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Abstract 

Hillslope seepage erosion, spring sapping, and knickpoint migration: 

evidence of groundwater sapping  

Middle Trinity aquifer, Honey Creek basin, 

Comal County, Texas 

Kristin Miller White, degree sought M.S. 

The University of Texas at Austin, 2004 

Supervisor:  John M. Sharp, Jr., Ph.D. 
Geomorphic features within Honey Creek basin are consistent with formation by spring 
sapping which is the erosion of soil and rock by groundwater. Geomorphic evidence 
includes: swallow holes (stream swallets) that pirate spring discharge into the 
subsurface, groundwater piping and seepage along weathered marly slopes, headward 
erosion at knickpoints and spring orifices, fracture controls on incised streams, and 
generation of alluvium from scarp collapse. Erosion pins were used to measure erosion 
and sediment accumulation on marly slopes. Aerial photograph interpretation, Arcview 
GIS, 3D Analyst, and Geoorient techniques were used to evaluate the physical 
hydrogeologic features (potentiometric surface, karst springs, recharge features, 
knickpoints, and fractures) and their relationship to surface erosion patterns. Honey 
Creek basin is underlain by interbedded marl and limestone units of the Cretaceous 
Middle Trinity aquifer. Springs and caves provide a window into subsurface processes, 
including flow direction along preferential flowpaths and perched water tables. 
Precipitation affects spring discharge and water table levels in both stratigraphically 
perched aquifers and deeper aquifers. Upland karst features allow recharge of surface 
water to focus flow into spring conduits that rapidly discharge into streams following 
intense precipitation. Spring conduits and upland creeks feed into intermittent tributaries, 
then into perennial channels of Honey Creek and the Guadalupe River. Perched aquifers 
focus flow toward intermittent springs, while perennial springs are supported by a deeper 
regional system. Transmissivity is high within rock units that contain solutionally 
enlarged fractures and spring conduits. Elsewhere, the transmissivity of limestone and 
marl is generally low so that preferred flow pathways concentrate spring discharge 
where hillslope erosion has intersected bedding planes, conduits, and fractures. As 
springs discharge into local surface water bodies, erosion occurs at the spring orifices 
causing headward erosion along the pathways. Dominant fracture trends within the basin 
are generally aligned with the northeast-trending Balcones Fault Zone and a secondary 
fracture distribution to the northwest. These trends strongly influence spring location and 
sapping.  
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Hillslope seepage erosion, spring sapping, and knickpoint migration: 

evidence of groundwater sapping  

Middle Trinity aquifer, Honey Creek basin, 

Comal County, Texas 

KRISTIN MILLER WHITE 

Jackson School of Geological Sciences, The University of Texas at Austin, Texas 

INTRODUCTION 

The Honey Creek State Natural Area (State Natural Area) and its larger watershed 

basin are located in the central Texas Hill Country, about 45 miles north of San 

Antonio, Texas (Figure 1). Honey Creek Stream Cave is Texas longest navigable 

cave and is found within Honey Creek basin and the larger Guadalupe River 

watershed (Figure 2) (Elliott, 1991 and TSS, 1994). Stream caves, such as Honey 

Creek Stream Cave (Photo 1A) and Preserve Cave (Photo 1B) provide ample airspace 

where one is able to swim or wade and to observe karst processes, stream cave flow 

direction, and to measure conduit orientations from below ground. Paleosprings 

(Photo 1C) and perched aquifer springs also allow for observation of the patterns of 

dissolution and erosion near spring orifices (groundwater discharge points) above the 

fluvial-level groundwater table. Karst terrain is a type of landscape that develops as 

the result of the dissolution of soluble rocks to form a topographic expression of well-

developed subsurface drainage, collapsed features such as sinkholes, dry valleys, 

vertical shafts, caves, and fluted rock surfaces (epikarst). Spring conduits intersect 

perched zones and water flows downward along the steepest available gradient 

toward the springs that flow within the entrenched canyon of Honey Creek (Figure 3).  



!(

!(

!(

!(

!(
!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

#* #*

#*

#*

#*

#*#*#*#*

#*

#*
#*

#*

#*

#*

#*
#*

#*

Ê

<

<

<

<

<

< Ä
Ä

Ä

Ä

Ä

Ä

Ä

__

_

___
_

_

_

_

_

Á
Á

Á
ÁÁ

ÁÁ

Á

Á

a

a

a

a

a

a

a

Ê

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(
!(

!(

U

U

U

Ê

Ê

#
#

Honey Creek Cave

Well #68-13-102
(deep)

Well #68-13-101
(shallow)

Preserve Cave

Kendall C
ounty

Comal C
ounty

p

INJ WELL

Shaft
Entrance

Basin A

Basin B

USGS Station
01867350

USGS Station
01867347 USGS Station

01867353

Gass Well

Plot B1

Plot B2

Plot B3

Plot A3

Plot A2

Plot A1

Well #68-12-301Ê

Well #
68-12-304 Ê

Well #
68-12-303

Ê Ê
Well #
68-12-303

T1 Scanline
Fracture Plot

360

370

350

340

33
0

38
0

390

320

400

410

31
0

420

430

320

370

31
0

390

39
0

400

42
0

360

360

31
0

350

310

310

38
0

32
0

390
390

40
0

330

39
0

380

380

400

390

39
0

H
oney C

reek

W
alt

er
 C

re
ek

FIGURE 2

MAP OF HONEY CREEK 
STATE NATURAL AREA

AND SURROUNDING AREA
COMAL AND KENDALL 

COUNTIES, TEXAS

³
Basin C

0 1,000 2,000 3,000 4,000

Feet

0 320 640 960 1,280

Meters

Legend
Honey Creek State Natural Area

#* Cave
< Erosion Plot
Ä Fracture

_ Karst Feature
Á Knickpoint
k Paleospring
a Sinkhole

!( Spring
Ê Water Well

# Weather Station

U USGS Stream Gauges

Elevation Contour (10-m interval)

Stream and River Data:  National Hydrography Dataset, 2005.
Honey Creek Footprint:  Texas Speleological Society, 1994. Map of Honey Creek Water Cave.
Preserve Cave Footprint: Sumbera, J. and Veni G, 1986, Trip report #2 and field reconnaissance, 
unpublished report to Texas Parks and Wildlife Department, 2 p. 
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Photo Group 1. 1A) Honey Creek Stream Cave passage (June, 1999). The location of 
Honey Creek Stream Cave is shown on Figure 2. 1B) Kemble White enters 
Preserve Cave (May 2003). 1C)  Photo of John M. Sharp, Jr. in entrance to a 
paleospring/shelter cave (PS-3) found approximately 15 feet (4.6 m) above the 
ordinary water level of Honey Creek. Photo locations are shown on the Site 
Feature Map in Appendix A. 

1A  

1B  

1C 
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Figure 3. Conceptual cross section of stream caves and canyon sidewalls of entrenched valley of Honey Creek (based in 
part on Palmer, 1990). 
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Statement of Problem 

This study proposes that headward erosion of stream caves (spring sapping) 

played a role in current dimensions of Honey Creek basin and downcutting of its 

steep canyon walls (Figure 3 and Figure 4). Geomorphic features are consistent with 

groundwater sapping and stream piracy, including structural controls on incised 

streams (Photo 2A); headward erosion at springs; (Photo 2B), loss of runoff from 

springs into stream swallets (Photo 2C); groundwater piping, hillslope seepage 

erosion; headward erosion of knickpoints at fractures (Photo 3A and 3B); generation 

of alluvium from scarp collapse (Photo 3C); and stream caves that pirate water from 

basin to basin (Figure 2). As shown in Figure 4, spring sapping has been attributed to 

the sapping the rocks of the canyon walls, causing them to separate and retreat, 

resulting in widening and steepening of the canyon walls. Phreatic conduits are 

located above water table and may intermittently transmit fluids following 

precipitation events, which continues to support headward erosion at perched springs. 

Some return flow (runoff) from these springs enters sinkholes downstream where it 

recharges the next lower level of the aquifer via stream swallets downstream from 

springs. Surface water and groundwater are linked by an intricate network of karst 

features and springs, resurgent groundwater, downstream recharge features (such as 

stream swallets), and fractures. 
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Figure 4. Conceptual cross section of groundwater sapping in marl and limestone within canyon walls (based in part on 
Palmer, 
1990).
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Photo Group 2. Photos of geomorphic features consistent with stream piracy and 
groundwater sapping (as defined by Pederson, 2001): 2A) Photo of fracture 
segment of fractured rock outcrop FR-2 (facing upstream to the southeast). 
Some segments of surface stream patterns are parallel to faults and fractures, 
suggesting structural controls on drainage patterns. 2B) Headward erosion 
occurs at a spring orifice (Preserve Cave entrance – March 2005) where the 
once buried conduit now forms a surface stream. 2C) A stream swallet (KF-
10) is situated downgradient from a perched spring orifice (SPR-8).  

2A   2B      
 

2C  

SPRING 
ORIFICE
SPRING 
ORIFICE
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Photo Group 3 These photographs show additional geomorphic features that are 
consistent with stream piracy and groundwater sapping: 3A) Conjugate 
fractures intersect the face of knickpoint KP-4B in Basin B (Lower Glen Rose 
Fm.) 3B) Photo of knickpoint KP-1B in Basin B facing upstream to the 
southeast. 3C) Photo shows fractures and travertine (from spring SPR-8). 
Photo of scarp collapse and alluvium, looking upstream to the southeast. The 
undercut scarp along the northern stream bank (Cow Creek Limestone) may 
be the preserved remains of a paleoconduit or may be formed by corrosion 
within the stream channel.  

3A   3B  

3C  
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Objectives 

This study provides observations of the stratigraphic and structural controls on 

the stream cave dissolution patterns, hillslope erosion rates, differential weathering, 

slope stability, spring sapping, and knickpoint erosion. Alternating rock units of soft 

and hard limestone and dominant fracture trends play a role in the orientation of 

stream caves and subsequently surface erosion patterns.  

Honey Creek basin provides an ideal setting in which to observe whether 

groundwater flowpaths and fractures leave an imprint on surface drainage patterns. 

Texas Parks and Wildlife Department management decisions and concurrent research 

projects may benefit from baseline data collected in this study (such as the 

hydrogeologic characterization, spatial karst feature database, and one year of erosion 

and deposition measurements). 

This project may be useful in surface water and groundwater management 

decisions within this setting and the central Texas Hill Country by providing a better 

understanding of stratigraphically perched springs and fluvial base level springs that 

may respond differently to environmental changes at the surface. Stream piracy and 

groundwater sapping affects such things as migration patterns for aquatic animals, 

rates of erosion in upland areas, and stream chemistry changes, as well as landscape 

evolution. 

Additionally, the baseline hillslope erosion and deposition measurements 

taken during this study may possibly be compared to data taken following Ashe 

juniper tree removal, which is being conducted by TPWD (Steffens and Wright, 

1996; TPWD, 1999). Invasion of uplands by Ashe juniper is suspected to exacerbate 

periodic declines in groundwater yield by reducing infiltration. The results of the 
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Seco Creek Study by Steffens and Wright (1996) showed an 80% increase in spring 

flow when 80% of the Ashe juniper was cleared from an 8-acre site. Slaughter (1997) 

attempted to establish rates for “canopy interception, throughfall, stemflow, and 

infiltration for Ashe juniper.” Slaughter found that throughfall (84% to 92%) and 

stemflow are higher for Ashe juniper than for plateau live oak (71%), as measured by 

Thurow (1987). This suggests that total interception losses for Ashe juniper are less 

than for plateau live oak. Slaughter found infiltration to be slightly lower beneath 

Ashe juniper trees (180mm/hour) than for plateau live oak (200 mm/hour) as 

calculated by Thurow et al., (1987). Dugas et al. (1998) conducted a soil water 

balance study to measure the effect of removing Ashe juniper on evapotranspiration 

and runoff in a paired basin study (treated and untreated basins) in Uvalde County, 

Texas. The results showed brush removal did not significantly affect 

evapotranspiration and did not consistently affect runoff rates. Ashe juniper clearing 

provided short-term potential for greater water yields by lowering evapotranspiration 

for two years following juniper removal (treatment) (Dugas et al., 1998). The 

increased water yield declined after 2 years as grasses became established where 

juniper had been cleared. The results of the Dugas et al. (1998) study suggest that 

juniper removal might temporarily increase infiltration and local spring flow. 

However, it is not known whether stratigraphically perched springs would respond to 

increased infiltration or whether it would provide significant recharge to the deeper 

aquifers.  

Many studies (Harding and Ford, 1993; Leopold et al., 1964 and 1966; Rapp 

et al., 1972; Smith and Stamey, 1965) show that the removal of vegetation, 

particularly of shrubs and trees, is associated with accelerated rates of erosion 

because of increased runoff and a lack of ground cover to intercept precipitation 



 12

(Dunne and Leopold, 1978, p. 510-585). Little information is available that 

documents the effect of tree removal changes on erosion or surface and groundwater 

interactions in this setting. Due to the complexity of the hydrogeology, vegetation 

removal studies completed in different settings such as the northwest logging areas 

are not applicable to the central Texas Hill Country. 

Surface water features in the study area (streams, lakes, rivers, wetlands, and 

discharge from spring orifices) interact with groundwater. A better understanding of 

surface and groundwater interactions is needed to evaluate their effects on 

groundwater availability, environment, and to provide baseline data to support 

watershed management decisions. This thesis contributes some baseline data that be 

used for future evaluation at Honey Creek.  

Groundwater in karst zones and fractured-rock aquifers is particularly 

responsive to groundwater and surface water interactions. Groundwater response to 

precipitation or land use changes is particularly amplified in fractured-rock aquifers 

due to responses to pumping stress and drought conditions. Additionally, 

contamination can be more rapid than in aquifers where water flows through open 

conduits or fractures. 

The Guadalupe River, of which Honey Creek is a tributary, is highly valued 

for its aesthetic qualities and is sensitive to a change in water quality because of 

accelerated soil erosion. Farther downstream, Canyon Lake is used as a drinking 

water source and recreational resource. Additionally, studies related to erosion, 

stream piracy, and groundwater sapping are relevant to Texas Hill Country aquatic 

ecology that supports many federally protected species. Studies in this area are also 

relevant to groundwater quality and quantity issues of the Edwards-Trinity aquifers 

(Mace et al., 2000).  
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Stream and spring ecology support unique aquatic species such as the spring-

dependent Honey Creek Salamander (Eurycea tridentifera). Springs, streams, and 

rivers often fall within areas of prime habitat for the federally protected migratory 

songbird known as the golden-cheeked warbler (Dendroica chrysoparia) (Oberholser, 

1974; Pulich, 1976; USFWS, 1992; Wahl et al., 1990). Therefore, it is important to 

understand the interaction of surface and groundwater to aid in ecological 

management decisions in similar settings. 

The purpose of this study is to provide an interpretation of the surface water 

and groundwater interaction in this basin. This investigation of the controls on surface 

water and groundwater flow uses 5 primary steps: 1) comparison of orientations of 

fractures, streams, and stream caves; 2) identification of hydrostratigraphic controls; 

3) comparison of regional vs. local groundwater gradients; 4) comparison of stream 

cave footprints vs. surface streams; 5) sediment sampling and erosion/deposition 

monitoring on marly slopes where seepage erosion is suspected; 6) measurement of 

longitudinal profile distribution of knickpoints, fractures, stream swallets, and 

lithology.  

To accomplish these goals, field measurements of fractures, creeks, stream 

cave passages, and karst feature orientations were measured and plotted on rose 

diagrams using Geoorient computer software to compare their relationships 

statistically. USGS real-time data (USGS, 2001) at Honey Creek State Natural Area 

were used to compare seasonal rainfall and runoff events to groundwater depths in 

one deep water well (TWDB Well No. 6813102) and one shallow water well (Well 

#68-13-101) to better understand the potential response of environmental variables. 

Erosion and deposition along marly risers was measured using pins and washers for 

the period of one year (August 2001 to August 2002) to analyze the effect of seepage 
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erosion and seasonal variations on 3 pairs of test plots at 3 elevations within each of 

the paired Honey Creek State Natural Area basins. A high precision global 

positioning system (GPS) unit was used with carrier phase correction data to survey 

the locations and elevation data of knickpoints and stream segments within Basin B 

of Honey Creek State Natural Area. A tape measure and stadia rod were used to take 

measurements where tree cover was too thick to obtain the appropriate accuracy or to 

refine the GPS elevation data. ArcGIS software was used to plot karst features, 

fractures, geologic contacts, streams and rivers, knickpoints, and springs. Arc Map 

with Spatial Analyst was used to evaluate the Digital Elevation Model (DEM) to 

generate surface contours and to delineate watersheds.
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PREVIOUS INVESTIGATIONS 

Stream piracy occurs when water is captured by a stream found at a lower 

stream base level (elevation). Stream piracy is often associated with unconsolidated 

sedimentary deposits; however, Higgins (1984, p. 18-58) findings suggest that 

groundwater sapping is possible in rock and cemented sediments where streams 

channels become incised or entrenched into the water table and due to hillslope 

processes. Existing literature (Dunne, 1990; Howard, 1988) suggests that seepage 

erosion also occurs in consolidated rock. Howard (1988, p. 3) proposed that 

“Groundwater sapping, as distinct from piping, is a generic term for weathering and 

erosion of soils and rock by emerging groundwater, at least partially involving 

intragranular flow (as opposed to the channelized through flow involved in piping).” 

Pederson (2001) defines groundwater sapping as the erosion and weathering 

of rock and soil by groundwater. Evidence of groundwater sapping includes seepage 

erosion along hillslopes, spring sapping, and headward erosion of stream channels 

(Fenneman, 1931; Fabel et al., 1998, Pederson, 2001). Spring sapping erodes a 

hillslope where a spring emerges and includes collapse of saturated hillslopes and 

chemical weathering (Baker, 1990). Spring sapping is known to occur in Northern 

Yorkshire, England at or above the contact between the Upper Oxford Clay and 

Lower Calcareous Grit within siltstones with little clay (Nash, 1996).  

Pederson’s (2001, p. 6) review of current literature and academic history of 

stream piracy concluded that it is likely that “most hillslope erosion and channel 

extension patterns carry the imprint (pattern) of groundwater-flow systems”. 

Pederson’s assessment of the literature supports his opinion that under conditions of 

stream piracy, topography follows groundwater in some areas. 
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 Existing literature from research conducted by Freeze (1987), Fyodorova and 

Sasowsky (1999), and Johnsson (1999) suggests that topography reflects groundwater 

flow in karstic and groundwater sapping settings. Freeze (1987) modeled of the 

potentiometric surface between parallel rivers, so that recharge and aquifer 

characteristics were coupled with the slope stability calculations to show the effects 

of infiltration from various precipitation events. The results suggested that 

hydrogeology, climatic variation, and storm-event precipitation events affected slope 

and surface topography. Freeze found that in some areas topography is a reflection of 

the groundwater table because pore water pressure and saturated hydraulic 

conductivity affect erosion and decrease slope stability. Saturated hydraulic 

conductivity controls whether the primary erosion agent will be surface runoff or 

subsurface pore pressure. Freeze’s results suggest that surface topography may reflect 

the water table; this is the reverse of the popular idea that the water table is a subdued 

reflection of topography. 

Groundwater sapping can be identified by erosional patterns that result from 

geologic conditions and groundwater flow patterns. Caves may develop along larger 

fractures within bedrock that continue to enlarge due to erosion and dissolution 

(Fyodorova and Sasowsky, 1999). In Swago Creek, West Virginia, Johnsson (1999) 

identified two sets of horizontal cave passages at two historic elevations of the 

groundwater table and groundwater flow directions to find that the fracture 

orientations and groundwater flow directions affected the groundwater sapping 

patterns. 
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Hack (1960 and 1965) proposed that the equilibrium landscape is one that is 

in balance with ongoing erosion or dissolution processes. The water table adjusts to 

changes in elevation of the incised creeks and to other controls on spring water 

(Palmer, 1990).  

 Springer, Wohl, Foster, and Boyer (2003) found evidence that bedrock 

streams maintain concave profiles while adjusting channel geometries and hydraulics 

at Buckeye Creek (a fluviokarst basin) and the Greenbrier River (underlain by 

limestone), in southeast West Virginia. This suggests that the adjustment of channel 

geometries and hydraulics in bedrock streams with stable concave profiles is 

analogous to alluvial rivers. 

Woodruff and Abbott (1979) explained that the low relief, resistant, karstic 

uplands of central Texas are an equilibrium landscape punctuated by groundwater 

infiltration, attenuated erosion, and deposition by surface streams. They suggest that 

low-relief karstic plains and deeply incised streams represent historically slow rates 

of fluvial downcutting and high rates of groundwater recharge that helped to form a 

network of stream caves and springs. Woodruff and Abbott (1979) observed that 

upland karst plains and deeply incised stream channels are in disequilibrium with one 

another, indicating stream piracy within the Guadalupe River basin. Honey Creek 

basin is a sub-watershed of the Guadalupe River basin. 

Veni (1994a) characterized the Lower Glen Rose Limestone with in the 

Guadalupe River basin as gravity-drained with discharge from springs along the river. 

Veni identified the long stream caves as dendritic with evidence of flow piracy and 

rapid responses to storm events. Within the Guadalupe River basin, Veni calculated 

the hydraulic conductivity as 5.81 x 10-4 m/s, the transmissivity as 3.48 x 10 -3  m2/s, 

and the specific yield as 8.1%. He explained that the specific yield was relatively high 
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due to the honeycombed texture of the Lower Glen Rose Limestone. Veni calculated 

the mean aquifer storage as 1.5 x 105 m3/km3 and 3.7% in conduits. He concluded that 

the rising limb of the hydrograph of flow from a spring orifice in this basin could be 

used to calculate the size of a spring’s catchment area, volume, and transmissivity of 

the conduit. He found piracy to occur “within and between caves and surface 

streams.” Veni hypothesized that Honey Creek Stream Cave was truncated by the 

downcutting of Honey Creek and created a series of maps showing a possible 

evolution scenario of Honey Creek Stream Cave that included a hypothetical 

projection of Honey Creek Stream Cave across the creek channel draining toward the 

Guadalupe River (Veni, 1994a, Figures 4.46a and b, p. 218-219) (Figure 5). Veni’s 

maps suggest a relationship of the hypothetical conduit to the potentiometric surface 

and the down-cut Guadalupe River basin (instead of Honey Creek). 

Observations and quantitative measurements in previous studies suggest that 

the layering of rock units of alternating resistance and permeability influences 

weathering and erosion (Johnsson, 1999, Palmer, 1990, Woodruff and Marsh, 1992, 

Wilson, 1986, and Veni, 1994a). The orientation, density, infilling and aperture of 

fractures, faults, recharge and discharge features serve as useful indicators of 

preferential erosion and groundwater flow (Rasco, 1998 and Wermund et al., 1978). 

Locally, sequences of interbedded limestone and weathered limestone described as 

calcareous marl (or locally as caliche) consist of layered rock units of alternating 

resistance and groundwater properties (Woodruff and Marsh, 1992). Near Honey 

Creek, sequences of dolomitic limestone contain solutionally enlarged fractures and 

spring conduits. Woodruff and Marsh (1992) suggest that alternating layers of 

calcareous marl (or caliche) form more ductile layers, which form an aquitard 

between, fractured limestone units (Figure 6). 



Figure 5. Model of evolution of Honey Creek (Veni, 1994a,
Figures 4.46a and b, p. 218-219).



Groundwater
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Figure 6. Treads and risers of lower member of the
Glen Rose Formation.
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ENVIRONMENTAL SETTING 

Honey Creek State Natural Area contributes runoff and spring flow to the 

main channel of Honey Creek and to the Guadalupe River. The Middle Trinity 

aquifer is a primary aquifer in the Texas Hill Country (Barker et al., 1994, Figs. 3 and 

4, p. 4-6). It includes the Lower Glen Rose Limestone, Hensel Sand, and Cow Creek 

Limestone and is typified by rolling rangeland and dissected by numerous 

intermittent drainages (Figure 1). Two paired tributary basins (Basins A and B) are 

located along the southeastern edge of Honey Creek basin, about 2000 feet (620 m) 

(to its confluence with the Guadalupe River) (Figure 2).  

Land Use 

The approximately 2294-acre (928-hectare) Honey Creek State Natural Area 

is located within Honey Creek basin (Figure 2). Both the natural area and basin are 

situated in an area that was historically rural within an unincorporated area of Comal 

County, Texas. Land use in the general area remains rural in nature and is primarily 

related to the livestock ranching industry and the adjacent Guadalupe River State 

Park. Nearby land uses in the area include recreation such as camping, canoeing, and 

rafting. The site consists of cleared upland lands (pasture) and mostly uncleared 

grazing rangelands, although most of the woodlands on the site were historically 

thinned. The state natural area is irregularly shaped, extending over an area 

approximately 12,000 feet (3658 m) in length (north to south) and 6000 feet wide 

(1829 m) (east to west). Along its western boundary, the Honey Creek State Natural 

Area has approximately 12,000 feet (3658 m) of frontage of the main channel of 

Honey Creek, which flows south to north. The natural area also has 1500 feet (457 m) 
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of Guadalupe River frontage to the north. Other improvements include solar and 

battery-powered USGS weather stations and weirs, one shallow and one deep water 

well, and electricity installed to serve the former residence that is now used to serve 

the USGS water wells (USGS, 2001). 

The historic land use of Honey Creek State Natural Area was as a working 

cattle ranch. Cattle production primarily focused on cow-calf management and beef 

production. Small sheds, barns, and cattle pens are scattered along the uplands of 

Honey Creek State Natural Area. The areas with structures and much of the 

remaining acreage are accessed by a network of ranch roads, some of which are 

improved with caliche road-base material (excavated from the abundant calcareous 

marl layers of the Lower Glen Rose Limestone). Within the past 100 years, the land-

use disturbance, agriculture, timber harvesting of mature forests in canyon areas, fire-

suppression, and drought have affected the vegetation coverage and have contributed 

to the invasion of secondary growth Ashe juniper on the uplands and the reduction of 

plant diversity (Palmer, 1920, Palmer et al., 1984, and Seele, 1885).  

Physiography 

The study area is located between the Edwards Plateau region and Balcones 

Escarpment within an area commonly referred to as the central Texas Hill Country 

(Figure 1). The Texas Hill Country is typically underlain by the Glen Rose Limestone 

that forms stair-step topography (Figure 6). Thin soils are typically found on uplands. 

High velocity storm-flow events have dissected narrow canyons into the carbonate 

rock. The carbonate terrain is dissected by the headward erosion of streams and 

rivers, forming steep gradients, and canyon walls (Figure 3). Amphitheater-shaped 

canyon heads open to steep-walled canyons. 
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Climate 

Mean annual precipitation was approximately 30 inches (76 cm) per year over 

the Texas Hill Country between 1951 and 1980 (Barker et al., 1994; Riggio et al., 

1987). The highest rainfall amounts are typically in May and September (Carr, 1967). 

Additionally, an orographic affect causes the Edwards Plateau (and Honey Creek 

basin) to receive a significantly higher amount of rainfall than surrounding areas 

(Larkin and Bomar, 1983). This pattern is also evident in maps produced by Asquith 

and Roussel (2003). 

Vegetation 

Honey Creek basin is mapped as within the eastern edge of the Edwards 

Plateau vegetation region (Gould, 1975). Field investigation revealed a complex 

distribution of plant flora (McMahon et al., 1984). The following plants were 

identified on the uplands during the field investigation portion of this study:  Ashe 

juniper and plateau live oak savannah with scattered brush and interspersed 

grasslands. Plateau live oak is the dominant overstory species and mottes of trees are 

scattered throughout the site. Secondary-growth Ashe juniper, Texas persimmon, 

agarita, and sumacs dominate the mid-story. Short and mid-grasses include 

buffalograss; hairy tridens, perennial and annual three-awn, little bluestem; silver 

bluestem, King Ranch and bluestem. Many forbs and wildflowers, as well as prickly 

pear, are abundant on the upland grasslands. Vegetation on the majority of the slope 

and drainage areas consists of Ashe juniper, Texas oak, plateau live oak, cedar elm, 

shin oak, and sugarberry. Ashe juniper, plateau live oak, agarita, and Texas 

persimmon dominate the dry, rocky hills (Photo 4A).  
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Photo Group 4. These photographs show typical vegetation at Honey Creek State 
Natural Area: 4A) Photograph of mid-basin vegetation within an intermittent tributary 
to Honey creek,  consisting of Ashe juniper with interspersed Texas oak and assorted 
grasses (Basin B)  4B) Photograph of vegetation within perennial Honey Creek, 
consisting of cypress trees, Texas palmetto, columbine, sedge, and maidenhair fern 
occur along the rocky banks. Lily pads and spatterdock float on the surface of Honey 
Creek. 

4A  

4B
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Downslope within Honey Creek canyon, an abrupt change in plant fauna was 

observed, which includes more cedar elm and older Ashe junipers with the addition of 

Spanish oak, pecan, walnut, and Mexican buckeye (McMahon et al., 1984). The 

terrain levels out in the narrow floodplain of Honey Creek where the dominant 

species are sycamore and bald cypress, and a variety of riparian floodplain species 

(Ford and Van Aucken, 1982). Texas palmetto, columbine, sedge, and maidenhair 

fern occur along the rocky banks (Photo 4B). Lily pads and spatterdock float on the 

surface of Honey Creek (McMahon et al., 1984). Emergent plants are also present in 

the perennially flowing channel of Honey Creek. 

Soils 

According to the Soil Survey for Comal County (Batte, 1984), soils within 

Honey Creek basin are found within the Comfort-Rumple-Eckrant association, which 

consists of very shallow, to moderately deep, undulating, and steep to hilly soils over 

indurated limestone and calcareous marl, on uplands of Edwards Plateau). Primary 

soil types within Honey Creek State Natural Area can be distinguished from one 

another by changes in the dominant vegetation, topographic position, and steepness of 

slope. Fractured limestone interbedded with calcareous marl is overlain by soils that 

range in permeability from moderate to moderately slow when saturated and rapid 

when dry (Batte, 1984). Soils on calcareous marl slopes tends to be calcareous, while 

soils on dolomitic hilltops and sideslopes tends to be noncalcareous. The calcareous 

nature of the soils may be helpful to determine whether the parent material is 

calcareous marl or dolomitic limestone. A map of published soils is shown in Figure 

7 and a table of soil units is provided in Table 1 (Batte, 1984).
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Table 1. Table of soils (Batte, 1984). 

Soil Name 
Soil 
Type 

Soil 
Depth 

(inches)
 

Underlying 
Material 

Perme- 

ability 

Available 
Water 
Capacity 

Surface 
Runoff 

Erosion 
Hazard 

Calcareous 
Nature 

Location 

 
Bracket Rock 
Outcrop Comfort 
Complex, 
undulating 
(BtD) 
 

 
Gravelly 
clay loam 
to stony 
clay 

 
0 to 17  

 
Limestone 

 
Moderately 
slow 

 
Very low 

  
Medium 

 
Severe 

 
Brackett soils 
are moderately 
calcareous.  
 
Comfort soils 
are 
noncalcareous. 

 
Uplands, 
escarpments, 
and high 
rounded hills. 
Slopes are 
benched in 
appearance 
because of 
horizontal rock 
outcrop. 

 
Bolar clay loam, 1 
to 3 % slopes 
(BrB) 
 

 
Clay 
loam to 
cherty 
clay 

  
28 

 
Indurated 
limestone 
and marl 

 
Moderate 

 
Low 

  
Medium 

  
Moderate 

 
Moderately 
calcareous. 

 
Concave valley 
slopes and foot 
slopes of hills 
on uplands. 

 
Denton Silty Clay, 
1 to 5% slopes 
(DeC3) 

 
Silty clay 

 
31 

 
Fractured 
limestone 
interbedded 
with 
calcareous 
marl. 

 
Slow when 
wet, rapid 
when dry. 

 
Low 
 

 
Rapid 

 
Moderate 

 
Calcareous 
 

 
Valley slopes 
on uplands. 
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Soil Name 
Soil 
Type 

Soil 
Depth 

(inches)
 

Underlying 
Material 

Perme- 

ability 

Available 
Water 
Capacity 

Surface 
Runoff 

Erosion 
Hazard 

Calcareous 
Nature 

Location 

 
Real-Comfort-
Doss complex, 
undulating (RcD) 

 
clay loam 
to 
gravelly 
loam 

 
7 to 12  

 
Indurated 
limestone 
and marl 

 
moderate to 
moderately 
slow 

 
Very low 

 
 
Low 

 
Low 

 
Noncalcareous 
throughout. 

 
Low hills and 
ridges on 
uplands. 

 
Anhalt clay 
0 to 1 % slopes 
(AnA) 

 
Clay 

 
28 

 
Fractured, 
hard 
limestone  

  
Very slow 
when wet, 
rapid when 
dry 

Low 
 
Slow 

 
Slight 
 

  

Comfort Rock 
outcrop complex, 
undulating (CrD) 

Shallow 
extremely 
stony, 
clay soils 
and rock 
outcrop  

0 to 13 
Indurated, 
fractured 
limestone. 

Slow Low 
Slow to 
medium, 

Slight 
hazard. 

Noncalcareous 
throughout 

Side slopes, 
hilltops, 
ridgetops, and 
uplands on side 
slopes. Slopes 
are convex. 

Eckrant-Rock 
Outcrop complex, 
steep (ErG) 

Shallow, 
clayey 
soils and 
rock.  

0 to 10  
Indurated, 
fractured 
limestone 

Moderately 
slow. 

Very low. 
Rapid. 
Well 
Drained. 

Severe 
hazard. 

Noncalcareous 
throughout. 

Long narrow 
slopes on high 
hills, ridges, and 
along 
escarpments. 
Slopes are 
convex and 
range 0 to 30%. 
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Topography 

Topography of the Honey Creek basin is characterized as a gently rolling 

landscape that is dissected by numerous steep, narrow drainages. At Honey Creek 

State Natural Area, land surface elevations range from approximately 1080 feet (329 

m) above sea level in the northern portion of the site along the Guadalupe River to 

396 m (1302 feet) above sea level on the highest hilltops. Topographic relief between 

the highest and lowest points within the Honey Creek State Natural Area is close to 

68 m (222 feet). 

Lithology 

Honey Creek basin is underlain by the Upper and Lower Glen Rose 

Limestone (with occasional dikes of Upper Cretaceous basalt), Hensel Sand, and Cow 

Creek Limestone (Figure 8) (Barker et al., 1994; Collins, 2000, Lonsdale, 1927). The 

Cretaceous strata of the Middle Trinity aquifer are nearly flat lying and dip slightly 

toward the southeast above Paleozoic and Triassic rock units that dip westward. 

Cow Creek Limestone 

The Lower Cretaceous Cow Creek Limestone consists of fossiliferous 

dolomitic limestone with interbedded sand and shale layers with silicious geodes 

(Barnes, 1983). The thickness of the Cow Creek Limestone is approximately 75 feet 

thick (22.9 m) near the study area (George, 1952). About 50 feet (15.2 m) of the 

formation crops out within the Guadalupe River and some of its tributaries such as 

Honey Creek (Cooper, 1964). Fossils include Exogyra sp. and pelecypods. Upper 

Cow Creek Limestone commonly forms a distinct ledge along the Guadalupe River 

and its tributaries (Collins, 2000).
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Hensel Sand 

Hensel Sand is composed of sandy limestone and sandy dolomitic limestone. 

Approximately 45 feet of the Hensel Sand outcrop along the Guadalupe River and its 

tributaries (Cooper, 1964). The upper unit that is exposed in the Honey Creek 

tributaries is a glauconitic sandy limestone. The lower Hensel is less weather resistant 

and weather to loose yellowish-brown soil (Collins, 2000).   

The Lower Cretaceous Hensel Sand consists primarily of alluvial and near-

shore marine sands, which are equivalent to the Glen Rose Formation (Stricklen et al., 

1971). The Hensel Sand and Glen Rose Limestone form a wedge that thins toward the 

northwest (Llano uplift). The relationship between the Hensel Sand clastic sediment 

and the Glen Rose Limestone carbonates is gradational (Stricklen et al., 1971). The 

depositional dip is to the southeast and reflects facies changes and on-lap over pre-

Cretaceous rocks near Llano to the northwest. 

The Hensel Sand consists of nearshore marine deposits, which are about 9 m 

(30 feet) thick at Honey Creek State Natural Area and consist of sandy dolomite beds. 

These sandy dolomite beds progressively replace younger terrestrial deposits up-dip 

toward the northwest. Typically, the Hensel Sand comprises a mixture of limey sand, 

silt, chert, and dolomite pebbles in a basal conglomerate. However, near Spring 

Branch, Texas and within Honey Creek basin, these beds form the southernmost 

down-dip beds of the Hensel Sand Formation and contain abundant clay, siliceous 

concretions, and large bivalves (Ashworth, 1983; Stricklen et al., 1971). The name 

“Hensel” is commonly spelled with 2 letter “l’s”, but only one “l” is used herein 

because the original spelling of the family name associated with the formation 

contains only one letter “l” (Stricklen et al., 1971). 
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Glen Rose Limestone 

The Lower Cretaceous Glen Rose Limestone is divided in to two stratigraphic 

units, based on lithology and index fossils. The widespread Corbula species fossil bed 

marks the boundary between the Upper and Lower Glen Rose Limestone (Whitney, 

1952). The lower portion of the lower member of the Glen Rose Limestone consists 

of thick dolomitic layers, which form aquifers characterized by local cave 

development and fracture permeability. Alternating beds of limestone, dolomitic 

limestone, argillicious limestone, and some marl are typical of the upper part of the 

lower member of the Glen Rose Formation, forming stratigraphically perched 

aquifers and springs. The upper member of the Glen Rose Formation consists of 

alternating beds which are resistant beds of dolomite, mudstone, and limestone and 

non-resistant beds of calcareous clay. Stair-step topography is characteristic of the 

Glen Rose Formation and is formed by the alternating resistant and recessive beds. 

Foraminifera tests (Orbitilina texana) that indicate the top of the lower member of the 

Glen Rose Limestone. 

Basalt 

One dike of igneous intrusive rocks (basalt) is present near the mouth of 

Honey Creek where it flows into the Guadalupe River. This dike is formed along a 

northwest-trending fracture (~300° to 330°) (Londsale, 1927). 

Quaternary Terrace Deposits 

The Quaternary-age alluvial deposits consist of gravel, sand, silt, and mud. 

The deposits are found on uplands near alluvial channels. Terrace deposits are 

considered indicators of stream piracy and a relict potentiometric surface (Woodruff, 

1974). 
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Photo Group 5. Rock unit identification photographs: 5A) Photo (in mm) of 
foraminifera tests (Orbitilina texana) that indicate the top of the Lower 
Member of the Glen Rose Limestone (photograph by James Sprinkle, 
University of Texas at Austin, 2001). This sample was taken at the base of 
Plot-3B. 5B) View of exposed Hensel Formation (yellowish-tan) at the 
contact with overlying Lower Glen Rose FM. (gray) exposed within incised 
channel of Basin B. 

 

   

 

 

 

 

  5A 

5B  
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Hydrogeologic Setting 

The Middle Trinity aquifer occurs parallel to regional faulting associated with 

the western edge of Balcones Fault Zone and spans many surface drainage basins 

(Abbott, 1975; Collins and Hovorka, 1997; Rose, 1972; and Stricklin et al., 1971). 

The Middle Trinity aquifer is the principal aquifer in Honey Creek basin. The Middle 

Trinity aquifer yields very small to moderate quantities of fresh to moderately saline 

water (Reeves, 1967). 

Hydrostratigraphy 

Honey Creek basin is underlain by the Cow Creek Limestone, Hensel Sand, 

Lower Member of the Glen Rose Limestone, Upper Member of the Glen Rose 

Limestone, and Quaternary terrace deposits (Collins, 2000). Hensel Sand consists 

primarily of permeable sands (Barker et al., 1994). However, here the Hensel Sand 

contains abundant clay that may reduce permeability (Ashworth, 1983; Stricklen et 

al., 1971). The Cow Creek Limestone is relatively more permeable at the surface than 

it is in the subsurface because of calcite cement precipitation (Barker et al., 1994). 

The subsurface portion of the Lower Glen Rose Limestone may have lower 

permeability than at the surface (Barker et al., 1994). Large, fracture-controlled caves 

are formed within the Lower Glen Rose Formation in Bexar, Comal, and Kendall 

Counties (Kastning, 1983; Mace et al., 2000, Veni, 1994a and b). Although many of 

these caves are accessible and laterally persistent, groundwater flowpaths are often 

difficult to trace.  
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Table 2. Hydrostratigraphic units and water-bearing properties (from Ashworth, 1983).   

System Series Group  Stratigraphic 
Unit 

Hydrologic 
Unit 

Approx. 
Maximum 
Thickness 

Identification Water-Bearing  
Properties 

Upper member 
Upper 
Trinity 
aquifer 

500 ft. 

Alternating resistant and nonresistant 
beds of blue shale, nodular marl, and 
fossiliferous limestone. Also contains 
two distinct evaporite zones. 

Yields very small to small 
quantities of relatively 
highly mineralized water. 
Highly mineralized water 
has greater than 500 
milligrams per liter (mg/l) 
of dissolved solids. 

Glen Rose 
Limestone 

Lower member 320 ft. 

Massive fossiliferous limestone, 
grading upward into thin beds of 
limestone, dolomite, marl, and shale. 
Numerous caves and reefs occur in the 
lower portion of the member. 

300 ft. 

Red to gray clay, silt, sand, 
conglomerate, and thin limestone beds 
grading downdip to silty dolomite, 
calcareous shale, and shaley limestone. 

Hensel Sand 
 
 
 
 

Cow Creek 
Limestone 

Middle 
Trinity 
aquifer 

90 ft. 
Massive, fossiliferous, argillaceous to 
dolomitic limestone with local thinly 
interbedded limestone and sand layers. 

Yields small to moderate 
quantities of fresh to 
slightly saline water*. 
Cow Creek Limestone is 
locally water-bearing 

Hammett Shale 
Member  80 ft. 

Fossiliferous, argillaceous to dolomitic 
limestone with thinly bedded sand, 
shale, and lignite. 

Not known to yield water. 

120 ft Sandy dolomitic limestone. 

Cretaceous Comanche Trinity 

Travis Peak 
Formation 

Sligo 
 Limestone 

 
Hosston  
Sand Member 

Lower 
Trinity 
aquifer 350 ft. 

Red and white conglomerate, 
sandstone, claystone, shale, dolomite, 
and limestone 

Yields small to large 
quantities of fresh to 
slightly saline water*. 

pre-Cretaceous rocks Folded shale, hard massive dolomite, 
limestone, sandstone, and slate. 

Yields moderate quantities 
of fresh water* in northern 
Hill Country. 

* Fresh water is less than 1,000 ppm. Slightly saline water ranges from 1,000 to 3,000 ppm
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Structural Controls 

The structural geology of Honey Creek basin is characterized by a southeast 

regional dip, regional faulting, and hydrostratigraphic controls due to wedges of 

sediments of alternating permeability and resistance. Middle Trinity rock units consist 

of stacked layers of Lower Cretaceous sediments that pinch out toward the Llano 

Uplift and become thicker down-dip toward the southeast. The Trinity Group 

sediments were deposited on an unconformable surface of uplifted and folded 

Paleozoic rocks (Barker and Ardis, 1992). The Llano Uplift forms a structural high 

that provided eroded sediments that were deposited as terrigenous and near-shore 

depositional facies of the Trinity Group (Ashworth, 1983; Barker et al., 1994). The 

Balcones Fault Zone follows a northeast-to-southwest alignment. It consists of 

normal faults and down-thrown fault blocks that place Trinity Group sediments side 

by side with the stratigraphically higher Edwards Group Limestone.  

Stratigraphic Controls 

The Upper and Lower Glen Rose Formations consist of alternating resistant 

and non-resistant beds of limestone, shale, and calcareous marl. Nodular marl and 

blue shale form impermeable intervals (Ashworth, 1983) of resistant strata. The 

differential weathering of the rock layers within the Upper Glen Rose Formation 

contributes to the formation of stratigraphically perched aquifers and springs, 

differential erodability, and preferred stream erosion. Perched aquifer springs 

contribute runoff to intermittent creeks that provide runoff to recharge features such 

as stream swallets and solutionally enlarged fractures (Photos 2a, 2b, and 2c). 

Perched aquifer spring orifices correspond with hydrostratigraphic controls such as 

lithologic contacts between rock units with different permeabilities and structural 
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controls such as fractures and faulting. Fluvial-level springs discharge year-round 

(although with seasonally variable flow rates) at the base of tributaries from the banks 

and channel of the perennial Honey Creek (Photo 6A). Figure 4 is a conceptual cross-

section of the canyon walls of Honey Creek. Spring sapping and seepage erosion has 

been attributed to the sapping the rocks of the canyon walls, causing them to separate 

and retreat, resulting in widening and steepening of the canyon walls (Fenneman, 

1931; Barker et al., 1994). Photo 6B shows a view looking upstream from knickpoint 

KP-4B toward knickpoint KP-3B with retreating canyon walls on either side of the 

tributary (Basin B -Treatment).  

Calcareous marl beds form aquitard layers and sloped risers. Alternating beds 

of different lithology provide an uneven resistance to erosion and solutioning, 

resulting in the stair-step topography (Figure 6 and 13). Calcareous marl risers form 

below the more resistant limestone ledges. The calcareous marl consists of marine 

shell fragments and calcium carbonates with clay and organic matter that result in a 

high moisture content that facilitates erosion. Wilding and Woodruff (1994) describe 

these risers as functioning as local water retention and storage devices. A series of 

locally perched aquifers and underlying aquitards are comprised of stacked sequences 

of weathered strata with alternating permeability (Barker et al., 1994, Woodruff and 

Abbott, 1979). Stair-step topography forms along the interbedded resistant and 

nonresistant beds (Figure 6). Wilson (1986) proposed that swelling at the edge of 

hillslopes caused upland limestone treads to warp and become bowl-shaped, causing 

concentrated karstification on the uplands.  
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Photo Group 6. 6A) This photo shows spring SPR-2 at the mouth of Basin A 
(treatment). Spring water flows out through alluvial gravel and Hensel Sand 
where Basin B (treatment basin) drains into Honey Creek (facing southwest 
and looking upstream toward Basin B). 6B) Photo looking upstream toward 
knickpoint KP-3B, with retreating canyon walls on either side of the tributary 
(Basin B -Treatment).  
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Regional Potentiometric Surface  

Within the Honey Creek basin, most water wells obtain water from the Middle 

Trinity aquifer (Lower Member of the Glen Rose Limestone, Hensel Sand, and Cow 

Creek Limestone), as well as from the deeper Lower Trinity aquifer (Hosston 

Formation), as shown in a stratigraphic column provided in Table 2. At elevations of 

1200 feet (365.76 m) above mean sea level (msl), the static groundwater levels of the 

Middle Trinity aquifer are about 200 feet (61 m) below the surface (Figure 9) 

(TWDB, 2005). The potentiometric surface in Honey Creek basin correlates with the 

presence of fluvial-level springs at about 1000 feet (305 m) above msl (Figure 10 and 

Figure 11). Some water levels seasonally fluctuate up to 50 feet (15.2 m) (Barker and 

Ardis, 1996), especially in shallow wells that are less than 100 feet deep (< 30 m) that 

rapidly respond precipitation events.  

As shown in Figure 10 and Figure 11, the potentiometric surface shows that 

hydraulic gradient is influenced by the location of springs and rivers (Barker and 

Ardis, 1996; Mace et al., 2000). The potentiometric surface forms a v-shape along the 

Guadalupe River where the perched aquifer is intersected by headward erosion and 

river valley entrenchment (Figure 10 and Figure 11). The potentiometric surface is 

described as a subdued reflection of surface topography because of upland recharge 

and fluvial level discharge (Kuniansky and Holligan, 1994).  

 



Legend

Honey Creek State Natural Area

Normal Faults

Selected Water Wells

Unconfined Zone of Edwards Aquifer

Potentiometric Surface (m above msl)

Ê

Ê

Ê

Ê

Ê
Ê

Ê ÊÊ Ê
Ê

Ê

ÊÊ
Ê

Ê

Ê

ÊÊÊ
Ê
Ê

Ê

ÊÊ

Ê

Ê

Ê

Ê BEXAR COUNTY

Guadalupe River

Cibilo Creek

BLANCO
COUNTY

COMAL COUNTY

KENDALL COUNTY

HAYS
COUNTY

Blanco River

Canyon Lake

37
0

330
34

0

36
0

35
0

310

320

300

380

39
0

29
0

280

400

270

410

420

26
0

430

25
0

41
0

350

40
0

29
0

420

320

280

400

300

280

410

290
290

290

310

390

280

400
40

0

Guadalupe

Colorado

San Antonio

6815115

6813806

6812302

6811715
6811708

6811103

6810624

6810623

6810620

6810615

6808103

6807407

6802807

6802609

6802608

6801314

5764712

5763902

5763705
5763701

5762413

5761507
5761223

5758706

REGIONAL POTENTIOMETRIC
SURFACE MAP

MIDDLE TRINITY AQUIFER (2004)
HONEY CREEK 

STATE NATURAL AREA
AND SURROUNDING AREA

BEXAR, COMAL AND 
KENDALL COUNTIES, TEXAS

FIGURE 9

REFERENCES:  TWDB (Texas Water Development Board), 2005, Water Well Data.
National Hydrography Dataset, 2005, Rivers and Lakes.
TCEQ (Texas Commission on Environmental Quality), Edwards Aquifer Zone Boundaries, 1999.

0 6 123

Miles

0 9 184.5

Kilometers



Legend
Honey Creek State Natural Area

!( Springs and Seeps

Unconfined Zone of Edwards Aquifer

Normal Faults

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!( !(

!(!(

!(
!(!(

!(
!(

!(

!(

!(!(

!(

!(
!(!(
!(

!(
!(

!(

!(

!(!(!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!( !(

!(

!(

!(
!(

!(
!(

!(

!(

!(

!(

Ê

Ê

Ê

Ê Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊ

Ê

Ê
Ê

COMAL COUNTY

BEXAR COUNTY

Guadalupe River

Cibilo Creek

KENDALL COUNTY

Honey Creek Cave

340

360

355
345

350

335

330

32
5375

380

385

390

370 365

395

320

315

31
0

400

305

30
0

295

405

29

0

285

410

4 15

42
0

31
5

3
8 5

36
0

330

39
5

32
0

410

30
0

3 25

300

3

8 5

315

380

335

36
5

34
5

375

33 0

415

400

380

4 15

370

390

410

405

400

36

0

385

300

400

330

375

300
390

39
0

40 0 365

360

365

32
5

3 30

37
5

340

360

29

0

3
95

355

320

34
5

3 9 5

315

38
5

295

32
0

37
5

4 1 5

290

405

38
0

310

375

290

29
5

29
5

325

38
5

33
5

360

3 65380

390

3

45

380

395

330

330

32
0

375

3 8 5

400

35
0

305

290

PERCHED POTENTIOMETRIC SURFACE MAP
MIDDLE TRINITY AQUIFER (2004)

HONEY CREEK 
STATE NATURAL AREA

AND SURROUNDING AREA
BEXAR, COMAL AND 

KENDALL COUNTIES, TEXAS

FIGURE 10

0 3,100 6,2001,550

Meters

0 10,000 20,0005,000

Feet

REFERENCES:  TWDB (Texas Water Development Board), 2005, Water Well Data.
National Hydrography Dataset, 2005, Streams and Waterbodies
TCEQ (Texas Commission on Environmental Quality), Edwards Aquifer Zone Boundaries, 1999.

Stream Cave Conduits



Legend
Honey Creek State Natural Area

Potentiometric Surface (in meters)

!( Springs and Seeps

Normal Faults

!(

!(

!(

!(

!(

!(

!(

!(

!(

!( !(

!(
!(

!(!(

!(

!(

!(
!(

!(

!(

!(

!(

!(
!(
!(

!(

!(

!(

!(

!(

!(

!(

COMAL COUNTY

H

N

KENDALL COUNTY

Honey Creek Cave

Preserve Cave

Knee Deep Cave

0

0

330

375

380

385

360

335

370

365

390

340

350

345

355

325

320

395

400

315

310

305

30
5

325

3 60

33 0

340

34
5

310

31
5

33
5

335

3
20

315

320

32
0

3 30

360

31
5

31
5

Honey C
reek

W
al

te
r C

re
ek

Guadalupe River
Panther Creek

PERCHED POTENTIOMETRIC SURFACE MAP
MIDDLE TRINITY AQUIFER (2004)

HONEY CREEK 
STATE NATURAL AREA

AND HONEY CREEK CAVE
COMAL AND 

KENDALL COUNTIES, TEXAS

FIGURE 11

0 1,100 2,200550

Meters

0 3,600 7,2001,800

Feet

REFERENCES:  Texas Water Development Board, 2005, Water Well Data.
National Hydrography Dataset, 2005, Rivers and Streams.

Stream Cave Conduits



 43

Potential Recharge 

Recharge occurs primarily in the uplands and discharge in the fluvial valleys 

and along eroded hillslopes (Figure 6). Precipitation and runoff on rock outcrops, 

seepage, and ponding are primary sources of recharge. Upland karst features provide 

recharge to stratigraphically perched aquifers (Photo 7A and 7B). Upper Glen Rose 

Limestone, Lower Glen Rose Limestone, Hensel Sand, and Cow Creek Limestone are 

exposed in outcrop within Honey Creek basin. Low permeability calcareous marl and 

shale units of the Upper and Lower Glen Rose Formation may slow downward 

percolation of recharge before it is discharged from perched aquifer springs, fluvial-

level springs, or gaining streams (Barker and Ardis, 1996; Ashworth, 1983).  

Springs 

Both Honey Creek and the Guadalupe River receive spring water from the 

Trinity aquifer (Ashworth, 1983) and both are hydraulically linked to the regional 

groundwater flow patterns (Kuniansky and Holligan, 1994). Fluvial-level and 

stratigraphically perched aquifer springs flow into creeks (Barker and Ardis, 1996). 

Entrenched perennial rivers and creeks receive water from shallow portions of the 

Trinity aquifer and do not reach deep into the aquifer (Ashworth, 1983, p. 47).  

Many springs occur in Honey Creek basin at fluvial base level along perennial 

streams (Photo 6A). Other perched aquifer springs are associated with low 

permeability beds that focus spring discharge from eroded hillslopes of incised 

intermittent tributaries (Photo 8B). Vadose-level spring orifices may flow following a 

significant rainfall event and act as epikarst features that transmit groundwater to 

incised surface streams.



 44

7A  

7B  

Photo Group 7. Photographs of upland karst features. 7A) Photograph of 
Kemble White in sinkhole (an upland recharge feature) formed 
at the contact between Hensel Sand and the overlying Lower 
Glen Rose limestone where a stratigraphically perched aquifer is 
formed. This feature is mapped as Big Hole Cave (C5). 7B)  
Entrance to Bone Head Cave formed in Upper Glen Rose 
Limestone (C9). 
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8A 8B      8C 

Photo Group 8. Photographs of spring orifices observed on hillsides of Basin B (tributary to Honey Creek). 8A) This 
paleospring orifice (PS-1) is exposed in the vertical wall of a creek bed and is formed along a dilational normal 
fault in the Lower Glen Rose Fm. 8B) The source of the spring discharge is from a semi-confined, stratigraphically 
perched aquifer. This spring occurs at the contact between a calcareous marl layer of the Lower Glen Rose 
limestone and Hensel Sand. 8C) View of dilational fracture, facing southwest from knickpoint KP-4B. 
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Water-loving plants such as sedges, cattails, ferns, and cypress trees within 

Honey Creek indicate a year-round water supply to Honey Creek (Brune, 1981). 

Other springs (such as PS-2) may flow intermittently following storm events (Photo 

8A). Evidence that PS-2 is eroded spring orifice includes the fine, red, silt deposits in 

the base of the feature suggesting a long soil residence time. Spring SPR-2 is formed 

along a dilated fault that may provide an avenue for groundwater to move into the 

feature and enhance its dissolution. Stratigraphy influences the dip of normal faults 

with less competent layers failing in shear mode and more competent layers failing in 

hybrid mode at different angles (Ferrill and Morris, 2003). Displacement along the 

fault causes steeper segments to dilate (Photo 8A and 8C). Here, the dilatational faults 

are enlarged by groundwater flow, affecting permeability, infiltration, and spring 

conduit alignment. 

Hydraulic Properties 

Transmissivity of the Middle Trinity aquifer in the Hill Country varies from 

464.5 to 4645 m2/sec (5,000 to 50,000 ft2/day) near Honey Creek basin (Barker and 

Ardis, 1996). Transmissivity is defined as the discharge through a unit width of the 

entire saturated thickness of an aquifer for a unit hydraulic gradient normal to the unit 

width sometimes termed the coefficient of transmissibility. The hydraulic 

conductivity of the Lower Glen Rose Formation was measured at 0.01 to 10 feet per 

day (0.03 to 3.05 m per day) (Hammond, 1984). The vertical hydraulic conductivity 

of the Upper Glen Rose Formation marl units were measured at 0.0001 to 0.003 feet 

per day (0.000031 to 0.000914 m per day) (Guyton and Associates, 1993). The 

Trinity aquifer has been described as having higher hydraulic conductivity 

perpendicular to regional fault trends (Kuniansky and Holligan, 1994).  



 47

METHODOLOGY 

This study uses five primary methodologies: 1) field observations; 2) 

evaluation of hillslope properties (erosion pin measurements and soil sampling); 3) 

identification of hydrogeologic properties (e.g., stream discharge measurements, 

streamflow data, precipitation vs. water-table levels in shallow an deep water wells, 

and development of a longitudinal profile), 4) statistical analysis of structural controls 

on drainage, spring orifices, and recharge features, and 5) evaluation of 

hydrogeologic data using Arcview GIS. 

Field Observations 

Field observations were used to develop an understanding of the overall site 

geology and geomorphology. Inspections of creek bottoms were used to estimate the 

orientation and spacing of fractures and knickpoints. Caves, karst features, and 

springs were identified according to length, orientation, and depth of the conduit 

system. Surface evidence, TPWD data (2001), and field measurements were used to 

identify trends or structural controls. Surface geology was surveyed using standard 

geologic field mapping techniques (Compton, 1985). Fossil evidence such as 

Orbitilina sp. at the base of the Upper Glen Rose Formation (Photo 5A) and large 

pelecypods in the Hensel Sand Formation were used to verify the accuracy of 

published geologic maps of the area (Figure 8). 
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Evaluation of Hillslope Properties 

Hillslope properties are evaluated using 2 primary methods:  1) erosion pin 

measurements (to study land surface changes, erosion, and deposition) and 2) soil 

sampling (particle size distribution, presence of carbonates; total carbon, carbon and 

organic matter, calcite, dolomite, and calcium carbonate equivalent and bulk density). 

These data were used to compare variations along the hillslope test plots and along 

the long profile of each tributary at Honey Creek State Natural Area. These data are 

provided in Appendices C, D, E, and F.  

Hillslope Erosion Pin Measurements 

Morphological changes such as erosion and deposition along hillslopes were 

measured using a paired basin approach in 3 pairs of test plots at matching elevations 

and slope conditions. Six test plots (3 within each basin) were selected based on 

similar stratigraphic position, slope, and vegetation. Hillslope surface changes were 

measured using erosion pins and deposition washers (Dunne, 1977; Leopold et al., 

1966; Sirvent et al., 1997). From September 2001 to September 2002, erosion pins 

were monitored following significant rain events during one wet and dry season. 

Employing standard procedures (Sirvent et al., 1997), erosion pins (at 5-meter 

intervals) were installed June 2001 to monitor soil erosion and deposition along 

calcareous marl limestone slopes through one year (1 August 2001 – 2 August 2002) 

(Photos 9A and 9B).  
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Objectives of the monitoring plan were to: 1) estimate the present rates of 

hillslope erosion and deposition; 2) identify erosion controls (such as slope angle; 

rainfall intensity, vegetation composition, fossil aggregate size distribution); and 3) 

characterize particle size distribution and mineralogy of sediments along hillslopes. 

Results provide baseline for watershed management within this setting and 

information about the soil-rock interface and its relationship to land surface changes. 

Measurement from erosion pins accounted for spatial variation of slope surface 

changers within each monitored test plot and assessed changes to the hillslope profile. 

Plot locations are shown on the Site Feature Map provided in Appendix A. 

Within each basin, 6 test plots (10 m x 12.5 m) were paired using similarities 

in elevation, lithologic units, slope, and vegetation (Boix-Fayos et al., 2001, Imeson 

et al., 1998; Lavee et al., 1991; and Sirvent et al., 1997). Erosion pins were installed 

to a depth of 5.9 inches (15 cm) along five rows spaced 6.6 feet (2 m) apart 

(perpendicular to the slope) (Photos 9A and 9B). Employing standard procedures 

(Dunne and Leopold, 1978, pa 519; Gustavson and Simpkins, 1989; and Sirvent et al., 

1997), erosion pins were installed during summer 2001 to monitor soil erosion and 

deposition from August 2001 through August 2002. All measurements were taken 

following rainfall events significant enough to produce runoff or seasonally. 

Measurements were taken during dry conditions, at least 2 to 5 days following 

significant rainfall events to prevent unnecessary disturbance to the test plots and 

minimize error from swelling of clays.  
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9A  
 
 

9B  

Photo Group 9. Soil test plot photographs: 9A) View of test Plot-A1 on calcareous 
marl riser. 9B) Photo of erosion pin, deposition washer, and combination 
square used to take measurements. 
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Soil Measurements at Field Test Plots 

Spatial interpolation of soil characteristics along hillslopes through sampling 

were used to estimate soil characteristics on upland, mid slope, and toe slope of each 

of 2 paired basins. Three pairs of test plots were identified by walking 3 transects 

across 2 paired tributary basins (Plot A1, Basin A and Plot B1, Basin B) at Honey 

Creek State Natural Area (Figure 2). Each transect was separated into three regions 

along the long profile of each tributary based on visible lithology, elevations, and 

topographic changes: upper, middle, and lower basin. Soil samples were collected 

from each of the 3 paired hillslope plots at 3 levels along the long profile of each 

slope and analyzed for particle size distribution (PSD) and bulk density. Down-slope 

variations were measured at each test plot such as particle size distribution (using 

pipette method and Stoke’s Law) (Kilmer and Alexander, 1949, Steele and Bradfield, 

1934); presence of carbonates; total carbon (Soil Survey Staff, 1972; Nelson and 

Sommers, 1982); organic carbon and organic matter (Nelson and Sommers, 1982); 

calcite, dolomite, and calcium carbonate equivalent (Dremanis, 1962), and bulk 

density.  

Six samples (total of 36) were taken along the long profile of at the bottom 

middle and top of each of the 6 test plots. Samples were taken parallel to the gradient 

of the slope. Soil from each paired test plot and karst feature is characterized 

according to customarily accepted practices outlined by the Natural Resources 

Conservation Service, (Schoenenberger et al., 1998). Soil sampling chemistry data 

and particle size distribution (PSD) measurements from Honey Creek State Natural 

Area are provided in Appendix E. 
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Evaluation of Hydrogeologic Properties 

Hydrogeologic properties were evaluated during this study using 3 primary 

methods 1) stream discharge measurements (Honey Creek and 2 tributaries in Honey 

Creek State Natural Area); 2) comparison of precipitation, runoff, and the 

potentiometric surface 3) representative longitudinal profile of Basin A at Honey 

Creek State Natural Area, showing caves, springs, lithology, fractures, and 

knickpoints. 

Stream Discharge Measurements 

Four cross-sections were measured along Honey Creek, upstream of its 

confluence with the Guadalupe River. Two cross-sections were measured 

approximately 500 feet (152 m) downstream from the mouth of Basin A (Figure 12). 

On 16 May 2001, stream gauging measurements were taken along 5 cross-sections of 

Honey Creek (sampling locations 1 through 5) and one each at the mouth of  both of 

Basin A and Basin B (downstream from each spring at sampling locations A and B). 

Current meters (Section III) were used to measure stream discharge. The use of 

pygmy meters was confined to water of depths less than 1.5 feet. The AA current 

meter was used in water deeper than 1.5 feet (Station 3). Current metering measures 

discharge by dividing the cross-section of the channel into sections (of known 

dimensions), measuring velocity within each section, and multiplying each velocity 

measurement by its area (width * depth) to obtain the total discharge throughout the 

cross section. On 16 May 2001, discharge measurements were taken within Basins A 

and B, below flowing springs (Samples A and B - Figure 12). 
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Figure 12. Map of stream discharge measurement sampling locations. 
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Streamflow data from 15 August to 30 September 2001 were based on real-

time discharge measurements at Honey Creek State Natural Area (provisional data, 

USGS, 2001). A description of the USGS Real-Time Stations is provided in 

Appendix B. USGS weather station locations are shown on Figure 2. 

Comparison of Precipitation, Runoff, and Potentiometric Surface 

USGS real-time weather station and a v-shaped weir with a pressure 

transducer provided provisional precipitation and runoff data, respectively (USGS, 

2001). One month of data (August – September 2001) were plotted using Microsoft 

Excel to compare the water levels of one deep and one shallow water well to 

precipitation. Additionally precipitation was compared to runoff to illustrate high 

infiltration rates and the flash flow in intermittent tributaries. Water levels (Well # 68-

01-314), precipitation data (NOAA Cooperative Weather Station rainfall at Spring 

Branch ) and  runoff (USGS Guadalupe River at Spring Branch, Station # 01867500) 

were also plotted to show seasonal fluctuations (January 2001 - December 2001). 

Longitudinal Profile Development 

A high precision global positioning system (GPS) unit was used with carrier 

phase correction data to survey the locations and elevation data of knickpoints and 

stream segments within Basin B of Honey Creek State Natural Area. Carrier phase 

data is a processing technique that gathers data via a carrier phase receiver, using a 

radio signal (carrier signal) to calculate location and elevation, resulting in submeter 

accuracy after differential correction. Carrier phase data was obtained from The 

Schultz Group, Inc, New Braunfels, Texas (SG11). Survey tape, a level, and a stadia 

rod were used to accurately measure knickpoint dimensions and stream segments that 

were covered by thick vegetation that limited the accuracy of the GPS unit.   
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Table 3 shows a list of each longitudinal profile measurement sections. These 

data were used to plot the longitudinal profile of bedrock stream segments of Basin B, 

Honey Creek State Natural Area (Figure 13 and Figure 14). The longitudinal profiles 

were correlated with springs, lithology, potentiometric surface, sinkholes, fractured 

rock outcrop, and stream swallets to represent the hydrogeologic characteristics of 

this fluviokarst drainage network. A longitudinal profile is a cross section of a stream 

from its mouth to its head, showing elevation versus distance to the mouth. GPS 

location data were plotted using ArcGIS 9.0. The distance between each longitudinal 

data point and each feature was measured either in the field or by using the ruler tool 

in ArcGIS to obtain the linear distance between each point. Excel software was used 

to calculate the linear distance along the longitudinal profile (Table 3) and plotted on 

a graph or cross section and correlated with other landscape features (Figure 13). 

Basins A and B were defined by delineating the sub-watersheds and stream 

network within the Honey Creek basin using ArcMap with Spatial Analyst to analyze 

a digital elevation model (DEM –a representation of height data). The DEM of the 

Anhalt quadrangle was added using the ADD DATA selection. A contour map was 

created by selecting SPATIAL ANALYST, SURFACE ANALYSIS, and 

CONTOUR. Contour data is shown Figure 2 The flow direction GRID was created by 

selecting SPATIAL ANALYST, HYDROLOGY, and FLOW DIRCTION. A flow 

accumulation Grid was created using SPATIAL ANALYST, HYDROLOGY, and 

FLOW ACCUMULATION. The Snap Pour Point was created using SPATIAL 

ANALAYST, SNAP POUR POINT, by inputting the raster flow direction and flow 

accumulation raster. Next, SPATIAL ANALYST, HYDROLOGY, WATERSHED, 

DEFINE BASIN. Topographic data Figure 2 and Appendix A topographic data 

represent height (in meters) above sea level.
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Table 3. Longitudinal profile data points, Basin B, Honey Creek State Natural Area. 

 
Data    
Point 

Distance 
(M) 

Latitude    
DD 

Longitude   
DD 

Elevation  
(meters) 

U09 0 29.84387 -98.47209 394.11
U08 55 29.8443 -98.47181 391.06
U07 210 29.84567 -98.4712 384.66
U06 275 29.84616 -98.47086 381.00
U05 330 29.8467 -98.47075 377.04
U04 442 29.84772 -98.47075 372.17
U03 529 29.84855 -98.47069 370.95
U02 652 29.84943 -98.47148 368.51
U01 731 29.84982 -98.47215 366.37
T01 802 N29.85024 W98.47269 364.55
T02 817 N29.85026 W98.47273 363.33
T03 1784 N29.85173 W98.47521 348.14
T04 2434 N29.85314 W98.47575 357.53
T05 2471 N29.85324 W98.47576 355.10
T06 2497 N29.85329 W98.47572 352.66
T07 2547 N29.85381 W98.47613 352.05
T08 2860 N29.85445 W98.47678 350.22
T09 3032 N29.85455 W98.47730 347.17
T10 3142 N29.85477 W98.47785 345.95
T11 3532 N29.85569 W98.47846 345.04
T12 3983 N29.85625 W98.47969 341.99
T13 4035 N29.85628 W98.47985 337.72
T14 4274 N29.85648 W98.48054 337.72
T14B 4335 N29.85665 W98.48056 334.67
T15 4370 N29.85674 W98.48057 336.50
T15B 4441 N29.85694 W98.48058 332.24
T16 4971 N29.85831 W98.48094 327.66
T16B 5024 N29.85843 W98.48098 327.05
T16C 5077 N29.85856 W98.48106 326.44
T17 5272 N29.85908 W98.48099 327.97
T18 5600 N29.85981 W98.48148 325.23
T19 5829 N29.86030 W98.48190 322.79
T20 6049 N29.86082 W98.48215 320.04
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Statistical Analysis of Structural Controls 

Locating fractures and cavities within soil and rock and mapping their extent 

is commonly required for hydrogeologic and engineering considerations. Fractures, 

conduits, cave entrance orientations, and stream segments were measured within 

Honey Creek basin and compiled into a database (Appendix G) that was used to 

compare their relationship to one another in order to identify trends that will help 

improve our understanding groundwater and surface water interaction. 

Stream Orientations 

Stream segment orientations and lengths were identified in the field using a 

Brunton and tape measure. A protractor and ruler were used to measure stream 

segment using aerial photography (Figure 8) and a USGS topographic quadrangle 

map.  

Karst Features 

Quantitative assessment characterized each karst feature encountered (e.g., 

sinkholes, caves, solution cavities, faults, fractures, or partially filled voids that may 

be related to caves in the subsurface). Quantitative methods include numbering and 

recording each karst feature using a Global Positioning System (GPS), marking the 

locations, and describing morphological features such as length, width, depth, and 

azimuth. Cave and karst feature orientations and lengths were identified by measuring 

cave maps provided by Texas Parks and Wildlife (TPWD, 2001) and a map of Honey 

Creek Stream Cave, (TSS, 1994). Volunteers who mapped these stream caves (and 

other karst features) took measurements and azimuth readings using Suunto 
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clinometers and compasses and metric tapes. This information was used to construct a 

database of conduit of each segment of the cave passage.  

Scanline Fracture Data 

Fractures where characterized within the exposed bedrock in a tributary to 

Honey Creek. The location is mapped as FR-2 on Figure 2. Fracture orientations were 

measured in azimuth using a Brunton compass and lengths were measured with a tape 

measure. Most rock or engineering data sets typically consider 1-dimensional (1-D) 

rock exposures. Thus, statistical methods are designed for a single scan line. Single 

scan line surveys introduce bias to orientation data (Terzaghi, 1965; La Pointe and 

Hudson, 1985). Statistical methods may use a geometrical correction for sampling 

bias called the Terzaghi correction. This correction is based on the assumption that 

fractures are equally distributed in all orientations in the rock unit. La Pointe and 

Hudson (1985) conclude that this correction may work well in shattered areas, but 

may not work in many natural data sets (e.g., clustered fractures in fault zones). The 

Terzaghi bias correction was considered for use on scanline fractured rock 

measurement (FR-2) to account for any bias in the collection of data from other 

sources. Ultimately, a mean length-weighted distribution was selected for rose 

diagrams (Appendix G). 

Rose Diagrams 

Rose diagrams and statistical data were generated from the fracture, stream 

segments, and stream cave orientations databases using a software program 

Geoorient. Rose diagrams identify regional fracture, stream segment, and stream cave 

conduit trends to find the distribution of passage orientation. Length-weighted rose 

diagrams were created for linear classification.  
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Evaluation of Hydrogeologic Data Using ArcView GIS 

Lithologic units, potentiometric surface, spring orifices, fractures, and 

recharge features were identified by field surveys and record reviews (TPWD, 2001, 

and TWDB, 2005). Features were mapped using Arcview GIS. Conduit dimensions 

and orientation; spring location; fracture orientation, spacing and aperture; karst 

feature locations; and knickpoints were also compiled into a database. These features 

were plotted using ArcGIS 9.0 to compare hydrogeologic and geomorphologic 

characteristics of the Lower Glen Rose Limestone and Hensel Sand. These data were 

used to verify existing stream cave orientation and lengths from the files of Texas 

Parks and Wildlife and to evaluate field observations. Field measurements, satellite 

imagery, and digital orthophoto quadrangle quadrant maps (DOQQ), and geological 

maps were integrated with subsurface information such as stream cave flowpaths, 

water elevation in wells, and elevations of spring orifices (Appendix A). 

Potentiometric Surface Map 

Water level measurements from the TWDB and real-time USGS water table 

measurements from local water wells were interpreted to create a generalized 

potentiometric surface map (Figure 9) (TWDB, 2005 and USGS, 2001). A 

potentiometric surface map is a two-dimensional representation of a three-

dimensional water table elevation surface. It is defined by a set of coordinates that 

correspond to longitude and latitude respectively and the ‘z’ coordinate corresponds 

to the water table elevation above mean sea level. Typically, these data are provided 

in standard international (SI) or units. However, the TWDB water well depths to 

groundwater are given in feet on the potentiometric surface map to prevent rounding 

errors. Potentiometric surface maps were converted to SI (Figure 8 and Figure 9).  
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TWDB and USGS data were saved as a text file and opened as a table in 

Arcview. TWDB files named “aquifer.txt,” “welldta.txt” and “wlevels.txt” for Bexar, 

Blanco, Comal, Hays, and Kendall Counties, Texas. The “aquifer.txt” file contains 

codes and names for the aquifers in Texas. “Welldta.txt” contains water well data 

such as latitude and longitude, name of water-bearing geologic unit, aquifer code, and 

elevation of the wellhead. “Wlevel.txt” contains the date of measurement and depth to 

groundwater. These files were delimited with an “|” and all counties were combined 

and saved as 2 separate worksheets (“welldta” and “wlevels” in the one Excel file 

saved as “well_data.” Next, a column was inserted to the right of the water level data 

in the “wlevel” worksheet (table array). This column was titled “ALTITUDEFT” for 

potentiometric elevation.  Next, the following function was entered into the first row 

of this column:  +AD1-C1, then copied to the remainder of the columns. This 

temporarily reproduces the water level data, until the next procedure looks up the well 

elevation data and copies it to column AD.  

Next, 4 columns were inserted after the first column of the “welldta” 

worksheet. Then, the worksheets were combined in Microsoft Excel by using the 

VLOOKUP function to search for the “WellID” value in the first column of the 

“welldta” table array, returning a value in the same row from each column in the table 

array to the last empty columns of the “wlevel” worksheet. The VLOOKUP syntax 

was typed into cells L2 through BB2, and then copied to each row below. The syntax 

for this function is VLOOKUP (lookup_value, table_array, col_index_num, 

range_lookup). More specifically, the syntax for the function used is VLOOKUP 

(lookup value, weldta!$A$1:$BA$3656, col index number, FALSE). The 

lookup_value is the value to search in the first column of the table array. The values 
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in the first column of the “weldta” table_array are the values searched by 

lookup_value. The column index number is the column in the “welldta” table_array 

from which the matching value must be returned. The range lookup is a value that 

specifies whether you want VLOOKUP to find an exact match or an approximate 

match: If FALSE, an exact match is returned. If an exact match is not found, the error 

value #N/A is returned for that cell. The results produce a combination of the 

“welldta” and “wlevels” worksheets. Before adding the text file to Arcview, the titles 

needed to be revised by removing all spaces, underscored, and symbols. Finally, the 

file is saved as an Excel file and text file called “Well-Data.” 

The text file “Well-Data” was added to Arcview using <Tools, Add XY 

Data>, selecting the longitude data as the X coordinate, and the latitude data as the Y 

coordinate. Next, EDIT was selected and then SELECT to define the projection of the 

dataset as NAD83 match the basemap. An event layer called “Well-Data” was 

created.  ArcView queried the database to find all water elevations for 2004. This was 

achieve by right-clicking on the event layer, clicking on SELECTION on the main 

toolbar, and the choosing SELECTION BY ATTRIBUTE and YEAR=2004. In the 

attribute table, OPTIONS and EXPORT were selected to create an even layer called 

“Wells-2004.” The potentiometric surface changes through time, depending on the 

season or annual inputs or outputs from the aquifer. Ideally, selected well data 

represent a short time interval. Therefore, data was preferentially selected for the 

months of January and February of 2004 (Figure 8).   

Using a GPS unit and USGS topographic quadrangle maps, perched aquifer 

conditions were mapped using the elevation data of base-level rivers and springs, as 

well as perched seeps and springs that provide a general representation of perched 

aquifer conditions. The database of these data were compiled into a file called 
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“Springs.txt” and added to Arcview. The Spatial Analyst extension was used to create 

a potentiometric surface map using inverse distance weighting (IDW) method. The 

topographic position of the springs and base-level surface water in perennial rivers 

were used to complete water elevation field used to generate the potentiometric 

surface map (Figure 9). 
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RESULTS AND DISCUSSIONS 

The results of this study include field observations, evaluation of hillslope 

properties, identification of hydrogeologic properties, statistical analysis of structural 

controls, and evaluation of hydrogeologic data using Arcview GIS. These data 

provide baseline data for future research and suggest that subsurface drainage patterns 

leave an imprint surface erosion patterns. Here, the potentiometric surface is a 

subdued reflection of topography. Conversely, erosional features and topography are 

a reflection of fluviokarst drainage patterns. 

This fluviokarst drainage system consists of a network of conduits controlled 

by fractures and a repetitive stratigraphic sequence of rock units that provide a 

blueprint for erosional features in the landscape at Honey Creek State Natural Area 

and other areas underlain by similar rock units. Groundwater crosses surface water 

catchment areas and pirating groundwater toward a lower gradient, where springs 

emerge in creekbeds nearby or continue to migrate into deeper portions of the aquifer. 

The alignment of Honey Creek Stream Cave with the downcut channel of Honey 

Creek, suggests that headward erosion has occurred along the hypothetical 

continuation of Honey Creek Stream Cave, causing topography to reflect the former 

alignment the cave. The incised channel of Honey Creek has truncated tributary 

surface streams and stream caves that may once have been hydrologically connected 

to a continuation of Honey Creek Stream Cave. The longitudinal profile of modern 

streams and the position of springs, lithology, and stream swallets represent a 

hydrologic network that was once part of an aquifer (prior to headward erosion of 

stream caves and spring conduits).   
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Field Observations 

Recharge and discharge features are associated with the karstification process. 

Drainage patterns reflect the headward erosion of springs. Evidence of groundwater 

sapping characteristics, including karst features, spring orifices, fractures, and 

knickpoints were identified and mapped using field observations and remote sensing 

techniques. Geologic units were identified using index fossils and stratigraphic 

correlation. The top of the Lower Glen Rose Limestone is characterized by 

interbedded limestone and clay units with various sizes of orbital-shaped foraminifera 

Orbitilina texana (Photo 5A) (Whitney, 1952, p 66). Orbitilina texana fossils were 

observed near the 374-meter contour interval at Honey Creek State Natural Area. The 

presence of these index fossils provides a topographic benchmark that helped identify 

the contact between the Upper and Lower Members of the Glen Rose Limestone 

(Figure 8). The underlying Hensel Sand was identified by the presence of large 

bivalves (pelecypods), abundant clay, and siliceous concretions (Ashworth, 1983; 

Stricklen et al., 1971). The Hensel Sand (exposed within an incised stream channel at 

Honey Creek State Natural Area (Photo 5B). 

Evaluation of Hillslope Properties 

Sediment transport on hillslopes occurs when water flow is initiated by 

raindrop impact, overland flow, erosion, and solution transport. Runoff occurs when 

precipitation exceeds the infiltration capacity of the soil (Schumm, 1965, p. 783-94; 

Dunne and Leopold, 1978, p. 259). High intensity erosion is expected to occur lower 

in the basin because here runoff is concentrated. These data are provided in 

Appendices C, D, E, and F.  
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Hillslope Erosion Pin Measurements 

Land surface changes were measured on 3 pairs of test plots (Plots A1, A2, 

A3, B1, B2, and B3) on calcareous marl risers over a period of one year and 

compared to particle size distribution, slope, and proximity to a groundwater table. 

These data are provided in Appendix C and the location of the plots is provided in 

Figure 2. Analyses of these data suggest a great deal of mass movement at the bottom 

of the basin near the top of the Hensel sand, where slopes are greater (32%). This is 

evidenced by the widest range of slope erosion (-9.3) and deposition (6 cm) rates 

(Figure 15). These findings are in line with previous studies that demonstrate that 

sediment yield is directly proportional to increasing slope found lower in the basin 

(Wischmeier and Smith, 1978).  Lithology (erodability) also affects erosion rates. For 

example, the second widest range of slope movement (between -3.8 and 3.5 cm) is 

found at the top of the basin (with a marl unit near the bottom of the Lower Glen 

Rose Limestone) where slopes are second steepest (20%). Mid-basin (along a 

limestone bench) slopes are the most gradual (11%) and land surface changes range 

the least (-1.8 to 1.6 cm)...
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Photo Group 10. Photographs of seepage erosion. 10A) Seepage erosion along scarp face at a lithologic contact between a 
massive sandy dolomitic limestone (Cow Creek Limestone) and an overlying shaly layer (Hensel Fm.). 10B) 
Seepage erosion along scarp face of tributary within Basin A.   

10A   10B



 70

Seepage erosion (Photo 10A and Photo 10B) may also enhance slope erosion 

along hillslopes (Higgins, 1984, p 18-58). Seeps and springs are found near test plots 

at the bottom of the basins where erosion is highest (Figure 2 and Photo 6A).   

Limestone of variably layered, resistant strata results in differential erodability 

and weathering of the landscape. Erosion on the test plots varied with position on the 

slope and with time. Silt and clay are easily transported by sheetflow, which formed 

minor rills or channels in soils (Gustavson and Simpkins, 1989). 

Debris is deposited on the limestone treads and risers following storm events, 

suggesting high rates of sheetflow, especially on the flat-lying surfaces. Sheetflow is 

often recognizable by deposition of debris lines that can be measured with the erosion 

pins (Photos 8B and 9A) (Gustavson and Simpkins, 1989). Erosion was accelerated in 

micro-erosion channels on the risers (Photo 9A and 9B), where some pins were more 

affected by erosion than neighboring pins outside these channels and showed little 

relation to predictor variables discussed by Gustavson and Simpkins (1989):  

Precipitation intensity, slope angle, or percent vegetation coverage affect the rates of 

erosion. 

Soil moisture is linked to runoff on hillslopes (Horton, 1945) with infiltration 

rates often being lower in moist soils than in dry soils, especially in soils with high 

clay content. Soil moisture results are provided in Appendix D. Runoff is produced 

faster in moist soils. Shrink-swell of clay minerals may contribute to soil creep (net 

downslope transport of soil). Soil expansion is perpendicular to the slope because 

during contraction the soil settles downslope.  
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Photo Group 11. Photos of test plots: 11A) View of micro-erosion channels on test 
Plot B1. 11B) View of Plot A1, Lower Glen Rose Limestone (Kgrl) ridge at 
the top of the test Plot A1. This riser is underlain by a sandy limestone and 
colluvium. 

11A  

11B
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On Test Plot A1, at the bottom of Basin A, a natural act of a fallen tree at the 

top of a slope (Photo 11B) caused increased erosion on the subsequently disturbed 

western part of slope where there was no longer a protective canopy. Drainage 

density of microerosion channels increases as slope increases (Photo 11A). These 

observations are similar to measurements reported by Schumm et al. (1984). 

The limestone ridges at the top of each slope are resistant to erosion. A zone 

of no erosion (Horton, 1945) is found at the resistant limestone ledges at the top of 

the test plots in the lower and upper basin (Photo 11B). Slopes contain silty sediment 

with abundant angular rock fragments (Photo 8B).  

Colluvium deposits are found primarily on steeper slopes of the test plots. 

Colluvium consists of weathered calcareous marl and regolith, loose rock fragments 

deposited by gravity and enhanced by seepage near stratigraphically perched 

groundwater tables. Alluvium deposits are formed when eroded hillslope sediments 

and carbonate scarp faces are transported by flowing water during storm events. Mass 

movement is limited to steeper slops where transport of large rock or soil occurs due 

to gravity (Figure 15). In open areas that are not protected by canopy cover, rock 

fragments and washers on erosion pins often rest on pedestals where the regolith is 

protected from raindrop impact. The surrounding regolith is deflated by diffusive 

rain-splash erosion 

Transport-limited slopes, such as on calcareous marl risers at the top (Plots 3A 

and 3B and at the bottom of the basins Plots A1 and B1) are found where rates of 

weathering exceed rates of transport of material from the hillslope. The mid-slope test 

plots A1 and B1 have weathered parent material (such as soil or regolith) that 

obscures the view of the bedrock. However, on weathering-limited and rock slopes 
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the sediment and regolith transport rates exceed weathering rates (e.g., mid-slope 

plots A2 and B2). 

Soil Sampling on Hillslope Field Test Plots 

Soil sampling chemistry data and particle size distribution (PSD) 

measurements from Honey Creek State Natural Area are provided in Appendix E. 

Regolith on the hillslope test plots consisted of calcareous marl risers and carbonate 

treads (flat-lying limestone benches) with a range of 35 to 76% calcium carbonate 

equivalent (CaCO3 EQ) from top to bottom of the basin (Appendix D). Samples from 

plots at the lowest elevations with the steepest slopes (Plots A1 and B1) showed 

moderate levels of CaCO3 EQ near 25% and moderate rock fragments from the 

underlying Hensel sand and float from upslope (Lower Glen Rose Limestone). 

Samples from the rocky mid-basin plots (Plots A2 and B2) contained about 5% 

CaCO3 EQ and relatively few parent material clasts (massive, dolomitic, Lower Glen 

Rose Limestone). Soil samples from the highest elevations at the top of both basins 

(Plots A3 and B3) had the highest CaCO3 EQ at 60% and an abundance of parent 

material clasts (calcareous marl). Soil on calcareous marl slopes tends to be 

calcareous, while soil on dolomitic hilltops and sideslopes tends to be noncalcareous. 

The calcareous nature of the soil reflects the whether the parent material is calcareous 

marl or dolomitic limestone. 
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Processes Affecting Measurements of Land Surface Changes 

Soil infiltration and runoff capabilities, vegetation composition and thickness, 

and erodability of the substrate affect land surface changes. Following is a description 

of these processes. 

Soil Infiltration and Runoff Capabilities 

In areas of high infiltration, where rainfall intensity rarely exceeds infiltration 

capacity, Horton overland flow does not occur on much of the land surface (Dunne 

and Leopold, 1978, p. 263). Water percolates through the soil matrix. This concept is 

also possible in permeable consolidated sediments or karst terrain. Within Honey 

Creek basin, water percolates through soil and rock with relatively high infiltration 

rates. Tributary streams with high infiltration capacities rarely flow in Honey Creek 

basin. Following intense precipitation, surface runoff within intermittent tributaries 

peaks and subsides rapidly, largely due to steep, fractured terrain.  

Studies regarded these Hill Country soils as thin and stony with soil horizons 

only a few inches thick (Batte, 1984). Hill Country soils are traditionally thought of 

as having a minor infiltration capacity with runoff as the dominant hydrologic process 

(Wilding and Woodruff, 1994). This assumption suggests that these soils cycle a 

minimal amount of water and associated organic and inorganic constituents. 

Batte (1984) prepared a county soil survey that is not intended for site-specific 

applications (Figure 7 and Table 1). Therefore, these maps do not show spatial 

diversity or the true thickness of soil bodies, especially as they relate to the treads and 

risers. Wilding and Woodruff (1994), spent 18 months making observations based on 

digging trenches and cross sections with a backhoe to study soils over the Glen Rose 
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Formation. Brackett soils previously described as loamy soils were shown have a 

greater depth, spatial diversity, subsoil development, and biological activity than was 

previously published. According to Wilding and Woodruff (1994), the steep risers 

have the highest physical and chemical sorptive capacity based on their thickness and 

silt content, highest loading rate potential. The ledges or treads function as natural, 

vegetative filter strips that may control soil erosion and filter pollutants (Wilding and 

Woodruff, 1994). Natural buffers in the central Texas Hill Country may lessen the 

adverse impacts of land use changes. These buffers include locally thick 

hydrologically active soils and riser and ledge landforms. Woodruff (1994) describes 

the soil-moisture relationships along the treads and risers of the Glen Rose Formation, 

as follows: 

Infiltration, storage and recharge of soils and bedrock strata in the Glen Rose 
Formation are highly variable. Hydrology is highly responsive to rainfall 
events, indicating rapid infiltration is occurring along roots and cracks in 
stony soil materials…The treads and risers function as independent 
hydrological units…Locally perched groundwater tables are divided into 
compartments among the hard and soft limestone layers with limited 
interconnection…Seasonal saturation of marly limestone zones occurs in 
winter and early spring, but moderate to severe water depletion occurs during 
summer months. These marly zones usually have adequate moisture for plant 
growth even in the summer. 

Vegetation Thickness 

Vegetation was evaluated during this study using the author’s personal 

knowledge of plant identification and TPWD classifications. Vegetation is described 

in the Environmental Setting section of this thesis. Vegetation on each test plot was 

evaluated and is described on the soil characterization sheets provided in Appendix F. 
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Runoff and Erosion 

High intensity runoff occurs lower in the basin where slopes are steeper 

(Figure 15). Aggregates on slopes (cobbles, and rock fragments) have a higher 

threshold of sediment transport (velocity required to entrain sediment), requiring 

larger magnitude events to transport aggregates (Boix-Fayos et al, 2001). Schumm 

(1965) suggests that sediment yield should be highest in a semiarid setting. However, 

erosion rates and sediment yield may be higher in areas of intense precipitation 

creating higher rates of erosion. Likewise, areas with less rainfall may have less mean 

annual runoff and less erosion. The spatial variability of rainfall in this region means 

that certain areas may contribute more to stream runoff than others (Lane et al., 

1978). 

Statistical Analysis of Structural Controls on Drainage 

Rose diagrams show a strong correlation of fracture orientations with 

groundwater and surface water flow in the area. Conduit and fracture orientation 

suggest a complex matrix of rectilinear fluviokarst drainages that feed stream caves, 

springs and stream baseflow. Fluviokarst is defined as a region with mixed karstic 

and fluvial characteristics (White, 1988). In central Texas, an uplifted karstic plateau 

is incised by fracture-controlled rectilinear to dendritic stream courses with steeply 

sloping terrain. Some catchment basins are connected by fault-controlled fractures 

that allow communication of groundwater between surface drainage basins. Tributary 

valleys are steeply graded and are parallel to the orientation of many conduits and 

fractures. Additionally, springs within Honey Creek basin often coincide with local 

fracture and cave conduit orientations. Caves (such as Preserve Cave) are roughly 

parallel to tributary valleys until they reach the dissected bed of Honey Creek where 
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the conduits have been intersected by erosion (Figure 16 and Figure 17) (Photo 1B 

and Photo 2C). 

Length-weighted orientations of Honey Creek Stream Cave (Figure 2) are 

predominantly oriented at N40° to 60°E. This agrees with similar findings that 

recharge occurs on karstic uplands and cave development is concentrated along faults 

and fractures that follow regional northeast trends in the area (Woodruff and Abbott, 

1979). At least two stream caves, Preserve Cave and Knee-Deep Cave, follow a linear 

trend of 310° to 330º (N 30° to 50°W) that is perpendicular to Honey Creek Stream 

Cave and regional faulting (Figure 2). Kuniansky and Holligan (1994) found that the 

Trinity aquifer has a higher hydraulic conductivity perpendicular to regional fault 

trends, which may explain the preferred northwest trend of cave conduits that feed 

into Honey Creek. 

Knickpoints are often found near the intersection of fracture sets (Photo 3a) in 

the fossiliferous limestone in the Lower Glen Rose Limestone. This observation 

agrees with Weissell and Seidl’s (1997) findings that fractures affect hillslope 

processes that in turn control knickpoint migration. Factors other than surface water 

are at work in knickpoint migration because of the presence of groundwater sapping 

and seepage erosion (LaFleur, 1999, Pederson, 2001). The main channel of Honey 

Creek parallels Honey Creek Stream Cave (Figure 2). Surface tributaries parallel a 

northwest-trending fault scarp that is an extension of a fault shown on published maps 

(Collins, 2002). This fault is shown on the geologic map (Figure 8) and in the profile 

of Preserve Cave (Figure 16). A secondary set of fractures have a trend to the 

northwest (Figure 2). Many upland spring conduits are dissolution features that feed 

into downcut streams and rivers (Figure 3, Figure 4, and Figure 16) (Gillieson, 1996; 

Veni, 1994a, Woodruff, 1974, and Woodruff and Abbott, 1979).  
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Figure 16. Conceptual model of Preserve Cave (from Sumbera and Veni, 1986).  



 79

Fractures 

Fractures affect cave development and hillslope erosion. Uplands are 

dissected by rectilinear to dendritic streams and subsurface conduits. Knickpoints and 

abrupt 90-degree bends in stream courses are often located at the intersection of 

perpendicular fractures. Streams may also follow a sub-parallel fracture set until 

reaching the next knickpoint formed at the next perpendicular fracture. Fractures 

follow a regional northeast trend with a secondary orientation trending to the 

northwest. Streams dissect uplands and solutionally enlarged fractures and follow 

similar trends. Bedrock fractures control geologic structure of Honey Creek basin, 

where fractures, streams, and spring conduits are parallel to one another. Some 

knickpoints are intersected by vertical fractures that intersect at an acute angle of 

between 20° and 40° (Photo 3A) and trend northwest and northeast. Navigable stream 

cave conduits in Honey Creek basin include Preserve Cave, Knee Deep Cave, and 

Honey Creek Stream Cave, which run parallel fracture-controlled creeks (Figure 2). 

These findings suggest that surface erosion and conduit dissolution are controlled by 

similar fracture orientations. Spring sapping processes subsequently follow conduit 

orientations and knickpoint migration occurs where fractures intersect streams at 

perpendicular angles. 

Karst Features 

Karst terrain has surface and subsurface features formed by dissolution of 

soluble rocks with mechanical enlargement by erosion and strain. Caves, sinkholes, 

losing streams, springs, and rapidly flowing groundwater are typical of karst regions. 

Subsurface conduits range from less than 3 to 33 feet (1 m to greater than 10 m) in 

diameter (TPWD, 2001). Variable conduit depths are controlled by the rock unit 
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thickness, fractures, bedding plane partings, and the aerial extent of a particular 

limestone (Veni, 1994a). The position and length of karst features may extend over an 

area of considerable extent. They may be filled with air, water, recemented minerals 

(such as calcite or silica), or sediment. Water-filled passages occur at or just below 

the water table within bedded and fractured limestone (Veni, 1994a). Phreatic 

conduits are located above water table and may intermittently transmit fluids 

following precipitation events (Figure 3, Figure 4, and Figure 16). Springs discharge 

water into the upland tributaries where conduits feed into downcut creeks. Some 

return flow (runoff) from these springs enters sinkholes downstream where it 

recharges the next lower level of the aquifer, based on the presence of recharge 

features downstream from perched aquifer springs. Some spring water that is 

discharged from stratigraphically perched water tables may eventually reach the 

regional groundwater table via recharge to solutionally enlarged fracture zones (Photo 

2A) or stream swallets (Photo 2C). 

Surface water and groundwater are linked by an intricate network of karst 

features and springs, resurgent groundwater, downstream recharge features (such as 

stream swallets), and fractures. Streams with beds above the water table are 

ephemeral streams; those with beds below the water table are perennial streams. 

Perennial streams flow year-round and are supported primarily by groundwater 

discharge with some seasonal or storm-event surface runoff. Perennial streams (such 

as Honey Creek and the Guadalupe River) flow year round and support aquatic 

organisms that require a continuous supply of water throughout the year. Ephemeral 

streams (such as the tributaries to Honey Creek) flow only following storm runoff 

events. 
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At Honey Creek, perched springs lose their discharge to runoff (Photos 8B) 

and downstream recharge in stream swallets (Photos 2C) and fractured rock outcrops 

(Figure 2). Ultimately, spring discharge to Honey Creek flows into the Guadalupe 

River and some runoff is ultimately lost to recharge via fractures and stream swallets 

that recharge the Middle Trinity aquifer. The remainder runs off and flows toward the 

unconfined zone of the Edwards aquifer (Figure 1) (TCEQ, 1996). Honey Creek basin 

is not only within an area that is believed to provide recharge to the Middle Trinity 

aquifer, but is within an area that  provides runoff into the creeks and rivers that flow 

toward the Edwards aquifer recharge zone (unconfined zone). 

This fluviokarst drainage system consists of a network of conduits and 

fractures that provide a blueprint for erosional features in the landscape. Solutionally 

enlarged fractures provide pathways for conduit development. Caves like Preserve 

Cave follow fracture trends and drain parallel to surface runoff toward Honey Creek. 

The entrance to Preserve Cave shows evidence of spring sapping, such as a talus pile 

and evidence of collapse. The spring orifice of Preserve Cave is found at the head of 

amphitheater-shaped valley. The orientation of the Preserve Cave passages is parallel 

to a stream that flows from the spring orifice where spring sapping may have caused 

the canyon to erode headward. A branch of the mapped footprint of Preserve Cave is 

also aligned with a surface tributary to the north where another spring is found 

(Appendix A).  

Honey Creek Stream Cave may have once followed a continuation of a 

northeast-trending fault along Honey Creek (Figure 3), downstream from the spring 

orifice entrance to Honey Creek Stream Cave. Tributaries, including those at Honey 

Creek State Natural Area, drain toward Honey Creek and follow a conjugate fracture 
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trend to the northwest.  This differs from Veni’s projection of a hypothetical 

extension of Honey Creek Stream Cave (Figure 5). 

Rose Diagrams 

A total of 123 orientation measurements of conduit, karst feature, and fracture 

segments were plotted from the Honey Creek basin (Appendix G and Figure 17). The 

primary fracture orientation is toward the northeast at ~50° to 60º azimuth (N50° to 

60°E). The secondary fracture orientation is toward the northwest at ~310° to 330º 

azimuth (N30° to 50°W), which correlates with the orientations of both tributaries A 

and B (Figure16C) and stream caves (Figure 17B). The caves and fracture data 

obtained from cave maps and aerial photography have similar mean fracture 

orientations (Figure 17E), which parallel surface tributaries (Table 4). However, the 

measured fractured rock outcrop (FR-2) within the streambed of Basin B has a 

calculated mean that is approximately 90º from the other measurements (toward the 

northeast). These results represent a separate fracture event and the fact that the 

stream is eroded along the trend of the other measurements (to the northwest) so that 

other fracture orientations may not be preserved or visible in the stream channel 

(Table 4). The location of FR-2 is shown on Figure 2. Rose Plots for passages of 2 

fracture-controlled caves and 4 out of 34 scanline measurements at a fractured rock 

outcrop (FR-2) resulted in northwest orientations that match the orientations of 

tributaries of Basin A and B (Figure 17). At least 16 other measurements were taken 

from surrounding karst features and caves shown on Figure 2 that are also parallel 

with the dominant orientation of these tributaries (to the northwest).
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Figure 17. Rose Diagrams representing the length-weighted distribution of 
orientations of features within Honey Creek basin:  A) Honey Creek Stream 
Cave conduit orientation, B) all other karst features and caves, C) stream 
orientations (Honey Creek and its tributaries), D) Honey Creek Stream Cave 
and all other karst features, E) Fractures associated with karst features (not 
including Honey Creek Stream Cave), and F) scanline fracture data (FR-2). 
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Table 4. Descriptive statistical information for orientation data shown on rose plots 
for fractures, caves, karst features, and streams. 

 
Scanline 
Fracture 

Orientation 
(FR-2) 

Honey 
Creek 
Stream 
Cave 

Conduit 
Orientation

Karst 
feature 

orientations

Fractures 
associated 

with 
karst 

features 

Stream 
Orientation

Mean 88.71 228.26 237.55 251.17 227.70
Standard Error 17.18 13.81 18.97 22.16 24.62
Median 48.50 303 302.50 295.00 310.00
Mode 73.50 323 330.00 285.00 320.00
Standard 
Deviation 100.15 131.05 122.94 106.27 134.86

Sample 
Variance 10029.62 17174.80 15114.01 11293.15 18185.94

Kurtosis 2.10 -1.36 -0.99 0.16 -1.49
Skewness 1.88 -0.74 -0.96 -1.38 -0.73
Range 340 358 341.00 313.00 349.00
Minimum 8.50 0 9.00 32.00 6.00
Maximum 348.50 358 350.00 345.00 355.00
Sum 3016 20543 9977.00 5777.00 6831.00
Count 34 90 42.00 23.00 30.00
Largest(1) 348.50 358 350.00 345.00 355.00
Smallest(1) 8.50 0 9.00 32.00 6.00
Confidence 
Level (95.0%) 34.940 27.45 38.31 45.95 50.36
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Evaluation of Hydrogeologic Properties 

Stream discharge measurements, stream longitudinal profiles, locations of 

springs, the potentiometric surface, and direction of groundwater flow in cave 

conduits were used to evaluate the hydrogeologic properties of Honey Creek basin. 

These data provide evidence of stream piracy and the potential for groundwater 

sapping and characterize the groundwater and surface water interaction.  

Stream Discharge Measurements 

Honey Creek is a gaining stream (Table 5 and Figure 18), based on stream 

discharge measurements taken by students during field methods classes (Geo 

376L/328C), June 2001. A map of the sampling locations is shown on Figure 12. The 

discharge rates of the tributaries (downstream from fluvial-level springs) are 

significantly lower than in the main channel. Additionally, the station farthest 

downstream (SG-3) has the highest velocity of 10.00 cubic feet per second (cfs) or 

283.17 liters per second (lps). The stream discharge for the station farthest upstream 

is 5.66 cfs (160.27 lps), so 4.34 cfs (123 lps) is being gained between the uppermost 

and lowermost stations. Discharge measurements were taken downstream from 

springs at the base of Basin A (Spring SPR-2) and Basin B (Spring SPR-3). 

Combined flow from both springs totals approximately 3.30 cfs (93.45 lps). The 

remainder of the gain in baseflow in Honey Creek is 1.04 cfs (29.45 lps). Additional 

discharge from discrete springs or alluvial throughflow may not be easily accounted 

for. However, the majority of the gain in flow to Honey Creek basin near Honey 

Creek is coming from the fluvial-level springs. 
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Figure 18. Graph of stream discharge measurements (main channel of Honey Creek). 

 

Table 5. Honey Creek stream discharge measurements (taken 1 May 2001). 

Station Name Discharge (cfs)

1 5.66 
2 5.885 
3 6.9 
4 7.73 
5 10.02 

Spring SPR-2 (Basin A) 1.697 
Spring SPR-3 (Basin B) 1.6 
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Discharge measurements are helpful to characterize the groundwater and 

surface water interaction near the stream channel. The alluvial material in the bed of 

Honey Creek may act as a lesser aquifer as groundwater from springs moves toward 

the creek at a perpendicular angle (influent conditions). Larkin and Sharp (1992) 

classify stream-aquifers in which the groundwater flux moves toward a river as 

baseflow-component dominated. Sophocleous (2002) defines baseflow as “water that 

enters a stream from persistent, slowly varying sources and maintains streamflow 

between water-input events.” In this case, we are observing an influx of groundwater 

toward Honey Creek.  

Precipitation vs. Runoff 

Rainfall intensity rarely exceeds infiltration capacity in areas of high 

infiltration rates. On uplands, Horton overland flow does not occur often on much of 

the land surface (Dunne and Leopold, 1978, p. 263). Figure 19 shows the effect of 

precipitation on runoff within the intermittent tributary of Basin A (USGS, 2001). 

These data are provided in Appendix H. Runoff occurs following a period of 

precipitation that sufficiently saturates the ground surface, causing overland sheetflow 

to occur. This confirms that infiltration rates are high on the uplands of Honey Creek 

basin and that flow within the upland tributaries is intermittent. 
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Figure 19. Graph showing precipitation vs. runoff (15 August to 30 September 2001).  
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Precipitation vs. Water Levels in Shallow and Deep Water Wells 

A continuum in groundwater flow in carbonate aquifers typically ranges 

between storm flow (quick flow) via solution conduits and solutionally enlarged 

fractures and slow flow through fine fractures and pores. During storm events, water 

may enter Honey Creek quickly in response to input events such as direct 

precipitation and subsurface storm flow or interflow (Sophocleous, 2002). In 

fractured and karst terrain, surface and groundwater interaction may occur through 

fracture flow and solution conduits that may provide more rapid influx of water into 

Honey Creek and its tributaries. Springs, exposed along limestone ledges of Honey 

Creek and its tributaries respond more rapidly to subsurface storm flow than do 

springs at the bottom of the basin. Storm flow is different from baseflow because it is 

not persistent and only contributes streamflow during storm events. Interflow is 

defined by Beven (1989) as near-surface flow within the soil profile that results in 

seepage into a stream channel within the period of the storm flow hydrograph. If 

interflow encounters a seepage face or storm flow encounters a solution conduit 

leading to a spring orifice, then storm flow or interflow may grade into return flow 

where the subsurface flow contributes runoff or overland flow (Dunne and Black, 

1970; Sophocleous, 2002).  

Figures 20 show precipitation versus groundwater levels in deep and shallow 

water wells in Honey Creek Basin. Wells locations are shown on Figure 2 and 9. 

Depth to groundwater tables are shown from one deep water well (TWDB # 68-13-

102) that is 61 m deep and a shallow water well (TWDB # 68-13-101) that is 6 m 

deep. Figures 21 shows precipitation, runoff, and elevation of water in a deeper well 

(#68-01-314) at Comfort and a shallow well (#6802609) at Waring, Texas.   



Precipitation

Water Levels in Deep and Shallow Wells

Figure 20. Sampling results of A and B) precipitation versus groundwater
level fluctuations in shallow and deep water wells (15 August to 30 September 2001)
(provisional data from USGS, 2001). C)

January to December
groundwater level fluctuations

in shallow and deep water wells ( 2001) (USGS, 2001).



Figure 21. 2001 Charts of A) precipitation data (NOAA Cooperative Weather Station), B) runoff (USGS Guadalupe River at Comfort
and Spring Branch, Stations, C) 2001 water levels for Well # 6801314 and W#686802609, and D) 2001 water levels for
Well # 6813101 and W#6813102, January 2001 - December 2001.
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Water depths of deep and shallow water tables at Honey Creek State Natural 

Area respond differently to precipitation events. Hydrograph measurements of water 

levels from USGS observation wells (Figure 20) show that the perched water table 

has a narrower range of fluctuation (measured in cm) than the deeper water levels. 

This is possibly due to rapid discharge from perched aquifer springs that prevents the 

perched groundwater table from rising rapidly. The fluctuation of the water in the 

deeper water wells shows a more persistent response (measured in meters) of the 

deeper regional aquifer levels to precipitation, recharge, and return flow. This pattern 

further emphasizes the ability of the perched groundwater table to transmit returnflow 

via perched aquifer springs and conduits that discharge into the intermittent upland 

tributaries. Subsequently, springs provide discharge runoff toward recharge features 

downstream and prevent water from rising quickly in the stratigraphically perched 

aquifer. 

Longitudinal Profile Development 

The longitudinal profile of the Basin B tributary of Honey Creek State Natural 

Area was correlated with springs, lithology, and caves to represent the hydrogeologic 

characteristics of this fluviokarst drainage network (Figure 13). All knickpoints occur 

at perpendicular fracture sets and form step-like ledges with detached or missing 

blocks of limestone. The detached blocks suggest a mechanical erosion process that 

occurs during floods (Wohl, 1992). Limestone treads form long reaches of the stream 

channel between knickpoints where corrosion processes form scalloped and fluted 

limestone surfaces (White, 1988 and Springer et al, 2003). Canyon walls contain 

solution cavities and seeps formed along vertical fractures or lithologic contacts 

between limestone and marl or rocks with differential permeabilities. Canyon walls 
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also form smooth overhangs that may be relict walls of stream caves or spring 

conduits (Photo 3C). Often a stream swallet is found beneath a spring or seepage face, 

suggesting a possible hydrologic connection that existed prior to the downcutting of 

the canyon (Photo 2B). Alluvial gravels and boulders may obscure additional stream 

swallets.  

Identification and Mapping Using Arcview GIS 

The potentiometric surface (Figure 9), longitudinal stream profile (Figure 13 

and Figure 14), locations of springs, seeps, caves, fractures, and knickpoints were 

analyzed using Arcview GIS and Spatial Analyst. The results of the potentiometric 

surface were compared with previous studies by Veni (1994a) and Mace et al. (2000). 

 Potentiometric Surface 

Potentiometric surface maps show that water-table levels are influenced by the 

location of springs and rivers. A regional potentiometric surface map (created using 

Spatial Analyst and ArcGIS) illustrates that the groundwater gradient is toward the 

southeast, except in locations where streams and springs divert local groundwater 

flow (Figure 9). The regional groundwater gradient is toward the southeast, as is the 

gradient of the major rivers of Texas (TWC, 1989). The potentiometric surface of a 

stratigraphically perched aquifer within Honey Creek basin has a steeper gradient 

toward the incised channels of Honey Creek, the Guadalupe River to the north, and 

Cibolo Creek to the south (Figure 10 and Figure 11). These results agree with the 

results of previous potentiometric maps produced by Veni (1994a, Figure 4.36 and 

4.37), and Mace (2000, Figure 9).  

Within the Honey Creek drainage basin, many water wells obtain water from 

the Middle Trinity aquifer (Figure 2). The deep (static) potentiometric surface is at an 
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approximate elevation of 330 meters above sea level (TWDB, 2005, USGS, 2001), 

which correlate to the presence of springs within Honey Creek and the Guadalupe 

River (Figure 3, Figure 4, Figure 9, Figure 16, Figure 20, and Figure 21). Springs at 

the base of Honey Creek are found at slightly lower elevations that the groundwater 

measured in wells on the uplands. This suggests that the potentiometric surface 

steepens toward the incised creeks and rivers (Figure 13) and is a subdued reflection 

of topography (Kuniansky and Holligan, 1994, Mace et al., 2000).  

CONCLUSIONS 

The geomorphologic coevolution of the surface and subsurface drainage 

systems has shaped Honey Creek State Natural Area and larger Honey Creek basin. 

These findings suggest that groundwater sapping and stream piracy processes follow 

spring conduit and solutionally enlarged fracture orientations. Evidence of 

groundwater sapping (the erosion and weathering of rock and soil by groundwater) 

includes seepage erosion along of marl risers hillslopes, headward erosion of springs 

due to groundwater sapping, and block failure at fractures and knickpoints. Spring 

sapping erodes a hillslope where a spring emerges. Seepage erosion occurs where a 

saturated bedding plane forms hillslope seepage along canyon walls.  

Surface and subsurface drainage appear to have shaped each other in the 

following ways at Honey Creek State Natural Area. Block failure forms knickpoints 

where fractures intersect streams at perpendicular angles, providing avenues for 

erosion. Spring conduits and streams intersect perched groundwater at or above 

lithologic contacts. Surface water and groundwater in conduits flow downward along 

the steepest available gradient toward the entrenched canyon of Honey Creek and its 

tributaries. Drainage catchment basins are connected by fault-controlled solutionally 
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enlarged fractures and conduits that allow communication between groundwater from 

different basins. Preserve Cave and Honey Creek Stream Cave pirate groundwater 

from adjacent basins to spring orifices within Honey Creek basin.  

This research presents multiple methods used to identify evidence of 

groundwater sapping via the headward erosion of stream conduits and seepage 

erosion of hillslopes. Karst dissolution is controlled by a concentration of flow 

(surface and subsurface) along local and regional fracture orientations and by 

differential erodability and permeabilities of rock substrate. Although groundwater 

sapping and piracy of surface streams by spring conduits are not necessarily the 

primary means by which the orientations of surface streams and spring conduits are 

formed, evidence of these processes may be used to predict the locations of potential 

pathways for surface water and groundwater interaction.  

These data were all combined to add detail to the longitudinal profile that 

provided a graphical representation of the distribution of features typically associated 

with groundwater sapping along a tributary to Honey Creek. All knickpoints 

identified in Basin B were associated with fractures. Observations in other basins at 

Honey Creek State Natural Area resulted in the discovery of fractures and block 

failure at all knickpoints. Springs are not associated with knickpoints, although they 

are usually found downstream along the canyon sidewalls at a similar elevation 

within the canyon walls. This demonstrates the presence of groundwater at or near the 

elevation of knickpoints, where seepage may contribute to block and slope failure 

resulting in the headward erosion of streams at knickpoints. At least 90% spring 

orifices above fluvial base level showed evidence of spring sapping, including a talus 

pile, headcuts, and an incised downstream channel. The remaining 10% were formed 

in the vertical sidewalls of the canyon along fractures that were perpendicular to the 
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creek bed. Stream discharge measurements demonstrate that Honey Creek basin is a 

gaining stream fed by fluvial level springs and runoff from the upland tributaries. The 

comparison of precipitation, runoff, and potentiometric surface provide evidence of a 

perched groundwater system, repetitive stratigraphic sequence, and potential for 

upland seepage erosion and spring sapping that extends groundwater-sapping 

geomorphology in to the uplands. Drainages, cave, and spring conduit segments are 

dominantly aligned with regional fracture trends. 

Although spring sapping and groundwater piracy processes are secondary to 

structural controls on drainage, they do play a role in the co-evolution of the surface 

and subsurface drainage patterns. Maps of caves and spring conduits were overlain on 

topographic maps show that some caves (such as Honey Creek Stream Cave and 

Preserve Cave) cross surface water drainage divides and may pirate groundwater 

from one surface drainage basin to another. Alone, these tools do not necessarily 

provide definitive evidence of groundwater sapping and spring piracy. Nevertheless, 

they offer a better understanding of the drainage patterns at Honey Creek State 

Natural Area and the larger Honey Creek basin. These data provide a baseline from 

which to expand future research regarding the interaction of groundwater and surface 

water within Honey Creek basin.  

To expand this study, erosion plots could be located near seepage faces and 

lithologic contacts identified in this study, near perched groundwater sources. Erosion 

pins or other methodologies could be used to quantify spring sapping or knickpoint 

erosion (often evident in the tributary canyons after individual storm events). 

Hillslope erosion measurements were initiated as a part of an unrelated study 

regarding the potential affects on erosion in response to the prescribed trimming of 

Ashe juniper trees as a part of an on-going study at Honey Creek State Natural Area. 



 97

Hillslope erosion measurements provide baseline data for an on-going paired basin 

study regarding the response of hillslopes to Ashe juniper trimming. The addition of 

weirs at the bottom of each test plot is needed to better quantify erosion rates in 

response to storm events or juniper trimming. In Basin B, clearing of Ashe juniper 

trees began in November 2004 and is ongoing. Future studies of these paired test 

plots could involve measurement of land surface changes and spring response to the 

juniper trimming or runoff events.   

Several aspects of this research could be further developed, such as 

measurement of spring sapping where springs emerge in canyons, hillslope seepage 

erosion, and knickpoint migration. Maps of karst recharge features, caves, springs, 

faults, and geologic rock outcrops may be helpful in predicting potential groundwater 

flowpaths for future dye tracing studies. This and future studies are important as they 

relate to surface and groundwater management practices at Honey Creek State 

Natural Area and the larger Honey Creek basin. 
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Appendix A. Site Feature Map 
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Appendix B. USGS Real-Time Stations, Comal and Kendall County, 
Texas (USGS, 2001)
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USGS streamflow and weather measurement stations (USGS, 2001). 
USGS 

Station # Name Location 
Contributing 

Drainage 
Area 

Gauge 
Data 

NGVD29 
Station Type Data Type Begin 

Date 
End 
Date 

08167000 Guadalupe River 
at Comfort, TX 

Latitude  29°58'10", 
Longitude  98°53'33" 

NAD27 

839 square 
miles (2173 
square km) 

1,369.83 
ft above 
sea level 

(417.5242 
km above 
sea level) 

Surface Water 

Real-time water 
quality, peak 

streamflow and 
daily 

streamflow 

08-30-
01 

08-30-
01 

08167347 

Unnamed 
Tributary To 

Honey Creek Site 
1C, near Spring 

Branch, TX 

Latitude 29°51'18.11", 
Longitude 98°29'03.83" 
NAD83, Comal County, 
Texas , Hydrologic Unit 

12100201 
Basin A 

0.35 square 
miles 

(0.9square 
km) 

1,100 feet 
above msl  
(335.28 

km above 
sea level) 

Surface Water Real -Time and 
Water Quality 

08-30-
01 

08-30-
02 

08167350 

Unnamed 
Tributary Honey 
Creek Site 1T nr 
Spring Branch, 

TX 

Latitude 29°51'00.87", 
Longitude 98°28'21.29" 
NAD27, Comal County, 
Texas , Hydrologic Unit 

12100201 
Basin B 

0.18 square 
miles (.47 
square km) 

1,180 feet 
above msl 
(359.66 

km above 
seal level)   

Surface Water 
and 

Meteorological 

Real-Time and 
Water Quality 

08-30-
01 

08-30-
02 

08167353 

Unnamed 
Tributary of 

Honey Creek Site 
2T,  near Spring 

Branch, TX 

Latitude 29°51'21.35", 
Longitude 98°28'42.52" 
NAD83, Comal County, 
Texas , Hydrologic Unit 

12100201 
Basin B 

0.43 square 
miles (1.1 
square km) 

1,118 feet 
(340.77 

km above 
seal level) 

Surface Water Real-Time and 
Water Quality 

08-30-
01 

08-30-
02 

 
08167500 

 
Guadalupe River,  

near Spring 
Branch, TX 

Latitude 29°51'37", 
Longitude 98°23'00" 

NAD27, Comal County, 
Texas , Hydrologic Unit 

12100201 

1,315 square 
miles  

(3405.83 
square km) 

948.10 
feet 

above msl   
(288.98 
meters 

above sea 
level) 

 
Surface Water 

Real-Time,  
Water Quality, 

Peak 
Streamflow, and 

Daily 
Streamflow 

08-30-
01 

08-30-
02 
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Appendix C. Field Test Plot Erosion Pin Data
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

B1 1 A – Top 32.00 -1.90 0.10 -0.10 -0.63  Heavy 
sheetflow 

B1 1 B 32.00 -0.40 -0.10 0.00 -0.17 

9-29-01 – 
pedestal - 

Rocky 
slope 

B1 1 C 32.00 0.40 -1.30 1.05 0.05 9-29-01 – 
pedestal 

B1 1 D – Mid 32.00 -1.00 0.40 -0.20 -0.27  

B1 1 E 32.00 -0.20 0.00 -0.20 -0.13 9-29-01 - 
pedestal 

B1 1 F 32.00 -1.30 -0.60 -0.10 -0.67  

B1 1 G- 
Bottom 32.00 1.90 3.90 -1.80 1.33 Heavy 

sheetflow 

B1 2 A – Top 32.00 -0.70 -9.30 0.00 -3.33 1-26-02 
Missing Pin 

B1 2 B 32.00 -7.00 1.20 -0.10 -1.97 

Heavy 
sheetflow - 

9-29-01 
(desiccation 

cracks) 

B1 2 C 32.00 -0.20 0.30 -0.40 -0.10 9-29-01 - 
pedestal 

B1 2 D – Mid 32.00 -0.10 0.60 0.30 0.27 
9-29-01 – 

slight 
pedestal 

B1 2 E 32.00 -1.15 0.35 -0.80 -0.53  

B1 2 F 32.00 -1.00 0.50 0.10 -0.13 Heavy 
sheetflow 

B1 2 G- 
Bottom 32.00 0.40 6.00 -1.20 1.73  

B1 3 A – Top 32.00 -0.10 -0.30 0.10 -0.10 

9-29-01 
(sed. On 

top of 
washer) 

B1 3 B 32.00 -0.10 0.70 -0.40 0.07  
B1 3 C 32.00 0.10 0.90 0.10 0.37  
B1 3 D – Mid 32.00 -0.30 0.90 0.20 0.27  
B1 3 E 32.00 0.00 -0.10 -0.20 -0.10  
B1 3 F 32.00 -0.80 3.70 -2.10 0.27  
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

B1 3 G- 
Bottom 32.00 -0.90 0.80 1.20 0.37  

B1 4 A – Top 32.00 -0.60 1.70 -0.60 0.17 
9-29-01 

(twig 
upslope) 

B1 4 B 32.00 -0.05 1.65 -1.40 0.07  
B1 4 C  32.00 -0.40 0.20 0.20 0.00  
B1 4 D – Mid 32.00 -0.70 0.10 0.40 -0.07  
B1 4 E 32.00 -0.20 0.00 0.00 -0.07  
B1 4 F 32.00 -0.30 0.70 -0.20 0.07  

B1 4 G - 
Bottom 32.00 -0.40 -0.20 0.20 -0.13  

B1 5 A – Top 32.00 -0.90 0.20 0.10 -0.20 
9-29-01 

(desiccation 
cracks) 

B1 5 B 32.00 0.05 -0.05 0.10 0.03  
B1 5 C 32.00 -1.10 3.50 -1.90 0.17  
B1 5 D – Mid 32.00 -0.10 0.30 -0.30 -0.03  
B1 5 E 32.00 -0.40 -0.10 0.05 -0.15  
B1 5 F 32.00 -0.10 0.10 -0.60 -0.20  

B1 5 G- 
Bottom 32.00 -0.40 -0.10 0.00 -0.17  

B1 6 A – Top 32.00 -3.60 0.20 0.00 -1.13  
B1 6 B 32.00 -0.40 1.00 -0.10 0.17  

B1 6 C 32.00 -0.20 0.80 -0.20 0.13 
fire ant 

mounds 1-
26-02 

B1 6 D - Mid 32.00 -0.40 1.10 0.40 0.37  
B1 6 E 32.00 -0.30 0.00 0.00 -0.10  
B1 6 F 32.00 -0.60 0.10 -0.20 -0.23  

B1 6 G- 
Bottom 32.00 -0.40 0.00 0.10 -0.10  

B1 1 A – Top 11.00 -0.55 1.55 -0.30 0.23 
9-29-01 
(dessic. 
cracks) 

B1 1 B 11.00 -0.15 0.15 0.00 0.00  
B1 1 C-Mid 11.00 -0.10 0.30 -0.20 0.00  
B1 1 D - Mid 11.00 0.10 0.00 0.10 0.07  
B1 1 E 11.00 -0.30 0.20 -0.20 -0.10  

B1 1 F – 
Bottom 11.00 -0.80 0.30 -0.10 -0.20  

B1 2 A – Top 11.00 0.50 -0.40 -0.20 -0.03 Canopy 
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

B1 2 B 11.00 0.35 -0.35 -0.20 -0.07  
B1 2 C- Mid 11.00 -0.20 0.20 -0.20 -0.07  
B1 2 D - Mid 11.00 0.70 -0.20 -1.15 -0.22  
B1 2 E 11.00 0.10 -0.20 -0.20 -0.10  

B1 2 F – 
Bottom 11.00 -0.30 0.60 0.20 0.17  

B1 3 A – Top 11.00 0.10 0.60 -0.70 0.00  
B1 3 B 11.00 -0.80 0.20 -0.10 -0.23  
B1 3 C- Mid 11.00 -0.30 0.50 -0.10 0.03  
B1 3 D - Mid 11.00 -0.20 0.20 0.40 0.13  
B1 3 E 11.00 -0.70 1.00 -0.30 0.00  

B1 3 F – 
Bottom 11.00 -0.30 0.30 -0.20 -0.07  

B1 4 A – Top 11.00 -1.80 0.40 0.10 -0.43 

washer 
jammed in 

rock 
crevasse 

B1 4 B 11.00 -1.40 -0.40 -0.20 -0.67  
B1 4 C-Mid 11.00 -0.20 0.00 -0.20 -0.13  
B1 4 D - Mid 11.00 -0.30 0.20 -0.50 -0.20  
B1 4 E 11.00 0.60 -1.00 0.00 -0.13  

B1 4 F – 
Bottom 11.00 -0.30 -0.10 -0.10 -0.17  

B1 5 A – Top 11.00 -0.40 0.00 0.10 -0.10  
B1 5 B 11.00 -0.10 -0.15 0.30 0.02  
B1 5 C-Mid 11.00 -0.30 0.20 -0.20 -0.10  
B1 5 D - Mid 11.00 -0.30 0.30 0.90 0.30  
B1 5 E 11.00 -0.30 0.40 -0.10 0.00  

B1 5 F – 
Bottom 11.00 -0.30 0.40 0.00 0.03  

B1 6 A – Top 11.00 0.20 0.60 0.00 0.27  
B1 6 B 11.00 -0.30 0.30 0.00 0.00  
B1 6 C-Mid 11.00 -0.25 0.25 0.00 0.00  
B1 6 D - Mid 11.00 -0.50 0.70 -0.50 -0.10  
B1 6 E 11.00 -0.20 0.00 0.10 -0.03  

B1 6 F – 
Bottom 11.00 0.60 0.60 -0.10 0.37  

B3 1 A – Top 20.00 -0.10 -0.90 0.00 -0.33  
B3 1 B 20.00 0.10 -0.10 0.10 0.03  

B3 1 C-Mid 20.00 0.80 0.10 0.00 0.30 heavy 
sheetflow 
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

B3 1 D - Mid 20.00 0.10 -0.10 0.00 0.00  
B3 1 E 20.00 0.00 -0.10 0.10 0.00  

B3 1 F – 
Bottom 20.00 0.00 -0.10 0.10 0.00 heavy 

sheetflow 
B3 2 A – Top 20.00 0.00 -0.10 0.00 -0.03  
B3 2 B 20.00 0.00 0.00 1.10 0.37  
B3 2 C-Mid 20.00 1.30 -0.60 -0.40 0.10  
B3 2 D - Mid 20.00 1.20 -0.40 0.90 0.57 Gravel 

B3 2 E 20.00 0.10 -0.11 0.01 0.00 

Ashe 
Juniper 

(AJ) 
canopy 

B3 2 F – 
Bottom 20.00 0.00 0.00 0.00 0.00 AJ canopy 

B3 3 A – Top 20.00 0.00 0.40 -0.40 0.00  
B3 3 B 20.00 0.00 -0.10 0.00 -0.03  
B3 3 C-Mid 20.00 0.10 0.00 0.00 0.03  
B3 3 D - Mid 20.00 0.50 0.00 0.00 0.17  
B3 3 E 20.00 0.00 0.80 0.40 0.40  

B3 3 F – 
Bottom 20.00 -0.10 0.10 0.00 0.00  

B3 4 A – Top 20.00 0.00 0.20 -0.20 0.00  
B3 4 B 20.00 0.10 0.00 0.10 0.07  
B3 4 C-Mid 20.00 0.50 0.00 -0.10 0.13 AJ canopy 
B3 4 D - Mid 20.00 -1.50 -0.40 -0.40 -0.77 AJ canopy 
B3 4 E 20.00 0.10 -0.10 0.00 0.00  

B3 4 F – 
Bottom 20.00 0.30 -0.30 0.10 0.03 AJ canopy 

B3 5 A – Top 20.00 -1.10 -0.10 0.10 -0.37  
B3 5 B 20.00 -0.10 0.20 -0.10 0.00  
B3 5 C-Mid 20.00 0.00 0.40 0.20 0.20  
B3 5 D - Mid 20.00 -0.50 1.10 0.10 0.23 AJ canopy 
B3 5 E 20.00 0.20 -0.20 0.10 0.03  

B3 5 F – 
Bottom 20.00 0.20 0.00 0.10 0.10 AJ canopy 

B3 6 A – Top 20.00 0.00 0.00 0.10 0.03  

B3 6 B 20.00 0.70 -0.50 0.50 0.23 AJ canopy 
& trunk 

B3 6 C-Mid 20.00 -1.30 0.20 0.20 -0.30  
B3 6 D - Mid 20.00 -0.30 -0.30 0.30 -0.10 AJ canopy 
B3 6 E 20.00 0.00 -0.20 0.20 0.00 AJ 
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

B3 6 F – 
Bottom 20.00 0.20 -0.20 0.10 0.03 

Limestone 
below marl 

slope. - 
forams 

A1 1 A – Top 32.00 1.50 -0.90 -0.20 0.13  
A1 1 B 32.00 0.00 -0.40 -0.10 -0.17  
A1 1 C-Mid 32.00 0.90 -1.20 -0.30 -0.20  

A1 1 D - Mid 32.00 -0.40 -0.10 -0.40 -0.30 heavy 
sheetflow 

A1 1 E 32.00 -0.20 -0.30 -0.20 -0.23  

A1 1 F – 
Bottom 32.00 0.00 0.10 -0.20 -0.03  

A1 2 A – Top 32.00 0.20 -0.30 -0.10 -0.07  
A1 2 B 32.00 0.00 1.60 -0.40 0.40  
A1 2 C-Mid 32.00 0.80 -0.30 -0.30 0.07  
A1 2 D - Mid 32.00 0.00 0.00 -0.20 -0.07  
A1 2 E 32.00 0.00 0.60 0.10 0.23  

A1 2 F – 
Bottom 32.00 0.40 1.10 -0.20 0.43  

A1 3 A – Top 32.00 0.00 1.50 -1.40 0.03  

A1 3 B 32.00 0.10 1.70 -0.60 0.40 
9-29-01 

pedestal – 
sheetflow 

A1 3 C-Mid 32.00 0.00 -0.30 0.10 -0.07  
A1 3 D - Mid 32.00 0.00 0.70 0.40 0.37  
A1 3 E 32.00 0.30 -0.90 -0.10 -0.23  

A1 3 F – 
Bottom 32.00 -0.10 -0.10 4.95 1.58  

A1 4 A – Top 32.00 0.00 0.40 -0.10 0.10  
A1 4 B 32.00 1.30 -0.80 0.00 0.17 Sheetflow 
A1 4 C-Mid 32.00 0.00 0.20 0.50 0.23  
A1 4 D - Mid 32.00 0.00 -0.10 -0.30 -0.13  
A1 4 E 32.00 0.00 0.40 -0.30 0.03  

A1 4 F – 
Bottom 32.00 1.80 0.50 -0.50 0.60  

A1 5 A – Top 32.00 -0.90 -0.20 0.30 -0.27  
A1 5 B 32.00 0.00 -0.60 -0.15 -0.25  
A1 5 C-Mid 32.00 -0.30 0.10 -0.30 -0.17  
A1 5 D - Mid 32.00 0.00 -0.10 -0.20 -0.10  
A1 5 E 32.00 0.10 -0.20 0.50 0.13  
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

A1 5 F – 
Bottom 32.00 -0.30 0.10 -0.20 -0.13  

A1 6 A – Top 32.00 -0.20 -0.30 0.10 -0.13  
A1 6 B 32.00 0.00 0.60 -0.60 0.00  
A1 6 C-Mid 32.00 0.00 0.70 -0.40 0.10 Sheetflow 
A1 6 D - Mid 32.00 0.00 0.70 -0.60 0.03  
A1 6 E 32.00 0.00 0.50 -0.10 0.13  

A1 6 F – 
Bottom 32.00 -0.20 0.70 0.00 0.17  

A2 1 A – Top 11.00 0.00 0.10 -0.10 0.00 AJ canopy 
A2 1 B 11.00 0.00 0.30 0.00 0.10  
A2 1 C-Mid 11.00 0.00 0.00 -0.10 -0.03  
A2 1 D - Mid 11.00 0.00 0.10 -0.10 0.00  
A2 1 E 11.00 0.00 0.10 -0.10 0.00 AJ canopy 

A2 1 F – 
Bottom 11.00 0.00 0.00 -0.10 -0.03  

A2 2 A - Top 11.00 0.00 0.00 0.10 0.03 9-29-01 
(pedestal) 

A2 2 B 11.00 1.10 0.10 -0.45 0.25  
A2 2 C-Mid 11.00 0.00 0.40 -0.40 0.00  
A2 2 D - Mid 11.00 0.00 0.40 -0.20 0.07  
A2 2 E 11.00 0.00 0.10 0.10 0.07  

A2 2 F – 
Bottom 11.00 -0.30 1.60 -0.10 0.40  

A2 3 A – Top 11.00 0.00 0.00 0.00 0.00  
A2 3 B 11.00 0.00 -0.30 -0.20 -0.17  
A2 3 C-Mid 11.00 0.00 0.40 -0.40 0.00  
A2 3 D - Mid 11.00 0.00 0.30 -0.10 0.07  
A2 3 E 11.00 0.30 0.20 -0.10 0.13  

A2 3 F – 
Bottom 11.00 0.00 0.20 -0.20 0.00  

A2 4 A – Top 11.00 0.00 0.50 -0.20 0.10  
A2 4 B 11.00 0.00 0.50 -0.20 0.10  
A2 4 C-Mid 11.00 0.00 0.60 -0.20 0.13  
A2 4 D - Mid 11.00 0.00 0.36 -0.56 -0.07  
A2 4 E 11.00 0.00 0.20 -0.20 0.00  

A2 4 F – 
Bottom 11.00 0.00 0.80 -0.30 0.17  

A2 5 A – Top 11.00 0.00 0.40 -0.10 0.10  
A2 5 B 11.00 0.00 0.50 -0.10 0.13  
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

A2 5 C-Mid 11.00 0.00 0.20 0.00 0.07  
A2 5 D - Mid 11.00 0.00 0.50 0.00 0.17  

A2 5 E 11.00 0.00 0.40 -0.30 0.03 9-29-01 
(pedestal) 

A2 5 F – 
Bottom 11.00 0.00 0.00 -0.30 -0.10  

A2 6 A – Top 11.00 0.00 0.00 0.00 0.00  
A2 6 B 11.00 0.00 1.00 -0.30 0.23  
A2 6 C-Mid 11.00 0.00 0.30 0.00 0.10  
A2 6 D - Mid 11.00 0.00 -0.30 -0.30 -0.20 AJ canopy 
A2 6 E 11.00 0.00 0.00 0.20 0.07  

A2 6 F – 
Bottom 11.00 0.00 0.00 0.10 0.03  

A3 1 A – Top 20.00 0.10 1.00 -0.10 0.33  
A3 1 B 20.00 0.50 0.00 0.20 0.23  
A3 1 C-Mid 20.00 0.20 0.00 -0.10 0.03 AJ canopy 
A3 1 D - Mid 20.00 0.20 0.20 1.90 0.77 AJ canopy 
A3 1 E 20.00 0.60 -0.40 0.00 0.07  

A3 1 F – 
Bottom 20.00 -0.20 0.70 -0.60 -0.03  

A3 2 A – Top 20.00 0.50 0.30 0.10 0.30  
A3 2 B 20.00 0.70 -0.40 0.10 0.13  
A3 2 C-Mid 20.00 -0.10 -0.10 -0.10 -0.10 AJ canopy 
A3 2 D - Mid 20.00 -0.10 0.00 -0.10 -0.07  
A3 2 E 20.00 0.30 3.00 0.00 1.10  

A3 2 F – 
Bottom 20.00 0.00 -0.10 0.20 0.03 AJ canopy 

A3 3 A – Top 20.00 0.15 -0.40 0.50 0.08  
A3 3 B 20.00 0.40 0.20 0.00 0.20  
A3 3 C-Mid 20.00 0.10 -0.60 0.50 0.00 AJ canopy 
A3 3 D - Mid 20.00 -0.10 0.70 -0.70 -0.03  
A3 3 E 20.00 0.10 -0.40 -0.20 -0.17  

A3 3 F – 
Bottom 20.00 0.30 3.50 -3.80 0.00 AJ canopy 

A3 4 A – Top 20.00 -0.10 0.00 0.00 -0.03  
A3 4 B 20.00 -0.60 -0.20 0.10 -0.23  

A3 4 C-Mid 20.00 -0.20 0.50 -0.30 0.00 small heavy 
sheetflow 

A3 4 D - Mid 20.00 -0.10 0.10 0.00 0.00  
A3 4 E 20.00 0.60 -0.60 0.20 0.07 AJ canopy 
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Plot Code: 
Horizontal 

Position 
(Column) 

Vertical 
Position 
(Row) 

Slope 
in 

degrees 

May-
01 to 
Sept-

01 
(cm) 

Sept-
01 to 
Jan-
02 

(cm) 

Jan-
02 to 
Aug-

02 
(cm) 

Mean  
Change
(May-
01 to 
Aug-
02) 

(cm) 

Notes 

A3 4 F – 
Bottom 20.00 -0.70 0.10 -0.20 -0.27  

A3 5 A – Top 20.00 0.50 -0.35 0.25 0.13 AJ canopy 
A3 5 B 20.00 2.30 -0.85 -0.25 0.40 AJ canopy 
A3 5 C-Mid 20.00 0.50 0.50 -0.10 0.30  
A3 5 D - Mid 20.00 -0.10 -0.10 -0.10 -0.10  
A3 5 E 20.00 0.20 0.00 0.00 0.07  

A3 5 F – 
Bottom 20.00 -0.30 0.10 0.00 -0.07  

A3 6 A – Top 20.00 0.10 -0.60 0.20 -0.10  
A3 6 B 20.00 0.00 -0.40 0.10 -0.10 AJ canopy 
A3 6 C-Mid 20.00 0.00 0.40 -0.10 0.10  
A3 6 D - Mid 20.00 0.00 0.10 -0.10 0.00  
A3 6 E 20.00 0.20 0.30 -0.30 0.07 AJ canopy 

A3 6 F – 
Bottom 20.00 -0.20 -0.10 -0.10 -0.13  

    -
21.10 47.25 -18.65 2.50  
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Appendix D. Soil Sampling Results 
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ID Slope 
Position 

Position 
Along 

Longitudinal 
Profile of 

Tributaries 

Elevation 
(ft) 

Lithologic 
Substrate 

Total 
Carbon 

% 

Calcite % Dolomite 
% 

CaCO3 
EQ % 

C from 
carbonates 

% 

Organic 
Carbon 

% 

A1 - Top 
1 

top of 
slope 

lower basin 1090 calcareous 
marl 

7.12 3.2 0.7 4.1 0.45 7.14 

A1 - Top 
2 

top of 
slope 

lower basin 1090 calcareous 
marl 

8.16 2.8 1.4 4.3 0.48 8.25 

A1 - Mid 
1 

mid-
slope 

lower basin 1090 calcareous 
marl 

6.33 6.7 1.3 8.0 0.90 5.83 

A1 - Mid 
2 

mid-
slope 

lower basin 1090 calcareous 
marl 

6.59 8.0 1.8 9.9 1.13 5.80 

A1 - 
Bottom 1 

base of 
slope 

lower basin 1090 calcareous 
marl 

8.27 16.5 1.0 17.6 2.00 6.64 

A1 - 
Bottom 2 

base of 
slope 

lower basin 1090 calcareous 
marl 

8.06 12.8 2.2 15.2 1.71 6.77 

A2 - Top 
1 

top of 
slope 

mid-basin 1110 limestone 3.02 0.0 0.0 0.0 0.00 3.23 

A2 - Top 
2 

top of 
slope 

mid-basin 1110 limestone 2.74 0.0 0.0 0.0 0.00 2.95 

A2 - Mid 
1 

mid-
slope 

mid-basin 1110 limestone 4.25 4.3 0.9 5.2 0.59 3.91 

A2 - Mid 
2 

mid-
slope 

mid-basin 1110 limestone 3.95 3.2 0.7 4.0 0.46 3.71 

A2 - 
Bottom 1 

base of 
slope 

mid-basin 1110 limestone 4.63 0.0 0.0 0.0 0.00 4.96 

A2 - 
Bottom 2 

base of 
slope 

mid-basin 1110 limestone 4.60 0.9 0.5 1.4 0.15 4.79 

A3 - Top 
1 

top of 
slope 

upper basin 1240 caliche 13.60 33.4 2.4 36.0 4.09 10.05 

A3 - Top 
2 

top of 
slope 

upper basin 1240 caliche 13.57 32.3 1.7 34.1 3.87 10.27 

A3 - Mid 
1 

mid-
slope 

upper basin 1240 caliche 10.85 54.4 1.2 55.8 6.48 4.51 
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ID Slope 
Position 

Position 
Along 

Longitudinal 
Profile of 

Tributaries 

Elevation 
(ft) 

Lithologic 
Substrate 

Total 
Carbon 

% 

Calcite % Dolomite 
% 

CaCO3 
EQ % 

C from 
carbonates 

% 

Organic 
Carbon 

% 

A3 - Mid 
2 

mid-
slope 

upper basin 1240 caliche 11.04 56.6 0.4 57.0 6.65 4.52 

A3 - 
Bottom 1 

base of 
slope 

upper basin 1240 caliche 10.21 76.7 1.7 78.5 9.34 0.88 

A3 - 
Bottom 2 

base of 
slope 

upper basin 1240 calcareous 
marl 

10.22 74.8 1.3 76.2 9.06 1.17 

B1 - Top 1 top of 
slope 

lower basin 1090 calcareous 
marl 

8.11 10.6 1.7 12.4 1.40 7.16 

B1 - Top 2 top of 
slope 

lower basin 1090 calcareous 
marl 

8.20 10.5 1.8 12.5 1.39 7.33 

B1 - Mid 
1 

mid-
slope 

lower basin 1090 calcareous 
marl 

10.21 5.4 1.8 7.4 0.82 10.02 

B1 - Mid 
2 

mid-
slope 

lower basin 1090 calcareous 
marl 

10.94 7.6 1.7 9.4 1.06 10.54 

B1 - 
Bottom 1 

base of 
slope 

lower basin 1090 calcareous 
marl 

8.48 20.1 2.6 23.0 2.70 6.09 

B1 - 
Bottom 2 

base of 
slope 

lower basin 1090 calcareous 
marl 

8.08 18.2 2.9 21.2 2.42 5.98 

B2 - Top 1 top of 
slope 

mid-basin 1110 limestone 3.62 0.0 0.0 0.0 0.00 3.81 

B2 - Top 2 top of 
slope 

mid-basin 1110 limestone 3.01 0.0 0.0 0.0 0.00 3.21 

B2 - Mid 
1 

mid-
slope 

Mid-basin 1110 limestone 2.92 0.0 0.0 0.0 0.00 3.07 

B2 - Mid 
2 

mid-
slope 

Mid-basin 1110 limestone 2.49 0.0 0.0 0.0 0.00 2.62 

B2 - 
Bottom 1 

base of 
slope 

Mid-basin 1110 limestone 2.60 0.0 0.0 0.0 0.00 2.77 

B2 - 
Bottom 2 

base of 
slope 

Mid-basin 1110 limestone 2.53 0.0 0.0 0.0 0.00 2.66 
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ID Slope 
Position 

Position 
Along 

Longitudinal 
Profile of 

Tributaries 

Elevation 
(ft) 

Lithologic 
Substrate 

Total 
Carbon 

% 

Calcite % Dolomite 
% 

CaCO3 
EQ % 

C from 
carbonates 

% 

Organic 
Carbon 

% 

B3 - Top 1 top of 
slope 

upper basin 1240 caliche 10.29 31.3 3.7 35.4 4.09 6.43 

B3 - Top 2 top of 
slope 

upper basin 1240 caliche 10.52 38.7 3.0 41.9 4.87 5.84 

B3 - Mid 
1 

mid-
slope 

upper basin 1240 caliche 10.28 48.6 3.6 52.5 6.10 4.31 

B3 - Mid 
2 

mid-
slope 

upper basin 1240 caliche 10.26 49.6 3.2 53.1 6.15 4.25 

B3 - 
Bottom 1 

base of 
slope 

upper basin 1240 caliche 10.24 57.1 1.6 58.8 6.89 3.43 

B3 - 
Bottom 2 

base of 
slope 

upper basin 1240 caliche 10.38 57.0 3.0 60.2 7.03 3.45 
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Appendix E. Particle Size Distribution Data 

 



 116

Particle Size Distribution Data 
Plot ID – 

 Slope 
Position 

VCSAND CSAND MSAND FSAND VFSAND TSAND FSILT TSILT FCLAY TCLAY Texture Coarse 
Fragments

A1 - Top 1 1.1 1.3 2.1 4.0 2.8 11.3 15.3 23.9 42.2 64.8 C 24 
A1 - Top 2 1.2 1.8 2.0 3.4 2.7 11.1 16.7 23.4 0.0 65.5 C 8 
A1 - Mid 1 1.5 1.8 2.1 4.4 4.0 13.8 17.1 26.1 34.5 60.1 C 21 
A1 - Mid 2 3.1 2.1 1.9 5.5 4.1 16.7 18.5 26.6 31.9 56.7 C 21 
A1 - Bottom 1 4.1 2.9 3.3 5.8 4.9 21.0 16.7 25.7 30.7 53.3 C 24 
A1 - Bottom 2 3.9 3.2 3.3 5.5 4.7 20.6 17.9 25.3 30.5 54.1 C 35 
A2 - Top 1 0.1 0.3 0.5 1.7 6.5 9.1 13.4 19.9 44.6 71.0 C 1 
A2 - Top 2 0.0 0.6 1.8 3.7 7.0 13.1 188.4 24.4 29.3 62.5 C n/a 
A2 - Mid 1 1.2 2.6 3.8 3.8 7.3 17.3 26.0 29.9 11.6 52.8 C 2 
A2 - Mid 2 0.4 3.0 2.6 5.0 7.6 18.6 25.7 32.2 10.5 49.2 C 4 
A2 - Bottom 1 0.2 0.5 0.8 2.0 7.0 10.5 17.8 22.3 40.0 67.2 C 7 
A2 - Bottom 2 0.2 0.9 1.1 2.5 7.3 12.0 20.1 22.2 17.8 65.8 C 1 
A3 - Top 1 3.2 3.0 2.6 2.4 7.7 18.9 27.7 45.1 11.0 36.0 SiCL 83 
A3 - Top 2 4.0 3.3 2.6 2.4 6.9 19.2 30.5 43.8 10.6 37.0 SiCL 72 
A3 - Mid 1 2.5 2.7 2.6 4.2 8.7 20.7 32.3 42.7 14.2 36.6 CL 43 
A3 - Mid 2 2.9 2.2 2.3 4.0 9.3 20.7 32.4 44.1 13.2 35.2 CL 46 
A3 - Bottom 1 1.6 1.1 0.9 1.7 7.5 12.8 50.9 43.4 6.4 23.8 SiL 0 
A3 - Bottom 2 0.7 0.8 1.1 2.4 8.8 13.8 48.0 61.3 6.2 24.9 SiL 1 
B1 - Top 1 1.2 1.5 2.0 3.0 4.1 11.7 23.4 30.8 33.8 57.5 C 18 
B1 - Top 2 1.1 1.6 2.3 3.3 4.2 12.6 23.1 30.0 28.7 57.4 C 17 
B1 - Mid 1 1.2 1.6 3.2 4.5 3.9 14.6 22.6 31.7 16.1 53.7 C 13 
B1 - Mid 2 1.4 2.1 3.1 4.5 4.3 15.8 20.4 30.5 23.7 53.7 C 17 
B1 - Bottom 1 1.8 4.1 4.6 7.3 7.4 27.6 17.9 23.7 32.3 48.7 C 25 
B1 - Bottom 2 4.2 3.5 4.3 6.3 7.0 24.6 20.3 28.8 23.9 46.6 C 27 
B2 - Top 1 3.5 0.5 1.5 5.5 13.0 20.6 17.8 23.9 42.0 55.5 C 0 
B2 - Top 2 0.1 0.4 1.2 4.7 11.7 18.1 16.8 23.1 42.4 58.8 C 1 
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Plot ID – 
 Slope 

Position 

VCSAND CSAND MSAND FSAND VFSAND TSAND FSILT TSILT FCLAY TCLAY Texture Coarse 
Fragments

B2 - Mid 1 0.1 1.5 2.6 7.4 11.5 23.1 20.3 29.3 15.8 47.6 C 0 
B2 - Mid 2 0.0 1.4 2.1 6.0 10.1 19.6 20.1 29.9 19.7 51.5 C n/a 
B2 - Bottom 1 0.0 1.0 1.9 5.1 9.6 17.6 23.1 31.2 15.7 51.2 C n/a 
B2 - Bottom 2 0.1 0.9 2.9 5.2 9.3 17.4 21.7 29.9 16.2 52.7 C n/a 
B3 - Top 1 2.3 2.4 2.5 3.7 7.5 18.4 27.7 42.5 17.0 39.1 SiCL 45 
B3 - Top 2 3.1 2.5 2.7 3.1 10.3 21.7 28.9 44.1 15.3 34.2 CL 46 
B3 - Mid 1 2.4 2.5 2.5 2.3 8.8 18.5 33.6 44.6 14.4 36.9 SiLCL 38 
B3 - Mid 2 2.6 2.4 2.1 2.0 9.0 18.1 33.1 44.8 13.2 37.1 SiLCL 28 
B3 - Bottom 1 3.9 3.3 3.6 3.9 9.5 24.2 32.8 45.0 8.6 30.8 CL 60 
B3 - Bottom 2 3.4 3.1 3.4 5.1 8.7 23.7 33.4 45.9 10.0 30.4 CL 66 
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Appendix F. Soil Sample Characterization Worksheets 
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Test Plot A1 (bottom of Basin A) Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 
moist, 
dry) 

Structure 
(type) 

Primary 
Color 
(code 
from 
color 
book) 

Second 
Color 
(code 
from 
color 
book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb-
onnate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top1 10 32 moist Blocky 
7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Backslope 

Top2 10 32 moist Blocky 
7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Backslope 

Mid1 10 23 moist Blocky 
7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Footslope 

Mid2 10 23 moist Blocky 
7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Footslope 

Bottom 
1 10 21 moist Blocky 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Toeslope 

Bottom 
2 10 21 moist Blocky 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

Few few none 
riser, 

baseslope 
colluvium 

Toeslope 

Plot A1 Notes:  Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the hillslope 

because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the limestone fragments. Slope 

shape:  convex linear; Geomorphology:  baseslope colluvium, bottom of basin; well drained; tree cover:  Ashe juniper and Texas oak 

greater that 60% canopy cover with sparse grass clumps; Sed Clastics: dolomite; Topography: steep wavy.
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Test Plot A2 (Basin A – Middle) Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 

moist, 
dry) 

Structure 
(type) 

Primary  
Color 

 (code from 
color book) 

Second 
Color 
(code 
from 
color 
book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb-
onnate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top1 10 12 moist blocky 
7.5R:4/4 

reddish dark 
brown 

7.5R:2/2 
very dark 

brown 
Friable silty 

clay none few none riser 
sideslope backslope 

Top2 10 12 moist blocky 
7.5R:4/4 

reddish dark 
brown 

7.5R:2/2 
very dark 

brown 
Friable silty 

clay none few none riser 
sideslope backslope 

Mid1 10 6 moist blocky 
7.5R:2/2 
very dark 
 brown 

 Friable silty 
clay few few none riser 

sideslope Footslope 

Mid2 10 6 moist blocky 
7.5R:2/2 
very dark 

brown 
 Friable silty 

clay few few none riser 
sideslope Footslope 

Bottom 
1 10 14 moist blocky 

7.5R:2/2 
very dark 

brown 
 Friable silty 

clay few few none riser 
sideslope Toeslope 

Bottom 
2 10 14 moist Blocky 

7.5R:2/2 
very dark 

brown 
 Friable silty 

clay few few none riser 
sideslope Toeslope 

Plot A2 Notes:  Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the hillslope 

because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the limestone fragments. 

Method:   Near Surface due to shallow depth to bedrock. 
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Test Plot A3 (Top of Basin A) Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 
moist, 
dry) 

Structure 
(type) 

Primary  
Color 
 (code 
from  
color 
book) 

Second 
Color 
(code 
from 
color 
book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb-
onnate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top1 10 22 moist Blocky 
7.5R:2/2 
very dark 

brown 
firm silty clay 

fine 
silty 
clay 

many slight few 
riser/ 
headslope backslope 

Top2 10 22 moist Blocky 
7.5R:2/2 
very dark 

brown 
firm silty clay 

fine 
silty 
clay 

many slight few 
riser/ 
headslope backslope 

Mid1 10 17 moist Blocky 
7.5R:2/2 
very dark 

brown 
firm silty clay 

fine 
silty 
clay 

many slight few 
riser/ 
headslope footslope 

Mid2 10 17 moist Blocky 
7.5R:2/2 
very dark 

brown 
firm silty clay 

fine 
silty 
clay 

many slight few 
riser/ 
headslope footslope 

Bottom 
1 10 16 moist Platy 7.5R:6/3 

pale brown friable silty clay 

fine 
silty 
clay 
loam 

few slight few 

riser/ 
headslope toeslope 

Bottom 
2 10 16 moist Platy 

7.5R:6/3 
pale 

brown 
friable silty clay 

fine 
silty 
clay 
loam 

few slight few 

riser/ 
headslope toeslope 

NOTES:  Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the hillslope 
because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the limestone 
fragments. Foraminifera lens at base of slope marks a marly layer, unlike Plot B3 that has limestone at its base with the 
foraminifera layer about 5 feet downslope. Slope Shape: convex; Geomorphology:  Noseslope - head of basin; Drainage:  
well drained; Grass clumps are less than 10% and Ashe juniper shrubs ~50%; Sed clastics:  LMS, Dolomite, and Marl; 
Tope:  sloping wavy. 
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Test Plot B1 (bottom of Basin B Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 

moist, 
dry) 

Structure 
(type) 

Primary 
Color 
(code 
from 
color 
book) 

Second 
Color 
(code 
from 
color 
book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb-
onnate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top1 10 15 moist blocky 
(subangular) 

7.5R:2/1 
black  friable 

silty 
clay 
loam 

many few none riser 
baseslope backslope 

Top2 10 15 moist blocky 
(subangular) 

7.5R:2/1 
black  friable 

silty 
clay 
loam 

many few none riser 
baseslope backslope 

Mid1 10 30 moist blocky 
(subangular) 

7.5R:2/1 
black 

7.5R:8/1 
very pale 

brown 
friable 

silty 
clay 
loam 

many few none riser 
baseslope footslope 

Mid2 10 30 moist blocky 
(subangular) 

7.5R:2/1 
black 

7.5R:8/1 
very pale 

brown 
friable 

silty 
clay 
loam 

many few none riser 
baseslope footslope 

Bottom 
1 10 29 moist blocky 

(subangular) 

7.5R:2/1 
very dark 

brown 

7.5R:8/1 
very pale 

brown 
friable 

silty 
clay 
loam 

many many none riser 
baseslope toeslope 

Bottom 
2 10 29 moist blocky 

(subangular) 

7.5R:2/1 
very dark 

brown 

7.5R:8/1 
very pale 

brown 
friable 

silty 
clay 
loam 

many many none riser 
baseslope toeslope 

Plot B1 Notes:  Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the 
hillslope because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the 
limestone fragments. Slope shape:  convex/linear; Geomorphology:  baseslope (colluvium) - bottom of basin; Drainage:  
well drained with flooding rare; tree cover:  mature Texas oak and Ashe juniper (60% canopy cover); sparse grass clumps; 
Sed clastics:  LMS, dolomite; Topography:  Steep and wavy. Carbonate fragments fizz slightly in acid. Method: Near 
Surface due to shallow depth to bedrock. 
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Test Plot B2 (Basin B –Middle) Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 

moist, 
dry) 

Structure 
(type) 

Primary 
Color 

(code from 
color book) 

Second 
Color (code 
from color 

book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb- 
onate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top2 
10 8 moist Blocky 

7.5R:2/2 
very dark  
brown 

  friable silty 
clay 

few 
with 
cobbles 

many none riser/ 
sideslope backslope 

Mid1 
10 8 moist Blocky 7.5R:2/2  

very dark  
brown 

  friable silty 
clay 

few 
with 
cobbles 

many none riser/ 
sideslope footslope 

Mid2 
10 10 moist Blocky 7.5R:3/3  

dark reddish 
brown 

  friable silty 
clay 

few 
with 
cobbles 

few to 
many 

none riser/ 
sideslope footslope 

Bottom 
1 

10 10 moist Blocky 7.5R:3/3 
dark reddish 
brown 

  friable silty 
clay 

few 
with 
cobbles 

few to 
many 

none riser/ 
sideslope toeslope 

Bottom 
2 

10 11 moist Blocky 
7.5R:2/2 
very dark 
brown 

7.5R:3/3 
dark reddish 
brown 

friable silty 
clay 

few 
with 
cobbles 

many none riser/ 
sideslope toeslope 

Plot B2 Notes:    Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the 
hillslope because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the 
limestone fragments. Slope shape:  linear/linear; Geomorphology:  sideslope - midbasin; Drainage:  well drained with 
flooding rare; Tree cover:  shrub to 15-foot tall Ashe juniper (15% canopy cover); scattered grass clumps; Sed clastics:  
dolomite Topography:  sloping and flaggy. Method:   Near Surface due to shallow depth to bedrock. Other Site 
Characteristics: Hillslope, Mid Basin, near weir, bedrock at ~10 cm.
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Test Plot B3 (Basin B –Middle) Soil Sample Classification Worksheet - 8/25/2001 

 
Top 

Depth 
(cm) 

Slope 
(Degrees) 

Moisture 
(wet, 

moist, 
dry) 

Structure 
(type) 

Primary 
Color 
(code 
from 
color 
book) 

Second 
Color 
(code 
from 
color 
book) 

Consistence 
(loose, 
friable, 
firm, 

extremely 
firm) 

Texture 
(name) 

Rocks 
(none, 
few, 

many) 

Roots 
(none, 

few 
many) 

Carb- 
onate 
(none, 
slight, 
strong) 

Terrace/ 
Basin 

Position 

Profile 
Position 

Top2 10 15 slightly 
moist 

blocky 
(subangular) 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable 

silty 
clay 
loam 

few few slight riser/headslope backslope 

Mid1 10 15 slightly 
moist 

blocky 
(subangular) 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable silty 

clay few few slight riser/headslope backslope 

Mid2 10 20 slightly 
moist 

blocky 
(subangular) 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable silty 

clay few few slight riser/headslope footslope 

Bottom 
1 10 20 slightly 

moist 
blocky 

(subangular) 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable silty 

clay few few slight riser/headslope footslope 

Bottom 
2 10 28 slightly 

moist 
blocky 

(subangular) 

7.5R:2/2 
very dark 

brown 

7.5R:8/2 
very pale 

brown 
friable silty 

clay 

many 
(fine 

to 
sand) 

many slight riser/headslope toeslope 

Plot B3 Notes:    Soil samples were taken along slope. Sample sites were generally less sloping than other areas on the 
hillslope because flaggy limestone tended to form random slope angles and sediment tends to "pond" between the 
limestone fragments. Slope shape:  convex/concave; Geomorphology:  noseslope at head of drainage basin; Drainage:  well 
drained with no flooding; tree cover:  shrubs to 15' tall Ashe juniper (35% canopy cover); sparse grass clumps; Sed 
clastics:  Limestone, dolomite, with interbedded marl that is reticulate to platy; Topography:  wavy. 
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Appendix G. Orientations of Scanline Fracture Data (FR-2), Honey 
Creek Stream Cave Conduits, Other Karst Features and Fractures, 

and Streams
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Table G.1. Scanline Fracture Orientations (FR-2) 
 

 
 

Transect 
Number 

Transect 
Distance 

(m) 

Aperture 
(cm) 

Bearing 
(Decl. 

0) 
Azimuth Fracture 

Length (m) 
Spacing 

(m) 

Asperity 
(URC) 

(straight 
length/  
actual 
length) 

1 0.4 6 N-15 E 23.50 3.03 0.50 1.06 
2 0.9 0.3 N-65 E 73.50 3.03 0.60 1.06 
3 1.5 5.5 N-50 E 58.50 

2.42 0.60 1.03 
4 2.1 0.3 N-40 E 48.50 3.03 0.40 1.07 
5 2.5 0.3 N-15 E 23.50 3.03 0.10 1.03 
6 2.6 0.04 N-70 E  78.50 2.42 0.12 1.03 
7 2.72 0.04 N-05 E 13.50 0.91 0.11 1.03 
8 2.83 0.04 N-40 E 48.50 3.03 0.17 1.03 
9 3 0.2 N-05 E 13.50 22.73 2.50 1.03 

10 5.5 1.2 N-60 W 308.50 9.09 1.50 1.03 
11 7 0.3 N-20 E 28.50 9.09 0.40 1.05 
12 7.4 0.2 N-70W 298.50 3.03 0.13 1.03 
13 7.53 0.3 N-40 W 328.50 1.52 0.82 1.01 
14 8.35 0.04 N-25 E 33.50 2.12 1.45 1.05 
15 9.8 0.2 N-32 E 40.50 1.21 0.10 1.02 
16 9.9 1.1 N-65 E 73.50 1.52 0.70 1.03 
17 10.6 0.3 N-60 E 68.50 4.55 0.77 1.01 
18 11.37 0.3 N-25 E 33.50 1.21 0.03 1.03 
19 11.4 0.1 N-25 E 33.50 0.30 0.02 1.03 
20 11.42 0.2 N-20 E 28.50 0.91 0.09 1.03 
21 11.51 0.05 N-65 E 73.50 0.15 0.04 1.03 
22 11.55 0.5 N-65 E 73.50 1.21 0.15 1.03 
23 11.7 6 N-30 E 38.50 2.12 0.80 1.01 
24 12.5 3 E-W 98.50 6.06 1.10 1.03 
25 13.6 0.9 N-0E 48.50 45.45 1.10 1.03 
26 14.7 4 N-35 E 43.50 1.52 0.65 1.03 
27 15.35 3 N-80 E 88.50 0.61 0.15 1.03 
28 15.5 0.2 N-S 8.50 0.30 0.10 1.03 
29 15.6 1 N-20 E 88.50 6.06 0.10 1.03 
30 15.7 0.7 N-55 E 63.50 0.30 1.10 1.03 
31 16.8 0.5 N-20 E 28.50 6.06 1.00 1.05 
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Transect 
Number 

Transect 
Distance 

(m) 

Aperture 
(cm) 

Bearing 
(Decl. 

0) 
Azimuth Fracture 

Length (m) 
Spacing 

(m) 

Asperity 
(URC) 

(straight 
length/  
actual 
length) 

32 17.8 1 N-35 E 43.50 9.09 0.30 1.03 
33 18.1 1 N-20 W 348.50 

9.09 0.40 1.03 
34 18.5 0.3 N-55 W 313.50 1.52 0.10 1.03 
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Table G.2. Honey Creek Stream Cave Orientation Measurements 
Name Latitude Longitude Altitude (ft.) Depth (ft.) Width (ft Corrected (Polar) 

Azimuth 
Azimuth Length (ft.) Elevation (ft. 

1 29.86154 -98.51033 1146 125.00 6.60 338.00 158 166 1021 
2 29.86125 -98.51070 1146 125.00 6.60 42.00 222 48 1021 
3 29.86092 -98.51092 1126 100.00 6.60 24.00 204 42 1026 
4 29.86052 -98.51085 1126 100.00 6.60 346.00 166 45 1026 
5 29.86028 -98.51061 1126 110.00 6.60 313.00 133 35 1016 
6 29.85977 -98.51118 1126 110.00 6.60 38.00 218 79 1016 
7 29.85491 -98.51551 1102 80.00 6.60 43.00 223 438 1022 
8 29.85322 -98.51749 1102 80.00 6.60 39.00 219 268 1022 
9 29.85257 -98.51920 1110 90.00 6.60 60.00 240 180 1020 

10 29.85230 -98.51883 1110 93.00 6.60 304.00 124 47 1017 
11 29.85198 -98.51879 1111 93.00 6.60 348.00 168 36 1018 
12 29.85187 -98.51848 1111 93.00 6.60 286.00 106 32 1018 
13 29.85149 -98.51830 1111 93.00 6.60 331.00 151 46 1018 
14 29.85111 -98.51799 1111 93.00 6.60 318.00 138 52 1018 
15 29.85081 -98.51775 1111 93.00 6.60 319.00 139 41 1018 
16 29.85047 -98.51752 1112 94.00 6.60 323.00 143 43 1018 
17 29.85033 -98.51721 1112 94.00 6.60 291.00 111 34 1018 
18 29.85009 -98.51721 1112 94.00 6.60 354.00 174 27 1018 
19 29.84998 -98.51696 1112 94.00 6.60 291.00 111 27 1018 
20 29.84971 -98.51696 1112 95.00 6.60 354.00 174 30 1017 
21 29.84952 -98.51662 1118 104.00 6.60 297.00 117 39 1014 
22 29.84936 -98.51628 1112 105.00 6.60 292.00 112 37 1007 
23 29.84898 -98.51594 1117 105.00 6.60 316.00 136 54 1012 
24 29.84880 -98.51547 1122 105.00 6.60 288.00 108 50 1017 
25 29.84828 -98.51482 1147 130.00 6.60 306.00 126 85 1017 
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Name Latitude Longitude Altitude (ft.) Depth (ft.) Width (ft Corrected (Polar) 
Azimuth 

Azimuth Length (ft.) Elevation (ft. 

26 29.84659 -98.51705 1147 130.00 6.60 43.00 223 286 1017 
27 29.84586 -98.51653 1147 130.00 6.60 43.00 223 489 1017 
28 29.84297 -98.52035 1147 130.00 6.60 311.00 131 304 1017 
29 29.84497 -98.52249 1147 130.00 6.60 311.00 311 304 1017 
30 29.84586 -98.51653 1147 130.00 6.60 43.00 43 489 1017 
31 29.84729 -98.51451 1147 130.00 6.60 314.00 134 104 1017 
32 29.84801 -98.51519 1147 130.00 6.60 314.00 314 104 1017 
33 29.84912 -98.50907 1167 150.00 6.60 49.00 229 315 1017 
34 29.84810 -98.51025 1167 150.00 6.60 39.00 219 161 1017 
35 29.84691 -98.50783 1127 110.00 6.60 328.00 148 274 1017 
36 29.84745 -98.50680 1127 110.00 6.60 321 321 61 1017 
37 29.84640 -98.50742 1127 110.00 6.60 48.00 228 114 1017 
38 29.86371 -98.47523 1127 110.00 6.60 11 11 120 1017 
39 29.86324 -98.47521 1127 110.00 6.60 10 10 39 1017 
40 29.86371 -98.47486 1127 110.00 6.60 27 27 62 1017 
41 29.86318 -98.47432 1127 99.00 6.60 312.00 132 78 1028 
42 29.84537 -98.50779 1127 100.00 6.60 11.00 191 120 1027 
43 29.84467 -98.50848 1127 100.00 6.60 34.00 214 103 1027 
44 29.84589 -98.50630 1127 110.00 6.60 54.00 234 59 1017 
45 29.84551 -98.50612 1127 110.00 6.60 331.00 151 46 1017 
46 29.84421 -98.50444 1117 100.00 6.60 325.00 145 196 1017 
47 29.84381 -98.50534 1126 109.00 6.60 57.00 237 98 1017 
48 29.84322 -98.50503 1117 100.00 6.60 329.00 149 72 1017 
49 29.84246 -98.50332 1117 100.00 6.60 324.00 144 140 1017 
50 29.84327 -98.50143 1117 100.00 6.60 57 57 204 1017 
51 29.84308 -98.50130 1117 100.00 6.60 323.00 143 25 1017 
52 29.84680 -98.49411 1042 25.00 6.60 53.00 53 628 1017 
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Name Latitude Longitude Altitude (ft.) Depth (ft.) Width (ft Corrected (Polar) 
Azimuth 

Azimuth Length (ft.) Elevation (ft. 

53 29.84572 -98.49737 1097 80.00 6.60 323 323 75 1017 
54 29.84556 -98.49774 1097 80.00 6.60 323 323 75 1017 
55 29.86398 -98.47709 1020 0.00 6.60 57.00 237 40 1020 
56 29.86317 -98.47614 1020 0.00 6.60 306.00 126 119 1020 
57 29.86325 -98.47541 1020 0.00 6.60 302.00 122 76 1020 
58 29.86290 -98.47532 1020 0.00 6.60 284.00 104 85 1020 
59 29.86247 -98.47461 1020 0.00 6.60 320.00 140 65 1020 
60 29.86227 -98.47351 1127 110.00 6.60 286.00 106 65 1017 
61 29.86306 -98.47397 1127 110.00 6.60 358.00 178 37 1017 
62 29.86119 -98.47361 1127 110.00 6.60 0.00 180 62 1017 
63 29.86175 -98.47357 1127 110.00 6.60 289.00 109 58 1017 
64 29.86083 -98.47272 1135 110.00 6.60 292.00 112 95 1025 
65 29.86054 -98.47210 1145 115.00 6.60 48 48 68 1030 
66 29.86096 -98.47144 1145 115.00 6.60 319.00 139 79 1030 
67 29.86058 -98.47113 1145 120.00 6.60 286.00 106 52 1025 
68 29.86034 -98.47044 1145 120.00 6.60 321.00 141 72 1025 
69 29.85999 -98.47018 1140 120.00 6.60 271.00 91 47 1020 
70 29.85991 -98.46945 1140 120.00 6.60 318.00 138 71 1020 
71 29.85956 -98.46916 1140 120.00 6.60 278.00 98 48 1020 
72 29.85939 -98.46844 1140 120.00 6.60 337.00 157 72 1020 
73 29.85886 -98.46825 1140 120.00 6.60 353.00 173 63 1020 
74 29.85824 -98.46824 1170 150.00 6.60 340.00 160 68 1020 
75 29.85632 -98.46767 1175 150.00 6.60 340.00 160 60 1025 
76 29.85562 -98.46750 1181 155.00 6.60 342.00 162 80 1026 
77 29.85517 -98.46678 1181 155.00 6.60 299.00 119 86 1026 
78 29.85481 -98.46541 1181 155.00 6.60 23 23 53 1026 
79 29.85440 -98.46568 1181 155.00 6.60 84 84 56 1026 
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Name Latitude Longitude Altitude (ft.) Depth (ft.) Width (ft Corrected (Polar) 
Azimuth 

Azimuth Length (ft.) Elevation (ft. 

80 29.85492 -98.46500 1181 155.00 6.60 67 67 42 1026 
81 29.85463 -98.46466 1181 155.00 6.60 354 354 0 1026 
82 29.85463 -98.46423 1181 155.00 6.60 84 84 42 1026 
83 29.85785 -98.46783 1181 155.00 6.60 312.00 132 59 1026 
84 29.85783 -98.46781 1160 155.00 6.60 309.00 129 3 1005 
85 29.85740 -98.46750 1160 155.00 6.60 322.00 142 57 1005 
86 29.85684 -98.46781 1160 155.00 6.60 20.00 200 69 1005 
87 29.85440 -98.46626 1181 155.00 6.60 323.00 143 58 1026 
88 29.85485 -98.46657 1181 155.00 6.60 325.00 145 41 1026 
89 29.85429 -98.46417 1181 155.00 6.60 345.00 165 38 1026 
90 29.86007 -98.47355 1176 21.00 3.00 300.00 300 20 1155 
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Table G.3. Orientation of Karst Features and Fractures at Honey Creek basin. 
 
Name  Length 

(meters) 
Feature 
Azimuth 

Fracture 
Azimuth 

C1  Trash Dump Cave 1.82 305 305 

C10  
(Arm 
Chair 
Cave) 

Arm Chair Cave 6.97 70 70 

C2  Flat Rock Cave 4.55 327 327 

C3- 10 Preserve Cave 15.00 45  
C3- 11  70.00 350  
C3- 12  15.00 310  
C3- 13  25.00 330  
C3- 14  65.00 45  
C3- 15  8.00 330  
C3- 16  8.00 310  
C3- 2  15.00 9   
C3- 3  185.00 330   
C3- 4  65.00 9   
C3- 5  170.00 310   
C3- 6  65.00 65   
C3- 7  15.00 330   
C3- 8  45.00 310   
C3- 9  135.00 330  
C3-1   185.00 330 300 

C4  Base of Tree Cave 1.52 330 330 

C6-1   
Double Cross Cave 

16.06 300 300 

C6-2  12.42 65 65 
C7  Sour Maggie 

 
8.18 280 280 
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Name  Length 
(meters) 

Feature 
Azimuth 

Fracture 
Azimuth 

C8  Black Heart Cave 5.76 295 295 

C9  Bone Head Cave 4.55 287 287 

FR-1  2.30 300 
KF-1  1.82 305  
KF-2  18.18 315  
KF-3  0.30 345 345 
KF-4  0.45 32 32 
KF-5  1.00 305 290 
KF-6  0.40 40 40 
KF-7  7.58  
KF-8  3.00  
KF-9  1.82 285 285 
SH-1  22.73  
SH-2  2.27 296 296 
SH-3  0.40 55 282 
SH-4  6.06 338 338 
SH-5  18.18 315 315 
SH-6  3.03 80 80 
SH-7  1.52 285 285 
SH-8  6.06  
SH-9  6 285 285 

SH-10 
 

 10  

C2  Rockwall Cave 3.03 62  

Saddle  
Sinks 

 6.36 332  

Ten-Meter 
Sink 

 4.00 285  

Two Hole 
Pit - 1 

 3.03 310 

Two Hole  
Pit - 2 

  320 
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Table G.4. Orientation of Stream Segments of Honey Creek and its tributaries. 
 
Segment Name Leg Length (m) Azimuth 

(in degrees) 
C1 303 350 
C2 303 70 
C3 303 6 

FR-2 606 310 
FR-2 121 50 
FR-2 606 320 
FR-2 182 290 
FR-2 455 350 
FR-2 212 320 

P 606 330 
SP1 606 315 
SP2 303 355 
SP3 606 310 

1 606 305 
2 212 305 
3 121 310 
4 121 315 
5 121 315 
6 1818 50 
7 606 330 
8 606 25 
9 606 45 

10 152 25 
11 606 45 
12 1212 325 
13 1818 50 
14 606 320 
15 909 50 
16 909 320 
17 909 320 
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Appendix H. Runoff, Precipitation, and Water Levels in Shallow and 
Deep Water Wells (USGS, 2001)
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Day (#) 

Deep 
Well 
Surface 
Elevation 
m 

Shallow 
Well 
Surface 
Elevation 
- m 

Deep 
Well 
Potent-
iometric 
Surface 
Elevation  
- m 

Shallow 
Well  
Potent- 
iometric 
Surface 
Elevation  
- m 

Precip- 
itation 
- cm 

Runoff-
cm 

15-Aug-01 370 369 329.69 365.95 0.15 0.61 
16-Aug-01 370 369 329.92 365.95 0.05 0.61 
17-Aug-01 370 369 330.14 365.92 0.00 0.61 
18-Aug-01 370 369 330.36 365.95 0.00 0.61 
19-Aug-01 370 369 330.59 365.91 0.00 0.61 
20-Aug-01 370 369 330.81 365.94 0.00 0.61 
21-Aug-01 370 369 331.04 365.97 0.02 0.61 
22-Aug-01 370 369 331.27 365.98 0.00 0.61 
23-Aug-01 370 369 331.49 366.00 0.00 0.61 
24-Aug-01 370 369 331.72 365.99 0.00 0.00 
25-Aug-01 370 369 331.94 366.02 0.00 0.00 
26-Aug-01 370 369 332.16 366.01 0.52 0.00 
27-Aug-01 370 369 332.53 365.92 0.26 0.00 
28-Aug-01 370 369 332.77 365.92 0.04 0.00 
29-Aug-01 370 369 332.99 365.90 0.50 28.96 
30-Aug-01 370 369 333.02 365.92 0.69 42.06 
31-Aug-01 370 369 330.73 365.96 0.88 71.32 

1-Sep-01 370 369 330.91 365.96 0.00 45.72 
2-Sep-01 370 369 331.13 365.98 0.00 0.00 
3-Sep-01 370 369 331.37 366.00 0.03 0.00 
4-Sep-01 370 369 331.60 365.96 0.02 0.00 
5-Sep-01 370 369 331.84 365.93 0.27 0.00 
6-Sep-01 370 369 332.07 365.95 0.01 0.00 
7-Sep-01 370 369 332.27 366.01 0.00 0.00 
8-Sep-01 370 369 332.49 366.01 0.00 0.00 
9-Sep-01 370 369 332.74 365.97 0.06 0.00 

10-Sep-01 370 369 332.98 365.91 0.00 0.00 
11-Sep-01 370 369 333.20 365.96 0.00 0.00 
12-Sep-01 370 369 333.42 365.99 0.00 0.00 
13-Sep-01 370 369 333.64 366.00 0.00 0.00 
14-Sep-01 370 369 333.87 366.02 0.00 0.00 
15-Sep-01 370 369 334.09 366.02 0.00 0.00 
16-Sep-01 370 369 334.32 365.99 0.00 0.00 
17-Sep-01 370 369 334.55 366.01 0.00 0.00 
18-Sep-01 370 369 332.80 366.01 0.00 0.00 
19-Sep-01 370 369 334.75 366.07 0.00 0.00 
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Day (#) 

Deep 
Well 
Surface 
Elevation 
m 

Shallow 
Well 
Surface 
Elevation 
- m 

Deep 
Well 
Potent-
iometric 
Surface 
Elevation  
- m 

Shallow 
Well  
Potent- 
iometric 
Surface 
Elevation  
- m 

Precip- 
itation 
- cm 

Runoff-
cm 

20-Sep-01 370 369 334.76 366.05 0.00 0.00 
21-Sep-01 370 369 334.76 366.03 0.00 0.00 
22-Sep-01 370 369 334.76 365.97 0.12 0.00 
23-Sep-01 370 369 334.76 365.98 0.00 0.00 
24-Sep-01 370 369 334.76 365.96 0.00 0.00 
25-Sep-01 370 369 334.79 365.90 0.00 0.00 
26-Sep-01 370 369 334.76 365.92 0.00 0.00 
27-Sep-01 370 369 334.76 365.93 0.00 0.00 
28-Sep-01 370 369 334.75 365.96 0.00 0.00 
29-Sep-01 370 369 334.76 365.96 0.00 0.00 
30-Sep-01 370 369 334.80 365.92 0.00 0.00 
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