
Copyright

by

Francis Tseng

2007

The Dissertation Committee for Francis Tseng
certifies that this is the approved version of the following dissertation:

Braids: Out-of-Order Performance

with Almost In-Order Complexity

Committee:

Yale N. Patt, Supervisor

Craig M. Chase

Derek Chiou

Aloysius K. Mok

Burton J. Smith

James W. Tunnell

Braids: Out-of-Order Performance

with Almost In-Order Complexity

by

Francis Tseng, B.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2007

To my parents.

Acknowledgments

My graduate school experience would not have existed if it were not for the

support of my parents. They have always provided for me an example of hard work

and perseverance. I would like to thank my wife Teresa and my family for putting

up with my irregular work schedule and my seemingly never-ending work.

I am indebted to my advisor, Professor Yale N. Patt, for pushing me to be

my best and being there as a friend when I needed to talk. Thankyou for your

advice and guidance over the years.

I would like to acknowledge past and present members of the HPS research

group for providing a stimulating work environment. I wouldlike to thank Robert

Chappell for helping me to get started with research and beingthere to chat about

anything. The first half of my graduate life would not have been as exciting without

the friendship of Paul Racunas, Mary Brown, and Sangwook Kim. These people

provided mentorship and encouragement. I would also like tothank Onur Mutlu,

Moinuddin Quereshi, Hyesoon Kim, David Armstrong, and Kameswar Subrama-

niam for their friendship and also their helpful critiques.The more recent members

of the HPS group all have engaged in discussions about research with me. These are

Muhammad Aater Suleman, Jose Joao, Chang Joo Lee, Veynu Narasiman, Santhosh

Srinath, David Thompson, Danny Lynch, Linda Hastings, Rustam Miftakhutdinov,

Eiman Ebrahimi, and Khubaib.

I am thankful to the members of my Ph.D. committee for their commitment

to serve on my committee. I would especially like to thank Derek Chiou for always

being available to talk and for providing detailed commentson my dissertation.

v

I would also like to thank Mattan Erez for coming to my defenseand providing

helpful comments as if he was a committee member.

I would like to thank the mentors of my summer jobs for sharingtheir ex-

pertise. In particular, Burton Smith and Mitch Alsup helpedme refine my research

topic through many discussions.

Finally, I would like to thank Intel Corporation, Advanced Micro Devices,

Cray, and HAL Computer Systems for providing me with summer jobs. Working at

these companies has allowed me to gain a better understanding of processor design.

vi

Braids: Out-of-Order Performance

with Almost In-Order Complexity

Publication No.

Francis Tseng, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Yale N. Patt

There is still much performance to be gained by out-of-orderprocessors

with wider issue widths. However, traditional methods of increasing issue width

do not scale; that is, they drastically increase design complexity and power require-

ments. This dissertation introduces the braid, a compile-time generated entity that

enables the execution core to scale to wider widths by exploiting the small fanout

and short lifetime of values produced by the program. A braidcaptures dataflow

and register usage information of the program which are known to the compiler but

are not traditionally conveyed to the microarchitecture through the instruction set

architecture.

Braid processing requires identification by the compiler, minor augmenta-

tions to the instruction set architecture, and support by the microarchitecture. The

execution core of the braid microarchitecture consists of anumber of braid execu-

tion units (BEUs). The BEU is tailored to efficiently carry out the execution of a

braid in an in-order fashion. Each BEU consists of a FIFO scheduler, a busy-bit

vector, two functional units, and a small internal registerfile.

vii

The braid microarchitecture provides a number of opportunities for the re-

duction of design complexity. It reduces the port requirements of the renaming

mechanism, it simplifies the steering process, it reduces the area, size, and port re-

quirements of the register file, and it reduces the paths and port requirements of

the bypass network. The complexity savings result in a design characterized by a

lower power requirement, a shorter pipeline, and a higher clock frequency. On an

8-wide design, the result from executing braids is performance within 9% of a very

aggressive conventional out-of-order microarchitecturewith the complexity of an

in-order implementation.

Three bottlenecks are identified in the braid microarchitecture and a solution

is presented to address each. The limitation on braid size isaddressed by dynamic

merging. The underutilization of braid execution resources caused by long-latency

instructions is addressed by context sharing. The poor utilization of braid execu-

tion resources caused by single-instruction braids is addressed by heterogeneous

execution resources.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1
1.1 The Solution . 4

1.2 Thesis Statement . 6

1.3 Contributions . 6

1.4 Organization . 7

Chapter 2. The Braid 8
2.1 Motivation . 8

2.1.1 Distribution of Value Fanout 9

2.1.2 Distribution of Value Lifetimes 10

2.2 The Braid . 13

2.3 Braid Characteristics . 14

Chapter 3. Implementation 20
3.1 Compiler Requirements . 20

3.1.1 Profiling and Translation . 21

3.1.2 Issues with Profiling Analysis 24

3.2 Instruction Set Architecture Requirements 27

3.3 Microarchitecture Requirements29

3.3.1 Pipeline Overview . 30

3.3.2 Execution Core Overview 34

ix

3.3.3 Recoveries and Exceptions 36

3.4 Alternative Considerations . 38

3.4.1 Using a Compiler . 38

3.4.2 Compiling Versus Profiling 39

Chapter 4. Methodology and Performance 41
4.1 Machine Model . 41

4.1.1 Shared Front and Back-Ends 41

4.1.2 Misprediction Pipeline . 43

4.1.3 Out-of-Order Execution Core 44

4.1.4 Braid Execution Core . 44

4.1.5 Shared Memory System . 45

4.2 Simulator . 46

4.3 Benchmarks . 46

4.4 Sensitivity Studies Varying Braid Execution Unit Parameters 47

4.5 Comparison to Other Processing Paradigms53

Chapter 5. Braid Optimizations 56
5.1 Dynamic Merging . 56

5.2 Braid Execution Unit Context Sharing 62

5.3 Heterogeneous Execution Resources67

Chapter 6. Hardware and Software Analysis 72
6.1 Hardware . 72

6.1.1 Renaming Mechanism . 72

6.1.2 Scheduler . 74

6.1.3 Busy-Bit Vector . 74

6.1.4 Internal Register File . 75

6.1.5 External Register File . 75

6.1.6 Bypass Network . 79

6.1.7 Reducing Pipeline Stages 82

6.1.8 Clock Frequency . 83

6.1.9 Perfect Front-End and Memory System 83

x

6.2 Software . 86

6.2.1 Strands versus Braids . 86

6.2.2 Tradeoffs of Dataflow Graph Size 87

6.2.3 Spill Code . 87

6.2.4 Software Compatibility . 88

6.2.5 Instruction Set Architecture Annotations and Code Bloat . . . 88

Chapter 7. Related Work 90
7.1 Basic Block-Based Processing . 90

7.1.1 Trace Processing . 91

7.1.2 Multiscalar . 91

7.1.3 rePLay . 92

7.2 Strands, Dependency Chains, and Subgraphs 93

7.2.1 Strands . 93

7.2.2 Dependency Chains . 94

7.2.3 Subgraphs . 95

7.3 Register File . 97

7.3.1 External and Internal Registers 97

7.3.2 Increasing Effective Register File Size 98

7.3.3 Increasing Register File Size and Access Bandwidth 99

7.4 Compiler Identified Dependencies 102

7.5 Steering . 103

7.6 Scheduling . 104

Chapter 8. Conclusions and Future Directions 107
8.1 Conclusions . 107

8.2 Future Directions . 108

8.2.1 Braid-Aware Compiler . 108

8.2.2 Other Compiler Hints . 109

8.2.3 Atomicity . 110

8.2.4 Clustering . 110

8.2.5 Multi-Core Adaptability . 110

8.2.6 Cache Accessibility . 111

xi

Bibliography 112

Vita 124

xii

List of Tables

2.1 Braids per Basic Block,∗Braids per Basic Block Ignoring Single-
Instruction Braids . 16

2.2 Instructions per Basic Block . 17

2.3 Braid Size and Width . 18

2.4 Internal and External Braid Inputs and Outputs,∗Arithmetic Mean
without lucas, mgrid, and swim . 19

3.1 Percent of Instructions Belonging to a Braid of Size Two or Greater 28

4.1 Baseline Processor Configurations 42

4.2 Instruction Latencies . 47

4.3 SPEC CPU2000 Benchmark Descriptions and Input Sets 48

5.1 Percent of Cycles All Braid Execution Units Are Stalled 65

5.2 Percent of Instructions from Single-Instruction Braids 69

xiii

List of Figures

1.1 Potential Performance of 8-Wide and 16-Wide Designs Over a 4-
Wide Conventional Out-of-Order Design Using Perfect BranchPre-
diction and Perfect Caches . 2

2.1 Distribution of Value Fanout . 9

2.3 Composition of a Complex Operation 11

2.4 Distribution of Value Lifetime . 12

3.1 Profiling and Translation Workflow 22

3.3 Identifying Memory Ordering Violations 27

3.4 Braid Instruction Encoding . 29

3.5 Block Diagram of the Braid Microarchitecture 30

3.6 The Braid Execution Unit . 34

3.7 Block Diagram of Instruction Flow During Exception Processing
Mode . 37

4.2 Performance Sensitivity to the Number of BEUs 50

4.3 Performance Sensitivity to the Number of FIFO Queue Entries . . . 51

4.4 Performance Sensitivity to the Scheduling Window Size 52

4.5 Performance Sensitivity to the Number of Functional Units per BEU 53

4.6 Performance of In-Order, Dependence-Based Steering, Braid, and
Out-of-Order Designs at Various Issue Widths54

5.3 Percent of External and Internal Register Reads 62

5.4 Percent of External and Internal Register Writes 63

5.5 Performance Using Dynamic Merging 63

5.6 Mechanism to Support for Context Sharing 66

5.7 State Diagram for Context Sharing 67

5.8 Performance Using BEU Context Sharing 68

5.9 Block Diagram of Heterogeneous Execution Resources 70

xiv

5.10 Performance Using Heterogeneous Execution Resources. 71

6.1 Performance Sensitivity to the Number of Source and Destination
Rename Ports . 73

6.2 Performance Sensitivity to the Number of Register File Read and
Write Ports . 77

6.3 Performance Sensitivity to the Number of Registers in anOut-of-
Order Microarchitecture . 78

6.4 Performance Sensitivity to the Number of External Registers in the
Braid Microarchitecture . 79

6.5 Distribution of Source Operand Locations 80

6.6 Performance Sensitivity to the Number of Bypass NetworkPaths . . 81

6.7 Performance from Reducing Pipeline Stages 82

6.8 Performance Using Perfect Branch Prediction 84

6.9 Performance Using Perfect Branch Prediction and Perfect Instruc-
tion and Data Caches . 85

6.10 Performance Sensitivity to the Number of Cycles to Main Memory . 86

xv

Chapter 1

Introduction

The modern high-performance superscalar out-of-order processor is a re-

stricted dataflow machine [53] which differs from a pure dataflow machine [26] in

the following way. A restricted dataflow machine has a scope of processing that is

limited to a window of instructions dictated by hardware constraints. This window

slides along the sequential execution stream. Instructions enter and exit the window

in an in-order fashion. Within this window, instructions execute as soon as their

sources are ready in an out-of-order fashion. The size of theexecution window

and the capability of out-of-order processing are governedby the size of structures

in the execution core of the processor. As the size of the structures and the num-

ber of elements that can be processed every cycle increase, the execution engine

can exploit more instruction-level parallelism [7], allowing the restricted dataflow

machine to more closely resemble a pure dataflow machine.

Figure 1.1 shows the potential performance that is available at wider issue

widths in an aggressive conventional out-of-order processor, assuming the use of a

perfect branch predictor and perfect instruction and data caches. It is not unrealistic

to assume that future processors will have more accurate branch predictors and

also larger caches. Thus, Figure 1.1 provides a measure of the available untapped

performance. The baseline for this experiment is a 4-wide conventional out-of-

order design. An 8-wide design achieves an average increased performance of 44%

over the baseline, and a 16-wide design achieves an average increased performance

1

of 83% over the baseline. Some applications such as crafty, vpr, and mgrid show a

performance improvement of 200% when issue width increasesfrom 4 to 16.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

1.0

1.5

2.0

2.5

3.0

3.5

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

8 wide
16 wide

Figure 1.1: Potential Performance of 8-Wide and 16-Wide Designs Over a 4-Wide
Conventional Out-of-Order Design Using Perfect Branch Prediction and Perfect
Caches

Although Figure 1.1 shows that performance is plentiful at wider issue

widths, there are design implications that make such approaches infeasible. The

traditional method of increasing issue width does not scale. Increasing issue width

beyond that of current processors drastically increases the design complexity [50]

and power requirements [79] of the execution core of the processor. A processor

with a wider issue width requires structures with more entries in the execution core

to support the processing of more in-flight instructions. Inparticular, these struc-

tures include the instruction scheduler, the register file,and the bypass network. All

of these structures pose a problem because they do not scale.As the issue width

increases, these structures require more entries and ports. In turn, they take up a sig-

2

nificantly larger chip area and consume more power. Large structures are pipelined

because a signal cannot travel across the length of the structure at the expected

frequency. This further increases design complexity.

The instruction scheduler is a structure in a critical loop of execution [50].

The scheduler contains many entries in order to identify instructions that are ready

to execute. Pipelining the scheduler creates unavoidable pipeline bubbles in the

scheduling process causing significant performance loss [12]. Although pipelining

the instruction scheduler without performance loss has been proposed [69], it is not

possible to do so without adding additional complexity to the already complex in-

struction scheduler. The register file is another crucial structure required for high

performance. It is the storage for the results of in-flight instructions. Therefore,

more entries are needed to support more in-flight instructions. As issue width in-

creases, more ports are added to the register file to support the higher reading and

writing bandwidth. Increasing the number of entries and ports of the register file

requires more area and energy [78]. Doubling the number of register ports doubles

the number of bit-lines and the number of word-lines, causing a quadratic increase

in area [29]. A larger register file requires accesses to be pipelined over multiple

cycles [34]. Pipelined accesses in turn require a multilevel bypass network to pro-

vide values that have been written to but are not yet available from the register file.

Each level of the bypass network is a complex point-to-pointnetwork. It has been

shown that limiting the bypass network can lead to detrimental performance loss

[4].

Because of the difficulties associated with scaling the issue width, there

have been fewer introductions of commercial aggressive out-of-order superscalar

processors at wider issue widths. The issue width of recent high-performance pro-

cessor introductions has been four. This includes the IntelCore Duo and Core 2

3

Duo [74]. 8-wide designs have been introduced but at limitedfrequencies. The

AMD Barcelona has a frequency of 2GHz, and the IBM POWER4 and POWER5

[36] have a frequency of 1.9GHz and 2.2GHz, respectively. Inthe POWER6, IBM

implemented an in-order microarchitecture. In order to make use of the greater

number of transistors provided by improvements in process technology, designers

have looked for alternative forms of parallelism for improving performance. Rather

than designing wider processors, designers duplicate cores on the same chip. Today,

most general purpose processors introduced are multi-coreprocessors. Although

multi-core processors exploit program-level and thread-level parallelism, there is

still much to be gained in the performance of single-core designs as shown in Fig-

ure 1.1 if designers can get past the complexity issues and power requirements. If

designers can improve single-core performance, then multi-core performance can

improve as well. A multi-core processor is simply a single-core processor replicated

multiple times.

1.1 The Solution

It is clear that the traditional method of increasing issue width is impractical

to implement in future high-performance processors. One solution to this problem

is to leverage the compiler. If the compiler can provide the information that the

microarchitecture needs to execute a program, the microarchitecture does not have

to work as hard to achieve the same goals.

Unlike the limited program scope of the hardware, the compiler has an un-

restricted view of the entire program. The compiler can easily analyze program

dataflow which is composed of an ordered set of instructions and a set of values

that are passed among instructions. However, the information known to the com-

piler is not conveyed to the microarchitecture in an efficient manner due to the

4

syntax limitations of conventional instruction set architectures. Aggressive out-of-

order processors reconstruct a limited view of the program dataflow at runtime using

structures in the execution core. The more entries and widerthe structures are, the

more complete the picture of program dataflow is. Figure 1.2ashows the conven-

tional processing paradigm. The thickness of the lines indicates the amount of effort

exerted at that level. In this paradigm, the compiler passeslimited dataflow informa-

tion to the microarchitecture. The microarchitecture thenextracts parallelism from

the limited dataflow information using runtime structures in the execution core.

ISA

Microarchitecture

Compiler

(a)

ISA

Compiler

Microarchitecture

(b)

Figure 1.2: Processing Paradigms (a) Conventional: Microarchitecture Does Most
of the Work (b) Braid: Compiler Does Most of the Work

This dissertation introduces the braid, a compile-time generated entity which

simplifies the design complexity of structures in the execution core of a high-

performance processor. A braid is a dataflow subgraph of the program that re-

sides solely within a basic block. It exploits the small fanout and short lifetime of

values communicated among instructions. Figure 1.2b showsthe braid processing

paradigm. In this model, the compiler exerts more effort at compile time and passes

more information about the program dataflow to the microarchitecture. This lessens

the effort of the microarchitecture to extract program parallelism at runtime and

5

eliminates the need for complex hardware structures in the execution core. Braids

enable the use of simple instruction schedulers, reduce thesize, ports, and accesses

to the register file, and also reduce the ports and values sentto the bypass network.

The braid microarchitecture shortens the pipeline reducing the branch mispredic-

tion penalty. The reduction in complexity by avoiding largeassociative structures

also enables a higher clock frequency. Traditionally, researchers in the architectural

community have avoided making changes to the instruction set architecture. This

dissertation shows that with simple augmentations to the instruction set architec-

ture, braids can be easily conveyed to and leveraged by the microarchitecture.

1.2 Thesis Statement

Compiler-identified braids can be efficiently conveyed through the instruc-

tion set architecture to the microarchitecture, simplifying the design complexity of

elements on the critical path in the execution core of the microarchitecture while

approximating the performance of an aggressive out-of-order design.

1.3 Contributions

This dissertation makes the following contributions.

• This dissertation introduces the braid which enables the compiler to convey

useful program dataflow and value information to the microarchitecture al-

lowing the compiler to play a greater role in processing the program. The mi-

croarchitecture that implements braids is able to achieve performance close to

that of an aggressive out-of-order design while maintaining the design com-

plexity closer to that of an in-order design.

6

• This dissertation discusses the compiler, the instructionset architecture, and

the microarchitecture modifications required to implementbraids. First, this

dissertation shows how braids can be identified by the compiler, or by per-

forming profiling analysis and binary translation. Second,this dissertation

shows the instruction set architecture augmentations needed to convey braids

to the microarchitecture. Third, this dissertation proposes a microarchitec-

ture to efficiently carry out the processing of braids. The design parameters

needed for a balanced design are analyzed.

• Three bottlenecks are identified in the braid microarchitecture and a solution

is presented to address each. First, the limitation on braidsize is addressed by

dynamic merging. Second, the underutilization of braid execution resources

caused by long-latency instructions is addressed by context sharing. Third,

the poor utilization of braid execution resources caused bysingle-instruction

braids is addressed by heterogeneous execution resources.

1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 character-

izes the use of program values, introduces the concept of braids, and analyzes braid

characteristics. Chapter 3 presents the compiler, instruction set architecture, and

microarchitecture requirements for processing braids. Chapter 4 describes the sim-

ulation infrastructure used in this dissertation and analyzes the performance results

of processing braids. Chapter 5 suggests three optimizations to address three bottle-

necks of the braid microarchitecture. Chapter 6 analyzes thehardware and software

complexity of the braid microarchitecture. Chapter 7 compares and contrasts the

braid microarchitecture with other processing paradigms and proposals. Chapter 8

concludes and discusses the future research directions of processing braids.

7

Chapter 2

The Braid

The compiler has an unrestricted view of the entire program dataflow graph

at compile time. It also has precise knowledge about the usages and lifetime of

each value in the program. Rather than coming up with a pure hardware solution

to simplify an execution core that can support wider issue widths, the compiler is

used to expose program dataflow and value information to the microarchitecture.

To understand how the characteristics of program values canbe exploited for more

efficient processing by the microarchitecture, this chapter characterizes the usage of

values of programs and provides insight into how the programdataflow graph can

be broken into dataflow subgraphs. A braid is defined, and an example is provided.

Braids found in programs are then characterized.

2.1 Motivation

A program is an implementation of an algorithm in a programming lan-

guage. It can be described as a dataflow graph consisting of nodes representing

instructions and arcs representing values that are passed among instructions. The

entire dataflow graph of a program is very irregular, consisting of arbitrary arcs that

connect nodes together. However, it will be shown that when the dataflow graph is

divided into smaller dataflow subgraphs, some structure andpatterns are revealed.

8

2.1.1 Distribution of Value Fanout

An experiment was performed to analyze the characteristicsof values for

all the programs in the SPEC CPU2000 benchmark suite compiledfor the Alpha

ISA. Figure 2.1 plots the distribution of the dynamic fanoutof values produced in

the benchmark programs. The fanout of a value is defined as thenumber of times

the value is read. Most values are read infrequently. On average, over 70% of the

values are used only once, and about 90% of the values are usedat most twice.

Values that are used more than three times represent only about 5% of all values.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

u
ti

o
n

>3

3

2

1

0

Figure 2.1: Distribution of Value Fanout

About 4% of the values are produced but not used. These instances are

caused by the conservative nature of the compiler. The compiler produces a value

to be used along a specific control-flow path. However, that control-flow path was

9

not traversed at runtime causing the value not to be read.

Infrequently-used values exist for a number of reasons. First, the process of

moving values to and from the stack at function call boundaries creates infrequently

used values. Moving values is required since the compiler defines a standard inter-

face for supporting parameter passing for function calls. Second, certain compiler

optimizations and transformations can increase the numberof infrequently-used

values. One such example is common sub-expression elimination. Figure 2.2a

shows an unmodified code sequence. In this example, the expressionr1 + r2 is a

common subexpression. Instances of this expression are replaced withX shown

in Figure 2.2b. This transformation converts registersr1 and r2 into single-use

values. Third, and perhaps the most common reason why many infrequently-used

values exist has to do with the specification of instructionsin a general-purpose

ISA. The compute form of an instruction generally consists of two inputs and one

output. Since the instruction encoding space is limited, itwould be impossible to

assign an instruction for every possible operation. Complexoperations must be con-

structed from a sequence of instructions as shown in Figure 2.3. The output from

one instruction is read as the input of another. Passing values between instructions

of complex operations makes them temporary.

2.1.2 Distribution of Value Lifetimes

Another characteristic of a value is its lifetime. This is defined as the num-

ber of instructions between the producer and consumer of a value. Figure 2.4 shows

the distribution of the dynamic lifetime of values producedin the benchmark pro-

grams. On average, about 80% of values have a lifetime of 32 instructions or fewer.

This translates to four or fewer processor cycles on a processor that fetches eight

instructions per cycle.

10

add r1, r2, r4

add r1, r2, r3

add r8, r9, r2

add r1, r2, r5

add r6, r7, r1

(a)

add r6, r7, r1

add r8, r9, r2

add r1, r2, X

add X, #0, r4

add X, #0, r5

(b)

Figure 2.2: Example of Common Sub-Expression Elimination (a) Original Code
Sequence (b) Optimized Code Sequence

*

+

e

b

c d

+
temporary

a = b * (c + d) + e

Figure 2.3: Composition of a Complex Operation

11

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

u
ti

o
n

>64

57-64

49-56

41-48

33-40

25-32

17-24

9-16

1-8

Figure 2.4: Distribution of Value Lifetime

12

Figures 2.1 and 2.4 show that most values have a small fanout and a short

lifetime. This suggests the entire irregular dataflow graphof the program has some

regularity to it. To exploit the regular dataflow subgraphs of the program, the com-

piler partitions the dataflow graph of the program into entities that can be more

easily processed by the microarchitecture. Although some researchers have char-

acterized the behavior of values [31] [17], they have not partitioned the program

dataflow graph based on these realizations.

2.2 The Braid

A braid is a dataflow subgraph of a program contained wholly within a ba-

sic block. A braid has instructions with external inputs andexternal outputs. These

values are communicated with instructions from other braids. A braid also has in-

ternal values. These values are communicated among instructions within the braid.

Since a braid is a dataflow subgraph, it has an instruction-level parallelism that is

generally greater than one.

Figure 2.5a shows a snippet of C source code from thelife analysis

function in the gcc benchmark program from the SPEC CPU2000 benchmark suite.

Figure 2.5b shows the assembly code of the basic block corresponding to lines 1

through 8 of the source code. The three different color shades identify three disjoint

dataflow subgraphs within the basic block. A dataflow graph ofthe corresponding

assembly code is shown in Figure 2.5c. Again, the three different color shades

identify the same three disjoint dataflow subgraphs. The arrows indicate data de-

pendencies where solid lines represent values communicated internally within the

dataflow subgraph, and dashed lines represent values communicated externally to

and from the dataflow subgraph. Each of these dataflow subgraphs represents a dif-

ferent braid. Thus, the basic block in this example is partitioned into three braids.

13

Each braid corresponds to one operation being performed in the high-level source

code. The assembly code of braid 1 corresponds to the work being done by lines

4 through 8 of the source code. This braid has six external inputs, one external

output, and eleven internal values. The assembly code of braid 2 corresponds to

the increment of the induction variable in thefor statement. This braid has one

external input, one external output, and one internal value. Braid 3 consists of a

single lda instruction with one external input, one external output, and no internal

values. It is a single-instruction braid.

2.3 Braid Characteristics

Figure 2.5b shows that a basic block contains instructions for specifying one

or more high-level operations in the source code. Since eachone of these high-level

operations corresponds to a braid, one or more braids exist within a basic block. The

first characteristic of braids measured is the number of braids per basic block for all

the SPEC CPU2000 benchmark programs. This is shown in Table 2.1. On average,

the basic block of the integer benchmark programs consists of 2.8 braids, and the

basic block of the floating point benchmark programs consists of 4.2 braids. These

numbers are skewed by the presence of single-instruction braids. When single-

instruction braids are factored out, the average number of braids per basic block

falls to 1.15 and 1.89 for the integer and floating point benchmark programs re-

spectively. This is shown in the column labeled with an asterisk. Single-instruction

braids account for 14% of all instructions. 12% of the single-instruction braids are

branch and NOP instructions. These single-instruction braids are present due to the

experimental analysis with preexisting program binaries generated by a non-braid-

aware compiler.

To put the number of braids per basic block in perspective, Table 2.2 shows

14

1: for (j = 0; j < regset_size; j++)
2: {
3: register REGSET_ELT_TYPE x
4: = (basic_block_new_live_at_end[i][j]
5: & ˜basic_block_live_at_end[i][j]);
6: if (x)
7: consider = 1;
8: if (x & basic_block_significant[i][j])
9: {
10: must_rescan = 1;
11: consider = 1;
12: break;
13: }
14: }

(a)

0x14 addq a0, t4, t1
0x18 addq t8, t4, t2
0x1c ldl t3, 0(t0)
0x20 addl t5, #1, t5
0x24 ldl t0, 0(t1)
0x28 cmpeq t9, t5, t7
0x2c ldl t1, 0(t2)
0x30 lda t4, 4(t4)
0x34 andnot t3, t0, t0
0x38 addl zero, t0, t0
0x3c and t0, t1, t1
0x40 zapnot t1, #15, t1
0x44 cmovne t0, #1, t6
0x48 bne t1, target

0x10 addq a1, t4, t0

(b)

addq

ldl

addq

ldl

addl

andnot

cmovne and

ldl

addq

zapnot

bne lda

cmpeq

addl

braid 2

braid 3

braid 1

(c)

Figure 2.5: Example Braids (a) Snippet of C Source Code from the
life analysis Function in gcc (b) Assembly Code of Basic Block (c) Dataflow
Graph of Basic Block

15

Integer
benchmarks braids braids∗

bzip2 2.6 1.31
crafty 2.6 1.13

eon 4.2 1.44
gap 2.4 1.16
gcc 2.4 0.95

gzip 2.6 1.23
mcf 2.0 0.62

parser 2.7 1.00
perlbmk 2.8 1.25

twolf 3.0 1.31
vortex 3.5 1.40

vpr 2.8 1.03
amean 2.8 1.15

Floating Point
benchmarks braids braids∗

ammp 2.0 1.25
applu 6.2 2.08

apsi 5.0 1.76
art 2.9 1.30

equake 2.5 1.22
facerec 2.7 1.11
fma3d 2.8 1.18
galgel 5.8 2.10
lucas 4.0 1.95
mesa 2.8 1.17

mgrid 7.6 5.25
sixtrack 3.1 1.20

swim 8.2 3.45
wupwise 3.7 1.40

amean 4.2 1.89

Table 2.1: Braids per Basic Block,∗Braids per Basic Block Ignoring Single-
Instruction Braids

16

the average number of instructions in a basic block for all the benchmark programs.

On average, the integer programs have basic blocks consisting of 7.0 instructions,

and the floating point programs have basic blocks consistingof 14.3 instructions.

The streaming nature of the floating point benchmark programs causes their basic

block to be larger.

Integer
benchmarks instructions

bzip2 8.3
crafty 8.0

eon 8.4
gap 6.0
gcc 5.5

gzip 8.7
mcf 3.9

parser 5.8
perlbmk 6.5

twolf 8.7
vortex 7.2

vpr 7.1
amean 7.0

Floating Point
benchmarks instructions

ammp 5.5
applu 16.9

apsi 13.1
art 7.6

equake 6.2
facerec 5.8
fma3d 7.7
galgel 11.7
lucas 17.2
mesa 5.9

mgrid 53.3
sixtrack 7.1

swim 31.8
wupwise 10.2

amean 14.3

Table 2.2: Instructions per Basic Block

The next characteristic of braids measured is size and width. The size of a

braid is computed by counting the number of instructions in the braid. The width

of a braid measures the instruction-level parallelism of a braid. It is computed

by dividing the size of a braid by the number of instructions along the longest

dependency chain, also known as the critical path of a braid.Table 2.3 shows the

size and width of braids for all the benchmark programs. On average, the braids in

the integer benchmark programs have a size of 4.7 instructions and a width of 1.1.

17

The braids in the floating point benchmark programs have a size of 5.4 instructions

and a width of 1.4 instructions. Since the floating point benchmark programs have

larger basic blocks, it is not surprising to find larger braidsizes. It is encouraging

to see the average width of the braids in the floating point benchmark programs

remains similar to that of the braids in the integer benchmark programs.

Integer
benchmarks size width

bzip2 5.4 1.1
crafty 5.8 1.2

eon 4.0 1.2
gap 4.1 1.1
gcc 4.3 1.1

gzip 6.0 1.1
mcf 4.1 1.0

parser 4.2 1.1
perlbmk 3.9 1.2

twolf 5.3 1.1
vortex 3.7 1.2

vpr 5.1 1.2
amean 4.7 1.1

Floating Point
benchmarks size width

ammp 3.8 1.1
applu 6.2 1.5

apsi 5.6 1.4
art 4.6 1.0

equake 4.0 1.1
facerec 3.8 1.2
fma3d 5.1 1.2
galgel 3.8 1.1
lucas 7.7 2.0
mesa 3.7 1.1

mgrid 9.7 3.5
sixtrack 4.3 1.2

swim 7.8 1.6
wupwise 5.6 1.3

amean 5.4 1.4

Table 2.3: Braid Size and Width

Another characteristic of braids measures the number of braid dependen-

cies. Table 2.4 shows the number of internal values, external inputs, and external

outputs of braids. This result provides a sense of the potential communication sav-

ings that can be provided by the braid microarchitecture. Onaverage, the integer

benchmark programs have 4.0 internal values, 2.3 external inputs, and 1.0 external

output. The number of inputs and outputs is not unlike the operand specifications

of a two-source compute instruction. The floating point benchmark programs have

18

7.6 internal values, 4.0 external inputs, and 1.1 external outputs. The benchmark

programs lucas, mgrid, and swim have a significantly larger number of external in-

puts than the rest of the benchmark programs. If these programs are removed from

the calculation of the arithmetic mean, floating point benchmark programs have an

average of 4.3 internal values, 2.1 external inputs, and 0.9external outputs. This is

shown in the last row indicated by the asterisk. The number ofexternal inputs and

outputs is very similar to that of the integer benchmark programs.

Integer
internal external external

benchmarks values inputs outputs
bzip2 5.5 2.7 1.1
crafty 5.6 2.6 1.0

eon 3.3 2.1 0.9
gap 3.3 1.9 0.9
gcc 3.4 2.0 0.8

gzip 5.5 3.3 1.3
mcf 3.1 2.4 0.9

parser 3.3 2.2 0.9
perlbmk 3.2 1.8 1.1

twolf 5.0 2.6 0.9
vortex 2.7 1.9 0.8

vpr 4.3 2.5 1.3
amean 4.0 2.3 1.0

Floating Point
internal external external

benchmarks values inputs outputs
ammp 3.1 2.2 0.8
applu 7.2 3.9 0.8

apsi 6.5 3.8 1.1
art 3.7 3.0 0.7

equake 3.2 2.1 0.8
facerec 3.4 2.3 1.0
fma3d 5.0 2.6 1.0
galgel 3.0 3.2 0.8
lucas 10.7 4.8 1.4
mesa 2.8 2.1 0.7

mgrid 34.0 12.8 3.4
sixtrack 3.6 2.5 1.0

swim 14.8 7.5 0.9
wupwise 6.0 2.6 1.0

amean 7.6 4.0 1.1
amean∗ 4.3 2.1 0.9

Table 2.4: Internal and External Braid Inputs and Outputs,∗Arithmetic Mean with-
out lucas, mgrid, and swim

19

Chapter 3

Implementation

Braid processing requires the compiler to play a key role in orchestrating the

execution of a program. This chapter discusses the changes required at three lev-

els of transformation to efficiently implement braid processing. First, the compiler

must identify braids from the program dataflow. Second, the instruction set archi-

tecture must convey braid information from the compiler to the microarchitecture.

Third, the microarchitecture must support braids to exploit its characteristics.

3.1 Compiler Requirements

A braid is an entity that is identified at compile time. Braidsdo not span

basic block boundaries. This restriction maintains implementation simplicity and

avoids unnecessary code duplication. Allowing braids to span control-flow bound-

aries introduces a set of problems due to the existence of control flow merge and

fork points. Suppose at compile time, a braid was formed across two consecutive

basic blocks. At runtime, if the second basic block did not follow the first basic

block, then the operands specified as external and internal by the compiler would

most likely no longer be valid. By restricting braids to reside completely within

a single basic block, problems associated with the changingruntime control-flow

path can be avoided.

20

3.1.1 Profiling and Translation

This dissertation used binary profiling analysis and binarytranslation to

identify and specify braids. This approach can be used if source code is not read-

ily available or if recompilation is not feasible. The end result of performing binary

profiling and translation is a braid-annotated binary comparable to what is produced

by a braid-aware compiler. Figure 3.1 shows a diagram of the profiling and trans-

lation workflow. In this diagram, black arrows indicate the ordering of steps for

the profiling and translation process, and white arrows indicate information that is

passed between steps. Four steps are carried out to generatea braid-annotated bi-

nary that will be used by the microarchitecture simulation:basic block analysis,

register usage analysis, braid identification, and binary translation. The first three

steps require profiling, and the fourth step requires translating.

The first step of binary profiling is basic block analysis. This step identifies

the basic blocks generated by the compiler by identifying basic block boundaries.

Basic block identification requires two passes. In the first pass, the program binary

is scanned instruction by instruction to determine the static targets of control-flow

instructions. In the second pass, the program is profiled to determine the dynamic

targets of control-flow instructions. Both passes are necessary to generate a more

complete breakdown of the program into basic blocks. The first pass is necessary

because a branch may redirect control into the middle of a block of code. Without

the first pass, a block of code will look like one large basic block instead of two

smaller ones. The second pass is necessary because static analysis cannot identify

the targets of indirect branches. Basic block analysis is necessary to enable the

formation of braids since a braid must reside completely within a basic block. The

information gathered during basic block analysis is written to the block database.

The second step of binary profiling is register usage analysis. This step

21

Basic Block
Analysis

Register Usage
Analysis

Register Usage
Database

Braid
Identification

Braid
Database

Binary

Simulation

Translation

Profile

Translate

Block
Database

Microarchitecture

Figure 3.1: Profiling and Translation Workflow

22

reconstructs the dataflow graph of the program, mimicking the dataflow analysis

phase of the compiler. As each instruction is encountered inthe profiling process, a

data structure associated with each operand of the instruction tracks its production

or use. For each destination operand, all of its consumers are logged. For each

source operand, all of its producers are logged. The information gathered during

register usage analysis is written to the register usage database.

The third step of binary profiling is braid identification. Using the infor-

mation contained in the block database from the first step andthe register usage

database from the second step, this step partitions the dataflow graph of a basic

block into dataflow subgraphs. A graph coloring algorithm isapplied to the in-

structions in the basic block. All instructions within the basic block do not have a

color associated with them at the start of the algorithm. Thefirst instruction with-

out a color in the basic block is located and a color is associated with it. Next, the

instruction with a color propagates its color to all of its children and parent instruc-

tions in the basic block. The children and parent instructions are identified using

the information gathered during the register usage analysis. The propagation of

color does not propagate to instructions beyond the basic block boundaries identi-

fied during basic block analysis. Continuing the algorithm, each colored instruction

propagates its color to its children and parents until the entire dataflow subgraph

rooted from the original instruction in the basic block is colored. The set of instruc-

tions so colored identifies exactly one braid in the basic block. Using a new color,

this algorithm repeats with the next instruction without a color. The end result is

the identification of another braid inside the basic block. The algorithm terminates

when all the instructions within the basic block are associated with a color. After

the set of braids is identified in the basic block, the braid information is to the braid

database. This step concludes the last profiling step.

23

The next step of the workflow is binary translation. This stepdoes not re-

quire profiling. This step sorts the braids within each basicblock and annotates

them to encode braid information using the information fromthe braid database

generated in the last profiling step. First, braids are sorted. This involves rear-

ranging instructions within the basic block such that instructions belonging to the

same braid are laid out as a consecutive sequence of instructions within the basic

block. Having a set of sorted braids greatly simplifies various pipeline operations.

Figure 3.2a show the original code, and Figure 3.2b show the same code sorted

by braid. Second, each instruction is annotated with a bit indicating whether the

instruction begins a new braid. Third, each operand in the instruction is annotated

with the proper bits indicating whether that operand sources the internal register file

or the external register file. Next, register name rewritingis performed separately

for the external and internal registers. Register name rewriting is performed for the

external registers across the entire program. It is also performed for the internal

registers of a braid for each braid in the program. After the binary is modified, the

result is a braid-enabled program binary capable of being processed by the braid

microarchitecture.

The last instruction slot of a basic block is always reservedfor the control-

flow instruction of a basic block if there is one. This is accomplished by rearranging

braids such that the braid containing the control-flow instruction is ordered last in

the basic block. This requirement preserves the block as onebasic block. Further-

more, this eliminates the requirement to modify branch offsets.

3.1.2 Issues with Profiling Analysis

The size of braids can be restricted by two conditions. First, the braid mi-

croarchitecture supports a fixed number of internal registers for each braid. There-

24

0x14 addq a0, t4, t1
0x18 addq t8, t4, t2
0x1c ldl t3, 0(t0)
0x20 addl t5, #1, t5
0x24 ldl t0, 0(t1)
0x28 cmpeq t9, t5, t7
0x2c ldl t1, 0(t2)
0x30 lda t4, 4(t4)
0x34 andnot t3, t0, t0
0x38 addl zero, t0, t0
0x3c and t0, t1, t1
0x40 zapnot t1, #15, t1
0x44 cmovne t0, #1, t6
0x48 bne t1, target

0x10 addq a1, t4, t0

(a)

0x10 addl t5, #1, t5
0x14 cmpeq t9, t5, t7
0x18 lda t4, 4(t4)
0x1c addq a1, t4, t0
0x20 addq a0, t4, t1
0x24 addq t8, t4, t2
0x28 ldl t3, 0(t0)
0x2c ldl t0, 0(t1)
0x30 ldl t1, 0(t2)
0x34 andnot t3, t0, t0
0x38 addl zero, t0, t0
0x3c and t0, t1, t1
0x40 zapnot t1, #15, t1
0x44 cmovne t0, #1, t6
0x48 bne t1, target

(b)

Figure 3.2: Code Scheduling (a) Original Code Schedule (b) CodeSchedule Sorted
by Braid

25

fore, the number of active internal operands of a braid must not exceed the number

of supported internal registers. As instructions are incorporated into a braid, the

working set size of the internal operands increases. Since register usage analysis

is performed, the profiling tool knows whether an instruction is the last consumer

of an operand. Knowing this allows the profiling tool to release an internal regis-

ter by allowing it to be written by another instruction. When the number of active

internal operands exceeds the number of internal registers, the braid is artificially

split into two braids. A split braid caused by this conditionaccounts for about 2%

of the braids analyzed. This situation is an artifact of performing profiling analysis

and binary translation on preexisting program binaries. A braid-aware compiler can

solve this problem by morphing the dataflow graph via software transformations.

Second, since the sorting of braids within the basic block rearranges instruc-

tions, memory instructions can be reordered. This can lead to memory dependency

violations because memory order may be violated. Most of thememory instruc-

tions access the stack. Identifying the aliasing of these operations is easy because

these memory instructions use the stack pointer as a base register. For example,

Figure 3.3 shows a store-load pair that the profiling tool canidentify as a memory

dependency. In this simple example, it is assumed that the stack pointer does not

change between the two instructions. For the rest of the store-load pairs where the

compiler cannot make such a guarantee, braids must be ordered such that the orig-

inal partial ordering of memory instructions is maintained. If this ordering cannot

be maintained while sorting braids within the basic block, the braid is split into

two braids at the location of the memory ordering violation to enable the partial

ordering. A split braid caused by this condition accounts for less than 1% of the

braids analyzed. Like the previous situation, this situation is an artifact of perform-

ing profiling analysis and binary translation on preexisting program binaries, and a

26

braid-aware compiler can easily cope with this problem.

st r1, sp, #1

ld r2, sp, #1

Figure 3.3: Identifying Memory Ordering Violations

Since profiling analysis operates on preexisting program binaries, it is lim-

ited to using the dataflow that has already been constructed by a compiler. Most of

the braids have more than one instruction. Table 3.1 shows the percent of instruc-

tions that belong to a braid with a size of two or greater usingprofiling analysis.

However, there will also be single-instruction braids. Thepercent of instructions

that belong to single-instruction braids is the converse ofthe data in Table 3.1.

Single-instruction braids do not provide any benefit for thebraid microarchitecture

since there are no internal registers. A braid-aware compiler can reduce or com-

pletely remove the number of single-instruction braids to maximize the benefit of

braid processing.

3.2 Instruction Set Architecture Requirements

Minor augmentations are made to the ISA to allow the compilerto effec-

tively convey braids to the microarchitecture. Figure 3.4 shows the specification of

a zero-destination, one-source register, and two-source register braid ISA instruc-

tions. The shaded bits represent differences from a conventional ISA instruction.

These bits have special meanings in a braid ISA instruction.Thebraid start bit, S,

associated with an instruction specifies whether the instruction is the first instruc-

tion of a braid. Thetemporary operand bit, T, associated with each source operand

specifies whether the operand obtains its value from the external register file or the

27

Integer
benchmarks percent

bzip2 84.9
crafty 81.9

eon 67.5
gap 79.2
gcc 73.6

gzip 84.6
mcf 65.2

parser 71.3
perlbmk 75.5

twolf 80.5
vortex 70.9

vpr 74.8
amean 75.8

Floating Point
benchmarks percent

ammp 86.6
applu 75.9

apsi 75.7
art 78.6

equake 78.6
facerec 71.9
fma3d 78.5
galgel 68.6
lucas 87.8
mesa 73.1

mgrid 95.6
sixtrack 72.5

swim 84.9
wupwise 77.8

amean 79.0

Table 3.1: Percent of Instructions Belonging to a Braid of Size Two or Greater

28

internal register file. Theexternal destination bit, E, and theinternal destination bit,

I , associated with each destination operand specify whetherthe instruction writes

its result to the external register file, the internal register file, or both register files.

The augmentations made to support braids in the ISA do not require increasing the

number of bits in the instructions. This is done by reinterpreting the fields from the

existing ISA instructions.

TS opcode src1 offset

Zero−destination instruction

T src1 T src2 destS opcode E I

S opcode T offsetdest src1I

Braid start bitB −

E/I −

T − Temporary operand bit

External/internal operand bits

One−source register instruction

Two−source register instruction

E

Figure 3.4: Braid Instruction Encoding

3.3 Microarchitecture Requirements

To implement braid processing, the microarchitecture requires some changes.

The braid microarchitecture must leverage the dataflow and value information con-

veyed by the compiler. The execution core of the braid microarchitecture shares

similarities with a conventional in-order microarchitecture.

29

3.3.1 Pipeline Overview

Figure 3.5 shows the block diagram of the pipeline of the braid microarchi-

tecture. The shaded regions highlight the differences froma conventional out-of-

order microarchitecture. These differences include a simpler allocator, a simpler

renaming mechanism, a distribute mechanism, a set of braid execution units, a sim-

pler bypass network, and a simpler external register file.
B

E
U

B
E

U
B

E
U

B
E

U

B
E

U
B

E
U

B
E

U

B
E

U External
Register File

Fetch

Rename

Distribute

Decode

Allocate

Bypass

Figure 3.5: Block Diagram of the Braid Microarchitecture

The front-end of the pipeline is the same as the pipeline in a conventional

out-of-order microarchitecture. A cache line is first fetched from the instruction

cache. The set of instructions fetched is known as the fetch packet. The fetch

packet contains a sequence of instructions in program order. Since the compiler has

grouped the instructions of a braid together in the binary, abraid always enter the

pipeline in its entirety before a subsequent braid enters the pipeline. That is, braids

30

enter the pipeline in program order. This is useful and is leveraged by subsequent

stages of the pipeline.

All instructions in the fetch packet are decoded as they enter the decode

stage. Decoding an instruction is performed no differentlyfrom a conventional

microarchitecture.

The allocate stage of the pipeline is responsible for assigning sequence num-

bers and allocating physical resources of various structures in the pipeline for an

instruction. If an instruction requires a resource that cannot be allocated due to a

lack of entries, this stage stalls until a free entry becomesavailable. First, each

instruction in the fetch packet is assigned a sequence number. A sequence num-

ber is a unique number identifying the ordering of the instruction in the sequential

instruction stream. This enables certain microarchitectural functions like memory

disambiguation. Second, each instruction in the fetch packet is allocated an en-

try in the reorder buffer. The reorder buffer maintains the semantics of in-order

execution regardless of how instructions are executed in the execution core. Third,

each instruction in the fetch packet requiring an external destination operand is allo-

cated an entry in the external register file. An instruction requiring only an internal

destination operand does not require any entries to be allocated. The allocator iden-

tifies the need to allocate registers by examining the external/internal operand bits

in the instruction. This is different from a conventional microarchitecture where all

instructions with a destination operand require a physicalregister entry to be allo-

cated. Fourth, each memory instruction in the fetch packet is allocated an entry in

the load-store queue.

The next stage of the pipeline is the operand rename stage. Operand renam-

ing removes anti and output dependencies in the code due to the use of a limited

architectural register space in an out-of-order design. Itis performed using the reg-

31

ister alias table (RAT) which maps architectural register names to physical register

names. The RAT contains one entry for each architectural register. In the braid

microarchitecture, only the external operands of an instruction need to be renamed.

This is because braids can execute out of order with respect to one another. Since

the instructions inside a braid are executed in order, the internal operands do not

need to be renamed. Like the allocate stage, the rename stagedetermines external

operands by examining the temporary operand and external/internal operand bits

in the instruction. Since not all of the operands of instructions in a fetch packet

need to be renamed, the renaming mechanism does not need to support the entire

fetch bandwidth as compared to a conventional microarchitecture. If there are more

external operands to be renamed than the rename bandwidth, the renaming mecha-

nism takes multiple cycles to process the fetch packet stalling the stages up to this

point. A braid-aware compiler can enforce this requirement.

After operand renaming, the fetch packet enters the distribute stage where

instructions in a braid are distributed to one of the braid execution units (BEU). In

order to receive a braid, a BEU must be ready. Being ready is not the same as being

empty. The BEU is ready if it is both empty and has the available context to process

a new braid. That is, a BEU is ready if it does not have an in-flight braid. The use

of the braid start bit in the instruction greatly simplifies the identification of braid

boundaries. When a braid start bit is encountered, the distribute mechanism directs

the instructions of the new braid to a ready BEU. If no BEUs areready, this stage

stalls until a BEU becomes available. The end of a braid is identified when a new

braid is encountered. At this point, the BEU of the braid thatwas last distributed is

notified that it has received the last instruction of its braid.

The BEUs contain the scheduling and execution stages of the pipeline. The

internals of a BEU will be discussed in detail.

32

The external register file contains the values that are passed between differ-

ent braids. These values are global in the view of the program. Compared to the

register file in a conventional design, there are fewer entries in the external regis-

ter file due to more efficient partitioning of the register space. Fewer entries mean

fewer cycles needed for access. Furthermore, the smaller set of external operands

puts a lighter demand on the ports of the external register file. Thus, the external

register file requires fewer read and write ports.

The bypass stage of the pipeline corresponds to the bypass network. This

network plays an important role in high performance designs. Writing to the reg-

ister file may be pipelined, taking multiple cycles. A readerof an operand being

written cannot access the value until the pipelined write completes. The bypass net-

work provides values to readers before the pipelined write completes. The number

of levels in the bypass network corresponds to the number of cycles needed to com-

plete a write into the register file. By reducing the number ofregister file access

cycles, the number of levels in the bypass network is also reduced. In a conven-

tional design, each level of the bypass network supports thecapability of bypassing

n values per cycle wheren is the issue width. In the braid microarchitecture, fewer

values external are generated per cycle. Thus, a bypass level needs to support only

a limited bandwidth.

Aside from the execution core, the rest of the pipeline is very similar to that

of a conventional design. A conventional memory disambiguation structure such as

the load-store queue is used to enforce memory ordering at runtime.

When an instruction becomes the oldest instruction in the reorder buffer,

it is considered for retirement. An instruction is eligiblefor retirement if it is on

the correct path, is the oldest instruction in the machine, completed execution, and

did not generate an exception. When an instruction retires, it frees the resources

33

allocated to it during the allocate stage including the reorder buffer entry, an external

register if one was allocated, and an entry from the load-store queue if one was

allocated. These freed entries go back into the free pool making them available for

new instructions to use.

3.3.2 Execution Core Overview

Figure 3.6 shows a more detailed view of a BEU. The shaded regions high-

light the differences from a conventional out-of-order design. These differences

include a FIFO scheduler, a busy-bit vector, and a simpler internal register file.

There are also two functional units within a BEU.

Busy−Bit
Vector

Bypass

Distribute

Register File
Internal

Register File
External

In
st

 Q
ue

ue

Figure 3.6: The Braid Execution Unit

When the instructions of a braid are distributed to a BEU, theyfirst enter an

instruction queue. This queue serves as a waiting area for newly issued1 instruc-

1In this dissertation, issue refers to the process of inserting an instruction into the scheduling

34

tions. It is necessary for this queue to be large enough to accommodate most of

the braids. An insufficient queue size can unnecessarily stall the front-end of the

pipeline.

Two instructions located at the head of the instruction queue are examined

for readiness and considered for in-order schedule. This 2-entry window is known

as the scheduling window. Since the ready instructions of a braid are likely located

at the head of the FIFO, instructions in the non-leaf nodes ofthe subgraph need not

be examined for execution. The structure of a FIFO queue supports the character-

istics of a braid dataflow which is long and narrow. Because ofthis characteristic,

a small scheduling window is sufficient to efficiently process a braid.

The busy-bit vector maintains the availability of values inthe external reg-

ister file. It is similar to the scoreboard used in the CDC 6600 [70] and the busy-bit

table used in the MIPS R10000 [75]. This vector has a bit for each external register.

Each cycle, the instructions in the scheduling window consult the busy-bit vector

for the availability of their external operands. Internal operands are guaranteed to

be ready due to the in-order execution of the braid. Externaloperands are produced

by other braids and need to be checked for their availability. When all the operands

of an instruction are available, the instruction is scheduled to one of the functional

units for execution.

Each operand of an instruction is read from one of four locations: the in-

struction queue in the case of immediate operands, the internal register file, the

external register file, or the bypass network. An instruction can write its result in

the internal register file, the external register file, or both locations.

window. Schedule refers to the process of sending an instruction from the scheduling window to an
execution unit.

35

The internal register file stores the internal operands of a braid. It is a very

small structure containing only a few entries. The internalregister file is designed

with enough ports to support two instructions that can execute every cycle. Thus,

four read and two write ports are needed. Because the values in the internal reg-

ister file are not required outside the braid, they are safelydiscarded once the last

instruction of a braid executes. These values do not need to be written back to the

external register file.

3.3.3 Recoveries and Exceptions

Braids do not span control-flow boundaries. Therefore, recovering from a

branch misprediction is a simple matter. This assumes the microarchitecture sup-

ports checkpoint recovery [35] like the MIPS R1000 [75] and the Compaq Alpha

21264 [33]. Previous researchers have shown that checkpoint recovery can be easily

implemented [16] and is a technique that continues to be usedin research [67] [66]

[5] [24]. Since the processor already creates checkpoints for branch instructions, no

additional structures or storage is required to support braids. In fact, checkpoints

require less state in the braid microarchitecture because internal values of a basic

block are not needed in the subsequent basic block. Therefore, internal register

values do not need to be stored in the checkpoint. When a recovery initiates, the

processor restores the checkpoint taken prior to the branchmisprediction and begins

execution along the correct path.

Handling exceptions is also a simple procedure but requiresslightly more

effort. When an exception is encountered, state is rolled back to the most recent

checkpoint prior to the exception. The processor enters a special exception pro-

cessing mode. In this mode, all BEUs are disabled except for one. All instructions

are sent to the predetermined BEU as shown in Figure 3.7. Since a BEU contains

36

an in-order scheduler, forcing instructions to one BEU turns the processor into an

in-order processor. Internal register operands access theinternal register file of the

BEU, and external register operands access the external register file. When the ex-

cepting instruction is encountered, the exception handleris invoked. To access the

internal register state, the exception handler does not require any changes. It has

access to the internal register file through normal operand addressing. When the

exception handler routine returns, the processor resumes normal execution mode

from the same restored checkpoint. Simplicity was chosen over speed for handling

exceptions due to the rarity of their occurrences.

External
Register File

Fetch

Rename

Decode

Allocate

Bypass

Distribute

B
E

U
B

E
U

B
E

U
B

E
U

B
E

U
B

E
U

B
E

U
B

E
U

Figure 3.7: Block Diagram of Instruction Flow During Exception Processing Mode

37

3.4 Alternative Considerations

3.4.1 Using a Compiler

If the source code is readily available and recompilation isfeasible, the com-

piler can offer the most flexible way to identify the most beneficial braids. A com-

piler that is knowledgeable of the underlying braid microarchitecture will produce

braids that can be more efficiently processed by the microarchitecture. Loop trans-

formations, inter-procedural analysis, and code optimizations must all take into ac-

count the physical makeup of braids.

Forming a braid builds upon the information gathered from two commonly-

used compiler dataflow analysis techniques implemented in all compilers. These

are reaching definitions and liveness analyses. These two techniques allow the com-

piler to identify the usage information of values in the program. The compiler uses

the same dataflow graph coloring algorithm presented in the profiling analysis to

partition the program dataflow into braids. As in the profiling analysis, a limit on

the number of active internal operands within a braid is enforced.

Once braids are identified for a given basic block, the compiler performs

register allocation. Since the register set is partitionedinto two disjoint sets, register

allocation is performed for each set separately. Register allocation for the external

operands is identical to traditional register allocation.It is performed for the en-

tire procedure. However, there are fewer operands which require external register

names. Spill and fill code are inserted when the working set size of external values

do not fit within the set of external registers. Register allocation for the internal

registers is performed within a braid for all the braids in the program. The compiler

has already guaranteed that the maximum number of active internal operands will

not exceed the number of internal registers.

38

Braids are sorted and scheduled in the basic block. Like profiling and bi-

nary translation, the compiler rearranges instructions such that instructions from the

same braid are laid out as a sequence of consecutive instructions within the basic

block. Braids are ordered to avoid memory ordering violations.

3.4.2 Compiling Versus Profiling

Braids can be identified by the compiler if source code is available. Oth-

erwise, braids must be identified by a binary profiling tool. The compiler requires

compiling of code whereas the binary profiling tool requiresprofiling. There are

tradeoffs with either approach.

Generating braids using the compiler has several advantages over profiling

preexisting binaries. First, the compiler has the ability to transform the dataflow

graph of the algorithm through compiler optimizations and transformations. This

is useful because the compiler is aware of the underlying microarchitecture and

thus can produce longer and narrower braids. The compiler can also transform the

dataflow graph to eliminate single-instruction braids. Theprofiling analysis method

cannot transform the dataflow graph and is limited to producing braids from the

dataflow graph in the preexisting program binary.

Second, since the compiler has the ability to perform register allocation, it

can make better use of both the external and internal register sets. By performing

register allocation for the external registers separatelyfrom the internal registers,

the compiler can minimize the amount of spill and fill code which reduces memory

accesses.

Third, since the compiler has more knowledge of the program dataflow than

the microarchitecture, it has better knowledge of the memory operations of a pro-

gram. The better knowledge allows the compiler to have more flexibility in reorder-

39

ing memory instructions forming more meaningful braids.

Generating braids using the profiling method has its advantages. There are

many preexisting program binaries and libraries that make recompilation infeasible.

One reason is due to the unavailability of source code. Profiling analysis can be an

effective method of transforming these binaries into a suitable form for execution

on the braid microarchitecture.

40

Chapter 4

Methodology and Performance

This chapter discusses the simulation infrastructure usedto model the braid

microarchitecture and presents a performance analysis of the braid microarchitec-

ture. First, details of the simulator and input sets are presented as well as the param-

eters chosen to represent an aggressive high-performance future processor. Second,

the performance sensitivity of various design parameters in the execution core is

analyzed. Third, the braid microarchitecture is compared with other microarchitec-

tural paradigms.

4.1 Machine Model

To show how braids can be useful for the design of future aggressive pro-

cessors, the experiments were done on 8-wide configurations. For comparison, the

results for 4-wide and 16-wide configurations are also presented. Table 4.1 shows

the detailed baseline configuration of an aggressive conventional out-of-order mi-

croarchitecture and the braid microarchitecture studied in this dissertation.

4.1.1 Shared Front and Back-Ends

Both the baselines share a similar front and back-end. The front-end is ca-

pable of fetching up to eight instructions and predicting upto three branches per

cycle. This aggressive front-end is intended to mimic the advanced microarchitec-

41

Common Baseline Parameters
Instruction Cache 64KB, 4-way associative, 3-cycle latency
Branch Predictor perceptron with 64-bit history and 512-entry weight ta-

ble
Fetch Width 8 instructions, capable of processing 3 branches per cy-

cle
Issue Width 8 instructions
Instruction Window 256-entry ROB
L1 Data Caches 64KB, 2-way associative L1 data cache with 3-cycle la-

tency
L2 Cache 1MB, 8-way associative unified L2 data cache with 6-

cycle latency
Main Memory 400-cycle latency

Out-of-Order Baseline Parameters
Misprediction Penalty minimum 23 cycles
Allocate 8 operands
Rename 16 source operands and 8 destination operands
Scheduler 8 distributed 16-entry schedulers
Functional Unit 8 general purpose
Register File 256 entries with 16 read ports and 8 write ports
Bypass Network 3 levels, each with full paths

Braid Baseline Parameters
Misprediction Penalty minimum 19 cycles
Allocate 4 operands
Rename 8 source operands and 4 destination operands
BEU 8
FIFO 16-entry instruction queue per BEU
Scheduling Window 2-entry in-order scheduler per BEU
Busy-Bit Vector 8 bits per BEU
Functional Unit 2 general-purpose units per BEU
Internal Register File 8 entries with 4 read ports and 2 write ports per BEU
External Register File 8 entries with 6 read ports and 3 write ports
Bypass Network 1 level with limited paths

Table 4.1: Baseline Processor Configurations

42

ture capabilities of future processors which should provide higher fetch bandwidth.

Mechanisms such as the trace cache can already be found in thePentium 4 pro-

cessor [34] to provide higher fetch bandwidth than is possible with an instruction

cache alone.

There is another reason why an aggressive front-end is needed. Since this

dissertation focuses on the design of the execution core, the execution core must be

stressed. An aggressive front-end accomplishes this by notconstraining the number

of instructions delivered to the execution core (see for example, Salverda and Zilles

[60]).

Both baselines also share a similar retirement mechanism. Each supports

256 in-flight instructions via a 256-entry ROB.

4.1.2 Misprediction Pipeline

Figure 4.1a shows the breakdown of the 23-cycle misprediction pipeline of

the conventional out-of-order baseline. A branch instruction is fetched, decoded,

allocated, and renamed in the front-end of the pipeline. Then it is distributed and

queued in the execution core. Next, the instruction schedules for execution, reads

the register file, and executes. The branch condition is verified, and upon a mispre-

diction, the front-end is notified to redirect fetch.

Fetch

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2019 21 22

Ren Que SchAllocDecode Exe ChkRF

23

Dist Drv

(a)

Fetch

13 14 15 161 2 3 4 5 6 7 8 9 10 11 12 17 18 19

Ren Dist Que Sch RF Exe Chk DrvDecode Alloc

(b)

Figure 4.1: Misprediction Pipeline (a) Baseline (b) Braid

43

Figure 4.1b shows the breakdown of the 19-cycle misprediction pipeline of

the braid microarchitecture. The 4 cycle difference between the two misprediction

pipelines comes from a reduction of 2 stages in operand rename and a reduction of

2 stages in register file access. These savings are attributed to the smaller area and

lower bandwidth designs of the structures in these stages.

4.1.3 Out-of-Order Execution Core

The out-of-order baseline has a minimum branch misprediction penalty of

23 cycles. The allocator is capable of processing eight instructions per cycle. The

renaming mechanism is capable of processing 16 source operands and eight desti-

nation operands per cycle. There are eight distributed 16-entry out-of-order sched-

ulers and eight general-purpose functional units. There isa 256-entry monolithic

register file with 16 read ports and eight write ports. The bypass network consists

of three levels with a full set of paths at each level.

4.1.4 Braid Execution Core

Because of the design simplification of the braid microarchitecture, it has a

pipeline that is shorter by four stages than that of a comparable conventional design.

The savings come from a shorter operand rename stage and a shorter register access

stage. The braid microarchitecture baseline has a minimum branch misprediction

penalty of 19 cycles. The allocator is capable of processingfour instructions per

cycle. The renaming mechanism is capable of processing eight source operands

and four destination operands per cycle. There are eight BEUs. Each BEU contains

a 16-entry FIFO instruction queue with a 2-entry instruction scheduling window.

Each BEU also has an 8-bit busy-bit vector, two functional units, and a small 8-

entry internal register file with four read ports and two write ports. There is an 8-

44

entry global external register file with six read ports and two write ports. The bypass

network consists of one level with a limited set of paths. Forthe experiments, clock

frequency was not varied.

4.1.5 Shared Memory System

The memory hierarchy consists of split L1 instruction and data caches, a

unified L2 instruction and data cache, and main memory. The L1instruction cache

is a 4-way set associative 64KB cache with a 64-byte line size. The L1 data cache is

a direct mapped 64KB cache with a 64-byte line size. The L1 instruction cache has

a 1-cycle access latency while the L1 data cache has a 3-cycleaccess latency. The

access time does not include the extra cycle of address generation required for load

and store instructions. The unified L2 cache is an 8-way set associative 1MB cache.

It has a 64-byte line size and a 6-cycle access latency. The L2cache is modeled

as having eight banks interleaved on 64-byte boundaries. Main memory has a 400-

cycle minimum access latency and is modeled as having 32 banks interleaved on

64-byte boundaries.

A memory request that misses in either L1 cache is allocated amiss request

buffer entry. There are 32 buffers available for handling outstanding misses. A

new miss that maps to the same line as an outstanding miss can piggyback on the

outstanding miss. A memory request that misses in the L2 cache is allocated a

memory request buffer entry. There are 32 buffers for handling L2 cache misses.

Piggybacking is also allowed at this level to reduce the number of memory requests.

Memory paging is not modeled. Therefore, there are neither translation

lookaside buffer accesses nor page faults. A conventional memory disambiguation

structure enforces memory ordering at runtime. The load-store queue supports 32

entries.

45

4.2 Simulator

The experiments in this dissertation were carried out on thesecond version

of an in-house, cycle-accurate, execution-driven simulator called SCARAB [20].

This new version has been rewritten in C++ to take advantage ofsome of the bene-

fits provided by the C++ language. SCARAB allows various simulation models to

coexist within the same simulator. Student A can work with one model that does

not interfere with student B who is working with another model. The SCARAB

simulation infrastructure is also modularized. Componentsof the pipeline can be

easily added, removed, replaced, and shared among different models. The simula-

tion speed of SCARAB is optimized by utilizing tuned data structures. It achieves

simulation speeds faster than the SimpleScalar simulator [15].

SCARAB processes elf64-alpha binaries produced for the Linux operating

system. System calls in the program are emulated by the simulator on the host

machine following the POSIX standard. Operating system code is not simulated.

Exceptions are not handled due to their rarity.

The simulator is fully capable of executing the wrong path and producing

wrong-path values. These values are correctly generated but will not commit into

the architectural state. Various researchers have found that processing wrong-path

instructions have a non-trivial impact on IPC by prefetching useful data [6] [55].

Table 4.2 shows the latencies of various classes of instructions. The func-

tional units are fully pipelined for every operation exceptfor floating point divide.

4.3 Benchmarks

The SPEC CPU2000 benchmark suite [2] was chosen for the experiments.

This suite consists of 26 benchmarks programs of which 12 areinteger and 14 are

46

Instruction Class Latency (in cycles)
Integer arithmetic 1
Integer multiply 8, pipelined
Floating point arithmetic 4, pipelined
Floating point divide 16
Logical 1
Memory 3 minimum
Memory forwarding 3 minimum
All others 1

Table 4.2: Instruction Latencies

floating point. The programs were compiled with gcc 4.0.1 [1]on Linux for the

Alpha EV6 [64] ISA with the-O2 optimization flag and feedback profiling en-

abled. All benchmark programs were run for 500 million instructions using the

MinneSPEC reduced input sets [42]. The reduced input sets approximate the pro-

gram behavior when running with the SPEC reference input sets but allow the pro-

grams to complete within a reasonable amount of time. Table 4.3 lists for each

benchmark program its name, description, and the input set used.

4.4 Sensitivity Studies Varying Braid Execution Unit Parame-
ters

Various design parameters were considered for the execution core of the

braid microarchitecture. These include the number of BEUs,the size of the FIFO

queue, the size of the FIFO scheduling window, and the numberof functional units

per BEU. The following experiments are sensitivity studiesshowing the effects of

each design parameter. The control configuration is the braid microarchitecture

with eight BEUs. Each BEU contains a 16-entry FIFO instruction queue with a

2-entry in-order scheduling window and two functional units. In each experiment,

47

Benchmark
Name

Description Input Set

bzip2 Compression large reduced
source

crafty Game Playing: Chess large reduced
eon Computer Visualization large reduced
gap Group Theory, Interpreter large reduced
gcc C Programming Language Compiler large reduced

cp-decl.i
gzip Compression large reduced
mcf Combinatorial Optimization large reduced
parser Word Processing large reduced
perlbmk PERL Programming Language large reduced
twolf Place and Route Simulator large reduced
vortex Object-oriented Database large reduced

In
te

ge
r

vpr FPGA Circuit Placement and Routing large reduced
place

wupwise Physics / Quantum Chromodynamics large reduced
swim Shallow Water Modeling large reduced
mgrid Multi-grid Solver: 3D Potential Field large reduced
applu Parabolic / Elliptic Partial Differential Equa-

tions
large reduced

mesa 3-D Graphics Library large reduced
galgel Computational Fluid Dynamics large reduced
art Image Recognition / Neural Networks large reduced
equake Seismic Wave Propagation Simulation large reduced
facerec Image Processing: Face Recognition large reduced
ammp Computational Chemistry large reduced
lucas Number Theory / Primality Testing large reduced
fma3d Finite-element Crash Simulation large reduced
sixtrack High Energy Nuclear Physics Accelerator

Design
large reduced

F
lo

at
in

g
P

oi
nt

apsi Meteorology: Pollutant Distribution large reduced

Table 4.3: SPEC CPU2000 Benchmark Descriptions and Input Sets

48

one of the parameters was varied while the other parameters were held constant. All

the results were normalized to the performance of the 8-widebaseline conventional

out-of-order configuration. This is indicated by the thick line on the 1.0 mark on

the y-axis.

Figure 4.2 plots the performance as a function of the number of BEUs. This

result confirms there are more braids ready to execute than the number of BEUs

in the microarchitecture. Increasing the number of BEUs improves performance in

two ways. First, adding more BEUs increases the number of execution resources.

More execution resources allow more braids to execute in parallel. Second, a long-

latency instruction stalls the BEU, causing the BEU to be idle. For example, if an

instruction waiting to be scheduled is dependent on an instruction that misses in the

cache, the waiting instruction cannot execute which in turncauses the functional

units in the BEU to be idle. Having more BEUs allows younger braids with ready

external operands to execute ahead of older braids that are stalled. Using eight

BEUs, there is a 8.3% performance drop from the baseline out-of-order microar-

chitecture.

There is a constraint on the number of BEUs that can be supported in the

braid microarchitecture. Too many BEUs in the braid microarchitecture increase

communication latency for communicating operands and tagsbetween BEUs. This

increases the complexity for synchronizing the busy-bit vectors. Since 8-wide de-

signs are slowly becoming available in the processor market, a configuration with

eight BEUs was chosen as a design point that provides a good tradeoff between

performance and what can be implemented. It will be shown that the braid microar-

chitecture passes far fewer values between each way in the pipeline compared to a

conventional out-of-order design of the same issue width. Thus, it will be possible

to further increase the number of BEUs in the braid microarchitecture.

49

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

1
2
4
8
16
32

Figure 4.2: Performance Sensitivity to the Number of BEUs

50

The FIFO queue in each BEU is an instruction waiting buffer. An instruc-

tion waits in the queue until it reaches the queue entries corresponding to the in-

struction scheduling window. The queue should be large enough to buffer all of

the instructions of a braid. Figure 4.3 plots the performance as a function of the

number of entries in the FIFO queue. On average, as few as 16 entries are enough

to support most of the braids for the benchmark programs. This is because 97% of

braids consist of 16 instructions or fewer. Without the proper instruction buffering,

all the instructions of a braid cannot be queued in the BEU. This situation stalls the

distribution mechanism, subsequent braids, and eventually the front-end.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

4
8
16
32
64

Figure 4.3: Performance Sensitivity to the Number of FIFO Queue Entries

The following experiment examines the likelihood that ready instructions

in a braid are located at the head of the FIFO by using different scheduling win-

dow sizes. The scheduling window size denotes the number of entries in the FIFO

51

queue. The instructions within this window are examined forreadiness each cycle.

Figure 4.4 plots the performance as a function of the scheduling window size. It

is encouraging to see the steep rise going from one to two entries, and then the

plateau from two to 16 entries. On average, a window of two entries is sufficient for

the benchmark programs. This result is consistent with the measurement of braid

width. Since most braids have narrow widths, using a larger scheduling window

is not beneficial to performance. The floating point benchmark programsapplu ,

apsi , lucas , andmgrid have slightly wider widths on average and benefit more

from a larger scheduling window.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

1
2
4
8
16

Figure 4.4: Performance Sensitivity to the Scheduling Window Size

In Figure 4.4, the number of functional units was fixed as the scheduling

window size changes. The following experiment examines whether the number of

functional units is a performance bottleneck as the scheduling window size changes.

52

Figure 4.5 plots the performance as a function of both the number of functional units

and the scheduling window size. This graph shows a similar trend as the graph for

scaling the scheduling window alone. This result confirms that performance is not

limited by the number of functional units and reaffirms that two functional units is

enough to process a braid.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

1
2
4
8
16

Figure 4.5: Performance Sensitivity to the Number of Functional Units per BEU

4.5 Comparison to Other Processing Paradigms

Figure 4.6 plots the performance comparison of four microarchitectural paradigms

at three issue widths. Each stacked bar plots the performance of four different mi-

croarchitectures. From bottom to top, they are in-order, FIFO-based dependence

steering, the braid, and out-of-order microarchitectures. The set of bars for each

benchmark program from left to right represent the performance of 4-wide, 8-wide,

53

and 16-wide designs. The result of using a dependence-basedsteering algorithm

[50] is presented to illustrate one simple and implementable algorithm with a de-

sign complexity that is comparable to braids.

At least three observations can be made from this graph. First, signifi-

cant gains are still available at wider widths. Second, the braid microarchitecture

achieves performance that is within 9% of a very aggressive conventional 8-wide

out-of-order design. Third, the performance gap between the braid and out-of-order

configurations gets smaller as the issue width increases.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

o-o-o
braid
dep
i-o

Figure 4.6: Performance of In-Order, Dependence-Based Steering, Braid, and Out-
of-Order Designs at Various Issue Widths

Since the braid microarchitecture uses braids as a unit of processing, the

braid microarchitecture can more efficiently manage the instructions in a large win-

dow than an out-of-order design with a distributed scheduling window. It is inter-

esting to note that at the 4-wide configuration, dependence-based steering almost

54

achieves the same performance as the braid microarchitecture. This is due to the

fact that the braid microarchitecture suffers from an unbalanced design with only

four BEUs. Braids provide greater benefit when there are moreBEUs because many

braids can execute in parallel. Limiting the number of BEUs to four greatly con-

strains execution core resources. The braid microarchitecture requires more BEUs

to be effective.

55

Chapter 5

Braid Optimizations

Although the braid microarchitecture implements an execution core with

a simplistic design, the simplification incurs inefficiencies which limit its perfor-

mance. These inefficiencies do not exist in an out-of-order design. This chapter

discusses three bottlenecks of the braid microarchitecture and suggests techniques

to reduce their impact on performance. The first technique addresses the limita-

tion on braid size caused by control flow instructions. The second addresses the

underutilization of braid execution resources caused by long-latency instructions.

The third addresses the poor utilization of execution resources caused by single-

instruction braids.

5.1 Dynamic Merging

The first problem is the lost opportunity by not being able to build longer

braids. To avoid problems associated with changing control-flow, a braid is defined

to reside completely within a basic block. Thus, the averagesize of a braid is always

less than or equal to the average size of a basic block. Limiting the size of a braid

limits the amount of internal values that are communicated.Although braids are

identified at compile time, they can effectively become larger at runtime through a

technique called dynamic merging. Dynamic merging allows abraid from a basic

block to join a braid from another basic block at runtime to form a larger braid.

56

Figure 5.1a show a control-flow merge point, and Figure 5.1b show a control-

flow join point. These figures will be used to illustrate why control-flow changes

make it difficult for the compiler to span a braid across a control-flow boundary.

Numbers identify basic blocks. Lowercase letters identifybraids within a basic

block. Uppercase letters identify the control-flow paths. Register identifiers iden-

tify the external operands of a braid. Each basic block contains two braids desig-

nated by lower case letters. At a control-flow fork point, child blocks2 and3 are

reached from parent block1. At a control-flow join point, parent blocks1 and2

precede child block3. In Figure 5.1a, suppose the compiler builds braidac that

spans blocks1 and2 as shown by the thick line. In this case the external operands

of braida should be treated as internal operands of braidac . However, if pathAB

is traversed at runtime, the assumption made for the operands r1 , r2 , andr3 no

longer hold true. In this case,r2 andr3 should be treated as internal operands and

r1 should be treated as an external operand. The same argument can be made for

the control-flow join point in Figure 5.1b.

Control-flow fork and join points complicate the formation oflarger braids.

However, at runtime, only one path is traversed at a time, andtwo consecutive basic

blocks become logically contiguous. A runtime approach is used to merge braids

across control-flow boundaries.

The concept of dynamic merging is a simple one. Two braids canmerge if

they share values. That is, the external inputs of the child braid are a subset of the

external outputs of the parent braid. When a match is confirmed, the two braids

merge by distributing the second braid to the BEU holding thefirst braid such that

the second braid immediately follows the first braid. The shared external register

communication between the two braids are identified and communicated through

the internal register file potentially eliminating external register file accesses.

57

c d e f

r1 r3r2 r2 r3

r1 r2 r3

a b

A B

1

2 3

(a)

r1 r2r2 r3 r3

r1 r2 r3

a

e

b c d

f

1 2

3

A B

(b)

Figure 5.1: Control-Flow Points (a) Fork (b) Join

Implementing dynamic merging requires the use of a braid merging table

shown in Figure 5.2a. The braid merging table maintains the external outputs of

active braids being processed by the BEUs. Figure 5.2b showsone entry of the

table. Each entry tracks one braid and contains a valid bit, a8-bit external output

vector, and a 3-bit BEU Id vector. The valid bit indicates whether the braid is still

being processed in the BEU. The 8-bit vector encodes the external outputs of the

braid. Each bit of the vector maps to an external register. The 3-bit vector identifies

the BEU to which the braid was distributed.

Up to four braids per basic block are tracked and up to two mostrecent basic

blocks are tracked by the braid merging table. This is shown at the top of Figure

5.2a. Tracking up to four braids per basic block was chosen because the average

number of braids in a basic block is 3.6 for all the benchmark programs. As a braid

is distributed, the external output vector of the braid is inserted into one of the four

58

braid 1 braid 2 braid 4braid 3

Select

BEU Id

currentBlock Seq Num

Block Seq Num

External Inputcurrent

previous

(a)

<16> <3>1

Valid BEU IdExternal Outputprevious

(b)

Figure 5.2: Mechanism to Support Dynamic Merging (a) Merging Table Entry (b)
Merging Identification Logic

59

entries associated with the current block sequence number.The block sequence

number is a unique number assigned to basic blocks in programorder. When a new

basic block is encountered, the entries associated with thecurrent block sequence

number are shifted into the entries associated with the previous block sequence

number. When a braid is distributed, the external output fields from the entries in

the previous block sequence number are probed. The braid matches its external

input vector which identifies its external inputs against the external output vectors

from the table. The logic needed to implement this is shown atthe bottom of Figure

5.2a. A match indicates an opportunity to merge and the BEU Idof the matched

entry is used to distribute the braid to the BEU of its parent.

The external input and output vectors of a braid encode its external operands.

These vectors can either be generated by the compiler or by the hardware. If the

compiler generates this vector, it must encode the externalinput and output vectors

of a braid in special instructions. Since each vector requires eight bits, 16 total bits

are needed. This can be encoded in the unused field of a NOP instruction. The

hardware can also generate the two vectors at runtime. Sincethe renaming mecha-

nism already identifies the external and internal source anddestination registers of

the instructions of a braid, it can also produce the externalinput and output vectors

and insert them into the pipeline along with the braid.

For dynamic merging to be useful, another vector called the single-use vec-

tor is required. This vector tracks if there is a single consumer for each external

output register. Since this information is known to the compiler, this vector is gen-

erated by the compiler. One single-use vector is associatedwith each braid and

encoded in the unused field of a NOP instruction.

When an opportunity to merge is identified, the BEU processingthe parent

braid is first notified that a child braid will merge with it. The external register

60

file writes present in the intersection of the two external vectors are the set of val-

ues communicated between the two merging braids. These external register file

operands are redirected to write into the internal registerfile. Depending on the

contents of the single-use vector, there may or may not be a write to the external

register file. The external register file write is disabled ifthe single-use vector iden-

tifies the next consumer of the value to be the last consumer ofthe value. Once the

BEU has queued the entire parent braid, it receives the childbraid without waiting

for the BEU to become ready. Rather than reading from the external register file

for the values communicated between the two braids, the child braid is redirected

to read from the internal register file.

Figures 5.3 and 5.4 plot the distribution of the external andinternal register

read and write accesses. In Figure 5.3, note that the percentof external and internal

read accesses do not sum to 100%. This is because some external reads hit in the

bypass network. The left two bars of each benchmark program show the percent of

read accesses for the baseline braid microarchitecture, and the right two bars show

the percent of read accesses when dynamic merging is applied. Without dynamic

merging, about 50% of the register reads come from the internal register file. With

dynamic merging, the percent of internal register read accesses increases to over

73%.

Figure 5.4 plots the distribution of the external and internal register write ac-

cesses. The left two bars represent the percent of register file write accesses for the

baseline braid microarchitecture. Adding these two bars gives an expected 100%.

The right two bars show the percent of write accesses when dynamic merging is ap-

plied. Approximately 63% of writes access the internal register file. When dynamic

merging is applied, the percent of internal register write accesses increases to 67%.

Although dynamic merging is useful for decreasing the number of accesses

61

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

90

100
D

is
tr

ib
u

ti
o

n

external reads
internal reads
merge external reads
merge internal reads

Figure 5.3: Percent of External and Internal Register Reads

to the external register file, it does not improve performance in its current form.

The left and right bars of Figure 5.5 plot the performance without and with dynamic

merging, respectively. On average, enabling dynamic merging reduces performance

by 0.3%. This is due to load balancing problems caused by larger units of work.

A braid-aware compiler can produce more balanced workloads. The slowdown is a

small cost to pay for reducing external communication.

5.2 Braid Execution Unit Context Sharing

The second problem is the underutilization of the functional units. In a

conventional out-of-order processor, the scheduler allows only ready instructions

to execute. Instructions with operands which are not ready wait in the scheduling

window. This method of processing results in the most efficient use of functional

62

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

u
ti

o
n

external writes
internal writes
merge external writes
merge internal writes

Figure 5.4: Percent of External and Internal Register Writes

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

no merging
dyn merging

Figure 5.5: Performance Using Dynamic Merging

63

units because execution resources are allocated only to instructions which can use

them.

The braid microarchitecture does not share the same luxury.The larger

granularity of the unit of work of a braid causes this inefficiency. Once a braid is

sent to a ready BEU, the execution resources in the BEU are dedicated to processing

only the instructions in the braid. In the event an instruction is dependent on a value

from a load miss, that instruction stalls the scheduling process. The idle functional

units in the BEU are inefficient when there are ready instructions in another braid

that can execute. The ready instructions in the other braid cannot use the resources

of the BEU with the idled functional units.

Table 5.1 lists the percent of cycles in which all BEUs are stalled. Non-

deterministic latency instructions such as load instructions that miss in the L1 can

stall all the BEUs. BEUs are stalled for an average of 21.2 percent for the integer

benchmark programs and an average of 16.2 for the floating point benchmark pro-

grams. This condition can be easily mitigated if an idle BEU can be made available

to another braid that is ready to execute. Context sharing is asimple technique that

improves the efficiency of resources in the BEU. The key idea is to temporarily set

the stalled braid aside, thus freeing the context in the BEU for execution of another

braid that is ready to execute.

Context sharing is a technique that addresses the issue of execution stalls.

Implementing context sharing requires very minimal changes to the microarchitec-

ture. Figure 5.6 shows the block diagram of a BEU augmented with two additional

structures to support context sharing. The two shaded structures are required to

maintain the state of the BEU. The first structure is the waiting instruction buffer.

It is the same size as the instruction queue and is used to maintain the state of the

instruction queue on a context change. The buffer is directly connected to the in-

64

Integer
benchmarks % stalls

bzip2 44.4
crafty 2.7

eon 2.0
gap 46.9
gcc 4.1

gzip 18.1
mcf 54.5

parser 57.2
perlbmk 1.7

twolf 4.8
vortex 4.1

vpr 13.8
amean 21.2

Floating Point
benchmarks % stalls

ammp 6.1
applu 0.5

apsi 3.9
art 82.7

equake 24.6
facerec 9.5
fma3d 1.3
galgel 15.9
lucas 1.7
mesa 1.5

mgrid 1.9
sixtrack 2.0

swim 75.1
wupwise 0.5

amean 16.2

Table 5.1: Percent of Cycles All Braid Execution Units Are Stalled

65

struction queue. This enables instructions to move from onestructure to the other

with very little effort. The second structure is the waitinginternal register file. This

structure is the same size as the internal register file and isused to maintain the

state of the internal register file during a context change. It is also connected di-

rectly to the internal register file and allows the movement of registers between the

two internal register files.

Busy−Bit
Vector

Bypass

In
st

 Q
ue

ue

Distribute

Register File
InternalW

ai
t I

Q

W
ai

t I
R

F
Register File

External

Figure 5.6: Mechanism to Support for Context Sharing

Figure 5.7 shows the state diagram for entering the context sharing mode. A

counter is used to detect when a BEU can enter context sharingmode. Every cycle,

this counter is incremented if a braid has been assigned to the BEU and no instruc-

tions were executed that cycle. That is, the BEU is not ready and the functional

unit is idle. The counter is reset to zero otherwise. When the counter value reaches

a certain threshold, context sharing is triggered. At this point, the BEU context is

moved to the waiting instruction queue and waiting internalregister file. The BEU

context has been freed and the BEU is ready to execute a new braid. As long as

66

there are still instructions in the new braid to be processed, context sharing mode

is maintained. When all instructions in the new braid complete execution, the BEU

exits context sharing mode. At this point, the context savedin the waiting buffers

is restored into the instruction queue and the internal register file and processing

resumes from the saved context.

Share
Context

idle idle

ready’readyidlereadyidle readyidle

0
Count

1 2
Count Count

ready’

Figure 5.7: State Diagram for Context Sharing

Figure 5.8 shows the performance over the baseline braid microarchitecture

when context sharing is enabled. On average, context sharing provides an additional

1.5% over the baseline configuration. The art and swim benchmark programs have

the largest amount of stalls caused by the unavailability ofBEUs. It also achieves

the greatest gain using context sharing regaining between 4% and 6% of the perfor-

mance.

5.3 Heterogeneous Execution Resources

The third problem is the poor utilization of the BEUs caused by single-

instruction braids. These single-instruction braids are isolated instructions that do

not share a dependency with any other instruction inside thebasic block. The ex-

istence of these braids is a side effect of profiling preexisting binaries. Table 5.2

shows the percent of instructions that belong to single-instruction braids in the dy-

namic instruction stream. These single-instruction braids tie up precious resources

67

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10
R

e
la

ti
v

e
 P

e
r
fo

r
m

a
n

c
e

Figure 5.8: Performance Using BEU Context Sharing

that have been designed to process bigger and wider braids. Since single-instruction

braids do not share the same type of processing requirementsas larger braids, they

should not be processed in a BEU.

Figure 5.9 shows the block diagram of the pipeline of the braid microar-

chitecture with the addition of a small out-of-order scheduler as indicated by the

shaded block. The distribute mechanism sends single-instruction braids to this spe-

cial scheduler. This scheduler is solely responsible for processing single-instruction

braids.

This out-of-order scheduler is much smaller than a conventional out-of-

order scheduler. The small out-of-order scheduler does notintroduce significant

complexity to the design. It is a small 2-wide scheduler containing not more than

a few entries. This is far simpler from the design requirements of a scheduler with

32 or more entries. Figure 5.10 shows the performance when the heterogeneous

68

Integer
benchmarks percent

bzip2 15.1
crafty 18.1

eon 32.5
gap 20.8
gcc 26.4

gzip 15.4
mcf 34.8

parser 28.7
perlbmk 24.5

twolf 19.5
vortex 29.1

vpr 25.2
amean 24.2

Floating Point
benchmarks percent

ammp 13.4
applu 24.1

apsi 24.3
art 21.4

equake 21.4
facerec 28.1
fma3d 21.5
galgel 31.4
lucas 12.2
mesa 26.9

mgrid 4.4
sixtrack 27.5

swim 15.1
wupwise 22.2

amean 21.0

Table 5.2: Percent of Instructions from Single-Instruction Braids

69

External
Register File

Fetch

Rename

Decode

Allocate

Bypass

Distribute

B
E

U
B

E
U

B
E

U
B

E
U

B
E

U
B

E
U

B
E

U
O

O
O

Figure 5.9: Block Diagram of Heterogeneous Execution Resources

execution resources are used. All the bars are normalized tothe braid microar-

chitecture with seven BEUs. The left bar of each benchmark program shows the

additional performance provided by one BEU. The right bar ofeach benchmark

program shows the additional performance provided by a small out-of-order sched-

uler. Performance improvement increases from 2.8% to 4.0% when heterogeneous

execution resources are used to handle single-instructionbraids.

70

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

R
e

la
ti

v
e

 P
e

fo
r
m

a
n

c
e

8 beus
7 beus + ooo

Figure 5.10: Performance Using Heterogeneous Execution Resources

71

Chapter 6

Hardware and Software Analysis

The braid microarchitecture is a complexity-effective alternative to an ag-

gressive conventional out-of-order microarchitecture. This chapter presents an anal-

ysis of the hardware and software complexity in the implementation of braid pro-

cessing.

6.1 Hardware

6.1.1 Renaming Mechanism

The registers associated with the external input and outputoperands of a

braid must access the RAT to receive their proper tags. The registers associated

with the internal operands of a braid do not need to be renamed. Therefore, on

average, only a subset of the total registers in the fetch packet need to be renamed.

The RAT is not on the critical loop and hence can be pipelined over several stages

without significantly hampering performance. Braid processing provides three ben-

efits for the process of renaming operands. First, the renaming mechanism requires

fewer access ports due to the reduced bandwidth requirements. This leads to the

design of a renaming mechanism with a smaller area and lower power. Second,

reducing the set of registers to be renamed decreases the physical register space. A

smaller register space requires fewer bits to identify eachregister. Fewer tag bits

reduces the width of each RAT entry which also results in a smaller structure sav-

ing both area and power. Third, since fewer operands need to be renamed, fewer

72

pipeline stages are required to support operand rename. Fewer stages lower the

branch misprediction penalty.

Figure 6.1 plots the performance as a function of the number of rename

ports in the braid microarchitecture. The bars in this graphare normalized to the

performance of the braid microarchitecture with 16 source and eight destination

rename ports. The bars for each benchmark program representa different number

of source and destination rename ports. In the braid microarchitecture, eight source

rename ports and four destination rename ports are more thanenough to sustain

performance within 0.75% of peak performance. This slowdown increases to 1.5%

when six source and three destination rename ports are used.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.7

0.8

0.9

1.0

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

12,6
10,5
8,4
6,3

Figure 6.1: Performance Sensitivity to the Number of Sourceand Destination Re-
name Ports

73

6.1.2 Scheduler

In aw-wide out-of-order design, a monolithic scheduler withn entries each

requiresn×w× 2 full tag comparators.n entries are examined each cycle to iden-

tify instructions that are ready to execute. If the monolithic scheduling window is

partitioned into separate windows, wake-up wire delay is reduced but the number of

full comparators remains the same. When processing braids, the microarchitecture

has been passed a carefully allocated unit of work that can beexecuted efficiently by

a BEU. The long and narrow characteristics of a braid subgraph eliminate the need

for a dynamic out-of-order scheduler. Only two instructions need to be considered

for execution at the head of the instruction queue using an in-order scheduler.

6.1.3 Busy-Bit Vector

The busy-bit vector maintains the availability of externalregisters similar

to that found in the design of in-order processors. It is an 8-bit vector where each

bit represents the availability of an external register. This vector is replicated in

each BEU and kept in synchronization. The instruction scheduler queries the busy-

bit vector in its BEU to determine the external source operand availability of an

instruction. Since the scheduler examines up to two instructions, this structure had

four read ports. Given the small size of this structure, adding ports to this structure

is not a problem.

A conventional out-of-order processor broadcasts a much larger set of operand

tags than the braid microarchitecture. Because of this, thebraid microarchitecture

uses narrower comparators. A more challenging task is the process of updating

busy-bit vectors. When an instruction is scheduled for execution, it broadcasts its

tag to other BEUs. The other BEUs examine the broadcast tag and update the cor-

responding bit field in their busy-bit vector. Since a BEU contains two functional

74

units, simultaneous broadcast of external result tags can take place. Since most

braids do not produce two external results in the same cycle,a design simplifi-

cation is introduced by restricting each BEU to broadcast only one tag per cycle.

Therefore, each busy-bit vector requires eight write ports. Each busy-bit vector also

requires eight comparators. Since the external register space is small, a 3-wide bus

is all that is needed for each tag. Furthermore, BEUs are verycompact unlike typ-

ical clusters which are spread apart. This compactness allows a broadcast signal to

span the width of the pipeline in one cycle.

6.1.4 Internal Register File

An average of 50% of all register file accesses are to/from theinternal reg-

ister files due to the partitioning of the register space. Each internal register file

contains eight entries. Since each BEU can execute up to two instructions per cy-

cle, each internal register file has four read ports and two write ports. The internal

register file is disjoint from the external register file. Theinternal register file of

one BEU is also disjoint from those in other BEUs. Values never propagate be-

tween any of the register files. Values in the internal register file do not need to

be maintained for the execution of a subsequent braid and arenaturally discarded

once a braid finishes execution in the BEU. The reduced numberof accesses and

ports to the internal register file allow a design with a smaller area and lower power

requirements. The entire working set of values in the program is supported by the

many disjoint internal register files.

6.1.5 External Register File

The remaining 50% of register values that do not access the internal register

file access the external register file. This 16-entry register file is twice as large as

75

the internal register file and also accessed by all BEUs. It isdesigned with six

read ports and three write ports. Like the internal registerfiles, the external register

file also has a small number of entries and ports compared to the register file in a

conventional microarchitecture. This results in structure with a smaller area and

lower power requirements. The smaller area also eliminatesthe pipelined access to

the register file, allowing access to be performed in a singlecycle. The resulting

shorter pipeline also lowers the misprediction penalty.

Figure 6.2 plots the performance as a function of the number of read and

write ports of the external register file in the braid microarchitecture. Each bar is

a two-tuple representing the number of read and write ports of the external register

file. The bars in this graph are normalized to the performanceof the braid microar-

chitecture with an external register file that has 16 read ports and 8 write ports.

As the number of read and write ports is decreased, there is negligible slowdown.

With a few as six read ports and three write ports, the braid microarchitecture ob-

tains performance within 0.3% of the performance from usinga full set of read and

write ports is achieved. Mgrid is especially sensitive to port scaling because it has a

large number of external inputs and outputs as shown in Table2.4. There is a 1.5%

slowdown going to four read ports and two write ports.

Figure 6.3 plots the performance as a function of the number of entries in

the register file in a conventional out-of-order microarchitecture. The bars in this

graph are normalized to the performance of a conventional out-of-order microar-

chitecture with 256 registers. Using 32 registers in an out-of-order design causes

8% degradation in performance, and using 16 registers causes 21% degradation in

performance.

Figure 6.4 plots the performance as a function of the number of entries in

the external register file in the braid microarchitecture. The bars in this graph are

76

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.85

0.90

0.95

1.00

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

12,6
10,5
8,4
6,3
4,2

Figure 6.2: Performance Sensitivity to the Number of Register File Read and Write
Ports

77

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

256
128
64
32
16
8
4

Figure 6.3: Performance Sensitivity to the Number of Registers in an Out-of-Order
Microarchitecture

78

normalized to the performance of the braid microarchitecture using a 256-entry

external register file. Since most of the operands access theinternal register files,

there is less pressure on the external register file. Reducing the number of external

registers does not significantly affect the performance of the braid microarchitecture

until reaching four registers. It can be seen using a small 8-entry external register

file is sufficient to maintain the performance within 1% of theperformance from

using a 256-entry register file.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.6

0.7

0.8

0.9

1.0

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

128
64
32
16
12
8
4

Figure 6.4: Performance Sensitivity to the Number of External Registers in the
Braid Microarchitecture

6.1.6 Bypass Network

An instruction specifies whether source operands receive a value from the

internal register file or the external register file. However, an operand that requires

79

a value from the external register file may receive its value from the bypass network

due to data forwarding. Figure 6.5 plots the distribution oflocations where source

operands are read. Bypassed values are read 8% of the time. Internal register file

values are read 44% of the time. External register file valuesare read 48% of the

time.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

Benchmarks

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

u
ti

o
n

bypass

internal

external

Figure 6.5: Distribution of Source Operand Locations

The bypass network in a conventional out-of-order design requires multiple

levels due to pipelined writes to the register file. In the braid microarchitecture, the

bypass network contains only one level because it takes one cycle to complete a

write to the external register file. This is due to the fewer number of entries and

ports of the external register file. Since there are fewer external values written to

the external register file, there are also fewer values that require the bypass network.

Figure 6.6 plots the performance as a function of the number of bypasses paths in

80

the braid microarchitecture. The bars in this graph are normalized to the perfor-

mance of the braid microarchitecture with 16 bypass paths. The number of paths

corresponds to the average number of supported value bypasses per cycle. Since

internal values do not require bypassing, the number of bypassed values is greatly

reduced. Supporting the capability of bypassing four values per cycle in the braid

microarchitecture does not hamper performance, and supporting two values per cy-

cle obtains performance that is well within 0.6% of the performance from using a

full set of bypass paths. A 6.5% performance drop takes placewhen only one value

is supported.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.7

0.8

0.9

1.0

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

8
4
2
1

Figure 6.6: Performance Sensitivity to the Number of BypassNetwork Paths

81

6.1.7 Reducing Pipeline Stages

The braid microarchitecture reduces the number of stages inthe pipeline.

First, the operand rename stage is reduced by two stages. This is due to the lower

bandwidth requirements of renaming external registers. Second, register file access

is reduced by two stages. This is due to the fewer number of entries and ports of

the external register file. In all, the pipeline is shortenedby four stages reducing the

branch misprediction penalty by four cycles. Figure 6.7 plots the extra performance

as a result of the shorter pipeline. The integer benchmark programs gain more

from the shorter pipeline. This is because integer programshave a higher branch

misprediction rate. On average, the shorter pipeline results in 2.6% performance

boost for the benchmark programs.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

Figure 6.7: Performance from Reducing Pipeline Stages

82

6.1.8 Clock Frequency

The structures on the critical path of a processor include the renaming mech-

anism, the instruction scheduler, and the bypass network. The braid microarchitec-

ture simplifies each of these structures resulting in a design requiring less area.

Thus, the critical path is shortened allowing the design to run at a higher clock

frequency. With the benefit of this additional frequency compensation, the braid

microarchitecture can achieve even higher performance closing the performance

gap between itself and an aggressive out-of-order microarchitecture.

6.1.9 Perfect Front-End and Memory System

The braid microarchitecture targets the design simplification of the struc-

tures in the execution core. To see the effectiveness of the braid microarchitecture,

the execution core must be fully used. The following set of experiments plots the

performance from eliminating the effects of imperfect instruction and data delivery

mechanisms.

The first experiment considers the use of a perfect branch predictor. This

branch predictor is always correct and thus never fetches instructions on the wrong

path. Figure 6.8 plots the performance using perfect branchprediction over realistic

branch prediction. The bars in this graph are normalized to the performance of a

conventional out-of-order design with realistic branch prediction. The left two bars

of each benchmark program represent the performance of the braid microarchitec-

ture with realistic and perfect branch prediction. The right two bars represent the

performance of a conventional out-of-order microarchitecture with realistic and per-

fect branch prediction. Except for a couple benchmarks, thechange in performance

is not too significant. On benchmark programs where the conventional out-of-order

processor achieves a performance gain, the braid microarchitecture also achieves a

83

comparable performance gain.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

braid real bp
braid perfect bp
o-o-o real bp
o-o-o perfect bp

Figure 6.8: Performance Using Perfect Branch Prediction

If instructions are not fetched at a fast enough rate, branchpredicting is not

as beneficial. The following experiment assumes the use of a perfect branch pre-

dictor as well as the use of perfect instruction and data caches. Figure 6.9 plots the

performance of the realistic and perfect instruction and data delivery mechanisms.

The bars in this graph are also normalized to the performanceof a conventional out-

of-order design with realistic branch prediction. This graph shows that the braid

microarchitecture scales as well as the conventional microarchitecture with more

aggressive branch predictors and memory systems.

While the memory system is important for performance, this dissertation

does not address memory system issues. The problems to be solved for the memory

system are orthogonal to the problems to be solved for the execution core. Figure

84

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

braid real bp/cache
braid perfect bp/cache
o-o-o real bp/cache
o-o-o perfect bp/cache

7.77.1

Figure 6.9: Performance Using Perfect Branch Prediction and Perfect Instruction
and Data Caches

85

6.10 provides results of the braid microarchitecture as a function of the number of

cycles to main memory. All the bars are normalized to the baseline braid microar-

chitecture. Results for 100, 200, and 400 access cycles to memory are shown. If the

number of cycles to main memory is halved from the baseline, 30% additional per-

formance can be achieved, and if the number of cycles is halved again, an additional

20% additional performance can be achieved.

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n

Benchmarks

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

R
e

la
ti

v
e

 P
e

r
fo

r
m

a
n

c
e

100 cycles
200 cycles
400 cycles

3.1 2.5

Figure 6.10: Performance Sensitivity to the Number of Cyclesto Main Memory

6.2 Software

6.2.1 Strands versus Braids

A strand as proposed by Kim and Smith is a chain of dependent instructions

[40]. It has as width of exactly one, whereas a braid has an average width of 1.3.

Restricting strands to be a 1-wide dependent chain of instructions greatly limits the

86

number of instructions that can be a part of a strand. This is because the irregular

dataflow graph of program does not easily breakdown into longstrands. When the

1-wide restriction is lifted, larger dataflow subgraphs canbe formed. Even though a

braid is larger than a strand in size, a braid maintains an average width that is close

to one.

6.2.2 Tradeoffs of Dataflow Graph Size

At one extreme, the entire dataflow graph of a program can be considered

as one large braid. In this model, all values are internal. Atthe other extreme, the

dataflow graph can be broken into single-instruction braids. In this model, all val-

ues are external. At both of these extremes, the scheduler, the register file, and the

bypass network resemble those found in a conventional out-of-order microarchitec-

ture. These components become a design challenge at wide issue widths and will

become impractical to implement in future designs. An efficient design point lies

in between the two extremes. Braids convert a seemingly irregular dataflow graph

into regular dataflow subgraphs achieving a balance betweenthe use of external and

internal operand values.

6.2.3 Spill Code

A compiler uses registers to pass values between instructions in the pro-

gram. Due to a limited set of architectural registers, the compiler uses a technique

to temporarily free registers by storing them to memory and restoring them when

they are needed again. It accomplishes this by inserting spill and fill code when the

working set size of values exceeds the number of registers. In the profiling anal-

ysis used in this dissertation, only data values propagatedthrough registers were

considered. There is lost opportunity when using the profiling technique because it

87

does not account for data values propagated through the memory system via spill

and fill code. With a braid-aware compiler, larger braids canbe formed reducing

the amount of spill and fill code. This should lead to registerallocation requiring

fewer external registers.

6.2.4 Software Compatibility

The braid microarchitecture is capable of running legacy applications at

lower performance. This is accomplished by treating all register operands in the

program as external register operands. The renaming mechanism provides external

register tags to the architectural registers. Instructions can be distributed to BEUs

using a simple steering policy like round robin. Instruction queues in the BEU

buffer instructions until they become full. The instructions within each BEU follow

in-order scheduling. All operands access the external register file and the internal

register files remain unused. The performance of running legacy applications on

the braid microarchitecture is not optimal, resembling that of an in-order design.

6.2.5 Instruction Set Architecture Annotations and Code Bloat

The Alpha ISA was augmented to support braid processing. Each register

field is five bits wide. The braid microarchitecture specifieseight external registers

and eight internal registers. This means that four bits are required to specify a

source register operand (three to specify the register nameand one to specify the

temporary operand bit). A destination register requires five bits (three to specify the

register name and two to specify external/internal destination bits). To specify the

braid start bit in the case of zero-destination or one-source register instructions, an

extra bit is borrowed from the displacement field or an unusedfield in the instruction

encoding. By carefully making use of the available bits in the instruction, there is

88

no code bloat in the Alpha binary.

The x86 ISA provides more flexibility for passing information to the mi-

croarchitecture through the use of instruction prefixes. This ISA supports prefix

bits which can provide the needed braid annotations for operands of the instruction

without modifying the actual operand field. One or more prefixes can be appended

to the instruction at the start of each braid specifying the operands and characteris-

tics of the braid. This method is less intrusive to the individual instructions of the

original binary but adds additional code to the binary.

If instruction prefixes are not available and there are not enough available

bits in the instruction to encode braid information, branchand link instructions

can be used [23] to provide braid information. A branch and link instruction is

inserted immediately before the starting instruction of a braid. When the branch

and link instruction is encountered, program control is transferred to another region

of memory where information can be provided for the upcomingbraid. After the

braid information is obtained, program control is returnedto the first instruction of

the braid. This technique of providing braid information isalso less intrusive to the

individual instructions of the original binary but adds additional code to the binary.

89

Chapter 7

Related Work

Although the braid microarchitecture shares some similarities with other

proposals in the literature, no single scheme achieves the combined benefits of the

braid microarchitecture. This chapter compares and contrasts the braid microarchi-

tecture with various proposals.

7.1 Basic Block-Based Processing

Most of the proposals in the literature follow a style of processing wherein

instructions within a basic block are processed equally to one another. That is,

instructions of a basic block are issued into a scheduling window and scheduled

for execution without taking into account their data dependencies. In the braid

microarchitecture, the instructions of a braid travel through the distribution and

scheduling process as a unit. The instructions in one scheduling window are not

a random set of instructions but a set of tightly connected instructions related by

their data dependencies. With the information to identify the different dataflow

subgraphs within a basic block, the braid microarchitecture can carry out instruction

scheduling without complex hardware.

90

7.1.1 Trace Processing

The braid microarchitecture and the trace processor [59] have important dif-

ferences. First, the trace processor does not distinguish between different dataflow

subgraphs to simplify instruction scheduling. A trace in the trace processor consists

of a set of dynamic contiguous basic blocks identified at runtime. When a trace is

issued, all instructions are treated the same and enter the same instruction scheduler.

The out-of-order scheduler operates on this entire set of instructions even though

there can be multiple disjoint dataflow subgraphs. The braidmicroarchitecture uses

a different in-order scheduler to process each of the predetermined dataflow sub-

graphs. Second, the trace processor requires runtime capturing and marshaling of

traces. Traces do not share the same benefits as braids. The braid microarchitec-

ture leverages the compiler-identified subgraphs requiring no runtime analysis of

instructions. Although the trace processor also uses localand global registers, the

concept of partitioning the register space was first proposed by Sprangle and Patt

[68]. Local and global registers in the trace processor are identified at runtime in the

trace preprocessing unit. Vajapeyam and Mitra [72] proposed a similar technique

of processing traces. In the braid microarchitecture, the compiler identifies external

and internal registers at compile time.

7.1.2 Multiscalar

Multiscalar [65] shares similar characteristics with the braid microarchitec-

ture but also has important differences. Both paradigms process a piece of work that

is identified by the compiler. The unit of work in Multiscalaris the task which is a

very large piece of work consisting of a set of basic blocks. In contrast, the braid

microarchitecture uses the braid as a unit of work. In Multiscalar, each process-

ing unit is an out-of-order processor. The processing unitsare arranged in a ring

91

formation. Since tasks are assigned to one processing unit,the scheduler in that

unit must consider all the instructions in that unit for execution. Unlike the braid

microarchitecture, there is no notion of dataflow subgraphsin Multiscalar. In Mul-

tiscalar, the compiler identifies which register values need to be forwarded to other

processing units on the ring and which values are no longer needed. This is done

through the use of a bit-mask conveyed though the ISA. In the braid microarchi-

tecture, most of the register communication is performed through internal registers.

Internal registers are localized to a braid and kept in a small register file. Internal

registers are implicitly freed when they are overwritten orwhen the entire braid has

been processed. Multiscalar uses a larger granularity of work and a processing unit

topology that increases the latency of communications between processing units.

These issues are avoided in the braid microarchitecture.

7.1.3 rePLay

The rePLay framework [52] is another processing paradigm that operates on

large units of work called frames. A frame is a trace-like entity consisting of many

basic blocks which are captured dynamically. It is essentially a very large trace

where the entire trace is asserted to be from the correct pathof execution. The goal

of the rePLay framework is to identify large chunks of work rather than identifying

disjoint dataflow subgraphs. The rePLay optimization engine is used to analyze

frames as they are captured dynamically to improve the efficiency of the code. The

optimization engine adds additional complexity to the pipeline and increases power

requirements.

92

7.2 Strands, Dependency Chains, and Subgraphs

7.2.1 Strands

The term strand was first coined by Marquez et al. [45] in the superstrand

microarchitecture. A strand is a dataflow subgraph which terminates on two condi-

tions. The first condition is a long-latency instruction, and the second is a branch

instruction. Even though identifying strands for processing can simplify hardware

complexity, certain design choices limited the performance of the superstrand mi-

croarchitecture. First, the superstrand microarchitecture allows a strand to execute

only when all of its operands are available. Unless strands are extremely short,

there is a high probability that most strands do not have inputs only at the top of

the dataflow subgraph. There will also be inputs feeding intothe middle of the

dataflow subgraph. Therefore, waiting for all operands to beavailable is too per-

formance limiting. Second, the scheduler must monitor a variable number of ready

instructions in order to determine if a strand can execute. This increases the design

complexity of the scheduler. Third, the heuristics used to form strands do not par-

tition the dataflow in such a way to reduce inter-processing unit communications.

Terminating a strand at a long-latency operation or a branchoperation is too simple

because the dependencies of a strand may not terminate on these instructions.

The term strand was redefined by Kim and Smith [40] in the context of

instruction-level distributed processing (ILDP). This definition of the strand identi-

fies a dataflow subgraph that consists of a single chain of back-to-back instructions.

In a strand, the result of one instruction solely feeds the input of the next instruction.

The instruction-level parallelism or width of a strand is exactly one. A microarchi-

tecture was proposed to leverage the single-wide chains. Local communication of a

strand takes place through a single accumulator in the processing element to which

the strand was steered. Global communication of a strand takes place through du-

93

plicated register files. A compiler is used to identify strands. A strand terminates

at an instruction that does not produce a value or produces a value needed by more

than one instruction. Although the hardware of a processingelement is extremely

simple in design, ILDP does not achieve the full benefits of braids. Since, a strand

has an instruction-level parallelism of one, it is difficultto find long strands in the

program dataflow. By not requiring a fixed width in the braid microarchitecture,

larger dataflow subgraphs are formed even though width remains very close to one.

Since braids are larger units of work, there is more benefit inprocessing them.

Sassone and Wills [61] proposed a mechanism that identifies strands dy-

namically and stores them in a strand cache. A fill unit [51], similar to one used

in trace cache design, captures instructions. The fill unit also identifies strands by

maintaining an operand table that tracks temporary operands of instructions. The

use of the fill unit adds complexity to the design and increases power requirements.

Sassone et al. [62] later examined the use of strands in the embedded processor

space. These strands are identified at compile time and are called static strands. A

method of encoding static strands in the program binary withminimal changes to

the original ISA is presented. The static strand is an extension of the strand in ILDP

with one difference. Sassone introduced a restriction on the makeup the internal

strand instructions making static strands smaller than thestrands in ILDP. As men-

tioned already, restricting the number of instructions in adataflow subgraph lessens

the benefits of processing it.

7.2.2 Dependency Chains

Narayanasamy et al. [48] proposed a clustered microarchitecture that op-

erates on dependency chains. A dependency chain is a dataflowsubgraph iden-

tified by the compiler. It is not as restrictive as strands. Dependency chains are

94

formed via profiling analysis. The hot traces of the program are selected, and their

dataflow subgraphs are converted into dependency chains. Asan optimization of

the microarchitecture, Narayanasamy incorporated code duplication to enlarge de-

pendency chains. Although dependency chains help reduce design complexity, they

introduce some difficulties in the microarchitecture. First, dependency chains rely

heavily on hot paths. Since hot paths are heavily dependent upon input set as well as

program phase behavior [39], the dependency chains identified using one profiling

input set may not hold for another input set. A branch misprediction in the middle

of a long dependency chain means rolling back state to the very beginning of the

dependency chain. Thus, processing dependency chains can lead to costly branch

recoveries. Second, when code duplication is used, the samebasic block can often

end up in multiple dependency chains which causes significant code duplication in

the program binary, decreasing the efficiency of the instruction cache.

7.2.3 Subgraphs

There have been other proposals of dataflow subgraph processing. Kim and

Lipasti [41] proposed macro-op scheduling. A macro-op is a fused entity contain-

ing two dependent instructions. A macro-op is used to simplify the design of the

scheduler by allowing the scheduler to be pipelined across two cycles. A macro-op

is identified dynamically through detection logic similar to a fill unit in the trace

cache design [51]. Each macro-op is assigned one pointer that is used to identify

the macro-op in the pipeline. Processing one pointer ratherthan two instructions

allows more efficient use of execution core resources. Macro-op scheduling sim-

plifies the design of the scheduler but does not remove the useof the out-of-order

scheduler. Processing macro-ops does not provide the full benefits provided by the

braid microarchitecture. The braid microarchitecture uses in-order schedulers as

95

well as identifies internal register values for reducing register file complexity. The

identification of macro-ops requires the use of a fill unit which adds complexity to

the design and increases power requirement.

Bracy et al. [13] proposed using dataflow mini-graphs to amplify the band-

width of various microarchitecture structures. A dataflow mini-graph is a dataflow

subgraph that is identified at compile time. Each mini-graphmust meet a specific

set of requirements. It must have two inputs, one output, at most one memory ref-

erence, and at most one control instruction. Each mini-graph is referenced via a

handle. The use of the handle allows the amplification of manystructures in the

pipeline. A set of ALUs, arranged in a pipelined fashion where one ALU feeds the

next, is used to process the mini-graphs. Since a mini-graphcan consist only of

instructions that map directly onto the predefined ALUs, thesize and composition

of mini-graphs are restricted by the number and type of ALUs.The braid microar-

chitecture neither restricts the size nor the type of instructions in a braid. Thus, the

braid microarchitecture maximizes the reduction of external register communica-

tion.

Clark and his colleagues [23] [22] [21] proposed the processing of dataflow

subgraphs on a configurable compute accelerator in general purpose and embedded

processors. Subgraphs can be identified dynamically or statically. If done statically,

the compiler using profile analysis identifies frequently executed subgraphs with a

predefined number of inputs and a predefined number of outputs. A set of func-

tional units is instantiated and arranged in such a way to speed up the processing

of the dataflow subgraph. The set of functional units is called a configurable com-

pute accelerator. A special branch and link instruction inserted into the program

notifies the processor that it is about to execute a subgraph.A separate structure

provides the necessary information required to execute thesubgraph including the

96

inputs and the control signals needed by the configurable compute accelerator. The

configurable computer accelerator is an interesting idea but designing a specific ac-

celerator for general purpose computing is not practical because each program has

a different set of characteristics and dataflow. Configurablecomputer accelerators

are more applicable to embedded processors where a specific task is continuously

being performed.

7.3 Register File

7.3.1 External and Internal Registers

Sprangle and Patt [68] proposed the concept of separate external and inter-

nal register sets in the context of a statically tagged ISA. The compiler specifically

produces code that avoids output dependencies by writing results of instructions

within the basic block to different registers. This eliminates the dependency check-

ing logic simplifying the renaming process in the microarchitecture. Furthermore,

a bit associated with each source operand specifies whether the value is read from

the internal or external register file. Another bit associated with the destination

operand specifies where the result should be written. Valuesin the internal registers

are valid only within the context of the basic block. Although the identification

of external and internal registers implicitly identifies dataflow subgraphs within the

basic block, dataflow subgraphs were not presented as a technique of simplifying

the instruction scheduler. Later proposals also exploit the concept of separate ex-

ternal and internal register sets [59] [72] [48] [40]. Theseproposals call internal

registers local and external registers global.

97

7.3.2 Increasing Effective Register File Size

The braid microarchitecture provides a larger effective register set without

physically adding more entries. A number of proposals have also suggested tech-

niques to increase the effective size of the register file. These proposals differ from

the braid microarchitecture in their implementation.

Gonźalez et al. [32] proposed virtual-physical registers. Rather than al-

locating a register at the time the instruction enters the pipeline, this idea delays

the allocation until a value is actually produced. This creates the effect of a larger

physical register file allowing more simultaneous in-flightinstructions.

Lozano and Gao [44] observed that short-lived values made upa significant

portion of the values produced in a program. A technique is proposed that avoids

allocating a physical register to a short-lived value. Short-lived values are main-

tained in buffers. Thus, this technique avoids committing short-lived values to the

register file. This is done with the help of the compiler. Since short-lived values do

not occupy register file space, there is an effective increase in the size of the register

file. Ponomarev et al. [56] followed this concept and presented a runtime approach.

Martin et al. [46] used the compiler to provide dead value information by

making assertions in the program that certain registers will not be used again. The

dead value information allows the processor to free registers earlier. Thus, this

technique also increases the effective size of the registerfile.

Another technique to increase the size of the register file isregister file pack-

ing proposed by Ergin et al. [27]. It is observed that most of the values are narrow

meaning that the most significant bits of the values contain no information. To

exploit this, multiple narrow results are packed into a single physical register to

effectively mimic a larger register set.

98

The braid microarchitecture provides a larger effective register set through

the identification of external and internal registers. Internal registers of a braid are

valid only within the braid. Once the braid has finished processing in a BEU, the

internal registers are implicitly freed. By freeing registers early, the braid microar-

chitecture emulates a larger effective register set. This is accomplished without

extra instructions or identification at runtime. The more efficient use of the reg-

ister space allows the microarchitecture to support a larger set of registers than a

conventional design.

7.3.3 Increasing Register File Size and Access Bandwidth

A number of proposals have suggested techniques to allow register file de-

signs higher access bandwidth as well as larger sizes. Seznec et al. [63] analyzed

the physical constraints of a large register file and proposed a microarchitectural

organization to increase access bandwidth. In register write specialization register

read specialization, the execution core is divided into four quadrants. Each quad-

rant is connected to a subset of the register file. In this model of processing, an

instruction in a quadrant can only read from and write to the register file subset

connected to that quadrant. Although the number of read and write ports to the

register file is reduced, a more complex register renaming mechanism is required to

support this model of processing. The renaming mechanism has to be aware of the

instruction window load in each of the quadrants to be able toload balance between

quadrants. The braid microarchitecture lessens register file access bandwidth while

also lessening register file and rename bandwidth.

Banking is a technique that improves access bandwidth and energy require-

ments. A number of proposals have suggested banking the register file. Peric̀as et

al. [54] proposed a microarchitecture with a front-end register file. After rename, an

99

instruction can retrieve its operand if that operand is available in the front-end reg-

ister file. Rather than implementing enough ports to supportthe worst case access

scenario, banking is used to save complexity and power. Tseng and Asanovíc [71]

proposed using register file banking for a high-frequency processor design. A sim-

ple mechanism allows instructions with conflicting accesses to reschedule. Wallace

and Bagherzadeh [73] show that banking can reduce the register file requirements

of a superscalar processor to that of a scalar processor. Ayala et al. [8] uses the

compiler for bank assignment of registers in order to reduceenergy consumption.

While banking is useful to improve bandwidth, the hardware techniques mentioned

add extra hardware complexity by requiring some form of table look-up and up-

date. The static banking decision may not be representativeof runtime behavior.

The braid microarchitecture does not require banking because access to the register

files is distributed. Internal register files can be accessedby at most two instructions

locally within the BEU. The external register file can be accessed by at most three

instructions.

Another technique to improve access bandwidth is the use of 2-level regis-

ter files. Typically, the first level has a few entries with many ports, and the second

level has many entries with few ports. Zalamea et al. [77] proposed a design where

the compiler explicitly manages the movement of values in the hierarchy. Balasub-

ramonian et al. [9] and Cruz et al. [25] discuss a hardware solution to the problem

of managing values between levels. This is accomplished by monitoring the us-

age of registers at the rename stage of the pipeline. Butts and Sohi [18] improves

upon this scheme by explicitly tracking the number of uses via a degree of use pre-

dictor. Yung and Wilhelm [76] and Borch et al. [12] proposed the use of a small

buffer next to the functional unit that caches recent results. This buffer can provide

operand values and complements the main register file. Oehmke et al. [49] pro-

100

posed the virtual context architecture where the register file is treated as a cache of

a larger memory-mapped logical register space. The microarchitecture injects loads

and stores to perform fills and spills on demand when the working set size of regis-

ters exceeds the physical register space. This technique allows the implementation

of microarchitecture schemes requiring a large register footprint. All the schemes

mentioned require either additional instructions or extrahardware to manage the

movement of values in the hierarchy. The braid microarchitecture simplifies the use

of registers by explicitly marking external and internal registers in an instruction.

No additional instructions are needed to manage values, andno values are tracked

at runtime.

Register file replication as implemented on the Alpha 21264 [38] is another

technique to increase access bandwidth by creating an exactcopy of the register file.

In this setup, each register file supports half of the required bandwidth. Together,

both register files provide the full bandwidth required by the execution core. This

technique requires duplicating the register file. It saves the design complexity of

the read ports but does not reduce the complexity of write ports.

While the mentioned techniques have been proposed to increase the access

bandwidth of the register file, these techniques require additional instructions in the

pipeline or additional hardware structures to track valuesin the pipeline. The braid

microarchitecture achieves the needed bandwidth without the additional overhead.

Since the compiler partitions the register space into external and internal registers,

each register file contains a smaller number of entries and a small number of ports.

The partitioning allows each register file to be accessed independently of others.

Furthermore, internal results do not need to be written backto the external register

file. The techniques mentioned above do not share this capability.

101

7.4 Compiler Identified Dependencies

Some techniques for allowing the compiler to explicitly specify instruction

dependencies have been proposed. These proposals differ from the braid microar-

chitecture in the way the dependency information is conveyed.

The Block-Structured ISA proposed by Melvin and Patt [47] uses the com-

piler to generate code blocks that simplify processing. Thecompiler embeds in-

struction dependency information in the header of the code block. The microar-

chitecture to implement the block-structured ISA has a muchsimpler dependence

checking logic since many instruction dependencies are made explicit by the com-

piler. A technique called block enlargement is used to increase the size of the code

block. This works by duplicating blocks and consolidating the duplicated blocks

with subsequent blocks. A larger code block provides more code movement and

optimization potential within the block. It also offers a higher instruction fetch rate

than fetching conventional basic blocks. Braids provide further simplification of

hardware complexity by explicitly identifying dataflow subgraphs within the basic

block.

The Intel Itanium 2 is a VLIW processor that implements the IA-64 instruc-

tion set [3]. The processor fetches two bundles every cycle where a bundle consists

of three instructions. Each bundle contains a template which explicitly specifies the

dependencies between instructions within the bundle and dependencies between

other bundles. It is the task of the compiler to form bundles that obtain the greatest

runtime benefit.

Similar to the braid, the block structured and IA-64 ISAs allow the compiler

to specify dependency information in the program binary to avoid using complex

dependence checking hardware in the microarchitecture. The braid ISA accom-

plishes this in a different way. Rather than specifying the dependencies for every

102

instruction, the braid ISA implicitly identifies instruction dependencies by group-

ing instructions into braids. Processing braids eliminates the dependence checking

hardware for all but two entries in the instruction queue because up to two instruc-

tions in a braid are considered for execution every cycle. Thus, it is not necessary

to encode exact dependency information which incurs high code overhead. Fur-

thermore, encoding dataflow subgraph information in the braid does not incur any

additional code overhead.

7.5 Steering

Many proposals have suggested clustered designs which relyon a steering

mechanism to distribute instructions. Front-end steeringmechanisms make deci-

sions by analyzing the current state of the machine which includes operand de-

pendencies, cluster availability, and load balance. Palachara et al. [50] proposed

FIFO-based instruction schedulers to simplify the design of the execution core. The

algorithm tracks the dependencies of an instruction and steers instructions based on

their dependencies. Farkas et al. [28] proposed the multicluster architecture where

instructions are steered based on their logical register names. Copy instructions are

used to transport values from one cluster to another on demand. Front-end steering

mechanisms are relatively simple in terms of design complexity. They make de-

cisions based on the current state of the processor. The decisions do not take into

consideration instructions not yet fetched which can yielda suboptimal steering

decision.

A more optimal steering mechanism considers future instructions by exam-

ining the steering decisions of previous instructions via feedback. Baniasadi and

Moshovos [10] proposed an adaptive steering technique. Each cluster has a table

of 2-bit counters which tracks how appropriate the cluster is for an instruction to

103

be steered. Counters are updated based on past executions of the instruction. Canal

et al. [19] proposed a steering mechanism which operates on instruction slices. A

slice is the dataflow tree leading to a load or a branch instruction. Slices can be

identified statically or dynamically but the authors advocated the runtime approach.

All instructions of a slice are steered to the same cluster. Fields et al. [30] proposed

using dynamic critical path analysis to help balance instruction distribution between

clusters. Bhargava and John [11] used the retirement fill unit to analyze the past his-

tory of instructions. Hint bits are inserted into the trace to identify inter-trace data

dependencies. Feedback-directed steering mechanisms perform better than front-

end steering mechanisms. This is because feedback-based mechanisms track the

past history of instructions. To accomplish this, hardwarestructures are needed to

maintain and analyze the executed instructions. This adds design complexity to the

pipeline and increases power requirements.

The braid microarchitecture is not clustered but shares similar character-

istics as a clustered microarchitecture. All instructionsin a braid are sent to the

same BEU. However, unlike a traditional clustered microarchitecture, the distribute

mechanism in the pipeline does not decide which instructions belong to which

braid. Braids are identified at compile time. The only decision made by the dis-

tribute mechanism is the identification of BEUs that are ready to accept braids.

7.6 Scheduling

A number of proposals have suggested solving the complexityproblems as-

sociated with a monolithic scheduler. Palachara et al. [50]proposed a microarchi-

tecture which uses simple FIFO schedulers. A FIFO schedulerexamines readiness

of the instruction at the head of the FIFO rather than all the instructions in the win-

dow. Even though the scheduling process is easier, the complexity of this approach

104

is shifted to the steering mechanism.

Kemp and Franklin [37] proposed a method of decentralizing the dynamic

scheduling hardware called PEWs. The decoder is given the responsibility of send-

ing an instruction to the PEW producing its source operands.Since dependent

instructions are generally placed in the same PEW, most of the register traffic is

obtained though intra-PEW forwarding.

Lebeck et al. [43] proposed a technique that uses the scheduling resources

more efficiently. The instructions in the dataflow tree stemming from a load miss

in the window are moved to a waiting instruction buffer. When the miss is satis-

fied, the same instructions in the dataflow tree are inserted back into the schedul-

ing window. By managing the scheduling window resources more efficiently, the

scheduling window can be designed with fewer entries to savepower.

Brekelbaum et al. [14] proposed the use of hierarchical scheduling win-

dows, each consisting of a small, fast window and a large, slow window. All in-

structions first enter the slow window. Latency critical instructions are moved to

the fast window using a selection heuristic. Instructions are classified as either

latency tolerant or latency critical. The use of hierarchical scheduling windows al-

lows the design of a short scheduling loop for the small window which handles the

short latency instructions and a longer scheduling loop forthe large window which

handles the long latency instructions.

Raasch et al. [57] proposed a segmented issue queue to tolerate high clock

frequencies. The design dynamically constructs subtrees of the dataflow called

chains which typically start with a load instruction. Chainsflow from segment

to segment and are controlled by a combination of data dependencies and predicted

operation latencies. Chains reach the final segment when their inputs are ready.

105

The mentioned proposals simplify the complexity of the scheduling win-

dow by partitioning the window and intelligently managing instruction placement

within the windows. Although the window can be more efficiently used, managing

instruction movement within the scheduling window requires hardware resources

to track instructions. The braid microarchitecture relieson the compiler to form

units of work called braids. A braid is scheduled out of a FIFOqueue. The braid

microarchitecture simplifies both instruction placement and instruction scheduling.

106

Chapter 8

Conclusions and Future Directions

8.1 Conclusions

Increasing the performance of a single-core processor is a challenging and

difficult task due to complexity issues and power requirements. This dissertation

introduced an entity called the braid which allows the processor to scale to wider

issue widths by simplifying the design complexity of structures in the execution

core of a high-performance processor.

Braids partition the register space into external and internal registers. This

enables the use of small partitioned register files. The characteristics of the braid

dataflow subgraph enable the use of simple FIFO schedulers. Port requirements are

reduced for a number of structures including the renaming mechanism, the external

and internal register files, and the bypass network.

Three limitations of the braid microarchitecture are identified and a solution

is presented to address each. Dynamic merging is proposed toaddress the limita-

tion on braid size. This technique increases the percent of internal register reads

from 50% to 73%. Context sharing is proposed to address the underutilization of

braid execution resources by long-latency instructions. This technique improves

performance by 1.5%. The use of heterogeneous execution resources is proposed

to address the poor utilization of braid execution resources by single-instruction

braids. This technique improves performance over using a set of similar braid exe-

cution units.

107

The internal register files maintain the internal values of abraid which rep-

resent 50% of the read accesses and 65% of the write accesses.On an 8-wide

design, the result from executing braids is performance within 9% of a very aggres-

sive conventional out-of-order microarchitecture with the complexity of an in-order

implementation. The simplifications to the execution core enable lower power re-

quirements, a shorter pipeline, and a higher clock frequency. Using braids is a

viable approach to the design of future high-performance processors.

8.2 Future Directions

8.2.1 Braid-Aware Compiler

The braid and its implementation represent a new processingparadigm.

There is no known commercial or research compiler that makesoptimization deci-

sions based on dataflow subgraphs. A braid-aware compiler produces more useful

braids that are targeted towards processing by the underlying braid microarchitec-

ture. An optimizing braid-aware compiler should make the following considera-

tions, most of which can be addressed through code transformations.

• Width should be taken into consideration. Braids should be generated to tar-

get a width of two throughout the entire length of the braid.

• Braids should be long but without an extraneous amount of external commu-

nications.

• Braids should terminate at an instruction which produces a result that is used

by many instructions. An example of this is stack or global pointer calculation

instructions.

• Instruction duplication should be used to reduce external communications.

108

• Braids should be constructed so that the same set of externaloperands is

maintained across control-flow boundaries to simplify the merging mecha-

nism.

• Braids should be formed such that external inputs are hoisted to the top of the

braid.

• Single-instruction braids should be eliminated.

8.2.2 Other Compiler Hints

The braid microarchitecture depends on the compiler to provide compile-

time information to simplify runtime processing. The compiler partitions the dataflow

graph of the program so that each dataflow subgraph can be processed in an in-order

fashion. As a result of the partitioning, the communicationof values is also parti-

tioned. The compiler is not limited to providing only this information and can do

much more to improve the processing capability of the microarchitecture.

One example of a simple annotation is the identification of dead register

values. There have been runtime techniques proposed to identify the last use of

registers [17]. Through dataflow analysis, the compiler candetermine when values

are dead. The compiler can associate a bit with an operand useto identify its last

use. With this information, the microarchitecture can freeregisters early to increase

the effective register size. This information is also useful to make dynamic merging

more effective.

Some other examples of simple annotations that can be provided by the

compiler include indicating the instruction makeup of a braid, identifying the loca-

tions of external inputs and external outputs of a braid, identifying the likely branch

target of a branch instruction in a braid, and identifying ifa braid contains any long

109

latency instructions. Providing information to the microarchitecture provides more

opportunity for improving performance.

8.2.3 Atomicity

The braid microarchitecture does not treat braids as an atomic unit of exe-

cution. It is natural to extend the support of atomicity to braids, because there is a

clear delineation of braid boundaries and external inputs and outputs. Supporting

atomicity can further reduce the complexity of the microarchitecture. For example,

in the current implementation of the braid microarchitecture, a braid requires multi-

ple entries allocated to it in the reorder buffer. If atomicity is supported, one handle

is required in the reorder buffer to point to the braid. Thus,resource efficiency

increases.

8.2.4 Clustering

This dissertation does not assume a clustered design. Clustering is a tech-

nique used to improve bandwidth and complexity of certain microarchitecture struc-

tures. Clustering centers on the concept of fast and slow communication paths.

Communication within the cluster is fast, and communicationbetween clusters is

slow. Clustering can be applied on top of the braid microarchitecture to further

simplify its design. A number of BEUs can be grouped togetherto form a cluster.

Clustering will require more complex distribution heuristics to distribute braids that

are likely to communicate to the same cluster.

8.2.5 Multi-Core Adaptability

The braid microarchitecture targets the design simplification of a single-core

processor. It can just as easily be adapted in a multi-core design. Since the memory

110

system has not changed, designing a microarchitecture to support braids uses the

same coherence protocol as a conventional microarchitectural design. Since the

braid microarchitecture targets future designs, it could be used as a building block

for multi-core systems.

8.2.6 Cache Accessibility

Future high performance processors will have large caches to exploit local-

ity. Techniques that partition the cache [58] are not compatible with the braid mi-

croarchitecture because they rely on distributing memory instructions to the func-

tional units adjacent to the cache that the instructions arelikely going to access.

This does not work for the braid microarchitecture because abraid may contain

multiple memory instructions that must be sent to the functional units of different

BEUs. Furthermore, allowing each BEU to have its own access path to the cache

may be difficult because of the cache organization.

This problem is best solved with the compiler. The compiler must generate

some braids containing no memory instructions and some braids containing mem-

ory instructions. The microarchitecture can then direct braids that contain memory

instructions to BEUs with the necessary cache access ports.

111

Bibliography

[1] Gnu compiler collection. http://gcc.gnu.org.

[2] Welcome to SPEC. http://www.specbench.org/.

[3] Intel IA-64 Architecture Software Developer’s Manual, January 2000.

[4] P. S. Ahuja, D. W. Clark, and A. Rogers. The performance impact of in-

complete bypassing in processor pipelines. InMICRO 28: Proceedings of

the 28th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 36–45, 1995.

[5] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and re-

covery: Towards scalable large instruction window processors. In MICRO

36: Proceedings of the 36th annual IEEE/ACM International Symposium on

Microarchitecture, page 423, Washington, DC, USA, December 2003. IEEE

Computer Society.

[6] D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt. Wrong pathevents: Ex-

ploiting unusual and illegal program behavior for early misprediction detec-

tion and recovery. InMICRO 37: Proceedings of the 37th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 119–128, Washington,

DC, USA, December 2004. IEEE Computer Society.

[7] T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary

programs. InISCA ’92: Proceedings of the 19th Annual International Sym-

posium on Computer Architecture, pages 342–351, May 1992.

112

[8] J. L. Ayala, M. López-Vallejo, and A. Veidenbaum. A compiler-assisted

banked register file architecture. InProceedings of the 3rd Workshop on

Application Specific Processors, 2004.

[9] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. A high performance

two-level register file organization. Technical Report TR-745, 2001.

[10] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-

cluster, dynamically-scheduled, superscalar processors. In MICRO 33: Pro-

ceedings of the 33rd Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 337–347, December 2000.

[11] R. Bhargava and L. K. John. Improving dynamic cluster assignment for clus-

tered trace cache processors. InISCA ’03: Proceedings of the 30th Annual In-

ternational Symposium on Computer Architecture, pages 264–274, June 2003.

[12] E. Borch, E. Tune, S. Manne, and J. S. Emer. Loose loops sink chips. In

Proceedings of the 8th IEEE International Symposium on HighPerformance

Computer Architecture, pages 299–310, February 2002.

[13] A. Bracy, P. Prahlad, and A. Roth. Dataflow mini-graphs:Amplifying super-

scalar capacity and bandwidth. InMICRO 37: Proceedings of the 37th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 18–29, De-

cember 2004.

[14] E. Brekelbaum, J. R. II, C. Wilkerson, and B. Black. Hierarchical scheduling

windows. InMICRO 35: Proceedings of the 35th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 27–36, November 2002.

113

[15] D. Burger, T. Austin, and S. Bennett. Evaluating futuremicroprocessors: The

simplescalar tool set. Technical Report TR-1308, University of Wisconsin -

Madison Technical Report, July 1996.

[16] M. Butler and Y. Patt. An area-efficient register alias table for implementing

HPS. InProceedings of the 4th International Conference on ParallelProcess-

ing, pages 611–612, 1990.

[17] J. A. Butts and G. S. Sohi. Characterizing and predictingvalue degree of use.

In MICRO 35: Proceedings of the 35th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 15–26, Los Alamitos, CA, USA, Novem-

ber 2002. IEEE Computer Society Press.

[18] J. A. Butts and G. S. Sohi. Use-based register caching with decoupled index-

ing. In ISCA ’04: Proceedings of the 31st Annual International Symposium

on Computer Architecture, pages 302–313, June 2004.

[19] R. Canal, J.-M. Parcerisa, and A. González. Dynamic cluster assignment

mechanisms. InProceedings of the 6th IEEE International Symposium on

High Performance Computer Architecture, pages 133–142, February 2000.

[20] R. S. Chappell, P. B. Racunas, F. Tseng, S. P. Kim, M. D. Brown, O. Mutlu,

H. Kim, and M. K. Qureshi. The SCARAB microarchitectural simulator.

Unpublished documentation.

[21] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner. An archi-

tecture framework for transparent instruction set customization in embedded

processors. InISCA ’05: Proceedings of the 32nd Annual International Sym-

posium on Computer Architecture, pages 272–283, Washington, DC, USA,

June 2005. IEEE Computer Society.

114

[22] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner. Application-

specific processing on a general-purpose core via transparent instruction set

customization. InMICRO 37: Proceedings of the 37th Annual IEEE/ACM

International Symposium on Microarchitecture, December 2004.

[23] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through auto-

mated instruction set customisation. InMICRO 36: Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture, December

2003.

[24] A. Cristal, O. J. Santana, M. Valero, and J. F. Martı́nez. Toward kilo-instruction

processors.ACM Transactions on Architecture and Code Optimization, 1(4):389–

417, 2004.

[25] J.-L. Cruz, A. Gonźalez, M. Valero, and N. P. Topham. Multiple-banked

register file architectures. InISCA ’00: Proceedings of the 27th Annual Inter-

national Symposium on Computer Architecture, pages 316–324, June 2000.

[26] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic data-

flow processor.SIGARCH Computer Architecture News, 3(4):126–132, 1974.

[27] O. Ergin, D. Balkan, K. Ghose, and D. Ponomarev. Register packing: Ex-

ploiting narrow-width operands for reducing register file pressure. InMICRO

37: Proceedings of the 37th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 304–315, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[28] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster archi-

tecture: Reducing cycle time through partitioning. InMICRO 30: Proceed-

115

ings of the 30th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 149–159, December 1997.

[29] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file design considerations in

dynamically scheduled processors. InProceedings of the 4th IEEE Interna-

tional Symposium on High Performance Computer Architecture, pages 40–51,

1998.

[30] B. Fields, S. Rubin, and R. Bodı́k. Focusing processor policies via critical-

path prediction. InISCA ’01: Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 74–85, New York, NY, USA,

June 2001. ACM Press.

[31] M. Franklin and G. S. Sohi. Register traffic analysis forstreamlining inter-

operation communication in fine-grain parallel processors. In MICRO 25:

Proceedings of the 25th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 236–245, November 1992.

[32] A. Gonźalez, J. Gonźalez, and M. Valero. Virtual-physical registers. In

hpca98, pages 175–184, 1998.

[33] L. Gwennap. Digital 21264 sets new standard.Microprocessor Report,

10(14):11–16, October 1996.

[34] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-

sel. The microarchitecture of the Intel Pentium 4 Processor. Intel Technology

Journal, Q1, 2001.

[35] W. W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution

machines. InISCA ’87: Proceedings of the 14th Annual International Sym-

posium on Computer Architecture, pages 18–26, 1987.

116

[36] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous multi-threading imple-

mentation in power5 – ibm’s next generation power microprocessor, August

2003. Hot Chips 15 presentation.

[37] G. A. Kemp and M. Franklin. PEWs: A decentralized dynamicscheduler for

ILP processing. InInternational Conference on Parallel Processing, pages

239–246, August 1996.

[38] R. E. Kessler, E. J. McLellan, and D. A. Webb. The alpha 21264 microproces-

sor architecture. InProceedings of the 16th IEEE International Conference

on Computer Design, pages 90–95, October 1998.

[39] H. Kim, M. A. Suleman, O. Mutlu, and Y. N. Patt. 2d-profiling: Detecting

input-dependent branches with a single input data set. InProceedings of the

International Symposium on Code Generation and Optimization, Washington,

DC, USA, March 2006. IEEE Computer Society.

[40] H.-S. Kim and J. E. Smith. An instruction set and microarchitecture for in-

struction level distributed processing. InISCA ’02: Proceedings of the 29th

Annual International Symposium on Computer Architecture, Anchorage, AK,

USA, May 2002.

[41] I. Kim and M. H. Lipasti. Macro-op scheduling: Relaxingscheduling loop

constraints. InMICRO 36: Proceedings of the 36th annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 277–290, December 2003.

[42] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark

workload for simulation-based computer architecture research. Computer

Architecture Letters, 1, June 2002.

117

[43] A. R. Lebeck, T. Li, E. Rotenberg, J. Koppanalil, and J. Patwardhan. A large,

fast instruction window for tolerating cache misses. InISCA ’02: Proceedings

of the 29th Annual International Symposium on Computer Architecture, pages

59–70, May 2002.

[44] L. A. Lozano and G. R. Gao. Exploiting short-lived variables in superscalar

processors. InMICRO 28: Proceedings of the 28th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 292–302, Los Alamitos,

CA, USA, 1995. IEEE Computer Society Press.

[45] A. Marquez, K. Theobald, X. Tang, and G. Gao. A superstrand architecture.

Technical Report Technical Memo 14, University of Delaware, Computer Ar-

chitecture and Parallel Systems Laboratory, December 1997.

[46] M. M. Martin, A. Roth, and C. N. Fischer. Exploiting dead value information.

In MICRO 30: Proceedings of the 30th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 125–135, Washington, DC, USA, 1997.

IEEE Computer Society.

[47] S. Melvin and Y. N. Patt. Exploiting fine-grained parallelism through a com-

bination of hardware and software techniques. InISCA ’91: Proceedings of

the 18th Annual International Symposium on Computer Architecture, pages

287–297, 1991.

[48] S. Narayanasamy, H. Wang, P. Wang, J. Shen, and B. Calder.A dependency

chain clustered microarchitecture. InProceedings of the IEEE International

Parallel and Distributed Processing Symposium, 2005.

[49] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt. How to fake

1000 registers. InMICRO 38: Proceedings of the 38th annual IEEE/ACM

118

International Symposium on Microarchitecture, pages 7–18, Washington, DC,

USA, 2005. IEEE Computer Society.

[50] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar

processors. InISCA ’97: Proceedings of the 24th Annual International Sym-

posium on Computer Architecture, pages 206–218, June 1997.

[51] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical issues regarding the trace

cache fetch mechanism. Technical Report CSE-TR-335-97, University of

Michigan Technical Report, May 1997.

[52] S. J. Patel and S. S. Lumetta. rePLay : A hardware framework for dynamic

program optimization. Technical Report CRHC-99-16, University of Illinois

Technical Report, December 1999.

[53] Y. Patt, W. Hwu, and M. Shebanow. HPS, a new microarchitecture: Ra-

tionale and introduction. InMICRO 18: Proceedings of the 18th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 103–107,

December 1985.

[54] M. Peric̀as, R. Gonźalez, A. Cristal, A. V. Veidenbaum, and M. Valero. An

optimized front-end physical register file with banking andwriteback filter-

ing. In Proceedings of the 4th Workshop on Power-Aware Computer Systems,

pages 1–14, December 2004.

[55] J. Pierce and T. Mudge. Wrong-path instruction prefetching. IEEE Micro,

00:165, 1996.

[56] D. Ponomarev, G. Kucuk, O. Ergin, and K. Ghose. Reducingdatapath en-

ergy through the isolation of short-lived operands. InProceedings of the 12th

119

IEEE/ACM International Conference on Parallel Architectures and Compila-

tion Techniques, page 258, Washington, DC, USA, 2003. IEEE Computer

Society.

[57] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction

queue design using dependence chains. InISCA ’02: Proceedings of the 29th

Annual International Symposium on Computer Architecture, pages 318–328,

May 2002.

[58] P. Racunas and Y. N. Patt. Partitioned first-level cachedesign for clustered

microarchitectures. Inics03, pages 22–31, June 2003.

[59] E. Rotenberg, Q. Jacobsen, Y. Sazeides, and J. E. Smith.Trace processors. In

MICRO 30: Proceedings of the 30th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, December 1997.

[60] P. Salverda and C. Zilles. Dependence-based schedulingrevisited: A tale of

two baselines. InProceedings of the 6th Annual Workshop on Duplicating,

Deconstructing, and Debunking, June 2007.

[61] P. G. Sassone and D. S. Wills. Dynamic strands: Collapsing speculative de-

pendence chains for reducing pipeline communication. InMICRO 37: Pro-

ceedings of the 37th Annual IEEE/ACM International Symposium on Microar-

chitecture, pages 7–17, December 2004.

[62] P. G. Sassone, D. S. Wills, and G. H. Loh. Static strands:safely collapsing

dependence chains for increasing embedded power efficiency. In Proceedings

of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers,

and Tools for Embedded Systems, pages 127–136, 2005.

120

[63] A. Seznec, E. Toullec, and O. Rochecouste. Register write specialization

register read specialization: A path to complexity-effective wide-issue super-

scalar processors. InMICRO 35: Proceedings of the 35th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 383–394, Los Alami-

tos, CA, USA, November 2002. IEEE Computer Society Press.

[64] R. L. Sites.Alpha Architecture Reference Manual. Digital Press, Burlington,

MA, 1992.

[65] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.

In ISCA ’95: Proceedings of the 22nd Annual International Symposium on

Computer Architecture, pages 414–425, June 1995.

[66] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood. Safetynet: Im-

proving the availability of shared memory multiprocessorswith global check-

point/recovery. InISCA ’02: Proceedings of the 29th Annual International

Symposium on Computer Architecture, volume 00, page 0123, Los Alamitos,

CA, USA, May 2002. IEEE Computer Society.

[67] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. Fast check-

point/recovery to support kilo-instruction speculation and hardware fault tol-

erance. Technical Report TR-1420, University of Wisconsin- Madison Tech-

nical Report, October 2000.

[68] E. Sprangle and Y. Patt. Facilitating superscalar processing via a combined

static/dynamic register renaming scheme. InMICRO 27: Proceedings of

the 27th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 143–147, 1994.

121

[69] J. Stark, M. D. Brown, and Y. N. Patt. On pipelining dynamic instruction

scheduling logic. InMICRO 33: Proceedings of the 33rd Annual IEEE/ACM

International Symposium on Microarchitecture, December 2000.

[70] J. E. Thornton. Parallel operation in the control data 6600. pages 32–39,

2000.

[71] J. H. Tseng and K. Asanović. Banked multiported register files for high-

frequency superscalar microprocessors. InISCA ’03: Proceedings of the

30th Annual International Symposium on Computer Architecture, pages 62–

71, New York, NY, USA, 2003. ACM Press.

[72] S. Vajapeyam and T. Mitra. Improving superscalar instruction dispatch and

issue by exploiting dynamic code sequences. InISCA ’97: Proceedings of the

24th Annual International Symposium on Computer Architecture, pages 1–12,

1997.

[73] S. Wallace and N. Bagherzadeh. A scalable register file architecture for dy-

namically scheduled processors. InProceedings of the 5th IEEE/ACM Inter-

national Conference on Parallel Architectures and Compilation Techniques,

page 179, Washington, DC, USA, October 1996. IEEE Computer Society.

[74] O. Wechsler. Inside intel core microarchitecture: Setting new standards for

energy-efficient performance.Intel Technology Journal, 10(2), 2006.

[75] K. C. Yeager. The MIPS R10000 superscalar microprocessor. In MICRO

29: Proceedings of the 29th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 28–41, December 1996.

122

[76] R. Yung and N. C. Wilhelm. Caching processor general registers. InProceed-

ings of the 13th IEEE International Conference on Computer Design, pages

307–312, Washington, DC, USA, 1995. IEEE Computer Society.

[77] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Two-level hierarchical

register file organization for vliw processors. InMICRO 33: Proceedings of

the 33rd Annual IEEE/ACM International Symposium on Microarchitecture,

pages 137–146, New York, NY, USA, December 2000. ACM Press.

[78] V. V. Zyuban and P. M. Kogge. The energy complexity of register files. In

Proceedings of the 1998 International Symposium on Low PowerElectronic

Design, pages 305–310, August 1998.

[79] V. V. Zyuban and P. M. Kogge. Inherently low-power high-performance su-

perscalar architectures.IEEE Transactions on Computers, 50(3):268–286,

March 2001.

123

Vita

Francis Tseng was born in Pingtung, Taiwan on November 3, 1976, the son

of Chu-Lan Chang and Wan-An Tseng. Not long after attending primary school

in Taiwan, his family moved to the US. In 1995, he graduated from Brighton High

School and enrolled in the Computer Engineering program at the University of

Michigan in Ann Arbor. He graduated with a Bachelor of Science and Engineering

degree in 1999. In the same year, he followed his advisor, Professor Yale N. Patt

to The University of Texas at Austin where he enrolled in the Ph.D. program in

Computer Engineering. In 2006, he married Teresa H. Lai.

At the University of Texas at Austin, he served as a teaching assistant for the

Introduction to Computingand theComputer Architecturecourses. He was nomi-

nated by the Electrical and Computer Engineering Departmentfor the Outstanding

TA/AI Award in 2000. His studies were supported in part by an Intel Graduate Re-

search Fellowship and by an Intel Ph.D. Fellowship. While in college, he had held

summer internships at Netscape Communications Corporation,Intel Corporation,

Advanced Micro Devices, Cray, and HAL Computer Systems.

Permanent address: 7600 Wood Hollow Dr Apt 915
Austin, TX 78731

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

124

