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In this thesis, first we briefly outline the general theory surrounding op-

timal stopping problems with respect primarily to Brownian motion and other

continuous-time stochastic processes. In Chapter 1, we provide motivation for

the type of problems encountered in this work, and illustrate their importance

both mathematically and in terms of applications in science and engineering.

In chapter 2, we briefly outline many of the technical aspects of probability

theory and stochastic analysis, highlighting important theorems that will be

used throughout. Chapter 3, which is he main part of the thesis, presents an

optimal stopping problems related to the maximum of a process. This chapter

also illustrates how problems in this field are often transformed into equiva-

lent problems in which standard techniques apply. Finally, in Chapter 4, we

provide a new problem along these same lines, outline a solution to it, and

discuss the interesting elements of the problem.
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Chapter 1

Introduction

In this thesis, we explore the theory and techniques related to opti-

mal stopping problem involving Brownian motion and related continuous-time

stochastic processes. In particular, we emphasize how techniques in stochastic

analysis are utilized to reduce optimal stopping problems into free-boundary

problems, or reduce it to a question involving simpler objects, such as stochas-

tic integrals or other martingales.

From a mathematical perspective, optimal stopping problems are a sim-

ple class of stochastic control problems involving a decision at each point in

time about whether to stop the process and collect a reward or keep letting

time evolve. This thesis emphasizes techniques for casting an optimal stopping

problem into an associated free-boundary partial differential equation (PDE),

as well as the verification techniques to ensure that a solution to the PDE

corresponds to an optimal stopping time. This is one of many examples of the

interplay between stochastic analysis and PDE.

From an applications point of view, the influence of optimal stopping

problems and related questions in stochastic control is widespread. For exam-

ple, in economics, engineering, and the life sciences, the primary goal is often

to make optimal decisions when facing uncertainty. For example, the pricing

of an American option, which is a stock option which can be exercised at any

time prior to its maturity date, is an optimal stopping problem corresponding

to when to exercise the option. Alternatively, an engineer may be in inter-

ested in optimal control given noisy measurements of the state of a system.

In general, stochastic control is a field interested in acting optimally given the

information available at the current time in a system evolving randomly.
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Chapter 2

Technical Introduction

In this section, we will give a brief outline of some major theorems in

stochastic analysis, which will largely be assumed to be preliminary knowledge

throughout this work. In particular, we assume that the reader is familiar with

measure-theoretic probability and martingale theory [1]. For a comprehensive

reference on continuous-time stochastic processes and stochastic calculus, we

refer the reader to [4]. For information regarding optimal stopping problems

and stochastic control, [7, 6] are excellent references.

2.1 Martingale Theory

We begin with the definition and basic properties of martingales. The

intuition behind a martingale is that it is a stochastic process Xt, along with a

filtration Ft, that does not rise or fall in expectation over time. On the other

hand, a sub- (super-)martingale will rise (fall) in expectation over time.

In general, the following definitions and theorems hold in both continuous-

and discrete-time. For proofs to the following results, see Durrett [1].

Definition 2.1.1 (Martingale). A (sub/super)martingale is a stochastic pro-

cess Xt along with a filtration Ft such that:

• Xt ∈ Ft for all t ≥ 0,

• Xt ∈ L1(Ω) for all t ≥ 0, and
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• E [Xt|Fs] = Xs a.s. (for a submartingale ≥, and for a supermartingale

≤) for all 0 ≤ s ≤ t.

There are two key properties about martingales that will be useful

throughout this thesis. First, under very general conditions they will con-

verge. This allows for a consistent definition of X∞ or Xτ , where τ may be an

unbounded stopping time.

Theorem 2.1.1 (Martingale Convergence Theorem). If Xt is a submartingale

with supt E
[
X+
t

]
< ∞, then as t → ∞, Xt converges almost surely to a

measurable limit X with E|X| <∞.

Remark 2.1.1. Because a martingale is also a submartingale, this convergence

theorem extends to martingales.

The second key result involves the result of stopping a martingale. The

intuition behind a stopping time is that it is a random time τ : Ω → [0,∞]

such that it is known whether or not τ has occurred or not at all times with

the information in the filtration.

Definition 2.1.2 (Stopping Time). Let Ft be a filtration. Then a stopping

time is a random time τ : Ω→ [0,∞] such that {τ ≤ t} ∈ Ft for all t ≥ 0.

One key property of martingales is that a stopped martingale is still a

martingale. The Optional Sampling Theorem provides conditions for when a

martingale stopped at a stopping time will still be a martingale. There are

many variations on the so-called Optional Sampling Theorem, but one of the

more general statements follows:

Theorem 2.1.2 (Optional Sampling Theorem). If σ ≤ τ are stopping times

and Xt∧τ is a uniformly integrable submartingale, then EXσ ≤ EXτ and

Xσ ≤ E [Xτ |Fσ] .

3



2.2 Brownian Motion and Stochastic Integration

In this section, we briefly outline the definition and characterization

of Brownian motion, as well as the key computational properties of the Itô

stochastic integral. In addition, we state some theorems which are useful in

characterizing the running maximum process associated with a Brownian mo-

tion, which will be used extensively in Chapter 3.

Definition 2.2.1 (Brownian Motion). Consider a fixed filtration Ft. Brow-

nian motion is the unique (in law) adapted, continuous-time process Bt such

that:

• Bt −Bs is distributed as N(0, t− s) for all 0 ≤ s < t,

• the increments Bt2 − Bt1 , . . . , Btn − Btn−1 are independent for all 0 ≤
t1 < t2 < · · · < tn,

• B0 = 0 almost surely, and

• the trajectory t 7→ Bt(ω) is continuous.

While the above provides intuition about possible constructions of the

Brownian motion, the following theorem is a powerful tool for recognizing

when a given continuous-time stochastic process is a Brownian motion.

Theorem 2.2.1 (Lévy’s Characterization Theorem). Let Mt be a continuous

local Ft-martingale on such that M0 = 0 almost surely and with quadratic

variation, [M,M ]t = t. Then Mt is a Ft-Brownian motion.

Theorem 2.2.2 (Itô’s Isometry). Let Mt, Nt be continuous local martingales

with respect to Ft and Xt, Yt be continuous adapted processes with∫ t

0

X2
s d[M,M ]s <∞ and

∫ t

0

Y 2
s d[N,N ]s <∞ for all t, a.s.

Then the Itô integral of Xt and Yt with respect to Mt and Nt respectively are

continuous local martingales with quadratic covariation given by[∫ t

0

Xs dMs

∫ t

0

Ys dNs

]
t

=

∫ t

0

XsYs d [M,N ]s .
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Together, Itô’s Isometry and Lévy’s Characterization Theorem provide

a powerful method of verifying when Itô integrals are themselves Brownian

motions. This will provide many useful equivalences, such as the famous Lévy

transform: ∫ t

0

sign(Bs) dBs
(d)
= Bt.

On the other hand, the following theorem is very useful in connecting differ-

ential equations to stochastic analysis.

Theorem 2.2.3 (Itô’s Lemma). Let f : R→ R be a C2 function and Xt be a

continuous semimartingale with respect to Ft which decomposes as

Xt = X0 +Mt +Bt,

where Mt is a local martingale and Bt is the difference of continuous, nonde-

creasing, adapted processes. Then

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dMs +

∫ t

0

f ′(Xs) dBs +
1

2

∫ t

0

f ′′(Xs) d [M ]s .

Many issues in this thesis are associated with two important processes

associated with a given stochastic process. First, we consider the running

maximum process:

Definition 2.2.2 (Running Maximum Process). LetXt be a continuous stochas-

tic process. We define a new stochastic process by

St = sup
0≤s≤t

Xs,

for each t ≥ 0. This is called the running maximum process associated with

Xt.

Furthermore, we are often interested in the local time process asso-

ciated with Brownian motion, Lt. This process characterizes the amount of

time a Brownian motion spends at Bt = 0, and has the following important

property:
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Proposition 2.2.4 (Local Time). Let Bt be a Brownian. Then the associated

local time Lt is a continuous stochastic process such that

Lt = lim
ε→0

1

4ε

∫ t

0

1{|Xs|≤ε} ds,

for each t ≥ 0.

In particular, the following lemma is useful in understanding the dis-

tributional properties of the running maximum process associated with Bt:

Lemma 2.2.5 (Reflection Principle). Let Bt be a Brownian motion and St be

the associated running maximum process. Then for any a ≥ 0, we have:

P [St ≥ a,Bt ≥ a] = P [St ≥ a,Bt ≤ a] .

The intuition behind this lemma follows from the fact that Brownian

motion has symmetric, independent increments. As illustrated below, the idea

is that for every Brownian path which hits a certain level, there is a one-to-one

correspondence between paths which end below that level and those that end

above that level, given explicitly by reflecting across the hitting level.

Figure 2.1: Illustration of the reflection principle of a Brownian motion. This
shows a particular Brownian path Bt (in blue), as well as its reflected process
B̃t after hitting the level one (in red).
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Proof. Let a ≥ 0 and consider the reflected Brownian motion:

B̃t =

{
Bt, t ≤ τa

Bτ − (Bt −Bτ ), t > τa

where τa = inf{t ≥ 0 : Bt = a} is the first hitting time of a by Bt. Then we

note that:

B̃t =

∫ t

0

(
2 1{t≤τ} − 1

)
dBs,

and so by Itô’s Isometry and the Lévy Characterization Theorem, we conclude

that B̃t is a Brownian motion.

Let S̃t be the running maximum process associated with B̃t. Then we

have shown that

(Bt, St)
(d)
= (B̃t, S̃t).

Now, note that {τa ≤ t} = {St ≥ a} = {S̃t ≥ a} and also that

{τa ≤ t} ∩ {Bt ≥ a} = {τa ≤ t} ∩ {B̃t ≤ a}.

Putting this all together, we conclude that

P [St ≥ a,Bt ≥ a] = P [τa ≤ t, Bt ≥ a]

= P
[
τa ≤ t, B̃t ≤ a

]
= P

[
S̃t ≥ a, B̃t ≤ a

]
= P [St ≥ a,Bt ≤ a] .

Using the reflection principle, we can immediately compute the distri-

bution of the running maximum process of a Brownian motion, St.

Theorem 2.2.6. Let Bt be a Brownian motion and St be the corresponding

running maximum process. Then for each fixed t ≥ 0, the random variables St
and |Bt| each are equal in distribution. In particular, St is square-integrable.

7



Proof. This is trivial at t = 0. For t > 0, it is sufficient to consider t = 1 by

scaling because we are looking at individual times. Recall from the Reflection

Principle that for a ≥ 0 we have:

P [S1 ≥ a,B1 ≥ a] = P [S1 ≥ a,B1 ≤ a] .

Then we can compute immediately that

P [S1 ≥ a] = P [S1 ≥ a,B1 ≥ a] + P [S1 ≥ a,B1 ≤ a]

= 2P [S1 ≥ a,B1 ≥ a]

= 2P [B1 ≥ a]

= 2

∫ ∞
a

φ(x) dx

= P [|B1| ≥ a] ,

where φ is the probability density of a standard normal. Note, in the above

computation, we used the fact that for t > 0, Bt has zero probability of being

at any individual point.

Then we conclude that

St
(d)
= |Bt|.

In particular, St is then square-integrable, which will be useful in applying the

following theorem.

The following result is useful in representing square-integrable random

variables in terms of an Itô integral with respect to a Brownian motion.

Theorem 2.2.7 (Martingale Representation Theorem). Let Bt be a Brownian

motion and Ft be its natural filtration, augmented by null sets. If Mt is an L2

martingale with respect to this same filtration, then there exists a predictable

process Ht such that

Mt = M0 +

∫ t

0

Hs dBs

for all t ≥ 0.

8



Finally, the Skorohod equation will prove useful in characterizing the

relationship between the running maximum process of a Brownian motion and

its local time process.

Lemma 2.2.8 (Skorohod equation). Let y ∈ C0([0,∞)) such that y(0) = 0.

Then there exists a unique k ∈ C0([0,∞)) such that:

1. x(t)
∆
= y(t) + k(t) ≥ 0 for all t ∈ [0,∞),

2. k(0) = 0 and k is non-decreasing, and

3.
∫∞

0
1{x(s)>0}dk(s) = 0. Furthermore, this function is given by

k(t) = max
0≤s≤t

{−y(s)}.

For a proof of the Skorohod equation lemma, refer to [4]. An important

application of the Skorohod equation is the following result, which will be used

in Chapter 3:

Theorem 2.2.9. Consider a Brownian motion Bt, its running maximum pro-

cess St, and its local time process at zero Lt. Then the following equality in

distribution holds:

(St −Bt, Bt, St)
(d)
=

(
|Bt|,−

∫ t

0

signBs dBs, 2Lt

)
.

Proof. This is an application of the Skorohod equation. First, note that choos-

ing y = −Bt and k = St, we satisfy the conditions of the Skorohod equation

because

• St −Bt ≥ 0,

• St is non-decreasing with S0 = 0 almost surely, and

• St only increases when St = Bt.

9



On the other hand, if we recall the Tanaka formula that

|Bt| =
∫ t

0

signBs dBs + 2Lt,

and choose y =
∫ t

0
signBs dBs and k = 2Lt, then this also satisfies the Skorohod

equation because

• |Bt| =
∫ t

0
signBs dBs + 2Lt ≥ 0,

• 2Lt is non-decreasing with 2L0 = 0 almost surely, and

• 2Lt only increases when |Bt| = 0.

However, by Lévy’s characterization theorem, we conclude that
∫ t

0
signBs dBs

is a Brownian motion, so it is equal in distribution to Bt for all t. However,

by the uniqueness of the Skorohod equation, we then see that

(St −Bt, Bt, St)
(d)
=

(
|Bt|,−

∫ t

0

signBs dBs, 2Lt

)
.

2.3 Optimal Stopping

In this thesis, we consider a particular class of optimal stopping prob-

lems that minimize (rather than maximize) a pay-off cost. While the methods

used to identify optimal stopping rules vary, the following result is often useful

in proving optimality.

Lemma 2.3.1 (Optimal Stopping Condition). Let Xt be a Markov process

with respect to a filtration Ft. Consider the abstract optimal stopping problem:

inf
τ∈M

Ex
[
e−rτg(Xτ ) +

∫ τ

0

e−rsf(Xs) ds

]
,

where r ≥ 0, x ∈ R, M consists of all almost surely finite Ft-stopping times,

and Ex is taken respect to a measure Px where X0 = x almost surely. Consider

a function v such that the following conditions hold:

10



1. v(x) ≤ g(x) for all x ∈ R,

2. e−rtv(Xt) +
∫ t

0
e−rsf(Xs) ds is a submartingale, and

3. e−rt∧τ∗v(Xt∧τ∗) +
∫ t∧τ∗

0
e−rsf(Xs) ds is a uniformly integrable martingale

where τ∗ = inf{t ≥ 0 : v(Xt) = g(Xt)} is a stopping time and almost surely

finite. Then τ∗ attains the infimum above and

v(x) = Ex
[
e−rτ∗g(Xτ∗) +

∫ τ∗

0

e−rsf(Xs) ds

]
.

Proof. Let τ be any stopping time. Then by conditions 1 and 2, we see that

Ex
[
e−rτg(Xτ ) +

∫ τ

0

e−rsf(Xs) ds

]
≥ Ex

[
e−rτv(Xτ ) +

∫ τ

0

e−rsf(Xs) ds

]
≥ Ex

[
v(X0) +

∫ 0

0

e−rsf(Xs) ds

]
= v(x).

Therefore, it is sufficient to show that τ∗ attains the value v(x).

By condition 3 we know that e−rt∧τ∗v(Xt∧τ∗) +
∫ t∧τ∗

0
e−rsf(Xs) ds is a

uniformly integrable martingale. Because it is uniformly integrable, we can

apply Optimal Sampling up to time τ∗, which may be unbounded, but is

assumed to be almost surely finite. Using the definition of τ∗, we conclude

that

Ex
[
e−rτ∗g(Xτ∗) +

∫ τ∗

0

e−rsf(Xs) ds

]
= Ex

[
e−rτ∗v(Xτ∗) +

∫ τ∗

0

e−rsf(Xs) ds

]
= Ex

[
e−rt∧τ∗v(Xt∧τ∗) +

∫ t∧τ∗

0

e−rsf(Xs) ds

]
= Ex

[
v(X0) +

∫ 0

0

e−rsf(Xs) ds

]
= v(x).

Then τ∗ is an optimal stopping time which achieves the optimal value v(x).

11



Chapter 3

Stopping Brownian Motion without

Anticipation

This chapter, which is the main part of the thesis, presents the results

in [3] related to stopping a process close to its ultimate maximum. Some im-

portant techniques and ideas are emphasized in more detail than in the original

work.

In [3], the problem considered is to stop a Brownian motion as close as

possible to its ultimate maximum on the interval [0, 1]. Let Bt be a standard

Brownian motion defined on a probability space (Ω,F ,P) and FBt be the nat-

ural filtration generated by B. If M1 denotes the set of all stopping times τ

such that 0 ≤ τ ≤ 1, then we hope to determine

v∗ = inf
τ∈M1

E (Bτ − S1)2 ,

where S1 = sup0≤t≤1Bt is the ultimate maximum of Bt on [0, 1].

The outlined solution to this problem illustrates several important con-

cepts in stochastic control. First, note that while the Brownian motion process

is adapted, the ultimate maximum is not adapted. Then the first major chal-

lenge is to study the properties of the ultimate maximum random variable

S1 = sup
0≤t≤1

Bt,

and, in particular, relate it to a stochastic process which is adapted with re-

spect to FBt .

12



3.1 Ultimate Maximum of the Brownian Motion

In this section, we explore the properties of the ultimate maximum ran-

dom variable, S1, which is defined above.

First, we want to explore the distributional properties of the random

variable S1. In particular, if we view this random variable in terms of the

running maximum process St corresponding to the Brownian motion, we see

from the results in the Technical Introduction that S1
(d)
= |B1|.

Furthermore, S1 is a square-integrable random variable, and hence by

the Martingale Representation Theorem can be written in the form

S1 = ES1 +

∫ 1

0

Hs dBs

for some predictable process Hs. However, this theorem does not pro-

vide a construction for the process Ht. Fortunately, we have the following

theorem:

Theorem 3.1.1. Let Bt be a Brownian motion and St be its associated running

maximum process. Then

S1 = ES1 +

∫ 1

0

Hs dBs

for

Ht = 2

(
1− Φ

(
St −Bt√

1− t

))
where

Φ(x) =

∫ x

−∞

1√
2π
e−x

2/2 dx

is the cumulative distribution function of the unit normal.

13



Proof. Let Ft be the natural filtration corresponding to Bt. Using the inde-

pendent increments of Brownian motion, we note that:

E [S1|Ft] = St + E

[(
sup
t≤s≤1

Bs −Bt

)+

|Ft

]

= St + E

[(
sup
t≤s≤1

(Bs −Bt)− (St −Bt)

)+

|Ft

]
= St + E

[
(S1−t − c)+] ,

where c = St −Bt.

Next, we note that for all c ≥ 0,

E
[
(S1−t − c)+] =

∫ ∞
c

P [S1−t > z] dz

=

∫ ∞
c

P [|B1−t| > z] dz

=

∫ ∞
c

P
[
|B1| >

z√
1− t

]
dz

=

∫ ∞
c

2

(
1− Φ

(
z√

1− t

))
dz

Putting these two results together, we conclude that

E [S1|Ft] = ES1 +

∫ ∞
St−Bt

2

(
1− Φ

(
z√

1− t

))
dz.

Next, we apply Itô’s lemma to the function:

F (t, x) =

∫ ∞
x

2

(
1− Φ

(
z√

1− t

))
dz.

In particular, we note that

∂F

∂t
=

∫ ∞
x

−z
(1− t)3/2

φ

(
z√

1− t

)
dz

= − 1√
1− t

φ

(
x√

1− t

)
.

14



Also, we see that
∂F

∂x
= −2

(
1− Φ

(
x√

1− t

))
,

and
∂2F

∂x2
=

2√
1− t

φ

(
x√

1− t

)
.

Furthermore, because St is monotonic, it has finite variation, so we immedi-

ately see that d[S, S]s = 0 and d[S,B]s = 0.

Putting this together in Itô’s lemma,

S1 = E [S1|F1]

= ES1 −
∫ 1

0

1√
1− t

φ

(
St −Bt√

1− t

)
dt−

∫ 1

0

2

(
1− Φ

(
St −Bt√

1− t

))
d (S −B)t

+

∫ 1

0

1√
1− t

φ

(
St −Bt√

1− t

)
d[S −B, S −B]t

= ES1 −
∫ 1

0

2

(
1− Φ

(
St −Bt√

1− t

))
dSt +

∫ 1

0

2

(
1− Φ

(
St −Bt√

1− t

))
dBt.

Lastly, we note that St is flat any time St 6= Bt. Therefore, the dSt integral is

zero, leaving

S1 = ES1 +

∫ 1

0

2

(
1− Φ

(
St −Bt√

1− t

))
dBt.

3.2 Equivalent problem

The main issue with the original optimal stopping problem is the fact

that not all components are adapted to Ft. Now that we have obtained an

expression for S1 in terms of an adapted process, we develop an equivalent

problem.

15



Figure 3.1: Illustration of the ultimate maximum process of Brownian motion,
St. This illustrates one possible outcome next to its corresponding Brownian
path, Bt.

From this point on, we define the process:

Ht = 2

(
1− Φ

(
St −Bt√

1− t

))
and the corresponding integrated process:

Mt =

∫ t

0

Hs dBs,

such that S1 = ES1 +M1.

Now, by the martingale properties of stochastic integrals, the Optional

Sampling Theorem, and the Itô isometry, we note that for any stopping time

τ , we have:

E [Bτ − S1]2 = E
[
B2
τ − 2S1Bτ + S2

1

]
= E [τ ]− 2ES1E [Bτ ]− 2E

[∫ 1

0

Ht dBt

∫ τ

0

1 dBt

]
+ E|S1|2

= E [τ ]− 2E
[∫ τ

0

Ht dt

]
+ 1

= E
[∫ τ

0

(1− 2Ht) dt+ 1

]
.
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Then the original optimal stopping problem may be written in terms

of an expectation of an integral,

v∗ = inf
τ∈M1

E
[∫ τ

0

(1− 2Ht) dt+ 1

]
= inf

τ∈M1

E
[∫ τ

0

F

(
St −Bt√

1− t

)
dt

]
+ 1,

where F (x) = 4Φ(x)− 3.

Recalling that St − Bt
(d)
= |Bt|, it is tempting to rewrite the above

optimal stopping problem in terms of a Markov process,

v∗ = inf
τ∈M|B|1

E
[∫ τ

0

F

(
|Bt|√
1− t

)
dt

]
+ 1,

where M|B|
1 represents the set of all F |B|-stopping times τ with 0 ≤ τ ≤ 1

almost surely.

v∗ = inf
τ∈MB

1

E
[∫ τ

0

F

(
St −Bt√

1− t

)
dt

]
+ 1

= inf
τ∈MS−B

1

E
[∫ τ

0

F

(
St −Bt√

1− t

)
dt

]
+ 1

= inf
τ∈M|B|1

E
[∫ τ

0

F

(
|Bt|√
1− t

)
dt

]
+ 1,

where above we add a superscript to each set of stopping times to emphasize

which natural filtration it must correspond to at each point. There are several

key subtleties involved in this transformation, however.

The first issue is that we must check that the filtration FB and FS−B
coincide.

Lemma 3.2.1. Let Bt be a Brownian motion and St be the corresponding

running maximum process. Then the natural augmented filtrations of B and

S −B are equal,

FBt = FS−Bt .
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Proof. Note that it is clear that FS−Bt ⊂ FBt because for each 0 ≤ s ≤ t we

have

Ss −Bs =

(
sup

0≤r≤s
Br

)
−Bs ∈ FBt .

The key idea of the converse is to recall from the Technical Introduction

that, for a Brownian motion Bt, its running maximum process St, and its local

time process at zero Lt, we have the following equality in distribution:

(St −Bt, Bt, St)
(d)
=

(
|Bt|,−

∫ t

0

signBs dBs, 2Lt

)
.

In addition, recall that

Lt = lim
ε→0

1

4ε

∫ t

0

1{|Bt|≤ε} ds,

so we claim that by the above equivalence in distribution

St = lim
ε→0

1

2ε

∫ t

0

1{St−Bt≤ε} ds.

But now, we this in hand, we see that

Bt = St − (St −Bt) ∈ FS−Bt .

The second issue is that we have transformed the problem into the form

inf
τ∈M|B|1

E
[∫ τ

0

F

(
|Bt|√
1− t

)
dt

]
+ 1,

whereM|B|
1 is the set of all F |B|-stopping times with 0 ≤ τ ≤ 1 almost surely.

However, the theory of optimal stopping times and their relationship to free-

boundary problems is developed for FB-stopping times, which is a larger set.

Therefore,

inf
τ∈M|B|1

E
[∫ τ

0

F

(
|Bt|√
1− t

)
dt

]
≥ inf

τ∈MB
1

E
[∫ τ

0

F

(
|Bt|√
1− t

)
dt

]
.

However, if we obtain a solution τ∗ ∈ MB
1 to this latter problem, and verify

that it is in fact a F |B|-stopping time as well, then it corresponds to a solution

to the original problem.
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3.3 Time rescaling

At this point, the idea is to change the problem from a optimal stopping

problem on the time interval [0, 1] to an equivalent optimal stopping problem

on the time interval [0,∞) in order to reduce it to a one-dimensional free-

boundary problem. This is done by a change of variables.

Consider the process {Zt}t≥0 defined as

Zt = etB1−e−2t .

We note, first, that by Itô’s formula

dZt = etB1−e−2t dt+ d

∫ t

0

es dB1−e−2s

= Zt dt+
√

2 dβt,

where

βt =
1√
2

∫ t

0

es dB1−e−2s =
1√
2

∫ 1−e−2t

0

dBs√
1− s

.

Now, it follows immediately that βt is a continuous martingale with

zero mean. Using Itô’s isometry, we verify that

Var [βt] =
1

2
E

(∫ 1−e−2t

0

dBs√
1− s

)2


=
1

2
E

[∫ 1−e−2t

0

ds

1− s

]
= t.

Then by Lévy’s characterization of Brownian motion, we conclude that βt is

a Brownian motion.

Furthermore, we can obtain an equivalent optimal stopping problem in

terms of this process Zt by performing the following change of variables:

t = 1− e−2s

dt = 2e−2s ds.
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Then the integral above becomes:∫ τ

0

F

(
|Bt|√
1− t

)
dt =

∫ − 1
2

log(1−τ)

0

2e−2sF (|esB1−e−2s|) ds

=

∫ σ

0

2e−2sF (|Zs|) ds,

where σ = −1
2

log(1− τ).

One again, it is necessary to verify that this change of variables respects

the filtration. Consider the following result:

Theorem 3.3.1. Consider a filtration Ft, a random time τ , and

φ : [0, 1)→ [0,∞)

: t 7→ −1

2
log(1− t).

Then the random time σ = φ(τ) is a stopping time with respect to the filtration

Fφ−1(t) if and only if τ is a stopping time with respect to Ft.

Proof. There are two key properties to note about φ that allow this change of

variables to respect stopping times. First, φ is a strictly increasing continuous

function, and second, it has a well-defined inverse function φ−1. Then the

result follows easily from the way φ interacts with inequalities.

Let τ be a stopping time with respect to Ft. Then it follows from the

definition that

{φ(τ) ≤ t} = {τ ≤ φ−1(t)} ∈ Fφ−1(t).

Therefore, φ(τ) is a stopping time with respect to Fφ−1(t).

On the other hand, let φ(τ) be a stopping time with respect to Fφ−1(t).

Then it follows similarly that

{τ ≤ t} = {φ(τ) ≤ φ(t)} ∈ Fφ−1◦φ(t) = Ft.

Therefore, τ is a stopping time with respect to Ft.
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3.4 Formulation as a free-boundary problem

At this point, we have a related optimal stopping problem:

v∗ = 2 inf
σ∈M

E
[∫ σ

0

e−2tF (|Zt|) dt
]

+ 1,

whereM is the set of all FB-stopping times and the expectation is with respect

to a Markov process. Then the general theory of optimal stopping problems

suggests how to proceed [7].

Now, we define a related family of optimal stopping problem:

W (z) = inf
σ∈M

Ez
[∫ σ

0

e−2tF (|Zt|) dt
]

for each z ∈ R. In the previous definition, the expectation is taken with re-

spect to a measure Pz where Z0 = z almost surely. This function represents

the optimal value value achievable if the process Zt is started at Z0 = z.

Note that v∗ = 2W (0) + 1. Then it is sufficient to solve for W (0) in

order to determine v∗. We expect that the optimal stopping time will take the

form of a hitting time,

σ∗ = inf{t > 0 : |Zt| ≥ z∗},

for some z∗ > 0 to be determined. This assumption will be justified in the

following section when we prove that the resulting stopping time is indeed

optimal.

A common technique in optimal stopping problems is to convert to a

free-boundary problem. We proceed formally, and justify the computations

in the following section by proving that the solution obtained is in fact an

optimal stopping time.

First, assume that W is sufficiently regular to apply Itô’s lemma, i.e.

V ∈ C2. Then for any small z ∈ R and any small h > 0, it is atleast as good
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(but possibly worse) to wait for time h and then stop optimally after h. We

formalize this by writing that:

W (z) ≤ Ez
[∫ h

0

e−2tF (|Zt|) dt+ e−2hW (Zh)

]
.

Now, recall that Zt is an Itô process satisfying the stochastic differential

equation

dZt = Zt dt+
√

2 dβt,

where βt is a Brownian motion. Then we know that the quadratic variation

process is an Itô process satisfying

d[Z,Z]t = 2 dt.

Now, applying Itô’s lemma to the inequality above, we note that:

W (z) ≤ Ez
[∫ h

0

e−2tF (|Zt|) dt+ e−2hW (Zh)

]
= Ez

[∫ h

0

e−2t (F (|Zt|)− 2W (Zt)) dt+W (z) +

∫ h

0

e−2tW ′(Zt) dZt

+

∫ h

0

1

2
e−2tW ′′(Zt) d[Z,Z]t

]
= Ez

[
W (z) +

∫ h

0

e−2t (F (|Zt|)− 2W (Zt) + ZtW
′(Zt) +W ′′(Zt)) dt

+

∫ h

0

√
2e−2tW ′(Zt) dβt

]
= W (z) + Ez

[∫ h

0

e−2t (F (|Zt|)− 2W (Zt) + ZtW
′(Zt) +W ′′(Zt)) dt

]
.

Now, this implies that

0 ≤ Ez
[∫ h

0

e−2t (F (|Zt|)− 2W (Zt) + ZtW
′(Zt) +W ′′(Zt)) dt

]
,

but formally at small h > 0, this suggests that

0 ≤ F (|z|)− 2W (z) + zW ′(z) +W ′′(z).
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From here, we note that if ±z∗ is the value corresponding to the hitting

time for an optimal stopping time, then W (±z∗) = 0. Then we obtain the

following free-boundary problem, which will be justified rigorously in the next

section after obtaining a solution.
(
−2 + z d

dz
+ d2

dz2

)
W (z) = −F (|z|) for z ∈ (−z∗, z∗)

W (±z∗) = 0
W ′(±z∗) = 0

The idea of the derivative condition is to ensure that the extension of the value

function to a zero function on |z| > z∗ will be as smooth as possible, while

still ensuring a unique solution to this free-boundary problem. It will be seen

in the next section that a C2 solution is ideal for application of Itô’s lemma,

but this particular problem will result in a solution which is C2 at all but ±z∗.
However, the solution is C1 everywhere, which is called the smooth fit principle.

By the symmetry of the problem, we expect that the solution W (z) will

be an even function. Therefore, we can assume that W ′(0) = 0 and consider

the ordinary differential equation:
(
−2 + z d

dz
+ d2

dz2

)
W (z) = −F (|z|) for z ∈ (0, z∗)

W ′(0) = 0
W (z∗) = 0
W ′(z∗) = 0

whose general solution may be verified to be given by [3]:

W (z) = C1

(
1 + z2

)
+ C2

(
zφ(z) + (1 + z2)Φ(z)

)
+ 2Φ(z)− 3

2
.

To determine the solution with the boundary conditions, we first compute that

W ′(z) = 2C1z + 2C2 (φ(z) + zΦ(z)) + 2φ(z).

Now, we first use the even symmetry condition to find that

W ′(0) = 2C2 + 2 = 0,
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so C2 = −1.

Next, using the smooth fit condition, we see that

0 = W ′(z∗)

= 2C1z∗ − 2 (φ(z∗) + z∗Φ(z∗)) + 2φ(z∗)

= 2C1z∗ − 2z∗Φ(z∗),

so C1 = Φ(z∗).

Finally, we use the continuity condition to note that

0 = W (z∗)

= Φ(z∗)
(
1 + z2

∗
)
−
(
z∗φ(z∗) + (1 + z2

∗)Φ(z∗)
)

+ 2Φ(z∗)−
3

2

= 2Φ(z∗)− z∗φ(z∗)−
3

2
.

We define a function f : [0,∞)→ R as

f(z) = 2Φ(z)− zφ(z)− 3

2
.

It remains to show that f has one unique root.

Note that f is clearly continuous, f(0) = −1
2
,

lim
z→∞

f(z) =
1

2
,

and f is strictly increasing because

f ′(z) = 2φ(z)− φ(z) + z2φ(z) = (1 + z2)φ(z) > 0.

Therefore, we conclude that f has a unique root, z∗, such that f(z∗) = 0.

Numerically this is given by approximately z∗ ≈ 1.1229 · · · , as illustrated

below:
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Figure 3.2: Illustration of the function f , defined above, whose zeros corre-
spond to the location of the boundary in this free-boundary problem.

Then we conclude that the unique solution to the free-boundary prob-

lem above is given by

W (z) = (1 + z2)Φ(z∗)− zφ(z) + (1− z2)Φ(z)− 3

2
.

We verify in the next section that W (z) corresponds to the value obtained by

stopping optimally starting from Z0 = z, and the optimal stopping time will

consist of stopping at the zeros ±z∗ of W (z).

Figure 3.3: Illustration of the solution to the free-boundary problem considered
in this chapter, W . Note that W is always non-positive and satisfies the
smooth-fit condition at ±z∗.
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3.5 Verification

Now that we have obtained a solution to the free-boundary problem

corresponding to our optimal stopping problem, the next task is to justify the

formal manipulations used in deriving the free-boundary problem. In partic-

ular, we prove that even if the obtained solution is not as smooth as initially

assumed, it still corresponds to an optimal stopping time.

First, we recall the Optimal Stopping Condition lemma from the Tech-

nical Introduction. This states that if we propose a value function v that

satisfies three conditions, then the optimal stopping strategy is given by the

first hitting time of g(Zt) by v(Zt). In particular, we try to show that the

solution to our free-boundary problem, W , satisfies the desired conditions.

Theorem 3.5.1. Let Zt be the process defined above and W be the solution to

the free-boundary problem from above. Then we have that:

• W (z) ≤ 0 for all z ∈ R,

• e−2tW (Zt) +
∫ t

0
e−2sF (|Zs|) ds is a submartingale, and

• e−2t∧σ∗W (Zt∧σ∗) +
∫ t∧σ∗

0
e−2sF (|Zs|) ds is a uniformly integrable martin-

gale,

where σ∗ = inf{t ≥ 0 : W (Zt) = 0}. Then τ∗ is the optimal stopping strategy

and

W (z) = Ez
[∫ σ∗

0

e−2sF (|Zs|) ds
]
.

Proof. Now, we use stochastic calculus and the free-boundary problem from

above to show that our solution W solves the optimal stopping problem:

inf
τ∈M

Ex
[∫ τ

0

e−2sF (|Zs|) ds
]
.

First, we remark that the solution function is non-positive, so W (z) ≤ 0 for

all z ∈ R.

26



Next, we check that e−2tW (Zt) +
∫ t

0
e−2sF (|Zs|) ds is a submartingale.

The key is to note that W is C2 at all points but ±z∗, where it is C1. However,

these are a set of points of Lebesgue measure zero, so if we can show that the

occupation time of these points by Zt is measure zero, then we can apply the

Itô-Tanaka formula with arbitrary definitions of W ′′ at ±z∗.

We note that the occupation time of both ±z∗ by Zt has zero because

Zt was initially defined by Zt = etB1−e−2t , and the occupation time of any

curve by a Brownian motion is zero.

Then we note by the Itô-Tanaka formula:

e−2tW (Zt) +

∫ t

0

e−2sF (|Zs|) ds = W (Z0)− 2

∫ t

0

e−2sW (Zs) dt+

∫ t

0

e−2sW ′(Zs) dZs

+

∫ t

0

1

2
e−2sW ′′(Zs)d[Z,Z]s +

∫ t

0

e−2sF (|Zs|) ds

= W (Z0) +

∫ t

0

√
2e−2sW ′(Zs) dβs

+

∫ t

0

e−2s (W ′′(Zs) + ZsW
′(Zs)

−2W (Zs) + F (|Zs|)) ds.

But then when |Zs| < z∗, the part inside the Lebesgue integral is zero

because it is a solution to the differential equation above. When |Zs| > z∗,

note that W (Zs) = W ′(Zs) = W ′′(Zs) = 0 and the Lebesgue integral is pos-

itive because F (z) ≥ 0. Then because |Zs| = z∗ has zero occupation time

almost surely, we conclude that the process above is a local submartingale.

Finally, we need to check that the stopped process

e−2t∧σ∗W (Zt∧σ∗) +

∫ t∧σ∗

0

e−2sF (|Zs|) ds

is a martingale.

27



But this is clear by the previous computation and the fact that σ∗ is

the first time when |Zt| ≥ z∗. Then before σ∗, the Lebesgue integral above is

zero by satisfying the required differential equation, and after σ∗, the process

is stopped, and therefore a local martingale. However, this is a bounded local

martingale because W (z) is non-zero only on a compact set. Therefore, this

is a true martingale.

Figure 3.4: Illustration of the optimal stopping strategy in this problem. It is
optimal to stop at the first hitting time of the curve z∗

√
1− t by the process

St −Bt. This illustrates one possible outcome.

Now, we see that the optimal stopping time is

σ∗ = inf{t ≥ 0 : |Zt| ≥ z∗} = inf{t ≥ 0 : St −Bt ≥ z∗
√

1− t}.

Now, reversing the time change to obtain the optimal stopping problem τ∗ to

the problem in Section 3.2, we see:

τ∗ = inf{t ≥ 0 : e−
1
2

log(1−t)|Bt| ≥ z∗}
= inf{t ≥ 0 : |Bt| ≥

√
1− tz∗}.

Note, as mentioned before, this is actually the optimal stopping time in a

superset of FB-stopping times. However, this is clearly also a F |B|-stopping

time, which is a subset. Therefore, it is also the optimal F |B|-stopping time.
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Finally, reversing the equality in distribution of |Bt| and St − Bt, we

obtain the solution to our original problem:

τ∗ = inf{t ≥ 0 : |Bt| ≥
√

1− tz∗}
= inf{t ≥ 0 : St −Bt ≥ z∗

√
1− t}.

The graphic above shows an example of how the stopping rule would

play out. In this case, it is optimal to stop the first time that St−Bt intersects

the curve z∗
√

1− t.
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Chapter 4

A New Problem

In this chapter, we apply the methods used in the previous literature

with regards to a different optimal stopping problem involving Brownian mo-

tion. In particular, we emphasize how different techniques are necessary de-

pending upon the choice of allowed stopping times.

4.1 Specification

Consider the problem of stopping a Brownian motion with its absolute

value close to a target value. In this problem we illustrate the effect of the

class of stopping times considered on the solution. In particular, we solve this

problem with stopping times being bounded by a finite time horizon, being un-

bounded but having finite expectation, and finally with completely unbounded

stopping times.

Consider the following classes of stopping times:

MT = {stopping times τ such that 0 ≤ τ ≤ T a.s.}
M = {stopping times τ such that E [τ ] <∞}
M∞ = {stopping times τ such that 0 ≤ τ <∞}.

Let Bt be a Brownian motion. For each a > 0, consider the three opti-

mal stopping problems corresponding to each of the above classes of stopping
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times:

vT (x) = inf
τ∈MT

Ex (|Bτ | − a)2

v(x) = inf
τ∈M

Ex (|Bτ | − a)2

v∞(x) = inf
τ∈M∞

Ex (|Bτ | − a)2 ,

where the expectation Ex is taken with respect to a measure Px where the

Brownian motion starts at B0 = x almost surely.

4.2 Solution

We consider these problems in order of increasing restrictions on the

stopping times.

4.2.1 Unbounded stopping times

When stopping times τ are unbounded the optimal stopping time is

trivial because a one-dimensional Brownian motion will hit any point almost

surely. Then it is optimal to wait until the Brownian motion eventually satisfies

|Bt| = a. The following result formalizes this:

Lemma 4.2.1. Let Bt be a Brownian motion and a ∈ R. Let

τa = inf{t ≥ 0 : Bt = a}

be a the first hitting time a by Bt. Then P [τa <∞] = 1.

Proof. If a = 0, then this is obvious. Without loss of generality, we assume

that a > 0. Consider the Brownian motion Bt and its corresponding running

maximum process St, as well as the stopping time:

τa = inf{t ≥ 0 : Bt = a}.
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They key to computing the distribution of τa is to note that for any t ≥ 0, we

have:

{τa ≥ t} = {St ≤ a}.

However, we showed in the Technical Introduction using the Reflection Prin-

ciple that St
(d)
= |Bt|, so we can compute the distribution of τa as:

P [τa ≥ t] = P [St ≤ a]

=

√
2

tπ

∫ a

0

exp

(
−x

2

2t

)
dx.

But then it is clear that P [τa =∞] = 0 because limt→∞ P [τa ≥ t] = 0.

From this, it follows immediately that for unbounded stopping times,

the optimal stopping problem is trivial:

Theorem 4.2.2. Let M∞ be the set of unbounded stopping times as defined

above. Then

v∞(x) = inf
τ∈M∞

Ex (|Bτ | − a)2 = 0.

Proof. Consider the stopping times:

τ+ = inf{t ≥ 0 : Bt = +a}
τ− = inf{t ≥ 0 : Bt = −a}.

Then consider the stopping time, τ∗ = τ+ ∩ τ−. By the previous theorem,

τ∗ ∈M∞, and Bτ∗ = a almost surely. Then

Ex (|Bτ∗| − a)2 = 0.

Therefore, this is an optimal stopping time.
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While this is optimal for unbounded stopping times, this stopping time

τ∗ is not of finite expectation. It is not clear that there is an optimal stop-

ping time in the class M. In fact, it turns out that the solution is non-trivial

outside of a region where the Brownian motion is unlikely to return to ±a in

bounded time.

4.2.2 Finite expectation stopping times

In the special case of a time-independent optimal stopping problem

over M involving Brownian motion, there is a common technique for quickly

identifying a value function v. In particular, if we identify the maximal con-

vex minorant of the reward function g, it will turn out to be the correct value

function.

Definition 4.2.1 (Convex Envelope). Consider a function f : R → R. A

function f̂ : R→ R is called the convex envelope of f if:

• f̂ is a convex function,

• f̂ ≤ f , and

• for any convex function g such that g ≤ f , we have g ≤ f̂ .

Convex envelopes are often easy to graphically to determine. Using

these, the solution to the associated optimal stopping problem with bounded

stopping times may often be obtained.

Proposition 4.2.3. Let a > 0, and consider the reward function g(x) =

(|x| − a)2. Then the convex envelope of g is given by

v(x) =

{
0 : |x| ≤ a

(|x| − a)2 : |x| ≥ a.
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Figure 4.1: Convex envelope ĝ of the reward function g considered in this
problem.

Proof. First, note that v ≤ g for all x ∈ R and v is a convex function which is

majorized by g. We hope to show that v is, in fact, the largest convex function

which is majorized by g.

Suppose that there exists a convex function ṽ such that v ≤ ṽ ≤ g

for all x ∈ R, but such that there exists x0 ∈ R where v(x0) < ṽ(x0). Then

|x0| < a because v(x) = g(x) for all other x0. Note that ṽ(±a) = g(±a) = 0.

Consider the straight line between (−a, 0) and (a, 0). This contains the point

(x0, 0), which is below the graph of ṽ. This contradicts the fact that ṽ is convex.

Therefore, v is the convex envelope of g.

Note that this convex envelope v is C1 on R and C2 on R−{±a}. Then

we can prove easily that it is a valid value function for this optimal stopping

problem. In fact, we invoke the Optimal Stopping Condition lemma from the

Technical Introduction.

Theorem 4.2.4. Let Bt be a Brownian motion and both the reward function

g and value function v be as defined above. Then we have that:
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• v(x) ≤ g(x) for all x ∈ R,

• v(Bt) is a supermartingale, and

• v(Bt∧τ∗) is a uniformly integrable martingale,

where τ∗ = inf{t ≥ 0 : v(Bt) = g(Bt)}. Then τ∗ is the optimal stopping

strategy and

v(x) = inf
τ∈M

Ex (|Bτ | − a)2 .

Proof. First, note that v(x) ≤ g(x) for all x ∈ R because v is the convex

envelope of g. Furthermore, because v is convex and Bt is a martingale, it

follows that v(Bt) is a supermartingale by Jenson’s inequality for conditional

expectations.

The trick for the last condition is to note that v is C1 everywhere and

C2 at all points except ±a. Then by Problem 6.24 on page 215 of [4] we see

that with respect to a Brownian motion, the Itô-Tanaka formula reduces to

v(Bt∧τ∗) = v(x) +

∫ t∧τ∗

0

v′(Bs) dBs +

∫ t∧τ∗

0

1

2
v′′(Bs) ds.

Now, if |x| < a, then v′′(Bs) = 0 for almost every s, so we conclude that

v(Bt∧τ∗) is a local martingale. However, it is bounded, so it is in fact a uni-

formly integrable martingale. If |x| ≥ a, then v(Bt∧τ∗) = v(x) almost surely,

so v(Bt∧τ∗) is again a uniformly integrable martingale.

Therefore, we conclude by the Optimal Stopping Condition that v is

the correct value function and the optimal stopping strategy is given by:

τ∗ = inf{t ≥ 0 : v(Bt) = g(Bt)}.

Finally, we note that τ∗ does in fact lie in the set of finite expectation stopping

times, so the optimal stopping time is achieved.
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Remark 4.2.1. It may be proven in more generality that given a continuous

reward function g and a Brownian motion Bt, the value of the optimal stopping

strategy is given by the convex envelope of g. For a proof, see [7], for example.

4.2.3 Finitely-bounded stopping times

Finally, we consider the optimal stopping problem on the class of finitely

bounded stopping times, MT for some T > 0.

Consider a hypothetical optimal value function v : [0, T ]×R→ R given

by:

v(t, x) = inf
t≤τ≤T

Ex [g(Bτ )] .

First, we note that we cannot do any better in finite time than we can with

unbounded stopping times. On the other hand, we can do no worse than stop-

ping immediately. Therefore, we conclude immediately that v(t, x) = g(x) for

all |x| ≥ a.

Assuming that this value function is smooth enough to apply Itô’s for-

mula, we can follow the same formal derivation of a free-boundary problem as

in Chapter 3 and guess the following problem.

Find a function γ : [0, T ]→ [0, a] and a function v : Ω→ R such that:
vt + 1

2
vxx = 0 |x| < γ(t), 0 < t < T

v(t,±γ(t)) = g(±γ(t)) 0 ≤ t < T
vx(t,±γ(t)) = gx(±γ(t)) 0 ≤ t < T.

Furthermore, we ask that we have terminal conditions of

v(T, x) = g(x)

for all x ∈ R. This is because there is no choice but to stop immediately at

the terminal time.
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This is a backwards heat equation with a free-boundary problem, which

may seem ill-posed problem. However, because we are working on a finite time

horizon, it is not. In particular, we can make a time change as in the previous

chapters

t 7→ T − t.

Furthermore, if we use the fact that the solution is clearly even in x, we can

simplify further to obtain a new free-boundary partial differential equation:


ṽt = 1

2
ṽxx 0 < x < γ(t), 0 < t < T

ṽ(t, γ(t)) = g(γ(t)) 0 < t ≤ T
ṽx(t, γ(t)) = gx(γ(t)) 0 < t ≤ T

ṽx(t, 0) = 0 0 < t ≤ T
ṽ(0, x) = g(x) x ∈ R.

This is a one-phase Stefan-type free-boundary problem, which is well-

characterized in the literature. In particular, for details on this problem and

its solutions, [5] is an excellent reference.

Obtaining a solution to this free-boundary problem is a very compli-

cated mathematical theory, which is beyond the scope of this thesis at this

point. However, we prove that, if we obtain a solution ṽ which is sufficiently

smooth (i.e. C2 almost everywhere), then this corresponds to a value function

for the optimal stopping problem. Because this is a finite time horizon prob-

lem, we cannot directly apply the Optimal Stopping Condition theorem, but

we prove a result in the same spirit.

Theorem 4.2.5. Let v(t, x) be a solution to the above free-boundary problem.

Suppose that v is C1 everywhere and C2 at all points except on the boundary

defined by γ. Then we have that:

• v(t, x) ≤ g(x) for all (t, x) ∈ [0, T ]× R,

• v(t, Bt) is a submartingale, and

37



• v(t ∧ τ∗, Bt∧τ∗) is a uniformly integrable martingale,

where τ∗ = inf{0 ≤ t ≤ T : v(t, Bt) = g(Bt)}. Then τ∗ is the optimal stopping

strategy and

v(t, x) = inf
τ∈MT−t

Ex (|Bτ | − a)2 .

Proof. First, we show that v(t, x) ≤ g(x) for all (t, x) ∈ [0, T ] × R. Consider

throughout the region

Ω = {(t, x) : 0 ≤ t ≤ T, |x| ≤ γ(t)},

where γ is the boundary function. Outside of Ω we have equality v(t, x) = g(x)

by definition. However, inside Ω, we know that v satisfies the heat equation,

which has a strong maximum principle [2]. Therefore, the maximum of v(t, x)

on Ω occurs on ∂Ω:

max
(t,x)∈Ω

v(t, x) = max
(t,x)∈∂Ω

v(t, x).

However, we can note that because γ(t) < a, g is always greater in the interior

of Ω than anywhere on the boundary ∂Ω:

g(x) ≥ max
∂Ω

g for all (t, x) ∈ Ω.

Therefore, because v = g on ∂Ω, we conclude that for all (t, x) ∈ [0, T ]× R,

v(t, x) ≤ g(t, x).

Next, we note that because v is C1 everywhere and C2 at all but a

curve of measure zero, we can apply the simplified Itô-Tanaka formula as in

the previous chapter and note that:

v(t, Bt) = v(0, x) +

∫ t

0

(
vt(s, Bs) +

1

2
vxx(s, Bs)

)
ds+

∫ t

0

vx(s, Bs) dBs.

Inside Ω, we satisfy the equation vt + 1
2
vxx = 0. On the other hand, outside of

Ω, v = g identically, so

vt +
1

2
vxx =

1

2
gxx.
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However, g is convex at all but the single point (0, 0), so we conclude that

v(t, Bt) is a submartingale.

Finally, if we define

τ∗ = inf{0 ≤ t ≤ T : v(t, Bt) = g(Bt)},

we can check with the Itô-Tanaka formula and Optional Sampling Theorem

that:

v(t ∨ τ∗, Bt∨τ∗) = v(0, x) +

∫ t∨τ∗

0

(
vt(s, Bs) +

1

2
vxx(s, Bs)

)
ds+

∫ t∨τ∗

0

vx(s, Bs) dBs

= v(0, x) + vx(s, Bs) dBs

is a local martingale because for any time t < τ∗, (t, x) ∈ Ω, where the heat

equation is satisfied, and after t ≥ τ∗, the process is stopped. But it is a

bounded local martingale, so it is a true martingale.

Finally, we note that by taking t = 0 and t = T respectively, and using

the fact that v(t ∨ τ∗, Bt∨τ∗) is a martingale that:

v(0, x) = E [v(0, x)]

= E [v(τ∗, Bτ∗)]

= E [g(Bτ∗)] , (4.1)

so τ∗ achieves the desired optimal stopping value.

Below, we illustrate the results of a numerical solution to this problem

with T = a = 1. Note that the function defining the boundary, γ is non-trivial.
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Figure 4.2: Illustration of the numerical solution of this free-boundary prob-
lem. Each line illustrates an optimal value function with the time horizon
varied between zero and one.

4.3 Discussion

In the section above, we found the solution to one optimal stopping

problem involving Brownian motion with respect to three different classes of

stopping times. In particular, the solutions utilized an array of techniques,

including primarily a probabilistic argument in the unbounded stopping time

case, an argument above martingales and convexity in the finite expectation

stopping time case, and the specification and solution of a free-boundary par-

tial differential equation in the finitely-bounded stopping time case.

First, note that for any 0 < S ≤ T <∞, we have:

MS ⊂ FT ⊂M ⊂M∞.

This corresponds with the fact that the value function in each class of optimal

stopping problems were decreasing:

v(S, x) ≥ v(T, x) ≥ v(x) ≥ v∞(x).

What is very interesting about this particular problem is that for |x| < a all

of these inequalities are strict, including v(x) > v∞(x).
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