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Abstract 

Two simulations tools have been developed to simulate selective laser melting. One is based on a 

multiphase flow solver with dynamic mesh adaptation and massive parallelism. The simulation 

tool is based on a first-principles approach to simulate complex additive manufacturing processes 

at the entire built part/component level. The developed model takes into account of heating, 

melting, powder-to-solid volumetric consolidation, cooling, as well as solidification and shrinkage 

that are often ignored in current simulation tools. The second tool is to solve the heat equation only 

without considering the flow field and volumetric changes. In both tools laser is modeled as a heat 

source. The reported work is our first step toward the development of a complete software suite 

that can be executed rapidly on workstations and clusters with accelerators. The simulation tool 

can provide AM practitioners and researchers from industry and academic a fast and accurate 

simulation-based approach to replace current trial-and-error based practices in industry for process 

and material development.  

 

Introduction 

Laser and metal powder based additive manufacturing (AM), specifically Laser sintering (LS) and 

Direct Digital Manufacturing (DDM), offers design freedom over the constraints of traditional 

manufacturing methods [1, 2]. LS is  a process in which a high-energy laser beam scans a powder 

bed surface to melt the powder (ceramics, metal, or polymer) to form a bulk part [3]. The most 

common terminology for LS of metals is Selective Laser Melting (SLM) [4]. SLM can benefit 

from better design and lower cost, but LS is complicated due to the fast laser scanning rates and 

complex heat transfer and phase change processes [5-7]. There is a poor understanding of the 

important physical processes dealing with laser-material interactions, the heat transfer and molten 

metal flow, and metal phase transformations and thermal stresses, which hinders quality of a 

finished bulk part, such as density, dimensions, mechanical properties, and microstructure [7, 8]. 

Previous research also found the temperature field was inhomogeneous  [9-13]. And large thermal 

gradients increase residual stresses and deformation in metals and may lead to crack formation in 

a bulk part, which leads to the develop of serious problem in the SLM process [14].  

Due to the importance of temperature distribution in LS, researchers have grown towards 

understanding the SLM process [10, 15-19] and creating models to describe the thermal evolution 

of LS [5, 9, 11, 20-22]. Simulation models can demonstrate the influence of various parameters 

and are essential tools for identifying the proper parameters without expensive experimental 

testing.  
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Various heat transfer processes occur in the SLM. Figure 1 shows the representation of heat 

transfer in SLM [23]. It consists of radiation at the powder bed, convection between the powder 

bed and the environment of an air void or gas filled chamber, and heat conduction inside the 

powder bed and between the bed and substrate. The powder phase change is another important 

phenomenon in SLM, and phase change can significantly change thermal properties of the powder 

during SLM. 

 

Figure 1. Schematic representation of heat transfer 

SLM metal temperature distribution has been modeled with heat equations without considering 

the flow field [13, 23-29]. Some researchers ignore the heat source as internal energy [30-32], but 

other studies put the source into the boundary condition equation [5, 20]. Other employ phase 

change and enthalpy to study the temperature field in SLM [5, 20, 30]. Another model considers 

influence from metal powder shrinkage and the molten pool fluid flow. Chan and Mazumder 

showed that fluid flow through the molten pool had a significant effect of the homogeneity of the 

sintering weld [33]. Some consider that the molten pool influences the thermal field in SLM. The 

model to simulate melting and solidification has been developed and used by [34-40]. One-

dimensional melting in mixed powders has been solved analytically by [37]. A three-dimensional 

model has been created that considers the thermal behavior and fluid dynamics in the molten pool 

caused by Marangoni and buoyancy forces along with the melt pool flow caused by gravity and 

capillary forces [39]. The model also accounts for powder shrinkage due to density and uses a 

fixed grid temperature transfer model for modeling the melting and solidification of the powder. 

The model has been compared to the cross-sectional profile for the melt-solid interface in laser 

processing for nonporous metal experiments. The results show that the thermocapillary force, 

shrinkage, and buoyancy force dominate the melting and fluid flow [39].  

Another thermal evolution of SLM as a heat transfer process utilizes the Fourier heat conduction 

theory with a Gaussian laser source embedded as an internal energy and the volume-of-fluid 

method to study the multiphase interaction forces and temperature variation in Ti-6Al-4V powder. 

Unlike the model from [39], the Marangoni and buoyancy forces are not considered. The latent 
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heat is dependent on temperature and considers liquid phase of the powder particles. The model 

uses a volume fraction transport equation to present the distribution of metal and gas phase within 

the computation domain. The model has been compared to a cross-sectional profile for the 

distribution of the melting pool.  

Various models have been proposed to model the heat transfer from laser beam. Some models 

have sought to use the volumetric laser beam distribution assumption. Niebling and Otto 

considered a volumetric line heat source [41]. Gusarov and Yadroitsev used a radiation transfer 

equation with an isotropic scattering term to describe laser beam penetration [30]. Although the 

laser beam penetration problem has been studied, Kolossov and Boillat found that with an element 

size larger than five gradient diameters, the laser beam penetration can be ignored [12]. Realizing 

the interaction between the laser beam and powder bed, leads to a greater understanding of laser 

beam penetration and absorption. Several models consider the absorption a constant ratio for the 

bulk powder [20, 42-46]. Laser beam absorption in powder depends on several factors including 

oxidation level, surface type, surface temperature, and laser beam wavelength. In the case of metal 

powders, the laser beam absorption ratio varies within a few percent of the molten absorption ratio 

[47].  

Thermal properties of metal powder include density, enthalpy, heat capacity, and thermal 

conductivity. Carslaw and Jaeger show that thermal conductivity varies with temperature [48]. 

SLM uses an effective thermal conductivity. It has also been shown that the porosity of the powder 

bed influences thermal conductivity. The effective thermal conductivity is a function of the thermal 

conductivities of solid metal and gas in the powder voids [3, 20, 49]. 

The main consideration of thermal conductivity of metal powders is the temperature near the 

melting point and above in liquid state. Without experimental data, a constant thermal conductivity 

is assumed.  Thummler proposed that thermal conductivity is influenced by powder porosity and 

pore geometries and thermal conductivity is controlled by gas content in the voids of the powder 

[50]. Rombouts et al. showed that thermal conductivity is independent of powder material and 

depends on porosity and size of voids in the powder along with depending on gas content in the 

voids [51]. Roberts and Wang show that the thermal conductivity of Ti6Al4V powder is low for 

powder and increases dramatically when nearing the melting point [20]. The density and heat 

capacity of metal powder is shown as the mass average of each state’s (powder, liquid, solid) value 

[49]. Some consider the heat capacity to be separate at each phase and use an effective heat 

capacity that is temperature dependent [46]. 

In this paper, we present two models to study SLM. One is based on commercial software Fluent, 

and the other one is based on an in house multiphase flow solver. In the first approach, we solve 

the heat transfer equations without considering the flow field. The laser is modeled as a three-

dimensional Gaussian energy source that is imposed on a two-dimensional surface.  This approach 

only considers the heat transfer without the phase change. In the second approach, we will model 

the phase change using multiphase flow solver.  

 

 

 

Numerical Models 
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In the following we introduce the two models used to study SLM. The first one is based on a simple 

heat equation (the heat conduction model) and the second one is based on a multiphase flow solver 

(multiphase flow model).  

Heat Conduction Model 

The most common thermal evolution of SLM as a heat transfer process can be described by Fourier 

heat conduction theory. Equation (1) describes the governing heat conduction in a moving medium 

[48], 

 
𝜆 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
+

𝜕2𝑇

𝜕𝑧2
) + 𝑞 = 𝜌𝑐

𝜕𝑇

𝜕𝑡
 

(1) 

The initial condition and boundary conditions are as follows: 

Initial temperature: 𝑇(𝑥, 𝑦, 𝑧, 0) = 𝑇0 (2) 

Surface convection and radiation: 
−𝜆

𝜕𝑇

𝜕𝑧
= 𝜀𝜃𝜎(𝑇4 − 𝑇𝑒

4) + ℎ(𝑇 − 𝑇𝑒) 
(3) 

No heat loss at the bottom: 
−𝜆

𝜕𝑇

𝜕𝑧
|𝑧=0 = 0 

(4) 

where 𝑇 is the temperature, 𝜆 the conductivity coefficient, 𝜌 is the density, 𝑐 is the heat capacity 

coefficient, 𝑞 is the internal heat, 𝑇0 is the powder bed initial temperature,  𝑇𝑒 the environment 

temperature, 𝜀𝜃 the thermal radiation coefficient, 𝜎 the Stefan-Boltzmann constant, and ℎ the 

convection heat transfer coefficient. The governing equations were used to study the thermal field 

of dental porcelain in SLM [47]. 

Multiphase Flow Model 

The second approach is based on a multiphase flow solver. In this approach the governing 

equations to be solved are the three-dimensional Navier-Stokes equations for immiscible, 

multiphase flows, which are given as follows: 

 0V    (5) 

    T

tension

V
V V p V V F g

t
  
 

          
 

  (6) 

 v

T
c V T q

t


 
     

 
  (7) 

where  , ,V u v w  is the velocity vector, ρ is the density, t is the time, p is the pressure, µ is the 

viscosity, g  is the gravitational acceleration vector, q   is the heat flux vector.  

Besides the above temperature condition at the interface, the following mass conservation must 

be satisfied across the interface [52] 
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    L I L s I sm V n V n V n V n           (8) 

where m  is the interfacial mass flux, L and s  are the densities of liquid and solid phases 

respectively, n  is the normal pointing from solid to liquid, V n  is the normal velocity of the fluid, 

and IV n  is the normal velocity of the interface. The energy conservation at the interface equation 

satisfies the Rankine-Hugoniot jump condition 

 ( )L s L sm h h q n q n       (9) 

where Lh  and sh  are the enthalpy of the liquid and solid phases respectively.  

The liquid-solid interface can be represented by a zero level set of a distance function. The distance 

equation is given by the following equation [52] 

 0          or          0
L L

m D m
V

t Dt

 
  

 


       


  (10) 

where   is the distance to the piecewise linear moment of fluid reconstructed interface. The 

multiphase flow solver solves the three-dimensional Navier-Stokes equations using the variable 

density pressure projection algorithm [53] on block structured adaptive mesh refinement grid 

(AMR) [54]. It can handle both compressible [55] and incompressible flows [56, 57]. The solver 

employs the state of the art moment of fluid method (MOF) [58-60] to represent multiphase 

interfaces [55, 61-64]. It employs dynamic contact models for droplet impact problems [65]. Our 

tests show that the code has a high parallel efficiency of more than 96% on a 48-core workstation.  

Interface representation 

During the MOF interface reconstruction process, a reference volume fraction function refF  and a 

reference centroid, ,c

refx both corresponding to the real interface, are given [Figure 2a], and the 

actual volume fraction function, FA, and the actual centroid, ,c

Ax corresponding to the reconstructed 

interface, are then computed [Figure 2b].  

 

 

 

 

 

 

 

 

 

Figure 2. Surface reconstruction using the MOF method [56]. (a) the real interface and reference 

volume fraction and centroid; (b) the reconstructed interface and computed volume fraction and 

a b 
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centroid.  The MOF reconstruction requires the reconstructed volume to be equal to the reference 

volume while the reconstructed centroid as close to the reference centroid as possible. 

The MOF method requires that the actual volume fraction be equal to the reference value and the 

actual centroid be as close to the reference centroid as possible. This becomes a constraint 

optimization problem formulated as follows: 

   
2

Minimize              ,     under constrain:    , 0c c

ref A ref Ab F F b  x x n n   (11) 

As discussed in [57], the use of centroid information ensures the MOF method maintains a sharp 

interface which is critical for the droplet impact simulation because the thickness of the lamella 

is about two orders of magnitude smaller than the initial droplet diameter [66]. 

 

In our numerical models, we used two different materials to differentiate the liquid drop and the 

liquid film to illustrate the pertinent fluid dynamics features in the drop impact on thin film. The 

method is illustrated in Figure 3. We first reconstruct the interface for the material whose centroid 

is furthest the centroid of the computational cell by solving Eq. (13). In the case shown in Figure 

3 it is the red material. Next, we reconstruct the interface for the remaining material whose centroid 

is furthest to the centroid of the unoccupied region in the cell (white region) by solving Eq. (13). 

In Figure 3 the next material is marked in blue. This procedure continues until all the material 

interfaces are constructed.  

 

 

 

 

 

 

 

Figure 3. MOF interface reconstruction with three materials in one cell 

Adaptive mesh refinement 

The Navier-Stokes equations are solved using the variable density pressure projection algorithm 

[53] on the block structured adaptive mesh refinement grids [54, 67]. The grid adaption is based 

on the triple point region and the curvature of the interface. As shown in Figure 4, the grid 

refinement is performed near regions where curvature is greater than a predefined value. The 

adaptive mesh refinement method ensures fine grid is only used in the regions of interests, which 

maintains the accuracy of the solver at reasonable computational cost.  

1225



7 
 

 
Figure 4. Two-level adaptive mesh refinement 

 

Laser Source Term Model 

The modeling of laser beam characteristics has been researched to better understand the LS 

process. Simple models assume the laser beam to be a point source, but this conjecture is not 

representative of reality. It has been shown that laser beam sources can be characterized by three 

parameters: diameter, power, and intensity distribution. Courtney and Steen deduced an effective 

Gaussian beam diameter equivalent using measurements from a laser beam and comparing to a 

Gaussian laser beam diameter [68]. This effective Gaussian laser beam diameter is the most widely 

used for simulation [20]. In this model the laser intensity distribution can be written as  

 
2 2

1( / )

0( )
d d

I r I e


   (12) 

where d1 is the beam diameter, I0 is the irradiance that diminishes exponentially, and d is the radius 

of a point from the center of the laser beam source. The thermal heat flux distribution is 

 
𝑞(𝑟) =

2𝑃

𝜋𝑟0
2

𝑒
−

2𝑟2

𝑟0
2
 

 (13) 

where P is the laser power, 𝑟0 is the spot radius, and 𝑟 is the radial distance. The total heat flux 

on a circular surface of radius r0 can be calculated by integrating the heat flux 

 
𝑞𝑚 =

𝛼

𝜋𝑟0
2

∫ 𝑞(2𝜋𝑟)𝑑𝑟 =
0.865𝛼𝑃

𝜋𝑟0
2

𝑟0

0

 
(14) 

where 𝛼 is absorption rate. 

The laser beam distribution is typically assumed to be either surface or volumetric. The surface 

variation of the laser beam is the most common because of the lack of research into laser beam 

penetration in the volumetric distribution [9, 30, 69]. In an attempt to solve the lack of 

understanding of the volumetric distribution, Wang and Laoui used a ray tracing (RC) model that 

predicts the absorption and reflection of laser beam energy on each particle produced by a large 

1226



8 
 

number of rays [9]. The energy absorbed by each particle is totaled and the total energy delivered 

by the laser is totaled. From the total energy calculation energy, penetration can be described as a 

depth function into the powder. 

Li at el. used the assumption that the laser beam distribution is surface in nature, but also includes 

the convection and radiation terms from the Fourier heat conduction theory [46]. The laser source 

model is 

 
𝑆𝑙𝑎𝑠𝑒𝑟(𝑥) = [𝛼

𝑃

𝜋𝑟0
2

exp [−
2(𝑥 − 𝑣𝑡 − 𝑥𝑖)2

𝑟0
2

] − 𝜀𝜃𝜎(𝑇4 − 𝑇𝑒
4) + ℎ(𝑇 − 𝑇𝑒)] 𝛿 

 

(15) 

where 𝛼 is the absorptivity, 𝑃 is laser power, 𝑟0is the laser beam radius, 𝑣 is scanning velocity, 𝑥 

is the laser beam position,  𝑥𝑖 is the initial laser beam position, 𝜀𝜃 is the black body radiation, 𝜎 is 

Boltzmann’s constant, 𝑇 is melt pool temperature, 𝑇𝑒
4 is environment temperature, and 𝛿 is a delta 

function. The purpose of the laser source equation is to mark the position of the powder particle 

surface in the flow field. The laser source is implemented at the beginning of simulation until end 

of the laser beam path. 

  

Numerical Results 

The model represents IN718 powder on top of a steel plate with air surroundings. The process 

parameters and thermal properties are taken from [46] and [70]. Table 1 shows the model and 

process parameters. ANSYS Fluent is used to create the simulation. The laser beam is modeled as 

Gaussian distribution with a 100 μm laser spot size. The element size is 100 μm in a 0.8 cm by 0.4 

cm by 0.226 cm computation domain and 73600 elements. The laser scans from left to right. 

Convection and radiation are modeled using a mixed heat transfer coefficient at the powder surface 

included in the source term. The initial temperature is set at 300 K. The density and thermal 

conductivity are functions of temperature. The specific heat is constant. 

The model is set up using a rectangular solid Ti6Al4V part with mesh and a user defined laser 

beam source beam function taken from [46]. The laser source is implemented at the start of the 

simulation and continues until the laser beam moves over the entire path of the domain. 

The mesh is shown in Figure 5. The temperature profile for the first layer scan is shown in Figure 

6., and Figure 7.. The temperature distribution contours show an ellipse-like shape that repeats as 

the profile moves from the center, which is shown in [71]. The melt pool moves linearly 

maintaining the ellipsoid shape throughout. The melt pool also maintains a similar shape and 

temperature concentration at each time instant. The plots also show the concentration of the 

thermal gradient at the front of the molten pool, which is due the movement of the laser beam 

source and the temperature and phase dependent material properties.  

Figure 8 shows a comparison of the experimental results to our simulation. The center and shape 

of the temperature field in our simulation are like those of the experimental results. The 

temperatures also reach similar values to the experiment. 
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Figure 5. Simulation Mesh 

 

 

Figure 6. Temperature gradient profile at 0.394 s 
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Figure 7. Temperature gradient profile at 0.787 s 

 

 

Figure 8. Temperature gradient profile compared to experiment 

 

Nomenclature Symbol Value 

Laser Power (W) P 350 

Laser Distribution  Gaussian 

Laser beam radius (m) r0 5x10-5 

Scanning Speed (cm/s) v 1.016 

Surrounding temperature (K) T∞ 300 

Absorption  α 0.35 

Density of Ti6Al4V (g/cm3) ρ 8.19-39.2E-2*(T-298) 

Mixed Heat Transfer coefficient (W/m2k) h 10 

Specific Heat of IN708 (j/g-K) Cp 0.65 

Thermal conductivity of Ti6Al4V (W/m-K) k 39.73+32.4E-3*T+2E-5T2 

Black body radiation 𝜀𝜃 1 

Boltzmann’s constant 𝜎 5.67x10-8 

Model size (cm)  0.8x0.4x0.226 

Table 1. Model and process parameters 

 

In Figure 9 we show the simulated melting process using our proposed multiphase flow solver. 

Three metal particle of the same radii of 30 𝜇𝑚 are put side by side. The laser source model of 

Eq. (15) is used. The laser power is 175 W and scan speed is 1.25 m/s. The density and thermal 

conductivity of the Ti6A14V are assumed to be constant. The melting process is captured by the 

solver. Our simulation also shows that the particle is not fully melted.  
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Figure 9. Simulated melting process based on the multiphase flow solver. (Red: Solid Ti6A14V). 

 

Conclusions 

We presented two models to study SLM. The first model is based on the simple heat conduction 

equation that considers the heat transfer but not the flow field or volumetric changes. The other 

model is based on a multiphase flow solver that considers the heat transfer, phase change and 

volumetric changes.  
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