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 This report introduces the concept of three-dimensional (3D) radial plots for the 

visualization of multivariate large scale datasets in plant operations. A key concept of this 

representation of data is the introduction of time as the third dimension in a two dimensional 

radial plot, which allows for the display of time series data in any number of process variables. 

This report shows the ability of 3D radial plots to conduct systemic fault detection and 

classification in chemical processes through the use of confidence ellipses, which capture the 

desired operating region of process variables during a defined period of steady-state operation. 

Principal component analysis (PCA) is incorporated into the method to reduce multivariate 

interactions and the dimensionality of the data. The method is applied to two case studies with 

systemic faults present (compressor surge and column flooding) as well as data obtained from 

the Tennessee Eastman simulator, which contained localized faults. Fault classification using the 

interior angles of the radial plots is also demonstrated in the paper.  
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Chapter 1: Introduction 

 Thanks to the ubiquitous use of technology in today’s society, there has been a 

substantial increase in the availability of large-scale datasets and “Big Data”. These datasets are 

present in many different systems such as social media, the finance sector, and in 

manufacturing or process industries. The advent of data transmission technology and cheaper 

storage capabilities have pushed the generation of more granular and varied data, particularly in 

the chemical process industries. 

A downside to these large datasets is that they are hard to analyze and cumbersome to 

manipulate, so extracting information from the data, or data mining, is difficult. Visualization of 

the data is often the first step to understanding and making sense of the data, so how the data 

is represented visually is crucial.  

 Most process plants today are outfitted with a large variety of sensors that monitor and 

maintain the proper operation of a plant. Measurements from these sensors are taken often at 

high sample rates as well, so both the dimensionality as well as the sample size of these 

measurement data is large. One of the many uses of this sensor data is to calculate performance 

parameters and use these parameters to identify process faults.  Many fault detection methods 

such as principal component analysis (PCA) and partial least squares (PLS) regression exist and 

have been used to detect and classify faults in both industrial case studies and in silico 

simulators [1–3]. 

 Further benefits can be obtained if systematic faults, as opposed to individual 

component faults or breakdowns can be detected, if not predicted ahead of a time. Two 
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examples of systemic faults looked at in this report include compressor surge and column 

flooding. 

In this report, a new representation of large, multivariate datasets for visualization 

purposes is proposed. Through this method large datasets can be visualized appropriately and 

any trends present in the data can be identified. This data representation method is further 

explored for use in fault detection and classification. By taking into account data collected by all 

sensors and using the proposed multivariate data representation method, systematic fault 

detection as well as prediction can be done on industrial datasets. 

This paper will introduce the concept of 3D radial plots as well as mechanisms for fault 

detection and classification based on the 3D radial plot. We also present case studies of 

industrial datasets that have been analyzed using the presented method. Simulator data from 

the Tennessee Eastman Process Simulator is also used as a benchmarking tool for comparison 

with other methods. 
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Chapter 2: Preliminaries 

2.1 Representations of Multi-Dimensional Data 

There are many different ways to represent data, the most common of which are score 

plots. Score plots display 2 variables and plot them against one another. Using these plots it is 

easy to understand how a variable evolves in time by using time as one of the variables plotted. 

Its downside is that multiple score plots are needed to monitor different variables, which is 

difficult for plant operators to keep track of. While score plots are explicit in time, the number of 

variables that can be displayed is severely limited. 

To lessen this particular problem, the addition of one more coordinate can be added to 

construct a 3D Cartesian plot, where 3 variables can be displayed at a time. This reduces the 

number of plots needed to display all the data, but the time-series nature of the process data is 

lost – it is impossible to determine which sample of data came first. The 3D Cartesian plot is a 

time implicit representation of data. 

Parallel coordinates is a method for presenting multivariate data on a single plot and 

was first proposed by Inselberg [4]. This is done by giving each variable a vertical axis and 

arranging the axes in parallel. Each sample is an open line that connects the sample values 

across the different axes. The number of axes can be increased indefinitely and is only limited by 

screen size and display resolution [5,6]. 

However, parallel coordinates also suffer from cluttering issues. This is especially true 

for large datasets with many samples – the sheer number of lines clutters the plot and makes it 

difficult to discern any meaning information. Interacting with the plot through brushing or tiling 
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methods are needed to mitigate this issue [7–9]. Parallel coordinates is also a time implicit data 

representation method since time is considered just one of many parallel coordinates, which 

belies its importance for fault detection. Therefore it is desirable to have a multivariate, yet time 

explicit representation of data.

 

Fig 1. Commonly known methods of plotting 

From top left, in clockwise order: Cartesian 3D plots, score plots, 3D radial plots (proposed), parallel 

coordinate plots 
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Chapter 3: Data Representation Using Multi-Dimensional Radial Plots 

 This section introduces the proposed data representation as well as the related fault 

detection and classification mechanisms. A sample set of data, which is referred to as DS1, is 

used to introduce the theoretical concepts and is available in the appendix. 

3.1 Radial Plots 

Radial plots, also known as Kiviat diagrams or spider plots, are a variation of the parallel 

coordinates plot, where parallel axes are wrapped radially around a center point. The time 

dimension is not included as one of the radial axes and is instead included as an axis normal to 

the plotting plane at the center point [10]. 

3.2 Geometric Construction of Multi-Dimensional Radial Plots 

 In constructing multi-dimensional radial plots, we rely on data that is normalized and 

mean-centered – each variable has zero mean and unit standard deviation. 

푆푐푎푙푒푑퐷푎푡푎 =                                       (Eq. 1) 

Where the subscript k indicates the kth variable in the dataset. 

 The number of axes N to plot is a user-defined parameter, taking into consideration 

issues with plot resolution – too many axes make it difficult to visualize the data – and the 

number of variables in the dataset. 

 First, the position of the axes is calculated in polar coordinates, beginning with the first 

axis at 0 radians. Subsequent axes are spaced 2π/N radians apart. To determine the overall 
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radius of the plots, the maximum and minimum values of each axis across the entire dataset are 

found. The maximum and minimum of those values, which are called the overall maximum and 

minimum, are then used to determine the radius of the entire radial plot. 

 

Fig 2. Radial plot shape  

 To plot the scaled data points, they need to be further adjusted to represent trends in 

the data accurately. The overall minimum of the respective variable is subtracted from each 

data point; the resulting value is then divided by the difference between the overall maximum 

and minimum, obtaining the radial position of each point. A fractional gain is used to ensure 

that the data points stay within the bounds of the radial plot, and a bias is added to ensure that 

the minimum points on each axis do not cross into the opposing axes on the other side of the 

origin [11]. Equation 2 provides the mathematical form of the scaling method. 

푅푎푑푖푎푙	푝표푠푖푡푖표푛 = ∗( 	 	 )
( 	 	 )

+ 푏푖푎푠  (Eq. 2) 

 

2π/7  
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 The time dimension is captured via an axis normal to the plane of the radial plot axes 

passing through the origin. Each closed line or polygon connects the sample values between 

each axis to form one sample of the dataset. These “data slices” can then be stacked on top of 

one another in time to form a 3D figure that resembles a cylinder, with time as the z- axis, with 

each slice corresponding to a sample of the dataset in time. 

   

Fig 3a. Radial plots in 2D using DS1                   Fig 3b. Radial plots in 3D using DS1 

 These 3D radial plots can be updated in real time – as measurements from the process 

are streamed from different sensors, additional “data slices” can be stacked on top of the 

current figure to show the current state of the plant. New data can be added at the top of the 

plot while old data can be removed from the visualization in a “first-in-first-out” fashion. The 

amount of data to display at any point is user-defined and ideally dependent on the time scale 

of the dataset and resolution desired. 

3.3 Representing Large Datasets and Avoiding Cluttering Effects 

 Graphical representations of data can be affected by cluttering problems, particular for 

large datasets. Cluttering refers to the visual impact of the overlapping of the plots due to the 
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large number of samples, which reduces the clarity of the plot and leads to the loss of 

information and insight. Parallel coordinate plots suffer from such an issue due to large amounts 

of data because the number of lines that need to be plotted becomes too many, obscuring any 

individual line from being identified. Radial plots suffer from a similar issue but for a different 

reason – instead of too much data, too many variables results in cluttering problems. This is a 

resolution concern: Only 360 degrees are available for use as plotting, so plotting a large 

number of variables makes it difficult to distinguish between individual variables without 

adequate spacing. 

 This issue can be addressed in several ways. Assuming that sufficient expert process 

knowledge is available, the subset of data to be plotted can be user-selected. However, this 

approach is less practical when dealing with an unfamiliar process, so a more rigorous process 

for reducing the dimensionality of the dataset should be used. 

 PCA will be used to reduce the dimensionality of the data – this is done since PCA 

transforms combination of variables into principal components, each of which capture a certain 

amount of variance in the dataset. These principal components can be selected based on the 

total variance captured by each principal component, with those capturing more variance being 

favored for plotting. PCA has been used extensively in literature to conduct fault detection and 

classification in various processes, and excellent reviews on its use are available [12–16]. 

 After applying PCA to the data, the PCA scores (instead of the original data), will be used 

to construct the 3D radial plots. Depending on the level of variance desired to be captured by 

the principal components, the number of axes on the resulting plot is likely lower than the 
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corresponding plot of the original data. Alternatively, the number of axes on the plot can be 

fixed and the variance captured by the principal components allowed to vary. 

 For easy standardization of the visualizations, PCA was used for all analyses in the paper 

and the number of principal components to plot was fixed at five. 

    

Fig 4. Radial plots in 3D with five principal components selected (data in DS1 represented) 

 3.4 3D Radial Plots as Multivariate Control Charts 

 One of the more important contributions of analyzing process data is obtaining 

information concerning potential faulty operating conditions. Fault detection focuses on 

determining that a process fault has occurred; the exact type of fault can be determined 

through a fault isolation mechanism. The following subsections will introduce the fault detection 

and classification mechanism to be used in the proposed radial plots framework. 

3.4.1 Fault Detection 

 Fault detection is an important area of process monitoring as the cost of recovery and 

repair of a plant from a faulty state increase with process complexity. Many methods of fault 

detection exist, and can be categorized into different groups: Data-based methods such as PCA, 

and spectral analysis extract information from process operating data. Model-based methods 
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usually rely on building a first principles model of the plant and then comparing data from the 

plant to the model to determine if a fault has occurred. Knowledge-based methods use expert 

knowledge from plant operators to define rules that help determine if a faulty condition has 

occurred or not. There are several papers available that extensively review different methods in 

each category, and such a review is beyond the scope of this report [3,17–19]. 

 Traditional fault detection methods account for parametric or operator faults, and may 

fail in the presence of a systemic malfunction, where a process-wide failure condition is reached, 

but no individual sensor indicate a faulty state. The two case studies looked at in the report – 

compressor surge and column flooding – are two such failure conditions.  

3.4.2 Defining the “Normal” Operating State of a Process 

 Defining a fault-free, normal operating region is key to any fault detection mechanism. 

In this report, it is desirable to detect systemic malfunctions – the assumption is made that such 

faults manifest themselves as a deviation of the process from its nominal steady state. A moving 

window variance method is used in conjunction with a threshold to determine the steady state 

operation of the process [20]. The length of the moving window to use can be defined as some 

function of process time constants or sample rates. The threshold is set using the mean of the 

variance across the dataset. All data points with a variance below this threshold are considered 

to be potential steady state regions. The longest of these regions is then considered as the 

steady state region. 
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3.4.3 Constructing Multivariate Control Charts 

 The radial plots approach can function as a multivariate control chart. MacGregor and 

Kourti [15] have shown that the use of univariate control charts over multiple variables may 

result in “blind spots” where a process falls outside the joint normal operating region, but still 

resides within the individual control limits for each variable – an abnormal event would not be 

detected using univariate control charts in this case. 

 To use radial plots as a multivariate control chart, the concept of a centroid is first 

introduced. Geometrically, a centroid is the average of all bisectors of vertices in a polygon. For 

a regular polygon, the centroid would be in the center of the polygon. Since data is always 

normalized prior to plotting, the steady state region of the data would consist of near-regular 

polygons centered around the origin of the radial plot. This means that the centroid of the 

steady state region is clustered near the origin, with deviations occurring due to noise. 

 In the case of a fault, process variables change significantly and the regular polygon is 

warped into a non-regular polygon, resulting in a movement of the centroid away from the 

centroid. This movement is shown in Figure 5a. 
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Fig 5a: Shift in centroids due to deformation of regular polygon (red) 

 

Fig 5b: Centroid plot of DS1 data with confidence ellipse 

In Figure 5b, the confidence region for DS1 can be represented as an ellipse, with the faulty 

region having centroids (in black) that fall outside the confidence region. 

 The confidence ellipse is defined around the steady state region based on the centroids 

included in the steady state region. To do so, eigenvectors are used to transform a unit circle 
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into the desired ellipse. These eigenvectors are obtained from the covariance matrix of X and Y 

coordinates of the steady state centroids. A confidence interval can be specified by scaling the 

covariance matrix appropriately. For all cases in the paper the confidence interval used is 95%. 

The algorithm for doing so is described below: 

                              풄 = 푭 ퟏ 0.99  2), F is the CDF of the χ
2
 distribution   (Eq. 3) 

 

                              [흀ퟏ풗ퟏ 흀ퟐ풗ퟐ] = 풆풊품(풄 ∗ 푪풐풗 푪풆풏풕풓풐풊풅 푿,  푪풆풏풕풓풐풊풅 풀 )    (Eq. 4) 

 

                             
푬풍풍풊풑풔풆 푿
푬풍풍풊풑풔풆 풀

= [흀ퟏ풗ퟏ 흀ퟐ풗ퟐ] ∗
푼풏풊풕 푪풊풓풄풍풆 푿
푼풏풊풕 푪풊풓풄풍풆 풀

      (Eq. 5) 

 Fault detection is done by reversing the process and obtaining X and Y coordinates of 

the tested point with respect to the unit circle (as opposed to the ellipse). A simple test can then 

be done to determine if the tested point lies within or outside the unit circle. If it lies outside the 

unit circle it can be considered a fault. 

 
Fig 6. Centroid plot of DS1 data with ellipse 
Points outside the ellipse (in blue) are considered faults 
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As seen in Figure 6, the steady state region (in black) has an ellipse defined around it 

and the points outside the ellipse (in blue) are determined as faults in the DS1 dataset. 
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Chapter 4: Fault Classification Based on Fault Signatures 

 The regular polygonal shape of a steady state data sample is distorted under the 

occurrence of a fault. It is expected that the shape of the distortion be the same for faults that 

are similar i.e. caused by the same phenomena or sequence of events. In order to quantify this 

similarity, we make use of the interior angles of the polygons of each data slice. Each polygon is 

deconstructed into many triangles as defined by the axes of the radial plot. The law of cosines is 

used to determine the interior angles. The values in the equations below refer to the values in 

Figure 7. 

cos(훼) = 	      (Eq. 6) 

cos(훽) = 	      (Eq. 7) 

Where dij is the distance between points i and j. The subscript o indicates the origin point (0,0). 

 After angles for each triangle are calculated, adjacent angles can be summed up to 

obtain the interior angles of the polygon. 

             
 
Fig 7. Computation of interior angles for a data slice  
α and β can be found using Eq. 6 and Eq.7 

(X5,Y5) 

(X1,Y1) (0,0) 

72o 

α 

β 
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Fault signatures are defined by the vector of the interior angles of the radial plots and 

the time evolution of said faults. Fault classification can be done on faults that exhibit the same 

or similar signature. Well-established data analysis methods such as dynamic time warping can 

be used in order to superpose/compare the plots of interior angles with time-displaced faults 

[21]. This is useful to compare if streaming data contains a fault belonging to a known fault class.  

Consider the example of DS1, where a fault is present at t = 21 mins. 

 
Fig 8. Dataset DS1 in radial plot representation 
Yellow region indicates the problematic, potentially faulty region 

A new dataset DS1’ is generated to illustrate the fault classification procedure described 

above. DS1’ has the faulty region in DS1 translated to a later time. PCA was also applied to the 

data and the resulting angle plots are presented below. 
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Fig 9a. Plot of all 5 interior angles of DS1 and DS1’ dataset 

The evolution of the interior angles for DS1 and DS1’ is shown in Figure 9a. It is clear 

that potentially similar faults are occurring at different times. Dynamic time warping was used 

to compare the two datasets and the results are shown in Figure 9b. 

 
Fig 9b. Plot of all 5 interior angles of DS1 and DS1’ dataset with dynamic time warping 

It is clear that the two faults are very similar, if not the same. Further dynamic time 

warping results are shown later when exploring the compressor surge case study. 
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Chapter 5: Case Studies 

5.1 Compressor Surge 

 Compressor surge is a systemic failure in which the gas flow in a compressor train 

reverses due to high back pressure. This is usually because of low flow rates throughout the 

compressor train – as a result the compressor back pressure is higher than the output pressure, 

resulting in the reversal of flow [22]. Vibrations occur as a result and physical damage to 

machinery is possible. Recovery from surge events require all compressed gas to be removed 

from the compressor train and the process restarted, which is time consuming and expensive [5]. 

Predicting and prevention of the occurrences of such events is therefore highly beneficial to 

process operators. Thirty surge event datasets of the compressor train illustrated in Figure 10 

has been provided courtesy of Emerson Process Management and Nova Chemicals. Each dataset 

captures 7200 samples of data over 5 days and contains one surge event per dataset. The timing 

of the surge event was determined based on operator experience. It was communicated by 

experts at Emerson and Nova that operation four days prior to each surge event appeared to be 

at steady state and normal operation. 

 PCA was applied to the dataset, and  the number of principal components retained was 

five due to the amount of noise present per dataset varied, meaning that consistent 

visualization and analysis would be difficult with varying number of principal components 

selected. Selecting five principal components captured 61% to 93% of the variance of the 

datasets. A fifth order Savitzky Golay filter was applied to the centroids prior to the construction 

of the confidence ellipses. 
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 Confidence ellipses were then constructed and used as the fault detection mechanism 

for detecting surge. The results of the fault detection method can be found in Table 1, which 

provides the time required and speed of fault detection. The speed of detection (or predictive 

time) was calculated by finding the difference between the time of fault detection and the time 

of surge, which was estimated by plant operators to be at t = 5760 minutes. A positive predictive 

time is desirable as it shows that the method can predict the surge before it occurs or is 

identified. A negative predictive time would show that the method only detects the surge event 

after it has been identified by process operators. 

 
Fig 10. Schematic of compressor system [5] 
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Table 1. Fault detection times and predictive times for 30 datasets 
A negative value indicates that the fault was detected after the operator-estimated fault time 
Blank cells indicate that no fault was detected by the method 

Of the 30 datasets available, 29 contained detectable surge faults, and in 25 cases, the 

predictive times were positive (i.e., faults were detected before being declared as such by 

operators), suggesting that surge events may have been avoided with the proposed fault 

Dataset # Fault Detection Time 
(minutes) Operator-
estimated fault time: 5760 
min 

Predictive time (minutes) 

1 5731 29 
2 6610 -850 
3 4023 1737 
4 4933 827 
5 4596 1164 
6 7110 -1350 
7   
8 4099 1661 
9 4159 1601 
10 4244 1516 
11 4974 786 
12 5593 167 
13 5265 495 
14 5176 584 
15 5810 -50 
16 5700 60 
17 4827 933 
18 5315 445 
19 5701 59 
20 3502 2258 
21 5448 312 
22 5599 161 
23 4541 1219 
24 5007 753 
25 5056 704 
26 5867 -107 
27 6388 -628 
28 5151 609 
29 4459 1301 
30 5694 66 
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detection scheme in place. False alarms (that is, flagged samples that cannot be related to the 

surge event) were found in some cases. False alarm rates for each dataset were calculated as a 

ratio of the number of false alarm samples over the number of samples in the provided steady 

state region. The average false alarm rate for the 30 datasets is 0.035. 

In terms of fault classification, a comparison of the angle plots for all 30 datasets 

suggests that a subset of the surge events can be classified as belonging to two separate groups. 

Specifically, six of the 30 datasets (1, 8, 11, 15, 25, 26) belong to one group, whereas three other 

datasets (3, 19, 20) belong to another group. 

 
Fig 11. Plot of all 5 angles for second grouping of similar datasets 

Dynamic time warping was performed on the datasets shown in Figure 11 to verify that the 
events are similar.  



22 
 

 

Fig 12a. Plot of interior angles across datasets 19 and 3 in Group 2 with dynamic time warping 

 
Fig 12b. Plot of interior angles across datasets 19 and 20 in Group 2 with dynamic time warping 

Dataset 19 was used as the reference profile to conduct dynamic time warping on 

Group 2 data. Datasets 3 and 20 both matched well with the reference dataset, as seen in 

Figures 12a and 12b respectively. Therefore, the three datasets can be classified to be of the 

same fault type. 
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The other datasets did not fall into either of these groups due to noise, which made 

them difficult to categorize. Some faults appeared to be unique and did not have a good match 

with any of the datasets, so they could not be categorized into any group. These observations 

indicate that the surge events for the compressor train in question are granular – not all surge 

events are the same.  

5.2 Column Flooding 

 Column flooding is a condition where upward gas flow in a distillation column prevents 

the liquid phase from flowing downwards, trapping the liquid in the liquid-vapor space and 

eventually causing the column to flood. This event is undesirable as product specifications 

cannot be met under such a condition. Column flooding is a systemic problem as it can happen 

anywhere in the column and will extend to the entire column [23]. 

 For this case study, over four calendar months of operation data was used, with each 

month’s data collected in its own dataset. The sample rate of the data was 1 sample per minute, 

for a total of about 44000 samples per dataset. Estimated times of column flooding were 

obtained based on operator experience. A fifth order Savitzky-Golay filter was also applied to 

the centroids before defining the confidence ellipses. 

 The confidence ellipse fault detection method was used to verify the dates of column 

flooding. The steady-state region used for the construction of the confidence ellipses vary per 

dataset and selected using the moving window variance method described in Section 3.4.2. The 

results are presented below. 
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Month 
(2009) 

Operator -Estimated Dates 
of Flooding 

Start Time of Flooding Event Indicated 
by the Proposed Method (In Days) 

June 23-25 23.31 
July 6-7 4.06 

11-12 9.5 
26-27 23.82 

August 24 25.36 
September 1-3 1 

7-8  
16-18 13.59 

Table 2. Operator-estimated dates of column flooding and the approximate dates of fault detection 
Blank cells indicate that no fault was detected by the method 

 As seen above, all of the flooding events around the dates provided were detected. 

However, false alarms were also detected – they were present in the June and August datasets, 

which only have one detected flooding event each. This suggests that the primary source of 

variation was noise, which can affect the steady state region selection. The false alarm rates in 

the June and August dataset is 0.033 and 0.016 respectively – these false alarm rates were 

characterized as the ratio of the number of data samples flagged that did not belong to any of 

the estimated flooding dates over the total number of data samples available in the dataset. 

These regions may be highlighting other non-flooding events or other flooding events not 

noticed by operators. 

 Fault classification for this dataset is difficult due to process uncertainties and noise. A 

limited classification of the flooding events was provided by the operators. In particular, the 

cited reason for the flooding events in June and July was the presence of undesired temperature 

gradients across the column. A comparison based on angle plots was attempted between the 

flooding event on June 23-25 and the flooding event from July 26-27. Due to the large size of the 

datasets, only precursor data – data around the relevant periods – were used when performing 

dynamic time warping. 
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Fig 13. Plot of all 5 interior angles with dynamic time warping for the periods of 23rd to 27th of the June 
and July datasets 

 As seen above, the two flooding events appear to be of the similar type, which matches 

the classification provided by the operators. 
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Chapter 6: Benchmarking with the Tennessee Eastman Process Simulator 

 The Tennessee Eastman Process (TEP) was used to validate the fault detection method 

proposed in this report [24]. The purpose of doing so is to test the ability of the proposed 

mechanism to detect specific and non-systemic faults. The TEP is also a popular benchmarking 

tool for fault detection studies and is frequently used in literature. The work of Russell et. al., 

Tamura and Tsujita, as well as work by Zhang will be referred to, with each paper having done 

work on fault detection method(s) [12,25,26]. A simulator is available for the TEP model in 

MATLAB [27]. 

 The TEP simulator has provisions for the introduction of twenty faults, five of which are 

not described specifically. 

Fault No. Description Type 
1 A/C feed ratio, B Composition constant (stream 4) Step 
2 B Composition, A/C ratio constant (stream 4) Step 
3 D feed temperature (stream 2) Step 
4 Reactor cooling water inlet temperature Step 
5 Condenser cooling water inlet temperature Step 
6 A feed loss (stream 1) Step 
7 C header pressure loss – reduced availability (stream 4) Step 
8 A, B, C feed composition (stream 4) Random variation 
9 D feed temperature (stream 2)  Random variation 
10 C feed temperature (stream 4) Random variation 
11 Reactor cooling water inlet temperature Random variation 
12 Condenser cooling water inlet temperature Random variation 
13 Reaction kinetics Slow drift 
14 Reactor cooling water valve  Sticking 
15 Condenser cooling water valve Sticking 
16 Unknown  
17 Unknown  
18 Unknown  
19 Unknown  
20 Unknown  
Table 3. List of available faults in the TEP [28] 
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 The procedure for performing the fault detection tests are as follows: For each fault, the 

simulator was run for at least 12 hours (720 minutes), and a fault was injected at t = 300 

minutes. Fault detection using the multivariate control chart method was conducted on the data 

obtained from this simulator – the steady state operating region being defined based on data 

prior to t = 300 minutes. The number of principal components retained was five. For comparison 

with other methods that use T2 and Q measurements, the approach in Dunia et.al. [5] was 

followed and the T2 and Q measures obtained as a result of conducting PCA are also included as 

two additional axes while doing fault detection. A fifth order Savitzky-Golay filter was applied to 

the centroids here before calculating the confidence ellipse as well. 

 The results of the fault detection method are provided in Table 4 alongside the results 

reported in the previous papers. The detection time is the time required for a fault to be 

detected after it was injected. 
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Detection time (minutes) 
 Russell, Chiang, and Braatz [12] Tamura and 

Tsujita [25] 
Zhang [26] 

Fault 
Number 

Radial 
Plots 
PCA 

Radial 
Plots 
PCA w/ 
Q and 
T2 

PCA 
T2 

PCA 
Q 

DPCA 
T2 

DPCA 
Q 

CVA 
Ts

2 
CVA 
Tr2 

CVA 
Q 

PCA 
Q 

PCA 
T2 

KPCA KICA Imp. 
KICA 

1 1 1 21 9 18 15 6 9 6 21 21 15 9 6 
2 19 19 51 36 48 39 39 45 75 27 33 30 36 33 
3 1 1             
4 1 1  9 453 3 1386 3    9 6 6 
5 1 1 48 3 6 6 3 3 0   3 3 3 
6 1 1 30 3 633 3 3 3 0 15 15 3 3 0 
7 1 9 3 3 3 3 3 3 0 15 15 3 3 0 
8 5 22 69 60 69 63 60 60 63 54 60 75 69 60 
9 73 66        894 903    
10 28 1 288 147 303 150 75 69 132 99 150 60 51 42 
11 1 5 912 33 585 21 876 33 81   69 57 45 
12 26 21 66 24 9 24 6 6 0   9 6 3 
13 25 30 147 111 135 120 126 117 129 48 48 123 114 99 
14 44 3 12 3 18 3 6 3 3   3 3 3 
15 28 34  2220   2031     27 27 21 
16 28 31 936 591 597 588 42 27 33 153 624 27 21 9 
17 51 28 87 75 84 72 81 60 69 189 192 57 51 51 
18 28 30 279 252 279 252 249 237 252 237 252 222 198 195 
19 46 18    246  33       
20 16 23 261 261 267 252 246 198 216 39 45 177 165 135 
Table 4. Fault detection time for Tennessee Eastman Process 
Blank cells indicate that no fault was detected by the method 
 

 From Table 4, the proposed method is shown to outperform the average detection time 

of other methods for 18 of the 20 faults provided in the TEP simulator. Several faults were not 

detected by one or several methods, a shortcoming that can be attributed to the small impact 

the fault may have on the system states and outputs. 

 False detection and missed detection rates were also found for the method. A fault is 

only detected when two consecutive samples are flagged as a fault. A binary approach is taken – 

all samples prior to t = 300 minutes should not be detected as a fault, while all samples after 

should be considered faulty data and detected. If either condition is not met then either a false 

detection or a missed detection has occurred. This definition is used to calculate the false 
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detection and missed detection rates and is similar to the method used in Zhang to calculate 

detection rate [26]. 

Missed Detection Rates 
 Russell, Chiang, and Braatz [12] Zhang [26] 
Fault 
Number 

Radial 
Plots 
(PCA) 

Radial Plots 
(PCA w/ Q 
and T2) 

PCA T2 PCA 
Q 

DPCA 
T2 

DPCA 
Q 

CVA 
Ts

2 
CVA 
Tr2 

CVA 
Q 

KPCA 
T2 

KICA 
T2 

Imp. 
KICA 
T2 

1 0.0541 0.1351 0.008 0.003 0.006 0.005 0.001 0 0.003 0 0 0 
2 0.7312 0.4447 0.02 0.014 0.019 0.015 0.011 0.010 0.026 0.02 0.02 0.02 
3 0.9644 0.7316 0.998 0.991 0.991 0.990 0.981 0.986 0.985 0.96 0.94 0.92 
4 0.5202 0.1639 0.956 0.038 0.939 0 0.688 0 0.975 0.91 0.18 0.19 
5 0.7173 0.6746 0.775 0.746 0.758 0.748 0 0 0 0.75 0.71 0.71 
6 0 0.0857 0.011 0 0.013 0 0 0 0 0.01 0 0 
7 0.0652 0 0.085 0 0.159 0 0.386 0 0.486 0 0 0 
8 0.2763 0.3246 0.034 0.024 0.028 0.025 0.021 0.016 0.486 0.03 0.03 0.02 
9 0.7696 0.677 0.994 0.981 0.995 0.994 0.986 0.993 0.993 0.96 0.95 9.95 
10 0.791 0.8242 0.666 0.659 0.580 0.665 0.166 0.099 0.599 0.57 0.19 0.20 
11 0.7363 0.7648 0.794 0.356 0.801 0.193 0.515 0.195 0.669 0.76 0.19 0.18 
12 0.4489 0.4157 0.029 0.025 0.01 0.024 0 0 0.021 0.03 0.03 0.02 
13 0.3017 0.2684 0.060 0.045 0.049 0.049 0.047 0.040 0.055 0.06 0.05 0.05 
14 0.8005 0.8076 0.158 0 0.061 0 0 0 0.122 0.21 0 0 
15 1 0.9406 0.988 0.973 0.964 0.976 0.928 0.903 0.979 0.95 0.95 0.94 
16 0.8694 0.658 0.834 0.755 0.783 0.708 0.166 0.084 0.429 0.70 0.20 0.20 
17 0.6508 0.4893 0.259 0.108 0.240 0.053 0.104 0.024 0.138 0.26 0.05 0.05 
18 0.5748 0.6176 0.113 0.101 0.111 0.100 0.094 0.092 0.102 0.10 0.10 0.09 
19 0.9762 0.8337 0.996 0.873 0.993 0.735 0.849 0.019 0.923 0.97 0.25 0.23 
20 0.0944 0.1786 0.701 0.570 0.644 0.558 0.44 0.342 0.547 0.59 0.42 0.50 
Table 5. Missed detection rates for Tennessee Eastman Process 
Missed detection rates not available for Tamura and Tsujita [25] 

 The centroid representation compares well to that of other methods.   
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False Detection Rates 
 Radial Plots (PCA) 0.0330  

Radial Plots (PCA) with 
T2 and Q 

0.0377 

 
Russell, Chiang, and Braatz 
[12] PCA T2 0.014 

PCA Q 0.016 
DPCA T2 0.006 
DPCA Q 0.281 
CVA Ts

2 0.083 
CVA Tr

2 0.126 
CVA Q 0.087 

 
Zhang [26] PCA T2 0.005 

0.0152 
0.0031 
0.0027 

KPCA T2 
KICA T2 
Improved KICA T2 

Table 6. False detection rates for Tennessee Eastman Process 
False detection rates not available for Tamura and Tsujita [25] 

 From Table 6, the false detection rates for the proposed method are similar to that of 

other methods in literature. 

  



31 
 

Chapter 7: Discussion and Perspective 

 The effectiveness of the proposed method for fault detection is shown through analysis 

of the case studies presented above, using both data from a process simulator and actual 

industrial datasets. Both localized and systemic faults are shown to be detectable using the 3D 

radial plot and centroid representation. The geometry of the 3D radial plots allows for further 

information to be extracted through the monitoring of polygonal angles in time for fault 

classification purposes. 

 For visualization purposes, the 3D radial plots method enables a time explicit 

multivariate representation of large datasets, which was only possible through the use of 

multiple score plots. The centroid representation allows us to represent the process in two 

dimensions while still retaining any time-sensitive characteristics of our data. Its use as a 

multivariate control chart is demonstrated in this report and opens up further possibilities for 

data analysis such as clustering methods. 

 Informal interactions with industrial plant personnel have revealed that the three-

dimensional visualization of data are easily understood by operators and is clearly superior to 

parallel coordinates or multiple score plots.  

 However, the method, like other data-driven mechanisms for fault detection, is 

susceptible to noise, so pre-processing of the data to reduce the impact of outliers and noise is 

always desirable and will improve the results of fault detection, particularly in terms of false 

detection rates and missed detection rates. 
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 A final issue with regards to the construction of confidence ellipses is that they are static 

and do not change in time as more data is read in. Adaptive methods for evolving the ellipse 

while streaming in new data is a potential direction for future work. Fault detection during 

process transitions between operating states may also be possible by adapting the ellipses as 

needed. 
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Chapter 8: Conclusions 

In the report, a novel method for the detection of systemic process faults is presented. 

The method consists of creating a three-dimensional radial plot to plot multiple variables in time. 

The resulting visualization is a time explicit representation of multivariate data. This in turn can 

provide better information for operator displays compared to the currently used methods for 

data representation. 

Faults are detected when the process samples violate the limits of a desired operating 

region, which is defined by a confidence ellipse that captures said operating region. It is shown 

that the method’s performance is comparable to, if not better than, other fault detection 

methods in literature. The method is also used to analyze actual industrial data and is able to 

anticipate systemic faults in both a compressor train and a distillation column. 

A mechanism for fault classification using the interior angles of the samples in the radial 

plot representation is also presented in the report and has the potential for real-time 

implementation. 

The method can be applied to any dataset and a standalone program of the visualization 

method and fault detection mechanism may be released in the near future.  
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Appendix (Dataset DS1): 

Observations Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 
1 52.15104 19.21382 100.9697 32.86657 64.81821 20.33766 347.1172 
2 48.5197 19.97637 101.8019 32.84908 66.89273 20.66234 346.6867 
3 50.98206 19.65381 102.4758 32.89453 67.28734 21.8356 346.7377 
4 51.31496 17.03205 100.4126 34.62617 64.18542 22.00215 348.9064 
5 49.54007 18.64558 102.7398 33.79634 64.41734 20.97363 346.8051 
6 50.62845 19.00023 102.2131 34.15037 65.66244 21.68786 347.423 
7 50.04591 18.84113 101.5825 33.20726 67.06497 20.70713 344.6934 
8 49.10358 18.02943 101.0892 33.62383 67.34672 21.92036 345.3292 
9 50.23976 19.32707 102.641 34.57129 67.53958 20.60958 345.986 

10 53.72241 19.19023 101.8693 32.43254 65.64807 21.52871 346.8652 
11 51.65718 20.62504 101.9434 32.9471 65.36202 21.59507 347.0304 
12 52.68589 19.4452 104.0915 34.71172 64.96093 22.64062 349.1286 
13 50.93906 20.02596 101.9407 35.37108 66.52062 20.06329 344.8115 
14 51.14075 19.17759 102.5501 32.79897 66.70951 21.35153 344.7907 
15 50.82536 17.47007 101.3105 34.08699 64.38965 19.37649 364.7247 
16 48.71859 17.80987 103.151 32.38646 65.7552 21.19504 364.0869 
17 49.21272 18.51945 101.2414 34.27679 65.33914 21.81811 363.8686 
18 49.25756 18.82497 100.3293 33.73811 66.44828 19.93257 365.8114 
19 49.71707 19.82305 101.2957 32.57727 66.96602 20.76101 364.3838 
20 100.8204 52.15818 67.13404 17.50275 89.74815 28.27168 407.6089 
21 101.959 52.35225 70.09609 18.24484 89.01294 28.6664 407.2975 
22 103.7175 53.22556 67.64299 16.80958 88.08405 26.9809 405.448 
23 103.7005 52.39659 69.09773 16.05571 88.00298 28.43369 407.7703 
24 104.1793 51.71946 69.71967 15.82389 87.28477 26.75917 406.7051 
25 105.6697 52.3834 69.27764 15.68788 89.60259 26.01458 406.2575 
26 50.16743 18.48934 101.6088 33.9001 64.76961 20.64649 345.8122 
27 50.59506 19.85109 100.3611 33.8298 63.70124 18.98059 346.32 
28 51.76132 19.37258 101.1612 32.69606 64.803 19.87094 346.9945 
29 50.86219 19.68772 102.1378 34.22339 67.06336 20.05118 345.9562 
30 50.30873 18.67364 100.4354 32.39403 65.84833 22.0273 344.0958 
31 51.26709 21.24216 99.95538 34.93778 65.21288 20.84922 346.6231 
32 52.41266 19.22711 100.485 31.31406 65.76906 22.64998 345.2125 
33 49.66752 18.19126 102.0312 33.15998 65.93934 21.03158 347.5765 
34 51.03453 17.78108 100.8957 34.17964 65.97606 20.92217 346.3157 
35 49.37383 19.19749 101.3873 33.43182 65.34612 20.32841 346.3364 
36 48.941 18.6869 99.41433 33.46247 67.80024 19.64577 345.3201 
37 49.51367 17.73693 100.3818 32.8994 66.5646 20.69357 344.799 
38 50.11895 18.61487 100.4508 35.36838 63.02115 20.13637 344.8958 
39 48.23254 17.45313 99.88083 32.93868 64.5396 18.94534 344.3149 
40 48.59724 19.76062 102.3178 34.0936 65.45264 21.0093 344.7761 
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