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Abstract 

 

 GCCF: A Generalized Contact Control Framework 

 

Rusty Alexander von Sternberg, M.S.E 

The University of Texas at Austin, 2016 

 

Supervisors:  Sheldon Landsberger, Mitch Pryor 

 

The field of robotics has come a long way since the first reprogrammable robot was 

able to automate simple tasks on an assembly line. However, many industrial robots are 

stuck doing similar simple tasks in the field, especially in the nuclear industry. Roboticists 

can expand the task space of industrial robots by making advanced robot technology 

reliable, easily integrated, and packaged in a manner that does not require an expert in the 

field to use. One particular field of robotics that could be used to help this task space 

expansion is compliant control which is used to execute robotic procedures involving 

contact with environmental objects. It is especially useful when the position or orientation 

of the environmental objects is not precise. Examples of industrial procedures that a robot 

could do with compliant control include material reduction, surface finishing, packaging, 

assembly, material handling, and many more. 

This thesis explores the state of the art in compliant control and proposes a 

Generalized Contact Control Framework (GCCF) that packages compliant control laws in 

a manner that is easy to use for a non-expert. GCCF splits the control of a robot end effector 

into separate control of each linear and rotational dimension. The user sets the law that 
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controls each dimension independently to one of three intuitive laws. By specifying laws 

and stiffness independently for each dimension of end effector control, the user can 

complete a large variety of contact tasks. 

We illustrate GCCF’s broad capabilities in two flexible demonstrations. The first 

demonstration provides a graphical user interface to GCCF with which a user can set and 

reconfigure the control of the end effector while interacting with the robot. This allows the 

user to subjectively experience the reconfigurablilty as well as the physical behavior 

prompted by the control. In the second demonstration, we use GCCF to execute multiple 

contact tasks with the goal of putting a peg in a hole. These demonstrations prove the 

feasibility and usefulness of GCCF, using the API and ROS compatible package for the 

controller. 
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Chapter 1 

 

Introduction 

Robots have been able to do simple tasks such as material handling, welding, and 

painting as early as the 1960s and 1970s [1]. In fact, the Unimate, the first reprogrammable 

industrial robot used on a large scale assembly line, was patented in 1954 [2], and was first 

used by General Motors in 1961 to move and weld parts on an assembly line [1]. The 

Unimate revolutionized simple automation in assembly line tasks, allowing a factory 

operator to use a single robot on multiple, short run tasks rather than having to design a 

fixed automation solution for each task. Since these early days of robotic automation, 

robots have developed a wide array of new skills such as teleoperation, automated path 

planning, collision avoidance, learning, and integration with vision sensors and force and 

torque sensors. 

With these new skills, along with staggering advances in computational power, 

robots have accomplished amazing new feats. Boston Dynamic’s Atlas robot, seen in 

Figure 1.1, walks on two legs along rugged terrain, and responds to forceful disturbances 

such as being pushed over by a human [3]. Quadcopter drones fly above us while surveying 

land and relaying video streams and other sensory information back to the ground in real-

time. Soon, they might even deliver packages [4] or capture other flying drones [5]. 
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Figure 1.1 Boston Dynamics Atlas robot [3] 

With the amazing advances made in robotics in the last few decades, industrial 

automation, and especially in the nuclear industry, has fallen behind given the rapid pace 

of advancement. Ideally, a robot on an assembly line or in an industrial setting would do 

all the tasks that a human could complete, but with better precision, for longer hours, and 

without causing injury to humans or the objects it manipulates. An ideal industrial robot 

must also have the flexibility of a human to move from one task to another. As Unimate 

proved, by allowing the robot to be reprogrammable and reconfigurable for a specific task, 

robotic automation becomes viable for not only tasks that will be completed for long 

periods of time, but also short run tasks.  
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With the advances seen in robotics, why are so many industrial automation systems 

still doing the simple tasks they have done for years? Why is industry not closer to having 

the ideal, flexible robot that can replace or augment humans on the assembly line? This 

failure of industry to accept new technological advances is seen in many disciplines and is 

often referred to as “traversing the valley of death” [6] [7]. In the case of industrial 

automation, this “valley of death” is often caused by a lack of packaging of robotic 

technologies. It takes a roboticist or even an expert in a specific field of robotics to 

assemble all the pieces that are required to complete each specific task. If the pieces were 

reliable and packaged in a way that a non-expert could assemble and use them, then 

industry could adopt new robotic technologies.  

An example of successful packaging of pieces of advanced technology in a way 

that can be used by a non-expert is MoveIt! [8]. MoveIt! will be described in greater detail 

in Chapter 4, but on a high level it is a software package that a user utilizes to move a robot 

with automated path planning and collision avoidance. MoveIt! incorporates many 

advanced pieces including: 

 Kinematic calculations – The equations of motion of the links of the robot 

that are used to map joint motions and torques to tool point motions and 

forces. 

 Path generation – The generation of joint trajectories (a queue of robot 

joint positions). 

 Path selection – The selection of the best, collision-free path from a list of 

randomly generated trajectories. 

 Collision detection and avoidance – The ability to model the environment 

in a collision scene and detect which generated paths result in collisions. 



 4 

With the simplest version of the interface to MoveIt!, pictured in Figure 1.2, a user drags a 

virtual robot to a new position and presses a “plan and execute” button to safely move the 

robot while avoiding collisions with the modeled environment. The grey robot pictured in 

Figure 1.2 is the current position of the actual robot, and the orange robot is the desired 

position for the next move. The user drags the orange robot to a desired position using the 

arrows attached to the last link of the robot. The environment can be modified by uploading 

standard format CAD (Computer-aided Design) models, or specifying dimensions of 

simple shapes using the same user-friendly interface.  

 

 

Figure 1.2 RVIZ planning plugin used to control through MoveIt! 

1.1 HURDLES TO INDUSTRIAL AUTOMATION 

The simplicity and configurability shown by the packaging of MoveIt! is what 

advanced robotics capabilities need to be accepted by industry, but there are more aspects 

of advanced robotic control that still need to be made reliable and packaged in this way. 

Not only do the pieces need to be packaged, but an overall infrastructure must be created 

that can include and manage the packages so they can be used together. This infrastructure 
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will need to include a variety of hardware and software capabilities necessary to close the 

“flexibility gap” between operators and automation. Each of these (and the related technical 

challenges) are discussed below, but include: 

 Hardware and/or software configurability 

 Automated path planning and collision avoidance 

 Reliable, reconfigurable end effectors (EEFs) 

 Integrated vision sensing 

 Integrated force sensing and control 

This section will briefly review a few of the core components of an advanced robotic 

infrastructure, focusing on concepts that are important to the nuclear industry and this 

thesis. 

1.1.1 Hardware and/or Software Configurability 

In order for the infrastructure to be reconfigurable, it must have standard hardware 

interfaces so that tools and parts can be changed and replaced easily. This concept is well 

understood and has been seen in mass production as far back as the original Ford assembly 

line. Possibly even better than hardware configurability, is improved software that 

maximizes the number and complexity of tasks that hardware can perform without 

reconfiguration. In the nuclear industry, this is even more important. Robots operate in 

contaminated and/or sealed environments. Reconfiguring hardware requires 

decontamination or other activities that lead to costly downtime. 

1.1.2 Automated Path Planning and Collision Avoidance 

Manipulator paths can be preplanned for simple pick and place operations with 

static environments, but when robots complete multiple tasks with undefined parameters, 

they must generate preferred motion plans autonomously. When generating this path, or 
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motion plan, the robot should take into consideration avoidance of known environmental 

obstacles and its own limits, e.g. travel limits, velocity limits, singularities. The position of 

the environmental obstacles should be configurable via a software model. This could be 

the job of the human operator, or this information could come from sensing capabilities. 

Path planning processes must happen in a reasonable amount of time to assure the task 

completes in reasonable amounts of time. A key advantage of using automation is the 

reduction of exposure and the risk of injury by the operator, but these advantages cannot 

come with significantly increased production times or development costs.  

1.1.3 Reliable, Reconfigurable End Effectors 

EEFs are the tools attached to the last link of a serial manipulator. In order to 

accomplish the goals of a robotic infrastructure that is flexible, EEFs must accomplish 

many different tasks. For an industry that does not put robots in a dangerous environment, 

this might mean EEFs that have an adapter between the last link of the robot and the EEF 

that makes it easy to switch between different EEFs specifically designed for a task. Or it 

might mean a design that allows the robot itself to change the EEF. For the nuclear industry, 

when the robot might be in a dangerous environment, one EEF that is able to accomplish 

multiple tasks would be the ideal situation. This would allow the least amount of hardware 

reconfiguration and therefore less chance that an operator would need to physically adjust 

the robot. 

Another important goal for EEFs is that they need to be reliable. Grasp validation, 

or checking that an EEF has successfully picked up an object, will be important for a robot 

to be able to run independently and autonomously. 
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1.1.4 Integrated Vision Sensing 

Integration with vision sensors will be necessary to determine changing 

environments to update the software model. Also, vision sensors can locate objects to be 

manipulated, sort or classify objects, and validate that tasks have been completed 

successfully. All of this will be necessary to create a reliable, non-task-specific platform. 

1.1.5 Integrated Force Sensing and Control 

While vision sensing can provide pose estimation and location of environmental 

objects, the position provided will always be an estimate that relies on the precision and 

calibration of the sensor. To handle the uncertainties in vision estimates, and others, 

integration with force and torque sensors will also be important to the platform. To do any 

task in which contact with the environment is necessary, force sensing is required. When 

contacting with the environment, small deviances in the model will lead to dangerously 

high contact forces. Therefore, the robot must have the ability to comply with the physical 

restrictions in position that the environment imposes. In order to execute multiple different 

tasks, the robot’s compliance should be adjustable or general enough that it can deal with 

different environments. 

1.1.6 Current Industrial Robot Infrastructure 

Some of the previously mentioned components of a flexible, safe robotic 

infrastructure exist. For example, many industrial robot controllers perform kinematic 

calculations and control each actuator to move a robot from one position to another. These 

controllers typically send the joint positions or trajectories to the joint actuators. However, 

industrial controllers do not always include automated path planning and collision 

avoidance described previously. But reliable algorithms and code libraries, including 
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MoveIt!, do exist to handle these tasks, some of which will be discussed in the Chapter 4 

of this thesis. 

In the category of reliable, reconfigurable EEFs, tool changers allow robots to 

change their own tools autonomously [9]. Recently developed sensors allow for a robot 

hand to feel objects to validate grasps [10]. The ability to use a variety of EEFs allows for 

many types of tasks to be completed, but an EEF as universal as the human hand has not 

been achieved yet. Two and three finger grippers, such as the one pictured in Figure 1.3, 

offer a combination of flexibility and robust operation, but still have their limits. For 

example, without force sensing, the changing length of the fingers as they close can make 

it difficult to pick up small objects. Another common issue is the bulkiness of grippers 

combined with their necessary control components. Also the necessity to power and 

communicate with the gripper can cause difficulties since extra wiring can hinder robot 

motion. 

 

 

Figure 1.3 Robotiq 3 finger gripper 
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Vision sensors can learn the signature of objects and find them in a scene. They can 

determine the pose of the object to assist a robot to grasp it or avoid colliding with it. They 

can also analyze a scene to see what has changed or read barcodes on objects. 

Control algorithms have been developed to use force sensor data to manipulate 

environmental objects. They can also validate grasps and stop operation under unsafe 

conditions. For select individual tasks, force sensing and control has been addressed and 

some key examples are discussed in Chapter 2, but little has been done to reduce the burden 

on the developer when new contact tasks are considered. So, while possible, this capability 

is largely missing from the manipulator’s general supporting infrastructure. 

Although many of the solutions to the discussed hurdles are mature in some sense, 

not many of them have been accepted into the industrial community. This might be due to 

a lack of integration of the components, and the difficulty of taking all the components and 

creating a robotic procedure. At the current state of maturity, many of these solutions to 

the hurdles discussed require an expert in the field to apply the solution. In order to expand 

the task space of robots in the field, roboticist must mature this robotic infrastructure and 

make it available in a way that does not require expertise to use. 

1.2 TASK STATEMENT AND OBJECTIVES 

The section above outlines some of the hurdles that roboticist must be address and 

integrate to broaden the task space of industrial applications of robotics. The Nuclear 

Robotics Group at UT Austin is concurrently addressing many of these issues, but this 

effort attempts to tackle issues related to integrated force sensing and control. A 

generalized framework for compliant control, GCCF, is proposed.  The primary objectives 

of the framework design are: 

 Flexibility – Able to be used on a large number of contact tasks 
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 Safety – Use force sensing to add a level of safety to infrastructure 

 Simplicity – Able to be used by non-expert 

 Hardware Agnostic – Able to run on many hardware platforms 

 Ease of integration – Easy to hook up to existing infrastructure 

 Modular/Extensible – Allow for improvements/extensions 

GCCF generalizes the contact control process and provides a few simple control 

laws to perform contact control. This generalization ensures flexibility for a variety of 

tasks. GCCF also uses force sensing to add a layer of safety to a robotic procedure that can 

compensate for non-precise environments. GCCF and its associated control laws are kept 

simple and use intuitive concepts so that they do not require an expert in the field to 

understand them. GCCF is also hardware agnostic and thus compatible with multiple 

platforms. Along the same lines, it is easily integrated using existing robot infrastructure 

code. GCCF is modular and extensible so that users and/or researchers can easily improve 

upon the design as they experience future challenges. 

1.3 MOTIVATING EXAMPLES 

GCCF could be useful for a wide variety of applications in industry. One such 

application at Los Alamos National Lab (LANL), is material reduction. Engineers at LANL 

need to size reduce plutonium pits to fit them into a standard crucible in which they are 

melted down to be recycled. Currently, workers perform procedures like this procedure by 

manipulating objects through gloves of a glove-box, as seen in Figure 1.4.  
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Figure 1.4 A worker performing a procedure using the glove ports of a glovebox [11] 

Since the size reduction procedure generates small metal scraps, it is possible for the metal 

to cut the gloves exposing the worker to the dangerous environment within the glovebox. 

A recent NRG student demonstrated an autonomous material reduction procedure that 

successfully completed this task (with a metal bowl, instead of a plutonium pit) using a 

robot with a vacuum gripper EEF shown in Figure 1.5. The robot picks up the bowl and 

places it in the hole punch which is automatically actuated. The robot then continues to 

rotate the bowl in the punch until it is sufficiently reduced in size. 
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Figure 1.5 Autonomous material reduction solution [12] 

The vacuum gripper chosen for the demonstration is inherently compliant and 

alleviates stresses that the hole punch puts on the manipulator. However, a vacuum system 

might not be the most appropriate EEF since pieces of the material could get caught in the 

suction of the vacuum or the gripper’s rubber (i.e. organic) material which is problematic. 

Thus, a stiffer EEF may be chosen and in that case there would be need for a compliant 

controller. An EEF that rigidly holds an object in the punch could react to the force applied 

by the punch via GCCF. This type of behavior would be difficult to hard code into the 

procedure since the reaction will be different at the differing radii of the bowl, but with a 

controller, like the one proposed, a robot is able to account for differing contact forces. 

Since GCCF has adjustable stiffness, fine tuning would allow the EEF to be stiff enough 

that the punch is executed properly, and compliant enough that the robot is not improperly 

stressed. The framework would also be useful when picking up the object, if the position 

is not known precisely. It is possible that a human operator would be placing the pits in 
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front of the robot to perform this operation. In this case the pit would not be in a precise 

position and it would be unsafe to pick them up without force monitoring and control. 

Other possible applications include material handling, surface finishing, station 

scheduling, and co-robotics. As was stated in the previous example, material handling in 

imprecise conditions is a prime example of the usefulness of GCCF. Not only could GCCF 

help a robot pick up an object with imprecise knowledge of its position, but after the robot 

picks up the object, force monitoring could be used to validate the grasp and GCCF to 

move the object safely away from the environment. Station scheduling is using the same 

glovebox setups for multiple tasks. This is where software, instead of hardware, 

configurability becomes very useful. Since GCCF is software configurable and does not 

require swapping of EEFs, workers can decide which tasks are to be done in a glovebox 

without having to swap out the hardware in the glovebox. Workers might also work 

alongside robots someday. In co-robotic applications, it is important for worker safety that 

EEFs are compliant when humans are interacting with the robot. GCCF could also handle 

this type of behavior. 

1.4 ORGANIZATION OF THIS THESIS 

This chapter introduces the hurdles prohibiting expansion of reusable industrial 

automation and the objectives for tackling the hurdle of integration of force sensing and 

control. It proposes a generalized contact control framework, GCCF, and briefly described 

some motivating examples in which GCCF would be useful. The remaining chapters are 

organized as follows: 

Chapter 2 shows a progression of robotic control into the compliant control field 

and summarizes previous work and the state of the art in the field. It also gives an overview 

of current state-of-the-art robotic control in the nuclear industry. 
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Chapter 3 details the design of a generalized contact control framework that 

adheres to the objectives laid out in this chapter. 

Chapter 4 describes the implementation of GCCF in C++ using the Robot 

Operating System, ROS. 

Chapter 5 shows two demonstrations of GCCF that are relevant to the motivating 

applications outlined above. The first demonstration is a graphical user interface that allows 

the user to experiment with the workings of the framework. The second demonstration 

shows GCCF being used to accomplish a robotic procedure involving multiple contact 

tasks. 

Chapter 6 concludes this thesis and suggests avenues for future work to extend 

GCCF capabilities. 
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Chapter 2 

 

Literature Review 

GCCF’s underlying algorithms are based largely on previous work in the field of 

compliant robotic control. The proposed framework synthesizes multiple ideas that have 

been proven in the past and implements them in a general and hardware agnostic manner. 

This literature review takes a look at robotic control in the literature, giving attention to 

control involving interaction with the environment and nuclear industry applications. 

First, a general overview of manipulator control architectures is presented before 

narrowing the focus to methods utilized to control contact with the environment. Historical 

progression from explicit force control to more modern methods of controlling forces and 

positions simultaneously are presented as well as a look at recent advances in the literature. 

Although non-contact control is used in conjunction with the framework, the origins of this 

control will not be discussed in this literature review. This is because the framework uses 

proven and easily accessible methods to control the manipulator when not in contact with 

the environment. These methods incorporate kinematic calculations, motion trajectory 

planning, and collision avoidance and are achieved via the Robot Operating System, ROS, 

[13] and will be discussed in the implementation chapter. Lastly, applications of robotics 

in the nuclear industry are considered and the current state of the art and innovative 

applications in the industry are reviewed.  

2.1 OVERVIEW OF MANIPULATOR CONTROL SCHEMES 

The first form of reprogrammable robotic control in an industrial robot was the 

Unimate robot, patented in 1954 [2], and was used by General Motors for spot welding 

[14] and other tasks. Although machines capable of completing assembly line tasks existed 

before the Unimate, they were typically designed for a single task and therefore only 
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feasible for tasks that ran long term. The Unimate, on the other hand, could be “taught” to 

learn a new task without reconfiguration of the robot. This teaching process did not require 

a skilled technician to reprogram the Unimate. To teach the Unimate, an operator would 

move the robot to each position required to complete a task by using a simple control box 

seen in Figure 2.1. 

 

 

Figure 2.1 Operator teaching the Unimate [15] 

The operator would then press the record button to record the position on a 30-inch-long 

magnetic drum, shown in Figure 2.2, which could store up to 200 positions or commands. 

Besides moving to a position, the commands could also delay the next move or open or 

close the gripper. When a commanded position is played back, the robot would move its 

links with separately controlled hydraulic actuators until all position encoders read the right 

positions [15].  
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Figure 2.2 Memory drum recording Unimate commands [15] 

This process of “teaching” a robot by recording positions is still used in the industry today, 

but more advanced position control schemes have also been developed. In modern robotic 

control schemes, wrapped around the joint position controllers is typically a path planner 

that determines a stream of appropriate joint position commands, or a trajectory, that will 

take the robot from one set of joint positions to another. While generating this trajectory, 

the path planners also avoid known obstacles in the environment and positions in which 

control laws break down or behave undesirably, e.g. at travel limits or near singularities. 

The Unimate and many other industrial robots solely used position commanding to 

complete its task and do not take into consideration other important information that can 

be retrieved via sensors, e.g. cameras or force sensors. For more complex tasks, this sensory 

information can be used to avoid barriers to motion that have been introduced to the robot’s 

workspace, or to compensate for uncertainty. This lack of sensory information makes pure 

position commanding useful only for operations where the manipulator has minimal 

contact with the environment. Once there is contact, slight deviations in a robot’s desired 

position and its actual position, or deviations between the model and actual environment, 
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lead to dangerously high contact forces. For this reason, a robotic system must take into 

account model inaccuracies by sensing contact forces on the robot. This problem spawned 

the field of force control which commands the robot based on sensed forces. According to 

Whitney [16], one of the pioneers of force control, “gross motions”, i.e. open loop position 

control motions, are useful for “material handling tasks as well as ‘assembly’ tasks such as 

spot welding in which insertions of one part into another are not necessary”, but fine 

motions, i.e. closed loop motions based on force feedback, “are required for some types of 

assembly requiring insertions, push and twist actions, gear meshing, packing, and so on.”.  

The simplest way to apply force control is to command robot joint positions only 

based upon the knowledge of current and desired EEF contact forces. This can be useful in 

applications where a precise force is desired to be maintained. Such a method was proposed 

by Whitney and termed linear force feedback strategy. In this method, a force feedback 

matrix, a matrix of feedback gains, is used to convert sensed forces into desired EEF 

position deltas which are then converted into new joint position commands [16]. This 

process is illustrated in Figure 2.5. 

 

 

Figure 2.3 Block diagram of force feedback control method [16] 

This literature review will focus on control algorithms that contain strategic 

elements of both position and force control methods. This middle ground is the area of 
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active compliant control. Active compliant control attempts to track a trajectory, i.e. 

position control, while maintaining compliance with respect to physical contact 

(intentional or not). 

It is worth mentioning that there is another area of compliant control called passive 

compliant control. Active compliant control is attained through software whereas, passive 

compliant control requires that the robot or EEF is inherently mechanically compliant. 

Passive compliance is achieved using a spring, clutch or other compliant device between 

the EEF and last link of the robot manipulator [17], in the EEF itself [18], or in each 

actuator [19] [20]. In passive compliant control, the robot is position controlled, and the 

compliance of the robot itself allows for the contact forces to be minimized. While variable 

stiffness actuators have been investigated, [21], no physical system was identified that 

would give a passive controlled robot the range of performance in terms of precision, 

payload, etc. necessary for the applications proposed by the sponsor. Furthermore, active 

compliant control techniques can be implemented on proven affordable industrial 

manipulators, whereas multi-purpose passive compliant control architectures, exemplified 

by Rethink Robotics’ Baxter [22],  have only been available on the market for a few years, 

and none have the payload or precision requirements necessary for the envisioned 

applications in the nuclear domain. 

Figure 2.4 shows the types of manipulator control. In the domain between explicit 

position control and explicit force control, there are two main philosophies of control that 

will be discussed. One of them I have termed split control, where the control method 

attempts to use explicit force and explicit position control separately in different Cartesian 

directions so that the robot may reach a desired position while also being compliant. The 

other, I have termed relational control. In this type of control, the control method enforces 

a dynamic relation between the position of the EEF and contact forces in all directions. In 
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between these two types of control there is hybrid impedance control which attempts to 

synthesize the benefits of both types of compliant control. 

 

 

Figure 2.4 Types of Manipulator Control 

2.2 COMPLIANT FORCE CONTROL 

To manipulate objects in the environment or to mitigate accidental contact with the 

environment, robotic control must implement more than just simple position control, it 

must also control the contact forces between the EEF and the environment. Force control 

uses sensory force and torque information to adjust the position of an EEF to maintain or 

mitigate forces at the contact with the environment. Explicit force control relies solely on 

force data to calculate the desired robot movement that will maintain a desired force. This 

type of control can be very useful in certain applications, but its fault is that it pays no 

attention to a desired position of the EEF. In a lot of cases, the operator would like to 
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maintain a desired force profile while also staying as close as possible to the desired 

position of the EEF.  

2.2.1 Formalizing the Problem of Compliant Control 

Mason formalized the problem of controlling contact forces while maintaining a 

desired position in 1981 as compliant motion. According to Mason, “compliant motion 

occurs when the position of the manipulator is constrained by the task” [23]. Mason 

focused on active compliance solutions rather than passive compliance. 

Mason introduced the concept of a C-surface which is “a task configuration space 

which allows only partial positional freedom” [23]. A C-surface is the intermediate 

between two extremes, total positional freedom and no positional freedom. While not in 

contact with the environment, a manipulator has complete positional freedom. On the other 

extreme, a manipulator rigidly attached to a stiff object has no positional freedom and has 

complete freedom to control the forces on the EEF. While in contact with a C-surface, a 

manipulator must consider both position and force control. 

Mason went on to develop a method for breaking down the natural constraints of 

ideal C-surfaces and adding artificial constraints that the operator would like to enforce. 

The simplest example of this is a manipulator following the surface of a table. A natural 

constraint is that the velocity of the manipulator in the direction that is normal to the surface 

of the table must be zero since it cannot move through the table. An artificial constraint 

constrains the velocity normal to this natural constraint, i.e. the velocity that moves the 

EEF along the surface of the table, to the desired velocity. Mason’s efforts to create this 

language describing contact tasks was meant to allow future work of synthesizing control 

strategies that enforce these natural and artificial constraints. 
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Figure 2.5 gives a visual of a C-surface. A robotic arm is holding the handle to a 

pump. This is a C-surface because the robot has neither complete position nor force 

freedom on all axes. In this case, the pump geometry naturally constrains velocity to zero 

in the y and z dimensions. The pump geometry also contains rotational velocity to zero 

around the y and z axes. Torque around the x axis is also zero if it is assumed that the piston 

is free to rotate without friction within the pump. The artificial constraints shown are the 

desired constraints that are not necessary due to the geometry. In this case, the robot will 

move the pump piston with a constant velocity, seen by the artificial constraint on the x 

velocity. The force in the x direction will then be some function of that velocity and the 

dynamics of the system. The other artificial constraints show a desire to avoid contact 

forces where an applied force is not needed and to have no motion around rotational x axis. 

 

 

Figure 2.5 Robotic manipulator constrained by pump C-surface. v is the linear velocity. ω 

is the rotational velocity. F is the linear force. τ is the torque. C is the constrained 

velocity. f(v) is a function of velocity and the dynamics of the system. 

2.2.2 Hybrid Position/Force Control 

Researchers devised two methods for achieving compliant motion in the early 

1980s which are still used today. First, Raibert and Craig developed hybrid position/force 

control [24]. Raibert and Craig took the direct logical step from Mason’s formalized 
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constraints to synthesize a control strategy. They set up a Cartesian frame that described 

the natural and artificial constraints and used it to pick directions controlled by explicit 

position control and directions controlled by explicit force control. Then, they developed a 

method of transforming these control requirements to direct control of each individual 

robot joint. This method can be seen in equation 2.1. 

 𝜏𝑖 = ∑ {Γ𝑖𝑗[𝑠𝑗Δ𝑓𝑗] + 𝜓𝑖𝑗[(1 − 𝑠𝑗)Δ𝑥𝑗]}𝑁
𝑗=𝑖  (2.1) 

where 𝜏𝑖 is the torque applied to the ith actuator, N is the number force controlled degrees 

of freedom in the Cartesian reference frame plus the number of position controlled degrees 

of freedom in the Cartesian reference frame, Δ𝑓𝑗 is the force error, Δ𝑥𝑗 is the position error, 

Γ𝑖𝑗 is a force compensation function, 𝜓𝑖𝑗 is a position compensation function, and sj is a 

binary (0 or 1) vector that indicates which degrees of freedom are force controlled [24]. 

The equation takes the Cartesian force and position control efforts and maps them to the 

torque required to be applied to each joint to accomplish the control goal. Raibert and Craig 

implemented the controller on a 2 axis Scheinman manipulator to show that the controller 

was feasible and stable. However, it is important to note that Lipkin and Duffy refuted this 

method in 1988 because it is “based on the metric of elliptic geometry and is thus 

noninvariant” with respect to Euclidean collineations and change of Euclidean unit length 

[25]. Lipkin and Duffy, along with others proposed new invariant hybrid position/force 

control methods to attempt to solve the issues reported with Raibert and Craig’s version 

[25] [26] [27]. 

2.2.3 Impedance Control 

The literature usually groups the other method of achieving compliant motion into 

a category called impedance control. Though there are many different control schemes 

thrown into this one category, e.g. stiffness control [28] and admittance control [29], the 
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term impedance control comes from Hogan’s work in the field [30]. Hogan pointed out 

that while in general absolute control of EEF position is desired, no controller can make up 

for the fact that the robot in contact with a physical system must behave according to the 

physical laws of the combined system. For this reason, the controller should command the 

desired motion of the manipulator, but also help it to react to disturbances that it encounters. 

According to Hogan, in impedance control “the controller attempts to implement a dynamic 

relation between manipulator variables such as end-point position and force rather than just 

control these variables alone” [30].  

In Hogan’s implementation of impedance control, he derives the following 

equation (2.2) for the desired relationship between the contact force and the dynamics of 

the system. 

 𝐹𝑖𝑛𝑡 = 𝐾(𝑋0 − 𝑋) + 𝐵(𝑉0 − 𝑉) − 𝑀𝑑𝑉/𝑑𝑡 (2.2) 

where Fint is the “interface” force, K is and adjustable stiffness variable or nonlinear 

function, B is an adjustable damping variable or nonlinear function, (𝑋0 − 𝑋) is the 

difference between the commanded position and the actual position, (𝑉0 − 𝑉) is the 

difference between the commanded velocity and the actual velocity, and M is the inertia 

tensor of the manipulator. Therefore, according to Hogan, the equations of motion for the 

manipulator coupled with the environment are seen in equation 2.3. 

 
(𝑀𝑒+𝑀)𝑑𝑉

𝑑𝑡
= 𝐾(𝑋0 − 𝑋) + 𝐵(𝑉0 − 𝑉) + 𝐹𝑒𝑥𝑡 (2.3) 

where Fext is the external force, or the force that the manipulator will need to apply to 

maintain the desired dynamic behavior, and Me is the inertia tensor of the environment. 

Note that in order to implement equation 2.3, one must have precise information about the 

inertia of the environment and robot. 
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2.2.4 Bridging the Gap Between Hybrid Control and Impedance Control 

While the initial efforts by Raibert, Craig, Hogan and other early pioneers of 

compliant control individually gave a few possible solutions to the problem of controlling 

force and position together, researchers eventually realized that by combining the efforts 

there might be an even better solution to the problem. In 1988, Anderson and Spong applied 

these two methods to one control strategy and called it hybrid impedance control [31]. Not 

only did the control combine impedance and hybrid position/force control, but it also 

implemented an outer/inner loop of control so that the compliant control may be done 

separately from the inverse dynamics calculations. Lui and Goldenberg studied this control 

method further in 1991. They made it more robust by the use of the computed torque 

technique and a PI control law to compensate for model uncertainties [32].  

2.3 RECENT FORCE AND COMPLIANT CONTROL EFFORTS 

Since the early 2000’s, a dramatic increase in computing power and expanding 

robot infrastructure have influenced efforts to improve force and compliant control in the 

literature. With the rise of faster computers, the academic community has renewed its 

interest in more advanced control methodologies and design that allow for greater 

robustness and stability, especially in cases of uncertainty. This resurgence has also 

included the fields of artificial learning, and neural networks. Recent literature in the field 

of force and compliant control schemes mirrors these advances in the state of the art of 

control and computing. 

One issue with the original idea of impedance control is that there will be 

uncertainty in the robot model and especially in the model of the environmental stiffness. 

This issue makes it difficult to perform robust force tracking. Jung proposed a force 

tracking impedance control scheme that uses an adaptive control philosophy to adjust the 

velocity profile during motion as a function of the force error [33]. Jung showed that this 
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controller works well in unknown environments and when the environment stiffness is 

abruptly changed. Researchers have also made similar efforts for adapting to unknown 

parameters using neural networks. In [34], a neural network is used to adjust an impedance 

controller for unknown environments. In [35] a neuro-adaptive controller is used to track 

position and force along a flat surface with non-parametric uncertainties in the models of 

the robot and environment. Another innovative advancement is the use of model-free 

reinforcement learning and optimal control to learn variable impedance for a robotic 

system. Buchli [36] developed a method to allow a robot to learn variable impedance so 

that the robot may be compliant when able, yet stiff when required. Lee [37] took a 

biological approach to impedance control. By looking at the way humans interact with 

objects, Lee developed a control algorithm that adapts the arm stiffness based on the force 

error and interestingly even allows for negative stiffness. 

Researchers have also made many efforts to enhance robustness of impedance 

control. Jin [38] used time delay estimation and ideal velocity feedback to allow for 

nonlinearities in robot dynamics without actually modeling them. He showed that the 

controller improves robustness in cases involving nonlinear friction and allows for 

relatively simple tuning. Another approach using time delay estimation, [39], attempts to 

improve robustness without sacrificing accuracy using internal model control. Another 

example of an effort to enhance robustness can be found in [40], where researchers attempt 

to improve robustness of task space impedance control on a redundant 7 degree of freedom 

(DOF) manipulator. Kikuuwe [41] attempted to deal with robustness in cases where the 

robot actuators become saturated by using a proxy-based sliding mode controller. 

According to the author, this saturation can result in “undesirable behaviors such as 

oscillation, repeated overshoots, and instability” [41].  
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The literature shows that compliant control is a very mature topic dating back to 

the late 1980’s. Research has been done on both passive and active compliance, and even 

passively compliant devices that actively change their stiffness. Active compliance has 

advanced to learn and adjust compliance automatically for specific tasks. The real barrier 

between the academic research and industrial application is generality. While researchers 

have studied these learned compliant behaviors in academia and applied them to specific 

situations, a factory worker, or even a non-expert programmer, cannot program a 

commercially available robot to behave in this manner. Until roboticist develop general, 

non-task-specific, applications of active compliant control to be easily adopted into the 

current state of industrial automation, most industrial automation processes will be limited 

to the traditional learned position procedures that industrial automation has used since the 

invention of the Unimate. 

2.4 NOTABLE APPLICATIONS IN NUCLEAR AND HAZARDOUS ENVIRONMENTS 

It is important to look at the state of the art in the nuclear industry to see where 

improvements need to be made and how well the reviewed methods have been adopted to 

complete relevant tasks in this domain. Given the rigorous testing and safety standards 

required to safely operate in the nuclear industry, it is possible for the state of the art in the 

industry to fall behind not only the academic/research community, but also the broader 

automation industry as well. Oddly enough, it is the same work dangers driving these 

increased requirements in safety that begs the need for robotics to be developed that can 

aid humans in the nuclear field. In this section, literature describing robotics and 

automation of tasks in nuclear facilities will be reviewed, paying attention to force/torque 

control capabilities of these systems. 
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Robots are especially useful in the nuclear industry in cases where there is 

radioactive material and radiation present. It is a commonly held philosophy that radiation 

dosage to workers should be ALARA (As Low As Reasonably Achievable) [42]. With the 

use of robotics in the industry, it is possible to keep the dosage for certain tasks to 

approaching zero. The nuclear industry as already achieved a few important tasks with 

robotics. Some aspects of the nuclear power and defense industries that currently involve 

robotics are inspection, maintenance, commissioning/decommissioning of new and old 

facilities, waste disposal, and glovebox operations [43] [44]. 

Robotic test and inspection has been used across the nuclear industry. Robots are 

able to inspect areas of a nuclear power plant that humans would not be able to get to during 

operation. This allows for power plants to remain running during inspection. Considering 

the plant only makes money while it is running and producing energy and that shut down 

and restart procedures are not as easy as flipping an on/off switch, continuous operation is 

important to the industry. Examples of robots for this task are pipe-crawling robots that 

inspect pipes for cracks, the Trans-world Reactor Vessel Examination System (TWS) that 

is used to inspect different kinds of reactor vessels across the world, and snake-arm robots 

used for inspection of leaks [44]. For the most part, inspection robots are limited to Non-

Destructive Testing (NDT) and do not require force/torque sensing and control. A notable 

application of a robot used for more than just inspection is the SADIE series robot, pictured 

in Figure 2.6. This robot carries a specially designed grinding package so that it may 

remove ladder brackets obscuring its view of welds that it is meant to inspect [45]. While 

force sensing is available through a differential pressure sensor, the main mechanism that 

makes grinding possible is a specially designed mechanical (passive) compliance. There is 

also another interesting application of force sensing and control on this robot. The robot 

has to be able climb in an upside down position, and in this case force sensing is used to 
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ensure that its legs do not push off with too much force which could cause it to push itself 

off the surface that it clings to [45].  

 

 

Figure 2.6 SADIE robot [45] 

The Savannah River National Laboratory designed another novel inspection and 

maintenance robot to remove a section of duct work from a highly radioactive environment. 

The worm type, pipe crawling robot was successful in using a custom plasma arc torch to 

cut the duct [46]. Note that this is not an operation that requires contact control capabilities. 

Decommissioning is required when a nuclear power plant has reached the end of 

its life cycle. As some components of the power plant are highly radiated, it is useful to 

employ robots to handle some of the decommissioning. Most robotics currently used in 

decommissioning are tele-operated with no autonomy or programmed motion. These 

robots typically use master/slave manipulation or remote control [44]. 
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Inspection and decommissioning are two of the most successful applications of 

robotics in the nuclear industry, but they are also two that require little physical interaction 

with the environment (in the case of inspection), and little care for the amount of force 

applied (in the case of demolition for decommissioning).  More finesse might be required 

when making repairs on inspected systems, or sifting through the rubble of the 

decommissioned power plant to sort the waste left over. Yet, there is not much mention of 

these actions in the 2011 review of robots in the nuclear industry [44]. It is also important 

to note that, according to [45], the costs of the climbing inspection robots is too high for 

most industries because they are tailor made for each application and, as of 2006 when the 

article was written, they are only used when there is no alternative. 

Another application of robotics in the nuclear industry is handling nuclear materials 

within a glovebox. This type of application is exemplified by the automation of the 

Advanced Recovery and Integrated Extraction System (ARIES) at Los Alamos National 

Laboratory (LANL). The ARIES line converts retired plutonium pits into oxides for use to 

make mixed oxide fuel, packages the oxides, decontaminates the packages, and surveys the 

packages. The extent of automation in the ARIES glovebox involves a conveyor system, a 

pair of 3 DOF gantry robots with custom designed EEFs that add additional degrees of 

freedom, and two 5 DOF industrial Fanuc robot arms. Figure 2.7 shows one of the ARIES 

gloveboxes. Although this system is fairly complicated and some parts are completely 

autonomous, there is limited sensor feedback which restricts automation to mostly pre-

planned pick and place type of commands. “The lack of sensor feedback is a significant 

limitation in RIPS as well as the other automation systems currently deployed but may be 

remedied with the next generation of systems” [43]. Although the lack of extensive 

integration of sensors such as force/torque sensors is due to communication limitations in 
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the case of ARIES, it follows the trend that force/torque sensing is scarcely used in nuclear 

applications. 

 

 

Figure 2.7 Fanuc arms in an ARIES glovebox [43] 

From the literature, robotic systems have not been utilized for tasks requiring force 

control or contact monitoring. Yet, there is an extensive set of tasks that could be automated 

if contact forces could be controlled or monitored. Some examples include: 

 Manufacturing assembly/disassembly 

 Material decontamination 

 Material reduction 

 Material packaging 

 Grasp verification/Contact inspection 
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One issue to consider is the use of sensors to collect force data in hazardous 

environments. However, force data has been collected as a part of several systems that have 

been deployed across the DOE complex.  There is the Spherical Vessel Decontamination 

(SVD) [47], the tele-operated haptic feedback systems at ORNL [48], and the few listed 

previously in this review. 

2.5 SUMMARY OF LITERATURE REVIEW 

Researchers developed the fundamental ideas used in modern applications of 

compliant control in the early 1980s. Most force and compliant control, even in modern 

systems, revolves around force/position hybrid control, impedance control, or some 

combination of the two. Although the initial theories rely highly on setting up the task 

space and knowing a precise model of the robot dynamics and the environment, later 

research expanded compliant controllers allowing them to learn stiffness and function in 

uncertain environments. Rapid advances in computing technology led to a resurgence in 

the fields of control and artificial intelligence. The robotic community used these advances 

and integrated them into the ideology of compliant control. 

The nuclear industry has limited its use of compliant control techniques and focused 

narrowly on a few applications. Most applications in the nuclear industry employ custom 

designed robots and/or custom designed EEFs that allow for a lack of advanced contact 

control techniques. Robotics in the nuclear industry lags the state of the art and has room 

for improvement, especially in the field of active compliant control. Roboticist can only 

accomplish improvement by making industrial robot technologies safer and more reliable 

and by making advanced robotics methods universal and easier to access. Also, the cost of 

designing application specific platforms for each task restricts the current use of robotics. 

Roboticists can make it feasible to use robotics for more applications by making robotic 
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platforms that are able to perform tasks across multiple applications by generalizing control 

and allowing for easier automation. 

  



 34 

Chapter 3 

 

Generalized Contact Control Framework Design 

To overcome the barriers that limit the use of contact tasks in procedures for 

industrial robots, a generalized contact control framework, GCCF, was designed and 

implemented. GCCF is designed to control the movement of a robotic EEF while it is in 

contact – or about to come into contact – with the environment. In this chapter, we will 

discuss the design of the framework. Since the framework is hardware agnostic, we will 

not discuss design of the hardware integration or the implementation into code until later 

chapters. 

3.1 DESIGN OF THE GENERALIZED CONTACT CONTROL FRAMEWORK 

GCCF uses intuitive, simple rules to allow a programmer to easily execute contact 

or co-robotic tasks. It is built to be modular and extensible. Modularity allows for easy 

access to the control framework’s features, and extensibility allows for improvement as 

unforeseen challenges are encountered. 

The role of GCCF is to accept force and torque data from a sensor or sensors on the 

robot and determine the appropriate velocity commands that reduce undesired contact 

forces on the robot and the manipulated object. GCCF executes motion by sending EEF 

velocity commands to an industrial robot controller. Velocity commands were chosen as 

the output because velocity control is robust to variations in the control signal and more 

effectively reduces collision forces than position control [49]. They were also chosen under 

the assumption that the interface to an industrial robot controller would not allow low level 

control of torques. Figure 3.1 shows the interfaces to GCCF. GCCF is hardware agnostic 

so that it may be used on many hardware platforms. It should be usable with any standard 
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industrial robot controller and 6-axis force/torque (FT) sensor. The implementation chapter 

will further discuss the ability to interface with a wide variety of hardware. 

 

 

Figure 3.1 Design interfaces 

3.1.1 Control Dimensions and Reference Frames 

The most powerful concept of the GCCF is that a user can control each dimension 

of a user defined reference frame independently. This allows a user to break down a 

complicated contact task into simpler parts and control each part separately. The user can 

pick a reference frame in a manner that is similar to Craig and Raibert’s hybrid 

position/force control approach [24]. By selecting a Cartesian reference frame that is 

orthogonal to natural constraints, the user may break up the contact task problem into a set 

of force control problems and a set of position control problems. The user is then able to 

perform all control within this convenient reference frame while GCCF handles 

transformations of all data and control between frames. Figure 3.2 shows the 

transformation frames that the framework is designed to handle. The FT frame is the 

reference frame of the force/torque sensor. GCCF must convert force/torque data to the 

task frame so that it can make calculations in the user defined reference frame. Before 

sending velocity commands, GCCF converts them into the robot control frame so that the 

robot controller can understand them. The user specifies all reference frames shown by any 
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transformation from the global reference frame or any link of the robot. This allows the 

user to have lot of flexibility in the specification of the task frame, and also allows the FT 

frame to update position and orientation as the FT sensor moves with the robot motion. 

 

 

Figure 3.2 Managed reference frames. The FT frame is the frame that the force/torque 

data is read in. The robot control frame is the frame that the framework sends robot 

commands in. The task frame is the frame that the user specifies control task in. 

As discussed in Chapter 2, the literature has questioned the validity of the hybrid 

force/position controller. There are two differences between the generalized contact control 

framework and Raibert and Craig’s approach [24] that allow GCCF to avoid the issues 

found [25] [26] [27] in the hybrid force/position controller. One difference is that there is 

no explicit force control or explicit position control in the framework. Each dimension 

either uses one of the impedance based control laws defined in section 3.1.2 or is not 

controlled at all. In some cases, the user might decide to control a dimension that could use 

simple position control with one of the control laws. This can help with two problems. One 
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problem is that the user might not be able to precisely line up the reference frame 

orthogonal to the natural constraints, or the constraints may not be divisible by a standard 

set of orthogonal axes. In the case of Raibert and Craig’s hybrid force/position controller, 

some component of the contact forces that should be controlled on an explicit force control 

axes may actually fall to the direction controlled by explicit position control. The 

component of contact force that is being mismanaged by the incorrect frame specification 

will stress the robot improperly. The other problem is that the user might not have precise 

knowledge of the environment and therefore may not know if an axis should be force or 

position controlled. In either case, a user of GCCF could use an impedance control law on 

what would be an explicitly position controlled axis in a hybrid force/position controller to 

attempt to maintain position control while still adapting to unwanted contact forces. Section 

3.1.2 discusses use of the impedance control laws for such purposes. 

The second difference from the hybrid force/position controller is that GCCF does 

not transform the movement with respect to the Cartesian reference frame directly to 

commanded movement in joint space. It only transforms from the desired Cartesian control 

frame to the robot controller’s control frame and sends a Cartesian velocity command to 

the controller. The industrial robot controller then maps these commands to the individual 

joint controllers. We have assumed that the industrial robot controller is stable under 

expected input conditions. This does not necessarily mean that any possible combination 

of inputs to the industrial robot controller that GCCF can generate would lead to stable 

behavior. It is beyond the scope of this thesis to prove the stability of the coupled system 

consisting of GCCF and any industrial robot controller for all inputs. It is up to the user to 

verify that the output generated by GCCF does not disagree with the selected controller’s 

expected input quality. We specifically heed caution for tasks that involve rapid vibration 

which would lead to rapidly oscillating velocity commands. 
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3.1.2 Control Laws 

GCCF makes available three control laws for the user. While all the laws could be 

simplified into one law with many options, we believe that this categorization allows the 

user to intuitively understand the purpose of each law and when to apply them. It also 

allows for a simpler interface requiring less parameters to be decided on by the user. The 

control laws are formulated in equations 3.1, 3.2, and 3.3.  

 𝑣𝑐,𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 =
1

𝑏
𝐹 (3.1)  

 𝑣𝑐,𝑠𝑝𝑟𝑖𝑛𝑔 =
1

𝑏
𝐹 − 𝑘(𝑑𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑑𝑜𝑓𝑓𝑠𝑒𝑡) (3.2) 

 𝑣𝑐,𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡 𝑚𝑜𝑣𝑒 = 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 +
1

𝑏
𝐹 (3.3) 

where F is the force (or torque) sensed in the dimension being controlled, 𝑑𝑡𝑟𝑎𝑣𝑒𝑙 is the 

distance the EEF has moved in the control dimension since the start of the move, and 𝑣𝑐 is 

the commanded velocity sent to the robot controller. The variables k, b, 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑, and 𝑑𝑜𝑓𝑓𝑠𝑒𝑡 

are user supplied constants that determine the behavior of the control law. Note that these 

laws were designed to be simple and user friendly, but GCCF could be easily modified in 

the future to allow for more complicated laws, e.g. ones that track precise forces or adapt 

for unknown stiffness. The surrounding framework and ability to control different laws in 

different dimensions would still be intact and useful. For now, the design will not be used 

to track precise forces, rather it will be used to allow for safe and easy robot control to 

contact the environment and manipulate environmental objects. 

Equation 3.1 is the follower equation. This is the simplest of the control laws. If an 

axis is controlled in this manner, it will react to forces by moving in the direction that the 

force is pushing it. The use of this rule is exemplified by the peg in the hole problem seen 

in Figure 3.3. If there is contact with the walls of the hole as the peg moves into the hole, 

the peg should move slightly away from that wall. Ideally, there should be zero net force 
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in all directions normal to the wall. In this case, the desired position, i.e. the center of the 

hole, comes from the force profile. No reference position is necessary. 

 

 

Figure 3.3 Peg in hole problem using follower law 

The only parameter that the follower equation requires is b. The b parameter 

linearly maps the force sensed to a velocity command as a scaling factor. The greater the 

force, the greater the commanded velocity. In the case of the peg in the hole problem, a 

user would tune this parameter so that the commanded velocity due to the contact force 

with the wall is not so large that the peg moves back and forth between the two walls, but 

is not so small that it does not effectively move the peg off of the wall. 

Equation 3.2 is the spring equation. This equation models the idea of a spring by 

including a resistance to motion away from a desired, or unstretched, position. Note that 

the user sets the reference position via the offset variable. The user may specify the offset 

position beyond an obstruction so that the robot will apply a force on the obstruction. In 

this case, it is as if the obstruction is compressing the virtual spring to be shorter than its 

unstretched length. One use of this equation is surface following (assuming a constant force 

on the surface is not required). This can be seen in Figure 3.4. When the control law is 

initialized (in the first state of the figure, Move Start), the arm is just touching the surface.  
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Figure 3.4 Surface follower problem using spring law 

While the surface is flat, the arm starts to apply a force, equal to F1 in the figure, since the 

resting length, seen by doffset in the figure, of the virtual spring is set to be farther than the 

robot can reach. As the surface changes to be higher, the virtual spring is compressed 

farther from its resting position and the force applied to the surface is larger. Likewise, as 

the surface lowers closer to the resting length of the spring, the spring is allowed to 

decompress and the force becomes lower. If the surface falls below the point where the 

virtual spring is at its resting length, the robot’s height remains constant at that point. 

Another motivation for a user to use this law was mentioned previously as one of 

the reasons GCCF does not succumb to the same pitfalls as a typical hybrid position/force 

controller. A user can apply this law if movement is not desired in a dimension. If the 

stiffness is sufficiently large enough, the robot will not move much unless a large contact 

force is encountered. As discussed before, this can be a good idea if the environment is not 

known precisely. 

Equation 3.3 is the compliant move equation. In this equation, a desired movement 

velocity is opposed by the external force at the EEF. A user can apply this equation to 
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attempt to follow a velocity commanded trajectory while avoiding excessive force on the 

EEF or to move until contact. Often in contact tasks, the robot is unaware of the precise 

position and orientation of the environment. In order to find an appropriate start position 

for the contact task, the EEF must move from free space into contact with an object. This 

move is visualized in Figure 3.5.  

 

 

Figure 3.5 Guarded move problem using compliant move law 

Using this compliant move equation, a user can command the EEF to move to a 

location beyond the object’s estimated location and it will stop moving once in contact 

with the object. The stall force, or the force on the EEF when contact has caused it to stop, 

can be calculated by setting the commanded velocity in equation 3.3 to zero, as seen in 

equation 3.4. 

 𝑣𝑐 = 0:  𝐹𝑠𝑡𝑎𝑙𝑙 = −𝑏 ∗ 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 (3.4)  

As stated previously, the control laws are a synthesis of existing research defining 

the concepts of stiffness control, damping control, and impedance control. The origins of 

these concepts can be found in the literature review section. The laws are a form of 

impedance control, proposed by Hogan [30], which is a generalization of stiffness and 
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damping control. Like damping control, the laws use velocity modifications to reduce 

contact forces, and like stiffness control, the spring law resists movement away from some 

nominal position. They are not completely new ideas, but here they are presented in a form 

that would be easy for the operator to understand and use. 

The equations were chosen to be intuitive for the user’s understanding and 

analogous to physical systems of which the user has knowledge. As stated previously, each 

axis could employ a single universal control law, but the result would be less intuitive to 

all but developers with extensive controls experience. The objective here is to eliminate 

the need for such experience when developing robotic systems to address contact 

applications.  

Note that a user can easily understand all of the parameters required for the control 

laws in terms of the force of a spring or an inertial mass. In all cases, b determines how 

much the sensed force or torque affects the motion of the robot. This is analogous to the 

inverse of the EEF’s simulated inertia. A small b means that the force applied easily 

impacts the EEF’s motion. A large b, on the other hand, simulates a large mass that requires 

a large force to affect its motion. In the spring equation, k is analogous to the spring 

constant in the familiar linear spring equation from Hook’s Law, 𝐹 = 𝑘𝑥. In our control 

environment, a command to move in a direction applies a force on an object that is in 

contact with the EEF. The k variable determines the impact of the displacement from the 

spring’s unstretched position on the movement of the EEF. These relations to physical 

concepts make the tuning of the control laws more intuitive for the experienced, but not 

expert user.   
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3.1.3 End Conditions 

So far, the design section has limited discussion to how the user will set up a move 

by defining reference frames and control laws, and how GCCF will execute the move by 

calculating appropriate velocity commands to send to the robot controller, but the section 

has not discussed what ends a commanded motion. In the design of GCCF, the end of a 

move is defined by the user and can happen in multiple ways. Specifically, two end 

conditions are directly built into the design: maximum force/torque exceeded, and 

maximum displacement exceeded. These two conditions are explicitly built in because they 

are also safety features for the framework. The specification of every move requires the 

user to input a maximum force/torque and a maximum displacement so that the robot will 

not apply excessive force or move out of the bounds of the task. However, these conditions 

can also be designed end conditions rather than safety features. For example, if the user 

requires a robot to move until contact with a surface and then continue slowly to apply 

some force on that surface, the user would want the move to end when the intended applied 

force is reached. Or a user might want to move a specified distance in a prescribed direction 

or allow no more than a specified EEF deflection and therefore end the move at maximum 

displacement. 

The user accomplishes all other possible end conditions through the asynchronous 

move design feature. The asynchronous move is a feature that gives the user the ability to 

execute moves asynchronously and then stop them externally. This allows for any end 

condition that the user would like, as they can command a move and then check their own 

end condition for an appropriate stopping point. 

3.1.4 Examples of Setting up the Control Framework on Multiple Axes 

GCCF is most easily understood through example.  Two examples of contact tasks 

that we believe could be accomplished through the use of GCCF follows. The first example 
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illustrates how a user can account for uncertainty in orientation, not just position. The 

second example illustrates how a user can perform a task that involves control on multiple 

dimensions. 

The first example, shown in Figure 3.6, is another guarded move. This time, the 

surface that the robot is trying to make contact with is not orthogonal to the palm normal 

of the gripper. In this case, the y dimension, shown by the Cartesian reference frame in the 

figure, behaves as a compliant move as it did previously. Due to the uncertain orientation 

of the surface, the user should also add a follower law to control the rotational z dimension. 

Initially, there is no torque on the robot and the EEF will move downward until contact as 

it did with the previous guarded move. Once the left finger of the gripper makes contact 

with the table, the contact force between the table and the gripper results in a torque on the 

robot. The follower law on the rotational z axis converts this torque into a rotational 

velocity. As the robot continues to attempt to move in the negative y dimension, it will also 

start to rotate around the z dimension until the right finger also makes contact. Once the 

orientation of the EEF is orthogonal to the surface, the two contact forces will balance each 

other out to apply zero net torque on the robot arm and rotational motion will cease. Note 

that this example is only in 2-D for demonstrative purposes, but the 3-D version would also 

work. In the 3-D case, the user would also add follower to the rotational x axis to allow for 

a slant in the z direction. 
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Figure 3.6 Using the control framework with uncertain orientation 

The second example, shown in Figure 3.7, illustrates screwing a lid on a container. 

The figure also shows a user defined reference frame for each type of control law 

implemented in the move. To set up the control framework, the user needs to think of the 

artificial and natural constraints discussed previously. To screw on the lid, the robot needs 

to attempt to move downward (negative z dimension) and twist the lid in the threaded 

direction (positive rotational z dimension). To do this, the user would introduce two 

artificial constraints by setting compliant moves on the linear z dimension and the rotational 

z dimension. While screwing on the lid, the user might also want the framework to adjust 

for orientation misalignment. To accomplish this, the user could set spring laws for the 

rotational x and y dimensions. This allows the EEF to rotate if it senses torque pushing 

away from the vertical orientation, but would not allow the orientation to drift too far from 

the initial guess of where it should be. The user could also set the x and y dimensions as 

followers. These laws account for a small amount of misalignment in the position of the 
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container in the x and y dimensions. As the lid comes down on the container, contact with 

the lip introduces contact forces with some component pointing towards the center of the 

container. The follower law converts these forces into velocity to align the lid. Note that 

by applying the follower laws, the user assumes that the lid has been lined up well enough 

that the inside of the lip will contact with the container. If this is not a valid assumption, 

the user must employ some other method such as vision monitoring or another contact task, 

e.g. a guarded move, to determine the position of the container more accurately.  

 

 

Figure 3.7 Screwing on a lid with the generalized contact control framework 

The desired end conditions of this move could be a number of things, depending on 

what the operator would like. For example, an end condition could be maximum travel in 

the z direction if the operator knows how low the threads go on the container. It could also 

be maximum travel on the z rotational dimension if the operator knows how many turns 

would give the desired seal. More likely, the operator would set a maximum torque in the 

rotational z dimension to ensure that the lid is tight enough. There would also be end 

conditions set that ensure unsafe forces and torques are not reached. 
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3.2 DESIGN SUMMARY 

The GCCF design allows a user to accomplish a large variety of contact tasks using 

a simple, intuitive interface. It accomplishes this by splitting the control of EEF motion 

into separate control of its velocities in each linear and rotational dimension. The control 

of each dimension can be chosen from one of three intuitive control laws. Each control law 

design has a physical interpretation and only a few parameters so that a non-expert user 

can use them to set up a control problem.  

It is important to note that the abilities of the framework are limited by the 

inferences that can be taken from the sensed information at the wrist force/torque sensor. 

If, for example, the lid of the container in the previous example were not lined up well 

enough, the contact forces caused by the collision of the lid and the container would not 

give enough information to deduce the direction of the misalignment. This limitation can 

sometimes be mitigated by extra contact moves that eliminate some uncertainty in the task 

or using vision monitoring to deduce approximate locations. 

Although the initial design is meant to be simple enough to be understood by the 

non-expert user, the design leaves room for expansion of more advanced control laws when 

the need for them is realized. The addition of more control laws would not compromise the 

benefits of the configurable design. Another limitation of the design might be that it only 

outputs EEF velocity commands. In the future, GCCF could be expanded to additional 

command capabilities. Also left to future work is the use or creation of a formalism for the 

task space itself. Such would be necessary to properly map the capabilities of the controller 

to a well-defined set of task or formally defined subset of the entire task space. 
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Chapter 4 

 

Implementation 

The implementation of GCCF exemplifies the desired design traits of the 

framework discussed in Chapter 3. GCCF was designed to be intuitive, modular, and 

extensible and so the implementation is also intuitive, modular, and extensible. This was 

accomplished with the use of object oriented programming, and incorporation into ROS 

(Robot Operating System) [13]. In this section, we will describe the tools used for 

implementation of the GCCF’s design, and how the choices that were made in the 

implementation satisfy our design goals. 

4.1 REQUIRED HARDWARE 

Although the GCCF is hardware agnostic, it requires multiple pieces of hardware 

to run on and interface with. The code is written in C++ and embedded within ROS, as will 

be discussed later. This requires that GCCF run on a Linux computer that has all 

appropriate system requirements to run ROS. The robot being controlled by GCCF is 

assumed to be an industrial robot, but can be any serial manipulator with pre-built control 

capabilities. GCCF controls the robot with EEF velocity commands through ROS topics 

(to be discussed later). If the robot is not able to take commands in this manner, the user 

will need to write the appropriate drivers to incorporate the robot into the ROS 

infrastructure and, if necessary, convert the velocity jogging commands into commands 

that the robot’s controller can accept. In order to make the contact control calculations, 

GCCF needs access to a 6-axis force/torque (FT) sensor. The FT sensor should be wrist 

mounted on the robot so that it may sense the forces and torques applied to the robot’s EEF. 

Wrist mounted means that the sensor is attached to the last link of the robot and supports 

the weight of the EEF entirely. These are all the necessary hardware components used to 
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run GCCF. It is important to remember that GCCF is hardware agnostic, and thus it may 

be necessary to implement hardware drivers or other conversion code; however, the drivers 

for many robots and compatible sensors already exist in ROS. 

4.2 ROS 

 Before the details of the C++ implementation of the framework are discussed, it is 

important to understand ROS, Robot Operating System. ROS was the chosen framework 

to contain the GCCF. While it is called an operating system, ROS is really a collection of 

libraries that allow for easy integration of robot operating code and unification of 

conventions for controlling that code. ROS is widely used in the robotics research 

community and many useful tools are already published as ROS packages (a group of ROS 

code designed to interface with other ROS code). A user of ROS can easily integrate these 

packages with new robotic code. In this section, we will discuss the details of ROS 

plumbing, and the existing ROS packages that were incorporated into GCCF. 

4.2.1 ROS Plumbing 

The building blocks of the ROS environment are nodes and messages. There is little 

about the plumbing of ROS that makes it specific to robotics. ROS is simply a set of tools 

that allow a user to structure code in a way that makes it easy for another user to incorporate 

into their own ROS code.  

4.2.1.1 ROS Nodes and Messages 

The ROS environment is built around the idea of independent nodes that connect 

to each other through peer to peer messaging services. By using nodes and messages, ROS 

is made to be modular. Although the setup is very different than object oriented 

programming, the concept can be understood in a similar fashion. In object oriented 

programming, objects are supposed to be created in a manner so that a program that 
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instantiates the object does not need to know about the inner workings of the object. The 

program only needs to access specific public functions, or interface functions, that allow 

the higher level program to use the object in the way that it was intended. In this same 

manner, any ROS node does not need to know about the inner workings of any other ROS 

node. All a ROS node needs to work with another ROS node is a list of the messages that 

are output by the node and a list of messages that are expected by the node. A text file for 

each message type defines each available message for a package or ROS node. These text 

files, along with built in ROS functions, allow users to see the required structure of the 

information requested by the node (or published by the node) for other nodes to use. 

There are three ways to use the ROS messaging structure: topics, services, and 

actions. A ROS node publishes messages to topics so that any other ROS node subscribing 

to the topic can read the message. This allows nodes to share data with other nodes. An 

example of the use of a topic is the force/torque data topic. A ROS force sensor driver 

node, built to make a specific force sensor ROS compatible, might read in data from the 

force sensor with the protocol required of the sensor. The driver node outputs the data in a 

general form as a ROS wrench message to a force data topic so that any other node can 

read the data at any time while the driver node is running.  

Services allow for one-time, two-way communication. Every service consists of a 

request message and a response message. Services are like public access methods of a class. 

To call a service, one node passes information (the request) to another node and then waits 

for information to come back (the response) that signals that the communication was 

received and acted upon. The third type of messaging structure, actions, are a structured 

combination of a service and published messages that allows a node to ask for an action to 

be completed, and then publishes the status of that action while it is executed. 



 51 

4.2.1.2 ROS Core 

ROS core is the background code that must be running for ROS nodes and messages 

to work. When a ROS node is started, it registers itself with ROS core so that other nodes 

can connect to it [13]. ROS core establishes the appropriate connections so that messages 

may be received and transmitted by ROS nodes. To do this, ROS core also keeps track of 

node names, message topics, and parameters so that they can be easily queried by a ROS 

user. ROS core also hosts the parameter server which is a list of configuration variables 

that can be set and read by any ROS node. 

4.2.1.3 ROS Packages 

A ROS package is a node, or a set of nodes, that a designer has developed and 

organized in a standalone fashion along with the documentation required to interface with 

the package. A ROS user can upload or access packages through the ROS wiki page [50]. 

With a simple Linux install command, a ROS user can gain access to a new ROS package 

developed by another ROS user. A single ROS package may be just one node, or it may be 

a set of nodes, that communicate internally and with each other over the ROS messaging 

structure. The ROS plumbing is visualized in Figure 4.1. The visualization shows the inner 

workings of a package on the left that is made up of 3 nodes communicating with each 

other over 2 message topics and a service call. Although the package on the left knows 

nothing about the other package on the right, it is able to communicate to it by advertising 

a topic that sends out messages that the other package can read. In fact, these packages don 

not even need to be written in the same language to communicate. The ability of the 

messaging structure to support multiple languages is another strong point of ROS. For more 

information about ROS infrastructure, see [13]. 
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Figure 4.1 ROS plumbing 

4.2.2 TF: ROS Package for Managing Cartesian Coordinate Frames 

Along with the prebuilt infrastructure, the most useful part of ROS is the 

community of packages that users have built that accomplish many tasks that are needed 

in any robotic application. One package heavily used in GCCF is TF. TF is a ROS package 

that keeps track of user defined coordinate reference frames and provides easy to use 

functions that transform many types of data from description in one frame to another. 

GCCF uses the TF package to transform the force/torque data from the raw input frame to 

the user defined control frame. This would be especially tricky without TF since the FT 

sensor is attached to the robot and is constantly moving with the last robot link. The motion 

planning package, to be discussed in section 4.2.3, constantly updates TF frames that 

describe the location of the robot links. The relationship between the last robot link and the 

FT sensor therefore yields constant TF updates to match the real location of the FT sensor. 

GCCF also uses TF to transform the robot commands into the appropriate frame that is 
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required by the robot controller for velocity commands. The names of these frames can be 

configured at start up through a configuration file that is read into the ROS parameter 

server. 

4.2.3 MoveIt!: Motion Planning and Robot Description 

Motion planning and kinematics are accomplished through a ROS package called 

MoveIt!. Although GCCF does not use motion planning to accomplish its main goals, it is 

important that it can easily move from one contact task space to another. Any 

demonstration implementing GCCF for contact tasks will have to control the robot via 

MoveIt! to position the robot in the correct position to start each task. MoveIt! allows a 

user to command a ROS integrated robot simply by specifying a goal position in the form 

of a hand pose goal or a joint set goal. MoveIt! communicates directly to the robot driver 

package via ROS messaging to control the robot when commanded. GCCF does, however, 

interface directly with MoveIt! to make use of MoveIt!’s kinematic capabilities. MoveIt! 

loads a description of the robot’s link lengths and joint connections when it starts and uses 

this description and live data coming from the robot driver to keep track of robot kinematics 

at all times. Through Moveit!, GCCF can determine the current pose and joint angles of 

the robot. GCCF uses this information to determine the displacement from the start position 

so that it may implement its impedance control laws. 

When commanded to move the robot, MoveIt! not only generates possible planned 

trajectories, but it also evaluates these plans based on user constraints and collisions with 

known environment objects. To generate trajectory plans, MoveIt! uses the Open Motion 

Planning Library (OMPL) which is an open source motion planning library that 

implements motion planners. The user can pick any of the available motion planners which 

are mostly randomized motion planners [8]. MoveIt! also implements collision checking 
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via the Flexible Collision Library, FCL [8], and allows the user to add collision objects to 

the modeled world. MoveIt! keeps track of collision objects to avoid colliding with them. 

In the setup of any demonstration using GCCF, the user should add conservatively sized 

collision objects to MoveIt!’s planning scene around any contact control areas to avoid 

contact while GCCF control laws are not being used. After a MoveIt! move, GCCF can be 

used to safely move closer to the contact task area and to perform the contact task 

manipulation. 

4.3 C++ IMPLEMENTATION 

GCCF is written in C++. The user interface to the code is through a set of public 

C++ functions in the contact control class. Although we will later show a demonstration of 

a graphical user interface (GUI) wrapped around the framework, it is primarily envisioned 

that task parameters will not be adjusted by the user during a task. Thus parameters can be 

fixed at compile time, imported from a text file, or determined algorithmically. In a later 

demonstration, a GUI does illustrate how easily the framework can be configured by 

allowing user controls during motion. The framework, without the GUI, is meant to be 

used to assist a worker that programs robotic demonstrations and/or procedures. 

Figure 4.2 shows a class diagram for the main pieces of GCCF. The interface to the 

framework is through the ContactControl class. A procedure or demonstration 

function will instantiate this C++ class. There is currently no ROS messaging wrapper 

around this class to allow for multi-language use, but one could be added in the future. The 

ContactDirection class is the class that does most of the work in applying the control 

laws. ContactControl instantiates it as an array of 6 instances, one for each dimension 

of control. There are also several enumeration structures that allow for named directions, 

control laws, and enumeration of the exact reason for a contact move to be ended. 
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Figure 4.2 Class diagram of generalized contact control framework  

Once instantiated, the user must initialize the ContactControl class to 

configure the user defined TF reference frames that should be defined in the robot 

description that was loaded by MoveIt!. The initialize function also configures the type of 

jogging message required to communicate with the robot driver and the IP address of the 

FT sensor. ContactControl class instantiates several objects that allow interfacing 

with the tools we have previously discussed which include: 

 ROS node handle, asynchronous spinner, and subscriber 

 TF transform listener 

 Move interface 

 NetFT Utils (lean version) 

 The ROS node handle and spinner are required to send and receive ROS messages. 

The TF transform listener is required to receive transformation information from TF. 

MoveInterface and NetftUtilsLean are two in house ROS packages that assist 
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the interface to MoveIt! and the FT sensor. These two packages will be discussed in section 

4.3.3. 

Figure 4.3 shows the flow of a typical contact task procedure. To perform a contact 

task, a user has to first set up control on each dimension that is to be controlled. It is not 

necessary for the user to control every dimension. The user might desire to leave a 

dimension stiff if there is no need for compliance in that direction. The example in Figure 

4.3 only sets control for the linear x, linear z, and rotational z dimensions. To set up a 

dimension, the user picks a control law (follower, spring, or compliant move as discussed 

in the design chapter) and calls the appropriate access function (setFollower(), 

setSpring(), setMovement(), respectively). With any of the three functions, the 

user tells the ContactControl class which dimension to set as the specified control 

law, all of the necessary tuning parameters for the law, and the max force allowed in the 

dimension that the control law is being specified. 
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Figure 4.3 Typical flow of contact task procedure 

Once the control task is set up by calling the appropriate setter functions, the user 

executes the move by calling either the move() or moveAsync() function. The 

move() function will block until the execution is finished and return the reason that the 
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move has finished. The moveAsync() function uses C++11 built in threading 

functionality to execute without blocking. C++11 is the version of C++ that first 

implemented this functionality. It is out of the scope of this thesis to explain C++11 

asynchronous threading, but tutorials are available [51]. The return variable is of type 

std::future<EndCondition>. The user must store this variable and then call the 

get() function to join the thread and receive the end condition. The asynchronous move 

will not work if the user does not call get() function to join the thread. If the move is not 

finished when the get() function is called, then the get() function will block until 

completion. The moveAsync() function may be used to establish an end condition that 

is not incorporated into GCCF by calling the stopMove() function when the end of the 

move is desired. An example of using the asynchronous move function and stopping the 

move externally is shown in Appendix A. 

The ContactDirection class has many of the same methods as the 

ContactControl class. The ContactControl class routes commands received by 

the user to the appropriate contact direction. The ContactControl class sends the 

velocity commands to the robot driver after calling the getVelocity() function of each 

contact direction. The getVelocity() function sends the ContactDirection 

instance the sensed force or torque value after the ContactControl class makes the 

appropriate transformation from the force/torque frame. The getVelocity() method 

takes this information and calculates the appropriate velocity command to send to the robot 

driver and returns it in the same function. This velocity is then received by the 

ContactControl class and transformed into the control frame of which the robot driver 

accepts commands. This process can be better understood by looking at the flow of Figure 

4.3. 
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4.3.2 Safety in the Implementation 

Safety is very important when implementing contact tasks. When using a stiff, 

industrial robot, it is possible to command the robot in a manner that will cause damage to 

the environment or the robot itself. The main safety features of GCCF are executed through 

the monitoring of the 6 axis FT sensor since this is the data accessible within the 

framework.  

The most basic safety mechanism GCCF employs is that it will not execute any 

commands if no data is received by the FT driver. The next level is within the control law 

itself. Each control law requires that the user input a maximum force or torque for the 

controlled dimension when the contact task is being set up by the public setter functions 

discussed previously. Usually this value is useful not only for safety, but for applying the 

appropriate force to the system for the goal the user is trying to accomplish. If this value is 

exceeded, the contact move will be stopped and the move() or moveAsync() function 

will return an FT_VIOLATION end condition. When this value is received, an appropriate 

code block should decipher whether this end condition was intentional or not. The 

difference in intention is usually related to the way that the user set up the control 

dimensions. If the dimension that stopped due to excessive force or torque was meant to 

apply a force or torque, then this is probably an intentional FT violation. If the dimension 

was just meant to maintain a position or adjust for inaccuracies, then this was probably a 

safety stop. 

The next level of safety is the overall maximum force or torque which is a required 

input in the move() or asyncMove() function when the move is started. The difference 

between the previously discussed maximum, is that this maximum is the overall magnitude, 

not just the one-dimensional value. GCCF sends this max value the force/torque utility 

package which monitors the biased sensor data directly from the force/torque driver. If this 
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value is exceeded, the force/torque utility package issues a cancel command via ROS 

messaging and any package that is monitoring that command knows to cancel what it is 

doing. For our purposes, this command is monitored by the ContactControl class and 

the MoveInterface class that will be discussed in section 4.3.3.2. This level of safety 

monitoring is useful if the environment applies a force on a control dimension that GCCF 

is not controlling with one of its available laws, or if the forces on multiple dimensions are 

totaling to a value that the operator feels is unsafe for robot operation. 

It is worth mentioning that these levels of safety are only a piece of the safety 

architecture that a GCCF user should implement for any robotic procedure. Safety at the 

Nuclear and Applied Robotics Group (NRG) is executed with the safety architecture shown 

in Figure 4.4. The operator executes the bottom level of safety shown in the diagram. While 

prototyping demos or procedures, an operator should always be holding an e-stop and 

looking for signs of excess stress in case all other levels of safety fail. The industrial robot 

controller executes the next level of safety. Every industrial controller should shut down 

the robot when joint torques are excessively high. The next level is torque based collision 

detection. The robot driver implements this level by monitoring the joint torques in a 

manner described by Schroeder [47]. This type of collision detection is more sensitive than 

the collision detection on the industrial controller.  
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Figure 4.4 NRG Safety Architecture 

It is important that multiple levels of safety are implemented when running GCCF. 

As a consequence of lag in the system and communications, the end condition of the robot 

after a stop is commanded by the framework will necessarily allow more force or torque to 

be applied to the robot than was set by the max force and torque variables passed to the 

framework. Since GCCF is a generalized framework that is built to be used on any system, 

the amount of excess force or torque cannot be characterized and accounted for and will be 

different depending on the user’s setup. For this reason, it is important for an operator to 

start developing with some initial built in compliance to the system. This safety compliance 

could be a foam pad on top of a hard surface or some compliance in the EEF itself. This 

extra compliance should be used until the nature of this lag and capabilities of the system 
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are understood by the operator. It is also important to start with very conservative 

parameters when tuning and work up to the appropriate parameters for the final 

demonstration or procedure. 

4.3.3 Other in House Code Supporting the Framework 

Other than the code written directly for contact tasks contained in GCCF, there were 

a few other packages written for the framework and for other projects at the NRG, that 

allow for easier access and interfacing with the robot and the force/torque sensor. 

4.3.3.1 NetFT Utilities Package 

The NetFT utilities package manages the raw data coming from the NetFT driver 

package and publishes it in a more useful form. The NetFT utilities package takes in the 

raw data from the NetFT driver and applies bias and thresholds to the data before 

advertising it on a ROS topic. Users can set the bias and threshold values via a ROS service 

call and update them at any time including during run-time. The package also has the ability 

to transform the data from the force/torque frame to a tool frame. Users can specify both 

of these frames in the configuration file loaded at startup. The NetFT utilities package also 

keeps track of a maximum allowed force and torque and advertises a cancel message when 

the maximum is exceeded. The package was further modified for GCCF with the addition 

of a lean version. Users can instantiate the lean version directly to avoid passing the same 

information too many times as ROS messages. The capabilities of the lean version were 

reduced to run as fast as possible. This is useful to keep the lag time down for the 

framework. The lean version also includes a low pass filter which can be turned on at any 

time to filter the incoming force/torque data. Depending on the force/torque sensor the user 

chooses, this may or may not be necessary. 
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4.3.3.2 Move Interface Package 

The move interface package was written to simplify the user’s interface to MoveIt!. 

Like the NetFT utilities package, there is a version that allows access via ROS messaging 

and also a version that can be instantiated directly. GCCF does not pass messages through 

ROS messaging structures to the move interface package. Instead, GCCF instantiates the 

class and accesses it through several access methods of the class. With the Move Interface 

package, robot motion requires only a couple parameters (desired position and speed 

fraction) to define a desired motion. Move Interface also keeps track of a state of the robot 

so that users cannot command the robot when inappropriate, e.g. while a move is executing 

already or when the robot is in a FT violation state. Like previously mentioned, it also 

monitors the NetFT utilities package cancel message to know when the user defined 

maximum force or torque has been exceeded and requires a reset before further 

commanding to so the robot does not move when it is not safe. The Move Interface package 

also allows for very simple commanding of Cartesian moves, which is something that 

MoveIt! does not make easy. Another important feature is that the interface constantly 

publishes a status message that allows the user or code to gain insight as to why commands 

are not being executed, if a move has finished, and if an error occurred during the move. 

4.4 PUTTING IT ALL TOGETHER 

Figure 4.5 shows GCCF running in a demonstration. The arrows in the diagram 

represent information being passed from one package to another and, except for the double 

sided arrows showing the communication from the drivers to the hardware, are all managed 

by previously discussed ROS messaging structures. Note that some messages to and from 

standalone ROS packages are not shown, e.g. auxiliary packages sending messages to TF 

to update coordinate reference frames, and that some packages shown are simplified to just 

be one package even though in reality there is an interface from one package to another. 
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For example, the diagram shows the NetFT driver and NetFT utilities packages in one 

block and shows MoveIt! directly communicating with the Contact Control class even 

though the Move Interface package actually handles the interface between the two. The 

diagram is not meant to spell out each individual piece, but to show the task oriented groups 

of packages that the Contact Control class communicates with. 

 

 

Figure 4.5 Implementation and Interfaces of the generalized contact control framework 

As is shown by the large rectangle enclosing all of the boxes that represent groups 

of ROS nodes or packages, all of the code written for and utilized by GCCF was written in 

or embedded into ROS. Note that any hardware that is meant to communicate with ROS 

nodes needs a hardware specific ROS driver that communicates with the hardware and 

packages communications to and from the hardware into ROS message structures. For a 

selection of industrial hardware, these drivers have already been written and can be found 

on the ROS-Industrial website [52]. 

The contact control class in the diagram is the package containing all of the C++ 

code that makes up GCCF. GCCF is instantiated in the ROS node that runs the 

demonstration or robotic procedure. The demonstration node uses the previously discussed 
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access methods to tell the contact control class when to execute moves. The demonstration 

node also manages the motion of the robot when it is moving from task space to task space, 

loads collision objects into MoveIt!’s planning scene, interfaces with the end user via 

terminal or graphical user interface when needed, and requests that the force/torque sensor 

apply bias or threshold. 

The contact control class itself communicates with the TF package by sending data 

to be transformed to different coordinate frames and receiving the transformed data. It also 

receives data from MoveIt! about the current pose of the EEF. It receives current 

force/torque readings from a force/torque driver or utility package and it also sends jogging 

commands directly to a robot driver which then relays them to the industrial robot 

controller.  

4.5 FINAL NOTES ON IMPLEMENTATION 

GCCF is implemented within the ROS architecture and written in C++. As stated 

previously, ROS integration allows the framework to remain hardware agnostic. Hardware 

agnosticism allows GCCF to be implemented on many different hardware platforms, but it 

does not necessarily make it easier to use. When a user applies GCCF to a task, they must 

first find or code the appropriate drivers that transform hardware communications into ROS 

friendly message structures. For example, GCCF sends jogging commands as a simple 0-

1 fractional velocity where 1 is max speed and 0 is no speed. If necessary, an intermediate 

node may receive velocity commands to convert them into a more structured value, e.g. by 

adding units or converting to a trajectory stream, before passing them to the robot driver. 

Then the robot driver must encode and send this information to the industrial robot 

controller. Also, GCCF communicates with MoveIt! which is meant to be configurable for 
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any serial manipulator, but the user must write a universal robot description file, or URDF, 

which outlines the kinematic properties of the robot.  

Also, note that GCCF’s implementation is not real-time. Real-time control might 

be implemented when the functionality becomes available in ROS 2.0 [53]. For now, 

control is executed at 500hz or as fast as hardware allows. It is beyond the scope of this 

thesis to determine what rate is fast enough for smooth control, but a suggested rule of 

thumb is to select computing resources such that they can command the selected robot at 

its maximum available control rate. In other words, do not let the Linux machine that runs 

GCCF be the bottleneck for the overall system. 
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Chapter 5 

 

Demonstrations of the Generalized Contact Control Framework 

To demonstrate the validity and usefulness of GCCF, two demonstrations were 

designed. The first demonstration is a graphical user interface, or GUI, that is wrapped 

around the C++ code that runs GCCF. This interface visualizes the behavior of the 

framework and proves that the dimensions of a reference frame can be independently 

controlled. The second demonstration is an application demonstration involving multiple 

contact control moves. The application demonstration shows that GCCF can be used for 

actual contact task behaviors. 

5.1 HARDWARE INTEGRATION FOR DEMONSTRATION 

To accomplish the two demonstrations of GCCF, we first needed to pick hardware 

and integrate it into a ROS driven system. As stated previously, the required components 

to run the framework are a Linux computer that is able to run ROS, a wrist mounted FT 

sensor, and an industrial robot and controller. To run these demonstrations, we used ROS-

Indigo running in Ubuntu 14.04 on a Lenovo Y-50-70 laptop, but we could have used any 

Linux computer that runs ROS-Indigo. The only concern when choosing a computer, as 

stated previously, is that if the computer is introducing lag to the system, then there may 

be undesirable consequences when trying to control the contact with the environment, e.g. 

oscillatory behavior or movement well past desired force/torque cutoffs. To test the Linux 

machine, we ran GCCF and clocked the time between force data receipt and velocity 

commanding. With the laptop selected for our demonstrations, this process executes at 

around 500 Hz. 

The demonstrations use a 6-axis ATI Gamma sensor [54], seen in Figure 5.1, to 

sense forces and torques at the wrist. This sensor is lightweight, high strength, and has 
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minimal noise. The sensor is also the proper shape to be wrist-mounted. The sensor sends 

data via the ATI Net F/T server to the Linux machine running ROS via Ethernet. The Net 

F/T server is capable of outputting data at 7000 Hz [55] which far exceeds typical industrial 

robot control rates. The server transmits 3 dimensions of forces and 3 dimensions of 

torques, so complete spatial control is possible. 

 

 

Figure 5.1 ATI Gamma FT transducer [54] 

The demonstrations use a Motoman SIA5 industrial robot shown in Figure 5.2. The 

SIA5 is a 7 DOF, 5kg payload industrial manipulator with ±0.06 mm repeatability [56]. 

The fourth joint of the robot is offset 45 degrees to extend the workspace to be closer to 

the base of the robot. This is useful for contact task operations that involve manipulating 

items on a table close to the robot. 
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Figure 5.2 Motoman SIA5 7DOF Robot 

The industrial robot controller is an Agile Planet AX controller. This controller is 

commanded via CeWin which is a real-time virtual machine that is run on a Windows 

computer [57]. This creates an interesting interface since, as stated previously, GCCF runs 

on a Linux machine due to its incorporation into ROS. To access robot control from Linux, 

a previous NRG student wrote a custom ROS driver that communicates with the windows 

machine to send commands to the controller. This driver takes ROS trajectory messages, 

sends them over a TCP connection to the CeWin system, and then relays them to the AX 

controller. Since GCCF outputs velocity commands, it was necessary for these 

demonstrations to add functionality to the driver to also be able to relay velocity commands 

to the controller. This is an example of the work a user of GCCF must complete to use the 

hardware agnostic interfaces with equipment that does not have pre-built ROS drivers, or 
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does not accept commands in the form that is outputted from GCCF. The completed 

hardware interface can be seen in Figure 5.3. 

Note that the demonstrations command the robot through a real-time component 

even though GCCF does not run in real-time. This does not make the system real-time 

however, since GCCF does not schedule commands but produces them as fast as possible 

up to 500 Hz. But an important aspect of velocity commanding through the CeWin 

interface is that commands have a duration parameter. This parameter tells the robot how 

long to keep executing a velocity command if a new command is not received. For our 

demonstrations, the robot driver sets this parameter to 2 milliseconds so that the robot will 

not keep executing a velocity once GCCF is done commanding a move. It is important for 

a user of GCCF to implement such a feature when setting up a demonstration. This requires 

the user to characterize the nominal control rate of their selected system. The user must 

implement a duration parameter that is about the same, or possibly a little larger, than the 

time between consecutive commands. This ensures that the robot will not continue to move 

after commanding is halted and also will not stop and start between each command. 

 

 

Figure 5.3 Demonstration Hardware Setup and Integration 
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Figure 5.3 shows that we also attached a Robotiq gripper to the robot for 

manipulation. This is not listed as a necessary component for the framework to work and 

it does not interface directly with GCCF, but any demonstration manipulating the 

environment requires some manipulation tool attached to the robot. The Robotiq will be 

controlled by the demonstration node, not by GCCF itself. The gripper we used for the 

demonstrations is a Robotiq S-model 3 finger gripper [58]. The Robotiq gripper, seen in 

Figure 5.4, attaches to the force/torque sensor at the end of the SIA5. The gripper already 

has ROS packages to interface with the gripper controller and is commanded from any 

ROS node running alongside the Robotiq driver packages. 

 

 

Figure 5.4 Robotiq 3-Finger Gripper [58] 

5.2 DYNAMICALLY RECONFIGURABLE DEMONSTRATION 

The first demonstration shows the ability of GCCF to control each axis 

independently and the ease at which a user can change the control modes. The 

demonstration code is a GUI that wraps around the public access methods of GCCF. The 

GUI, seen in Figure 5.5, allows a user to set the control law and stiffness for each axis. The 

control laws and stiffness values can be set before a move, or updated in the middle of the 
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move. The demonstration should not control the robot during an actual contact control task. 

It is supposed to be illustrative of the ease of using the framework and the variety of control 

a user can achieve by simply adjusting the available parameters. It also allows a user to 

physically interface with the laws by applying force to the EEF. This gives the user an 

intuitive understanding of how the laws behave. 

 

 

Figure 5.5 Dynamically Reconfigurable GUI. Each Axis has a drop down menu that 

allows the user to select desired control law (None, Move, Spring, or Follow) well as 

modify the stiffness parameter using a simple slider. 

To use the dynamically reconfigurable GUI, a user must choose at least one 

dimension to be controlled. The user can control 6 dimensions in all: x, y, and z linear 



 73 

control and x, y, and z rotational control. Once the user selects a control law for a 

dimension, they can adjust the stiffness bar to the desired stiffness. The stiffness does not 

have units on the GUI and is simply a low to high value. After picking a control law and 

stiffness for each axis to be controlled, the user presses the move button and a move starts. 

At any point after this, the user may end the move by pressing the stop button, or update 

the move by adjusting the laws and stiffness values and pressing the update button. While 

the move is executing, users can apply forces to the EEF to see the resulting behavior of 

the robot. 

5.3 APPLICATION DEMONSTRATION 

To demonstrate an application of GCCF, a multistep task to a place peg in hole 

demonstration was conceived. The application demonstration requires multiple and varied 

contact tasks be completed in order to achieve the overall goal of putting a peg in a hole. 

In the task, the robot picks up a peg from the table and puts it in a peg hole of a peg board. 

The demonstration configuration can be seen in Figure 5.6. 
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Figure 5.6 Peg in hole demonstration configuration 

The demonstration involves three main tasks which are visualized in Figure 5.7. 

Some of the tasks require executing multiple moves using GCCF. The demonstration code 

does not know the precise position of the table, peg, and peg board and thus the uncertainty 

assumed for the task is well within the current capabilities of modern vision systems to 

estimate their pose. The demonstration executes all contact moves in the fashion described 

in the design and implementation chapters, i.e. with compliant moves and end conditions 

so that positions do not need to be precisely known. 
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Figure 5.7 Tasks for peg in hole application demonstration: 1) grasping the peg, 2) 

balancing and re-grasping the peg, 3) tracking to the hole and inserting the peg 

5.3.2 Demonstration Tasks 

The first task is to pick up the peg from the table. This is a tricky task due to the 

geometry of the peg and the gripper. The peg has a diameter of approximately 6.3 mm, as 

seen in Figure 5.6 and Figure 5.7. As stated previously, the distance from the palm of the 

gripper to the fingertips does not stay constant while the gripper closes. This can be 

minimized by keeping the fingers open only just enough to grasp the peg, but this reduces 

the amount of uncertainty allowed when estimating the initial location of the peg on the 

table. This means that even after moving down to touch the table, the gripper fingers cannot 

simply close around the peg to pick up the peg from the table. In doing so, the gripper 

would apply large contact to the table if the distance between the palm and fingertips was 

increasing. In this case the fingers would not make it all the way to the closed position. If 

the distance between the palm and the fingertips was decreasing, the fingers would lose 

contact with the table and could either miss the peg completely or grasp it improperly. To 

solve this problem, GCCF allows the EEF of the robot to move vertically in relation to the 
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forces sensed to maintain contact between the fingers and the table while the fingers close 

without applying excessive force. 

After lifting the peg off the table in task 1, the peg still cannot move directly into 

the hole. This, again, is a consequence of the peg and gripper geometries. The gripper 

fingers are wide in relation to the length of the peg and not much of the peg sticks out from 

between the fingers. To get the peg in the position to be placed in the hole, task 2 is a 

second manipulation of the peg in the gripper fingers. In task two the robot balances the 

peg upright on the peg board and releases it so that the it can then grasp it from the top. 

Lastly, after the gripper correctly grasps the peg, task 3 is to put the peg in the hole. 

The robot follows the surface of the peg board while looking for a hole to place the peg in. 

Then, the robot senses the contact force from the walls of the hole or the lack of contact in 

the downward direction. Without extra commanding from the user, the robot moves 

downward into the hole instead of laterally across the peg board until the peg is completely 

in the hole. 

5.3.3 Execution of the Demonstration Tasks 

To discuss how the demonstration uses GCCF to accomplish the tasks of the peg in 

hole procedure, this section breaks each task down into the separate moves that make up 

the task as a whole. Note from Figure 5.9 that between each main task, the demonstration 

executes moves from task space to task space. These moves will not be discussed 

thoroughly since they do not use GCCF. The moves between task spaces use MoveIt! to 

command the robot to move to a space believed to be above the next task space. During 

these moves, the demonstration loads conservatively sized collision objects, shown in 

Figure 5.8, into MoveIt!’s planning scene so that the generated trajectory will not take the 

robot near the environmental objects.  
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Figure 5.8 MoveIt! planning scene including collision objects 

After the move to the task space, the demonstration also executes a move with the 

generalized contact control framework to get closer to the task before interacting with the 

environment. A summary of the moves that will be explained in the next few sections is 

shown in Figure 5.9. 
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Figure 5.9 Peg in hole demonstration tasks 

5.3.3.2 Execution of Task 1 

The execution of task 1 breaks down into three moves which are shown as moves 

1-3 in Figure 5.9. The EEF first moves down until contacting the table with the gripper 

open around the peg. Then the gripper closes while the EEF adjusts vertical position to 
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maintain contact, and finally the EEF safely moves up away from the table while holding 

the peg. The reference frame that describes the moves is defined in Figure 5.10. 

 

 

Figure 5.10 User defined coordinate reference frame for task 1 moves 

For the first move, the downward move to contact the table, GCCF only controls 

the z dimension pictured in Figure 5.10. GCCF sets the dimension as a compliant move in 

the negative z direction. The end condition for this move is a maximum force. Since the 

robot does not know the distance to the table, the only way to know when to stop is by 

monitoring the force in the z dimension. Note that if the angle of incline along the x axis 

was unknown, the user could also set a follower or spring law around the rotation of the y 

axis to ensure that all fingers contact the table. Since the demonstration robot is mounted 

on the table, we are certain of the slope of the table and do not need to apply these extra 

laws. 

The second move is the scraping grasp that captures the peg in the gripper. Again, 

GCCF only controls the z dimension for the second move. The demonstration sets the z-

dimension to follow the spring law with an unstretched offset of 4 millimeters into the 
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table. This law allows the gripper to move upward if the fingers are pushing too hard on 

the table but it will always move downward towards the spring’s equilibrium position, if 

possible. This robot executes the move asynchronously after the demonstration code 

commands the gripper to close and then finishes once the gripper signals that it is closed. 

The robot does not control rotational dimensions in the second move because it is important 

that the gripper picks up the peg orthogonally to the palm normal. This requirement ensures 

that when the robot stands the peg upright in the second move it is in the right orientation. 

After the gripper has finished closing, the demonstration executes a final compliant move 

in the positive z dimension to retreat from the task space and allow for a planned trajectory 

to the next task space. 

5.3.3.3 Execution of Task 2 

Task two, shown as moves 5 and 6 in Figure 5.9, is to balance the peg on the side 

of the pegboard. The robot executes this task with two compliant moves oriented along the 

z dimension in Figure 5.11. For the first move, GCCF controls the negative z direction with 

a compliant move law. There is also a spring law on the rotational y dimension and a spring 

law with an adjustment for the lever arm to the sensor on the rotational x dimension. The 

spring laws compensate for very small inaccuracy of the peg rotation. By tweaking the 

lever arm on the y dimension, it could be possible to balance a slightly rotated peg, but due 

to the nature of the way that the peg is picked up in task 1, this turns out to be unnecessary. 

After the first move, the gripper opens to release the peg. At this point, a vision integrated 

system could determine if the peg remained standing after the release so that it can be re-

picked if it fell over, but for this demonstration we have not yet incorporated this 

functionality. After the peg is released, the robot executes the second move. This move is 

a 1-dimensional compliant move in the z dimension to move away from the task space and 
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allow for motion to the final task space. Note that an important feature of the move from 

the second to third task space is that the demonstration code adds the peg to the collision 

scene on the peg box so that the planned move will not knock over the peg. 

 

 

Figure 5.11 User defined coordinate reference frame for task 2 moves 

5.3.3.4 Execution of Task 3 

The third task, shown as moves 8-10 in Figure 5.9, is to put the peg into one of the 

holes on the pegboard. The first move of the task starts with the gripper open above the 

peg and moves downward to position the fingers around the peg. This move is a one 

dimensional, non-contact move to closer proximity to the task space similar to those 

discussed before. Then, the gripper closes to grasp the peg which puts the EEF in direct 

contact with the environment in the state shown in Figure 5.12. 
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Figure 5.12 User defined coordinate reference frame for task 3 moves 

After the first move, the robot drags the peg along the peg board to find a hole. 

Since there is no vision incorporated into this demonstration, the robot has no knowledge 

of where the holes are on the peg board. For this reason, the demonstration relies on a small 

amount of teleoperation to determine the direction of motion. The demonstration sets up 

the move with 3 controlled dimensions. The demonstration sets the z dimension as a 

compliant move in the negative z direction (into the peg board). This control maintains 

contact with the peg board as long as there is a contact force resisting motion, but once the 

peg is above a hole and the contact force disappears, the EEF will start moving downward 

into the hole without the demonstration changing control laws. The demonstration sets 

control of the linear x and y as one of two laws. One of these dimensions is set as a 

compliant move. Whichever dimension is not set as a compliant move is set as a spring. 

The user tele-operates which direction is set to compliant move in real-time while the demo 

is running by pressing keys on the Linux machine’s keyboard. For example, in the case 

shown in Figure 5.12, the user might first choose motion in the negative y direction. By 
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hitting the appropriate key, the user sets the y dimension to a compliant move in the 

negative y direction, and the x dimension to a spring with no offset. Once the peg moves in 

to alignment with the hole in the y dimension, the user can then hit the appropriate key to 

start motion in the x dimension. In response, the demonstration code sets the x dimension 

to move positively as a compliant move law and the y dimension to be controlled as a 

spring. All the while, GCCF is still executing the z dimension compliant move control. 

Once the peg is slightly over any of the holes, the normal forces caused by the peg walls 

direct movement in the y dimension (compliant move law) and the x dimension (spring 

law) towards the center of the hole until there is enough clearance that the z dimension will 

sense a smaller force and motion will start downward. The end condition on this move is a 

small displacement in the negative z direction so that the control laws can be adjusted for 

a smoother move once the peg has started into the hole. After this move is done, the 

demonstration sets up the final move. For the final move, the z dimension remains as a 

compliant move downward, and the x and y dimensions behave as force follow laws so that 

they will resist movement that increases contact with the peg hole walls. The two important 

end conditions for this move are displacement downwards and force in the z dimension. If 

contact causes a large force in the z dimension, the peg has hit the bottom of the peg hole, 

or the fingers have hit the pegboard surface and the move is done. If the robot has moved 

far enough into the hole so the peg is secure in the hole, the move is done. After this move, 

the demonstration code opens the gripper and uses a compliant move to retreat from the 

task space and the demonstration is complete. 

5.4 SUMMARY OF DEMONSTRATIONS 

The dynamically reconfigurable GUI demonstration successfully showed the 

flexibility and modularity of GCCF by allowing a user to pick separate control laws for 
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each linear and rotational dimension. The user is able to gain a physical interpretation of 

the function of the control laws and the behavior associated with setting control on multiple 

dimensions. The demonstration also shows off the ability of GCCF to be used in co-

robotics applications by allowing the user to interact directly with the EEF. 

The peg in hole application demonstration proved that GCCF can be used to 

complete actual contact tasks, including grasping, manipulation, and assembly. The 

demonstration also proved that these contact tasks could be done safely within the bounds 

of allowable stress on the robot. Due to the orthogonal nature of the demonstration 

components, the demonstration was mostly limited to control on linear axes and did not 

show off GCCF’s ability to control rotational axes in the same way as linear axes.  

Through the grasping of the peg from the table surface, we learned that GCCF 

behaves better at slower speeds. It was noticed that when the Robotiq fingers were set at a 

higher speed, it was more difficult to tune the controller to maintain contact with the table. 

Note that precise parameter values were not given in the discussion of the demonstration, 

but they may be found in Appendix B. A future version of the demonstration could 

incorporate vision monitoring and introduce fault procedures to show off the ability of 

GCCF to perform in uncertain conditions. 
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Chapter 6 

 

Conclusion and Future Work 

6.1 RESEARCH SUMMARY 

Although robotic capabilities in research labs and particular industry applications 

have improved greatly since the first years of reprogrammable robotic control, many 

industries, and especially the nuclear industry, still limit the use of robotics to simple pick 

and place, non-contact tasks. And in cases when contact-tasks are considered, integration 

costs are typically much higher. The task space of an industrial robot could be greatly 

increased in these fields by expanding control to include contact task procedures using a 

controller that is easily accessible and reconfigurable.  

The generalized contact control framework, GCCF, presented in this thesis allows 

a programmer to complete a configurable contact control or co-robotics task with little 

knowledge of the field of compliant robotic control. GCCF has been implemented in a safe, 

accessible, and hardware agnostic manner using the Robot Operating System, ROS, and 

object oriented design. The design and implementation of the framework will expand the 

available task space of an industrial robot by allowing for uncertainty in models and 

mitigation of dangerous contact forces.  

The ease of use and practicality of the framework were shown in two 

demonstrations conducted at the Nuclear and Applied Robotics Lab at the University of 

Texas at Austin. The first demonstration wraps the GCCF code in a graphical user interface 

that allows a user to change the control scheme of each dimension of a user defined 

reference frame. The user applies a force to the EEF of the robot and can gain a physical 

appreciation of how GCCF works. The second demonstration uses GCCF to perform 

multiple contact-task operations to pick up a peg, manipulate the peg to be handled in a 
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different orientation, and place the peg into a hole of a peg board. These demonstrations 

proved that the framework was feasible, and that it could be used to conduct multiple 

contact tasks within safe maximum force and torque limits. 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

The primary goal of this research was to make contact tasks easier to implement 

and this was achieved by developing a framework used in the demonstrations outlined 

above. As new contact tasks are envisioned and/or attempted with GCCF, foreseen and 

unforeseen challenges will arise. While accomplishing the work presented in this thesis, 

many avenues for future work were discovered. 

6.2.1 Position Commanding 

Currently, a user commands GCCF one step at a time by setting up control laws for 

each dimension and executing a move until an end condition is met. Typically, the user 

sets most dimensions to be moved only if there is an external force sensed, and sets one or 

two dimensions to the compliant move law so that they will execute the desired motion. 

The compliant move law takes a desired velocity and attempts to execute that velocity until 

an end condition is met. The control law parameters of each dimension can be updated 

while the move is executing, as seen in the application demonstration when the operator 

uses teleoperation to update the move direction to find a peg hole.  

To extend the capabilities of GCCF, a position controller, shown in Figure 6.1, 

could be implemented around the framework that constantly updates the desired velocity 

parameter to the compliant move law on one or multiple dimensions. Using this controller, 

a user could input a desired position and control parameters for each dimension. Using this 

desired position and the actual position from the robot, the position controller could update 
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the desired velocity of the compliant move laws to get the manipulator to the desired 

position. 

 

 

Figure 6.1 A position controller implementation 

6.2.2 More Control Laws 

The current version of GCCF is set up with three simple control laws that make it 

easy for an unexperienced operator to perform simple tasks. However, there is no reason 

that more control laws could not be implemented to cover less generic situations. The 

inexperienced user could still stick to the three useful laws presented in this paper, and any 

experienced user could apply more complicated laws. Some examples for possible 

additions to control capabilities follow. 

6.2.2.1 Explicit Force Control Law for Tasks that Require a Precise Applied Force 

The current state of GCCF safely mitigates contact forces while trying to follow 

the velocity trajectory specified by the user. Some force control procedures require more 

than safe operation. To apply a constant force or pressure on an object, an explicit force 

control law may be added to GCCF. This could expand the capabilities of GCCF to 

procedures such as polishing or painting an unknown surface without variations in 

brushstroke. 
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6.2.2.2 Adaptive Control Law 

As discussed in the literature review of this thesis, there have been many efforts in 

the literature to develop adaptive compliant control laws that can deal with changing 

environmental stiffness. Such a law could be implemented in GCCF as an extra option for 

controlling the EEF. This would enhance GCCF’s capability to deal with uncertain 

environments. 

6.2.2.3 Other Variations of Impedance Control Laws 

The impedance control laws used for the current version of GCCF are 

simplifications of a full impedance law. It might be useful to expand these laws into the 

full realization of the impedance control law described by Hogan and discussed in the 

literature review of this thesis. It is important to note that the law would need to be edited 

to be velocity based rather than position based since GCCF sends velocities to the robot 

controller. This new law would need more parameters, which might make it harder to 

implement. The literature review of this thesis showed that there are many versions of 

impedance control and there might be more that are suitable for GCCF. 

6.2.3 Modular Control Law Editor 

The idea of being able to add extra control laws leads into the next idea for future 

work which is to add the capability for a modular input of control laws. By making a control 

law editor that outputs a configuration file to be read in by GCCF at start-up, GCCF’s 

capabilities could be extended without having to continuously edit the source code of the 

framework. The editor could have certain design variables available to the user crafting the 

control law such as displacement from start position, sensed force/torque, actual velocity, 

time passed, etc. The user could pick the names for variable parameters that need to be 

passed to the framework when implementing the law. Using these design variables and 
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variable parameters, the user can craft an equation that relates the variables to the outputted 

command velocity. 

6.2.4 Adopting the Control Framework to Other Challenging Applications 

Key to the success and improvement of GCCF is its usefulness to complete tasks at LANL, 

for manufacturing, or in any situation where an industrial robot may be called upon to 

complete contact tasks in the presence of uncertainty.  Future work should include attempts 

to implement GCCF on practical applications. Some possible applications include: 

 Opening doors and cabinets 

 Dual arm robotics 

 Surface finishing 

 Station scheduling 

 Material reduction 

 Assembly/packaging 

The first step to proving that GCCF can be used on a wide variety of contact tasks could 

be to reproduce previous NRG efforts to solve these tasks with robots. Figure 6.2 shows 3 

applications that have previously been demonstrated by NRG. The top picture shows a 

material reduction demonstration accomplished by Peterson [12] that was detailed in the 

introduction of this thesis. GCCF could be used to mitigate forces applied to the EEF by 

the hole punch that is used to size reduce objects. The middle picture shows two robots 

working together to hold and move and egg. This demonstration was accomplished with 

the use of a fuzzy control law that adjusted the velocities of the two EEFs [59]. This 

demonstration could be attempted using GCCF separately on both arms. The first attempt 

should use the original control laws of GCCF by setting one robot to move compliantly on 
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multiple axes and one to follow on all axes. If this does not work, the original work could 

be replicated by adding a fuzzy logic law to GCCF. 

 

 

Figure 6.2 Future applications of GCCF. Top: A robot size-reduces a bowl [12]. Middle: 

Two robots hold an egg [59]. Bottom: A robot opens a cabinet door [60]. 

Opening a cabinet door is another challenge that could possibly be solved with 

GCCF. A set of guarded moves could identify the exact location of the handle. One last 

guarded move could position the EEF to grasp the handle. A multi axis move could then 

open the door by compliantly moving in the direction away from the cabinet surface and 
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following in the orthogonal direction. The move would also implement a follower on the 

rotational hinge dimension. 

6.2.5 Task Space Formalisms 

One question beyond the scope of this effort was to ascertain the breadth of tasks 

that could be completed using GCCF. To do this in a formal matter, first the task must be 

formally defined to truly encapsulate all real tasks and a comprehensive subset must be 

determined before full consideration of the applicability of the control law can be 

examined. It is possible that such formalisms already exist in the literature, but if not, the 

task formalisms must be developed.  

6.2.6 Additional Hurdles 

The integration of contact control into an industrial robot framework was just one 

of the many hurdles described in the introduction of this thesis that are limiting the ability 

of industrial robots to be able to replace and augment humans in the workforce to improve 

safety and efficiency. Many other hurdles are still awaiting integration such as precise 6 

DOF pose estimation from a vision sensor, reliable grasp validation, faster and more direct 

path planning, direct integration of the sensed environment with the collision scene, etc. 

6.3 CONCLUDING REMARKS 

The proposed framework takes a large step towards tackling the hurdle of making 

contact control capabilities readily available to an industrial robot framework. With this 

framework, and possibly some of the additions described as recommended future work, 

industrial robots can begin to accomplish a larger variety of task, while remaining practical 

for short run task. With the improvement and integration of the other hurdles to robotic 

capabilities discussed previously, the task space of industrial robots will be dramatically 

increased.  
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Appendix A 

Example C++ Code for Asynchronous Move 
 
#include "ros/ros.h" 
#include "contact_control.h" 
 
// C++11 future must be included to use moveAsync 
#include <future> 
 
................... 
 
// Instantiate contact control class 
ContactControl cc;  
 
// Initialize contact control class. 
// All arguments are string configuration variables that should have been instantiated 
// and set before call to initialize 
cc.initialize(moveGroup,worldFrame,ftFrame,controlFrame,jogger,ftAddress); 
 
................... 
 
// This variable allows access to the return value in the future 
std::future<Contact::EndCondition> ec; 
 
// Set up control dimensions. At least one dimension must be configured to perform a move 
cc.setSpring(Contact::DIM_Z, 20.0, 50.0, 0.004, 50.0); 
 
// Return variable must be stored for C++11 async to work 
ec = cc.moveAsync(70.0,15.0,0.9); 
 
// Stop the move after 3 seconds 
ros::Duration(3.0).sleep(); 
cc.stopMove(); 
 
// get() function must be called for C++11 async to work 
// This function will block until the move is done, but since we called 
// stopMove already, the move should be ended. 
Contact::EndCondition endCon = ec.get(); 
 
// Print out the end condition. If nothing went wrong before the stop was called 
// end condition will be enum EXTERNAL. Otherwise it will be the reason for the stop. 

ROS_INFO_STREAM("End condition of async move: " << endCon); 
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Appendix B 

Design Parameters for Peg in Hole Demonstration 

 

Move 

Number 

1 2 3 5 6 8 9 10 

Control 

Law* 

M S M M M M M M S M F F 

Move 

Direction 

Z Z Z Z  Z Z Z X** Y** Z X Y 

Speed 

(fraction) 

-0.04  0.3 -0.03 0.3 -0.2 -0.2 0.02  -0.05   

Stall 

force or 

torque (N 

or N-m) 

0.5  10 4 15 4 4 2  5   

K  20       40    

B  50       30  30 30 

Position 

offset 

(m) 

 0.004       0    

Displace

ment 

maximu

m (m) 

0.1  0.07 0.1 0.07 0.08 0.023 0.1  0.02   

Force or 

torque 

maximu

m (N or 

N-m) 

0.8 50 50 30 15 4 40 40 40 10 40 40 

 

*M stands for Compliant Move Law, S for Spring Law, F for Follow Law 

**These directions can be swapped via teleoperation 
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