
Copyright

by

Burak Buke

2007

The Dissertation Committee for Burak Buke
certifies that this is the approved version of the following dissertation:

Optimal Draining of Fluid Networks with Parameter

Uncertainty

Committee:

John J. Hasenbein, Supervisor

David P. Morton, Supervisor

Elmira Popova

Erhan Kutanoglu

Sanjay Shakkottai

Optimal Draining of Fluid Networks with Parameter

Uncertainty

by

Burak Buke, B.S., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2007

In the memory of my father...

Acknowledgments

I would like to start with expressing my gratitude to my advisors

Dr. John Hasenbein and Dr.David Morton. I would not be able to put this

work together without their invaluable support. I especially want to thank

them for supporting, motivating and encouraging me. Not only they guided

me in various ways in my Ph.D. journey, but they also taught me how to be a

good academic. I would also like to thank my committee members Dr. Popova,

Dr.Kutanoglu and Dr. Shakkottai. Surely, their help during my graduate stud-

ies extends beyond this dissertation. I would like to thank Dr.Nuri Uman of

Koc University and Dr.Aytul Ercil of Sabanci University for encouraging me

to pursue an academic career.

I have really enjoyed the time I spent in Austin. At this point, I also

take this opportunity to thank my wonderful friends in Austin. I want to

thank Fehmi for supporting me throughout my graduate life. I also would like

to thank Ali, Murat, Guray, Utku, Erol, Emrah Tanriverdi, Ulas, Ferhat, Em-

rah Zarifoglu, Armagan, Amit, Kranthi, Vishv Jeet, Mukremin and numerous

others. I thank everyone who has been a part of my life in Austin.

Last, but not the least, I would like to thank all the people in my

family for their endless support. Without them believing in me, it would be

impossible to come up with this work.

v

Optimal Draining of Fluid Networks with Parameter

Uncertainty

Publication No.

Burak Buke, Ph.D.

The University of Texas at Austin, 2007

Supervisors: John J. Hasenbein
David P. Morton

Fluid networks are useful tools for analyzing complex manufacturing

environments especially in semiconductor wafer fabrication. The makespan

of a fluid network is defined as the time to drain the system, when there is

fluid present in the buffers initially. Based on this definition, the question

of determining the allocation of resources so as to minimize the makespan

of a fluid network is known as the makespan problem. In the deterministic

version of the makespan problem, it is assumed that the parameters of the

system, such as incoming rates, service rates and initial inventory, are known

deterministically.

The deterministic version of the makespan problem for reentrant lines

and multiclass fluid networks has been investigated in the literature and an

analytical solution for the problem is well-known. In this work, we provide an-

other formulation for the deterministic makespan problem and prove that the

vi

problem can be solved for each station separately. Optimal solutions for the

deterministic makespan problem have been used as a guide to develop heuris-

tics methods to solve makespan scheduling problem in the job-shop context

in the literature. This provides one motivation for further investigation of the

fluid makespan problem.

In this work our main focus is solving the makespan problem when the

problem parameters are uncertain. This uncertainty may be caused by various

factors such as the unpredictability of the arrival process or randomness in

machine availability due to failures. In the presence of parameter uncertainty,

the decision maker’s goal is to optimally allocate the capacity in order to

minimize the expected value of the makespan. We assume that the decision

maker has distributional information about the parameters at the time of

decision making.

We consider two decision making schemes. In the first scheme, the

controller sets the allocations before observing the parameters. After the ini-

tial allocations are set, they cannot be changed. In the second scheme, the

controller is allowed a recourse action after a data collection process. It is

shown that in terms of obtaining the optimal control, both schemes differ con-

siderably from the deterministic version of the problem. We formulate both

schemes using stochastic programming techniques. The first scheme is eas-

ier to analyze since the resulting model is convex. Unfortunately, under the

second decision scheme, the objective function is non-convex. We develop a

branch-and-bound methodology to solve the resulting stochastic non-convex

vii

program. Finally, we identify some special cases where the stochastic problem

is analytically solvable.

This work uses stochastic programming techniques to formulate and

solve a problem arising in queueing networks. Stochastic programming and

queueing systems are two major areas of Operations Research that deal with

decision making under uncertainty. To the best of our knowledge, this disser-

tation is one of the first works that brings these two major areas together.

viii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Makespan Problem 10

2.1 Modeling and Notation . 10

2.2 Deterministic Makespan Problem 15

Chapter 3. Stochastic Makespan Problem Without Recourse
Action 21

3.1 Counterexamples . 23

3.2 Existence of a Finite Optimal Solution 27

3.3 Solution Methods . 30

Chapter 4. Stochastic Makespan Problem with Recourse Ac-
tion 38

4.1 Solution Methodology . 42

4.1.1 A Lower Bound for the Recourse Problem 43

4.1.2 The Branch-and-Bound Algorithm 51

4.2 Computational Results . 56

ix

Chapter 5. Special Cases 69

5.1 Special Cases for Stochastic Makespan Problem without Recourse 69

5.1.1 Deterministic Station 69

5.1.2 Random Incoming Rates 71

5.1.3 Random Service Rates 73

5.1.4 Random Initial Inventory 75

5.2 Special Cases for Stochastic Makespan Problem with Recourse 75

5.2.1 Random Incoming Rates 77

5.2.2 Random Service Rates 79

5.2.3 Non-idling Stations . 79

Chapter 6. Conclusions and Future Work 81

Appendix 85

Appendix 1. The Data for Fluid Networks Used in Computa-
tions 86

1.1 3-Station 6-Buffer Reentrant Line 86

1.2 2-Station 10-Buffer Reentrant Line 87

1.3 5-Station 10-Buffer Reentrant Line 87

1.4 5-Station 20-Buffer Reentrant Line 88

1.5 6-Station 30-Buffer Reentrant Line 89

Bibliography 90

Vita 96

x

List of Tables

3.1 Gap between the Edmundson-Madansky and Jensen bounds for
reentrant lines of different sizes for 10,000 partitions 36

3.2 Computation times (seconds) for reentrant lines of different sizes
for 10,000 sample points . 37

4.1 Computation times (seconds) for a reentrant line of 3 stations
and 6 buffers for different tolerance levels and sample sizes when
initial inventory is random . 58

4.2 Computation times (seconds) for a reentrant line of 3 stations
and 6 buffers for different tolerance levels and sample sizes when
incoming rate is random . 58

4.3 Computation times (seconds) for a reentrant line of 3 stations
and 6 buffers for different tolerance levels and sample sizes when
service time is random . 59

4.4 Computation times (seconds) for different reentrant lines and
different sample sizes when initial inventory is random 61

4.5 Computation times (seconds) for different reentrant lines and
different sample sizes when incoming rate is random 61

4.6 Computation times (seconds) for different reentrant lines and
different sample sizes when service time is random 62

4.7 Computation times (seconds) for different reentrant lines and
different sample sizes when initial inventory is random and cuts
are inherited . 63

4.8 Computation times (seconds) for different reentrant lines and
different sample sizes when incoming rate is random and cuts
are inherited . 63

4.9 Computation times (seconds) for different reentrant lines and
different sample sizes when service time is random and cuts are
inherited . 64

4.10 Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers and different recourse points 65

4.11 Computation times (seconds) for a reentrant line with 5 stations
and 20 buffers when parameters follow a triangular distribution 66

xi

4.12 Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers when the recourse point T follows a uniform
distribution . 67

4.13 Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers when the recourse point T follows a triangular
distribution . 67

xii

List of Figures

2.1 A Multiclass Network with Two Stations and Four Buffers . . 12

3.1 Network with One Station and Two Buffers 24

3.2 Non-Separable Stochastic Network 26

4.1 The timeline for making decisions 39

4.2 An instance of the non-convex lower bound function LB1
k(·, ξ) 47

4.3 An instance of a convex lower bound function 49

5.1 Network with Three Stations and Five Buffers 76

xiii

Chapter 1

Introduction

Dealing with problems arising in the real world has always been a hard

task. Recent developments in complex manufacturing environments and com-

munication systems have introduced new and challenging problems for re-

searchers. Some of the most challenging of these problems arise in the semi-

conductor wafer fabrication industry. The production of a wafer includes hun-

dreds of steps. More importantly, the production is highly reentrant, i.e., the

jobs visit some stations more than once during the production process. The

reason for this situation is the high machine costs. Moreover, in general the

cost of a wafer fab should be paid off within three years, which makes the

efficient design and control of the production system absolutely necessary.

In optimization of the process, the most important issue is how the pro-

cessing network is modeled. In recent years, there has been considerable effort

to develop mathematical models to incorporate the important characteristics

of complex processing networks. One of the most commonly used models that

addresses many of the issues arising in processing networks is a so-called mul-

ticlass queueing network. A multiclass queueing network provides a framework

to model the reentrant structure of the processing network. Despite being a

1

fairly realistic representation of real systems, multiclass queueing networks are

much more difficult to analyze than the traditional queueing network models

introduced by Jackson [24] and Kelly [27].

To obtain a tractable model for real problems, methods have been pro-

posed to approximate multiclass queueing networks. One approximation that

allows us to perform efficient analysis is known as the fluid model. The fluid

model can be viewed as a deterministic counterpart to the original queueing

network. In a fluid network, instead of discrete jobs, a continuous fluid is as-

sumed to flow through the processing network. In a multiclass fluid network,

fluid arrives to various buffer in a network at known, constant rates. Fluid is

then processed at a station at a given rate and then either routed to another

station for processing, or it leaves the network. A theoretical justification

for why this model is a valid approximation of the original discrete queueing

model may be found in Dai [12] and Chen and Yao [11].

A standard optimization problem in fluid networks is to drain the net-

work in the least amount of time, given an initial fluid inventory. This problem

is sometimes referred as the fluid makespan problem or the clearing time prob-

lem. A closely related problem is to drain the network with the lowest cost,

where the cost is some function of the fluid levels in the network. This prob-

lem is known as the fluid holding cost problem. When the parameters of the

system are known, the makespan problem is a relatively simple optimization

problem, which only requires the inversion of the fluid routing matrix. The

holding cost problem is much more difficult in general, and falls into the class

2

of separated continuous linear programs (see, e.g., Anderson and Nash [1]).

In this work, we concentrate only on the fluid model. Our model is

an extension of the fluid model described above in that we allow some of the

parameters, specifically the fluid arrival and processing rates, and the initial

inventory to be random vectors. We refer to such a network as a stochastic

fluid model. Our goal is to minimize the expected value of the makespan when

parameters are not known deterministically. This version of the makespan

problem with uncertain parameters is referred to as the stochastic makespan

problem. We focus on the makespan objective due to its relative simplicity,

although some results also apply to more general objective functions.

We view our models as useful approximations of reality in systems

where at least the following characteristics are present: (1) the dynamical as-

pects of the system are well-approximated by a multiclass fluid model, in par-

ticular the possible discrete nature of the system and small time scale stochas-

tic fluctuations are well represented by a deterministic, continuous model; (2)

the stochastic behavior of some structural parameters of the system are dom-

inant in terms of system behavior; and, (3) the decision maker is constrained

in the sense that some training or allocation decisions must be made before

the stochastic structural parameters can be measured. Systems in a number

of different application areas do have these characteristics and we mention

just a few. In a recent paper, Harrison and Zeevi [21] present a compelling

argument for using a model of a similar nature in call center applications. In

particular, in their model incoming calls are approximated on a local time

3

scale by a deterministic fluid process. However, over longer time scales, they

assume that the incoming call rates have some stochastic variability which is

the dominant random factor. Finally, they posit that call center staffing de-

cisions must be made before the incoming call rates are known. Thus, their

modeling framework for call centers coincides with our modeling regime.

In semiconductor wafer manufacturing, the dynamics of the manufac-

turing process can often be well-approximated by a multiclass fluid model when

there is a high production volume in the wafer fab. The dominant uncertain-

ties in a wafer fab are usually in terms of demand rates (i.e., lot arrival rates)

and the availability of critical equipment, due to unscheduled downtimes. In

some cases, machine purchases, reticle availability, and setups constrain the

local time scale decisions of machines allocated to different products. Hence,

this application domain provides another motivation for our model. These

considerations provide the motivation to study the stochastic version of the

makespan problem for fluid networks which was analyzed in Weiss [37] and

Dai and Weiss [13].

We consider two different decision making schemes. In the first scheme,

just before time 0, the decision maker must choose a set of “allocation per-

centages” vk, which determine what percentage of a server’s capacity will be

devoted to class k fluid (assuming there is a sufficient amount of fluid to be

worked on). These percentages are then fixed once and for all. At time 0,

when the system begins operation, a realization of the stochastic parameters

is revealed, and the system then operates under that realization and the allo-

4

cation percentages vk which were chosen. In the second decision scheme, the

controller has more freedom on setting the allocations. As in the first scheme,

the initial allocations vks are set just before time 0. However, now the con-

troller has the opportunity to change her decision after some possibly random

time T . In both cases, the controller’s goal is to choose the initial allocations

vk in a manner that minimizes the expected draining time of the system.

A number of different stochastic fluid models have been introduced in

the literature. These models differ from ours in terms of the decision struc-

ture. In previous work, one is usually allowed to make allocation or admission

decisions as soon as a change in the system parameters is observed, and in

this sense, the decision structure is that of real-time control. In contrast, the

decision structure of our models is that of a time-static stochastic program.

In our first decision structure, the controller must commit to a decision

ahead of time and then live with the consequences of that decision no matter

the realization of the stochastic parameters. This structure is reasonable when

the controller should make a decision concerning the design of the system.

For example, the number of dedicated servers (e.g., the number of trained

personnel) to accomplish certain tasks should be decided before the system

starts running and it may be too costly, or logistically impossible, to change

this decision after the system parameters are observed. Another example,

where it is not possible to modify the decision after realizing the parameters

is signal control for heavy traffic in urban areas. The controller must decide

ahead of time on the duration of red and green lights at each intersection

5

without observing the actual flow in the system. In this case, induction sensors

at intersections do not provide sufficient real-time information on the flow at

every intersection.

In our second decision structure, the controller learns system parame-

ters, and change the initial allocations accordingly after some time T . This

delay may be due to several reasons. First, the controller may not be able to

observe the system parameters immediately. In real life, it is only possible to

obtain reasonable estimates for the system parameters after a data collection

process. Hence, the controller has to wait to obtain the results of the data

collection process. Secondly, even if the data collection process can be ne-

glected, the controller may need to change some structural changes (e.g., train

personnel to shift them from one task to the other). The controller’s goal is

to make the optimal decisions till the allocations can be changed.

Perhaps the model closest to ours in spirit is in the aforementioned

paper Harrison and Zeevi [21]. Harrison and Zeevi [21] studied a more general

server structure than ours, since their network has flexible servers, i.e., a fluid

class may be served by more than one station in the network. However, their

network structure is simpler, since they only consider “one pass” networks in

which fluid visits only one server and then departs the network. In the context

of the makespan problem, we do not consider flexible servers; however, taking

the possible application areas into account, we consider a reentrant structure

for the network. Also in contrast to [21], we focus on the structural aspects of

the stochastic programming problem which arises. As in [21], Atlason et al. [3]

6

optimize staffing levels at a call center but they also address the combinatorial

problem of constructing employee shifts while using a simulation model to es-

timate the center’s performance. Gürkan [19] selects constrained buffer sizes

to optimize throughput in a fluid tandem queueing network with random ma-

chine failures, also using simulation to estimate steady-state throughput. The

recent papers of Iyengar and Zeevi [23] and Whitt [39] also examine queueing

models with decision structures that closely resemble ours.

The parameter uncertainty issue is also addressed in the literature for

various other applications than call centers. There is a large body of work on

models related to the classical Anick-Mitra-Sondhi [2] stochastic fluid model.

In those models, generally speaking, service rates are deterministic and arrival

rates vary according to an underlying Markov chain (i.e., the arrival process

is Markov modulated). The controller’s job is usually to determine which fluid

classes to serve at any given time and how much of each fluid type to admit to

the system in order to minimize a cost function. For modeling of manufacturing

systems, both the incoming fluid rate and the processing rates at a server

may be allowed to vary according to some stochastic process. Again, in those

models the controller may be allowed to control both admissions to the system

and the servers’ time allocations. For different approaches to these problems

see, for example, Bäurle [5, 6], Sun et al. [35], and Gürkan et al. [20]. Overviews

of stochastic fluid models used in the manufacturing and telecommunications

application appear in Kulkarni [28] and Sethi et al. [33].

The makespan and holding cost problems for deterministic fluid net-

7

works have been studied in a number of papers. A short list includes Avram et

al. [4], Billings [9], Chen and Yao [11], Pullan [31, 32] and Weiss [37, 38]. The

optimal controls of the fluid optimization problem can be used to construct

efficient heuristics to solve the discrete counterpart of the problem. Bertsimas

and Sethuraman [8], and Dai and Weiss [13] provide asymptotically optimal

heuristics for the makespan problem in queueing networks based on the fluid

approximation. Similarly, Bertsimas et al. [7] provide an asymptotically opti-

mal heuristic for the holding cost problem in a queueing system.

The dissertation is organized as follows. In Chapter 2, we introduce the

deterministic version of the makespan problem. Even though the deterministic

problem is analytically solvable, we introduce a mathematical programming

formulation of the problem that helps us in analyzing the stochastic version

of the problem.

In Chapter 3, we analyze our first decision structure. We provide some

counterexamples to show how the stochastic problem differs from the deter-

ministic version. We state conditions for the well-posedness of the problem

and formulate the problem using a stochastic programming model. Finally,

we discuss the methodologies that can be used to solve the problem.

In Chapter 4, the second decision structure is analyzed, in which a

recourse action is allowed. We formulate the problem under this decision

structure, which turns out to be a stochastic non-convex programming model.

We then develop a branch-and-bound methodology, which is guaranteed to

give the optimal expected makespan after a finite number of iterations.

8

Finally, in Chapter 5, we identify some special cases where the optimal

solution can be characterized analytically. Then, we outline our contributions

in Chapter 6 and give further directions for research.

9

Chapter 2

Makespan Problem

In this chapter, we give a formal definition of the makespan problem in

fluid networks. In Section 2.1, we introduce the notation that is used through-

out this work, and using that notation, state the equations governing the fluid

process. Then, we define the controls used to solve the makespan problem. If

all the parameters of the system are known deterministically, the makespan

problem is a well-solved problem. In Section 2.2, we state the solution of the

deterministic makespan problem as given in Chen and Yao [11]. Then we give

an optimization model that yields the optimum solution of the determinis-

tic makespan problem. Even though the deterministic problem can be solved

analytically, this model enables us to analyze the stochastic case more effec-

tively. This model also allows us to observe the separability property of the

deterministic makespan problem.

2.1 Modeling and Notation

In this work, we consider a fluid model where fluid flows through a

system consisting of stations indexed by j ∈ J and classes of fluid indexed by

k ∈ K. We envision each class of fluid being stored in a buffer, which we refer

10

as buffer k. We assume |J | ≤ |K| and that each class k is served by a unique

station σk ∈ J . On the other hand, station j drains a set of buffers denoted

by Cj, where Cj = {k|σk = j}. The system starts with an initial inventory

ak in each buffer k. Fluid arrives to buffer k from outside the system at rate

αk. If station σk allocates all its effort to buffer k, it takes mk units of time

to drain one unit of fluid from buffer k. When subscripts are omitted a, α and

m denote the vector forms of the above parameters. All vectors are assumed

to be column vectors. After the fluid leaves buffer k some portions of the

fluid is routed to the buffers in the system and the remaining portion leaves

the system. The proportion of fluid that is routed to buffer l from buffer

k is denoted pkl. The |K| × |K| matrix P , with elements pkl, is called the

routing matrix. In this work matrices are denoted by upper case letters and

to denote the kth row of a matrix, the superscript k notation is used. To

avoid confusion, when a superscript is used as a power operator, the matrix

is written in parentheses. We use I to denote an appropriately-dimensioned

identity matrix and e to denote vector of all 1s.

The system described above is called a multiclass fluid network. An

example of a multiclass fluid network with 2 stations and 4 buffers is given in

Figure 2.1. A multiclass fluid process is given by (Z(t), T (t)) for t ≥ 0. In

this notation Z(t) and T (t) are |K| dimensional. Tk(t) is the total amount of

effort (in units of time) spent to drain buffer k up to time t and Zk(t) gives

the amount of fluid in buffer k at time t. In the above notation, Z(0) = a.

We also define the service-time matrix, M = diag(m). Then the dynamical

11

p41

- -

- -

-

-

-

-

-
-

α1

α2

α3

α4

a1 a2

a4a3

m1 m2

m3 m4

p12

p32

p34 1− p41

Figure 2.1: A Multiclass Network with Two Stations and Four Buffers

equations governing the fluid process are, for all t ≥ 0:

Z(t) = a + αt− (I − P ′)M−1T (t) (2.1a)

∑

k∈Cj

Tk(t) ≤ t, j ∈ J (2.1b)

Z(t) ≥ 0 (2.1c)

Tk(·) nondecreasing, Tk(0) = 0 for each k ∈ K. (2.1d)

A control policy is defined by a set of functions {Tk(t), k ∈ K} on

[0,∞). Once a policy T (·) is specified, then Z(·) is determined by (2.1a). If

the resulting Z(·) satisfies (2.1c) and T (·) satisfies (2.1b) and (2.1d) then the

solution is a feasible fluid solution.

Now, suppose we define vk(t) = Ṫk(t) for all k and all t ≥ 0 for which

12

the derivative exists. It can be shown that T (·) is absolutely continuous and

so its derivatives exist a.e. Then the functions vk(·) provide an equivalent way

to specify the control. One can interpret vk(t) as the instantaneous percentage

of effort at station σk devoted to draining buffer k. In the stochastic setting

we will find it easier to specify a control policy via v(·) ≡ (vk(·)).

A policy is said to be stationary if these percentage allocations are not

functions of time, i.e., if there is fluid in the system, the workload for buffer

k is drained with rate vk, and only the incoming workload is drained when

buffer k is empty. Clearly, we have

∑

k∈Cj

vk ≤ 1,∀j ∈ J. (2.2)

The makespan of a fluid network is the time that the network is actu-

ally drained, i.e., the minimum t such that Z(t) = 0. In this work, we analyze

the problem of minimizing the makespan of a given fluid network by deciding

on the allocation of effort at each station. Studying the makespan of fluid

networks only makes sense if the networks are open, i.e., all fluid in the system

will eventually leave the system. This notion makes more intuitive sense for

queueing networks with discrete customers, but it turns out that it is neces-

sary to adopt the same notion for fluid networks. To simplify the notation

throughout the paper we define:

Q = I + P ′ + (P ′)2 + · · · .

An open fluid network is one for which the sum above converges. In that case,

13

Q is well defined and its expression reduces to Q = (I − P ′)−1. We refer the

reader to [12] for a detailed analysis of open fluid networks.

To ensure that the network can be drained, we need to enforce further

conditions on the network parameters. The effective arrival rate of class k is

Qkα, and so the amount of work which arrives to the system in unit time,

destined for buffer k, is given by Qkαmk. To be able to eventually drain the

system, each station j must have enough capacity to process the total work

which arrives to the system and is destined for the buffers in Cj. That is, the

following inequalities must hold:

∑
k∈Cj

Qkαmk ≤ 1, ∀j ∈ J. (2.3)

The conditions given in (2.3) are called the usual traffic conditions in the

literature. When the inequality holds strictly, we say that the strict usual

traffic conditions hold.

In [37], the makespan problem is examined for reentrant lines in a deter-

ministic setting, i.e., the parameters of the system are known deterministically

at the time of decision making. A reentrant line is a special type of multiclass

queueing network, where only the first buffer receives exogenous input and pro-

portional routing is not allowed in the system. In [37] it is shown that if the

strict usual traffic conditions hold, there exists a policy which drains a reen-

trant line in finite time. A similar result holds for multiclass fluid networks, is

shown in [11].

The main focus of this work is how to minimize the expected makespan

14

of a multiclass fluid system over stationary policies, when the parameters a, α

and m are not known deterministically at the time of decision making. The

stationarity assumption is crucial, since it can be shown that, in some cases, all

stationary policies are suboptimal when the optimization includes time-varying

policies. However, if the stationarity assumption is removed, the problem

becomes much more complex to analyze. We denote the sample space of the

random variables by Ω and ω ∈ Ω denotes a sample point in the sample space.

A random variable x is generally denoted by x̃, and we use x(ω) to denote a

realization of this random variable under ω ∈ Ω.

2.2 Deterministic Makespan Problem

Under a given policy, the makespan of a fluid network is defined as the

time that the system reaches the empty state. We seek a policy that drains the

system in minimal time. In the deterministic version of the problem, we assume

that the parameters for the system, i.e., a, α and m are known deterministically

at the time of decision making. This problem can be formulated as follows:

t∗ = min

∫ ∞

0

1{e′Z(t)>0}dt

s.t. (2.1a)-(2.1d).

Here, 1{e′Z(t)>0} is the indicator function, which takes value 1 if there is

fluid in the network at time t and 0 otherwise. Taking the integral over time,

we obtain the total time that there is fluid in the system.

The solution to the deterministic problem of minimizing makespan for

15

general multiclass fluid networks is given in Chapter 12 of [11] (a solution for

the special case of a fluid reentrant line is given in [37]). For completeness, we

state the result here. We start by calculating the total workload in the buffers.

The amount that should be emptied from the buffers until all buffers

are drained, can be written in two parts. The first part is the amount of fluid

that flows from the buffers due to the initial fluid inventory and is given by:

a + P ′a + (P ′)2a + (P ′)3a + · · · = Qa.

The second part is the amount of fluid which arrives to the system exogenously

up to time t, and is given by:

αt + P ′αt + (P ′)2αt + · · · = Qαt, ∀t ∈ [0,∞).

Using the calculations above, we can compute the total cumulative

workload for buffer k up to time t as

(Qka + Qkαt)mk. (2.4)

We are now prepared to present the solution to the deterministic makespan

problem.

Theorem 2.2.1. If the usual traffic conditions for a multiclass fluid network

hold then a lower bound for the makespan is:

t∗ ≥ tLB = max
j∈J

{ ∑
k∈Cj

Qkamk

1−∑
k∈Cj

Qkαmk

}
, (2.5)

and this value can be attained. Conversely, if the usual traffic conditions are

violated then the makespan is infinite for every policy.

16

Proof. See Chen and Yao [11], page 384.

If a numerator in (2.5) is zero (i.e., there is no initial fluid to be pro-

cessed at j) then the associated ratio is zero, regardless of the value of the

denominator. Otherwise, if the usual traffic conditions hold but they do not

hold strictly then the lower bound (2.5) is infinite. In this case, we regard the

lower bound as being attained, as stated in Theorem 2.2.1, since the makespan

is also infinite.

As Theorem 2.2.1 shows, the deterministic makespan problem is an-

alytically solvable. However, to deal with more general cases, i.e., the cases

where parameters are random, we need to formulate the makespan problem

as a mathematical programming model. We have already introduced one set

of structural constraints for our problem, namely (2.2). The next step in for-

mulating the problem is to mathematically represent the makespan in terms

of v and the parameters (a, α, m). To do so, we use the fact that if the total

workload of buffer k is to be drained at time tk, the associated effort expended

must equal the amount of work that has arrived to buffer k up to time tk, that

is,

vktk = Qkamk + Qkαmktk, ∀k ∈ K.

Solving this equation for tk we obtain,

tk =
Qkamk

vk −Qkαmk

, ∀k ∈ K. (2.6)

To interpret the expression given in (2.6), observe that the denominator

gives the remaining percentage of effort available, if all the work for buffer k

17

due to exogenous arrivals is removed from the system as soon as it arrives.

The tk given in (2.6) is the time at which buffer k has processed all of the

work initially present in the system, assuming it drains the workload due to

exogenous arrivals as soon as it arrives. Therefore the makespan of the system

under allocation v is the time when all buffers empty their initial amounts

from the system, and is given by:

MS(v, a, α,m) = max
k∈K

{
Qkamk

[vk −Qkαmk]+

}
. (2.7)

Here, the fact that the policy is a stationary policy is key. We see that

under policy v, Qkamk

[vk−Qkαmk]+
is the minimal time that buffer k can drain its

initial workload in the system, so taking the maximum over all buffers, we

obtain a lower bound for the makespan. Another observation is that, since

the allocations are constant, each buffer is fed by a constant flow and when

the buffer is empty it stays empty forever. And, in the worst case, where the

total workload is initially present in the buffer, buffer k would drain this work

by time Qkamk

[vk−Qkαmk]+
. Hence, taking the maximum over all buffers, we obtain

an upper bound on the makespan under v. This shows that equation (2.7)

characterizes the makespan of the system.

A necessary condition to have a finite expected makespan under a sta-

tionary policy is

vk ≥ Qkαmk, ∀k ∈ K. (2.8)

The inclusive inequality in constraint (2.8) allows for the possibility of infinite

makespan, but we minimize with respect to decision vector v and so the ex-

18

pected makespan will be finite whenever possible in the optimization problem.

Also, note that nonnegativity of the allocation decisions, v ≥ 0, is ensured by

(2.8).

Summarizing the development in (2.2), (2.7) and (2.8), we obtain the

following formulation for the deterministic makespan problem:

min
v

max
k∈K

{
Qkamk

vk −Qkαmk

}
(2.9a)

s.t.
∑

k∈Cj

vk ≤ 1, ∀j ∈ J (2.9b)

vk ≥ Qkαmk, ∀k ∈ K. (2.9c)

We now show that the deterministic makespan problem is separable by station.

Theorem 2.2.2. If the strict usual traffic conditions hold, then the determin-

istic makespan problem (2.9) can be solved by solving the station makespan

problems separately. Specifically, let

v̄j ∈ arg min
V j

max
k∈Cj

{
Qkamk

vk −Qkαmk

}
, j ∈ J, (2.10)

where V j = {[vk]k∈Cj
:
∑

k∈Cj
vk ≤ 1, vk ≥ Qkαmk, k ∈ Cj}. Then, v∗ = [v̄j]j∈J

solves (2.9).

Proof. Constraints (2.9b) and (2.9c) are equivalent to [vj]j∈J ∈
∏

j∈J V j. The

usual traffic conditions (2.3) ensure V j 6= ∅,∀j ∈ J , and hence that (2.9) is

feasible. Strictness of these conditions ensures a finite makespan. Formulation

19

(2.9) can be written as:

min
[vj∈V j]j∈J

max
k∈K

{
Qkamk

vk −Qkαmk

}
= min

[vj∈V j]j∈J

max
j∈J

max
k∈Cj

{
Qkamk

vk −Qkαmk

}

= max
j∈J

min
vj∈V j

max
k∈Cj

{
Qkamk

vk −Qkαmk

}
. (2.11)

The inner minimization in (2.11) is equivalent to that in (2.10), and the proof

is complete.

Theorem 2.2.2 shows that even if the output of one station provides

input to another station, the optimal allocations of effort can be determined

separately. In the next chapter, we show that Theorem 2.2.2 does not extend

in general to the stochastic makespan problem even when there is no fluid flow

between stations.

20

Chapter 3

Stochastic Makespan Problem Without

Recourse Action

This chapter is devoted to the stochastic makespan problem under the

first decision scheme given in the introduction. Under this decision scheme, the

controller has to decide on the allocations vk’s without prior knowledge of the

parameters. We assume that, even though the parameters a, α and m are not

known at the time of decision making, the controller possesses distributional

information about the parameters. After the allocations are set at time 0, the

controller cannot change them no matter the realization of the parameters.

In other words, the controller is not allowed to take a recourse action after

the parameters of the system are revealed. This decision making structure is

especially reasonable, when the allocations are results of a structural decision.

The controller’s goal is to minimize the expected value of the makespan.

In the case where parameters are known deterministically, we can find

a closed-form expression for an optimal policy. It can easily be shown that one

optimal policy in the deterministic problem is a stationary policy. However,

in this work our main focus is on the makespan problem where the parameters

a, α and m are only known via a probability distribution, and in this case we

21

restrict the control a priori to stationary policies.

The mathematical formulation for this decision structure is a simple

modification of the model given in (2.9). After the parameters in (2.9) are re-

placed with random variables, the objective function becomes a random func-

tion. Hence, the objective function should be replaced with the expectation

of this random function, i.e.,

min
v

E
(

max
k∈K

{
Qkãm̃k

vk −Qkα̃m̃k

})
(3.1a)

s.t.
∑

k∈Cj

vk ≤ 1, ∀j ∈ J (3.1b)

vk ≥ Qkα̃m̃k, ∀k ∈ K, w.p.1. (3.1c)

Constraints (3.1c) slightly differs from (2.9c). The [·]+ function given

in the denominator of (2.7) is omitted in (3.1a). Hence, unless the con-

straints (3.1c) are imposed, the objective function does not represent the true

makespan of the system. Physically this means that to be able to obtain a

finite expected makespan, we should at least be able to drain the incoming

workload with probability 1.

We observed some desirable properties of the deterministic makespan

problem in Chapter 2. Hence, the following questions naturally arise with

regard to the stochastic makespan problem:

(i) Is it possible to solve the stochastic makespan problem by solving a de-

terministic problem using the expected values of the parameters? If not,

what can be said about the suboptimality of this deterministic solution?

22

(ii) Theorem 2.2.2 shows that the deterministic problem can be solved for

stations separately. Does this property also hold for the stochastic prob-

lem?

(iii) The deterministic problem is well-posed, i.e., there exists a solution with

finite makespan, when the usual traffic conditions are satisfied. What

are the well-posedness conditions for the stochastic problem?

(iv) What are the solution methodologies that can be used to solve the

stochastic makespan problem?

In Section 3.1, we address (i) and (ii). By counterexamples, we show

that, solving a deterministic version of the problem may lead to drastically

suboptimal solutions when the parameters are stochastic. We also demonstrate

that the separability property does not hold for the stochastic problem, even

when the stations are completely “independent.” In Section 3.2, we address

(iii) and develop the well-posedness conditions for the stochastic makespan

problem. Finally, in Section 3.3, we investigate the stochastic programming

methodologies that can be used to solve the stochastic problem.

3.1 Counterexamples

Perhaps the simplest approach to the stochastic makespan problem

is to attempt to solve the problem as in the deterministic case, using the

expected values of the stochastic parameters, i.e., we use the solution for the

deterministic makespan problem, where a, α and m are replaced by their

23

population means. This solution is called the expected value solution. Despite

being commonly used in practice, the expected value solution is in general

suboptimal when one of the parameter vectors a, α or m is random.

m̃1

-

-

α̃2

α̃1

ã1

ã2 m̃2

Figure 3.1: Network with One Station and Two Buffers

Consider the network with one station and two buffers shown in Fig-

ure 3.1. Assume that the parameters a and m are known deterministically at

the time of decision making and a = (3, 2) and m = (5/24, 5/24). The incom-

ing rates are random with P(α̃ = (3/2, 3/2)) = P(α̃ = (1/2, 5/2)) = 1/2. The

expected value solution vEV = (0.433, 0.567) results in an expected makespan

of 7.13. However, if v = (0.404, 0.596), the expected makespan is 6.19, which

shows the expected value solution, vEV , is suboptimal.

Next suppose m is random in the network of Figure 3.1 with P(m̃ =

(4/24, 4/24)) = P(m̃ = (6/24, 6/24)) = 1/2 and a = (3, 2) and α = (1, 2).

The optimal solution of the expected value problem, vEV , has an expected

makespan of 4.69. However, for v = (0.4, 0.6), the expected makespan is 3.57.

24

Finally, suppose a is random with P(ã = (1, 1)) = P(ã = (5, 3)) = 1/2

and α = (1, 2) and m = (5/24, 5/24). In this case, using vEV we obtain an

expected makespan of 3.01. When v = (0.443, 0.557), the expected makespan

is 2.95, which is again lower than that of the expected value solution.

The examples above illustrate that the expected value solution is sub-

optimal in general. At this point, it is natural to ask whether there exist any

bounds on the suboptimality of the expected value solution. Unfortunately,

the expected value solution can be drastically suboptimal when one of the

parameter vectors a, α or m is random. We now show that the expected value

solution may lead to an infinite expected makespan, even if there are feasible

solutions where the expected makespan is finite.

Consider the network in Figure 3.1. Let a = (0, 6), m = (1, 1) and

α be random with P(α̃ = (0, 0)) = P(α̃ = (1/4, 1/4)) = 1/2. As a result,

vEV = (1/8, 7/8) is the expected value solution, i.e., the effort allocated for

buffer 1 is just enough to serve the expected inflow and the rest is devoted to

drain buffer 2. It is easy to see that with probability 1/2, this solution does

not drain the system (i.e., when the scenario α̃ = (1/4, 1/4) occurs). Hence,

the expected makespan is infinite if vEV is employed. However, the solution

v∗ = (1/4, 3/4) yields an expected makespan of 10. It is possible to find a

similar example when only m is random. For the case in which a is random,

the expected value solution yields a finite makespan with probability 1, if there

is a feasible solution with finite expected makespan.

When parameters of the system are deterministically known, Theo-

25

rem 2.2.2 shows that even if the output of one station provides input to another

station, the optimal allocations of effort can be determined separately. Unfor-

tunately, Theorem 2.2.2 does not extend in general to the stochastic makespan

problem. For stochastic problems, the following example shows that this sepa-

ration result fails to hold even when there is no fluid flow between the stations.

ã3

m3 = 1

m2 = 1

m1 = 1ã1

ã2

Figure 3.2: Non-Separable Stochastic Network

Consider the two-station three-buffer network in Figure 3.2, where there

is no input, only the initial inventory is random, and there is no flow between

buffers. The service times are as given in the figure, and let P(ã = (5, 1, 100)) =

P(ã = (1, 5, 0)) = 1/2. Obviously, for the second station we allocate v3 =

1. If we solve the stochastic problem for station one without considering

the second station, we obtain v1 = v2 = 1/2, which leads to an expected

network makespan of 55. However, setting v = (1/6, 5/6, 1), yields an expected

makespan of 53.

In the example above, the suboptimality of the allocation based on op-

timizing the stations separately arises as a result of dependency in the random

vector governing the initial inventory. Next, suppose that P(ã = (10, 0, 14)) =

26

P(ã = (0, 4, 14)) = 1/2. In this problem, a3 is deterministic and therefore in-

dependent of (a1, a2). When the problem is solved for the stations separately

we obtain the optimal allocation as v∗ = (0.613, 0.387, 1), which yields an ex-

pected makespan of 15.15. However, when the problem is solved taking both

stations into account the optimal allocation is v∗ = (0.714, 0.286, 1), yielding

a makespan of 14. Therefore the separability property does not necessarily

hold, even when the stations are completely independent.

Equation (2.11) in the proof of Theorem 2.2.2 follows from exchang-

ing the order of minimization and maximization. However, when we have

stochastic parameters, the analog of equation (2.11) is:

min
[vj∈V j]j∈J

E
(

max
k∈K

{
Qkamk

vk −Qkαmk

})
= min

[vj∈V j]j∈J

E
(

max
j∈J

max
k∈Cj

{
Qkamk

vk −Qkαmk

})
.

With the presence of the expectation operator, it is no longer possible to

interchange the optimization operations. As a result, Theorem 2.2.2 does not

hold for the stochastic case.

3.2 Existence of a Finite Optimal Solution

For the deterministic makespan problem, Theorem 2.2.1 implies that,

if the usual traffic conditions are strictly satisfied, a solution that yields a

finite makespan exists. The natural question that then arises in the stochastic

problem is whether there is a solution which yields a finite expected makespan

if the usual traffic conditions hold with probability 1. Unfortunately, it turns

out that the almost sure usual traffic conditions do not, in general, guarantee a

27

finite expected makespan in the stochastic makespan problem. As an example

consider the network in Figure 3.1 when α is random. Suppose a and m are

deterministic with a = (0, 0) and m = (1, 1), and let P(α̃ = (2/3, 0)) = P(α̃ =

(0, 2/3)) = 1/2. The traffic intensity,
∑

k α̃kmk, is 2/3 under both scenarios.

So, the usual traffic conditions are satisfied in both scenarios. However, since

α̃1 takes value 2/3 in the first scenario, it is necessary to have v1 ≥ 2/3 for a

finite expected makespan. However, by a symmetric argument we also need

v2 ≥ 2/3 for the second scenario. These conditions on (v1, v2) are inconsistent

with (3.1b), i.e., there is no effort allocation which yields a finite expected

makespan, even though the usual traffic conditions are satisfied for each of the

scenarios.

Motivated by the above example, we now derive necessary and sufficient

conditions which guarantee the existence of an allocation with finite expected

makespan. To do so, we need the notion of the essential supremum of a random

variable X̃:

ess sup{X̃} ≡ inf{x : P(X̃ > x) = 0}.

Theorem 3.2.1. Consider a fluid makespan problem with stochastic param-

eters, and let Sk ≡ ess sup{Qkα̃m̃k}. The necessary and sufficient conditions

for a solution with a finite expected makespan to exist are:

(a)
∑

k∈Cj
Sk ≤ 1, ∀j ∈ J

28

(b) E




Qkãm̃k

Sk +
1−∑

l∈Cσk
Sl

|Cσk
| −Qkα̃m̃k


 < ∞, ∀k ∈ K.

Proof. If conditions (a) and (b) hold then allocation vector v, where vk =

Sk +
1−∑

l∈Cσk
Sl

|Cσk
| for all k ∈ K, satisfies (3.1b) and (3.1c). From (b) we

know that

E
(

Qkãm̃k

vk −Qkα̃m̃k

)
< ∞, ∀k ∈ K.

The buffer index set K is finite and hence so is the objective function (3.1a)

evaluated at this v. This proves the sufficiency of conditions (a) and (b) for

the existence of a solution with a finite expected makespan.

Now, suppose that (a) does not hold, i.e., there is a station j∗ ∈ J with
∑

k∈Cj∗
Sk > 1. Constraint (3.1c) is equivalent to vk ≥ Sk, for all k ∈ K.

Thus, (3.1b) for j = j∗ and (3.1c) for k ∈ Cj∗ are inconsistent, i.e., (3.1) is

infeasible and hence has no solution with finite expected makespan.

Finally, suppose that (b) does not hold, i.e.,

E




Qk∗ ãm̃k∗

Sk∗ +
1−∑

l∈Cσk∗
Sl

|Cσk∗ |
−Qk∗α̃m̃k∗


 = ∞ (3.2)

for some k∗ ∈ K. If (3.1b)-(3.1c) is infeasible then the proof is complete so we

restrict attention to the case when
∑

l∈Cσk∗
Sl ≤ 1, and, in turn, consider the

cases when this inequality holds with equality and is strict.

29

Case 1:
∑

l∈Cσk∗
Sl = 1. In this case, in all feasible allocations, vk∗ =

Sk∗ . By (3.2),

E
(

Qk∗ ãm̃k∗

Sk∗ −Qk∗α̃m̃k∗

)
= ∞,

and hence the objective function (3.1a) is also infinite for any feasible v.

Case 2:
∑

l∈Cσk∗
Sl < 1. So, there exists an ε > 0 such that

∑
l∈Cσk∗

Sl+

ε = 1. Thus,

E


 Qk∗ ãm̃k∗

Sk∗ +
ε

|Cσk∗ |
−Qk∗α̃m̃k∗


 ≤ |Cσk∗ |E

(
Qk∗ ãm̃k∗

)

ε
,

which implies E
(
Qk∗ ãm̃k∗

)
= ∞. For any feasible allocation v,

E
(

Qk∗ ãm̃k∗

vk∗ −Qk∗α̃m̃k∗

)
≥ E

(
Qk∗ ãm̃k∗

1

)
= ∞.

When the conditions (a) and (b) of Theorem 3.2.1 are assumed to hold,

the proof of the theorem also characterizes a feasible solution which yields a

finite expected makespan. We assume the existence of a finite optimal solution

for the remainder of this work.

3.3 Solution Methods

In Section 3.1, we show that the stochastic makespan problem can not

be solved using the expected values of the parameters. So, in this section we

outline methods for solving, or approximately solving, the stochastic makespan

30

problem (3.1), which are more generally applicable. Our goal here is to give

an overview of available solution approaches, depending on the nature of the

distribution of ξ̃ = (ã, α̃, m̃), not to carry out a detailed computational study.

However, we do provide results that suggest our optimization model (3.1) is

numerically tractable on moderate- to large-sized networks. (Our test prob-

lems are reentrant lines with up to 75 buffers and 15 stations.)

First we note that for fixed ξ, hk(vk, ξ) = Qkamk

vk−Qkαmk
is convex in feasible

vk, and hence, so are MS(v, ξ) = maxk∈K hk(vk, ξ) and E
(
MS(v, ξ̃)

)
. This,

coupled with the fact that (3.1c) can be replaced by vk ≥ Sk ≡ ess sup{Qkα̃m̃k},
∀k ∈ K, means that (3.1) is a convex optimization problem. If Ω is finite

with a modest number of sample points and with probability mass function

pω = P(ξ̃ = ξ(ω)), ω ∈ Ω, then we can solve (3.1) using a convex nonlinear pro-

gramming algorithm. One such algorithm is a variant of Kelley’s cutting-plane

method [26] that handles the nondifferentiability of our objective function that

arises from the “maxk∈K .” In stochastic programming, this algorithm is known

as the L-shaped method [36]. The algorithm iteratively solves a master pro-

gram whose size depends on the dimension of v and evaluates E
(
MS(v, ξ̃)

)

and its (sub)gradient at the master program solution. The algorithm scales

well with |Ω| because these latter computations separate for each ω ∈ Ω, and

hence, can be done quickly.

If ξ̃ has too many (possibly an infinite number of) realizations, we

cannot solve (3.1) exactly but approximation techniques can be employed. We

discuss two approximations: one based on Monte Carlo sampling and the other

31

on deterministically-valid bounds.

The Monte Carlo sampling approximation, in its simplest form, en-

tails generating independent and identically distributed (i.i.d.) observations

ξ̃1, . . . , ξ̃n from the distribution of ξ̃ and solving

min
v

1

n

n∑
i=1

max
k∈K

hk(vk, ξ̃
i) (3.3a)

s.t.
∑

k∈Cj

vk ≤ 1, ∀j ∈ J (3.3b)

vk ≥ Sk ∀k ∈ K. (3.3c)

Let v∗(n) denote the optimal solution and z∗(n) denote the optimal

objective function value of (3.3). Model (3.1) has a convex objective function

and a compact (and convex) feasible region. As a result, with probability one:

z∗(n) → z∗, where z∗ is the optimal value of (3.1), and all limit points of

{v∗(n)} solve (3.1). See the recent review in [34] for these consistency results

and other asymptotic properties of the Monte Carlo method. Of course, from

the perspective of numerically solving model (3.3), we may again exploit its

structure with application of the cutting-plane method described above.

Our second approximation method applies to the special cases of the

stochastic makespan problem, when only one set of the stochastic parameters

(either a, α or m) is random or when these three random vectors are inde-

pendent. This approach uses deterministically-valid bounds on the objective

function which exploit the convexity of MS(v, ·) with respect to the stochas-

32

tic parameters. Hence, to employ the bounds, we shall first prove that the

objective function is convex with respect to the stochastic parameters.

Theorem 3.3.1. Let v be a feasible allocation satisfying (3.3b) and (3.3c).

Then MS(v, ·, α,m), MS(v, a, ·,m) and MS(v, a, α, ·) are convex functions

on the convex hull of the stochastic parameters’ support.

Proof. It suffices to show hk(vk, ·, α, m), hk(vk, a, ·, m) and hk(vk, a, α, ·) are

convex because in each case, MS is then the maximum of a finite collection of

convex functions, and hence is convex.

Case 1: hk(vk, ·, α,m) is a linear function and thus convex.

Case 2: hk(vk, a, ·,m) is the composition of a convex, increasing func-

tion, f(x) = Qkamk

vk−x
, with a linear function, and is therefore convex.

Case 3: Let f(mk) = Qkamk

vk−Qkαmk
. The second derivative of f is:

d2f(mk)

dm2
k

=
QkaQkαvk

(vk −Qkαmk)3
.

Convexity of f , and hence hk(vk, a, α, ·), again follows as vk is feasible.

Let f : <d → < be a convex function and ξ̃ be a random d-vector.

Jensen’s inequality provides a well-known lower bound on Ef(ξ̃), i.e., Ef(ξ̃) ≥
f(Eξ̃). When ξ̃ has bounded support, a class of upper bounds on Ef(ξ̃) is

provided by the Edmundson-Madansky (EM) inequality. Madansky [29] and

Frauendorfer [16] develop this bound in the respective cases when the com-

ponents of ξ̃ are independent and dependent, assuming that ξ̃’s support is

33

(contained in) a hyper-rectangle. These results have been extended to simpli-

cial and general polyhedral domains [14, 18]. We represent an EM bound via

Ef(ξ̃) ≤ Ef(ξ̃EM), where ξ̃EM is a random vector taking values only at the ex-

treme points of ξ̃’s support. So, if the domain is a hyper-rectangle, computing

Ef(ξ̃EM) requires 2d evaluations of f but that number is d + 1 for a simplicial

domain.

Theorem 3.3.1 allows us to apply the bounds of Jensen and Edmundson-

Madansky to the following important special cases of the stochastic makespan

problem.

Corollary 3.3.1. Let MS(v, ξ) denote the makespan function. If only one set

of the stochastic parameters (either a, α or m) is random or if the subvectors

ã, α̃ and m̃ of ξ̃ = (ã, α̃, m̃) are mutually independent then

MS(v,Eξ̃) ≤ E
(
MS(v, ξ̃)

)
≤ E

(
MS(v, ξ̃EM)

)
. (3.4)

Assuming ξ̃ satisfies the hypothesis of Corollary 3.3.1, we can solve

the makespan problem under the single scenario Eξ̃ to obtain allocation vEV

and optimal value z = MS(vEV ,Eξ̃) ≤ z∗ ≡ minv E
(
MS(v, ξ̃)

)
. Carrying

out this optimization over the feasible region of (3.3b)-(3.3c) ensures vEV

is feasible to the stochastic makespan problem. Then, we compute z̄ =

E
(
MS(vEV , ξ̃EM)

)
≥ E

(
MS(vEV , ξ̃)

)
≥ z∗. If z̄ − z is sufficiently small

then vEV is a high quality approximate solution to the stochastic makespan

problem. Otherwise, the Jensen and Edmundson-Madansky bounds can be

34

tightened by applying them in conditional fashion to a partition of ξ̃’s sup-

port. In this way, the lower and upper bounds of (3.4) allow us to employ a

bounding-and-approximation scheme to (approximately) solve the stochastic

makespan problem.

We apply our two approximation schemes to four test problems, which

are reentrant lines with buffer-station combinations of 10-5, 25-5, 50-10 and

75-15. In the “10-5” test problem, fluid makes two left-to-right passes through

the 5 stations, while in the other three problems the fluid makes 5 such passes.

Parameters a and m are deterministic. The incoming rates are zero except

at the first buffer of the first station, and α̃1 is assumed to be a continuous

uniform random variable on (0, αmax
1). In the 75-15 model, for example, we

form a random test problem by selecting 75 mk values uniformly from [0, 1]

and we similarly select 75 ak values from the discrete uniform on {1, . . . , 10}.
The value of αmax

1 is then selected so that the usual traffic conditions hold

strictly.

We apply the Jensen and Edmundson-Madansky bounds conditionally

to a partition of (0, αmax) with n=10,000 equally-sized cells. We compute

the associated Jensen bound by solving the stochastic makespan problem with

10,000 realizations, i.e., conditional expectations on the 10,000 cells, using

the cutting-plane method described above. Doing so, yields z and a solution

v∗(n). We then evaluate the Edmundson-Madansky upper bound, z̄, at v∗(n),

which requires 10, 001 function evaluations of MS(v∗(n), ·). For the four test

problems, the associated percentage gap, 100·(z̄−z)/z is listed in Table 3.1. By

35

Buffers-Stations EM-J
10-5 0.0000
25-5 0.0420
50-10 0.0004
75-15 0.0046

Table 3.1: Gap between the Edmundson-Madansky and Jensen bounds for
reentrant lines of different sizes for 10,000 partitions

increasing the number of cells n we can ensure that the conditional Jensen and

Edmundson-Madansky bounds, as well as the solutions v∗(n), converge to their

counterparts for problem (3.1). Development of this sequential approximation

method using the Jensen and EM bounds begins with Huang, Ziemba and

Ben-Tal [22], and adaptive schemes for forming the cell-based partition of the

support are described, e.g., by [10, 15, 17, 25].

Table 3.2 shows the computation time required to solve instances of

model (3.3) for n=10,000 i.i.d. observations of α̃ to varying levels of precision,

again using the cutting-plane algorithm. The reported CPU times (in seconds)

are on a 1.8 GHz, Pentium Xeon dual-processor machine with 1 GB of memory.

At each iteration the algorithm produces upper and lower bounds z̄∗(n) and

z∗(n) on z∗(n), the optimal value of model (3.3). The cutting-plane algorithm

terminates when (z̄∗(n)− z∗(n))/z∗(n) ≤ ε. The coefficient of variation of the

sample mean objective function of the 75-15 test problem, with v = v∗(n) and

n=10,000, is roughly 10−5 meaning that there is little point in solving model

(3.3) for more precise values of ε.

We note that the computation times for the Jensen lower-bound with

36

Table 3.2: Computation times (seconds) for reentrant lines of different sizes
for 10,000 sample points
Buf-Stat ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

10-5 2 2 3 4 4 5
25-5 22 30 60 213 411 518
50-10 89 141 334 1469 4263 5331
75-15 208 861 1877 3210 6967 11212

10,000 cells are essentially the same as those reported in Table 3.2. These

computations indicate that it is possible to solve the stochastic makespan

problem for large networks with a desirable level of accuracy in reasonable

time.

37

Chapter 4

Stochastic Makespan Problem with Recourse

Action

In this chapter, we consider the stochastic makespan problem when the

decision-maker can take a recourse action. The decision-maker has to decide

on the percentage of effort that will be allocated to each buffer served at

each station without prior knowledge of the system parameters. It is assumed

that the decision-maker only has distributional knowledge at this initial phase.

After these allocations are set, the system starts running. After the system has

operated for sometime, T̃ , the randomness is revealed, i.e., the decision-maker

learns the parameters and changes the allocations based on this knowledge.

The time at which the randomness is revealed (T̃) can be random, and models

the lead time it takes us to adapt the system design, i.e., modify the allocation

of effort at each station. The decision-making structure is shown in Figure 4.1.

For a particular realization of the random parameters and allocation

vector, there are two possible cases. In the first case, the system is drained by

time T̃ , and hence, no recourse action is needed. In the second case, there is

fluid present in some of the buffers at time T̃ , and the decision-maker takes a

recourse action.

38

0
@@ ¡¡

??
-

Initial allocations v’s

the realization of the parameters

Parameters are known deterministicallyParameters are random

Allocations are updated now knowing

are selected

T̃
@@

Figure 4.1: The timeline for making decisions

For the first case, for a given realization ω and a given initial alloca-

tion vector v, the system is drained by time T (ω) and the decision-maker

does not have any chance to take a recourse action. Hence, for ξ(ω) =

(a(ω), α(ω),m(ω), T (ω)) and v, we treat the problem as in the no-recourse

case and calculate the makespan using the function

f1(v, ξ(ω)) = max
k∈K

{
Qka(ω)mk(ω)

[vk −Qkα(ω)mk(ω)]+

}
. (4.1)

The characterization of the makespan in the case that system is not

drained by time T̃ is somewhat more complicated. After the parameters are

revealed at time T̃ , the decision-maker can utilize Theorem 2.2.1 to minimize

the makespan for the remaining workload. Hence, the determination of the

remaining workload at time T̃ plays a major role in the optimization process.

Given a particular realization ω and initial allocations v, (4.2) characterizes

the workload at time T (ω) and calculates the makespan in the case the sys-

tem drains after time T (ω). Dependence on ω is suppressed to simplify the

39

notation:

f2(v, ξ) = min
x

max
j∈J

{∑
k∈Cj

Qk(a + αT)mk − xkmk

1−∑
k∈Cj

Qkαmk

}
+ T (4.2a)

mkxk ≤ vkT, ∀k ∈ K (4.2b)

xk ≤ ak + αkT +
∑

l∈K

plkxl, ∀k ∈ K. (4.2c)

In model (4.2), xk is the actual amount of fluid drained from buffer k by

time T (ω). The first term in the objective function is the optimal draining time

after time T (ω), obtained by applying Theorem 2.2.1 to the remaining inven-

tory. To find the overall draining time, we add T (ω). The constraints (4.2b)

ensures that the actual rate the workload is drained from buffer k does not

exceed the allocated capacity. If fluid is not present in buffer k, then the allo-

cated capacity for that buffer will not be fully utilized, and constraints (4.2c)

handle this issue. The right-hand sides of these constraints are the amount

of workload that buffer k can work on from time 0 to T (ω). Notice that the

elements of the |K|-dimensional vector (a(ω)+α(ω)T (ω)+(I−P ′)xT (ω)) are

the amount of fluid in each buffer at time T (ω). Multiplying appropriately by

Qk and mk(ω), and doing the necessary cancelations we obtain (4.2a).

The objective function in (4.2a) is a piecewise linear convex function in

x. We use a standard trick to convert (4.2) to a linear program. By replacing

40

the objective function with an auxiliary variable θ, we obtain:

f2(v, ξ) = min
θ,x

θ (4.3a)

mkxk ≤ vkT, ∀k ∈ K(4.3b)

xk ≤ ak + αkT +
∑

l∈K

plkxl, ∀k ∈ K (4.3c)

θ ≥
∑

k∈Cj
Qk(a + αT)mk − xkmk

1−∑
k∈Cj

Qkαmk

+ T, ∀j ∈ J. (4.3d)

As a result of (4.3c) the first term on the right hand side of (4.3d)

cannot be less than 0. We can conclude that f2(v, ξ(ω)) ≥ T (ω) for all v and ω.

Hence, when the system is drained before time T (ω), f1(v, ξ(ω)) ≤ f2(v, ξ(ω)).

Using Theorem 2.2.1, we can conclude that f1(v, ξ(ω)) ≥ f2(v, ξ(ω)) when the

system cannot be drained before T (ω). Therefore, for the general case when

we do not know the system is drained whether before recourse point, we can

write the makespan function as follows:

MS(v, ξ(ω)) = min {f1(v, ξ(ω)), f2(v, ξ(ω))} . (4.4)

Our goal in this chapter is to minimize the expected value of (4.4). In

this setting, we can allow the accumulation of fluid in some buffers for some

time, i.e., we do not require that incoming fluid be immediately drained until

the time of the recourse action. Hence, we do not have a lower bound for

the initial allocations (as in (2.9c)) and instead simply have nonnegativity

constraints. Summarizing the developments above, we obtain the following

41

formulation for the stochastic makespan problem with recourse:

min
v

E
(
MS(v, ξ̃)

)
(4.5a)

s.t.
∑

k∈Cj

vk ≤ 1, ∀j ∈ J (4.5b)

vk ≥ 0, ∀k ∈ K. (4.5c)

From Chapter 3, we know that f1(v, ξ) is convex in v for a fixed ξ. Since

v is a parameter appearing on the right-hand side of the constraints (4.3b),

f2(v, ξ) is also convex in v when ξ is fixed. However, MS(v, ξ) is the minimum

of two convex functions and is not, in general, convex. Hence, conventional

methods of convex programming cannot be used directly to solve (4.5). So, we

seek to exploit special structure in (4.4) to devise an algorithm to solve (4.5).

4.1 Solution Methodology

In this section, we develop a branch-and-bound method to solve model

(4.5), i.e., the stochastic makespan problem with recourse. Norkin et al. [30]

develop a general branch-and-bound algorithm for non-convex stochastic pro-

grams. We borrow some ideas from [30] and use the special structure of our

problem wherever possible.

The idea behind our branch-and-bound algorithm is to partition the

feasible region, so that within each partition the makespan function is convex

for all realizations of the random parameters. For this purpose, we need a

function LB(v, ξ) that is convex with respect to v and acts as a lower bound

42

for the original makespan function. Each node of the branch-and-bound tree,

corresponds to a subset of the feasible region. If we minimize the expected

value of LB(v, ξ̃) on this subset, we obtain a lower bound for the optimal

expected makespan on this subset and a feasible allocation. This feasible

allocation can be used to find an upper bound for the overall optimal expected

makespan. Also, the function LB(v, ξ) will be devised in such a way that

if MS(v, ξ) is convex on a node, i.e., on the subset of feasible allocations

corresponding to the node, LB(·, ξ) will be exactly equal to the MS(·, ξ) on

that node. In the following section, we first introduce a stochastic convex

optimization problem which has these properties. Then, we discuss the ways

to partition the feasible region.

4.1.1 A Lower Bound for the Recourse Problem

In this section, we develop a convex program whose optimal value is

a lower bound on the optimal value of model (4.5). For this purpose, we

first define a critical allocation level for each buffer and scenario. For a given

scenario ω and a buffer k, the critical allocation level is defined as the allocation

that drains the system exactly at time T (ω), if all the workload for buffer k

in the system is present in the buffer at time 0. Hence, the critical allocation

level is

vc
k(ω) =

Qka(ω)mk(ω)

T (ω)
+ Qkα(ω)mk(ω). (4.6)

The following lemma gives a non-convex lower bounding function for the

makespan function given in (4.4). We will use this lemma as a stepping stone

43

to derive a convex lower bounding function.

Lemma 4.1.1. Let vc
k be as defined in (4.6) and

Mk(ω) = Qka(ω)mk(ω) + Qkα(ω)mk(ω)T (ω).

Define

LB1
k(vk, ξ(ω)) =





Qka(ω)mk(ω)

vk −Qkα(ω)mk(ω)
if vk ≥ vc

k(ω)

Mk(ω)− vkT (ω)

1−∑
l∈Cσk

Qlα(ω)ml(ω)
+ T (ω) if vk < vc

k(ω)
. (4.7)

Then

LB1(v, ξ(ω)) = max
k∈K

{
LB1

k(vk, ξ(ω))
}

(4.8)

is a lower bound for function MS(v, ξ(ω)) given in (4.4).

Proof. We will prove that each LB1
k is a lower bound for the draining time of

buffer k. We consider three cases.

Case 1: vk ≥ vc
k(ξ(ω)) and the system drains before time T (ω). The

function value is

LB1
k(vk, ξ(ω)) =

Qka(ω)mk(ω)

vk −Qkα(ω)mk(ω)
,

and MS(v, ξ(ω)) is the maximum of these functions over all buffers. Hence

LB1(v, ξ(ω)) = MS(v, ξ(ω)).

Case 2: vk ≥ vc
k(ξ(ω)) and the system drains after time T (ω). Then,

MS(v, ξ(ω)) ≥ T (ω). Since, vk ≥ vc
k(ξ(ω)), we know that LB1

k(vk, ξ(ω)) ≤
T (ω) ≤ MS(v, ξ(ω)).

44

Case 3: vk < vc
k(ξ(ω)) and the system drains after time T (ω). In this

case,

LB1
k(vk, ξ(ω)) =

Mk(ω)− vkT (ω)

1−∑
l∈Cσk

Qlα(ω)ml(ω)
+ T (ω).

Let x∗(ω) be the optimal solution of (4.2) for scenario ω. Using (4.2b), it is

easy to see

LB1
k(vk, ξ(ω)) ≤ Mk(ω)− x∗k(ω)mk(ω)

1−∑
l∈Cσk

Qlα(ω)ml(ω)
+ T (ω)

≤
∑

l∈Cσk
Ml(ω)− x∗l (ω)ml(ω)

1−∑
l∈Cσk

Qlα(ω)ml(ω)
+ T (ω).

To see why the second inequality holds, we move all the xl’s to left-hand side

of (4.2c), and obtain the constraints (4.2c) in matrix form as

(I − P ′)x ≤ a(ω) + α(ω)T (ω).

Multiplying both sides with Q, we see that the numerator in the first inequality

is non-negative for all k ∈ K. Then we conclude that the second inequality

holds, since all the summands are non-negative. The arguments above show

that LB1
k(vk, ξ(ω)) is a lower bound for MS(v, ξ(ω)) for each k. Taking the

maximum over all k ∈ K, we obtain the desired result.

If we are guaranteed to drain the system after time T (ω) for any feasible

allocation, we only need to consider f2(v, ξ(ω)). Hence, the function is convex

in v and there is no need for a lower bounding function. The function is

similarly convex when the system is guaranteed to drain before time T (ω).

We only require the lower bounding function for scenarios ω for which whether

45

the system drains before T (ω) depends on the feasible allocation v. When the

scenario ω is fixed, function LB1
k(vk, ξ(ω)) is a univariate function in vk and

is piecewise convex, but of course, is non-convex. The function LB1
k(vk, ξ(ω))

is convex in vk when its derivative with respect to vk is increasing, i.e., either

vc
k(ω) > 1 or

− Qka(ω)mk(ω)

(vc
k −Qkα(ω)mk(ω))2

≥ − T (ω)

1−∑
l∈Cσk

Qlα(ω)ml(ω)
.

Substituting vc
k’s definition in the above inequality, its definition from equation

(4.6), we obtain the following equivalent condition:

T (ω)(1−
∑

l∈Cσk

Qlα(ω)ml(ω)) ≤ Qka(ω)mk(ω). (4.9)

To be able to drain the system, the incoming workload should be drained as

soon as it arrives in order to prevent accumulation of fluid in the system. The

term in parenthesis on the left-hand side of equation (4.9) is the effort available

to drain the initial workload at station σk. Either of these conditions, (4.9)

and the condition vc
k(ω) > 1, means that the station cannot be drained before

time T (ω). Hence, we can conclude that the function LB1
k(vk, ξ(ω)) can be

convex only when the station cannot be drained before time T (ω).

The above argument shows that the function LB1(v, ξ(ω)) is non-

convex when the original makespan function is non-convex on the feasible

region. However, by using the structure of LB1
k(vk, ξ(ω)), it is possible to

construct a convex lower bound. Figure 4.2 demonstrates an example of

LB1
k(·, ξ(ω)).

46

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

14

16

18

20

v
c

k v

LB
1

k

Figure 4.2: An instance of the non-convex lower bound function LB1
k(·, ξ)

47

Any feasible allocation in model (4.5), v, clearly lies in the hypercube

[0, 1]|K|. The proposed branch-and-bound algorithm partitions this hypercube

into smaller hypercubes on which the original makespan function is convex.

Hence, at every node of the branch-and-bound algorithm, we only consider

allocations in the hypercube of the form:

Γ = [vL
1 , vU

1]× · · · × [vL
|K|, v

U
|K|]. (4.10)

If for scenario ω, the system drains after time T (ω) for every allocation

in Γ, we will simply use function f2(v, ξ(ω)). In the same manner, if for a

scenario ω, the system drains before time T (ω) on Γ, we will use function

f1(v, ξ(ω)). However, when the system drains before T (ω) for some v ∈ Γ and

after T (ω) for other v ∈ Γ, we require a convex function to serve as a lower

bound for the makespan on Γ. To achieve this, we consider each LB1
k(v, ξ(ω)),

and find the equation of the line which is tangent to f1(v, ξ(ω)) at some v̄k > vc
k

and passes through the point (vL
k , LB1

k(v, ξ(ω))). Then, the function which

takes the value on this line for each vk < v̄k and takes the value Qka(ω)mk(ω)
vk−Qkα(ω)mk(ω)

for vk ≥ v̄k will be our lower bound. Figure 4.3 illustrates this lower bound.

Now, we proceed with the derivation of the tangent line. At the tangent

point v̄k, the slope of the line equals the derivative of LB1
k((vk, ξ(ω)). Hence,

the tangent point v̄k satisfies the following equality

LB1
k((v̄k, ξ(ω))− LB1

k((v
L
k , ξ(ω))

v̄k − vL
k

= − Qka(ω)mk(ω)

(v̄k −Qkα(ω)mk(ω))2
.

48

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

22
LB

2

k

v

Figure 4.3: An instance of a convex lower bound function

49

Suppressing the ω’s in the notation and solving this equation for v̄k, we obtain

v̄k =
Qkamk + [(Qkamk)

2 + QkamkLB1
k(v

L
k , ξ)(Qkαmk − vL

k)]1/2

LB1
k(v

L
k , ξ)

+ Qkαmk.

(4.11)

Since LB1
k(v

L
k , ξ(ω)) < T (ω), we know that v̄k > vc

k. We are now ready to

state the following lemma.

Lemma 4.1.2. Let Γ be defined as in (4.10) and v̄k be as in (4.11) and assume

that (4.9) holds. Define

LB2
k(v, ξ(ω)) =





Qka(ω)mk(ω)

vk −Qkα(ω)mk(ω)
if vk ≥ v̄k(ω)

− Qka(ω)mk(ω)

(v̄k −Qkα(ω)mk(ω))2
(v − vL

k) + LB1
k(v

L
k , ξ(ω))

if vk < v̄k(ω).

(4.12)

Then

LB2(v, ξ(ω)) = max
k∈K

{
LB2

k(vk, ξ(ω))
}

(4.13)

is a lower bound for function MS(v, ξ(ω)) given in (4.4) on the hypercube Γ.

Also, LB2(v, ξ(ω)) is convex in v.

Proof. The fact that LB2
k(vk, ξ(ω)) ≤ LB1

k(vk, ξ(ω)) is apparent from the

above construction. Taking the maximum over k ∈ K on both sides we see that

LB2(v, ξ(ω)) ≤ LB1(v, ξ(ω)); hence, it is also a lower bound for MS(v, ξ(ω)).

To prove convexity, we observe that the derivative of LB2
k(vk, ξ(ω)) with

respect to vk is increasing in vk. Hence, LB2
k(vk, ξ(ω)) is convex in vk. Taking

the maximum over all k ∈ K preserves convexity.

50

Having derived a convex lower bound, we have the necessary tools to develop

a branch-and-bound algorithm.

4.1.2 The Branch-and-Bound Algorithm

In our branch-and-bound algorithm, the purpose is to divide the feasible

set into a finite number of subsets so that E(MS(v, ξ̃)) is convex in each of

these subsets. Then, it is possible to employ convex programming algorithms

on each of these subsets to find the local optimum. After all local optima are

found, the one with the smallest expected makespan yields the global optimum.

Key to such an algorithm is the ability to demonstrate that certain subsets

cannot contain the optimal solution. This can be ascertained using our lower

bounds, which we further develop below, coupled with an incumbent feasible

solution, i.e., the feasible solution with the best value of E(MS(v, ξ̃)) obtained

so far.To eliminate a hypercube from consideration it suffices to show the

minimum value of the lower bound on the hypercube is at least that of the

smallest upper bound found over all hypercubes. Finding an upper bound is

the easier task, since any allocation v̂ that satisfies the constraints (4.5b) and

(4.5c) is suboptimal. Hence, E(MS(v̂, ξ̃)) will yield an upper bound for the

optimal expected makespan.

To find a lower bound for the optimal expected makespan, we make use

of the lower bound in Lemma 4.1.2. Let Γ be as defined in (4.10). We classify

scenario ω as Type 1 on the hypercube Γ if

Qka(ω)mk(ω)

vL
k −Qkα(ω)mk(ω)

≤ T (ω), ∀k ∈ K. (4.14)

51

This condition states that even if we allocate the least effort possible

on Γ to all buffers, all the buffers will still drain by time T (ω). Thus, for any

feasible allocation v ∈ Γ, the system will be drained before time T (ω). In the

same manner, we classify scenario ω as Type 2 on the hypercube Γ, if there

exists a buffer k′ ∈ K such that

Qk′a(ω)mk′(ω)

vU
k′ −Qk′α(ω)mk′(ω)

> T (ω). (4.15)

Hence, for scenario ω there is no feasible allocation v ∈ Γ that drains the buffer

k′ before time T (ω). If neither of these conditions hold for scenario ω, then

we say that ω is Type 0 on Γ. We are now ready to state the convex lower

bounding function that will be used in our branch-and-bound algorithm.

Theorem 4.1.3. Let LB(v, ξ(ω)) : Γ → R and

LB(v, ξ(ω)) =





LB2(v, ξ(ω)) if ω is Type 0 on Γ
f1(v, ξ(ω)) if ω is Type 1 on Γ
f2(v, ξ(ω)) if ω is Type 2 on Γ

. (4.16)

Then, E(LB(v, ξ̃)) ≤ E(MS(v, ξ̃)) for all v ∈ Γ and E(LB(v, ξ̃)) is convex on

Γ.

Proof. We consider each scenario ω ∈ Ω separately. It directly follows from

Lemma 4.1.2 that if scenario ω is of Type 0 on Γ then LB2(v, ξ(ω)) is a lower

bound for MS(v, ξ(ω)). If scenario ω is Type 1 on Γ, then

f1(v, ξ(ω)) ≤ T (ω) ≤ f2(v, ξ(ω)).

Hence, from its definition, we conclude MS(v, ξ(ω)) = f1(v, ξ(ω)).

52

Now suppose, a scenario ω is of Type 2 and there exists a v ∈ Γ such

that MS(v, ξ(ω)) < f2(v, ξ(ω)). However, f2(v, ξ(ω)) uses Theorem 2.2.1 to

drain the remaining workload at time T (ω). Hence, if the system is not drained

by time T (ω) using allocation vector v, it is not possible to drain the remaining

workload in less than f2(v, ξ(ω))− T (ω) time units.

We have proven that if v ∈ Γ, LB(v, ξ(ω)) ≤ MS(v, ξ(ω)) for all ω ∈ Ω,

hence E(LB(v, ξ̃)) ≤ MS(v, ξ̃). In the same manner, LB(v, ξ(ω)) is convex on

Γ for all ω ∈ Ω. Since, expectation preserves convexity the result follows.

Above we introduced a way to classify scenarios. If all scenarios are

classified as either Type 1 or Type 2 on a hypercube Γ, the lower bound is

exactly equal to the expected makespan on Γ. Hence, when we are branching,

the goal will be to decrease the number of scenarios that are classified as Type

0. If (4.15) holds for any buffer that is enough to characterize the scenario

as Type 2 on the corresponding hypercube. However, to be able to classify a

scenario as Type 1, (4.14) must be satisfied for all buffers in the system. Hence,

there will be cases, where (4.14) is satisfied for some buffers, but the scenario is

still classified as Type 0. If this is true for scenario ω, it is impossible to classify

the scenario as Type 1 or Type 2 by branching on an allocation corresponding

to a buffer that already satisfies (4.14). This suggests that in designing the

algorithm, it will be beneficial to keep track of whether a buffer satisfies (4.14)

for a specific scenario.

We say that a scenario-buffer pair (ω, k) is classified as Type 1, if (4.14)

53

is satisfied for that k. The definition of Type 2 is unchanged, i.e., a scenario-

buffer pair (ω, k) is classified as Type 2, if for 2 if for ω, (4.15) holds for any

buffer k′ ∈ K. For all other cases, the pair is classified as Type 0.

One of the key issues in the branch-and-bound algorithm is how to

choose the branching variable. A natural way to choose the branching variable

is to choose k′ ∈ K which has the highest number of scenarios (ω, k′) classified

as Type 0. Once a buffer k is chosen as the branching variable, then the

problem is to find the branching value, i.e., the value in [vL
k , vU

k] at which the

hypercube is split into two. A natural candidate is the midpoint of the interval,

but this is a naive method and ignores the structural properties of the objective

function. Analyzing (4.14) and (4.15), we can see that a scenario-buffer pair

(ω, k) is classified as Type 0 on Γ, if and only if

vL
k < vc

k(ω) < vU
k .

Hence, we can use vc
k(ω) to determine the value at which we split the hyper-

cube. Possible candidates for the branching value are the expected value and

median of vc
k.

To evaluate E(LB(v, ξ̃)), we need to consider each scenario separately.

Because of the computational issues, we assume that the random vector ξ̃ has

finite support in the remainder of this section. Now, we have the tools to

construct the branch-and-bound algorithm.

Input. The network structure (P , Cj for all j ∈ J), distributions of

parameters a, α, m and T , the tolerance level ε

54

Output. An ε-optimal allocation vector

Step 0: Initialization. Set initial partition as Γ1 = [0, 1]|K| and the

upper bound as U = ∞. Set n = 1, where n represents the current node. The

current node has no children. Set δ = ε/2.

Step 1: Optimization. Define LB : Γn×Ξ → R via (4.16) and solve

the current optimization problem up to δ-optimality

min
v

E
(
LB(v, ξ̃)

)
(4.17a)

s.t.
∑

k∈Cj

vk ≤ 1, ∀j ∈ J (4.17b)

v ∈ Γn. (4.17c)

Find a δ-optimal solution v∗ and z∗ = E(LB(v∗, ξ̃)). If z∗ ≥ U − δ, then go to

Step 4. If E(MS(v∗, ξ̃)) < U , set U = E(MS(v∗, ξ̃)) and go to Step 2.

Step 2: Convexity Check. If there are still scenarios classified as

Type 0 on Γn, then go to Step 3 otherwise go to Step 4.

Step 3: Branching. Choose as the branching variable a vk′ with the

largest number of (ω, k′) pairs classified as Type 0. Define vL
k′ = min{vk′|v ∈

Γn} and vU
k′ = max{vk′|v ∈ Γn}, and choose the branching value vB

k′n =

E(ṽc
k′ |vL

k′ < ṽc
k′ < vU

k′). Set n = n + 1 and form a child node to Node (n− 1) as

the nth node. Also set

Γn =
(
[0, 1]× · · · × [vL

k′ , v
B
k′n]× · · · × [0, 1]

) ∩ Γn−1.

Go to Step 1.

55

Step 4: Fathoming. Trace the parent nodes of current node n back-

wards to find the first parent n′ who has only one child. If there are no parents

who have only one child go to Step 5. Otherwise, update n = n + 1 and form

a child node to Node n′ as the nth node in the algorithm. Also set

Γn =
(
[0, 1]× · · · × [vB

k′n′ , v
U
k′n′]× · · · × [0, 1]

) ∩ Γn′ .

Then go to Step 1.

Step 5: Stop. The expected makespan U and associated solution v∗

solve (4.5).

Each node of the branch-and-bound tree is fathomed either when the

solutions corresponding to the node is provably suboptimal or when we reach

a region where the original makespan is convex. When the original makespan

function is convex for a node, the LB(·, ·) function is exactly equal to MS(·, ·).
During the Optimization Step, we can employ any conventional convex nonlin-

ear programming algorithm to minimize the lower bounding function. Using

such a convex nonlinear programming algorithm, we can obtain a δ-optimal

solution over the current hypercube. Hence, we can conclude that the solu-

tion obtained via the branch-and-bound algorithm also yields an ε-optimal

expected makespan solution.

4.2 Computational Results

In this section, our goal is to assess the computational efficiency of the

branch-and-bound algorithm described in Section 4.1.2. The Optimization

56

Step uses a convex nonlinear programming algorithm to optimize the lower

bounding function at every node. As in Chapter 3, our choice will be Kelley’s

cutting-plane algorithm [26], which was briefly described in Section 3.3. This

choice is again due to the nondifferentiability of the objective function.

When we were stating the branch-and-bound algorithm, we assumed

that the support of the random variables is finite. When the support is large, or

infinite, we can employ approximation methods. In Section 3.3, we discussed

two approximation methods: one based on Monte Carlo sampling and the other

on deterministically-valid bounds. The deterministically valid bounds rely

on the objective function being convex in the random parameters. However,

when the recourse action is present, the makespan function is the minimum

of two functions, and this structure is destroyed, i.e., the objective function is

not convex in the random parameters. As a result, the deterministic bounds

stated in Section 3.3 are not valid for this chapter’s model. The Monte Carlo

sampling approximation is still valid and is used in this section.

As stated in Section 4.1.2, the convex nonlinear programming algo-

rithms yields solutions within a pre-specified tolerance level ε. Our first goal

is to test how the branch-and-bound method performs for difference tolerance

levels. To assess the effect of the tolerance level, we tested our algorithm on

a small reentrant line with 3 stations and 6 buffers. We assume that only one

of the parameter vectors is random, i.e., only one of a, α or m is random and

the recourse point T is deterministic. The random parameters are assumed to

be independent and follow a uniform distribution. The data used for the net-

57

works in this section is given in Appendix 1. The distribution is approximated

via samples of size 50, 100, 150, 200 and 250. The solution times are given in

Tables 4.1, 4.2 and 4.3.

Table 4.1: Computation times (seconds) for a reentrant line of 3 stations and
6 buffers for different tolerance levels and sample sizes when initial inventory
is random

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

50 10.6004 27.5448 28.0687 30.5324
100 46.4159 30.6823 31.3922 31.5492
150 75.8055 129.831 120.461 135.069
200 155.91 176.548 173.926 152.212
250 27.2749 238.296 322.213 353.508

Table 4.2: Computation times (seconds) for a reentrant line of 3 stations and
6 buffers for different tolerance levels and sample sizes when incoming rate is
random

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

50 37.8702 20.2529 17.9763 21.7027
100 76.1194 98.467 103.926 110.06
150 92.195 84.1242 98.1491 102.502
200 247.202 155.016 171.513 199.091
250 353.166 155.969 198.47 213.705

Decreasing the tolerance level ε, increases the solution time of the con-

vex programs at each node. Since a convex program is solved at every node,

one expects that the solution time of the branch-and-bound algorithm to in-

crease as the tolerance level decreases. However, the computational studies

58

Table 4.3: Computation times (seconds) for a reentrant line of 3 stations and
6 buffers for different tolerance levels and sample sizes when service time is
random

N ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5

50 12.3261 25.8141 19.732 26.62
100 52.529 47.3468 53.7988 51.3362
150 167.924 73.2819 99.8648 114.357
200 207.431 113.083 116.658 121.473
250 73.4038 75.1056 93.5528 125.167

show that this is not always the case. This situation is due to the fathoming

scheme. A node is fathomed if the lower bound for the node is greater than

the upper bound for the optimal expected makespan. Decreasing the tolerance

level yields stronger lower bounds at each node. Since the lower bounds in-

crease, some nodes are fathomed earlier for tighter tolerance levels. In return,

we have to solve less convex programs in the branch-and-bound algorithm,

which decreases the overall computation time.

Another observation is that the solution time does not always increase

with the sample size. Increasing the sample size results in more function

evaluations in the algorithm, especially during the optimization of the convex

lower bounds. Also the number of nodes is expected to increase as sample size

increases. On the contrary, we see that sometimes increasing the sample size

yields lower solution times. For example, in Table 4.3, for ε = 10−2 when there

are 200 sample points the solution time is 207 seconds. When we add 50 more

samples and solve a 250-scenario problem, we see that solution time decreases

59

to 73 seconds. A detailed investigation on the algorithm shows that adding

samples changes the branching variables and branching points considerably.

As a result, some nodes are fathomed earlier than the 200 scenario problem,

which decreases the solution time.

Summarizing our observations from Tables 4.1, 4.2 and 4.3, we see that

a small problem (3 stations and 6 buffers) can be solved accurately (ε = 10−2)

for moderate sample sizes (N = 250) around 5 minutes. Where we observe

randomness plays a minor role in the solution time, i.e., solution times for

random a, random α and random m are similar.

Another important issue that affects the solution time is the network

size. Increasing the number of buffers increases the number of decision vari-

ables as well as the dimension of the parameters and also is expected to increase

the number of nodes in the branch-and-bound tree. Increasing the number of

stations increases the number of constraints at convex programs. Next, we test

our branch-and-bound algorithm on networks of different sizes. The problem

instances are solved to two significant digits, i.e., ε = 10−2.

In Tables 4.4, 4.5 and 4.6, we see that solution times increases consid-

erably as we increase the size of the network. Above 20 buffers it becomes

more difficult to solve problem instances. We see that when a is random and

there are 250 scenarios the computation time is around 6 hours. Examining

Tables 4.5 and 4.6 with random α and m, we see that this is the worst of the

running times, but it is indicative of what can occur when using a branch-and-

bound algorithm, in the worst case.

60

Table 4.4: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when initial inventory is random

N 3− 6 2− 10 5− 10 5− 20
50 10.6004 74.8656 67.4078 1635.19
100 46.4159 157.38 62.1476 8965.37
150 75.8055 426.364 167.543 13157.4
200 155.91 734.503 623.919 15966.7
250 27.2749 1270.94 781.97 23248.6

Table 4.5: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when incoming rate is random

N 3− 6 2− 10 5− 10 5− 20
50 23.7174 260.696 58.0852 555.112
100 124.95 443.785 135.74 1171.36
150 126.922 675.5 393.916 1663.09
200 188.854 865.401 611.809 2401.31
250 223.39 987.836 1171.01 3096.04

On the other hand, contrary to our intuition, we see that often the

network with 5 stations and 10 buffers had a lower computation time than

the network with 2 stations and 10 buffers. After a detailed investigation of

the results, we see that having more buffers in a station enables us to classify

scenarios earlier. This results in less nodes being evaluated in the algorithm.

Up to this point, we have assumed that at each node of the branch-

and-bound tree, the convex programs are solved from scratch. Since solving

convex programs plays a major role in the computational effort of our branch-

61

Table 4.6: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when service time is random

N 3− 6 2− 10 5− 10 5− 20
50 23.0645 111.458 39.613 1361.35
100 56.8144 265.246 335.865 4821.12
150 104.413 540.05 3961.58 7850.28
200 128.519 641.598 277.167 11319.1
250 115.568 641.761 854.698 8116.25

and-bound algorithm, we can speed up the algorithm considerably if we solve

these convex programs more quickly. The following lemma allows us to use

Kelley’s cutting-plane more efficiently in the branch-and-bound algorithm.

Lemma 4.2.1. Let node n be a child node of node m and let LB[n](v, ξ) be

the lower bounding function used at node n. Then for any scenario ω ∈ Ω

LB[n](v, ξ(ω)) ≥ LB[m](v, ξ(ω)),∀v ∈ Γn.

Proof. If ω is of the same type for both nodes, then it is obvious that

LB[n](v, ξ(ω)) = LB[m](v, ξ(ω))

for all v ∈ Γn. If ω is not of the same type for both nodes, it is classified as

Type 0 for node m and it is classified as either Type 1 or Type 2 for node n.

Since Γn ⊂ Γm, Lemma 4.1.2 states that

LB2(v, ξ(ω)) ≤ min{f1(v, ξ(ω)), f2(v, ξ(ω))}

62

for all v ∈ Γn. Hence, the result follows.

In Kelley’s cutting-plane algorithm, the cut generated at each iteration

acts as a lower bound for the objective function. Lemma 4.2.1 ensures us that

the cuts generated at a node m are valid for all the child nodes of m. This

enables us to solve convex programs for the child nodes more quickly.

Table 4.7: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when initial inventory is random and cuts are inherited

N 5− 10 5− 20 6− 30
50 17.1204 218.4 2091.62
100 21.1328 241.742 5090.24
150 43.0175 399.912 4284.79
200 94.2727 1052.86 10966
250 58.7151 583.529 5069.27

Table 4.8: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when incoming rate is random and cuts are inherited

N 5− 10 5− 20 6− 30
50 18.0743 201.916 92.299
100 35.4076 241.668 415.785
150 201.571 339.322 340.792
200 224.928 605.869 827.08
250 265.266 670.686 1024.18

Tables 4.7, 4.8 and 4.9 show the computational times when cuts are

inherited by the child nodes in this manner. Contrasting the first column

63

Table 4.9: Computation times (seconds) for different reentrant lines and dif-
ferent sample sizes when service time is random and cuts are inherited

N 5− 10 5− 20 6− 30
50 24.4583 221.131 167.993
100 37.1903 407.181 560.03
150 64.8281 425.445 1094.94
200 93.6928 452.09 2363.57
250 164.516 593.858 1389.18

of these tables with the values in Tables 4.4, 4.5 and 4.6, we see that it is

possible to speed the algorithm up to 15 times with inheriting the cuts. With

this scheme, we also see that it is possible to solve larger problems within

reasonable computational times. In the remainder of the chapter, the results

use the algorithm in which the child nodes inherit cuts from their parents.

As mentioned above, we have chosen T as indicated in Appendix 1. In

choosing T we have aimed to form challenging test problems, i.e., so that the

scenarios are classified by type as late as possible in the branch-and-bound

algorithm. We illustrate this by solving the 5-station 10-buffer reentrant line

with 250 scenarios for a range of values of T . By contrasting Table 4.10 with

the values in Tables 4.7, 4.8 and 4.9, we see that our choices of T ’s in the

above problems yield challenging problems.

Table 4.10 shows that as T grows the computation time tends to first

grow and then shrink. When T is small, most of the scenarios are classified

as Type 2 at the first node. Hence, as T increases the number of scenarios

64

Table 4.10: Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers and different recourse points

T a random α random m random
15 14.3438 1.41079 3.47147
30 13.289 3.54746 21.7917
45 37.0004 5.13222 28.0987
60 58.7151 4.96524 25.8681
75 42.8295 95.4895 110.106
90 45.1411 265.266 134.724
105 34.4248 61.3657 36.2235
120 25.7071 59.9199 115.285
135 14.4858 60.3638 66.9598
150 6.28904 52.9879 82.6174
165 17.9903 70.2073 59.5609
180 15.2397 42.0896 44.3843
195 3.51746 28.4457 28.2137
210 2.35264 51.1582 20.7628
225 5.96909 29.9764 20.2889

classified as Type 0 increases. As a result the algorithm needs more nodes to

find the region where original makespan is convex. However, for large T values,

the scenarios are classified as Type 1 at the initial node and the computation

time decreases.

So far, we have assume that the random parameters follow a uniform

distribution. We also test our algorithm to see how the distribution of the

parameters affects the computation time. For this purpose, we use a triangular

distribution with the same support as the uniform distribution used in the

previous computations. The network we use for this study is a reentrant line

65

with 5 stations and 20 buffers. We also assume that the recourse point T is

deterministic.

Table 4.11: Computation times (seconds) for a reentrant line with 5 stations
and 20 buffers when parameters follow a triangular distribution

N a random α random m random
50 101.69 130.212 196.087
100 404.148 182.937 230.03
150 296.082 247.545 209.707
200 428.516 322.18 312.224
250 265.279 379.978 239.652

Comparing Table 4.11 with the corresponding values in Tables 4.7, 4.8

and 4.9, we observe that the computation times tend to decrease when the pa-

rameters follow a triangular distribution. For uniform distribution, the sample

is more dispersed on the support. Hence, the critical allocations are also dis-

persed and the algorithm needs to branch more to find the regions where the

expected makespan is convex.

The branch-and-bound algorithm allows us to solve problems when the

recourse point T is random. So far, we have assumed that T is deterministic.

Now, we test our algorithm on a 5-station 10-buffer reentrant line when T

is random. We assume that only one parameter vector is random and the

parameters are independent and distributed uniformly. We use 250 random

points to assess the efficiency of the branch-and-bound algorithm.

Table 4.12 and Table 4.13 shows the computation times when T follows

66

Table 4.12: Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers when the recourse point T follows a uniform distribution

N a random α random m random
50 7.95679 36.7824 19.711
100 33.8699 44.6542 42.9465
150 10.9863 111.73 65.2011
200 66.6369 72.457 106.068
250 44.3863 296.025 110.398

Table 4.13: Computation times (seconds) for a reentrant line with 5 stations
and 10 buffers when the recourse point T follows a triangular distribution

N a random α random m random
50 11.8252 23.2425 24.4433
100 10.3304 40.5118 48.2157
150 23.9334 105.754 10.7014
200 33.179 116.123 96.2464
250 56.0165 59.492 95.4415

67

a uniform and a triangular distribution respectively. The computation times

are not so sensitive to the distribution of T . However, when the results are

compared with the results in Tables 4.7, 4.8 and 4.9, we generally see a decrease

in computation times when T is random. In constructing Tables 4.7, 4.8

and 4.9, the recourse points are chosen to be around the optimal expected

makespan. When we assume randomness, T deviates from these “worst-cases”

allowing us to observe smaller computation times.

68

Chapter 5

Special Cases

In Chapter 3, we discussed examples showing that the solution obtained

by using the expected values of the random parameters need not be optimal

for the stochastic makespan problem. In general, it is not possible to state

the solution of the stochastic problem analytically. That said, the purpose of

this section is to describe special cases where it is possible to characterize the

solution analytically.

5.1 Special Cases for Stochastic Makespan Problem with-
out Recourse

5.1.1 Deterministic Station

While the expected value solution does not, in general, solve the stochas-

tic problem, we can ask: If we have a stochastic fluid system, in which one

of the stations is “deterministic,” is it possible to say anything about the

solution? The following theorem answers this question.

Theorem 5.1.1. If j∗ ∈ J satisfies Qkaω1mω1
k = Qkaω2mω2

k ≡ βk and Qkαω1mω1
k =

Qkαω2mω2
k ≡ ρk, ∀ω1, ω2 ∈ Ω and ∀k ∈ Cj∗, then there is an optimal solution,

69

v∗, to the stochastic makespan problem with

v∗k =
βk − βk

∑
l∈Cj∗

ρl +
∑

l∈Cj∗
βlρk∑

l∈Cj∗
βl

, ∀k ∈ Cj∗ . (5.1)

Proof. We first note that v∗k, k ∈ Cj∗ , satisfies (3.1c) because (5.1)’s numerator

is positive by condition (a) of Theorem 3.2.1, and (3.1b) for j = j∗ holds since

∑

k∈Cj∗

v∗k =

∑
k∈Cj∗

βk − (
∑

k∈Cj∗
βk)(

∑
l∈Cj∗

ρl) + (
∑

l∈Cj∗
βl)(

∑
k∈Cj∗

ρk)∑
l∈Cj∗

βl

= 1.

Let hk(vk) denote the draining time of buffer k ∈ Cj∗ , i.e., the right-

hand side of equation (2.6). The draining time of the last buffer at station j∗ is

maxk∈Cj∗ hk(vk). Note that hk is a decreasing function over feasible allocations

and hk(vk) =

∑
l∈Cj∗ βl

1−∑
l∈Cj∗ ρl

, i.e., the draining time is equal for all buffers k ∈ Cj∗ .

This coupled with
∑

k∈Cj∗
v∗k = 1 implies

max
k∈Cj∗

{hk(v
∗
k)} ≤ max

k∈Cj∗
{hk(vk)} (5.2)

for all feasible allocations vk, k ∈ Cj∗ . Suppose v∗∗ solves the stochastic

makespan problem, and extend v∗k from (5.1) to v∗k = v∗∗k , k ∈ K \ Cj∗ . From

(5.2), we have

max
k∈Cj∗

{
Qkaωmω

k

v∗k −Qkαωmω
k

}
≤ max

k∈Cj∗

{
Qkaωmω

k

v∗∗k −Qkαωmω
k

}
, ∀ω ∈ Ω. (5.3)

We know that v∗ and v∗∗ drain all other buffers at the same time, hence

max
k∈K

{
Qkaωmω

k

v∗k −Qkαωmω
k

}
≤ max

k∈K

{
Qkaωmω

k

v∗∗k −Qkαωmω
k

}
, ∀ω ∈ Ω.

70

Taking expectations,

E
(

max
k∈K

{
Qkãm̃k

v∗k −Qkα̃m̃k

})
≤ E

(
max
k∈K

{
Qkãm̃k

v∗∗k −Qkα̃m̃k

})
.

Hence, v∗ also solves the stochastic makespan problem.

Theorem 5.1.1 implies that if the random parameters defining our

stochastic makespan problem have a certain structure, then the expected value

solution solves the stochastic problem. In the next three subsections, we clarify

this implication by examining three other special, intuitive cases.

5.1.2 Random Incoming Rates

In this subsection, we assume that only the incoming rate vector α

is random and that it has a special probabilistic structure. Specifically, we

assume that randomness is observed proportionally for all buffers, i.e., there is

a deterministic base rate vector α0, and for any scenario, ω ∈ Ω, the rate vector

can be represented as Nωα0. Here, Nω is a scalar determined by scenario

ω. This is equivalent to assuming that fluid arrives to the system from a

single source with an unknown rate, but it is distributed to the stations in the

system according to fixed proportions. Note that since fluid reentrant lines

have exogenous arrivals to only one buffer, this structural assumption always

holds for stochastic makespan problems in such networks.

With the assumption above, we can construct the following special case.

Theorem 5.1.2. If α̃ = Ñα0 and j∗ ∈ J satisfies Qkα0

Qka
= Qlα0

Qla
, ∀k, l ∈ Cj∗,

71

then there is an optimal solution, v∗, to the stochastic makespan problem with

v∗k =





Qkα0mk∑
l∈Cj∗ Qlα0ml

, if
∑

l∈Cj∗
Qlα0ml > 0

Qkamk∑
l∈Cj∗ Qlaml

, if
∑

l∈Cj∗
Qlα0ml = 0

,∀k ∈ Cj∗ . (5.4)

Proof. We first show that all the buffers in station j∗ are drained at the same

time for each scenario. If
∑

l∈Cj∗
Qlα0ml = 0, then j∗ satisfies the conditions

of Theorem 5.1.1. Moreover, v∗k from (5.4) is identical to that of (5.1), and

hence, from the proof of Theorem 5.1.1 all the buffers at j∗ are drained at the

same time. If
∑

l∈Cj∗
Qlα0ml > 0 then

∑
k∈Cj∗

v∗k = 1 and, as before, (3.1c)

holds by condition (a) of Theorem 3.2.1. Then, for any k, l ∈ Cj∗ and ω ∈ Ω

Qkamk

Qkα0mk∑
i∈Cj∗

Qiα0mi

−NωQkα0mk

=
Qkamk

Qkα0mk

(
1∑

i∈Cj∗
Qiα0mi

−Nω

)

=
Qlaml

Qlα0ml

(
1∑

i∈Cj∗
Qiα0mi

−Nω

)

=
Qlaml

Qlα0ml∑
i∈Cj∗

Qiα0mi

−NωQlα0ml

.

Hence, in each scenario, the proposed solution drains all the buffers at j∗ at

the same time.

Next, we show that v∗ leads to a finite expected draining time for all

buffers at j∗. We assume that conditions (a) and (b) for Theorem 3.2.1 are

satisfied. Using (a), we know that
∑

k∈Cj∗
ess sup{Ñ}Qkα0mk ≤ 1. Hence,

ess sup{Ñ} ≤ 1/
∑

k∈Cj∗

Qkα0mk. (5.5)

72

If the inequality holds strictly, there exists an ε > 0, such that

E

(
Qkamk

v∗k − ÑQkα0mk

)
<

Qkamk

ε
,∀k ∈ Cj∗ .

On the other hand if the inequality holds as an equality, then v∗k = Sk, ∀k ∈ Cj∗ .

Using (b) of Theorem 3.2.1 we conclude that v∗ leads to a finite expected

draining time for all buffers at j∗.

Suppose v∗∗ solves the stochastic makespan problem, and extend the

definition of v∗k from (5.4) to v∗k = v∗∗k , k ∈ K \ Cj∗ . The proof can now be

completed using the same argument as in the proof of Theorem 5.1.1.

Note that Theorem 5.1.2 holds even if there is a j∗, such that Qkα0

Qka
=

Qlα0

Qla
= ∞ ∀k, l ∈ Cj∗ , (i.e., Qka = Qla = 0). Since the necessary and suffi-

ciency conditions are satisfied, (5.5) implies Qkα0mk∑
i∈Cj∗ Qiα0mi

− NωQkα0mk ≥ 0,

∀ω ∈ Ω. Hence, the station stays empty for all scenarios and all the buffers

are still drained at the same time, so the result follows.

5.1.3 Random Service Rates

In the previous subsection, the arrival rates for all buffers in the system

were perfectly correlated. Since the arrival rates may be determined by the

same causes in the exogenous environment and there are systems like reentrant

lines, such a dependency assumption could naturally arise. However, assum-

ing a similar structure for the system’s service times may be overly restrictive.

Fortunately, in the case where service rates are random, similar results hold

with a relaxed version of the dependency assumption. In particular, we need

73

only assume that service rates for buffers within the same station are propor-

tional for all scenarios ω ∈ Ω. That is, there is a base service time m0 and for

any scenario ω, mω
k = Nω

j m0
k. Here, Nω

j is determined by station j and sce-

nario ω, and may differ by station under the same scenario. This probabilistic

structure could arise as follows. Suppose there are several identical machines

at each station with deterministically known service times, but the number of

machines in working condition is unknown when the allocation policy must be

specified. In this case, a fluid model with the random service rate structure

above may serve as a reasonable approximation.

The next theorem allows us to present a result useful for systems in

which a and α are not random, and the service rates are correlated in the

manner discussed above.

Theorem 5.1.3. If j∗ ∈ J satisfies m̃k = Ñj∗m
0
k, k ∈ Cj∗ and Qkα

Qka
= Qlα

Qla
where

k, l ∈ Cj∗, then there is an optimal solution, v∗, to the stochastic makespan

problem with

v∗k =





Qkαm0
k∑

l∈Cj∗ Qlαm0
l
, if

∑
l∈Cj∗

Qlαm0
l > 0

Qkam0
k∑

l∈Cj∗ Qlam0
l
, if

∑
l∈Cj∗

Qlαm0
l = 0

,∀k ∈ Cj∗ . (5.6)

Proof. Using the same approach as in Theorem 5.1.2, it can be shown that

all buffers at station j∗ are drained at the same time for each scenario. Then

the result follows from the argument used in the proofs of Theorems 5.1.1

and 5.1.2.

74

5.1.4 Random Initial Inventory

As a final special case, we consider a system in which α and m are deter-

ministic, but the initial inventory vector ã is random with perfectly correlated

components.

Theorem 5.1.4. If ã = Ña0 then

v∗k =
βk−βk

∑
l∈Cσk

ρl+
∑

l∈Cσk
βlρk∑

l∈Cσk
βl

, ∀k ∈ K, (5.7)

where βk = Qka0mk and ρk = Qkαmk, solves both the expected value and

stochastic makespan problems.

Proof. Notice that,

E

(
max
k∈K

{
QkÑa0mk

vk −Qkαmk

})
= E(Ñ) max

k∈K

{
Qka0mk

vk −Qkαmk

}
.

Hence, minimizing maxk∈K

{
Qka0mk

vk−Qkαmk

}
subject to (3.1b) and (3.1c) yields an

allocation that solves both the stochastic and expected value versions of the

makespan problem. The form of v∗ given in (5.7) then follows by applying

Theorem 5.1.1.

5.2 Special Cases for Stochastic Makespan Problem with
Recourse

In the previous section, we outlined some special cases where an analytic

solution can be found for the stochastic makespan problem without recourse.

Theorem 5.1.4 states that under certain assumptions on the distribution of the

75

a1 = 1 -

Station 3

Station 2Station 1

a3 = 0

m̃5

m̃4

m̃3

m̃2

m̃1

a5 = 1

a4 = 0a2 = 1 -

Figure 5.1: Network with Three Stations and Five Buffers

initial inventory, the suggested allocations drain the system in minimal time for

all scenarios. Hence, this result is also valid when a recourse action is allowed.

However, counterexamples can be found to show that Theorems 5.1.1, 5.1.2

and 5.1.3 do not hold in the recourse case.

Consider the 3-station 5-buffer network in Figure 5.1. Assume that the

service time vector is random with P(m̃ = (1, 3, 4, 2, 2)) = P(m̃ = (2, 1, 4, 2, 2)) =

0.5 and there are no exogenous arrivals to the system. The initial inventory

vector is also given by a = (1, 1, 0, 0, 1). The initial allocations are set be-

fore the system starts running and the recourse action is allowed at T = 2.

Under both scenarios, both stations 1 and 3 require 4 time units to drain

their initial workload, hence E(MS(v, ξ̃)) ≥ 4. If the allocations are set to

76

v = (1, 0, 1, 0, 1), the system can be drained in 4 time units for all scenarios

and this lower bound is achieved. On the other hand, station 3 satisfies the

conditions stated in Theorem 5.1.1 and Theorem 5.1.3. If these theorems hold

in the recourse case, there should be a solution with v4 = v5 = 0.5. However,

if m̃ = (1, 3, 4, 2, 2), Station 1 is able to drain only 1/3 units of fluid from

buffer 2 in unit time. As a result, the capacity allocated to buffer 4 is not

fully utilized. This leads to a makespan strictly greater than 4 for this sce-

nario. Hence, we conclude that any allocation where v4 = 0.5 is suboptimal. A

similar counterexample can be constructed when the incoming rate is random.

Even though the above counterexample shows that the theorems stated

in Section 5.1 do not generally hold in the recourse case, we can prove that

similar results hold under more restrictive assumptions. The remainder of this

section is devoted to the special cases where the stochastic makespan problem

with recourse is analytically solvable.

5.2.1 Random Incoming Rates

Theorem 5.1.2 states that if there exists a station satisfying the given

conditions optimal allocations for that station can be determined by (5.4).

It is possible to construct a similar counterexample demonstrating that this

result is no longer valid for the recourse case. However, when all the stations

satisfy the conditions in the theorem below, the result holds.

Theorem 5.2.1. If α̃ = Ñα0 and for all stations j ∈ J , Qkα0

Qka
= Qlα0

Qla
, ∀k, l ∈

Cj, then there is an optimal solution, v∗, to the stochastic makespan problem

77

with

v∗k =





Qkα0mk∑
l∈Cj∗ Qlα0ml

, if
∑

l∈Cj∗
Qlα0ml > 0

Qkamk∑
l∈Cj∗ Qlaml

, if
∑

l∈Cj∗
Qlα0ml = 0

,∀k ∈ K. (5.8)

Proof. When initial allocations are as given in (5.8),

Qkamk

Qkα0mk∑
i∈Cσk

Qiα0mi

−NωQkα0mk

=
Qkamk

Qkα0mk

(
1∑

i∈Cσk
Qiα0mi

−Nω

)

=

Qkamk

∑

i∈Cσk

Qiα0mi

Qkα0mk


1−Nω

∑

i∈Cσk

Qiα0mi




.

Using the fact that Qkα0

Qka
=

∑
i∈Cσk

Qiα0

∑
i∈Cσk

Qia
and taking the maximum over all

buffers, we get

max
k∈K





Qkamk

Qkα0mk∑

i∈Cσk

Qiα0mi

−NωQkα0mk





= max
k∈K





∑

i∈Cσk

Qiami

1−Nω
∑

i∈Cσk

Qiα0mi





.

Using Theorem 2.2.1, we conclude that the initial allocations (5.8) yield the

minimum makespan possible for each scenario. Hence, no recourse action is

needed and the expected makespan is minimized.

78

5.2.2 Random Service Rates

We have shown that when recourse action is allowed Theorem 5.1.3 no

longer holds. However, this theorem can be generalized for the recourse case

under more restrictive assumptions as in Theorem 5.2.1.

Theorem 5.2.2. If for all j ∈ J m̃k = Ñj∗m
0
k,∀k ∈ Cj and Qkα

Qka
= Qlα

Qla
for

all k, l ∈ Cj, then there is an optimal solution, v∗, to the stochastic makespan

problem with

v∗k =





Qkαm0
k∑

l∈Cj∗ Qlαm0
l
, if

∑
l∈Cj∗

Qlαm0
l > 0

Qkam0
k∑

l∈Cj∗ Qlam0
l
, if

∑
l∈Cj∗

Qlαm0
l = 0

,∀k ∈ K. (5.9)

Proof. The proof is similar to the proof of Theorem 5.2.1. Using the same

arguments, we show that the draining time under the suggested allocations

is equal to the theoretical lower bound given in Theorem 2.2.1. Hence, the

allocations are optimal.

5.2.3 Non-idling Stations

The system drains when the total effort spent on draining each buffer is

equal to the sum of the total workload initially present in the system and the

workload arriving to the system till the draining time. Theorem 5.1.1 provides

a lower bound which can be attained under policies when the stations do not

idle as long as there is work present somewhere in the system. In this work,

our main focus is on stationary policies, where some capacity is allocated for a

79

buffer initially. This allocated capacity cannot be used for other buffers unless

a recourse action is taken. Due to parameter uncertainty, this sometimes

results in under-utilization of some stations. That is, after a buffer drains,

some of the capacity allocated for that buffer is wasted.

This argument implies that if we fully utilize the capacity of stations till

the recourse action, then we are guaranteed to obtain a smaller makespan than

the makespan of a policy which may have idling. The next theorem follows as

a result of this observation.

Theorem 5.2.3. If for all j ∈ J , there exists a kj ∈ Cj, such that

ãkj
m̃kj

α̃kj
m̃kj

≥ T̃ w.p.1 (5.10)

then setting vkj
= 1 for all j ∈ J up to time T̃ is optimal.

Proof. Since, the system cannot be drained till T̃ w.p.1, MS(v, ξ̃) = f2(v, ξ̃)

almost surely. Using (5.10), (4.2b) and (4.2c), we conclude that setting xkj
=

T̃ /mkj
solves (4.2). Hence,

f2(v, ξ̃) = max
j∈J

{∑
k∈Cj

Qk(ã + α̃T̃)m̃k − T̃

1−∑
k∈Cj

Qkα̃m̃k

}
+ T̃ ,

which is also equal to the lower bound in (2.5).

80

Chapter 6

Conclusions and Future Work

Multiclass queueing and fluid networks are useful tools for analyzing

complex manufacturing environments. In real life, the parameters of the man-

ufacturing system are not known deterministically. However, some strategic

and control decisions should be made under the assumption of parameter un-

certainty. To analyze how this uncertainty affects the decision making process,

we focus on the makespan problem in fluid networks. The makespan of the

system is defined as the time when the workload in the system is drained com-

pletely. The controller must allocate the capacity at each station to minimize

the makespan. In this work, our goal is to analyze the structural properties of

the makespan problem in the presence of parameter uncertainty and develop

tools for optimization of the system using stochastic programming techniques.

In Chapter 2, we introduce the makespan problem and investigate the

results in the literature. When the parameters of the system are known de-

terministically, it is possible to solve the problem analytically. However, to

have a better understanding of the stochastic case, we give a mathematical

programming model in this chapter. We also observe that the deterministic

problem can be solved for each station separately.

81

In Chapter 3, we assume that the parameters, i.e., the initial inventory,

exogenous arrival rates and the service times, are not known deterministi-

cally. The controller must decide the capacity allocations before the system

begins operation and these allocations cannot be changed later on. We begin

this chapter by contrasting the deterministic and stochastic problems. Using

counterexamples, we show that the stochastic problem differs from the de-

terministic case considerably. We also show that satisfying the usual traffic

conditions for all possible scenarios is not enough to guarantee the existence of

a finite expected makespan. Hence, we derive necessary and sufficient condi-

tions for the well-posedness of the problem. Next, we formulate the stochastic

problem as a convex nonlinear stochastic program. We propose a solution

methodology using cutting plane techniques along with Monte Carlo simula-

tion and deterministic bounding techniques.

In Chapter 4, we allow the controller to take a recourse action after

some random time. One motivation for this framework is a system in which the

controller decides on the initial allocations and then performs a data collection

process. When the data collection process is over after some deterministic

or random time, the decision maker has deterministic information about the

system parameters. After this point, the decision maker can base his decisions

on the results of the deterministic makespan problem. However, his initial

goal is to operate the system optimally during the data collection process.

We formulate the problem as a stochastic nonlinear program. However, we

observe that the objective function is non-convex in this case. Exploiting the

82

special structure of the objective function, we develop a branch-and-bound

methodology to solve the problem. The main idea in the algorithm is to

partition the feasible region in order to obtain regions where the objective

function is convex. Then, we perform a detailed computational study and see

that it is possible to solve small and medium-size problems efficiently.

Our results in Chapter 3 indicate that in general it is not possible to

derive an analytic solution to the makespan problem under parameter un-

certainty. In Chapter 5, our goal is to identify cases where the problem is

analytically solvable. We treat the problems in Chapter 3 and Chapter 4 sep-

arately. We state four special cases when no recourse action is allowed, in

which the problem is solvable analytically. We also show that in the presence

of a recourse action, the closed form solutions no longer hold. However, it is

possible to prove that similar results hold in the recourse case under more re-

strictive assumptions. We also show that if we can guarantee that the system

does not idle till the recourse action, then the optimal expected makespan is

obtained.

In the current setting, we allow only one recourse action for the decision

maker. One clear cut way to extend this problem is to allow the decision

maker to take multiple recourse actions as the uncertainty in the parameters

is gradually reduced. Another way to modify the decision structure is to allow

the controller to select a processor sharing policy, rather than a policy based

on a fixed allocation vector.

It is also clear that for some applications, the makespan objective is in-

83

appropriate. The deterministic fluid model with a linear holding cost objective

has been widely studied in the literature. One contribution of this paper is

to show that even the basic properties of the makespan problem change when

the parameters are viewed as being random. Hence, the work herein raises

the question of how the optimization characteristics of fluid problems under

various objective functions change when random parameters are introduced.

84

Appendix

85

Appendix 1

The Data for Fluid Networks Used in

Computations

In this work, we used reentrant lines as our test problems. Hence,

for each network the entries in the routing matrix P can be characterized as

follows:

pkl =

{
1 if l = k + 1
0 otherwise

.

For all the reentrant lines, the set of buffers which is processed by station j is

given with the following expression:

Cj = {k ∈ K|j ≡ k (mod |J |) + 1}.

The data given below is randomly generated.

1.1 3-Station 6-Buffer Reentrant Line

The initial inventory in this network is

a = (15, 14, 13, 12, 11, 10).

The incoming rate is given by

α = (1, 0, 0, 0, 0, 0)

86

and the service time is

m = (0.3, 0.4, 0.3, 0.4, 0.3, 0.4).

If a parameter is random, then it is distributed uniformly between 0 and the

value stated above. For this network the recourse action is taken at T = 75.

1.2 2-Station 10-Buffer Reentrant Line

For this network, we assume the initial inventory to be

a = (10, 8, 4, 2, 1, 1, 9, 4, 1, 4),

the incoming rate is

α = (0.0047616, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the service time is

m = (0.84913, 0.67874, 0.74313, 0.65548, 0.70605, 0.27692, 0.097132, 0.69483,
0.95022, 0.43874)

As in 3-station and 6-buffer network, if a parameter is random, then it follows

a uniform distribution between 0 and the value above. The recourse time T is

55 when initial inventory is random, 110 when incoming rate is random and

75 when service time is random.

1.3 5-Station 10-Buffer Reentrant Line

We start with the initial inventory

a = (2, 7, 3, 10, 2, 10, 9, 5, 8, 7),

87

the incoming rate vector is

α = (0.27157, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the service time vector is

m = (0.90579, 0.91338, 0.09754, 0.54688, 0.96489, 0.97059, 0.48538, 0.14189,
0.91574, 0.95949)

For this network, if a parameter is random and uniformly distributed, it is

distributed between 0 and the value above. When the recourse time is de-

terministic it is assumed to be 90. If T is random, the support is (70, 110)

for both uniform and triangular distributions. Triangular distribution has its

most likely value at 90.

1.4 5-Station 20-Buffer Reentrant Line

The initial inventory for this network is

a = (10, 8, 4, 2, 1, 1, 9, 4, 1, 4, 8, 5, 7, 8, 7, 2, 5, 4, 3, 3),

the incoming rate vector is

α = (0.0059519, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the service time vector is

m = (0.84913, 0.67874, 0.74313, 0.65548, 0.70605, 0.27692, 0.097132, 0.69483,
0.95022, 0.43874, 0.76552, 0.18687, 0.44559, 0.70936, 0.27603, 0.6551,
0.119, 0.95974, 0.58527, 0.75127).

When a parameter is random, it is uniformly distributed between 0 and the

values above. If the parameter follows a triangular distribution, then the

88

support is the same as in the uniform case, having the most likely value at the

midpoint of the interval. The recourse time T for a-random and m-random

cases is 75, when α is random T = 110.

1.5 6-Station 30-Buffer Reentrant Line

The initial inventory vector is

a = (9, 6, 2, 9, 9, 10, 2, 7, 4, 6, 10, 8, 4, 1, 6, 10, 6, 1, 2, 4, 2, 3, 7, 5,
3, 2, 6, 1, 2, 1),

the incoming rate vector is

α = (0.067461, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0),

and the service time vector is

m = (0.69908, 0.95929, 0.13862, 0.25751, 0.25428, 0.24352, 0.34998, 0.25108,
0.47329, 0.83083, 0.54972, 0.28584, 0.75373, 0.56782, 0.05395, 0.77917,
0.12991, 0.46939, 0.33712, 0.79428, 0.52853, 0.60198, 0.65408, 0.74815,
0.083821, 0.91334, 0.82582, 0.99613, 0.44268, 0.9619),

As in the previous networks the parameters are assumed to be uniformly dis-

tributed between 0 and the values above. The recourse time T is 280 for

a-random case, 450 for α-random case and 380 for m-random case.

89

Bibliography

[1] E. J. Anderson and P. Nash. Linear Programming in Infinite Dimensional

Spaces. Wiley-Interscience, New York, 1987.

[2] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of a data-

handling system with multiple sources. Bell Sys. Tech. J., 61(8):1871–

1894, 1982.

[3] J. Atlason, M. Epelman, and S. Henderson. Optimizing call center

staffing using simulation and analytic center cutting plane methods. Man-

agement Science. To appear.

[4] F. Avram, D. Bertsimas, and M. Ricard. Fluid models of sequencing

problems in open queueing networks; an optimal control approach. In

F. P. Kelly and R. J. Williams, editors, Stochastic Networks, volume 71

of The IMA volumes in mathematics and its applications, pages 199–237,

New York, 1995. Springer-Verlag.

[5] N. Bäuerle. Convex stochastic fluid programs with average cost. J.

Math. Anal. Appl., 259(1):137–156, 2001.

[6] N. Bäuerle. Discounted stochastic fluid programs. Mathematics of Op-

erations Research, 26(2):401–420, 2001.

90

[7] Dimitris Bertsimas, David Gamarnik, and Jay Sethuraman. From fluid

relaxations to practical algorithms for job shop scheduling: the holding

cost objective. Operations Research, 51:798–813, 2003.

[8] Dimitris Bertsimas and Jay Sethuraman. From fluid relaxations to prac-

tical algorithms for job shop scheduling: the makespan objective. Math-

ematical Programming, 1:61–102, 2002.

[9] R. Billings. A Heuristic Method for Scheduling and Dispatching of Fac-

tory Production Using Multiclass Fluid Networks. PhD thesis, Graduate

Program in Operations Research and Industrial Engineering, University

of Texas at Austin, 2003.

[10] J.R. Birge and R.J.-B. Wets. Designing approximation schemes for

stochastic optimization problems, in particular, for stochastic programs

with recourse. Mathematical Programming Study, 27:54–102, 1986.

[11] H. Chen and D. Yao. Fundamentals of Queueing Networks. Springer,

New York, 2001.

[12] J. G. Dai. Stability of fluid and stochastic processing networks. In Ma-

PhySto Miscellanea Publication, No. 9. Centre for Mathematical Physics

and Stochastics, 1999.

[13] J. G. Dai and G. Weiss. A fluid heuristic for minimizing makespan in

job-shops. Operations Research, 50:692–707, 2002.

91

[14] J. Dupačová. Minimax stochastic programs with nonconvex nonsepa-

rable penalty functions. In A. Prékopa, editor, Progress in Operations

Research, pages 303–316. Mathematica Societatis János Bolyai, Eger,

Hungary, 1976.

[15] N.C.P. Edirisinghe and G-M. You. Second-order scenario approximation

and refinement in optimization under uncertainty. Annals of Operations

Research, 64:143–178, 1996.

[16] K. Frauendorfer. Solving SLP recourse problems with arbitrary multi-

variate distributions – the dependent case. Mathematics of Operations

Research, 13:377–394, 1988.

[17] K. Frauendorfer and P. Kall. A solution method for slp recourse problems

with arbitrary multivariate distributions—the independent case. Prob-

lems of Control and Information Theory, 17:177–205, 1988.

[18] H.I. Gassmann and W.T. Ziemba. A tight upper bound for the expecta-

tion of a convex function of a multivariate random variable. Mathematical

Programming Study, 27:39–53, 1986.

[19] G. Gürkan. Simulation optimization of buffer allocations in production

lines with unreliable machines. Annals of Operations Research, 93:177–

216, 2000.

[20] G. Gürkan, F. Karaesmen, and Ö. Özdemir. Optimal threshold levels

in stochastic fluid models via simulation based optimization. Discrete

92

Event Dynamical Systems., 2005. Submitted.

[21] J. M. Harrison and A. Zeevi. A method for staffing large call centers

using stochastic fluid models. Manufacturing & Service Operations Man-

agement., 7:20–36, 2005.

[22] C.C. Huang, W.T. Ziemba, and A. Ben-Tal. Bounds on the expectation

of a convex function of a random variable: with applications to stochastic

programming. Operations Research, 25:315–325, 1977.

[23] G. Iyengar and A. Zeevi. Parameter uncertainty implications on asymp-

totic analysis and design of stochastic systems. 2006. Preprint.

[24] J. R. Jackson. Networks of waiting lines. Operations Research, 5:518–

521, 1957.

[25] P. Kall, A. Ruszczyński, and K. Frauendorfer. Approximation tech-

niques in stochastic programming. In Y. Ermoliev and R.J.-B. Wets,

editors, Numerical Techniques for Stochastic Optimization, pages 33–64.

Springer-Verlag, Berlin, 1988.

[26] J. E. Kelley. The cutting plane method for solving convex programs.

SIAM Journal of Industrial and Applied Mathematics, 8:703–712, 1960.

[27] Frank P. Kelly. Networks of queues with customers of different types. J.

Appl. Probab., 12:542–554, 1975.

93

[28] V. G. Kulkarni. Fluid models for single buffer systems. In J. H. Dsha-

lalow, editor, Frontiers in Queueing: Models and Applications in Science

and Engineering, pages 321–338, New York, 1997. CRC Press.

[29] A. Madansky. Bounds on the expectation of a convex function of a

multivariate random variable. Annals of Mathematical Statistics, 30:743–

746, 1959.

[30] V. I. Norkin, G. C. Pflug, and A. Ruszczyński. A branch and bound

method for stochastic global optimization. Mathematical Programming,

63:425 –450, 1998.

[31] M. C. Pullan. An algorithm for a class of continuous linear programs.

SIAM J. Control and Optimization, 31:1558–1577, 1993.

[32] M. C. Pullan. Forms of optimal solutions for separated continuous linear

programs. SIAM J. Control and Optimization, 33:1952–1977, 1995.

[33] S. P. Sethi, H. Yan, H. Zhang, and Q. Zhang. Optimal and hierarchical

controls in dynamic stochastic manufacturing systems: A survey. Manu-

facturing & Service Operations Management, 4(2):133–170, 2002.

[34] A. Shapiro. Monte Carlo sampling methods. In A. Ruszczyński and

A. Shapiro, editors, Stochastic Programming, Handbooks in Operations

Research and Management Science. Elsevier, Amsterdam, 2003.

94

[35] G. Sun, C. Cassandras, and C. Panayiotou. Perturbation analysis of

multiclass stochastic fluid models. Discrete Event Dynamical Systems,

14:267–307, 2004.

[36] R.M. Van Slyke and R.J.-B. Wets. L-shaped linear programs with appli-

cations to optimal control and stochastic programming. SIAM Journal

on Applied Mathematics, 17:638–663, 1969.

[37] G. Weiss. On optimal draining of fluid reentrant lines. In Frank P. Kelly

and Ruth J. Williams, editors, Stochastic Networks, volume 71 of The

IMA volumes in mathematics and its applications, pages 93–105, New

York, 1995. Springer-Verlag.

[38] Gideon Weiss. Optimal draining of fluid reentrant lines: some solved ex-

amples. In Frank P. Kelly, S. Zachary, and I. Zeidins, editors, Stochastic

Networks: Theory and Applications, volume 4 of Royal Statistical Soci-

ety Lecture Note Series, pages 19–34, Oxford, England, 1996. Oxford

University Press.

[39] Ward Whitt. Staffing a call center with uncertain arrival rate and absen-

teeism. Production and Operations Management, 15(1):88–102, 2006.

95

Vita

Burak Buke was born in Corum, Turkey on 2 December 1980, the son

of Mustafa and Dondu Buke. He received his Bachelor of Science degree in

Industrial Engineering from Bogazici University, Istanbul, Turkey. During his

undergraduate studies, he performed research on data mining and biometrics.

In Fall 2002 he joined the Operations Research and Industrial Engineering

program at the University of Texas at Austin as a graduate student. He re-

ceived his Master of Science in Engineering degree from the same program

in August 2007. During his doctoral study, he worked on analysis and opti-

mization of systems with parameter uncertainty with Dr. John J. Hasenbein

and Dr. David P. Morton. He also investigated revenue management prob-

lems arising in airlines industries. Burak joined the Industrial and Systems

Engineering Department at the Ohio State University as a Lecturer in Fall

2007. He is currently teaching graduate level classes in stochastic processes

and simulation at the OSU.

Permanent address: Bahcelievler M. Bahar 2. S.
No: 27/2 Corum/TURKEY

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

96

