three-factor model.

2.3.4 Estimation of Expected Stock Returns using Fama-MacBeth Re-
gressions

As discussed above, the HCF estimates of expected returns have several the-

oretical advantages compared to fitted values from cross-sectional OLS regressions.

To juxtapose them using actual data, we run Fama-MacBeth regressions in each

month using the history of characteristics and returns available in that month and

construct estimates for expected returns as fitted values. As before, we separately

aggregate all characteristics and only those related to growth, and predict both raw

and risk-adjusted returns. Using the obtained estimates for expected returns, we sort

stocks into decile portfolios, compute equal-weighted returns on them, and examine
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the difference in returns on top and bottom portfolios. The results are presented in

Table 2.5.

The columns of Table 2.5 correspond to different types of averaging of regres-

sion slopes over time. We consider four of them that use i) all history; ii) 5-year

rolling windows, iii) 10-year rolling windows, and iv) all estimates for the same cal-

endar month and the most recent month. Overall, the constructed fitted values do

contain information about future returns (all t-statistics are large), and for expected

returns based on only growth-related characteristics the results are similar to those

of HCF. The latter is additional evidence that the growth-related characteristics do

not contain complementary information about returns. However, the results for all

characteristics are consistently weaker than those produced by HCF. In particular,

for all characteristics and raw returns the decile hedge returns do not exceed 1.2%

per month, whereas for HCF these returns can be as high as 3%. These results

illustrate the benefits of HCF compared to the OLS-based aggregation.

Our results for the Fama-MacBeth fitted values are weaker than those in

Lewellen (2013) and Green, Hand, and Zhang (2014), who also estimate expected

stock returns using the Fama-MacBeth regression but find a wider dispersion of

realized returns. The discrepancy is likely to be explained by the use of different sets

of characteristics as well as the way of their construction. For example, in contrast

to Lewellen (2013), we include the analysts’ forecasts dispersion, which reduces the

sample size in the regression approach and affects the quality of the estimates for

expected returns. When this characteristic is excluded, hedge returns become close

to 1.5% per month. We also do not impute missing values of the characteristics, as
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Green, Hand, and Zhang (2014) do.

2.3.5 Robustness Tests

Our baseline analysis shows that HCF does a good job aggregating informa-

tion from various firm characteristics. In this Subsection we explore whether this

conclusion is sensitive to alternative specifications of the HCF procedure.

In the main analysis it is assumed that twelve lags of each firm characteristic

are used as signals, i.e., L = 12. Panel A of Table 2.6 shows the difference in

returns on top and bottom decile portfolios for alternative choices L = 2, L = 6, and

L = 24. To save space, we report only the results for raw returns and equal-weighted

portfolios.

Overall, Panel A of Table 2.6 demonstrates that the choice of L only weakly

affects the size of hedge returns and its statistical significance. In particular, the dis-

persion of returns produced by AFER slightly decreases with L, whereas the returns

on GFER are remarkably stable. The former effect is likely to be explained by the

increase in the number of weak signals about expected returns when distant lags of

characteristics are added to the model. As a result, the dispersion of characteristic

loadings Λt, t shrinks, and this makes the estimates of µ̂it obtained at Step 2 of the

HCF procedure less precise. In contrast, the growth-related characteristics are more

stable over time and preserve their informativeness about expected returns on longer

horizons.

Another choice that we make while constructing AFER and GFER is how

to average over time the slopes λa obtained at the first step. In the main analysis,
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we use the estimates from the same calendar month and the most recent month to

exploit the seasonality of considered anomalies. Panel B of Table 2.6 shows hedge

returns for alternative specifications in which we average λa obtained i) in all past

months, ii) in the past 5 years, and iii) in the past 10 years. For GFER, the

results are surprisingly consistent across the specifications and again indicate that

the growth-related characteristics have a common returns-related component but

do not contain complementary information. In contrast, the results for AFER are

weaker for alternative specifications, although the hedge returns are still relatively

high (higher than 1.5% per month) and exceed those produced by fitted values of

Fama-MacBeth regressions and reported in Table 2.5. This observation suggests that

the commonality in anomalies inherits seasonal variation from the factor risk premia

and the averaging of slopes from the same calendar month takes this into account.

The next modification of the estimation procedure that we consider pertains

to the specification of cross-sectional regressions that we run at Step 1. In the baseline

case, we use individual stocks. However, extreme realizations of characteristics or

returns may affect the estimated slopes λat and, as a result, decrease the precision

of µ̂t obtained at Step 2. One of the possible remedies is to group stocks into P

portfolios and then run a regression of average portfolio returns on average values of

characteristics in the portfolios.1 We implement this approach as a second robustness

test. We consider the cases P = 20, P = 50, P = 100, and P = 200. In order to

ensure that each portfolio contains at least several stocks, we consider a sample that

1The idea to run cross-sectional regressions on portfolios goes back to Black, Jensen, and Sc-
holes (1972) and Fama and MacBeth (1973), where portfolios are formed to mitigate the errors-in-
variables problem in the estimated betas.
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starts in January 1975. The results are presented in Panel C of Table 2.6. Again,

only the spread in equal-weighted raw returns on decile portfolios is reported.

The obtained results show that the regressions on portfolios at Step 1 produce

almost the same decile hedge returns and their t-statistics as the regressions on

individual stocks. For example, the spread on AFER(r) with P = 20 is 2.97%, which

is almost identical to 3.02% reported in Table 2.4. Thus, we can conclude that either

the effects of outliers are unimportant or the gain produced by the robustness of the

cross-sectional regressions to outliers is offset by the loss in efficiency produced by

the decrease in the dispersion of characteristics that results from portfolio formation

(Ang, Liu, and Schwarz, 2008).

The theoretical literature suggests that one of the reasons why both betas and

characteristics appear to be related to stock returns is a nonlinear relation between

them. To take into account this possibility, we consider a specification of the model

with L = 1 in which observables contain characteristics and all possible quadratic

terms formed from them. Thus, instead of 13 and 5 observables there are 104 and 20

observables for AFER and GFER, respectively. The hedge returns on decile equal-

weighted portfolios and their t-statistics obtained in this specification are presented

in Panel D of Table 2.6. Our results show that the presence of nonlinearities does not

change the ability of AFER and GFER to capture expected returns: both hedge

returns and their t-statistics are very close to their counterparts from the baseline

specification. Thus, the higher order terms neither help nor hurt our analysis.

So far in the analysis, all characteristics were given equal weight. It may

be interesting to explore whether putting more weight on characteristics that bet-
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ter predict stock returns may increase the precision of AFER estimates and the

spread in AFER-sorted long short portfolio returns. Table 2.7 presents the results

of several tests aimed at over-weighting higher ‘quality’ characteristics. For simplic-

ity, each characteristic a is multiplied by the sign of its average λa, so that for all

characteristics average λas are positive. As in the previous table, this table shows

the differences in monthly returns on top and bottom decile portfolios formed by

the filtered expected returns. In Panel A, each month the characteristics with the

lowest first stage estimates of λas are excluded from the second stage. For example,

excluding one characteristic leads to a drop in average equal-weighted returns to 2.7

% per month. There appears to be a negative monotonic relation between the num-

ber of excluded characteristics and average returns. This pattern implies that it is

important to use all characteristics for the construction of filtered expected returns.

This finding may be specific to the set of chosen prominent anomalies, which were

previously established as strong predictors of stock returns. The weak predictability

in a particular month may come from the estimation error in the first stage, but

excluded λas still contain useful information for the second stage. Thus, leaving out

these λas leads to a loss of power in estimating AFER and lower spread in the decile

portfolio returns.

In Panel B, in the first two columns λas are weighted in the second stage by

the inverse of their time series standard deviations. In the third and fourth columns,

weights are inversely proportional to the time series averages of the cross sectional

errors from the first stage. Index 1 corresponds to using the whole previous history

for computing weights, and index 2 corresponds to using only the twelve previous
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months. Similarly to Panel B, the results are weaker compared with equal weighting

all anomalies. The difference may be attributed to the weak small sample properties

of weighted least squares as only fourteen characteristics are used.

2.3.6 Filtered Expected Returns in Subsamples

Lastly, we explore the dispersion of expected returns produced by AFER

and GFER within subsamples based on time period, firm capitalization, and id-

iosyncratic volatility of stock returns. Each of these subsamples is motivated by

recent literature. In the case of firm capitalization, Fama and French (2008) high-

light the potential for microcaps to dominate any regression and recommend testing

anomalies with separate regressions for microcaps, small stocks, and big stocks. Pon-

tiff (1996, 2006) argue that idiosyncratic volatility can be thought of as a proxy for

arbitrage costs that dissuade rational arbitrageurs from exploiting mispricing, and

that anomalies therefore are more likely to exist among stocks with high idiosyn-

cratic volatility. Finally, the consideration of anomalies in different time periods is

motivated by their likely tendency to become weaker or even disappear after their

academic discovery. A number of recent papers look at these issues, and the general

conclusion is that some anomalies do, indeed, tend to be more pronounced on small

stocks, on stocks with high idiosyncratic volatility, and in earlier time periods.1

1Fama and French (2008) find that the size anomaly, the value anomaly, the profitability anomaly,
and the asset growth anomaly are mainly produced by small stocks whereas the net stock issues
anomaly, the accruals anomaly, and the momentum anomaly are pervasive across size groups. The
idiosyncratic volatility has been found to affect the strength of book-to-market (Ali, Hwang, and
Trombley, 2003), accruals (Mashruwala, Rajgopal, and Shevlin, 2006), and asset growth (Lipson,
Mortal, and Schill, 2012). A decrease in returns on various anomalies in the recent period is
reported in Horowitz, Loughran, and Savin (2000), Schwert (2003), Green, Hand, and Soliman
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Following the literature, we measure the idiosyncratic volatility as the stan-

dard deviation of the error term in the time series regression of daily returns on the

Fama-French three factors. We split all stocks into three groups based on idiosyn-

cratic volatility (low, medium, high). As breakpoints, we use the 30th percentile

and 70th percentile, i.e., the stocks whose idiosyncratic volatility are below the 30th

percentile are in a low group, etc. Since idiosyncratic volatility is measured on a

monthly basis, we rebalance the volatility groups each month. To form size portfo-

lios, we follow Fama and French (2008) and classify stocks as microcaps, small stocks,

and big stocks. The breakpoints are the 20th and 50th percentiles of end-of-June

market capitalization for NYSE stocks.

Table 2.8 shows the difference in returns on top and bottom decile portfolios

formed by each constructed estimate of expected returns within various subsamples.

To save space, we report the results only for raw returns and equal-weighted portfo-

lios. The three panels correspond to subsamples based on sample period, size, and

idiosyncratic volatility, respectively.

Each of the three panels yields interesting results. First, all filtered expected

returns preserve their statistical significance in all periods and the size of hedge

returns even slightly increases after 1995. Although the t-statistics are lower in the

late period, the stability of the forecasting power demonstrated by filtered returns

across time periods indicates that they represent an actual phenomenon and not a

statistical fluke.

(2011), McLean and Pontiff (2013), Chordia, Subrahmanyam, and Tong (2013), among others.

92



Second, the breakdown along market capitalization reveals that the filtered

expected returns have more power to predict actual returns for microcap stocks

than for large stocks. For example, AFER(r) and AFER(a) generate 3.01% and

2.74% per month for microcaps, but their hedge returns drop to 0.81% and 0.63%

for large stocks. A similar pattern is observed for t-statistics. However, all filtered

expectations have a detectable forecasting power for large stocks, so their relation to

actual returns is not confined to tiny and illiquid stocks.

Finally, Table 2.8 presents the hedge returns across the idiosyncratic volatility

portfolios and reveals an anticipated pattern: in general, the dispersion of returns

appears to be wider among high volatility stocks than among low volatility ones. In

particular, for AFER(r) the difference in returns on top and bottom decile portfolios

reaches 3.39% for stocks with high idiosyncratic volatility, but is only 1.22% for low

volatility stocks. Again, the t-statistics show a similar pattern. However, the fore-

casting power of all filtered expectations is detected for stocks with low idiosyncratic

volatility, so it cannot be explained by limits to arbitrage.

2.3.7 Application: Testing Asset Pricing Models

The constructed filtered expected returns can be used for testing asset pricing

theories. Because they produce a high dispersion of expected returns, quintile or

decile portfolios based on them are likely to be good test assets whose returns are hard

to explain. Thus, AFER-based portfolios may help to increase the power of asset

pricing tests. To demonstrate that this is indeed the case, we test the CAPM, the

Fama-French three-factor model (Fama and French, 1993), and the Carhart model

93



(Carhart, 1997) by using the Gibbons, Ross, and Shanken (1989) F -statistic (GRS

test) computed for the decile value-weighted AFER portfolios.1 The results are

presented in Table 2.9.

Table 2.9 reports alphas from the time series regressions of excess portfolio

returns on the excess market returns (CAPM), on the excess market returns, HML,

and SMB (FF3), and on the excess market returns, HML, SMB, and the momentum

factor (Carhart). Also the table shows the GRS statistics and their p-values. Overall,

the patterns in alphas for all models are similar to those in expected portfolio returns,

so the factor betas do not help to explain the cross section of returns. This conclusion

is supported by the GRS statistics whose p-values show that all three models are

unambiguously rejected. More importantly, the values of the GRS statistics are

much higher than those reported in the literature when the test assets are portfolios

formed on the book-to-market ratio, size (e.g., Fama and French, 1996; Fama and

French, 2012), earnings-to-price ratio, cash flow-to-price ratio, sales rank (e.g., Fama

and French, 1996), dispersion of analysts’ forecasts (Diether, Malloy, and Scherbina,

2002) or portfolios of mutually correlated stocks (Ahn, Conrad, and Dittmar, 2009).2

Thus, the AFER portfolios help to increase the power of the GRS test and we can

conclude that the considered models are rejected much more reliably than when more

standard test assets are used.

1The null hypothesis of the GRS test is that all alphas in the time series regressions of excess
returns on the factors are jointly equal to zero.

2Typically, the GRS statistics do not exceed 4.
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2.4 Appendix

Proof of Proposition 1. The cross-sectional standardization of character-

istics implies that V ar(Xa
it) = 1 for all t, t = 1, . . . , T and a, a = 1, . . . , A. Hence,

the slope in the cross-sectional regression of Rit on Xa
it−1 (Step 1) is

λat =
Cov(Rit, X

a
it−1)

V ar(Xa
it−1)

= Cov(Rit, X
a
it−1).

Taking the first limit N →∞, we have

Cov(Rit, X
a
it−1) = Cov(µit−1 + εit, δ

a
t−1(µit−1 − µ̄t−1) + uait−1)

p−→ δat−1Vt−1,

where we use Assumptions 1 and 3 along with the independence of εit from all

variables available at time t− 1.

At Step 2, the characteristics Xa
it are regressed on λat in the characteristics

space for each stock and the obtained slopes are

µ̂it =
C̃ov(Xa

it, λ
a
t )

Ṽ ar(λat )
.

Using the Slutsky’s theorem,

C̃ov(Xa
it, λ

a
t ) = C̃ov(δat (µit − µ̄t) + uait, λ

a
t )

p−−−→
N→∞

C̃ov(δat (µit − µt) + uait, δ
a
t−1Vt−1)

= (C̃ov(δat−1, δ
a
t )(µit − µt) + C̃ov(uait, δ

a
t−1))Vt−1,

Ṽ ar(λat )
p−−−→

N→∞
Ṽ ar(δat−1Vt−1) = Ṽ ar(δat−1)V 2

t−1.

Taking the second limit A→∞ and applying the rules for probability limits we get

plim
A→∞

plim
N→∞

µ̂it = plim
A→∞

plim
N→∞

C̃ov(Xa
it, λ

a
t )

Ṽ ar(λat )

= plim
A→∞

C̃ov(δat−1, δ
a
t )(µit − µt) + C̃ov(uait, δ

a
t−1)

Ṽ ar(δat−1)Vt−1

=
Λt−1,t

Λt−1,t−1Vt−1

(µit − µt).
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The computation of the last limit uses Assumptions 2 and 4. After denoting the

factor Λt−1,t/(Λt−1,t−1Vt−1) as Ft, we get the statement of the proposition. Q.E.D.

Proof of Proposition 2. The slope of the first step regression is

λat = Cov(Rit, X
a
it−1) =

1

N
Xa
t−1
′MNRt,

or in a matrix form,

λt =
1

N
X ′t−1MNRt.

The slope of the second step regression is

µ̂it = (λ′tMAλt)
−1λ′tMAX

′
it.

Putting it in a matrix form and plugging in λt, we get the result:

µ̂t = (λ′tMAλt)
−1XtMAλt = N(R′tMNXt−1MAX

′
t−1MNRt)

−1XtMAX
′
t−1MNRt.

This completes the proof. Q.E.D.
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Table 2.1: Simulations: HCF and OLS

This table shows average cross-sectional correlations between the estimated expected returns µ̂i and the actual expected

returns µi. The estimates are obtained using HCF and OLS. The errors εi are i.i.d. or have a one-factor structure. N

is the number of stocks, A is the number of available characteristics, σδ is the dispersion of the characteristic loadings,

and θ is the signal-to-noise ratio of the characteristics. The parameter θf measures the contribution of the factor in the

volatility of returns. In the simulations with a factor in unexpected returns we set σδ = 1 and θ = 0.5. All other model

parameters are specified in Subsection 2.2.3.

N A θ = 0.5 σδ = 1 one factor in unexpected returns εi

HCF OLS HCF OLS HCF OLS

σδ = 0.5|σδ = 1|σδ = 2| σδ = 0.5|σδ = 1|σδ = 2| θ = 0.2|θ = 0.5|θ = 1| θ = 0.2|θ = 0.5|θ = 1| θf = 0.2|θf = 0.5|θf = 1| θf = 0.2|θf = 0.5|θf = 1

100 10 0.04 0.20 0.27 0.18 0.17 0.17 0.05 0.20 0.35 0.07 0.17 0.20 0.19 0.21 0.25 0.16 0.18 0.22

50 0.11 0.41 0.47 0.07 0.08 0.08 0.10 0.41 0.52 0.05 0.08 0.08 0.35 0.41 0.51 0.07 0.08 0.11

100 0.15 0.45 0.47 — — — 0.15 0.45 0.51 — — — 0.42 0.48 0.59 — — —

500 0.27 0.51 0.56 — — — 0.29 0.51 0.60 — — — 0.54 0.60 0.69 — — —

500 10 0.07 0.39 0.54 0.35 0.36 0.36 0.09 0.39 0.59 0.14 0.36 0.45 0.40 0.43 0.48 0.36 0.39 0.47

50 0.20 0.68 0.79 0.21 0.22 0.22 0.23 0.68 0.87 0.16 0.22 0.22 0.69 0.73 0.80 0.22 0.24 0.29

100 0.29 0.78 0.85 0.15 0.15 0.15 0.32 0.78 0.89 0.13 0.15 0.15 0.78 0.82 0.88 0.15 0.17 0.21

500 0.55 0.88 0.90 — — — 0.57 0.88 0.92 — — — 0.91 0.92 0.97 — — —

1000 10 0.11 0.48 0.66 0.47 0.48 0.48 0.13 0.48 0.71 0.21 0.48 0.56 0.48 0.50 0.55 0.47 0.51 0.59

50 0.28 0.81 0.89 0.30 0.30 0.30 0.31 0.81 0.95 0.22 0.30 0.32 0.81 0.84 0.88 0.31 0.34 0.42

100 0.40 0.88 0.93 0.22 0.22 0.23 0.42 0.88 0.97 0.18 0.22 0.23 0.89 0.91 0.93 0.23 0.25 0.31

500 0.69 0.97 0.98 0.08 0.08 0.08 0.70 0.97 0.98 0.08 0.08 0.08 0.97 0.97 0.99 0.08 0.09 0.11

3000 10 0.13 0.58 0.75 0.65 0.65 0.64 0.20 0.58 0.76 0.31 0.65 0.77 0.58 0.58 0.62 0.65 0.68 0.73

50 0.39 0.89 0.94 0.50 0.49 0.49 0.46 0.89 0.98 0.37 0.49 0.52 0.90 0.90 0.91 0.50 0.53 0.62

100 0.53 0.94 0.97 0.38 0.38 0.38 0.59 0.94 0.99 0.32 0.38 0.40 0.95 0.95 0.95 0.39 0.42 0.50

500 0.85 0.99 0.99 0.18 0.18 0.17 0.86 0.99 1.00 0.17 0.18 0.18 0.99 0.99 0.99 0.18 0.19 0.24
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Table 2.2: Simulations: HCF and Factor Analysis

This table shows average cross-sectional correlations between the estimated expected returns µ̂i

and the actual expected returns µi. The estimates are obtained using HCF and factor analysis.

The errors uai have a one-factor structure. N is the number of stocks, A is the number of available

characteristics, and the parameter θf measures the contribution of the factor in the dispersion

of returns-unrelated components of the characteristics. In all simulations we set σδ = 1 and

σ(uait) = 0.05. All other model parameters are specified in Subsection 2.2.3.

N A HCF factor analysis

θf = 0.2 θf = 0.5 θf = 1 θf = 0.2 θf = 0.5 θf = 1

100 10 0.04 0.06 0.10 0.39 0.30 0.21

50 0.13 0.15 0.21 0.67 0.36 0.23

100 0.15 0.18 0.28 — — —

500 10 0.12 0.13 0.19 0.47 0.32 0.21

50 0.26 0.30 0.40 0.68 0.36 0.23

100 0.35 0.40 0.52 0.72 0.36 0.23

1000 10 0.15 0.19 0.27 0.48 0.32 0.22

50 0.34 0.39 0.53 0.69 0.36 0.23

100 0.46 0.52 0.65 0.73 0.37 0.23

3000 10 0.24 0.28 0.39 0.49 0.31 0.22

50 0.50 0.56 0.70 0.68 0.36 0.23

100 0.64 0.69 0.81 0.73 0.37 0.23
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Table 2.3: Individual Anomalies

This table reports statistical properties of hedge returns defined as a difference in monthly returns

on top and bottom decile portfolios formed on the basis of thirteen anomalous characteristics. The

anomaly variables are denoted as follows: B/M is book-to-market, S is size, Mom is momentum,

IdV ol is idiosyncratic volatility, AG is total asset growth, CI is abnormal capital investments,

ROA is return on assets, Acc is accruals, NOA is net operating assets, NS is net stock issues, ι

is composite stock issuance, O is Ohlson’s (1980) O-score, D is analysts’ forecasts dispersion. A

detailed description of characteristics is given in the Appendix. The sample covers the period from

January 1965 to December 2012 for all characteristics, except the return on assets, O-score, and

analysts’ forecasts dispersion, for which the sample periods start in January 1975, January 1976,

and January 1983, respectively. Means and standard deviations of returns are multiplied by 100.

Panel A: Raw Returns, Equal-Weighted Portfolios

B/M S Mom IdV ol AG CI ROA Acc NOA NS ι O D

Means 1.31 -1.88 1.64 -0.86 -1.13 -0.34 1.22 -0.57 -1.02 -0.41 -0.67 -0.71 -0.70

Stds 4.40 7.58 5.76 6.36 3.70 2.24 6.42 2.93 4.05 2.44 4.86 5.02 4.38

t-stats 7.16 -5.94 6.82 -3.24 -7.30 -3.68 4.07 -4.67 -6.02 -4.03 -3.13 -3.00 -3.31

Panel B: Risk-Adjusted Returns, Equal-Weighted Portfolios

B/M S Mom IdV ol AG CI ROA Acc NOA NS ι O D

Means 0.76 -1.69 1.14 -0.95 -0.82 -0.27 1.21 -0.41 -0.84 -0.81 -0.70 -0.96 -0.85

Stds 2.91 6.63 4.70 2.77 3.31 2.15 5.30 2.73 3.29 2.74 3.52 4.56 3.32

t-stats 6.26 -6.11 5.79 -8.26 -5.94 -3.04 4.86 -3.63 -6.16 -7.12 -4.53 -4.42 -5.32

Panel C: Raw Returns, Value-Weighted Portfolios

B/M S Mom IdV ol AG CI ROA Acc NOA NS ι O D

Means 0.65 -1.31 1.46 -0.85 -0.34 -0.29 0.88 -0.41 -0.41 -0.42 -0.61 -0.28 -0.34

Stds 5.15 7.24 7.17 7.06 3.88 3.53 6.05 4.50 4.25 3.01 4.25 4.93 5.62

t-stats 3.04 -4.33 4.87 -2.87 -2.08 -1.95 3.10 -2.19 -2.29 -3.38 -3.27 -1.20 -1.24

Panel D: Risk-Adjusted Returns, Value-Weighted Portfolios

B/M S Mom IdV ol AG CI ROA Acc NOA NS ι O D

Means -0.17 -0.98 0.84 -1.03 0.11 -0.06 1.02 -0.29 -0.47 -0.64 -0.39 -0.70 -0.70

Stds 3.55 5.82 5.88 3.72 3.06 3.41 4.44 3.81 3.68 2.67 2.98 3.50 3.91

t-stats -1.15 -4.06 3.44 -6.68 0.87 -0.41 4.93 -1.85 -3.05 -5.78 -2.96 -4.23 -3.71
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Table 2.4: Decile Portfolio Returns on AFER and GFER Portfolios

This table shows averages of monthly equal-weighted and value-weighted stock returns and returns

adjusted for risk using the Fama-French three-factor model for decile portfolios formed by sorting

firms on the filtered expectations. The last two columns report the difference between returns

on portfolio 10 and portfolio 1 and its t-statistic. AFER and GFER stand for aggregate filtered

expected returns and growth-based filtered expected returns, respectively. The index in parentheses

indicates whether the filtered expectations are formed using raw returns (r) or risk-adjusted returns

(a). The sample is from January 1970 to December 2012. All returns are reported in percentage

points.

Panel A: Raw Returns, Equal-Weighted Portfolios

1 2 3 4 5 6 7 8 9 10 (10-1) t-stat

AFER(r) -0.58 0.23 0.44 0.90 1.07 1.34 1.65 1.91 2.13 2.44 3.02 10.98

AFER(a) -0.21 0.41 0.75 1.05 1.35 1.46 1.65 1.88 2.03 2.33 2.55 9.25

GFER(r) 0.52 0.89 0.92 1.24 1.26 1.32 1.48 1.62 1.75 1.58 1.06 8.48

GFER(a) 0.69 0.93 1.12 1.37 1.33 1.37 1.41 1.61 1.57 1.47 0.78 6.53

Panel B: Risk-Adjusted Returns, Equal-Weighted Portfolios

1 2 3 4 5 6 7 8 9 10 (10-1) t-stat

AFER(r) -1.18 -0.49 -0.49 -0.14 0.02 0.20 0.44 0.68 0.89 1.23 2.41 11.24

AFER(a) -1.17 -0.66 -0.39 -0.13 0.16 0.24 0.42 0.67 0.84 1.21 2.38 11.12

GFER(r) -0.52 -0.19 -0.14 0.16 0.15 0.18 0.31 0.38 0.54 0.35 0.87 7.76

GFER(a) -0.46 -0.21 -0.04 0.22 0.19 0.21 0.23 0.42 0.38 0.29 0.75 7.11

Panel C: Raw Returns, Value-Weighted Portfolios

1 2 3 4 5 6 7 8 9 10 (10-1) t-stat

AFER(r) -0.54 0.15 0.46 0.72 0.98 1.11 1.26 1.50 1.54 1.46 2.00 6.98

AFER(a) -0.22 0.34 0.71 0.96 1.14 1.15 1.37 1.35 1.47 1.49 1.71 6.04

GFER(r) 0.57 0.85 0.83 0.94 1.05 0.98 1.03 1.05 1.06 1.07 0.50 3.21

GFER(a) 0.60 0.87 0.93 0.98 1.06 0.94 1.06 1.08 0.91 1.06 0.45 2.98

Panel D: Risk-Adjusted Returns, Value-Weighted Portfolios

1 2 3 4 5 6 7 8 9 10 (10-1) t-stat

AFER(r) -1.05 -0.54 -0.46 -0.31 -0.10 0.05 0.05 0.28 0.36 0.26 1.31 6.24

AFER(a) -1.08 -0.71 -0.46 -0.19 -0.03 -0.08 0.10 0.12 0.31 0.37 1.46 7.86

GFER(r) -0.19 -0.09 0.02 0.06 0.08 0.06 0.04 0.00 -0.02 -0.06 0.13 0.96

GFER(a) -0.33 -0.11 0.01 0.02 0.12 0.02 0.09 0.11 -0.13 0.04 0.36 2.64
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Table 2.5: Aggregation using Fama-MacBeth Regressions

This table shows the differences in monthly returns on top and bottom equal-weighted decile port-

folios formed by fitted values from Fama-MacBeth regressions of returns on characteristics. The

rows of the table correspond to different sets of characteristics (all or growth-related only) and types

of returns used for constructing the fitted values (raw or risk-adjusted). The columns indicate the

way of how the slopes are averaged (all history, 5-year window, 10-year window, all history with

the same month). All returns are reported in percentage points. The sample is January 1978 –

December 2012 for fitted values based on all characteristics and January 1971 – December 2012 for

fitted values based on growth-related characteristics.

Hedge returns t-stats

all 5 years 10 years same month all 5 years 10 years same month

All, raw returns 1.18 1.04 1.10 0.90 5.20 3.97 4.54 3.84

All, adjusted returns 1.18 1.09 1.15 0.54 5.65 4.84 5.76 2.45

Growth, raw returns 0.96 0.87 0.95 0.64 7.21 5.71 6.41 3.67

Growth, adjusted returns 1.03 0.97 1.04 0.52 7.18 6.82 7.59 3.15
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Table 2.6: Alternative Specifications

This table shows the differences in monthly returns on top and bottom equal-weighted decile portfolios

formed by the filtered expectations constructed in several alternative ways. In Panel A, columns correspond

to different numbers of lags of each characteristic used in the aggregation. In Panel B, the estimates are

constructed using alternative averaging of λa over time. In Panel C, the expectations are constructed by

running cross-sectional regressions on the specified number of portfolios rather than on individual stocks.

In Panel D, the observations include characteristics as well as all possible quadratic terms constructed from

them. AFER and GFER stand for aggregate filtered expected returns and growth-based filtered expected

returns, respectively. The index in parentheses indicates whether the filtered expectations are formed using

raw returns (r) or risk-adjusted returns (a). All returns are reported in percentage points. The sample is

January 1970 – December 2012 in Panels A, B, and D and January 1975 – December 2012 in Panel C.

Panel A: Alternative number of lags

Hedge returns t-stats

L = 2 L = 6 L = 12 L = 24 L = 2 L = 6 L = 12 L = 24

AFER(r) 3.27 3.11 3.02 3.03 10.69 10.97 10.98 11.01

AFER(a) 2.99 2.72 2.55 2.44 10.41 9.74 9.25 8.84

GFER(r) 1.10 1.12 1.06 1.06 7.30 7.79 8.48 8.50

GFER(a) 0.73 0.81 0.78 0.67 5.05 5.81 6.53 5.71

Panel B: Alternative time series averaging of λa

Hedge returns t-stats

all 5 years 10 years same month all 5 years 10 years same month

AFER(r) 1.90 1.55 1.54 3.02 8.99 6.40 7.52 10.97

AFER(a) 1.88 1.69 1.72 2.55 9.65 7.81 8.89 9.24

GFER(r) 0.99 1.07 1.01 1.06 7.61 7.89 7.88 8.47

GFER(a) 0.81 0.87 0.83 0.78 7.38 6.40 6.37 6.52

Panel C: Cross-sectional regressions on portfolios

Hedge returns t-stats

P = 20 P = 50 P = 100 P = 200 P = 20 P = 50 P = 100 P = 200

AFER(r) 2.97 2.95 3.01 2.91 10.81 10.21 10.44 9.96

AFER(a) 2.54 2.76 2.74 2.84 9.02 9.83 9.63 9.16

GFER(r) 1.12 1.12 1.15 1.13 8.16 8.10 8.22 7.98

GFER(a) 0.76 0.87 0.87 0.84 5.31 6.00 6.08 5.98

Panel D: Nonlinear specification

Hedge returns t-stats

AFER(r) 3.31 12.60

AFER(a) 2.96 11.62

GFER(r) 1.14 7.71

GFER(a) 0.91 6.41
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Table 2.7: Quality Test

This table shows the differences in monthly returns on top and bottom equal-weighted (EW) and value-

weighted (VW) decile portfolios formed by the aggregate filtered expected returns AFER, constructed by

weighting characteristics in several ways. In this table, each characteristic a is multiplied by the sign of its

average λa, so that for all characteristics average λas are positive. In Panel A, each month the characteristics

with the lowest first stage estimates of λas are excluded from the second stage. Columns correspond to

different numbers of characteristics excluded. In Panel B, in the first two columns λas are weighted in the

second stage by the inverse of their time series standard deviations. In the third and fourth columns, weights

are inversely proportional to the time series averages of the cross sectional errors from the first stage. Index

1 corresponds to using the whole previous history for computing weights, and index 2 corresponds to using

only the twelve previous months. The index in parentheses indicates whether the AFER portfolio returns

are raw (r) or risk-adjusted (a). AFER construction is based on raw returns. All returns are reported in

percentage points. The sample is January 1970 – December 2012.

Panel A: Excluding Characteristics

Hedge returns t-stats

1 2 3 4 5 6 1 2 3 4 5 6

EW(r) 2.70 2.50 2.43 2.34 2.25 2.21 9.48 8.95 8.82 8.83 8.72 8.54

EW(a) 2.67 2.47 2.40 2.33 2.24 2.17 9.57 9.05 8.93 9.06 8.88 8.63

VW(r) 1.90 1.74 1.44 1.32 1.03 1.06 6.52 6.12 5.02 4.63 3.77 4.13

VW(a) 2.03 1.89 1.57 1.50 1.21 1.19 6.88 6.60 5.42 5.29 4.46 4.68

Panel B: Weighted Least Squares

Hedge returns t-stats

TS 1 TS 2 CS 1 CS 2 TS 1 TS 2 CS 1 CS 2

EW(r) 2.30 2.23 3.01 2.85 8.42 8.77 9.90 8.85

EW(a) 2.26 2.22 2.96 2.75 8.31 8.69 9.82 8.63

VW(r) 1.78 1.83 2.09 2.25 6.87 7.53 6.90 7.16

VW(a) 1.82 1.86 2.16 2.34 6.99 7.57 7.07 7.35
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Table 2.8: Filtered Expected Returns in Subsamples

This table reports the differences in monthly equal-weighted raw returns on top and bottom decile

portfolios and their t-statistics for the filtered expectations in subsamples. To denote subsamples

we use the following notation: sample periods: (1) – full sample (January 1970 – December 2012),

(2) – early sample (January 1970 – December 1995), (3) – late sample (January 1996 – December

2012); size portfolios: (1) – microcap stocks, (2) – small stocks; (3) – large stocks; idiosyncratic

volatility portfolios: (1) – low volatility, (2) – medium volatility, (3) – high volatility. AFER(r)

and AFER(a) are aggregate filtered expected returns, GFER(r) and GFER(a) are growth-based

filtered expected returns. All returns are reported in percentage points.

Sample periods

Hedge return t-stats

(1) (2) (3) (1) (2) (3)

AFER(r) 3.02 2.96 3.10 10.98 10.41 5.71

AFER(a) 2.55 2.29 2.93 9.25 7.53 5.67

GFER(r) 1.06 0.94 1.23 8.48 7.07 5.13

GFER(a) 0.78 0.66 0.96 6.53 5.47 4.04

Size portfolios Idiosyncratic volatility portfolios

Hedge return t-stats Hedge return t-stats

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

AFER(r) 3.01 1.50 0.81 12.25 5.76 3.57 1.22 2.29 3.39 3.72 11.59 11.67

AFER(a) 2.74 1.15 0.63 11.26 5.12 3.30 1.10 1.83 2.80 6.11 9.08 9.33

GFER(r) 1.17 0.57 0.44 8.20 3.47 3.32 0.48 0.77 1.28 4.32 6.79 6.15

GFER(a) 0.84 0.45 0.28 6.24 3.11 2.17 0.24 0.70 0.69 2.17 6.08 3.49
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Table 2.9: GRS Test

This table shows the results of the GRS test applied to the CAPM, the Fama-French three-factor

model (Fama and French, 1993), and the Carhart model (Carhart, 1997) when the AFER-based

decile portfolios are used as test assets. The first ten columns contain portfolio alphas (in percentage

points); the last two columns report the value of the GRS statistic and its p-value. The sample is

from January 1970 to December 2012.

1 2 3 4 5 6 7 8 9 10 GRS p-value

CAPM -1.63 -0.95 -0.61 -0.37 -0.08 0.07 0.23 0.49 0.57 0.52 8.50 0.0000

FF3 -1.56 -0.90 -0.60 -0.38 -0.11 0.01 0.13 0.41 0.52 0.53 8.12 0.0000

Carhart -1.38 -0.73 -0.57 -0.34 -0.08 0.05 0.15 0.47 0.53 0.53 6.84 0.0000
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Chapter 3

Monotonicity of Asset Pricing Anomalies

(joint with Oleg Rytchkov)

3.1 Introduction

An asset pricing anomaly is a pattern in expected stock returns that cannot

be explained by a particular asset pricing model. Many anomalies are associated

with firm characteristics and typically thought of as a monotonic relation between a

characteristic and future abnormal stock returns. To identify anomalies, researchers

usually compare average returns on characteristic-based portfolios or run a linear

cross-sectional regression of realized returns on firm characteristics. However, these

methods are silent about how abnormal returns are generated. In particular, they

cannot distinguish whether the anomaly pertains to the majority of stocks whose ex-

pected returns are monotonically related to the given firm characteristic or abnormal

returns are produced by a small number of special stocks, and there is no detectable

monotonic relation between characteristics and returns for all other stocks. Although

these two patterns are not mutually exclusive, it is important to identify the role of

influential observations to better understand the origin of anomalies. In particular,

the existing theoretical explanations of anomalies typically justify the first pattern,

i.e. predict a robust monotonic relation between characteristics and returns (e.g.,
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Johnson, 2004; Li, Livdan, and Zhang, 2009; Avramov, Cederburg, and Hore, 2010).

Testing this prediction is a natural way to test the theories themselves.

In this chapter, we systematically explore whether fourteen prominent asset

pricing anomalies are driven by extreme observations. As a main tool, we use robust

regressions, such as rank regression, least trimmed squares (LTS) regression, and it-

erated reweighted least squares (IRLS) regression incorporated in the Fama-MacBeth

approach (Fama and MacBeth, 1973). Robust regressions are much less sensitive to

outliers than the standard OLS regression, so any discrepancy in the results of linear

and robust regressions should be attributed to the impact of influential observations

on the linear regression.

The key idea of rank regression is to compare two stock rankings: one is

produced by a firm characteristic and the other is associated with stock alphas. For

an anomaly, these rankings must be similar, i.e., statistical tests should reject the

null hypothesis of their independence. The main advantage of rank regression is that

to some extent it combines the benefits of portfolio sorts and OLS regression. On the

one hand, like linear regressions, rank regressions deal with individual stocks and,

hence, use all available information quite efficiently. On the other hand, like portfolio

sorts, rank regression is nonparametric and does not assume a specific functional

form of the relation between characteristics and returns. As a result, it is much

more robust than linear regression to influential observations and even functional

misspecification.

Another robust technique that we use in our analysis is LTS regression (Rousseeuw

and LeRoy, 1987). It trims a certain proportion of influential observations with the
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largest residuals and then fits the remaining observations using the minimization of a

sum of squared residuals. If an anomaly exists for the majority of stocks, the results

of LTS and OLS regressions must be similar. It should be emphasized that we do not

consider the trimmed stocks outliers and do not claim that LTS regression provides a

better description of the relation between characteristics and expected stock returns.

We use LTS regression as a diagnostic tool that allows us to study the prevalence of

anomalies across stocks and identify the impact of individual influential observations

on the standard linear regression results.

The drawback of LTS regression is that it completely discards information

contained in the trimmed stocks. This problem is mitigated in iterated reweighted

least squares (IRLS) regression which we employ as an alternative to LTS regression

(e.g., Holland and Welsch, 1977). Effectively, IRLS regression is a weighted least

squares (WLS) regression in which weights are determined by a recursive procedure

and depend on regression residuals. Thus, IRLS regression uses information more ef-

ficiently and, in addition, takes into account possible heteroskedasticity of regression

errors.

We apply robust techniques to all stocks as well as stocks within quintile

portfolios formed on the anomalous characteristic. As emphasized by Fama and

French (2008), the cross-sectional dispersion of anomaly variables within extreme

portfolios is much higher than within interior portfolios. As a result, expected returns

do not vary much across stocks in the interior portfolios, and many anomalies are

detected for extreme ranges of characteristics only. Our analysis of anomalies within

quintile portfolios takes this pattern into account and allows us to study the impact
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of influential observations separately for stocks with high and low characteristics.

Thus, the consideration of quintile portfolios effectively allows us to conduct a test

for monotonicity of the given anomaly. Indeed, if the anomaly is monotonic, the

regression slopes in extreme portfolios should have the same sign. If the relations

between the characteristic and abnormal returns in any two portfolios appear to be

statistically significant with opposite signs, the hypothesis of monotonicity should be

rejected.

As a benchmark for computing abnormal returns, we choose the Fama-French

three-factor model. Since the list of known anomalies is too long to be comprehen-

sively examined in one study, we limit our analysis to fourteen of them which can

be classified in several groups. The first group contains the three most researched

anomalies: size, book-to-market, and momentum. The second group contains three

corporate investment anomalies: total asset growth, investments-to-assets ratio, and

abnormal capital investments. The third group contains two financing anomalies:

net stock issues and composite stock issuance. The fourth group contains three

accounting anomalies: accruals, net operating assets, and profitability. The fifth

and last group contains three anomalies broadly related to uncertainty about the

firm: idiosyncratic volatility, Ohlson’s score measuring the bankruptcy likelihood,

and dispersion in analysts’ forecasts.

This chapter contains several empirical results. First, we document that for

several anomalies, cross-sectional OLS regression and robust regressions of returns on

anomalous characteristics deliver opposite results: all OLS slopes are negative and

statistically significant, but the slopes in robust regressions can be positive and even
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statistically significant. In particular, we observe it in rank regressions of returns

on size and abnormal capital investments. For other anomalies such as total asset

growth, investments-to-assets ratio, accruals, and net operating assets anomaly, rank

regression slopes are statistically indistinguishable from zero.

Second, we run robust regressions within quintile portfolios formed on anoma-

lous characteristics. We find that all considered anomalies except size tend to be

strong and robust within the portfolio with presumably low returns (portfolio 5), and

this is consistent with the idea that high transaction costs of short selling prevent

arbitrage and make anomalies more pronounced (e.g., Nagel, 2005). However, the

results are surprising in portfolio 1: the slopes of robust regressions for many anoma-

lies appear to be positive and statistically significant. In particular, we document it

for momentum, idiosyncratic volatility, asset growth, abnormal capital investments,

investments-to-assets ratio, accruals, net operating assets, and composite stock is-

suance. For all these anomalies except momentum and accruals the positive relation

between characteristics and returns is detected by all robust regressions that we use.

Note that the linear regression produces insignificant slopes in portfolio 1 for almost

all anomalies. Thus, comparing the results of linear and robust regressions we can

conclude that for stocks with presumably high returns, the linear regression may be

unduly influenced by extreme individual stocks and may fail to capture the prevail-

ing relation between characteristics and returns. When the impact of few influential

stocks is mitigated, the relation between characteristics and returns may appear to

have an opposite sign.

Influential observations may affect not only slopes in regressions, but also
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portfolio returns themselves. As an additional exercise, we recompute average re-

turns on extreme quintile portfolios formed on anomalous characteristics excluding

only one or two stocks in each period: we drop the stocks with the highest returns

in the given period in portfolio 1 or the stocks with the lowest returns in portfolio

5. We demonstrate that the exclusion of only one stock from portfolio 1 substan-

tially reduces the difference in returns between extreme portfolios and even makes

it statistically insignificant for momentum, idiosyncratic volatility, abnormal capital

investments, and accruals. When the two stocks are excluded, only five anomalies

(size, profitability, net stock issues, distress, and analysts’ forecasts dispersion) re-

main statistically significant. Consistent with our regression results, we also find

that anomalies are more robust in the portfolio 5: only four anomalies (momen-

tum, idiosyncratic volatility, abnormal capital investments, and accruals) disappear

when two stocks with the lowest returns are excluded. This analysis illustrates the

importance of individual stocks in producing anomalous returns.

The results of robust regressions within quintile portfolios can be used for test-

ing the monotonicity of anomalies. Having established that past returns, idiosyn-

cratic volatility, asset growth, abnormal capital investments, investments-to-assets

ratio, accruals, net operating assets, and composite stock issuance are negatively

related to future returns in portfolio 5 and positively in portfolio 1, we can conclude

that these anomalies are non-monotonic and effectively have an inverted J-shaped

form. A unique pattern is observed for size. In contrast to other anomalies, it ap-

pears to have a strong negative relation to expected returns on microcap stocks (in

portfolio 1), but the relation is positive and statistically significant for the rest of the
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stocks. Thus, the prevailing relation between size and risk-adjusted expected returns

has a U-shaped form.

It should be emphasized that the relation between a firm characteristic and

expected returns does not cease to be anomalous if it appears to be non-monotonic:

for a subsample of stocks we still observe an anomalous pattern in expected returns

unexplained by the Fama-French three-factor model. Moreover, our findings should

not be interpreted as evidence of impossibility to develop a profitable trading strategy

based on a given anomaly. In many cases, the discovered reversed relation between

characteristics and returns is confined to portfolio 1 and not sufficiently pronounced

to eliminate the difference in returns on extreme portfolios. The main implication

of our results is that they challenge theoretical explanations of anomalies predict-

ing monotonic relations between characteristics and returns at the stock level and

emphasize the role of a small number of very special stocks in producing abnormal

returns. For anomalies having an inverted J-shaped form, the prevailing increas-

ing relation between characteristics and returns in portfolio 5 requires a separate

theoretical explanation.

Our study falls into a large literature studying asset pricing anomalies (see

Subrahmanyam (2010) for a recent review). In particular, there is a lot of research

on how the strength of asset pricing anomalies varies across stocks: it may be dif-

ferent for firms with different size (Fama and French, 2008), distress risk (Griffin

and Lemmon, 2002; Vassalou and Xing, 2004), credit rating (Avramov, Chordia,

Jostova, and Philipov, 2010), idiosyncratic volatility (Ali, Hwang, and Trombley,

2003; Lipson, Mortal, and Schill, 2012), measures of financing constraints (Li and
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Zhang, 2010), measures of limits-to-arbitrage and higher investment frictions (Lam

and Wei, 2011), institutional ownership (Nagel, 2005), institutional trading (Jiang,

2010), proportion of short-term institutional investors (Cremers and Pareek, 2010),

and measures of stock overvaluation (Cao and Han, 2013). In contrast to these

papers, we focus on how the strength of anomaly varies with its own characteristic.

The closest to our study is Fama and French (2008) where the authors also

look separately at various ranges of anomalous characteristics. However, Fama and

French (2008) do not explore the impact of influential observations and monotonicity

of anomalies. Other related papers are Knez and Ready (1997) which studies the ro-

bustness of the size and value anomalies using the LTS regression and Kraft, Leone,

and Wasley (2006) which tests the monotonicity of the accruals anomaly. In this

chapter, the list of anomalies is much longer and we use a variety of methods in ad-

dition to the LTS regression. Patton and Timmermann (2010) examine average raw

returns on decile portfolios formed on the size, book-to-market ratio, cash flow-price

ratio, earnings-price ratio, dividend-price ratio, momentum, short-term reversal, and

long-term reversal and find that only the book-to-market ratio, cash flow-price ratio,

earnings-price ratio, and long-term reversal exhibit a monotonic relation to returns.

We consider a different list of anomalies and, more importantly, focus on individual

stocks instead of portfolios. In a contemporaneous paper, Stambaugh, Yu, and Yuan

(2012) explore separately the returns on short and long legs of various anomalies

and show that time variation in anomaly returns is mostly driven by stocks with

presumably low returns.

The rest of this chapter is organized as follows. In Section 3.2 we present
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robust regressions. Section 3.3 contains our empirical results.

3.2 Methodology: Robust Regressions

Many anomalies are associated with firm characteristics, so the characteris-

tics that contain information about alphas for at least a subsample of stocks are

called anomalous. To test whether a given characteristic is anomalous, two major

procedures are employed in the literature. The first approach is to assign stocks to

portfolios based on the characteristic and examine alphas of these portfolios (e.g.,

Fama and French, 1993; Daniel and Titman, 1997). In particular, it is common to

form quintile or decile portfolios and test whether the difference in abnormal returns

on the top and bottom portfolios is statistically significant or whether portfolio alphas

are jointly significant (e.g., Gibbons, Ross, and Shanken, 1989; Fama and French,

1996). The second approach is to run a linear Fama-MacBeth regression (Fama and

MacBeth, 1973) of realized returns on betas and characteristics. The significance of

the characteristic slope reveals the anomaly.

The main objective of our analysis is to study whether the asset pricing

anomalies are still monotonic, when few unusual observations are downweighted.

To achieve this goal, we employ robust econometric techniques: along with standard

OLS regressions, we use rank regressions, least trimmed squares (LTS) regressions,

and iteratively reweighted least squares (IRLS) regressions. To study monotonicity,

we separately examine the presence of anomalies for all stocks and for individual

quintile portfolios formed on anomalous characteristics. Robust methods are par-

ticularly appealing since the number of stocks within quintile portfolios is relatively
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small and the OLS regression can be unduly influenced by few stocks with extreme

characteristics and returns.

The use of rank regression is motivated by the following logic. Consider two

cross-sectional stock rankings (i.e., two ways to order stocks): one is produced by a

firm characteristic, the other is based on alphas with respect to a selected asset pricing

model. These two rankings should be statistically independent if the characteristic

is unrelated to alphas or if all alphas are zero and the estimated alphas rank stocks

randomly. This hypothesis can be tested using the Spearman rank correlation.1 If

it is rejected, the characteristic contains some information about stock alphas and

should be considered anomalous. Note that by construction the variances of two

rankings are identical, so the Spearman correlation coincides with the regression

slope when one ranking is regressed on the other.

The rank regression approach deserves several comments. First, it captures

the intuition that an anomalous characteristic should be aligned with abnormal re-

turns. For example, if they were linearly related, both the linear and rank regressions

would detect it, and conclusions of rank-based tests would be identical to those ob-

tained using the standard linear regression. In addition, this approach is consistent

with the standard portfolio-based tests: for example, if rankings produced by the

1The family of rank statistics designed to test the independence of two rankings is quite large

(Hájek, Šidák, and Sen, 1999). We use the Spearman correlation as one of the simplest and intuitive.

Its another advantage is in assigning higher weights to those objects which are located distantly

according to two rankings (as opposed to the Kendall rank correlation for example, which counts

the pairs of objects ordered differently in two rankings but ignores the quantitative difference in

ranks).
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characteristic and expected returns are positively related, the portfolio of stocks with

higher characteristics outperforms the portfolio with lower characteristics. Thus, the

rank regression can be viewed as a compromise between the linear regression and

the portfolio-based analysis, and to some extent it combines the advantages of both

methods. On the one hand, similar to the linear regression, the rank regression uses

information on individual stocks making the inference more precise than in the anal-

ysis of portfolio returns which ignores the dispersion of characteristics and returns

within portfolios. Moreover, rank regression is applicable to stocks in various ranges

of the anomalous characteristic. On the other hand, similar to the portfolio analysis,

the rank regression is non-parametric. It does not impose any functional restrictions

on the relation between anomalous variables and stock returns and, hence, is much

more robust to misspecifications than the linear regression. In addition, it is less

sensitive to outliers than the linear regression, which may produce misleading re-

sults in finite samples, especially when characteristics or returns have highly skewed

distributions.

The benefits of the rank regression may be particularly noticeable when the

actual relation between the characteristic and expected returns is non-linear and

the standard linear regression is misspecified. From the theoretical point of view, it

would be quite natural to expect that this is the case for the majority of anoma-

lous characteristics. Although in rational asset pricing models the expected returns

are exclusively determined by loadings on risk factors, these loadings are often un-

observable and proxied by firm characteristics. In addition, characteristics may be

helpful for explaining expected returns if the dynamics of factor loadings are mis-
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specified (Berk, Green, and Naik, 1999) or conditional factor loadings are measured

imprecisely (Gomes, Kogan, and Zhang, 2003). Although in such cases the the-

oretical relation between expected stock returns and anomalous characteristics is

almost always monotonic, it is typically non-linear. For instance, Livdan, Sapriza,

and Zhang (2009) demonstrate how financial constraints produce a convex relation

between market leverage and expected returns.

The comparison of slopes in the linear and rank regressions can be used as a

diagnostic tool: any substantial difference between them (e.g., when both of them

are statistically significant but have opposite signs) indicates that the sample size is

small enough to allow for influential individual observations. Indeed, the rank re-

gression captures the prevailing relation between the characteristic and stock returns

which likely involves a broad group of stocks. In particular, it is more robust to

outliers, ensuring that the conclusions are not driven by highly unusual stocks with

extreme characteristics or returns. Empirically, most anomalous characteristics have

very skewed distributions resulting in a potentially high impact of extreme stocks.

For instance, even if the characteristic is negatively related to returns for the vast

majority of stocks, a small number of outliers with extremely high characteristics

and returns (or extremely low characteristics and returns) can make the slope of the

linear regression statistically indistinguishable from zero or even positive. Thus, a

zero slope in the linear regression does not mean that there is no relation between

the characteristic and returns. Such relation in some cases can be uncovered using

rank regressions.

Even though rank-based tests are robust and less affected by outliers, they
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also have drawbacks. In particular, the use of ranks causes a partial loss of infor-

mation imbedded in magnitudes of characteristics and returns. Thus, in terms of

information utilization, the rank-based approach is somewhere in between the para-

metric regression and portfolio formation. As a result, it may be inappropriate for

improving the profitability of trading strategies based on anomalous characteristics.

The objective of using rank regression is to capture the prevailing relation between

characteristics and returns, but not to identify stocks with the highest (or lowest)

returns.

Another robust technique used in our analysis is the least trimmed squares

(LTS) regression. Given the observations (yi, xi), i = 1, . . . , N , it defines the estima-

tor for the regression slope β as

β̂LTS = arg min
β

h∑
i=1

r2
[i](β),

where r2
[i](β) represents the ith order statistic of squared residuals ri = yi − xiβ.

The parameter h determines the trimming level and must satisfy N/2 < h ≤ N .

In subsequent analysis, we set h such that approximately 1% of observations are

trimmed. Intuitively, the LTS approach prescribes to find a certain proportion of

observations with the highest squared residuals and eliminate them from the sample.

The LTS regression complements the rank regression. Although the latter

one reduces the impact of outliers, it does not provide an estimate of the proportion

of extreme observations that explain the difference between the results of linear and

robust regressions. The LTS regression fills this gap. Similar to the rank regression

slopes, the LTS estimates are more robust to extreme observations than their OLS
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counterparts. Almost by construction, the LTS regression ignores highly unusual

observations and captures the relation between characteristics and returns pertaining

to a large number of stocks. However, given that the number of trimmed observations

is an exogenous parameter, the LTS regression quantifies the fraction of observations

that potentially influence the OLS results.

The third robust technique that we apply to anomalies is the iteratively

reweighted least squares (IRLS) regression (e.g., Holland and Welsch, 1977). The

main drawback of the LTS regression is that it discards certain data points, so the

information contained in them is lost. In contrast, the IRLS regression utilizes all

observations, but put different weights on them. In this sense, the IRLS is a com-

promise between the OLS regression, which weighs all observations equally, and the

LTS regression, which gives a zero weight to some of them. The IRLS regression

is a special case of the weighted least squares (WLS) regression, and the weights

are determined recursively by regression residuals. Thus, the IRLS also takes into

account the heteroskedasticity of regression errors.

More specifically, given the observations (yi, xi), i = 1, . . . , N , the IRLS esti-

mator β̂IRLS is defined as a limit of the following iteration:

β̂(n+1) = arg min
β

N∑
i=1

w
(n)
i (yi − xiβ)2,

where the weights w
(n)
i are determined by the residuals r

(n)
i = yi−xiβ(n), obtained at

the previous iteration step: w
(n)
i = w(r

(n)
i ). Common specifications of the weighting

function w( · ) are discussed in Holland and Welsch (1977) and Huber (1981) and

include Huber’s function, Tukey’s bi-square function, Cauchy function, Andrews’

119



function, logistic function, and others. In our empirical analysis, we use the logistic

specification

w(x) =
tanh(x)

x
=

1

x

e2x − 1

e2x + 1
,

and we check that the results are not sensitive to this choice. All weighting functions

contain a scale parameter (effectively, the normalization of residuals) which is usually

set to be proportional to the median absolute deviation of the residuals from their

median (Hogg, 1979; Street, Carroll, and Ruppert, 1988). In addition, residuals are

normalized by
√

1− hi, where hi is the “leverage” of observation i and the tuning

constant (Huber, 1981).

To implement the described robustness tests empirically, we use an analog

of the Fama-MacBeth procedure in which a robust cross-sectional regression is sub-

stituted for the OLS regression. This approach equally applies to all stocks and

characteristic-based quintile portfolios. For example, to run a rank regression, we

construct two stock rankings based on a given characteristic and realized abnormal

returns in the next period in each time period t and compute Spearman rank corre-

lations ρt between them. As mentioned above, the Spearman correlation is exactly

equal to the slope of rank regression, i.e. an OLS regression with ranks used instead

of magnitudes. Then, as in the standard Fama-MacBeth procedure, we compute the

average of ρt across all periods and use the obtained statistic ρ to test whether the

slope is different from zero. Since the serial correlation is negligible for returns, it

is safe to assume that the estimated slopes from different periods are independent.1

1In our empirical analysis, we have checked that this assumption is innocuous. Unreported
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Because of that, we estimate the standard deviation of ρ as a sample standard de-

viation and use the t-statistic to test the hypothesis ρ = 0. When the number of

stocks Nt in period t is sufficiently large and the rankings are independent, ρt is

normally distributed: ρt ∼ N(0, 1/(Nt − 1)) (Hájek, Šidák, and Sen, 1999). Hence,

ρ is also normally distributed and under the null the t-statistic has a conventional

distribution. LTS and IRLS regressions are implemented in a very similar manner.

The robust regressions discussed above use individual stocks, so they can be

applied for all stocks as well as for various subsamples of stocks. In particular, we

form quintile portfolios based on the characteristic and explore the relation between

the characteristic and returns within each portfolio. This analysis has two major ob-

jectives. First, it allows us to examine the variation of the strength of the anomaly

and its reliance on exceptional observations across various ranges of characteristics.

Second, it provides a way to test the monotonicity of the anomaly which is based on

the following simple idea: if the relation between firm characteristic and future stock

returns is monotonic, it should have the same sign in all ranges of the characteristic.1

The test is complicated by the fact that cross-sectional dispersions of characteristics

within each portfolio substantially vary across portfolios (Fama and French, 2008).

In those portfolios where characteristics are not sufficiently dispersed, the slopes of

regressions may be statistically insignificant even in the presence of the anomaly.

However, statistically significant slopes with opposite signs in two different portfo-

estimations show that the results are essentially unaffected if the Newey and West (1987) standard

errors are used for construction of t-statistics.
1Another monotonicity test applicable to asset pricing anomalies is developed by Patton and

Timmermann (2010) and based on portfolio returns instead of individual stocks.
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lios would clearly indicate that the monotonicity hypothesis should be rejected. This

would have important theoretical implications since by testing the monotonicity of

the anomaly we effectively test the theories explaining anomalies that predict mono-

tonic relations between characteristics and returns. The lack of monotonicity would

imply that such theories do not capture the whole picture and should be revised.

3.3 Empirical Results

3.3.1 Data

Our data come from standard sources. Stock returns, stock prices, and the

number of shares outstanding are from CRSP monthly files, while accounting data

are from Compustat Fundamentals annual files. We exclude financial firms and

consider only NYSE, AMEX, and NASDAQ firms with common stocks. Returns are

monthly stock returns with dividends adjusted for delisting. We consider both raw

and risk-adjusted returns, and use the Fama-French three-factor model to adjust

for risk. We compute risk-adjusted returns r̃it on security i in month t following

Brennan, Chordia, and Subrahmanyam (1998) and Avramov and Chordia (2006):

r̃it = rit − rft − βMKT
i ×MKTt − βHML

i ×HMLt − βSMB
i × SMBt.

Individual stock betas are estimated every month by regressing excess stock returns

on a constant and the Fama-French factors. We use the previous 60 months of

observations, requiring that at least 24 months of return data are available.

As signals about expected stock returns, we use fourteen characteristics that

are associated with prominent asset pricing anomalies. The characteristics can be
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divided into five groups. The classical group consists of size S, book-to-market B/M ,

and momentum Mom. Investment variables capture the firm’s capital investment.

This group consists of total asset growth AG, abnormal capital investments CI, and

investments-to-assets ratio I/A. Issuance characteristics capture the firm’s equity

issuance activity with net stock issues NS and composite stock issuance ι. Two

accounting anomalies capture the firm’s earnings management and its cumulative

effect on the balance sheet with accruals Acc and net operating assets NOA, respec-

tively. Return on assets ROA, an accounting measure of the firm’s performance,

also belongs to this group. Idiosyncratic volatility IdV ol, Ohlson’s O-score O, and

dispersion in analysts’ forecasts D are grouped together as they broadly quantify un-

certainty about the firm. The detailed construction of each characteristic is described

in the Appendix.

3.3.2 Characteristics and Portfolio Returns

First, we confirm that all selected characteristics are indeed anomalous, i.e.

that the differences in returns on stocks with high and low characteristics are sta-

tistically different from zero. For each characteristic, we form quintile portfolios

and compute average portfolio raw returns and Fama-French risk-adjusted returns.

For the book-to-market, asset growth, abnormal capital investments, investments-

to-assets ratio, accruals, net operating assets, net stock issues, and composite stock

issuance the portfolios are formed once a year at the end of June. They are held

for one year and rebalanced at the end of next June. Portfolios based on size, mo-

mentum, idiosyncratic volatility, and dispersion in analysts’ forecasts are created at
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the end of each month, whereas portfolios based on return on assets and O-score are

updated quarterly.

For each characteristic, portfolio breakpoints are determined using all stocks

for which the characteristic is available at the moment of portfolio formation. Since

we examine individual stocks in our subsequent analysis, we focus on equal-weighted

portfolios. The sample period is from January 1965 to December 2007 for all char-

acteristics except the return on asset, O-score, and dispersion in analysts’ forecasts,

for which sample periods start in January 1975, January 1976, and January 1983,

respectively.

From the previous research we know that all characteristics under consider-

ation except book-to-market, momentum, and return on assets are supposed to be

negatively related to abnormal stock returns. For the uniformity of the analysis, we

switch the sign of B/M , Mom, and ROA so that the first portfolio always has the

highest return and the fifth portfolio has the lowest one.

Panel A of Table 3.1 reports averages of monthly raw returns on the con-

structed quintile portfolios. As expected, all characteristics (except idiosyncratic

volatility IdV ol) appear to be negatively related to raw stock returns. Moreover,

portfolio 1 earns substantially higher returns than portfolio 5, and the difference is

highly statistically significant. The only characteristic that does not produce a large

dispersion of returns across equal-weighted portfolios is idiosyncratic volatility, and

this result is consistent with Bali and Cakici (2008) who argue that the choice of a

weighting scheme used to compute average portfolio returns is critical for detecting

the idiosyncratic volatility anomaly.
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As mentioned above, we define anomalies relative to the Fama-French 3-factor

model. Panel B of Table 3.1 shows averages of risk-adjusted returns on quintile port-

folios, which measure the cross-sectional variation in expected returns not captured

by the loadings on the market, HML, and SMB factors. Although the risk adjust-

ment substantially reduces average returns, all differences in returns on extreme

portfolios are still statistically significant confirming that the characteristics under

consideration indeed capture patterns in non-zero alphas. Compared to raw returns,

the differences in risk-adjusted returns for the majority of anomalies stay almost the

same, and notably increase for the idiosyncratic volatility anomaly. Surprisingly, the

correction for the Fama-French factors does not eliminate the dispersion of returns

even across size and book-to-market portfolios, although it halves the value premium.

This result echoes the findings of Brennan, Chordia, and Subrahmanyam (1998) and

seems to manifest the sensitivity of conclusions to whether the risk adjustment is

conducted at the portfolio level or at the level of individual securities.

3.3.3 Robustness of Anomalies: Evidence from Individual Stocks

In this section, we compare the results of the standard OLS Fama-MacBeth

regression and robust regressions of risk-adjusted returns on anomalous character-

istics for all stocks and for stocks from quintile portfolios formed on anomalous

characteristics. The results are reported in Table 3.2.

Panel A of Table 3.2 shows the slopes from the standard OLS Fama-MacBeth

regression for quintile portfolios and all stocks, and their t-statistics reveal several

patterns. First, the slopes for all anomalies in the whole sample are negative and
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highly statistically significant. This is exactly what we should expect from the anal-

ysis of portfolio returns and is additional evidence that the characteristics under

consideration are anomalous. The negative relation is observed even for size and

the book-to-market ratio supporting the findings of Brennan, Chordia, and Subrah-

manyam (1998) who demonstrate that the correction for the Fama-French factors

cannot eliminate the size and book-to-market effects for individual stocks.

Second, the slopes of the OLS regression in portfolio 5 (the portfolio with

supposedly low stock returns) are negative and statistically significant at the con-

ventional level for six anomalies out of fourteen (they are only marginally significant

for book-to-market, abnormal capital investments, accruals, and net stock issues and

positive for size). Given that the number of stocks within each portfolio is relatively

small, this result means that either the anomalies are very strong for stocks with pre-

sumably low returns or the regression results are substantially affected by outliers.

To distinguish these hypotheses, we need to run robust regressions.

Third, the majority of slopes in other portfolios are not statistically significant

and some of them are positive. In particular, only the book-to-market ratio and size

are significantly related to stock returns in portfolio 1, and this relation is particularly

strong for the size anomaly which is known to be driven by small stocks.1 The

insignificance of slopes in intermediate portfolios can be explained by low dispersion

of characteristics within such portfolios resulting in large standard errors of slopes

(e.g., Fama and French, 2008). Thus, even if anomalies exist for intermediate stocks,

1Fama and French (2007) conclude that the size premium stems almost entirely from small stocks

that earn extreme positive returns and become big stocks.
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our tests may lack statistical power to detect them. The insignificant slopes in

portfolio 1 can result from either a low power of the t-test or the lack of the anomalous

relation in this range of characteristics. In particular, the low test power may be due

to the impact of outliers that strongly affects the estimates of slopes and conceal the

prevailing anomalous relation between characteristics and returns.

To distinguish these explanations, we repeat all computations using rank re-

gression instead of standard OLS regression in the Fama-MacBeth cross sections.

Since rank regression is less influenced by extreme stocks, the difference in results

between rank and linear regressions would demonstrate the impact of outliers on the

linear regression slope. The results of rank Fama-MacBeth regression of risk-adjusted

returns on fourteen characteristics for all stocks and within quintile portfolios are re-

ported in Panel B of Table 3.2.

In contrast to OLS regression results, the results of rank Fama-MacBeth re-

gression when all stocks are used in the analysis substantially vary across anomalies.

Panel B of Table 3.2 shows that the relation between returns and book-to-market,

momentum, idiosyncratic volatility, return on assets, net stock issues, composite

stock issuance, O-score, and analysts’ forecasts dispersion is still negative and sta-

tistically significant. It means that these anomalies pertain to many stocks and the

slopes in OLS regressions are not driven by outliers. However, the slopes for all other

anomalies are either statistically insignificant or, as in the case of size and abnormal

capital investments, even positive and significant. This is direct evidence that the

latter group of anomalies may be produced by influential observations.

To get a better understanding of the rank regression results for all stocks, we
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also repeat the analysis for stocks from individual quintile portfolios. In line with

the OLS regression results, the slopes are negative for all characteristics (except

size) in portfolio 5 and all of them are statistically significant at a 1% level. It

means that in portfolio 5 there is an actual robust relation between characteristics

and stock returns, and negative slopes in the OLS regressions are not the result

of influence of several stocks with abnormally low returns. However, the slopes in

the OLS and rank regressions substantially differ in portfolio 1. In contrast to the

OLS regression, the majority of slopes in the rank regression are positive. Moreover,

they are highly significant for Mom, IdV ol, AG, CI, I/A, Acc, NOA, and ι. The

only anomalies that preserve negative slopes are size and distress anomalies. These

results are unexpected and cannot be anticipated from returns on portfolios or results

of OLS regression.

Positive slopes in portfolio 1 have important implications. First, they indicate

that many anomalies are not robust for stocks with presumably high returns. The

fragility of anomalies for these stocks can be explained by easiness to exploit them:

these stocks are underpriced, and investors need to take a long position to profit

from the mispricing. In contrast, stocks in portfolio 5 are overpriced, and investors

would short them. This is more costly and not all investors can do that. As a result,

the anomaly is much more pronounced there.

Second, the non-robustness of anomalies in portfolio 1 can explain the results

in rank regressions for all stocks. In particular, the asset growth, investments-to-

assets ratio, accruals, and net operating assets anomalies, whose rank regression

slopes are not unambiguously negative for all stocks, tend to have positive and sta-
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tistically significant rank slopes in portfolio 1. Similarly, for the abnormal capital

investments anomaly the positive relation observed in portfolio 1 is strong enough

to dominate in the whole sample. The story is a bit different for size: the slope of

size for all stocks is positive and statistically significant due to the positive relation

between this characteristic and returns in all portfolios except portfolio 1. For all

other anomalies, the decreasing part from portfolio 5 dominates and the slopes are

negative and statistically significant in the whole sample. Partially, this result can

also be attributed to a strong negative relation between characteristics and returns

not only in portfolio 5, but also in some intermediate portfolios.

Third, the opposite signs of rank regression slopes in portfolios 1 and 5 rep-

resent stark evidence of non-monotonicity in the relations between characteristics

and expected returns. In particular, we can conclude that the prevailing relations

between returns and past returns, idiosyncratic volatility, asset growth, abnormal

capital investments, investments-to-assets ratio, accruals, net operating assets, and

composite stock issuance have a hump-shaped form: returns increase with character-

istics in portfolio 1 and decrease in portfolio 5. In other words, stocks with extreme

magnitudes of these characteristics (no matter high or low) tend to have lower re-

turns.

It should be emphasized that the discovered non-monotonicity does not con-

tradict the monotonicity of average portfolio returns documented in Tables 3.1. The

surprising increasing relation between characteristics and returns is confined to the

lowest quintile portfolio and the total portfolio return can still be higher than the

return on the adjacent portfolio. Thus, the overall relations between characteristics
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and returns can be described as having an inverse J-shaped form.

For the book-to-market ratio, return on assets, net stock issues, and analysts’

forecasts dispersion the picture is similar but positive coefficients in portfolio 1 are

statistically insignificant. However, the size anomaly demonstrates a completely

different pattern: it is strongly negatively related to returns in portfolio 1 containing

small stocks, but the relation is inverse for medium and large stocks. Thus, in

contrast to other anomalies, size demonstrates a U-shaped form. The decreasing

part is consistent with Fama and French (2008), who also document that the negative

relation between size and average returns is particularly strong for microcap stocks.

The increasing part of the relation confirms the conclusion of Knez and Ready (1997)

who argue that the size effect is driven by extreme positive returns on a limited

number of small stocks. When the impact of such influential points is eliminated,

the relation between size and returns appears to be positive.1

The difference in slopes between linear and rank regressions in portfolio 1 can

be explained by the strong influence of a few highly unusual stocks with low values of

characteristics and very high returns which drive up portfolio returns and make the

slope of the OLS Fama-MacBeth regression negative. To demonstrate this, we repeat

the Fama-MacBeth procedure but run cross-sectional least trimmed squares (LTS)

regression at the first stage instead of rank regression or linear regression (a detailed

description of LTS regression is provided in Section 3.2). Following conventions in

the literature, we set the cutoff in LTS regression at the 1% level, so only a few

1Fu and Yang (2011) show that a positive relation between size and returns also arises after

controlling for idiosyncratic volatility.
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observations are trimmed. By construction, LTS regression is robust to outliers and

any divergence in the results of OLS and LTS regressions indicates a presence of

influential observations.

The results are reported in Panel C of Table 3.2. Overall, the t-statistics from

LTS regression are close to their counterparts in the rank regression. In portfolio 1,

the slopes of LTS regression are positive and significant for the anomalies that are

discovered to have an inverted J-shaped form. Also, the coefficient of size is negative

and significant. In portfolio 5, the vast majority of characteristics (except size,

returns on assets, and accruals) are negatively related to future stock returns even

after trimming exceptional observations confirming the results from the linear and

rank regressions. Thus, we can conclude that many anomalies look monotonic in the

linear regression only because of a few stocks with low values of the characteristics

and high returns. When the impact of such stocks is diminished, the prevailing

relation between characteristics and returns appears to have an inverted J-shaped

form.1

The impact of unusual stocks and the resulting discrepancy between the linear

and rank regressions in portfolio 1 also can explain why for the whole sample the

slope can be positive in the rank regression but negative in the linear regression.

If abnormal expected returns decline strongly with a characteristic in one of the

extremes but have a positive relation to the characteristic for the majority of stocks,

the slope in the rank regression can be high and positive (it captures the prevailing

1We have also explored the sensitivity of results to stocks with extreme characteristics. We find

that the elimination of such stocks does not produce a noticeable change in regression slopes.
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relation) whereas the slope in the linear regression is zero or negative (it is strongly

influenced by extreme stocks).

Another robust regression that we use in our analysis is iteratively reweighted

least squares (IRLS) regression. Its main advantage relative to LTS regression is that

the information from all observations is used for constructing the slope estimate (see

the discussion of IRLS regression in Section 3.2). The results of IRLS regression are

reported in Panel D of Table 3.2. Overall, the slopes and their t-statistics produced

by LTS and IRLS regressions are comparable and support our previous conclusions.

In particular, the vast majority of slopes in portfolio 5 are negative and statisti-

cally significant, whereas the slopes of all characteristics except size and O-score are

positive in portfolio 1 and five of them are statistically significant. Because IRLS

regression puts non-zero weights on influential observations, the results are slightly

weaker in than in the case of LTS regression, but still indicate that many anomalies

are non-robust in portfolio 1 and non-monotonic for all stocks.

The influential observations may affect not only slopes in regressions, but

also portfolio returns themselves. To illustrate this point, we recompute average

returns on extreme quintile portfolios when one or two stocks with abnormal returns

are excluded in each period. Since we are interested in the role of these stocks in

generating the difference in returns on portfolios 1 and 5, we drop stocks with the

highest returns from portfolio 1 and stocks with the lowest returns from portfolio 5.

Table 3.3 reports how this truncation affects the profitability of each anomaly.

Column (2) of Table 3.3 shows that only one stock with the highest return in

portfolio 1 is responsible on average for almost one half of the spread in returns on
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portfolios 1 and 5. Moreover, four anomalies (momentum, idiosyncratic volatility,

abnormal capital investments, and accruals) become insignificant when only one

stock is excluded from portfolio 1. When two stocks with the highest returns are

excluded from portfolio 1 (column (4) of Table 3.3), the number of disappeared

anomalies increases to nine (only size, profitability, net stock issues, distress, and

analysts’ forecasts dispersion anomalies survive) and two of them (abnormal capital

investments and accruals) become significant with the opposite sign. Consistent with

our previous analysis, the disappearing anomalies are those that tend to have positive

and significant robust regression slopes in portfolio 1.

The result is different for portfolio 5. Columns (3) and (5) of Table 3.3 show

that only three anomalies disappear when one stock with the lowest return is excluded

and four anomalies disappear when two extreme stocks are excluded. This supports

our conclusion that anomalies tend to be more robust in portfolio 5.

To visualize the impact of individual stocks on portfolio returns, we plot av-

erage risk-adjusted returns on quintile portfolios without truncation and with one

stock truncated from either portfolio 1 or portfolio 5. Figure 3.1 presents the ob-

tained graphs. After dropping the worst stock, returns on portfolio 5 increase, but

for the vast majority of anomalies they are still lower than the returns on portfolio 4.

It means that the monotonicity of average returns at the portfolio level survives. The

results are strikingly different for portfolio 1. First, for the majority of anomalies the

change in returns due to truncation in portfolio 1 is larger than in portfolio 5, and

this is exactly what Table 3.3 reports. Second, returns on portfolio 1 are substantially

lower than the returns on portfolio 2 for the majority of the anomalies, and in partic-
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ular for the anomalies losing statistical significance after truncation. This means that

the pattern of portfolio returns becomes non-monotonic, and the non-monotonicity is

particularly strong for the anomalies based on idiosyncratic volatility, asset growth,

capital investments, investments-to-assets ratio, accruals, net operating assets, net

stock issues, and composite stock issuance. Except the net stock issues anomaly, all

these anomalies exhibit an inverse J-shaped form according to robust regressions.

Thus, this test illustrates the impact of influential observations in portfolio 1.

Overall, we can conclude that all considered characteristics are indeed anoma-

lous, and the anomalies are very robust for stocks with presumably low returns (the

only exception is the size anomaly, which is robust for stocks with expected high

returns). However, in the opposite extreme high returns are produced by influen-

tial stocks, and the prevailing relation between characteristics and returns for many

anomalies has an opposite sign indicating the presence of non-monotonicity.

3.3.4 Size Portfolios

Fama and French (2008) explore the strength of various anomalies across

firm size groups and document that the anomalies associated with net stock issues,

accruals, and momentum are detectable for firms with all sizes whereas the asset

growth anomaly is absent for big stocks. Thus, we anticipate that robustness and

monotonicity may also vary with the firm size and repeat the analysis separately

for different size groups. Following Fama and French (2008), we split all stocks into

three categories: microcaps, small stocks, and big stocks. As the breakpoints, we

use the 20th and 50th percentiles of the end-of-June market cap for NYSE stocks.
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Table 3.4 collects the results. To save space, we report only slopes and t-statistics

for Fama-MacBeth rank regressions of risk-adjusted returns on firm characteristics.

Panel A of Table 3.4 shows that the pattern of slopes and t-statistics for

microcap stocks closely resembles the pattern for all stocks from Table 3.2. Five

anomalies (size, asset growth, abnormal capital investments, accruals, and net oper-

ating assets) are not robust for all microcap stocks, but all characteristics except size

are negatively related to returns in portfolio 5. Moreover, the slopes for momentum,

asset growth, abnormal capital investments, investments-to-assets ratio, and accruals

are positive and significantly different from zero in portfolio 1, indicating that these

anomalies preserve their inverted J-shaped form in microcap stocks.

For big stocks, the results are presented in Panel C of Table 3.4. Consistent

with Fama and French (2008), momentum, net stock issues and composite stock

issuance have negative slopes for all stocks. Meanwhile, the significance of book-to-

market, asset growth, abnormal capital investments, investments-to-assets ratio, and

accruals disappear. The disappearance of the value anomaly (the slopes of B/M are

significant neither for all big stocks nor for quintile portfolios) is not surprising either,

given that the existing literature demonstrates the ability of Fama-French factors to

explain the value premium for big stocks. We already know that the size effect is

presumably driven by microcaps and demonstrates a positive relation to returns for

all other stocks. This observation is also confirmed by Panel C of Table 3.4.

It is more interesting that all characteristics except book-to-market, size, and

net stock issues are negatively and statistically significantly related to returns in

portfolio 5. Thus, although some anomalies are undetectable for all big stocks,
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they are still present in portfolio 5. This result illustrates the benefits of examining

anomalies within quintile portfolios.

The slopes of the rank regression in portfolio 1 are different from their coun-

terparts for microcaps and all stocks. Except for total asset growth, all of them are

statistically indistinguishable from zero. This means that the discovered inverted

J-form of anomalies is mainly produced by microcaps and small stocks (Panel B of

Table 3.4 reports the results for small stocks which are qualitatively consistent with

those for microcaps). For the asset growth anomaly, the positive slope in portfolio

1 suggests the presence of non-monotonicity even when only big stocks are consid-

ered. Given the finding of Fama and French (2008) that the asset growth anomaly is

undetectable for big stocks, we can speculate that this happens because the positive

relation between the characteristic and returns in portfolio 1 is strong enough to

offset the negative relation in portfolio 5.

To summarize, firm’s size indeed affects the form of many anomalies. In

particular, the inverted J-shaped form of several anomalies documented above is

mostly confined to microcap and small stocks. Nevertheless, all considered anomalies

except value, size, and net stock issues are present in the portfolio 5 in all size groups.
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Table 3.1: Raw Returns and Fama-French Risk-Adjusted Returns

This table shows averages of monthly equal-weighted stock returns (Panel A) and returns adjusted

for risk using the Fama-French 3-factor model (Panel B) for quintile portfolios formed by sorting

firms on fourteen anomalous characteristics. The column (1-5) reports the difference between

returns on portfolio 1 and portfolio 5. To ensure that for all anomalies expected returns decrease

with the portfolio number (i.e., portfolio 1 contains stocks with abnormally high returns), the signs

of B/M , Mom, and ROA have been inverted. All coefficients are multiplied by 100.

Panel A: Raw Returns

Returns t-stats

1 2 3 4 5 (1-5) 1 2 3 4 5 (1-5)

−B/M 1.70 1.47 1.29 1.12 0.80 0.90 7.99 6.75 5.28 3.95 2.26 4.13

S 2.11 1.06 1.09 1.13 1.02 1.09 6.29 3.71 3.95 4.37 4.76 4.21

−Mom 1.83 1.47 1.26 1.08 0.98 0.85 6.23 6.39 5.51 4.10 2.59 3.21

IdV ol 1.16 1.40 1.42 1.26 0.93 0.24 7.42 6.66 5.43 3.93 2.31 0.75

AG 1.70 1.48 1.34 1.25 0.72 0.99 5.20 6.47 6.01 5.00 2.26 7.33

CI 1.47 1.41 1.33 1.30 1.19 0.27 4.99 5.63 5.79 5.54 4.51 3.45

I/A 1.65 1.48 1.40 1.22 0.82 0.83 5.62 6.00 6.04 4.89 2.79 8.69

−ROA 1.76 1.50 1.38 1.05 0.69 1.06 6.39 6.04 5.64 3.49 1.61 3.88

Acc 1.52 1.52 1.42 1.38 1.03 0.49 4.87 6.14 5.98 5.28 3.34 5.29

NOA 1.60 1.51 1.44 1.24 0.80 0.81 4.80 5.60 5.92 5.16 2.90 5.38

NS 1.31 1.32 1.37 1.09 0.63 0.69 5.58 5.32 5.00 3.77 2.01 5.49

ι 1.43 1.36 1.37 1.36 0.99 0.44 7.61 6.49 5.62 4.58 3.13 2.40

O 1.61 1.57 1.51 1.28 0.95 0.66 5.40 5.51 5.14 4.17 2.61 3.57

D 1.39 1.30 1.21 1.06 0.66 0.73 5.33 4.65 3.84 2.98 1.58 2.98

Panel B: Risk-Adjusted Returns

Returns t-stats

1 2 3 4 5 (1-5) 1 2 3 4 5 (1-5)

−B/M 0.33 0.18 0.11 0.08 -0.16 0.50 4.62 2.88 1.63 0.78 -1.22 4.08

S 1.05 -0.17 -0.17 -0.04 -0.03 1.09 5.16 -1.44 -2.31 -0.79 -0.70 4.94

−Mom 0.37 0.19 0.07 -0.10 -0.10 0.47 3.87 3.33 1.22 -1.16 -0.47 2.00

IdV ol 0.15 0.24 0.23 0.07 -0.26 0.41 2.35 5.08 3.85 0.71 -1.28 1.98

AG 0.35 0.24 0.17 0.07 -0.36 0.71 2.27 3.36 3.18 1.15 -3.74 6.00

CI 0.18 0.18 0.14 0.11 -0.02 0.20 1.62 2.58 2.48 1.92 -0.20 2.66

I/A 0.24 0.25 0.20 0.05 -0.30 0.54 2.12 2.81 3.41 0.79 -3.56 6.06

−ROA 0.48 0.21 0.10 -0.21 -0.45 0.93 5.56 2.80 1.18 -1.77 -1.96 4.19

Acc 0.24 0.29 0.21 0.20 -0.13 0.37 1.94 3.68 3.20 2.75 -1.30 4.41

NOA 0.39 0.26 0.19 0.06 -0.31 0.70 2.71 3.00 2.82 0.98 -3.49 5.92

NS 0.11 0.21 0.18 -0.07 -0.52 0.64 1.53 2.28 2.17 -0.78 -4.05 6.85

ι 0.19 0.16 0.19 0.12 -0.29 0.48 4.36 3.06 2.68 1.32 -2.49 4.21

O 0.31 0.20 0.15 0.01 -0.34 0.64 3.83 2.46 1.52 0.06 -1.87 3.89

D 0.22 0.08 0.05 -0.09 -0.49 0.71 2.42 1.07 0.61 -0.88 -3.23 4.24
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Table 3.2: Characteristics and Risk-Adjusted Stock Returns Within Quintile Portfolios

This table reports slopes and t-statistics from the OLS regression (Panel A), the rank regression (Panel B),

the least trimmed squares (LTS) regression (Panel C), and the iteratively reweighted least squares (IRLS)

regression (Panel D) of risk-adjusted returns on several anomalous characteristics. The regressions are run

within individual quintile portfolios formed using sorts on anomalous variables (columns 1 – 5) and for the

whole sample (column All). The column (1-5) reports the difference between returns on portfolio 1 and

portfolio 5.

Panel A: OLS Fama-MacBeth Regression

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M -0.0040 0.0036 0.0002 -0.0041 -0.0016 -0.0021 -3.10 1.42 0.08 -1.09 -1.78 -4.04

S -0.0242 0.0006 0.0004 -0.0002 0.0004 -0.0018 -15.13 0.57 0.41 -0.32 1.83 -4.95

−Mom -0.0001 -0.0107 -0.0089 -0.0045 0.0112 -0.0032 -0.12 -3.36 -1.82 -0.89 1.22 -2.39

IdV ol -0.1913 0.2797 -0.1703 -0.3223 -0.1593 -0.1525 -0.72 2.04 -1.35 -3.04 -3.93 -4.97

AG -0.0052 -0.0092 -0.0141 -0.0208 -0.0041 -0.0039 -0.98 -0.66 -1.13 -2.98 -4.99 -6.06

CI -0.0041 0.0028 -0.0037 0.0010 -0.0004 -0.0004 -0.97 0.65 -0.89 0.38 -1.64 -4.38

I/A -0.0057 0.0106 -0.0113 -0.0156 -0.0069 -0.0070 -1.45 0.39 -0.51 -1.16 -4.23 -6.00

−ROA -0.0583 -0.2708 -0.5142 -0.3319 -0.0702 -0.0676 -1.04 -1.12 -1.59 -1.11 -0.63 -3.14

Acc -0.0087 -0.0287 0.0758 0.0280 -0.0187 -0.0116 -0.80 -0.70 1.10 0.60 -1.61 -4.42

NOA -0.0044 0.0047 -0.0141 -0.0199 -0.0043 -0.0044 -1.48 0.56 -1.25 -1.94 -3.01 -5.75

NS 0.2162 0.2227 0.0453 -0.0528 -0.0054 -0.0126 0.50 1.03 0.53 -2.06 -1.77 -6.34

ι 0.0002 0.0040 0.0019 0.0124 -0.0028 -0.0035 0.15 0.49 0.20 1.14 -3.24 -5.16

O -0.0003 -0.0007 -0.0029 -0.0033 0.0004 -0.0005 -0.78 -0.58 -1.87 -2.21 1.03 -1.95

D -0.0971 -0.0176 0.0435 -0.0288 -0.0012 -0.0013 -1.36 -0.29 1.03 -1.81 -3.30 -4.06

Panel B: Rank Fama-MacBeth Regression

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M 0.0033 0.0027 -0.0036 -0.0081 -0.0279 -0.0265 1.40 1.34 -1.85 -3.68 -9.91 -9.78

S -0.0156 0.0116 0.0103 0.0070 0.0095 0.0449 -5.63 5.30 4.52 3.22 3.77 10.36

−Mom 0.0113 -0.0048 -0.0074 -0.0138 -0.0487 -0.0428 3.69 -2.37 -3.58 -6.43 -13.64 -10.03

IdV ol 0.0122 -0.0021 -0.0133 -0.0212 -0.0499 -0.0712 3.99 -1.05 -6.67 -10.05 -16.72 -19.07

AG 0.0295 0.0078 -0.0014 -0.0096 -0.0284 0.0017 10.13 3.53 -0.73 -4.99 -11.77 0.75

CI 0.0217 0.0101 0.0005 -0.0028 -0.0257 0.0050 7.17 4.18 0.21 -1.19 -8.79 3.14

I/A 0.0172 0.0091 0.0011 -0.0067 -0.0218 -0.0014 6.97 4.04 0.50 -3.12 -8.52 -0.66

−ROA 0.0004 -0.0083 -0.0112 -0.0195 -0.0325 -0.0604 0.09 -2.44 -3.11 -5.25 -7.14 -14.86

Acc 0.0217 0.0051 0.0051 -0.0032 -0.0261 -0.0033 4.98 1.36 1.04 -0.74 -5.97 -1.48

NOA 0.0115 0.0101 0.0021 -0.0072 -0.0261 -0.0013 4.21 4.37 0.95 -2.98 -9.70 -0.62

NS 0.0012 0.0020 -0.0010 -0.0134 -0.0204 -0.0275 0.48 0.80 -0.42 -5.09 -7.23 -13.40

ι 0.0078 -0.0080 -0.0082 0.0008 -0.0236 -0.0373 3.07 -3.20 -3.42 0.29 -9.73 -13.31

O -0.0099 -0.0087 -0.0084 -0.0130 -0.0213 -0.0500 -4.05 -4.15 -3.79 -5.75 -7.81 -15.56

D 0.0011 -0.0068 0.0001 -0.0157 -0.0237 -0.0428 0.35 -2.47 0.03 -4.92 -6.12 -9.67
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Table 3.2: (Continued)

Panel C: LTS Fama-MacBeth Regression

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M 0.0029 0.0033 -0.0031 -0.0073 -0.0081 -0.0052 2.94 1.73 -1.59 -4.05 -10.85 -11.71

S -0.0021 0.0063 0.0055 0.0024 0.0010 0.0034 -2.23 6.50 5.91 4.00 4.57 12.88

−Mom 0.0028 -0.0051 -0.0152 -0.0301 -0.0731 -0.0092 2.94 -1.77 -3.73 -6.67 -11.19 -7.19

IdV ol 0.4244 -0.2255 -0.8846 -1.0411 -0.5283 -0.6355 4.81 -1.98 -7.61 -11.03 -16.99 -22.62

AG 0.0397 0.0363 0.0000 -0.0293 -0.0054 -0.0021 9.65 3.02 0.00 -4.89 -7.52 -3.27

CI 0.0286 0.0169 -0.0002 -0.0019 -0.0010 -0.0005 9.05 4.91 -0.07 -0.87 -4.74 -4.94

I/A 0.0162 0.0876 -0.0048 -0.0239 -0.0096 -0.0010 5.42 4.75 -0.27 -2.23 -6.96 -0.92

−ROA 0.0816 -0.3903 -1.0383 -0.5480 -0.1165 -0.1778 1.32 -1.42 -3.18 -2.07 -1.14 -7.67

Acc 0.0257 0.0528 -0.0078 -0.0098 -0.0163 -0.0070 2.67 1.49 -0.13 -0.20 -1.33 -2.51

NOA 0.0071 0.0325 0.0143 -0.0188 -0.0076 -0.0013 2.85 4.65 1.60 -2.36 -5.85 -1.70

NS 0.0803 0.3500 0.0423 -0.0768 -0.0156 -0.0243 0.22 1.89 0.57 -3.23 -6.43 -14.25

ι 0.0039 -0.0260 -0.0401 0.0105 -0.0062 -0.0087 4.11 -3.56 -4.63 1.08 -7.92 -14.42

O -0.0010 -0.0049 -0.0048 -0.0072 -0.0014 -0.0031 -2.53 -5.07 -3.96 -6.61 -4.15 -14.24

D 0.0818 -0.1734 -0.0115 -0.0697 -0.0012 -0.0028 1.39 -3.11 -0.33 -4.88 -3.46 -7.21

Panel D: IRLS Fama-MacBeth Regression

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M 0.0012 0.0034 -0.0021 -0.0054 -0.0061 -0.0039 1.27 1.80 -1.16 -3.16 -8.30 -9.08

S -0.0072 0.0044 0.0037 0.0016 0.0008 0.0021 -7.47 4.77 4.12 2.84 3.79 7.71

−Mom 0.0018 -0.0072 -0.0128 -0.0215 -0.0495 -0.0078 1.88 -2.68 -3.29 -5.02 -7.27 -6.12

IdV ol 0.4061 -0.0213 -0.6278 -0.7778 -0.4040 -0.4797 4.77 -0.19 -5.62 -8.49 -12.52 -17.31

AG 0.0269 0.0241 -0.0048 -0.0233 -0.0049 -0.0027 6.79 2.17 -0.49 -4.08 -7.11 -4.23

CI 0.0198 0.0130 0.0005 -0.0018 -0.0009 -0.0004 6.39 3.95 0.15 -0.90 -4.35 -5.10

I/A 0.0104 0.0601 0.0012 -0.0246 -0.0083 -0.0027 3.67 3.41 0.07 -2.44 -6.24 -2.55

−ROA 0.0319 -0.3476 -0.6684 -0.4589 -0.1342 -0.1382 0.59 -1.51 -2.31 -1.88 -1.25 -7.14

Acc 0.0134 0.0302 0.0772 -0.0035 -0.0219 -0.0083 1.36 0.97 1.24 -0.08 -1.88 -3.64

NOA 0.0047 0.0235 0.0026 -0.0201 -0.0064 -0.0022 1.98 3.48 0.30 -2.58 -5.08 -3.08

NS 0.0958 0.2705 0.0506 -0.0663 -0.0133 -0.0213 0.27 1.56 0.73 -2.94 -5.50 -12.90

ι 0.0027 -0.0188 -0.0229 0.0096 -0.0052 -0.0069 3.04 -2.73 -2.85 0.99 -6.93 -11.47

O -0.0009 -0.0035 -0.0044 -0.0057 -0.0009 -0.0024 -2.43 -3.78 -3.89 -5.48 -2.72 -11.71

D 0.0200 -0.1107 0.0073 -0.0546 -0.0012 -0.0025 0.36 -2.21 0.22 -4.00 -3.73 -7.31
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Table 3.3: Impact of Individual Stocks on Portfolio Returns

This table shows average differences between monthly equal-weighted stock returns on portfolios

1 and 5 and their t-statistics. All returns are adjusted for risk using the Fama-French 3-factor

model. Portfolios are formed by sorting firms on fourteen anomalous characteristics. The columns

correspond to the following cases: (1) – no truncation; (2) – one stock with the highest return is

excluded from portfolio 1; (3) – one stock with the lowest return is excluded from portfolio 5; (4) –

two stocks with the highest returns are excluded from portfolio 1; (5) – two stocks with the lowest

returns are excluded from portfolio 5. To ensure that for all anomalies expected returns decrease

with the portfolio number (i.e., portfolio 1 contains stocks with abnormally high returns), the signs

of B/M , Mom, and ROA have been inverted. All coefficients are multiplied by 100.

Returns t-stats

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

−B/M 0.50 0.30 0.38 0.17 0.28 4.08 2.45 3.11 1.42 2.33

S 1.09 0.75 1.03 0.53 0.98 4.94 3.48 4.69 2.49 4.48

−Mom 0.47 0.32 0.36 0.21 0.26 2.00 1.34 1.50 0.86 1.09

IdV ol 0.41 0.25 0.29 0.17 0.19 1.98 1.18 1.38 0.80 0.90

AG 0.71 0.39 0.61 0.20 0.52 6.00 3.61 5.11 1.91 4.39

CI 0.20 -0.09 0.08 -0.28 -0.02 2.66 -1.23 1.04 -4.01 -0.25

I/A 0.54 0.26 0.43 0.08 0.33 6.06 3.04 4.77 0.92 3.73

−ROA 0.93 0.71 0.76 0.55 0.63 4.19 3.19 3.40 2.46 2.79

Acc 0.37 0.00 0.19 -0.26 0.04 4.41 -0.03 2.30 -3.27 0.47

NOA 0.70 0.38 0.59 0.19 0.49 5.92 3.52 4.93 1.81 4.13

NS 0.64 0.39 0.48 0.23 0.35 6.85 4.17 5.13 2.43 3.76

ι 0.48 0.32 0.35 0.21 0.24 4.21 2.78 3.02 1.81 2.09

O 0.64 0.49 0.51 0.39 0.41 3.89 2.97 3.12 2.34 2.49

D 0.71 0.57 0.56 0.47 0.43 4.24 3.38 3.33 2.77 2.59
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Table 3.4: Characteristics and Stock Returns Within Quintile Portfolios, Size Groups

This table reports slopes and t-statistics from the rank Fama-MacBeth regression of risk-adjusted returns

on various anomalous characteristics for microcap stocks (Panel A), small stocks (Panel B), and big stocks

(Panel C). The regressions are run within individual quintile portfolios formed on anomaly variables (columns

1 – 5) and for all stocks from the appropriate size group (column All).

Panel A: Microcap Stocks

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M 0.0000 -0.0018 -0.0065 -0.0129 -0.0274 -0.0445 -0.01 -0.62 -2.40 -4.37 -8.92 -13.87

S -0.0234 0.0059 0.0057 0.0069 0.0027 0.0178 -7.44 2.38 2.21 2.57 1.05 5.03

−Mom 0.0123 -0.0052 -0.0064 -0.0107 -0.0359 -0.0411 3.79 -1.97 -2.42 -4.00 -9.88 -9.86

IdV ol 0.0047 -0.0144 -0.0130 -0.0204 -0.0372 -0.0734 1.51 -5.40 -5.38 -8.02 -11.08 -19.84

AG 0.0249 0.0133 0.0020 -0.0114 -0.0324 -0.0030 7.59 4.26 0.67 -4.10 -9.84 -1.26

CI 0.0153 0.0007 -0.0019 -0.0079 -0.0216 0.0044 3.16 0.18 -0.46 -1.82 -5.06 2.06

I/A 0.0107 0.0060 -0.0001 -0.0097 -0.0244 -0.0072 3.36 1.94 -0.03 -3.27 -7.26 -3.32

−ROA 0.0009 -0.0067 -0.0231 -0.0270 -0.0294 -0.0722 0.23 -1.68 -6.45 -7.10 -7.43 -19.57

Acc 0.0204 0.0036 -0.0007 -0.0041 -0.0261 -0.0042 4.20 0.79 -0.14 -0.88 -5.44 -1.81

NOA 0.0045 0.0034 -0.0003 -0.0061 -0.0231 -0.0025 1.04 1.04 -0.08 -1.84 -5.37 -1.03

NS -0.0029 -0.0026 -0.0108 -0.0141 -0.0128 -0.0340 -0.71 -0.75 -2.63 -3.16 -3.01 -14.49

ι 0.0015 -0.0094 -0.0121 -0.0124 -0.0141 -0.0458 0.38 -2.28 -3.23 -3.15 -3.92 -14.07

O -0.0053 -0.0094 -0.0079 -0.0113 -0.0107 -0.0460 -1.84 -3.07 -2.60 -3.87 -3.38 -17.42

D 0.0034 -0.0083 -0.0079 -0.0135 -0.0125 -0.0502 0.61 -1.48 -1.44 -2.41 -2.32 -12.01

Panel B: Small Stocks

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M 0.0041 0.0064 0.0034 -0.0055 -0.0102 -0.0163 0.82 1.51 0.75 -1.21 -2.26 -4.73

S -0.0019 -0.0012 0.0004 0.0070 0.0065 0.0118 -0.45 -0.29 0.12 1.73 1.63 5.31

−Mom 0.0160 -0.0012 0.0010 -0.0045 -0.0330 -0.0259 3.21 -0.28 0.23 -1.03 -6.44 -5.18

IdV ol 0.0064 -0.0067 -0.0122 -0.0137 -0.0466 -0.0497 1.50 -1.63 -2.98 -3.28 -10.56 -12.94

AG 0.0153 0.0015 -0.0018 -0.0144 -0.0191 -0.0068 3.10 0.34 -0.40 -3.40 -4.17 -2.20

CI 0.0180 0.0039 0.0027 0.0004 -0.0108 -0.0031 3.04 0.72 0.51 0.08 -2.02 -1.26

I/A 0.0132 -0.0001 -0.0049 0.0006 -0.0081 -0.0064 2.78 -0.03 -1.09 0.13 -1.63 -2.20

−ROA -0.0015 -0.0088 -0.0081 -0.0132 -0.0314 -0.0423 -0.28 -1.75 -1.53 -2.49 -5.04 -10.92

Acc 0.0268 -0.0090 -0.0126 -0.0029 -0.0245 -0.0040 3.86 -1.32 -1.91 -0.40 -3.49 -1.10

NOA 0.0105 0.0005 0.0036 -0.0014 -0.0101 -0.0052 1.89 0.10 0.69 -0.28 -1.88 -1.66

NS 0.0044 0.0113 0.0062 -0.0119 -0.0192 -0.0134 0.81 2.03 1.15 -2.34 -3.60 -4.38

ι 0.0030 0.0023 -0.0041 -0.0012 -0.0140 -0.0262 0.59 0.49 -0.88 -0.25 -2.73 -7.98

O -0.0055 -0.0003 -0.0008 -0.0059 -0.0147 -0.0211 -1.07 -0.06 -0.18 -1.27 -2.93 -6.53

D -0.0011 -0.0011 -0.0044 -0.0046 -0.0161 -0.0344 -0.20 -0.21 -0.90 -0.92 -2.90 -7.61
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Table 3.4: (Continued)

Panel C: Big Stocks

Slope t-stats

1 2 3 4 5 All 1 2 3 4 5 All

−B/M -0.0057 -0.0038 0.0005 0.0042 0.0027 0.0052 -1.04 -0.92 0.13 1.07 0.60 1.41

S -0.0003 0.0036 0.0051 0.0043 0.0141 0.0104 -0.09 0.94 1.30 1.11 2.94 4.38

−Mom -0.0041 -0.0066 -0.0054 -0.0043 -0.0219 -0.0228 -0.74 -1.67 -1.38 -1.00 -4.07 -3.74

IdV ol 0.0065 0.0000 -0.0059 -0.0026 -0.0376 -0.0245 1.46 0.00 -1.68 -0.67 -8.34 -5.93

AG 0.0133 -0.0087 0.0006 -0.0018 -0.0127 0.0023 2.90 -2.17 0.15 -0.43 -2.82 0.68

CI 0.0056 0.0006 -0.0036 0.0000 -0.0146 -0.0003 1.25 0.15 -0.90 0.01 -3.34 -0.11

I/A 0.0061 -0.0081 0.0020 0.0029 -0.0118 0.0005 1.37 -1.96 0.44 0.68 -2.70 0.16

−ROA -0.0049 -0.0082 -0.0028 0.0022 -0.0191 -0.0222 -1.01 -1.74 -0.60 0.45 -3.47 -5.00

Acc 0.0085 0.0032 0.0105 -0.0054 -0.0131 0.0030 1.48 0.56 1.86 -0.98 -2.17 0.82

NOA 0.0005 0.0064 -0.0036 0.0020 -0.0121 -0.0071 0.11 1.44 -0.78 0.42 -2.39 -2.12

NS -0.0046 -0.0016 0.0024 -0.0103 -0.0078 -0.0103 -1.05 -0.36 0.49 -2.15 -1.49 -3.01

ι 0.0010 -0.0068 -0.0016 -0.0059 -0.0130 -0.0105 0.21 -1.65 -0.38 -1.40 -2.95 -2.92

O -0.0078 -0.0037 0.0042 -0.0016 -0.0107 -0.0155 -1.55 -0.82 0.89 -0.30 -2.01 -3.44

D -0.0061 -0.0033 -0.0009 -0.0029 -0.0146 -0.0259 -1.20 -0.63 -0.18 -0.57 -2.30 -4.19
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Figure 3.1: Returns on Quintile Portfolios With and Without Stock Truncation

This figure plots average risk-adjusted returns on quintile portfolios formed on various characteristics. The

solid line corresponds to returns on portfolios without truncation. The dashed line shows the change in

returns on portfolio 5 when one stock with the lowest return is excluded from this portfolio every period.

Similarly, the dashed-dotted line shows the change in returns on portfolio 1 when one stock with the highest

return is excluded from this portfolio every period. To ensure that for all anomalies expected returns

supposedly decrease with the characteristic, the signs of B/M , Mom, and ROA have been inverted.
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Chapter 4

Conclusion and Summary

The analysis of asset pricing anomalies is an important step towards under-

standing the determinants and properties of the cross section of U.S. common stock

returns. However, this analysis is complicated by the large variety of firm character-

istics that appear to predict expected returns. In this dissertation we study both the

time series and cross sectional properties of fourteen previously documented anoma-

lies. We find that for most firm characteristics, their relations with future stock

returns are similar in exhibiting short term time series persistence and in being

sensitive to extreme observations in the cross section. We also uncover a common

component from all characteristics capturing the information about future returns

by applying a simple and powerful procedure. Overall, our findings suggest that

characteristic-return predictability may be influenced by the same market forces and

originate from common economic sources. Specifically, we offer some evidence that

persistence may be attributed to flow-driven trading by mutual funds.

We study the time series performance persistence in strategies based on asset

pricing anomalies in the first chapter. Based on prior annual strategy returns, we

find significant continuation in the strategy performance for up to four subsequent

months. The persistence of strategies can be isolated in new trading strategies, which
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earn on average 4.5% annually. To test the role of mutual fund trading in the strategy

performance persistence, we compute a measure of expected price pressure based on

the mutual fund prior performance and holdings. Then, we show that it significantly

reduces the predictive power of past strategy returns. This finding implies that the

flow-driven trading is at least partially responsible for the observed persistence in

the returns of strategies. In addition, 13F institutions trade in the same direction as

mutual funds and increase their holdings of strategies following their positive prior

performance, possibly contributing to the persistence. Overall, these results suggest

that the behavior of intermediaries has a similarly significant effect on the dynamics

of many asset pricing anomalies.

An important question is whether some institutions exploit the vulnerability

of funds to predictable flow shocks. Shive and Yun (2013) provide evidence of hedge

funds front running mutual funds by predicting their flow-driven trades. In future

research it would be interesting to study whether hedge funds are able to target

specific mutual funds which follow a particular strategy.

We suggest a novel method to combine the return-related information con-

tained in firm characteristics in chapter 2. This aggregation makes it possible to

build new characteristics (filtered expected returns) whose sorts produce abnormal

returns that exceed those produced by individual anomalies. This result implies that

characteristics contain a common component related to future stock returns. The

performance persistence of strategies based on this component may help explain the

systematic persistence of other characteristics.

While we construct only two types of filtered expected returns, other types
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may be of interest. For example, using the HCF it is possible to construct a new char-

acteristic that would encompass the information from several value/growth indicators

such as the book-to-market ratio, the price-earnings ratio, the cash flows-to-price ra-

tio, and the dividend-price ratio. Even though the book-to-market ratio tends to

eliminate the statistical significance of other indicators in joint regressions (Fama

and French, 1992), they still may be useful in our framework. In a recent paper,

Gerakos and Linnainmaa (2013) argue that the pricing ability of the book-to-market

ratio is due mostly to the changes in the market value of equity. They conclude that

the five-year change in the equity value is a better measure of firm value. This new

value signal can also be easily incorporated into our framework.

Although our framework and the HCF estimator are developed in the context

of aggregating information about expected returns, they may have much broader

applicability. Conceptually, we propose a general way to uncover cross-sectional at-

tributes of multiple objects having a large number of signals which contain informa-

tion about these attributes. For example, it may be interesting to aggregate various

characteristics of mutual fund or hedge fund managers that are known to be related

to their skill and may contain some information about their future performance. In

accounting, our approach can be used for forecasting earnings by combining a large

number of their predictors based on the fundamentals.

We explore the monotonicity of the cross sectional relation between firm char-

acteristics and stock returns in the last chapter. We find that the nature of this

relation is different for stocks with high and low characteristics. For stocks with

presumably low returns, all anomalies except size are very robust and observed in
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various size groups. For stocks with presumably high returns, many anomalies are

driven by individual influential stocks and the relation between the characteristic and

returns changes its sign when the impact of such stocks is mitigated. This means

that for the majority of stocks such anomalies are non-monotonic.

It should be emphasized that our analysis neither casts doubt on the exis-

tence of anomalies nor suggests that they cannot be exploited by practitioners. An

arbitrager who buys an underpriced portfolio and sells an overpriced portfolio cares

about the difference in expected returns, but not whether this difference is produced

by all stocks in the portfolios or a few stocks with extremely high or low returns.

Hence, while returns of persistence strategies and aggregate anomaly may be sen-

sitive to extreme observations considered in previous chapters, they both represent

relevant findings. The discovered non-monotonicity of many anomalies is mostly

important from the theoretical point of view. It challenges the existing rational

and behavioral explanations of anomalies predicting a monotonic relation between

characteristics and returns and call for new theories that are able to explain the

discovered sensitivity to extreme observations.
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Appendix

The Appendix provides the definitions of all considered characteristics.

Size (S). Following Fama and French (2008), size is equal to the market value of

equity ME = PRC ∗ SHROUT , where CRSP PRC is the stock price, and CRSP

SHROUT is the number of shares outstanding.

Book-to-Market (B/M). Following Fama and French (2008),

B/M =
BE

ME
=
AT − LT + TXDITC − PS

PRC ∗ SHROUT
,

where BE is the book value of equity, and ME is the market value of equity. Com-

pustat AT is the total assets, Compustat LT is the total liabilities, Compustat

TXDITC is deferred taxes and investment tax credit, and PS is the preferred stock

value. Depending on the availability, PS is approximated by the liquidating value

Compustat PSTKL, redemption value Compustat PSTKRV , or carrying value

Compustat PSTK in this order of priority. CRSP PRC is the stock price, and

CRSP SHROUT is the number of shares outstanding. ME is computed at the end

of December of calendar year t− 1 and together with BE is updated annually at the

end of June of the current year t.

Momentum (Mom). Following Jegadeesh and Titman (1993),

Momt =
t−2∏

s=t−13

(1 +RETs),
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where CRSP RETs is the stock return in month s. Month t− 1 is skipped to control

for the Jegadeesh (1990) and Lehmann (1990) short-term reversal.

Total Asset Growth (AG). Following Cooper, Gulen, and Schill (2008),

AG =
ATt − ATt−1

ATt−1

,

where Compustat AT is the total assets.

Abnormal Capital Investments (CI). Following Titman, Wei, and Xie (2004),

CI =
CEt

(CEt−1 + CEt−2 + CEt−3)/3
− 1,

where CE = CAPX
SALE

, Compustat CAPX is the capital expenditures, and Compustat

SALE is sales.

Investments-to-Assets Ratio (I/A). Following Lyandres, Sun, and Zhang (2008),

I/A =
INV Tt − INV Tt−1 + PPEGTt − PPEGTt−1

ATt−1

,

where Compustat INV T is the inventories, Compustat PPEGT is gross property,

plant, and equipment, and Compustat AT is the total assets.

Net Stock Issues (NS). Following Fama and French (2008),

NS = log

(
SASOt

SASOt−1

)
,

where the split-adjusted shares outstanding SASO = CSHO ∗ AJEX, Compustat

CSHO is the common shares outstanding, and Compustat AJEX is the cumulative

factor to adjust shares.
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Composite Stock Issuance (ι). Following Daniel and Titman (2006),

ι = log

(
MEt
MEt−5

)
− r(t− 5, t),

where the market equity ME = PRC ∗ SHROUT at the end of December of year

t, CRSP PRC is the stock price, and CRSP SHROUT is the number of shares

outstanding. r(t− 5, t) is the cumulative log return over the previous five years.

Accruals (Acc). Following Sloan (1996),

Acc =
(∆ACTt −∆CHEt)− (∆LCTt −∆DLCt −∆TXPt)−DPt

ATt−1

,

where Compustat ACT is the total current assets, Compustat CHE is cash and

short-term investments, Compustat LCT is the total current liabilities, Compustat

DLC is debt in current liabilities, Compustat TXP is income taxes payable, Com-

pustat DP is depreciation and amortization, and Compustat AT is the total assets.

∆Xt = Xt −Xt−1.

Net Operating Assets (NOA). Following Hirshleifer, Hou, Teoh, and Zhang

(2004),

NOA =
Operating Assetst −Operating Liabilitiest

ATt−1

,

where

Operating Assetst = ATt − CHEt,

Operating Liabilitiest = ATt −DLCt −DLTTt −MIBt − PSTKt − CEQt.

Compustat AT is the total assets, Compustat CHE is cash and short-term invest-

ments, Compustat DLC is debt in current liabilities, Compustat DLTT is the total
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long term debt, MIB is the minority interest, PSTK is the total preferred stock,

and CEQ is the total common equity.

Return on Assets (ROA). Following Wang and Yu (2012),

ROA =
IBQt

ATQt−1

,

where Compustat IBQ is income before extraordinary items, and Compustat ATQ

is the total assets.

Idiosyncratic Volatility (IdV ol). Following Ang, Hodrick, Xing, and Zhang

(2006), IdV ol is the standard deviation of the residual εdt from the daily time-series

regression in month t

RET dt −RF d
t = βMKTRF

t MKTRF d
t +βSMB

t SMBd
t +βHML

t HMLdt+β
UMD
t UMDd

t +εdt ,

where RET dt and RF d
t are the daily stock return and risk-free rate, respectively.

MKTRF d
t , SMBd

t , and HMLdt are daily Fama and French (1993) factors, and

UMDd
t is the daily Carhart (1997) momentum factor.

Ohlson’s O-score (O). Following Ohlson (1980)

O-Scoret = −1.32− 0.407 log(Sizet) + 6.03TLTAt− 1.43WCTAt + 0.076CLCAt

− 1.72OENEGt − 2.37NITAt − 1.83FUTLt + 0.285 INTWOt − 0.521CHINt,

where Sizet = ATQt/CPIt is total assets adjusted for inflation, where Compus-

tat ATQt is the total assets, and CPIt is the consumer price index from the U.S.

Bureau of Labor Statistics. TLTAt = (DLCQt + DLTTQt)/ATQt−1 is the total
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liabilities divided by lagged total assets, where Compustat DLCQt is debt in current

liabilities, Compustat DLTTQt is total long term debt, and Compustat ATQt is

total assets. WCTAt = (ACTQt − LCTQt)/ATQt−1 is working capital divided by

lagged total assets, where Compustat ACTQt is current assets, Compustat LCTQt

is current liabilities, Compustat ATQt is total assets. CLCAt = LCTQt/ACTQt

is current liabilities divided by current assets, where Compustat LCTQt is current

liabilities, and Compustat ACTQt is current assets. OENEGt is one if total li-

abilities exceeds total assets and zero otherwise, where Compustat LTQt is total

liabilities, and Compustat ATQt is total assets. NITAt = NIQt/ATQt−1 is net

income divided by lagged total assets, where Compustat NIQt is net income, and

Compustat ATQt is total assets. FULTt = PIQt/LTQt−1 is funds provided by op-

erations divided by lagged total liabilities, where Compustat PIQt is pretax income,

and Compustat LTQt is total liabilities. INTOWOt is one if net income was nega-

tive for the last two years and zero otherwise, where Compustat NIQt is net income.

CHINt = (NIQt − NIQt−1)/(|NIQt| + |NIQt−1|) is level adjusted change in net

income, where Compustat NIQt is net income.

Dispersion in Analysts’ Earnings Forecasts (D). Following Diether, Malloy,

and Scherbina (2002),

D =
σ(et)

et
,

where et and σ(et) are the average and standard deviation of I/B/E/S next quarter

analysts’ earnings forecast, respectively.
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