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ABSTRACT

We present the first definitive measurement of the absolute magnitude of RR Lyrae c-type variable stars (RRc)
determined purely from statistical parallax. We use a sample of 242 RRc variables selected from the All Sky
Automated Survey for which high-quality light curves, photometry, and proper motions are available. We obtain
high-resolution echelle spectra for these objects to determine radial velocities and abundances as part of the Carnegie
RR Lyrae Survey. We find that MV,RRc = 0.59 ± 0.10 at a mean metallicity of [Fe/H] = −1.59. This is to be
compared with previous estimates for RRab stars (MV,RRab = 0.76 ± 0.12) and the only direct measurement of an
RRc absolute magnitude (RZ Cephei, MV,RRc = 0.27±0.17). We find the bulk velocity of the halo relative to the Sun
to be (Wπ,Wθ,Wz) = (12.0,−209.9, 3.0) km s−1 in the radial, rotational, and vertical directions with dispersions
(σWπ

, σWθ
, σWz

) = (150.4, 106.1, 96.0) km s−1. For the disk, we find (Wπ,Wθ,Wz) = (13.0,−42.0,−27.3) km s−1

relative to the Sun with dispersions (σWπ
, σWθ

, σWz
) = (67.7, 59.2, 54.9) km s−1. Finally, as a byproduct of our

statistical framework, we are able to demonstrate that UCAC2 proper-motion errors are significantly overestimated
as verified by UCAC4.

Key words: distance scale – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy:
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1. INTRODUCTION

Determining distances using multiple methods has a long and
distinguished history in astronomy from antiquity to the present
day. Aristarchus of Samos first determined the Moon–Earth
distance from the lunar eclipse. A century later, Hipparchus
checked Aristarchus’ values using the independent method of
terrestrial parallax: the position of the lunar limb during solar
eclipse as seen from Alexandria and Hellespont. More recently,
astronomers have demanded that multiple methods be employed
for zeroing in on the precise parameters governing the currently
observed and mysterious accelerated expansion of the universe
(Albrecht et al. 2006).

Pulsating variables have enjoyed a privileged role in the
local volume. Due to their characteristic light curves and
relatively bright absolute magnitudes compared to the bulk of
main-sequence stars, they can easily be identified and readily
measured in nearby galaxies. With a local zero point for these
systems, it is straightforward, modulo metallicity and reddening
issues, to determine the distances to external systems. Cepheids,
and their more common, albeit fainter, relatives within the
instability strip, the RR Lyrae (RRL) variables, have been two
key elements in the historical endeavor to launch humanity
out of the solar system and Milky Way and into the local
cosmos. Indeed the Cepheids currently serve as the anchor of
the cosmological distance scale, having allowed the most precise
measurement of the local rate of expansion of the universe, H0,
to date (Freedman et al. 1994, 2001). In principle, once properly
calibrated, all stars of known absolute magnitude should yield
identical measurements of the distances to nearby galaxies. This
has not historically been the case.

In particular, the RRL MV calibration has varied by al-
most half a magnitude depending on the method adopted,

and, therefore, consistency with the Cepheid distance scale as
well as other distance metrics has been difficult to establish.
As a result, attempts to determine RRL absolute magnitudes
were largely abandoned over the past decade with a few no-
table exceptions (e.g., Dambis 2009). However, recently there
have been new efforts. Benedict et al. (2011) used Hubble Space
Telescope (HST) trigonometric parallaxes of five RRL stars (in-
cluding four RR Lyrae ab-type (RRab) and one RR Lyrae c-type
(RRc) variables) to obtain an average MV = 0.45 ± 0.05. Klein
et al. (2011) recently used mid-IR data from the WISE satellite
to infer a mid-IR period–luminosity relation.

In this work, we present a third measurement of RRL abso-
lute magnitudes using the method of statistical parallax (Sπ ).
The large number of RRLs that have been discovered in the
last decade allows us to make a fresh assault on this issue. His-
torically, RRL star distance measurements from Sπ have come
in systematically shorter than other distance indicators, in par-
ticular Cepheids (Barnes & Hawley 1986; Hawley et al. 1986;
Layden et al. 1996, hereafter L96; Popowski & Gould 1998a,
1998b; Gould & Popowski 1998, hereafter collectively PG3;
Dambis 2009). It is not yet fully understood why either this
method or these two classes of objects should yield different
distances to the same galaxies. Thanks to automated synop-
tic all-sky surveys like the All Sky Automated Survey (ASAS;
Pojmanski 2002), the number of RRL stars that have reliable
light curves has increased by a factor of ∼5 relative to the previ-
ous “state of the art.” The ASAS program has identified approx-
imately 2000 RRL stars with 300–500 epochs of photometry.
By obtaining high-resolution spectra for these targets, we can
both measure the radial velocities and metallicities needed for
Sπ and address outstanding issues of systematics. The light
curves allow us to accurately determine pulsation phases and
permit the measurement of the radial velocity (RV) at a single
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fiducial phase at which the pulsation velocity equals the star’s
systemic velocity (see Kollmeier et al. 2009). Traditionally, ob-
taining the RV component for RRLs was laborious, requiring
multiple epochs of spectroscopic observation. The determina-
tion of the phase–velocity relationship for RRabc variables (Liu
1991; Kollmeier et al. 2009; Preston 2011) allows a far more ef-
ficient strategy for obtaining critical RV information with which
to compute Sπ, as we discuss further in Section 3.

Historically, RRc variables have been either excluded from
Sπ analyses or only approximately analyzed. This is primarily
due to two factors. First, their hotter temperatures make it
more challenging to determine abundances from low-resolution,
low signal-to-noise ratio (S/N) spectra (see Layden 1994)
and, as a result, these objects cannot be robustly classified by
population (halo/disk) as required by modern Sπ . However,
high-resolution echelle observations circumvent this issue and
allow, for the first time, a definitive Sπ analysis from RRc
variables alone. Second, there are fewer RRc variables relative to
RRab variables, and it is only now that samples are large enough
to perform a robust, self-consistent, pure RRc Sπ analysis. We
analyze our full (RRab + RRc) sample in a future work (J. A.
Kollmeier et al., in preparation) and restrict our attention here
to our RRc sample.

In Section 2, we present a brief overview of Sπ to remind
the reader of the basic principles of the technique. In Section 3,
we present our sample selection, observations, data reduction,
and analysis methods. In Section 4, we review our updated
methodology for determining Sπ , the results of which are
discussed in Section 5 and compared to previous Sπ results
in Section 6. Finally, in Section 7 we discuss our results in light
of recent and historical works on the absolute magnitude scale
of RRL variables.

2. STATISTICAL PARALLAX

The basic principle that underlies statistical parallax is that
the absolute magnitude of any stellar population characterized
by a particular velocity ellipsoid should have a single true value
when derived from either transverse or radial kinematics of
that tracer population. The RV determination of the ellipsoid
is independent of any assumptions about distance, but the
transverse determination requires an assumed value of the
absolute magnitude. The RVs alone yield values for the velocity
ellipsoid in units of km s−1. The proper motions, when scaled by
the square root of the flux (μscaled = μ×10V/5), yield values for
the velocity ellipsoid in units of mas yr−1. The ratio of these two
is a distance, D, which is the distance that an RRL star would
have to be in order to have V = 0. And hence, the absolute
magnitude of the RRL stars is MV = −5log(D/10 pc).

2.1. Basic Formulae

The basic formulae for computing statistical parallax in the
presence of observational errors have been well established
(Clube & Dawe 1980a, 1980b; Murray 1983; Hawley et al. 1986;
Strugnell et al. 1986; PG3). The method involves a 10 parameter
maximum likelihood fit to the kinematic and photometric data:
the distance scale η, the three first moments (“bulk velocity”)
Wi of the sample velocity distribution, and the six independent
second moments, σ 2

ij . The key parameter of interest for distance
scale determination is the value of the true versus assumed
fiducial absolute magnitude of the tracer population:

η = 10(Mfiducial−Mtrue)/5. (1)

The error in determining this distance scaling is given by
(Popowski & Gould 1998a)

σ (η)

η
= 1√

N eff

(
4

3
+

2κ2

9

)−1/2

→ 0.64 N
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eff , (2)
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−2
ij Wj → W/σ (3)

and the last expression is for the (more intuitive) isotropic
case σij = σδij , W is the bulk motion, σ is the velocity
dispersion, and

1
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≡ 2

3
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1

NRV
+
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)
, (4)

where NRV is the number of stars with accurate RV measure-
ments and Npm is the number of stars with accurate proper-
motion measurements. The evaluation in Equation (2) is for
κ = 2.2, which is typical of halo RRL samples.

2.2. Observational Requirements

The distance-scale accuracy improves as N
−1/2
eff , i.e., the sam-

ple of stars with accurate proper motions and radial veloci-
ties, is increased in size. ASAS has provided a public catalog
of RRL stars identified via high-cadence light curve analysis
(Szczygieł & Fabrycky 2007; Szczygieł et al. 2009). In addition
to photometry from the ASAS survey, these stars have proper
motions from the second and fourth USNO CCD Astrograph
Catalogs (UCAC-2 and UCAC-4, respectively; Zacharias et al.
2004, 2013), which cover the entire southern hemisphere. RV
information is not published for the majority of the southern sky
and what is therefore required are spectroscopically determined
velocities for this large sample of objects that has corresponding
proper motions and photometry. Before beginning our extensive
observational program, we evaluated the suitability of the ASAS
sample for measuring Sπ considering known systematic uncer-
tainties. We discuss each of these below.

2.2.1. Multiple Populations

The key underlying assumption of Sπ is that the RRLs are a
faithful tracer population of a single velocity ellipsoid and do
not exhibit poorly mixed kinematics, for example, from coherent
stellar streams. Clearly, as one goes to a very large distance (i.e.,
the outer halo) this assumption breaks down, as RRL populations
become increasingly contaminated by satellite debris on non-
mixed orbits. Indeed, this consideration alone prevents us from
extending the survey to extremely faint magnitudes where the
distances probed preferentially contain such kinematics (e.g.,
Kollmeier et al. 2009). The distribution of distances for the
ASAS RRc sample is shown in Figure 1. As can be seen, the
majority of our sample lies within a distance of 4 kpc. The solar
neighborhood on these scales is known to be sufficiently smooth
that our statistics are unaffected by kinematic substructure (e.g.,
Gould 2003b).

2.2.2. UCAC Proper Motions

The proper-motion errors from UCAC-2 are typically 5–6
mas yr−1 for the majority of the sample, corresponding to
∼(26 km s−1)×(D/kpc). At first sight, the proper-motion errors
may seem too large to be useful, given that the median distance
is about Dmed = 2.7 kpc (see Figure 1, determined using an
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Figure 1. Distribution of distances for sample stars.

initial value for the absolute magnitude scale of MV = 0.5),
and the direction-averaged dispersion is about σ ∼ 120 km s−1.
Together, these imply that the errors are typically a large frac-
tion of the quantity being measured. In fact, Sπ is extremely
robust with respect to observational errors. Equation (17) of
Popowski & Gould (1998a, hereafter PG98a) shows that the
statistical error should increase by only a few percent relative
to Equation (2), given these errors. We verify that this is ac-
tually the case in Section 5. Equation (18) of PG98a shows
that one must be careful about systematic errors that can re-
sult from misestimating the size of these errors. Indeed, the
Sπ methodology contains an internal check on the proper-
motion errors. During the referee process a revised catalog,
UCAC-4, was issued. For our results we adopt UCAC-4, which
has substantially reduced proper-motion errors. In Section 5,
we show that our maximum likelihood procedure was able to
correctly determine the magnitude of UCAC-2 error misesti-
mation as we have verified with the release of the UCAC-4
catalog. This is a remarkable internal check on the robustness
of our procedure and we detail it for those readers skeptical of
the potency of maximum likelihood estimation techniques.

2.2.3. Reddening and Photometry

Since Sπ uses apparent magnitudes, it is important to have
robust extinction measurements for objects in the sample. We
use the reddenings provided by Schlegel et al. (1998, hereafter
SFD) and a standard extinction coefficient, RV = 3.1, to
determine AV .6 Because many of our sources are at high Galactic
latitude (see Figure 2), this directly gives adequate values
for these sources. We adjust the reported reddening values to
account for the finite distance from the plane of our objects. In
some instances, our objects are too close on the sky with other
field stars in projection to yield reliable ASAS photometry (see
Pojmanski 2002 for details of ASAS photometry). These objects
are eliminated from our analysis. We also cross-check our
reddening, by examining the period–color and metallicity–color
relations using K-band measurements from 2MASS combined
with our dereddened ASAS V magnitudes (Skrutskie et al.

6 We note that updates to the SFD extinction maps have been provided by
Schlafly & Finkbeiner (2011) and Peek & Graves (2010). These new maps
qualitatively agree, sharing the conclusion that the SFD extinction map is
generally thought to be overestimated, but do not quantitatively agree in terms
of the precise magnitude of this difference (14% and 2% in each study). The
effect of adopting the more extreme correction leads to a correction in η of
Δη = 0.03 × log(10)/5 = 0.014. We adopt the SFD values until a definitive
calibration is agreed upon.

Figure 2. Sky distribution of our ASAS targets. The RRab sample is shown in
gray points and the RRc sample is shown in blue. The analysis presented in this
paper includes 242 of the RRc sample points.

2006). We remove five outliers from this relation, four of which
have high values for the SFD extinction.

With secure photometry and transverse kinematic measure-
ments in hand, we began our spectroscopic survey.

3. OBSERVATIONS AND DATA REDUCTION

The observations presented here were made in 2011 and
2012 with the echelle spectrograph mounted on the 2.5 m
du Pont telescope at Las Campanas Observatory as part of the
larger Carnegie RRL Survey (CARRS; J. A. Kollmeier et al., in
preparation). Upon completion, our survey will have moderate
S/N spectra for approximately 1200 RRL stars observable from
the southern hemisphere. The sky distribution of our full survey
sample is shown in Figure 2. The gray points show RRab stars
and the blue points show RRc stars. Observations were designed
to reach S/N ∼ 15 in the order containing the Mg i triplet at
5170 Å at the target phase. Exposures for a given target bracketed
observations of a Th–Ar lamp through a 1.5 × 4 arcsec slit.

3.1. Synoptic Observations

The photospheric velocity of RRL stars changes by many
km s−1 over the course of a pulsation cycle. Traditionally, one
has taken multiple observations through the pulsation cycle and
fit the resultant velocity function (when the phase is known) in
order to obtain the systemic velocity of the target (e.g., Layden
1994). We adopt the time-averaged velocity of the pulsation
curve as the center-of-mass velocity of the star as detailed
in Liu (1991) and Preston (2011) for RRab variables. Integration
of detailed velocity curves of the RRc variables T Sex, TV Boo,
DH Peg, and YZ Cap, all measured with the du Pont echelle,
shows that the pulsation velocity is equal to the star’s time-
average velocity at phase 0.32, reckoned relative to maximum
light. Our observations were all made as close to this phase
as possible, and velocity corrections were applied adopting the
following correction:

ΔφRRc = 62.0 km s−1(0.32 − φobs). (5)

Figure 3 shows the resultant phase distribution for our targets.
Note that these velocity corrections are no larger than 5 km s−1

for any given star.

3.2. Data Reduction Pipeline

In order to ensure uniform quality across our sizeable
database, a data reduction pipeline was constructed following
Kelson (2003). The pipeline divides the reduction process into,
first, processing the calibration frames, and then using these to
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Figure 3. Phase distribution of our sample of RRc variables. The red line in the
figure shows the phase targeted for the RRc sample throughout our survey.

reduce the science frames and extract spectra. The calibration
stages involve processing the frames for flat fielding, determin-
ing the order edges and y-distortion using sky flats, and ob-
taining wavelength solutions using a Th–Ar lamp frame. Once
these frames are produced, the science spectra are reduced. The
science spectra are first divided by the processed and normal-
ized flat field and then wavelength calibrated. The spectra are
then sky-subtracted and the spatial profiles of the resultant two-
dimensional spectra are used to find extraction apertures. The
pipeline takes advantage of parallel processing, which speeds up
the reduction process significantly for a large number of objects.

Post-extraction processing of the spectra was done with the
IRAF7 ECHELLE package. Radial velocities were measured
relative to a high S/N template of the metal-poor star HD140283
using the IRAF FXCOR routine. The template spectrum was
taken with the du Pont echelle spectrograph in the same
configuration as the survey stars. The heliocentric RV for
HD140283 has been determined, independently in four separate
high-resolution studies, to be Vhelio = −170.92 ± 0.19 km s−1

(e.g., Tsangarides et al. 2004; Aoki et al. 2002; Lucatello et al.
2005; Latham et al. 2002). The cross-correlations were made
on the wavelength interval 4900–5500 Å. Objects that were
originally classified as RRL stars based on their light curves
but, upon inspection of their spectra, were found to be binaries
or other non-RRL variables were removed from the sample.

The RV error estimates returned by FXCOR are extremely
small, so we estimate the true errors by making repeat measure-
ments of the corrected velocities on a subset of 11 stars. From
these we determine σRV = 1.96 km s−1. We add this in quadra-
ture to our mostly tiny formal errors. We note that, from PG3, the
velocity errors enter the final result as Δη/η ∼ (σRV/σhalo)2/6 <
10−4 and so have no practical effect in any case. We nevertheless
include this correction for completeness.

7 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under a cooperative agreement with the National Science Foundation.

3.3. Abundance Determination

The measurement of absolute abundances for large samples
of RRc stars has not been undertaken previously. We therefore
must calibrate our pipeline abundance measurements (which
yield consistent relative abundance determinations) to the scant
data currently available. Based on analysis of the high S/N
du Pont echelle spectrum of the RRc variable YZ Cap, we
adopted a single set of atmospheric parameters (Teff =7000 K,
log g = 2.2, vmicro = 2.5 km s−1, and [α/Fe] = +0.35) for
all survey stars. The value of Teff is somewhat constrained by
the small area occupied by RRc stars in the color–magnitude
diagram, and our survey spectra are not of sufficiently high
S/N to determine this parameter independently. The abundance
measurements in RRL stars are relatively insensitive to the
adopted values for log g and vmicro. For our final calibration,
we rely primarily on a detailed study (Govea et al. 2013)
that examines the sensitivity of RRc abundance determinations
with respect to stellar parameters using a small sample of high
S/N spectra also obtained with the du Pont echelle. This is
the only study we know of in which the sensitivity of RRc
abundance measurements is systematically studied. We also
compare to the known distribution of RRab metallicities as
a secondary calibration. We defer a more detailed analysis
of this metallicity calibration to a future work where more
high S/N, high-resolution data are available for comparison
(J. A. Kollmeier et al., in preparation).

Pipeline abundance measurements were performed by fitting
to a grid of synthetic spectra generated by MOOG.8 Spectra re-
duced by our spectroscopic pipeline were cleaned of remaining
noise spikes and smoothed using a 3 pixel boxcar filter. Owing
to the relatively broad lines in RRL stars, this smoothing has
essentially no effect on the abundance determination. RRL stars
are warmer than the Sun and generally metal-poor and there-
fore contain few spectral features beyond 5500 Å. As our S/N is
maximized between approximately 4400 Å and 5500 Å, we used
two broad spectral ranges for our synthetic fits: 4400–4680 Å
and 5150–5450 Å. The latter region contains primarily neutral-
species transitions as well as the Mg i b lines. The former region
has numerous singly ionized species including Ba ii 4554 Å. The
synthetic spectral grid covers a range of effective temperatures
(Teff), surface gravities (log g), metal abundances, and microtur-
bulent velocities (vmicro). The atomic line lists for the syntheses
were begun with the Kurucz line database, then refined until
a good match was achieved for the spectrum of the Sun. The
smoothed synthetic spectra were compared with the observed
spectra and the parameters of those with lowest χ2 were chosen
as fits. In Figure 4, we show a histogram of our pipeline-derived
and calibrated abundances averaging the (independently) de-
rived abundances for the two broad spectral windows.

4. DISK/HALO SEPARATION

With the kinematic and chemical information measured as
described above, we are prepared to segregate our sample into
the halo and disk populations. We convert our proper motions
and radial velocities to radial, rotational, and vertical velocities
(U,V, and W ) as per L96. We correct these velocities for the
dynamical solar motion (+9, +250, and +7 km s−1) and we rotate
the Sun-centric (U,V, and W ) three-space velocity to the local
frame of the star assuming cylindrical symmetry of the Galaxy.

8 MOOG is a publicly available code to determine abundances in stars
through LTE analysis. MOOG is available at
http://www.utexas.edu/∼chris/moog.html.
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Figure 4. [Fe/H] determinations for our sample of RRc variables. Abundances
were determined by averaging two broad spectral windows that had maximal
signal to noise as well as numerous spectral features.
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Figure 5. Distribution of rotation angles between the Sun-centric and
star-centric frames of reference.

The cumulative distribution of these rotation angles is shown in
Figure 5. Note that they span the range of roughly ±25◦. The
resultant velocities (vπ , vθ , and vz) for our sample are shown in
the left panels of Figure 6 for direct comparison with Figure 3
of L96, which shows the same quantities for their sample of
RRab stars. Similarly, the right-hand panel of Figure 6 shows
the rotational velocity component as a function of measured
abundance for direct comparison with Figure 4 of L96. It is
important to remind the reader again that we are using RRc
stars rather than RRab stars as tracers of the velocity ellipsoid,
in contrast to L96. Despite this difference in tracer population,
the kinematics of this sample are similar to those of L96.

While it is not possible to know with certainty whether any
particular star is a member of the disk or halo, we can clearly
see a track of stars that has chemical and kinematic properties
similar to a disk-like population. These stars have relatively
high metallicity and are rotating in the direction of the Sun
with similar speed. The exact demarcation of the disk/halo line
is necessarily uncertain. Following L96, we therefore perform
our analysis on subsamples with the aim of determining how
sensitive our results are to these uncertainties. As we will show,
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Figure 6. Kinematics and abundance information for our 242 RRc stars. The
left panels show the values of vπ , vθ , and vz, that is, the velocities in the
radial direction, the direction of Galactic rotation, and toward the Galactic
pole, respectively. These velocities are corrected for rotation with respect
to U,V, and W velocities. The right panel shows the rotational velocity
component as a function of [Fe/H]. In each panel, red squares denote the
“DISK-1” population and blue triangles show the “DISK-2” population. These
stars are eliminated from our ML analysis as described in the text.

they are not. We identify two halo/disk subsamples. The first
(HALO-1/DISK-1) considers all stars rightward (upward) of
the line vθ = 400[Fe/H] −225 to be members of the disk/thick
disk and they are excluded from the halo population of interest.
Of our 242 objects, this procedure assigns 31 to the disk and
211 to the halo. These objects are shown by the red squares in
Figure 6. The second (HALO-2/DISK-2) considers all stars with
[Fe/H] > −1.0 and vθ > 100 km s−1 to be disk stars. Objects
satisfying these criteria are shown as blue triangles in Figure 6.
Of our 242 objects, this classification eliminates 30, leaving 212
for our Sπ analysis. We note that our HALO-1/DISK-1 and
HALO-2/DISK-2 designation is slightly modified from L96
given our sample. However, our results are relatively insensitive
to these distinctions, although our errors will necessarily scale
with the square root of the number of retained objects.

5. RESULTS

5.1. Halo Velocity Ellipsoid

We carry out a 10 parameter Markov Chain Monte Carlo
(MCMC) maximum-likelihood fit to the data. These include
the nine kinematic parameters describing the velocity ellipsoid
(three diagonal elements corresponding to the bulk motions and
six dispersions) and one parameter describing the absolute mag-
nitude scaling η. Table 1 gives the values and errors of the
10 Sπ parameters for our samples. For reasons explained in
Appendix A, their errors are almost perfectly Gaussian. There-
fore, the 10 dimensional likelihood surface is completely speci-
fied by these numbers, together with the correlation coefficients,
which are also given in Appendix A. The fact that the parame-
ters derived from these two different fits are consistent at well
below 1σ shows that our choice of disk/halo separation does
not significantly affect our results.

For our HALO-1 sample, we obtain a value of the absolute
magnitude of RRc variables of MV = 0.58 ± 0.10 and for
our HALO-2 sample, this value is MV = 0.57 ± 0.10. We
discuss these values in the context of previous measurements
in Section 6.
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Table 1
Resultant Parameters and Errors

Sample η w1 w2 w3 C
1/2
11 C

1/2
22 C

1/2
33 C̃12 C̃13 C̃23

(ση) (σw1 ) (σw2 ) (σw3 ) (σ
C

1/2
11

) (σ
C

1/2
22

) (σ
C

1/2
33

) (σC̃12
) (σC̃13

) (σC̃23
)

HALO-1 0.957 20.8 39.9 10.0 150.3 105.5 96.1 0.001 0.031 −0.143
· · · 0.045 10.1 10.0 6.7 9.4 6.1 5.6 0.069 0.071 0.070

Analytic-err 0.045 10.7 9.6 6.4 8.9 5.8 5.3 0.069 0.069 0.069
HALO-2 0.959 21.3 40.4 10.1 150.5 106.8 96.0 0.001 0.033 −0.144
· · · 0.046 10.3 9.9 6.5 9.6 6.2 5.5 0.070 0.072 0.070

DISK-1 0.842 22.0 212.9 −20.1 67.0 53.7 51.0 −0.069 −0.337 0.151
· · · 0.175 12.9 11.4 10.9 12.1 10.9 13.7 0.181 0.175 0.178

DISK-2 0.959 21.9 203.2 −20.5 68.4 64.7 58.7 0.056 −0.349 0.067
· · · 0.177 12.9 14.6 11.8 12.7 13.4 14.7 0.180 0.164 0.194

Table 2
Effect of Proper-motion Error Rescaling

Scale Factor Δ log � η w1 w2 w3 C
1/2
11 C

1/2
22 C

1/2
33 C̃12 C̃13 C̃23

1.0 3.91 1.007 11.8 32.5 8.3 155.6 102.4 93.8 0.037 −0.006 −0.114
0.8 1.51 0.994 12.0 34.1 8.2 155.8 102.9 94.4 0.033 −0.003 −0.106
0.7 0.74 0.987 12.1 35.0 8.2 155.8 103.1 94.8 0.031 −0.002 −0.102
0.6 0.30 0.981 12.2 35.7 8.2 156.0 103.3 95.4 0.029 −0.001 −0.098
0.5 0.09 0.974 12.4 36.6 8.1 155.9 103.4 95.8 0.028 0.000 −0.094

5.2. Internal Test of Sπ : Proper-motion Error
Estimates from UCAC-2 versus UCAC-4

We originally performed our Sπ analysis using the proper mo-
tions and error estimates in the UCAC-2 (Zacharias et al. 2004)
catalog. These results suggested that the proper-motion errors
were overestimated in UCAC-2. During the preparation of this
manuscript, the UCAC-4 catalog was released (Zacharias et al.
2013) with substantially reduced proper-motion errors. In the
analysis reported above, we adopted the updated proper-motion
error estimates in the UCAC-4 catalog; however, we reproduce
our UCAC-2 based analysis as it provides an important internal
test of our numerical machinery.

As discussed by PG98a, if the size of the proper-motion
error estimates were systematically too big, it would induce a
systematic error in the resulting distance-scale estimate, making
the RRLs appear to be systematically farther (hence more
luminous) than they actually are. This is a potential concern
because Zacharias et al. (2004) report external tests only on their
mean proper-motion estimates and not on their error estimates.
Fortunately, we are able to perform an internal test on these
error estimates. This test shows first that the UCAC-2 error
estimates are probably overestimated by about 50%. We note
that our RV errors are too small to have any effect, whether
correctly estimated or not. They will therefore be ignored in the
following discussion.

We first review the basic physics that permit such a test and
then present results. What is now called “statistical parallax”
was formerly (in the first half of the last century) divided
into two effects. One, called “secular parallax,” compared the
mean bulk motion (Wi) in the RV with that in (flux-scaled)
proper motions. The other, also called “statistical parallax”
compared the amplitude of the dispersions (σij ) in the RV and
proper motions. In modern Sπ, these are done simultaneously
in a single fit. However, the errors in the proper-motion error
estimates enter very differently into these two components. For
the σij comparison an overestimate of the errors leads to a
corresponding underestimate of the intrinsic proper motions of
the stars, which can be reconciled with the dispersions measured
in the RV only by placing them farther away. However, for

the Wi measurement, which is first-order (not second-order) in
the proper motions, there is no such effect. If one wished to
be completely safe from any such error-bar misestimates, one
could in principle choose to just compute the “secular parallax.”

However, the maximum likelihood formulation of Sπ permits
a more sophisticated approach. The likelihood function is a
direct and sensitive indicator of the consistency of the two
components of the Sπ determination when the error bars are
systematically rescaled. Table 2 shows results for several such
rescalings. The log-likelihood is maximized for a rescaling
factor ferr = 0.5, while ferr = 1 yields a log-likelihood that is
lower than this Δ log L = 3.8. The probability of this occurring
by chance is about exp(−Δ log L) ∼ 2%.

The resulting parameters from the rescaling procedure de-
scribed here are in excellent agreement with our final reported
results, which use the UCAC-4 proper motions.

5.3. Small Correction for Malmquist Bias

Because the sample is magnitude limited and the target
population has an intrinsic dispersion in absolute magnitude,
σMV

, the sample contains more stars with brighter-than-average
luminosity than fainter-than-average. This leads to a correction:

Δη/η = −3

(
σMV

5/ ln 10

)2

. (6)

We modify the PG98a estimate to obtain σMV
= 0.1 as

follows. PG98a began with the observed dispersion in the
Large Magellanic Cloud of 0.17 mag. They estimated that
0.09 mag was due geometric dispersion, and so estimated an
intrinsic dispersion of 0.14 mag. We further note that for an
estimated metallicity dispersion of 0.5 mag, and assuming a
slope of K = 0.214 mag dex−1 in the RRL MV–[Fe/H]
relation, an additional 0.1 mag of scatter can be accounted for by
metallicity variation. Subtracting this in quadrature, we obtain
a 0.1 mag intrinsic dispersion. This leads to a correction of
Δη/η = −0.006.

Note that PG98a identified another effect due to the dispersion
of absolute magnitudes, which scales to Δη/η ∼ 0.25σ 2

MV
∼
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0.003. We briefly describe this effect and include it here. If stars
do not have exactly the same absolute magnitude, then their
mean square scaled (by flux) proper motions will be greater
than their squared scaled (by mean flux) proper motions. This
will mimic a larger proper-motion dispersion and cause the stars
to appear closer (dimmer) than they actually are. The mechanism
of this effect is similar to that caused by misestimation of the
proper-motion errors (Section 5.2). We adopt the two corrections
described here for a final correction of Δη/η = −0.003 in our
final result reported below.

5.4. Final Result

To obtain our final result, we incorporate small corrections
for Malmquist bias and intrinsic dispersion and take the average
between our two halo samples,

MV = 0.590 ± 0.103 ± 0.014 at 〈[Fe/H]〉 = −1.59. (7)

The systematic error (0.014 mag) is determined by combining
in quadrature the variance from different definitions of the halo
(0.003 mag) and uncertainty in the extinction scale (0.014 mag).
There is also a systematic error of about 0.05 dex in the
metallicity scale, and so the mean metallicity at which this
estimate is valid.

Because the statistical errors are about six times larger than
the systematic errors, a detailed investigation of the latter is not
warranted at the present time. This issue will become somewhat
more pressing when we combine the analysis of CARRS RRab
and RRc stars.

Table 1 shows a comparison between the errors derived from
the MCMC and those predicted analytically using the formulae
of PG98a, which assume zero measurement errors and isotropic
sky coverage. The actual errors are only slightly larger than the
ideal errors despite the relatively large proper-motion errors. In
Appendix A, we derive the corresponding analytic estimates
of the correlation coefficients among the 10 Sπ parameters
and show that these are in good agreement with the MCMC
determinations.

5.5. Disk Kinematics

We can run our maximum likelihood machinery just as easily
on a pure disk population as we can on a pure halo population,
albeit with the substantially reduced numbers in our disk sam-
ple. We perform this analysis and include the results in Table 1.
Interestingly, the value we obtain for absolute magnitude (aver-
aged between the two “disk” definitions) is MV = 0.73 ± 0.43
at [Fe/H] = −0.7. This is quite consistent with our result for
the halo sample. Also of interest are the detailed values of
the velocity ellipsoid for the disk population: (Wπ,Wθ,Wz) =
(13.3,−41.9,−27.3) km s−1 relative to the Sun with dispersions
(σWπ

, σWθ
, σWz

) = (67.7, 59.2, 54.9) km s−1. Indeed, it is thick-
disk-like, which gives us confidence that we are in fact removing
a kinematically distinct population via our chemodynamical cri-
teria. These values are also consistent with those obtained by
Dambis & Rastorguev (2001, DR01) for the thick-disk portion
of their sample of 262 RRab stars drawn from the literature.

6. COMPARISON WITH PREVIOUS
PARALLAX ESTIMATES

6.1. Absolute Magnitude of RRLs

Since the work of Clube & Dawe (1980a, 1980b) there have
been multiple attempts to derive the RRL absolute magnitude

scale from Sπ (e.g., Hawley et al. 1986; Strugnell et al. 1986;
Layden et al. 1996, PG3; Luri et al. 1998; Dambis 2009). The
most recent Sπ estimates of MV,RR

9 (and so directly comparable
to the work presented here) are by PG3 and DR01, who found

MV = 0.75 ± 0.13 at 〈[Fe/H]〉 = −1.6 (PG3) (8)

MV = 0.77 ± 0.11 at 〈[Fe/H]〉 = −1.6 (DR01) (9)

from a sample of 182 halo RRab stars taken from Layden
et al. (1996) in the former study and 262 stars drawn from a
compilation of sources in the literature in the latter study.10

Benedict et al. (2011) used the HST to obtain trigonometric
parallaxes for five RRLs (four RRab variables and one RRc).
Combining their reported values and measurement errors (to-
gether with their adopted intrinsic dispersion of σMV

= 0.0577)
yields

MV = 0.443 ± 0.067 at 〈[Fe/H]〉 = −1.50, (10)

while using σMV
= 0.1 (adopted here) yields MV = 0.426 ±

0.080 at 〈[Fe/H]〉 = −1.52. To obtain these results, we weight
the individual measured magnitude offsets from the mean by
(σ 2

MV
+ K2σ 2

[Fe/H])
−1, where K = 0.214 is the slope of the

MV–[Fe/H] relation. Note that Benedict et al. (2011) incorrectly
quote somewhat smaller errors. See Appendix B.

Efforts to measure MV from RRc stars have been much more
limited. Hawley et al. (1986) and Strugnell et al. (1986) obtained
Sπ results from 17 and 26 candidate RRc stars, respectively,
but were forced to make a restricted analysis because of small
number statistics, which they reported only for “completeness.”
In addition, as mentioned above, Benedict et al. (2011) obtained
MV = 0.27±0.17 for a single RRc, RZ Cep, at [Fe/H] = −1.77.

6.2. Velocity Ellipsoid

Our results on the kinematics of the halo ((Wπ,Wθ,Wz) =
(12.0,−209.9, 3.4) km s−1 relative to the Sun with dispersions
(σWπ

, σWθ
, σWz

) = (150.4, 106.1, 96.0) km s−1) are in excellent
agreement with previous work. Comparing with PG3, our results
are consistent at well under 1σ despite an entirely different
sample. Comparing with the most recent (and largest) Sπ
analysis of Dambis (2009) our results are also generally in
excellent agreement, as almost all parameters of the halo and
disk velocity ellipsoids agree within 1σ or 2σ with the exception
of vertical velocity dispersions of the halo which are in tension
at the 3σ level. We do not know the origin of this discrepancy,
but will have more leverage to investigate this with our larger
RRab sample.

7. DISCUSSION AND CONCLUSIONS

We have performed the first decisive analysis of the absolute
magnitude for RRc variables via statistical parallax using the
first data from CARRS. Our current measurements for RRc
variables yield a 5% distance error, which is similar to that
obtained from modern techniques applied to RRab samples. We
find a velocity ellipsoid for our disk and halo population that is
in good agreement with previous measurements.

9 Dambis (2009) computed the Sπ for a sample of 364 Galactic RRL stars
from targets in the Beers et al. (2000) catalog using 2MASS photometry to
correct the infrared-inferred period–luminosity relation for RRL stars, finding
〈MKs (Adopted)〉 = −2.33 log(PF ) − 0.818 ± 0.081. This work does not
estimate MV,RR and can thus not be directly compared here.
10 Luri et al. (1998) found a similar value from a smaller sample (144 stars
total) than PG3.
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Already, CARRS provides competitive distance accuracy to
other surveys and techniques. At the conclusion of CARRS,
we anticipate a factor of ∼4 increase in the number of tracers
and, consequently, 2% distance errors. In future work, we
will analyze this far larger database and have the statistical
potency to divide our sample into finer metallicity and kinematic
bins than can be done currently. This will allow a precision

measurement for comparison with other techniques with the
hope of a “unified” RRL distance scale.

In the Gaia era, where space-based parallaxes will be avail-
able for many of these objects, our database of high-resolution
spectra should provide useful complementary information for
going beyond distances and gaining further understanding of
RRLs as astrophysical objects, rather than merely as test parti-
cles.

APPENDIX A

ANALYTIC ESTIMATES OF Sπ CORRELATION COEFFICIENTS

In the main text, we showed that the analytic error estimates derived by PG98a for the 10 Sπ parameters closely approximate the
numerical errors in our sample, despite the fact that the analytic treatment assumes zero measurement errors, uniform sky coverage,
and no rotation with Galactic position. Here, we extend the PG98a analytic treatment to the off-diagonal elements of the parameter
determinations and compare the resulting correlation coefficients to our numerical values.

Integrating Equations (30)–(35) from PG98a over N objects uniformly distributed on the sky, we obtain the inverse covariance
matrix of the 10 Sπ parameters a0 . . . a9 = (ln η,Wi, Cii, Ci 
=j )

bν0 = b0ν = NAν; bmn = NBmδmn, (A1)

where

A0 = 4 +
2κ2

3
, A1−3 = − 2Wi

3Cii

, A4−6 = − 4

3Cii

, A7−9 = 0, (A2)

B1−3 = 1

Cii

, B4−6 = 2

C2
ii

, B7−9 = 1

CiiCjj

, (A3)

and where we have adopted a reference frame in which Cij is diagonal. (See Equations (37)–(42) of PG98a.)
Matrices of this form can be analytically inverted, c ≡ b−1 as

c00 =
(

A0 −
∑
m

A2
m

Bm

)−1

, c0m = cm0 = −Am

Bm

c00, cmn = δmn

Bm

+
AmAn

BmBn

c00. (A4)

PG98a (Equations (43)–(46)) have already evaluated the diagonal elements of this matrix (i.e., the variances of the parameters):

var(ln η) = α

N
,

var(Wi)

Cii

= 1

N

(
1 +

4

9

W 2
i

Cii

α

)
,

var(Cii)

C2
ii

= 1

N

(
1 +

8

9
α

)
,

var(Ci 
=j )

CiiCjj

= 1

N
, (A5)

where α−1 ≡ 4/3 + (2/9)κ2. Here we use Equation (A4) to evaluate the off-diagonal elements, or, equivalently, the correlation
coefficients:

cc(ln η,Wi) = QW,i, cc(ln η,Cii) = QC,i, (A6)

cc(Wi,Wj ) = QW,iQW,j , cc(Wi,Cjj ) = QW,iQC,j , cc(Cii, Cjj ) = QC,iQC,j , (A7)

where

QW,i ≡ sgn(Wi)

(
1 +

9Cii

4W 2
i α

)−1/2

, QC,i ≡
(

1 +
9

8α

)−1/2

, (A8)

and all other terms vanish. Note that in making these evaluations, one must return to the “Sun frame,” i.e., add (9, 250, 7) km s−1

back to the Wi.
In the matrix below, we compare the analytic correlation coefficients (above diagonal) to the actual ones (below diagonal). There

is good overall agreement:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.01 −0.68 0.01 0.53 0.53 0.53 0.00 0.00 0.00
0.04 1.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

−0.67 −0.02 1.00 0.00 −0.36 −0.36 −0.36 0.00 0.00 0.00
−0.04 0.02 −0.07 1.00 0.00 0.00 0.00 0.00 0.00 0.00

0.60 0.02 −0.42 −0.04 1.00 0.28 0.28 0.00 0.00 0.00
0.48 0.01 −0.31 −0.01 0.29 1.00 0.28 0.00 0.00 0.00
0.45 0.01 −0.30 −0.04 0.27 0.25 1.00 0.00 0.00 0.00

−0.17 −0.01 0.11 −0.01 −0.10 −0.10 −0.06 1.00 0.00 0.00
0.05 −0.01 −0.03 0.00 0.05 0.02 0.04 −0.16 1.00 0.00
0.11 0.01 −0.10 −0.04 0.06 −0.05 −0.02 0.04 0.00 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We note that the errors in these parameters are almost perfectly Gaussian, and therefore completely described by their means and
covariances. This can be seen as follows. In any linear fit, the parameter estimates ai can be written as a linear function of the data
yl: ai = cij dj , dj = ∑

kl Bklfj (tk)yl , where fj (tk) are the trial functions, Bkl is the inverse covariance matrix of the data, c ≡ b−1,
and bij = ∑

kl Bklfi(tk)fj (tl). Therefore, if the data yl have Gaussian errors, then so do the parameters ai. Note that this statement
does not depend in any way on the central limit theorem, as is sometimes supposed, but only on the fact that linear combinations of
Gaussians are Gaussians.

In the present problem, −2 ln L looks similar in structure to a standard linear-fit χ2 except, first, the parameters appear in nonlinear
combinations, second, the second moments of the velocity ellipsoid appear in an additional term containing a log determinant, and
third, the scaling factor η also appears in a log term. Nevertheless, the linearized problem (treated explicitly by PG98a) is extremely
close in structure to a standard linear-fit χ2. Therefore, one expects similar mathematical properties. This is the underlying reason
that the PG98a linearized analysis matches numerical results so closely.

APPENDIX B

APPROPRIATE WEIGHTING IN DERIVING UNCERTAINTIES

Here we derive the appropriate weighting scheme for an ensemble of RRL parallax measurements with different errors in both MV
and [Fe/H].

Let us consider n stars with measured absolute magnitudes MV,i and errors σi and each with perfectly known metallicity [Fe/H]i .
Let us also initially assume that the slope of the [Fe/H]–MV relation is known but the zero point is not. That is,

MV,pred([Fe/H]) = a + K([Fe/H] − Q), (B1)

where Q is some arbitrarily chosen fiducial metallicity, K is the known slope, and a is the unknown zero point. Then

χ2 =
n∑

i=1

(
MV,pred([Fe/H]i) − MV,i

σi

)2

. (B2)

This χ2 is minimized by setting its derivative to zero, i.e.,

a
∑

i

wi =
∑

i

wi(MV,i − K([Fe/H]i − Q)), wi ≡ σ−2
i . (B3)

We now choose the “arbitrary” fiducial metallicity so that the relation is independent of the choice of K. This can be done if we
choose

Q =
∑

i wi[Fe/H]i∑
i wi

, (B4)

in which case χ2 is minimized at

a =
∑

i wiMVi∑
i wi

, (B5)

regardless of K. The error in this estimate is the point at which χ2 rises by unity, i.e.,

σ (a) =
√

2

d2χ2/da2
=

(∑
i

wi

)−1/2

. (B6)

Hence, Equation (B4) gives the effective metallicity at which the measurement is made.
Now let us suppose that the metallicities are given to us with error bars Σi , so that we can consider simultaneously fitting for both

the zero point (now called a0) and the five true metallicities, called ai. We can write χ2 as

χ2 =
n∑

i=1

(
MV,pred(ai) − MV,i

σi

)2

+

(
ai − [Fe/H]i

Σi

)2

. (B7)

Setting the n + 1 derivatives of χ2 to zero (with respect to a0, ai) yields the equation

n∑
ν=0

bμνaν = dμ, (B8)

where

d0 =
n∑

i=1

wi(MV,i + KQ), di = wi(MV,i + KQ)K + Wi[Fe/H]i , Wi ≡ Σ−2
i , (B9)

9



The Astrophysical Journal, 775:57 (10pp), 2013 September 20 Kollmeier et al.

b00 = A0, b0i = bi0 = Ai, bij = δijBi, (B10)

and

A0 ≡
n∑

i=1

wi, Ai ≡ Kwi, Bi ≡ K2wi + Wi. (B11)

The inverse of this matrix, c ≡ b−1, is given by Equation (A4), which then allows us to evaluate a0 = ∑
ν c0νdν ,

a0 = c00

[ n∑
i=1

wi(MV,i + KQ)

(
1 − b0i

bii

K

)
−

n∑
i=1

Wi[Fe/H]i
b0i

bii

]
. (B12)

This simplifies to

a0 = c00

n∑
i=1

MV,i − K([Fe/H]i − Q)

(KΣi)2 + σ 2
i

; c−1
00 =

n∑
i=1

1

(KΣi)2 + σ 2
i

; (B13)

where we note that c
1/2
00 is the error in a0 (e.g., Gould 2003a). This looks identical to our previous expression that ignored the [Fe/H]

errors, except the inverse weights are increased fractionally by (KΣ/σ )2. This result formally confirms one’s naive idea that the
metallicity error is “equivalent” to an additional error in the absolute magnitude, propagated by the slope (K) of the relation.

Note, however, that in contrast to the case of perfectly known metallicities, one cannot enforce complete independence of the result
from choice of K simply by adopting Q as the average metallicity weighted by [(KΣ)2 + σ 2]−1, since the weighting itself depends on
K. However, in the present case (KΣ/σ )2 � 1, so this has no practical impact.
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