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Abstract 

 

A machine learning optical system to ensure that human assembly 

technicians use the specified bolt tightening sequence in assembly line 

manufacturing. 

 

 

Varun Soni, MSE 

The University of Texas at Austin, 2020 

 

Supervisor: Preston S. Wilson 

 

In large number of applications, the mechanical fasteners that are used to assemble 

the parts of a system must be tightened in a specific sequence to achieve the desired 

distribution of the load across the population of bolts. Failure to follow the sequence results 

in an undesired load distribution; this phenomenon is known as bolt crosstalk. Assembly 

personnel often fail to follow this sequence for a variety of reasons, resulting in over- or 

under-torqueing of bolts in the final assembly, which can lead to undesired system 

performance. There is currently no system or device that can ensure that a human operator 

follows a specified bolt tightening sequence while using a hand-held tool and thereby avoid 

bolt crosstalk. In this research, a system that constrains the operator to follow the specified 

tightening sequence was developed and tested.  It utilizes a small tool-mounted camera to 

generate images of the bolt pattern and the relative location of the tool, and a machine 
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learning algorithm to alert the operator if the tool is being brought to the wrong position. 

The developed software can detect all the bolt positions accurately by using a unique 

feature associated with them. The average of probabilities of detecting a position in 

different lightening conditions is more than 85%.     
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Chapter 1:  Introduction 

There are five major methods for assembling parts in any assembly: Mechanical Assembly, 

Welding, Spot Welding, Riveting and Brazing/Soldering. Number of parts, functionality 

of the part and other factors contribute in choosing one method over the other. A summary 

of all the methods is as follows: 

• Welding: Welding is the process of joining materials by using high heat to 

melt the parts together and letting them cool, causing fusion of material. It 

is mainly suited for assemblies that are permanent and need structural 

strength. 

• Spot Welding: Spot Welding welds two or more metal sheets by applying 

pressure and heat to the weld area. It is not as permanent as the welding 

process mentioned above, but is more permanent than mechanical assembly 

and is less expensive than regular welding. 

• Riveting: This is a forging process that joins two metal part by using a metal 

fastener known as a rivet. This process is mainly used for assemblies 

subjected to fluctuating temperature and pressure. It is cheaper and has less 

strength than a weld. 

• Soldering/Brazing: A filler metal is melted to a specific temperature to join 

two components together. Soldered joints are not as strong as welded joints. 

• Mechanical Assembly: This is the process of assembling multiple parts 

together by using fasteners such as nuts, bolts, screws, etc. It finds 

applications in assemblies which are not permanent and have parts which 

need maintenance and replacement due to wear and tear.  
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Mechanical assembly is still a very common method used in manufacturing. The 

aim of this thesis is to study two of the major the problems associated with mechanical 

assembly, and to provide solutions for them: 

1. Bolt crosstalk 

2. Identification of specific bolt 

1.1 Bolt Crosstalk 

In many cases, more than one bolt is used to assemble two parts together. When one of 

the bolts in the group is tightened, this changes the force in the other bolts due to the 

elasticity of the material. This phenomenon is known as bolt crosstalk. In Fig.1(A), two 

outer bolts (colored green) have been tightened already. Tightening the center bolt 

(colored red in B) results in further compression of the material (colored yellow) under 

the outer bolts and thus decreases the tension in the outer bolts. This tension is known as 

bolt preload and is the result of tightening of bolts. This preload is needed so that the joint 

can sustain much higher external loads as compared to a joint with loosely tightened 

bolts. Further, proper spatial distribution of this preload is often required. To minimize 

the effects of bolt crosstalk, the bolts should be tightened in a specific sequence, as 

shown in Fig. 2 for two different shapes. 
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Figure 1. Bolt Crosstalk (adapted from Ref. 1) 

 

 

Figure 2. Examples of bolt tightening sequences (adapted from Ref. 2). 

 

A 
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1.2 Project Domain 

While working as a manufacturing engineer at India’s largest car manufacturing 

company, the author was responsible for DC tools in the assembly shop and he observed 

that the operators do not follow the tightening sequence defined in company’s work 

instruction sheets, which results in decrease in quality of the product. The purpose of this 

project is to develop a solution that can be used to map the torque value of each bolt and 

ensure the proper tightening sequence is followed to prevent bolt crosstalk. The research is 

focused on developing a convolutional neural network (CNN) that can identify a bolt, 

rather than developing the entire product, which includes tools, torque wrenches, 

electronics and hardware. This is because existing tightening solutions can be easily 

integrated with the solution developed. Upon completing development of software, testing 

was conducted on Arduino’s base plate  to see if a bolt can be identified based on its unique 

features.   

1.3 Problem Statement 

Tools that have the capability of logging torque data are used for tightening critical 

fasteners across all areas of manufacturing. The problem is that there can be many similar 

bolts to be tightened to different specified torques, by a particular human operator working 

at just one station. There is no device on these tools that can identify each fastener; 

therefore it becomes impossible to map torque values accurately to each fastener. The 

tightening sequence can be specified, but there is no way to guarantee that the operator will 

follow the sequence until after it is done. 

 

During the author’s experience as a manufacturing engineer (refer section 1.2), it  

has been observed that the specified tightening pattern is not followed by human operators 
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due to many reasons, such as loss of concentration, laziness, repetitive nature of work, etc. 

To overcome these issues, manufacturers often employ an additional human operator to 

manually check torque values on each bolt. This torque check process provides zero value 

added to the manufacturing process and results in increased cost and reduced productivity. 

Another problem of deploying a manual torque check is that torque wrenches cannot detect 

if a bolt has been over torqued and over torqueing can result in damage to the threads on 

bolts, parts and nuts. Therefore, a compact system is needed which can be fitted onto any 

hand-operated tightening tool and can also be interfaced with the tool controller so that 

torque values can be mapped to individual fasteners. The tool must constrain the operator 

to follow the specified tightening sequence, thus resulting in elimination of a post-assembly 

torque check and elimination of the bolt crosstalk problem.  

1.4 Industry Analysis 

Although the aforementioned problems exist in many manufacturing sectors 

ranging from electronics to oil refineries, this study focused on the automotive industry. 

Fig. 3 shows the assemblies (boxed in red) in a car engine where a sequence of bolt 

tightening is important in order to prevent bolt crosstalk (refer section 1.2). The tightening 

sequence is defined in a work instruction sheet for assembly of the oil pan cover, the water 

pump cover, the cylinder head cover, the intake manifold and the exhaust manifold. 
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Figure 3. Exploded view of a car engine (adapted from Ref. 3). 

Table 1 summarizes the number of workers responsible for manual torque checking 

in one of the assembly facilities at one of India’s largest car-manufacturing companies 

(refer section 1.2). Total non-value added costs associated with bolt tightening are 6M INR 

(79290 USD). The aim is to develop a solution which will be less than 5K USD, so that it 

is cost effective and can be deployed by developing countries as well. 
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S. 
No 

Area of Work 
Number of workers 

responsible for manual 
torque checking 

1 Trim line 3 

2 Chassis line 5 

3 Final Assembly line 0 

  Total 8 

  Number of Shifts 2 

  
No. of production 

days/year 
280 

  Number of hours/shift 8 

  

No. of operators doing 
manual torque 

check/year 35840 

  Average cost/hour (INR) 170 

  
Total non-value cost 

annually (INR) 6,092,800 

Table 1: Car assembly shop cost savings analysis. 

1.5 Thesis Organization 

This thesis is organized into three major chapters, followed by a conclusion. 

Chapter 2 is a review of the literature, focused on the past research that has been conducted 

to solve the problem of crosstalk. This background informed the development of the 

solution. Chapter 3 discusses convolution neural networks (CNN) and image recognition 

using CNN, and gives an overview of the software that has been developed. Chapter 4 

discusses experiments conducted with the program, including performance of the 

algorithm with respect to accuracy. Chapter 5 summarizes the research and provides 

suggestions for improving the system. 
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Chapter 2:  Literature Review 

Significant research has been done in the past to solve the problem of workers not 

following the bolt tightening sequence on a station. A radio frequency identification 

(RFID) method has been used to match the tool position with fastener position (Vukelic et 

al., 2011). Research on an indoor tracking method using infrared (IR) has been done to 

locate bolt position and orientation in 3D space (Rusli and Luscher, 2012). Machine vision 

is widely used in quality inspection systems, assembly misalignment, and detection of 

presence of fasteners. (Killing et al., 2009).  

2.1 Radio Frequency Identification (RFID) 

In the method by Vukelic et al., an RFID system (Fig. 4, boxed in red) is mounted 

on the top of the assembly tool and RFID tags can be fixed on the part itself or on the 

fixture close to the desired locations. Each RFID tag has a unique identifier (UID). When 

the operator takes the tool to tighten the bolt, the RFID reader mounted on the tool reads 

the UID of the RFID tag closest to the reader and sends this data to a PC, which compares 

it to the UID for that bolt position. Power is supplied to the tool only when the bolt position 

is correct. The main disadvantage of this system is that RFID readers are bulky and cannot 

be mounted on the top of many tools without compromising the ergonomics of the system. 

In addition, the RFID system functions poorly when the bolt separation distance is too 

small and it is no longer possible to distinguish the different UIDs.  
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Figure 4. Tracking of a bolt using an RFID system (adapted from Ref. 4). 

 

2.2 Infrared (IR) system 

Infrared (IR) systems can track the 3D location of a bolt using optical triangulation 

techniques (Kraus, 2004; Luhmann et al., 2006). Reflective IR markers coated with 

retroreflective material are pasted on the tool. Usually, triangulation can be achieved with 

two IR cameras. These IR cameras illuminate the volume with IR radiation and track the 

locations of reflective IR markers. If the reflective markers are within the specified 

distance, then a signal is sent to the controller and power is applied to the tool to tighten 

the bolts (Fig. 5). This solution is capable of a tracking accuracy of a few millimeters. A 

key shortcoming of the IR tracking method is that it requires line-of-sight between the 

camera and the tracked object and in practice, there is often the possibility of an obstacle 

in the line of sight. In addition, IR tracking fails in the cases where the fastening process is 

totally enclosed by a shell, such as a person working inside a car body. One solution is to 

install more cameras but this increases the cost of overall system. Fig. 6 shows the screen 

of a commercially-available system, the Optitrack Tracking Software. This software is used 

to study the volume that will be covered by mounting cameras at different locations.  
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Figure 5. Tool tracking using an IR system (adapted from Ref. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Screen shots from the Opti-track Tracking Tool Software (adapted from Ref. 5). 
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2.3 Vision system 

The AI Vision Builder software-based vision inspection system from National 

Instruments (Austin, TX) has been investigated for bolt sequencing in the past [7]. Vision 

builder software is versatile and suitable for experimental study objectives. It has two 

algorithms to recognize a feature in an image: match pattern and geometric matching. The 

match pattern performs a bit-wise greyscale comparison of the raster images, while the 

geometric matching algorithm preprocesses the image to detect edges due to contrast and 

compares the detected edges to a reference geometric pattern.  

Rusli and Luscher [7] found the match pattern to be faster and more accurate 

compared to geometric matching. Geometric matching is slower due to complex 

computations involved while recognizing edges. Additionally, geometric matching is more 

prone to lighting variations, as lighting affects the recognized edges significantly. In the 

match pattern process, while identifying a unique characteristic related to each bolt, the 

following criteria need to be considered:  

• Features should be non-symmetrical. 

• Features must have good contrast regions within the image. 

• Features should be less sensitive to varying lighting conditions or shadows. 

• Features must have blind holes to avoid inconsistent images in the background.  

 

As can be seen in Fig. 7, the operator has to identify unique features associated with 

each bolt in order to satisfy the aforementioned requirements. Identifying these features 

requires vision system technical expertise; therefore, a shop operator might not be able to 

train the model with ease and will not be able to solve the issue, if any issue comes up. In 

addition, it is possible that such geometric patterns might not be unique for each bolt; 

therefore, this software will not be very useful in that case. Finally, the cost of this software 
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is $2151[26], which can be too expensive to be implemented on every station in the 

assembly shop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Feature pattern recognition associated with each fastener 

(steering rack) (adapted from Ref. 7). 
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Chapter 3: Deep Learning and Software Development 

This chapter describes the convolutional neural network (CNN), advantages of 

CNN over standard neural network and different layers used in CNN. It also provides 

details on supervised machine learning and how supervised machine learning has been used 

in development of software.  Furthermore, it also defines requirements of software and 

provides details on design and development of solution.  

3.1 Convolutional Neural Network (CNN) 

A neural network is an interconnection of artificial neurons that can exchange 

information between each other. Each connection has a numeric weight that is tuned during 

the training process by inputting a known dataset, so that the trained network is able to 

recognize a pattern or an image correctly. The network has multitude layers of feature-

detecting neurons. The neurons in each layer respond to different combinations of inputs 

from the previous layers. As shown in Fig. 7, the layers are developed in such a way that 

the first layer detects primitive features in the input, and the second layer detects patterns 

in the patterns. CNNs typically deploy 5 to 25 distinct layers of pattern recognition. 

 

 

 

 

 

 

 

 

Figure 8. Neural Network (adapted from Ref. 12). 
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The inspiration behind neural networks is biological neural systems. There are 

numerous basic computational units in the brain, known as nerve cells or neurons. The 

neurons are connected to each other with synapses. The comparison between a biological 

neuron with a basic mathematical model is shown in Fig. 9. 

Figure 9. Biological neuron (left) & its mathematical model (right) (adapted from Ref. 8). 

 

The input to a neuron is received by dendrites and the output signal produced flows 

along its axon. The branches of the axon connect to dendrites of other neurons via synapses. 

When the combination of input signals among its dendrites reaches a threshold value, the 

neuron is triggered, and the activation is communicated to successive neurons.  

 

In the computational model, the signal x0 travels along the axon of a neuron and 

interacts multiplicatively with dendrites of consecutive neurons to form a signal (w0x0), 

where w0 is the synaptic strength of the synapse. Synaptic strengths are tunable based on 

the interaction of one neuron with another. In the cell body, all the weighted signals are 

summed to get the final sum. If the final sum is above a defined threshold, the neuron is 

activated to send the signal along its axon to the consecutive neurons. The assumption in 

the computational model is that the precise timings of activation do not matter and only the 

frequency communicates information.  To summarize, each neuron calculates the dot 

Biological 

Neuron 

Mathematical 

Model 
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product of inputs and weights, adds the bias to it, and applies non-linearity as a trigger 

function, such as a sigmoid function. 

 

A Convolutional Neural Network (CNN) is a special case of neural network. A 

CNN has one or more convolutional layers with subsampling layers, which are followed 

by one or more fully connected layers as in a standard neural network. The visual 

mechanism, i.e., the visual cortex in the brain, laid down the foundation for design of 

CNNs. The cells in the visual cortex detect light in tiny, overlapping sub-regions of the 

visual fields. These visual fields are called receptive fields. The cells in the visual cortex 

act as local filters over the input space, and the more intricate cells have larger receptive 

fields. The convolution layer in a CNN performs the same function that is performed by 

the cells in the visual cortex [9]. A typical CNN for recognizing traffic signs is shown in 

Fig. 10.  A set of features located in a small vicinity in a layer, known as local receptive 

field, is given as an input to the next layer. Features such as corners, endpoints, orientations, 

etc. can be extracted by local receptive fields. In the traditional model of pattern or image 

recognition, a custom-designed feature extractor gathers relevant information from the 

input and eliminates irrelevant variabilities. The extractor is followed by a trainable 

classifier, a standard neural network that classifies feature vectors into classes. 
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Figure 10. Typical Block Diagram of CNN (adapted from Ref. 10). 

In a CNN, feature extraction is done by convolution layers, but the process is not 

custom designed. Convolution filter kernel weights are calculated during the training 

process. CNNs are useful in speech recognition, natural language processing, video 

analysis, and image and pattern recognition.  

 

3.2 Advantages of CNN over other methods 

The advantages of using a CNN are as follows: 

 

• Training is easier and faster: In a standard neural network, the number of 

training parameters is much higher; therefore, time taken to train the 

network also increases proportionally. In a convolutional neural network, 

the number of parameters is much lower; therefore, the training time is 
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reduced. In the case of a standard neural network, as there are more 

parameters., the probability of the addition of noise during the training 

process increases.  

 

• Robust to shifts and distortions in the image: Detection of an image using 

a CNN is resilient to distortions introduced due to lighting conditions, 

different poses, change in shape due to camera lens, horizontal and vertical 

shifts, rotations, occlusions, etc.  

• Lower memory requirement: With CNN, the same coefficients are used 

at different locations in space, so the memory requirement is drastically 

reduced. 

 

3.3 Layers of CNN 

3.3.1 Convolution layers 

The convolution layers are used to extract different characteristics of the input. 

Low-level features, such as corners, edges and lines are extracted by the first convolution 

layer and the higher-level layers extract high-level features, such as objects and shapes in 

the image. The process of 3D convolution used in CNNs can be seen in Fig. 11. The 

dimensions of input are N x N x D and the input is convoluted with H kernels, each having 

dimensions k x k x D. The convolution with each kernel produces one output feature, thus 

H features are produced using H kernels. The kernel is moved one element at a time from 

left to right, starting from top-left corner of input, and the kernel is moved one element in 

downward direction, once the kernel has reached the right end of input. This process is 

continued until the bottom-right corner is reached. For example, when N = 32 and k = 5, 
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there are 28 unique positions from left to right and 28 unique positions from top to bottom 

that the kernel can take. Corresponding to each of these positions, each feature in the output 

will contain 28x28 (i.e., (N-k+1) x (N-k+1)) elements. In the sliding window process, k x k 

x D elements of input and k x k x D elements of kernel are multiplied element by element 

and accumulated for each kernel position.  

 

Figure 11. Pictorial representation of convolution process (adapted from Ref. 11). 
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3.3.2 Pooling/subsampling layers 

The pooling layers reduce the resolution of the features, thus making them robust 

against distortion and noise. Pooling can be achieved in two ways: maximum pooling and 

average pooling. The input is divided into non-overlapping two-dimensional spaces in both 

cases. For example, in Fig. 12, layer 2 is the pooling layer. Each input feature is 28x28 and 

is divided into 14x14 regions of size 2x2. The average of four values in the region is 

calculated in case of average pooling; whereas, in the case of maximum pooling, the 

maximum value out of four values is selected. Input to pooling layers has dimensions of 

4x4. The image is divided into 4 non-overlapping matrices of dimensions 2 x 2 in the case 

of 2 x 2 subsampling. For averaging, fractions are rounded to the nearest integer.  

 

Figure 12. Pictorial representation of maximum & average pooling (adapted from Ref. 

12). 
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3.3.3 Non-linear layers 

CNNs use non-linear trigger functions to signal distinct identification of likely 

features on each hidden layer. CNNs use continuous trigger (non-linear) functions and 

specific functions, such as rectified linear (ReLU) functions, to implement non-linear 

triggering efficiently.  

 

a. ReLU  

A ReLU implements the function y = max(x,0), so the input and output sizes of this 

layer are the same. It increases the nonlinear properties of the decision function and of the 

overall network without affecting the receptive fields of the convolution layer. The training 

rate is much faster with ReLU as compared to other non-linear functions, such as 

hyperbolic tangent, sigmoid, etc. ReLU functionality is illustrated in Fig. 13, with its 

transfer function plotted above the arrow. 

Figure 13. Pictorial representation of ReLU functionality (adapted from Ref. 13). 
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b.  Continuous trigger (non-linear) function 

With the continuous trigger function, the non-linear layer operates on every element 

in each feature. A continuous trigger function can be a sigmoid, a hyperbolic tangent or the 

absolute value of the hyperbolic tangent. Fig. 14 demonstrates how non-linearity is applied 

on each element.  

Figure 14. Pictorial representation of ReLU functionality (adapted from Ref. 13). 

 

3.3.4 Fully connected layers 

Fully connected layers are the final layers of a CNN. They mathematically sum the 

weights of the features of the previous layer.  In the case of a fully connected layer, the 

elements of all the features of the previous layer are used to calculate the element of each 

output feature. Fig. 15 explains the fully connected layer L. Layer L-1 has two features, 

each of which is 2 x 2, i.e., it has four elements. Layer L has two features, each having a 

single element. 
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Figure 15. Pictorial representation of ReLU functionality (adapted from Ref. 13). 

 

 



 23 

3.4 Supervised Machine Learning and Software Development 

In supervised machine learning, a dataset of inputs and associated output labels is 

given as a training set and this data is used to infer a function. This function is used to 

determine the class labels for unseen instances. The following are the main steps in the 

supervised machine learning model: 

• Model construction 

• Model training 

• Model testing 

• Model evaluation 

Model Construction: There are many supervised machine learning algorithms, 

such as logistic regression, linear regression, support vector machines and neural networks, 

that can be used to construct the model, based on the input dataset and complexity of the 

problem. In the case of bolt crosstalk in the present work, convolutional neural networks 

(CNN) were used. To implement the CNN algorithm for this solution, Python has been 

used as the programming language and the open-source neural network library, Keras, 

which is based on TensorFlow, has been used to construct the model. TensorFlow is an 

open source library developed by Google that is mainly used to perform numerical 

operations to model Deep Learning models. The sequential CNN model is a linear stack of 

layers. The construction of the model begins by defining an object as ‘model=Sequential()’, 

then a number of layers are added using ‘model.add(type_of_layer())’, depending on the 

complexity of the problem. After adding the required number of layers, the model is 

compiled using the Python code: model.compile(loss=’name_of_loss_function’, 

optimizer=’name_of_optm_algo’). Then Keras communicates with TensorFlow to 

construct the model. Two important aspects to be considered while compiling the model 

are: the loss function and optimizer algorithms. The loss function shows the accuracy of 
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each prediction made by the model and the optimizer algorithm is used to tune the weights 

associated with neurons in each layer. 

Model Training: After creating the CNN model, the model is trained using 

‘model.fit(training_data, expected_output)’. The accuracy of training is reported at the end 

of training process. Once the model has been trained, the model can be saved by 

‘model.save(“name_of_model”)’. 

Model Testing: Once the model has been trained and saved, data that has not been 

used during training is used to test the accuracy of the model.  

Model Evaluation: If the accuracy from the model testing phase is in line with the 

required accuracy, then the model can be used for evaluation of new data. If not, the model 

can be trained again with a larger training dataset. 

 

3.5 Software Requirements 

Requirements for the software are as follows: 

• User-friendly Graphical User Interface (GUI): Operators with basic 

computer knowledge should be able to operate the system. 

• Quick Detection: The software must identify the bolt in shortest possible 

time so that the cycle time of the station is not affected by implementing 

this system.  

• Accurate Detection: All the bolts on a station should be identified 

accurately to minimize re-work. 

• Current Status: The software needs to show the number of products for 

which the operator has not followed the tightening sequence. 
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• Interface with DC tool controller: DC tool controller is used to control 

the torque applied by DC tool motor and give torque tightening details to 

the programmable logic controller (PLC). If the camera has been assembled 

on a DC tool, the software should interface with the DC tool controller so 

that the torque value can be mapped with each bolt. 

• Connection with server: The software must receive model specifications 

from a server and should send the data to the server after tightening has been 

completed. 

The interface with the DC tool controller requires knowledge of the specific 

company’s controller. The main goal of the present work was to develop a universal 

solution that can interface with all DC tool manufacturers. Therefore, the focus has been 

on requirements 1, 2 and 3.  
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3.6 Software Details 

A graphical user interface has been developed for the software using the Tkinter 

library in Python. When the user opens the software, the screen in Fig. 16 will pop up. 

Figure 16. Main screen of GUI of software.  

The main functional components of the program are as follows: : 

1. Camera Display: Shows the view of the camera mounted on the tool to the 

operator. 

2. Snapshot/Push Button: When the operator goes to the bolt tightening position, 

he presses the button on the tool or clicks the Snapshot button in the software 

to click the picture. The image is pre-processed and supplied as an input to the 

trained model. The trained model writes the output to a csv file. 
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3. Train Model: Train Model button is used to train the model for a given 

problem. 

3.6.1 Camera Display 

A compact camera is mounted on the tool to capture images. The camera is set up 

such that a unique characteristic related to every bolt can be used to identify the bolt. In 

Fig. 17, it can be seen that for the position of bolt encircled in orange, the box in white is 

the unique feature. If this feature is detected, then the corresponding bolt position can be 

detected. This lays the foundation of the solution.  

 

 

 

 

 

 

 

 

Figure 17. Unique characteristic related to encircled bolt. 

3.6.2 Snapshot/Push Button 

 The following flowchart describes the functioning of the overall system when 

developed solution is deployed on a DC tool. When the unfinished product enters the 

station, a limit switch is actuated to fetch the data for that particular model. The operator 
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takes the DC tool with the camera mounted on it to the bolt position and presses the button. 

The button actuates image capture at that position and sends the image to the software for 

image processing. The trained model decides if the operator is at the correct position or 

informs the operator of incorrect position by lighting up red LED. Once the operator takes 

the tool to the correct position, then the ‘OK’ signal is communicated to DC tool. Then, 

the operator is able to start the tool to begin tightening. The same procedure is followed for 

all the bolts for a given station. In case the button stops working, the operator can click on 

‘Snapshot’ to capture the image. 

 

 



 29 

 Figure 18. Flowchart of overall system. 
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The flowchart shown in Fig. 18 details the overall system when the developed 

system is integrated with a DC tool. As reading data from a file using a Programmable 

Logic Controller (PLC) and giving it as an input to DC tool controller is well-established 

in manufacturing industry, so the focus of this research is on the development of an 

algorithm and software that can write an output to a file and use well-established 

manufacturing practices to interface software with DC tools. The flowchart shown in Fig. 

19 describes the process that is relevant to work done in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Flowchart of developed system. 
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Details of the steps defined in the flowchart (refer to Fig. 19)  are as follows: 

• Push button connected to Arduino is pressed to capture a test image. 

• The captured image is saved in two folders: temp and output. All the 

captured  images are stored in output folder so that the timestamp as image 

name can be used as a reference in case of malfunction of the software. The 

image saved in the temp folder is sent to the trained model ‘boltcross’ for 

evaluation. 

 

 

Figure 20. Screenshot showing output and temp folders. 

 

• If the result is OK, then the yellow LED turns on.  If not, then the red LED 

turns on as shown in Fig. 21.  
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Figure 21. LEDs on NOT OK and OK outputs. 

• The test results are stored in a text file in the output folder as shown in Fig. 

22. 
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Figure 22. Result file in output folder. 

3.6.3 Train Model 

When the operator wants to train the model for the application, he clicks the ‘Train 

Model’ button. On clicking the Train Model button, the screen shown in Fig. 23 pops up.  

 

 

 

 

 

 

 

 

 

Figure 23. Train Model GUI. 
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The operator inputs the number of unique bolt positions for a station in the encircled 

text box as shown in Fig. 24. 

 

 

 

 

 

 

 

 

 

Figure 24. Number of unique bolt positions. 

 

When the operator clicks ‘Create Folder’ button, the number of folders 

corresponding to number of unique positions is created in the dataset folder, as shown in 

Fig. 25. 

Figure 25. Folders created in dataset. 
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To collect data required for training the model, the user inputs the bolt position for 

which the pictures are being captured in the encircled text box shown in Fig. 26.  

Figure 26. Data to be stored in given folder. 

Then the user clicks the ‘Snapshot’ button to save the image in the given folder. 

The folder name is n-1, where n is the number given as an input by the user, as shown in 

Fig. 27.  
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Figure 27. Clicked picture in given folder number. 

 

When the user has created a dataset for all the bolt tightening positions, the user 

clicks the ‘Train Model’ button. As the number of images that can be clicked for a position 

is limited, image transformations must be applied in order to increase the dataset for each 

position. Using Keras’ ‘ImageGenerator’ class, it is possible to apply random 

transformations to increase the dataset. The method ImageDataGenerator of the 

ImageGenerator class has the following arguments: 

1. rotation_range: This parameter specifies rotations of images. The input parameter is 

an angle in degrees, ranging from 0 to 180.  

2. width_shift_range: This parameter specifies horizontal shifts in the images.  

3. height_shift_range: This parameter specifies vertical shifts in the images.  

4. shear_range: This parameter displaces each pixel in a fixed direction.  

5. zoom_range: This parameter specifies random zooming of parts of image.  

6. horizontal_flip:  This parameter randomly flips inputs horizontally.  

7. vertical_flip:  This parameter randomly flips inputs vertically. 
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8. fill_mode: This parameter indicates the method of filling newly formed pixels.  

There are more arguments that can be used by ImageDataGenerator class. The 

following code is used to read the images from all folders and apply transformations to 

them: 

 

Figure 28. Python code to apply transformations to dataset. 

 

Fig. 29 shows the images that have been captured by the vision system Since the 

data is limited, random image transformations need to be applied to increase the dataset. 

Fig. 30 shows the dataset for one of the bolt locations, when the code for random image 

transformations has been executed.  
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Figure 29. Before random transformations of dataset. 

 

Figure 30. Dataset after image transformations. 
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After the dataset has been extrapolated, the code below is used to create a tensor of 

images using the Keras library. The dimensions of the tensor of an image are height of 

image * width of image * 3. ‘3’ signifies RGB values of pixel. The names of folders are 

used as labels.  

 

Figure 31. Python code to create tensor of images. 

Once all the images have been converted into tensors with their respective labels, a 

CNN is constructed using the Keras library. The model used in this research consists of 

three groups of layers, where the convolution layers (Conv 2D) in conjunction with non-
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linear layers (ReLU) and pooling layers (Max Pooling 2D) are followed by two tightly 

bound layers (Dense).  

Figure 32. Python code to construct CNN. 

 

The parameter 50 in Conv2D indicates the number of output filters in the 

convolution. The pair (3,3) denotes the kernel size and determines the width and height of 

the 2D convolution window. Another important component is the input shape, which is an 

input array of pixels.  Other convolution layers have been constructed in a similar way, but 

they do not include the input shape. The activation function that has been used is rectified 

linear function (ReLU) (refer to Fig. 33). Using zero as a threshold, this function cuts off 

unnecessary details in the channel if x<0 and the volume of array of pixels remains the 

same if x>0. 
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Figure 33. Rectified Linear (ReLU) function. 

The pooling operation for spatial data is performed by the Max Pooling 2D layer. 

The pair (2, 2) is the pool size, which halves the input in both directions. The flatten 

function converts the tensor into a 1-D tensor. The dense layer is the implementation of the 

equation: output = activation (dot(input, kernel) + bias). This equation denotes the dot 

product between the input tensor and the weight kernel matrix defined in the dense layer. 

After taking the dot product, the bias vector is added, and element-wise activation of output 

values is taken.  

The final step in training the model is compilation of the model and saving it. If the 

number of positions is more than 2, the categorical cross entropy loss function can be used. 

In the case of 2 positions, the binary cross entropy loss function is used.  The optimizer 

algorithm that has been used is ‘adam’, which is good for recurrent neural networks. The 

accuracy metrics shows the performance of the model.  
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Figure 34. Python code to compile the model. 

Batch size is defined as the number of training examples in one forward/backward 

pass. One epoch is one forward pass and one backward pass over all the training examples. 

‘Validation split’ is used to split the data into two parts: training and validation. Training 

data is the one using which tuning of weights corresponding to each neuron takes place  

and model is then tested for accuracy on validation set. The model is saved as ‘boltcross’. 

Figure 35. Python code to validate and save model. 

 

The progress of training, including accuracy and loss of data for each epoch, can 

be seen in Fig. 36. The number of epochs is chosen such that maximum accuracy for 

validation as well as the training set can be achieved, but at the same time, overfitting of 

data can be avoided. Overfitting is the production of an analysis that corresponds too 

closely to a particular set of data, and therefore analysis may fail to predict future 

observations reliably. Increased accuracy of training data with each epoch can be observed 

in Fig. 37. If we increase the number of epochs further, a point is reached where the 

accuracy of the training set might keep increasing but the accuracy of the validation set 

decreases with each epoch (refer Fig. 38). This results from overfitting of data. 
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Figure 36. Output of results after each epoch. 

 

Figure 37. Plot showing increase in accuracy with each epoch. 
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Figure 38. Plot showing overfitting of data. 
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Chapter 4: Testing and Results 

This chapter provides the details of the testing of the software and studies the effect 

of brightness of image on probability of detecting a position.  

4.1 Detailed description of software testing 

An Arduino UNO was used to evaluate the performance of the software. The 

Arduino Uno’s base has a number of holes that are used to fasten it to mounting surfaces. 

See Appendices A and B for specifications on the PC and Arduino used in this research. 

Each of the positions was assigned a number, as shown in Fig. 39. Arduino UNO was 

chosen because of following reasons:  

• Availability 

• Each position of hole has a unique characteristic associated with it (refer 

Fig. 40) 

• At least 50% of the area of the image is green in color; therefore, it is 

possible that the algorithm might give false positives or false negatives. 



 46 

 

 

 

 

 

 

 

 

 

 

 

Figure 39. Arduino UNO with different bolt positions. 

 

 

 

 

 

 

 

 

 

Figure 40. Examples of position and unique characteristics. 
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The code was tested for all four positions. The image for a particular position was 

captured using the button connected to the Arduino (Fig. 41), which signals the software 

using serial communication to capture the picture. The trained model, saved as ‘bolt 

crosstalk’, was used to classify the image and result was saved in .txt file in the output 

folder.  

 

Figure 41. Arduino with push button to click picture. 

 



 48 

The captured images for positions 1, 2, 3 and 4 are shown in Fig. 42 and the output 

for position 1 in the Python console is demonstrated in Fig. 43. A screenshot of the results 

text file is shown in Fig. 44.  

 Figure 42. Captured images of all positions. 
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Figure 43. Output in Python Console.  

Figure 44. Screenshot of output text file. 
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It can be observed in the output text file, the probabilities of predicting positions 

1, 2, 3 and 4 are 1, 0.93, 1 and 0.91, respectively. As the trained model was able to 

predict all the positions correctly, the next step will be to mount the camera on DC tool 

and test the performance of system in an industrial environment. If the developed 

software is integrated with the DC tool or the torque wrench, the sequence for a particular 

model  will be retrieved from the company’s database hosted on the server via ethernet, 

when the product enters the station and actuates the limit switch.  When the operator 

takes the tool to a position, if that position does not match the data received from the 

server, then the tool will not turn ON and the operator will not be able to tighten the bolt. 

Thus, the system will force the operator to follow the proper tightening sequence.  

 

4.2 System testing in different lighting conditions 

The effect of lighting conditions on the probability of detecting a position correctly 

was studied.  As it is difficult to quantify the lighting conditions, the Python imaging library 

(PIL) module was used to change the brightness of the image to simulate different lighting 

conditions. The images shown in Fig. 42 were used as references and a factor of brightness 

was selected such that each image’s brightness is varied from -100% to 100% in steps of 

25%. The Python code to achieve this is as follows: 

 

Figure 45. Python code to change brightness of image. 
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4.2.1 Case 1: Brightness = -100% 

The probabilities for positions 1, 2, 3 and 4 were found to be 1, 0.72, 1 and 0.87 

respectively. 

 

 

 

 

 

 

Figure 46. Case 1: Brightness= -100%. 

4.2.2 Case 2: Brightness = -75% 

The probabilities for positions 1, 2, 3 and 4 were found to be 1, 0.79, 1 and 0.88 

respectively. 

 

 

 

 

 

 

 

 

Figure 47. Case 2: Brightness= -75%. 
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4.2.3 Case 3: Brightness = -50% 

 The probabilities for positions 1, 2, 3 and 4 were found to be 1, 0.85, 1 and 0.88 

respectively. 

 

 

 

 

 

 

 

Figure 48. Case 3: Brightness= -50%. 

4.2.4 Case 4: Brightness = -25% 

The probabilities for positions 1, 2, 3 and 4 were found to be 1, 0.90, 1 and 0.89 

respectively. 

 

 

 

 

 

 

 

Figure 49. Case 4: Brightness= -25%. 
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4.2.5 Case 5: Brightness = 25% 

 The probabilities for positions 1, 2, 3 and 4 were found to be 0.99, 0.95, 1 and 0.87 

respectively. 

 

 

 

 

 

 

 

Figure 50. Case 5: Brightness= 25%. 

 

4.2.6 Case 6: Brightness = 50% 

The probabilities for positions 1, 2, 3 and 4 were found to be 0.99, 0.96, 1 and 0.87 

respectively. 

 

 

 

 

 

 

Figure 51. Case 6: Brightness= 50%. 
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4.2.7 Case 7: Brightness = 75% 

The probabilities for positions 1, 2, 3 and 4 were found to be 0.98, 0.97, 1 and 0.86 

respectively. 

 

 

 

 

 

 

Figure 52. Case 7: Brightness= 75%. 

4.2.8 Case 8: Brightness = 100% 

The probabilities for positions 1, 2, 3 and 4 were found to be 0.96, 0.98, 1 and 0.86 

respectively. 

 

 

 

 

 

 

 

Figure 53. Case 8: Brightness= 100%. 
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4.3 Summary of results 

The results from the nine cases reported above are summarized in Table 2.  It was 

observed that the variation of probability of detecting a position with change in brightness 

does not follow the same trend for all the positions. For position 1, the probability 

decreased with increase in brightness and remained the same with decrease in brightness. 

For positions 2, the probability increased with increase in brightness. For position 3, the 

probability did not vary with brightness. For position 4, the probability decreased with 

increase in brightness as well as with decrease in brightness.  (refer to Table 2 and Figure 

54). Thus, it can be assumed that, depending on the characteristics of the features associated 

with each position, the brightness might affect the probability differently. But for all the 

lighting conditions, the software was able to detect each position correctly. The averages 

of the probabilities of detecting positions 1, 2, 3 and 4 were found to be 0.99, 0.90, 1.00 

and 0.88 respectively. It should be noted that the algorithm was testing on a PC with lower 

specifications (see Appendix A), therefore time taken to detect each position was 30 

seconds, which is too high to be implemented in manufacturing environment.   
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Table 2: Summary of test results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 54. Chart showing summary of test results. 

 

 

 Probability of detecting a position 

Brightness (%) 
Position 

1 
Position 

2 
Position 

3 
Position 

4 

-100 1.00 0.72 1.00 0.87 

-75 1.00 0.79 1.00 0.88 

-50 1.00 0.85 1.00 0.88 

-25 1.00 0.90 1.00 0.89 

0 (Base) 1.00 0.93 1.00 0.91 

25 0.99 0.95 1.00 0.88 

50 0.99 0.96 1.00 0.87 

75 0.98 0.97 1.00 0.86 

100 0.96 0.98 1.00 0.86 

Mean 0.99 0.90 1.00 0.88 

Standard 
Deviation 0.01 0.09 0.00 0.02 
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Chapter 5:  Conclusion and Recommendations 

5.1 Conclusion 

The goal of this research was to develop a software tool that can be integrated with 

the DC tools and the torque wrenches used in manufacturing shops to make sure that the 

operator follows the bolt tightening sequence defined by the engineering specifications. In 

addition, the system should be able to help map and record torque values with each bolt, 

where there are multiple similar bolts that need to be tightened up to different torque values 

on the same station. The software developed in this work can identify each bolt position 

using a unique characteristic related to it. As the developed software has not been interfaced 

with DC tool and the company’s database, it should be noted that the software developed 

in this work does not map torque values with each bolt. Unlike National Instruments’ AI 

Vision Builder, for which the operator needs to have technical expertise of the software to 

set up the program and to test different algorithms [30], the developed program is 

comparatively easy to set up and the operator does not need to test different algorithms for 

an application.  . The software developed in this research can find its application in all the 

industries where torqueing sequence is essential for quality.    

For the experimental conditions tested, the average of probabilities of detecting a position 

under different experimental conditions was observed to be more than 85%. The use of the 

Keras library to apply image transformation reduces the size of the dataset needed, thus 

resulting in a decrease in the time for data collection. The software developed in this 

research was able to detect all the test cases correctly, thus achieving the accuracy of 100%.  
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5.2 Improvements and Recommendation 

 

The research was more focused on bolt location recognition and optimizing the 

algorithm parameters, therefore integration with the DC tool was not studied. The next step 

would be to mount camera on a DC tool and integrate the software with DC tool’s controller 

to test performance by tightening automotive assemblies in realistic conditions and 

developing the algorithm to select different communication protocols based on DC tool 

manufacturer.  

Integration with the database of a company was not done because each company 

has specific standards of data communication and employ different technologies. When 

this software is integrated with DC tool, this system can be deployed on the company’s 

manufacturing execution system (MES) to study the performance of the system in 

manufacturing environment.  

The time taken to detect one location is around 30 seconds because of hardware 

limitations of the PC used in this research. Specifications of the PC used in the research 

can be seen in Appendix A. Thirty seconds is too long for use in practice. Based on the 

author’s experience with various automotive industries, the average cycle time in a car’s 

assembly shop is 52 seconds and each station has at least 4 different bolt locations, 

therefore the system should be able to detect each location in less than 1 second. The 

execution file of program was run on a PC with 16 GB of RAM and 8 GB graphics card 

(Appendix C) and the time for detecting one position was observed to be 0.53 seconds.   
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Appendices 

 

Appendix A: PC SPECIFICATIONS [27] 
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Appendix B: ARDUINO UNO SPECIFICATIONS [28] 
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Appendix C: RECOMMENDED PC SPECIFICATIONS [29] 

 

 

 

 

 

 



 62 

 

References 

 

[1] “Tightening Sequences”, Tightening Sequence for a Joint Consisting of Several 

Bolts. Last accessed 30th Aug 2019: www.boltscience.com/pages/tsequence.htm. 

[2] “Specify a Torque & Tightening Sequence for Critical Fastening Joints”, Mountz 

Torque, 30 Nov. 2018. Last accessed 30th Aug 2019: www.mountztorque.com 

/Specify-a-Torque-Tightening-Sequence-for-Critical-Fastening-Joints. 

[3] “Southwest Engines How Engines Work: Engineering, Car Engine, Automotive 

Mechanic.” Last accessed on 30th August, 2019: www.pinterest.ca/pin 

/310255861811747387/. 

[4] Vukelic, D., Ostojic, G., Stankovski, S., Lazarevic, M., Tadic, B., Hodolic, L. and 

Simeunovic, N. (2011), “Machining fixture assembly/disassembly in RFID 

environment”, Assembly Automation, Vol. 31, No. 1, pp. 62-68. 

[5] Rusli, L. and Luscher, A. (2012), “Fastener identification and assembly verification 

via IR tracking”, Assembly Automation, Vol. 32, No. 3, pp. 262-275. 

[6] Killing, J., Surgenor, B.W. and Mechefske, C.K. (2009), “A machine vision system 

for the detection of missing fasteners on steel stampings”, International Journal of 

Advanced Manufacturing Technology, Vol. 41, No. 808. 

[7] Rusli, Leonard, and Anthony Luscher,“Fastener Identification and Assembly 

Verification via Machine Vision”, Assembly Automation, Vol. 38, No. 1, 2018, pp. 

1–9. 

[8] Karpathy, Andrej. 2015. “Neural Networks Part 1: Setting Up the Architecture.” 

Notes for CS231n Convolutional Neural Networks for Visual Recognition, Stanford 

University. Last accessed on 30th January, 2020: http://cs231n.github.io/neural-

networks-1/. 

[9] “Convolutional neural network.” Wikipedia. Last accessed on 5th Feb, 2020: 

https://en.wikipedia.org/wiki/Convolutional_neural_network 

[10] Sermanet, Pierre, and Yann LeCun. 2011. “Traffic Sign Recognition with Multi 

Scale Networks.” Courant Institute of Mathematical Sciences, New York University. 

Last accessed on 8th Feb, 2020: http://ieeexplore.ieee.org/xpl/login.jsp?tp= 

&arnumber=6033589. 

http://www.boltscience.com/pages/tsequence.htm
http://www.mountztorque.com/SpecifyaTorqueTighteningSequenceforCriticalFasteningJoints
http://www.mountztorque.com/SpecifyaTorqueTighteningSequenceforCriticalFasteningJoints
http://www.pinterest.ca/pin/310255861811747387/
http://www.pinterest.ca/pin/310255861811747387/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
https://en.wikipedia.org/wiki/Convolutional_neural_network
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6033589
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6033589


 63 

[11] Ovtcharov, Kalin, Olatunji Ruwarse, Joo-Young Kim et al. Feb 22, 2015. 

“Accelerating Deep Convolutional Networks Using Specialized Hardware.” 

Microsoft Research. http://research srv.microsoft.com/pubs/240715 

/CNN%20Whitepaper.pdf 

[12] “Convolutional neural network,” Wikipedia. Last accessed on 3rd April, 2020: 

https://en.wikipedia.org/wiki/Convolutional_neural_network 

[13] Samer Hijazi, Rishi Kumar, and Chris Rowen. (2015), “Using Convolutional 

Neural Networks for Image Recognition [PDF file]”. Cadence Systems. Last accessed 

on 4th  April, 2020: https://ip.cadence.com/uploads/901/cnn_wp-pdf 

[14] De Ruvo, P. (2009), “A GPU-based vision system for real time detection of 

fastening elements in railway inspection”, 16th IEEE International Conference on 

Image Processing (ICIP), Cairo, pp. 2333-2336. 

[15] Emhart Americas Inc. (2011), “Stanley assembly technologies DC electric tools”. 

Last accessed on 5th April, 2020: www.emhartamericas.com/brands/stanley-

assembly-technologies/products/threadedfastening/electric (accessed 21 December 

2011). 

[16] Feng,H., Jiang, Z., Xie, F., Yang, P., Shi, J. and Chen, L. (2013), “Automatic 

fastener classification and defect detection in visionbased railway inspection 

systems”, IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 4, 

pp. 877-888. 

[17] Gonzalez, D., Botella, G., Meyer-Baese, U., Garcia, C., Sanz, C., Prieto-Matias, 

M. and Tirado, F. (2012), “A low cost matching motion estimation sensor based on 

the NIOS II microprocessor”, Sensors, Vol. 12, No. 10, pp. 13126-13149. 

[18] Hage, P. and Jones, B. (1995), “Machine vision-based quality control systems for 

the automotive industry”, Assembly Automation, Vol. 15, No. 4, pp. 32-34. 

[19] Igual, F.D., Botella, G., Garcia, C., Prieto, M. and Tirado, F. (2013), “Robust 

motion estimation on a low-power multicore DSP”, EURASIP Journal on Advances 

in Signal Processing, Vol. 2013, pp. 99.  

[20] Killing, J., Surgenor, B.W. and Mechefske, C.K. (2009), “A machine vision 

system for the detection of missing fasteners on steel stampings”, International 

Journal of Advanced Manufacturing Technology, Vol. 41, No. 808. 

[21] Perkins, W.A. (2009), “INSPECTOR: a computer vision system that learns to 

inspect parts”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 

5, No. 6, pp. 584-592. 

http://research/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://ip.cadence.com/uploads/901/cnn_wp-pdf
http://www.emhartamericas.com/brands/stanley-assembly-technologies/products/threadedfastening/electric
http://www.emhartamericas.com/brands/stanley-assembly-technologies/products/threadedfastening/electric


 64 

[22] Poljak, J., Botella, G., Garcia, C., Poljacek, S.M., Prieto-Matias, M. and Tirado, 

F. (2013), “Offset printing plate quality sensor on a low-cost processor”, Sensors, 

Vol. 13, No. 11, pp. 14277-14300. 

[23] Simpson, L. (2003), “Machine vision improves productivity in many ways”, 

Assembly Automation, Vol. 23, No. 3, pp. 243-248. 

[24] Wang, F., Shen, B., Sun, S. andWang, Z. (2016), “ImprovedGA and Pareto 

optimization-based facial expression recognition”, Assembly Automation, Vol. 36, 

No. 2, pp. 192-199.  

[25] Welch, G. and Foxlin, E. (2002), “Motion tracking: no silver bullet, but a 

respectable arsenal”, IEEE Computer Graphics and Applications, Vol. 22, No. 6, pp. 

24-38. 

[26] “Select Your Vision Builder for Automated Inspection License”, National 

Instruments. Last accessed on 15th April 2020: www.ni.com/en-us/shop/electronic-

test-instrumentation/application-software-for-electronic-test-and-instrumentation-

category/what-is-vision-builder-for-automated-inspection/select-license.html. 

[27] “HP Spectre x360 - 13-ap0039nr”, Hewlett-Packard Company. Last accessed on 

4th May 2020: store.hp.com/us/en/pdp/hp-spectre-x360-13-ap0039nr. 

[28]  “Arduino Uno Specification,” TOMSON ELECTRONICS. Last accessed on 4th 

May 2020: www.tomsonelectronics.com/blogs/news/arduino-uno-specification. 

[29] “Alienware 17 R5 Review”, TechRadar. Last accessed on 4th May 2020: 

www.techradar.com/reviews/alienware-17-r5. 

[30] “NI Vision Builder for Automated Inspection Tutorial”, National Instruments. 

Last accessed on 4th May 2020: http://www.ni.com/pdf/manuals/373379h.pdf. 

 

http://www.ni.com/pdf/manuals/373379h.pdf

