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1
SYSTEMS AND METHODS FOR ALTERING

VISUAL ACUITY

CROSS-REFERENCE TO RELATED

APPLICATIONS

This application claimsthe benefit ofpriority to U.S. Patent

Application No. 61/147,010, entitled “Non-ionizing Radia-

tion to Temporarily Change The Index of Refraction of Bio-

logical Tissues,” which wasfiled on Jan. 23, 2009, andto U.S.

Patent Application No. 61/250,719, entitled “Systems and

Methods for Altering a Modulation Transfer Function ofAn

Imaging System,” which was filed on Oct. 12, 2009. The

disclosure of the foregoing applications are incorporated

herein by reference in their entirety.

TECHNICAL FIELD

This disclosure relates to light transmission systems and

responseofthe eye tolight.

BACKGROUND

Altering visual acuity can be an effective and non-invasive

method of inhibiting an advancing subject. Techniques for

doing so can include shining visible light, for example, from

a laser source, into the eyes of the subject. The eyes however

are susceptible to severe and permanent damageifthe energy

of the light that enters the eye is beyond threshold exposure

levels.

SUMMARY

This specification describes technologies relating to opti-

cal techniques for altering visual acuity ofeyes.

Asystem operable to effect a temporary change in a modu-

lation transfer function (MTF)ofa target imaging system is

provided. The system includes a light source operable to

producelight for transient propagation ontoat least a portion

of the target imaging system. The system further includes a

power source in operative communication with the light

source and configured to effect the production of light from

the light source. The system further includes an optical sys-

tem in operative communication with the light source and

configured to propagate the produced light onto at least a

portion ofthe target imaging system, wherein the propagated

light is absorbedbythe portion ofthe target imaging system,

the absorbance causing an increase in temperature and a

changein a refractive index profile of at least the portion of

the imaging system, the change in refractive index profile

producing a temporary change in the MTF of the imaging
system.

The imaging system can optionally be an eye, such as a
human eye. The absorption of light can disrupt visual acuity

of the subject having the eye.

The wavelength of the propagated light can be between
1100 nm and 2500 nm. Optionally, the wavelength of the

propagated light can be between 1100 nm and 1700 nm.For
such a wavelength band, an irradiance ofthe propagatedlight

at a location where the target imaging system receives the
propagated light can be between 0.001 W/cm? and 500

W/cm. Alternatively, the irradianceofthe propagatedlightat

a location where the target imaging system receives the
propagatedlight can be between 0.005 W/cm?and 50 W/cm?.
Alternatively, the irradiance of the propagatedlightat a loca-

45

50

55

2
tion where thetarget imaging system receives the propagated
light is between 0.1 W/cm? and 5 W/cm”.Thelight source can
be a first laser.

The system can further comprise a secondlight source,
typically a laser, that generates light that is co-aligned with

light from thefirst laser. The wavelength ofthe second propa-
gated light can be between 450 nm to 650 nm.An irradiance

of the second laser at a location where the target imaging
system receives the propagatedlight can be greater than 0.001

mW/cm?.

The portion of the imaging system that absorbs the propa-
gated light can be anterior to photosensing element(s) of the

imaging system. When the imaging system is an eye, the
portion of the eye that absorbsthe light can be anterior to the

retina. The portion ofeye that absorbsthelight can be selected
from the group consisting ofthe vitreous humor,the lens, the

aqueous humor, and the cornea for infrared wavelengths. The

absorption of light can cause a non-uniform index ofrefrac-
tion anomaly in the cornea, aqueous humor, lens or vitreous

humor.
The system can further comprise additional visible and/or

infrared light sources that produce light that is co-aligned
with light producedbythefirst light source.

In general, one aspect of the subject matter described here

can be implemented as a system operable to effect a tempo-
rary change in a modulation transfer function (MTF) of a

target imaging system. The system includes a light source
operable to produce light for transient propagation onto at

least a portion of the target imaging system. A power source
is in operative communication with the light source and is

configured to effect the production of light from the light

source. A transmission unit is in operative communication
with the light source and is configured to propagate the pro-

duced light onto at least a portion of the target imaging sys-
tem. The propagatedlightis configured for absorbance by the

portion of the target imaging system. The absorbance causes

an increase in temperature and a changein a refractive index
profile of at least the portion of the imaging system. The

change in refractive index profile produces a temporary
change in the MTFofthe imaging system.

This, and other aspects, can include one or more of the
following features. The propagated light can have a wave-

length in the range of 1100 nanometers (nm) to 2500 (nm),

including any wavelength with in this range or any subset of
ranges within this range. For example, a wavelength within a

range of 1200 nm 2500 nm or 1300 nm to 2500 nm is
included. The imaging system can be an eye. The portion of

eye that absorbs the light can be anterior to the retina. The
portion of the eye that absorbs the light can be selected from

the group consisting of the vitreous humor, the lens, the

aqueous humor, and the cornea. The absorption of light can
cause a non-uniform index ofrefraction changein the cornea,

aqueous humor,lens or vitreous humor. The portion ofthe eye
that absorbsthe light canbe theretina ortissue posteriorto the

retina. The absorption of light can disrupt visual acuity. The
eye can be a humaneye.An irradiance ofthe propagatedlight

at a location where the target imaging system receives the

propagated light can be between 0.001 W/cm? and 500
W/cm?. An irradiance of the propagated light at a location

wherethe target imaging system receives the propagatedlight
can be between 0.005 W/cm? and 50 W/cm”.An irradiance of
the propagated light at a location where the target imaging
system receives the propagated light can be between 0.1

W/cm? and 5 W/cm”.Thelight source can bea first laser light

source. The system can further include a secondlight source
operable to produce light for transient propagation onto at

least a portion ofthe target imaging system. The transmission
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unit can be in operative communication with the secondlight
source and can be configured to propagate light produced by

the second light source onto at least a portion of the target

imaging system. The propagatedlight from the secondlight
source can have a wavelength in the range of 450 nm to 650

nm. The transmission unit can be operable to co-align light
from thefirst and second light sources for propagation onto at

least a portion ofthe target. An irradiance of the second laser
at a location where the target imaging system receives the

propagated light can be greater than 0.001 mW/cm?.

Anotheraspect of the subject matter described here can be
implemented as a system to temporarilyalter visual acuity of

a subject. The system includesa first light source configured
to produceinfrared light in an infrared wavelength spectrum

for transient propagation into an eye of the subject. A second
light source is configured to producevisiblelight in a visible

wavelength spectrum for transient propagation into the eye of

the subject. A transmission unit is configured to propagate the
infrared light and the visible light into the eye. The light

propagated into the eye temporarily alters visual acuity ofthe
subject.

This, and other aspects, can include one or more of the
following features. Thefirst light source can be configured to

producetheinfrared light havinga first irradiance sufficient to

cause temperature gradients in the eye. The temperature gra-
dients can cause changesin a refractive index profile in the

eye. The secondlight source can be configured to produce the
visible light at a secondirradiance sufficient to saturate light

receptors in the eye. The saturation of receptors can modify
the functional MTF of the imaging system, such as an eye.

The transmission unit can include an optical system config-

ured to co-align the infrared light and the visible light. The
optical system can be configured to produce a co-aligned

infrared light and visible light with a spot size ofabout 10 cm
to 2.0 m ata target distance ofabout 500 meters (m). Thefirst

light source can produceinfrared light in a wavelength range

of 1100 nm to 2500 nm. Thefirst light source can produce
infrared light in a wavelength range of 1100 nm to 1700 nm.

The first light source can produce infrared light having a
wavelength of about 1318 nm. The secondlight source can

producevisible light in a wavelength range of 450 nm to 650
nm. The second light source can producevisible light having

a wavelength of about 535 nm. The transmission unit can be

configured to propagate the infrared light and visible light for
a distance greater than 2 km before entering the eye. The

transmission unit can be configured to propagate the infrared
light and visible light for a distance of about 100 m before

entering the eye. The transmission unit can be configured to
propagatethe infrared light and visible light for a distance of

about 10 m before entering the eye. At least one additional

light source can be configured to produce infrared light in an
infrared wavelength spectrum for transient propagation into

the eye. The infrared wavelength of the infrared light pro-
duced by the first light source can be different from the

infrared wavelength of the infrared light produced bythe at
least one additional light source. At least one additionallight

source can be configured to produce visible light in visible

wavelength spectrum for transient propagation into the eye.
Thevisible wavelength ofthe visible light produced by the at

least one additional light source can be different from the
visible wavelength ofthevisible light produced by the second

light source.
Anotheraspect of the subject matter described here can be

implemented as a methodfor altering visual acuity of a sub-

ject. Visible light in a visible wavelength spectrum is propa-
gated into the eye. The visible light generates glare at a glare

angle. An area of the retina on which the visible light is
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4
incident is related to the glare angle. The propagated visible

light is modified to increase the glare angle. An area of the

retina on which the modifiedvisible light is incident is greater

than the area of the retina on which the propagated visible

light is incident. The modified visible light alters visual acuity

of the subject.

This, and other aspects, can include one or more of the

following features. A power required to propagate the modi-

fied visible light can be less than a power required to propa-

gate the visible light that is not modified. The visible light can

be a laser having a retinal spot size. Modifying the visible

light to increase the glare angle can increase the retinal spot

size of the visible laser. Modifying the visible light can

include propagating an infrared light in an infrared wave-

length spectrum, co-aligning the infrared light with the vis-

ible light to form co-aligned light, and propagating the co-

aligned light into the eye. The visible light can have an

irradiance sufficient to saturate the receptors in the portion of

the eye on which the visible light is incident. The infrared

light can have an irradiancesufficient to cause a temperature

gradient at the portion of the eye. The temperature gradient

can cause a changein a refractive indexprofile ofthe portion

ofthe eye. Thevisible light can be incident on theretina, and

the infrared light can cause the temperature gradient at a
region anterior to theretina.

Another innovative aspect of the subject matter can be
implemented as a method for temporarily altering the visual

acuity of a subject. The method includes projecting infrared

wavelength light into an eye of the subject, and projecting
visible wavelength light into the eye of the subject, wherein

the infrared wavelength light and visible wavelength light
temporarily alter visual acuity of the subject.

This, and other aspects, can include one or more of the

following features. The infrared wavelength light can be pro-
jected in co-alignment with the projected visible wavelength

light.
Particular embodiments of the subject matter described in

this specification can be implementedso as to realize one or
moreofthe following potential advantages. Whenlight hav-

ing a wavelength in a visible light spectrum is propagated

onto an eye, for example, an eye of a human subject, the
resulting glare can alter visual acuity of the system. When

light having a wavelength in the infrared light spectrum is
propagated onto the eye, the resulting change in refractive

index ofthe eye can also alter visual acuity. When light from
the two sources(infrared and visible) are combined, the com-

bined light can spread the glare acrossa larger portion of the

eye increasing the glare angle which, in turn, can further alter
the visual acuity. Further, the combinedlight can decrease the

glare at a portion of the eye by spreading the glare to other
portions of the eye, and can thereby decrease a possibility of

permanent damageto the eye. By altering visual acuity, the
approach of an oncomingtarget can be inhibited.

The details of one or more embodiments of the subject

matter described in this specification are set forth in the
accompanying drawings and the description below. Other

features, aspects, and advantages of the subject matter will
become apparent from the description, the drawings, and the

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a block diagram ofan example system operable to

effect a temporary changein visual acuity ofa target.
FIG.2 is a block diagram ofan example system operable to

effect a temporary changein visual acuity ofa target.
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FIG. 3 is a block diagram ofan example system operable to

effect a temporary changein visual acuity ofa target.

FIG.41s a block diagram ofan example system operable to

effect a temporary changein visual acuity ofa target.

FIG. 5 is a schematic diagram showing an example system

to temporarily alter visual acuity.

FIG.6 is a schematic diagram showing an example system

combining light from multiple light sources.

FIGS. 7A-7C are schematic diagrams showing example

systemsfor propagating light to eyes at different distances.

FIGS.8A and8Bareplots showing percent transmission of

infrared light to the retina over a range of infrared wave-

lengths in various types of eyes.

FIGS. 9A and 9B showspotsizes of a He—Nelaser beam.

FIG. 10 is a plot ofthresholdsfor visible light versus time.

FIG.11is a plot of change in refractive index over a range

of temperatures.

FIG. 12 is a plot of absorption of light in various compo-

nents of an eye, and in water, over a range of wavelengths.

FIG.13 is a flowchart of an example process for changing

modular transfer function of an imaging system.

FIG. 14 is a flowchart ofan example process to temporarily

alter visual acuity of a subject.

FIG. 15 is a flowchart of an example process to modify

visible light.

Like reference numbers and designations in the various

drawings indicate like elements.

DETAILED DESCRIPTION

Provided herein are systems andmethodsoperable to effect

a temporary change in a modulation transfer function (MTF)

of a target imaging system. The modular transfer function

(MTF) is a measure of the capability of an imaging system,

for example, the eye, to reproduce an imageofan object. The

target imaging system can be an eye of an animal, such as a

human.

The methods and systemscanbe usedto cause a temporary

disruption of visual acuity in the eye. The temporary change

in visual acuity may be desirable to temporarily disable the

target subject for security, law enforcement, protection, or

military reasons.

Moreover, the methods and systemscan be used to increase

the retinal spot size of non-lethal visual security devices (for
example, dazzler devices). By increasing theretinal spot size,

the systems and methodsreducethelikelihood ofpermanent
eye damagefrom using dazzler devicesat too close ofa range

or at too high of a radiant light power.

An example system includes a light source operable to
producelight for transient propagation ontoat least a portion

of the target imaging system. The system further includes a
power source in operative communication with the light

source and configured to effect the production of light from
the light source. The system further includes an optical sys-

tem in operative communication with the light source and

configured to propagate the produced light onto at least a
portion of the target imaging system. The propagated light

can be absorbedbythe portionofthe target imaging system to
cause an increase in temperature and a changein a refractive

index profile ofat least the portion ofthe imaging system. The
change in refractive index profile can produce a temporary

change in the MTFofthe imaging system.

The imaging system can optionally be an eye, such as a
human eye. The absorption of light can temporarily disrupt

visual acuity of the subject having the eye.
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6
The wavelength of the propagated light can be between

1100 nm and 2500 nm. For example, the wavelength of the

propagated light can be between 1100 nm and 1700 nm.

For such a wavelength band, an irradiance of the propa-
gated light at a location where the imaging system receives

the propagated light can be between 0.001 W/cm? and 500
W/cm”. Alternatively, the irradiance of the propagated light

can be between 0.005 W/cm? and 50 W/cm”. Alternatively,
the irradiance of the propagated light is between 0.1 W/cm?

and 5 W/cm*. The location where the imaging system

receives the propagated light can be the front surface of the
target imaging system. For example, if the target imaging

system is an eye, the front surface of the target imaging
system can be the comea.

Thelight source can be afirst laser. The system can further
comprise a second light source that can producelaser light

that is co-aligned with the first laser light. The second laser

can have a wavelength between 450 nm and 2500 nm. For
example, the wavelength range canbe in the visible spectrum,

for example from 450 nm to 650 nm. The co-alignmentcan be
along an axis or plane of projection towards a target. An

irradiance ofthe secondlaserat a location where the imaging
system transduces the imagedlight can be greater than 0.001

mW/cm?.

Ifthe target imaging system is an eye, the portion ofthe eye
that absorbsthe light can betheretinal receptors and a portion

anterior to the retina. The portion of eye anterior to theretina
that absorbsthe light can be selected from the group consist-

ing of the vitreous humor, the lens, the aqueous humor, and
the cornea. The absorption of visible light can cause glare.

The absorption of infrared light can cause a non-uniform

index of refraction anomaly in the cornea, aqueous humor,
lens and/or vitreous humor.

FIG.1 illustrates an example system 12 operableto effect
a temporary change in a modulation transfer function (MTF)

of a target imaging system, for example an eye 16. The beam

oflight 14 can have a wavelength between about 1100 nm and
2500 nm. Optionally, the wavelength is between 1100 nm and

1700 nm in air.
Light with a wavelength between 1100 nm and 1700 nm

can be emitted into the pupil of an imaging system of, for
example, a weapon system, surveillance system, human eye

or another, animal’s eye, herein denotedas a “target,”to effect

the temporary change in MTF.Thelight can cause a tempo-
rary change in the refractive index ofone or more components

of the imaging system. This temporary changein the refrac-
tive index can result in a temporary disruption in a visual

acuity of the target imaging system.
FIG.2 illustrates an embodimentofan example system 12.

System 12 includesa light source 20 configured to produce a

light beam and a powersource 18. The light source 20 emits
light with a wavelength between about 1100 nm and about

1700 nm. The light source 20 can be a laser, although other
light sourcesthat producelightin the desired bandwidth, such

as, for example, a Quartz Tungsten Halogen (QTH) lamp
combined with afilter orfilters, can be used as well.

Powercharacteristics of the light beam 14 can be adjusted

and set to provide a temporary change in the MTF of an
imaging system. The light beam 14 producedbylight source

20 is optionally ofa finite duration. For example, the duration
can be between 1 fs and 20 seconds. In other examples, the

light beam can be projected continuously.
The light causing a change in MTFcan changetherefrac-

tive index of at least a portion of the target imaging system.

Therefractive index changeis related to a change in tempera-
ture in a portion of the imaging system. The change in tem-

perature is related to the absorption coefficient ofthe compo-
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nents of the imaging system, such as the eye. The change in
index of refraction can occur, for example, in a lens of the

imaging system. However, the changein index of refraction

ofthe lens may not change uniformly. Thus, the lens can have
a non-uniform index of refraction related to a non-uniform

change in temperature in the lens.
The powerto generate light beam 14 is produced at power

source 18. A feedback mechanism that monitors the powerin
light beam 14 may be used to control the powerin order to

ensure that the radiant power in light beam 14 is below a

damage threshold for the imaging system. The feedback sys-
tem functions by receiving as input the range of the target,

determining the powerat that range, and comparing with a
threshold safety value.

FIG.3 illustrates an example embodimentofsystem 12. In
this embodiment, along with power source 18, there are two

light sources 20a and 206 and a co-aligning mechanism 22 to

co-align the light produced by the two light sources 20a and
208.

Co-aligned light from the light sources combinethe benefit
oftwo or more wavelengths to cause a temporary change in a

visual acuity ofthe target. For example, ifthe light source 20a
is a laser producing coherentlight in the infrared spectrum,

while light source 205 is a second laser producing coherent

light in the visible spectrum, then the effect of co-aligning
these beamsis to produce a temporary haloin alineofvision

of the target. Such a halo is effective in applications using a
non-lethal security measure.

In this embodiment, the light source 20a@ produces a tem-
porary change in the refractive index profile of at least one

componentin the optical imaging system. The secondlight

source 206 is aimed andenters the pupil ofthe target imaging
system and dueto the changein refractive index profile pro-

duced by light beam 20a,is not focused on the imaging plane
of the target imaging system (for example, retina). The light

powerofthe defocused beam entering the imaging sensor of

the imaging system such as the eye can be at a higher safe
powerthan the beam. The defocused beam can cause percep-

tion of a halo, glare, or flash blindness effect in the eye.
Light sources 20a and 206 can produce coherent light

beams 24a and 246 respectively. Coherent light beams 24a
and 240 are then co-aligned using a co-alignment mechanism

22, which then co-aligns beams 24a and 246 to produce

co-aligned beam 14. Power is monitored in the co-aligned
beam bysplitting off a small portion ofthe radiant power and

directing it to an optical power metering element. The co-
alignmentofthe two beamscan be completed for example by

a dichroic element that combines beamsin transmission and
reflection.

FIG.4 illustrates another example embodiment. In this

embodiment, system 12, in addition to power source 18 and
light source 20, includes an optical system 26. Although FIG.

4 illustrates this embodiment with optical system 26 in addi-
tion to the features in the second embodiment of system 12

(i.e., co-aligned light produced by sources 20a and 205), this
need not be the case and optical system 26 can also be in

addition to the features in the first embodiment(i.e., source

20).
Theoptical system 26 is operable to control a focus and a

diameter of light beam 14. For example, a desired beam
diameterat the target is between about 10cm and about 2.0m.

A desired target distance is between about 1.0 meter and
about 2000 meters from system 12. Depending on the appli-

cation, other values of the beam diameter andtarget distance

may be appropriate. A beam induces a temperature change
produced by absorption of radiant energy which is deter-

mined by the absorption coefficient, irradiance of the beam
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8
(J/em?), and thermal properties ofthe target material. Control

of the focus and diameter of light beam 14 can be accom-

plished manually or through the feedback mechanism moni-

toring the powerin light beam 14.

The change in refractive index in the eye, or other target

imaging system, is accomplished through an effect known as

thermallensing. The phenomenonis the result of a tempera-

ture gradient, typically assumed to be, but not limited to,

radially symmetric, and formed by the absorption of laser

light in the eye, or other imaging system. As the temperature,

T, of the medium increases, the local density, p, decreases.

This leads to a decrease in the index ofrefraction, n, resulting

in the formation of a negative lens. The temperature gradient

is shapedby the beamprofile and the thermaldiffusivity ofthe

eye, or other material in the target imaging system.

In regard to an animaleye, the creation of a thermallens in
ocular media causes the spot size formed at the retina to

change dynamically as a function of the coupled transient
response ofheat generated by absorption ofthe incident beam

and thermaldiffusion.
The combination of a temperature gradient in the eye anda

temperature dependenceon the index ofrefraction ofthe eye

leads to anonconstantindexofrefraction profile about an axis
ofsymmetry ofthe eye. For example, a parabolic model ofthe

index ofrefraction takes the following form:

Demat (1)
nr, J = ho + >

 

&T an
OP aT \_,

Here, n, is the value of the refractive index on the axis of

symmetry, andr is the distance from the axis of symmetry.

The value of the quantity

PT
or?

onthe axis ofsymmetry is found through a solution to the heat
diffusion equation. Assuming that the coherent light beam

incident on the target imaging system has a Gaussian profile:

2uP r (2)
S(r) = —;exp|-2|,

To @

wherei is the linear absorption coefficient of the material
in the target imaging system,P is the powerat a longitudinal

position within the eye, and « is the 1/e* width of the beam,

PT
or?

on the axis of symmetry takes the following value:

OT (3)

oF =
8nueP t

mKw 8yt + Ww?”
  

where « is the thermal conductivity of the eye and t is the
exposure time of the light beam within the eye. Where the

symbol y is thermaldiffusivity.
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The value of

on

oT

on the axis of symmetry, or

Ono

OT’

is determined empirically and, for animal eyes, from known

data for water. Values of

as a function ofthe temperature T for waterin the liquid phase

are presented in FIG. 11. Values of

dno

oT

at room temperature for wavelengths within the desired band-

width for imaging systems composed primarily ofwater were
found using known empirical techniques.

Combining the computed values of

YT an
On oN OF

on the axis of symmetry of the eye as prescribed in Eq. (1)

determines the nonconstant behavior of the index of refrac-
tion of the eye due to exposureofthe eyeto the light beam.

Provided are systems and methods wherein light of a vis-
ible wavelength is used to cause a temporary changein visual

acuity in a target subject, such as a human.For example, the

visible wavelength light can have a wavelength of between
about 450 nm to 650 nm. The systems and methods can

furtherutilize light having an infrared wavelengthinthe range
of 1100 nm to 2500 nm.

Thelight having the visible wavelength can be configured
to cause a temporary disruption in visual acuity ofthe subject

at a given distance X. For example, the distance X can option-

ally be 1000 meters. To achieve the disruption in visual acuity,
the light may have characteristics that can cause permanent

damageto the eye of the subject at a closer distance (X/n). In
one optional example n can be 100. In other words,the irra-

diance at a location where the eye receives light to cause a
temporary disruption ofvisual acuity at the further distance X

may be abovethe retinal damage threshold of the eye at the

closer distance X/n.
Thelight of the infrared wavelength can be transmitted to

the same eye as the light of the visible wavelength concur-
rently with the visible light. The light having the infrared

wavelength can expand the retinal spot size of the visible
wavelength light and thereby reduce the risk of permanent

damage at the closer distance X/n. If an unexpected target

enters the beam at X/n, the range finder cuts or blocks power
to all light sources to minimize the time the unexpected target

is exposed to above intense light. The actual safety threshold
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increases as exposure time decreases. Optionally, the light
having the infrared wavelength can be propagatedatall times

during the operation of the system and can therefore act as a

safety measure ifpropagation ofthelightofthe visible wave-
length occurs at a distance of X/n which could result in

permanent damage.
Further provided is a method of effecting a temporary

change in a modulation transfer function (MTF)ofa target
imaging system, comprising directing a light beam into the

target imaging system. At least a portion of the light is

absorbedbya portion ofthe target imaging system, the absor-
bance causing an increase in temperature and a change in a

refractive index profile of at least the portion of the imaging
system, the change in refractive index profile producing a

temporary change in the MTFofthe target imaging system.
Optionally the target imaging system is an eye such as a

humaneye. The changein therefractive index ofone or more

componentsofthe imaging system can result in anonconstant
index of refraction profile about an axis of symmetry of the

imaging system. The light beam can bea laser light beam
which optionally has a wavelength of between 1100 nm and

2500 nm.The light beam can be co-aligned with a light beam
that is in the visible light spectrum. In such scenarios, the

infrared light beam modifies the optical MTF by causing

variationsin the index ofrefraction andthe visible light beam
modifies the functional MTF. Thelaser light beams can be of

a predetermined beam diameter at a predetermined distance
from the light source. The beam or beamscan diverge as they

leave the source and the system optics can be used to achieve
a desired spotsize at the target. Optionally, the focal distance

is between about 1.0 meter to about 2000 meters. Optionally,

the diameter of the light beams is between about 10 cm and
2.0 meters and the duration of the light beams is between

about 1 femtosecond to about 20 seconds.
The method can further comprise comparing a power

parameter of one or both of the light beams to a damage

threshold ofthe target imaging system and adjusting or main-
taining the powerof oneor both ofthe light beamsto a level

that is below the damage threshold of the target imaging
system. Thus the irradiance at the selected target imaging

system can be selected or adjusted to be below a damage
threshold that could permanently damagethe target imaging

system, for example an eye.

In regard to the eye, a directed-energy system may be used
that employs light directed at the eye, for example, a human

eye. Optionally, the system produces co-aligned light that
includes infrared light and visible light. The infrared light

emitted by the system temporarily disrupts functional vision
by safely altering the ability of the eye to focus images. The

visible light results in a glare that producesan effect similar to

temporary blindness. The augmentation of the visible light
and the infrared light increases the glare angle and enhances

an effect of altering, i.e., inhibiting visual acuity of the eye
while decreasing harm, for example, permanent damage, to

the eye. As described with reference to the figuresthat follow,
some implementations of the system can employ a combina-

tion oflights ofdifferent wavelengths to either increase a spot

size formed on the eye or to change properties of the eye that
affect visual acuity or both.

FIG. 5is a schematic diagram showing an example system
100 to temporarily alter visual acuity. The system 100

includes a light source 105 to produce infrared light and a
light source 110 to produce visible light. The system 100

further includes an example transmission unit 112. A trans-

mission unit is configured to propagate light onto a target. A
transmission unit can optionally propagate infrared light and/

or visible light. A transmission unit can also optionally com-
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prise other features as described here. Thus the transmission
unit 112 and the other example transmission units described

herein are examples of transmission units that can propagate

optical energy onto a target.
The transmission unit 112 optionally combinesthe infrared

light and the visible light, and propagates the combinedinfra-
red light and visible light ontoall or a portion of an eye. The

transmission unit 112 includes an optical system 117 that
further includes multiple components to combinethe infrared

and visible lights. In some implementations, the optical sys-

tem 117 can co-align the infrared and visible lights using
optical components such as, for example, fiber collimators

115, and fiber optic cables, 120, 125. In some implementa-
tions, the optical system 117 can include a cold mirror 130

that has the property oftransmittinginfrared light and reflect-
ing visible light.

In some implementations, the infrared light produced by

the light source 105 is transmitted through fiber optic cables
120 and through fiber collimators 115 to be incident on a

surface ofthe cold mirror 130. In some implementations, the
transmission unit 112 can include a shutter 135 that can be

controlled to close and open, for example, for a specified
duration. When the shutter 135 is closed, the infrared light is

notincident on the cold mirror 130 and vice versa. Thevisible

light producedbythe light source 110 is transmitted through
fiber optic cables 125 to be incident on a surface of the cold

mirror 130 that opposes the surface on which the infrared
light is incident. The infraredlight is transmitted through the

cold mirror 130, the visible light is reflected by the cold
mirror 130, and both lights are passedinto a fiber collimator

115. The lights are combined, for example, co-aligned to

generate co-alignedlightthat is transiently propagated to the
eye 145, for example, through a slit lamp 140 that limits

aperture. In some implementations, the eye 145 on which the
co-aligned light is incident is an eye, for example, a human

eye. The shutter can be moved to the other side of the cold

mirror to block both light beams.
Theinfrared lightalters visual acuity by causing a tempera-

ture gradient at the portion of the eye on which the lightis
incident. The temperature gradient causes a change in a

refractive index profile of the eye.
Asdescribed above, the change in refractive index in the

eye is accomplished through an effect known as thermal

lensing. The phenomenonis the result of a temperature gra-
dient, assumedto be radially symmetric, and formed by the

absorption oflaser light in the eye, or other imaging system.
As the temperature, T, of the medium increases, the local

density, p, decreases. This leads to a decrease in the index of
refraction, n, resulting in the formation ofa negative lens. The

temperature gradient is shaped by the beam profile and the

thermaldiffusivity of the eye.
In regard to an animaleye,the creation of a thermallens in

ocular media causes the spot size formed at the retina to
change dynamically as a function of the coupled transient

response ofheat generated by absorption ofthe incident beam
and thermal diffusion. The combination of a temperature

gradient in the eye and a temperature dependenceonthe index

of refraction of the eye leads to a non-constant index of
refraction profile about and along an axis of symmetry of the

eye.
Theportion ofthe eye that absorbsthe infrared light may be

anterior to the retina, for example, the vitreous humor, the
lens, the aqueous humor, the cornea. As described previously,

the changein the refractive index profile causes a non-uni-

form index of refraction change in the portion of the eye,
which, in turn, disrupts visual acuity. In some implementa-

tions, the light source 105 is a laser source configured to
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produce infrared light having a wavelength in the range of
1100 nm to 2500 nm,optionally, in the range of 1100 nm to

1700 nm, for example, 1318 nm. In some implementations,

the irradiance of the infrared light generated by the infrared
light-generating laser is between 0.001 W/cm? and 500

W/cm’, more specifically, for example, between 0.005
W/cm? and 50 W/cm’, and/or 0.1 W/cm? and 5 W/cm?at the
target.

Thevisible light saturates the light receptors in at least the

portion of the eye on which the co-aligned light is incident,

thereby producing an effect of temporary partial or complete
blindness. In some implementations, the light source 110 is a

laser source configured to producevisiblelight in the range of
450 nm to 650 nm,for example, 535 nm.

In some implementations, the irradianceofthe visible light
generated by the visible light-generating laser is greater than

0.001 mW/cm7?.It will be appreciated that more than one

infrared light source and/or morethan onevisible light source
can be coupled with the transmission unit 112 to produce the

co-aligned light. An example of such a system is described
with reference to FIG.6.

FIG.6 is a schematic diagram showing an example system
200 combining light from multiple light sources. Similar to

the example transmission unit 112, the example transmission

unit 215 included in the system 200 is configured to combine
light from multiple sources and propagate the combinedlight

onto at least a portion of the eye.
In some implementations, in addition to being coupled to

the infrared light source 105 anda visible light source 110, the
transmission unit 215 can be coupled to anotherinfrared light

source 205 and anothervisible light source 210. Each of the

light sources 105, 110, 205, and 210, can be operatively
coupled to a corresponding power source 150, 155, 225, and

230, each ofwhich is configured to provide powerto cause the
corresponding light source to produce and transmitlight, for

example, optical laser beams. In implementations in which

multiple infrared light sources are coupled to the transmission
unit, the time sequence of each infrared light source can be

adjusted to customize changes of index of refraction as a
function of depth in the eye.

The properties of visible light produced by laser source
110, for example, wavelength, irradiance, laser beam spot

size, and the like, can be the sameas or different from those

produced by laser source 210. Similarly, the properties of
infrared light produced by laser source 105, for example,

wavelength,irradiance, laser beam spotsize, and the like, can
be the same as or different from those produced by laser

source 205. By combining infrared light and visible light
from different sources, co-aligned light having different

properties can be generated for different applications, some

ofwhich are explained with reference to FIGS. 7A-7C.
FIGS. 7A-7C are schematic diagrams showing example

systems for propagating light to eyes at different distances.
Specifically, FIG. 7A shows an example system for propagat-

ing light combined by the aforementioned techniques for a
distance greater than 2 m. FIG. 7B and FIG. 7C show example

systemsfor propagating the combinedlight for a distance of

approximately 100 m andless than 10 m, respectively. For
example, the example system shown in FIG. 7B can be oper-

ated to inhibit visual acuity of humansin a crowd. In such
scenarios, the light sources can be operated in a continuous

modesuchthat the optical beamproducedbythe light sources
is moved like a spot lightor flash light across the crowd. In

such scenarios, the system can include an on-off switch to

turn on and turn off the light sources. In alternative imple-
mentations, the system can be configured to transmitlight as

a sequenceoflight pulses.
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The transmission units 305, 310, and 315 shown in FIG.

7A, FIG. 7B, and FIG. 7C, respectively, can be applied in

different scenarios depending upon a distance of the eye 145

from the corresponding transmission unit. For example, the
system shown in FIG. 7B can be applied for crowd control,

while that shown in FIG. 7C can be applied in law enforce-
ment.

In implementations in which the combinedlightis incident
on the human eye, the irradiance of light produced by the

transmission unit 112 is sufficient to alter visual acuity while

preventing permanent damageto the eye. In some implemen-
tations, the visible light source can produce an optical beam

having a spot size between 20 um and 30 um in afarfield, for
example, at a distance of 500 m. Whenthespotis incident on

the eye, the small area of cones in the macula are saturated,
thereby producing a glarethatalters visual acuity. By mixing

visible and infrared light ofparticular wavelengths, the retinal

spot size of the visible optical beam can be enlarged.
The infrared wavelength acts as a carrier or “pump”that

enters the eye and is significantly attenuated by absorption
before reaching the retina. As the beam is absorbed according

to Beer’s Law, temperature gradients are formed, the largest
ofwhich are at the edge of the beam asit passes through the

pupil.

As described with reference to FIG. 12, Beer’s law of
attenuation can be applied to predict the percentage of light

transmitted to the retina. The axial and radial thermal gradi-
ents producelocal gradients in index ofrefraction. The radial

gradients cause a divergence of the light entering the eye,
thereby forminga virtual negative lens in the eye. As shown in

FIGS.8A and 8B,the wavelength ofthe infraredlight affects

the percentof light entering the corneathat is transmitted to
the retina.

FIGS.8A and8Bareplots showing percent transmission of
infrared light to the retina over a range of infrared wave-

lengths in multiple types of eyes. FIG. 8A showsthe trans-

mission of infrared red light to the retina of a human eye, a
rhesus eye, and a rabbit eye. The percent of transmission to

the retina of the rhesus eye for wavelength from 1100 nm to
1350 nm showsthat only a few percent of 1318 nm light

reachesthe retina. FIG. 8B additionally showsthe transmis-
sion ofinfrared light in a Cain cell, which is an artificial eye

that provides an optical modelfor the rhesus eye.

FIGS. 9A and 9B showspotsizes of a He—Nelaser beam.
FIG. 9A showsthe relative spot size on the retina when only

visible light (wavelength—633 nm)is propagatedto the eye.
FIG. 9B showstherelative spot size on the retina when both

visible light (wavelength—633 nm) andinfrared light (wave-
length—1318 nm) are propagated to the eye. As shown in

FIG.9B, whenthe infrared light is co-aligned with thevisible

light, the spot size on the retina increases. Further, as the
retinal spot size increases, a larger portion of the macula is

covered, thereby increasing a glare angle.
A glare angle is related to the portion of the eye on which

the light is incident. For an eye, the glare angle represents an
area on the retina where an image is masked by glare. For

example, when incident light produces a glare angle of 1°,

then the image subtended by the 1 degree solid angle at the
retina can be masked by the glare. When the glare angle is

increasedto 30°, then most ofthe retinal image canbe masked
by glare.

Thus, whenthe visible light, for example, the laser beam,
from the visible light source 110 is incident on theretina, it

producesa spot size, for example, between 20 um to 30 um.

When the infrared light, for example, another laser beam,
from the infrared light source 105 is co-aligned with the

visible light, and the co-aligned light is incident on the eye,
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then the spot size increases, for example, to approximately
100 um greatly increases the glare angle.

In some scenarios, the powerof the visible light or the

infrared light or both can be adjusted such that the area of
receptors covered by the visible beam is increased manifold,

for example, by a factor of approximately 25. In somesce-
narios, the powerofthevisible light can remain constant, and

the spot size can be adjusted by varying only the power ofthe
infrared light source.

Therefore, when co-aligned light is incident on the eye,

more photo receptors are saturated relative to when visible
light aloneis incident on the eye. Thus, the power required to

powerthe visible light source 110, when the visible lightis
co-aligned with the infrared light, is less relative to the power

required to powerthe visible light source 110 in the absence
of co-alignment. Despite the decrease in power, the intended

effect of altering visual acuity is obtained. Also, because the

visible light spot size increases, damage causedto the eye is
decreased, thereby enhancing safety. Furthermore, the

changein refractive index ofthe medium anteriorto the retina
bythe infrared light additionally alters visual acuity.

FIG.10 is a plotofthresholdsfor visible light versus time.
The median effective radiant exposure (ED-50 radiant expo-

sure Q,,) in micro Joules for wavelengths between 514.5 nm

and 568.2 nm, plotted in FIG. 10, show that threshold energy
values for light entering the eye correspondto retinal thresh-

old powers of 10 mW entering the cornea for a 100 ms
exposure and 5 mW fora 1 s exposure. Source powersthat are

safe for the eye at the position of the target may causeretinal
injury near the transmission unit should the light be incident

on the eye of a subject walking across the path of the propa-

gated light. A transmission unit can be consideredto be safe
whenthevisible light irradiance, E, [W/cm7], at the source

multiplied by the pupil area, A,, of the eye is less than the
retinal ED-50 radiant threshold, Q,, [J], divided by the expo-

sure time, t, divided by a safety factor k which is typically

equal to 10.0. Even ifthe accidental exposureis only 1.0 ms,
safety can be improved if the ED-50 radiant exposure from

FIG.10 is below 80 uJ which corresponds to a source power
of 80 mW for the 1.0 ms exposure.

Increasing the spot size ofthe visible light can increase the
ED-50 threshold energy. In somescenarios,the infrared light

can increase the retinal area of the visible spot, thereby

increasing the threshold energyofthevisible light by a factor
of ten. In such scenarios, the 1 ms threshold for visible light

increases from 80 uJ to 800 uJ. If retinal damagefor the 1 ms
exposure can be avoided everywhere in the beam, then the

light source can be powered off before damageto the retina
The reduction in timeto cut offthe visible laser or an increase

in source size can improvethe safety factor and provide more

visible energy to thetarget.
In some implementations, the system 100 can include a

range finder configuredto track the target and alter power of
the visible light and the laser light to maintain safety. The

transmission unit 112 can be operatively coupledto the range
finder such that, when a subject interferes with the path ofthe

visible light, the range finder determines a distance between

the interfering subject and the transmission unit 112, and if
the safety limits are exceeded andeither decreases or turns off

the powerto the light sources. Alternatively, or in addition, the
range finder can decrease or turn off the power to the light

sources upon detecting that the subject interferes with the
path of the propagated light. Further, the range finder (or

alternatively, the transmission unit 112) can include a timer

that maintains the powerprovidedto the light source 105 or
the light source 110 or both for a specified duration. The timer

can be used to propagate the co-aligned light for the specified
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duration. In some implementations, the range finder can be
implemented in processing circuitry. The ED-50 radiant

thresholds and safety factor k can be stored on a computer-

readable medium and operatively coupled to the processing
circuitry.

FIG. 12 is a plot of absorption of light in various compo-
nents ofan eye, and in water, over a range ofwavelengths. The

absorption values in the various eye components follow that
for water closely. The plot in FIG. 12 showsthat Beer’s law of

attenuation can be applied to predict the percentage of light

transmitted to the retina if physiological data are considered
along with the linear absorption coefficients.

In some implementations, the system 100 can be operated
such that only infrared light, and no visible light, is propa-

gatedto the eye. In such implementations, the system 100 can
be employed as a stealth system. For example, when the

system is operated only with infrared light, i.e., when infrared

light alone is propagatedto the eye, visual acuity is altered,
i.e., distorted, because ofthe changesin index ofrefraction in

the eye. Not only can the vision of the eye be blurred butalso
the safety ofthe eye canbe increasedinboth near andfar field.

In implementations in which only infrared light and no
visible light is used, the index of refraction of system 100

remains unaffected by day light. Because the amountof light

entering the eye is determined by the irradiance (W/cm7), at
the target, and the pupil area, which is a function of ambient

light level. By adjusting the power provided to the infrared
light source 105, visual acuity induced in the eye during the

day by the infrared source can be similar to that induced at
night.

FIG. 13 is a flowchart of an example process 1300 for

changing modular transfer function of an imaging system.
The modular transfer function (MTF) is a measure of the

capability of an imaging system, for example, the eye, to
reproduce an image of an object. The process 1300 opera-

tively couples a power source with a light source configured

to produce light (step 1305). For example, a power source is
operatively coupled with a laser light source and configured

to effect the production of light from the light source. The
process 1300 produceslight for transient propagation onto a

portion ofa target imaging system (step 1310). For example,
a light source such as a laser light source is operable to

producelight for transient propagation ontoat least a portion

ofthe target imaging system. The process 1300 causes absor-
bance ofpropagatedlight by the imaging system (step 1315).

For example, an optical system in operative communication
with the light source propagates the produced light onto at

least a portion of the target imaging system. The propagated
light is configured for absorbancebythe portion ofthetarget

imaging system, for example, the eye. The process 1300

causes change in refractive index profile of the imaging sys-
tem (step 1320). For example, the absorbance causes an

increase in temperature and a change in a refractive index
profile ofthe eye. The process 1300 causes temporary change

in the MTFofthe imaging system (step 1325).
FIG. 14 is a flowchart of an example process 1400 to

temporarily alter visual acuity of a subject. The process 1400

produces infrared light in an infrared wavelength spectrum
for transient propagation into an eye of the subject (step

1405). For example, an infrared light-generating laser light
source producesthe infrared light which is propagated to the

eye t. The process 1400 produces visible light in a visible
wavelength spectrum for transient propagation into the eye of

the subject (step 1410). For example, a visible light-generat-

ing laser light source produces the visible light which is
propagatedto the eye. The process 1400 propagatestheinfra-

red light and the visible light into the eye (step 1415). For
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example, a transmission unit propagates the light into the eye.

To do so, in some implementations, the transmission unit

includesan optical system that co-alignsthe infrared light and

the visible light, and propagates the co-aligned light into the

eye. The process 1400 temporarily alters visual acuity of the

subject (step 1420).

FIG. 15 is a flowchart of an example process 1500 to

modify visible light. The process 1500 propagates visible

light into the eye to generate a glare angle (step 1505). The

process 1500 modifies the visible light. To do so, the process

1500 propagates an infrared light (step 1510) and co-aligns

the infrared light with the visible light (step 1515). The pro-

cess 1500 propagates the co-aligned light into the eye (step

1520), and thereby modifies visual acuity of the eye (step

1525). For example,the visible light-generating laser source

propagates light of sufficient irradiance to saturate the photo

receptors in an area of the eye. The infrared light-generating

laser source generates lightofsufficient irradiance to generate

temperature gradients in the region of the eye on which the

light is incident. The temperature gradients cause a change in

the refractive index profile ofthe region, thereby de-focusing
images formedin the eye. The transmission unit co-aligns the

visible light and the infraredlight; the presenceofthe infrared

light in the co-aligned light increases a spot size of the co-
aligned light. The light of increased spot size occupies a

greater area in the eye relative to the area occupied when
visible light alone is propagated. Not only does the visual

acuity ofthe eye further inhibited butalso a laser powerofthe
visible laser light is decreased thereby decreasing the poten-

tial for permanent damageto the eye.

While this specification contains many specific implemen-
tation details, these should not be construedas limitations on

the scope of any inventions or of what may be claimed, but
rather as descriptions of features specific to particular

embodiments of particular inventions. Certain features that

are described in this specification in the context of separate
embodiments can also be implemented in combination in a

single embodiment. Conversely, various features that are
described in the context of a single embodimentcan also be

implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may

be described aboveas acting in certain combinations and even

initially claimed assuch, one or morefeatures from a claimed
combination can in some cases be excised from the combi-

nation, and the claimed combination may be directed to a
subcombination orvariation of a subcombination.

Similarly, while operations are depicted in the drawingsin
a particular order, this should not be understood as requiring

that such operations be performed in the particular order

shownor in sequential order, or that all illustrated operations
be performed,to achieve desirable results. In certain circum-

stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-

nents in the embodiments described above should not be
understood as requiring such separation in all embodiments,

and it should be understoodthat the described program com-

ponents and systems can generally be integrated together ina
single software product or packaged into multiple software

products.
Thus, particular embodiments of the subject matter have

been described. Other embodiments are within the scope of
the following claims. In somecases, the actionsrecited in the

claims can be performedin a different order andstill achieve

desirable results. In addition, the processes depicted in the
accompanyingfigures do not necessarily require the particu-

lar order shown, or sequential order, to achieve desirable
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results. In certain implementations, multitasking andparallel
processing may be advantageous.

Whatis claimed is:
1. A system operable to effect a temporary change in a

modulation transfer function (MTF)of a target imaging sys-
tem, comprising:

alight source operable to produce lightfortransient propa-

gation onto at least a portion of the target imaging sys-
tem;

a powersource in operative communication with the light
source and configured to effect the production of light

from the light source; and
a transmission unit in operative communication with the

light source and configured to propagate the produced

light ontoat least a portion ofthe target imaging system,
wherein the propagated light is configured for absor-

bance by the portion ofthe target imaging system;
the absorbance causing an increase in temperature and a

changein a refractive indexprofile ofat least the portion

of the imaging system, the change in refractive index
profile producing a temporary change in the MTFofthe

imaging system.
2. The system ofclaim 1, wherein the propagated light has

a wavelength in the range of 1100 nanometers (nm) to 2500
(nm).

3. The system of claim 1, wherein the imaging system is an

eye.
4. The system of claim 3, wherein the portion of eye that

absorbsthe light is anterior to the retina.
5. The system ofclaim 4, wherein the portion ofthe eye that

absorbsthe light is selected from the group consisting of the
vitreous humor, the lens, the aqueous humor, and the cornea.

6. The system of claim 5, wherein the absorption of light

causes a non-uniform index of refraction change in the cor-
nea, aqueous humor, lens or vitreous humor.

7. The system ofclaim 3, wherein the portion ofthe eye that
absorbsthe light is the retina or tissue posterior to theretina.

8. The system of claim 3, wherein the absorption oflight
disrupts visual acuity.

9. The system of claim 3, wherein the eye is a humaneye.
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10. The system of claim 9, wherein an irradiance of the

propagatedlight at a location wherethetarget imaging system

receives the propagated light is between 0.001 W/cm? and

500 W/cm”.
11. The system of claim 9, wherein an irradiance of the

propagatedlight at a location where the target imaging system
receives the propagatedlight is between 0.005 W/cm? and 50

W/cm”.
12. The system of claim 9, wherein an irradiance of the

propagatedlight at a location where the target imaging system

receives the propagated light is between 0.1 W/cm? and 5
Wicm?.

13. The system ofclaim 1, wherein the light sourceis a first
laser light source.

14. The system of claim 1, further comprising a second
light source operable to producelight for transient propaga-

tion onto at least a portion of the target imaging system.

15. The system of claim 14, wherein the transmission unit
is in operative communication with the second light source

and is configured to propagate light produced by the second
light source onto at least a portion of the target imaging

system.

16. The system of claim 15, wherein the propagated light

from the secondlight source has a wavelength in the range of

450 nm to 650 nm.
17. The system of claim 15, wherein the transmission unit

is operable to co-align light from the first and second light
sources for propagation onto at least a portion ofthetarget.

18. The system of claim 14, wherein an irradianceoflight
from the second light source at a location where the target

imaging system receives the propagated light is greater than

0.001 mW/cm’.
19. The system ofclaim 1, whereinthe propagatedlight has

a wavelength in the range of 1100 nm to 2500 nm and wherein
the system further comprises a second light source operable

to produce light for transient propagation onto at least a

portion ofthe target imaging system, wherein the propagated
light from the second light source has a wavelength in the

range of 450 nm to 650 nm.

* * * * *


