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Most flows in nature and engineering are turbulent, and many are wall-

bounded. Further, in turbulent flows, the turbulence generally has a large impact

on the behavior of the flow. It is therefore important to be able to predict the effects

of turbulence in such flows. The Navier-Stokes equations are known to be an excel-

lent model of the turbulence phenomenon. In simple geometries and low Reynolds

numbers, very accurate numerical solutions of the Navier-Stokes equations (direct

numerical simulation, or DNS) have been used to study the details of turbulent

flows. However, DNS of high Reynolds number turbulent flows in complex geome-

tries is impractical because of the escalation of computational cost with Reynolds

number, due to the increasing range of spatial and temporal scales.

In Large Eddy Simulation (LES), only the large-scale turbulence is sim-

ulated, while the effects of the small scales are modeled (subgrid models). LES

therefore reduces computational expense, allowing flows of higher Reynolds number

and more complexity to be simulated. However, this is at the cost of the subgrid

modeling problem.

The goal of the current research is then to develop new subgrid models con-

sistent with the statistical properties of turbulence. The modeling approach pursued
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here is that of “Optimal LES”. Optimal LES is a framework for constructing models

with minimum error relative to an ideal LES model. The multi-point statistics used

as input to the optimal LES procedure can be gathered from DNS of the same flow.

However, for an optimal LES to be truly predictive, we must free ourselves from

dependence on existing DNS data. We have done this by obtaining the required

statistics from theoretical models which we have developed.

We derived a theoretical model for the three-point third-order velocity cor-

relation for homogeneous, isotropic turbulence in the inertial range. This model is

shown be a good representation of DNS data, and it is used to construct optimal

quadratic subgrid models for LES of forced isotropic turbulence with results which

agree well with theory and DNS. The model can also be filtered to determine the

filtered two-point third-order correlation, which describes energy transfer among

filtered (large) scales in LES.

LES of wall-bounded flows with unresolved wall layers commonly exhibit

good prediction of mean velocities and significant over-prediction of streamwise

component energies in the near-wall region. We developed improved models for the

nonlinear term in the filtered Navier-Stokes equation which result in better predicted

streamwise component energies. These models involve (1) Reynolds decomposition

of the nonlinear term and (2) evaluation of the pressure term, which removes the

divergent part of the nonlinear models. These considerations significantly improved

the performance of our optimal models, and we expect them to apply to other

subgrid models as well.
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which statistically matches the uiuj term in the component energy
equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xiii



4.13 Configuration of simplest stencil cells ũi with respect to the fluxes uiuj . 64
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ũ′1∂̃jU1u

′
j

mod

std

〉
, for channel flow at

Reτ = 934. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.21 Mean velocity profiles, face filtered U and standard model U
mod
std a

priori, for channel flow at Reτ = 934. . . . . . . . . . . . . . . . . . . 80

4.22 Actual production
〈
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Chapter 1

Introduction

Most flows in nature and engineering are turbulent, and turbulence generally

has a large impact on the behavior of the flow. For example, approximately 50% of

drag on commercial aircraft results from skin friction in turbulent boundary layers

[42]. It is therefore important to be able to predict the effects of turbulence in such

flows. Turbulent flows may be distinguished from laminar flows in several ways.

Turbulent flows occur at higher Reynolds numbers, have higher dissipation and

higher mixing rates than laminar flows. They exhibit fluctuations over a broad range

of length and time scales. Turbulent flows are also chaotic; that is, perturbations

on average, grow exponentially in time.

The Navier-Stokes equations are known to be an excellent model of the

turbulence phenomenon [52]. For an incompressible, Newtonian fluid, the Navier-

Stokes equations are given by

∂ui
∂t

= −∂uiuj
∂xj

− 1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.1)

∂ui
∂xi

= 0 (1.2)

where ui is the velocity field, p is the pressure field, xi and t are the space and

time dimensions, ρ is the fluid density, and ν is the kinematic viscosity of the fluid.
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Equations (1.1) and (1.2) are expressions of momentum and mass conservation,

respectively.

Unfortunately, analytical solutions to these equations have been found only

in very special circumstances. In fact, a million dollar prize awaits anyone who can

prove existence and smoothness of Navier-Stokes solutions [20]. Therefore, scientists

and engineers have resorted to making physical measurements of turbulent flows

and/or to solving the Navier-Stokes equations numerically. In the subsections below,

the issues surrounding the numerical simulation and modeling of turbulence are

discussed briefly and the large eddy simulation (LES) approach to be pursued here

is introduced.

1.1 Turbulence Simulation and Modeling

There are three levels of turbulence simulation: Direct Numerical Simula-

tion (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier Stokes

(RANS). In DNS, the Navier-Stokes equations are solved on spatial and temporal

grids fine enough to resolve all scales of turbulence. LES employs a coarser grid

and only solves for the large-scale turbulence, while the effects of the small-scale

turbulence are modeled. RANS only solves for the “mean” flow, while all of the

turbulence is modeled.

For any given turbulent flow problem, the most straightforward, accurate,

and computationally expensive method of simulation is DNS. The cost of a DNS

grows rapidly with Reynolds number (Re3 for isotropic turbulence [52]), so its appli-

cation is limited to moderate Reynolds number flows in simple geometries. See [45]

2



for a review of DNS of turbulent flows.

On the other hand, the cost of RANS increases only modestly with Reynolds

number [52]. However, RANS models are notoriously unreliable, and generally

unable to represent the effects of turbulence over a wide range of flows [19]. The

difficulty is that the largest scales of turbulence have the greatest effects on the flow,

but are highly dependent on the flow configuration. RANS models are poorly suited

to represent the effect of this flow dependent large-scale turbulence.

By simulating the dynamics of the flow-dependent large-scale turbulence,

and modeling only the effects of the small scales, LES seeks to avoid the reliabil-

ity problems with RANS and the cost escalation of DNS [52]. Modeling the small

scales of turbulence is a promising endeavor, since these small scales exhibit universal

behavior over a wide range of flows [64]. However, for LES to fulfill its promise as a

widely applicable, computationally tractable turbulence modeling approach, a num-

ber of shortcomings of current LES formulations and models need to be addressed

[27, 34, 53], which is the goal of the current research.

1.2 Large Eddy Simulation

In LES, the large scales (to be simulated) and the small scales (to be mod-

eled) are distinguished by a filter operator. Filters are usually defined to be linear

operators, expressed in terms of a filter kernel G(x, x′) as

ũ(x) =

∫
G(x, x′)u(x′)dx′ (1.3)
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where ũ is the filtered u, also called the resolved or large scale u. Common filters

include the spectral cut-off filter which is simply a Fourier truncation, the box filter

which averages u over finite-sized volumes, and the Gaussian filter in which G is a

gaussian in (x− x′). For an overview of LES filters, see [52].

Applying the filter to the Navier-Stokes equation (1.1) produces:

∂ũi
∂t

= −∂ũiũj
∂xj

− ∂p̃

∂xi
+

1

Re

∂2ũi
∂xj∂xj

− ∂τij
∂xj

+ Ci (1.4)

where

τij = ũiuj − ũiũj (1.5)

and Ci is zero if filtering commutes with spatial differentiation. The “subgrid stress”

tensor τij is the quantity most often modeled in LES.

The usual approach to LES modeling involves approximating the subgrid

stress τij in terms of the large-scale velocities ũ. The most popular model was

formulated by Smagorinsky [61]

τij ≈ −2νTSij (1.6)

where Sij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
is the strain rate of the large scales, νT = (CS∆)2 |S| is

called the eddy viscosity, CS is a constant, and ∆ is the characteristic length of the

filter.

Germano et al proposed a dynamic procedure for determining CS , assuming

similarity over two filter scales [22], which significantly improved on the Smagorinsky

model. Leveque et al [40] proposed that mean shear be subtracted out of Sij in the

Smagorinsky model, which is similar to our stategy of using Reynolds decomposition
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in modeling wall-bounded turbulence (see section 4.3.3.6). Other noteable models

include the scale-similarity model by Bardina et al [7], a model based on the eddy-

damped quasi-normal Markovian (EDQNM) approximation by Chollet and Lesieur

[14], monotone integrated large eddy simulation (MILES) by Boris et al [11], the

stretched vortex model by Misra and Pullin [44], and the variational multiscale

(VMS) model by Bazilevs et al [8]. For an overview of current LES turbulence

models, see [39, 43].

1.3 Challenges in LES Modeling

While there are a wide variety of models available, they share several short-

comings that need to be addressed for LES to be a useful turbulence simulation tool.

The first issue is that LES of wall-bounded flows fail to produce accurate results

when the near-wall layer is not resolved (when the filter scale is much larger than

the viscous length scale) [50]. This is primarily because LES models are usually

built on assumptions of small-scale homogeneity and isotropy, and the existence

of an inertial range, all of which are invalid near the wall. A common symptom

of channel flow LES with unresolved wall layers is high streamwise and/or low

wall-normal velocity variances [5, 12, 16, 48]. The second issue is the interaction of

modeling errors and numerical discretization errors [23, 33]. All the subgrid models

mentioned above, except MILES and VMS, were formulated without considering

the discretization and numerical methods used in the LES. Optimal LES (OLES)

pursued here addresses both of these issues.

In this dissertation, Chapter 2 will introduce the OLES framework. Chapter
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3 will describe modeling the three-point third-order correlation for homogeneous

isotropic turbulence, a statistic necessary for developing optimal quadratic models.

It is also useful in the analysis of LES, since it represents transfer of energy among

the filtered scales. Chapter 4 will describe the use of OLES to model wall-bounded

flows with unresolved wall layers, which as explained above is an area of ongoing

research. It will be shown that decomposing the nonlinear term in the filtered

Navier-Stokes equation and considering it’s effect on pressure are important to con-

structing accurate models in the near-wall region. Chapter 5 will discuss conclusions

and future work.
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Chapter 2

Optimal LES

Optimal LES is an LES modeling approach formulated to minimize the error

in representing an “ideal” LES evolution. It is generally applicable provided only

that the statistical information required to evaluate it is available. In the discussion

below, this LES modeling formalism is briefly recalled.

2.1 Ideal LES

Ideal LES starts from the premise that the LES representation is fundamen-

tally discrete, since this is what is required for computation. As a result LES fields

are missing small-scale information. This fundamentally discrete representation is

what Pope [53] classifies as “numerical LES”. It stands in contrast to “physical

LES” where the LES equation is considered a partial differential equation and one

seeks numerical solutions that converge to the solution of the PDE.

In the usual LES notion of filtering introduced briefly in Section 1.2, the

filter operator does not necessarily remove information; it is then the sampling or

discretization performed for numerical computation that discards the small-scale

information. For example, the Gaussian filter, in which G in equation (1.3) is a

Gaussian, is formally invertible; that is, a turbulent velocity field u on a contin-

uous domain can be Gaussian filtered to get ũ on a continuous domain, and ũ
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can be inverse Gaussian filtered to get back u. Of course, inverting the filter is

ill-conditioned, but in principle, with arbitrary precision computation the filter is

invertible. However, ũ sampled at a finite number of points cannot be inverse fil-

tered; information has been lost.

For the current development, it is convenient to define the filter operator F

to include the discretization used for numerical representation. F then maps the

infinite dimensional space U to the finite-dimensional space W, where u ∈ U is the

real turbulent velocity field and w ∈ W is the LES field. It can be shown [34, 52]

that if an LES field w evolves according to a conditional average

dw

dt
=

〈
dũ

dt
|ũ = w

〉
(2.1)

then (1) multi-point, single-time statistics of w will be the same as those of ũ, and

(2) the mean-square discrepency between the short-time dynamics of the LES and

filtered turbulence
〈
(dwdt − dũ

dt )
2|ũ = w

〉
is minimized. Because correct large-scale

statistics and accurate short-time dynamics is the most that can be expected from

a deterministic LES evolution, equation (2.1) is called the “ideal LES” [34]. It is

the best possible LES evolution.

An essential feature of ideal LES is that it is characterized statistically. This

is appropriate since without the small-scale information, one cannot know exactly

how the large scales will evolve. Because F has mapped turbulent fields in U to a

finite-dimensional space W, for any w ∈ W, there are many (an infinite number)

u ∈ U for which ũ = w. Each of these u will have a different evolution (time

derivative), so that there is a distribution of possible time derivatives associated

8



with each w ∈ W. The ideal LES evolution (2.1) is simply the average over this

distribution. Figure (2.1) illustrates Ideal LES.

du
dt

du
dt

w=u

u

~

F
−1

NS F

~

dw
dt

.

Figure 2.1: Ideal LES: the ideal evolution of the LES field w corresponds to the
average over all possible evolutions of corresponding continuous fields u filtered. F
is the filtering/discretization operation, NS is the Navier-Stokes equation, and 〈·〉 is
the average.

It is also possible to formulate ideal LES models for terms on the right hand

side of the filtered Navier-Stokes equations. In what follows we will consider a

generic term M and the model for it m. The ideal model for M is

m = 〈M |ũ = w〉 (2.2)

In general, formulating ideal LES models in this way is equivalent to equation (2.1),

since they are terms from the same filtered Navier Stokes equation. It may be

useful to formulate the modeling problem in terms of some model term like this, if

the resulting conditional expectation is simpler to represent or approximate.

Unfortunately, the effective number of conditions represented in the condi-

tional expectations in (2.1) and (2.2) is the dimension of the space W, which will
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generally be many thousands or millions. It is thus not practical to evaluate these

conditional averages. Instead, we seek to approximate the ideal LES with what we

call “optimal LES”.

2.2 Optimal LES

An “optimal” model formally approximates the ideal model using linear

stochastic estimation [1–4]. First, one postulates the form of the model m as a

function of w:

m =
∑

k

AkEk (2.3)

whereEk is a vector of the so-called events based on the velocity field w, and Ak is the

corresponding vector of model coefficients. Note that in linear stochastic estimation,

the model is linear in the coefficients Ak, but not necessarily in the LES state

variables w. Ek allows the model m to be a function of any combination of products

of w over different locations. The coefficients Ak are determined by minimizing the

mean square difference between the model and the exact term,
〈
(M −m)2

〉
, with

respect to the model coefficients. While this optimality condition is written in terms

of the exact term M , it can be shown [66] that the mean square error (MSE) of

the optimal model relative to the ideal model:

MSE = 〈(〈M |ũ = w〉 −m)2〉 (2.4)

is also minimized. This error relative to the ideal LES is of primary concern since

it is not possible to represent M more accurately than the ideal LES does. The
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optimality condition used to determine the linear coefficients is:

〈mEk〉 = 〈MEk〉, (2.5)

which is a linear algebraic equation for the coefficients Ak.

Notice that nowhere in the development of ideal/optimal LES did we assume

isotropy, homogeneity, existence of an inertial range, or scale similarity. Optimal

models simply do what the statistics say they should do, which makes optimal

models much more generalizable than other existing LES models. In addition, opti-

mal models may be constructed to account for discretization errors associated with

standard numerical methods. Optimal models may be seen as customized numerical

methods for most accurately replicating turbulence statistics. This is important,

since Ghosal [23] found that for low-order discretization schemes, such as finite-

volume methods, truncation errors may be the same order of magnitude as subgrid

modeling errors.

Another important property of the optimal LES model arises trivially from

the optimality condition (2.5). The correlation of the model with the events Ek

matches that for the actual term, when evaluated for filtered real turbulence, that is

a priori. If the correlations 〈MEk〉 include statistical quantities that are dynamically

significant, then a priori, the model represents these quantities well. Appendix

D shows how the simplest optimal flux model will match a priori statistics for

the corresponding term in the component energy equations. Furthermore it was

found in [66] that when the optimal model was formulated so that the correlation

〈MEk〉 includes critical terms in the Reynolds stress transport equations, then the
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model produced an accurate LES. One of the challenges in optimal LES modeling is

determining an appropriate dependence for the model, that is the event vector Ek.

This property of matching the correlations 〈MEk〉 can provide guidance when the

dynamically important model statistics are understood.

The second challenge in optimal LES is the determination of the statistics

appearing in (2.5), which are inputs to the modeling process. These statistics are

multi-point correlations between M and w’s. The theoretical determination of these

input statistics for homogeneous turbulence is described in chapter 3. However, to

explore the properties and performance of OLES models without the uncertain-

ties associated with modeling the statistical inputs, much of the previous work on

optimal LES [9, 37, 66, 68] has used statistical inputs determined from DNS.

2.3 Previous Optimal LES Studies

Optimal LES has been performed for forced isotropic turbulence, with Fourier

spectral methods by Langford and Moser [37], and with finite-volume method by

Zandonade et al [68]. Both showed good agreement with DNS data, and both per-

formed similar or better than the dynamic Smagorinsky model [22]. Of particular

relevance to the current study, Zandonade et al showed the viability of optimal

models based on a finite-volume discretization (see section 2.4). They showed that

small local stencils (2 or 4 adjacent cells) were sufficient to model the nonlinear term

in isotropic turbulence, and that for small stencils, the optimal quadratic term is

approximately the standard finite-volume reconstruction of the nonlinear term. Zan-

donade et al also found that care was needed in constructing optimal models based

12



on poor estimates of the correlations, as the resulting models could be numerically

unstable.

Optimal LES has also been performed for channel flows by Volker et al [66]

and by Bhattacharya et al [9]. Volker et al used Fourier spectral representation for

the wall-parallel directions and Chebychev tau representation for the wall-normal

direction, with standard no slip walls. Bhattacharya et al used Fourier spectral

representation in all directions and a special wall treatment involving buffer regions

outside the channel walls, where the kinetic energy is minimized to solve for the wall

stress. Both optimal LES results compared well with DNS data, and Bhattacharya’s

optimal model performed significantly better than dynamic Smagorinsky. Volker et

al showed the importance of constructing models which have the right form and

dependencies, and which would a priori match terms from the resolved Reynolds

stress equation. Bhattacharya et al showed that good results are acheiveable with-

out resolving the near wall turbulence. This is remarkable because the near-wall

layer of a wall-bounded shear flow dominates the production and dissipation of tur-

bulence. That these processes need not be resolved in a properly formulated LES is

encouraging for the development of tractible LES models for high Reynolds number

wall-bounded turbulence. Bhattacharya et al also showed that, contrary to com-

mon perception, it was important near the wall that the subgrid model account for

more than the dissipation of energy. In particular, dispersive and anti-dissipative

properties in the optimal model are shown to be important.
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2.4 Finite Volume Optimal LES

In finite volume OLES, a finite volume discretization serves as the filter

mapping Navier-Stokes solutions to a finite-dimensional representation. In this case,

the LES state variables represent the velocities averaged over discrete volumes. The

LES evolution equations are then determined from the volume averaged Navier-

Stokes equations given by:

V v dũ
v
i

dt
= −

∑

s

N
s
i −

∑

s

P
s
i +

∑

s

V
s
i (2.6)

∑

s

M
s = 0 (2.7)

where ũvi is the velocity averaged over the cell v, and Ms, Ns
i , P

s
i and Vs

i are the

mass flux, nonlinear flux, pressure force and viscous flux respectively for the face s.

The sums in (2.6) are over the faces of the cell v. The quantities appearing in (2.6)

are defined as:

ũvi =
1

V v

∫

v
ui dx (2.8)

N
s
i =

∫

s
uiujn

s
j dx (2.9)

P
s
i =

∫

s
pnsi dx (2.10)

V
s
i =

∫

s
ν
∂ui
∂xj

nsj dx (2.11)

M
s =

∫

s
uin

s
i dx (2.12)

where ui is the turbulent velocity and nsj is the outward-pointing unit normal to the

face s. As indicated, the integrals are over a cell v or one of its faces s. V v is the

volume of the cell.
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To distinguish the simulation quantities in an LES from the filtered real

turbulence, the symbol wv
i will be used to represent the LES variables. The goal, of

course, is for the dynamics and statistics of wv
i to approximate those of ũvi as closely

as possible. The evolution equation for wv
i will be the same as that for ũvi (2.6),

with the fluxes replaced by models.

V v dw
v
i

dt
= −

∑

s

N
s,mod
i −

∑

s

P
s,mod
i +

∑

s

V
s,mod
i (2.13)

In the context of OLES, Ns,mod
i , Ps,mod

i , Vs,mod
i , and Ms,mod must be mod-

eled as functions of w. The modeling of Ns
i is most closely related to standard

LES modeling. In light of the quadratic nature of this term, it makes sense to

formulate an optimal LES model for this term that is quadratic in the velocity

state variables. Zandonade et al [68] found that for small stencils, with constrained

quadratic dependence, the quadratic terms in the optimal model were consistent

with standard finite volume approximations to the nonlinear terms. More general

optimal quadratic terms were considered by Moser et al [47], who found that the

quadratic part of the optimal operator was a consistent second order finite volume

scheme. However, its spectral characteristics were different from common schemes.

Given Zandonade’s experience, the starting point for the modeling of Ns
i pursued

in chapter 4 is a quadratic part consisting of a standard staggered grid finite vol-

ume representation. In this case, the only thing that distinguishes the the optimal

flux model from a finite volume reconstruction scheme is the linear term, which in

Zandonade et al [68] is purely dissipative.

The viscous fluxes Vs
i can be modeled as linear in w, and in many high
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Reynolds number turbulent flows, away from walls, the viscous flux can be neglected,

as was done by Moser et al [47]. In [68], it was found that in isotropic turbuence,

it appeared to be sufficient to represent the viscous flux as a standard finite volume

approximation. As was shown by Langford & Moser [36], it appears to be sufficient

to approximate the mass fluxes Ms consistent with standard finite volume methods,

and with a staggered grid arrangement, use the continuity constraint to determine

the pressure in the usual way. This was pursued in isotropic turbulence [47, 68], with

excellent results. The observations have informed our starting point for modeling

the viscous and pressure terms in the current effort, which is to formulate them as

standard finite volume schemes.

Chapter 3 will describe the modeling of the three-point third-order veloc-

ity correlation for homogeneous isotropic turbulence. This correlation, along with

the second-order and fourth-order correlations, provide the theory-based statistics

necessary to construct optimal quadratic models for finite-volume LES of forced

isotropic turbulence.

Going from isotropic turbulence models, described above, to models for wall-

bounded turbulence in chapter 4, we shall see that models for the viscous and

nonlinear terms need to be extended or generalized. The standard approximation

for viscous flux is no longer sufficient near the walls, so additional optimal linear

terms are added. The nonlinear flux model is improved by generalizing the quadratic

terms from standard to optimal.
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Chapter 3

Theory-Based OLES

Previous optimal LES used statistics from DNS data to construct optimal

models. In order for an LES model to actually be predictive, we must be freed from

using DNS data. That is the motivation for constructing optimal models based

on turbulence theory. In the following chapter, theoretically-based optimal models

based on small-scale isotropy for use with finite-volume discretizations are presented.

3.1 OLES and Multi-Point Correlations

Consider the finite-volume LES equation (2.13) for infinite Reynolds number

homogeneous isotropic turbulence. Optimal models for this flow and representation

will be constructed using stochastic estimation as described in 2.1. The result-

ing models and modeling approaches will be applicable to any flow in which the

assumptions of small-scale isotropy and homogeneity are valid. In this case, the

viscous term Vs
i is zero due to the infinite Reynolds number. For the pressure model

P
s,mod
i , the model approach described by Langford & Moser [36] is taken, which

amounts to using the standard staggered-grid finite-volume formulation for enforc-

ing the approximate divergence-free condition of the resolved velocities. The only

term in (2.13) that requires further modeling is thus the nonlinear flux (2.9). The

dependence of the optimal model on the finite-volume averaged velocities w is pos-
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tulated to be quadratic since the nonlinear flux term is itself quadratic in u. The

resulting optimal model is

N
s,mod
i = Ai(s) +

∑

v1

Lij(s, v1)w
v1
j +

∑

v1,v2

Qijk(s, v1, v2)w
v1
j w

v2
k (3.1)

where Ai(s) is a constant term, Lij(s, v) are the linear coefficients, Qijk(s, v1, v2)

are the quadratic coefficients, v1 and v2 are the cells over which the velocities are

averaged to obtain wv1
j and wv2

k respectively, and s is the face through which the

flux is being modeled.

The statistics needed to solve for optimal model coefficients can be expressed

as volume and surface integrals of the second-, third-, and fourth-order velocity

correlations:

Rij(r
1) =

〈
u′i(x)u

′
j(x+ r1)

〉
(3.2)

Tijk(r
1, r2) =

〈
u′i(x)u

′
j(x+ r1)u′k(x+ r2)

〉
(3.3)

Fijkl(r
1, r2, r3) =

〈
u′i(x)u

′
j(x+ r1)u′k(x+ r2)u′l(x+ r3)

〉
(3.4)

For instance,
〈
Ns

i ũ
v3′
l

〉
, the correlation between the nonlinear flux and a volume

averaged velocity, is given by the five-dimensional integral

〈
N

s
i ũ

v3′
l

〉
=

1

v3

∫

v3

∫

s

〈
u′l(x

3)u′i(x)u
′
s(x)

〉
dx dx3 (3.5)

The integrand is actually the third-order correlation (3.3) where two of the points are

collocated Tisl(0,x
3−x). All the correlations appearing in the optimality conditions

can be similarly expressed.
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3.2 Kolmogorov Inertial Range Theory

When the Reynolds number is sufficiently large and the sub-grid turbu-

lence is approximately homogeneous, the small-scale turbulence will exhibit a Kol-

mogorov’s inertial range, which can be used to develop theoretical expansions for the

correlations (3.2,3.3,3.4). Kolmogorov derived a simple expression for the second-

order structure function S2(r) = 〈(u‖(x + r) − u‖(x))
2〉 = C2(ǫr)

2/3 [30], where

C2 ≈ 2.0 (determined empirically). He further employed the Karman-Howarth [67]

equation relating S2 to S3 to derive an expression for the third-order structure

function S3(r) = 〈(u‖(x + r) − u‖(x))
3〉 = C3(ǫr), where C3 = 4

5 is determined

analytically [29].

The constraints of isotropy and continuity allow the two-point, second-order

correlation R to be determined from Kolmogorov’s expression for S2 with the result:

Rij(r) = u2δij +
C2

6
(ǫr)2/3

(rirj
r2

− 4δij

)
(3.6)

Invoking the quasi-normal approximation, then allows the four-point, fourth-order

correlation F to be expressed in terms of R

Fijkl(r
1, r2, r3) ≈ Rij(r

1)Rkl(r
3−r2)+Rik(r

2)Rjl(r
3−r1)+Ril(r

3)Rjk(r
2−r1) (3.7)

The quasi-normal approximation is the assumption that even-order correlations are

related to each other as would be the case for a Gaussian process. In turbulence,

odd-order correlations are certaintly not as in a Gaussian process because they are

not zero. Quasi-normal approximations in turbulence are notorious because in two-

point closure models they lead to unrealizable results [38]. However, DNS data
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indicates that the quasi-normal approximation is a good representation of fourth-

order correlations [65], and its use in optimal LES models cannot lead to realizability

problems.

As with the two-point second-order correlation, isotropy, continuity and the

Kolmogorov expression for S3 allow the two-point third-order correlation tensor to

be written:

Tijk(0, r) =
ǫ

15

(
δijrk −

3

2
(δikrj + δjkri)

)
. (3.8)

However, these considerations are not sufficient, by themselves, to develop a model

for the three-point third-order correlation.

3.3 Three-Point Third-Order Correlation

The three-point, third-order correlation T (a third-rank tensor function of

two vectors) is a more complex quantity. Determining an analytical expression for

T has been one of the major accomplishments of this dissertation. The derivation

follows. A similar derivation can be found in [13].

3.3.1 The Fourier Transform of T

Proudman and Reid [54] determined a general form for the Fourier trans-

form of T in both r and s (this is a six-dimensional Fourier transform). For an

incompressible, homogeneous, isotropic turbulence, the most general possible form

for the Fourier transform Φ of T is given by

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆kp(σ)
[
δnpρmφ+δmpσnφ1+δmnρpφ2+ρmσnρpζ

]
(3.9)
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where the wavevectors ρ, σ and τ are interrelated ρ + σ + τ = 0, and ∆im(ρ) =

δim − ρiρm/ρ
2 is the divergence-free projector. The scalar functions φ, φ1, φ2 and ζ

depend only on the magnitudes of the wavevectors. For an outline of the derivation

of (3.9), see Appendix B. Symmetries in the tensor T imply symmetries among

scalar functions:

φ(ρ, σ, τ) = −φ(σ, ρ, τ) = φ1(τ, ρ, σ) = φ2(ρ, τ, σ) (3.10)

Proudman & Reid[54] also analyze the dynamic equation for Φ in the context

of the quasi-normal approximation to find independent (model) dynamic equations

for φ and ζ. These equations imply that for stationary turbulence, ζ is zero. We

will thus assume that ζ = 0, and with the symmetries expressed in (3.10), Φ is

determined through (3.9) by a single scalar function φ of ρ, σ and τ . We start with

this form in developing our real-space model for T.

3.3.2 Inertial-range model of T

To construct a model for the three-point third-order correlation, a general

tensor form consistent with (3.9) is derived, and then the scalar function appearing

in the expression is selected for consistency with the Kolmogorov 4/5 law.

3.3.3 A general form for T in real space

To develop the analog of (3.9) in real space, it will be inverse Fourier trans-

formed to yield an expression for T. However, to simplify the computations in

real-space, it is convenient to recast the expression as
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Φijk(ρ,σ) = ∆̃im(τ )∆̃jn(ρ)∆̃kp(σ)
[
δnpiρmφ̃(ρ, σ, τ) + δmpiσnφ̃(σ, τ, ρ) + δmniρpφ̃(ρ, τ, σ)

]

(3.11)

where ∆̃im(ρ) = ρ2δim−ρiρm is a modified divergence free operator, and φ̃(ρ, σ, τ) =

−iφ(ρ, σ, τ)/(ρστ)2 is a modified scalar function that has the same symmetry prop-

erties as φ. The advantage of this form is that the inverse Fourier transform will

not give rise to inverse Laplacian operators. An inverse Fourier transform of (3.11)

yields

Tijk(r, s) = P
t
imP

s
jnP

r
kp[δnp∂

s
mψ(r, s, t) + δmp∂

r
nψ(t, r, s) + δmn∂

s
pψ(t, s, r)] (3.12)

which is thus our general expression for T in stationary, homogeneous, isotropic

incompressible turbulence. Here, the third separation vector is t = r − s, the

scalar function ψ(r, s, t) is the inverse Fourier transform of φ̃, and r, s and t are

the magnitudes of the separation vectors r, s and t respectively. The operators

appearing in (3.12) are defined:

∂ri ≡ ∂

∂si

∣∣∣∣
r

(3.13)

∂si ≡ ∂

∂ri

∣∣∣∣
s

(3.14)

∂ti ≡ − ∂

∂ri

∣∣∣∣
s

− ∂

∂si

∣∣∣∣
r

(3.15)

P
α
ij ≡ δij∂

α
k ∂

α
k − ∂αi ∂

α
j (3.16)

It is straight-forward to confirm that the expression for T in (3.12) satisfies

the relevant symmetry and continuity constraints for the third-order three-point
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correlation, provided that

ψ(r, s, t) = −ψ(s, r, t), (3.17)

which is the analogue of (3.10). The constraints on T are:

∂tiTijk = ∂sjTijk = ∂rkTijk = 0 (3.18)

Tijk(r, s) = Tikj(s, r) (3.19)

Tijk(r, s) = Tjki(−t,−r) (3.20)

Tijk(r, s) = Tkij(−s, t) (3.21)

The tensor form given in (3.12) is clearly linear in ψ, indeed it can be

expressed as:

Tijk = Lijk(ψ) (3.22)

where Lijk is the tensor-valued linear operator implied by (3.12). To complete

the model of the three-point third-order correlation, we need only specify ψ(r, s, t)

satisfying (3.17).

3.3.4 Scalar function ψ in the inertial range

Our primary interest is a model for T that is valid in the inertial range, anal-

ogous to the inertial range expression for S (3.8). Kolmogorov’s 4/5 law constrains

S to vary linearly with separation. Since T must reduce to S when r, s or t are

zero, this linearity must be reflected in T as well. More generally, the Kolmogorov

similarity argument[21, 29] requires that in the inertial range

T(αr, αs) = αT(r, s) (3.23)
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The simplest way to ensure this linearity is to choose ψ(r, s, t) to be a polynomial

in r, s and t. Since each term in (3.12) is a seventh derivative of ψ, only terms with

total degree of 8, will contribute to the linear scaling of T. This, along with the

symmetry constraint on ψ (3.17) suggests that ψ be constructed from terms of the

form

pa,b ≡ (rasb − rbsa)tc (3.24)

with a+ b+ c = 8 and a, b, c ≥ 0. There are only 20 expressions of this form, and

of these 14 produce non-zero T when substituting for ψ in (3.12).

However, all of these 14 non-trivial T are singular when r, s or t are zero.

For example, terms such as: rirjrkr/s
3 arise, which is clearly singular at s = 0. In

addition, terms like δijskr/s arise, which is discontinuous at s = 0. It was found,

however, that there is a 5-dimensional null space of the singular and discontinuous

terms. There is thus a 5-dimensional space of possible ψ functions that yield non-

singular, continuous T. The space is spanned by the following 5 functions:

ψ1 =
1

5760
[−27p0,3 − 3p0,5 + 4p2,3 + 18p3,5] (3.25)

ψ2 =
1

1155840
[−315p0,3 + 4p0,7 + 56p2,5 − 140p3,4 + 1260p3,5] (3.26)

ψ3 =
1

1257600
[−4p0,1 − 1935p0,3 − 40p1,2 + 80p1,3 − 60p1,4

+16p1,5 + 180p2,3 + 990p3,5] (3.27)

ψ4 =
1

462720
[−4p0,1 − 1215p0,3 − 36p1,2 + 64p1,3 − 36p1,4

+4p1,6 + 108p2,3 − 20p2,5 + 40p3,4 + 270p3,5] (3.28)

ψ5 =
1

10684800
[−60p0,1 − 16065p0,3 − 504p1,2 + 840p1,3 − 420p1,4

+24p1,7 + 1260p2,3 + 7560p3,5] (3.29)
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Where pi,j are as defined in (3.24) above. These functions have been normalized so

that each of the Tn = L(ψn) satisfies

Tn
ijk(0, r) =

1

15

(
δijrk −

3

2
(δikrj + δjkri)

)
(3.30)

which is just (3.8) with ǫ set to 1. The analytic model we seek for T is thus given

by:

Tijk(r, s) =
5∑

n=1

anT
n
ijk(r, s) with

5∑

n=1

an = ǫ (3.31)

While the scalar basis functions ψn are relatively simple to write down (3.25–

3.29), the basis tensors Tn are not. Indeed the expressions are so complex (as many

as 758 terms), that they will not be written out here. The process by which the

calculations were performed is described in Appendix C and programs are available

at http://turbulence.ices.utexas.edu to evaluate the tensor numerically.

To display the features of the five basis tensors defined above, we examine

the various components of the tensor for two special arrangements of the separation

vectors. First is with the separation vectors r and s colinear (parallel, designated by

‖), which, without loss of generality, we choose to be in the x1 direction (r = re1,

s = se1). In this case, there are only seven non-zero components, of which only T‖
111

and T‖
122 are independent. The other 5 (T‖

212, T
‖
221, T

‖
133, T

‖
313 and T‖

331) are related

to T‖
122 through symmetry.

The second separation vector configuration is with r and s orthogonal (des-

ignated by ⊥). Again, without loss of generality r = re1 is chosen to be in the

x1-direction, and s = se2 is chosen in the x2-direction. In this configuration, there
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are 14 nonzero components, of which seven are independent: T⊥
111, T

⊥
112, T

⊥
121, T

⊥
122,

T⊥
133, T

⊥
313, T

⊥
323. Each of these is one of a pair of symmetrically related components.

Since the tensor functions vary linearly with separation, the tensors can

be normalized by q ≡ max(r, s, t), which for the special separation configurations

considered leaves only the dependence on s/r. The non-zero, non-redundant com-

ponents of T‖/q and T⊥/q are shown in figure 3.1 as a function of θ = arctan(s/r).

Note that the five basis tensors have similar structure, and that two of them are

quite similar (T3=× and T5=�). There has been no effort to orthogonalize the

basis.

3.3.5 Fitting to DNS data

To determine the 5 coefficients {a1, a2, ..., a5} in (3.31), a least-squares fit

to data from a Direct Numerical Simulation (DNS) of forced isotropic turbulence

at Reλ = 164 [34] is performed. Let E(r, s) = TDNS − Tmodel, be the error tensor.

Then the fitting was done to minimize the objective function:

F =

(
1− 2

π

)∫
E‖
ijk(r, s)E

‖
ijk(r, s) dr ds+

2

π

∫
E⊥
ijk(r, s)E

⊥
ijk(r, s) dr ds (3.32)

under the constraint that
∑

n an = ǫ, where only separation vectors r and s that

are parallel or perpendicular are considered, to reduce the data requirements to a

manageable level, and the integrals are taken over the domain in r and s for which q

is in the approximate inertial range for the DNS (q/λ ∈ [0.72, 1.2]) or (q/η ∈ [19, 32]).

This objective was selected as a (crude) approximation to the integral over all r and

s in the inertial range. The coefficients obtained from this fit are given in table 3.1.
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Figure 3.1: Basis functions for the non-zero, non-redundant components of T‖/q and
T⊥/q (see text for definitions) as functions of θ = arctan(s/r). T1=(plain curve),
T2=+, T3=×, T4=©, T5=�
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a1/ǫ 0.884
a2/ǫ -2.692
a3/ǫ -6.099
a4/ǫ -5.853
a5/ǫ 14.760

Table 3.1: Values of the model coefficients in (3.31) found by fitting the DNS data
of Langford & Moser[34]

The coefficient of determination is R2 = 0.96, indicating that our model describes

the DNS data quite well.

The ability of the model to represent the DNS correlations is shown in fig-

ure 3.2, in which non-zero components of T/q are plotted as a function of θ, for

the parallel and perpendicular separation vectors, as in figure 3.1. The agreement

between model and DNS is very good. One exception is the discrepancy in T⊥
111.

This may be a problem with the DNS data rather than the model, because the DNS

data was significantly unsymmetric which implies a lack of statistical convergence

in the DNS data for this component. Further indication of the quality of the model

is given in figure 3.3, where contour plots show the non-zero components of T as

functions of r and s in both the model and the DNS. Since there is a symmetry

in each term shown, the DNS and model are shown together in each frame, with a

line of symmetry dividing them. The model and DNS are very similar. But, there

is a minor discrepancy for r and s near zero, which is due to viscous effects not

represented in the model.
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data of [34] (crosses) and the tensor model given by (3.31) and table 3.1 (curve).
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3.4 Discussion and Implications

It is remarkable that the simple considerations of isotropy and the Kol-

mogorov similarity assumptions are sufficient to exactly determine the two-point

third-order correlation S, a third-ranked tensor. The three-point third-order corre-

lation T is a much more complicated object, so it is equally remarkable that the

same considerations, along with a plausible modeling ansatz regarding functional

forms (3.24), is sufficient to specify a model for T in the inertial range with just

four free constants. The model appears to fit low Reynolds number DNS data quite

well. It would also be useful to test the model against higher Reynolds number DNS

data.

While the considerations leading to the model are simple, the model itself is

algebraically very complex. A special-purpose tensor algebra program was written to

perform the necessary manipulations. The detailed results as well as programs used

to evaluate the tensors numerically are available at http://turbulence.ices.utexas.edu.

Given the complexity of the expressions, it may be that the ability to evaluate tensor

components numerically will be most useful.

3.5 Performance of Theory-Based OLES Models

Multipoint correlation models described above were used to define a finite

volume optimal LES model and perform LES at several grid resolutions [47]. The

cases are infinite Reynolds number forced isotropic turbulence in a cubical periodic

domain. Grid sizes ranging from 163 to 1283, correspond to non-dimensional filter

width γ ≈ 0.17 to γ ≈ 0.02 respectively, where γ ≡ ∆ǫ/u3, ∆ is the filter width or
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Figure 3.4: Three-dimensional energy spectra (a) and third-order structure func-
tions (b) from OLES of isotropic turbulence at infinite Reynolds number using the
finite-γ kernels, with resolutions ranging from 163 to 1283 (γ ≈ 0.17 to γ ≈ 0.02
respectively). The solid lines in both plots are determined from Kolmogorov theory.
In (a), the two solid lines are a k−5/3 slope (shallow), and the result of filtering a
k−5/3 spectrum. In (b) the straight line is S3 = −4

5ǫr, and the other solid line is the
structure function of the filtered velocity.

cell size, ǫ is the dissipation rate and u2 is the velocity variance. Excellent results are

shown in figure 3.4. Shown are (a) three-dimensional energy spectra and (b) third-

order structure functions. Figure 3.4(a) shows the high wavenumber portion of the

LES energy spectra matching the filtered theoretical slope. Figure 3.4(b) shows the

LES third-order structure functions matching the filtered theoretical curve in the

inertial range for resolution greater than 323. These results indicate that optimal

LES and the associated correlation models are a good basis for LES modeling for

high Reynolds number turbulent flows that exhibit small-scale isotropy.

3.6 Relation to General LES

Multi-point velocity correlations like those described in this chapter, are

central to the statistical description of homogeneous isotropic turbulence[21, 52].
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The two-point second-order velocity correlation Rij(r), and its Fourier transform,

the spectrum tensor, are among the most commonly considered correlations, and a

variety of models for their evolution have been developed[14, 31, 32, 38]. There have

also been a number of theoretical and experimental efforts to analyze two-point

correlations and structure functions [49, 56], including in the context of large eddy

simulation modeling [60].

In homogeneous turbulence, the evolution equation for R contains the two-

point third-order correlation Sijk(r) as a result of the non-linear terms in the Navier-

Stokes equations. S describes the transfer of energy from large-scales to small, and as

such is of critical importance to the theory of the two-point statistics of turbulence.

Assuming isotropy, the evolution equation for R reduces to the Karman-Howarth

equation [67], written here in terms of R and S

∂Rik

∂t
= 2ν

∂2Rik

∂rj∂rj
+
∂Sijk
∂rj

+
∂Skji
∂rj

(3.33)

Correspondingly, in homogeneous, isotropic, incompressible turbulence, the

two-point correlation of the filtered velocity R̃ij(r) = 〈ṽi(x)ṽj(x+r)〉 evolves accord-

ing to

∂R̃ik

∂t
= 2ν

∂2R̃ik

∂rj∂rj
+
∂S̃ijk
∂rj

+
∂S̃kji
∂rj

+
∂Qijk

∂rj
+
∂Qkji

∂rj
(3.34)

where

S̃ijk(r) = 〈ṽi(x)ṽj(x)ṽk(x+ r)〉, (3.35)
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Qijk(r) = 〈τij(x)ṽk(x+ r)〉. (3.36)

The energy transfer between scales of the filtered velocity is mediated by

S̃. We can contract (3.34) to obtain the evolution equation for 1
2R̃ii, which only

depends on the magnitude of r, and can be interpreted as the energy in the filtered

field associated with scales larger than r. Then −∂S̃iji/∂rj(r) appears as the net flux

of energy from scales larger than r in the filtered field to those smaller than r. This

is analogous to the physical-space energy flux −∂Siji/∂rj in the unfiltered equation

[21], which is just ǫ in the inertial range. Similarly −∂Qiji/∂rj is interpreted as

the net flux of energy from scales of the filtered fields larger than r to the sub-filter

fluctuations (v− ṽ). These average fluxes are generally positive (from large to small

scales); but, this is an average of fluxes in both directions.

Because S̃ includes the product of filtered velocities, it cannot be determined

by directly filtering S. It can, however be found by filtering T:

S̃ijk(r) =

∫ ∫ ∫
G(s)G(s − r′)G(s+ r− s′)Tijk(r

′, s′) ds dr′ ds′ (3.37)

which can be derived easily by applying the filter (1.3) separately to each of the

velocities in the definition of T.

The two-point correlation equation (3.34) also includes Q arising from the

sub-filter stress term in the LES equations. The definition of τij (1.5) means that

Q can be expressed

Qijk(r) = Ŝijk(r)− S̃ijk(r) (3.38)
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where Ŝijk(r) = 〈ṽivj(x)ṽk(x + r)〉 can be determined by filtering the two-point

third-order correlation of the unfiltered velocity

Ŝijk(r) =

∫ ∫
G(s)G(s + r− r′)Sijk(r

′) ds dr′. (3.39)

T was used to evaluate the third-order longitudinal structure function of the

filtered velocity by using (3.37) to evaluate S̃3(r) = 6S̃111(re1) for a Gaussian filter

kernel given by

G(x) =
1

∆
√
2π
e−|x|2/2∆2

, (3.40)

where ∆ is the filter width. The result is plotted in figure 3.5 along with S3 given by

the 4/5 law. This filter is isotropic so it preserves the isotropy of the filtered field,

implying that S̃ijk is written in terms of S̃3 in the same way that Sijk is determined

from S3 (see Appendix A). Furthermore, the filter is homogeneous, and ∂Sijk/∂rj

is a constant in the inertial range, so (3.39) gives

∂Ŝijk
∂rj

=
∂Siji
∂rj

= − ǫ
3
δik (3.41)

Therefore, Q (3.38) is directly determined from the difference between S3 and S̃3

shown in figure 3.5. In particular, using (A.3) we can write the energy fluxes

∂S̃iji/∂rj = F (S̃3) and ∂Q̃iji/∂rj = F (S3 − S̃3), where the operator F is given

by

F (S(r)) =
2

3r
S +

7

12

dS

dr
+

r

12

d2S

dr2
. (3.42)

These two energy fluxes are also shown in figure 3.6. It is interesting that the flux

to the sub-filter scales goes to zero so slowly with increasing r, only reaching 10%

of the dissipation by r = 15∆. Further, because S3− S̃3 goes to a constant for large

r, the sub-filter flux only goes to zero like 1/r.

35



0 5 10 15
-12

-10

-8

-6

-4

-2

0

filtered

r/∆

S̃
3
(r
)/
(ǫ
∆
),
S
3
(r
)/
(ǫ
∆
)

unfiltered
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function S3 from the Kolmogorov 4/5 law.
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Chapter 4

Wall-Bounded OLES

The optimal models and associated statistical models discussed in chapter

3 are not valid near the wall of a wall-bounded turbulent shear flow, due to the

strong inhomogeneity and anisotropy there. In this case, we explore the application

of finite-volume optimal LES. To avoid uncertainties associated with postulating

theoretical models for multi-point correlations near the wall, the optimal LES study

described here will employ correlation data derived from direct numerical simulation

of a turbulent channel at Reτ = 934.

4.1 High Reynolds Number Wall-Bounded Turbulence and LES

Many flows in nature and engineering are wall-bounded. Examples are water

flow through a pipe and air flow around a wing. In wall-bounded flows, the presence

of the wall results in the removal of momentum and energy from the flow due to

viscosity. The shear flow thickness δ (e.g. boundary layer thickness, pipe diameter,

or channel height) is one important length scale. The wall also introduces a second

much smaller length scale, the viscous or wall scale

δν =
ν

uτ
(4.1)
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where the friction velocity is

uτ =

√
τw
ρ

(4.2)

τw is the mean wall shear stress ([52], pp 268-271). In a region near the wall with

thickness of order δν , viscosity dominates. Near the wall, turbulent eddy sizes scale

with δν , while far from the wall turbulence scales with the layer thickness δ. Also, a

layer of order δν thick near the wall is where a large fraction of the production and

dissipation of turbulence occurs.

This two-scale structure of wall bounded turbulent shear flows leads to the

famous log-law for the mean velocity ([52], pp 271-281). It also introduces difficult

problems for LES [50]. In the near-wall layer, the dominant large-scale turbulence

is of scale δν which, as Reynolds number increases, becomes ever smaller compared

to the turbulence scale away from the wall δ. The usual idea in LES is that the

formulation will resolve the dynamics of the dominant large scales. But near the

wall, this would require resolution of order the wall scale. Many LES of wall-bounded

flows have been performed using this resolved wall approach, but the cost of such

an LES scales with Reynolds number almost as strongly as a DNS [50].

The alternative is to not resolve the wall layer, instead only resolving scales

of order δ. The cost will then scale independently or very weakly with Reynolds

number. However, this requires that the LES model represent the effects of nearly all

the turbulence in the near-wall layer. Figure (4.1) shows RMS velocity fluctuations

as a function of distance from the wall y, with a superimposed uniform grid designed

to resolve scales of order δ. Notice that the peak streamwise fluctuations u and wall-

normal fluctuations v occur within the first grid cell. Figure (4.5) shows the terms
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ũ
′ α
〉1

/
2
/u

τ

Figure 4.1: RMS velocity fluctuations from DNS of channel flow at Reτ = 934, with
superimposed uniform LES grid of ∆y/δ = 1/20. The fluctuations are not resolved
in the cell adjacent to the wall. The turbulence is inhomogeneous and anisotropic.

in the streamwise energy equation (4.12) as a function of distance from the wall

y, with the same superimposed grid. Notice that the peak action in each of the

curves occurs within the first grid cell. The LES cell adjacent to the wall covers

this region of highest turbulent dynamics. Therefore, this LES grid cannot resolve

any of the turbulent physics in this region. All of these processes must then be

modeled. Standard LES modeling approaches are not valid in these circumstances,

but the optimal LES formulation is valid, provided correlation data is available. It

is LES with these unresolved wall layers that are investigated here in the context of

a finite-volume formulation of LES.

In what follows, it will be convenient to adopt the following notation for wall-
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bounded turbulence: the streamwise, wall-normal, and spanwise directions will be

denoted x, y, and z respectively, and u, v, w will denote velocity in those directions.

4.2 Existing Wall Models and Volumetric Models

LES modeling with unresolved wall layers actually involves two modeling

challenges. First, the velocity gradient at the wall is not resolved. See figure (4.2).

Therefore the standard no-slip condition is not an appropriate boundary condition.

Instead, the wall shear stress must be modeled. Some of the earliest work in wall

modeling was done by Deardorff [17] and Schumann [59]. Schumann’s wall model

was later modified by Piomelli [51] to get it’s current popular form

τxy,w(x, z) =
[τw]

[ũ(x, Y, z)]
ũ(x+∆s, Y, z) (4.3)

τzy,w(x, z) =
[τw]

[ũ(x, Y, z)]
w̃(x+∆s, Y, z) (4.4)

ṽw(x, z) = 0 (4.5)

where the plane averaged wall shear stress [τw] is estimated using the well-known

log law

[ũ(x, Y, z)]

uτ
=

1

κ
ln
uτY

ν
+B. (4.6)

Here the [·] operation is an average over the plane parallel to the wall at Y , the cell

adjacent to the wall. Assuming that Y is in the log law region, this model infers

[τw], which is then used to estimate the instantaneous, local τw from equations (4.3)

and (4.4), which state that wall stress fluctuates in proportion to the velocity in the

adjacent cell, shifted downstream by some ∆s.
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Figure 4.2: Mean velocity profile from DNS of channel flow at Reτ = 934, with
superimposed LES grid, with superimposed uniform LES grid of ∆y/δ = 1/20. The
mean velocity gradient is not resolved in the cell adjacent to the wall.
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Other wall models include the Two-Layer Model (TLM) by Balaras et al [6]

and Detached Eddy Simulation (DES) by Spalart [62]. TLM adds an “inner” grid

near the wall to resolve the wall stress, which is then fed back into the “outer” grid

as a boundary condition. DES uses just one grid but two models, LES for the outer

flow and RANS for the inner flow.

The cost of LES for a spatially developed flow with an unresolved wall layer

using Piomelli’s log law wall model is independent of Reynolds number. If the

flow is spatially developing, then cost scales with Re0.5 [50]. TLM costs marginally

more. DES scales with Re0.9 [50]. Compare then with Re2.4 for a “resolved LES”

where the important small scales near the wall are resolved, and Re3 for DNS where

all scales are resolved. These cost scaling estimates provide strong motivation for

pursuing LES models with unresolved wall layers. For a more detailed overview of

wall models, see the review by Piomelli and Balaras [50]. After comparing various

wall models for several wall-bounded flows, they conclude that simple wall models

based on the log law work well for simple flows, such as channel flow. However, for

more complex flows, such as flow over a backward facing step, more sophisticated

models like TLM and DES work better. Since their review, a novel wall model has

been implemented in a Fourier-spectral LES of channel flow by Bhattacharya et al

[9]. Their wall model involves adding a buffer region outside the channel wall, where

the kinetic energy is minimized to solve for the wall stress. When coupled with an

optimal volumetric model, this gave good results.

The second challenge in near-wall modeling arises from the fact that vol-

umetric LES models are generally not valid in the near-wall region because such
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models (e.g. the optimal models in chapter 3, or dynamic Smagorinsky [22, 61])

assume that the small scales are homogeneous and isotropic, and that the local

turbulence Reynolds number is large. None of these is true near the wall. Notice

how different the fluctuation magnitudes are in u′, v′, and w′ and how they are

strongly inhomogeneous in the y direction in figure (4.1). Nonetheless, models such

as the dynamic Smagorinsky model have been widely used for near wall turbulence.

Cabot and Moin [12] used a dynamic Smagorinsky subgrid model and several wall

models (log law and TLM) with a second-order finite-difference code to solve for

channel flow with an unresolved wall layer. Their results appear reasonable, in that

velocity mean and variance profiles are comparable with DNS. However, with such

coarse filtering (wall-normal grid spacing is 250δν), the LES variances should be

much smaller, because near the wall much of the turbulent energy is not resolved.

A more proper comparison is made between the LES and filtered DNS variances,

shown in figure (4.3). This problem with high streamwise variances is prevalent in

LES of wall-bounded flows with unresolved wall layers.

Optimal models, which do not depend on isotropy and homogeneity assump-

tions have performed well in channel flows; see Volker et al [66] and Bhattacharya

et al [9], and serve as a basis for the developments pursued here. Several observa-

tions from previous OLES studies will be useful in the current development (see

Section 2.3). In particular, Zandonade et al [68] demonstrated the viability of

finite-volume OLES in forced isotropic turbulence, and that small local stencils

are sufficient for modeling nonlinear flux. Volker et al [66] showed the importance

of constructing models with appropriate dependencies, and particularly to represent
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〈ũ
′ α
ũ
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Figure 4.3: Normalized velocity variance profiles for LES of channel flow at Reτ =
4000 with dynamic Smagorinsky model and ∆y/δ = 1/16 from paper by Cabot and
Moin, [12], compared with filtered DNS at Reτ = 934 and ∆y/δ = 1/20. Streamwise
variances predicted by the LES are too high.

45



the subgrid contribution to critical terms in the Reynolds stress transport equation.

Bhattacharya et al [9] showed that good results are acheiveable without resolving

the near wall turbulence. All these results motivate and guide us in studying wall-

bounded finite-volume OLES.

4.3 Finite-Volume LES for Channel Flow

We are investigating volumetric and wall modeling within the framework

of finite-volume optimal LES of a full-developed turbulent channel flow. Finite-

volume methods are desirable, because they are easier to extended to more complex

geometries, easier than say a Fourier spectral method. We employ the optimal

methodology because it generates the best coefficients for a given model form, and

therefore is useful for evaluating different model forms and dependencies. Further-

more, optimal models are not limited by assumptions common to turbulence models

such as homogeneity, isotropy, scale-similarity, and existence of an inertial range,

all of which break down close to walls. An optimal model simply does what the

turbulence statistics say it should do, with correlations to be determined in our case

from DNS data. We choose to investigate turbulent channel flow, because it is one

of the simplest wall-bounded flows, and because there are a lot of data for this flow

geometry [26, 28, 46]. DNS results have proven to be accurate when compared with

theory and experiment, and it is the best resolved and most readily available data

we have access to. This data will be used for constructing and testing of our models.

The finite-volume LES will be formulated on a staggered grid; that is, grid

cells for the i-component of velocity are staggered by −∆i

2 in the i-direction. The
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Figure 4.4: Staggered finite-volume grid, centered on pressure cell, with i-component
velocity cell staggered by −∆i

2 in the i-direction

pressure cell is not staggered. See figure (4.4). This is done because the modeling

errors associated with representing continuity and pressure are much smaller than

with a unstaggered formulation [36].

The channel flow domain Lx/δ = 8π, Ly/δ = 2, Lz/δ = 3π is discretized

into a 384 × 40 × 144 grid. This results in grid sizes ∆x/δ = 0.065, ∆y/δ = 0.050,

∆z/δ = 0.065 or in wall units ∆x/δν = 61, ∆yδν = 47, ∆zδν = 61. Boundary

conditions are periodic in the x and z directions, and wall stresses are modeled at

the y boundaries. A standard fourth-order Runge-Kutta method [24] is used in

conjunction with a fractional step method [15] which imposes the divergence-free

condition on the staggered finite-volume grid. Total simulation time is Tuτ

δ = 10,

in steps of ∆tuτ

δ = 0.001 which is less than uτ∆x

umaxδ
= 0.0026 as required by the CFL

condition. We are running Reτ = 934. Corresponding DNS data used for model

statistics and testing come from Alamo et al [18].
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4.3.1 Continuous and Filtered Equations

The Navier-Stokes momentum equations are

∂tui = −∂juiuj − ∂ip+
1

Re
∂j∂jui (4.7)

For a Cartesian grid aligned with the coordinates directions x, y, and z, we can

write the box-filtered Navier-Stokes equation

∂tũi = −∂̃juiuj − ∂̃ip+
1

Re
∂̃j∂jui (4.8)

where

ũi =
1

V

∫

V
ui dx (4.9)

∂̃jf =
1

∆j
(f

+j − f
−j

) (4.10)

f
±j

=
1

S

∫

S±j

f dx (4.11)

For a given Cartesian volume V , S+j is the face in the plus j direction, and S−j is

the face in the minus j direction.

Likewise the component energy equations without and with box-filtering are

∂t
〈
u′αu

′
α

〉
= −2

〈
u′α∂αp

′
〉

︸ ︷︷ ︸
pressureredistribution

−2
〈
u′αu

′
j

〉
∂jUα︸ ︷︷ ︸

production

−Uj∂j
〈
u′αu

′
α

〉
︸ ︷︷ ︸

convection

−∂j
〈
u′ju

′
αu

′
α

〉
︸ ︷︷ ︸
turbulent transport

− 1

Re

〈
∂ju

′
α∂ju

′
α

〉

︸ ︷︷ ︸
viscous dissipation

+
1

Re
∂j∂j

〈
u′αu

′
α

〉

︸ ︷︷ ︸
viscous transport

(4.12)

∂t
1

2

〈
ũ′αũ

′
α

〉
= −

〈
ũ′α∂̃αp

′
〉

︸ ︷︷ ︸
pressureredistribution

−
〈
ũ′α∂̃jUαu

′
j

〉

︸ ︷︷ ︸
production

−
〈
ũ′α∂̃ju

′
αUj

〉

︸ ︷︷ ︸
convection

−
〈
ũ′α∂̃ju

′
αu

′
j

〉

︸ ︷︷ ︸
turbulent transport/dissipation

+
1

Re

〈
ũ′α∂̃j∂ju

′
α

〉

︸ ︷︷ ︸
viscous dissipation/transport

(4.13)
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The pressure term spatially transports energy and transfers energy between

components. Production transfers energy from the mean into the fluctuations (of the

same component). Convection spatially transports energy. In the filtered equations,

the same term can also dissipate energy. Turbulent transport transports energy

in physical and wavenumber space. In the filtered equations, the same term also

dissipates energy (transfers to unresolved scales). The viscous term dissipates and

spatially transports energy. Figure (4.5) shows these various terms in equation

(4.12). Figure (4.6) shows the corresponding terms in equation (4.13). Notice

that the curves are for the most part qualitatively similar, but different in the

details. As stated above, the convective and turbulent dissipation terms in the

filtered component energy equation exhibit dissipation. One may also notice that

in the filtered component energy equations, the viscous and turbulent transport are

relatively small compared to the other terms. Although these transport effects are

significant in the continuous component energy equations, they are within the first

finite-volume cell adjacent to the wall and therefore their effects are integrated out

in the filtered component energy equations.

The component energy equations are closely related to the Reynolds stress

transport equations, which are shown below in continuous and filtered form.

∂t
〈
u′iu

′
k

〉
= −

〈
u′k∂ip

′
〉
−
〈
u′i∂kp

′
〉

︸ ︷︷ ︸
pressure redistribution

−
〈
u′ku

′
j

〉
∂jUi −

〈
u′iu

′
j

〉
∂jUk︸ ︷︷ ︸

production

−Uj∂j
〈
u′iu

′
k

〉
︸ ︷︷ ︸

convection

−∂j
〈
u′ju

′
iu

′
k

〉
︸ ︷︷ ︸

turbulent transport

− 2

Re

〈
∂ju

′
i∂ju

′
k

〉

︸ ︷︷ ︸
viscous dissipation

+
1

Re
∂j∂j

〈
u′iu

′
k

〉

︸ ︷︷ ︸
viscous transport

(4.14)
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Figure 4.5: Terms from the continous streamwise energy equation from DNS of
channel flow at Reτ = 934, with superimposed uniform LES grid of ∆y/δ = 1/20.
None of these terms are resolved by the cell adjacent to the wall. Top plot shows
the entire channel half-width. Bottom plot is zoomed into the near-wall region.
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Figure 4.6: Terms from the filtered streamwise energy equation from DNS of channel
flow at Reτ = 934.

∂t

〈
ũ′ikũ

′
ki

〉
= −

〈
ũ′ki

∂̃ip′k

〉
−
〈
ũ′ik∂̃kp

′
i

〉

︸ ︷︷ ︸
pressure redistribution

−
〈
ũ′ki

∂̃jUiu′j
k

〉
−
〈
ũ′ik∂̃jUku

′
j
i

〉

︸ ︷︷ ︸
production

−
〈
ũ′ki

∂̃ju′iUj
k

〉
−
〈
ũ′ik∂̃ju

′
kUj

i

〉

︸ ︷︷ ︸
convection

−
〈
ũ′ki

∂̃ju′iu
′
j
k

〉
−
〈
ũ′ik∂̃ju

′
ku

′
j
i

〉

︸ ︷︷ ︸
turbulent transport/dissipation

+
1

Re

〈
ũ′ki

∂̃j∂ju′ik

〉
+

1

Re

〈
ũ′ik∂̃j∂ju

′
ki

〉

︸ ︷︷ ︸
viscous dissipation/transport

(4.15)

where the underline operator (·)
k
indicates an average in the k direction.

f
k
=

1

2
(f+k − f−k) (4.16)

The variable being evolved is a filtered version of Reynolds stress

ũ′ikũ
′
ki

=
1

4
(ũ′−k

i + ũ′+k
i )(ũ′−i

k + ũ′+i
k ) (4.17)
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This is the standard model for the nonlinear flux term u′iu
′
k. ũ

′−k
i and ũ′+k

i are the

i component of the velocity located on the minus k and plus k sides, respectively, of

the flux face. ũ′−i
k and ũ′+i

k are the k component of the velocity located on the minus

i and plus i ends, respectively, of the flux face. For example, the cells involved in

the filtered Reynolds stress ũ′yṽ
′
x are shown in figure (4.10b).

4.3.2 Standard Finite-Volume Method

The terms in the filtered equation (4.8) are modeled

∂twi = −∂̃juiujmod − ∂̃ip
mod +

1

Re
∂̃j∂jui

mod
(4.18)

where wi is the LES velocity field. Ideally it’s evolution would model that of the

filtered DNS ũi as closely as possible. The standard second-order staggered-grid

finite-volume approximation (“standard approximation” or “standard model” for

short) for the terms in the above equation were introduced by Harlow and Welch,

[25], and are described below.

The standard approximation for the nonlinear term is

uiuj
mod
std =

1

4
(w−j

i + w+j
i )(w−i

j + w+i
j ) (4.19)

w−j
i and w+j

i are the i component of the velocity located on the minus j and plus j

sides, respectively, of the flux face. w−i
j and w+i

j are the j component of the velocity

located on the minus i and plus i ends, respectively, of the flux face.

The standard approximation for the viscous term is

∂jui
mod

std =
1

∆j
(w+j

i − w−j
i ) (4.20)
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The LES field w is evolved using a fractional step method by Chorin [15].

The method incorporates a global solve for a discrete pressure-like field φ, which is

the standard pressure approximation pmod
std ≡ φ.

The fractional step method first evolves the velocity by evaluating the nonlin-

ear and viscous models, and stepping forward in time, the result being the “auxiliary

velocity” w∗
i .

w∗
i = wn

i +∆t(−∂̃juiuj +
1

Re
∂̃j∂jui) (4.21)

This auxiliary velocity field is then used as the source for a Poisson-pressure equation

∆t∂̃i∂̃iφ = ∂̃iw
∗
i (4.22)

with boundary condition at the walls

∆t∂̃2φ = w∗
2 (4.23)

Here, ∂̃i∂̃i is a discrete Laplacian operator on φ, and ∂̃iw
∗
i is a discrete divergence

of the staggered velocity field w∗
i .

∂̃iw
∗
i =

3∑

i=1

1

∆i
(w∗+i

i − w∗−i
i ) (4.24)

Figure (4.7) shows the configuration of the cells involved.

And finally, the evolution of the velocity field is completed by adding in the

gradient of the standard pressure model.

wn+1
i = w∗

i +∆t(−∂̃iφ) (4.25)

53



Φ2

1

w1

w2

−

−

w2

w1

+

+

Figure 4.7: Configuration of staggered grid cells w and standard pressure model φ.

Chorin’s method may also be expressed as a discrete divergence-free projec-

tion operator on w∗
i . Start by rewriting equation (4.22)

φ = (∂̃j ∂̃j)
−1∂̃k

w∗
k

∆t
(4.26)

where (∂̃j ∂̃j)
−1 is the inverse Laplacian. Then taking the gradient of both sides

∂̃iφ = ∂̃i(∂̃j ∂̃j)
−1∂̃k︸ ︷︷ ︸

Dik

w∗
k

∆t
(4.27)

where Dik is a linear operator which returns the divergent part of it’s argument.

Plugging this into equation (4.25) gives

wn+1
i = w∗

i +∆t(−∂̃iφ) = w∗
i −Dikw

∗
k = (δik −Dik)︸ ︷︷ ︸

Pik

w∗
k (4.28)

where Pik is the divergence-free projection operator.

In essence, the gradient of the standard pressure model removes the diver-

gent part of the nonlinear and viscous fields. The filtered viscous field is almost

divergence-free and therefore can be neglected in development of the pressure model.

The standard pressure model can be applied to the actual filtered fields or to their
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Figure 4.8: Actual filtered pressure p (solid curve), standard pressure model φ
applied to actual nonlinear term (×’s), and standard pressure model φ applied to
standard nonlinear model (dotted curve) in filtered component energy equations for
channel flow at Reτ = 934. The gradient of the standard pressure model is the
divergent part of the nonlinear term it acts upon, ∂̃iφ = −Dik∂̃jukuj .

models. The standard pressure model φ applied to the actual filtered nonlinear

fields quite closely models the actual filtered pressure p, as shown in figure (4.8).

Also shown is the standard pressure model applied to the standard nonlinear model.

Notice the errors in all three component energy equations. We infer from this that

errors in “pressure modeling” result primarily from problems with the nonlinear

model and not with the standard pressure model itself. This means the standard

pressure model will be a good model for the actual filtered pressure as long as we

have a “good enough” model for the nonlinear term.

To decrease the computation cost of the standard pressure solver, we actu-
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ally Fourier transform equation (4.22) in the streamwise and spanwise, x and z,

directions. (These directions are homogeneous with periodic boundaries.)

∆t
(
−(k2x + k2z) + ∂̃y∂̃y

)
φ̂ = Ĥ (4.29)

where H = ∂̃iw
∗
i , and ∂̃y∂̃yφ̂(y) =

1
∆2

y
(φ̂(y+∆y)− 2φ̂(y) + φ̂(y −∆y)) is a standard

second-order second-derivative approximation, and (k2x,k
2
z) are numerical eigenvalues

corresponding to the standard second-order second-derivative approximation. This

system is then solved one Fourier mode at a time for all y. Then the standard

pressure field is attained by an inverse Fourier transform.

The standard pressure model described thusfar is for the fluctuating part

of the pressure. The mean pressure gradient model adds streamwise momentum to

the flow at each timestep. This momentum source is uniform in space but is not

necessarily constant in time. Instead, the momentum source is adjusted such that

the bulk streamwise velocity
∫
Ω w1 remains fixed in time.

When the standard finite-volume models are substituted into the filtered

component energy equation and evaluated a priori using filtered DNS fields, the

resulting terms are shown in Figure (4.9). The standard models are good approxi-

mations for the actual budget terms, except for close to the wall and for the turbu-

lent dissipation and transport. The standard approximation to the nonlinear term

conserves energy, both in total and component-wise. (See Appendix E for proof.)

Therefore it is reasonable for the standard approximation to be a good model for

production, which transfers energy from mean to fluctuations, caviat discrepancies

near the wall. It also make sense that the rest of the nonlinear terms, convection,
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turbulent transport, and turbulent “dissipation” to be energy conserving as well.

Therefore it is not a good model for turbulent “dissipation” or for dissipation by

convection. In this sense, the nonlinear standard approximation terms behave qual-

itatively less like the terms in the filtered component energy equation and more like

the terms in the continuous component energy equation.

Because of the discrepancies between the standard models and the actual

terms, running the LES with these standard models alone gives poor predictions of

velocity mean and variance. For more discussion on why LES without volumetric

and wall modeling is inadequate, see section 4.3.5.1.

4.3.3 General Principles and Methodology for Constructing Models

The models described in the following sections may be interpreted as cor-

rections or generalizations to the standard finite-volume models introduced in the

previous section 4.3.2. We endeavour to hypothesize model forms/stencils based

on the physical processes being modeled, solve for model coefficients based on DNS

statistics, and test models in LES. These models for channel flow LES are customized

for a particular discretization and numerical method and are potentially better than

existing models. Before describing these improved models, we outline the general

principles and procedure taken for constructing them.

4.3.3.1 Optimal LES

A model may have linear or quadratic or even higher order dependence on

wi. We have only studied up to quadratic dependence on wi, because the actual non-
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Figure 4.9: Terms in the filtered streamwise energy equation, actual (solid lines)
versus standard models a priori (×’s), for channel flow at Reτ = 934.
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linear term has quadratic dependence on the velocities. The most general quadratic

model for flux uiuj is

uiuj
mod = Aij +

∑

v1

L
v1
ijkw

v1
k +

∑

v1,v2

Q
v1,v2
ijkl w

v1
k w

v2
l (4.30)

For the linear part of the model, each volume v1 has an associated velocity compo-

nent k. For the quadratic part of the model, volumes come in pairs v1 and v2, which

have associated velocity components k and l respectively.

In the optimal LES formulation, the model is constructed in terms of ũk

instead of wk, and error (uiuj
mod − uiuj) is minimized with respect to the model

coefficients. The result is the following system of linear equations to determine the

coefficients of the optimal model.

〈uiuj〉 = Aij +
∑

v1

L
v1
ijk 〈ũv1k 〉+

∑

v1,v2

Q
v1,v2
ijkl 〈ũv1k ũv2l 〉 (4.31)

〈uiuj ũv3m 〉 = Aij 〈ũv3m 〉+
∑

v1

L
v1
ijk 〈ũv1k ũv3m 〉+

∑

v1,v2

Q
v1,v2
ijkl 〈ũv1k ũv2l ũv3m 〉 (4.32)

〈uiujũv3m ũv4n 〉 = Aij 〈ũv3m ũv4n 〉+
∑

v1

L
v1
ijk 〈ũv1k ũv3m ũv4n 〉+

∑

v1,v2

Q
v1,v2
ijkl 〈ũv1k ũv2l ũv3m ũv4n 〉 (4.33)

An optimal model, one with coefficients satisfying the above equations, shall be

denoted with superscript opt: uiuj
opt.

4.3.3.2 Stencils and Matching Statistics

Volker et al [66] showed the importance of constructing models with appro-

priate dependencies, and particularly to represent the subgrid contribution to critical

terms in the filtered Reynolds stress transport equation and the filtered component

energy equations (4.13). Zandonade [68] and Volker [66] found that local models are
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sufficient for LES modeling in forced isotropic turbulence and channel flow, respec-

tively. Furthermore, local models are far less computationally expensive than global

models. Therefore, we have focused our efforts on local models. These are the sim-

plest linear model “L20”, the simple linear model “L22”, the linear Reynolds stress

matching model “LRS”, and the simple quadratic model “Q22”.

Notice that the standard model uiuj
mod
std , from equation (4.19), is just the

general model, equation (4.30) withAij = 0, Lijk = 0, and Qijkl =
1
4 for the following

volume pairs: ũ−j
i ũ−i

j , ũ−j
i ũ+i

j , ũ+j
i ũ−i

j , ũ+j
i ũ+i

j . And therefore, the optimal model

may be interpreted as a correction to the standard second-order approximation.

Now, consider adding constant and linear terms to the standard model. It is

reasonable to assume that the model for uαuβ depends only on filtered velocities ũα

and ũβ. Let’s further consider the smallest symmetric stencil associated with these

components, which is composed of ũ+β
α , ũ−β

α , ũ+α
β , and ũ−α

β . (These are exactly the

same cells used in the standard second-order approximation uαuβ
mod
std .) This will be

called the “simple” linear model or L22 and is shown in figure (4.10b).

uαuβ
mod
L22 = Aαβ + L

−β
αβαũ

−β
α + L

+β
αβαũ

+β
α + L

−α
αββ ũ

−α
β + L

+α
αββ ũ

+α
β + uαuβ

mod
std (4.34)

The simple linear model uαuβ
mod
L22 could in general have any value for its coefficients

Aαβ and Lαβγ . If the coefficients solve the equations (4.31, 4.32, 4.33), then it is an

“optimal” simple linear model, which we will denote with superscript opt: uαuβ
opt
L22.

Optimal models which include dependence on ũα cells to either side of the

flux face, ũ+β
α and ũ−β

α , are guaranteed to statistically match a priori their respective

terms in the component energy equations. (See Appendix D for proof.) A model
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Figure 4.10: Three stencils for flux uv (left to right): (a) L20 simplest linear stencil
which matches a priori the uv term in the 〈ũ′ũ′〉 component energy equation, (b)
L22 simple linear stencil which includes dependency on both velocities ũ and ṽ, (c)
LRS stencil which matches a priori the uv term in the Reynolds stress transport
equation.

which depends linearly only on these two cells will be called the “simplest” linear

model or L20.

uαuβ
mod
L20 = Aαβ + L

−β
αβαũ

−β
α +L

+β
αβαũ

+β
α + uαuβ

mod
std (4.35)

Figure (4.10a) shows the stencil associated with the simplest linear model.

There are other more complex linear stencils. For instance, figure (4.10c)

shows the Reynolds stress matching stencil LRS. It is the smallest stencil that

is guaranteed, when optimized, to statistically match a priori the uv term in the

filtered Reynolds stress transport equation (4.15).

Using the same stencil as for L22 but allowing the quadratic coefficients to

be optimized (instead of standard) will be denoted Q22.

uαuβ
mod
Q22 = Aαβ + L

−β
αβαũ

−β
α + L

+β
αβαũ

+β
α + L

−α
αββ ũ

−α
β + L

+α
αββ ũ

+α
β

+Q
−β,−α
αβαβ ũ−β

α ũ−α
β + Q

−β,+α
αβαβ ũ−β

α ũ+α
β + Q

+β,−α
αβαβ ũ+β

α ũ−α
β + Q

+β,+α
αβαβ ũ+β

α ũ+α
β (4.36)
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Figure 4.11: Configuration of simplest stencil cells ũi with respect to the fluxes uiuj .

4.3.3.3 Transport and Dissipation

The simplest way to decompose u′αu
′
β into transport and dissipation in the

component energy equations is

ũ′α
u′αu

′
β

+β − u′αu
′
β

−β

∆β
=

ũ′+β
α +ũ′

α

2 u′αu
′
β

+β − ũ′
α+ũ′−β

α

2 u′αu
′
β

−β

∆β︸ ︷︷ ︸
transport

−
u′αu

′
β

+β ũ′+β
α −ũ′

α

∆β
+ u′αu

′
β

−β ũ′
α−ũ′−β

α

∆β

2︸ ︷︷ ︸
dissipation

(4.37)

Figure (4.11) shows the configuration for the involved cells and faces. With the

discrete average (·)
k
, defined in equation (4.16), this can be written more succinctly

ũ′α∂̃βu
′
αu

′
β = ∂̃β(u′αu

′
βũ

′
αβ

)− u′αu
′
β ∂̃βũ

′
α
β

(4.38)

Transport and dissipation are two of the terms shown in figure (4.6). Substi-

tuting u′αu
′
β

mod

std
into the above equation (4.37), we calculated the two corresponding

terms in figure (4.9). In the stencils section 4.3.3.2, it was noted that an opti-

mal model with simplest stencil u′αu
′
β

opt

L20
will statistically match a priori the cor-
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responding term in the component energy equations. It can further be shown that

u′αu
′
β

opt

L20
will statistically match a priori transport and dissipation individually. This

is because the same decomposition is used for the actual term and its model.

The viscous terms in the mean energy equation and component energy equa-

tions can be decomposed in the same way.

4.3.3.4 Dissipation and Stability

It is very important to consider stability when constructing models. An

unstable model is useless in LES, even if it matches all the statistics of interest a

priori.

Consider model terms on the right hand side of the filtered Navier Stokes

equation (4.8). If the net linear coefficient on ũ′i is positive, then the LES may be

unstable. If the net linear coefficient is negative, then the LES will likely be stable; if

in addition the quadratic model is the standard model, then the LES will be stable.

ui
−~ u~

u u

i

i j

+

j

Figure 4.12: Configuration of simplest stencil cells ũi with respect to flux uiuj ,
which statistically matches the uiuj term in the component energy equations.

Now consider the simplest stencil (L20) for uiuj shown in figure (4.12). The
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following analysis is for j in a homogeneous direction. The nonlinear flux terms are

shown on the right hand side of the Navier Stokes equation

∂ũi
∂t

=
1

∆j

3∑

j=1

(uiuj
− − uiuj

+) + ... (4.39)

Figure (4.13) shows the configuration of the simplest stencil relative to the fluxes,

where notation has slightly changed because we are dealing with fluxes both in and

out of cell ũ′.

u~ i
− u u~ ~

u u− u u+

i i

i ij j

+

j

Figure 4.13: Configuration of simplest stencil cells ũi with respect to the fluxes uiuj .

Substituting the simplest optimal model (L20) on the right hand side yields

uiuj
− − uiuj

+ ≈ uiuj
opt−
L20 − uiuj

opt+
L20 = L−ũ′−i + L+ũ′i − L−ũ′i − L+ũ′+i

+ uiuj
mod−
std − uiuj

mod+
std (4.40)

(L+ − L−) is the coefficient on ũ′i from the right hand side of equation (4.40) and

should be non-positive to ensure stability. To look at it another way, rearrange the

linear part of the model

uiuj
opt−
L20 − uiuj

opt+
L20 =

L− − L+

2︸ ︷︷ ︸
D diffusivity

(ũ′−i − 2ũ′i + ũ′+i ) +
L− + L+

2︸ ︷︷ ︸
C convectivity

(ũ′−i − ũ′+i )

+ uiuj
mod−
std − uiuj

mod+
std (4.41)
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The first term on the right hand side is a diffusion term, and the second a convection

term. Of particular concern is that the “diffusivity” factor D = L−−L+

2 in front of

the first term be non-negative, because a negative factor represents anti-diffusion

which may lead to linear instability.

We will now show that the sign of D in equation (4.41) is opposite the sign

of the budget term for the linear part of the model. Multiplying the linear part

of the model from equation (4.41) by ũ′i and taking the expected value yields the

budget term for the linear part of the model (no summation in i)

D
〈
ũ′i(ũ

′−
i − 2ũ′i + ũ′+i )

〉
︸ ︷︷ ︸

2〈ũ′
iũ

′−
i 〉−2〈ũ′

iũ
′
i〉<0

+C
〈
ũ′i(ũ

′−
i − ũ′+i )

〉
︸ ︷︷ ︸
〈ũ′

iũ
′−
i 〉−〈ũ′

iũ
′+
i 〉=0

(4.42)

where the individual expressions multiplying D and C are negative and zero respec-

tively if j is a direction of homogeneity. Therefore, D > 0 corresponds to a dissipa-

tive linear model, and D < 0 corresponds to an anti-dissipative linear model.

The preceeding statement can often, but not always, be extended to the

dissipativeness or anti-dissipativeness of the actual nonlinear term. Multiplying

through equation (4.41) by ũ′i, taking the expected value, and dividing by ∆j yields

(no summation in i or j)

−
〈
ũ′i∂̃juiuj

〉
= −

〈
ũ′i∂̃juiuj

opt
L20

〉
=

D

∆j

〈
ũ′i(ũ

′−
i − 2ũ′i + ũ′+i )

〉
︸ ︷︷ ︸

<0

−
〈
ũ′i∂̃juiuj

mod
std

〉

(4.43)

where the left equality results from the optimal model matching the budget terms

(proven in Appendix D). The convection term (not shown) is zero. The budget

term for the standard nonlinear model tends to be similar to the actual term but
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smaller in magnitude (no summation in i or j)

0 <

〈
ũ′i∂̃juiuj

mod
std

〉

〈
ũ′i∂̃juiuj

〉 < 1 (4.44)

When this is the case, the sign of D will be opposite the sign of the actual budget

term in equation (4.43).

4.3.3.5 Pressure Modeling

The pressure term in the component energy equations (4.13) transfers energy

among the fluctuating components. As such, it is important for correctly predicting

the LES velocity variances. In section 4.3.2, the standard pressure model was shown

to be a good approximation for the actual pressure term.

The standard pressure model applied to the actual filtered nonlinear fields

Dki∂̃juiuj quite closely models the actual filtered pressure gradient ∂̃kp, as shown

in figure (4.14). Here, the operator Dki defined by

Dki = ∂̃k(∂̃m∂̃m)−1∂̃i (4.45)

returns the divergent part of vector argument and involves the solution of a Poisson

equation with specific boundary conditions described in section 4.3.2.

Figure (4.14) also shows the standard pressure model applied to the standard

nonlinear model, Dki∂̃juiuj
mod
std . Notice the errors in all three component energy

equations. We infer from this that errors in “pressure modeling” result primarily

from problems with the nonlinear model and not with the standard pressure model

itself. This means the standard pressure model will be a good model for the actual
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ũ1∂̃1p
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Figure 4.14: Actual filtered pressure p (solid curve), standard pressure model applied
to actual nonlinear term (×’s), and standard pressure model applied to standard
nonlinear model (dotted curve) in filtered component energy equations for channel
flow at Reτ = 934. The gradient of the standard pressure model is the divergent
part of the nonlinear term it acts upon, ∂̃kφ = −Dki∂̃juiuj .

filtered pressure as long as we have a “good enough” model for the nonlinear term.

Therefore, the standard pressure model was not modified.

To evaluate the “pressure model”, we actually compare budget terms for the

divergent part of the nonlinear models
〈
ũ′kDki(−∂̃juiujmod)

〉
with the divergent

part of the actual nonlinear terms
〈
ũ′kDki(−∂̃juiuj)

〉
, just as we have done in figure

(4.14). In some cases, it is sufficient to construct models for the nonlinear term

without explicitly considering it’s divergent part, with the result that it’s divergent

part would turn out close to correct. But this was not always the case.

In section 4.3.3.2, it was shown that models can be constructed in order to
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match a priori the nonlinear term in the component energy equations.

〈
ũ′α∂̃βuαuβ

〉
=
〈
ũ′α∂̃βuαuβ

mod
〉

(4.46)

This can also be done for the divergent part of the nonlinear term.

〈
ũ′γDγα(∂̃βuαuβ)

〉
=
〈
ũ′γDγα(∂̃βuαuβ

mod)
〉

(4.47)

Solving for such a model is much more complicated because the pressure term has

global effect. See section 4.3.4.8 for details.

4.3.3.6 Reynolds Decomposition

The Reynolds decomposition of velocity u is

u = 〈u〉+ u′ (4.48)

where U ≡ 〈u〉 is the mean, and the remainder u′ is the fluctuation.

Decomposing the viscous term gives

∂jui = ∂jUi︸︷︷︸
mean

+ ∂ju′i︸︷︷︸
fluctuating

(4.49)

It is important to model these two parts separately, because the mean part effects the

mean momentum equation, while the fluctuating part effects the component energy

equations. Furthermore, the mean part is deterministic while the fluctuating part is

stochastic. Therefore the mean part can be modeled exactly (given exact statistics),

but the stochastic fluctuating part cannot, because small scale information is missing

from the LES. Optimal models, described in section 4.3.3.1, minimize the error in

the fluctuating models based on filtered turbulence statistics. The mean model will
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be written in terms of the filtered mean velocities Ũi, while the fluctuating model

will be written in terms of the filtered fluctuating velocities ũ′i.

Likewise, decomposing the nonlinear term gives

uiuj = UiUj + Uiu
′
j︸︷︷︸

production

+ u′iUj︸︷︷︸
convection

+ u′iu
′
j︸︷︷︸

turbulent transport/dissipation

(4.50)

The first term UiUj acts only in the mean momentum equation, while the latter

three act in the component energy equations (4.13), with corresponding labels. It is

important to model each term separately because of the different physical processes

they represent.

UiUj is deterministic and will be modeled in terms of the filtered mean

velocities Ũi and Ũj . The last term u′iu
′
j is stochastic and will be modeled in terms of

the filtered fluctuating velocities ũ′i and ũ
′
j . The production term Uiu

′
j is stochastic,

although it has a deterministic factor Ui. It is modeled in terms of Ũi and ũ′j .

The convection term u′iUj is stochastic, with deterministic factor Uj , and should be

modeled in terms of ũ′i and Ũj .

Figure (4.15) shows the nonlinear mean-fluctuating (convection plus pro-

duction) and fluctuating-fluctuating (turbulent transport/dissipation) terms and

corresponding pressure terms in the filtered component energy equations, actual

versus standard nonlinear model. Notice that the mean-fluctuating terms are fairly

well-approximated by the standard nonlinear model. The pressure terms are quite

accurate down to one cell from the wall. And the nonlinear term in the 〈ũ′ũ′〉

equation is fairly accurate down to two cells away from the wall. In the 〈ṽ′ṽ′〉 and

〈w̃′w̃′〉 equations, there is no convective energy removal by the standard nonlinear
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term, but this should be readily fixed using linear models in ṽ′ and w̃′ respectively.

In constrast, the fluctuating-fluctuating terms, nonlinear and pressure, are quite

poorly approximated by the standard nonlinear model, which provides additional

motivation for separately modeling the mean-fluctuating and fluctuating-fluctuating

terms. This also indicates how similar or different an improved model will be from

the standard nonlinear model.

4.3.4 Improved Models

Having laid out the general principles and procedures for constructing mod-

els, we will now describe our models for the Reynolds decomposed viscous and

nonlinear terms.

4.3.4.1 Mean Viscous Model

The mean momentum equation comes from taking the expected value of the

Navier Stokes equation (4.8)

∂tŨi = −∂̃jUiUj − ∂̃j

〈
u′iu

′
j

〉
− ∂̃iP +

1

Re
∂̃j∂jUi (4.51)

The mean viscous model represents the right most term in this equation as the sum

of the standard model plus a constant

∂jUi
mod

A = Aij + ∂jUi
mod

std (4.52)

Figure (4.16) shows the actual filtered term ∂2U1 and the standard model ∂2U1
mod
std .

The standard model predicts well the velocity gradient throughout the channel,

except for the two points closest to the wall. In an optimal model, the constant Aij

equals the difference between the actual and standard models evaluated a priori.
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(b) mean-fluctuating term in ũ′ũ′ equation
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(c) fluctuating-fluctuating term in ṽ′ṽ′ eqn

0 0.2 0.4 0.6 0.8 1
-5

-2.5

0

2.5

5

actual N
actual P
model N
model P

(d) mean-fluctuating term in ṽ′ṽ′ equation
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(e) fluctuating-fluctuating term in w̃′w̃′ eqn
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(f) mean-fluctuating term in w̃′w̃′ equation

Figure 4.15: Actual and standard model a priori terms for nonlinear (N) and pres-
sure (P) terms in component energy equations for filtered DNS of channel flow at
Reτ = 934. The left column is for the fluctuating-fluctuating parts of the nonlinear
term, and the right column is for the mean-fluctuating parts of the nonlinear term.
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Figure 4.16: Profiles for mean velocity gradient, actual ∂2U1 and standard model

∂2U1
mod
std a priori, for channel flow at Reτ = 934.

Recall that in the Reynolds decomposition section 4.3.3.6, we had determined

that the mean viscous flux term ∂βUα should be modeled in terms of neighboring

mean velocities Ũα. The simplest local model linear in Ũα is

∂βUα
mod

L20 = L
−β
αβαŨ

−β
α + L

+β
αβαŨ

+β
α (4.53)

which subsumes the standard viscous model ∂βUα
mod

std , because ∂βUα
mod

std is also local

and linear in Ũα. If the mean velocities Ũα do not deviate significantly from the

initial filtered DNS field, the two models ∂βUα
mod

A and ∂βUα
mod

L20 should give similar

LES results. However, if there is significant deviation, ∂βUα
mod

L20 should be the better,

more responsive LES model.
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4.3.4.2 Fluctuating Viscous Model

The fluctuating viscous term is modeled as follows

∂βu′α
mod

L20 = L
−β
αβαũ

′−β
α + L

+β
αβαũ

′+β
α (4.54)

Notice that this model subsumes the standard model ∂βu′α
mod

std , which is also linear

in the neighboring velocities ũ′α. Figure (4.17) shows the actual viscous term and

the corresponding viscous model term in the component energy equations (4.13).
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Figure 4.17: Profiles for actual filtered viscous term
〈
ũα∂̃j∂ju′α

〉
and standard vis-

cous model term
〈
ũα∂̃j∂ju′α

mod

std

〉
a priori in the component energy equations for

channel flow at Reτ = 934.

The standard model consistently underpredicts the magnitude of the viscous

term in the component energy equations, and thus underrepresents the amount of

energy removal due to these terms. A linear optimal model statistically matches the
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actual term a priori.
〈
ũ′α∂̃β∂βu

′
α
opt

L20

〉
=
〈
ũ′α∂̃β∂βu

′
α

〉
(4.55)

This is proven in Appendix D.

Modeling the viscous terms (mean and fluctuating) is relatively straightfor-

ward. We use the simplest linear models, as nothing more is necessary according

to the form of the actual term. Since all of the viscous terms are dissipative, their

optimal models are also dissipative and therefore stable. The relationship between

dissipation and stability is discussed in greater detail in section 4.3.3.4.

Models for the viscous terms ∂jUi and ∂ju′i are constructed all the way to

the wall, where they represent the wall shear stress τw. We also implemented a log

law model and found that the choice of wall model does affect the LES solution but

not greatly. This is similar to the findings of Cabot and Moin, [12].

4.3.4.3 Nonlinear Mean-Mean Model

A model for the mean-mean flux term UiUj should depend on products of

local filtered mean velocities Ũ±j
i and Ũ±i

j . This term was not actually modeled,

because the associated force term ∂̃jUiUj is zero for channel flow.

4.3.4.4 Nonlinear Mean-Fluctuating Model

The nonlinear mean-fluctuating term is Uiu
′
j . This term is responsible for

production in the filtered component energy equations (4.13). On the other hand,

the fluctuating-fluctuating term u′iu
′
j is responsible for production in the filtered

mean momentum equation (4.51). Figure (4.18) shows the production terms in the
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two equations. Notice that more energy leaves the mean
〈
u′v′

〉
∂̃2Ũ

2
than enters

the fluctuating
〈
ũ′1∂̃jU1u′j

〉
; the difference represents the energy that goes directly

from mean to subgrid fluctuations.
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Figure 4.18: Production in mean equation
〈
u′v′

〉
∂̃2Ũ and streamwise energy equa-

tion
〈
ũ′1∂̃jU1u′j

〉
, compared with the same production terms evaluated a priori using

standard nonlinear models
〈
u′v′

mod
std

〉
∂̃2Ũ and

〈
ũ′1∂̃jU1u′j

mod

std

〉
, for channel flow at

Reτ = 934.

The production term in the filtered mean equation is indeed consistent with

production, as it has exactly the same form as the unfiltered production 〈u′v′〉 ∂2U .

The term in the filtered component energy equation is less clear, but we can show

that the analogous term becomes the production in the continuous component
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energy equation.

〈
u′i∂j(Uiu

′
j)
〉
=

〈
u′i(u

′
j∂jUi + Ui ∂ju

′
j︸︷︷︸

0

)

〉
=
〈
u′iu

′
j

〉
∂jUi =

〈
u′1u

′
2

〉
∂2U1 (4.56)

The last equality is a simplification for channel flow. Likewise, the filtered produc-

tion term can be manipulated to a form similar to the familiar form shown above.

ũ′1∂̃jU1u′j = ũ′1∂̃jUu
′
j = ũ′1[ũ

′
j∂jU + Ũ ∂ju

′
j︸︷︷︸

0

] = ũ′1ũ
′
j∂jU = ũ′1ũ

′
2∂2U1 (4.57)

Production resulting from the standard nonlinear model is also shown in

figure (4.18). One can see that the difference between the actual production terms

(mean and fluctuating) is large, while the difference between the respective standard

models is small. In fact, one might expect the standard model for these two terms

be to close since the standard nonlinear model conserves energy, both total and

component-wise, integrated over the domain. (Proof of energy conservation is shown

in Appendix E.)

Following similar steps to that for the continous equation (4.56), we will now

show (in 2-D), how the discrete divergence-free condition simplifies the standard

nonlinear model. Consider ∂̃kU1u′k
mod

std
on the center cell of the stencil shown in

figure (4.19).

∂̃kU1u
′
k

mod

std = Ũ i,j (ũ
′i+1,j + ũ′i,j)− (ũ′i,j + ũ′i−1,j)

2∆x

+
(Ũ i,j+1 + Ũ i,j)(ṽ′i,j+1 + ṽ′i−1,j+1)

4∆y
− (Ũ i,j + Ũ i,j−1)(ṽ′i,j + ṽ′i−1,j)

4∆y
(4.58)

where superscripts i and j indicate position. Incorporating the discrete divergence-
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free condition ũ′i+1,j+ũ′i,j

∆x
+ ṽ′i,j+1+ṽ′i,j

∆y
= 0 simplifies the above equation

∂̃kU1u
′
k

mod

std =
(Ũ i,j+1 − Ũ i,j)(ṽ′i,j+1 + ṽ′i−1,j+1)

4∆y
+

(Ũ i,j − Ũ i,j−1)(ṽ′i,j + ṽ′i−1,j)

4∆y

(4.59)

The discrete divergence-free condition removes the U1u′j
mod

std
components in

directions j where the field is homogeneous, leaving only the term like u′2∂2U1,

two being the direction of inhomogeneity. Figure (4.18) had shown the sum over

the components j of
〈
ũ′1∂̃jU1u

′
j

〉
and

〈
ũ′1∂̃jU1u

′
j

mod

std

〉
. Figure (4.20) shows each

component. Notice (with both actual and model) that the components j = 2 and

j = 3 are large with opposite signs, such that the sum has much smaller magnitude

than either one. Further, the primary error between actual and model is for j = 2.

u

i,j+1

i+1,j

i,j

i,ji−1,j

i,j+1

i−1,j

v

v v

v
i,j−1

u

uu

u
i−1,j+1

Figure 4.19: Configuration of cells used in standard nonlinear model for calculation
of energy centered on cell ũi,j

We are now in a position to propose a modified model for the mean-fluctuating

term

Uαu
′
β

mod
= L

−α
αββ ũ

′−α
β + L

+α
αββũ

′+α
β + Uαu

′
β

mod

std
(4.60)
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Figure 4.20: Components of
〈
ũ′1∂̃jU1u′j

〉
and

〈
ũ′1∂̃jU1u′j

mod

std

〉
, for channel flow at

Reτ = 934.

Notice that the linear terms in the above equation may be subsumed as part of a

general quadratic model Uαu′β
mod

Q22
, or vice versa (quadratics subsumed by the lin-

ears). We will do the first, because the quadratic model contains explicit dependence

on Ũi and therefore should have better dynamic behavior.

Uαu
′
β

mod

Q22
= Q

−β,−α
αβαβ Ũ−β

α ũ′−α
β +Q

−β,+α
αβαβ Ũ−β

α ũ′+α
β +Q

+β,−α
αβαβ Ũ+β

α ũ′−α
β +Q

+β,+α
αβαβ Ũ+β

α ũ′+α
β

(4.61)

Here the standard quadratic model will be modified only for the term β = 2

for the following reasons. (1) Only the β = 2 term in Uαu
′
β

mod

std
survives after

accounting for the divergence-free condition. (2) The standard model for the β = 2

commits the largest error. (3) The net production is a result of cancelation of large
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magnitude components (β = 2 positive and β = 3 negative), which if modeled

separately may result in stability problems for β = 2 since it is energy producing.

Therefore we will model the net production
∑3

β=1

〈
ũ′1∂̃βU1u′β

〉
by modifying only

the β = 2 term.

In the case of channel flow

Uv′ = U · v′ (4.62)

Therefore, modeling Uv′ can be very cleanly decomposed into modeling it’s two

components U and v′ separately. In fact, the standard model Uv′
mod
std is the product

of two other standard models

Uv′
mod
std = U

mod
std · v′mod

std (4.63)

where

U
mod
std = 0.5(Ũ+ + Ũ−) (4.64)

and

v′
mod
std = 0.5(ṽ′+ + ṽ′−) (4.65)

The stencil is shown in figure (4.10).

It has been found that much of the error in the standard flux model Uv′
mod
std

is related to not correctly approximating U . Figure (4.21) shows profiles of U and

it’s standard model. The standard model approximates U quite well throughout

most of the channel, but not close to the wall. A corrected model for U may be

written

U
mod
γ = γ(Ũ+ + Ũ−) (4.66)
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Figure 4.21: Mean velocity profiles, face filtered U and standard model U
mod
std a

priori, for channel flow at Reτ = 934.

where γ is chosen to exactly match U . For example, γ = 0.55 at y/δ = 0.05.

Using U
mod
γ v′

mod
std to model U1u′β for β = 2, and standard nonlinear models

for β 6= 2 results in a better overall production model, which we will call the “Qγ

model”. Figure (4.22) shows production resulting from the Qγ model, the standard

model, and the actual mean-fluctuating term. Notice that
〈
ũ′1∂̃βU1u′β

mod

Qγ

〉
for β = 2,

as well as the sum over β, are greatly improved over the standard nonlinear model.
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Figure 4.22: Actual production
〈
ũ′1∂̃βU1u′β

〉
terms, compared with a priori evalua-

tion of production using the standard nonlinear model
〈
ũ′1∂̃βU1u

′
β

mod

std

〉
and the Qγ

model
〈
ũ′1∂̃βU1u′β

mod

Qγ

〉
, for channel flow at Reτ = 934.

4.3.4.5 Nonlinear Fluctuating-Mean Model

The analog of the fluctuating-mean term in the continuous component energy

equations results in the convective term.

−
〈
u′α∂j(u

′
αUj)

〉
= −

〈
u′α(Uj∂ju

′
α + u′α ∂jUj︸︷︷︸

0

)

〉
= −Uj

〈
u′α∂ju

′
α

〉
= Uj∂j

1

2

〈
u′αu

′
α

〉

(4.67)

Note that in the continuous equations, this term conserves energy. However, in the

filtered equations, −
〈
ũ′α∂̃ju

′
αUj

〉
removes energy at a significant rate, especially

close to the walls. Figure (4.23) shows the convective term in the three component

energy equations.
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Figure 4.23: Convective term in component energy equations
〈
ũ′α∂̃1u

′
αU1

〉
, for chan-

nel flow at Reτ = 934.

To see why this is so, consider the convective term expressed in terms of the

filtered turbulent velocities

−ũ′α∂̃1u′αU1 = −
∫

v
u′α(ξ)dξ

∫

v
∂x1

(u′α(x)U1(x))dx

= −
∫

v

∫

v
u′α(ξ)∂x1

(u′α(x)U1(x))dxdξ (4.68)

where ∂x1
(u′α(x)U1(x)) = U1(x)∂x1

u′α(x) + u′α(x)��
�
�
�: 0

∂x1
U1(x) yields

−
〈
ũ′α∂̃1u

′
αU1

〉
= −

∫

v

∫

v
U1(x)∂x1

〈
u′α(ξ)u

′
α(x)

〉
︸ ︷︷ ︸

Rαα(ξ,x)

dxdξ (4.69)

where we brought u′α(ξ) inside the partial derivative ∂x1
, because ξ and x are inde-

pendent, and Rαα(ξ,x) is the two-point correlation.
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Define Fαα(ξ2, x2)

Fαα(ξ2, x2) ≡
∫ ∆1

0
Rαα(r1, ξ2, x2)dr1 −

∫ 0

−∆1

Rαα(r1, ξ2, x2)dr1 (4.70)

where Rαα is now written as a function of streamwise separation r1 ≡ ξ1−x1 and wall

normal locations ξ2 and x2, and ∆1 is the filter width in the streamwise direction.

Note that F is antisymmetric F (ξ2, x2) = −F (x2, ξ2).

Figure (4.24) shows R33 as a function of separations r1 ≡ ξ1 − x1 and r2 ≡

ξ2 − x2 as found by Bhattacharya, etal [10]. Notice that the correlation falls off

most rapidly from a maximum at r1 = r2 = 0 along a direction inclined from the

horizontal. The inclination is due to coherent structures in the flow being tilted

by the mean shear. Therefore, Fαα(ξ2, x2) in equation (4.70) has the same sign as

r2 ≡ ξ2 − x2.

Having defined Fαα, we can write the filtered convective term

−
〈
ũ′α∂̃1u

′
αU1

〉
=

∫ ∆2

0

∫ ∆2

0
U1(x2)Fαα(ξ2, x2)dx2dξ2 (4.71)

where ∆2 is the filter width in the wall-normal direction. The square domain of

integration [0,∆2]× [0,∆2] is divided into two as shown in figure 4.25. The regions

of positive and negative F being separated by the line of antisymmetry ξ2 = x2.

Also shown is the direction of increasing U . Because the larger U corresponds to the

region of negative F , the resulting correlation is negative. In summary, the mean

shear and resulting inclination of coherent structures cause the convection term to

be dissipative in the filtered component energy equations.

The simplest model (L20) was found to work well for dissipating energy in

the viscous terms. Therefore, it is reasonable that it will also work well here for the
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Figure 4.24: Two point correlation R33(r1, r2) at y+ = 114 from DNS of channel
flow at Reτ = 940.

convective term

u′αUβ
mod

L20 = L
−β
αβαũ

′−β
α + L

+β
αβαũ

′+β
α + u′αUβ

mod

std (4.72)

Since the standard nonlinear model conserves energy, it cannot dissipate energy.

Therefore dissipation is accomplished entirely by the linear terms. With optimal

coefficients L, the model matches the actual fluctuating-mean term in the component

energy equations a priori (as proven in Appendix D) and closely approximates the

corresponding pressure term a priori as will be shown in the following section. Recall

that for the mean-fluctuating nonlinear model, we subsumed the linear terms into a

general quadratic term. However, this was not done for the convective terms, and as

long as the mean velocity does not deviate significant from the initial DNS profile,
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Figure 4.25: Domain of integration for equation (4.71). The dashed line of antisym-
metry ξ2 = x2 separates the regions of positive and negative F . Also shown is the
direction of increasing U .

this linear model should be sufficient. As an area for future work, we recommend

that these linear models be recast into quadratics, including dependence on local

mean velocity gradients.

4.3.4.6 Pressure Term for Nonlinear Mean-Fluctuating and Fluctuating-
Mean Models

As stated in section 4.3.3.5, the viscous models have little effect on the

pressure model, but the nonlinear models do effect the pressure model, and therefore

we have to compare the pressure model for the nonlinear model Dik(∂̃ju
′
kUj

opt

L20
) with

the pressure model for the actual nonlinear term Dik(∂̃ju
′
kUj). The operator Dik

returns the divergent part of its argument and is defined in section 4.3.2, equation
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(4.27). Actually, we will examine Dik(∂̃j(Uku
′
j + u′kUj)). Uiu′j (production) and

u′iUj (convection) play very different roles in the component energy equations, but

their associated pressure terms are approximately the same. To understand why,

consider the continuous pressure Poisson equation

∂k∂kp = −∂i∂juiuj (4.73)

Clearly the contribution to the right hand side by the mean-fluctuating term (−∂i∂jUiu
′
j)

and the fluctuating-mean term (−∂i∂ju′iUj) are identical. What is exactly true in

the continuous equations is approximately true in the filtered equations. There-

fore we will examine the mean-fluctuating and fluctuating-mean pressure models

together.

Figure (4.26) shows the pressure models resulting from the actual mean-

fluctuating and fluctuating-mean nonlinear terms and their models. This is some-

times called the rapid pressure. Notice that the standard model already produces a

reasonable approximation to the actual pressure. “Qγ+L20” is the combination of

models previously described for the mean-fluctuating 4.3.4.4 and fluctuating-mean

4.3.4.5 terms. The “simple L22” model refers to applying the simple L22 stencil

to the mean-fluctuating and fluctuating-mean terms and optimizing. This actually

produces the worst results, with a particularly large energy sink in the ṽ′ṽ′ equation.

The “Qγ + L20” model produces the best results. Though it is not perfect, it is

closest to the actual pressure.
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Figure 4.26: Mean-fluctuating plus fluctuating-mean pressure model in the compo-
nent energy equations for actual nonlinear term and it’s models evaluated a priori,
for channel flow at Reτ = 934.
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4.3.4.7 Nonlinear Fluctuating-Fluctuating Model and Associated Pres-
sure Term

The fluctuating-fluctuating term is responsible for subgrid dissipation and

transport. The analogous term in the continuous equations transports but does

not dissipate energy; it simply transfers energy down to the small scales to then be

dissipated viscously. However, in these filtered equations, with filter widths much

larger than the Kolmogorov scales, the fluctuating-fluctuating term must model

dissipation.

As described in section 4.3.3.3, the fluctuating-fluctuating term in the com-

ponent energy equations can be decomposed

ũ′α∂̃βu
′
αu

′
β = ∂̃β(u′αu

′
βũ

′
αβ

)− u′αu
′
β ∂̃βũ

′
α
β

(4.74)

where the terms on the right are identified as transport and dissipation respec-

tively. Figure (4.27) shows turbulent transport and subgrid dissipation in the fil-

tered component energy equations. For channel flow, where x and z are directions

of homogeneity, only the components u′αv
′ transport energy on average. However,

all components u′αu
′
β contribute to dissipation. Notice that there are components of

u′αu
′
β labeled “dissipation” that actually add energy instead of removing it. These

components are (α, β) = (1, 2), (2, 3), (3, 1). However, the total dissipation (summed

over β) removes energy everywhere and for each component α. The transport sums

in y to zero as expected.

Figure (4.28) shows the overall nonlinear fluctuating-fluctuating term (trans-

port plus dissipation) and it’s standard nonlinear model in the component energy
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(a) ũ′ũ′ equation

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

v'u' dissip

v'v' dissip

v'w' dissip

total dissip

v'v' transport
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Figure 4.27: Decomposition of
〈
ũ′α∂̃βu

′
αu

′
β

〉
into transport and subgrid dissipation,

for channel flow at Reτ = 934.
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Figure 4.28: Fluctuating-fluctuating nonlinear terms in the 〈ũ′αũ′α〉 component
energy equations and standard nonlinear models evaluated a priori, for channel
flow at Reτ = 934.

equations. The standard nonlinear model in each of the component energy equations

sum in y to zero. This is due to the energy conservation property of the standard

nonlinear model, which is proven in Appendix E. Therefore, by itself, the standard

nonlinear model has the potential to model transport but not dissipation.

In an effort to improve the fluctuating-fluctuating model, all the models

described in section 4.3.3.2, (L20, L22, LRS, Q22) were tested. Out of all the

models tested, the optimal quadratic Q22 was the best overall. The optimized Q22

model had the smallest RMS differences from the actual flux. We also compared a

priori the nonlinear and associated pressure terms in the filtered component energy

equations. It is important to point out that all of these models, when optimized,
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will match a priori the nonlinear term, as explained in section 4.3.3.2. In fact, the

dissipation and transport are individually matched a priori, as explained in section

4.3.3.3. However, under the current optimization for the nonlinear flux model, the

resulting pressure model is not guaranteed to match a priori, although increasing

the number of dependencies generally decreases the error in the pressure model.

Figure (4.29) shows the pressure terms in the component energy equations using

the different models. Notice that the Reynolds stress model is the only model that

performs consistently better than the standard model a priori. Surprisingly, the

other two models, L22 and Q22, actually perform worse than the standard model

in the ũ′ũ′ and w̃′w̃′ equations. It makes sense that the model with the largest

stencil (LRS) was found to best match the pressure term a priori, but this model

also contained unstable components which caused the LES to blow up. Finally, we

compared LES results, velocity mean and variances, with filtered DNS. Q22 was

found to perform the best in the LES.

4.3.4.8 Nonlinear Models Constructed to Match Pressure Terms

For the nonlinear fluctuating-fluctuating models described in the previous

section 4.3.4.7, increasing the stencil size and optimizing the quadratic coefficients

improved the a priori behavior of the pressure term in the component energy equa-

tions, but we were not able to exactly match the pressure term, as shown in figure

(4.29). In this section, we describe how to construct models to match the pressure

term a priori.

Section 4.3.3.2 explains how local optimal models match the nonlinear terms
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Figure 4.29: Pressure model associated with the fluctuating-fluctuating term and it
models evaluated a priori in the component energy equations, for channel flow at
Reτ = 934.
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in the component energy equations

〈
ũ′α∂̃βuαuβ

〉
=
〈
ũ′α∂̃βuαuβ

mod
〉

(4.75)

Local models can also be constructed to match the divergent part of the nonlinear

terms, which are a good approximation to the pressure term, in the component

energy equations

〈
ũ′γDγα(∂̃βuαuβ)

〉
=
〈
ũ′γDγα(∂̃βuαuβ

mod)
〉

(4.76)

where

Dγα = ∂̃γ(∂̃j ∂̃j)
−1∂̃α (4.77)

returns the divergent part of vector argument and involves the solution of a Poisson

equation with specific boundary conditions described in section 4.3.2.

It is important to match both equations (4.75-4.76), because they represent

different phenomena. The fluctuating-fluctuating nonlinear term itself is responsible

for turbulent transport and dissipation, while it’s divergent part is responsible for

intercomponent energy transfer. It should be noted that a model that satisfies equa-

tion (4.76) in addition to equation (4.75) is no longer optimal. In a sense, we are

trading out optimality in exchange for matching the pressure term. Furthermore,

equation (4.75) is a local constraint, so models satisfying it can be constructed one

y location at a time. On the other hand, Dγα is an operator global in y, so equa-

tion (4.76) applies global constraints, and models satisfying it must be constructed

simultaneously over all Ny locations.

There are many ways to satisfy both equations. We chose to satisfy equation

(4.75) summed over β (3 ·Ny constraints) and equation (4.76) summed over α and β
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(another 3 ·Ny constraints), because these are the minimal constraints necessary to

ensure that the combined effect of the models uαuβ
mod match that of the actual terms

uαuβ and their associated pressure in the component energy equations. Models were

constructed for the two simple linear stencils L20 and L22, with 18 ·Ny and 30 ·Ny

coefficients respectively. Since there are more coefficients than constraints, we added

the optimality conditions described in section 4.3.3.1, for which we minimize squared

error.

Let A1 and b1 represent the standard optimal conditions, to be satisfied

in a least squares sense, and let A2 and b2 represent the nonlinear and pressure

constraints (described in the previous paragraph), to be satisfied exactly. For stencil

L20 with Ny = 40, A1 is 710× 710, b1 is 710× 1, A2 is 238× 710, b2 is 238× 1. We

use a Lagrange multiplier method to solve for the coefficients:

L = (A1x− b1)
T (A1x− b1) + λ(A2x− b2) (4.78)

where x is the vector of coefficients, and λ is the Lagrange multiplier vector. For

stencil L20 with Ny = 40, x is 710 × 1, and λ is 238 × 1. Setting to zero the

derivatives with respect to x and λ:

∂L

∂xT
= 2(AT

1 A1x−AT
1 b1) +AT

2 λ = 0 (4.79)

∂L

∂λT
= A2x− b2 = 0 (4.80)

And the overall matrix equation becomes:

[
2AT

1 A1 AT
2

A2 0

] [
x
λ

]
=

[
2AT

1 b1
b2

]
(4.81)
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By using these models we were able to match a priori the actual nonlinear

and pressure terms shown in figures (4.28) and (4.29). Unfortunately, the result-

ing models were also unstable when used in the LES. To date, the above pressure

constrained methodology has not produced successful (stable) models. We have

yet to test larger stencils, such as Q22 and LRS. Another area for future work is

to add stability constraints to this problem and to analyze the stability problems

encountered by the LRS models in section 4.3.4.7.

4.3.5 LES Results

In this section, the a posteriori LES results using the models described in

section 4.3 are presented. Out of the roughly hundred model combinations tested,

only four will be presented here. They are:

(S1) Standard Second-Order Finite-Volume Models

(S2) L22 Optimal Nonlinear Models + L20 Optimal Viscous Models

(S3)Qγ Mean-Fluctuating Models + L20 Optimal Fluctuating-Mean Models

+ L22 Optimal Fluctuating-Fluctuating Models + L20 Optimal Viscous Models

(S4)Qγ Mean-Fluctuating Models + L20 Optimal Fluctuating-Mean Models

+ Q22 Optimal Fluctuating-Fluctuating Models + L20 Optimal Viscous Models

The first set (S1) uses standard second-order finite-volume approximations

for the nonlinear and viscous terms, as described in section 4.3.2. The second set (S2)

uses the basic optimal modeling approach described in section 4.3.3.1, with stencil

L22 described in section 4.3.3.2, to model the nonlinear term, without Reynolds
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decomposition. The third set (S3) employs Reynolds decomposition on the nonlinear

term, treating the mean-fluctuating as described in section 4.3.4.4, fluctuating-mean

as described in section 4.3.4.5, and fluctuating-fluctuating with the L22 model as

described in section 4.3.4.7. The most significant change from S2 to S3 is the

modeling of the mean-fluctuating term which is responsible for production. The

fourth set (S4) again employs Reynolds decomposition as with S3, but uses a better

model (Q22) for the fluctuating-fluctuating term as described in section 4.3.4.7. The

same viscous models, described in sections 4.3.4.1 and 4.3.4.2, are used for sets S2,

S3, and S4. All 4 sets use the standard pressure model described in section 4.3.2.

4.3.5.1 (S1) Standard Second-Order Finite-Volume Models

Using the standard models for nonlinear, viscous, and pressure terms, an a

priori comparison of terms from the mean momentum equation and the component

energy equations are shown in figure (4.30). An a posteriori comparison of LES

velocities profiles are shown in figure (4.31). Notice from figure (4.31) that the

mean velocity is too high near the wall and too low near the center of the channel

indicating that the wall shear stress is over-predicted. This is because the total

term from the right hand side of the momentum equation is too high near the wall,

as shown in figure (4.30). Figure (4.31) also shows that the velocity variances are

too high near the wall and too low near the center of the channel. This near-wall

behavior is directly related to the fact that the total term from the right hand side

of the component energy equations is too high near the wall, as shown in figure

(4.30).
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Examining figure (4.30a) reveals that the standard nonlinear model ∂̃yu′v′
mod
std

badly represents the actual term ∂̃yu′v′, especially near the wall. Likewise, the stan-

dard viscous model ∂̃y∂yU
mod

std badly represents the actual term ∂̃y∂yU , especially

near the wall. This is because as one approaches the wall, gradients of u′v′ and

U increase, making the volume-filtered quantities ũ′, ṽ′, and Ũ which are used in

the standard models relatively more coarse and less capable of representing the

derivatives of u′v′ and U . For similar reasons, the standard models become worse

representations of terms in the component energy equations as one approaches the

wall. See figures (4.30b-d). This is the basic problem in near-wall LES: the filtered-

scales do not represent the dominant dynamics near the wall.

4.3.5.2 (S2) L22 Optimal Nonlinear Models + L20 Optimal Viscous
Models

Using optimal L22 models for the nonlinear terms and optimal L20 models

for the viscous terms guarantees that the a priori nonlinear and viscous terms in

the mean momentum and component energy equations are exactly represented. See

Figure (4.32). In the resulting LES, the mean velocity profile closely matches the

filtered DNS, and several of the velocity variance profiles are also closer than for the

S1 model. However 〈ũ′ũ′〉 is far too high near the wall and exhibits an anomolous

bump near the channel center.

The component energy equation terms are shown in figure (4.32). The simple

optimal models match a priori the profiles for the nonlinear and viscous terms.

However the pressure terms do not match. The pressure model is not transfering

enough energy from 〈ũ′ũ′〉 to 〈ṽ′ṽ′〉, but the rate of transfer to 〈w̃′w̃′〉 is correct. This
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Figure 4.30: Nonlinear (N), Viscous (V), Pressure (P), and Total (T) terms, actual
and (S1) standard models a priori in the mean momentum and component energy
equations for channel flow at Reτ = 934.
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Figure 4.31: Velocity profiles for filtered DNS and LES with (S1) standard models
for channel flow at Reτ = 934.
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problem with pressure may be the cause of the high near-wall 〈ũ′ũ′〉 and slightly low

near-wall 〈ṽ′ṽ′〉. Streamwise variance 〈ũ′ũ′〉 may also be high as a result of stability

problems the uw model

uwopt
L22 = Aopt + L

−z
optũ

−z +L
+z
optũ

+z

︸ ︷︷ ︸
Lu

+L
−x
optw̃

−x + L
+x
optw̃

+x

︸ ︷︷ ︸
Lw

+uwmod
std (4.82)

where ũ−z and ũ+z are cells on the plus and minus z side of face uw, and w̃−x

and w̃+x are cells on the plus and minus x side of face uw. Lu denotes the part

of the model linearly dependent on ũ, and Lw denotes the part the model linearly

dependent on w̃. As shown in figure (4.34), the Lu term evaluated a priori in the

streamwise component energy equation has a positive energy transfer rate. This

implies negative diffusivity which can lead to model instability. See section 4.3.3.4

for more details.

4.3.5.3 (S3) Reynolds Decomposed Nonlinear Models

The main difference between S2 and S3 is the mean-fluctuating model. (The

fluctuating-mean models also differ but only slightly.) S2 used a simple optimal

model Uu′j
opt

L22
, while S3 uses the Qγ model described in section 4.3.4.4. Figure

(4.36) shows the resulting velocity mean and variance profiles for the Reynolds

decomposed nonlinear models. As with S2, the mean velocity is again predicted very

well, except that the point closest to the wall is a bit low. The velocity variances

are also well-predicted, except near the wall where 〈ũ′ũ′〉 is high and 〈ṽ′ṽ′〉 is a bit

low. The behavior here for 〈ũ′ũ′〉 is better than S2, in that there is not nearly as

much overshoot near the wall and that there is no longer the anomalous bump.
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Figure 4.32: Nonlinear (N), Viscous (V), Pressure (P), and Total (T) terms, actual
and (S2) models a priori in the mean momentum and component energy equations
for channel flow at Reτ = 934.
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DNS ũ′ũ′
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Figure 4.33: Velocity profiles for filtered DNS and LES with (S2) models for channel
flow at Reτ = 934.
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Figure 4.34: uw and it’s optimal L22 model components evaluated a priori in the
streamwise energy equation, for channel flow at Reτ = 934.

Figure (4.35) shows the terms from the component energy equations. The

main discrepancies are still with the pressure terms. Not enough energy leaves 〈ũ′ũ′〉

and not enough energy enters 〈ṽ′ṽ′〉, though this is less severe than with S2.

4.3.5.4 (S4) Reynolds Decomposed Nonlinear Models, with Optimal
Quadratic Fluctuating-Fluctuating Models

From S3 to S4, we swapped out the fluctuating-fluctuating L22 model for

the slightly better Q22 model. This is our best set of models to date. Figure (4.38)

shows the velocity mean and variance profiles. As before the mean velocities are

very good, except a bit low near the wall. The variance profiles in this case are also

very good. 〈ũ′ũ′〉 is a bit high and 〈ṽ′ṽ′〉 is a bit low, a symptom attributable again

to the pressure modeling problems. Figure (4.37) shows actual and model terms in
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Figure 4.35: Nonlinear (N), Viscous (V), Pressure (P), and Total (T) terms, actual
and (S3) models a priori in the mean momentum and component energy equations
for channel flow at Reτ = 934.
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Figure 4.36: Velocity profiles for filtered DNS and LES with (S3) models for channel
flow at Reτ = 934.
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the component energy equations.

4.3.5.5 Summary

Table (4.1) shows a summary of the models and results. The first seven

columns describe the combination of models. The next five columns are L1 relative

errors between LES and filtered DNS of the stated quantities, and the last column

is the ratio of LES to DNS mean wall shear stress.

In summary, the Qγ model, a standard nonlinear model with adjusted mean

term, is a good representation of the mean-fluctuating nonlinear term which is

responsible for production and for approximately half of the intercomponent energy

transfer via the pressure term (mainly transfer from 〈ũ′ũ′〉 to 〈w̃′w̃′〉, see figure

(4.15)). The standard nonlinear model does not model the removal of energy in

the fluctuating-mean term ∂̃1u′iU1, so we have accomplished this with a L20 opti-

mal model. The standard nonlinear term is not a good model for the fluctuating-

fluctuating nonlinear term, nor for the other half of intercomponent energy transfer

via the pressure term (mainly transfer from 〈ũ′ũ′〉 to 〈ṽ′ṽ′〉, see figure (4.15)). We

have therefore tested many optimal models for the fluctuating-fluctuating term.

Our best model to date produces reasonably good results for the velocity mean and

variances, but the pressure errors have not been entirely resolved.
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Figure 4.37: Nonlinear (N), Viscous (V), Pressure (P), and Total (T) terms, actual
and (S4) models a priori in the mean momentum and component energy equations
for channel flow at Reτ = 934.
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Figure 4.38: Velocity profiles for filtered DNS and LES with (S4) models for channel
flow at Reτ = 934.
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Set p ∂jUi ∂ju′
i Uiu′

j u′
iUj u′

iu
′
j Ũ 〈ũ′ũ′〉 〈ṽ′ṽ′〉 〈w̃′w̃′〉 〈ũ′ṽ′〉 〈τw〉

S1 std std std std std std 0.038 0.244 0.375 0.346 0.270 1.16

S2 std A L20 L22 L22 L22 0.009 0.727 0.212 0.138 0.110 1.03

S3 std A L20 Qγ L20 L22 0.010 0.118 0.088 0.057 0.059 0.92

S4 std A L20 Qγ L20 Q22 0.008 0.068 0.077 0.076 0.049 0.92

Table 4.1: Description of 4 sets of models and their LES results. Columns 2-7
describe the combination of models. These are standard models described in section
4.3.2 and optimal models described in sections 4.3.4.1 through 4.3.4.7. Columns 8-
12 are L1 relative errors for the velocity mean and variances. Column 13 is the
normalized mean wall shear stress, which should be exactly one.
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Chapter 5

Conclusions and Future Work

There were two major areas of work in this dissertation. The first was devel-

oping a model for the three-point third-order velocity correlation in isotropic tur-

bulence. The second was modeling subgrid turbulence for unresolved wall-bounded

LES.

5.1 Three-point Third-order Velocity Correlation

We developed an explicit mathematical model for the three-point third-

order velocity correlation Tijk(r
1, r2) =

〈
u′i(x)u

′
j(x+ r1)u′k(x+ r2)

〉
. Proudman

and Reid had derived a generating function for the Fourier transform of Tijk in

homogeneous and isotropic turbulence, which we transformed to physical space.

Kolmogorov’s theory states that if the turbulence is homogeneous, isotropic, and

in the inertial range, then the two-point third-order correlation Tijk(0, r) is linear

in r, see equation (3.8). Knowing this limiting case and the generating function,

we derived five basis functions for Tijk for homogeneous, isotropic turbulence, in

the inertial range. These basis functions were fit to DNS data for Reλ = 164 with

coefficient of determination is R2 = 0.96 showing that the basis functions describe

the actual data well.

In Optimal LES, spatially filtered Tijk couples the solution of optimal linear
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and quadratic coefficients. This is the last correlation on the right hand side of equa-

tion (4.32) and the second correlation on the right hand side of equation (4.33). Tijk

may be spatially filtered to determine the filtered two-point third-order correlation

S̃ijk, which describes energy transfer among filtered scales. It can therefore be used

in a priori analysis of the filtered component energy or Reynolds stress transport

equations.

Future work should include fitting the five basis functions for Tijk to higher

Reλ data and also using Tijk in future LES modeling and analysis efforts, as indeed

has been done in [47].

5.2 Wall-Bounded Turbulence Modeling

We developed improved models for the nonlinear and viscous flux terms in

the volume-filtered Navier-Stokes equations, with uniform grid and unresolved wall

layers. The statistics used in constructing these models came from DNS of channel

flow at Reτ = 934. The improved models were tested along with the standard

pressure model in a staggered-grid finite-volume LES of channel flow at the same

Reτ . Our LES results, velocity mean and variances, were significantly better than

most published results for channel flow LES with unresolved wall layers.

The standard pressure model and simple optimal viscous models were found

to be sufficient for representing their respective terms. The nonlinear flux terms

required more careful treatment. First, it was important to Reynolds-decompose the

nonlinear term and to model each part separately, because different parts represent

different physical phenomena. Second, it was important to evaluate the effect of
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each model on the pressure term, because errors in the pressure term were primarily

caused by problems with the nonlinear models, specifically their divergent part. The

standard pressure model itself was found to be a fairly good representation of the

filtered pressure operator.

We constructed accurate models for production and convection, which are

associated with the mean-fluctuating and fluctuating-mean nonlinear terms respec-

tively. The convective flux terms were found to be dissipative and were well-

represented by simple optimal models. On the other hand, optimal modeling of the

mean-fluctuating terms (responsible for production) resulted in linear instabilities

and errors in the associated pressure term. An improved model for production was a

standard nonlinear model with a multiplicative factor to correct for underresolution

of the mean velocity near the wall.

The fluctuating-fluctuating term is responsible for transport, subgrid dissipa-

tion, and intercomponent transfer (through the pressure term). For the fluctuating-

fluctuating term, we constructed various optimal models, all of which matched the

nonlinear terms in the component energy equation a priori, but none of which

exactly matched the associated pressure terms. As stencil size increased, the pres-

sure terms usually improved but never matched. LES statistics, velocity mean and

variances, also improved with stencil size. Our best set of models perform better

than other LES with unresolved wall layers [5, 12, 16, 48] but still exhibit slightly

high streamwise variance and slightly low wall-normal variance compared to filtered

DNS. This is directly related to the mismatch in pressure term for the fluctuating-

fluctuating model.

108



The best optimal fluctuating-fluctuating model in terms of a priori pressure

statistics was for the largest stencil, the Reynolds stress matching stencil (LRS).

However, this model turned out to be unstable in the LES. Because of the size and

complexity of this model, we have not yet analyzed it’s stability characteristics as we

did for the simplest model (L20) to determine how it needs to be modified. There-

fore, future work should include analyzing stability for the larger stencils. We also

constructed fluctuating-fluctuating models to exactly match the pressure statistics

a priori, but all of these models also turned out unstable in the LES. Therefore,

future work should include devising constraints to match pressure statistics in a

stable way.

All of our modeling to date has been based on Reτ = 934 channel flow DNS

data and running LES of the same flow. In the future, we should parameterize these

models with Reτ or with other mean flow parameters. These static models should

quite easily generalize to other equilibrium wall-bounded flows. For developing

flows, dynamic models may be more suitable. However, the following principles for

modeling near-wall turbulence still apply.

(1) A priori accuracy of models in the filtered component energy or Reynolds

stress transport equation is a good predictor of a posteriori accuracy of LES velocity

statistics.

(2) Eigenvalues associated with linear operators in a time evolution equation

are a moderately good predictor of LES stability. Source terms in the component

energy equation, such as production, often result in optimal linear models with

positive eigenvalues which tend to cause instability. Therefore, special attention
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must be given to modeling these source terms.

(3) It is important to Reynolds-decompose the nonlinear term and to model

each part separately, because different parts represent different physical phenomena.

(4) It is important to evaluate the effect of each nonlinear model on the

pressure term, because errors in the pressure term are primarily caused by problems

with the nonlinear models, specifically their divergent part.

The tremendous computational savings of not resolving the near-wall layer

makes feasible LES of turbulent flows through complex geometry. Therefore, the

development of accurate LES models for unresolved wall layers is an important step

toward the prediction of practical flows using LES. We have revealed two important

considerations that have received less attention in the past with regard to modeling

of the nonlinear term. These are the Reynolds-decomposition of the nonlinear term

and the evalution of it’s effect on the pressure term. Within the optimal LES

framework, significant a priori and a posteriori errors resulted from ignoring these

two considerations. Because most subgrid models also ignore these considerations

and exhibit similar a posteriori errors, they likely commit similar modeling errors.

Therefore, the lessons learned from our research may be used to improve near-wall

subgrid modeling in general.
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Appendix A

Determination of S in the Inertial Range

The derivation of (3.8) starts from the general form of an isotropic third-rank

tensor function of a vector argument

Sijk(r) = 〈ui(x)uj(x)uk(x+ r)〉 = a rirjrk + b δjkri + c δikrj + d δijrk (A.1)

where the scalars a, b, c and d are functions of the magnitude of the separation vector

r = ‖r‖ only. Symmetry in i and j requires that b = c. Further, the continuity

constraint ∂Sijk/∂rk = 0 allows the functions a, b and d to be eliminated in terms

of the third-order longitudinal correlation function:

f(r) = 〈v2‖(x)v‖(x+ r)〉, (A.2)

where v‖ is the velocity component parallel to the separation vector r. The result is

Sijk(r) =

{
1

2

(
f − r

df

dr

)
rirjrk
r3

+
1

4r2
(δjkri + δikrj)

d

dr

(
r2 f

)
− f

2r
δijrk

}
. (A.3)

The third-order longitudinal correlation function is directly related to the third-

order structure function, which in the Kolmogorov inertial range is S3(r) = −4
5ǫr.

The correlation f(r) can thus be written

f(r) =
S3(r)

6
= −2ǫr

15
(A.4)

Substituting into (A.3) then immediately yields (3.8).
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Appendix B

The Most General Form for Φ

Presented here is a condensed version of the derivation from Proudman and

Reid [54]. The three-point third-order velocity correlation is Tijk(r, s) ≡ 〈vi(x)vj(x+

r)vk(x+ s)〉. It’s Fourier transform is

Φijk(ρ,σ) = i(2π)−6

∫ ∫
Tijk(r, s)e

−i(ρ·r+σ·s) dr ds (B.1)

Consistency with continuity requires:

(ρi + σi)Φijk(ρ,σ) = ρjΦijk(ρ,σ) = σkΦijk(ρ,σ) = 0 (B.2)

While the most general isotropic third-ranked tensor function of two vectors is:

φmnp(ρ,σ) = φ1ρmρnρp + φ2ρmρnσp + φ3ρmσnρp + φ4σmρnρp

+φ5σmσnσp + φ6σmσnρp + φ7σmρnσp + φ8ρmσnσp

+φ9ρmδnp + φ10ρnδmp + φ11ρpδmn + φ12σmδnp + φ13σnδmp + φ14σpδmn (B.3)

where {φ1, φ2, ..., φ14} are scalar functions of the magnitudes of the wavevectors

ρ ≡ |ρ|, σ ≡ |σ|, and τ ≡ |τ |, and ρ+ σ + τ = 0.

To enforce incompressibility, we employ the divergence-free projector ∆im(ρ) ≡

δim−ρiρm/ρ2. So, to satisfy all three incompressibility conditions in equation (B.2)
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and isotropy, we apply three projectors to φmnp, the result is the most general form

for Φijk.

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆kp(σ)φmnp(ρ,σ) (B.4)

Furthermore, the triple projection operator directly eliminates all but 4 components

of φmnp shown in equation (B.3), so effectively the above equation becomes

Φijk(ρ,σ) = ∆im(τ )∆jn(ρ)∆pk(σ)
[
φ3ρmσnρp + φ9ρmδnp + φ11ρpδmn + φ13σnδmp

]

(B.5)

Renaming the scalar functions as follows: φ3 → ζ, φ9 → φ, φ11 → φ2, φ13 → φ1, we

obtain (3.9).
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Appendix C

Calculation Procedures for Basis Functions of T

Symbolic calculation of the tensor basis functions Tn were carried out using

a collection of scripts written in Matlab. These scripts operate on mathematical

expressions in the form of strings of characters, such as

-36*DELTA ik*r^6*s^-3*s j*t^-3 + 432*r^-1*r j*r k*s i*t^-1

which is just a small part of T1. Scripts perform addition, multiplication, and spatial

differentiation (gradient or divergence). Addition and multiplication of terms is

straightforward. Derivatives with respect to the separation vectors of scalars (e.g.

r5) and vectors (e.g. r) must be computed. The following simple rules for the

evaluation of the derivatives ∂ri

∂ri s
α =

∂sα

∂si

∣∣∣∣
r

= αsα−2si (C.1)

∂ri t
α =

∂tα

∂si

∣∣∣∣
r

= −αtα−2ti (C.2)

∂ri sj =
∂sj
∂si

∣∣∣∣
r

= δij (C.3)

∂ri tj =
∂tj
∂si

∣∣∣∣
r

= −δij , (C.4)

are implemented in the symbolic manipulation scripts, along with analogous rules

for ∂si and ∂ti . These along with the chain rule are sufficient to evaluate (3.12).
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Finally, the scripts also simplify contractions; for example: δijri = rj, rjsj = r · s,

and sjsj = s2.

Using the symbolic evaluator described above, (3.12) was evaluated for 20

different ψ given by ψ = pa,b ≡ (rasb − rbsa)tc, where a+ b+ c = 8 and a, b, c ≥ 0

are integers. Of these 20 candidate tensor expressions, 14 are non-zero. However,

all 14 have discontinuities and/or singularities (which are non-physical) at r, s, or t

of zero.

To eliminate the discontinuities and singularities, linear combinations of the

14 non-trivial basis functions are sought which exactly cancel them. This is done by

using the first order approximation of t for small s, namely t ≈ r and simplifying

the resulting expressions for each basis function. Singular and discontinuous terms

(for small s) are identified as those with net power of s that is less than or equal

to zero, and that are not independent of s. Thus, terms with factors such as sk/s

or sisjsk/s
3 are identified as discontinuous at s = 0 (their limiting values as s → 0

depend on the direction of the approach), while factors such as sk/s
3 and 1/s are

simply singular at s = 0. Each of the 14 reduced basis tensors includes one or

more of 28 distinct discontinuous or singular terms. The null space of the 28 × 14

matrix of coefficients of the singular and discontinuous terms defines the space of

tensor function in which all these terms cancel. Remarkably, it was found that the

dimension of this null space is 6 (rather than zero). A vector basis for the null space

then defines a basis of tensor functions in which the problematic terms have been

eliminated.

However, this does not necessarily lead to a basis free of singularities and
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discontinuities. The reason is that the approximation for t was only first order in

s, and higher order terms can also lead to singularities or discontinuities. Indeed, it

was observed that 4 of the 6 basis tensors determined above were discontinuous. By

substituting t = r− s, and expanding to explicitly expose the higher-order terms in

s, the remaining singular/discontinuous terms were identified. Using the same pro-

cedure described above, it was found that these singularities and discontinuities had

a five-dimensional null-space. A basis for the five-dimensional space of continuous

nonsingular model tensors is thus found and is given in equations (3.25–3.29).
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Appendix D

Simplest Optimal Model Matches Budget Term

ui
−~ u~

u u

i

i j

+

j

Figure D.1: Configuration of simplest stencil cells ũi with respect to flux uiuj.

The simplest stencil (L20) for uiuj is shown in figure (D.1). A general model

including this stencil may be written uiuj
mod
L20

uiuj
mod
L20 = L−ũ′−i + L+ũ′+i + ... (D.1)

The corresponding optimal model will be denoted uiuj
opt
L20

uiuj
opt
L20 = L−

optũ
′−
i + L+

optũ
′+
i + ... (D.2)

It shall be shown that any optimal model including linear dependence on the two

adjacent ũ′i cells, as shown in figure (D.1), also statistically matches the correspond-

ing term in the component energy equation, that is:

〈
ũ′i(uiuj

opt−
L20 − uiuj

opt+
L20 )

〉
=
〈
ũ′i(uiuj

− − uiuj
+)
〉

(D.3)
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where superscript (−/+) refers to the face to the (−j/+ j) side of cell ũi.

The definition of an optimal model is one which minimizes the squared dif-

ference between model and data, which we will call S:

S =
〈
(uiuj

mod
L20 − uiuj)

2
〉

(D.4)

〈
(uiuj

mod
L20 − uiuj)

2
〉
≥
〈
(uiuj

opt
L20 − uiuj)

2
〉
∀L−, L+ (D.5)

To solve for the optimal model, we set to zero derivatives of S with respect to the

coefficients (L−, L+, ...). For L−, this is

∂S

∂L−
=

〈
2(uiuj

�
��:

opt
mod
L20 − uiuj)

∂uiuj
mod
L20

∂L−︸ ︷︷ ︸
ũ′−
i

〉
= 0 (D.6)

〈
(uiuj

opt
L20 − uiuj)ũ

′−
i

〉
= 0 (D.7)

where we write uiuj
�
��:

opt
mod
L20 because it is the specific model that acheives the zero deriva-

tive condition. Doing the same thing for L+, we get

〈
(uiuj

opt
L20 − uiuj)ũ

′+
i

〉
= 0 (D.8)

The above two equations are the optimality conditions corresponding to

events ũ′−i and ũ′+i . Shifting from face-centered reference to cell-centered reference,

these equations become

〈
(uiuj

opt+
L20 − uiuj

+)ũ′i

〉
= 0 (D.9)

〈
(uiuj

opt−
L20 − uiuj

−)ũ′i

〉
= 0 (D.10)
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Subtracting the above two equations and rearranging

〈
(uiuj

opt+
L20 − uiuj

opt−
L20 − uiuj

+ + uiuj
−)ũ′i

〉
= 0 (D.11)

〈
(uiuj

opt+
L20 − uiuj

opt−
L20 )ũ′i

〉
=
〈
(uiuj

+ − uiuj
−)ũ′i

〉
(D.12)
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Appendix E

Standard Quadratic Model Conserves Energy

The standard quadratic approximation for staggered uniform grids, con-

serves component energies when the velocity field is divergence-free and boundaries

are zero or periodic.

We will prove this discretely, but first let’s prove this in a continuous setting

which is easier. Let ui be divergence-free (∂iui = 0) on domain Ω. The quadratic

term uαuj in the uαuα energy equation is

uα∂juαuj = uαuα ∂juj︸︷︷︸
0

+uαuj∂juα = ∂juαuαuj − uα∂juαuj (E.1)

Rearranging

2uα∂juαuj = ∂juαuαuj (E.2)

Integrating over Ω

2

∫

Ω
uα∂juαuj =

∫

Ω
∂juαuαuj =

∫

∂Ω
uαuαujnj = 0 (E.3)

The right equality is because the boundaries are zero or periodic. Therefore, energy

only enters or exits through the boundaries.

We will now show that the standard quadratic approximation uαuj
mod
std does

this discretely. Consider the quadratic term uαuj
mod
std in the ũαũα energy equation

ũα∂̃juαuj
mod
std (E.4)
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Summation in j is implied. For simplicity consider 2-D and α = x.

ũ∂̃juαuj
mod
std = ũ∂̃xuu

mod
std + ũ∂̃yuv

mod
std (E.5)

Now, let us change notation a little and let i, j denote indices for cell location. A

diagram showing the configuration centered at cell ũi,j is shown in figure (E.1). The

above term can then be expanded to

ũi,j

∆x

((
ũi,j + ũi+1,j

2

)2

−
(
ũi,j + ũi−1,j

2

)2
)

+
ũi,j

∆y

((
ũi,j + ũi,j+1

2

)(
ṽi,j+1 + ṽi−1,j+1

2

)
−
(
ũi,j + ũi,j−1

2

)(
ṽi,j + ṽi−1,j

2

))
(E.6)

u

i,j+1

i+1,j

i,j

i,ji−1,j

i,j+1

i−1,j

v

v v

v
i,j−1

u

uu

u
i−1,j+1

Figure E.1: Configuration of cells used in standard quadratic model for calculation
of energy centered on cell ũi,j

Gathering together all the ũi,jũi,j terms

ũi,jũi,j

4

(
ũi,j + 2ũi+1,j − ũi,j − 2ũi−1,j

∆x
+
ṽi,j+1 + ṽi−1,j+1 − ṽi,j − ṽi−1,j

∆y

)
+ ...

(E.7)
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The divergence free condition ũi+1,j−ũi,j

∆x
+ ṽi,j+1+ṽi,j

∆y
= 0 eliminates all the above

terms, except the two terms with coefficient 2. Then adding in the rest of the terms

containing the cross terms ũi,jũi±1,j±1

ũi,jũi+1,j(ũi,j + ũi+1,j)− ũi,jũi−1,j(ũi,j + ũi−1,j)

4∆x

+
ũi,jũi,j+1(ṽi,j+1 + ṽi−1,j+1)− ũi,jũi,j−1(ṽi,j + ṽi−1,j)

4∆y
(E.8)

Notice that the left and right terms above are like exact differentials ∂xuuu

and ∂yuuv. Therefore, when summed over the domain, they result in only boundary

terms.

ũR,j ũR+1,j(ũR,j + ũR+1,j)− ũL,jũL−1,j(ũL,j + ũL−1,j)

4∆x

+
ũi,T ũi,T+1(ṽi,T+1 + ṽi−1,T+1)− ũi,Bũi,B−1(ṽi,B + ṽi−1,B)

4∆y
(E.9)

where right, left, top, and bottom boundary cells are denoted R, L, T, B. One can

see that if boundaries are periodic, R + 1 = L or T + 1 = B, then boundary terms

cancel, leaving net zero energy flux. If boundary velocities are zero, ũR,j = ũL,j = 0

or ṽi,T+1 = ṽi,B = 0, then the boundary terms are also zero. Note that in this case,

or in general with any non-periodic boundary and staggered grid, that the velocity

component in the non-periodic direction has one extra grid cell in that direction,

and that the boundary cells straddle the boundary.
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Appendix F

Discrete Divergence-Free Projection

F.1 Discrete Divergence-Free Projection of the Filtered Field

A divergence-free continuous field u does not imply a discretely divergence-

free filtered field ũ. Figure (F.1) shows discrete divergence of filtered fields
〈
∇̃ · ũ)2

〉1/2
,

which is non-zero everywhere and gets larger close to the wall.

0 0.5 1
0

1

2

3

4

5

y/δ

〈 ∇̃
·ũ

)2
〉 1

/
2

Figure F.1: Discrete divergence of filtered fields, for channel flow at Reτ = 934

However, the energy content of the discretely divergent part of the filtered

field is small. Figure (F.2) shows the variances
〈
ũ2
〉
,
〈
ṽ2
〉
,
〈
w̃2
〉
, 〈ũṽ〉 of the fields
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with (dotted curves) and without (solid curves) divergence-free projection. The

curves with and without divergence-free projection are very close everywhere, with

slight deviation near the wall.

0 0.2 0.4 0.6 0.8 1
-1

0

1

2

3

y/δ

Figure F.2: Velocity variances
〈
ũ2
〉
,
〈
ṽ2
〉
,
〈
w̃2
〉
, 〈ũṽ〉 of the fields with (dotted

curves) and without (solid curves) divergence-free projection, for channel flow at
Reτ = 934

F.2 Discrete Divergence-Free Projection Boundary Condition

Let u be the continuous fields, let ũ be the filtered fields, and let ũp be

the discrete divergence-free projection of the filtered fields. The actual boundary

condition implemented for the discrete divergence-free projection is ũp2 = 0 along

the wall, regardless of the values of u2 along the wall. Noting that the boundary

ũ2 straddles the wall, the filtering operation on this cell volume averages u2 on the

half of the cell that is inside the domain. u2 outside the domain is undefined and
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assumed to be zero. This makes ũ2 small but non-zero. It maybe argued that

the region outside the domain should not be treated as having zero velocity, but

having the reflected value u2(−y) = −u2(y), in which case, ũ2 ≡ 0. What difference

does this make in taking the divergence-free projection? Whether or not ũ2 = 0 at

the wall makes no difference in result of the discrete divergence-free projection ũp.

Likewise, it makes no difference whether or not ũp2 at the wall gets evolved.

126



Bibliography

[1] R. Adrian. On the role of conditional averages in turbulence theory. In J. Zakin

and G. Patterson, editors, Turbulence in Liquids, pages 323–332. Science Press,

Princeton, New Jersey, 1977.

[2] R. Adrian, B. Jones, M. Chung, Y. Hassan, C. Nithianandan, and A. Tung.

Approximation of turbulent conditional averages by stochastic estimation. Physics

of Fluids, 1(6):992–998, 1989.

[3] R. Adrian and P. Moin. Stochastic estimation of organized turbulent structure:

homogeneous shear flow. Journal of Fluid Mechanics, 190:531–559, 1988.

[4] R. J. Adrian. Stochastic estimation of sub-grid scale motions. Appl. Mech.

Rev., 43:214, 1990.

[5] E. Balaras, C. Benocci, and U. Piomelli. Finite-difference computations of high

reynolds number flows using the dynamic subgrid-scale model. Theoretical and

Computational Fluid Dynamics, 7:207–216, 1995.

[6] E. Balaras, C. Benocci, and U. Piomelli. Two-layer approximate boundary

conditions for large-eddy simulations. AIAA Journal, 34:1111–1119, 1996.

[7] J. Bardina, J. Ferziger, and W. Reynolds. Improved subgrid-scale models for

large-eddy simulation. AIAA-80-1357, 1980.

127



[8] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scov-

azzi. Variational multiscale residual-based turbulence modeling for large eddy

simulation of incompressible flows. Computer Methods in Applied Mechanics

and Engineering, 197:173–201, 2007.

[9] A. Bhattacharya, A. Das, and R. D. Moser. A filtered-wall formulation for

large-eddy simulation of wall-bounded turbulence. Physics of Fluids, 20:115104,

2008.

[10] A. Bhattacharya, S. C. Kassinos, and R. D. Moser. Representing anisotropy of

two-point second-order turbulence velocity correlations using structure tensors.

Physics of Fluids, 20:101502, 2008.

[11] J. Boris, F. Grinstein, E. Oran, and R. Kolbe. New insights into large eddy

simulation. Fluid Dynamics Research, 10(4–6):199–228, 1992.

[12] W. Cabot and P. Moin. Approximation wall boundary conditions in the large-

eddy simulation of high reynolds number flow. Flow, Turbulence and Combus-

tion, 63:269–291, 1999.

[13] H. Chang and R. D. Moser. An inertial range model for the three-point third-

order velocity correlation. Physics of Fluids, 19:105111, 2007.

[14] J. Chollet and M. Lesieur. Parameterization of small scales of three-dimensional

isotropic turbulence using spectral closures. Journal of the Atmospheric Sci-

ences, 38:2747–2757, 1981.

128



[15] A. J. Chorin. Numerical solution of the navier-stokes equations. Mathematics

of Computation, 22:745–762, 1968.

[16] D. Chung and D. I. Pullin. Large-eddy simulation and wall modelling of

turbulent channel flow. Journal of Fluid Mechanics, 631:281–309, 2009.

[17] J. W. Deardorff. A numerical study of three-dimensional turbulence channel

flow at high reynolds numbers. Journal of Fluid Mechanics, 41:453–480, 1970.

[18] J. C. del Alamo, J. Jimenez, P. Zandonade, and R. D. Moser. Scaling of the

energy spectra of turbulent channels. Journal of Fluid Mechanics, 500:135–144,

2004.

[19] P. A. Durbin and B. A. Petterson Reif. Statistical Theory and Modeling for

Turbulent Flows. John Wiley & Sons, 2002.

[20] C. L. Fefferman. Existence and smoothness of the navier-stokes equation. In

A. Wiles J. Carlson, A. Jaffe, editor, The Millennium Prize Problems, page 57.

Clay Mathematics Institute, Cambridge, 2000.

[21] U. Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge U. Press,

1995.

[22] M. Germano, U. Piomelli, P. Moin, and W. Cabot. A dynamic subgrid-scale

eddy viscosity model. Physics of Fluids, 3:1760–1765, 1991.

[23] S. Ghosal. An analysis of numerical errors in large-eddy simulations of turbu-

lence. Journal of Computational Physics, 125:187–206, 1996.

129



[24] M. D. Greenberg. Advanced Engineering Mathematics. Pearson Education,

1998.

[25] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface. Physics of Fluids, 8:2182–2189,

1965.
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