Copyright
by
Francis Tseng
2007



The Dissertation Committee for Francis Tseng
certifies that this is the approved version of the followingseértation:

Braids: Out-of-Order Performance
with Almost In-Order Complexity

Committee:

Yale N. Patt, Supervisor

Craig M. Chase

Derek Chiou

Aloysius K. Mok

Burton J. Smith

James W. Tunnell



Braids: Out-of-Order Performance
with Almost In-Order Complexity

by

Francis Tseng, B.S.E.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2007



To my parents.



Acknowledgments

My graduate school experience would not have existed if rewmt for the
support of my parents. They have always provided for me amgl@of hard work
and perseverance. | would like to thank my wife Teresa andamyily for putting
up with my irregular work schedule and my seemingly nevetieg work.

| am indebted to my advisor, Professor Yale N. Patt, for pugime to be
my best and being there as a friend when | needed to talk. Thaakor your
advice and guidance over the years.

I would like to acknowledge past and present members of the i¢Bearch
group for providing a stimulating work environment. | wouikie to thank Robert
Chappell for helping me to get started with research and biiege to chat about
anything. The first half of my graduate life would not haverbas exciting without
the friendship of Paul Racunas, Mary Brown, and Sangwook.Klimese people
provided mentorship and encouragement. | would also likinamk Onur Mutlu,
Moinuddin Quereshi, Hyesoon Kim, David Armstrong, and Kama Subrama-
niam for their friendship and also their helpful critiqud$ie more recent members
of the HPS group all have engaged in discussions about cde@#&h me. These are
Muhammad Aater Suleman, Jose Joao, Chang Joo Lee, VeynurNanaSanthosh
Srinath, David Thompson, Danny Lynch, Linda Hastings, RousMiftakhutdinov,
Eiman Ebrahimi, and Khubaib.

I am thankful to the members of my Ph.D. committee for themoatment
to serve on my committee. | would especially like to thankdékeChiou for always
being available to talk and for providing detailed commeortsmy dissertation.



I would also like to thank Mattan Erez for coming to my defeiasel providing

helpful comments as if he was a committee member.

| would like to thank the mentors of my summer jobs for shatimgir ex-
pertise. In particular, Burton Smith and Mitch Alsup helped refine my research
topic through many discussions.

Finally, | would like to thank Intel Corporation, Advanced &fo Devices,
Cray, and HAL Computer Systems for providing me with summesjdlorking at

these companies has allowed me to gain a better undersgeofginocessor design.

Vi



Braids: Out-of-Order Performance
with Almost In-Order Complexity

Publication No

Francis Tseng, Ph.D.
The University of Texas at Austin, 2007

Supervisor: Yale N. Patt

There is still much performance to be gained by out-of-ongl@cessors
with wider issue widths. However, traditional methods dafrgmsing issue width
do not scale; that is, they drastically increase design d¢exitg and power require-
ments. This dissertation introduces the braid, a compie-generated entity that
enables the execution core to scale to wider widths by etipipthe small fanout
and short lifetime of values produced by the program. A bragtures dataflow
and register usage information of the program which are kntmithe compiler but
are not traditionally conveyed to the microarchitectunetiyh the instruction set

architecture.

Braid processing requires identification by the compileinon augmenta-
tions to the instruction set architecture, and support leyrtiicroarchitecture. The
execution core of the braid microarchitecture consists w@imber of braid execu-
tion units (BEUs). The BEU is tailored to efficiently carrytdhe execution of a
braid in an in-order fashion. Each BEU consists of a FIFO dalex, a busy-bit

vector, two functional units, and a small internal registier
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The braid microarchitecture provides a number of oppotiesifor the re-
duction of design complexity. It reduces the port requirataeof the renaming
mechanism, it simplifies the steering process, it reducesitea, size, and port re-
quirements of the register file, and it reduces the paths andrequirements of
the bypass network. The complexity savings result in a desigracterized by a
lower power requirement, a shorter pipeline, and a higheeclkcfrequency. On an
8-wide design, the result from executing braids is perforogawithin 9% of a very
aggressive conventional out-of-order microarchitectuin the complexity of an

in-order implementation.

Three bottlenecks are identified in the braid microarchitecand a solution
is presented to address each. The limitation on braid siaddsessed by dynamic
merging. The underutilization of braid execution resosrcaused by long-latency
instructions is addressed by context sharing. The podeatibn of braid execu-
tion resources caused by single-instruction braids is es$#d by heterogeneous

execution resources.
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Chapter 1

Introduction

The modern high-performance superscalar out-of-ordecgs®or is a re-
stricted dataflow machine [53] which differs from a pure data machine [26] in
the following way. A restricted dataflow machine has a scdp@acessing that is
limited to a window of instructions dictated by hardware staints. This window
slides along the sequential execution stream. Instrusgoer and exit the window
in an in-order fashion. Within this window, instructionseexite as soon as their
sources are ready in an out-of-order fashion. The size oe#eeution window
and the capability of out-of-order processing are govelmethe size of structures
in the execution core of the processor. As the size of thetstres and the num-
ber of elements that can be processed every cycle incrdasexecution engine
can exploit more instruction-level parallelism [7], allmg the restricted dataflow

machine to more closely resemble a pure dataflow machine.

Figure 1.1 shows the potential performance that is avalablwider issue
widths in an aggressive conventional out-of-order proggesssuming the use of a
perfect branch predictor and perfect instruction and dathes. It is not unrealistic
to assume that future processors will have more accuratecbrpredictors and
also larger caches. Thus, Figure 1.1 provides a measure @wtilable untapped
performance. The baseline for this experiment is a 4-wideventional out-of-
order design. An 8-wide design achieves an average inatgeséormance of 44%

over the baseline, and a 16-wide design achieves an averagased performance



of 83% over the baseline. Some applications such as craftyand mgrid show a

performance improvement of 200% when issue width incretises4 to 16.

35

Relative Performance

W 16 wide Benchmarks

Figure 1.1: Potential Performance of 8-Wide and 16-Widei@esOver a 4-Wide
Conventional Out-of-Order Design Using Perfect Branch Rtexh and Perfect
Caches

Although Figure 1.1 shows that performance is plentiful adex issue
widths, there are design implications that make such agpeminfeasible. The
traditional method of increasing issue width does not sdalereasing issue width
beyond that of current processors drastically increasesli#isign complexity [50]
and power requirements [79] of the execution core of the ggsor. A processor
with a wider issue width requires structures with more @stin the execution core
to support the processing of more in-flight instructions.particular, these struc-
tures include the instruction scheduler, the registerditel the bypass network. All
of these structures pose a problem because they do not #alie issue width

increases, these structures require more entries and pottsn, they take up a sig-



nificantly larger chip area and consume more power. Largettres are pipelined
because a signal cannot travel across the length of thetwsteuat the expected

frequency. This further increases design complexity.

The instruction scheduler is a structure in a critical loégxecution [50].
The scheduler contains many entries in order to identiffricsions that are ready
to execute. Pipelining the scheduler creates unavoidapkdipe bubbles in the
scheduling process causing significant performance |dgs Mithough pipelining
the instruction scheduler without performance loss has pegposed [69], it is not
possible to do so without adding additional complexity te #iready complex in-
struction scheduler. The register file is another crucialctire required for high
performance. It is the storage for the results of in-fligigtinctions. Therefore,
more entries are needed to support more in-flight instrasticAs issue width in-
creases, more ports are added to the register file to sugmohigher reading and
writing bandwidth. Increasing the number of entries andof the register file
requires more area and energy [78]. Doubling the numbergi$ter ports doubles
the number of bit-lines and the number of word-lines, cagisimuadratic increase
in area [29]. A larger register file requires accesses to pelpied over multiple
cycles [34]. Pipelined accesses in turn require a multilbypass network to pro-
vide values that have been written to but are not yet avalabm the register file.
Each level of the bypass network is a complex point-to-poéettvork. It has been
shown that limiting the bypass network can lead to detrirlepérformance loss
[4].

Because of the difficulties associated with scaling theessidth, there
have been fewer introductions of commercial aggressiveobotder superscalar
processors at wider issue widths. The issue width of reaghtperformance pro-
cessor introductions has been four. This includes the ek Duo and Core 2



Duo [74]. 8-wide designs have been introduced but at limitedquencies. The
AMD Barcelona has a frequency of 2GHz, and the IBM POWER4 and/ER5
[36] have a frequency of 1.9GHz and 2.2GHz, respectivelyhénPOWERG, IBM
implemented an in-order microarchitecture. In order to enake of the greater
number of transistors provided by improvements in proceskriology, designers
have looked for alternative forms of parallelism for impimy performance. Rather
than designing wider processors, designers duplicatscoréhe same chip. Today,
most general purpose processors introduced are multijp@eessors. Although
multi-core processors exploit program-level and threaa parallelism, there is
still much to be gained in the performance of single-coregiesas shown in Fig-
ure 1.1 if designers can get past the complexity issues awémp@quirements. If
designers can improve single-core performance, then +ootg performance can
improve as well. A multi-core processor is simply a singteecprocessor replicated

multiple times.

1.1 The Solution

Itis clear that the traditional method of increasing issudthvis impractical
to implement in future high-performance processors. Otgtisn to this problem
is to leverage the compiler. If the compiler can provide thi®imation that the
microarchitecture needs to execute a program, the midndaature does not have

to work as hard to achieve the same goals.

Unlike the limited program scope of the hardware, the coengbs an un-
restricted view of the entire program. The compiler can lgaamnalyze program
dataflow which is composed of an ordered set of instructiontsaset of values
that are passed among instructions. However, the infooma&thown to the com-

piler is not conveyed to the microarchitecture in an efficigranner due to the



syntax limitations of conventional instruction set arebtures. Aggressive out-of-
order processors reconstruct a limited view of the progrataftbw at runtime using
structures in the execution core. The more entries and wigestructures are, the
more complete the picture of program dataflow is. Figure $l&aws the conven-
tional processing paradigm. The thickness of the linesateis the amount of effort
exerted at that level. In this paradigm, the compiler paseted dataflow informa-

tion to the microarchitecture. The microarchitecture tegtracts parallelism from

the limited dataflow information using runtime structureghe execution core.

ISA

ISA

Microarchitecturg (Microarchitecture)

(@) (b)

Figure 1.2: Processing Paradigms (a) Conventional: Mictotecture Does Most
of the Work (b) Braid: Compiler Does Most of the Work

This dissertation introduces the braid, a compile-timeagated entity which
simplifies the design complexity of structures in the executcore of a high-
performance processor. A braid is a dataflow subgraph of thgram that re-
sides solely within a basic block. It exploits the small fanand short lifetime of
values communicated among instructions. Figure 1.2b shiogvbraid processing
paradigm. In this model, the compiler exerts more effortaahpile time and passes
more information about the program dataflow to the microgeciure. This lessens

the effort of the microarchitecture to extract program faliam at runtime and



eliminates the need for complex hardware structures in xkewdion core. Braids
enable the use of simple instruction schedulers, reducsizkeports, and accesses
to the register file, and also reduce the ports and valuesséme bypass network.
The braid microarchitecture shortens the pipeline redyutire branch mispredic-
tion penalty. The reduction in complexity by avoiding la@gsociative structures
also enables a higher clock frequency. Traditionally, aesieers in the architectural
community have avoided making changes to the instructibarshitecture. This
dissertation shows that with simple augmentations to te&untion set architec-
ture, braids can be easily conveyed to and leveraged by tbranchitecture.

1.2 Thesis Statement

Compiler-identified braids can be efficiently conveyed tlgtothe instruc-
tion set architecture to the microarchitecture, simplitythe design complexity of
elements on the critical path in the execution core of thermaichitecture while

approximating the performance of an aggressive out-o&odeésign.

1.3 Contributions

This dissertation makes the following contributions.

e This dissertation introduces the braid which enables tmepiler to convey
useful program dataflow and value information to the miochdecture al-
lowing the compiler to play a greater role in processing ttegpam. The mi-
croarchitecture that implements braids is able to achievepmance close to
that of an aggressive out-of-order design while maintgriire design com-
plexity closer to that of an in-order design.



e This dissertation discusses the compiler, the instruct&trarchitecture, and
the microarchitecture modifications required to implemanatids. First, this
dissertation shows how braids can be identified by the canpl by per-
forming profiling analysis and binary translation. Secotids dissertation
shows the instruction set architecture augmentationsatetedconvey braids
to the microarchitecture. Third, this dissertation praggoa microarchitec-
ture to efficiently carry out the processing of braids. Theige parameters

needed for a balanced design are analyzed.

e Three bottlenecks are identified in the braid microarchutexand a solution
is presented to address each. First, the limitation on Isiaelis addressed by
dynamic merging. Second, the underutilization of braidcei®n resources
caused by long-latency instructions is addressed by costexing. Third,
the poor utilization of braid execution resources causesdibgle-instruction

braids is addressed by heterogeneous execution resources.

1.4 Organization

The rest of this dissertation is organized as follows. Chapteharacter-
izes the use of program values, introduces the concept mfdyr@nd analyzes braid
characteristics. Chapter 3 presents the compiler, instrucet architecture, and
microarchitecture requirements for processing braids.p@at describes the sim-
ulation infrastructure used in this dissertation and aregythe performance results
of processing braids. Chapter 5 suggests three optimizattoaddress three bottle-
necks of the braid microarchitecture. Chapter 6 analyzebdh#gware and software
complexity of the braid microarchitecture. Chapter 7 coregaand contrasts the
braid microarchitecture with other processing paradignt groposals. Chapter 8

concludes and discusses the future research directionscdgsing braids.



Chapter 2

The Braid

The compiler has an unrestricted view of the entire progrataftbw graph
at compile time. It also has precise knowledge about theassagd lifetime of
each value in the program. Rather than coming up with a purdweae solution
to simplify an execution core that can support wider issudthg, the compiler is
used to expose program dataflow and value information to ticeoarchitecture.
To understand how the characteristics of program valuebeaxploited for more
efficient processing by the microarchitecture, this chiagi@racterizes the usage of
values of programs and provides insight into how the progdataflow graph can
be broken into dataflow subgraphs. A braid is defined, and ample is provided.

Braids found in programs are then characterized.

2.1 Motivation

A program is an implementation of an algorithm in a programgnian-
guage. It can be described as a dataflow graph consistingd#fsnepresenting
instructions and arcs representing values that are passedginstructions. The
entire dataflow graph of a program is very irregular, comsgsof arbitrary arcs that
connect nodes together. However, it will be shown that wherdiataflow graph is

divided into smaller dataflow subgraphs, some structurepartierns are revealed.



2.1.1 Distribution of Value Fanout

An experiment was performed to analyze the characterisficg@lues for
all the programs in the SPEC CPU2000 benchmark suite comfaleithe Alpha
ISA. Figure 2.1 plots the distribution of the dynamic fanof@ivalues produced in
the benchmark programs. The fanout of a value is defined asuitmer of times
the value is read. Most values are read infrequently. Onaaserover 70% of the
values are used only once, and about 90% of the values areatisedst twice.
Values that are used more than three times represent oniyt &k@of all values.

90 +

Distribution
3

m: Benchmarks

Figure 2.1: Distribution of Value Fanout

About 4% of the values are produced but not used. These tedasre
caused by the conservative nature of the compiler. The dempmioduces a value

to be used along a specific control-flow path. However, thatrobflow path was

9



not traversed at runtime causing the value not to be read.

Infrequently-used values exist for a number of reasonst Rine process of
moving values to and from the stack at function call bouretacreates infrequently
used values. Moving values is required since the compilénele a standard inter-
face for supporting parameter passing for function callscddd, certain compiler
optimizations and transformations can increase the nuraberfrequently-used
values. One such example is common sub-expression eliminafFigure 2.2a
shows an unmodified code sequence. In this example, thesskpnel + r2 is a
common subexpression. Instances of this expression al@cespwith X shown
in Figure 2.2b. This transformation converts registetsand 2 into single-use
values. Third, and perhaps the most common reason why méegiently-used
values exist has to do with the specification of instructions general-purpose
ISA. The compute form of an instruction generally consigtsr® inputs and one
output. Since the instruction encoding space is limiteskatld be impossible to
assign an instruction for every possible operation. Comppetations must be con-
structed from a sequence of instructions as shown in Figie Phe output from
one instruction is read as the input of another. Passingegabetween instructions

of complex operations makes them temporary.

2.1.2 Distribution of Value Lifetimes

Another characteristic of a value is its lifetime. This idided as the num-
ber of instructions between the producer and consumer dii@ v&igure 2.4 shows
the distribution of the dynamic lifetime of values produsedhe benchmark pro-
grams. On average, about 80% of values have a lifetime ofs&uctions or fewer.
This translates to four or fewer processor cycles on a pemdbat fetches eight

instructions per cycle.

10



add r6, r7, r1 add r6, r7, rl

add r8, r9, add r8, r9, r2
A A
addrl, r2, r addrl, r2, X
addrl, r2, ¢ add X, #0, r4
addrl, r2, r5 add X, #0, r5
(@) (b)

Figure 2.2: Example of Common Sub-Expression EliminationJeginal Code
Sequence (b) Optimized Code Sequence

a=b*(c+d)+e
c d

temporary
i e

Figure 2.3: Composition of a Complex Operation
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Figure 2.4: Distribution of Value Lifetime
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Figures 2.1 and 2.4 show that most values have a small famolua ghort
lifetime. This suggests the entire irregular dataflow grapthe program has some
regularity to it. To exploit the regular dataflow subgrapfshe program, the com-
piler partitions the dataflow graph of the program into eagitthat can be more
easily processed by the microarchitecture. Although soesearchers have char-
acterized the behavior of values [31] [17], they have notipamned the program
dataflow graph based on these realizations.

2.2 The Braid

A braid is a dataflow subgraph of a program contained whollyiwia ba-
sic block. A braid has instructions with external inputs amternal outputs. These
values are communicated with instructions from other l&ai braid also has in-
ternal values. These values are communicated among itistraevithin the braid.
Since a braid is a dataflow subgraph, it has an instructieal-igarallelism that is

generally greater than one.

Figure 2.5a shows a snippet of C source code fronlitee _analysis
function in the gcc benchmark program from the SPEC CPU2066Hreark suite.
Figure 2.5b shows the assembly code of the basic block qgmmnekng to lines 1
through 8 of the source code. The three different color shatentify three disjoint
dataflow subgraphs within the basic block. A dataflow grapthefcorresponding
assembly code is shown in Figure 2.5c. Again, the threerdiftecolor shades
identify the same three disjoint dataflow subgraphs. Thewarindicate data de-
pendencies where solid lines represent values commudiaatiernally within the
dataflow subgraph, and dashed lines represent values cocatechexternally to
and from the dataflow subgraph. Each of these dataflow subgrapresents a dif-

ferent braid. Thus, the basic block in this example is pgartéd into three braids.

13



Each braid corresponds to one operation being performelaeimigh-level source
code. The assembly code of braid 1 corresponds to the woriglzkine by lines
4 through 8 of the source code. This braid has six externaltsmpne external
output, and eleven internal values. The assembly code ad Braorresponds to
the increment of the induction variable in ther statement. This braid has one
external input, one external output, and one internal vaBiaid 3 consists of a
single Ida instruction with one external input, one extémaput, and no internal

values. Itis a single-instruction braid.

2.3 Braid Characteristics

Figure 2.5b shows that a basic block contains instructionsgecifying one
or more high-level operations in the source code. Since eaelof these high-level
operations corresponds to a braid, one or more braids ektstva basic block. The
first characteristic of braids measured is the number otigrper basic block for all
the SPEC CPU2000 benchmark programs. This is shown in Tabl€®2. average,
the basic block of the integer benchmark programs consfs2s8abraids, and the
basic block of the floating point benchmark programs cossit#.2 braids. These
numbers are skewed by the presence of single-instructiaidsr When single-
instruction braids are factored out, the average numberaitib per basic block
falls to 1.15 and 1.89 for the integer and floating point benatk programs re-
spectively. This is shown in the column labeled with an asiteiSingle-instruction
braids account for 14% of all instructions. 12% of the siAgigtruction braids are
branch and NOP instructions. These single-instructiordbrare present due to the
experimental analysis with preexisting program binariesegated by a non-braid-

aware compiler.

To put the number of braids per basic block in perspectivblera.2 shows
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braid 2

braid 3

v

1: for (j = 0; j < regset_size; j++)
2:
3: register REGSET_ELT_TYPE x
4. = (basic_block_new_live_at_end][i][j]
5: & “basic_block_live_at_end[i][j]);
6: if (X)
7: consider = 1;
8: if (x & basic_block_significant[i][j])
9: {
10: must_rescan = 1;
11: consider = 1;
12: break;
13: }
14:
(a)
braid 1
pr— i i
LA \A | Vo
(Laddg ) (Laddg ) @ |
0x10 hddq a1, t4, t0 v I
0x14 addq a0, t4, t1 Cia ) (i ) o
0x18 addq t8, t4, t2 N\ ¥ vy
Ox1c Idl t3, O(t0) andnot add
0x20 addl t5, #1, t5 ( * ) ( +C])
0x24 IdIt0, O(t1)
0x28 ¢mpeq 19, 15, {7 (add ) (o )
ox2c IdItL, O(t2) ¥y oy
0x30 (cmovne) (and)
0x34 andnot t3, t0, t0
0x38 addl zero, t0, tO |
0x3c !
0x40 : i
0x48 [ y
(b) (©)
Figure 2.5: Example Braids (a) Snippet of C Source Code froma th
life _analysis Function in gcc (b) Assembly Code of Basic Block (c) Dataflow

Graph of Basic Block
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Integer Floating Point
benchmarkg braids | braids benchmarkg braids | braids
bzip2| 2.6 1.31 ammp| 2.0 1.25
crafty | 2.6 1.13 applu| 6.2 2.08
eon| 4.2 1.44 apsi| 5.0 1.76
gap| 24 1.16 art| 2.9 1.30
gcc| 2.4 0.95 equake| 2.5 1.22
gzip| 2.6 1.23 facerec| 2.7 1.11
mcf | 2.0 0.62 fma3d| 2.8 1.18
parser| 2.7 1.00 galgel| 5.8 2.10
perlomk| 2.8 1.25 lucas| 4.0 1.95
twolf | 3.0 1.31 mesa| 2.8 1.17
vortex | 3.5 1.40 mgrid | 7.6 5.25
vpr| 2.8 1.03 sixtrack | 3.1 1.20
amean| 2.8 1.15 swim| 8.2 3.45
wupwise| 3.7 1.40
amean| 4.2 1.89

Table 2.1: Braids per Basic BlockBraids per Basic Block Ignoring
Instruction Braids

Single-
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the average number of instructions in a basic block for @&lianchmark programs.
On average, the integer programs have basic blocks corgsisti7.0 instructions,
and the floating point programs have basic blocks consistirig}.3 instructions.
The streaming nature of the floating point benchmark progreauses their basic

block to be larger.

Integer Floating Point
benchmarks instructions benchmarks instructions
bzip2 8.3 ammp 55

crafty 8.0 applu 16.9
eon 8.4 apsi 13.1
gap 6.0 art 7.6
gcc 5.5 equake 6.2
gzip 8.7 facerec 5.8
mcf 3.9 fma3d 7.7

parser 5.8 galgel 11.7

perlomk 6.5 lucas 17.2

twolf 8.7 mesa 5.9

vortex 7.2 mgrid 53.3
vpr 7.1 sixtrack 7.1

amean 7.0 swim 31.8
wupwise 10.2
amean 14.3

Table 2.2: Instructions per Basic Block

The next characteristic of braids measured is size and willle size of a
braid is computed by counting the number of instructionshm braid. The width
of a braid measures the instruction-level parallelism ofraicb It is computed
by dividing the size of a braid by the number of instructioheng the longest
dependency chain, also known as the critical path of a bitathle 2.3 shows the
size and width of braids for all the benchmark programs. Garaye, the braids in

the integer benchmark programs have a size of 4.7 instnsand a width of 1.1.
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The braids in the floating point benchmark programs haveeadis.4 instructions
and a width of 1.4 instructions. Since the floating point ltenark programs have
larger basic blocks, it is not surprising to find larger braides. It is encouraging
to see the average width of the braids in the floating pointberark programs

remains similar to that of the braids in the integer benclpaograms.

Integer Floating Point
benchmarks size | width benchmarks size | width
bzip2| 5.4 | 1.1 ammp| 3.8 | 1.1
crafty | 5.8 | 1.2 applu| 6.2 | 1.5
eon| 40| 1.2 apsi| 5.6 | 14
gap| 41| 11 at| 46| 1.0
gcc| 43| 11 equake 4.0 | 1.1
gzip| 60| 1.1 facerec| 3.8 | 1.2
mcf| 4.1 | 1.0 fma3d| 5.1 | 1.2
parser| 4.2 | 1.1 galgel| 3.8 | 1.1
perlomk| 3.9 | 1.2 lucas| 7.7 | 2.0
twolf | 5.3 | 1.1 mesa| 3.7 | 1.1
vortex | 3.7 | 1.2 mgrid | 9.7 | 3.5
vpr| 51| 1.2 sixtrack| 4.3 | 1.2
amean| 4.7 | 1.1 swim| 7.8 | 1.6
wupwise| 5.6 | 1.3
amean| 54 | 14

Table 2.3: Braid Size and Width

Another characteristic of braids measures the number ofl Wlependen-
cies. Table 2.4 shows the number of internal values, extampats, and external
outputs of braids. This result provides a sense of the palesdmmunication sav-
ings that can be provided by the braid microarchitecture.af@rage, the integer
benchmark programs have 4.0 internal values, 2.3 extenpats, and 1.0 external
output. The number of inputs and outputs is not unlike theape specifications

of a two-source compute instruction. The floating point lenark programs have
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7.6 internal values, 4.0 external inputs, and 1.1 externgdus. The benchmark
programs lucas, mgrid, and swim have a significantly largenioer of external in-

puts than the rest of the benchmark programs. If these pmgyeae removed from
the calculation of the arithmetic mean, floating point benalk programs have an
average of 4.3 internal values, 2.1 external inputs, an@t®rnal outputs. This is
shown in the last row indicated by the asterisk. The numbextdrnal inputs and

outputs is very similar to that of the integer benchmark paogs.

Integer Floating Point

internal | external | external internal | external | external

benchmarks| values | inputs | outputs | | benchmarks| values | inputs | outputs
bzip2 55 2.7 11 ammp 3.1 2.2 0.8
crafty 5.6 2.6 1.0 applu 7.2 3.9 0.8
eon 3.3 2.1 0.9 apsi 6.5 3.8 11
gap 3.3 1.9 0.9 art 3.7 3.0 0.7
gcce 3.4 2.0 0.8 equake| 3.2 2.1 0.8
gzip 5.5 3.3 1.3 facerec| 3.4 2.3 1.0
mcf 3.1 2.4 0.9 fma3d 5.0 2.6 1.0
parser| 3.3 2.2 0.9 galgel 3.0 3.2 0.8
perlbmk 3.2 1.8 11 lucas| 10.7 4.8 1.4
twolf 5.0 2.6 0.9 mesa| 2.8 2.1 0.7
vortex 2.7 1.9 0.8 mgrid 34.0 12.8 3.4
vpr 4.3 25 13 sixtrack 3.6 25 1.0
amean 4.0 2.3 1.0 swim 14.8 7.5 0.9
wupwise 6.0 2.6 1.0
amean 7.6 4.0 11
amearn’ 4.3 2.1 0.9

Table 2.4: Internal and External Braid Inputs and OutpiAsithmetic Mean with-
out lucas, mgrid, and swim
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Chapter 3

Implementation

Braid processing requires the compiler to play a key roleahestrating the
execution of a program. This chapter discusses the chaegeged at three lev-
els of transformation to efficiently implement braid prosieg. First, the compiler
must identify braids from the program dataflow. Second, tis#ruction set archi-
tecture must convey braid information from the compilerhie microarchitecture.

Third, the microarchitecture must support braids to exptsicharacteristics.

3.1 Compiler Requirements

A braid is an entity that is identified at compile time. Braimits not span
basic block boundaries. This restriction maintains impatation simplicity and
avoids unnecessary code duplication. Allowing braids emsgontrol-flow bound-
aries introduces a set of problems due to the existence dfatdlow merge and
fork points. Suppose at compile time, a braid was formedssctao consecutive
basic blocks. At runtime, if the second basic block did ndiofe the first basic
block, then the operands specified as external and inteynddebocompiler would
most likely no longer be valid. By restricting braids to @ssicompletely within
a single basic block, problems associated with the changingme control-flow

path can be avoided.
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3.1.1 Profiling and Translation

This dissertation used binary profiling analysis and binaayslation to
identify and specify braids. This approach can be used ifc®oode is not read-
ily available or if recompilation is not feasible. The endu# of performing binary
profiling and translation is a braid-annotated binary corapke to what is produced
by a braid-aware compiler. Figure 3.1 shows a diagram of tbélimg and trans-
lation workflow. In this diagram, black arrows indicate thelering of steps for
the profiling and translation process, and white arrowscaid information that is
passed between steps. Four steps are carried out to geadyetil-annotated bi-
nary that will be used by the microarchitecture simulatidasic block analysis,
register usage analysis, braid identification, and bineegdiation. The first three

steps require profiling, and the fourth step requires teimsy.

The first step of binary profiling is basic block analysis. &iep identifies
the basic blocks generated by the compiler by identifyingidohlock boundaries.
Basic block identification requires two passes. In the fiestsp the program binary
Is scanned instruction by instruction to determine thdcstatgets of control-flow
instructions. In the second pass, the program is profileceterchine the dynamic
targets of control-flow instructions. Both passes are r&ngg0 generate a more
complete breakdown of the program into basic blocks. Thefiass is necessary
because a branch may redirect control into the middle of ekbdd code. Without
the first pass, a block of code will look like one large basiockl instead of two
smaller ones. The second pass is necessary because stédygisacannot identify
the targets of indirect branches. Basic block analysis tes®ary to enable the
formation of braids since a braid must reside completelyiwia basic block. The

information gathered during basic block analysis is wntte the block database.

The second step of binary profiling is register usage araly3ihis step
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Basic Block | Register Usagg

Analysis Analysis
\| Register Usage
Y
Braid
Identification
Profile
y »
Binary
Translation
| Translate )

\J

Microarchitecture
Simulation

Figure 3.1: Profiling and Translation Workflow

22



reconstructs the dataflow graph of the program, mimickirgy dataflow analysis
phase of the compiler. As each instruction is encounterdéagmprofiling process, a
data structure associated with each operand of the ingtrucacks its production
or use. For each destination operand, all of its consumerdogged. For each
source operand, all of its producers are logged. The infaomaathered during

register usage analysis is written to the register usagebdae.

The third step of binary profiling is braid identification. idg the infor-
mation contained in the block database from the first stepth@degister usage
database from the second step, this step partitions thédaatgraph of a basic
block into dataflow subgraphs. A graph coloring algorithmapplied to the in-
structions in the basic block. All instructions within thadic block do not have a
color associated with them at the start of the algorithm. flifs¢ instruction with-
out a color in the basic block is located and a color is assediwith it. Next, the
instruction with a color propagates its color to all of itsldren and parent instruc-
tions in the basic block. The children and parent instrugtiare identified using
the information gathered during the register usage araly¥he propagation of
color does not propagate to instructions beyond the bastklddoundaries identi-
fied during basic block analysis. Continuing the algorithaghecolored instruction
propagates its color to its children and parents until thiErelataflow subgraph
rooted from the original instruction in the basic block idared. The set of instruc-
tions so colored identifies exactly one braid in the basickldJsing a new color,
this algorithm repeats with the next instruction withoutadoe. The end result is
the identification of another braid inside the basic blocke Rlgorithm terminates
when all the instructions within the basic block are asdediavith a color. After
the set of braids is identified in the basic block, the brafdnmation is to the braid

database. This step concludes the last profiling step.
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The next step of the workflow is binary translation. This stiegs not re-
quire profiling. This step sorts the braids within each bddark and annotates
them to encode braid information using the information frima braid database
generated in the last profiling step. First, braids are gort€his involves rear-
ranging instructions within the basic block such that instions belonging to the
same braid are laid out as a consecutive sequence of instrsistithin the basic
block. Having a set of sorted braids greatly simplifies vasipipeline operations.
Figure 3.2a show the original code, and Figure 3.2b show déimeescode sorted
by braid. Second, each instruction is annotated with a blicating whether the
instruction begins a new braid. Third, each operand in te&uction is annotated
with the proper bits indicating whether that operand sasitbe internal register file
or the external register file. Next, register name rewritimgerformed separately
for the external and internal registers. Register nameitiegtris performed for the
external registers across the entire program. It is alstopeed for the internal
registers of a braid for each braid in the program. After thaly is modified, the
result is a braid-enabled program binary capable of beinggssed by the braid

microarchitecture.

The last instruction slot of a basic block is always reseffeedhe control-
flow instruction of a basic block if there is one. This is ac@bished by rearranging
braids such that the braid containing the control-flow ustion is ordered last in
the basic block. This requirement preserves the block asasie block. Further-
more, this eliminates the requirement to modify brancheiffs

3.1.2 Issues with Profiling Analysis

The size of braids can be restricted by two conditions. Fih& braid mi-

croarchitecture supports a fixed number of internal reggdi@r each braid. There-
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0x10
0x14
0x18
Oxlc
0x20
0x24
0x28
0Ox2c
0x30
0x34
0x38
0x3c
0x40
0x44
0x48

addg al, t4, t0
addq ao, t4, t1
addq t8, t4, t2
dl t3, O(t0)

add| t5, #1, t5

dl 10, 0(t1)

cmpeq t9, t5, t7

artt, 0(t2)

andnot t3, t0, t0
addl zero, t0, tO

nd to, t1, t1
apnot t1, #15, t1
movne t0, #1, t6
ne t1, target

0x10
0x14
0x18
Oxlc
0x20
0x24
0x28
0x2c
0x30
0x34
0x38
0x3c
0x40
0x44
0x48

apnot t1, #15, t1
movne t0, #1, t6
ne tl, target

Figure 3.2: Code Scheduling (a) Original Code Schedule (b) Gatiedule Sorted

by Braid

(@)
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fore, the number of active internal operands of a braid maserceed the number
of supported internal registers. As instructions are ipoaaited into a braid, the
working set size of the internal operands increases. Siegister usage analysis
is performed, the profiling tool knows whether an instruetis the last consumer
of an operand. Knowing this allows the profiling tool to redean internal regis-
ter by allowing it to be written by another instruction. Whdr thumber of active

internal operands exceeds the number of internal regjsteesbraid is artificially

split into two braids. A split braid caused by this conditiaccounts for about 2%
of the braids analyzed. This situation is an artifact of periing profiling analysis

and binary translation on preexisting program binariesra@d>aware compiler can

solve this problem by morphing the dataflow graph via sofenteeinsformations.

Second, since the sorting of braids within the basic bloekresges instruc-
tions, memory instructions can be reordered. This can leawemory dependency
violations because memory order may be violated. Most ofntleenory instruc-
tions access the stack. Identifying the aliasing of thesgains is easy because
these memory instructions use the stack pointer as a basgereg-or example,
Figure 3.3 shows a store-load pair that the profiling tool iceemtify as a memory
dependency. In this simple example, it is assumed that #uk gtointer does not
change between the two instructions. For the rest of thedtad pairs where the
compiler cannot make such a guarantee, braids must be drdecé that the orig-
inal partial ordering of memory instructions is maintaineéfithis ordering cannot
be maintained while sorting braids within the basic blodle braid is split into
two braids at the location of the memory ordering violationenable the partial
ordering. A split braid caused by this condition accountsléss than 1% of the
braids analyzed. Like the previous situation, this sitwats an artifact of perform-

ing profiling analysis and binary translation on preexigtprogram binaries, and a
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braid-aware compiler can easily cope with this problem.

strl, sp, #1

Id r2, sp, #1

Figure 3.3: Identifying Memory Ordering Violations

Since profiling analysis operates on preexisting programafpes, it is lim-
ited to using the dataflow that has already been construgta@dchmpiler. Most of
the braids have more than one instruction. Table 3.1 shog/pehcent of instruc-
tions that belong to a braid with a size of two or greater ugngfiling analysis.
However, there will also be single-instruction braids. TgeFcent of instructions
that belong to single-instruction braids is the conversehef data in Table 3.1.
Single-instruction braids do not provide any benefit for bin@d microarchitecture
since there are no internal registers. A braid-aware ca@ngén reduce or com-
pletely remove the number of single-instruction braids taximmize the benefit of

braid processing.

3.2 Instruction Set Architecture Requirements

Minor augmentations are made to the ISA to allow the compdezffec-
tively convey braids to the microarchitecture. Figure hidwss the specification of
a zero-destination, one-source register, and two-sowgister braid ISA instruc-
tions. The shaded bits represent differences from a colmr&itISA instruction.
These bits have special meanings in a braid ISA instrucilidw.braid start bit S,
associated with an instruction specifies whether the ioBtm is the first instruc-
tion of a braid. Theemporary operand hjfl, associated with each source operand
specifies whether the operand obtains its value from thereadtesgister file or the
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Integer
benchmarks percent

bzip2| 84.9
crafty | 81.9
eon| 67.5
gap| 79.2
gcc| 73.6
gzip| 84.6
mcf | 65.2
parser| 71.3
perlomk| 75.5
twolf | 80.5
vortex | 70.9
vpr| 74.8
amean| 75.8
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Floating Point

benchmarks percent
ammp| 86.6
applu| 75.9
apsi| 75.7
art| 78.6
equake| 78.6
facerec| 71.9
fma3d| 78.5
galgel| 68.6
lucas| 87.8
mesa| 73.1
mgrid | 95.6
sixtrack | 72.5
swim | 84.9
wupwise| 77.8
amean| 79.0

Table 3.1: Percent of Instructions Belonging to a Braid @eSiwo or Greater




internal register file. Thexternal destination bjE, and thenternal destination bit

| , associated with each destination operand specify whétleanstruction writes
its result to the external register file, the internal regyisile, or both register files.
The augmentations made to support braids in the ISA do noineaqcreasing the
number of bits in the instructions. This is done by reintetig the fields from the

existing ISA instructions.

Zero—destination instruction

S opcode T srcl offset

One-source register instruction

S opcode - dest T srcl offset

Two-source register instruction

S opcode T srcl T src2 - dest

B — Braid start bit

T — Temporary operand bit
E/l - External/internal operand bits

Figure 3.4: Braid Instruction Encoding

3.3 Microarchitecture Requirements

To implement braid processing, the microarchitecture ireglsome changes.
The braid microarchitecture must leverage the dataflow ahaevinformation con-
veyed by the compiler. The execution core of the braid miaioigecture shares
similarities with a conventional in-order microarchiteict.
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3.3.1 Pipeline Overview

Figure 3.5 shows the block diagram of the pipeline of thedbmaicroarchi-
tecture. The shaded regions highlight the differences faooonventional out-of-
order microarchitecture. These differences include a Emallocator, a simpler
renaming mechanism, a distribute mechanism, a set of bxacléion units, a sim-

pler bypass network, and a simpler external register file.

Fetch

1

Decode

1

Allocate

1

Rename

1

Distribute

TYVYYVVYY
-

- I o [ i
i <= , External
3 (v [aa [aa [aa [aa a2 Register File

TYVYVVYY !

Bypass
I

Figure 3.5: Block Diagram of the Braid Microarchitecture

The front-end of the pipeline is the same as the pipeline ioraventional
out-of-order microarchitecture. A cache line is first fezdhfrom the instruction
cache. The set of instructions fetched is known as the fe&dkgi. The fetch
packet contains a sequence of instructions in program o&ilece the compiler has
grouped the instructions of a braid together in the binafyyaad always enter the

pipeline in its entirety before a subsequent braid entexptpeline. That is, braids

30



enter the pipeline in program order. This is useful and igflaged by subsequent

stages of the pipeline.

All instructions in the fetch packet are decoded as theyrehie decode
stage. Decoding an instruction is performed no differefithym a conventional

microarchitecture.

The allocate stage of the pipeline is responsible for agsiggequence num-
bers and allocating physical resources of various strastur the pipeline for an
instruction. If an instruction requires a resource thatndrbe allocated due to a
lack of entries, this stage stalls until a free entry becomeslable. First, each
instruction in the fetch packet is assigned a sequence nundbsequence num-
ber is a unique number identifying the ordering of the instian in the sequential
instruction stream. This enables certain microarchit@ttiwnctions like memory
disambiguation. Second, each instruction in the fetch gliskallocated an en-
try in the reorder buffer. The reorder buffer maintains tleenantics of in-order
execution regardless of how instructions are executeddaregecution core. Third,
each instruction in the fetch packet requiring an extereatidation operand is allo-
cated an entry in the external register file. An instructiequiring only an internal
destination operand does not require any entries to besdéldc The allocator iden-
tifies the need to allocate registers by examining the eaténternal operand bits
in the instruction. This is different from a conventionalamuarchitecture where all
instructions with a destination operand require a physiegister entry to be allo-
cated. Fourth, each memory instruction in the fetch packatiocated an entry in

the load-store queue.

The next stage of the pipeline is the operand rename stagga@brenam-
ing removes anti and output dependencies in the code due tosth of a limited
architectural register space in an out-of-order desigis. performed using the reg-
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ister alias table (RAT) which maps architectural registemes to physical register
names. The RAT contains one entry for each architecturastexy In the braid

microarchitecture, only the external operands of an i$ion need to be renamed.
This is because braids can execute out of order with respemte¢ another. Since
the instructions inside a braid are executed in order, ttermal operands do not
need to be renamed. Like the allocate stage, the renamedstgyenines external
operands by examining the temporary operand and extertaaliial operand bits
in the instruction. Since not all of the operands of instiats in a fetch packet
need to be renamed, the renaming mechanism does not neepiprisine entire

fetch bandwidth as compared to a conventional microarctute. If there are more
external operands to be renamed than the rename bandwidtteriaming mecha-
nism takes multiple cycles to process the fetch packeirsgaihe stages up to this

point. A braid-aware compiler can enforce this requirement

After operand renaming, the fetch packet enters the diggistage where
instructions in a braid are distributed to one of the braidoaion units (BEU). In
order to receive a braid, a BEU must be ready. Being readytithecssame as being
empty. The BEU is ready if it is both empty and has the avaglabihtext to process
a new braid. That is, a BEU is ready if it does not have an iri¥fllgraid. The use
of the braid start bit in the instruction greatly simplifidgetidentification of braid
boundaries. When a braid start bit is encountered, the loligs&imechanism directs
the instructions of the new braid to a ready BEU. If no BEUsraaaly, this stage
stalls until a BEU becomes available. The end of a braid istiled when a new
braid is encountered. At this point, the BEU of the braid thas last distributed is

notified that it has received the last instruction of its drai

The BEUSs contain the scheduling and execution stages ofipleéne. The
internals of a BEU will be discussed in detalil.
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The external register file contains the values that are pdsseveen differ-
ent braids. These values are global in the view of the progr@smpared to the
register file in a conventional design, there are fewer egtim the external regis-
ter file due to more efficient partitioning of the register spaFewer entries mean
fewer cycles needed for access. Furthermore, the smatief sxternal operands
puts a lighter demand on the ports of the external registr fihus, the external

register file requires fewer read and write ports.

The bypass stage of the pipeline corresponds to the bypassrke This
network plays an important role in high performance desighfiting to the reg-
ister file may be pipelined, taking multiple cycles. A readéman operand being
written cannot access the value until the pipelined writepletes. The bypass net-
work provides values to readers before the pipelined wotagletes. The number
of levels in the bypass network corresponds to the numbeya¥és needed to com-
plete a write into the register file. By reducing the numberegjister file access
cycles, the number of levels in the bypass network is alsaaed. In a conven-
tional design, each level of the bypass network supportsdpability of bypassing
n values per cycle where is the issue width. In the braid microarchitecture, fewer
values external are generated per cycle. Thus, a bypadsksses to support only

a limited bandwidth.

Aside from the execution core, the rest of the pipeline iy &milar to that
of a conventional design. A conventional memory disamiiigaastructure such as

the load-store queue is used to enforce memory orderinghéitma.

When an instruction becomes the oldest instruction in thedexdbuffer,
it is considered for retirement. An instruction is eligilftar retirement if it is on
the correct path, is the oldest instruction in the machioejmeted execution, and
did not generate an exception. When an instruction retitésges the resources
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allocated to it during the allocate stage including thedeobuffer entry, an external
register if one was allocated, and an entry from the loadestpueue if one was
allocated. These freed entries go back into the free poolmgakem available for

new instructions to use.

3.3.2 Execution Core Overview

Figure 3.6 shows a more detailed view of a BEU. The shadedmsdiigh-
light the differences from a conventional out-of-orderidas These differences
include a FIFO scheduler, a busy-bit vector, and a simplarial register file.

There are also two functional units within a BEU.
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Figure 3.6: The Braid Execution Unit

When the instructions of a braid are distributed to a BEU, fivayenter an

instruction queue. This queue serves as a waiting area folyrissued instruc-

LIn this dissertation, issue refers to the process of insgrin instruction into the scheduling
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tions. It is necessary for this queue to be large enough toracwdate most of
the braids. An insufficient queue size can unnecessarilyte&afront-end of the

pipeline.

Two instructions located at the head of the instruction guane examined
for readiness and considered for in-order schedule. Thist® window is known
as the scheduling window. Since the ready instructions caallare likely located
at the head of the FIFO, instructions in the non-leaf nodésetubgraph need not
be examined for execution. The structure of a FIFO queueatpthe character-
istics of a braid dataflow which is long and narrow. Becausthisfcharacteristic,

a small scheduling window is sufficient to efficiently prosasbraid.

The busy-bit vector maintains the availability of valueghe external reg-
ister file. It is similar to the scoreboard used in the CDC 6641 pnd the busy-bit
table used in the MIPS R10000 [75]. This vector has a bit fohexternal register.
Each cycle, the instructions in the scheduling window ctirthe busy-bit vector
for the availability of their external operands. Interngleoands are guaranteed to
be ready due to the in-order execution of the braid. Extespalands are produced
by other braids and need to be checked for their availablitizen all the operands
of an instruction are available, the instruction is schedub one of the functional

units for execution.

Each operand of an instruction is read from one of four laceti the in-
struction queue in the case of immediate operands, thenaiteegister file, the
external register file, or the bypass network. An instrutti@an write its result in

the internal register file, the external register file, ortbloications.

window. Schedule refers to the process of sending an irt&trufrom the scheduling window to an
execution unit.
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The internal register file stores the internal operands abadb It is a very
small structure containing only a few entries. The intenegister file is designed
with enough ports to support two instructions that can eteeemery cycle. Thus,
four read and two write ports are needed. Because the vaiutbe iinternal reg-
ister file are not required outside the braid, they are sadedgarded once the last
instruction of a braid executes. These values do not need twritten back to the

external register file.

3.3.3 Recoveries and Exceptions

Braids do not span control-flow boundaries. Therefore, vedng from a
branch misprediction is a simple matter. This assumes tleeoarichitecture sup-
ports checkpoint recovery [35] like the MIPS R1000 [75] ahd Compaq Alpha
21264 [33]. Previous researchers have shown that chedijeaiovery can be easily
implemented [16] and is a technique that continues to be insesearch [67] [66]
[5] [24]. Since the processor already creates checkpoantsrinch instructions, no
additional structures or storage is required to supporidbraln fact, checkpoints
require less state in the braid microarchitecture becanteenal values of a basic
block are not needed in the subsequent basic block. Thereftternal register
values do not need to be stored in the checkpoint. When a rgcovgates, the
processor restores the checkpoint taken prior to the bramgrediction and begins

execution along the correct path.

Handling exceptions is also a simple procedure but requilightly more
effort. When an exception is encountered, state is rolled bat¢he most recent
checkpoint prior to the exception. The processor enterseaiapexception pro-
cessing mode. In this mode, all BEUs are disabled exceptrfer All instructions

are sent to the predetermined BEU as shown in Figure 3.7.eQirBEU contains
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an in-order scheduler, forcing instructions to one BEU suttme processor into an
in-order processor. Internal register operands accesstiimal register file of the
BEU, and external register operands access the externateefijle. When the ex-
cepting instruction is encountered, the exception hansdlgwvoked. To access the
internal register state, the exception handler does natire@ny changes. It has
access to the internal register file through normal operalthtessing. When the
exception handler routine returns, the processor resuroesat execution mode
from the same restored checkpoint. Simplicity was chosen speed for handling

exceptions due to the rarity of their occurrences.
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Figure 3.7: Block Diagram of Instruction Flow During Excegt Processing Mode
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3.4 Alternative Considerations
3.4.1 Using a Compiler

If the source code is readily available and recompilatideasible, the com-
piler can offer the most flexible way to identify the most bigcial braids. A com-
piler that is knowledgeable of the underlying braid micakatecture will produce
braids that can be more efficiently processed by the micho@ature. Loop trans-
formations, inter-procedural analysis, and code optitions must all take into ac-

count the physical makeup of braids.

Forming a braid builds upon the information gathered froma t@mmonly-
used compiler dataflow analysis techniques implemented compilers. These
are reaching definitions and liveness analyses. These thaitpies allow the com-
piler to identify the usage information of values in the mag. The compiler uses
the same dataflow graph coloring algorithm presented in tbélipg analysis to
partition the program dataflow into braids. As in the profilianalysis, a limit on
the number of active internal operands within a braid is sz&d.

Once braids are identified for a given basic block, the coenplerforms
register allocation. Since the register set is partitioiméaltwo disjoint sets, register
allocation is performed for each set separately. Regidtigcadion for the external
operands is identical to traditional register allocatidhis performed for the en-
tire procedure. However, there are fewer operands whichiregxternal register
names. Spill and fill code are inserted when the working get ai external values
do not fit within the set of external registers. Register@lmon for the internal
registers is performed within a braid for all the braids ie frogram. The compiler
has already guaranteed that the maximum number of actigenatoperands will

not exceed the number of internal registers.
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Braids are sorted and scheduled in the basic block. Likelprgfand bi-
nary translation, the compiler rearranges instructiomhighat instructions from the
same braid are laid out as a sequence of consecutive instrsiatithin the basic

block. Braids are ordered to avoid memory ordering violasio

3.4.2 Compiling Versus Profiling

Braids can be identified by the compiler if source code islalsé@. Oth-
erwise, braids must be identified by a binary profiling tooheTcompiler requires
compiling of code whereas the binary profiling tool requipgsfiling. There are

tradeoffs with either approach.

Generating braids using the compiler has several advasitags profiling
preexisting binaries. First, the compiler has the abilaytransform the dataflow
graph of the algorithm through compiler optimizations arahsformations. This
is useful because the compiler is aware of the underlyingaarchitecture and
thus can produce longer and narrower braids. The compileatso transform the
dataflow graph to eliminate single-instruction braids. ph&filing analysis method
cannot transform the dataflow graph and is limited to prodgdiraids from the

dataflow graph in the preexisting program binary.

Second, since the compiler has the ability to perform regialiocation, it
can make better use of both the external and internal regists. By performing
register allocation for the external registers separdielyn the internal registers,
the compiler can minimize the amount of spill and fill code efhieduces memory

accesses.

Third, since the compiler has more knowledge of the progrataftbw than
the microarchitecture, it has better knowledge of the mgnogerations of a pro-

gram. The better knowledge allows the compiler to have mesetility in reorder-
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ing memory instructions forming more meaningful braids.

Generating braids using the profiling method has its adgastaThere are
many preexisting program binaries and libraries that makempilation infeasible.
One reason is due to the unavailability of source code. Rrgfdnalysis can be an
effective method of transforming these binaries into aadé form for execution

on the braid microarchitecture.
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Chapter 4

Methodology and Performance

This chapter discusses the simulation infrastructure tsewbdel the braid
microarchitecture and presents a performance analysisedbtaid microarchitec-
ture. First, details of the simulator and input sets aregme=d as well as the param-
eters chosen to represent an aggressive high-performatuee processor. Second,
the performance sensitivity of various design parametethé execution core is
analyzed. Third, the braid microarchitecture is comparét wther microarchitec-
tural paradigms.

4.1 Machine Model

To show how braids can be useful for the design of future agive pro-
cessors, the experiments were done on 8-wide configurati@rscomparison, the
results for 4-wide and 16-wide configurations are also presk Table 4.1 shows
the detailed baseline configuration of an aggressive cdioveat out-of-order mi-
croarchitecture and the braid microarchitecture studneithis dissertation.

4.1.1 Shared Front and Back-Ends

Both the baselines share a similar front and back-end. Tdre-&nd is ca-
pable of fetching up to eight instructions and predictingtapghree branches per

cycle. This aggressive front-end is intended to mimic theaaded microarchitec-
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Common Baseline Parameters

Instruction Cache

64KB, 4-way associative, 3-cycle latency

Branch Predictor

perceptron with 64-bit history and 512-entry weight
ble

[a-

r cy-

Fetch Width 8 instructions, capable of processing 3 branches pe
cle
Issue Width 8 instructions

Instruction Window

256-entry ROB

L1 Data Caches

64KB, 2-way associative L1 data cache with 3-cycle
tency

a-

L2 Cache

1MB, 8-way associative unified L2 data cache with
cycle latency

6-

Main Memory

400-cycle latency

Out-of-Order Baseline Parameters

Misprediction Penalty

minimum 23 cycles

Allocate

8 operands

Rename 16 source operands and 8 destination operands
Scheduler 8 distributed 16-entry schedulers

Functional Unit 8 general purpose

Register File 256 entries with 16 read ports and 8 write ports

Bypass Network

3 levels, each with full paths

Braid Baseline Parameters

Misprediction Penalty

minimum 19 cycles

Allocate

4 operands

Rename 8 source operands and 4 destination operands
BEU 8
FIFO 16-entry instruction queue per BEU

Scheduling Window

2-entry in-order scheduler per BEU

Busy-Bit Vector

8 bits per BEU

Functional Unit

2 general-purpose units per BEU

Internal Register File

8 entries with 4 read ports and 2 write ports per BEU

External Register File

8 entries with 6 read ports and 3 write ports

Bypass Network

1 level with limited paths

Table 4.1: Baseline Processor Configurations
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ture capabilities of future processors which should previdgher fetch bandwidth.
Mechanisms such as the trace cache can already be found Retiteim 4 pro-
cessor [34] to provide higher fetch bandwidth than is pdesiith an instruction
cache alone.

There is another reason why an aggressive front-end is deetlace this
dissertation focuses on the design of the execution cogeexticution core must be
stressed. An aggressive front-end accomplishes this byamstraining the number
of instructions delivered to the execution core (see fongxa, Salverda and Zilles
[60]).

Both baselines also share a similar retirement mechanisaeh Bupports
256 in-flight instructions via a 256-entry ROB.

4.1.2 Misprediction Pipeline

Figure 4.1a shows the breakdown of the 23-cycle mispraxdtigtipeline of
the conventional out-of-order baseline. A branch instarcts fetched, decoded,
allocated, and renamed in the front-end of the pipeline.nTihes distributed and
gueued in the execution core. Next, the instruction sclesdidr execution, reads
the register file, and executes. The branch condition idigdriand upon a mispre-

diction, the front-end is notified to redirect fetch.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 2021 22 23

Fetch Decode Alloc Ren Dist] Qugq Scl RF Exejl Chikjj Drv

(@)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

9

18 1
Fetch Decode Alloc Renl DistI Quq Sch Ri B C|k D|

(b)

Figure 4.1: Misprediction Pipeline (a) Baseline (b) Braid
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Figure 4.1b shows the breakdown of the 19-cycle mispreafiqgtipeline of
the braid microarchitecture. The 4 cycle difference betwte two misprediction
pipelines comes from a reduction of 2 stages in operand rersard a reduction of
2 stages in register file access. These savings are atttibutee smaller area and

lower bandwidth designs of the structures in these stages.

4.1.3 Out-of-Order Execution Core

The out-of-order baseline has a minimum branch mispreafigtienalty of
23 cycles. The allocator is capable of processing eightungbns per cycle. The
renaming mechanism is capable of processing 16 sourcerafseand eight desti-
nation operands per cycle. There are eight distributedntéreut-of-order sched-
ulers and eight general-purpose functional units. Thege286-entry monolithic
register file with 16 read ports and eight write ports. Thedsgnetwork consists
of three levels with a full set of paths at each level.

4.1.4 Braid Execution Core

Because of the design simplification of the braid microdeatture, it has a
pipeline that is shorter by four stages than that of a conigp@ai@nventional design.
The savings come from a shorter operand rename stage andershgister access
stage. The braid microarchitecture baseline has a minim@mch misprediction
penalty of 19 cycles. The allocator is capable of procesBng instructions per
cycle. The renaming mechanism is capable of processing s@irce operands
and four destination operands per cycle. There are eight8Edch BEU contains
a 16-entry FIFO instruction queue with a 2-entry instructgzheduling window.
Each BEU also has an 8-bit busy-bit vector, two functionatsyjrand a small 8-

entry internal register file with four read ports and two wrgorts. There is an 8-
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entry global external register file with six read ports and trite ports. The bypass
network consists of one level with a limited set of paths. therexperiments, clock

frequency was not varied.

4.1.5 Shared Memory System

The memory hierarchy consists of split L1 instruction anthdeaches, a
unified L2 instruction and data cache, and main memory. Thimttuction cache
is a 4-way set associative 64KB cache with a 64-byte line Jike L1 data cache is
a direct mapped 64KB cache with a 64-byte line size. The Lttungon cache has
a 1-cycle access latency while the L1 data cache has a 3-aycéss latency. The
access time does not include the extra cycle of addressagenerequired for load
and store instructions. The unified L2 cache is an 8-way seicéstive 1MB cache.
It has a 64-byte line size and a 6-cycle access latency. TheatRe is modeled
as having eight banks interleaved on 64-byte boundarieg» Mamory has a 400-
cycle minimum access latency and is modeled as having 32shatésleaved on
64-byte boundaries.

A memory request that misses in either L1 cache is allocatassrequest
buffer entry. There are 32 buffers available for handlingstanding misses. A
new miss that maps to the same line as an outstanding missggybpck on the
outstanding miss. A memory request that misses in the L2ec&clallocated a
memory request buffer entry. There are 32 buffers for haugdli2 cache misses.

Piggybacking is also allowed at this level to reduce the nemobmemory requests.

Memory paging is not modeled. Therefore, there are neittsrstation
lookaside buffer accesses nor page faults. A conventioeatony disambiguation
structure enforces memory ordering at runtime. The loadesjueue supports 32

entries.
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4.2 Simulator

The experiments in this dissertation were carried out orsde®nd version
of an in-house, cycle-accurate, execution-driven sinoulaélled SCARAB [20].
This new version has been rewritten in C++ to take advantagerok of the bene-
fits provided by the C++ language. SCARAB allows various sirtiotamodels to
coexist within the same simulator. Student A can work witle omodel that does
not interfere with student B who is working with another mbdéhe SCARAB
simulation infrastructure is also modularized. Componeftthe pipeline can be
easily added, removed, replaced, and shared among diffe@els. The simula-
tion speed of SCARAB is optimized by utilizing tuned data stases. It achieves

simulation speeds faster than the SimpleScalar simulajr [

SCARAB processes elf64-alpha binaries produced for theX_operating
system. System calls in the program are emulated by the atorubn the host
machine following the POSIX standard. Operating systenedsdot simulated.

Exceptions are not handled due to their rarity.

The simulator is fully capable of executing the wrong patd aroducing
wrong-path values. These values are correctly generatedilbunot commit into
the architectural state. Various researchers have fouwstdptiocessing wrong-path
instructions have a non-trivial impact on IPC by prefetchirseful data [6] [55].

Table 4.2 shows the latencies of various classes of ingngt The func-
tional units are fully pipelined for every operation excéptfloating point divide.

4.3 Benchmarks

The SPEC CPU2000 benchmark suite [2] was chosen for the expeis.
This suite consists of 26 benchmarks programs of which 12néeger and 14 are
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Instruction Class Latency (in cycles
Integer arithmetic 1

Integer multiply 8, pipelined
Floating point arithmetig 4, pipelined
Floating point divide 16

Logical 1
Memory 3 minimum
Memory forwarding 3 minimum
All others 1

Table 4.2: Instruction Latencies

floating point. The programs were compiled with gcc 4.0.1dt]Linux for the
Alpha EV6 [64] ISA with the-O2 optimization flag and feedback profiling en-
abled. All benchmark programs were run for 500 million instions using the
MinneSPEC reduced input sets [42]. The reduced input sgi®=imate the pro-
gram behavior when running with the SPEC reference inpstlagtallow the pro-
grams to complete within a reasonable amount of time. Tal#digts for each
benchmark program its name, description, and the inputsse=t.u

4.4 Sensitivity Studies Varying Braid Execution Unit Parame-
ters

Various design parameters were considered for the execaboe of the
braid microarchitecture. These include the number of BEWs size of the FIFO
queue, the size of the FIFO scheduling window, and the nuwiidenctional units
per BEU. The following experiments are sensitivity studséswing the effects of
each design parameter. The control configuration is thedbracroarchitecture
with eight BEUs. Each BEU contains a 16-entry FIFO instactqueue with a

2-entry in-order scheduling window and two functional sniln each experiment,
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Benchmark Description Input Set
Name
bzip2 Compression large reduced
source
crafty Game Playing: Chess large reduced
eon Computer Visualization large reduced
gap Group Theory, Interpreter large reduced
gcc C Programming Language Compiler large reduced
. cp-decl.i
Q - <
2 | 9zip Compression large reduced
€ | mcf Combinatorial Optimization large reduced
parser Word Processing large reduced
perlomk PERL Programming Language large reduced
twolf Place and Route Simulator large reduced
vortex Object-oriented Database large reduced
vpr FPGA Circuit Placement and Routing large reduced
place
wupwise | Physics / Quantum Chromodynamics large reduced
swim Shallow Water Modeling large reduced
mgrid Multi-grid Solver: 3D Potential Field large reduced
applu Parabolic / Elliptic Partial Differential Equa-large reduced
tions
mesa 3-D Graphics Library large reduced
€ | galgel Computational Fluid Dynamics large reduced
g |art Image Recognition / Neural Networks large reduced
=2 equake Seismic Wave Propagation Simulation large reduced
= | facerec Image Processing: Face Recognition large reduced
LC_LJ ammp Computational Chemistry large reduced
lucas Number Theory / Primality Testing large reduced
fma3d Finite-element Crash Simulation large reduced
sixtrack High Energy Nuclear Physics Acceleratolarge reduced
Design
apsi Meteorology: Pollutant Distribution large reduced

Table 4.3: SPEC CPU2000 Benchmark Descriptions and Inpst Set
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one of the parameters was varied while the other parametzeshveld constant. All
the results were normalized to the performance of the 8-wailine conventional
out-of-order configuration. This is indicated by the thiagkel on the 1.0 mark on

the y-axis.

Figure 4.2 plots the performance as a function of the numbBEWSs. This
result confirms there are more braids ready to execute tremuimber of BEUs
in the microarchitecture. Increasing the number of BEUsroaps performance in
two ways. First, adding more BEUSs increases the number afugian resources.
More execution resources allow more braids to execute iallghr Second, a long-
latency instruction stalls the BEU, causing the BEU to be.idtor example, if an
instruction waiting to be scheduled is dependent on anuostn that misses in the
cache, the waiting instruction cannot execute which in tanses the functional
units in the BEU to be idle. Having more BEUs allows youngexidls with ready
external operands to execute ahead of older braids thattateds Using eight
BEUSs, there is a 8.3% performance drop from the baselineobatder microar-

chitecture.

There is a constraint on the number of BEUs that can be suggbantthe
braid microarchitecture. Too many BEUs in the braid micobétecture increase
communication latency for communicating operands andbagseen BEUs. This
increases the complexity for synchronizing the busy-bdtees. Since 8-wide de-
signs are slowly becoming available in the processor magebnfiguration with
eight BEUs was chosen as a design point that provides a gadddif between
performance and what can be implemented. It will be showttkigabraid microar-
chitecture passes far fewer values between each way in pledire compared to a
conventional out-of-order design of the same issue widttusT it will be possible
to further increase the number of BEUs in the braid microgecture.
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The FIFO queue in each BEU is an instruction waiting buffen iAstruc-

tion waits in the queue until it reaches the queue entriesesponding to the in-

struction scheduling window. The queue should be large gimaa buffer all of

the instructions of a braid. Figure 4.3 plots the perforngaas a function of the

number of entries in the FIFO queue. On average, as few astfiésare enough

to support most of the braids for the benchmark programss iBibbecause 97% of

braids consist of 16 instructions or fewer. Without the @oimstruction buffering,

all the instructions of a braid cannot be queued in the BEUs $tuation stalls the

distribution mechanism, subsequent braids, and eventialfront-end.
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Figure 4.3: Performance Sensitivity to the Number of FIFGe@aIEntries

The following experiment examines the likelihood that rgaustructions

in a braid are located at the head of the FIFO by using difteseheduling win-

dow sizes. The scheduling window size denotes the numbertoés in the FIFO
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queue. The instructions within this window are examinedéadiness each cycle.
Figure 4.4 plots the performance as a function of the schwglwindow size. It

iS encouraging to see the steep rise going from one to twaesnt@nd then the
plateau from two to 16 entries. On average, a window of twaets sufficient for
the benchmark programs. This result is consistent with tekasaurement of braid
width. Since most braids have narrow widths, using a largeeduling window

is not beneficial to performance. The floating point benchnpaogramsapplu
apsi ,lucas , andmgrid have slightly wider widths on average and benefit more

from a larger scheduling window.
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Figure 4.4: Performance Sensitivity to the Scheduling Win®ize

In Figure 4.4, the number of functional units was fixed as ttieeduling
window size changes. The following experiment examinestidreghe number of

functional units is a performance bottleneck as the scheglulindow size changes.
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Figure 4.5 plots the performance as a function of both thebrarrof functional units
and the scheduling window size. This graph shows a simisdias the graph for
scaling the scheduling window alone. This result confirnat gerformance is not
limited by the number of functional units and reaffirms thao tftunctional units is

enough to process a braid.
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Figure 4.5: Performance Sensitivity to the Number of Fuorai Units per BEU

4.5 Comparison to Other Processing Paradigms

Figure 4.6 plots the performance comparison of four miccb@ectural paradigms
at three issue widths. Each stacked bar plots the perforenaifour different mi-
croarchitectures. From bottom to top, they are in-ordeEJ~based dependence
steering, the braid, and out-of-order microarchitecturébe set of bars for each

benchmark program from left to right represent the perfaraeeof 4-wide, 8-wide,
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and 16-wide designs. The result of using a dependence-lstselng algorithm
[50] is presented to illustrate one simple and implememwtatdorithm with a de-

sign complexity that is comparable to braids.

At least three observations can be made from this graph.t, Rignifi-
cant gains are still available at wider widths. Second, ttaedomicroarchitecture
achieves performance that is within 9% of a very aggressiveentional 8-wide
out-of-order design. Third, the performance gap betweerbthid and out-of-order

configurations gets smaller as the issue width increases.

Relative Performance

B braid Benchmarks

Figure 4.6: Performance of In-Order, Dependence-BasestiStg Braid, and Out-
of-Order Designs at Various Issue Widths

Since the braid microarchitecture uses braids as a unit@fgssing, the
braid microarchitecture can more efficiently manage th&ruiesions in a large win-
dow than an out-of-order design with a distributed scheduwindow. It is inter-

esting to note that at the 4-wide configuration, dependd&ased steering almost
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achieves the same performance as the braid microarchiectinis is due to the
fact that the braid microarchitecture suffers from an uabaéd design with only
four BEUs. Braids provide greater benefit when there are lB&ids because many
braids can execute in parallel. Limiting the number of BEW$dur greatly con-

strains execution core resources. The braid microarduitecequires more BEUs

to be effective.
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Chapter 5

Braid Optimizations

Although the braid microarchitecture implements an executore with
a simplistic design, the simplification incurs inefficieegiwhich limit its perfor-
mance. These inefficiencies do not exist in an out-of-orésigh. This chapter
discusses three bottlenecks of the braid microarchiteand suggests techniques
to reduce their impact on performance. The first techniquiresses the limita-
tion on braid size caused by control flow instructions. Theose addresses the
underutilization of braid execution resources caused bgdatency instructions.
The third addresses the poor utilization of execution resesicaused by single-

instruction braids.

5.1 Dynamic Merging

The first problem is the lost opportunity by not being able edlonger
braids. To avoid problems associated with changing coffival, a braid is defined
to reside completely within a basic block. Thus, the avesgeof a braid is always
less than or equal to the average size of a basic block. lagittie size of a braid
limits the amount of internal values that are communicat&lihough braids are
identified at compile time, they can effectively become daurgt runtime through a
technique called dynamic merging. Dynamic merging allovisaad from a basic

block to join a braid from another basic block at runtime tonica larger braid.
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Figure 5.1a show a control-flow merge point, and Figure 5thitinsa control-
flow join point. These figures will be used to illustrate whyntol-flow changes
make it difficult for the compiler to span a braid across a marftow boundary.
Numbers identify basic blocks. Lowercase letters identifgids within a basic
block. Uppercase letters identify the control-flow pathggRter identifiers iden-
tify the external operands of a braid. Each basic block ansatawo braids desig-
nated by lower case letters. At a control-flow fork point,ldilocks2 and3 are
reached from parent block. At a control-flow join point, parent blocks and?2
precede child block. In Figure 5.1a, suppose the compiler builds bratcdthat
spans block4 and2 as shown by the thick line. In this case the external operands
of braida should be treated as internal operands of beaid However, if pathAB
is traversed at runtime, the assumption made for the opsmdndr2 , andr3 no
longer hold true. In this case2 andr3 should be treated as internal operands and
rl should be treated as an external operand. The same arguamehéanade for

the control-flow join point in Figure 5.1b.

Control-flow fork and join points complicate the formationlafger braids.
However, at runtime, only one path is traversed at a time pandonsecutive basic
blocks become logically contiguous. A runtime approachsedito merge braids

across control-flow boundaries.

The concept of dynamic merging is a simple one. Two braidsncarge if
they share values. That is, the external inputs of the cliditlare a subset of the
external outputs of the parent braid. When a match is confifrtredtwo braids
merge by distributing the second braid to the BEU holdingfitst braid such that
the second braid immediately follows the first braid. Therstaexternal register
communication between the two braids are identified and conicated through
the internal register file potentially eliminating externegister file accesses.
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(a) (b)

Figure 5.1: Control-Flow Points (a) Fork (b) Join

Implementing dynamic merging requires the use of a braidgmgrtable
shown in Figure 5.2a. The braid merging table maintains #tereal outputs of
active braids being processed by the BEUs. Figure 5.2b sloowsentry of the
table. Each entry tracks one braid and contains a valid [8tpb# external output
vector, and a 3-bit BEU Id vector. The valid bit indicates Wiez the braid is still
being processed in the BEU. The 8-bit vector encodes theratteutputs of the
braid. Each bit of the vector maps to an external registee 3-bit vector identifies
the BEU to which the braid was distributed.

Up to four braids per basic block are tracked and up to two mexstnt basic
blocks are tracked by the braid merging table. This is showtheatop of Figure
5.2a. Tracking up to four braids per basic block was choseaulre the average
number of braids in a basic block is 3.6 for all the benchmadgmams. As a braid
is distributed, the external output vector of the braid seirted into one of the four
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Figure 5.2: Mechanism to Support Dynamic Merging (a) Meggliable Entry (b)
Merging Identification Logic
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entries associated with the current block sequence numbiee. block sequence
number is a unique number assigned to basic blocks in progrder. When a new
basic block is encountered, the entries associated witkuhent block sequence
number are shifted into the entries associated with theiguevblock sequence
number. When a braid is distributed, the external outputdiéldm the entries in

the previous block sequence number are probed. The braichesits external

input vector which identifies its external inputs againg éxternal output vectors
from the table. The logic needed to implement this is showthebottom of Figure

5.2a. A match indicates an opportunity to merge and the BEUF lithe matched

entry is used to distribute the braid to the BEU of its parent.

The external input and output vectors of a braid encode tereal operands.
These vectors can either be generated by the compiler oreoppdirdware. If the
compiler generates this vector, it must encode the ext@mpat and output vectors
of a braid in special instructions. Since each vector regugight bits, 16 total bits
are needed. This can be encoded in the unused field of a NOQBdish. The
hardware can also generate the two vectors at runtime. 8iecenaming mecha-
nism already identifies the external and internal sourcedmstination registers of
the instructions of a braid, it can also produce the extanmlt and output vectors

and insert them into the pipeline along with the braid.

For dynamic merging to be useful, another vector called ihgles-use vec-
tor is required. This vector tracks if there is a single cansufor each external
output register. Since this information is known to the cderpthis vector is gen-
erated by the compiler. One single-use vector is associaigdeach braid and
encoded in the unused field of a NOP instruction.

When an opportunity to merge is identified, the BEU procestiegoarent
braid is first notified that a child braid will merge with it. €hexternal register
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file writes present in the intersection of the two externaltues are the set of val-
ues communicated between the two merging braids. Thesenekiegister file
operands are redirected to write into the internal regifiter Depending on the
contents of the single-use vector, there may or may not beita warthe external
register file. The external register file write is disablethé single-use vector iden-
tifies the next consumer of the value to be the last consumiieofalue. Once the
BEU has queued the entire parent braid, it receives the bindd without waiting
for the BEU to become ready. Rather than reading from thereateegister file
for the values communicated between the two braids, thel ¢ndid is redirected
to read from the internal register file.

Figures 5.3 and 5.4 plot the distribution of the external swelrnal register
read and write accesses. In Figure 5.3, note that the pes€exrternal and internal
read accesses do not sum to 100%. This is because some extadmhit in the
bypass network. The left two bars of each benchmark progreow she percent of
read accesses for the baseline braid microarchitectudethenright two bars show
the percent of read accesses when dynamic merging is apmatout dynamic
merging, about 50% of the register reads come from the iateagister file. With
dynamic merging, the percent of internal register read ss®® increases to over
73%.

Figure 5.4 plots the distribution of the external and in&dnegister write ac-
cesses. The left two bars represent the percent of regilgeviiie accesses for the
baseline braid microarchitecture. Adding these two baregan expected 100%.
The right two bars show the percent of write accesses wheardigmerging is ap-
plied. Approximately 63% of writes access the internal segyifile. When dynamic
merging is applied, the percent of internal register writeesses increases to 67%.

Although dynamic merging is useful for decreasing the nunab@ccesses
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Figure 5.3: Percent of External and Internal Register Reads

to the external register file, it does not improve perfornemncits current form.
The left and right bars of Figure 5.5 plot the performancéaitt and with dynamic
merging, respectively. On average, enabling dynamic mgngduces performance
by 0.3%. This is due to load balancing problems caused bytargits of work.
A braid-aware compiler can produce more balanced worklo@ls slowdown is a

small cost to pay for reducing external communication.

5.2 Braid Execution Unit Context Sharing

The second problem is the underutilization of the functianats. In a
conventional out-of-order processor, the scheduler alowly ready instructions
to execute. Instructions with operands which are not reaaly w the scheduling

window. This method of processing results in the most effitciese of functional
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units because execution resources are allocated onlytroi@tisns which can use

them.

The braid microarchitecture does not share the same luxiihe larger
granularity of the unit of work of a braid causes this ine#fiety. Once a braid is
sentto a ready BEU, the execution resources in the BEU aiieated to processing
only the instructions in the braid. In the event an instrtis dependent on a value
from a load miss, that instruction stalls the schedulingpss. The idle functional
units in the BEU are inefficient when there are ready instounst in another braid
that can execute. The ready instructions in the other bi@nhot use the resources
of the BEU with the idled functional units.

Table 5.1 lists the percent of cycles in which all BEUs ardlesia Non-
deterministic latency instructions such as load instardithat miss in the L1 can
stall all the BEUs. BEUSs are stalled for an average of 21.2¢mrfor the integer
benchmark programs and an average of 16.2 for the floating penchmark pro-
grams. This condition can be easily mitigated if an idle BEdd be made available
to another braid that is ready to execute. Context sharingisiple technique that
improves the efficiency of resources in the BEU. The key idaa temporarily set
the stalled braid aside, thus freeing the context in the B&éxecution of another

braid that is ready to execute.

Context sharing is a technique that addresses the issue aitexe stalls.
Implementing context sharing requires very minimal chatgethe microarchitec-
ture. Figure 5.6 shows the block diagram of a BEU augment#dtwio additional
structures to support context sharing. The two shadedtstes are required to
maintain the state of the BEU. The first structure is the wgithstruction buffer.
It is the same size as the instruction queue and is used tdairathe state of the
instruction queue on a context change. The buffer is diyemhnected to the in-
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Integer Floating Point
benchmarks % stalls benchmarks % stalls

bzip2| 44.4 ammp| 6.1
crafty 2.7 applu| 0.5
eon| 2.0 apsi| 3.9
gap| 46.9 art| 82.7
gcc 4.1 equake| 24.6
gzip| 18.1 facerec| 9.5
mcf | 54.5 fma3d 1.3
parser| 57.2 galgel| 15.9
perlbmk 1.7 lucas| 1.7
twolf 4.8 mesa| 1.5
vortex 4.1 mgrid 1.9
vpr | 13.8 sixtrack| 2.0
amean| 21.2 swim | 75.1
wupwise| 0.5
amean| 16.2

Table 5.1: Percent of Cycles All Braid Execution Units Arellgth
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struction queue. This enables instructions to move fromstnesture to the other
with very little effort. The second structure is the waitimgernal register file. This
structure is the same size as the internal register file andasl to maintain the
state of the internal register file during a context changes &lso connected di-
rectly to the internal register file and allows the movemdnegisters between the

two internal register files.

Distribute
p
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S || Busy-Bit |
o L Vector
=lenl© o
s |7 _ =
Internal . [ =
= =| | Register File [= g v
External
Register File
\SASA A “
o J
Y Y
Bypass
I

Figure 5.6: Mechanism to Support for Context Sharing

Figure 5.7 shows the state diagram for entering the conkexirsg mode. A
counter is used to detect when a BEU can enter context shaudlg. Every cycle,
this counter is incremented if a braid has been assignedtBEU and no instruc-
tions were executed that cycle. That is, the BEU is not readlythe functional
unitis idle. The counter is reset to zero otherwise. When tnter value reaches
a certain threshold, context sharing is triggered. At tlusp the BEU context is
moved to the waiting instruction queue and waiting interegister file. The BEU

context has been freed and the BEU is ready to execute a néslv l#a long as
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there are still instructions in the new braid to be processedtext sharing mode
is maintained. When all instructions in the new braid congéstecution, the BEU
exits context sharing mode. At this point, the context samdtie waiting buffers

is restored into the instruction queue and the internalstegifile and processing

resumes from the saved context.

idle* ready idle* ready idle* ready ready

Figure 5.7: State Diagram for Context Sharing

Figure 5.8 shows the performance over the baseline braicbanchitecture
when context sharing is enabled. On average, context gharavides an additional
1.5% over the baseline configuration. The art and swim beadkprograms have
the largest amount of stalls caused by the unavailabiliBBs. It also achieves
the greatest gain using context sharing regaining betw&eard 6% of the perfor-
mance.

5.3 Heterogeneous Execution Resources

The third problem is the poor utilization of the BEUs causegdsingle-
instruction braids. These single-instruction braids amated instructions that do
not share a dependency with any other instruction insidé#séc block. The ex-
istence of these braids is a side effect of profiling preexgsbinaries. Table 5.2
shows the percent of instructions that belong to singlédesion braids in the dy-

namic instruction stream. These single-instruction kwdiel up precious resources
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Figure 5.8: Performance Using BEU Context Sharing

that have been designed to process bigger and wider brardse Single-instruction
braids do not share the same type of processing requirerastasger braids, they

should not be processed in a BEU.

Figure 5.9 shows the block diagram of the pipeline of thedraicroar-
chitecture with the addition of a small out-of-order schedas indicated by the
shaded block. The distribute mechanism sends singledtgin braids to this spe-
cial scheduler. This scheduler is solely responsible focessing single-instruction

braids.

This out-of-order scheduler is much smaller than a conweati out-of-
order scheduler. The small out-of-order scheduler doesmaiduce significant
complexity to the design. It is a small 2-wide scheduler aomihg not more than
a few entries. This is far simpler from the design requiretaef a scheduler with

32 or more entries. Figure 5.10 shows the performance wheinéterogeneous
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Integer Floating Point
benchmarks percent benchmarks percent

bzip2| 15.1 ammp| 13.4
crafty | 18.1 applu| 24.1
eon| 325 apsi| 24.3
gap| 20.8 art| 214
gcc| 26.4 equake| 21.4
gzip| 154 facerec| 28.1
mcf | 34.8 fma3d| 21.5
parser| 28.7 galgel| 31.4
perlomk| 24.5 lucas| 12.2
twolf | 19.5 mesa| 26.9
vortex | 29.1 mgrid 4.4
vpr | 25.2 sixtrack | 27.5
amean| 24.2 swim| 15.1
wupwise| 22.2
amean| 21.0

Table 5.2: Percent of Instructions from Single-Instructigraids

69



Fetch

1

Decode

1

Allocate

1

Rename

1

Distribute

TYTYVVYY
®

Jo300
LU L
(a8 [a'a [a'a [aa [a'a [aa 2

®
TYVVVVYY

Bypass
I

External
Register Filg

A

A
Y

Figure 5.9: Block Diagram of Heterogeneous Execution Ressu

execution resources are used. All the bars are normalizeédetdoraid microar-
chitecture with seven BEUs. The left bar of each benchmaoknam shows the
additional performance provided by one BEU. The right baeath benchmark
program shows the additional performance provided by alsya&lof-order sched-
uler. Performance improvement increases from 2.8% to 4.0fviheterogeneous

execution resources are used to handle single-instrubteids.
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Chapter 6

Hardware and Software Analysis

The braid microarchitecture is a complexity-effectiveeatiative to an ag-
gressive conventional out-of-order microarchitectureisthapter presents an anal-
ysis of the hardware and software complexity in the impletagon of braid pro-

cessing.

6.1 Hardware

6.1.1 Renaming Mechanism

The registers associated with the external input and owpatands of a
braid must access the RAT to receive their proper tags. Thistezs associated
with the internal operands of a braid do not need to be renaniéerefore, on
average, only a subset of the total registers in the fetchgiared to be renamed.
The RAT is not on the critical loop and hence can be pipelinest several stages
without significantly hampering performance. Braid pragieg provides three ben-
efits for the process of renaming operands. First, the remgmiechanism requires
fewer access ports due to the reduced bandwidth requiremdinis leads to the
design of a renaming mechanism with a smaller area and loaweip Second,
reducing the set of registers to be renamed decreases tsealnegister space. A
smaller register space requires fewer bits to identify eacjster. Fewer tag bits
reduces the width of each RAT entry which also results in allemstructure sav-

ing both area and power. Third, since fewer operands need termmed, fewer
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pipeline stages are required to support operand rename erFaages lower the

branch misprediction penalty.

Figure 6.1 plots the performance as a function of the numbeemame
ports in the braid microarchitecture. The bars in this graphnormalized to the
performance of the braid microarchitecture with 16 sounod aight destination
rename ports. The bars for each benchmark program repragséfierent number
of source and destination rename ports. In the braid michoi@cture, eight source
rename ports and four destination rename ports are moreghangh to sustain
performance within 0.75% of peak performance. This slowdawreases to 1.5%
when six source and three destination rename ports are used.

1.0

0.9

e ————
—

Relative Performance

o
o

0.7

P S R IR O IEIDGT TR S S E@E NS E RS
NI I D O O FPIFRELTE T FLCPIPTFELESE S EF
‘01/ & N ® Q’& 80 & L ’b‘Q R @ ,2}0\? ;(bc’z ‘\(Q 0? & &Q (3\"\5\ §\ \‘@Q$ Q
m126

=105 Benchmarks

Figure 6.1: Performance Sensitivity to the Number of Soanee Destination Re-
name Ports
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6.1.2 Scheduler

In aw-wide out-of-order design, a monolithic scheduler witkntries each
requiresn x w x 2 full tag comparatorsn entries are examined each cycle to iden-
tify instructions that are ready to execute. If the monaditbcheduling window is
partitioned into separate windows, wake-up wire delaydsiced but the number of
full comparators remains the same. When processing bréiesnicroarchitecture
has been passed a carefully allocated unit of work that canéeuted efficiently by
a BEU. The long and narrow characteristics of a braid suldigediminate the need
for a dynamic out-of-order scheduler. Only two instructaoreed to be considered

for execution at the head of the instruction queue using arder scheduler.

6.1.3 Busy-Bit Vector

The busy-bit vector maintains the availability of externegisters similar
to that found in the design of in-order processors. It is dit&«ector where each
bit represents the availability of an external register.isTvector is replicated in
each BEU and kept in synchronization. The instruction satexdjueries the busy-
bit vector in its BEU to determine the external source opéravailability of an
instruction. Since the scheduler examines up to two instras, this structure had
four read ports. Given the small size of this structure, agdliorts to this structure

IS not a problem.

A conventional out-of-order processor broadcasts a mugetaet of operand
tags than the braid microarchitecture. Because of thisbthe microarchitecture
uses narrower comparators. A more challenging task is theess of updating
busy-bit vectors. When an instruction is scheduled for ettenuit broadcasts its
tag to other BEUs. The other BEUs examine the broadcast thgaaate the cor-
responding bit field in their busy-bit vector. Since a BEU tanms two functional
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units, simultaneous broadcast of external result tags @k place. Since most
braids do not produce two external results in the same cyclgesign simplifi-
cation is introduced by restricting each BEU to broadcasy one tag per cycle.
Therefore, each busy-bit vector requires eight write pdfech busy-bit vector also
requires eight comparators. Since the external registaresis small, a 3-wide bus
is all that is needed for each tag. Furthermore, BEUs are s@mypact unlike typ-
ical clusters which are spread apart. This compactnesssabdoroadcast signal to
span the width of the pipeline in one cycle.

6.1.4 Internal Register File

An average of 50% of all register file accesses are to/fromrteznal reg-
ister files due to the partitioning of the register space. hEaternal register file
contains eight entries. Since each BEU can execute up torstaictions per cy-
cle, each internal register file has four read ports and twitevports. The internal
register file is disjoint from the external register file. Timeernal register file of
one BEU is also disjoint from those in other BEUs. Values ngrepagate be-
tween any of the register files. Values in the internal regifite do not need to
be maintained for the execution of a subsequent braid andadtgally discarded
once a braid finishes execution in the BEU. The reduced numibaccesses and
ports to the internal register file allow a design with a seradirea and lower power
requirements. The entire working set of values in the pnogiasupported by the

many disjoint internal register files.

6.1.5 External Register File

The remaining 50% of register values that do not access tema register

file access the external register file. This 16-entry regiieis twice as large as
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the internal register file and also accessed by all BEUs. tteisigned with six
read ports and three write ports. Like the internal regikes, the external register
file also has a small number of entries and ports comparecetoetyister file in a
conventional microarchitecture. This results in struetunth a smaller area and
lower power requirements. The smaller area also eliminaeepipelined access to
the register file, allowing access to be performed in a siogtde. The resulting

shorter pipeline also lowers the misprediction penalty.

Figure 6.2 plots the performance as a function of the numbeead and
write ports of the external register file in the braid micrdatecture. Each bar is
a two-tuple representing the number of read and write pdrtiseoexternal register
file. The bars in this graph are normalized to the performaricke braid microar-
chitecture with an external register file that has 16 readspand 8 write ports.
As the number of read and write ports is decreased, theregiggii#e slowdown.
With a few as six read ports and three write ports, the braictoairchitecture ob-
tains performance within 0.3% of the performance from usirigll set of read and
write ports is achieved. Mgrid is especially sensitive totjgoaling because it has a
large number of external inputs and outputs as shown in TalleThere is a 1.5%

slowdown going to four read ports and two write ports.

Figure 6.3 plots the performance as a function of the numbentries in
the register file in a conventional out-of-order microatebiure. The bars in this
graph are normalized to the performance of a conventionabfBarder microar-
chitecture with 256 registers. Using 32 registers in anafti¥rder design causes
8% degradation in performance, and using 16 registers s degradation in

performance.

Figure 6.4 plots the performance as a function of the numbentsies in
the external register file in the braid microarchitecturdaebars in this graph are
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normalized to the performance of the braid microarchitectusing a 256-entry
external register file. Since most of the operands accesstitimal register files,
there is less pressure on the external register file. Regub@number of external
registers does not significantly affect the performanc@etiraid microarchitecture
until reaching four registers. It can be seen using a smaht8y external register
file is sufficient to maintain the performance within 1% of gherformance from

using a 256-entry register file.
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Figure 6.4: Performance Sensitivity to the Number of ExaéfRegisters in the
Braid Microarchitecture

6.1.6 Bypass Network

An instruction specifies whether source operands receiawe\rom the

internal register file or the external register file. Howear operand that requires
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a value from the external register file may receive its vatoefthe bypass network
due to data forwarding. Figure 6.5 plots the distributioriagiations where source
operands are read. Bypassed values are read 8% of the titeendhregister file
values are read 44% of the time. External register file vahuesead 48% of the
time.
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Figure 6.5: Distribution of Source Operand Locations

The bypass network in a conventional out-of-order desigaires multiple
levels due to pipelined writes to the register file. In thedyraicroarchitecture, the
bypass network contains only one level because it takes yrie to complete a
write to the external register file. This is due to the fewemiver of entries and
ports of the external register file. Since there are feweered values written to
the external register file, there are also fewer values #wtire the bypass network.

Figure 6.6 plots the performance as a function of the numbbypasses paths in
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the braid microarchitecture. The bars in this graph are adized to the perfor-

mance of the braid microarchitecture with 16 bypass pathee Aumber of paths
corresponds to the average number of supported value Bgass cycle. Since
internal values do not require bypassing, the number of &sg@ values is greatly
reduced. Supporting the capability of bypassing four v&lper cycle in the braid
microarchitecture does not hamper performance, and stipgawo values per cy-

cle obtains performance that is well within 0.6% of the parfance from using a
full set of bypass paths. A 6.5% performance drop takes pldnan only one value
IS supported.
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6.1.7 Reducing Pipeline Stages

The braid microarchitecture reduces the number of stagdseipipeline.
First, the operand rename stage is reduced by two stages.islthue to the lower
bandwidth requirements of renaming external registersoSe, register file access
is reduced by two stages. This is due to the fewer number ofesrdnd ports of
the external register file. In all, the pipeline is shortebgdour stages reducing the
branch misprediction penalty by four cycles. Figure 6.tpthe extra performance
as a result of the shorter pipeline. The integer benchmaograms gain more
from the shorter pipeline. This is because integer prograave a higher branch
misprediction rate. On average, the shorter pipeline tesnl2.6% performance
boost for the benchmark programs.
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6.1.8 Clock Frequency

The structures on the critical path of a processor include¢haming mech-
anism, the instruction scheduler, and the bypass netwdr&.bfaid microarchitec-
ture simplifies each of these structures resulting in a desggjuiring less area.
Thus, the critical path is shortened allowing the designuio at a higher clock
frequency. With the benefit of this additional frequency pemsation, the braid
microarchitecture can achieve even higher performancsirgiothe performance
gap between itself and an aggressive out-of-order michiizature.

6.1.9 Perfect Front-End and Memory System

The braid microarchitecture targets the design simplificabf the struc-
tures in the execution core. To see the effectiveness ofrdid microarchitecture,
the execution core must be fully used. The following set giezinents plots the
performance from eliminating the effects of imperfect rastion and data delivery

mechanisms.

The first experiment considers the use of a perfect branctigice. This
branch predictor is always correct and thus never fetchssuctions on the wrong
path. Figure 6.8 plots the performance using perfect branetliction over realistic
branch prediction. The bars in this graph are normalizedhéoperformance of a
conventional out-of-order design with realistic branchgiction. The left two bars
of each benchmark program represent the performance ofréhe imicroarchitec-
ture with realistic and perfect branch prediction. The titho bars represent the
performance of a conventional out-of-order microarctiteg with realistic and per-
fect branch prediction. Except for a couple benchmarksckt@age in performance
is not too significant. On benchmark programs where the auiveal out-of-order
processor achieves a performance gain, the braid micribactire also achieves a
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comparable performance gain.
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Figure 6.8: Performance Using Perfect Branch Prediction

If instructions are not fetched at a fast enough rate, branedicting is not
as beneficial. The following experiment assumes the use effag branch pre-
dictor as well as the use of perfect instruction and dataesichigure 6.9 plots the
performance of the realistic and perfect instruction anic dizlivery mechanisms.
The bars in this graph are also normalized to the performaha&onventional out-
of-order design with realistic branch prediction. This gmashows that the braid
microarchitecture scales as well as the conventional rarctotecture with more

aggressive branch predictors and memory systems.

While the memory system is important for performance, thsseitation
does not address memory system issues. The problems toved $of the memory

system are orthogonal to the problems to be solved for theutiom core. Figure
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Figure 6.9: Performance Using Perfect Branch Predictiah R@rfect Instruction

and Data Caches
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6.10 provides results of the braid microarchitecture asnation of the number of
cycles to main memory. All the bars are normalized to the lb@séraid microar-

chitecture. Results for 100, 200, and 400 access cyclesrmonyeare shown. If the
number of cycles to main memory is halved from the baselif&p additional per-
formance can be achieved, and if the number of cycles is Halgain, an additional
20% additional performance can be achieved.

Relative Performance

W 100 cycles
W 200 cycles Benchmarks

O 400 cycles

Figure 6.10: Performance Sensitivity to the Number of Cytbelglain Memory

6.2 Software

6.2.1 Strands versus Braids

A strand as proposed by Kim and Smith is a chain of dependsttictions
[40]. It has as width of exactly one, whereas a braid has arageewidth of 1.3.

Restricting strands to be a 1-wide dependent chain of ictms greatly limits the
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number of instructions that can be a part of a strand. Thigcabse the irregular
dataflow graph of program does not easily breakdown into kirgnds. When the
1-wide restriction is lifted, larger dataflow subgraphs barformed. Even though a
braid is larger than a strand in size, a braid maintains aregeewidth that is close

to one.

6.2.2 Tradeoffs of Dataflow Graph Size

At one extreme, the entire dataflow graph of a program can heidered
as one large braid. In this model, all values are internalth&tother extreme, the
dataflow graph can be broken into single-instruction braldghis model, all val-
ues are external. At both of these extremes, the scheduerggister file, and the
bypass network resemble those found in a conventional sateter microarchitec-
ture. These components become a design challenge at widewsdths and will
become impractical to implement in future designs. An edficidesign point lies
in between the two extremes. Braids convert a seeminglguteg dataflow graph
into regular dataflow subgraphs achieving a balance bettineamse of external and

internal operand values.

6.2.3 Spill Code

A compiler uses registers to pass values between instngtio the pro-
gram. Due to a limited set of architectural registers, thepiter uses a technique
to temporarily free registers by storing them to memory agstaring them when
they are needed again. It accomplishes this by insertirigesyl fill code when the
working set size of values exceeds the number of registershd profiling anal-
ysis used in this dissertation, only data values propagiwedigh registers were

considered. There is lost opportunity when using the prafitechnique because it
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does not account for data values propagated through the rgesystem via spill
and fill code. With a braid-aware compiler, larger braids banformed reducing
the amount of spill and fill code. This should lead to registéwcation requiring

fewer external registers.

6.2.4 Software Compatibility

The braid microarchitecture is capable of running legacpliaptions at
lower performance. This is accomplished by treating alisteg operands in the
program as external register operands. The renaming mechamovides external
register tags to the architectural registers. Instructioan be distributed to BEUs
using a simple steering policy like round robin. Instruntiqueues in the BEU
buffer instructions until they become full. The instructeowithin each BEU follow
in-order scheduling. All operands access the externastegfile and the internal
register files remain unused. The performance of runningdg@pplications on
the braid microarchitecture is not optimal, resembling tfaan in-order design.

6.2.5 Instruction Set Architecture Annotations and Code Blat

The Alpha ISA was augmented to support braid processingh Eagister
field is five bits wide. The braid microarchitecture specitaght external registers
and eight internal registers. This means that four bits eguired to specify a
source register operand (three to specify the register reamdeone to specify the
temporary operand bit). A destination register requires ffiiis (three to specify the
register name and two to specify external/internal degtinaits). To specify the
braid start bit in the case of zero-destination or one-swuegister instructions, an
extra bitis borrowed from the displacement field or an unidszd in the instruction

encoding. By carefully making use of the available bits ia thstruction, there is
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no code bloat in the Alpha binary.

The x86 ISA provides more flexibility for passing informatido the mi-
croarchitecture through the use of instruction prefixesisTBA supports prefix
bits which can provide the needed braid annotations foraymis of the instruction
without modifying the actual operand field. One or more pesigan be appended
to the instruction at the start of each braid specifying therands and characteris-
tics of the braid. This method is less intrusive to the ingdiaal instructions of the

original binary but adds additional code to the binary.

If instruction prefixes are not available and there are noiugh available
bits in the instruction to encode braid information, braraid link instructions
can be used [23] to provide braid information. A branch am# instruction is
inserted immediately before the starting instruction ofraidh When the branch
and link instruction is encountered, program control issfarred to another region
of memory where information can be provided for the upconbragd. After the
braid information is obtained, program control is returnedhe first instruction of
the braid. This technique of providing braid informatioraiso less intrusive to the

individual instructions of the original binary but adds &auhal code to the binary.
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Chapter 7

Related Work

Although the braid microarchitecture shares some sintidgriwith other
proposals in the literature, no single scheme achievesdimbined benefits of the
braid microarchitecture. This chapter compares and csisttae braid microarchi-

tecture with various proposals.

7.1 Basic Block-Based Processing

Most of the proposals in the literature follow a style of peesing wherein
instructions within a basic block are processed equallyrte another. That is,
instructions of a basic block are issued into a schedulimgdaiwv and scheduled
for execution without taking into account their data deparaes. In the braid
microarchitecture, the instructions of a braid travel tigh the distribution and
scheduling process as a unit. The instructions in one sd¢ihgdwindow are not
a random set of instructions but a set of tightly connectatrirctions related by
their data dependencies. With the information to identifg tifferent dataflow
subgraphs within a basic block, the braid microarchitexztan carry out instruction

scheduling without complex hardware.
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7.1.1 Trace Processing

The braid microarchitecture and the trace processor [58 important dif-
ferences. First, the trace processor does not disting@shden different dataflow
subgraphs to simplify instruction scheduling. A trace ie ttace processor consists
of a set of dynamic contiguous basic blocks identified atinn@t When a trace is
iIssued, all instructions are treated the same and enteathe mstruction scheduler.
The out-of-order scheduler operates on this entire setsifuntions even though
there can be multiple disjoint dataflow subgraphs. The braatoarchitecture uses
a different in-order scheduler to process each of the pesdeted dataflow sub-
graphs. Second, the trace processor requires runtimeraapand marshaling of
traces. Traces do not share the same benefits as braids. didenbcroarchitec-
ture leverages the compiler-identified subgraphs reqgina runtime analysis of
instructions. Although the trace processor also uses kadlglobal registers, the
concept of partitioning the register space was first progdseSprangle and Patt
[68]. Local and global registers in the trace processoraeatified at runtime in the
trace preprocessing unit. Vajapeyam and Mitra [72] prodassimilar technique
of processing traces. In the braid microarchitecture, tramler identifies external
and internal registers at compile time.

7.1.2 Multiscalar

Multiscalar [65] shares similar characteristics with thieid microarchitec-
ture but also has important differences. Both paradigmsge®a piece of work that
is identified by the compiler. The unit of work in Multiscaligrthe task which is a
very large piece of work consisting of a set of basic blockscdntrast, the braid
microarchitecture uses the braid as a unit of work. In Maélar, each process-

ing unit is an out-of-order processor. The processing wmgsarranged in a ring
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formation. Since tasks are assigned to one processingtbaischeduler in that
unit must consider all the instructions in that unit for exéen. Unlike the braid
microarchitecture, there is no notion of dataflow subgraphdultiscalar. In Mul-
tiscalar, the compiler identifies which register valueschieebe forwarded to other
processing units on the ring and which values are no longedee: This is done
through the use of a bit-mask conveyed though the ISA. In taelbmicroarchi-
tecture, most of the register communication is performedugh internal registers.
Internal registers are localized to a braid and kept in a kragister file. Internal
registers are implicitly freed when they are overwritterwdren the entire braid has
been processed. Multiscalar uses a larger granularity ok aod a processing unit
topology that increases the latency of communications éebwprocessing units.

These issues are avoided in the braid microarchitecture.

7.1.3 rePLay

The rePLay framework [52] is another processing paradigahdperates on
large units of work called frames. A frame is a trace-likeitgrtonsisting of many
basic blocks which are captured dynamically. It is esstyteavery large trace
where the entire trace is asserted to be from the correctgdatkecution. The goal
of the rePLay framework is to identify large chunks of workher than identifying
disjoint dataflow subgraphs. The rePLay optimization eagsused to analyze
frames as they are captured dynamically to improve the effayi of the code. The
optimization engine adds additional complexity to the pigeand increases power

requirements.

92



7.2 Strands, Dependency Chains, and Subgraphs
7.2.1 Strands

The term strand was first coined by Marquez et al. [45] in thgesstrand
microarchitecture. A strand is a dataflow subgraph whicmteates on two condi-
tions. The first condition is a long-latency instructiondahe second is a branch
instruction. Even though identifying strands for procagstan simplify hardware
complexity, certain design choices limited the perfornentthe superstrand mi-
croarchitecture. First, the superstrand microarchitectllows a strand to execute
only when all of its operands are available. Unless stramdseatremely short,
there is a high probability that most strands do not havetspualy at the top of
the dataflow subgraph. There will also be inputs feeding theomiddle of the
dataflow subgraph. Therefore, waiting for all operands t@balable is too per-
formance limiting. Second, the scheduler must monitor &tde number of ready
instructions in order to determine if a strand can execukes hcreases the design
complexity of the scheduler. Third, the heuristics usedtonf strands do not par-
tition the dataflow in such a way to reduce inter-processimigg communications.
Terminating a strand at a long-latency operation or a brapeamnation is too simple

because the dependencies of a strand may not terminatesmitistructions.

The term strand was redefined by Kim and Smith [40] in the cdnbé
instruction-level distributed processing (ILDP). Thidid@ion of the strand identi-
fies a dataflow subgraph that consists of a single chain of-tiablack instructions.
In a strand, the result of one instruction solely feeds tpetof the next instruction.
The instruction-level parallelism or width of a strand isety one. A microarchi-
tecture was proposed to leverage the single-wide chairsalloommunication of a
strand takes place through a single accumulator in the psiog element to which

the strand was steered. Global communication of a strarestplkace through du-
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plicated register files. A compiler is used to identify sttan A strand terminates
at an instruction that does not produce a value or producetua weeded by more
than one instruction. Although the hardware of a processlagent is extremely
simple in design, ILDP does not achieve the full benefits afds. Since, a strand
has an instruction-level parallelism of one, it is diffictdtfind long strands in the
program dataflow. By not requiring a fixed width in the braidcroarchitecture,

larger dataflow subgraphs are formed even though width mesnagry close to one.
Since braids are larger units of work, there is more benefpratessing them.

Sassone and Wills [61] proposed a mechanism that identifiesds dy-
namically and stores them in a strand cache. A fill unit [Sijilar to one used
in trace cache design, captures instructions. The fill Usd alentifies strands by
maintaining an operand table that tracks temporary oparahdhstructions. The
use of the fill unit adds complexity to the design and incregsver requirements.
Sassone et al. [62] later examined the use of strands in tiheduoed processor
space. These strands are identified at compile time and bee static strands. A
method of encoding static strands in the program binary withimal changes to
the original ISA is presented. The static strand is an extars the strand in ILDP
with one difference. Sassone introduced a restriction enntlakeup the internal
strand instructions making static strands smaller tharsttzands in ILDP. As men-
tioned already, restricting the number of instructions degaflow subgraph lessens

the benefits of processing it.

7.2.2 Dependency Chains

Narayanasamy et al. [48] proposed a clustered microaathite that op-
erates on dependency chains. A dependency chain is a datflagvaph iden-
tified by the compiler. It is not as restrictive as strands.p&welency chains are
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formed via profiling analysis. The hot traces of the programselected, and their
dataflow subgraphs are converted into dependency chaingnAptimization of
the microarchitecture, Narayanasamy incorporated cogéadtion to enlarge de-
pendency chains. Although dependency chains help redsogndsomplexity, they
introduce some difficulties in the microarchitecture. Eidependency chains rely
heavily on hot paths. Since hot paths are heavily depengemtinput set as well as
program phase behavior [39], the dependency chains idahtiSing one profiling
input set may not hold for another input set. A branch misjotexh in the middle
of a long dependency chain means rolling back state to theheginning of the
dependency chain. Thus, processing dependency chainsadmd costly branch
recoveries. Second, when code duplication is used, the basie block can often
end up in multiple dependency chains which causes signifazade duplication in

the program binary, decreasing the efficiency of the insimaacache.

7.2.3 Subgraphs

There have been other proposals of dataflow subgraph progegsm and
Lipasti [41] proposed macro-op scheduling. A macro-op issetl entity contain-
ing two dependent instructions. A macro-op is used to siipptie design of the
scheduler by allowing the scheduler to be pipelined acmexycles. A macro-op
is identified dynamically through detection logic similard fill unit in the trace
cache design [51]. Each macro-op is assigned one pointeisthiged to identify
the macro-op in the pipeline. Processing one pointer rétiaar two instructions
allows more efficient use of execution core resources. Magprecheduling sim-
plifies the design of the scheduler but does not remove thefuse out-of-order
scheduler. Processing macro-ops does not provide thedn#fiis provided by the
braid microarchitecture. The braid microarchitecturesuseorder schedulers as
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well as identifies internal register values for reducingsty file complexity. The
identification of macro-ops requires the use of a fill unit @hadds complexity to

the design and increases power requirement.

Bracy et al. [13] proposed using dataflow mini-graphs to aynghe band-
width of various microarchitecture structures. A dataflomirgraph is a dataflow
subgraph that is identified at compile time. Each mini-grapist meet a specific
set of requirements. It must have two inputs, one output,cgtimne memory ref-
erence, and at most one control instruction. Each minitgiapeferenced via a
handle. The use of the handle allows the amplification of nm&tnyctures in the
pipeline. A set of ALUs, arranged in a pipelined fashion vhene ALU feeds the
next, is used to process the mini-graphs. Since a mini-gcaphconsist only of
instructions that map directly onto the predefined ALUs, sz and composition
of mini-graphs are restricted by the number and type of ALUse braid microar-
chitecture neither restricts the size nor the type of irdtams in a braid. Thus, the
braid microarchitecture maximizes the reduction of exaénegister communica-
tion.

Clark and his colleagues [23] [22] [21] proposed the processi dataflow
subgraphs on a configurable compute accelerator in genenabee and embedded
processors. Subgraphs can be identified dynamically acaligt If done statically,
the compiler using profile analysis identifies frequentlg@xted subgraphs with a
predefined number of inputs and a predefined number of outputset of func-
tional units is instantiated and arranged in such a way tedpp the processing
of the dataflow subgraph. The set of functional units is dafleonfigurable com-
pute accelerator. A special branch and link instructioreited into the program
notifies the processor that it is about to execute a subgrApseparate structure
provides the necessary information required to executsuabgraph including the
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inputs and the control signals needed by the configurableateraccelerator. The
configurable computer accelerator is an interesting ideadsigning a specific ac-
celerator for general purpose computing is not practicabbiee each program has
a different set of characteristics and dataflow. Configurablaputer accelerators
are more applicable to embedded processors where a spasHigstcontinuously

being performed.

7.3 Reqgister File

7.3.1 External and Internal Registers

Sprangle and Patt [68] proposed the concept of separateakend inter-
nal register sets in the context of a statically tagged 1S#e Tompiler specifically
produces code that avoids output dependencies by writiegjteeof instructions
within the basic block to different registers. This elimiesithe dependency check-
ing logic simplifying the renaming process in the microatetture. Furthermore,
a bit associated with each source operand specifies whéghentue is read from
the internal or external register file. Another bit assamlawith the destination
operand specifies where the result should be written. Vatuige internal registers
are valid only within the context of the basic block. Althduthe identification
of external and internal registers implicitly identifiegaféow subgraphs within the
basic block, dataflow subgraphs were not presented as aigeehof simplifying
the instruction scheduler. Later proposals also expl@tdbncept of separate ex-
ternal and internal register sets [59] [72] [48] [40]. Theseposals call internal

registers local and external registers global.
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7.3.2 Increasing Effective Register File Size

The braid microarchitecture provides a larger effectivgister set without
physically adding more entries. A number of proposals hdse suggested tech-
niques to increase the effective size of the register fileesehproposals differ from

the braid microarchitecture in their implementation.

Gonalez et al. [32] proposed virtual-physical registers. Rattnan al-
locating a register at the time the instruction enters tipelpie, this idea delays
the allocation until a value is actually produced. This teedhe effect of a larger
physical register file allowing more simultaneous in-flighgtructions.

Lozano and Gao [44] observed that short-lived values madesignificant
portion of the values produced in a program. A technique @ppsed that avoids
allocating a physical register to a short-lived value. $tiged values are main-
tained in buffers. Thus, this technique avoids committingrslived values to the
register file. This is done with the help of the compiler. ®istort-lived values do
not occupy register file space, there is an effective iner@athe size of the register

file. Ponomarev et al. [56] followed this concept and preséatruntime approach.

Martin et al. [46] used the compiler to provide dead valueinfation by
making assertions in the program that certain registedsnoilbe used again. The
dead value information allows the processor to free registarlier. Thus, this

technique also increases the effective size of the rediter

Another technique to increase the size of the register filegister file pack-
ing proposed by Ergin et al. [27]. It is observed that mosthefvalues are narrow
meaning that the most significant bits of the values containnformation. To
exploit this, multiple narrow results are packed into a Enghysical register to

effectively mimic a larger register set.
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The braid microarchitecture provides a larger effectivgiseer set through
the identification of external and internal registers. in& registers of a braid are
valid only within the braid. Once the braid has finished pesieg in a BEU, the
internal registers are implicitly freed. By freeing regit early, the braid microar-
chitecture emulates a larger effective register set. Thiadcomplished without
extra instructions or identification at runtime. The mor&c&ént use of the reg-
ister space allows the microarchitecture to support a tasge of registers than a

conventional design.

7.3.3 Increasing Register File Size and Access Bandwidth

A number of proposals have suggested techniques to allosteedile de-
signs higher access bandwidth as well as larger sizes. Seta. [63] analyzed
the physical constraints of a large register file and progasenicroarchitectural
organization to increase access bandwidth. In registeewpecialization register
read specialization, the execution core is divided inta fpuadrants. Each quad-
rant is connected to a subset of the register file. In this mofiprocessing, an
instruction in a quadrant can only read from and write to thgister file subset
connected to that quadrant. Although the number of read aitd worts to the
register file is reduced, a more complex register renaminghiaugism is required to
support this model of processing. The renaming mechanigtdilae aware of the
instruction window load in each of the quadrants to be ablead balance between
guadrants. The braid microarchitecture lessens regiseadcess bandwidth while

also lessening register file and rename bandwidth.

Banking is a technique that improves access bandwidth agrdjgnequire-
ments. A number of proposals have suggested banking theteedjle. Perias et

al. [54] proposed a microarchitecture with a front-end ségifile. After rename, an
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instruction can retrieve its operand if that operand islakéde in the front-end reg-
ister file. Rather than implementing enough ports to supihertvorst case access
scenario, banking is used to save complexity and power.graad Asano\wa [71]
proposed using register file banking for a high-frequen@cpssor design. A sim-
ple mechanism allows instructions with conflicting accedegeschedule. Wallace
and Bagherzadeh [73] show that banking can reduce the eegist requirements
of a superscalar processor to that of a scalar processola &al. [8] uses the
compiler for bank assignment of registers in order to rederergy consumption.
While banking is useful to improve bandwidth, the hardwaohieques mentioned
add extra hardware complexity by requiring some form of eéabbk-up and up-
date. The static banking decision may not be representativentime behavior.
The braid microarchitecture does not require banking beeagcess to the register
files is distributed. Internal register files can be accebyeat most two instructions
locally within the BEU. The external register file can be asz# by at most three

instructions.

Another technique to improve access bandwidth is the usel®fel regis-
ter files. Typically, the first level has a few entries with mgorts, and the second
level has many entries with few ports. Zalamea et al. [77ppsed a design where
the compiler explicitly manages the movement of values énfierarchy. Balasub-
ramonian et al. [9] and Cruz et al. [25] discuss a hardwaretisoltio the problem
of managing values between levels. This is accomplished dyitoring the us-
age of registers at the rename stage of the pipeline. ButtsSahi [18] improves
upon this scheme by explicitly tracking the number of usesavilegree of use pre-
dictor. Yung and Wilhelm [76] and Borch et al. [12] proposée use of a small
buffer next to the functional unit that caches recent rasuihis buffer can provide

operand values and complements the main register file. Oelankl. [49] pro-
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posed the virtual context architecture where the regideeiditreated as a cache of
a larger memory-mapped logical register space. The michit&cture injects loads
and stores to perform fills and spills on demand when the wgrket size of regis-
ters exceeds the physical register space. This technitpvesahe implementation
of microarchitecture schemes requiring a large registetpiont. All the schemes
mentioned require either additional instructions or extemdware to manage the
movement of values in the hierarchy. The braid microarchites simplifies the use
of registers by explicitly marking external and internagjisters in an instruction.
No additional instructions are needed to manage valueshamnalues are tracked

at runtime.

Register file replication as implemented on the Alpha 2138} is another
technique to increase access bandwidth by creating anexagbf the register file.
In this setup, each register file supports half of the regubandwidth. Together,
both register files provide the full bandwidth required bg #xecution core. This
technique requires duplicating the register file. It savesdesign complexity of

the read ports but does not reduce the complexity of writéspor

While the mentioned techniques have been proposed to irctkasaccess
bandwidth of the register file, these techniques requirdiaddl instructions in the
pipeline or additional hardware structures to track vainebe pipeline. The braid
microarchitecture achieves the needed bandwidth witHouttditional overhead.
Since the compiler partitions the register space into eglleaind internal registers,
each register file contains a smaller number of entries amdedl sumber of ports.
The partitioning allows each register file to be accessedpaddently of others.
Furthermore, internal results do not need to be written hatke external register
file. The techniques mentioned above do not share this dépabi
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7.4 Compiler Identified Dependencies

Some techniques for allowing the compiler to explicitly sipeinstruction
dependencies have been proposed. These proposals dffettie braid microar-

chitecture in the way the dependency information is congeye

The Block-Structured ISA proposed by Melvin and Patt [4@sithe com-
piler to generate code blocks that simplify processing. Gbmpiler embeds in-
struction dependency information in the header of the cddekb The microar-
chitecture to implement the block-structured ISA has a naintpler dependence
checking logic since many instruction dependencies aresreaglicit by the com-
piler. A technique called block enlargement is used to iaseethe size of the code
block. This works by duplicating blocks and consolidatihg tluplicated blocks
with subsequent blocks. A larger code block provides moaeamovement and
optimization potential within the block. It also offers ajher instruction fetch rate
than fetching conventional basic blocks. Braids providehier simplification of
hardware complexity by explicitly identifying dataflow sgdaphs within the basic
block.

The Intel Itanium 2 is a VLIW processor that implements theghinstruc-
tion set [3]. The processor fetches two bundles every cyblereva bundle consists
of three instructions. Each bundle contains a template hxplicitly specifies the
dependencies between instructions within the bundle apérdiencies between
other bundles. It is the task of the compiler to form bundkes tbtain the greatest

runtime benefit.

Similar to the braid, the block structured and 1A-64 ISA®allthe compiler
to specify dependency information in the program binaryuoié using complex
dependence checking hardware in the microarchitecturee braid ISA accom-
plishes this in a different way. Rather than specifying teeaehdencies for every
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instruction, the braid ISA implicitly identifies instructh dependencies by group-
ing instructions into braids. Processing braids elimisdake dependence checking
hardware for all but two entries in the instruction queuegwse up to two instruc-
tions in a braid are considered for execution every cycleusTlit is not necessary
to encode exact dependency information which incurs higtecwverhead. Fur-
thermore, encoding dataflow subgraph information in thedodaes not incur any
additional code overhead.

7.5 Steering

Many proposals have suggested clustered designs whiclomedysteering
mechanism to distribute instructions. Front-end steemm@ghanisms make deci-
sions by analyzing the current state of the machine whicludes operand de-
pendencies, cluster availability, and load balance. PRalacet al. [50] proposed
FIFO-based instruction schedulers to simplify the desigh@execution core. The
algorithm tracks the dependencies of an instruction aretsiastructions based on
their dependencies. Farkas et al. [28] proposed the mudtiet architecture where
instructions are steered based on their logical registerasa Copy instructions are
used to transport values from one cluster to another on déntaont-end steering
mechanisms are relatively simple in terms of design coniggleX hey make de-
cisions based on the current state of the processor. Theidesido not take into
consideration instructions not yet fetched which can yielduboptimal steering

decision.

A more optimal steering mechanism considers future inftvans by exam-
ining the steering decisions of previous instructions wadback. Baniasadi and
Moshovos [10] proposed an adaptive steering techniqueh Elaster has a table

of 2-bit counters which tracks how appropriate the clusseior an instruction to
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be steered. Counters are updated based on past executibesrmstruction. Canal
et al. [19] proposed a steering mechanism which operatesstruction slices. A
slice is the dataflow tree leading to a load or a branch instmc Slices can be
identified statically or dynamically but the authors adwedahe runtime approach.
All instructions of a slice are steered to the same clusietds et al. [30] proposed
using dynamic critical path analysis to help balance irtsion distribution between
clusters. Bhargava and John [11] used the retirement filltar@inalyze the past his-
tory of instructions. Hint bits are inserted into the traoadentify inter-trace data
dependencies. Feedback-directed steering mechanisfasmpdretter than front-
end steering mechanisms. This is because feedback-basddmmsans track the
past history of instructions. To accomplish this, hardwstractures are needed to
maintain and analyze the executed instructions. This adsig complexity to the

pipeline and increases power requirements.

The braid microarchitecture is not clustered but shareslaimharacter-
istics as a clustered microarchitecture. All instructioms braid are sent to the
same BEU. However, unlike a traditional clustered micrbdecture, the distribute
mechanism in the pipeline does not decide which instrustibelong to which
braid. Braids are identified at compile time. The only demismade by the dis-

tribute mechanism is the identification of BEUs that are yeacaccept braids.

7.6 Scheduling

A number of proposals have suggested solving the complpxitlylems as-
sociated with a monolithic scheduler. Palachara et al. pOjposed a microarchi-
tecture which uses simple FIFO schedulers. A FIFO sche@ukmines readiness
of the instruction at the head of the FIFO rather than all tistructions in the win-

dow. Even though the scheduling process is easier, the exitpbf this approach
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is shifted to the steering mechanism.

Kemp and Franklin [37] proposed a method of decentralizirggdynamic
scheduling hardware called PEWSs. The decoder is given tipemnsgility of send-
ing an instruction to the PEW producing its source operan@isce dependent
instructions are generally placed in the same PEW, mostefelister traffic is

obtained though intra-PEW forwarding.

Lebeck et al. [43] proposed a technique that uses the sdhgdekources
more efficiently. The instructions in the dataflow tree stangrfrom a load miss
in the window are moved to a waiting instruction buffer. Whae miss is satis-
fied, the same instructions in the dataflow tree are inserdett mto the schedul-
ing window. By managing the scheduling window resourcesemadficiently, the

scheduling window can be designed with fewer entries to paveer.

Brekelbaum et al. [14] proposed the use of hierarchical dalg win-
dows, each consisting of a small, fast window and a largey slondow. All in-
structions first enter the slow window. Latency criticaltmstions are moved to
the fast window using a selection heuristic. Instructiors @assified as either
latency tolerant or latency critical. The use of hierarah&cheduling windows al-
lows the design of a short scheduling loop for the small wimedhich handles the
short latency instructions and a longer scheduling looyitferlarge window which

handles the long latency instructions.

Raasch et al. [57] proposed a segmented issue queue taediegh clock
frequencies. The design dynamically constructs subtrédseodataflow called
chains which typically start with a load instruction. Chaflev from segment
to segment and are controlled by a combination of data degpees and predicted

operation latencies. Chains reach the final segment whenitipeits are ready.
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The mentioned proposals simplify the complexity of the sitchieg win-
dow by partitioning the window and intelligently managingsiruction placement
within the windows. Although the window can be more efficigntsed, managing
instruction movement within the scheduling window regsilardware resources
to track instructions. The braid microarchitecture relasthe compiler to form
units of work called braids. A braid is scheduled out of a Fi@®ue. The braid

microarchitecture simplifies both instruction placemamd astruction scheduling.
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Chapter 8

Conclusions and Future Directions

8.1 Conclusions

Increasing the performance of a single-core processor lmbenging and
difficult task due to complexity issues and power requiretsieiT his dissertation
introduced an entity called the braid which allows the pesce to scale to wider
issue widths by simplifying the design complexity of stuwets in the execution
core of a high-performance processor.

Braids partition the register space into external and makregisters. This
enables the use of small partitioned register files. Theatharistics of the braid
dataflow subgraph enable the use of simple FIFO schedulerstdguirements are
reduced for a number of structures including the renaminghaeism, the external
and internal register files, and the bypass network.

Three limitations of the braid microarchitecture are idiegd and a solution
is presented to address each. Dynamic merging is proposadiitess the limita-
tion on braid size. This technique increases the percenitefnal register reads
from 50% to 73%. Context sharing is proposed to address therutilization of
braid execution resources by long-latency instructionkis Technique improves
performance by 1.5%. The use of heterogeneous executionneEs is proposed
to address the poor utilization of braid execution resositog single-instruction
braids. This technique improves performance over using afsmilar braid exe-
cution units.
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The internal register files maintain the internal values bfad which rep-
resent 50% of the read accesses and 65% of the write acce@sean 8-wide
design, the result from executing braids is performanchiwi®% of a very aggres-
sive conventional out-of-order microarchitecture wite tomplexity of an in-order
implementation. The simplifications to the execution caralde lower power re-
quirements, a shorter pipeline, and a higher clock frequendsing braids is a
viable approach to the design of future high-performancegssors.

8.2 Future Directions
8.2.1 Braid-Aware Compiler

The braid and its implementation represent a new procegsamgdigm.
There is no known commercial or research compiler that magésization deci-
sions based on dataflow subgraphs. A braid-aware compibeiuges more useful
braids that are targeted towards processing by the undgrlyiaid microarchitec-
ture. An optimizing braid-aware compiler should make thkofeing considera-
tions, most of which can be addressed through code tranatmns.

¢ Width should be taken into consideration. Braids shoulddreegated to tar-
get a width of two throughout the entire length of the braid.

e Braids should be long but without an extraneous amount @reat commu-

nications.

e Braids should terminate at an instruction which producessalt that is used
by many instructions. An example of this is stack or globahper calculation

instructions.

e Instruction duplication should be used to reduce exteroalraunications.
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e Braids should be constructed so that the same set of extepsshnds is
maintained across control-flow boundaries to simplify therging mecha-

nism.

e Braids should be formed such that external inputs are tebtstéhe top of the
braid.

e Single-instruction braids should be eliminated.

8.2.2 Other Compiler Hints

The braid microarchitecture depends on the compiler toigdeoeompile-
time information to simplify runtime processing. The coleppartitions the dataflow
graph of the program so that each dataflow subgraph can begs®ed in an in-order
fashion. As a result of the partitioning, the communicatidvalues is also parti-
tioned. The compiler is not limited to providing only thisanmation and can do
much more to improve the processing capability of the miarioidecture.

One example of a simple annotation is the identification afddesgister
values. There have been runtime techniques proposed ttifiddre last use of
registers [17]. Through dataflow analysis, the compiler @etermine when values
are dead. The compiler can associate a bit with an operantbudentify its last
use. With this information, the microarchitecture can fregisters early to increase
the effective register size. This information is also ustfumake dynamic merging

more effective.

Some other examples of simple annotations that can be vy the
compiler include indicating the instruction makeup of aithr&dentifying the loca-
tions of external inputs and external outputs of a braidyiifdgng the likely branch

target of a branch instruction in a braid, and identifying tfraid contains any long
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latency instructions. Providing information to the micrcaitecture provides more

opportunity for improving performance.

8.2.3 Atomicity

The braid microarchitecture does not treat braids as aniatonit of exe-
cution. It is natural to extend the support of atomicity taids, because there is a
clear delineation of braid boundaries and external inpats @utputs. Supporting
atomicity can further reduce the complexity of the micrdatecture. For example,
in the current implementation of the braid microarchiteetwa braid requires multi-
ple entries allocated to it in the reorder buffer. If atortyas supported, one handle
is required in the reorder buffer to point to the braid. Thresource efficiency

increases.

8.2.4 Clustering

This dissertation does not assume a clustered design. @hgsie a tech-
nique used to improve bandwidth and complexity of certaioroarchitecture struc-
tures. Clustering centers on the concept of fast and slow agomgation paths.
Communication within the cluster is fast, and communicabetween clusters is
slow. Clustering can be applied on top of the braid microdechure to further
simplify its design. A number of BEUs can be grouped togetbdorm a cluster.
Clustering will require more complex distribution heurtstito distribute braids that

are likely to communicate to the same cluster.

8.2.5 Multi-Core Adaptability

The braid microarchitecture targets the design simplilocedf a single-core
processor. It can just as easily be adapted in a multi-cagdeSince the memory
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system has not changed, designing a microarchitecturepjoosubraids uses the
same coherence protocol as a conventional microarchisatiesign. Since the
braid microarchitecture targets future designs, it coddubed as a building block

for multi-core systems.

8.2.6 Cache Accessibility

Future high performance processors will have large caahezloit local-

ity. Techniques that partition the cache [58] are not coibpatvith the braid mi-
croarchitecture because they rely on distributing memosgructions to the func-
tional units adjacent to the cache that the instructiondikedy going to access.
This does not work for the braid microarchitecture becauseagd may contain
multiple memory instructions that must be sent to the fuoral units of different
BEUs. Furthermore, allowing each BEU to have its own acces$is o the cache
may be difficult because of the cache organization.

This problem is best solved with the compiler. The compileistrgenerate
some braids containing no memory instructions and somel$@ntaining mem-
ory instructions. The microarchitecture can then direeids that contain memory
instructions to BEUs with the necessary cache access ports.
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