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Improving Secondary Structure Prediction with Covariation Analysis and 

Structure-based Alignment System of RNA sequences 

Lei Shang, Ph.D. 

The University of Texas at Austin, 2013 

Supervisor: Robin R. Gutell 

RNA molecules form complex higher-order structures which are essential to 

perform their biological activities. The accurate prediction of an RNA secondary 

structure and other higher-order structural constraints will significantly enhance the 

understanding of RNA molecules and help interpret their functions. Covariation analysis 

is the predominant computational method to accurately predict the base pairs in the 

secondary structure of RNAs. I developed a novel and powerful covariation method, 

Phylogenetic Events Count (PEC) method, to determine the positional covariation. The 

application of the PEC method onto a bacterial 16S rRNA sequence alignment proves 

that it is more sensitive and accurate than other mutual information based method in the 

identification of base-pairs and other structural constraints of the RNA structure. The 

analysis also discoveries a new type of structural constraint – neighbor effect, between 

sets of nucleotides that are in proximity in the three dimensional RNA structure with 

weaker but significant covariation with one another. Utilizing these covariation methods, 

a proposed secondary structure model of an entire HIV-1 genome RNA is evaluated. The 

results reveal that vast majority of the predicted base pairs in the proposed HIV-1 

secondary structure model do not have covariation, thus lack the support from 

comparative analysis.  

Generating the most accurate multiple sequence alignment is fundamental and 

essential of performing high-quality comparative analysis. The rapid determination of 

nucleic acid sequences dramatically increases the number of available sequences. Thus 

developing the accurate and rapid alignment program for these RNA sequences has 

become a vital and challenging task to decipher the maximum amount of information 

from the data. A template-based RNA sequence alignment system, CRWAlign-2, is 
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developed to accurately align new sequences to an existing reference sequence alignment 

based on primary and secondary structural similarity. A comparison of CRWAlign-2 with 

eight alternative widely-used alignment programs reveals that CRWAlign-2 outperforms 

other programs in aligning new sequences with higher accuracy. In addition to aligning 

sequences accurately, CRWAlign-2 also creates secondary structure models for each 

sequence to be aligned, which provides very useful information for the comparative 

analysis of RNA sequences and structures. The CRWAlign-2 program also provides 

opportunities for multiple areas including the identification of chimeric 16S rRNA 

sequences generated in microbiome sequencing projects.  
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Chapter 1: Introduction 

Background 

1. The Importance of RNA 

RNA was once considered the transient and labile molecule whose primary 

function was to facilitate the translation of DNA sequences into proteins - the Robin to 

Batman’s more important role as the stable genetic material in DNA and the enzymatic 

and functional proteins.  The first three RNAs identified - messenger RNA (mRNA), 

ribosomal RNA (rRNA) and transfer RNA (tRNA) were associated with the protein 

synthesis. While DNA is known to transfer genetic information from one generation to 

the next, and proteins are capable of forming three-dimensional structures and perform 

various functions including catalyzing metabolic reactions, replicating DNA, responding 

to stimuli, and transporting molecules from one location to another, the function of RNA 

was perceived predominantly as the carrier of genetic information to code for amino 

acids in protein, be a scaffold for proteins in the ribosome, and catalyze the formation of 

bonds between adjacent amino acids and attach the new amino acid to the growing 

peptide chain during protein synthesis. All three of these RNA functions were considered 

to be labile and passive.  

However this simple perspective of RNA has been undergoing a major 

transformation. RNA is capable of forming complex three-dimensional structure like 

proteins. And like proteins these higher-order structures catalyze reactions. Now 

hundreds, if not thousands, of different RNA families are being identified and 

characterized. Not only is RNA now implicated in nearly all of the cellular functions in 

the cell, but the analysis of RNA is revealing many new functions in the cell, including 

enzymatic activity, regulation of gene expression 1-3, facilitating epigenetics, and 

association with cancer and other diseases 4,5. This major paradigm shift in molecular and 

cellular biology is dramatically changing our appreciation of the machinery, mechanisms, 

and regulation within cells, and providing a better understanding for the normal and 

aberrant physiological conditions in biological organisms 6-9.  
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2. Comparative Analysis 

Darwin used comparative methods as the foundation of his theory on the 

evolution of biological species 10. The identification of characterization of non-coding 

RNA molecules and their higher-order structures have utilized an important principle in 

molecular and evolutionary biology: homologous RNA sequences with different primary 

structures (or sequences) can form the same higher-order structure to maintain function 
11. The comparative analysis has been widely used in many research fields of RNA. One 

of the first structures determined with this process was the tRNA secondary structure 

which was verified by high resolution X-ray crystallography 12-15. Over 97% of the 

predicted base pairs in the 16S and 23S ribosomal RNA secondary structure models 

predicted with comparative analysis were found in the crystal structures16-18. Thus 

comparative analysis has become the fundamentals for the computational analysis of the 

deluge of nucleic acid sequences that are determined with next-generation sequencing 

(NGS) methodology. 

The sensitivity, accuracy and detail that can be achieved from a RNA comparative 

analysis is directly proportional to and dependent on: 1) the number and diversity of all 

sequences within the sequence alignment; 2) the quality/accuracy of the multiple 

sequence alignment; 3) the types of information used effectively; 4) the performance of 

the covariation methods that identify the structural constraints; 5) the computational tools 

that is capable of archiving and analyzing the sequences and structures. 

Therefore, one of the core problems to computational comparative analysis is to 

utilize various types of information about RNAs most effectively. Recently, the Gutell 

lab developed a novel and sophisticated relational database system – RNA Comparative 

Analysis Database (rCAD) 19. It integrates and cross-indexes four primary dimensions of 

data: (1) metadata, including functional information about sequences and structures; (2) 

raw sequences and sequence alignments; (3) higher-order structures and (4) 

evolutionary/phylogenetic relationships between the sequences and structures. 
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The rCAD system provides opportunities to develop new comparative analysis 

solutions that utilize multiple dimensional information of RNA. These new algorithms, 

methods, and programs are dedicated to improve the secondary structure prediction of 

RNAs and generate large sequence alignment more accurately and rapidly. 

 

Overview of Dissertation   

This dissertation has been focused on two major areas of RNA research: the 

prediction of RNA secondary structure with comparative analysis, and the automated 

sequence alignment of different RNA families.  

Chapter 2 demonstrates that the accuracy and sensitivity of comparative analysis 

can be improved by utilizing multiple dimensional information of RNA. I developed a 

novel covariation method, Phylogenetic Events Counting (PEC) method, which used 

multiple sequence alignment and phylogenetic information to determine positional 

covariations. A general comparison revealed that the PEC method outperformed other 

statistics-based methods in the base pair identification of RNA secondary structure. The 

PEC method also identified a new type of structural constraint – neighbor effect. 

Chapter 3 is engaged in the creation of the large multiple sequence alignments 

that are essential for comparative analysis. With the deluge of nucleic sequences 

determined with next-gen sequencing technology, it has been essential and challenging to 

develop computational programs that automatically align these sequences accurately and 

rapidly. With numerous properly aligned sequences and verified secondary structural 

information archived in rCAD, my approach utilizes these template sequence alignment 

and well-established structural information to align new RNA sequences. The automated 

alignment system I have developed, CRWAlign-2, retrieves template sequence 

alignment, secondary structure information, and phylogenetic information from rCAD, 

creates secondary structure models for every new sequence, and aligns the new sequence 

based on primary and secondary structural similarity. A comparison of CRWAlign-2 with 
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other existing sequence alignment programs reveals that CRWAlign-2 is more accurate 

than other alignment methods.  

In Chapter 4, I used comparative methods to evaluate a secondary structure model 

of an entire HIV-1 RNA genome proposed by Weeks group. Every predicted base pair in 

the HIV-1 secondary structure model are evaluated with different covariation metrics of 

comparative analysis. The results show the proposed HIV-1 secondary structure model 

does not have support from comparative analysis. I also determined the positional 

covariations of HIV-1 genome sequences with mutual information based method, and 

identified the putative highly conserved base pairs with helix-extension strategy. 
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Chapter 2: Structural Constraints identified with Phylogenetic Events Counting 

Analysis in Ribosomal RNA 

Abstract 

Comparative analysis is able to identify a structure common to a set of sequences 

in the same RNA family. Covariation analysis, a specific type of comparative analysis is 

used to identify those positions in an alignment with similar patterns of sequence 

variation. These two positions usually form a base pair in a helix. While Mutual 

Information (MI) and its variants have been widely used to accurately predict an RNA 

secondary structure and a few higher-order structural constraints, early studies revealed 

that the integration of phylogenetic information improves the accuracy and sensitivity of 

the covariation analysis for the prediction of base pairs.  

With the Gutell lab’s new RNA Comparative Analysis Database (rCAD) system, 

we developed a novel and powerful Phylogenetic Events Counting (PEC) method for 

identifying and quantifying positional covariations. The application of the PEC method 

onto a bacterial 16S rRNA sequence alignment proves it is more sensitive and accurate in 

identifying base-pairs and other constraints in the RNA structure. The comparison 

between the PEC and MI-based methods reveals that each of these methods identifies 

unique base pairs, and jointly identifies many other base pairs.  In summary, the 

combination of both methods with an N-best and helix-extension strategy identify the 

maximal number of base pairs.  

While covariation methods have effectively predicted RNAs secondary structure 

with high accuracy, it only identified a small amount of tertiary structural base pairs. My 

analysis and the data presented at the Comparative RNA Web (CRW) Site reveal that the 

majority of these tertiary structural base pairs do not covary with another. However, our 

analysis discoveries a new type of structural constraint – neighbor effects, which occur 

between sets of nucleotides that are in proximity in the three dimensional RNA structure 

with weaker but significant covariation with one another. 
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Background 

The computational prediction of an RNAs higher-order structure from nucleic 

acid sequences is usually determined by two significantly different methods. The first 

method attempts to predict the correct higher-order structure from fundamental principles 

of RNA structure. The primary knowledge used in the majority of these computational 

algorithms is the free-energy values for simple structural elements, such as two 

consecutive base pairs 20. The accuracy of the predicted structure can be high, usually for 

shorter RNAs (e.g. tRNA – 76 nucleotides), and can be very low for other RNAs (e.g. 

some of the eukaryotic nuclear and mitochondrial small and large subunit rRNAs) 21,22. 

This method is dependent on our understanding of the factors that transform a linear 

RNA molecule into a secondary and ultimately a three-dimensional structure. Thus, the 

more available knowledge about RNA structure and the dynamics associated with its 

folding into a higher-order structure, the more accurate this method is for a larger 

collection of diverse RNAs. 

The second method – covariation analysis is one form of comparative analysis. 

With the underlying principle that the sequences in the same RNA family fold into the 

same higher-order structure, the covariation analysis identifies the positions in the RNA 

molecules that have similar patterns of variation, or covariation, for all or a subset of the 

sequences within the same RNA family. Covariation analysis was utilized to predict the 

secondary structure of many noncoding RNAs including tRNA, 5S, 16S, and 23S rRNA 
17,18,23, group I introns 24-26, RNase P 27-29, tmRNA 30,31, U RNA 32,33, and SRP RNA 34-36. 

For molecules like tRNA or the rRNAs that are known to form a common structure,  the 

accuracy of the predicted RNA structure is or nearly 100% when the number and 

diversity of sequences within each RNA family is substantial 16. These examples provide 

additional support that comparative analysis can identify the secondary structure for some 

RNAs with extremely high accuracy. The constraints identified with comparative 

analysis can be utilized to enhance our knowledge about the fundamental rules for RNA 

structure as well as functional and folding dynamics of these RNA molecules. Although 
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the underlying concepts of the two methods are significantly different; they each provide 

knowledge and insight to enhance the other method. 

The search for a common structure with comparative analysis, does not in 

isolation determine an RNA structure. Comparative analysis provides different types of 

information that can be interpreted to infer: 1) RNA structure, 2) regions of the molecule 

with functional importance, 3) conserved RNA structural motifs, 4) phylogenetic 

relationships, 5) other constraints that establish the boundary conditions for the sequences 

and higher-order structure that have survived the process of evolutionary mutation, and 6) 

the fitness functions that dictate the options available to maintain the structural and 

functional integrity of the RNA molecule. 

Starting with a multiple sequence alignment consisting of a set of evolutionary-

related RNA sequences with sufficient sequence identity, covariation analysis is utilized 

to predict the early working models of the secondary structure that are subsequently used 

to refine the alignment in parallel with the addition of more sequences. Additional 

covariation analysis with more sophisticated algorithms are used to refine the secondary 

structure in the regions of the rRNA that are present in all sequences spanning the entire 

phylogenetic tree, regions only present in the three major phylogenetic domains (e.g. 

Archaea, Bacteria, and Eucarya), and regions only present in sub-branches within these 

three domains, etc.  This iterative process of refinement results in secondary structure 

models that are very accurate. For 16S and 23S rRNAs, a total of 97-98% of the base 

pairs predicted with comparative analysis are in the high-resolution crystal structure 16. 

The highly accurate secondary structure models substantiate the accuracy of the multiple 

sequence alignments and the subsequent covariation analysis. Several more detailed 

description of the RNA sequence alignment have been published 11,23,37. 

As we learned from the RNA structure, there are two of the most fundamental 

principles of RNA structure – 1) the canonical base pair types initially determined by 

Chargaff 38,39 and Watson and Crick 40, and 2) the arrangement of these base pair types  

into regular nucleic acid helical structures 40. While the earliest covariation analysis only 

searched for canonical base pairs (e.g. G:C, A:U and G:U) occur within a secondary 
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structural helix 12,41-43, newer mathematical-based and computational rigorous methods 

identify columns within an multiple sequence alignment with similar patterns of 

nucleotide variations, regardless of the base pair type and the location of putative base 

pairs 37,44-46.  The vast majority of all putative base pairs identified with the latest 

comparative analysis are canonical pairs (G:C, A:U and G:U), and these base pairs are 

consecutive and antiparallel with one another to form a regular helix. However, these 

covariation methods have also discovered a large amount of non-canonical structural 

constraints including pseudo-knots 47,48, base pair exchanges 11,48, base triples 49-51, and 

sets of positions with a weak network of covariations 46,49. Therefore, while the vast 

majority of positions with strong covariations form canonical base pairs within a regular 

helix, a small portion of pairs with significant covariations are not part of a standard helix 

and do not exchange solely between canonical base pair types. 

The traditional covariation methods identify positional covariation based on the 

nucleotide frequencies and mutual dependence. This approach has been successfully used 

in the secondary structure prediction of many RNAs including tRNAs and rRNAs. 

Recent studies revealed that the phylogenetic relationships between the sequences can 

enhance the sensitivity for the determination of the number of mutual changes that have 

occurred during the evolution of the RNA. For example, in determining the first putative 

helices that forms a pseudo knot, our confidence was significantly reinforced by 

observing several of the same base pair types (e.g. A:U, G:C) evolved multiple times 

through the evolutionary history of the 570:866 base pair in 16S rRNA 47 since it has a 

increasing likelihood that these two positions with similar patterns of variations did not 

occur by chance. Thus the phylogeny of the sequences is a new dimension of information 

that can enhance the resolution and alternative interpretations of the covariation analysis. 

For the early studies incorporating the phylogenetic information 47,48, the number of 

coordinated changes during the evolution of the RNA was counted from a visual 

inspection of the data. With the deluge of numerous nucleic acid sequences determined in 

modern days, developing novel automatic computational methods for the identification of 

covariations based on phylogenetic relationships has become an essential and challenging 
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task. Several research groups have presented new covariation methods based on modeling 

phylogenetic relationship 52-54.  

The Gutell lab’s RNA Comparative Analysis Database (rCAD) system 19 

integrates and cross-indexes multiple dimensions of information for storage, retrieval, 

and analysis. While this infrastructure has many applications for the analysis of RNA 

structure, function and evolution, I developed a new Phylogenetic Events Counting 

(PEC) method that utilized rCAD to determine the coordinated changes at each pair of 

nucleotide positions in the RNA molecule during its evolution. The PEC method 

traversals the entire phylogenetic tree hierarchy from leaf node to root, and measures the 

significance of positional covariation. To augment the PEC method, a Joint N-Best 

method and a helix-extension procedure are utilized to enhance the identification and 

accuracy of identification of the structural constraints present in the sequence alignment. 

A comparison between the PEC based method and other Mutual Information (MI) based 

covariation methods reveals that while PEC outperform other covariation methods in the 

identification of base pairs, MI based methods also identify unique base pairs, and they 

jointly identify many other base pairs. The combination of both types of methods when 

applied simultaneously identifies more base pairs than either method by itself. And last, 

the process of applying these covariation methods also identifies other types of structural 

constraints – neighbor effect in an RNA molecule.  

 

Methods 

1. Phylogenetic Events Counting (PEC) Algorithm 

Given a high quality multiple sequence alignment (MSA) consisting of a set of 

properly aligned sequences, and phylogenetic relationships between all of the sequences 

within the MSA, the PEC method gages the evolution of the RNA molecule to determine 

positions having similar patterns of variations.  The phylogenetic information is obtained 

from taxonomy page at NCBI (ftp://ftp.ncbi.nih.gov/pub/taxonomy/).  
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The PEC algorithm maps the nucleotides of each pair of positions onto the 

phylogenetic tree according to the taxonomy information, and performs a tree-traversal 

from leaf nodes to root which counts all types of nucleotide changes. Since the NCBI 

taxonomy tree is not a binary tree (each node may have more than two child nodes), a 

standard variation of Fitch’s maximum parsimony approach adapted for non-binary tree 

is used to determine the nucleotides of ancestor nodes (equality set). The equality set of 

each node is determined as the type of pair that occurs most frequently in all sequences 

within that node and its child nodes. The types of pairs that are different from the equality 

set will be counted as positive event (nucleotide changes at both positions) or negative 

event (nucleotide change at only one position) according to the definition. To avoid over-

sampling of certain branches, we only consider the minimum number of variations - each 

type of pair will only be counted once regardless of its number of occurrence. The Pseudo 

code of PEC algorithm is shown in Figure 2.1.  
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Figure 2.1: Pseudo code of Phylogenetic Event Counting (PEC) algorithm 

After the complete tree-traversal, the Covariation Percentage of Events (CPE) is 

calculated as the sum of positive events divided by the sum of total events (both positive 

and negative). High CPE score indicates strong covariation between the two positions. 
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2. RNA Comparative Analysis Database (rCAD) System  

The PEC method is implemented on the Gutell lab’s RNA Comparative Analysis 

Database (rCAD) system. This system is built with a novel schema to stores and cross-

indexes four primary dimensions of data: (1) metadata, including functional information 

about sequences and structures; (2) raw sequences and sequence alignment; (3) higher-

order structure and (4) evolutionary/phylogenetic relationships between the sequences 

and structures. The system supports SQL queries accessing individual rows, columns and 

cells in multiple sequence alignments as well as RNA structures and taxonomy 

information. It provides the fundamentals for novel analysis of the sequence, structure, 

and function characterizations of RNAs, such as covariation analysis and structural 

statistics 55. 

 

3. Other Covariation Methods 

Standard Mutual Information (MIxy) measures the coordinated or compensatory 

variations between two positions. It has been utilized to successfully in several previous 

studies of RNA structures 45,46,53,56. The MIxy value between column x and y in the 

alignment is calculated as 

,࢞ሺࡵࡹ ሻ࢟ ൌ 	෍ ൯࢟ࡺ,࢞ࡹ൫࢘ࡼ ∗ ࢔࢒
ሻ࢟ࡺ,࢞ࡹሺ	࢘ࡼ

ሻ࢞ࡹሺ࢘ࡼ ∗ ሽࢁ,ࡳ,࡯,࡭ሼ	ࣕࡺ,ࡹሻ࢟ࡺሺ	࢘ࡼ
																					ሺ૛. ૚ሻ 

where Pr(Mx,Ny) is the joint probability of nucleotide M and N in column x and y ,  and 

Pr(Mx) and Pr(Ny) is the marginal probability for a nucleotide (M or N) in column x  and 

y.  

Dunn et al. developed a modified mutual information based method to estimates 

the background for each pair of positions in a given sequence alignment of RNA/protein 
57. Removal of this background generates a corrected mutual information metric, MIp, 

improves the base-pair identification. Here we repeated the calculation process of MIp as 

described in their paper. 
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Other covariation methods involved include OMES 58, McBASC 59 and ELSC 60. 

OMES measures the difference between the expected and observed di-nucleotides 

frequency for a pair of positions (columns). It is calculated as 

ࡿࡱࡹࡻ																																																		 ൌ 	
െ∑ ሺࡺ૙ െ ሻ૛ࢋࡺ

ࡺ
࢏

࢚ࡺ
																																																											ሺ૛. ૛ሻ 

where N0 is the observed number of di-nucleotides in a pair of positions, Ne is the 

expected number, N is the total number of possible di-nucleotide pairs, and Nt is the total 

number of sequences in the alignment. The calculation of McBASC and ELSC is 

implemented using the code provided by the authors (http://www.afodor.net/). 

We also tried several other covariation methods including PSICov 61, Direct 

information (DI) 62, RNAalifold 63, RNAfold 64,65, Pfold 66,67 and Evofold 68. However, due 

to the limitations on the molecule type and the size of input sequence alignments, none of these 

methods are applicable in this study, and therefore not included in this analysis. 

 

4. N-Best Strategy 

In 1992, a simple descending ranking of MIxy value for tRNA revealed that the 

top 19 pairings are real base pairs in the tRNA secondary structure while the 20th pairing 

was a tertiary base pair 46. However, many pairs of positions that are not base-pairing in 

the tRNA higher-order structure have higher MIxy values than several of the base pairs 

present in the tRNA secondary structure model. It has been determined that the mutual 

information value is associated with Shannon’s information entropy 69. The Mixy score 

between two positions is the difference between the sums of the entropies for these two 

positions minus the joint entropy [http://sciencehouse.wordpress.com/2009/08/08/-

information-theory/]. According to Shannon’s entropy equation, highly conserved 

positions have the minimum entropy values, while highly variable positions have the 

maximum entropy values. Thus, the MIxy score of two positions with the identical 

patterns of variation (i.e. covariation) is greater when the entropy value is smaller (i.e. 

greater variation).  
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To correct this potential bias, a simple, although not the most mathematically 

eloquent solution is to determine the positions with the highest mutual information 

scores, or covariation for each individual position. This method, named N-Best was 

utilized to enhance the interpretation of base pairs from the MIxy scores 46. The N-best 

score is measured as the ratio of the second highest covariation scores divided by the 

highest covariation score in the series of pairs (X1:Y1, X1:Y2,  ……, X1:Yn ).. The pairs with 

N-best score satisfying the threshold will also be considered as candidate base-pairs 

having significant covariations. 

A variation of N-best method – Joint N-Best is used to determine the pairs of 

positions with the most significant covariation. For each pair (X1:Y1), the N-Best scores 

of position X1 and Y1 are calculated separated. The pairs with both N-Best scores lower 

than the predefined threshold (≤0.5) will be considered as candidate base-pairs having 

significant covariations.  

 

5. Helix-extension strategy 

The long term goal of comparative analysis is to identify every base pair in the 

RNAs higher-order structure with covariation analysis. An assessment of the 

conservation diagrams of the three primary forms of life – Bacteria, Archaea, and 

Eukaryotes [http://www.rna.ccbb.utexas.edu-/SAE/2B/ConsStruc/]] reveals a significant 

amount of sequence conservation within each major phylogenetic domain. Thus many 

positions in the bacterial 16S rRNA sequences that are base paired in the comparative 

structure model have no variation and thus no covariation. However, nearly every pair of 

positions that is base paired in the comparative structure model has covariation in 

alignments that include sequences from organisms spanning all or part of the 

phylogenetic tree of life [http://www.rna.ccbb.utexas.edu/SAE/2A/nt_Frequency/BP/-

16S_Model]. When structural elements are conserved within the RNA family under 

study, and covariation analysis cannot identify the base pair or structural element, then 

we search for RNA structure elements that have been well characterized, such as the 

adjacent and antiparallel base pairs that form a secondary structure helix. 
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For example, base pairs in a helix can be identified when G:C, A:U, and G:U 

pairings are antiparallel and immediately adjacent to a putative base pair identified with 

the covariation analysis. With this helix-extension procedure, a collection of predicted 

covariant pairs are used as the “nucleation pairs”. The corresponding columns of these 

nucleation points within the MSA are determined. When the Watson-Crick (G:C or A:U) 

or Wobble pair (G:U) percentage (WCWB%) of the neighboring columns is higher than a 

predefined threshold (85%), the neighboring columns in an alignment are considered to 

be base-paired.  

 

6. Calculation of Conservation Score and Purity Score 

Given a sequence alignment, the conservation score of column i (Ci) is calculated 

with  

࢏࡯ ൌ 	෍࢓ࡼ ∗ ૛ሺ૝܏ܗܔ ∗ ሻ࢓ࡼ ൅	ࡼ∆ ∗ ૛܏ܗܔ ∆ࡼ 																																					ሺ૛. ૜ሻ 

where Pm is the frequency of occurrence of nucleotide m at column i and PΔ is the 

frequency of deletions (gaps) at column i 23. 

The purity score measures the extent that one nucleotide (A, C, G, U) at column i 

is only associated with one other nucleotide at column j. For example, for a pair of 

columns in the alignment, the set of paired nucleotides {A:U; G:C; U:A; C:G} have the 

highest purity score – 100% since each nucleotide at one column is uniquely associated 

with one other nucleotide at the other column. The set {A:U; G:C; G:U; and C:G} would 

have a lower purity score since G is associated with C and U, and the set {C:A, C:C, C:G, 

C:U} would have the lowest purity score since nucleotide C at one column is associated 

with four different nucleotides at the other column. Higher purity score indicates that the 

two columns are more likely to have strong covariation. Figure 2.2 describes the 

procedure that defines the list of base pair types that have a covariation with one another, 

and the purity score calculated is the sum of the percentages of these base pair types.  
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Figure 2.2: Base pairs in the Bacterial 16S rRNA structure model that are identified with 

the helix extension method using different nucleation pairs. Red: true positive base-pairs 

identified in Joint N-Best method, which are used as nucleation points in the helix 

extension Magenta: false positives in the nucleation pairs; Blue: true positive base-pairs 

identified with the helix-extension method; Yellow: false-positive pairs identified with 

the helix-extension method. Secondary base-pairs are represented by closed circles while 

tertiary base-pairs are represented by open circle and highlighted with arrows. (A) Using 

pairs identified in PEC/JN-Best as the nucleation pairs. (B) Using pairs identified in 

MI/JN-Best as the nucleation pairs. 

When the top two base pairs with the highest percentage are A:U and G:C, then a 

G:U pair is not a covariation type according to the above definition. However, G:U base 

pairs, also called the wobble base pair 70 occur within a regular helix. To accommodate 

this change, a GU-Plus purity score is calculated with a slightly modified procedure: the 
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base pairs G:U (or U:G) are counted as covariation with G:C (or C:G) and A:U (or U:A) 

for all of the known base pairs. 

 

7. Identification of Neighbor Effects and Physical Distance Calculation 

Most pairs with strong covariations are identified as base pair in the RNA higher-

order structure. However, there are numerous pairs with significant covariations that have 

not been identified as a potential base pair. Those pairing are not necessarily indicative of 

a base pair, instead they comprise a structural constraint on the evolution of a set of 

nucleotides. The objective here is to quantitate the process of identifying these pairs, 

named “neighbor effects”.  

The neighbor effects are identified with the standard one-directional N-Best 

method with some constraints. Given a pair X1:Y1, the N-Best score of column X1 is 

calculated as the ratio of the second highest CPE score divided by the highest CPE score 

in the series of pairs (X1:Y1, X1:Y2,  ……, X1:Yn ). When the covariation score (CPE in this 

case) is low (for example pair with CPE < 15%), the background noise could interfere 

with the covariation signal and lower the quality of the analysis. To remove this 

background noise, only those pairs have a minimum number of total changes during the 

evolution (total events) and have a CPE score higher than a predefined lowest cutoff 

value (25%) are included in this analysis. The pairs with: 1) N-Best scores exceeding the 

predefined threshold (0.85); 2) Covariation score (CPE) higher than a predefined lowest 

cutoff (25%); 3) Total events (positive plus negative) higher than a minimum event 

threshold, are considered as neighbor effects. 

The two primary types of interactions between bases are hydrogen bonding and 

base stacking. While the latter contributes more to the stability of the RNA structure 71-73, 

the specificity of the interactions is dictated by the hydrogen bonding of the two 

nucleotides that form a base pair. For all identified neighbor effects, the physical distance 

at atomic level are estimated using the 3D high-resolution crystal structures (PDBID 
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1J5E for 16S rRNA; PDBID 2AW4 for 5S and 23S rRNA). The physical distance 

between two nucleotides (N1 and N2) is calculated with 

࢚࢙࢏ࡰ ൌ 	ට	ሺ࢞૚ െ ૛ሻ૛࢞ ൅ ൫࢟૚ െ ૛൯࢟
૛
൅ ሺࢠ૚ െ .ሺ૛																														૛ሻ૛ࢠ ૝ሻ 

where ࢞૚, ࢟૚, ࢠ૚ are the coordinates for the center of atoms in N1 that usually form the 

hydrogen bonds in two nucleotides that are base paired, and ࢞૛, ࢟૛, ࢠ૛ are the 

coordinates for the center in N2. 

 

8. Dataset and Filtration Algorithm 

Three data sets are used in this analysis: a bacterial 16S rRNA sequence 

alignment containing 4142 sequences with 3236 Columns; a bacteria 5S rRNA alignment 

containing 2088 sequences with 333 columns; and a bacteria 23S rRNA alignment 

containing 2339 sequences with 7330 columns. The sequences in this analysis include 

organisms from most of the major branches of the bacterial phylogenetic tree.    

Considering a MSA consisting of m columns and n rows, the total amount of 

column pairwise comparison is m*(m-1)/2, and the time complexity of PEC algorithm is 

in the order of O(m2n). Given the finding that positions with similar conservation values 

have the potential to have a higher covariation score (Figure 2.3), the number of column 

pairwise comparison can be reduced significantly by only analyzing those sets of 

positions with similar conservation values. A coarse filter based on relative entropy and 

the MIxy is implemented to eliminate the unnecessary comparisons between two columns 

that unlikely to have a significant covariation score. The PEC analysis is only performed 

on those pairwise sets of columns with: 1) the relative entropy score lower than a 

predefined threshold (0.2), and 2) MIxy value of column X and column Y are among the 

top 100 for both column X (with any other column) and column Y (with any other 

column) 74. This filtration step significantly reduces the computational cost by over 300 

times. For example, in the 16S rRNA MSA, the course filter reduces the total of 

~5,234,230 pairwise comparisons to 14,276 pairings. This smaller number of pairings is 
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analyzed in the subsequent PEC analysis. Among the 608 secondary and tertiary base 

pairs present in the T. thermophilus 16S rRNA high resolution crystal structure (PDB ID 

1J5E), 218 are eliminated in the filtration step. None of these eliminated base pairs have 

significant covariations except one of them can be identified with PEC method. Therefore 

the coarse filter effectively reduces the computational cost with a minor decrease in 

sensitivity. The same filtration procedures are applied in analyzing the 5S rRNA and 23S 

rRNA MSA.  
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Figure 2.3:  The underlying principle of coarse filter that reduce the number of pairwise 

comparison. (A) The conservation scores for all nucleotides that are base paired in the 

16S rRNA comparative structure model. Each base pair is represented with a colored 

circle, where the color indicates the purity score (minimal value: 0.472; maximum value: 

1). The vast majority of the dots representing base pairs are close to the diagonal. (B) The 

conservation scores for each nucleotide position from 138 to 205 which is under the 

shadow on the entire Escherichia coli 16S rRNA secondary structure (right).  The red and 

blue lines indicate the outer and inner boundaries of the helices respectively while grey 

lines connect the positions that form a base pair.  
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Results 

1. Conceptual Overview of the Methods 

1.1. Phylogenetic Events Counting Method 

Figure 2.4 shows the overall analysis workflow of the Phylogenetic Event 

Counting method (PEC). The program retrieves four primary dimensions of data 

including 1) raw sequences (unaligned) and sequence alignment; 2) higher-order 

structural information; 3) sequence and structure metadata; 4) evolutionary/phylogenetic 

relationships between sequences and structures  that are stored and analyzed in rCAD 

(Figure 2.4A & 2.4B). The di-nucleotides of each pair of positions to be processed are 

mapped onto the phylogenetic tree (Figure 2.4C). A tree-traversal from leaf nodes to root 

counts two types of phylogenetic events: positive event and negative event (Figure 2.4D). 

Definition 1 Positive event: Given a pair of positions on a sequence, a positive event is 

observed when both positions are changed from its direct ancestral sequence. 

Definition 2 Negative event: Given a pair of positions on a sequence, a negative event is 

observed when only one position is changed from its direct ancestral sequence. 

In practice, there are usually no actual ancestral sequences at every internal node 

of a phylogenetic tree. Therefore, given a set of sequences under a node, we define an 

equality set to represent the nucleotides of ancestor nodes using maximum parsimony 

strategy. 

Definition 3 Equality set: Given a set of sequences under a node of phylogenetic tree, an 

equality set is defined as the type of pair that occurs most frequently in all sequences within 

that node and its child nodes. 

To avoid bias caused by over sampling under certain nodes of the phylogenetic 

tree, each type of pair of child nucleotides is counted only once. For example, ancestor 

node is G:C,  child nodes contain G:C which occurs 10 times, A:U which occurs 2 times, 

A:C which occurs 1 time. The A:U pair will be counted only once as positive event 

regardless of its actual occurrence. Thus the observed events are minimized to assure 
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high confidence in this research. The covariation between two positions is determined by 

calculating the Covariation Percentage of Events (CPE), which is the ratio of positive 

events to the total number of events (both positive and negative) (Details in Method 

section).  

 

Figure 2.4: The highlight and underlying concepts of the PEC based covariation 

analysis: Data source (A); multi-dimensional data (B); mapping the substitutions (C); 

counting the positive and negative events (D). 
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1.2.  Base Pair Identification Process 

Figure 2.5 shows the analysis procedure that reveals higher-order structural 

constraints of RNA molecules. Joint N-Best strategy is used to measure the significance 

of covariation score (i.e. CPE, MIxy, MIp) between two positions. Pairs of positions 

satisfying predefined thresholds are identified as putative base pairs, and used as the 

nucleation points in the following helix-extension procedure to further improve the 

sensitivity (Process colored blue in Figure 2.5) (Details in Methods section). 

 

Figure 2.5: The flowchart of analysis in the identification of base-pairs and neighbor 

effects.  
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The N-Best strategy was initially used with mutual information (MIxy) on a set of 

tRNA sequences 46. Since the Mixy values increase for similar extents of covariation as 

the entropy value decreases (ie. increases in variation), the Mixy values should be 

standardized for the different entropy values. To approximate this, a simple solution is to 

rank the positions with the highest covariation scores for each individual position. The 

previous study 46 revealed that for the most majority of base pairs in the comparative 

structures of the tRNAs, the positions forming a base pair with cardinal position number 

usually had a MIxy value significantly higher than the Mixy values for the other ranked 

positions.  

This N-Best strategy standardizes the covariation scores by first ranking the 

positions in descending order with their covariation scores (i.e. MIxy, CPE), followed by 

calculating the ratio of the second highest covariation score to the highest score. For 

position X and position Y, the likelihood that they form a base pair is further enhanced 

when the position with the highest score with X is Y, and the position with the highest 

score for Y is X. Thus this Joint N-Best strategy is applied to the covariation scores with 

a predefined N-Best threshold. While our confidence in the prediction of a base pair is 

proportional to the difference between the two positions with the highest covariation 

values, here we set a predefined N-Best threshold as 0.5. The pairs of positions satisfying 

this threshold are considered as base pair candidates with significant covariations. The 

implementation of Joint N-Best with PEC method (PEC/JN-Best) improves the 

sensitivity and accuracy for the identification of base pairs.  

The three-dimensional high-resolution crystal structure of T. thermophilus 30S 

ribosomal subunit (PDBID 1J5E) which contains the 16S rRNA, and E.coli 50S 

ribosomal subunit (PDBID 2AW4) which contains the 5S rRNA and 23S rRNA are used 

as the reference structures for this study. All identified putative base pairs are categorized 

as true positives (annotated in the reference structures) or false positives (not annotated in 

the reference structures). 

Given a sequence alignment, the amount of covariation is directly proportional to 

the amount of variation. For the bacterial 16S rRNA alignment used in this study, Figure 



25 
 

2.6 shows the relationships between the overall variation and the amount of variation in 

three categories in the secondary structure: 1) both positions forming base pairs undergo 

changes; 2) one of the two base paired positions changes, and 3) the unpaired positions.  

 

Figure 2.6: Variation/covariation analysis of the secondary structure of the bacterial 16S 

rRNA sequence alignment. Total variation in each pairwise set of sequences (X-

direction) is plotted vs. (1) the amount of variation in that set of sequences for the two 

positions that are base paired in the secondary structure (blue), (2) only one position of 

the two that are base paired in the secondary structure (red), and (3) variation in the 

unpaired region of the second structure (green) (Y-direction). The slope, Y-intercept, and 

R2 co-efficiency values of the linear regression line for each of the three analyses are at 

the right side of the line. 
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This variation/covariation analysis reveals that highly conserved positions are less 

likely to be identified as a base pair with covariation methods (i.e. no variation, no 

covariation). Since the ultimate objective is to identify every base pair in the secondary 

and higher-order structure, a helix-extension method was developed to identify those 

highly conserved base pairs and improve the sensitivity of this analysis. The putative base 

pairs identified with Joint N-Best method are used as the nucleation pairs in the helix-

extension process. The helix-extension algorithm seeks to increase the length of a 

putative helix composed of canonical base pairs (G:C, A:U, and G:U) that are 1) adjacent 

and antiparallel with the nucleation pair and 2) occur in at least 85% of the sequences. A 

primitive and less quantitative version of helix extension was first applied in building the 

original 16S and 23S rNRA secondary structure models 41,75.  As more 16S and 23S 

rRNA sequences were determined, the putative extended base pairs were verified with 

covariation criteria: some of the extended base pairs were removed when the two 

positions did not have similar patterns of variation, while the most majority of the 

extended base pairs did have similar patterns of variation in alignments that contained 

more sequences 23,37. Since our confidence in a predicted base pair is directly proportional 

to the amount of covariation, we have less confidence in those extended base pairs that 

have minimal or no covariation. 

 

1.3. Neighbor Effects Identification Process 

Previous analysis has shown that as the extent of positional covariation decrease, 

some pairs with lower covariation scores form base pairs, and others do not. As shown in 

Figure 2.7, for the majority of all positions that are base paired, the highest covariation 

score is significantly higher than the position with the second highest score (example of 

nucleotides 3 in tRNA are presented in Figure 2.7A left side, while the overall picture are 

shown in Figure 2.7B). However, the highest covariation score for some base pairs is 

lower, while the set of next highest positions are closer to the highest (see Figure 2.7A 

right side and Figure 2.8).  
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Figure 2.7: Graphical representation of N-Best method. While the mutual-information 

(MIxy) covariation method compares all positions against all other positions, the N-best 

method ranks covariation scores for two positions for each individual position. The 

position numbers are in the X-axis and the MIxy values are in the Y-axis. (A) Left: The 

MIxy scores for position 3 with all 76 positions in tRNA; Right: The MIxy values for 

position 13 with all 76 positions are also displayed in the right side with the same 

manner. (B) Each nucleotide position in a tRNA is shown in the X-axis while the MIxy 

score are displayed in the Y-axis. The vertical bar is the MIxy value for position Z and 

each of the individual positions in the X-axis. When the positions with the best 

covariation scores for each position are base paired in the tRNA structure, that vertical 

bar is shown in red. The positions with lower MIxy values are shown as black vertical 

lines. This diagram illustrates that the majority of all positions that are base paired has a 

MIxy value significantly higher than the MIxy value for all of the other positions. 
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Figure 2.8: The secondary (A) and three-dimensional structure (B) of S. cerevisiae Phe 

tRNA with neighbor effect identified in 1992. 

We utilize a standard one-directional N-Best strategy with some covariation 

constraints to identify a set of “neighbor effects” (Process colored green in Figure 2.5, 

details in the Method section). The physical distance between the positions forming the 

neighbor effect is determined using the reference crystal structure.  

 

2. Application of Methods on Datasets 

2.1. Datasets and the filtration process 

The accuracy of the sequence alignment will influence the quality and 

significance of subsequent covariation analysis. The sequence alignments used in this 

study are generated from manual curation of more than twenty years of refinement. The 

data sets used in this analysis are bacterial 16S rRNA multiple sequence alignment 

(MSA) consisting of 4142 sequences, bacterial 5S rRNA MSA consisting of 2088 

sequences, and bacterial 23S rRNA MSA consisting of 2339 sequences (details in the 

Methods section).  
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As mentioned above, the high-resolution three-dimensional crystal structure of 

Thermus thermophiles 30S ribosomal subunit 18 is utilized as the reference in the analysis 

of the 16S rRNA, while the high-resolution structure for Escherichia coli 50S ribosomal 

subunit 76 is used in the analysis of the 5S and 23S rRNA.  The sequences in these crystal 

structures are used as the reference sequences.  

Like most other covariation methods, PEC method performs exhaustive pairwise 

comparison: every column in the alignment is analyzed with every other column. For the 

16S rRNA data set, the reference sequence has 1521 nucleotides, while the alignment 

contains 3,236 columns. Thus the total number of pairwise comparisons is 5,234,230. 

The time complexity of PEC algorithm on this dataset scales up to O(4.4x1010). The PEC 

algorithm requires a significant amount of time to transverse the entire phylogenetic tree 

and count the number of changes during the evolution of the RNA. Since the positions 

with similar conservation scores have the higher likelihood to have good covariation 

score (Figure 2.3, details in Methods section), we used a coarse filter to eliminate those 

pairwise positions that were unlikely to have a significant covariation 74, and speed up the 

calculation process of PEC method. The coarse filter reduced the amount of pairwise 

comparison calculations to 14,276, which were processed by PEC method (details in 

Method section). 

 

2.2. Performance Comparison of Different Covariation Methods in the 

Identification of Base Pairs 

The performance of the PEC method in the identification of real base pairs in the 

bacterial 5S, 16S, and 23S rRNA alignment data sets was compared with other 

covariation methods including MIxy 45,46, MIp 57, OMES 58, ELSC 60, and McBASC 59.  

The percentage of predicted base pairs that are present in the crystal structures are 

measured as a function of rank order. In addition to the covariation methods used here to 

evaluate the performance, we also tried to evaluate several other programs including 

PSICov 61, RNAfold 64,65, Direct information (DI) 62, RNAalifold 63, Evofold 68 and Pfold 
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66,67. However, these programs are either not suitable for the prediction of higher-order 

structure of RNAs with covariation analysis, or they are unable to operate on the large 

alignments used in our study. 

The precision of top N ranked prediction plot reveals the fraction of pairs with 

ranked N or higher in each data set that are the contacting base pairs in the crystal 

structures. It has been utilized in several studies to gauge the precision of several 

covariation methods 57,61,77,78. As shown in Figure 3, the PEC method performs better 

than Mixy and MIp, and significantly better than ELSC, OMES, and McBASC on the 

16S rRNA alignment (Figure 3B). For the 5S and 23S rRNA alignments, PEC and the 

MIp achieve similar accuracies, which is significantly better than other methods, while 

ELSC, OMES, and McBASC methods are considerably lower (Figure 3A and 3C). The 

total event (positive events plus negative events) in PEC method measures the total 

amount of changes on a pair of positions throughout its evolution. Adding the total event 

threshold (e.g. >= 10) helps reduce the background noise and improves the accuracy of 

PEC method. PEC with total events threshold achieved higher accuracy than PEC 

without total events threshold in the 5S and 16S rRNA alignments (Figure 2.9A and 

2.9B). However, that performance of PEC with or without total events threshold is 

exactly the same on the 23S rRNA data set (Figure 2.9C). Overall, the PEC method 

outperforms other covariation methods in the identification of base pairs, while MIp is 

the second best method.  
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Figure 2.9: The precision of top N ranked prediction plot with different covariation 

methods in the identification of base pairs using different data sets: 5S rRNA data set (A), 

16S rRNA data set (B), and 23S rRNA data set (C). 

 

2.3. Application of Joint N-Best 

The precision of top N ranked curve plot in Figure 3 reveals that the PEC, MIp, 

and MIxy methods are the top 3 methods in the identification of base pairs for the data 

sets. Mutual information (MIxy) measures the dependence of one position on another in 

the RNA sequence alignment. This measure was first introduced for identification of 

covariations in RNA 45,46. In 2006, Lindgreen et al. evaluated 10 various MIxy-based 

covariation methods for the identification of covariations in RNA alignments 79. Their 

results demonstrated that the standard MIxy is a good metrics for the prediction of base 

pairs in the RNA secondary structure, while several variations of MIxy improved the 

performance in the identification of base pairs. Dunn et al. developed an improved 

implementation of MIxy, named MIp, which estimated the level of background noise for 

each position 57. After the removal of background and conversion to Z-Score (MIp/Z-

Score), they determined that the MIp/Z-Score method identified substantially more co-

varying positions than other existing MIxy-based methods. 
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Here we utilize the Joint N-Best strategy to measure the significance of the 

covariation scores calculated in different methods (details in Methods section). The Joint 

N-Best algorithm is applied onto PEC, MIp, and MIxy methods (PEC/JN-Best, MIp/JN-

Best, MIxy/JN-Best) with the recommended (default) cutoff value of N-best score 0.5. 

We also used Z-Score conversion on MIp with the recommended Z-Score cutoff as 

comparison 57. 

The PEC/JN-Best, MIxy/JN-Best and MIp/JN-Best methods are utilized on the 

5S, 16S and 23S rRNA data sets to identify base pairs. The number of true positives 

(putative base pairs present in the reference crystal structure) and false positives (putative 

base pairs not present in the crystal structure) obtained by different methods on the 16S 

rRNA dataset are shown in Figure 2.10. The PEC/JN-Best method identifies 186 true 

positives with only 8 false positives (95.9% accuracy), while the MIxy/JN-Best achieves 

similar accuracy but much lower sensitivity (121 true positives, 3 false positives, 97.6% 

accuracy). The MIp/JN-Best obtains 147 true positives and 6 false positives (96% 

accuracy), and it identifies all but one pair found by MIxy/JN-Best. The MIp/Zscore 

method identifies 127 true positives, however the number of false positives – 27 

decreases the accuracy (82.5%). In comparison to Z-Score conversion (MIp/Zscore), the 

utilization of Joint N-Best strategy with MIp (MIp/JN-Best) increases the number of true 

positives and decreases the number of false positives, thus improves both accuracy and 

sensitivity. 
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Figure 2.10: The number of true positives and false positives identified with different 

covariation methods.  

Since MIp/JN-Best method identifies all of the pairs found by the MIxy/JN-Best 

method except for the pair 150:159 (Thermus thermophiles numbering), we combine the 

non-redundant putative pairs identified in both methods. These pairs are referred as 

identified by Mutual Information Based Measure with Joint N-Best (MI/JN-Best). 

The real base-pairs (true positives) identified by PEC/JN-Best and MI/JN-Best 

methods are plotted onto the T. thermophilus 16S rRNA secondary structure diagram 

(Figure 2.11). The total number of base pairs identified by both types of methods is 243, 

while  the number of real base pairs identified only by PEC/JN-Best, only by MI/JN-Best, 

and by both methods are: 95 (red), 57 (green) and 91 (yellow). The ratio of the number of 

base pairs that are uniquely identified with PEC/JN-Best and MI/JN-Bes is 62.5%.  Table 

S3 contains the detail results of these methods for 5S, 16S and 23S rRNA data sets. 

Our results of the general comparison of these methods reveals: 1) with the 

default N-best cutoff (0.5), the PEC/JN-Best method has higher accuracy and sensitivity 

than MIxy/JN-Best and MIp/JN-Best in detecting covariant base pairs, 2) while both 

PEC/JN-Best and MI/JN-Best uniquely identifies base pairs that are not identified with 
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the other method, both methods also identified many of the same base pairs, 3) MIp/JN-

Best was superior to the MIp/Z-score in detecting covariant base pairs for the 16S rRNA, 

and 4) MIp/JN-Best identifies a larger percentage of the base pairs found with by 

MIxy/JN-Best. 

 

Figure 2.11: The base pairs (true positives) identified by PEC/JN-Best and MI/JN-Best 

are plotted onto the T. thermophiles 16S rRNA secondary structure diagram. Red: base 

pairs only identified by PEC/JN-Best; Green: base pairs only identified by MI/JN-Best; 

Yellow: base pairs identified by both methods. 



35 
 

2.4. Identification of Highly Conserved Base Pairs with Helix-extension Strategy 

All non-redundant predicted base pairs by PEC/JN-Best and MI/JN-Best methods 

are used as nucleation pairs in the helix-extension procedure. The set of adjacent and 

antiparallel nucleotides to the nucleation base pair with more than 85% WC/Wobble 

base-pairs in the alignment are considered an extended base pair. Additional base pairs 

that satisfy this helix extension threshold continue to be added to this extending helix 

until they fail the extending threshold. Figure 2.12 shows the number of nucleation pairs 

and extended pairs obtained in our helix extension analysis of 16S rRNA data set. When 

using the sum of predicted base pairs by both PEC/JN-Best and MI/JN-Best methods as 

nucleation pairs (255 pairs: 243 true positives plotted on Figure 2.11 and 12 false 

positives not plotted, Figure 2.12 left), the total number of extended pairs added with the 

helix extension is 160; 129 of these are true positives (present in the crystal structure), 

while the 31 false positives primarily occur at the end of helices. These nucleation and 

extended pairs are mapped onto the secondary structure diagram of T. thermophilus 16S 

rRNA in Figure 2.13. The number of nucleation pairs with PEC/JN-Best and MI/JN-Best, 

and the extended pairs in the helix extensions are also shown in Figure 2.12 (middle and 

right). This result reveals that with a set of nucleation pairs with high quality, the helix-

extension strategy is able to identify those highly-conserved base pairs accurately and 

sensitively. The successful application of this helix-extension method onto the 5S and 

23S rRNA data sets further substantiates this conclusion.  
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Figure 2.12: For each method, the number of true positives and false positives identified 

in the Joint N-Best calculation (nucleation pairs), following helix extension procedure 

(extended pairs), and sum of them are shown as a stacked histogram. 
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Figure 2.13:  Base pairs in the Bacterial 16S rRNA structure model that are identified 

with the helix extension method. Red: true positive base-pairs identified as the sum of 

PEC/JN-Best and MIxy/JN-Best methods, which are used as nucleation points in the 

helix extension Magenta: false positives in the nucleation pairs; Blue: true positive base-

pairs identified with the helix-extension method; Yellow: false-positive pairs identified 

with the helix-extension method. Secondary base-pairs are represented by closed circles 

while tertiary base-pairs are represented by open circle and highlighted with arrows. 
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2.5. The Purity and Conservation Scores of the Secondary and Tertiary Structure 

Base Pairs 

Our results suggest that most of the identified base pairs are part of the secondary 

structure (represented as closed circle in Figure 2.13), while only a few tertiary structure 

base pairs are identified (represented as open circle and get highlighted by arrows in 

Figure 2.13): the Joint N-Best analysis identifies 240 secondary structure base pairs but 

only 3 tertiary structure base pairs; the helix extension procedure identifies 127 secondary 

base pairs but only 2 tertiary base pairs. 

A quantitative and graphical analysis of 16S rRNA comparative secondary 

structure and the high resolution crystal structure for Thermus thermophilus 16S rRNA 

demonstrates the general observation noted in the previous paragraph – secondary 

structure base pairs usually have strong covariation between the two positions that form 

that interaction while the majority of the tertiary structure base pairs have weak or no 

covariation.  For every pair of positions that form a base pair, the purity score which 

measures the precision of covariation (details in Method section and Figure 2.2), is 

plotted against the conservation score (details in Method section) (Figure 2.14). For both 

of comparative and crystal structures, two plots were created, the first for the standard 

purity score (Figure 2.14 left) and the second for purity scores adjusted for G:U base 

pairs (Figure 2.14 right, details in Methods section). The overall results from these plots 

are consistent with our base pair prediction as expected: 1) though base pairs in the 

bacterial 16S rRNA dataset range from highly conserved to highly variable, the most 

majority of the secondary structure base pairs are at or very close to a purity score of 1; 2) 

Many of the base pairs with a lower standard purity score increase their GU-plus score 

close to 1,  which indicates the base pairs associated with these lower purity scores 

involve a G:U base pair; 3) The majority of tertiary structure base pairs do not have the 

highest purity scores, indicating that many of positions that form tertiary base pairs have 

no covariation, or some weak covariation with many exceptions, consistent with our 

previous observation 16 [http://www.rna.ccbb.utexas.edu/SAE/2A/xtal_Info/16S/Index]. 
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Figure 2.14: The distribution of purity score and average conservation (or informational 

entropy) for the two nucleotides that form a base pair in the 16S rRNA comparative 

structure model (A), secondary structure base pairs in crystal structure (B), and tertiary 

interactions in crystal structure (C).  

 

2.6. The Identification of Neighbor Effects 

Previous analysis has revealed that when two positions in a sequence alignment 

have very similar patterns of variation, as gauged with a high covariation score, those 

positions usually form a base pair in the RNA higher-order structure. However as the 

extent of positional covariation decreases, our observations here and in our previous 

analysis 46,49 reveals that some pairs with lower covariation scores form base pairs, and 
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others do not. While the full significance of these observations have not been determined, 

we have observed that the positions in these clusters of significant but lower covariation 

scores are usually very close with one another in the three-dimensional structure with the 

traditional, covariation methods, hereafter named neighbor effects 49,80. 

The covariation scores (e.g. CPE, MIxy, MIp) of the highest and second highest 

positions for the base pairs identified in our PEC/JN-Best method are significantly 

different (threshold value of 0.5, see “The Joint N-Best strategy” in the Methods section). 

These putative base pairs are analogous to the tRNA base pair 3:70 as shown in Figure 

2.7A left side. However the difference between the highest and the set of next highest 

positions in our Bacterial 16S rRNA dataset are smaller for numerous positions, 

analogous to Figure 2.7A right side and Figure 2.8. As shown in earlier sections of this 

manuscript and previous studies 52,53, phylogenetic event based covariation methods have 

the potential to identify covariations that are not observed with the traditional methods. 

Thus we use PEC method to identify the neighbor effects. The positions with the N-best 

scores exceeding a predefined threshold of ≥0.85 (see Methods section for details) and in 

close proximity are considered as neighbor effects. For this analysis, the physical distance 

is minimal for those positions that are defined to be a neighbor effect. This criterion is 

satisfied for those positions with at least 10 phylogenetic events (Figure 2.15). 
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Figure 2.15:  The maximal distance between the positions defined to be a neighbor effect 

is determined from a comparison of the number of phylogenetic events.  Different 

phylogenetic events and their number of positions with different physical distances were 

calculated. Those positions with at least 10 phylogenetic events contain a large number of 

positions that are very close in three-dimensional space and a very small number of 

positions with larger physical distances. 

There are 89 neighbor-effect pairs identified and plotted onto the T. thermophilus 

16S rRNA secondary structure diagram in Figure 2.16. Among these neighbor-effect 

pairs, 15 are annotated as known nucleotide interactions in the 16S T. Thermophilus 

rRNA crystal structure including 8 secondary base-pairs, 4 tertiary base-pairs and 3 base-

triples (colored green in Figure 2.16). The remaining 74 pairs do not form hydrogen 

bonds between the bases (colored red in Figure 2.16). The average physical distance 

between these 89 neighbor effects is 8.82 ±5.91Å, while only four pairs (686:905, 

686:930, 686:1209 and 686:1371, T. thermophiles numbering) are separated by more than 

30Å. Most of these neighbor effects involve nucleotides that are either each nucleotide of 

the pair are on opposite sides of a helix, consecutive on the sequence, , adjacent to two 

nucleotides that form a base pair at the end of a helix, or involve a nucleotide in a loop 
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and a nucleotide in a helix that is very close to the loop. Neighbor effects are also 

identified on 5S and 23S rRNA datasets using the same parameter setting. 

The observation of neighbor effects suggests that nucleotides that do not form a 

base pair can influence the evolution of other nucleotides that are physically in proximity. 

The complete structural and functional significance of these neighbor effects has not been 

fully determined. Several studies have revealed that: 1) nucleotides associated with base 

triples in and near the D stem in tRNA have moderately high covariation values 46,49 

(Figure 2.8), 2) recent experimental studies of the ribosome discover that the D stem of 

tRNA is dynamic during protein synthesis 81,82.  

Two other research groups have determined covariations by modeling 

phylogenetic relationships in bacterial 16S rRNA 52,53. A detailed assessment of the 

similarities and differences of my results with their new covariations revealed that: 1) 

Both methods identifies a few new pairings with significant covariations; 2) Some of the 

nucleotides with a covariant pair identified with their methods are separated by a minimal 

distance (ie. neighbor effect), while many other nucleotides are separated by a much 

larger distance in the high-resolution crystal structure.  
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Figure 2.16: The secondary structural diagram of T. thermophilus 16S rRNA reveals all 

identified neighbor effects. Red lines connecting nucleotides indicate non-base-pairing 

interactions. Green lines represent the base-pairs or base-triples identified as neighbor 

effects.   
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Discussion 

Improve the covariation methods using the evolution of the RNA structures 

Previous research has revealed that the sensitivity and accuracy of the covariation 

analysis can be enhanced by integrating the evolutionary history of the RNA 47. Our 

analysis of tetraloops in 16S rRNA discovered that this four-nucleotides hairpin loop that 

caps a helix can evolve from one common form to another many times during the 

evolution of the 16S rRNA 83. For these studies, the number of times these positions 

changed during their evolution was determined after the base pairs and tetraloop were 

identified.  The evolutionary dimension of the RNA structure provides temporal 

information to distinguish divergent and convergent evolution for specific positions and 

regions of the RNA. While our preference is to utilize the evolutionary history of the 

positions in the RNA to identify these base pairs and other higher-order structural 

constraints, monitoring these temporal changes is a significant computational challenge.  

The Gutell lab’s new RNA Comparative Analysis Database (rCAD) system cross-

indexes multiple dimensional data of RNAs 19,74, which  creates the opportunity to 

perform several types of novel analysis, including the phylogenetic event counting (PEC) 

covariation analysis.. 

 

The implementation of Phylogenetic Event Counting method (PEC) method and 

performance comparison with other covariation methods 

The analysis reveals that overall the PEC method is superior to other covariation 

methods for the identification of base pairs in both sensitivity and accuracy (Figure 2.9). 

With the complementation of Joint N-Best strategy, PEC/JN-Best is more sensitive and 

accurate than the mutual information based methods that do not utilize the evolution of 

the RNA in its calculation (see Figures 2.10). The variation of standard MIxy method – 

MIp, when integrated with the JN-Best method, improves the standard MIxy method. 

Both PEC/JN-Best and MI/JN-Best method uniquely identifies many base pairs, and 

together identifies many other base pairs. The ratio of the number of base pairs that are 
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uniquely identified with PEC/JN-Best and MI/JN-Bes is 62.5% in the 16S rRNA data set 

(Figure 2.11) and 76.0% for the three rRNAs. Thus the combination of these two 

covariation methods significantly increases the number of identified base pairs. 

The result also demonstrates that the sensitivity and accuracy of the covariation 

analysis is improved with the Joint N-Best. The vast majority of the base pairs with 

covariation analysis occur in secondary structure helices, while only a few tertiary base 

pairs are identified non-canonical base pairs, psueudoknots, and base pairs that begin to 

fold the secondary structure into a three-dimensional structure 11. 

 

Prediction of base pairs with empirical rules for RNA secondary structure – Helix 

Extend 

The helix extension method was initially used when the first 16S and 23S rRNA 

secondary structure diagrams were proposed from the analysis of the first few complete 

16S and 23S rRNA sequences and many partial sequences 41,42. However, as the number 

of sequences, and the diversity among those sequences increased, we have determined 

that nearly every base pair does have a covariation for datasets that include the Bacteria, 

Archaea, Eukaryotic nuclear encoded and the two Eukaryotic organelles. An assessment 

of the nucleotide conservation of the three primary domains of life – Bacteria, Archaea, 

and Eukaryotes reveals a significant amount of sequence conservation within each major 

phylogenetic domain [http://www.rna.ccbb.utexas.edu/SAE/2B/ConsStruc/]. For the later 

studies, different sets of alignments – (1) Bacteria, (2) Archaea, (3) Eukaryotes, (4) 

Bacteria, Archaea, Eukaryotic nuclear encoded, (5) nuclear encoded Bacteria, Archaea, 

Eukaryotes plus their two organelles – Mitochondria and Chloroplasts – were analyzed to 

identify covariation for nearly every base pair in the 16S and 23S rRNA structure model 
16,23 [http://www.rna.ccbb.utexas.edu/SAE/2A/nt_Frequency-/BP/16S_Model]. 

In this analysis, many of the base paired positions in the bacterial 5S, 16S and 23S 

rRNA comparative model analyzed in study have no variation and no covariation, thus 

the rationale for the helix extension method (see Figure 2.12 and 2.13). The helix-
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extension method facilitates the identification of many highly conserved or invariant 

positions in the bacterial rRNA helices. 

 

The purity of the covariation between the two positions that form a base pair, and 

the identification neighbor effects 

The purity of the covariations that underlies the prediction of a base pair range 

from an absolute 1:1 relationship (i.e. only base pairs with a strict covariation are found 

at a specific location in the structure, e.g. 70% A:U and 30% G:C) to base pairs with an 

increased number and types of exceptions (e.g. 40% A:U, 35% G:C, 15% G:U, 5% A:A, 

3% A:C and 2% G:G). While we have higher confidence in the prediction of a base pair 

when its covariation is very pure, the prediction of a base pair becomes increasingly more 

difficult as the purity of the covariation decreases (see Figure 2.14).  

The vast majority of pairs of positions with the strongest covariation scores are 

base paired in the RNAs higher-order structure. As the covariation scores decreases, 

many pairwise positions with lower covariation scores are still base paired, while some 

other pairs of positions with similar covariation scores do not form a base pair. Most of 

these positions are in close proximity in high-resolution three-dimensional structure, thus 

form neighbor effects 46,49 (Figure 2.16). While a complete understanding are still not 

known, these neighbor effects have been observed getting involved in base triple 

interactions in tRNA and group I introns 46,49 and could be involved in the fine tuning of 

tRNA structure in protein synthesis 81. 

 

The majority of the tertiary structure base pairs do not covary with one another 

The prediction of an RNA structure with comparative analysis has one primary 

underlying principle – the sequences of the same RNA family folds into a common 

secondary and three-dimensional structure. In other word, when base pairs are predicted 

by determining same pattern of variation of both positions in an alignment, it is implicitly 
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assumed that the sets of nucleotides that are base paired in an RNAs secondary and 

higher-order structure will have similar patterns of variation. Previous analysis of the 

high-resolution three-dimensional crystal structure of rRNAs revealed that the majority of 

the sets of nucleotides that form tertiary structure base pairs do not have similar patterns 

of variation – no covariation (details at the CRW site http://www.rna.ccbb.utexas.edu/-

SAE/2A/nt_Frequency/BP/). This observation was substantiated by more recent studies 
81. The major reasons of forming these non-covariant tertiary structure base pairs include 

1) While the different covariant base pair types can form similar conformations when two 

positions in an alignment have similar patterns of variation (e.g. G:C <-> A:U <-> U:A 

<-> C:G; C:C <-> U:U; A:G <-> G:A; etc.), non-covariant base pair types (e.g. G:A <-> 

A:A) can also form a similar conformation 49,84-86. In a secondary structure helix, the non-

covariant base pair types are unable to form similar base pair conformation due to their 

non-helical backbone conformation. However in the local structure flanking most of the 

tertiary structure, non-covariant base pair types can accommodate the non-helical 

backbone confirmation and maintain a similar base pair conformation. 2) Analysis of 

various tRNA high-resolution crystal structures revealed that different sets of tertiary 

structure interactions could form the same or very similar three-dimensional structures of 

the tRNA 49. Thus sets of analogous positions of RNAs in the same family do not always 

form tertiary structure interactions, while sets of analogous positions usually form base 

pairs in a secondary structure helix,; 3) Analysis of the high-resolution crystal structures 

of ribosome reveals that though the ribosome (and rRNAs for this study) is dynamic, the 

secondary structure of the rRNAs remains the same during different stages of protein 

synthesis. The movement is primarily associated with changes in the tertiary structure 

interactions 87. Thus, while our ultimate goal is to identify every base pair in an RNAs 

higher-order structure with comparative analysis, the current covariation analysis will not 

identify a high percentage of the tertiary structure base pairs. 

In conclusion, utilizing the Gutell lab’s new rCAD system, I have developed a 

more sophisticated covariation method based on phylogenetic events counting algorithm, 

This PEC method in combination with the enhanced mutual information, joint N-Best 
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and helix-extension methods creates a pipeline of programs that are superior to other 

existing covariation programs. This method has greater sensitivity and accuracy for the 

identification of the maximum number of secondary and other higher-order structural 

constraints including neighbor effects. 
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Chapter 3: CRWAlign-2: An Accurate Structure Template-based RNA Alignment 

and its application 

Abstract 

RNA has been discovered to be implicated in many more functions within the cell 

than just the message carrier between DNA and protein. The analysis of ribosomal RNA 

sequences is revealing more about the microbial ecology within all biological and 

environmental systems. The rapid determination of nucleic acid sequences dramatically 

increases the number of sequences that are available. Developing accurate and rapid 

alignment programs for these RNA sequences has been essential to decipher the 

maximum amount of information from this data. A template-based computational system, 

CRWAlign-2, that utilizes the Gutell lab’s RNA Comparative Analysis Database (rCAD) 

is developed to align new sequences to an existing template sequence alignment. 

CRWAlign-2 retrieves multiple dimensions of information from rCAD, creates a profile 

based on sequence information, secondary structure, and phylogenetic relationships, and 

aligns new sequences into the template alignment using the generated profile. 

The performance of CRWAlign-2 is compared with six widely-used template-

based rRNA alignment programs and two best de-novo alignment programs on different 

sets of 16S rRNA sequence alignments with sequence identity ranging from 50% to 

100%. The results reveal that CRWAlign-2 outperforms other alignment programs in 

aligning new sequences with higher accuracy. CRWAlign-2 also creates secondary 

structure models for each sequence to be aligned, which is very useful for the 

comparative analysis of RNA structures and sequences. Thus CRWAlign-2 can be used 

to align the very extensive amount of sequences determined by next-generation 

sequencing technology, which creates opportunities for numerous types of large-scale 

data analysis, such as the identification of the chimeric sequences generated in 

microbiome research projects. 
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Background 

The comparative method is widely used in many research areas for RNAs, and is 

fundamental for the computational analysis of large-scale sequencing data analysis. Many 

of the comparative analysis utilize a alignment of homologous RNA sequences, which 

juxtapose similar structural and/or functional elements into the same set of columns. The 

analysis of these alignment are used to discover the secondary and higher-order structure, 

patterns of structural variation and conservation, evolutionary relationships, and 

association between RNA’s structure and function. Thus accuracy of the alignment will 

determine the quality of the subsequent analysis.  A few of the seminal discoveries 

include: the determination of the phylogenetic relationships for organisms that span the 

entire tree of life and the identification of the third kingdom of life – the Archaea 88, the 

accurate prediction of RNA secondary structure and constraints in the higher-order 

structure 16,37, the identification of new structural motifs 11, the creation of pseudo-

energies for many RNA structural elements and their utility in improving the accuracy of 

folding an RNA sequence into its secondary structure 89, and the identification of the 

Microbiome - the collection of microbes in different ecological environments, using 16S 

rRNA 90-92.  

The advent of next-generation sequencing (NGS) method brings a deluge of 

nucleic acid sequences and rapidly enhances our understanding of many different 

biological systems. Thus the development of more accurate and faster automated 

alignment methods has become an essential and challenging task for optimal analysis and 

interpretation of the results. The two most widely-used alignment strategies are de novo 

alignment, and template-based alignment. 

De novo alignment programs, such as CLUSTAL 93,94, MAFFT 95, and SATe 96, 

generate multiple sequence alignments without the guide of any pre-refined alignment 

(seed/template alignment). Template-based alignment programs use a seed/template 

alignment as the reference to facilitate the alignment of new sequences. The seed 

alignment is usually manually curated to optimize its accurate juxtaposition of 

nucleotides. Several research groups have developed automated template-based sequence 
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alignment as web servers for different RNAs: Silva 97 aligns 16S and 23S rRNA, 

Greengenes 98 only aligns 16S rRNA, and RDP 99 only aligns 16S rRNA. Silva utilizes 

SINA (SILVA Incremental Aligner) which is implemented with a variant of the 

Needleman-Wunsch algorithm 100. It uses a maximal of 40 various seed sequences, and 

switch between them then aligning various regions. Greengenes aligns new sequences 

with the Nearest Alignment Space Termination (NAST) algorithm 98, which performs 

BLAST 101 to identify the most closely matched seed sequence and then do a pairwise 

alignment. RDP is a secondary-structure based aligner, which switched to Infernal 102 

from release 10. 

Several other stand-alone template-based alignment programs are available for 

download: Infernal, ssu-align 103, and HMMER 103-105. Both infernal and ssu-align build 

consensus secondary structure profiles for the template alignment which guide the 

alignment of new sequences, while ssu-align is implemented with additional integrative 

profile hidden Markov models (profile HMMs) on the consensus structure profiles. 

HMMER aligns new sequences with profile HMMs without creating the consensus 

secondary structures. While both infernal and HMMER are capable of aligning any type 

of RNA, ssu-align is currently limited to the 16S rRNA.  

Another approach of template-based alignment utilizes a seed/template alignment 

with the correct secondary structure of that RNA molecule to generate a descriptor that 

defines the primary and secondary structural constraints. The sequences that satisfy all 

conditions of the descriptor are identified with candidate structural models. This 

procedure has been implemented in several previous programs. RNAMot 106 is one of the 

first in this family of programs. It is developed with a simple descriptor syntax that 

facilitates manual generation of the descriptor, but only captures limited details in the 

structural constraints. RNAMotif 107 has a richer descriptor syntax with greater specificity 

and complexity of the RNA structural constraints that can be distinguished and identified. 

Locomotif 108 is developed with a graphical descriptor editor and dynamic search 

algorithm. While these programs are an improvement over the original RNAMot and 

provide some provisions to align new sequences,  their performance are not adequate for 
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aligning large numbers of large RNA sequences with great specificity due to lack of 

several essential functions. First, these programs are unable to identify larger RNA 

molecules (e.g. 16S rRNA, 23S rRNA). For example, RNAMotif program can search a 

structural descriptor with a maximum of 100 structural elements, while 16S rRNA 

consists of over 400 structural elements. Second, the descriptor syntax implemented 

within these programs is unable to encapsulate all possible variations in the RNA 

molecules, results in non-optimal candidates of search process. And third, these programs 

require the descriptor to be generated manually, which could cost substantial amount of 

time and effort.  

When sequences to be aligned have maximum identity with one another, both de 

novo and template-base alignment methods align sequences with high accuracies. 

However, for sequences have minimal identity, de novo alignment algorithms are unable 

to placing the nucleotides sharing common structural/functional features within each 

sequence into the correct columns of the alignment. In contrast, the template-based 

alignment algorithms utilize the previously determined seed alignment that has been 

refined to maximize the correct juxtaposition of structural, functional, and evolutionary 

relationships of the sequences. Until we are able to capture all constraints encrypted in 

the large RNA molecules into de novo alignment algorithms, the template-based 

alignment algorithms will be more accurate in the generation of new multiple sequence 

alignments. 

I developed a new template-based alignment system, CRWAlign-2, which utilizes 

the Gutell lab’s RNA Comparative Analysis Database (rCAD) relational database 

management system that cross-indexes multiple dimensions of information, including 

sequence alignments, comparative secondary structures, and phylogenetic relationships 
109. CRWAlign-2 1) analyzes the seed/template alignment with secondary structural 

information, and automatically generates the structural profile/descriptor containing 

sophisticated sequence and structural constraints for specific and generalized 

phylogenetic groups, 2) searches for and creates complete structural models satisfying 

this profile/descriptor, and 3) aligns the new sequences against the template alignment. 
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The structural information used by CRWAlign-2 is obtained from rCAD system and the 

CRW Site  (http://www.rna.icmb.utexas.edu/) 23. The phylogenetic information in rCAD 

is obtained from the NCBI Taxonomy database (http://www.ncbi.nlm.nih.gov/-

Taxonomy/taxonomyhome.html/). CRWAlign-2 is capable of aligning sequences for any 

type of RNA molecule that has an existing high-quality template alignment and an 

accurate secondary structure model regardless of the size of the molecule.  

The primary objective of this study is to measure the performance of CRWAlign-

2 in aligning new sequences, and compare with six widely-used template-based 

alignment programs (three web-based aligners: Silva, GreenGenes, and RDP; three stand-

alone aligners: Infernal, ssu-align, and HMMER), and two de novo alignment programs 

(SATe and MAFFT). For a rigorous assessment across all alignment programs, the 

bacterial 16S rRNA is selected as the test set, which has at least 1,400 nucleotides per 

sequence in length. The results reveal that CRWAlign-2 is superior to other programs in 

aligning new sequences with higher accuracy and generating more useful structural 

models besides the new alignment. 

The superior performance of CRWAlign-2 provides extensive research 

opportunities for multiple areas. One of the benefitted hot areas is microbiome research. 

The term “microbiome” was originally defined as “the ecological community of 

commensal, symbiotic, and pathogenic microorganisms that literally share our body 

space” 110.  More research has revealed that microorganisms inhabiting inside the human 

body play essential roles in health and disease. The advent of next-generation sequencing 

(NGS) method brings a deluge of nucleic acid sequences and enhances our understanding 

of the bacterial and archaeal world around us. Many scientists dedicating in microbiome 

research isolates and identifies the collection of microbes in different ecological 

environments. 

The 16S rRNA is the primary sequence to analyze and evaluate the microbial 

composition in the microbiome research. Despite the fair amount of effort spent on 

removing low quality sequences, more recent analysis suggest that a significant 
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percentage of these 16S rRNA sequences from microbiome research are likely to be 

artifacts rather than real biological diversity. One major source causing this dilemma is 

the formation of chimeric sequence during PCR amplification 111,112. A single-strand 

incompletely extended sequence from an earlier PCR cycle can work as a primer in the 

subsequent extension cycle. When there are more than one type of template sequences 

exists, these aborted extension product can anneal to an improper template, and form a 

chimeric sequence. Several previous studies suggested that current curated sequence 

database may contain up to 45% chimeric sequences 113-115.  Therefore it is essential and 

challenging to identify these chimeric 16S rRNA sequences.  

The two strategies most widely used in 16S rRNA chimera detection are 1) 

aligning query sequence onto a chimera-free reference alignment and calculating pairwise 

evolutionary distance; and 2) using BLAST to search NCBI database for taxonomic 

anomalies. Pintail 113 and Mallard 116 use Clustal 117 to align the query sequence to all or 

all pairs of sequences in a trusted chimera-free reference sequences. The evolutionary 

distance is calculated across the query sequence while large deviation from the expected 

evolutionary rate indicates a chimera. Bellerophon aligns query sequence using 

GreenGenes 98, and calculates the a evolutionary distance matrix between every pair of 

sequences for the left and right fragments at an assumed break point 115.  

ChimeraChecker 118 utilizes BLAST to search the closest match of different regions. 

When the closest match for region one is different that of region two, the query sequence 

is marked as potential chimera. While these chimera-detection methods are used widely 

in diverse research, their sensitivity and accuracy are not satisfactory.  

The performance of the chimera checking programs is affected by two essential 

factors: 1) the accuracy of the generated sequence alignment, and 2) the approach used in 

sequence comparison. The 16S rRNA sequence has 1542 nucleotides (E. coli number), 

and contains multiple highly variable regions which is the major source of inaccurate 

alignment. The existing sequence alignment programs, such as Silva, GreenGenes, RDP, 

SATe, and Clsutal can not align 16S rRNA sequences with satisfactory accuracy 119. 
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Thus, the generation of the most accurate sequence alignments is absolutely essential for 

the subsequent chimera detection analysis. The other factor, the approach used in 

sequence comparison, is also critical to assure high accuracy and sensitivity in the 

detection of chimeric sequences. Both BLAST search and evolutionary distance 

calculation that are widely used in existing chimera detection algorithms are based on 

pairwise comparison between a query sequence and a subject (reference) sequence. 

Though the pairwise comparison reveals useful information by calculating the 

mismatches between the query and subject sequences, it does not use the multi-

dimensional sequence information as effectively as it could. The result could be biased by 

incomplete or false taxonomy information associated with reference sequences (in 

BLAST-based methods). Therefore, creating a more accurate sequence alignment and 

implementing a more sophisticated sequence comparison strategy incorporating more 

dimensions of sequence information is vital and necessary to improve the accuracy and 

sensitivity of the chimera detection. 

 I developed a chimera-checking program that utilizes the most accurate sequence 

alignment algorithm, CRWAlign-2, and a more sophisticated strategy for sequence 

comparison. With a well-aligned reference sequence alignment and taxonomy 

information associated with each reference sequence, the comparison between the query 

sequence and the entire set of reference sequences at a taxonomy branch can provide 

more useful information to discover the features of phylogenetic groups and the similarity 

between the query sequence and the specific phylogenetic group. My chimera-checking 

program uses both high-quality reference sequence alignment and taxonomy information 

to generate the statistical characteristics of different phylogenetic groups and analyze the 

query sequences with the generated statistical signatures. The query sequences are first 

aligned onto the reference sequences alignment utilizing CRWAlign-2. Then all reference 

sequences are mapped onto the phylogenetic tree based on the known taxonomy 

information, which generates a tree representing the phylogenetic relationships of the 

reference sequences.  The chimera-checking program traverses from top (root node) to 

bottom (leaf node) of the phylogenetic tree. At each node of the tree, the signature 
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difference between the query sequence and the reference sequence alignment is measured 

with multiple statistical metrics. Based on the calculated signature difference, the query 

sequence is categorized as a member of that phylogenetic branch, or a chimeric sequence 

consisting of multiple fragments from different phylogenetic branches.  

 

Methods 

1. CRWAlign-2 

The CRWAlign-2 system is an strongly enhanced version with numerous 

expanded and novel functions of the RNAMotif program 107 that was developed primarily 

to identify sequences that satisfy the secondary structure constraints in the descriptor. The  

enhanced CRWAlign-2 program 1) has a richer and more sophisticated descriptor syntax 

that provides greater specificity; 2) analyze the template alignment and automatically 

generates a descriptor; 3) is capable of operating on much larger RNA molecules (e.g. 

16S and 23S rRNA); 4) searches and creates secondary structure models for each 

sequence; 5) aligns new sequences automatically based on analogous primary and 

secondary structural similarity; 6) is written in C# and directly exchange data with MS 

SQL (rCAD). 

 

Stage1: Computer Generated Secondary Structural Descriptor  

The first stage is to automatically create a structural descriptor that contains 

information describing various constraints applied to the canonical, regular, or standard 

RNA secondary structure and relevant taxonomy. The descriptor syntax is based on the 

original RNAMotif program 107 but enhanced significantly to improve detail of the 

encapsulated structural constraints and specificity. The most important enhancements 

include: a) each structural constraint (e.g. the length of helix/unpaired region, the mispair 

(or non-canonical base pair) number for helix) are described more accurately with an  

assigned weight score which indicates the frequency/occurrence of the variable; b) to 
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reduce the running time of structure identification process, a weight score cutoff section 

is constructed at the end of each descriptor that defines the lowest score of an elongating 

structural model; and c) the program will automatically generate descriptors at each 

phylogenetic branch to describe the most relevant structural constraints applying on that 

phylogenetic group. These enhancements in the descriptor significantly improve the 

specificity of the descriptor or different RNA molecules and phylogenetic groups. 

As shown in Figure 3.1C, the major fields in descriptor include 

 Params: this section define the base pairing rule, e.g. "wc" just consider Watson 

Crick base pair, while "wc += gu" consider both Watson Crick and Wobble base 

pair type. 

 Descr: the main section of the descriptor. Two major types of structural elements 

are defined – helix (h5/h3) and single strand (ss).  The format for  h5/3 and ss are: 

o h5(tag =helix name, {len1 = x1: weight = w1; len2= x2, weight=w2}, 

{mispair = ma: weight = wa; mispair = mb: weight = wb}  where: 

 Length and mispair are discrete numbers defining the allowed 

lengths and mispairs. These numbers are not defining the minimum 

and maximum lengths and mispairs. At least one set of lengths and 

mispairs are required.  

 Weights (column) are the frequency for each length and mispair, 

where the frequencies for all of the lengths (and mispair) sum to 

one. 

 The presence or absence of mispairs at the end of a helix is defined 

with the ends variable (“mm” allows mispairs at both 5’ and 3’ end 

of helix; “pm” only allows mispair at 3’ end of helix; “mp” only 

allows mispair at 5’ end of helix; “pp” disallows any mispair at 

neither 5’ nor 3’ end of helix”). 

o h3 (tag = helix name) is the sequence associated with the 3’ half of helix. 
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o ss(tag = single strand name, {len1 = x1: weight = w1; len2 = x2: weight = 

w2}, seq = regular expression of nucleotide pattern) 

 Similar to h5, length are discrete number defining allowed lengths 

with weights. 

 Allowed sequence e.g. seq = "^UG*AG$" defines a single strand 

sequence that starts at the 5’ end with "UG", “*” designates an 

insertion or deletion with no sequence specificity, and terminates at 

the 3’ end with "AG". While “^” and “$” force the UG and AG to 

be adjacent to the end of the flanking structural element, their 

absence allows the UG and AG sequences to occur anywhere 

within the single stranded region. 

o The example in Fig. 3.1A, B, and C has one hairpin composed of h1 

(h5,h3) and ss1 (ss). The Descr for this simple secondary structure has 

only three lines, one for each structure element, in the order they appear in 

the sequence 5’ to 3’ - h5, ss, and h3. 

o The Descr and secondary structure diagram for tRNA – phe secondary 

structure with four helices (eight structural elements) and five single 

stranded, is illustrated in Fig. 3.1D.  

 Sites: define the allowed base pair types (e.g. only {A:U, U:A, C:G} at base pair 

1 in helix 1) at specific positions in a helix (pos=1/pos=$-0, pos=2/pos=$-1, 

pos=3/pos=$-2, … pos=x/pos=$-(x-1)). 

 Matrix: SxE - defines the number of sequences in an alignment (S) and number 

of structural elements defined in the descriptor (E). For example “7x3” is for an 

alignment with 7 sequences in the alignment and 3 structural elements defined in 

the descriptor (h5 of helix 1, single strand 1, and h3 of helix 1). 

 Weights: Each sequence in the alignment has a weight (row) for each structural 

element (E).  

o For the example (Fig 3.1A), the first sequence (seq1) in the alignment has 

all three structural elements (h5, singleStrand1, h3). The weights of H5/3 
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are derived from the length and mispair weights. Seq1 in the alignment 

(Fig. 3.1A) is “AUCGU”:”ACGAU” in helix1, the length (# bps) is 5 and 

the mispair is 0. The weight for the first element h5 of helix1 is 0.714 x 

0.857 = 0.612. Seq1 is “UUAG” in ss1, the length is 4. Thus the sequence 

weight for ss1 is 0.571. Therefore, "seqIndex:0 0.612, 0.571, 0.612" 

means that the first sequence in the alignment has all three structural 

elements (h5, singleStrand1, h3), and according to the constraints 

identified, it has weight score 0.612 for h5 of helix 1, 0.571 for single 

strand 1, and 0.612 for h3 of helix 1. 

 Cutoffs: the search for complete structural model could start at any structural 

element. As the search is proceeding and the structural model is extending, the 

program will keep checking the overall weight score of the extending model. If 

the model is abnormal (say it is consisting of consecutive structural elements with 

very low weight score), the extension will be terminated since this model is very 

likely to be false. For example, if the extending model has a helix with 3 base 

pairs, and a loop (single strand) with 7 nucleotides, while the descriptor defines 

that helix with length = 3 is very rare (say its weight is 0.01), and the loop with 

length 7 is also very rare (say its weight is also 0.01), then this model is very 

likely caused by chance because its overall weight score is very low 

0.01(h5)x0.01(ss)x0.01(h3)=0.000001. The program will check the matrix 

defined in Cutoffs section, and determine if that 0.000001 is significant. If it is not 

significant, the extension will be terminated. 
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Figure 3.1: The generation of structural descriptor. The sequence alignment (A) and a 

common secondary structure (B) are used to generate the structural descriptor (C). For 

RNA molecules like tRNA (D), the main section (“Descr” section) is consisting of 

multiple descriptive lines while each line describes a structural element and the 

constraints applied.  
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Figure 3.2 illustrates the overall process of generating descriptors for secondary 

structural elements that occur within the analogous region of an RNA molecule from the 

template sequence alignment. As shown in Figure 3.2a, three phylogenetic nodes are 

under consideration, and for each of the three nodes, variation in nucleotide composition 

is shown in the secondary structure diagram. The first sequence in each node is shown in 

black, while accommodated variations within each node are shown in blue. The aligned 

sequences in the same phylogenetic nodes are grouped together in the sequence 

alignment, i.e. seq1-2 under node 1, seq3-4 under node 2, and seq5-7 under node 3 

(Figure 3.2b). The positions that form base pairs with one another are highlighted and 

connected with red lines. At the onset, a generalized structure descriptor (Fig. 3.2c) that 

contains the structural constraints, such as the length of helix and unpaired region, the 

mispair number, the nucleotide conservation, etc, for every sequence in the template 

alignment is created. In the subsequent process, the structural descriptors for all 

phylogenetic nodes (Nodes 1, 2, 3 in Fig. 3.2c) are generated to provide the most relevant 

structural constraints for each of the phylogenetic nodes. To simplify the example shown 

here, only the main body of the descriptor is shown in Figure 3.2c. 
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Figure 3.2: For CRWAlign-2, (a) secondary structure diagrams for each of the three 

phylogenetic nodes. Seq1 in node 1, Seq3 in node 3, and Seq5 in node 3 are shown with 

black nucleotides; Blue nucleotides reveal the differences between the first sequence in 

each node (Seq1, Seq3, and Seq5) and the other sequences within each node; (b) 

Template sequence alignment with seven sequences distributed over three phylogenetic 

nodes. Red lines above the alignment indicate columns in alignment that form a base 

pair; (c) RNAMotif structural descriptors for node 3 and for all seven sequences (root). 

 

Stage 2: Identifying Secondary Structural Elements and Creating Secondary 

Structure Models 

After generating structural descriptors for all relevant taxonomic nodes that are 

present in the template alignment, CRWAlign-2 searches a sequence to identify the 
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structural elements defined within the descriptor on a sequence, and build the candidate 

structural models.  The flowchart in Figure 3.3 illustrates the overall process of searching 

structural elements and creating complete structural model.  

 

Figure 3.3: The flowchart of the complete structural model identification process for 

CRWAlign-2. The program reads the structural descriptor and sequences to be aligned, 

prioritizes structural elements in the descriptor to build seed points, and iteratively 

searches for complete structural models on the sequences that satisfy all structural 

constraints defined in the descriptor (see text in Methods section for details). 

The first step is to read the new sequences (e.g. GenBank entries) and the 

descriptor profile that was generated in Stage 1 into the memory, and determine the most 

relevant descriptors for new sequences. For each sequence to be searched that contains 
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phylogenetic information, the most closely related phylogenetic node with existing 

descriptor is determined. Each structural element defined within the descriptor is 

formatted with all constraints, and organized with its relative order in the reference 

secondary structure. 

The next step prioritizes or ranks the structural elements in the descriptor by their 

stringency, as measured with a probability score for each structural element. The more 

stringent, the less likely it will occur by chance, and thus has a lower probability score. 

The identification of the structural model starts with the structural elements with the 

lowest probability scores, which serve as the initial seed or nucleation points for further 

structural extension. 

The program then attempts to identify the structural elements that are adjacent to 

these initial seeds. When there is more than one structural element flanking the seed, the 

one with lower probability score will be extended first. The adjacent structural element 

can be either a base paired region (e.g. a helix strand) or an unpaired region (e.g. a 

hairpin, internal, or multi-stem loop). When the program is able to identify one or 

multiple different subsequences with acceptable matches for the structural element under 

search, CRWAlign-2 carries all of the matches forward to create all possible structural 

model candidates. The growing seed structure models are used as the seeds for the next 

round. This extension of the structural model iterates either to a set of complete structural 

models, as defined by the identification of all of the structural elements in the descriptor. 

Or when the extension on both 5’ and 3’ ends of the seeds cannot be extended, and then 

the process is terminated, resulting in a partial structure model. 

During the structural extension, when there is a helix enclose the seed with the 

one strand (5’ strand) located adjacently to the 5’ end of the seed but the other strand (3’ 

strand) tens of nucleotides away from the 3’ end of the seed, the program searches for 

matches of the entire helix (both strands), add the matches for 5’ strand to the growing 

seeds, and put the matches for 3’ strand to a temporary list. Thus, for a candidate 

structure model, it is possible that a putative structural element identified in say round 3 

conflicts with structural elements identified in round 7. To ensure the consistence of each 
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structural element and terminate the extension of structural models with potential 

inconsistency, the program performs a consistency test at the end of each round of 

extension to evaluate the fitness of the constraints for each structural element with the 

identified structural model. The consistency test checks 1) the compatibility between the 

growing seed structural model and every potential match in the temporary list, 2) the 

overall weight score of the seed structural model. The candidate structure models that fail 

this test result in a partial solution. 

Abnormal or aberrant insertions/deletions or nucleotide composition can occur in 

some sequences, which stops the continuous elongation. While the original RNAMotif 

would abort without reporting partial structure models, CRWAlign-2 allows users to 

permit exceptions to specific structural elements defined in the descriptor. The number of 

allowed exceptions represents the variance from the canonical or regular structure model. 

As the number of allowed exceptions increases, the program is able to identify more 

complete or partial structure models with lower specificity. Therefore, while this number 

should be minimal to avoid over-loosing structural constraints and causing long running 

time, it is extremely useful to have this option to permit the identification of structural 

models that are truly exceptions to the norm.  

Since the descriptor of the most relevant phylogenetic node has more specific 

structural constraints for that branch, the specificity and resolving power for this 

identification process is greatest when the phylogenetic information for each sequence is 

known. In contrast, the generalized descriptor without the phylogenetic information 

identifies more sequences and requires more computational cost. 

It is important to note that CRWAlign-2 not only identifies sequences that contain 

the structure model in the descriptor, but also creates a structure model for those 

sequences that have one. This feature thus allows a very large number of comparative 

structure models to be generated automatically.  These comparative structure models can 

be used to in multiple applications including evaluate the accuracy of RNA folding 

algorithms22,89, and identify structural motifs for different phylogenetic groups. 
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Stage 3: Aligning Sequences Based on Similar Primary and Secondary Structural 

Elements 

As noted earlier, CRWAlign-2 is capable of aligning new sequences based on a 

common secondary structure. With the complete structural models determined in stage 2, 

the sequence will be aligned based on primary and secondary structural similarity with 

the template sequence alignment. When there are multiple complete structure models 

identified, the one with highest overall weight score is used to align the sequence. 

According to the relative order and boundary of structural elements identified in the 

structure model, the sequence to be aligned is split into multiple fragments. For each 

fragment that represents a specific structural element in the secondary structure and the 

descriptor, the alignment program identifies the previously aligned template sequence 

that is most similar to the sequence to be aligned, based on the length of the fragment and 

the sequence conservation. The alignment of the new sequence against the template will 

be performed to maximize the correct juxtaposition of the nucleotides in the new 

sequence to the analogous nucleotides in the template sequence. When aligning the 

pairing regions (e.g. helices), the program first attempts to juxtapose nucleotides within 

the same length, regardless of sequence conservation. In contrast, sequence conservation 

in the unpaired regions is the primary factor in the juxtaposition of sequences. 

 

2. Chimera-checking Procedures 

The creation of the reference sequence alignment and aligning query sequences 

Template-based sequence alignment programs utilize a reference alignment that is 

usually manually curated to optimize its accurate juxtaposition of nucleotides regarding 

the similarity in nucleotide sequence, higher-order structure, and evolutionary 

relationships. Thus the creation and maintenance of a most accurate reference sequence 

alignment is essential for performing the subsequent chimera-checking procedures. The 

reference sequence alignment used in this study is manual checked to assure it is chimera 

free and reliable. This process requires significant amount of manual effort. The relevant 
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metadata of each sequence within the reference alignment, including the taxonomy 

information, are stored and cross-indexed in our RNA Comparative Analysis Database 

(rCAD) system. As shown in Figure 3.4, the query sequences are aligned onto the 

reference sequence alignment utilizing CRWAlign-2. 

 

Figure 3.4: The alignment of query sequences using CRWAlign2 and generation of the 

phylogenetic tree contains all valid taxons with sufficient amount of aligned sequences in 

the reference sequence alignment. 

 

Evaluation of query sequences 

The taxonomy information of each sequence in the reference sequence alignment 

is obtained from NCBI (ftp://ftp.ncbi.nih.gov/pub/taxonomy/). Based on these 

phylogenetic relationships, all reference sequences are mapped onto certain branch of the 

taxonomy tree. Given a taxon (a node of the phylogenetic tree), if it contains a minimal 

amount of reference sequences (at least 10 sequences), the taxon will be marked as a 

valid node which will be used in the following analysis. As shown in Figure 3.4, with a 

reference alignment that consists of 1750 bacteria 16S rRNA sequences, all valid taxons 
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are displayed as a partial phylogenetic tree which means all these nodes contain at least 

10 sequences.  

The program traverses through the taxonomy tree from root to leaf nodes, and 

determines if the query sequence is purebred or chimeric. As shown in Figure 3.4, the 

root node Bacteria has three valid child nodes with sufficient amount of sequences 

aligned in the reference alignment: Cyanobacteria, Proteobacteria, and Firmicutes. For 

each child node, the signature nucleotide frequency of each position is calculated. Given 

a position within the alignment, a weighted nucleotide frequency (Fw) is calculated as 

௪ܨ 	ൌ 	෍ ሺ ேܲ

ܵ
ሻଶ																																																																ሺ3.1ሻ

ே∈ሼ஺,஼,ீ,௎,ିሽ
 

where PN is the number of sequences having a specific nucleotide N (N in {A, C, G, G 

and deletion “-“}) at this position, and S is the number of sequences having nucleotide at 

the position.  The consensus score (Ccons) of the position is calculated as 

஼௢௡௦ܥ 	ൌ 	෍
ேܲ ∗ ܵܤܣ ቀ ேܲ

ܵ െ ௪ቁܨ

ܵ
																																												ሺ3.2ሻ

ே∈ሼ஺,஼,ீ,௎,ିሽ
 

A higher Fw value indicates more conservative the position is. For example, given 

a position (E. coli nucleotide number 80 at TaxID 1224, Proteobacteria) has {A: 990, C: 

252, G:201, U:225, deletion: 50}, the Fw at this position is calculated as 

(990/1718)2+(252/1718)2+(201/1718)2+(225/1718)2+(50/1718)2=0.385, and its CCons  is 

0.22. For another position (E. coli nucleotide number 39 at Proteobacteria node) with {A: 

0, C:1718, G:0, U:0, deletion: 0}, its Fw is (1718/1718)2=1, and the Ccons equals 0. 

For the position i in a given sequence, the column difference score (CDSi) is 

calculated as 

ܦܥ ௜ܵ ൌ ஼௢௡௦ܥሺܵܤܣ െ ௜ܨሺܵܤܣ െ  ሺ3.3ሻ																																																							௪ሻሻܨ

where Fi is the corresponding nucleotide frequency of column i in the alignment. With 

the reference alignment mentioned above, given a query sequence (Accession Number 
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AB015574) that has C at position 39 and A at position 80, its CDS39 is 0 while CDS80 is 

0.029. This example indicates that CDS inversely correlate with the similarity between 

the query sequence and the reference alignment: larger CDS value indicates more 

difference.  The entire sequence difference score (SDS) is calculated as  

ܵܦܵ ൌ 	෍
ܦܥ ௜ܵ

ଶ

ܰ
																																																																								ሺ3.4ሻ

ே

௜ୀଵ
 

where N is the total number of positions under check within the test sequence.  Larger 

SDS value indicates more difference between the entire query sequence and the reference 

alignment. The query sequence is considered to be homologous when its SDS is lower 

than any aligned sequence in the reference alignment. 

 

Results 

The CRWAlign-2 has been evaluated in 1) the accuracies of the alignment results, 

2) the running time of the program executions, and 3) the scalability for large data sets. 

The results have been compared to eight existing widely-used automatic alignment 

programs.  

 

1. Alignment programs compared 

Eight alignment programs are included in the comparison with CRWAlign-2: ssu-

align, infernal, HMMER, RDP, Silva, GreenGenes, MAFFT and SATe. Six of them are 

implemented with template-based alignment algorithm: ssu-align, infernal, HMMER, 

Silva, RDP, and GreenGenes, while the other two (MAFFT and SATe) are de novo 

alignment programs. Among the six template-based alignment programs, ssu-align, 

Infernal and HMMER are stand-alone and available for download 

(http://selab.janelia.org/software.html). The other three (Silva, RDP, and Greengenes) do 

not provide download, thus are only available as web-servers. In this analysis, all 

programs and web-servers run with the default parameters. 
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Regarding the type of RNAs each program are able to align, CRWAlign-2, ssu-

align, Infernal, HMMER, MAFFT, and SATe are capable of aligning any type of RNA 

sequences, while Silva, RDP, and Greengenes are able to only align 16S rRNA. To 

perform a robust performance comparison, 16S rRNA is used in this study, since it is the 

only RNA that can be aligned by all nine programs. Table 3.1 shows the details 

information about sequences in the test and template data sets. Both test and template 

data sets are random subsets of a large bacterial 16S rRNA alignment available at the 

CRW site. There is no overlap between a test and template set (i.e. none of the sequences 

in the test set are present in the template set. In the measurement of the template-size 

effect, small template alignments are always subsets of any larger template alignment (e.g 

the 500 16S rRNA template alignment was a subset of the 2000 16S rRNA template 

alignment). 

 

Table 3.1: Sequences in template alignments and used for testing. No overlap 
occurs between sequences tested and sequences in template alignments. 

 

RNA 

Molecule 

Template Sequences Unaligned Test Sequences 

Count 
Avg 

Length 

# of 

Taxonomic 

Leafs 

Count 
Avg. 

Length 

# of 

Taxonomic 

Leafs 

 

16S Bacterial 

rRNA 

250 1447.3 188 
500 1446.1 320 

500 1447.4 324 

1000 1449.4 593 
1000 1448.1 598 

2000 1449.2 1154 
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2. Evaluating the Accuracy of an Alignment  

The accuracies of the sequence alignments generated for this analysis are 

evaluated through pairwise sequence comparisons with the correct alignment. Given a 

pair of sequences i and j, the pairwise sequence identity for sequences i and j is defined as 

௜௝ܫܵܲ ൌ 	
|۰|
|۳|

																																																																				ሺ3.1ሻ 

where B is the set of columns that contain nucleotides from both sequences i and j, and E 

is the set of columns that contain nucleotides from either sequence i or j. The pairwise 

sequence accuracy is defined as  

Accuracy ൌ
|܁|
|۳|

																																																																	ሺ3.2ሻ 

where S is the set of columns in the test alignment that have an identical stack relative to 

the correct alignment. For example, if nucleotide 45 (G) of sequence i is stacked with 

nucleotide 53 (C) of sequence j in the correct alignment, then the test alignment must 

have nucleotide 45 stacked with nucleotide 53 and not with a C nucleotide at any position 

in sequence j other than nucleotide 53. If a nucleotide from either sequence is stacked 

with a gap, the test alignment must have the nucleotide stacked with a gap. 

 

3. Accuracy Comparison with Other Methods 

A test set consisting of 1000 bacterial 16S rRNA sequences is aligned by each 

alignment program. The accuracies of the generated alignments are calculated based upon 

the pairwise sequence identity ranges (Fig. 3.3). Each of the four programs (CRWAlign-

1, CRWAlign-2, HMMER and Infernal) that accept template alignments are given three 

template alignments with different size (250, 500, and 2000 sequences), and the best 

results of each are presented in Fig. 3.4. 
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Figure 3.5: The pairwise sequence accuracies for alignments generated with CRWAlign-

1, CRWAlign-2, and eight other alignment programs. Accuracies were evaluated for 

sequences with five pairwise sequence identities, 50-60%, 60-70%, 70-80%, 80-90%, and 

90-100%. Alignments contain 1,000 bacterial 16S rRNA sequences. 

All programs have very high accuracies (>98%) in the 90-100% pairwise identity 

range. CRWAlign-2 (dark red bar in Figure 3.5) and Silva outperform the other programs 

with ~99.25% accuracy, which is 0.2% (for SATe, Mafft) to 1.0% (for GreenGenes) 

higher than the other seven programs. In the 80-90% identity range, CRWAlign-2 

achieves 98.8% accuracy, which is superior to other eight programs, including Silva, by 

0.5% (for Silva) to 2.7% (for GreenGenes). In the 70-80% sequence identity range,  

CRWAlign-2 and ssu-align are the top two programs with 97.9% accuracy, which lead 

other programs by 1.8% (Silva) to 5.7% (Mafft). In the 60-70% and 50-60% identity 

ranges, CRWAlign-2 beats other programs again by at least 0.7% accuracy. While the de 

novo alignment programs (Mafft, SATe) are able to obtain similar accuracy as the 
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template-based program in the high sequence identity ranges (80-90% and 90-100%), 

their accuracies are remarkably lower than the template-base programs for sequences 

with lower pairwise identity. 

 

4. Effect of Template Size on Accuracy 

CRWAlign-2, HMMER and Infernal are able to accept user-defined template 

alignment with different sizes. To gauge the influence of the template size on the 

accuracy for these three programs, each program is analyzed to align a test set consisting 

of 1000 bacterial 16S rRNA sequences with three different template alignments 

containing 250, 500, and 2000 bacterial 16S rRNA sequences. As shown in Figure 3.6, 

all three programs achieve nearly identical accuracies with all three template alignments, 

while CRWAlign-2 outperforms HMMER and Infernal in every case.  

 

Figure 3.6: The pairwise sequence accuracies for alignments generated with CRWAlign-

1, CRWAlign-2, HMMER, and Infernal were determined. The alignments contain 1,000 

bacterial 16S rRNA sequences. Three different template sizes (250, 500, and 2,000 

sequences) were evaluated for five pairwise sequence identities, 50-60%, 60-70%, 70-

80%, 80-90%, and 90-100%. 
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5. Comparison of the Run Time and Scalability 

The execution time of aligning 1000 bacterial 16S rRNA sequences is determined 

for CRWAlign-2, and the three stand-alone programs, HMMER, Infernal and ssu-align. 

To determine the effect of template size on the execution time, the three programs 

(CRWAlign-2, HMMER, and Infernal) that are able to accept user-defined template 

alignment are check with three data points, while there is only one data point for ssu-

align since it integrated the profile (default template) into the program. Due to platform 

requirements and software dependencies, CRWAlign-1 and CRWAlign-2 were tested on 

Windows Server 2008 R2 Enterprise (64 bit) with an Intel Xeon x7550 @ 2GHz. 

HMMER and Infernal were run on a Linux platform (Ubuntu 11.10, 32 bit) with an Intel 

Core i7 920 @2.67GHz. The ssu-align program was run on Solaris 10.0 with an Intel 

Xeon processor 5400.  These three server configurations have very comparable speeds. 

Figure 3.7A shows HMMER and Infernal run faster than CRWAlign-2 and ssu-align with 

a tradeoff in lower accuracies (as shown in Figure 3.6). CRWAlign-2 creates the 

complete secondary structure models for each sequence to be aligned. The identification 

of structural models is an iterative process and requires significant amount of 

computational time, which is still faster than ssu-align. While the comparative structural 

models generated with CRWAlign-2 are essential for the alignment of sequences, these 

structure models can be used for other applications, e.g. to improve and evaluate RNA 

folding algorithms 89.  

As mentioned previously, the operating process of the CRWAlign-2 program 

consists of three phases: 1) the generation of structural descriptor, 2) the identification of 

complete structural models for each sequence, and 3) aligning sequences. Thus the total 

running time of CRWAlign-2 is expected to be sensitive to the template size as well as 

the number of sequences to be aligned.  

The complete execution time of CRWAlign-2 for aligning two test sets (500 and 

1,000 16S rRNA sequences) using 3 different template alignment (250, 500, and 2,000 

sequences) is determined (Figure 3.7B). The computational time of generating the 

structural descriptor increases linearly with the number of sequences in the template 
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alignment, while the execution time of two latter stages (identifying structural models 

and aligning sequences) is linear to the number of sequences to be aligned. In addition, 

larger template alignment requires more computational cost in the stage of descriptor 

generation, but helps to speed up the identification of structural models which is the most 

time-consuming step.  

 

 

Figure 3.7: A) The total execution time of aligning 1,000 bacterial 16S rRNA sequences 

for four alignment programs with three different template sizes (250, 500, and 2,000 

sequences). B) The execution time of the different phases for CRWAlign-2 programs in 

aligning two test sets (500 and 1,000 bacterial 16S rRNA sequences) with three different 

template sizes (250, 500 and 2000 sequences).  
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6. Identification of chimeric sequences  

As shown in Figure 3.8, the query sequence (Accession No. AB015574) is 

evaluated at three taxonomy nodes: Cyanobacteria, Proteobacteria, and Firmicutes. As 

shown in Figure 3.8, the signature nucleotide frequency at each node is computed. At 

each node, the CDS of every position within the test sequence are calculated with 

equation 3.3 and plotted: peaks indicate significant difference while valleys represent 

high similarity. The plots show that the query sequence is quite different from 

Cyanobacteria and Firmicutes branches at most positions since high peaks of CDS are 

observed (Figure 3.8A, Figure 3.8C), while it is very similar to Proteobacteria with very 

few exceptions (Figure 3.8B). The SDS of the query sequence at Cyanobacteria, 

Proteobacteria, and Firmicutes nodes are 0.14, 0.007, and 0.87 respectively, which further 

confirmed that the query sequence is a member of Proteobacteria (Figure 3.8 highlight in 

red). 

 

Figure 3.8: Scenarios at three child nodes of Bacteria: Cyanobacteria (A), Proteobacteria 

(B), Firmicutes (C). 

The next step starts at the three child nodes of Proteobacteria: 

Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria (Figure 3.9). Similar 
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computational process is fulfilled at each of these three nodes. The SDS values of the 

query sequence are 0.093 at Alphaproteobacteria node, 0.063 at Betaproteobacteria, and 

0.008 at Gammaproteobacteria. The result indicates the test sequence is purebred 

Gammaproteobacteria (Figure 3.9 highlight in red). 

 

Figure 3.9: Scenarios at three child nodes of Proteobacteria: Alphaproteobacteria (A), 

Betaproteobacteria (B), Gammaproteobacteria (C). 

The four child nodes of Gammaproteobacteria are under investigation in the next 

step (Figure 3.10). The SDS values of the query sequence at these four nodes are: 0.019 

at Alteromonadales, 0.037 at Pseudomonadales, 0.066 at Enterobacteriales, and 0.134 at 

other groups. None of these SDS values satisfy the threshold to be considered as purebred 

at any of these four phylogenetic nodes. However, the plot reveals that the 500 

nucleotides at the 5’ end is closely related to Pseudomonadales (Figure 3.10B), while the 

rest 1000 nucleotides at the 3’ end is very similar to Alteromonadales (Figure 3.10A). 

The SDS value by sliding window (100 nucleotide window size) confirms this 

identification. Therefore, the test sequence is identified as a chimeric sequence: 
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Pseudomonadales at nucleotide 1-500, and Alteromonadales at nucleotide 501-1542 

(Figure 3.9 highlight in dark blue). 

 

Figure 3.10: Scenarios at four child nodes of Gammaproteobacteria: Alteromonadales 

(A), Pseudomonadales (B), Enterobacteriales (C), other groups (D). 

The chimera-checking program is also tested with a set of query 16S rRNA 

sequences consisting of 100 artificial chimeric sequences. These artificial chimeric 

sequences are created by breaking reference 16S rRNA sequences with known taxonomy 

information, and switching the fragments between different sequences. The program 

detects 99 out of 100 artificial chimeric sequences with correct taxonomy groups 

identified. This result suggests that my chimera-checking program is accurate and 

sensitive in the identification of chimeric 16S rRNA sequences.  

The same underlying principle used in chimera-check program is also utilized to 

implement an alignment evaluating program.  
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Discussion 

Manual curation has been used to create the most accurate RNA sequence 

alignment available at the CRW Site 23. While this process maximizes the optimal 

juxtaposition of similar structural and facilitates the generation of highly accurate large 

sequence alignments, it requires a significant amount of time and manual effort. With the 

development of next gen sequencing technology that generates exceedingly large 

amounts of sequencing data, the traditional manual curation process is not feasible. Thus 

it has been essential and challenging to develop alignment programs that will create 

highly accurate sequence alignment quickly. 

I have developed a template-based alignment program – CRWAlign-2 that utilizes 

sequence composition, secondary structural information and phylogenetic information to 

align sequences based on primary and secondary structural similarity. CRWAlign-2 

retrieves the required information from rCAD, and uses it to create the structural 

descriptor which helps the identification of structural models and the alignment of new 

sequences.  

The accuracy of CRWAlign-2 is tested on a set of 16S bacterial rRNA sequences 

and compared with various template-based and de novo sequence alignment programs 

(Figure 3.4). The result reveals that CRWAlign-2 significantly outperforms eight 

analogous alignment programs in accuracy. When the sequence identity range is 90-

100%, the competing programs have similar accuracy to CRWAlign-2. However, for 

lower sequence identity, the other programs are considerably less accurate than 

CRWAlign-2. Even for the sequence identity range of 50-60%, CRWAlign-2 is able to 

align sequences with ~95% accuracy, which is significant higher than other existing 

alignment programs. The computation cost of CRWAlign-2 scale linearly with the 

number of sequences 1) to be aligned, and 2) in the template alignment (Figure 3.6). 

In addition to aligning sequence accurately, CRWAlign-2 creates secondary 

structural models for each sequence to be aligned. These secondary structure information 

is very valuable for the program development of RNA secondary structure prediction 
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89,120-123, and for the determination of structural statistics (http://www.rna.ccbb.-

utexas.edu/SAE/2D/index.php). The structure models created by CRWAlign-2 can be 

easily converted into various formats of RNA secondary structure file including bpseq, 

alden, rnaml, ct, and  bracket (http://www.rna.icmb.utexas.edu/DAT/3C/SBPI/, 23), which 

further increases their utility. Currently the Gutell lab’s Comparative RNA Web (CRW) 

Site has nearly 55,000 structure files in these multiple formats. The CRWAlign-2 system 

has the potential to increase the number of comparative structure model files to more than 

1,000,000.  

The highly-accurate sequence alignment generated by CRWAlign-2 also brings 

opportunities for other research fields including the identification of chimeric 16S rRNA 

sequences generated in microbiome research projects. I have developed a chimera-

checking program utilizing a well-aligned reference sequence alignment and taxonomy 

information. The preliminary results suggest that, with a high-quality chimera-free 

reference sequence alignment, our strategy is sensitive and accurate in the identification 

of 16S rRNA chimeric sequences. 

The deluge of nucleic acid sequences that are determined with next-generation 

sequencing technology increases the scale of sequencing data faster than Moore’s law. 

Given that multiple-dimensions of information are available in systems like rCAD 109, I 

have developed the automated alignment system – CRWAlign-2 to address this challenge 

and need. 
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Chapter 4: Evaluation of the HIV secondary structure model 

Abstract 

Human immunodeficiency virus (HIV) that causes acquired immunodeficiency 

syndrome (AIDS), has become one of the world’s most serious health and development 

challenges. The secondary structure of HIV RNA genome plays central role in the 

replication and metabolism. In 2009, a secondary structure model of an entire HIV RNA 

genome was proposed using high-throughput selective 2’ OH acylation analyzed by 

primer extension (SHAPE) technology. This working model is useful to help elucidate 

the three dimensional structures of the small fragments in the HIV RNA genome and aid 

drug development against HIV. However, due to the limitation of SHAPE technology and 

thermodynamic-based algorithms, a large percentage of the predicted base pairs in the 

SHAPE-directed HIV secondary structural model could have low level of confidence. 

Utilizing comparative analysis methods, the proposed SHAPE-directed HIV secondary 

structure model is evaluated with multiple covariation metrics.  Only a small portion of 

the predicted base pairs in the SHAPE-directed model are verified with covariation 

analysis. The overall results suggest that about 46.7% of the predicted base pairs in this 

model have very low confidence level, which require intensive improvement and 

correction. There are 52.4% of the predicted base pairs highly conserved which require 

additional information to validate. In addition to evaluating the predicted base pairs in the 

SHAPE-directed model, the comparative analysis also predicts 71 potential helices that 

are not present in the SHAPE-directed model but have strong support from comparative 

analysis.  
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Background 

Human immunodeficiency virus (HIV) is a member of Retroviridae family that 

causes acquired immunodeficiency syndrome (AIDS), a disease of human immune 

system resulting in progressive immune failure and allow numerous life-threatening 

infections to thrive. HIV has infected more than 30 million people worldwide up to date. 

The mechanistic and therapeutic insights of HIV have been under intense research for 

more than 25 years. 

As the predominant type of HIV, the human immunodeficiency virus type 1 

(HIV-1) is more virulent than its less widespread cousin HIV-2, thus is the cause of the 

majority of HIV infections globally 124.  The genome of HIV-1 is composed of a ~9kb 

RNA which contains nine open reading frames that encodes fifteen proteins 125.  

For all positive-strand RNA virus, the secondary structures of the viral RNA 

genome play critical roles in the viral replication cycle, while HIV-1 is no exception. It 

has been discovered that a variety of discrete steps in HIV-1 replication cycle, including 

RNA transcription, dimerization of the RNA genome, and incorporation of RNA genome 

into virion are under regulation by the integrity of some secondary structural motifs of the 

viral RNA genome 126. Previous research has identified several secondary structural 

motifs that are critical for viral replication: the trans-activation region (TAR) which is the 

Tat–binding site 127,128, the primer binding site which is important to initiate reverse 

transcription, the packaging signal that binds NC and is critical for incorporation of 

genomic RNA into the virion 129,130, the dimerization site (DIS) with a  “kissing loop” 

hairpin 131,132, the Rev response element (REV) 133,134, and the major splice donor site 

which is used to generate all sub-genomic spliced mRNAs 135,136.  While the complete 

significance has not been fully understood, more evidence discovers that the HIV-1 

genome forms extensive secondary structures whose functions are associated with 

different process at stages of HIV-1 viral replication cycle.  

The advancement of RNA three-dimension structure determination has 

significantly increased the number of known RNA structures in the PDB 
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(http://www.rcsb.org/pdb/home-/home.do). The most widely-used experimental 

techniques for structure determination of biological macromolecules are X-ray 

crystallography and nuclear magnetic resonance spectroscopy (NMR).  While the 3D 

structures of multiple small fragments at 5’ UTR of the HIV-1 RNA genome have been 

determined 137-142, the traditional techniques of 3D structure determination are not well 

suited to elucidate the structure of the entire HIV-1 RNA genome due to the complexity 

and flexibility of large RNA molecules 143. Thus over 90% of the HIV-1 genome has not 

been structurally characterized. 

In 2009, Watts et al. proposed a secondary structure model of an entire HIV-1 

genomic RNA with the high-throughput selective 2’ OH acylation analyzed by primer 

extension (SHAPE) technology 144. This method measured SHAPE reactivity of the 9173 

nucleotides in the NL4-3 HIV-1 genomic RNA sequence, converted the SHAPE 

reactivity value to free-energy change terms, and built a thermodynamically favored 

structural model. This proposed SHAPE-directed secondary structural model indicated 

that the genome of HIV-1 contains higher-order structural elements throughout the entire 

sequence. However, there are several concerning facts about the proposed HIV-1 

secondary structure model. The structures of large RNAs, like HIV-1 RNA genome, are 

too large and complex to be predicted with sufficient confidence from first principles or 

thermodynamic-based algorithms alone with a single sequence. The SHAPE-directed 

HIV-1 secondary structure model is built based on analyzing only one HIV-1 complete 

genome sequence (Accession: AF324493). Recent benchmark of SHAPE technology on 

six small RNA molecules (tRNA-phe, 5S rRNA, the P4−P6 domain of the Tetrahymena 

group I ribozyme, and ligand-bound domains from riboswitches for adenine, cyclic di-

GMP, and glycine) revealed that SHAPE-directed modeling structures of these small 

RNAs gave 17% false negative rate and 21% false positive rate 145. Their bootstrapping 

calculation suggested that the overall accuracy of the SHAPE-directed HIV-1 secondary 

structure model was lower than 50%. Moreover, the accuracy of the thermodynamics-

based secondary structure model decrease as the length of the input RNA sequence 
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increase 22. Thus the proposed SHAPE-directed secondary structural model of an entire 

HIV-1 RNA genome has ambiguities which require further validation and correction. 

As emphasized in previous chapters, the comparative analysis has been utilized 

successfully to decipher the secondary structures of many RNAs including tRNAs and 

rRNAs. The accuracies of the 16S and 23S rRNAs secondary structure models predicted 

with comparative analysis are over 97%. In this research, the predicted HIV-1 RNA 

secondary structure model is evaluated and improved with comparative analysis. A pre-

made multiple sequence alignment consisting of over 2000 HIV-1 complete genome 

sequences is used for the subsequent comparative analysis. All predicted base pairs in the 

SHAPE-directed HIV-1 secondary structure model are evaluated with multiple 

covariation metrics. With the complementation of helix-extension strategy, the predicted 

base pairs in the proposed HIV-1 secondary structure model are categorized with various 

confidence levels. Moreover, this analysis also identifies many potential helices that are 

not present in the proposed SHAPE-directed HIV-1 secondary structure model but with 

strong support of comparative analysis. 

 

Methods 

1. Calculation of characteristic covariation metrics (Conservation score, purity 

score, and confidence score) 

The conservation score measures the extent of how conserved a position of RNA 

molecule is throughout the evolutionary history. The possible value of conservation score 

varies between -1 and 2, while higher value indicates stronger conservation. Given a pair 

of columns i and j in a multiple sequence alignment, the conservation scores are 

calculated with equation 2.3. 

Purity score provides a quick measurement of covariation between two positions. 

Given a pair of column I and j in a multiple sequence alignment, the purity score is 

determined with the procedure described in Figure 2.2. However, highly conserved 

positions could have very good purity score, for example a pair of columns having {G:C 
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60%, A:U 30%, C:G 7%, U:A 3%} could be assigned with the identical purity score as 

the pair of columns with {G:C 100%}. To distinguish highly conserved pairs from 

variable pairs, a new metric – confidence sore is introduced which integrates both 

conservation level and purity extent for a pair of positions. 

 Given a pair of columns i and j in the sequence alignment, the variation score 

(Vij) is defined as 

௜ܸ௝ ൌ 	
ெ௔௫ି஼௦௔

ଷ
																																																																											ሺ4.1ሻ 

where Max is the maximum value of the conservation score (which is 2 by definition), 

and Csa is the average of the conservation scores for column i and j. The confidence 

score (Cij) is calculated as  

௜௝ܥ ൌ 	 ௜ܲ௝ ൅	 ௜ܸ௝
ଶ																																																																										ሺ4.2ሻ                               

where Pij is the purity score of column I and j and Vij is the variation score calculated 

with equation 4.1. 

Given the HIV-1 sequence alignment and the SHAPE-directed secondary 

structure model, variation/covariation analysis calculates the total number of variation in 

each pairwise set of sequences (sequence i, j) versus the amount of variation for sequence 

i and j at 1) the positions that form a predicted base pair and undergo a covary, 2) the 

positions that form a predicted base pair but only one position change, and 3) the 

positions in the unpaired region (do not form any base pair). 

 

2. Measurement of Covariation with Mutual Information Based Method 

The standard mutual information score (MIxy) between column i and column j 

within the sequence alignment is calculated with equation 2.1. The higher MI value 

explicitly indicates greater statistical dependence between the two positions. The MIxy 

values for each pair of positions within the HIV-1 alignment are calculated -- every 

position is compared against every other positions. The overall complexity of this 
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calculation is N*(N-1)/2 where N is the total number of columns within the alignment. 

The HIV-1 alignment used in this analysis consists of 25132 columns, thus the overall 

complexity is 315,796,146 (25132*25131/2). 

The corrected mutual information method (MIp) is an variant of standard MIxy 57. 

Given column i and j within the alignment, the background mutual information value or 

Average Product Correction (APC) is determined with 

,ሺ݅ܥܲܣ ݆ሻ ൌ 	
,ሺ݅ܫܯ ሻݔ ∗ ,ሺ݆ܫܯ ሻݔ

ܫܯ
																																																ሺ4.3ሻ 

where ܫܯሺ݅,  ሻ is the average MIxy value for position i with every other positions in theݔ

alignment, ܫܯሺ݆,  ሻ is the average MIxy value for position j with every other positions inݔ

the alignment, and ܫܯ is the average MIxy value for all positions within the alignment. 

The corrected mutual information score (MIp) is calculated as  

,௣ሺ݅ܫܯ ݆ሻ ൌ ,ሺ݅ܫܯ	 ݆ሻ െ ,ሺ݅ܥܲܣ	 ݆ሻ																																														ሺ4.4ሻ 

where ܫܯሺ݅, ݆ሻ is the standard MIxy score for column i and j.  

 

3. Helix Extension 

Due to relatively short evolutionary history, many positions (columns) within the 

HIV-1 alignment used in this study are highly conserved. Classical covariation analysis 

methods (e.g. MIxy, MIp) cannot identify these highly conserved base pairs due to lack of 

variation. The helix-extension strategy has been proved very sensitive and accurate in 

identifying the highly conserved base pairs and extending the helix in the bacterial 16S 

rRNA secondary structure (details in Chapter 2).  Thus the helix extension strategy is 

used with the HIV-1 sequence alignment. 

The nucleation pairs are selected, and the corresponding columns of these 

nucleation pairs within the HIV-1 alignment are determined. For each nucleation pair, the 

adjacent and antiparallel columns with a percentage of canonical pairs (Watson-Crick 

{G:C or A:U} or Wobble pair {G:U})  higher than a predefined threshold (85%) are 
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considered as highly conserved base pairs and added to the extending helix. The 

extension process is terminated when the adjacent and antiparallel columns fail the 

extending threshold. 

 

Results 

1. Evaluation of the Proposed SHAPE-Directed Secondary Structure Model of an 

entire HIV-1 RNA genome 

The proposed SHAPE-directed HIV-1 secondary structure model is evaluated 

with comparative analysis. The HIV-1 sequence alignment used in this analysis is 

obtained from HIV database maintained by Los Alamos national laboratory 

(http://www.hiv.lanl.gov). The alignment consists of 2025 non-redundant HIV-1 whole 

genome sequences and 25132 columns. The sequence “B.FR.1985.NL43 pNL43-NL4 3” 

was selected as the reference since it shares >99.95% similarity with the sequence used 

by Weeks’s group (Accession: AF324493). All predicted base pairs in the SHAPE-

directed HIV-1 secondary structure model are evaluated with multiple characteristic 

covariation metrics. 

 

1.1 Percentage of Canonical type of Predicted Base Pairs 

While comparative analysis searches for all positional dependence regardless of 

pair type, the standard Watson-Crick base pairs (G:C and U:A) and G:U wobble base 

pairs are the predominant pair type identified in the comparative models of tRNAs, 

ribosomal RNAs, and other non-coding RNAs.  As shown in Table 4.1,  among the 454 

predicted base pairs in the comparative secondary structure of bacteria 16S rRNA, 423 

pairs (or 423/454 = 93.17%) have 85% or higher canonical base pair percentage. 

Similarity results are obtained on other non-coding RNAs including tRNAs, 5S rRNA, 

and 23S rRNA, which substantiate that the vast majority of base pairs in the RNA 

secondary structures are canonical pair types The SHAPE-directed HIV-1 secondary 
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structural model includes 1891 predicted base pairs and all of them are canonical pair 

type {CG, UA, GU} on the single HIV-1 complete genome sequence (Accession: 

AF324493). Using the HIV-1 sequence alignment consisting of over 2000 sequences, the 

percentages of canonical pairs for all these 1891 predicted base pairs are calculated 

(Table 4.1). 

Table 4.1.  The percentage of canonical base pairs of proposed base pairs in the SHAPE-
directed secondary structure model of the entire HIV-1 genome RNA 

WC/WB 

Percentage
# of base pairs Sum Sum Pct # of base pairs Sum Sum Pct

<10% 21 21 1.11% 14 14 3.08%

10%~20% 12 33 1.75% 2 16 3.52%

20%~30% 22 55 2.91% 1 17 3.74%

30%~40% 59 114 6.03% 2 19 4.19%

40%~50% 57 171 9.04% 3 22 4.85%

50%~60% 50 221 11.69% 2 24 5.29%

60%~70% 81 302 15.97% 2 26 5.73%

70%~80% 91 393 20.78% 4 30 6.61%

80%~85% 76 469 24.80% 1 31 6.83%

85%~90% 99 568 30.04% 7 38 8.37%

90%~95% 223 791 41.83% 16 54 11.89%

>95% 1100 1891 100.00% 400 454 100.00%

Total 1891 454

HIV 16S rRNA Comparative Structure

 

There are 469 predicted base pairs of the HIV-1 model (or 469/1891 = 24.8%) 

have 85% or lower canonical base pair composition in the alignment (Table 4.1), which 

suggests that non-canonical pair types occur much more frequently at these pairwise 

positions.  Although non-canonical base pairs were observed in 16S and 23S rRNA 

crystal structures, generally they only take a very small portion of all base pairs (e.g. 

6.83% in the 16S rRNA as shown in the right side of Table 1). Therefore, these 24.8% (or 

469 out of 1891) of the predicted base pairs in the SHAPE-directed HIV-1 secondary 

structure model are under suspicion. 
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1.2 Characteristic Covariation Metrics  

As shown in Methods section of Chapter 2, in the sequence alignment of an RNA 

molecule, the positions with similar conservation values are more likely to have a higher 

MIxy score (Figure 2.3). Most of the base pairs in the 16S secondary structures have 

similar conservations values for the two positions that form the base pair, and thus are 

close to the diagonal of the plot in Figure 4.1A. The conservation values of the positions 

that form the putative base pairs in the HIV-1 secondary structure model are calculated 

and plotted in Figure 4.1B. The plot shows there is no significant correlation of 

conservation values between the two paired positions for most of the predicted base pairs 

in the HIV-1 secondary structure model. 

 

Figure 4.1: The plot of the conservation values for the two paired positions in bacterial 

16S rRNA (A) and the proposed HIV-1 secondary structure model (B). The color of each 

data point represents its purity score with a scale shown on top.  

The purity score measures the precision of covariation for a pair of positions 

(details in the Methods section of Chapter 2). Higher purity score indicates that the two 
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positions have higher probability to covary with one another. For every pair of positions 

that form a base pair in the bacterial 16S rRNA comparative structure, bacterial 16S 

rRNA crystal structure, and the HIV-1 secondary structure model, the standard purity 

score and the GU-Plus purity score is calculated and plotted against the average 

conservation score (Figure 4.2). Though the base pairs in the bacterial 16S rRNA 

comparative model (Figure 4.2A) and crystal structure (Figure 4.2B) range from highly 

conservative to highly variable, the vast majority of them have high purity score close to 

1, which indicates the base pairs associated with these data points have strong 

covariation.  

As shown in Figure 4.2C, most of the predicted base pairs in the HIV-1 secondary 

structure model are highly conserved (1175 out of 1891 pairs have average conservation 

score of 1 or lower). When the predicted HIV-1 base pair are highly conserved, they tend 

to have good purity score since the algorithm of purity score calculation will assign 

identical purity scores for pair 1 with {G:C 60%, U:A:20%, C:G 5%, A:U 5%} and  pair 

2 with {G:C 100%}. However, as the conservation level decreases, most of the variable 

base pairs in the HIV-1 secondary structure model have significantly lower purity scores 

than the analogous in the 16S rRNA secondary structure. This results indicates the 

positions involved in the HIV-1 predicted base pairs are not  
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Figure 4.2: The distribution of purity score and average conservation score for the two 

positions that form a base pair in the 16S rRNA comparative structure model (A), 

secondary structure base pairs in crystal structure (B), and the predicted HIV-1 secondary 

structure model (C). 

To distinguish the highly conserved pairs from the highly variable pairs when 

their purity scores are identical, a new covariation metric – confidence score is 

introduced. It measures the confidence level for a pair of positions with significant 

covariation or good purity to be a potential base pair (details in Methods section). Higher 

confidence score indicates the two positions are more likely to be covariant with one 

another. The confidence score for every base pair in the bacterial 16S rRNA secondary 

structure and the HIV-1 secondary structure model is calculated and plotted in Figure 4.3. 
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While the vast majority of the base pairs in the bacterial 16S rRNA have a good 

confidence score of 1 or higher (Figure 4.3A), most of the predicted base pairs in the 

HIV-1 secondary structure model have low confidence scores below 1 (Figure 4.3B). 

 

Figure 4.3: The distribution of confidence score for the two positions that form a base 

pair in the bacterial 16S rRNA secondary structure (A), and the proposed HIV-1 

secondary structure model (B). 

As shown in Figure 2.6 in Chapter 2 and empirical knowledge, the amount of 

covariation is directly proportional to the amount of variation within a multiple sequence 

alignment. The variation/covariation analysis of the bacterial 16S rRNA secondary 

structure (Figure 4.4A) and the predicted HIV-1 secondary structure model (Figure 4.4B) 

reveals that (1) while the base pair covariation is one of the major source of variation in 

the bacterial 16S rRNA, the predicted base pairs in the HIV-1 secondary structure model 

have very few covariations; (2) in SHAPE-directed HIV-1 secondary structure model, 

most of the variation is caused by the nucleotide change in the unpaired regions.  
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Figure 4.4: Variation/covariation analysis of the bacteria 16S rRNA secondary structure 

(A) and the predicted HIV-1 secondary structure model (B). Total variation in each 

pairwise set of sequences (X-direction) is plotted vs. (1) the amount of canonical 

(Watson-Crick or Wobble) variation (deep blue) and non-canonical variation (light blue) 

in that set of sequences for the two positions that are base paired in the secondary 

structure, (2) the amount of canonical variation (red) and non-canonical variation 

(yellow) only occur at one position of the two that are base paired in the secondary 

structure , and (3) variation in the unpaired region of the second structure (green) (Y-

direction). The slope, Y-intercept, and R2 co-efficiency values of the linear regression line 

for each of the three analyses are at the right side of the line. 

The overall results of the HIV-1 secondary structural model evaluation suggest 

that: 1) a large percentage of the predicted base pairs are highly conserved, which cannot 

be fully evaluated from the perspective of comparative analysis; 2) for most predicted 

variable base pairs, the two positions that form the base pair do not covary with one 

another. Therefore, though the authors claimed that the model has been verified with 

comparative analysis, the SHAPE-directed secondary structure model of the entire HIV-1 

RNA genome do not have the support of comparative analysis. 
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2. Base Pair Prediction with MI-based Methods and Helix-extension 

In my previous research project, the performance of Phylogenetic Events 

Counting (PEC) method is compared with Mutual Information based methods including 

standard MI (MIxy) and corrected MI (MIp) (Details in Chapter 2). The results revealed 

that while PEC identified more real base pairs, mutual information based method (MIxy) 

and its variants (MIp) were capable of identifying significant amount of real base pairs 

with high accuracy. Because of the short evolutionary history and the lack of reliable 

taxonomy information for HIV-1, the PEC method is not suitable to predict the secondary 

structure of HIV-1 RNA genome. Therefore, MIp is utilized to determine the positional 

covariation between pairwise columns within the HIV-1 multiple sequence alignment.  

The MIp scores of every pairwise positions are determined with standard 

calculation (details in the Methods section). The top 500 pairs of positions with the 

highest MIp scores are considered to have significant covariation. Only three (out of 

1891) predicted base pairs (7443:7459, 9087:9122, 9085:9124) in the SHAPE-directed 

HIV-1 secondary structure model have strong covariation (high MIp value) and are 

selected as the top 500 pairs. Thus these three pairs are named “True Covariant Base 

Pairs”. The rest 497 pairs (top 500 – 3 True Covariant Base Pairs) that are not present in 

the proposed HIV-1 secondary structure model are categorized as “Extra Covariant 

Pairs”. 

As described in chapter 2, helix-extension strategy has been substantiated 

sensitive and accurate in the identification of highly-conserved base pairs. Thus the helix-

extension procedure is utilized to identify the highly-conserved base pairs in HIV-1 RNA 

genome, and measure the confidence level of the predicted highly-conserved base pairs in 

the SHAPE-directed HIV-1 secondary structure model. The helix consisting of four of 

more consecutive and antiparallel WC/Wobble base pairs assures over 99% probability 

that the helix is not formed by chance or random change. Therefore the extended helices 

with four or more base pairs are considered to be trustworthy. Using the top 500 pairs of 

positions with the highest MIp scores as the nucleation pairs, the helix-extension 

procedure identifies 31 helices consisting of at least four canonical base pairs. Two out of 
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the 31 extended helices are in the SHAPE-directed HIV-1 secondary structure model 

(helix 7443-7448:7454-7459, 9080-9090:9119-9129), while both helices are nucleated 

from the three “True Covariant Base Pair” (7443:7459, 9087:9122, 9085:9124). The 14 

extended pairs in these two helices are present in the SHAPE-directed HIV-1 secondary 

structure model, thus are categorized as “True Extended Base Pairs”.  The rest 29 

extended helices involve 121 extended pairs that are not present in the SHAPE-directed 

HIV-1 secondary structure model, thus named “Extra Extended Pairs”. This result 

suggests that only small portion of the predicted base pairs in the SHAPE-directed HIV-1 

secondary structure model can be validated with significant covariation (3 “True 

Covariant Base Pairs” and 14 “True Conserved Extended Base pairs”), while comparative 

analysis identifies 29 potential helices with strong covariant nucleation pair and 

considerable extended length of helix that are not in the SHAPE-directed HIV-1 

secondary structure model.  

While over 75% of the predicted base pairs in the SHAPE-directed HIV-1 

structural model are highly conserved (Table 1), the positions forming these putative 

highly-conserved base pairs are not likely to have significant covariations, thus won’t be 

selected as the nucleation pairs for helix-extension procedure. To check the credentials of 

these highly-conserved predicted base pairs, 1874 predicted base pairs in the SHAPE-

directed HIV-1 structural model (1891 – 3 True Covariant Base Pairs – 14 True Extended 

Base Pairs) are utilized as the nucleation pairs to perform helix-extension procedure. This 

extension identifies 207 putative helices consisting of four or more canonical base pairs. 

Among the 1874 predicted base pairs in the SHAPE-directed HIV-1 secondary structure 

model that are used as the nucleation pairs, 990 pairs can be successfully extended, thus 

named “Neutral Extendable Base Pairs”, while 884 pairs fails the helix-extension criteria 

(named “False Non-extendable Base Pairs”). 
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Discussion 

The RNA structure of HIV-1 has been discovered to either critical for or directly 

regulate diverse functions in viral life cycle including the synthesis of viral DNA, RNA 

splicing, genome packaging, and interactions with both viral and cellular proteins. While 

the 3D structure of entire HIV-1 genomic RNA is hard to be obtained with X-ray or 

NMR due to the size and flexibility of the large RNA molecule, accurate secondary 

structure models can help to elucidate the 3D structure and reveal conservative structural 

motifs which is usually tied with functions. 

Single-nucleotide resolution chemical mapping (foot-printing) for highly-

structured RNA has been rapidly advanced with multiple new technologies including 

novel chemical modification strategies and faster data analysis algorithms. Selective 2′-

hydroxyl acylation by primer extension (SHAPE) technology measures local backbone 

flexibility in RNA molecule and scores the pairing probability of single nucleotide. Watts 

et al. proposed a SHAPE-directed secondary structure model of an entire HIV-1 RNA 

genome 144, and have proven useful in determining functions of RNA regions . However, 

recent benchmark of SHAPE technology on six small RNA molecules indicates that the 

accuracy of the proposed HIV-1 structural model could be lower than 50%, which is 

much lower than expected.  

I evaluated the SHAPE-directed HIV-1 secondary structure model using 

comparative analysis methods. There are ~25% of the predicted base pairs in the SHAPE-

directed model have low percentage of canonical base pair in the sequence alignment 

(Table 4.1). The covariation metrics including conservation scores, purity scores, 

confidence scores and variation/covariation plot reveal that vast majority of predicted 

base pairs in the SHAPE-directed HIV-1 structural model do not have significant 

covariation, thus lack the support of comparative analysis (Figure 4.1 – 4.4). A de novo 

MIp calculation and subsequent helix-extension measures the confidence levels of the 

1891 proposed base pairs in the SHAPE-directed HIV-1 structural model. Two proposed 

helices (totally 17 base pairs) are identified with covariation methods, and therefore are 

assigned with high confidence level (True Covariant Base Pairs and True Conserved 



97 
 

Extended Base Pairs). 990 out of 1891 proposed based pairs in the HIV-1 structural 

model are highly-conserved but extendable to form a helix with a minimal of four base 

pairs. The amount of variations at these 990 pairs of positions is too low to distinguish 

true base pairs from false base pairs. Therefore, theses 990 proposed base pairs are 

marked as “Neutral Conserved Extendable Base Pairs”. It will be a doable task to tell the 

quality of these “Neutral Conserved Extendable Base Pairs” with a larger multiple 

sequence alignment consisting of more HIV-1 complete genome sequences with more 

diversity. The rest 884 proposed base pairs neither have significant covariation scores, 

nor can be extended to form a helix with statistical significant length. These 884 pairs 

(named “False Non-extendable Base Pairs”) are of very low confidence level, and will 

cause ambiguity in the structure determination. These “False Non-extendable Base Pairs” 

could be caused by two possible scenarios: 1) the pairing probabilities obtained from 

SHAPE reactivity values and the thermodynamic-based conversion algorithm are 

misinterpreted to build the secondary structure model; 2) these predicted base pairs are 

not crucial for the viral propagation, thus HIV-1 can tolerate any types of variations at 

these positions and evolve into different viral strands. 

Overall, only a small portion of the base pairs in the SHAPE-directed secondary 

structure model of HIV-1 genome RNA are supported by comparative analysis. The 

structures of the entire viral RNA genomes are too large and complex to be predicted 

with a single approach and very limited number of sequences. The current SHAPE-

directed HIV-1 RNA secondary structure requires additional information, such as 

evidence from experiments and comparative analysis, to validate true base pairs and 

eliminate the possible false base pairs and other ambiguities, especially in the regions 

marked with low confidence levels (False Non-extendable Base pairs and Neutral 

Conserved Extendable Base Pairs). 
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Chapter 5: Summary and Future Work 

The accurate prediction of RNA secondary structure using comparative analysis is 

essential to decipher the secondary structure and other higher-order structural constraints 

of RNA molecules. In my first project, I developed a novel and powerful covariation 

method – Phylogenetic Events Counting (PEC) method for the identification of positional 

covariations. The PEC method utilizes phylogenetic information of sequences within the 

sequence alignment, and traverses through the phylogenetic tree to count the mutual 

changes on a pair of positions. The comparison between PEC and other statistics-based 

methods reveals that PEC is more sensitive and accurate in the identification of base pairs 

and other constrains in the RNA structure. With the complementation of joint N-Best and 

helix-extension strategy, PEC method is able to identify the maximal number of base 

pairs. In addition to the identification of base pair in the RNA higher-order structure, the 

analysis discovers a new type of structural constraint – neighbor effects which generally 

occur between sets of positions that are in proximity in the three-dimensional structure of 

RNAs. The neighbor effects have weaker but significant covariation with one another and 

possibly cause fitness function for a local cluster of nucleotides in the RNA structure.  

The comparative methods are used to evaluate the proposed SHAPE-directed 

secondary structure model of entire HIV-1 RNA genome. Various covariation metrics 

reveals that the vast majority of the predicted base pairs in the HIV-1 secondary structure 

model do not have support from comparative analysis. In parallel, a de novo covariation 

analysis with mutual information based method and helix-extension procedure identifies 

73 putative helices containing at least three base pairs. The 1891 predicted base pairs in 

the SHAPE-directed HIV-1 secondary structure model are categorized into four classes 

with different confidence levels. The results suggests that 17 predicted base pairs are 

supported by covariation analysis thus have high confidence level, 884 predicted base 

pairs have very low confidence level which require intensive improvement and 

correction, and 990 predicted base pairs are highly conserved which require additional 

information to verify.  
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The creation of well-aligned multiple RNA sequence alignments are essential for 

the subsequent comparative analysis. The traditional manual curation requires a 

significant amount of time and effort, which is not feasible for the extensive amount of 

nucleic acid sequences determined by next-gen sequencing technology. I developed a 

template-based alignment program package -- CRWAlign-2, which utilizes multiple 

dimensions of information about RNAs in rCAD. The program generates the structural 

descriptor for a RNA molecule at different phylogenetic nodes, searches for structure 

models satisfying conditions defined in the descriptor, and align the new sequences based 

on the primary and secondary structural similarity. When compared with eight other 

RNA sequence alignment programs, CRWAlign-2 is more accurate than other programs. 

Even for sequences with pairwise identity below 80%, CRWAlign-2 is still able to 

maintain a very high accuracy (> 95%). This improvement will significantly reduce the 

amount of time required for manual curation, especially in the variable regions of RNA 

molecules. CRWAlign-2 also generates the entire secondary structure model for each 

sequence to be aligned. This feature enables numerous biological applications. Several 

future tasks include 1) generating a set of distinguishable structural descriptors of 

different tRNAs, rRNAs and other RNA molecules for the purpose of sequence 

annotation, and 2) using this system to align large amount of RNA sequences to improve 

the data curation of sequence alignment. 
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