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Glioblastoma (GBM) is a high-grade malignant glioma with a mortality rate that 

exceeds 95% despite over eight decades of medical research dedicated to improve 

outcomes. GBM is extremely difficult to treat and practically incurable with standard 

treatment involving surgical resection, radiation, concomitant and/or adjuvant 

chemotherapy. Therefore, convection enhanced delivery (CED) was developed to 

improve therapeutic outcomes. CED involves intraparenchymal delivery of drugs into 

diseased tissue via a small catheter. CED has proven to bypass the blood brain barrier and 

achieve better drug distribution than diffusion-based therapies. Nevertheless, the large 

volumes necessary to target entire tumors and peritumor volumes have been previously 

unachievable with currently-available catheters.  

This dissertation describes the development of a multiport, arborizing catheter 

designed specifically for improving drug distribution in the brain. The performance of  

early-stage arborizing catheter prototypes was compared to single-port catheters in 

infusion studies using agarose brain phantoms. Volume dispersed (Vd) and mean 

distribution ratios (Vd:Vi) were quantified and compared between the two catheters. The 

arborizing catheter produced higher Vd values; however, it did not exhibit the greatest 

Vd:Vi, likely due to overlapping distribution volumes from the multiple individual ports. 
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Following infusion in brain phantoms, a biotransport study of the arborizing 

catheter was conducted using a multiphasic finite element framework. The model was 

used to predict dispersion volume of a solute in a permeable hyperelastic solid matrix as a 

function of separation distance between adjacent ports. Results show that increasing port 

distance can increase Vd; however, infusion time also increases significantly with greater 

port distance. One way to mitigate increased infusion times is to employ higher infusion 

flow rates.  

Finally, the performance of improved arborizing catheters was compared to 

reflux-preventing single-port catheters in excised pig brains. CT scans were used to 

quantify Vd and Vd:Vi of infused iohexol (contrast-enhancing agent). The average volume 

dispersed for the arborizing catheter was 5.8 times greater than the single-port catheter. 

Mean distribution ratios for both catheters were similar. Using the multiple ports of the 

arborizing catheter, high Vd was achieved at a low infusion rate with negligible reflux. 

Given that previous attempts of CED reported poor drug distribution, the arborizing 

catheter may help overcome the limitations of CED. 
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Chapter 1: Introduction and Overview 

 

MOTIVATION 

Cancer remains the number two killer in modern society [1]. Each year in the 

United States, 600 thousand deaths are caused by cancer. The Center for Disease Control 

National Health Report predicts that due to the steady increase in deaths associated with 

cancer, it will soon dethrone heart disease as the leading cause of death [1, 2]. Yet, 

advances in medical technology have contributed to significantly reducing overall 

national mortality rates for the most common types of cancers including breast, lung, 

prostrate and colorectal cancers. However, since the war on cancer, marked by the 

inauguration of the National Cancer Institute 80 years ago, the landscape concerning 

malignant brain tumors has remained relatively unaltered.  Brain and central nervous 

system (CNS) cancers are increasing by an average of 0.5% annually [3]. For 

glioblastoma (GBM), the most aggressive and unfortunately the most common type of 

brain tumor, median overall survival (OS) is 12 to 15 months [4], with five-year survival 

rates of less than 5% [5]. Standard treatment consists of surgery, radiation and 

chemotherapy; however, it remains palliative at best, as recurrence is inevitable [6-8]. 

Despite the many years of research and resources dedicated to GBM and other brain 

cancers, the discovery of effective treatment modalities remains an unmet clinical need. 
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PRIMARY MALIGNANT BRAIN TUMORS 

Epidemiology 

Brain tumors can be defined as a collection of intracranial neoplasms, 

predominantly arising from brain tissue [9]. Each year in the United States, the number of 

newly diagnosed cases of primary malignant brain and other nervous system cancer is ~ 

7.0 per 100,000 people, of which gliomas are the most common [3, 10]. Gliomas are 

tumors of the CNS arising from glial cells as well as their precursors. Ependymomas 

emerge from ependymal cells, which line the ventricular spaces of the brain and spine. 

These cells create and circulate cerebrospinal fluid (CSF). Oligodendrogliomas arise 

from oligodendrocytes, which normally function to produce myelin and improve nervous 

signaling via insulating neuronal axons. Astrocytomas originate from astrocytes, the cells 

that are responsible for providing nutrients to the surrounding neurons. These cells are 

part of the neurovascular protective unit that forms the blood brain barrier (BBB) [11]. 

The most common sites for gliomas are the frontal, temporal and parietal lobes (Figure 

1.1).  

 

Figure 1.1: Common sites of gliomas. Data from CBTRUS Statistical Report [5]. This 

figure was developed using Servier Medical Art under a Creative Commons attributi0n 

2.0 Unported License (https://smart.servier.com/smart_image/brain-15/). 

Frontal Lobe 
26.1% 

Temporal Lobe 20.0% 

Parietal Lobe 
11.8% 

Occipital Lobe 
3.1% 
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Unlike other cancers, brain tumors are not classified by staging, but rather the 

World Health Organization (WHO) classifies CNS tumors using a grade system from 

grade I-IV based on histopathology [5]. Anaplastic astrocytoma (grade III) and GBM 

(grade IV) are considered malignant gliomas (MGs) [4]. The most common MG is GBM, 

accounting for 60-70% overall [5], followed by anaplastic astrocytomas (AA) at 10-15%, 

anaplastic oligodendrogliomas and anaplastic oligoastrocytomas at 10%. The remaining 

MGs consist of much rarer tumors such as anaplastic ependymomas and anaplastic 

gangliogliomas [4]. For AA, the expected age of onset ranges from 40-50 years, while 

GBM present later in life, around 60-70 years [9]. The underlying cause of MGs is 

unknown, and the only established risk factor is prior exposure to ionizing radiation (even 

at low doses), particularly in childhood, for treatment of an unrelated disease [12-14].  

The incidence of MGs is increasing slightly, especially in the elderly. This is most 

likely attributed to improved diagnostic methods [4], better access to healthcare [13] and 

improved healthcare that has extended life span allowing for the emergence of brain 

tumors in the elderly [9]. Prevalence of MGs is 40% higher in men than in women [13]. 

The incidence of GBM in Caucasians are two-times greater than in blacks and higher in 

non-Hispanics (3.26 per 100,000) than in Hispanics (2.42 per 100,000).  

Symptoms 

Symptoms commonly associated with MGs include headaches, seizures, loss of 

consciousness, confusion, memory loss and personality changes [4, 15]. Although 

presentation and type of symptoms vary with type and location of the tumor, progression 

of symptoms is often inevitable [10]. Especially during the last week of life, 

manifestation of symptoms and neurological deficiency increase dramatically [16]. For 
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focal manifestations of the disease, neurological deficits are associated with the region of 

the tumor and can include hemiparesis or aphasia (i.e. inability to speak) [17]. Edema 

(i.e. swelling) surrounding the tumor mass can increase with tumor growth, and this mass 

effect can lead to headaches, visual obscurations and lightheadedness associated with 

increased intracranial pressure [10].  

Diagnosis 

Computer tomography (CT) or magnetic resonance imaging (MRI) with 

gadolinium enhancement is used to diagnose MGs, and can demonstrate a 

heterogeneously enhancing mass surrounded by edema [9]. GBMs frequently exhibit a 

necrotic core surrounded by more extensive peritumoral edema, hyper-vascularity, and 

tumor cell proliferation compared to anaplastic gliomas [4]. Enhancement of the tumor 

by leakage of the contrast agent through the BBB is common in MGs, such as GBM, 

however, about one-third of MGs are non-enhancing [10]. 

Although contrast-enhanced MRI can imply distinct tumor margins typically 

involving white matter, the tumors can be highly infiltrative and diffuse. Commonly, 

extension of the tumor beyond the apparent border are non-enhancing in MRI. GBM cells 

use surrounding blood vessels and white matter tracts to migrate several centimeters into 

the surrounding healthy brain tissue [11, 18]. In some cases, tumor cells can infiltrate 

throughout the entire hemisphere or spread across corpus callosum to the contralateral 

hemisphere [9]. These infiltrative malignant cells are believed to be responsible for 

recurrence, which typically occur within 1-2 centimeters (cm) of the original tumor site 

[19]. However, MRI is limited in accurately differentiating between recurrence of the 

tumor and tumor response to treatment. Final tissue diagnosis can be obtained with a 
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stereotactic biopsy, which can be taken at the time of surgical resection, or can be 

performed as a standalone procedure if the tumor cannot be safely resected [10]. 

Prognosis 

In general, older age at diagnosis is associated with the poorer prognosis. Mean 

OS, post-diagnosis, ranges from 4.3 months, without treatment, to 7.5 months with 

surgery and radiation and 12.5 months with the addition of chemotherapy [11]. Due to the 

nature of the disease involving one of the most important organs of the body, its complex 

pathobiology, and highly infiltrative form, GBM is extremely difficult to treat and 

essentially incurable [20].  Less than 5% of patients with GBM reach the five-year 

survival mark [5]. Due to the dismal outcome for GBM patients, various investigations 

have studied the prognostic determinants of GBM and have found that factors such as > 

55 years of age, poor Karnofsky Performance Status (KPS) scores (< 70), unresectable 

tumors, greater residual tumor volume, larger preoperative tumor size and greater 

necrosis shown on MRI are linked with poor prognosis [9, 21-23]. In addition, greater OS 

(17 months) was reported for patients with tumors located in the frontal lobe (11.4 

months), compared to those with tumors in the temporal lobe (9.1 months) or parietal 

lobe (9.6 months), implying anatomical location may also be a prognostic factor [24]. 

Treatment 

In newly diagnosed MGs, standard of care usually involves surgical resection 

followed by radiotherapy and chemotherapy. Additionally, patients generally receive 

medical attention to control problems related to the associated seizures, peritumoral 

edema, fatigue and loss of cognitive function. Thromboembolism from leg and pelvic 

veins is common and must be managed to prevent further complications [4].   
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Surgery 

The common recommendation from neurosurgeons is maximal, safe surgical 

resection; however, the benefit of maximal resection in improving survival is 

controversial [25]. Lack of objective and standard quantification methods for assessing 

tumor resection volume have obscured end results and inhibit comparisons across studies 

[21]. However, various retrospective studies suggest correlations between greater tumor 

resection, low residual tumor volume and improved survival [21, 26-28]. Nevertheless, 

surgical debulking mitigates symptoms associated with the growing tumor mass and mass 

effects [10]. MRI-guided surgical planning, as well as advances in functional MRI and 

intraoperative MRI, have increased the safety and extent of surgical resections 

specifically for tumors located in critical areas (e.g. eloquent cortex) [10]. Furthermore, 

awake craniotomy has demonstrated to be a useful surgical approach for preserving 

functional areas while maximizing safe MG resection [29].  

Radiotherapy 

 

Seminal clinical studies have established that patients receiving external beam 

radiation therapy following resection survived longer than patients treated with surgery 

alone [30, 31]. Early practice of whole brain irradiation was performed with the 

assumptions of multifocal MGs and tumor recurrence beyond the delineated tumor 

margins. However, later studies concluded that multifocal MGs accounted for 

approximately only 10% of cases and tumor recurrence occurred within 1-2 cm from the 

original tumor site in 80-90% of cases [32, 33]. Adjuvant focal radiotherapy following 

surgical debulking has demonstrated to increase patient survival ranging from 3-12 

months [11, 34]. Patients are typically treated with a 60 Gy dose of radiation distributed 

once a day over a course of five days per week [4, 9]. However, for the elderly, radiation 
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use remains controversial. The dosage is spread over a three-week period for patients 

over 70 years of age as they are not able to tolerate radiation as well as younger patients 

and seem to only confer a three month survival benefit [4].  

Chemotherapy 

Early studies using cytotoxic drugs like nitrosoureas (e.g. 1,3-bis(2- 

choloroethyl)-1-nitrosourea; BCNU) failed to improve median survival. However, in the 

last two decades, more recent chemotherapeutic agents have played a larger role in 

treatment of MGs [30]. Meta-analyses have revealed that chemotherapy has an increase, 

albeit modest benefit in one-year patient survival rate (6% to 10 %)  and two month 

increase in OS [35, 36]. Furthermore, a Phase III clinical study conducted by The 

National Cancer Institute of Canada (NCIC) and the European Organisation for Research 

Treatment of Cancer (EORTC) showed that median OS increased to 14.6 months for 

newly diagnosed GBM patients treated with radiotherapy and concomitant temozolomide 

(TMZ, TemodarTM), followed by adjuvant TMZ therapy. Comparatively, OS in patients 

treated with radiotherapy alone was only 12.1 months. Additionally, the two-year 

survival rate was two-fold higher (26.5% versus 10.4%) in the group that received the 

concomitant and adjuvant TMZ [34]. TMZ is an oral alkylating agent with a small 

molecular weight (194 Da) and lipophilic properties; thus, it is thought to be able to cross 

the BBB [37]. TMZ has demonstrated anti-tumor qualities by depleting O6-

methylguanine-DNA methyltransferase (MGMT), a DNA-repair enzyme [34]. The 

MGMT promoter controls the activity of MGMT. Methylation of the promoter silences 

the MGMT gene, thus reducing DNA repair. Patients with MGMT promoter methylation 

seem to respond more favorably to TMZ with median OS of 21.7 months compared to 

12.7 months for patients without MGMT promoter methylation [38, 39]. 
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Another approach involves carmustine-impregnated biodegradable polymer 

implants, known as Gliadel Wafers, that are embedded in the tumor resection cavity. As 

the implant degrades, carmustine is released and diffuses into the tumor tissue with the 

goal of treating the remaining malignant cells. The addition of these implants 

demonstrated a 2.3-month median OS advantage sustained at two and three years [40, 

41]. A limitation of this approach is that it relies on passive transport of carmustine, 

which results in the drug only diffusing a couple of millimeters (mm) into the 

surrounding tissue. However, malignant glioma cells may penetrate centimeters into the 

peritumoral margins, thus remain unaffected by such an approach [32].  

Externally Applied Electric Fields 

The most recently developed treatment modality for MGs, which has been called 

the “fourth standard treatment” by some, is externally applied tumor treating fields 

(TTF). TTF involves an array of electrodes on transducer pads adhered to the shaved 

scalp that apply, low-intensity, 200kHz alternating electric fields to the full brain. In vitro 

studies suggest that TFF kills tumor cells by disturbing various processes during cell 

division [15]. A randomized clinical trial, comparing TTF to common chemotherapy 

regimens for patients with recurrent GBM, concluded TTF produced similar mean OS 

and progression free survival (PFS) to chemotherapy [42]. In an open label Phase III 

clinical trial for patients with newly diagnosed GBM, TTF in combination with TMZ, 

was evaluated for efficacy after patients were initially treated with radiation and 

concomitant chemotherapy. The TTF/TMZ group demonstrated higher two-year OS of 

46% compared to only 29% in the group receiving TMZ alone [43]. These results 

encouraged FDA approval of TTF for recurrent GBM in 2011 and for newly diagnosed 

GBM in 2015. No additional systemic toxicity is associated with TTF, although some 
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patients have reported adverse skin reactions. It should be noted that the cost of the 

treatment is high ($21,000 /month), which presents a serious barrier to its current 

accessibility [44]. One challenge unique to TTF therapy is patient compliance given that 

the electrodes must be worn at least 18 hours a day. 

Recurrence 

Regardless of treatment, MG recurrence is inevitable, with 90% recurring within a 

1-2 cm vicinity of the original tumor site [33, 45]. For the most aggressive tumors (i.e. 

GBMs), median time to progression is just six to nine months following treatment [46]. 

At recurrence, surgical debulking may be recommended to reduce mass effect symptoms, 

however survival benefit is modest for recurrent MGs.  Additional conventional 

treatments following recurrence is limited and at best, modest. In general, usefulness of 

conventional chemotherapy is slightly better in recurrent anaplastic gliomas than GBMs 

[47]. Results of a Phase II clinical trials evaluating the administration of TMZ in patients 

with histologically confirmed, recurrent AA or anaplastic mixed oligoastrocytomas, 

indicated objective response rates of 35% (evaluated by gadolinium-enhanced MRI), six-

month rate of PFS of 46%, and median OS of 13.6 months [48]. Comparatively, a similar 

Phase II clinical study evaluating TMZ for relapse of GBM, reported objective response 

rates of only 5.4% and 21% six-month PFS [49]. Ultimately, most patients succumb to 

MGs, with median OS of about three years for AA and 14 months for GBM [9]. The few 

long-term survivors are typically young, otherwise healthy adults that can undergo 

aggressive therapy consisting of gross total surgical resections, radiotherapy and adjuvant 

chemotherapy. It should be noted that disabling dementia is a common side-effect caused 

by radiotherapy among these survivors [50]. 
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METASTATIC BRAIN TUMORS 

Epidemiology 

Approximately 150,000 patients who die from cancer annually have CNS 

metastases detected at autopsy. Of these metastases, 15% involve the brain, and 10% are 

exclusive to the brain only [51]. The incidence of brain metastases is reported to be 9- 

17% based on various studies, although the exact incidence is thought to be higher [52]. 

This is because medical advances can detect primary neoplasms earlier leading to earlier 

treatment. Thus, these patients survive longer and increase the time they’re vulnerable to 

development of brain metastases [53]. The most common primary tumors to metastasize 

to the brain are lung cancer, breast cancer, and melanoma, which combined account for 

67-80% of brain metastases [52]. Approximately 10-15% of patients with small-cell lung 

cancer (SCLC) have brain metastases at diagnosis, and such metastases develop in 30-

43% of patients with non-small-cell lung cancer (NSCLC) [54, 55]. In the case of HER2-

positive breast cancer cases, up to one-third of patients experience metastasis to the brain 

[56]. Typical drugs to treat this type of cancer cannot cross the BBB, thus the brain is a 

safe location for metastases to thrive [57]. The relative low incidence of melanoma, 

testicular and renal carcinomas (compared to breast and lung cancer) is proportional to 

the low incidence of brain metastases originating from these primary sites. However, 

these cancers have the greatest propensity to metastasize to the brain [58]. Using the total 

number of patients with the five most common cancer primaries in the US estimated for 

2018 (lung, breast, prostrate, colorectal and melanoma: total of 898,910 reported by NCI) 

and a conservative incidence rate of 6% [51], result in approximately 54,000 new cases of 

brain metastases for this year. This is triple the estimated number of primary gliomas 

(i.e.~18,000) [5]. 
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Although many clinicians presume that all brain metastases are multifocal, it is 

suspected that 26-47% are unifocal [51]. These unifocal lesions are potentially amenable 

to focal therapies. In general, lung cancer and melanoma are more likely to be associated 

with multiple brain metastases, whereas breast, renal, and colorectal cancers have a 

slightly higher likelihood of developing as single brain metastases [53, 59]. 

Diagnosis 

Similar to a primary brain tumor, the radiographic appearance of a brain 

metastasis is an enhancing mass, extending into the white matter and surrounded by 

edema as shown on MRI or CT. Unlike primary brain tumors, metastatic lesions rarely 

involve the corpus callosum or cross the midline. The radiographic appearance of brain 

metastases is nonspecific and may mimic other pathological processes, such as infection 

[58]. Brain metastases mimic the histology of the primary cancer and pathologists can 

pinpoint the underlying primary in patients presenting with metastatic disease [60]. 

Treatment 

Surgery 

Feasibility of surgical debulking is based on the number of manifested metastases 

and overall systemic status of the patient. Typically only patients younger than 60 years,  

who present a single lesion and otherwise have controlled primary disease, are considered 

for more aggressive treatment including surgery followed by radiotherapy [61]. This 

approach can achieve survival ranges of 3-13 months for SCLC and prostate carcinoma, 

respectively [53]. In the US from 1988 to 2000, there has been a 79% increase in annual 

number of surgical resections for brain metastases, possibly due to advances in surgical 

technology increasing safety of surgery [52]. Although surgery for multifocal disease is 

only considered to relieve symptoms due to mass effect, studies have indicated that 
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surgical removal of multiple metastatic lesions exhibit identical survival rates to those 

patients with a surgically resected single metastasis [62]. For 20% of long-term survivors, 

recurrence is expected, and a second surgery may be necessary [58]. Surgery is avoided 

when metastases have spread extensively to other organs and palliative radiation is the 

only option. Median OS for patients with brain metastases is only four to six months after 

treated with whole-brain radiotherapy, compared to one month if left untreated [60]. 

Radiosurgery  

Radiosurgery is often considered an alternative to standard surgical resection. It is 

an aggressive local therapy using highly-targeted radiation in a single dose, and produces 

superior survival and quality of life in patients with only one to three brain metastases 

compared to surgery alone [51]. Unlike MGs, metastatic brain tumors are non-infiltrative 

and tend to have well-defined borders making them very suitable for focal therapies. 

Radiosurgery of brain metastases less than 1 cm in diameter result in a two-year local 

tumor control rates of 78% compared to only 24% for lesions greater than 1 cm. Median 

OS from the time of radiosurgery is 6-15 months, and some patients can live for years 

without recurrence [58]. 

Chemotherapy  

Chemotherapy for the treatment of brain metastases has garnered less attention 

than radiotherapy, possibly attributable to limited BBB penetration. However, in some 

cases, systemic chemotherapy shows activity against brain metastases given the 

disruptions of BBB (due to compromise of tight junctions and/or accumulation of growth 

factors such as VEGF and pro-inflammatory cytokines) and leaky vasculature associated 

with brain tumors [63]. A Phase II clinical study of NSCLC patients with brain 

metastases treated with irinotecan and carboplatin showed an overall response rate of 
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65% and a median OS of six months indicating a positive result of systemic 

chemotherapy [64]. Furthermore, encouraging results have been demonstrated when 

systemic chemotherapy based on the primary tumor is administered to patients. For 

example, capecitabine (Xeloda) in conjunction with lapatinib, has shown some activity 

against brain metastases from HER2-positive breast cancer [58]. Furthermore, TMZ has 

shown positive results against brain metastases particularly in patients with NSCLC 

primaries [65]. 
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Chapter 2: Convection Enhanced Delivery (CED) 

THE BLOOD-BRAIN BARRIER 

It is clear that treating MGs is still a difficult clinical challenge and success of 

standard treatment modalities is limited. Surgery and radiotherapy are incapable of 

eradicating the non-enhancing disease that has infiltrated the surrounding healthy tissue. 

Furthermore, only a few drugs delivered systemically have demonstrates various levels of 

success in treating MGs. Most chemotherapeutic agents are non-targeted and have been 

associated with systemic toxicity. Additionally, the BBB hinders drugs from reaching the 

CNS in sufficient quantities [66].  

With over 100 billion capillaries and a total capillary length of 400 miles, the 

human brain is the best-perfused organ of the body. The total surface area of the brain 

capillary endothelium, which forms the BBB, is 20 m2 [67]. The BBB is a protective, 

filtering mechanism present only in the vasculature of the brain, which prevents access of 

noxious substances to the brain. It consists of a continuous layer of endothelial cells (only 

~ 200 nm thick) joined by tight junctions and surrounded by a basal membrane [63] 

(Figure 2.1). Embedded within the basal membrane are pericytes, which are supportive 

cells that regulate BBB permeability, maintain capillary blood flow and clear cellular 

debris [68]. Additionally, the feet-like projections of astrocytes also cover 95% of the 

basement membrane to maintain BBB integrity and may play a role in regulation of 

capillary blood flow [69].  

Transport across the BBB involves movement across the luminal (blood) and 

abluminal (brain) membranes of the capillary endothelium. The tight junctions of the 

BBB prevents para-cellular transport of solutes from the blood into the brain interstitium. 

Therefore, solutes in the bloodstream can only gain access to the brain via transcellular 

transport. Small, lipid-soluble molecules unbound to plasma proteins may gain access to 
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the brain by lipid-mediated free diffusion. Otherwise, circulating molecules may gain 

access to brain only via endogenous transport systems within the brain capillary 

endothelium, which can be classified into three broad types: 1) carrier-mediated 

transport; 2) active efflux transport and 3) receptor-mediated transport, which is initiated 

from specific ligand interaction [67]. 

 

Figure 2.1: Schematic of cross-sectional view of a neurovascular unit comprising the 

BBB in brain capillaries. The basal membrane surrounds a continuous layer of 

endothelial cells secured by tight junctions. Pericytes and foot processes of astrocytes 

extend to the basal membrane. Illustration adapted from Regina et al. 2001 [71]. 

In order for drugs to be efficacious against MGs, they must enter the brain, which 

means facing the challenge of crossing the BBB. A common belief is that for drugs to 

cross the BBB in sufficient quantities, molecular mass of the compounds must fall below 
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400-500 Da. Additionally, they must have high lipid solubility (i.e. form less than 8-10 

hydrogen bonds with solvent water) [67]. Even though TMZ fits the criteria as a small, 

lipophilic molecule, concentrations of TMZ in the brain reach only 30% of plasma 

concentrations [37]. Findings support that the BBB is actually impenetrable to 

approximately 98% of small molecules and 100% of macromolecules [67]. Hence, very 

few drugs are available for CNS treatments. One study reported that only 5% of the over 

7600 drugs listed in the Comprehensive Medical Chemistry (CMC) database were active 

in the CNS. Average molecular weight for these drugs was 316 Da and their indication 

was for treatment of depression, schizophrenia and insomnia, not neoplasms [70]. 

Moreover, recent studies have shown that the drug efflux pump, P-gp, is highly expressed 

in the BBB. These multidrug transporters contribute to the impenetrability of the BBB 

and is linked to multidrug resistance in a variety of cancers, including primary brain 

tumors [71]. 

THE BLOOD BRAIN TUMOR BARRIER (BBTB) 

Alterations in the BBB elicited by neoplasm growth result in the formation of the 

BBTB.  The BBTB consists of capillary populations, including existing and newly 

formed capillaries, which deliver nutrients and oxygen to the rapidly growing tumor [72]. 

High grade MGs are associated with necrotic cores that induce expression of VEGF and 

angiogenesis resulting in abnormal capillary populations. Abnormalities in the capillary 

architecture can include capillary fenestrations (with pores ~ 12 nm in size) that increase 

permeability to small molecules resulting in a “leaky” BBTB as manifested in contrast-

enhanced MRI [73]. Further development of the tumor triggers the formation of 

interendothelial gaps (as large as 1 μm) that non-selectively increase permeability to all 

water-soluble compounds [74]. Furthermore, Liebner et al. associated the downregulation 
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of the tight junction protein, claudin-1, with aberrant tight junction morphology and 

enhanced permeability in GBM microvessels [75].  Collectively, such disruptions to the 

BBB and BBTB amount to the enhanced permeability and retention (EPR) effect, which 

is characterized by accumulation and retention of nanoscale particles (e.g. liposomes, 

nanoparticles, and macromolecular drugs) in the solid tumor [76]. Therapies that can 

exploit the EPR effect, such as nano-drug delivery systems, may gain better penetration 

of the BBTB and preferred accumulation in tumor tissue compared to normal brain. 

However, the EPR effect in tumors of the brain is reportedly less pronounced and more 

restrictive to transvascular transport of large therapeutic molecules, compared to the EPR 

effect in solid tumors of other organs [77].  

Nevertheless, a large population of capillaries in the BBTB resemble the 

continuous non-fenestrated capillaries of the intact BBB. Within a few millimeters of the 

tumor margin, the vasculature is more organized and less leaky compared to the core of 

the tumor. Therefore, the BBTB is still an obstacle for efficient delivery of drugs 

especially to the infiltrative GBM cells that may reside within brain tissue with a less 

disrupted BBTB [78]. 

ACCESSING THE CNS 

Distribution of therapeutic agents within the central nervous system (CNS) is 

limited and challenging with existing drug-delivery techniques. Technologies such as 

catheters and pumps, bolus and intrathecal injections, drug-impregnated polymers, 

nanoparticles and biomaterials have all been investigated for accessing the CNS [40, 79-

85]. Drawbacks of these techniques include poor bio-distribution due to limitations in 

diffusivity and molecular weight of the agent, neurotoxicity, and poor selectivity and/or 
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retention. A summary of advantages and disadvantages associated with selective 

technologies compared to the gold standard treatments for MGs are listed in Table 2.1. 

The Ommaya reservoir is a plastic pump implanted under the scalp for 

intermittent injections of chemotherapeutic agents into the resection cavity or the CSF. 

This device has been used for many years to deliver methotrexate, doxorubicin, 

bleomycin, cisplatin and interferon-γ. Advantages of this technique include: multiple 

rounds of chemotherapy can be given through a single access site; it can be used for 

sampling CSF; and it can be implanted long-term. Given the limited bulk flow between 

the CSF and the intercellular space, chemotherapeutic agents via intrathecal delivery is 

not able to diffuse into the brain parenchyma to reach GBM. This technique is better 

suited for diseases localized in the leptomeningeal space (composed of pia matter and 

arachnoid matter) such as primary CNS lymphoma and various metastases [86]. 

Additional limitations associated with the Ommaya reservoir include increase in 

intracranial pressure resulting in high clinical incidence of hemorrhage, CSF leaks, 

neurotoxicity and infections [87]. 

The FDA-approved Gliadel Wafer is an adjunct therapy consisting of a polymer 

wafer impregnated with carmustine. Implanted into the resection cavity of gliomas, the 

Wafer circumvents the BBB delivering sustained local concentrations of carmustine, and 

is associated with increased survival in MG patients [40, 41]. However, distribution of 

the therapeutic is dependent on diffusion, resulting in distribution distances of only 

millimeters. Migration of the implant is associated with complications such as increased 

risk of seizures, cerebral edema and impaired wound healing [41, 88].  

 

 



   

 

 19 

Method Advantage Disadvantage 
Alternative Technologies 

Lipophilic drug Rapid widespread penetration 
Peripheral distribution/ exclusive to 
larger molecules/increased plasma-

protein binding 
Liposomes/immunoliposomes 

Capable of receptor-mediated 
transport 

Transport can be poor without vector 
mediation 

Pro-drugs Improved residence time 
Poor selectivity and retention/ possible 

toxic metabolites 
Carrier-mediated Controlled delivery and retention 

Drug structures must resemble 
endogenous nutrient  

Vector/receptor- mediated 
Works with many drug classes/ 

many linkers available 
Saturable process/ often subject to 

enzyme dependent release 
Osmotic BBB disruption drugs & 

contrast agents 
Promising with range of vectors/ 

renders brain susceptible to 
circulating agents 

Non-selective/ slow to reverse/ poor 
therapeutic/ toxic index 

Biochemical opening of BBB Can be selective for tumor 
vessels 

Subject to infections/ lowers defense 
mechanisms 

Bolus injection (intraventricular 
or intrathecal) 

Bypass barrier/ rapid high CSF 
drug levels/ bypass enzymatic 

degradation 
Poor tissue penetration/ surgical 

complications 
Catheters and pumps Prolonged/ controlled drug levels Poor drug distribution 

Drug-impregnated polymers & 
microspheres 

Bypass BBB/ controlled 
prolonged delivery/ local delivery 

Drug penetration very limited 

Nanoparticles 
Small enough to cross BBB, 

delivery of range of drugs 
Unknown toxicological profiles 

Focused ultrasound 
Focal and transient BBB 
disruption. 

Signal attenuation and distortion 
through skull/ inflammation 

Electroporation 
Significant and transient BBB 
disruption  

Permanent tissue damage may occur 
depending of electrical parameters 
used 

Gold Standard 

Surgery 
Debulk to alleviate certain 

symptoms and allows for other 
treatments to proceed 

Invasive/ limited to resectable tumors/ 
does not remove infiltrative malignant 

cells 

Radiation 

Can be used alone or in 
combination with other 

treatments/ no hospital stay is 
required/ brief sessions lasting 

only 15 min - 1hr 

Side effects 

Systemic chemotherapy Minimally invasive Challenged by BBB/ side Effects 
Tumor-treating fields Minimally invasive/ few adverse 

effects 
Skin reactions/ costly/ requires 

continuous use (18 hrs/day) 

Table 2.1: Methods of drug delivery to the CNS versus gold standard MG treatment. Portions of 

the table were adapted from Orive et al. 2010 [84].
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Other methods employ disruption of the BBB, either permanently or reversibly, to 

increase permeability and access of therapeutics to the brain. These techniques involve 

electroporation, focused ultrasound, and osmotic disruption (e.g. infusion of mannitol to 

shrink endothelial cells). The advantages of these technologies include disruption to the 

BBB integrity, which increases permeability of water-soluble drugs, and chemo-

sensitization. However, further development of these technologies is warranted to prevent 

structural damage and address inconsistencies in the results. For example, osmotic 

disruption is non-selective, which renders the brain vulnerable to substances in the blood 

leading to complications such as seizures, neurotoxicity and increased fluid in the brain 

[80, 89]. Focused ultrasound provides more targeted disruption of the BBB and can be 

used in combination of existing FDA-approved chemotherapeutic agents delivered 

intravenously [90, 91]. This combination therapy is currently in the preclinical stage. 

However, signal attenuation and distortion through the human skull and the inflammatory 

response associated with this technique require further investigation [92]. Finally, 

reversible electroporation can temporarily permeabilize the BBB and can be used to 

introduce drugs into the brain that would otherwise be impermeant [93]. This technique 

requires careful treatment planning to optimize the degree of electroporation and 

minimize permanent tissue damage. Factors to consider include electrical impedance and 

electric field distribution, tissue and electrode geometry, and pulsing parameters [94]. 

CED AS A MEANS FOR BYPASSING THE BBB 

In an effort to address the challenges of current drug delivery methods, 

convection enhanced delivery was pioneered at the National Institute of Neurological 

Disorders and Stroke approximately 25 years ago. CED is an alternate approach to 

deliver large concentrations of macromolecules directly into the brain parenchyma and 
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effectively circumvent the BBB and BBTB [95, 96]. The technique relies on pressure 

driven bulk flow of fluid, pushed primarily through the interstitial space, via a small 

cannula.  CED demonstrated high concentrations of macromolecules actively distributed 

centimeters into the tissue, an order of magnitude greater than with diffusion alone [95, 

97].  

In a seminal study, Bobo et al. investigated the distribution of two compounds 

administered to cat brains via a 26-gauge stainless steel cannula inserted into the white 

matter through a burr hole created in the skull and dura (Figure 2.2).  Flow of 111In-

labeled transferrin (111In-Tf; 80,000 Da) and [14C]sucrose (359 Da) was controlled with a 

syringe pump. Administered flow rate was increased from 0.5 to 4.0 µL/min to maintain 

the pressure gradient measured in the infusion line. After two hours of continuous 

infusion, the distance of distribution (measured from source of infusion), defined with a 

concentration threshold of ≥ 1%, was 1.5 cm and 2.0 cm for 111In-Tf and [14C]sucrose, 

respectively. Given that the diffusion of 111In-Tf during a two-hour time frame is 

negligible, the distribution was attributed to convective flow.  The ratios of volume 

distribution (Vd) to volume infused (Vi) for 111In-Tf was 6.0 and 13.0 for [14C]sucrose. 

Although the majority of the infusion volume was maintained within white matter, 

extensive distribution of large molecules into grey matter, at relative homogeneous 

concentrations in the perfused region, can be achieved with CED [98].  

Bobo et al. ascertained that stability was maintained throughout the infusion with 

no significant adverse effects. Moreover, additional studies concluded that CED does not 

lead to cerebral edema and is unaffected by capillary loss or metabolism of the 

macromolecule [99]. Furthermore, comparisons of CED against intravenous delivery of 

[14C]sucrose showed that sucrose concentrations in the rat brain was 10, 000 times greater 

with CED than intravenously [100]. With these initial studies, CED was established as a 
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viable alternative method for providing regional distribution of large molecules, such as 

proteins and some conventional chemotherapeutic agents, to target areas within the brain 

[101-104]. Compared with other therapies, CED minimizes systemic and CNS toxicity 

due to local delivery, and infused doses need not be as high [105]. Furthermore, 

histological evidence demonstrate that tissue inflammation around the catheter is 

confined to a 50-µm radius [106]. For these reasons, CED has treatment applications in 

several cerebral disorders, including Parkinson’s [107, 108], epilepsy [109], Alzheimer’s 

[110, 111] and malignant gliomas [85, 86, 97, 99, 112-116]. 

 

Figure 2.2: Schematic showing the premise of CED. The infusate is delivered locally to 

the brain parenchyma via a small catheter inserted through a burr hole. A programmable 

syringe pump is used to maintain the flow rate of the infusate.  

CED for MG: Efficacy Studies 

Distribution of macromolecules is more effective with CED than diffusion-based 

therapies and positive results in pre-clinical and early clinical trials for MGs showed 

promise of this technique [102, 103, 114, 117-119]. Early preclinical models performed 

by Bruce et al.  investigated the therapeutic efficacy of BCNU and topotecan in a rat 
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glioma model. These experiments demonstrated adequate concentrations of the 

chemotherapeutics in the brain tumor and peripheral tissue. Furthermore, a 6-fold 

reduction in tumor cross-sectional area and longer survival was observed in rats receiving 

the infused agents, versus rats that had the agent via intraperitoneal administration [120, 

121].  These favorable results led to a dose-escalating, Phase Ib clinical trial of 18 

patients with recurrent MGs treated with CED of topotecan. The study concluded that 

topotecan had significant anti-tumor activity and showed progression-free and OS rates 

of 23 weeks and 60 weeks, respectively [122]. Additional conventional chemotherapeutic 

agents, such as paclitaxel and carboplatin have been infused directly into GBM tumors 

and/or surrounding tumor infiltrated brain successfully [114-116]. The initial success in 

preclinical/clinical trials with existing agents led to years of investigation of numerous 

anti-neoplastic agents using the CED technique including immunotoxins, radioisotopes 

[99, 103], gene therapies [123, 124], and nanoparticle conjugates [125]. Numerous 

clinical trials have been and are currently investigating CED for the treatment of 

neoplasms.  

Targeted Therapy 

Target toxins standout among the many new agents being developed with the goal 

of differentiating between normal and malignant cells to minimize collateral damage. The 

premise of these two-part macromolecules, also known as ligand-toxin, is that one part of 

the agent will “identify”, or target, the cancerous cell and the other part induces cellular 

death. Various clinical trials using targeted toxin and CED have been performed or are 

currently underway (Table 2.2). 

To design ligand-toxins, the first component involves identifying cellular markers 

or internal proteins that are overexpressed in malignant cells, but not in normal cells. The 



   

 

 24 

interleukin 13 receptor alpha 2 (IL-13RA2) was discovered to be overexpressed in 60-

80% of patients with GBM and proved to be an attractive target in GBM [126-128]. The 

first generation of IL-13 based cytotoxins, increased patient survival by an average of 15 

more weeks compared to the typical median survival for these patients [129]. Other 

targeting ligands include IL-4, epidermal growth factor (EGF) and transferrin (Tf) [100].  

Trial Name Targeting Agent Toxin Trial Phase 

Cotara 
 (NABTT-0404) 

chTNT-1/B mAb Iodine 131 I/II 

IL13-PEI-106-R01 IL-13 PE I 

IL 4-PE  
(NBI-3001) 

IL-4 PE I 

TranMID (KSB-
311R/CIII/001) 

Tf DT III* 

PRECISE (IL13-
PEI-301-R03) 

IL-13 PE III 

Table 2.2: Clinical trial investigations of CED and targeted therapy.*Study was 

withdrawn. 

The tumorcidal segment can be derived from multiple sources and take many 

forms. The most common bacterial-derived toxins are pseudomonas endotoxin (PE) and 

diphtheria toxin (DT), which are single chain proteins containing binding chains and 

catalytic domains [113]. The most common plant toxin is ricin [100].  The mechanism of 

cell death begins with the targeting-segment binding to the cell’s surface. Upon entering 

the cytosol, the toxin inhibits catalysts involved in protein synthesis inducing cellular 
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death. Additionally, radioisotopes can also be combined with a targeting segment (e.g. 

monoclonal antibodies) for local, selective delivery of radiotherapy to brain tumors [117].  

In the Cotara trial, 131Iodine conjugated to a universal monoclonal antibody 

targeting necrotic cores of tumors, was infused in patients with recurrent or newly 

diagnosed GBM and AA [117]. Cotara was infused via cardiac/peritoneal catheters and 

SPECT scanning was performed two weeks after the infusion to determine the spatial 

distribution of the agent. Of the patients with recurrent GBM, 13.5% survived for 12 

months and 5.4% survived for up to 24 months. One patient achieved long-term survival 

beyond five years [99]. 

The agent TranMID consisted of transferrin, which is expressed on all rapidly 

dividing cells, and a CRM107 molecule, which was modified from DT toxin to decrease 

non-specific binding. In the Phase II trials, patients with recurrent GBM and AA were 

treated with two infusions of TranMID. Radiographic complete and partial response were 

demonstrated in 15.2% and 21.2%, respectively. The median OS for these responders was 

68 weeks, compared to only 27 for the patients that showed no response. Thirty percent 

of the patients were still alive 12 months after the first infusion [99]. Favorable results 

warranted Phase III of TranMID, however the study was withdrawn because of possible 

side-effects due to systemic toxicity associated with the DT toxin [113]. 

 A Phase I trial investigating IL13-PE38QQR followed by radiation therapy with 

and without TMZ in patients with newly diagnosed MGs was completed in 2011. The 

goal of the study was to determine the highest dose of IL13-PE38QQR that can be safely 

administered via CED around the resected cavity. However, results are yet to be posted in 

the U.S. National Library of Medicine. 
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The PRECISE Trial 

Progress towards clinical translation of CED has been challenged by inadequate 

results in a high profile, randomized Phase III efficacy trial, specifically known as the 

PRECISE trial. The trial was conducted worldwide in over 52 clinical centers. Patients 

with recurrent GBM were treated with a tumor-targeting agent made from combining the 

human protein IL-13 with a pseudomonas-based exotoxin, cintredekin besudotox (CB) 

(a.k.a IL13-PE38QQR), delivered intracranially using two to four commercially-

available, single-port catheters. Median survival for the 183 patients treated with CED, 

compared to the survival of 93 patients treated with FDA-approved carmustine-

impregnated implants (Gliadel Wafer), showed no significant OS improvement (36.4 

weeks compared to 35.3 weeks, respectively)  [85]. In the trial, the control arm exceeded 

its previous performance by 40%. Furthermore, it is noteworthy to point out that the 

company chose a survival endpoint of 50% longer survival than the historical controls. 

However, not a single drug in oncology has exhibited this kind of efficacy [85].  

Retrospective Analyses of the PRECISE Trial 

Retrospective investigations of the PRECISE trial have revealed that overly 

ambitious study endpoints, inaccurate catheter positioning and poor drug distribution are 

likely explanations behind the PRECISE trial’s failure to meet clinical endpoints [130]. 

Although neurosurgeons were trained and guided in positioning catheters according to 

protocol, only 68% of catheters were protocol-compliant [85]. Mueller et al. reported 

even lower percentages of protocol-compliant catheter positioning in their retrospective 

study based on CT scans taken prior to the infusion of CB [131]. Their report highlighted 

the highly specialized nature of CED that requires strict technical guidelines to achieve 

consistent results. In ad hoc analyses of the PRECISE trial restricted to clinical centers 

that enrolled ≥ 6 patients, median OS of patients in the CB group is more favorable (46.8 
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weeks versus 41.6 for control arm) [130]. Nevertheless, inadequate catheter positioning 

alone cannot fully explain the response to CB in the PRECISE trial. Patients with good 

overall catheter placement scores had only a median OS of 38.1 weeks [131]. 

Further retrospectives studies were performed by Sampson et al.. They performed 

computational analyses of the drug distribution using catheter positioning data and the 

computational flow software, iPlan Flow (Brainlab AG, Feldkirchen, Germany).  Results 

of the simulations revealed that the predicted coverages were well below the intended 

volume target. On average, only 20% of a 2-cm penumbra surrounding the resection 

cavity was targeted with the drug [130]. Therefore, Sampson et al. identified poor drug 

distribution as a possible explanation for the inadequate results of the PRECISE trial. 

The inability of CED to perfuse drugs over large volumes, including margins 

beyond the primary enhancing tumor detected by MRI, is highly problematic as these 

margins contain infiltrative malignant cells that may be responsible for regrowth of the 

tumor. Thus, the suboptimal outcomes of the trial were linked to the poor coverage 

achieved during the infusions, suggesting that better delivery of the drug to the target 

tissue volume may improve CED. In the PRECISE trial, investigators were limited to 

using commercially-available catheters not designed for use in the brain parenchyma or 

brain tumors. These catheters were incapable of distributing drugs over large tissue 

volumes necessary for complete coverage of the tumor margins [130]. Thus, infiltrative 

GBM cells potentially residing in the primary tumor periphery (non-enhancing tumor) 

were left untreated [32]. 
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Limitations of CED 

Catheters 

In light of the results of various clinical trials, it is warranted to examine whether 

the available technology used to perform CED is suited to overcome the unique 

challenges hindering drug distribution in the brain. The anatomical heterogeneity of the 

brain and tumor tissue and differences in permeability between white and gray matter can 

all inhibit drug distribution with CED.  Specifically, the design of the catheters used to 

perform the infusions requires scrutiny [132-135].  

The lack of CED-specific tools to perform the therapy in the PRECISE trial could 

have contributed to its suboptimal results. The catheters used in the study had a single 

port for infusion. These catheters were highly prone to reflux, or back-flow, along 

catheter walls and air-embolization [136]. Therefore, multiple catheters were required to 

attempt larger distributions in the brain. Multiple insertion tracts not only can increase the 

risk of trauma to healthy neurological tissue, but also increase the probability of cell-

seeding healthy tissue with cancer cells along the multiple tracts [137, 138]. Similarly, 

various other CED studies were limited to “off-label” use of commercial catheters that 

may not possess the capability to effectively perfuse drugs over large tissue volumes (see 

Table 1). Therefore, there is a clear clinical need for improved catheters that address the 

drug delivery limitations of CED [113].  

Reflux 

A common drawback of CED is reflux of drug along the insertion tract, which 

results in ineffective drug distribution and premature termination of the CED therapy. 

Recognizing this need, catheter are now being developed to incorporate reflux-arresting 

properties, such as a “step-change”, in which the diameter size of the catheter changes 
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along the distal tip of the catheter. Other designs and features added to cannulas to 

mitigate backflow include the “bullet-nose”, or rounding of the cannula tip and the 

“recessed tip”, an indentation on the distal end of the cannula   [132, 133, 139-141].   

Table 2.3: Examples of commercial catheters used in CED studies 

Drug Distribution 

Another major challenge of treating GBM is the highly infiltrative nature of the 

disease. Malignant cells extend centimeters beyond the resolvable tumor mass deep into 

the surrounding healthy tissue. Clinical recurrences of the primary tumor in the adjacent 

areas necessitate extended delivery to treat these infiltrative cells [9]. Recognizing this 

need, Infuseon Therapeutics, Inc. designed a catheter (Cleveland Multiport Catheter™) 

that offers multiple ports of infusion originating from a single insertion tract to extend the 

dispersal volume of the infusate for CED [144]. This approach may reduce the risk of 

trauma to healthy neurological tissue and probability of seeding malignant cells given it 

requires a single trajectory for insertion and removal. In addition, Vogelbaum et al. has 

demonstrated the Cleveland Multiport Catheter to successfully deliver high volume 

therapeutics during intra and perioperative infusions in recurrent GBM and AA [145]. 

Their catheter supports the concept of using multiple ports for achieving high volumes of 

Catheter Company Trial  

Barium-impregnated  
one-port catheter 

Medtronic® PS Medical 
(Goleta, CA, USA) 

Phase I/II [142] 

Barium-impregnated  
one-port catheter 

Vygon US LLC 
(Valley Forge, PA, USA) 

Phase III 
(PRECISE) [131] 

Reflux-preventing  neuro 
ventricular cannula 

SmartFlow® MRI 
Interventions (Irvine, CA, 
USA) 

Phase I [143] 

Cleveland Multiport 
 CatheterTM 

Infuseon Therapeutics, Inc. 
(Cleveland OH, USA) 

Early Phase I 
[144] 
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distribution, specifically in the non-enhancing tumor-infiltrated brain tissue. Others have 

opted for a different approach and are investigating intermittent, chronic delivery of 

therapeutics using catheters that are permanently implanted and accessed via a port on the 

side of the cranium [146]. 

Leakage 

Leakage of the therapeutic into CSF spaces, such as the ventricles or sulci, are 

frequent (more than 20% of CED attempts) [147]. These structures act as low-pressure 

“sinks” and result in waste of the therapeutic and loss of pressure gradient driving fluids 

to the target tissue areas. One study found that leakage, not only prevented concentration 

of the infused agent to increase in the target tissue, but concentration started to drop in 

these areas once leakage occurred [148]. Furthermore, this opens the possibility of 

additional adverse effects from circulation of the therapeutic in the CSF affecting normal 

tissue. This study stressed the importance of monitoring the infusion to visualize the 

transport of the infusion agent. Imaging feedback opens the possibility of making 

adjustment during the infusion (e.g. changing catheter position) and may provide 

opportunities “to correct” the infusion. 
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Chapter 3: The Arborizing Catheter for Convection Enhanced Delivery 

The  “arborizing catheter” was developed to maximize drug dispersal in the brain 

[149, 150]. The arborizing catheter consists of multiple infusion ports or "microneedles" 

originating from within a rigid cannula, thus requiring one insertion path. Each 

microneedle individually arborize (branch-out) from the primary cannula to enhance drug 

delivery to desirable margins surrounding GBM. Risk of complications (e.g. mechanical 

damage) could be reduced due to the small diameter of microneedles. Additionally, 

because the microneedles are fully retracted back into the cannula prior to extraction of 

the catheter, the surface of the microneedles in contact with tumor tissue remain 

completely covered within the cannula, thereby reducing the probability of tumor cell-

seeding in healthy brain tissue. Furthermore, the arborizing catheter design introduces a 

step change at the cannula-microneedle interface, a concept that has been demonstrated to 

mitigate reflux in the literature [86, 139, 151]. In this chapter, the components of the 

catheter are described in detail, including their design and fabrication process.  

INTRODUCTION TO FIBEROPTIC MICRONEEDLES 

Needles with dimensions in the order of micrometers offer clinical utility for 

minimally invasive delivery of fluid into tissue [152-155]. Microneedles made from 

flexible, light-guiding fused-silica capillary tubing, termed “fiberoptic microneedles” 

were used to simultaneously deliver laser energy and fluid agents in rat brains [156].  

Introducing hyperthermia to CED demonstrated significantly, greater volume dispersal 

relative to infusion-only controls (approximately 60-80% greater) [157]. Given that 

microneedles are approximately 10-fold smaller than conventional catheters, they can 

potentially reduce mechanical trauma, bleeding, risk of stroke, and cerebral edema. 
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Additionally, smaller cannula diameters have been demonstrated to help mitigate 

backward flow or reflux [158, 159]. 

Nevertheless, the small lumen of microneedles are associated with high hydraulic 

resistance limiting the fluid delivery to small volumes [160]. However, this limitation can 

be mitigated by introducing the fluid through a system of microneedle arrays [161, 162]. 

Motivated by the limited volumetric dispersal of therapeutics in CED, an array of 

microneedles is proposed to deliver fluids to multiple regions of the brain and increase 

distribution of the infusate.   

INVENTION OF THE ARBORIZING CATHETER 

Proof-of-concept prototypes were originally fabricated from twisting six 

polyetheretherketone (PEEK) tubing (794 um OD, 381 um ID) around a seventh PEEK 

tube and bonded with a commercially-available cyanoacrylate epoxy to create a 10-cm 

long cannula for the arborizing catheter (Figure 3.1 ) [149]. This manufacturing process 

resulted in the outer diameter for the cannulas of less than 2.5 cm. The twisting of the 

PEEK tubing resulted in microneedles exciting out of the tubing at an angle. The 

microneedles were fabricated from 14-cm long pieces of fused-silica capillary tubing 

(TSP150375, Polymicro Technologies, Phoenix, AZ) epoxied to 22 G dispensing needle 

with a Luer lock. This initial prototype were evaluated in 0.6% (w/w) agarose brain tissue 

phantoms and one ex-vivo canine brain. Computer tomography imaging showed that the 

microneedles were successfully deployed in the brain and MRI demonstrated the 

distribution of the infused glowing gad-albumin along white-matter tracts with negligible 

reflux. The mean distribution ratio for the infusion was calculated to be 2.45. These 

initial infusion experiments were promising in establishing the feasibility of using the 

arborizing catheter (with microneedles) to deliver fluids into brain tissue.  
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Figure 3.1: Proof-of-concept prototype. Microneedle deflection angle of 10.7º was 

measured from the axis of the cannula. 

However, initial experiments also highlighted the drawbacks of the manufacturing 

method, material selection and functionality in the proof-of-concept catheters. These 

catheters were time consuming to manufacture, considering the non-biocompatible 

cyanoacrylate epoxy, which required 24 hours to fully cure. The twisting of the PEEK 

tubing throughout the length of the cannula provided resistance during microneedle 

deployment. Additionally, the deflection angle for the microneedles was only 

approximately 10º, which left room for improvement for these catheters.  

FABRICATION OF ARBORIZING CATHETER BETA PROTOTYPES 

Beta prototypes of the arborizing catheter consisted of a primary cannula with an 

outer diameter of 3 mm. The cannula was manufactured by bonding seven aligned 

biocompatible PEEK tubes (41568-L4, Analytical Sales & Services; OD 794 µm x ID 

381 µm) with a light-cured medical grade adhesive (3972, Loctite®) (Figure 3.2A). A 

custom-designed fixture was used to twist and bend the PEEK tubes at the distal end of 

the cannula (Figure 3.2A-B). The twist at the end of the cannula caused the microneedles 

to branch out at an angle of up to 20° (angle of peripheral needles from cannula axis) 

when they were deployed (Figure 3.3A). Once the adhesive was cured, the distal end of  

1 cm 

10.7º 
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Figure 3.2: A) Six PEEK tubes aligned parallel to each other and concentrically around a 

seventh tube were bonded with adhered with light-cured adhesive. The last 40 mm of the 

tubing were left unglued B) The bonded portion of the cannula was attached to proximal 

end of fixture and the free tubing ends were threaded through equally spaced holes of 

cylindrical fixture. C) The free ends were twisted, bent and fixed in place with adhesive. 

the cannula was polished to a smooth conical tip (Figure 3.3B). The cannula was made to 

house seven microneedles made from flexible, hollow silica optical fibers (TSP180375, 

General Separation Technologies) (OD 375 µm x ID 180 µm) polished to a smooth bevel 

tip (Figure 3.3C). The distal end of each microneedle was attached to a 22G hypodermic 

needle with a Luer lock adapter to allow for easy connection to small bore extension 

tubing. When deploying the microneedles, the small diameter of the microneedles 

compared to the primary cannula created a step change that helped to arrest reflux as 

demonstrated in other catheters with an incorporated step change [139, 141].  Unlike 

initial prototypes, these catheters reduced resistance of the microneedle sliding through 

A B C 



   

 

 35 

the PEEK tubing given that twisting was limited to the distal end of the cannula. 

Additionally, the medical grade UV-acrylic glue improved biocompatibility of the 

arborizing catheter. The performance of the beta arborizing catheter prototypes was 

compared to the performance of single-port catheters in infusion studies described in 

Chapter 4 [150].   

 

Figure 3.3: Images of the arborizing catheter prototype. A) Side view of the arborizing 

catheter with deployed microneedles at the distal end of the cannula (left) where the 

twisted PEEK tubing is labeled. At the proximal end of the cannula (right) the proximal 

end of the microneedles is shown with attached Luer lock adapters. B) Magnified image 

showing twisted PEAK tubing at distal end of the cannula, which allowed microneedle 

deflection. C) Magnified image of a polished, bevel-tipped microneedle. Image adapted 

from Elenes and Rylander 2017 [150]. 

 

Straight Cannula Twist 

Side view 

C 

500 µm  

B 

1 mm 

A 
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DESIGN OF USER-INTERFACE DEVICE 

When microneedles are fully retracted into the cannula, a portion of the flexible 

fused-silica capillary remains exposed. When they are connected to the fluid lines, the 

added weight can cause them to bend and break. Additionally, when deploying the 

microneedles, pushing the microneedles through the twist at the distal end of the cannula 

can cause buckling at the proximal, unsupported end. Therefore, a user-interface was 

created to hold the main cannula of the arborizing catheter and provide support to the 

microneedles and prevent them from buckling during deployment. The user-interface was 

first designed using 3D CAD software, Solidworks (Dassault Systèmes; Waltham, MA). 

The back-plate (37 x 57 mm) and the front-plate (40 x 55 mm) were first laser-cut from 

acrylic sheets shown in Figure 3.4 A-B. Mastercam for Solidworks (CNC Software Inc.; 

Tolland CT) was then used to convert the 3D CAD drawings to G-code for programing a 

5-axis CNC mill (MDA Precision; Morgan Hill, CA). A triangular slot was milled into 

the back-plate for holding the microneedles. The back and front-plates are secured to 

each other with plastic screws to “sandwich” the cannula between the front and back 

plates (Figure 3.4 C). The front and back plates hold the cannula and provide the 

mechanical support required to prevent buckling or breakage of the microneedles. 

EVALUATION OF ARBORIZING CATHETERS IN A CANINE MODEL 

In vivo evaluation of the beta arborizing catheter prototypes and user-interface 

was conducted at the Virginia-Maryland Regional College of Veterinary Medicine 

(Blacksburg, VA) in order to understand user feasibility and functionality of the device. 

A Large Animal Core Report was provided by John Rossmeisl, DVM. The objective of 

the pilot study was to use the arborizing catheter to achieve rapid coverage of a tissue 

target, while tracking the microneedles, deployed using real-time MRI. 
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Figure 3.4: CAD illustrations of the user-interface. A) Back-plate B) Front-plate and C) 

User-interface and arborizing catheter assembly. 

Two arborizing catheters were evaluated with bilateral hippocampal infusions (a common 

site for gliomas in canines) in a 23-kg female canine of mixed breed (Figure 3.5A).  The 

arborizing catheters were deployed each 2.7 cm from the brain surface. The 

microneedlew were deployed 7 mm from the distal tip of the cannula. Three beveled-

tipped microneedles were deployed from each catheter. The contrast agent, gadopentetate 

A B 

C 



   

 

 38 

dimeglumine (Magnevist ®), was infused at a rate of 1 µL/min/microneedle for total 

infusion time of 16 minutes.  

Figure 3.5B-D, show MRI images of the canine pre-infusion and at Vi of 9 µL and 

21 µL. The total volume infused for the first arborizing catheter (AC-1) was 42 µL, while 

only 28 µL were infused with the second arborizing catheter (AC-2) due to one 

microneedle breaking proximal to the Luer lock. Total volume dispersed and mean 

distribution ratio for AC-1 were 66 mm3 and 1.57, respectively. Total volume dispersed 

and mean distribution ratio for AC-2 were 23 mm3 and 0.82, respectively. The most 

notable adverse effect observed was intrinsic reflux up the cannula, which resulted in 

subarachnoid infusion (Figure 3.5E). Additionally, after deployment, the microneedles 

were not well resolved in the MRI scan. Finally, one microneedle fractured within the 

proximal aspect of the cannula during deployment (Figure 3.5- black arrow); therefore, 

only two microneedles were used for AC-2 resulting in poor target coverage. The break 

also introduced air into the brain and hindered full retraction of the microneedle into the 

cannula prior to withdrawal from the brain (Figure 3.5 F- red arrow).  

The adverse effects encountered in the study highlighted that the beta prototypes 

needed to be improved to minimize reflux and prevent breakage. Although the user-

interface was designed to support the microneedles, it is possible that the lack of 

familiarity with the new device could contributed to the adverse event. Nonetheless, the 

pilot study showed that rapid infusions for coverage of a constrained anatomical target 

using multiple ports were possible with the arborizing catheter.  
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Figure 3.5: Canine CED pilot study. A) MRI scan showing volume targets in the hippocampus 

(blue circles) for CED infusions with the arborizing catheter. B) MRI scan of a canine patient 

prior to infusion of Magnevist imaging tracer. C) MRI scan showing Vi of 9 µL. Arrow points to 

air introduced due to microneedle breakage. D) MRI scan after Vi of 21 µL. E) Image showing 

reflux of image tracer up the cannula (arrows). F) Fractured microneedle (black arrow) 

complicated full retraction of the microneedle upon removal (red arrow).  Photo credit: Dr. John 

Rossmeisl.
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REFINING THE ARBORIZING CATHETER 

The design of the arborizing catheter was re-evaluated and refined prototypes 

were fabricated following the design specifications established through the discussions 

within our group involving neurosurgeons (Table 3.1). The key feature of the catheter is 

the distal end of the primary cannula (3 mm OD) that consists of six biocompatible PEEK 

tubes (41568-L4, Analytical Sales & Services; OD 794 µm x ID 381 µm) bent at a radius 

of curvature of 28.3 mm. Deformation of the PEEK tubes was accomplished using a two-

piece custom-manufactured fixture (Figure 3.6A). The PEEK tubes were fixed in their 

bent configuration with UV-cured medical grade adhesive (3972, Loctite®) (Figure 

3.6B). Unlike earlier prototypes, only the distal portion of the PEEK tubes were fixed 

using an adhesive. The free, proximal end of the tubes are inserted in a PEEK 381G 

medical tube (Nordson Medical; 2.57 mm ID x 3.0 mm OD) to achieve a smooth, 

uniform cannula (Figure 3.7). Following the curing process, the distal end of the cannula 

was polished to obtain a smooth conical tip.  

 

The PEEK tubes guide six microneedles made from small-gauge (OD 375 µm x 

ID 180 µm) fused-silica capillary fibers (TSP180375, General Separation Technologies). 

Five microneedles were equally spaced surrounding the sixth microneedle at the center of 

Table 3.1: Design specifications for refining arborizing catheter. 
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the cannula. The proximal end of each microneedle was attached to a 22G plastic 

dispensing needle with a Luer adapter for connecting to small-bore extension tubing. The 

flexible plastic dispensing needle was reinforced with PEEK tubing to add rigidity and 

prevent kinking/buckling during microneedle deployment. The distal ends of 

microneedles were cleaved flat. Based on infusion experiments comparing flat-polished 

versus bevel-polished microneedles, flat-tipped microneedles were more favorable at 

reducing the occurrence of reflux (see next section).  

 

 

Figure 3.6: A) Drawing of the two components of the fixture for manufacturing the 

cannula of the arborizing catheter. B) View of assembled fixture holding and bending the 

PEEK tubing in place for bonding. 

A B 
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Figure 3.7: Arborizing catheter with six microneedles. The cannula consists of natural 

PEEK 381G medical tubing.  

 

The fixture used to manufacture the arborizing catheter was designed to deflect 

the needles at 25º measured from the axis of the cannula. Images for each microneedle, 

deployed individually, were taken and imported into Image J to measure the angle of 

PEEK 381G cannula Twisted PEEK 

Figure 3.8. Measured angles of arborizing catheter. Phi (φ) was defined as the angle along the 

axes of two adjacent needles. Theta (θ) was defined as the angle of deflection of each 

microneedle in reference to the axis of the cannula 
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deflection, θ (Figure 3.8). Transverse images of the distal tip of the cannula, with the 

microneedles fully deployed were also taken to measure the angle, φ, between two 

adjacent microneedles. The mean angle (n=10) and standard deviation were 26.6º ± 1.2º 

and 72.0º ± 3.2º for θ and φ, respectively. With the fixture, good reproducibility was 

achieved when fabricating the refined arborizing catheter prototypes. 

 

Straight vs Bevel Polished Microneedles 

The evaluation of beta prototypes in a pilot CED study in a canine model 

concluded that reflux needed to be addressed. Even with the inherent step-change at the 

interface of the 3-mm cannula and 375 µm OD of the microneedles, reflux was apparent. 

Therefore, the following infusions experiments were performed to compare bevel-

polished microneedles versus flat-polished microneedles. The flat-polished microneedles 

are more similar to the reflux-preventing step catheter by MRI Interventions.  

Microneedle Fabrication 

The microneedles in these experiments consisted of a 22-gauge, 24 mm long 

hypodermic needle and a fused-silica capillary, polished at a bevel or flat (Figure 3.9: A). 

The capillary fiber was cut to 16 mm, and one end was coated with liquid cyanoacrylate 

adhesive (Loctite) and inserted into the penetrating end of the hypodermic needle. Care 

was taken to ensure that the end of the fiber was not sealed with glue.  

Following full curing of the adhesive, the microneedles were polished using a 

fiber polishing lapping wheel (Ultrapol 1200) and custom-built fixtures to hold the 

microneedles. The microneedles were fixed perpendicular to the lapping paper for flat-

polished needles (Figure 3.9B). A second fixture was used to hold the needles at ~20º in 

order to achieved a beveled geometry (Figure 3.9B). The microneedles were imaged with 
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a Nikon microscope to ensure their geometry. The average length of beveled 

microneedles was 40±1 mm and 39±1.5 mm for straight microneedles. 

 

Figure 3.9: A) Microneedle consisting of 22-gauge hypodermic needle and fused-silica 

capillary tubing. B) Microscope image of flat-polished microneedle. C) Microscope 

image of beveled-tip microneedle.  

Agarose/dye Preparation 

For each infusion, 300 mL of agarose gel (0.6% w/w) was prepared by mixing agarose 

powder with deionized water on a stirring hotplate until it reached a low-boil and the 

solution became optically transparent. While the solution was still warm (> 50 ºC), it was 

decanted into a clear container and allowed to gelate. A syringe was filled with indigo 

carmine dye (2.5% w/w) and primed to ensure that no air bubbles had accumulated, then 

attached to a three-way stopcock. Infusion tubing and a differential pressure sensor 

(Omega Engineering) were also attached to the stopcock and similarly primed to remove 

any air bubbles. The microneedle was then attached to the other end of the fluid line 

(Figure 3.10A).  

500 µm 

A 

B  C 
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Figure 3.10: A) Infusion line consisting of (1) 3-way stopcock; (2) microneedle attached 

to catheter tubing; (3) pressure; (4) syringe. B) Shadowgraphy experimental setup. 

Experimental Setup 

Infusions were performed on a shadowgraphy experimental setup (Figure 3.10B). 

The microneedles were inserted into the gel using a leveled, linear stage micrometer. 

Infusion flow rate was controlled with a Harvard Apparatus syringe pump ramping up 

from 0.1µL/min to 3.0µL/min for 1 minute, then infusing at a constant rate of 3.0µL/min 

for 45 minutes. Throughout the infusion, the pressure sensors recorded pressure data and 

images of the infusion were captured at 1 frame/min to monitor the flow of the dye into 

the gel and any obstructions that occurred. This data was then uploaded into Matlab 

(Mathworks, Natick, MA) for analysis. 

Results 

The pressure readings for both straight and beveled microneedles were compared 

to determine trends in infusion pressure. Increased pressure readings were presumed to 

correlate to potential clogging (Figure 3.11). Results for the beveled needles (n=21) were 

very consistent (Figure 3.12A). A total of 20 out of 21 infusions refluxed (the outlier was 

an Expelled Clog and was not included in the data for that reason). Average pressure 

recordings did not increase higher than 0.34 psi. Average pressure reading for the straight  
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Figure 3.11: Line infusion pressure recorded for single infusion showing potential 

clogging. Peak pressure was measured at time = 41.4 minutes. A) Infusion image one 

minute before the peak pressure. B) One minute after the peak pressure indicated a rapid 

release of dye, suggestion potential clogging. C) Image taken several minutes after the 

potential clogging event showing dispersal of the dye.  

needles (n=21) showed much more variability. Straight needles were further categorize 

into three group: ideal; refluxed; and expelled clogs (Figure 3.12B). These categories 

were defined based on the following criteria: 

Ideal infusions (n=3) were characterized by maintaining a relatively constant 

pressure profile with mean pressure value of 0.37 psi. An increase in pressure was 

observed during the first 10 minutes of the infusion with a maximum average pressure 

reading of 0.68 psi. In the agarose gel, they formed a teardrop shape indicating forward 

flow and relatively homogeneous distribution of the dye at the microneedle tip (Figure 

3.13A).  
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Refluxed infusions (n=5) were also characterized by maintaining a relatively 

constant pressure profile throughout the infusion. The average pressure reading was 

slightly lower than ideal infusions at 0.34 psi. Max average pressures for all the infusions 

in this category was 0.46 psi.  However, these infusions were most noticeable in the 

agarose gel, where they would form a cylindrical shape (Figure 3.13B). The dye 

distribution was greater near the surface of the gel than for ideal infusions. Furthermore, 

in some cases pooling of dye on the surface of the gel was observed.  

Expelled clog infusions (n=13) were characterized by a buildup of pressure 

(above 1 psi) indicating the presence of a potential clog, and a later drop in this pressure, 

indicating the possible expulsion of the clog. These infusions were identifiable in the 

agarose gel by the sudden expulsion of a large volume of dye (Figure 3.11B). Due to 

variability after the expulsion of the initial clog, these infusions were further categorized 

into three subcategories. Pressure data for the subcategories are plotted in Figure 3.12C. 

a. Expelled Clog, then further Clogging: After the expulsion of the clog, pressure 

readings continued to rise, potentially indicating further obstruction of the 

microneedle or only partial expulsion of the clog. 

b. Expelled Clog, then Forward Motion: After the expulsion of the clog, pressure 

readings did not continue to rise. However, the average pressure value did not fall 

down to magnitudes associated with ideal or reflux infusions. Rather average 

pressure reading for this subcategory remained within 0.88-1.64 psi. 

c. Expelled Clog, then Reflux: After the expulsion of the clog, pressure readings 

dropped noticeably and plateaued at ~0.38 psi. Images demonstrated the dye 

flowing back to the surface around the needle shaft (in the direction of least 

resistance).  
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Figure 3.12: A) Mean pressures and standard error for all the beveled-tip microneedles and the 

straight-tip microneedle infusions. B) Mean pressure and standard error for straight-tip 

microneedle infusions categorized as ideal, refluxed and expelled clogs. C) Mean pressure and 

standard error for straight-tip microneedle infusions that demonstrated clogging (pressure spike), 

which were further subcategorized into events encountered after the clog was expelled.
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Figure 3.13: Infusions of indigo carmine in agarose gel. A) Ideal infusions were 

characterized by mostly forward flow. B) Refluxed infusions were characterized by larger 

infusion volumes towards the proximal end of the needle and surface of agarose gel. C) 

Infusion shape for expelled clogs were variable and were characterized by pressure build-

up in the infusion line.  

Conclusion 

The beveled-tip microneedles inherently refluxed consistently during 20/21 

infusions. These infusions were characterized by average pressure reading below 0.34 psi 

and backflow of the dye around the microneedle shaft as shown in images. Avoiding 

beveled-tip microneedles would help mitigate the adverse effects that were observed in 

the canine pilot study.  However, infusion results for the straight-tip microneedles 

showed more variability. These microneedles had a higher propensity for pressure spikes 

that may be linked to obstruction of the microneedle when inserting into the agarose gel. 

  

A B C 



   

 

 50 

Chapter 4: The Arborizing Catheter for Convection Enhanced Delivery 

in Tissue Phantoms 1 

INTRODUCTION 

CED is an investigational therapy, pioneered approximately 25 years ago, as a 

means of bypassing the BBB and BBTB to deliver therapeutic agents locally to MGs. By 

resolving the shortcoming of poor drug distribution highlighted in the PRECISE trial, the 

success of CED can potentially improve; hence, the arborizing catheter was developed to 

enhance dispersal of the infusate. In this chapter, the beta prototypes of the arborizing 

catheter were compared to a single-port catheter using agarose gels as a tissue phantom. 

Infusion with the two types of catheters were performed and analyzed to determine 

whether the arborizing catheter with its multiple, separated infusion ports could achieve 

greater volumetric dispersal (Vd) of the infusate and greater mean distribution ratio 

(Vd:Vi), compared to a single port catheter. 

METHODS 

Arborizing Catheter Design and Fabrication 

Methods for the design and manufacturing of arborizing catheter are described in 

full detail in the preceding chapter. Briefly, the arborizing catheter prototype used in 

these experiments consisted of a primary cannula housing a total of seventh 

microneedles. Six microneedles were deflected, or arborized, from the seventh, un-

deflected microneedle. Each microneedle was able to be individually deployed or 

retracted to the surrounding tissue. 

                                                 
1 Portions of this chapter were published in: Elenes, E.Y. and C.G. Rylander, Maximizing Local Access to  

Therapeutic Deliveries in Glioblastoma. Part II: Arborizing Catheter for Convection-Enhanced Delivery in 

Tissue Phantoms, in S. De Vleeschouwer, Editor. Glioblastoma: Brisbane (AU); 2017. E. Y. Elenes 

conducted the research study and prepared the manuscript under the supervision of C. G. Rylander. 
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Fabrication of Single-port Microneedle Catheter 

Single-port catheters were manufactured in-house. They consisted of a single 

microneedle (OD 375 µm x ID 180 µm), 3 cm in length, attached to a 22 G hypodermic 

needle (1.9 cm length) with a Luer lock. The distal end of the single-port catheter was 

polished to a smooth bevel tip.  

Agarose Tissue Phantom Preparation 

Agarose tissue phantoms were prepared for infusion studies. An agarose solution 

was mixed at 0.6% (w/w) by reconstituting agarose powder in deionized water. The 

solution was heated to a low boil and continuously stirred until all the agarose powder 

was completely mixed. The agarose was allowed to cool at room temperature and then 

poured into transparent molds. For all experiments the agarose solution was decanted into 

the mold and the device of interest (single or arborizing catheter) was inserted in the 

solution while still liquid (approximately at 50 oC). The microneedles were deployed 

approximately 2.5 cm from the exit point of the cannula, which resulted in each 

microneedle being separated from an adjacent microneedle by distances ranging 

approximately 0.4-0.6 cm. This casting method allowed a tight seal around the device and 

helped mitigate reflux. The agarose was allowed to set at room temperature and infusion 

began when the temperature of the agarose reached 23 + 2 oC.  For infusions using a 

single microneedle, polystyrene molds (1.7 cm x 8.1 cm x 3.9 cm) with an open top were 

used. For infusions using an arborizing catheter, a 10 cm cubic glass mold was used.  

Infusions 

The goal of this study was to compare the volume dispersed and mean distribution 

ratio for a given infusion using a single-port catheter versus the arborizing catheter, 

which is a multiport catheter consisting of seven microneedles. Using a programmable 
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pump (PHD ULTRA™ Syringe Pump, Harvard Apparatus) to control volumetric flow 

rate, 5% (w/w) indigo carmine dye was infused in the agarose gel. As a baseline, the Vd 

and Vd:Vi for a single-port catheter was determined at a flow rate of 1 µL/min for 100 

minutes.  A similar infusion was performed using the arborizing catheter. The flow rate 

for each microneedle was maintained at 1 µL/min/needle. Finally, because the arborizing 

catheter consists of seven microneedles, each a delivery port, a third set of infusions was 

performed using a single-port catheter with seven-times higher flow rate in order to 

compare Vd and Vd:Vi when equal volumes of infusate were delivered to the tissue 

phantom (i.e. equivalent to the Vi for the arborizing catheter). To summarize, the three 

experimental groups were: 1) single-port infusions (n=5) at a flow rate of 1 µL/min for a 

total Vi of 100 µL;  2) single-port infusions (n=5) at a flow rate of 7 µL /min for a total 

Vi of 700 µL 3) infusion with the arborizing catheter (n=5) performed at 1 µL 

/min/needle for a total Vi of 700 µL.  

Shadowgraphy Technique 

To evaluate the prototypes, a shadowgraphy experimental setup was used 

consisting of a clear stage with reflecting mirror on the left side and bottom (Figure 4.1). 

For each infusion, the sample was placed on the stage and backlit with various lamps 

placed behind a light-diffusing sheet. A DSLR camera (Rebel T1i, Cannon) mounted in 

front of the stage, simultaneously captured images containing three views of the sample 

(front, side and bottom), within the same frame, which were used to estimate the volume 

dispersed of the infused dye (Figure 4.2). Images were captured at a rate of one frame per 

minute for a total of 100 minutes. Metric scale bars were included in each image.  

The images were then processed using an algorithm coded in Matlab (Mathworks, 

Natick, MA). Original images were cropped into three separate view frames: front, side 
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and bottom. Each cropped frame was then subtracted from the first image in the series to 

remove the background and thus only show the infusion volume. The differential images 

were then converted to grayscale and then to binary images by computing the global 

threshold based on Otsu’s method [163]. Otsu’s method assumes that the grayscale image 

is composed of background and foreground pixels. The algorithm iterates through all the 

possible threshold values that minimizes the intra-class variance, 𝜎𝑤
2 , defined as the 

weighted sum of the background and foreground variance, 𝜎𝑏
2  and 𝜎𝑓

2, respectively: 

𝜎𝑤
2 = 𝑊𝑏𝜎𝑏

2 + 𝑊𝑓𝜎𝑓
2 

Pixels with intensity values below the global threshold value were assigned black and 

pixels with intensity values greater than the threshold value were assigned white. 

 

 

Figure 4.1: Shadowgraphy experimental setup. A programmable syringe pump was used 

to control the infusion of dye into agarose tissue phantoms placed on a clear acrylic stage 

backlit by lamps. A DSLR camera controlled by a desktop computer captured images of 

all three views (front, bottom and side) at a rate of one frame per minute. 
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Figure 4.2: A) Images captured using the shadowgraphy experimental setup of the 

arborizing catheter prototype in agarose tissue phantom prior to infusions (t=0 min) and 

after 100 minutes of continuous infusion of indigo carmine dye. The front, side and 

bottom views were captured within a single frame. B) Image of single-port catheters 

(n=3) in agarose gel captured with experimental setup at t=0 min and t=100 minutes of 

continuous infusion. 
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The Vd for each cropped view frame was quantified using an image processing 

method previously described [164]. Briefly, the method assumes that Vd is axisymmetric, 

about the axis of single-port catheter or primary cannula of the arborizing catheter. The 

volume is discretized into elementary frustums of right circular cones (Figure 4.3). The 

algorithm counts the number of black pixels in each discretized section to calculate the 

bottom and top diameters of each frustum. A scale factor, extracted from the original 

image, was used to scale the pixel sizes of each binary image. The final volume was 

calculated by summing the volume of all the individual frustums:  

 where, h is the pixel height, A is the small diameter of the frustum and B is the larger 

diameter of the frustum.  

The final Vd for an infusion was reported as the average of the three views: (front, 

side and bottom) of each image. The mean distribution ratio (Vd:Vi)  was calculated by 

dividing the Vd  by the total infused volume (Vi) that was programmed in the syringe 

pump. For infusions using the single-port catheter, the volume was observed to be 

relatively spherical. Therefore, only the front view of the images was used to calculate 

Vd.  

Using the statistical software R (R Foundation for Statistical Computing, Vienna, 

Austria), one-way ANOVA tests were performed to analyze differences in Vd and Vd:Vi 

for the three experimental groups assuming a significance level equal to 0.05. A Tukey-

Kramer test was performed for pairwise comparisons among the three experimental 

groups. 
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Figure 4.3: Illustration of image processing workflow. Binary images were imported into 

Matlab and were discretized into frustums of right circular cones to calculate Vd. Using 

the a priori Vi, the mean distribution ratio Vd:Vi. 

RESULTS AND DISCUSSION 

Advantage of Seven Ports versus Single-port 

 Results for volume dispersed and mean distribution ratio using a single-port 

catheter at 1 µL/min for 100 minutes were 2.36 cm3 and 23.61, respectively (Figure 4.4). 

When the flow rate for the single-port catheter was increased seven-fold, the Vd increased 

by only approximate 117.7% to 5.14 cm3, and Vd:Vi decreased by approximately 69% to 

7.34. However, comparisons of Vd and Vd:Vi using the arborizing catheter show that we 

can achieve a Vd  of 10.47 cm3 and Vd:Vi of 14.95 with our current catheter prototype. 

Compared to the single-port catheter at 7 µL/min, the values for Vd and Vd:Vi achieved 

with the arborizing catheter were 2 times greater. It is important to note that the total V, 

across all microneedles in the arborizing catheter, was the same for the arborizing 

catheter and in the single-port catheter (7 µL/min flow rate) experimental groups.  This 

suggests that the arborizing catheter can achieve significantly (p < 0.001) greater 

volumetric dispersal of the infusate, when it is distributed among 7 microneedles instead 

of coming out of a single-port. This would be beneficial in CED because it is desirable to 
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distribute the therapeutic agent throughout the entire tumor volume, including the 

surrounding tumor margins, to completely target any infiltrative malignant cells.  

 

Figure 4.4: Statistical comparisons of average volume dispersed and mean distribution 

ratio results. A one-way ANOVA test was performed to analyze differences in average 

volume dispersed (Vd) and average mean distribution ratios (Vd:Vi) after 100 minutes of 

continuous infusion in agarose tissue phantoms for the three experimental groups: 1) 

single-port catheter at a flow rate of 1 µL/min;  2) single-port infusions at a flow rate of 7 

µL /min; 3) arborizing catheter. A Tukey-Kramer test was performed for pairwise 

comparisons. Values for Vd were significantly different when each group was compared 

(*p < 0.001). Similarly, values for Vd:Vi were significantly different from each other 

among the three groups (+ p < 0.0001).  

A visual representation of Vd for the three groups can be seen in Figure 4.5.  In 

these binary images taken at the final time point of the infusion for each experimental 

group, the greater Vd achieved with the arborizing catheter can be appreciated. For this 

sample, the Vd of 12.13 cm3 obtained after 100 minutes is equivalent to coverage of a 
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spherical volume with a 2.8-cm radius. The single-port catheter at the slower flow rate (1 

µL/min) resulted in the lowest Vd value. This is expected because the overall Vi for that 

group was seven-times lower than for the single-port catheter at the higher flow rate (7 

µL/min) and for the arborizing catheter groups. However, it can be appreciated that even 

though the total infused volume for the single-port group at the highest flow rate (7 

µL/min) and the arborizing catheter were the same, the resultant volume dispersed was 

greater for the arborizing catheter.  

 

Figure 4.5: Representative volume dispersed for each experimental group after 100 

minutes of continuous infusion. All images are of the front view captured directly by the 

DSLR camera. The volume dispersed (Vd) and mean distribution ratios (Vd:Vi) were 

calculated using an algorithm that discretizes the volume into elementary frustums of 

right circular cones [164]. The final volume is calculated by summing the volumes of all 

the frustums. 

It’s noteworthy to discuss that in these experiments, the agarose gel was casted 

around the microneedles and the single-port catheter in order to minimize reflux. 

Although this simplified model is not reflective of the real-life scenario in which the 

catheters would be inserted into tissue, this method allowed for the high flow rates used 
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in the study without loss of infusate due to reflux. Therefore, all the infused volume was 

distributed into the agarose gel and calculations of Vd and Vd:Vi  were straightforward 

without having to account for reflux. However, more realistic experiments in which the 

microneedles of the arborizing catheter were deployed into tissue are described in 

Chapter 6. 

Vd:Vi versus Time Indicates Overlap in the Infusion Distribution  

Although the single-port catheter (1 µL/min) group showed the lowest Vd, it 

resulted in the highest Vd:Vi  of the three groups. In comparison to the arborizing catheter 

group, the catheter is composed of 7 microneedles, with each individual microneedle 

representing a single-port (each at a flow rate of at 1 µL /min). However, at the end of the 

100 min-long infusion, the overall Vd:Vi  for all the microneedles of the arborizing 

catheter resulted in an approximately 37% lower mean distribution ratio compared to 

single-port catheter at the slower flow rate (1 µL/min). The Vd:Vi  over time is shown in 

Figure 4.6 for the three experimental groups. The Vd:Vi  for the arborizing catheter group 

is similar to that of the single-port at the slower infusion rate of 1 µL/min at the early 

time point, however it begins to decline and eventually becomes lower than the single-

port (1 µL/min) group by 60 minutes of continuous infusion. This could be explained due 

to the likely overlap in the local infusions from individual microneedles as they become 

larger with time.  It is likely that at the beginning of the infusion, the overlap of the 

individual volume provided by each needle is less pronounced, therefore the Vd:Vi is 

similar to that of the single-port catheter. However, as the volume dispersed from 

individual needles start to become bigger and merge with one another into one large 

volume, the benefit gained from the multiple ports in the arborizing catheter is reduced 

until eventually the Vd:Vi becomes less than that of a single-port catheter.  The single-
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port (7 µL/min) group, which has the lowest Vd:Vi, further supports the concept of 

overlap as it shows the dye, concentrated in a smaller volume, causes the mean 

distribution volume to plateau quickly during the infusion and stays relatively constant 

after approximately 20 minutes of continuous infusion. 

The slower flow rate achieved the highest Vd:Vi, which can be thought as a 

measure of the “efficiency” of the infusion. It has been noted that macromolecular 

transport is sensitive to changes in tissue permeability due to perfusion-induced tissue 

deformations (e.g. reduced pore size)[165]. Therefore, it is likely that higher flow rates 

induce greater local deformation and strain at the infusion site, which would result in 

reduced hydraulic permeability and lower Vd:Vi compared to the slower flow rate. 

Clinically, infusion protocols implementing slower flow rates may be safer, not only to 

prevent reflux associated with higher flow rates, but to reduce damage to local tissue near 

the infusion site due to perfusion-induced deformations in the tissue. 

 We observed that, once deployed, the separation distance of the individual 

microneedles of the arborizing catheter affects the amount of overlap between the local 

infusions of each microneedle and influences the measured Vd. For this arborizing 

catheter prototype, the separation distance was approximately 0.5 cm. Based on the 

results from this study, such separation distance between adjacent needles was inefficient 

and contributed to the lower Vd:Vi values for the arborizing catheter group compared to 

the single-port catheter at slower flow rates. In the next chapter, a computational study 

was utilized to optimize the catheter design, by comparing the effects of separation 

distance of adjacent microneedles on infusion volume overlap in order to improve Vd:Vi.  
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Figure 4.6: Mean distribution ratios (Vd:Vi,)  versus time of infusions for the three 

experimental groups. The average Vd:Vi, for each group was calculated every 20 minutes. 

However, the image processing algorithm was limited to calculating volume of solid, 

axisymmetric shapes and could not reliably calculate the volume of infusions shapes with 

gaps or holes. Therefore, infusions in the arborizing catheter group were calculated at 40 

minutes and beyond, after the infusion shapes of individual microneedles had overlapped 

sufficiently to form a solid shape. 

It is important to note that our image processing algorithm was not able to reliably 

calculate Vd for the arborizing catheter at time points less than 40 minutes. This is 

because we assumed that the infusion volume was axisymmetric about the axis of the 

primary cannula of the arborizing catheter and thus, it was not able to account for any 

amorphous shapes or holes in the infusion volume. Figure 4.7 shows binary images of 

three representative time points in the infusion of an arborizing catheter. After 10 minutes 

of continuous infusion the dispersed volume from individual microneedles is clearly 
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discernable. At 20 minutes, there are still gaps present in the volume dispersed. However, 

after 40 minutes, most gaps in the volume dispersed had been filled and a reliable 

calculation for Vd could be obtained.   

 

 

Figure 4.7: Representative binary images of volume dispersal for the arborizing catheter 

at three time points during the infusion for three view frames. The images show that at 

time points below 40 minutes, there were gaps in the dispersed volume due to branching 

out of the microneedles in the arborizing catheter. As the individual infusion volumes 

from each microneedle grew and began overlapping each other, the gaps were filled. 
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CONCLUSIONS 

Results indicate that the multiport, arborizing catheter can significantly enhanced 

volumetric dispersal of the infusate over a single port.  By separating the volume infused, 

the arborizing catheter achieved a two-fold, greater volumetric dispersal and mean 

distribution volume compared to a single-port catheter for the same total infused volume. 

When comparing infusions of the arborizing catheter to that of a single-port catheter at 

the same flow rate per microneedle, the mean distribution ratio for the arborizing catheter 

drops to approximately 30% less than the single needle perhaps due to overlap in the 

individual volume dispersed of the seven microneedles of the catheter.  In the next design 

iteration, separation of individual microneedles within the arborizing catheter will be 

optimized to minimize overlap in the infusion volumes of individual microneedles (but, 

with no gaps in between them), while maximizing volumetric dispersal.  

 

 

  



   

 

 64 

Chapter 5: Optimization of the Arborizing Catheter using a Biphasic 

Computational Model to Enhance Dispersed Infusion Volume  

INTRODUCTION OF COMPUTATIONAL MODELS 

Computational models to study the transport of the infused drug within the brain 

tissue are tools that can provide insights for informed-design of CED catheters and 

treatment protocols to achieve the necessary broad distribution of drugs in the affected 

brain tissue.  Several mathematical models, varying in degree of complexity, have been 

used to study drug infusion into central nervous tissue.  An analytical model of pressure-

driven infusion in a cavity surrounded by infinite porous media was presented by Basser 

[166] and Barry and Aldis [167] to study the fluid transport and tissue deformation that 

occurred during the infusion. This model was able to predict interstitial (pore) pressure, 

radial fluid velocity and dilatation of the solid matrix following a step change in pressure 

within the infusion cavity, but did not incorporate solute transport. Chen and 

Sarntinoranont [168]  later expanded on the existing model and derived the analytical 

solution for radial displacement of the solid matrix.  

Morrison et al. [158]  presented a simple model to describe transport of solutes in 

isotropic gray matter due to high-flow infusion; however, the brain was modeled as rigid 

porous media and the effect of solid deformation (i.e. tissue swelling and edema) induced 

by the infusion were neglected. Patient-specific models that incorporate diffusive tensor 

imaging data, but treat the brain tissue as a rigid solid, have also been used to predict the 

macromolecular distribution of the infusate within the brain parenchyma [169], however 

significant deformation has been observed during CED based on feedback from real-time 

MRI surveillance [170].  Other models couple fluid transport and solid deformation based 

on biphasic theory, poroelastic or poroviscoelastic theory [168, 171-175]. Using the finite 

element method, Chen and Sarntinoranont [168], and Garcia and Smith [171] 
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investigated pressure-driven solute transport in linear elastic and hyperelastic material 

properties, respectively. In these models, both research groups prescribed a constant 

pressure to the inner boundary of the infusion cavity inducing water and solute transport 

within a spherical mesh. They coupled the effects of tissue swelling including 

deformation-dependent hydraulic conductivity to study the solute distribution due the 

prescribed infusion pressure at the cavity. While, Chen and Sarntinoranont assumed 

linear elasticity for the solid phase of their model, Garcia and Smith used a custom-

written finite element code to implement the nonlinear material properties of brain tissue. 

In conventional CED studies, the drug is delivered at a constant flow rate using a 

programmable syringe pump. A constant prescribed infusion pressure may not indicate 

realistic conditions during CED simulations. Therefore, Netti et al. [172] presented an 

analytical solution for a flow-driven, biphasic model, using linear elasticity to represent 

the solid phase, and coupled the model to a macromolecular transport numerical model. 

Using Netti's model, Smith and Garcia [173, 174] validated their custom-written finite 

element model to study flow-driven fluid and mass transport in the brain considering 

nonlinear material properties under finite deformation, mechanically dependent hydraulic 

conductivity and convection-diffusion transport of the infused solution. Similar to 

previous models, a spherical geometry with an embedded infusion cavity was used to 

represent the brain. Traction on the infusion cavity is equal to the interstitial pressure, 

which contributes to solid deformation of the infusion cavity. However, unlike pressure-

driven models, interstitial pressure at the boundary is unknown initially in flow-driven 

models. Therefore, to account for the nonlinear boundary condition, Smith and Garcia 

proposed a fixed, artificial boundary consisting of highly permeable and compliant 

elements, in which a constant radial fluid velocity was prescribed in order to guarantee a 

constant infusion flow rate.   
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Using computational models to test various design concepts is an economical and 

effective approach to optimize the design of the arborizing catheter. Thus, the goal of this 

study is to use computational models to simulate infusion conditions and parametrically 

explore how the separation distance of adjacent microneedles in the arborizing catheter 

and flow rates affect volume distribution. As the first iteration of this model, pressure-

controlled infusions were compared to experimental data of infusion in agarose gel 

presented in Chapter 4. 

METHODS 

Biphasic with Solutes Theory 

The biphasic-solute model, based on the theory of incompressible mixtures, 

consists of a permeable solid matrix, a solvent and a solute. The volume fraction of the 

solute was assumed negligible relative to the solid and solvent fractions. In addition, the 

friction within the fluid (i.e. solvent and solute viscosity) is assumed negligible relative to 

the friction between the solid and solvent (i.e. permeability). Additionally, quasi-static 

conditions were assumed. The complete derivation of the governing and constitutive 

equations is described elsewhere [176-179].   

In this biphasic finite element (FE) model, the solid phase representing the porous 

tissue phantom made from 0.6% (w/w) agarose gel is denoted as α = s, the solvent 

representing deionized water is denoted as α = w, and the solute/infusate representing 

indigo carmine is  α = a (MW ~ 446 Da). All constituents are assumed to be neutrally 

charged and intrinsically incompressible, thus the true density (ρT
α) is invariant for each 

constituent. Following the notation by Gu et al. [180], and using the generalizations for 

the balance of linear momentum equations, along with the constitutive equations for the 

mixture stress, and the solvent and solute electrochemical potentials presented in Mauck 
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et al. [176], the following momentum equations for the mixture, solvent and solute, 

respectively: 

−grad𝑝 + div𝝈𝑒 = 𝟎                                              (1) 

 −𝜑𝑤(grad𝑝 − 𝑅𝜃 grad𝑐) + 𝑓𝑤𝑠(𝒗𝑠 − 𝒗𝑤) + 𝑓𝑤𝑎(𝒗𝑎 − 𝒗𝑤) = 𝟎            (2) 

−𝜑𝑤𝑅𝜃 grad 𝑐 + 𝑓𝑠𝑎(𝒗𝑠 − 𝒗𝑎) + 𝑓𝑤𝑎(𝒗𝑤 − 𝒗𝑎) = 𝟎                         (3) 

where, p is the fluid pressure, σe is the elastic solid stress in the matrix, φw is the volume 

fraction for the solvent, R is the universal gas constant, θ is the absolute temperature and 

c is the concentration of the solute on a solution-volume basis. Additionally, vα is the 

velocity of the constituent α and fαβ is the diffusive drag force between the constituents α 

and β (with fαβ = fβα). The non-zero diffusive drag coefficients are related to the hydraulic 

permeability (k) of the solvent through the solid matrix, the solute diffusivity in the 

mixture (D), and the solute diffusivity in the free solution (D0) by: 

 

𝑓𝑤𝑠  =
(𝜑𝑤)2

𝑘
, 𝑓𝑤𝑎 =

𝜑𝑤𝑅𝜃𝑐𝛼

𝐷0
, 𝑓𝑤𝑎 + 𝑓𝑠𝑎 =

𝜑𝑤𝑅𝜃𝑐𝑎

𝐷
                         (4) 

The governing equations for mass balance of the mixture, solvent and solute 

phases, in the absence of chemical reactions, are: 

div (𝜑𝑠𝒗𝒔 + 𝜑𝑤𝒗𝑤 + 𝜑𝑎𝒗𝑎) = 0                                     (5) 

𝜕𝜌𝛼

𝜕𝑡
+ div(𝜌𝛼𝒗𝛼) = 0, 𝛼 = 𝑤, 𝑎                             (6) 

where, ρα = φα ρT
α  is the apparent density for the constituent α, and φα is the volume 

fraction for each constituent.  Inverting the balance of linear momentum equations (Eq.2-

3) yield expressions for the volumetric fluid flux, 𝜑𝑤(𝒗𝑤 − 𝒗𝑠), and solute molar flux, 

𝜑𝑤𝑐 (𝒗𝑎 − 𝒗𝑠),  as a function of their respective driving forces utilizing relations of the 

permeability and diffusivity to diffusive drag coefficients described in Ateshian et al.   

[178], and Maas et al. [181]. Such relationships represent generalized versions of Darcy's 
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law for fluid transport through porous media and Fick's law for solute diffusion in free 

solution and in porous media.  

Model Validation 

To validate the above model, Vd of indigo carmine dye in agarose from infusion 

experiments were compared to numerical predictions of solute dispersal in a biphasic 

medium from pressure-driven infusion simulations. The geometry for the model consists 

of a cube with an embedded spherical cavity of initial radius ro = 0.18 mm, which 

corresponds to the inner diameter of a 28-gauge hypodermic needle. The solid matrix is 

modelled as a homogeneous, isotropic, neo-Hookean solid with a modulus of elasticity 

(E) of 6 kPa and a Poisson’s ratio (ν) of 0.4 [182]. The solid volume fraction (φs) is based 

on the volume fraction of fibers for the 0.6% agarose gel [183]. Consistent with literature 

reports, the hydraulic permeability tensor is modelled as a function of local porosity 

changes [184]. Specifically, the following relationship proposed by Holmes-Mow for the 

strain-dependent permeability tensor is used:               

 𝒌 = 𝑘0 (
𝐽−𝜑0

1−𝜑0
)

𝛽

𝑒𝑀(𝐽2−1)/2 𝐈                                           (7) 

where, k0 is the isotropic hydraulic permeability in the reference state, M is the 

exponential strain-dependence coefficient, β is the power-law exponent and J is the 

Jacobian of the deformation gradient, i.e. J = det (F). In the absence of literature data, k0 

= 4.5 mm4/N·s, β = 0, and M = 1 were selected based sensitivity analyses.  Free and 

effective diffusivity are assumed nearly equivalent and prescribed a value of 6.0x10-4 and 

5.4x10-4 mm2/s, respectively, based on the molecular size for indigo carmine and 

extrapolated for room temperature (298 K) using Einstein’s relation for diffusivity [185]. 

For the model, all the outer tissue surfaces are exposed boundaries to ambient 

pressure (zero interstitial pressure and traction free boundary conditions). Taking 
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advantage of symmetry, only an eighth of the geometry was considered for the 

simulations. The boundary conditions at the symmetry faces include zero displacement, 

fluid flux and mass flux. Similar to Chen and Sarntinoranont [168], zero contact stress (σe 

= 0) was applied to the solid matrix at the porous-fluid interface. To guarantee continuity 

across element boundaries, the effective fluid pressure (𝑝) rather than the interstitial fluid 

pressure (p) was prescribed, where 𝑝 = 𝑝 − 𝑅𝜃𝜙𝑐 , R is the universal gas constant, θ is 

absolute temperature, ϕ is the osmotic coefficient, and c is the solute concentration [179]. 

Infusion pressure (i.e. the effective fluid pressure) was prescribed to the spherical 

boundary of the cavity to induce an average flow rate of approximately 1 μL/min and 7 

μL/min and compared to experimental data [150].  Infusion pressure was ramped rapidly 

with ramp time (t0) of one second and held constant for the duration of each simulation. 

Solute concentration is only continuous across an interface in the case of ideal solubility, 

thus the effective solute concentration (𝑐̃) is solved for instead [186]. This study assumed 

ideal solubility, therefore they are equivalent. The arising boundary value problem was 

solved with FEBio (version 2.6.4; www.febio.org). 

PreView (version 1.20; www.febio.org) was used to create a mesh consisting of 

8-node trilinear hexahedral elements with a mesh bias toward the infusion cavity.  The 

effective solute concentration present in the solid was compared to the prescribed 

concentration at the infusion cavity in a mesh convergence study. Increasing the number 

of elements decreased the percent error between the prescribed concentration and the max 

concentration of elements at the boundary of the infusion cavity. A mesh with 1296 

elements, biased toward the infusion cavities, resulted in less than 1% error for the 

simulations. Thus, meshes for the all simulations were at least 1296 elements. 

The effective solute concentration values given by the FE solution were 

normalized and a threshold of 0.1% of the normalized effective solute concentration (𝑐̃n) 
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were used to calculate Vd. The chosen threshold was based on experimental calibration of 

grayscale intensity threshold values to known serial dilutions of 5% (w/w) stock 

concentration of indigo carmine with 0.6% agarose gel. This resulted in uniform gels of 

known concentrations of indigo carmine ranging from 0-1% of the stock solution. Images 

were taken of the gels in similar lighting as the experimental infusions. These were then 

converted into grayscale images normalized to an intensity values ranging from 0.0 

(black) to 1.0 (full intensity or white). Global intensity threshold values were calculated 

(using a Matlab algorithm based on Otsu’s method) for each image. The calculated Vd 

from the simulations for time 20-100 min were compared with derived Vd from 

experiments for the same infusion times. 

Optimization Simulations 

After the validation of the FE model, simulations were performed to optimize the 

placement of two individual ports in a multiport catheter. The model geometry was 

adjusted to include two infusion cavities, representing catheter source ports (Figure 5.1). 

The sources are spaced along the x-axis at a separation distance (d) ranging from 0.5-2.0 

cm, measured from the center of each cavity. The y, z length dimensions for the cube are 

equal to the separation distance, which was approximately 275-times greater than ro. This 

ensures that changes in interstitial pressure, displacement and fluid velocity are negligible 

beyond such a distance from the infusion site [159, 172].  

Magnitude for the infusion pressure was varied between 1-4 kPa depending on the 

experimental protocol. At the higher infusion pressures, lowering v helped achieve 

convergence of the model. Thus, v ranged from 0.35 to 0.4. Additionally, a constant 

effective solute concentration was prescribed at the spherical boundary of the cavities. 

Table 5.1 presents a summary model parameters used for this study. 
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Figure 5.1: A) FE model geometry of biphasic solid with two embedded infusion cavities 

(i.e. source ports). B) Constant infusion pressure applied at a rapid ramp time of t 0 and 

constant effective solute concentration were applied at inner surface boundary of the 

infusion cavities. Zero interstitial pressure and traction free surface boundary conditions 

were applied at the outer boundaries of the solid. 
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Table 5.1: Summary of baseline parameters used for model. 

The volumetric flow rate were calculated utilizing the resultant deformation of the 

infusion cavity per time step and the flux with the current surface area of the cavity. 

Because the volumetric flow rate is a function of time, the values were averaged from t0 

to 100 minutes for each simulation. Additionally, Tc50 was defined and computed as the 

infusion time to reach 50% of the max-prescribed concentration at the mid-point between 

the two infusion cavities. 

RESULTS  

Figure 5.2A shows the intensity threshold values corresponding to the known 

diluted concentrations of the dye stock solution. The intensity threshold used to calculate 

Vd in in infusion experiments was 0.22 ± 0.03, which corresponds to a concentration of 

0.09% of the stock solution. Therefore, 0.1% of the normalized effective concentration 

was used as a threshold to calculate Vd in the FE simulations. Vd values were calculated 
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from simulations for continuous infusion ranging from 20-100 min and compared with 

single-port experimental infusions as shown in Figure 5.2B. The simulation with the 

average flow rate of 0.99 μL/min and single-port experiments (conducted at a flow rate of 

1 μL/min) indicate good agreement at all time points. The percent difference between the 

average Vd for experiments and the FE model is less than 4%, for times 60-100 minutes, 

but is higher at earlier time points. For the 20-min and 40-min time-points the percent 

difference is 11.0% and 6.0%, respectively.  However, this difference falls below one 

standard deviation of the measured experimental values. Similarly, Vd derived from the 

FE simulation with an average flow rate of 6.92 μL/min were compared to the Vd 

measured for single-port infusion experiments at 7 μL/min. They also show good 

agreement with a percent difference of less than 5.5% for all time points. 

Figure 5.3 shows the prescribed infusion pressures ranging from 1-4 kPa versus 

the resultant average flow rates calculated after the rapid ramp time of 1 sec and up to 

100 min. Consistent with Chen and Sarntinoranont, the predicted relation between 

infusion pressure and the average flow rate was nonlinear. Small changes in infusion 

pressure resulted in greater changes in the average flow rate. The minimum flow rate 

achieved by 1 kPa was 0.72 μL/min and the maximum flow rate, 8.48 μL/min, was 

achieved at the infusion pressure of 4 kPa. By comparison, clinically relevant flow rates 

for CED range from 0.5 – 10 μL/min [85, 103, 117-119, 159]. Infusion pressure of 1300 

Pa and 3500 Pa resulted in an average flow rate of 0.99 μL/min and 6.92 μL/min, 

respectively. These results were the infusion pressures used for validating the model by 

comparing with infusion studies performed at a constant flow rate of 1 μL/min and 7 

μL/min. The percent error between the average flow rates from the FE simulation and the 

experimental flow rates is 1.14% and 1.04% for the 1 μL/min and 7 μL/min, respectively. 
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Figure 5.2: A) Indigo carmine stock solution (5% w/w) was serially diluted from 1:100 in 

agarose gel solution and plotted as percentages versus their corresponding grayscale 

intensity threshold values from post processed images. B) Volume dispersed (V d) in ml 

versus time in minutes for finite element (FE) simulations compared to infusion 

experiments (Exp). Average flow rate for FE model slow was 0.99 µL/min versus flow-

controlled infusion with constant flow rate of 1 µL/min. Conversely, the average flow 

rate of the FE model fast was 6.92 µL/min versus flow-controlled infusion with constant 

flow rate of 7 µL/min. 
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Figure 5.3: Prescribed infusion pressure versus resultant average infusion flow rates. 

Flow rates were calculated after the infusion pressure was applied to the boundary of the 

infusion cavity. 

Given the pressure to flow rate relationship, four different flow rates were 

selected to calculate the mean distribution ratio (Vd:Vi) as a function of infusion time. 

Results show that slower flow rates resulted in greater Vd:Vi, or are more efficient 

infusions. This is consistent with results previously reported in the literature and are 

consistent with the experimental results shown in Chapter 4 [174]. One potential 

mechanism for this phenomenon is the mechanically-dependent hydraulic permeability 

prescribed in the model. Slower flow rates may be associated with reduced deformation 

of the infusion cavity and smaller porosity (volume fraction of fluid) allowing for greater 

distribution of the solute. From a clinical perspective, slower flow rates are potentially 

safer as they are associated with less tissue deformation that may result in damage and 

are less prone to induce reflux of the therapeutic [96, 139, 159]. 
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Figure 5.4: Mean distribution ratios (Vd:Vi) plotted versus time (min) calculated for 

infusion simulations at infusion flow rates ranging from 1 to 7 μL/min . The results 

indicate that slower infusions result in greater Vd:Vi. 

 Figure 5.5 demonstrates simulation results for infusion pressures ranging from 1- 

4 kPa for infusion cavities spaced 1.5 cm apart (center to center). Due to symmetry, only 

an eight of the geometry is represented in the model. The two infusion cavities are shown 

in the bottom corners. Contour plots show the spatial distribution of 𝑐̃n at 300 minutes of 

continuous infusion. At this time, the simulations prescribed 1 kPa and 2 kPa show an 

area between the two source ports in which the 𝑐̃n is below 0.1.  For these infusions, 300 

minutes of continuous infusion would not be sufficient for complete coverage of the 

volume target if a concentration greater than 0.1 or 10% of the infused therapeutic were 

required for efficacy. At 300 minutes, some overlap in the spatial distribution of the 

solute concentration between the two sources is demonstrated for the 3 kPa case. Finally, 
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the 4 kPa case achieves significant overlap between the two sources with concentrations 

greater than 0.5 𝑐̃n.  

For each simulation, the calculated Tc50 indicate the time at which the 

concentration overlap between the sources reached 0.5 or 50% of the prescribed 

concentration at the infusion cavities. Figure 5.6 shows a summary of the parametric 

results indicating Tc50 values (in hours) as a function of microneedle/port spacing for 

various flow rates. As the separation distance increases from 0.5-2.0 cm, Vd increases. 

However, Tc50 drastically increases as shown by the two orders of magnitude change in 

the logarithmic scale of the y-axis (approximately by 100 hours). Lowering Tc50 to a more 

manageable total procedure time would require infusion flow rates to be increased. For 

example, increasing infusion pressure from 1 to 4 kPa will result in 8-times higher flow 

rate, which would decrease the Tc50 by approximately 32 hours.  This is at the cost of 

lowering Vd:Vi as we found in infusion experiments and simulations. 

In this study, Tc50 was defined as 0.5 of the normalized solute concentration at a 

point midway between the two sources. However, this concentration is somewhat 

arbitrary as the minimum effective dose required is therapeutic-specific.  Therefore, a 

separate analysis was performed to understand the time required to reach a distribution 

overlap at various solute concentrations between the source ports.  Figure 5.7 shows the 

time, in hours, required for the solute concentration overlap ranging from 0.1-0.5 for 

ports spaced 0.5-2.0 cm apart and infusion pressures ranging from 1-4 kPa.  Prescribed 

infusion pressures, and subsequently, the average flow rate of the infusion, have a greater 

influence at higher concentration thresholds and at greater separation distances between 

the source ports. Additionally, doubling the separation distance between the ports 

achieves approximately a ten-fold increase in time required to reach the specified 

concentration. 
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Figure 5.5: Representative color map for simulation with source ports (infusion cavities) 

spaced 1.5 cm apart. The color map shows the normalized effective solute concentration 

at time = 300 min. 



   

 

 79 

 

Figure 5.6: Time (in hours) required for normalized effective concentration between 

sources to reach 0.5, Tc50, vs the source separation distance in cm. 

DISCUSSION 

Maintaining the treatment duration within a manageable period is important for a 

number of reasons. Chronic CED may be beneficial to achieve large Vd, even with lower 

infusion rates; however, it has not gained wide acceptance and has only been performed 

in humans outside of the United States. Due to the highly invasive and permanent nature 

of the procedure, it requires highly specialized infusion equipment for long-term use. 

Short-term infusions seems to be the more common approach to CED. In the PRECISE 

trial, IL13-PE38QQR was administered over 96 hours using 2 to 4 catheters at a total 

flow rate of 12.5  μL/min, which would result in a flow rate ranging from 3.13 to 6.25 

μL/min per catheter [85]. Even if the infusion is continuous over a period of days, it does 

not guarantee that the therapeutic reaches all the affected tissue as revealed in the study  
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Figure 5.7. Time to reach a concentration overlap (ranging from 0.1 to 0.5 of the 

normalized effective solute concentration) midway between two sources for port 

separation distance ranging from 0.5 to 2.0 cm. 

conducted by Sampson et al. [130]. Therefore, a more effective approach could be to co-

infuse the therapeutic with an imaging marker and perform CED under continuous 

imaging surveillance such as with MRI. Feedback of the spatial distribution of the 

therapeutic can help guide the therapy to ensure proper coverage of the intended volume 
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target [106, 136, 187]. Although this method would be an improvement over “blind” 

CED, the cost associated with continuous time in the MRI scanner room would 

undoubtedly increase the overall cost of treatment. Therefore, optimizing the treatment 

duration would help reduce the cost of the treatment. Additionally, shorter treatments 

could reduce risk of infection exposure and discomfort to patients. 

A second option to decrease time of treatment is to decrease the distance between 

the two ports, however that would also reduce Vd.  Thus, in order to maintain good 

coverage of a given tissue volume, more ports would be required, which supports the 

advantage of using a multiport catheter. Finally, infusing at higher flow rates may help 

decrease infusion time, but it comes at the expense of reducing Vd:Vi [174] . However, 

given the high recurrence rates of GBM, maximizing Vd to ensure treatment of infiltrated 

disease may be more important than maximizing Vd:Vi. With development of targeted 

drugs and drugs with a wide therapeutic index, peripheral damage of healthy brain tissue 

is less of a concern when attempting large Vd [188-190]. Nevertheless, higher flowrates 

are associated with adverse effects such as reflux of the infusate along the catheter 

insertion tract [159].   

The prescribed material properties in the model are based on agarose gels given 

that the model was validated using experimental data from infusions in agarose tissue 

phantoms. Although agarose has been commonly used as a substitute for brain tissue in 

infusion studies [191, 192], the isotropic, homogenous and simple geometry of the 

phantom is very different from the brain. Additionally, this model neglects perfusion and 

low pressure sinks, such as the ventricles and subarachnoid space present in the brain. 

Additionally, to induce flow, a constant interstitial pressure was prescribed at the infusion 

cavity boundary. However, during CED, a programmable syringe pump is used to control 

the flow rate of the infusion. For the flow-controlled case, the interstitial pressure of the 
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cavity is unknown initially; thus, a constant flow rate cannot be prescribed directly with 

current FE analysis software. Instead, custom-written FE code or additional steps are 

required to circumvent the nonlinear boundary condition [173]. Future iterations of this 

model will include flow-controlled infusions. Given the highlighted limitations, this 

model was useful for elucidating how factors of CED therapy, such as infusion flow rate 

and separation distance of individual ports, influence the distribution of an infused solute 

in a biphasic material. Additionally, it provided a sense of the design constraints when 

considering the time that would be required for each infusion given a desired spatial 

distribution of the infusate. 

CONCLUSIONS 

The infiltrative nature of GBM requires maximizing the dispersion volume of the 

infused therapeutic to increase the efficacy of CED. Therefore, the drug delivery 

technology for CED must be optimized in order to make it a viable therapy for GBM. In 

this study, using multiple ports proved that to be advantageous in increasing the 

dispersion volume of infused solutes in biphasic material, such as the brain. Increasing 

the separation distance of individual ports can help increase Vd. However, doubling the 

separation distance of source ports will require about ten-times longer infusion time for 

the solute spatial distribution between sources to reach a desired concentration.  

Increasing the flow rate of the infusion mitigates this effect, although caution is required 

as higher flow rates result in more reflux. Finally, a compromise of port spacing and flow 

rate could optimize both infusion duration with max Vd. Such optimization would require 

clinical guidance and/or adjustment of the treatment parameters based on imaging 

feedback.  
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FUTURE WORK 

In conventional CED studies, the drug is delivered at a constant flow rate using a 

programmable syringe pump. Therefore, a constant prescribed infusion pressure may not 

indicate realistic conditions during CED simulations. However, unlike pressure-driven 

models, interstitial pressure at the boundary is unknown initially in flow-driven models. 

Therefore, to account for the nonlinear boundary condition, Smith and Garcia [173, 174] 

proposed a fixed, artificial boundary consisting of highly permeable and compliant 

elements, in which a constant radial fluid velocity was prescribed in order to guarantee a 

constant infusion flow rate.   

Another approach to overcome the nonlinear boundary condition is to iteratively 

solve for the infusion pressure profiles using an optimization algorithm in Matlab along 

with a FE solver such as FEBio. A target infusion flow rate is prescribed in the 

optimization algorithm, which then initiates a first guess for the interstitial pressure at the 

infusion cavity boundary and runs FEBio for the first time step. During each step, part of 

the fluid volume prescribed will contribute to volume change of the infusion cavity and 

some would permeate into the tissue across the infusion boundary. This iterative 

approach is used to find the infusion pressure that will minimize the error between the 

actual flow rate and the prescribed flow rate at each time step. Therefore, a nonlinear 

infusion pressure profile can be obtained that guarantees the prescribed constant flow 

rate. 

Creating infusion models with more realistic boundary conditions for CED can 

elucidate the mechanisms of fluid transport and tissue deformation in the brain during the 

infusions. Such models could be extremely beneficial in treatment planning for accurate 

prediction of the fluid distribution with the goal of achieving maximum therapeutic 
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coverage of the diseased tissue. Additionally, they can predict any potential mechanical 

damage of the tissue due to the infusion. 
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Chapter 6: Evaluation of Arborizing Catheter in Excised Porcine Tissue  

INTRODUCTION 

Chapter 4 demonstrated the greater volume dispersed and mean distribution ratios 

achieved with the arborizing catheter compared to single-port catheters in brain tissue 

phantoms [150]. This chapter compares the performance of the refined arborizing 

catheter versus a single-port catheter in excised porcine brains. 

METHODS 

Fabrication of Catheters 

Two arborizing catheters and two single-port catheters were used for the infusion 

experiments. A set of each is shown in Figure 6.1A. The refined arborizing catheter 

prototype used for these experiments consisted of a primary cannula and six total 

microneedles. The full description of its design and fabrication process is described in 

Chapter 3. When the microneedles are fully deployed, the step change at the interface of 

the cannula and microneedles helps stop back flow during the infusion (Figure 6.1B). 

Similarly, the step change in the single-port catheter is demonstrated in the magnified 

image.  

The single-port catheters were modeled after commercially-available, reflux-

preventing step catheters (e.g., SmartFlow cannula, MRI Interventions). The single-port 

catheter consisted of a single fused-silica capillary tube (i.e. microneedle) fixed inside 

PEEK tubing (OD 794 µm x ID 381 µm). To create the reflux-preventing step-change, 

the PEEK-reinforced microneedle was inserted into a PEEK tube (1.5 mm OD). The 

proximal end of each microneedle was attached to a 22 G plastic dispensing needle with a 

Luer lock adapter. The distal end of each microneedle was cleaved flat. 
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Figure 6.1: A) Image of arborizing catheter and single-port catheter. B) Magnified image 

of distal ends of the catheters showing microneedle deflection in the arborizing catheter 

and the reflux-arresting step change for the respective catheters. 

Specimen Preparation 

Fresh commercial pig heads (n =7) were procured from a local abattoir within 

hours of harvesting and processed at room temperature. The bulk of the head was 

removed leaving only a block of tissue encapsulating the cranium and brain (~ 6 cm x 10 

cm x 11 cm) to prevent X-ray attenuation during imaging due to excess tissue. A Mopec 

autopsy saw was used to create a window in the sinus frontalis of the pigs and reveal the 

underlying frontal bone.  Two burr holes were drilled into the cranium, 1.5 cm apart, one 

on each hemisphere. 

 Infusion Experiments 

A custom-built fixture was used to hold the main cannula of the arborizing 

catheter and provide support to the microneedles and prevent them from buckling during 

deployment (Figure 6.3A). The device consists of two plastic plates secured to a linear 

stage. The back-plate contains vertical channels to help guide the microneedles and the 

front-plate is used to “sandwich" the catheter and microneedles, securing them to the 

linear stage. The microneedles were secured to the translating portion of the linear stage 

with a second fixture used to grip on to their Luer locks (Figure 6.3B). Mountable gage 

pressure sensors (PX26 series, Omega Engineering, Norwalk CT) were connected to the 

fluid line for each microneedle and the single-port catheter. Pressure sensors numbered  

Microneedles Cannula 

Luer Locks 

A B 
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Figure 6.2: A) Window into sinus cavity revealing the underlying frontal bone. B) Block 

of tissue with excess head tissue removed showing two burr holes created in the porcine 

cranium. The dura was pierced for access into the brain tissue. 

P1-P6 were assigned to each microneedle of the arborizing catheter and a seventh 

pressure sensor was assigned to the single-port catheter (Figure 6.4). Before the catheters 

were inserted, the microneedles and fluid lines were primed with the imaging tracer 

iohexol, at a concentration of 241.2 mg iodine/mL, and fully retracted inside the cannula. 

The cannula of arborizing catheter and the single port catheter were inserted manually, 

with the linear stage’s micrometer, on the right and left hemispheres of the brain, 

respectively. The arborizing catheter was inserted approximately 1-cm deep from brain 

surface. The single port catheter was inserted approximately 2-cm deep from brain 

surface. Both catheters were inserted at 40° using the flat surface of the tissue specimen 

as a reference.  

A virtual graphical interface program written in LabVIEW (National Instruments, 

Austin, TX) was used to control a linear actuator (Zaber Technologies, Inc. Vancouver, 

BC) to simultaneously deploy the microneedles 1-cm deep into brain tissue at an 

A B 
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Figure 6.3: A) Diagram of fixture used to secure arborizing catheter and single-port 

catheter. B) Trimetric view of catheter fixture. The back-plate and frontplate support and 

guides microneedles. 

insertion rate of 0.33 mm/sec. When the microneedles were deployed, the separation 

distance between adjacent microneedles was approximately 1 cm. The infusion flow rate 

was set to ramp from 0.5 to 1 µL/min/microneedle for the first 2 minutes, then to a 

constant flow rate of 1 µL/min/microneedle for the duration of the infusion using a 

programmable syringe pump (Harvard Apparatus, Holliston, Massachusetts). The total 

infusion time was 4hrs and 2 min. 

Computer Tomography Imaging 

Immediately following the infusion, the specimens were transported to the University of 

Texas at Austin High Resolution X-Ray CT Facility (UTCT) for CT scanning. Each 

specimen was imaged with the catheters in situ along with iohexol solution standards 

ranging from 100% to 1% of the stock solution. All specimens were imaged with a North  
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Star Imaging CT scanner and Perkin Elmer detector. The specimens were scanned at 130 

kV with a current of 0.13 mA. Voxel size was 133.3 μm for all three dimensions. The 

final data set ranged from 843 to 975 slices.  

Image Analysis 

For each specimen, stacks of 16-bit TIFF images were imported into Image J 

(NIH, Bethesda, MD) to extract the corresponding grayscale values from the iohexol 

solution calibration standards. The intensity value of each standard was averaged from 

40-50 images. A concentration of 10% of the iohexol stock solution was selected as the 

threshold for calculating the volume dispersed (Vd) of the infusion. At this concentration, 

the mean grayscale intensity for the contrast agent was greater than that of the 

surrounding brain tissue.   

Figure 6.4: Axial view of specimen demonstrating the arrangement of pressure sensors 

within each catheter. For the arborizing catheter, each dot represents the distal end of the 

microneedles fully deployed. Illustration not to scale. 
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After determining the average grayscale values for the solution standards and 

brain tissue, the image data was loaded into Avizo (version 9.5 FEI Visualization 

Sciences Group) for volumetric segmentation. Each voxel size was defined as 133.3 μm 

based on the CT images. The brain was isolated from the surrounding skull and 

superfluous tissue. A threshold range using the 10% stock concentration for the lower 

bound was applied to select the infused contrast agent. This was done in three orthogonal 

views, leading to a three-dimensional preliminary “mask” containing the selected voxels. 

This original mask was compartmentalized into separate masks based on each catheter. 

The infused volume on the right and left hemispheres corresponded to the arborizing 

catheter and the single-port catheter, respectively. Ventricular leakage was separated 

from the infusion volumes manually based on the structure of the lateral ventricles 

visualized in the images. Each catheter’s individual contribution to ventricular leakage 

could not be clearly distinguished, thus leakage was not subdivided, but rather aggregated 

in a single mask. 

The material analysis function available in Avizo was used to count each voxel 

and calculate the volume of each mask that represented Vd. Given the prescribed flow 

rate and duration of the infusion, the infused volume (Vi) per microneedle is known a 

priori, and was used to calculate the mean distribution ratio (Vd:Vi). Using the statistical 

software R (R Foundation for Statistical Computing, Vienna, Austria), a Student’s t-test 

for two samples was performed to analyze differences in Vd and Vd:Vi for the two 

catheter groups assuming a significance level equal to 0.05.  

RESULTS AND DISCUSSION 

Following the infusion of iohexol into excised pig brains, specimens (n=7) and 

vials of calibration standard solutions were imaged with CT. From CT imaging, it was 
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observed that in two specimens, one (Specimen A) or two (Specimen B) of the 

microneedles from the arborizing catheter were not inserted into the brain parenchyma, 

but rather were placed in epidural space, potentially caused by loss of CSF (Figure 6.5). 

This was taken into account when calculating Vd:Vi given the smaller total infused 

volume into the brain parenchyma due to needles not infusing into the tissue. 

Before segmentation of the infusion volumes, intensity thresholds were 

determined. Image stacks of the CT scan were imported into Image J to quantify the 

grayscale intensity values for the solution dilutions that ranged from 0 to 100% 

concentration of the iohexol image contrast solution. The grayscale intensity values, 

averaged from 40-50 images, are plotted versus concentration of iohexol (Figure 6.6). A 

concentration value of 10% of the stock iohexol solution with a mean intensity value of 

20653.7 ± 919.6 was consistently distinct from the surrounding tissue (15880.0 ± 229.0).  

The grayscale values derived from the calibration standards were used to set the 

grayscale threshold in Avizo and select voxels corresponding to 10-100% concentration 

of infused iohexol (Figure 6.7A). The infusion volume from each hemisphere was further 

segmented into the single-port and arborizing catheter groups (blue and red, respectively) 

(Figure 6.7B). The ventricles of the brain acted as “low-pressure-sinks” and flow from 

the infusion solution leaked into them and was labeled as “leakage” (displayed in green). 

For the majority of the specimens, the ventricles of the brain were filled with CSF and 

were indistinguishable from the surrounding tissue with grayscale thresholding. 

Therefore, the volume infusion from each catheter was separated from the ventricular 

leakage manually and cutoff where flow tapered into the lateral ventricle (Figure 6.7C). 

However, because the lateral ventricles are in communication with the third ventricle, it 

was not feasible to separate the contribution of ventricular leakage from each catheter. 

All the segmented volumes for all the specimens are shown in Figure 6.8. Arrows 



   

 

 92 

indicate the tips of the microneedles with iohexol drops at end for Specimen A with one 

microneedles in the epidural space, and Specimen B with two microneedles in the 

epidural space. 

A box plot demonstrating Vd for the three groups: the arborizing catheter, single-

port catheter and ventricular leakage, is shown in (Figure 6.9A). The outlier (defined 

outside the 1.5 times the interquartile range below the lower quartile) in the arborizing 

catheter group corresponds to Specimen B, with two microneedles inadvertently not 

inserted into the brain tissue. Mean Vd for the arborizing catheter (2227.4 ± 562.7 mm3) 

was significantly higher (p<0.001) than the Vd for the single-port catheter (382.2 ± 243.0 

mm3). The flow rate of 1µL/min was prescribed for each microneedle of the arborizing 

catheter and for the single-port catheter. The selected flow rate is on the low range of 

flowrates utilized in CED and infusion studies. The arborizing catheter demonstrated that 

it can achieve high Vd, even at a low flow rate, which may be beneficial given that higher 

flow rates are associated with reflux [158, 159]. In this study, minimal reflux was 

observed for both catheters, which was probably due to the step-change incorporated in 

the catheters and the low flow rate selected. 

The design of the arborizing catheter and the goal of this study were to maximize 

Vd. It was expected that the Vd from the arborizing catheter would be at least 6 times 

larger than for the single-port catheter given that Vi delivered for the catheter was 6-times 

greater. The actual difference in the Vd mean for the arborizing catheter was only 5.8-

times greater. The two specimens that did not have all six microneedles deployed in the 

brain parenchyma could explain this slightly lower value. Although consistent methods 

were employed to position the distal tip of the cannula within the tissue, variability was 

observed among the surface of the brains after imaging. In some instances there were air 

pockets between the surface of the brain and skull (i.e. subarachnoid space). 
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Figure 6.5: A.1) Axial view A.2) and sagittal view of Specimen A with one microneedle (MN) in 

the epidural space. B.1) Axial view showing Specimen B with two microneedles in the brain. 

B.2) Sagittal view showing the first microneedle in epidural space. B.3) Sagittal view showing 

the second microneedle in the epidural space of the brain.
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Figure 6.6. Grayscale intensity values versus concentration. A concentration of 10% was 

selected for the lower bound of grayscale threshold values for selecting voxels of interest. 

Loss of perfusion, along with blood and CSF drainage due to the harvesting 

process, may be responsible for the air pockets. Flow of contrast agent through the 

subarachnoid space was observed, especially for the specimens with microneedles near 

the surface of the brain. In specimens with microneedles in the epidural space of brain, 

the contrast agent was pooled on the surface of the brain. This solution volume was not 

included as part of the Vd or ventricular leakage. 

Given the high recurrence rates of GBM due to frequently infiltrated by GBM 

cells [32, 148], maximizing Vd is an approach to ensure that the peritumoral regions are 

treated. This means that local-regional "healthy" tissue would also be treated. This 

requires the use of targeted therapeutic agents with a wide therapeutic index to obviate  
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Figure 6.7: Volumetric segmentation with Avizo. A) Voxels with grayscale value 

corresponding to 10% and greater of iohexol concentration were selected to derive Vd for 

the single-port catheter (blue) and arborizing catheter (red). The volume of solution that 

leaked into the ventricles was segmented into a separate mask (green). B) Volumetric 

rendering of brain and Vd for each group. C) Volumetric rendering showing dispersed 

volumes for the single port catheter and the arborizing catheter after removing ventricular 

leakage from image. 

peripheral damage of healthy brain tissue when designing for large Vd. The development 

of such suitable drugs has progressed significantly [188-190, 193].  

It is important to note that the Vd for the catheters is a mixture of the iohexol 

solution and interstitial fluid. Furthermore, ventricular leakage are estimates from the 

iohexol mixing with the residual CSF after four hours of continuous infusion. Therefore, 

volumes for all three groups are notably larger than the total infused volume at 100% 

concentration. Lower leakage values were associated with larger Vd for the arborizing 

catheter and single-port catheter. A limitation of this study is that the excised brains were 

an open system and some of the CSF within the ventricles could have flowed out of the 

brain during the specimen preparation and/or experiments, influencing the end results for 

leakage. The ventricles were filled with CSF for the majority of the specimens, but the 
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contrast agent reached the base of the brain, and could have leaked out. However, we 

only were able to quantify the contrast agent within the ventricles in images.  

 

Figure 6.8: Volumetric reconstruction of brain and segmented infusion volumes for the single 

port catheter (blue) and arborizing catheter (red). Contrast agent that leaked into the ventricles 

was labeled in green. For Specimen A and Specimen B, one or two microneedles, respectively, 

were inadvertently placed in the epidural space of the brain and a drop of contrast agent was 

imaged at the tip of the microneedles. Arrows point to the gray volume that represents the drop 

of contrast agent at the tip of the microneedles. 
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Figure 6.8: cont. Volumetric reconstruction of brain and segmented infusion volumes for the 

single port catheter (blue) and arborizing catheter (red). Contrast agent that leaked into the 

ventricles was labeled in green. 
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 Figure 6.8: cont. Volumetric reconstruction of brain and segmented infusion volumes for the 

single port catheter (blue) and arborizing catheter (red). Contrast agent that leaked into the 

ventricles was labeled in green. 
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Figure 6.8: cont. Volumetric reconstruction of brain and segmented infusion volumes for the 

single port catheter (blue) and arborizing catheter (red). Contrast agent that leaked into the 

ventricles was labeled in green. 
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Figure 6.9B shows box plot comparing mean distribution ratio for the arborizing 

catheter and the single-port catheter. Average values of Vd:Vi for the arborizing and the 

single-port catheters were 1.6 ± 0.3 and 1.6 ± 1.0, respectively. The outliers (defined 

outside 1.5 times the interquartile range above the upper quartile and below the lower 

quartile) correspond to the Specimen A (upper outlier) and Specimen B (lower outlier) 

with microneedles outside of the brain tissue. The loss of infusion volume was accounted 

for by dividing Vd by lower Vi values when calculating Vd:Vi for these specimens. 

Specimen A with only five microneedles actively infusing in the brain resulted in 

Vd values comparable with Vd values for specimens with all six active microneedles. 

When dividing by the Vi expected for only five microneedles, its Vd:Vi was higher than 

the mean Vd:Vi (2.2 vs 1.6). However, this was not the case for the Specimen B with only 

four active microneedles in brain tissue. A notably smaller Vd (1070 mm3) was associated 

with this Specimen B, which in turn, resulted in a small Vd:Vi. The small Vd for this 

specimen could be due to a compound effect of iohexol not infused in the brain tissue and 

loss due to leakage into the ventricle. However, that could not be confirmed because of 

limitations with identifying leakage originating from the arborizing catheter. Another 

possibility is that in addition to two microneedles not being inserted in the brain, a third 

microneedle may have been clogged. Pressure data for microneedle labeled P2 in 

Specimen B saturated and stayed above the sensor’s pressure range throughout the 

infusion. When studying the CT images from for Specimen B, it was observed that 

minimal, if any, contrast enhancement was shown in the region where the P2 microneedle 

was inserted in the tissue (Figure 6.10). Thus, a total of 3/6 microneedles may have been 

inactive. Thus, if only half of the microneedles were active, the resultant Vd of 1070 mm3
 

for this Specimen B is expected because it is approximately half of the average Vd 

quantified for the arborizing group. 
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Figure 6.9: A) Box plot demonstrating dispersed volume (Vd) for the arborizing catheter, 

single-port catheter and any leakage of the contrast agent into the ventricles of the brain. 

B) Box plot of mean distribution ratio (Vd:V) comparison of the arborizing catheter and 

the single-port catheter. The outliers correspond to the specimens, which had one or two 

microneedles or the arborizing catheter outside of the brain tissue. 
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Figure 6.10: Pressure data for P2 (orange) suggest clogging for that microneedle. The 

lack of contrast in the local region where P2 microneedle was inserted in tissue seem to 

support this observation. 

Overall, the arborizing catheter Vd:Vi were similar compared to the single-port 

catheter. It is likely that the separation distance of 1 cm between adjacent microneedles, 

resulted in minimal overlap in the infusion volumes from individual microneedles. 

Therefore, the arborizing catheter acted like six single-port catheters. Yet, one advantage 

of the arborizing catheter is that it permits six infusion ports through a single burr hole 

and trajectory path, which could mitigate the risk of mechanical damage compared to 

inserting multiple single-port catheters requiring multiple burr holes and trajectory paths. 

Although the arborizing catheter did not improve Vd:Vi when compared to the single-port 

catheter, maximizing Vd:Vi may be secondary to maximizing Vd to ensure treatment of 

infiltrated GBM cells.  
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Mean distribution ratios in this study were much lower than previous results in 

infusion experiments using agarose gel and similar flow rates [150, 194]. Mean 

distribution ratios for the single-port catheter in agarose (at room temperature ~24ºC) 

were 23.6 ±2.1 and 15.0 ± 1.5 for the arborizing catheter, an order of magnitude larger 

than for the results in this study (Chapter 4). Several factors could contribute to the 

discrepancy. First, the complex geometry and heterogeneous structure of the brain led to 

losses in solution due to ventricular leakage and leakage along the subarachnoid spaces, 

which stresses the challenge of CED for maximizing drug distribution in the brain. Due 

to the optically transparent nature of agarose gel, the minimum concentration for infused 

dyes could be orders of magnitude lower than the 10% minimum iohexol concentration 

that was needed for grayscale thresholding in CT images. These inherent differences 

between agarose and brain tissue also highlight the importance of performing infusion 

studies in brain tissue for the evaluation of the arborizing catheter. Although the 

specimens were excised tissue, Vd:Vi measured in this study were comparable to values 

measured in live canines and primate brains [148] and in rat brains [157]. 

Line pressure data was measured continuously throughout the infusions. For the 

majority of the microneedles, pressure fluctuated throughout the infusion but remained 

below 1.5 psi. However, in four instances the pressure increased above 1.5 psi, but never 

exceeded 12 psi, which could be an indication of rise in pressure due to possible clogging 

in the microneedles upon insertion into tissue. However, upon removal of the 

microneedles and inspection, none of the microneedle were permanently clogged, 

suggesting that clogs, if any, were dislodged upon removal. Because the study was 

limited to images acquired only at the end of the infusion, it was not possible to 

definitively correlate the pressure spikes to possible clogging. Therefore, exploration into 

this issue is required to find a concrete explanation for the higher pressures. One 
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approach is to intermittently image the infusion in order to investigate the temporal 

distribution of the contrast agent, especially in the event of pressure spikes. This also 

illustrates the advantage of having multiple microneedles in which the fluid line can be 

shut off for individual microneedles in the event of an adverse effect. Alternatively, the 

microneedle may be individually retracted in an attempt to dislodge clogged tissue. 

CONCLUSIONS 

The performance of the arborizing catheter versus a step single-port catheter were 

assessed with infusions of iohexol in excised pig brains. Following the infusions, CT 

scans of the brains were taken and Avizo was used to analyze the images and quantify Vd 

of the infused contrast agent. Volume dispersed for the arborizing catheter was 

significantly higher (5.8 times higher) than the Vd achieved with the single-port catheter. 

The high Vd values were achieved at a slow flow rate that resulted in minimal reflux for 

either catheter. Mean distribution ratios for both catheters were not significantly different. 

The greater Vd achieved with the arborizing catheter is beneficial for maximizing drug 

coverage of the intended tumor and tumor margin target volume and potentially 

improving the efficacy of CED.  

FUTURE WORK 

The arborizing catheter’s performance was demonstrated in excised pig brains, 

however additional evaluation in a live animal model is necessary to access the 

performance of the catheter in a more challenging environment. Conditions in the live 

brain including perfusion, interstitial pressure and the challenge of maintaining 

homeostasis in the animal will add to the difficulty of infusing the brain. To evaluate the 

capability of the arborizing catheter to deliver therapeutics to GBM, spontaneous canine 

gliomas can be utilized as translational models of human GBM. Dogs and humans are the 
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only species in which primary brain tumors are common. Intracranial spontaneous 

primary tumors in dogs are three times more common than in humans [195, 196] and 

account for 1-3% of all deaths in aged dogs where necropsy is performed [197]. Dogs 

with gliomas present significant clinical signs, including seizures, depression or 

disoriented mental status, and motor dysfunction [198]. Patterns of survival for dogs with 

GBM (if not euthanized at time of diagnosis) are similar to those seen in humans, with 

death relatively soon (weeks to months) after diagnosis. Additionally, and unlike 

implanted tumors in rodents, tumors of the CNS in dogs are large enough to facilitate the 

testing, optimization, and use of both experimental diagnostic and therapeutic clinical 

procedures developed for human patients, including CED. Dogs offer a unique pre-

clinical model of brain tumors while concurrently serving as patients. The goal of such 

study, would be to show that the arborizing catheter can broadly saturate tumor and 

margins with a therapeutic agent co-infused with a imaging contrast agent to quantify 

volume coverage of the tumor target.   
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Chapter 7: Conclusions and Future Work 

This dissertation provides the most recent and comprehensive review of the 

arborizing catheter technology. The objective of the arborizing catheter is to address the 

limited ability of commercial single-port catheters to broadly distribute therapeutics in 

the brain. The arborizing catheter’s design was refined based on user and collaborators’ 

feedback. Then it was evaluated in both agarose and excised pig brains. Additionally, a 

validated computational model of CED was used to gain insights how interactions 

between adjacent ports of the arborizing catheter influence solute transport in a biphasic 

material. 

 Initial infusion experiments in agarose gels showed that the arborizing catheter 

could significantly enhance volumetric dispersal of the infusate compare to a single-port 

catheter. Vd achieved with the arborizing catheter was double the Vd achieved with a 

single-port for the same total Vi. When comparing infusions at 1µL/min/port, mean 

distribution ratios for the arborizing catheter were lower than the single-port catheter, 

suggesting that the distance of adjacent microneedles (< 1 cm) may play a role in the 

efficiency of the infusion and spread of individual microneedle infusion volumes.  

Using a multiphasic finite element framework, the interaction of dispersal volume 

and separation distance of adjacent microneedles was investigated. Doubling the 

separation distance of adjacent microneedle could increase dispersal volumes, but 

drastically increase the time required for distribution at a given concentration threshold. 

Increasing the flow rate could help mitigate the increase in infusion time, but care should 

be exercised given the potential for reflux at the higher flow rates. Furthermore, higher 

flow rates may be less efficient given the reduced hydraulic permeability as a result of 

local deformation and strain at the infusion site. Thus, the interplay between treatment 
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time, infusion flow rate and separation of microneedles would need to be considered 

when treatment planning for desired coverage of the volume target. 

Finally, the arborizing catheter was evaluated and compared to a single-port 

catheter in excised pig brain infusions. Volume dispersed, quantified from contrast-

enhanced CT images, for the arborizing catheter was significantly higher (5.8-times 

higher) than the Vd achieved with the single-port catheter. The flow rate for the infusion 

was maintained at 1µL/min/port, thus the Vi for the arborizing catheter was 6 times 

higher. Thus, higher Vd can be achieved at slow flow rates, via one access point to the 

brain with the arborizing catheter compared to the single-port catheter. Given that slower 

flow rates are clinically safer and may be associated with less mechanical damage, 

utilizing slow flow rates, but higher number of ports, may be an advantage in CED.   

CONVECTION ENHANCED THERMOTHERAPY CATHETER SYSTEM (CETCS) 

The fiberoptic microneedle technology allows for soluble therapeutic agents and 

laser energy to be simultaneously delivered to tissue. Combining the co-delivery features 

of light guiding, fiberoptic microneedles and the arborizing catheter yields the concept of 

Convection-Enhanced Thermo-therapy Catheter System (CETCS). It was previously 

established, that during CED thermo-therapy, the laser energy heats the target tissue and 

permits greater volumetric dispersion of the infused agent (up to 80% greater than 

without co-delivered laser energy) with limited tissue damage [157].  Therefore, the goal 

of CETCS would be to significantly enhance CED therapy by delivering therapeutics to 

an extensive volume of the tumor and tumor margins, previously unrealized with 

standard CED. With broader dispersion of the therapeutic, complete coverage of the 

tumor and infiltrating cells is more achievable, and can potentially reduce tumor 

recurrence.  Additionally, with enhanced delivery due to the co-delivery arborizing 
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catheter, coverage of the target tissue may be faster. This is beneficial because it could 

reduce the duration of the treatment, thus potentially minimizing patient discomfort and 

time in the operating room resulting in cost-reduction of the procedure. 

REAL-TIME MRI FEEDBACK  

The PRECISE trial highlighted the limitations associated with “blind” CED. The 

advantages of monitoring the infusion using a co-infused contrast agent with real-time or 

quasi-real-time MRI are numerous. First, the neurosurgeon can confirm visually that the 

therapeutic is covering the intended volume target to treat the diseased tissue. 

Additionally, in the event of any adverse effects, such as leakage into the ventricles, the 

neurosurgeon can take action, such as stop the fluid line for that port. Conversely, if the 

infusion is “well-behaved”, the physician can even increase the flow rate, while 

monitoring the infusion to ensure continuous forward flow.  

CETCS combined with real-time imaging feedback would be a fully integrated 

approach to address the limitations of current CED technology. These developments 

would enable the first opportunity to treat malignant brain tumors by broadly and 

accurately delivering drug to the tumor and infiltrative cells through unique features of 

arborization, photothermal activation, and MRI guidance. Paired with the appropriate 

targeting cytotoxic therapy, an innovative and versatile treatment system is possible with 

the goal of achieving better outcomes in patients with MGs. 
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