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In this dissertation we show that the Giulietti-Ughi arc is not complete for large

primes. This arc is complete for primes which are congruent to three modulo four

and less than thirty one. The cardinality of this arc has the same order as the

Lunelli-Sce bound. We use two powerful theorems, one on the classifications of

Galois groups of quintic polynomials and the other, the C̆ebotarev density theorem

for function fields to show that there exist points on a certain curve which are not

covered by the arc. We then outline a technique which could be used to extend the

arc to a complete arc.
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Chapter 1

Introduction

1.1 Basic Concepts

This dissertation deals with properties of certain structures defined on a projective

plane over a finite field. We begin by defining a projective plane of order m.

Definition 1. A projective plane of order m is a set of m2 +m+ 1 elements called

points , together with m2 + m + 1 distinguished sets of points, called lines, as well

as a relation I , called incidence, between lines and points subject to the following

conditions:

1. Every pair of distinct lines is incident with a unique point.

2. Every pair of distinct points is incident with a unique line

3. There exist four points such that no three of them are incident with a single

line.

Note that the axioms above are self-dual. Hence the dual of a projective plane

is a projective plane. We will see that there exists a projective plane of order m for

every integer m of the form m = pn, where p is a prime. It is known that there is

no plane for m = 6, 10 but it is not known whether a plane exists for m = 12. No

plane has yet been found where m is not a prime power.

Conjecture (Prime Power Conjecture). The order of every finite projective plane

is a prime power.
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We will now define a projective plane over a finite field Fq.

Definition 2. Let V be a vector space of dimension three over Fq. The projective

plane PG(2, q) is the geometry whose points and lines are subspaces of V whose

dimensions are one and two respectively and the incidence relation is given by con-

tainment.

Since the points and lines of PG(2, q) satisfy the axioms of definition 1 there

exists for every prime power q a projective plane of order q. We also define AG(2, q)

to be PG(2, q)\{ a line}. We can represent PG(2, q) by the union of the sets

{(l,m, 1) | l,m ∈ Fq} ∪ {(l, 1, n) | l, n ∈ Fq} ∪ {(1,m, n) |m,n ∈ Fq}

and in this dissertation when we refer to AG(2, q) we will be referring to the affine

plane obtained by removing the line n = 0 i.e. the first set in the union. In most

cases when we refer to a point in AG(2, q) we drop the last coordinate as we take

n = 1 and write the point simply as (l,m). We will study subsets of the projective

plane called arcs and complete arcs.

Definition 3. An arc is a set of points in a projective plane such that no three

points are collinear. An arc which is maximal under inclusion is called a complete

arc.

Another way of characterizing complete arcs is that every point in PG(2, q) lies

on a line (secant) formed by joining two points on the arc. We must caution the

reader that an arc is a purely combinatorial object as opposed to a curve which is

algebraic in nature.

1.2 Arcs

After introducing the concept of the arc in the 1950’s, Segre asked questions about

the size of complete arcs. For q odd, the maximum size of a complete arc is q + 1

and for q even it is q + 2. A celebrated theorem of Segre’s states that in the odd

case the maximum is attained if and only if the arc is a conic; however in the even

case the characterization is not yet complete ([3]). Bounds for the size of the second
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largest complete arc have also been obtained([9, 10, 13, 15, 14]). In this case some

of the particularly interesting results have been obtained by using the Stöhr-Voloch

bound for estimating points on algebraic curves over finite fields ([14]).

Constructing complete arcs of minimal size is essentially a mini-max problem

as we want to choose a set of points of small cardinality such that every point in

PG(2, q) lies on at least one secant. Let nq denote the size of the smallest complete

arc in a projective plane of order q.

Theorem 1 (Lunelli-Sce). The cardinality of the smallest complete arc is at least
√

2q i.e. nq ≥
√

2q.

Proof. We know that PG(2, q) contains q2+q+1 points and that every line contains

q+ 1 points. Hence a complete arc must have at least q2+q+1
q+1

≥ q secants. Let n be

the cardinality of an arc. The number of secants an arc of cardinality n possesses

is n(n−1)
2

and this number must be at least q for the arc to be complete. The bound

now follows from the inequality n(n−1)
2
≥ q.

Blokhuis and Ball improved the Lunelli-Sce bound to
√

3q when q is a prime or

the square of a prime respectively ([1, 2]). Fisher conjectured that the average size

of a complete arc is
√

3q log q ([6]). One of the most important results in this field

is due to Kim and Vu who prove that nq ≤
√
q logc q where c is a universal constant

([11]). They use a probabilistic method known as Rödl nibble to show the existence

of an arc satisfying the above inequality without explicitly constructing one. This

together with the Lunelli-Sce bound determines nq up to a polylogarithmic factor.

Giulietti and Ughi construct a small arc in PG(2, q) where q = p2 and p ≡
3 mod 4 of size 4(

√
q−1) ([8]). This arc is known to be complete for primes p ≤ 31.

The cardinality of this arc is close to the Lunelli-Sce bound. The natural question

one could ask is if this arc is complete for larger primes and if not would it be

possible to construct a complete arc of cardinality close to the Lunelli-Sce bound

by adding points to the arc.
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1.3 The Giulietti-Ughi arc

In [8] Giulietti and Ughi construct a small arc in PG(2, q) where q = p2 and p ≡
3 mod 4. Since p ≡ 3 mod 4 we have that Fq ∼= Fp(i), with i2 = −1. Throughout

this dissertation we shall assume that our primes p satisfy p ≡ 3 mod 4 and q = p2.

The arc is constructed by choosing points on the conics xy = 1 and xy = i in

PG(2, q). Let

K1 = {(α, 1

α
) |α ∈ F∗p}

K2 = {(β, i
β

) | β ∈ F∗p}

K3 = {(iγ, 1

γ
) | γ ∈ F∗p}

K4 = {(iδ, −i
δ

) | δ ∈ F∗p }.

Then K = K1 ∪K2 ∪K3 ∪K4 is a arc of cardinality 4(
√
q − 1) and is known to

be complete for primes p ≤ 31. In this dissertation we prove that for all sufficiently

large primes the arc K will not be complete.

1.4 Results

In this dissertation we prove the following theorems.

Theorem 2. For all sufficiently large primes the Giulietti-Ughi arc is not complete.

We prove this theorem using results from Galois theory and the C̆ebotarev den-

sity theorem for function fields. A natural question one could ask is whether this

construction can be extended further. In other words, is it possible to add sets of

points lying on conics to the original arc and obtain a complete arc for larger primes.

In this dissertation we also demonstrate a technique which could potentially be used

to do precisely this.

Theorem 3. For all sufficiently large primes the number of points lying on the curve

given by {[t2 + it, t2 + t+ i, 1] | t ∈ Fp} which may be added to the Giulietti-Ughi arc

to construct a larger arc is (1
2
)6(11

30
)4(1

3
)4p+O(

√
p).
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Chapter 2

Background

2.1 Computational Tools

In this dissertation most computations will involve using the following two theorems.

Theorem 4. Let f(t) ∈ Q(t). Assume that f(t) 6= cg(t)2 where c ∈ Q and g(t) ∈
Q(t) i.e. f(t) is not a constant times a square. Then for all sufficiently large primes

we have that f(t) ∈ Fp(t) and is not a constant times a square.

Proof. Let f(t) = cf1(t)
n1 . . . fr(t)

nr where fi(t) are distinct irreducible polynomials,

c ∈ Q and ni ∈ Z. By hypothesis at least one ni is odd. Assume without loss of

generality that n1 is odd. We choose primes sufficiently large satisfying the following

conditions:

i) None of the factors coincide or become zero when f(t) is reduced mod p.

ii) The primes p do not divide the discriminant of f1 and f1 is not congruent to a

constant when reduced mod p.

iii) The primes p do not divide Resultant(f1,fi) for i ∈ {1, 2, · · · , r} and i 6= 1.

For primes satisfying these conditions f1 has no repeated factors nor has any factor

common with f2, · · · , fr. Hence for all sufficiently large primes f(t) ∈ Fp(t) and is

not a constant times a square.

Theorem 5. There are only finitely many primes p for which an absolutely irre-

ducible multivariate polynomial g over Q is not absolutely irreducible mod p.
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Proof. See [12] Lemma 3 on page 173.

All the programs in this dissertation were implemented in MAGMA except

absolute irreducibility was checked using MAPLE. In a few cases our polynomials

will belong to Q(t)[b] but to check absolute irreducibility we want our polynomials

to belong to Q[t, b]. We multiply these polynomials by a suitable element of Q[t]

to clear denominators. The polynomials now belongs to Q[t, b] and we can test

for absolute 0. Since we are ultimately interested in 0 over Q(t) and Fp(t) this is

equivalent to multiplying the polynomials by a constant.

2.2 Čebotarev Density Theorem

Let f(b, t) be a bivariate polynomial defined over Fp of degree n in b . For t0 ∈ Fp
such that deg(f(b, t0)) = n, we factor f(b, t0) over Fp as

f = f1f2 . . . fr.

Let ni be the degree of fi in the equation above. We permute the factors so that

ni ≤ nj for i < j. To each t0 ∈ Fp we associate the tuple τ = (n1, . . . , nr). Since

n1 + · · · + nr = n we view τ as a partition of n. We refer to τ as the factorization

type of t0.

We state the following version of the Čebotarev density theorem (see [7]).

Theorem 6. Let f(b, t) ∈ Fp(t)[b] be an irreducible separable polynomial of degree

n when considered as a univariate polynomial defined over Fp(t). Let F be the

splitting field of f over Fp(t) and G be the corresponding Galois group considered

as a subgroup of Sn. Let Cτ denote the set of elements of G with factorization type

τ . If Fp is algebraically closed in F , then the number of elements t in the set

{t ∈ Fp : deg(f(b, t)) = n} which have the same factorization type τ is |Cτ ||G| p+O(
√
p).

The theorem can also be applied to a reducible separable polynomial whose

splitting field satisfies the hypothesis of the theorem.
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2.3 Galois Groups of the Quintic

To apply the Čebotarev density theorem to the polynomials in this dissertation we

will need to study the transitive subgroups of S5. There are six possibilities for

the Galois group of an irreducible quintic. The Galois groups and the relationships

between them are described by figure 2.1.

S5

zz
zz

zz
zz

CC
CC

CC
CC

F20

DD
DD

DD
DD

A5

{{
{{

{{
{{

D10

C5

1

Figure 2.1: Galois Groups of the Quintic

If the square root of the discriminant of the polynomial does not belong to the

base field then the only possible Galois Groups are S5 and F20. We use the following

theorem (see [4]) to distinguish between the two groups.

Theorem 7 (Dummit). Let F be any field of characteristic different from two and

five. Then an irreducible quintic f(x) ∈ F[x] is solvable by radicals if and only if its

Galois group as a subgroup of S5 is contained in the Frobenius Group of order 20

(F20). The irreducible quintic g(x) = x5 +mx3 + lx2 + rx+ s ∈ F[x] is solvable by

radicals if and only if the polynomial h20(x) (defined below) has a rational root. In

this case the sextic polynomial h20(x) factors into the product of a linear polynomial

and an irreducible quintic.
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h20(x) = x6 + 8rx5 + (2ml2 − 6m2r + 40r2 − 50ls)x4

(−2l4 + 21ml2 − 40m2r2 + 160r3 − 15m2ls− 400rs+ 125ms2)x3

+ (m2l4 − 6m3l2r − 8l4r + 9m4r2 + 76ml2r2 − 136m2r3

+ 400r4 − 50ml3s+ 90m2ls− 1400lr2s+ 625l2s2 + 500mrs2)x2

+ (−2ml6 + 19m2l4r − 51m3q2r + 3q4r2 + 32m4r3 + 76mq2r3

− 256m2r4 + 512r5 − 31m3l3s− 58l5s+ 117m4lrs+ 105lm3rs

+ 260m2lr2s− 2400lr3 − 108m5s2 − 325m2l2s2 + 525m3rs2

2750l2rs2 − 500mr2s2 + 625lms3 − 3125s4)x

+ (l8 − 13ml6r +m5l2r2 + 65m2l4r2 − 4m6r3 − 128m3l2r3 + 17l4r3

48m4r4 − 16ml2r4 − 192m2r5 + 256r6 − 4m5l3s− 12m2l5s

18m6lrs+ 12m3l3rs− 124l5rs+ 196m4lr2s+ 590ml3r2s

− 160m2lr3s− 1600lr4s− 27m7s2 − 150m4l2s2 − 125ml4s2

− 99m5rs2 − 725m2l2rs2 + 1200m3r2s2 + 3250l2r2s2

− 2000mr3s2 − 1250mlrs3 + 3125m2s4 − 9375rs4).
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Chapter 3

Incompleteness of the

Giulietti-Ughi arc

3.1 Condition for a point not to be covered

Throughout this chapter we will use the notations introduced in Chapter 1. A

point in PG(2, q) is said to be covered by the arc K if it lies on at least one of the

secants of the arc. Otherwise, a point in PG(2, q) is said to be a missing point. Let

P = (x+ iw, y + iz) be a point in AG(2, q) where x,w, y and z are elements of Fp.
The point P lies on a secant of the arc joining two distinct points in K1 if and only

if the equation ∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

b 1/b 1

∣∣∣∣∣∣∣ = 0

has a solution in F∗p× F∗p i.e. both a and b must belong to F∗p. Similarly P lies on a

secant joining a point in K1 to a point in K2 if and only if∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

b i/b 1

∣∣∣∣∣∣∣ = 0
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has a solution in F∗p × F∗p.

We list below the conditions P must satisfy in order to lie on a secant joining a

point in Ki to a point in Kj in terms of polynomials cij(a, b):

c11(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

b i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.1)

c22(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a i/a 1

b i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.2)

c33(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

ia 1/a 1

ib 1/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.3)

c44(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

ia −i/a 1

ib −i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.4)

c12(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

b i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.5)

c13(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

ib 1/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.6)

c14(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a 1/a 1

ib −i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.7)
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c23(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a i/a 1

ib 1/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.8)

c24(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

a i/a 1

ib −i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p, (3.9)

c34(a, b) := ab

∣∣∣∣∣∣∣
x+ iw y + iz 1

ia 1/a 1

ib −i/b 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × F∗p. (3.10)

Multiplying the determinant by ab is necessary in order to get a polynomial. Note

that P may lie on more than one secant. Separating the real and imaginary part of

cij(a, b) we obtain two equations. Taking their resultant we eliminate a and obtain a

single equation in terms of b. Corresponding to each cij(a, b) we obtain a polynomial

gij(b) by the procedure just described. We define fij in the following manner :

gij(x,w, y, z, b) = Resultant(Re(cij) , Im(cij) , a)

fij(x,w, y, z, b) = gij/(gcd(gij, b
degb gij)).

We do not want to consider the trivial solution b = 0. If x,w, y and z are such

that all the polynomials fij(b) have no roots in F∗p then P is a missing point. This

condition is a bit stronger than we need since for P to be covered both a and b must

belong to F∗p.

3.2 Curves

Since Fp2 ∼= Fp(i) ∼= Fp × Fp we have that AG(2, q) ∼= AG(4, p). We would like

to find curves in AG(4, p) which are incident with missing points. We restrict our

11



attention to the following family of parameterized curves:

x(t) = i1 + i2t+ i3t
2

w(t) = j1 + j2t+ j3t
2

y(t) = k1 + k2t+ k3t
2

z(t) = l1 + l2t+ l3t
2

where i1, i2, i3, j1, j2, j3, k1, k2, k3, l1, l2 and l3 ∈ {0, 1} . From now on, fij will denote

the polynomial fij(x(t), y(t), z(t), w(t)) ∈ Fp(t)[b]. We will focus our attention on

the polynomials arising from the curve given by

x(t) = t2, w(t) = t, y(t) = t2 + t, z(t) = 1. (3.11)

.

Let us consider the polynomials f14 and f23 and examine their factorizations

over Fp(t, i). We have

f14 = (t2 − it+ b2(t2 + t− i))(t2 + it+ b2(t2 + t+ i))

×(t2(t2 + t)b+ tb+ t− b2 − b)

f23 = (t2 − it+ b2(1 + i(t2 + t)))(t2 + it+ b2(1− i(t2 + t)))

×(t2b− t(t2 + t)b+ t+ (t2 + t)b2 − b).

The first two factors of f14 are conjugates to each other. Hence a solution to

the first factor is also a solution to the second factor. Consider the two curves we

obtain by equating their real and imaginary parts to zero.

t2 + (t2 + t)b2 = 0

t+ b2 = 0

The only common point of intersection is (0, 0). As before we do not want to
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consider the trivial solution b = 0 and hence we ignore this point. From now on

f14 = t2(t2+t)b+tb+t−b2−b. Similarly, the first two factors of f23 are conjugates to

each other. Consider the two curves obtained by equating their real and imaginary

parts to zero.

t2 + b2 = 0

−t+ b2(t2 + t) = 0

The two curves intersect in at most six points by Bezout’s theorem (we do not

consider the (0, 0) solution). Each nonzero value of t gives two points of intersection.

We dismiss these three points on the curve defined by equation (3.11) corresponding

to these six points of intersection. From now on f23 = t2b−t(t2+t)b+t+(t2+t)b2−b.
We list on the next page the polynomials fij .

13



f11 = b2 + bt3 − t

f22 = (t+ 1)(b2 + b(−t3 − t2 − 1)/(t+ 1) + 1/(t+ 1))

f33 = b2 + b(−t4 − t3 − t) + t2

f44 = b2(t+ 1)− bt2 + t

f12 = (t2 + t+ 1)(b5 + b4(t5 + t3 − t− 2)/(t2 + t+ 1) +

b3(−t7 − 2t4 − 3t3 + 2t2 + t+ 1)/(t2 + t+ 1)

+b2(2t6 + 4t5 + 2t4 + 2t3 − 2t2)/(t2 + t+ 1)

+b(−t8 − t7 − t6 − 2t5 + t4 − 2t3)/(t2 + t+ 1)

+(t5 + t3)/(t2 + t+ 1))

f13 = (t4 + 2t3 + t2 + 1)(b5 + b4(−t8 − 3t7 − 3t6 − 2t5 − 2t4 − 2t)/(t4 + 2t3 + t2 + 1)

+b3(2t6 + 2t5 − 2t)/(t4 + 2t3 + t2 + 1) +

b2(t7 + 2t6 + 3t3 + 2t2 + t+ 1)/(t4 + 2t3 + t2 + 1)

+b(−2t5 − 3t4 − t2 − 2t)/(t4 + 2t3 + t2 + 1)

+(t3 + t2)/(t4 + 2t3 + t2 + 1))

f14 = b2 + b(−t4 − t3 − t+ 1)− t

f23 = b2(t+ 1)t+ b(t+ 1)(−t2 + t− 1) + t

f24 = (t6 + 3t5 + 3t4 + t3 + t2 + t)(t5 + 2t4 + t3 + t)(t5 + 3t4 + 3t3 + t2 + t+ 1)

(b5 + b4(−t6 − t5 − t2 + 2t− 1)/(t5 + 2t4 + t3 + t)

+b3(2t6 + 4t5 + 4t4 + 2t3 + 2t2 + 2t− 2)/(t6 + 3t5 + 3t4 + t3 + t2 + t)

+b2(−t8 − 3t7 − 2t6 − 2t5 − t4 + 3t3 + t2 + 4t− 1)/(t6 + 3t5 + 3t4 + t3 + t2 + t)

+b(t5 − t4 − 3t3 + t2 − 2t+ 2)/(t5 + 3t4 + 3t3 + t2 + t+ 1)

+(t2 − t)/(t5 + 3t4 + 3t3 + t2 + t+ 1))

f34 = (t2 + t− 1)(b5 + b4(−t6 − 2t5 + t4 − t2 + 2t− 2)/(t2 + t− 1)

+b3(−t8 − t7 − 2t5 + t4 + 3t3 + t2 + 4t− 1)/(t2 + t− 1)

+b2(−2t6 − 4t5 − 4t4 − 2t3 − 2t2 + 2t)/(t2 + t− 1) +

b(t7 + t5 + t3 − t2)/(t2 + t− 1) + (−t6 − t4)/(t2 + t− 1)).

14



Theorem 8. For all sufficiently large primes the polynomials fij (listed on the pre-

vious page) have the following properties.

a. All the polynomials fij are irreducible over Fp(t) .

b. The associated h20 polynomials for f12, f13, f24 and f34 are irreducible over Fp(t).

c. The square roots of the discriminants of fij do not belong to Fp(t).

Proof. a. The polynomials fij belong to Q[t, b] (clearing denominators when nec-

essary). We look at the factorization of each fij over Q and find that only one

of the factors involves b in each case. Further, the factor involving b is absolutely

irreducible over Q in each case. Hence by Theorem 5 these factors are absolutely

irreducible over Fp for sufficiently large primes. This implies fij are irreducible over

Fp(t) for all sufficiently large primes.

b. Let h20,ij be the h20 polynomial described by Theorem 5 associated to fij

for ij ∈ {12, 13, 24, 34}. Since the polynomials h20,ij belong to Q(t)[b] we must

multiply these polynomials by suitable elements gij ∈ Q[t] to clear denominators

so that mij = h20,ijgij ∈ Q[t, b]. We now look at the factorization of each mij over

Q and find that only one of the factors involves b in each case. Further, the factor

involving b is absolutely irreducible over Q in each case. Hence by Theorem 5 these

factors are absolutely irreducible over Fp for sufficiently large primes. This implies

that mij are irreducible polynomials over Fp(t) for sufficiently large primes. Since

gij can be viewed as polynomials in Fp(t) (we ignore primes where gij ≡ 0 mod p)

we have that h20,ij are irreducible polynomials over Fp(t) for all sufficiently large

primes.

c. The discriminants of fij are not a constant times a square in Q(t). The third

result now follows by applying Theorem 4 to the discriminants.

3.3 Computing a Galois Group

Let Fij be the splitting field of fij over Fp(t) and let F be the composite of these

fields. Then F/Fp(t) is a Galois extension whose Galois group we would like to

15



compute. We know that G(F/Fp(t)) is the Galois Group of the splitting field of

the polynomial f(b) =
∏
ij

fij(b). From Theorem 8 we have G(Fij/Fp(t)) ∼= S2 for

ij ∈ {11, 22, 33, 44, 14, 23} and G(Fij/Fp(t)) ∼= S5 for ij ∈ {12, 13, 24, 34}. From

this information we conclude that G(F/Fp(t)) is a subgroup of S4
5 × S6

2 . In fact for

the polynomials arising from equation (3.11) the Galois Group is exactly this. We

make use of the following well-known theorem (see for example [5] p. 573).

Theorem 9. Let K1, K2 be Galois extensions of Fp(t). Then

1. The intersection K1 ∩K2 is Galois over Fp(t).

2. The composite K1K2 is Galois over Fp(t). The Galois Group is isomorphic to

the subgroup

H = {(τ1, τ2)| τ1|K1∩K2 = τ2|K1∩K2}

of the direct product G(K1/Fp(t))× G(K2/Fp(t)).

In the above theorem if K1 ∩K2 = Fp(t) then H = G(K1/Fp(t))×G(K2/Fp(t)).

Theorem 10. Let Dij ∈ Fp(t) be the discriminant of fij for ij ∈ S = {11, . . . , 34}.
Assume that the partial products∏

ij∈S′

Dij are not squares in Fp(t) (3.12)

where S ′ ⊆ S. Then G(F/Fp(t)) = S4
5 × S6

2 .

Proof. Let us begin with two extensions F12 and F13. We know that both of them

have Galois Group S5. By Theorem 9 F12 ∩F13 is a Galois extension of Fp(t). This

implies that G(F12/F12 ∩F13) = G(F13/F12 ∩F13) are normal subgroups of S5. Now

the only non-trivial normal subgroup of S5 is A5. If

G(F12/F12 ∩ F13) = G(F13/F12 ∩ F13) = 1

then F12 = F13 = F12 ∩ F13 which contradicts condition (3.12). If

G(F12/F12 ∩ F13) = G(F13/F12 ∩ F13) = A5

16



then G(F12 ∩ F13/Fp(t)) is a degree two extension. This implies that

F12 ∩ F13 = Fp(t,
√
D12) = Fp(t,

√
D13).

This is a contradiction to condition (3.12). Therefore we conclude that

G(F12/F12 ∩ F13) = G(F13/F12 ∩ F13) = S5.

This implies F12 ∩ F13 = Fp(t). By Theorem 9 we have G(F12F13/Fp(t)) = S5 × S5.

F12F13F24

PPPPPPPPPPPPP

ooooooooooo

F12F13

tttttttttt

OOOOOOOOOOOO

WWWWWWWWWWWWWWWWWWWWWWWW F24

F12

JJJJJJJJJJ F13

oooooooooooo F12F13 ∩ F24

1

}}
}}

}}
}}

}}
}}

}}
}}

}}
}

F12 ∩ F13

1

NNNNNNNNNNN

Fp(t)

Figure 3.1: Hasse Diagram for Theorem 10

We now apply Theorem 9 to the Galois extensions F12F13 and F24.We will prove

that F12F13 ∩ F24 = Fp(t). By Theorem 9 the extension is Galois.This implies

G(F24/F12F13 ∩ F24) is a normal subgroup of S5. If

G(F24/F12F13 ∩ F24) = 1

then F12 = F13 = F24 contradicting condition (3.12). If

G(F24/F12F13 ∩ F24) = A5
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then F12F13 ∩ F24/Fp(t) is a degree two extension. This implies

F12F13 ∩ F24 = Fp(t,
√
D24).

We know that the only degree two subfields of F12F13 are Fp(t,
√
D12), Fp(t,

√
D13)

and Fp(t,
√
D12D13). If

F12F13 ∩ F24 = Fp(t,
√
D24)

is equal to any of these then condition (3.12) is violated. Hence G(F24/F12F13 ∩
F24) = S5 and this implies F12F13 ∩ F24 = Fp(t). Therefore

G(F12F13F24/Fp(t)) = S5 × S5 × S5.

We apply Theorem 9 now to the fields F12F13F24 and F34. A similar argument

leads us to conclude that G(F12F13F24F34/Fp(t)) = S5 × S5 × S5 × S5.

Next, we deal with the degree 2 extensions. We know

Fij = Fp(t,
√
Dij)

for ij ∈ {11, 22, 33, 44, 14, 23}. Let us apply Theorem 9 to F12F13F24F34 and F11.

Clearly F12F13F24F34 ∩ F11 is a field of degree at most 2 over Fp(t). If the degree is

2 then F11 ⊆ F12F13F24F34. But this would again violate condition (3.12). Hence

F12F13F24F34 ∩ F11 = Fp(t). Therefore

G(F12F13F24F11/Fp(t)) = S4
5 × S2.

Proceeding in this manner we prove that G(F/Fp(t)) = S4
5 × S6

2 .

We have the following theorem.

Theorem 11. For all sufficiently large primes the following result is true for the

polynomials fij arising from the curve described by equation (3.11):∏
ij∈S′

Dij is not a square of a polynomial in Fp(t), (3.13)
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where S ′ ⊆ S = {11, . . . , 34}. Further, none of the partial products are a constant

times a square.

Proof. Since none of the partial products are a constant times a square in Q(t) the

result follows by applying Theorem 4 to the partial products.

3.4 Applying the Čebotarev Density Theorem

To apply the density theorem we want to show that the algebraic closure of Fp in

F is the finite field itself. Let L = Fpn be the algebraic closure of Fp in F . By

Theorem 11,

[Fpn(t,
√
D11, . . . ,

√
D34) : Fp(t,

√
D11, . . . ,

√
D34)] = [Fpn : Fp] = n.

We know that G(F/Fp(t,
√
D11, . . . ,

√
D34)) ∼= A4

5. Now

Fpn(t,
√
D11, . . . ,

√
D34)/Fp(t,

√
D11, . . . ,

√
D34)

is a Galois extension with a cyclic Galois group.

Therefore we conclude G(F/Fpn(t,
√
D11, . . . ,

√
D34)) is a normal subgroup of

A4
5 whose quotient group is cyclic. But no such non-trivial normal subgroup of A4

5

exists. Hence n must be one i.e. Fp is algebraically closed in F and we can apply

Theorem 6.

Let t0 ∈ Fp . If we apply Theorem 6 to the Galois extensions arising from

polynomials of degree 2 (such as f11) and degree 5 (such as f12) which satisfy the

hypothesis of the theorem.

Representative of the No. of roots in Fp Number of elements in the

Conjugacy Class

1 f11(t0, b) has 2 roots in Fp 1
2
p+O(

√
p)

(12) f11(t0, b) has no roots in Fp 1
2
p+O(

√
p)
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Representative of the No. of roots in Fp Number of elements

Conjugacy Class

1 f12(t0, b) has 5 roots in Fp 1
120
p+O(

√
p)

(12) f12(t0, b) has 3 roots in Fp 1
12
p+O(

√
p)

(123) f12(t0, b) has 2 roots in Fp 1
6
p+O(

√
p)

(1234) f12(t0, b) has 1 root in Fp 1
4
p+O(

√
p)

(12345) f12(t0, b) has no roots in Fp 1
5
p+O(

√
p)

(12)(34) f12(t0, b) has 1 root in Fp 1
8
p+O(

√
p)

(12)(345) f12(t0, b) has no roots in Fp 1
6
p+O(

√
p)

Let us now apply Theorem 6 to the Galois extension F/Fp(t). We have just

computed the Galois Group of F/Fp(t). We want to find the number of t0 ∈ Fp such

that f(t0, b) has no solutions in F∗p. The Conjugacy classes of G(F/Fp(t)) are nothing

but the direct product of the Conjugacy classes of G(Fij/Fp(t)). The representatives

of the Conjugacy classes corresponding to which f(t0, b) has no solution in Fp are

(12)6 × ((12345))n1 × ((12)(345))n2 wheren1 + n2 = 4. Hence the cardinality of the

set {t ∈ Fp|f(t, b) has no solution in F∗p} is (1
2
)6(1

5
+ 1

6
)4p+O(

√
p).

We have just proved that for all sufficiently large primes the approximate number

of the points on the curve described by equation (3.11) which are not covered by

the arc K is 14641
51840000

p . This is exactly what Theorem 2 states. Hence the arc K is

never complete for all sufficiently large primes.
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Chapter 4

Extending the Giulietti-Ughi arc

4.1 Adding points

The natural question which arises is how many of these points on the curve given by

(3.11) may be added toK to form a larger arc. We know that P (t) = (t2+it, t2+t+i)

for t ∈ Fp is a point on the curve defined by equation (3.11). We define

T := {t ∈ Fp |K ∪ P (t) is a arc}

and

R := {s ∈ T |K ∪ {P (s), P (t)}is an arc∀ t ∈ T}.

We also define P (R) := {P (s) | s ∈ R}.

Theorem 12. K ∪ P (R) is an arc.

Proof. There are three types of secants formed by joining two points in K ∪ P (R).

a) Secants formed by joining two points in K.

b) Secants formed by joining one point in K and another in P (R).

c) Secants formed by joining two points in P (R).

If we prove that none of the secants intersect K ∪ P (R) in a third point then the

set is an arc. A secant of type a) cannot be incident with a third point in K since

K is an arc. It also cannot be incident with a point in P (R) since P (R) consists

of only missing points of K. A secant of type b) cannot be incident with a third
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point in K because every point in P (R) is a missing point of K. It also cannot be

incident with a third point of P (R) since that would contradict the property of the

set P (R). A secant of type c) cannot be incident with a point in K because it would

then be a secant of type b) and we have just shown that a secant of type b) is not

incident with three points of the set K ∪ P (R). Finally a secant of type c) cannot

be incident with a third point of P (R) because any line meets the curve described

by equation (3.11) in at most two points.

4.2 Conditions for a point on the curve to be a

missing point

We now prove that the set R is not empty. The condition that a point P (s) is

covered by a line formed by joining a point in K1 and a point in T is

c1(a, t) := a

∣∣∣∣∣∣∣
s2 + is s2 + s+ i 1

t2 + it t2 + t+ i 1

a 1/a 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × T. (4.1)

Similarly conditions for a point P (s) to be covered by a line formed by joining

a point in Ki (i = 2, 3, 4) and a point in T are:

c2(a, t) := a

∣∣∣∣∣∣∣
s2 + is s2 + s+ i 1

t2 + it t2 + t+ i 1

ia 1/a 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × T, (4.2)

c3(a, t) := a

∣∣∣∣∣∣∣
s2 + is s2 + s+ i 1

t2 + it t2 + t+ i 1

a i/a 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × T, (4.3)
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c4(a, t) := a

∣∣∣∣∣∣∣
s2 + is s2 + s+ i 1

t2 + it t2 + t+ i 1

ia −i/a 1

∣∣∣∣∣∣∣ = 0 has a solution in F∗p × T (4.4)

respectively. Multiplying the polynomial by a is necessary in order to get a polyno-

mial. We define the following equations.

ĉj(t, s) = Resultant(Re(cj(t, s, a)) , Im(cj(t, s, a)) , a)

fj(t, s) = ĉj/(gcd(ĉj, (t− s)(deg(ĉj))))

for j = 1, 2, 3, 4. We prove the following result about these polynomials.

Theorem 13. For all sufficiently large primes the polynomials fj, where j ∈ U =

{1, 2, 3, 4}, have the following properties.

a. fj is an irreducible polynomial of degree 3 over Fp(t).

b. Let Dj ∈ Fp(t) be the discriminant of fj; then,
√
Dj is not in Fp(t).

Proof. a. The polynomials fj belong to Q[t, s] and are absolutely irreducible over

Q. Hence by Theorem 5 these polynomials are absolutely irreducible over Fp for

sufficiently large primes. This implies fj are irreducible over Fp(t) for sufficiently

large primes.

b. The discriminants Dj associated to f1, f2, f3 and f4 are not a constant times

a square in Q(t). The second result now follows by applying Theorem 4 to the

discriminants..

Let Fj be the splitting field of fj over Fp(t) and let E = FF1F2F3F4 . Then

E/Fp(t) is a Galois extension whose Galois group we would like to compute. We

know that G(E/Fp(t)) is the Galois Group of the splitting field of the polynomial

e(t, s) =
∏
ij

fij(t, s)
∏
j

fj(t, s)

when considered as a univariate polynomial defined over Fp(t). From Theorem 12

we have G(Fj/Fp(t)) ∼= S3 for j ∈ {1, 2, 3, 4} and G(F/Fp(t)) ∼= S4
5 × S6

2 . From this

information we conclude that G(E/Fp(t)) is a subgroup of S4
5 ×S6

2 ×S4
3 . In fact for
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the polynomials arising from the curve defined by equation (3.11) the Galois Group

is exactly this.

Theorem 14. For all sufficiently large primes the polynomials fj, with j ∈ U =

{1, 2, 3, 4}, have the following properties.∏
ij∈S′

Dij

∏
j∈U ′

Dj is not a square in Fp(t), (4.5)

where S ′ ⊆ S and U ′ ⊆ U . Further, none of the partial products are a constant

times a square.

Proof. Since none of the partial products are a constant times a square in Q(t) the

result follows by applying Theorem 4 to the partial products.

4.3 Computing another Galois Group

FF1

xxxxxxxxx

GG
GG

GG
GG

G

F

FFFFFFFFF F1

ww
ww

ww
ww

w

F ∩ F1

1

Fp(t)

Figure 4.1: Hasse Diagram for FF1

By Theorem 9 we have that F ∩ F1 is a Galois extension of Fp(t).This implies

G(F1/F ∩F1) is a normal subgroup of S3. The only non-trivial normal subgroup of

S3 is A3. If

G(F1/F ∩ F1) = 1

then F ⊆ F1 which contradicts condition (4.18). If

G(F1/F ∩ F1) = A3
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then Fp(t,
√
D1) ⊂ F . This again is a contradiction to condition (4.18). Hence

G(F1/F ∩ F1) = S3 which implies F ∩ F1 = Fp(t). By Theorem 9 we have

G(FF1/Fp(t)) = G(F/Fp(t))× S3.

Similarly applying Theorem 9 to FF1 and F2 we have

G(FF1F2/Fp(t)) = G(F/Fp(t))× S2
3 .

Proceeding in this manner we conclude that G(E/Fp(t)) = S4
5 × S6

2 × S4
3 .

4.4 Applying the Čebotarev Density Theorem

To apply the density theorem to the extension E/Fp(t) we have to show that Fp to

be algebraically closed in E. Let H = Fpm be the algebraic closure of Fp in E. By

Theorem 13,

[Fpm(t,
√
D11, . . . ,

√
D4) : Fp(t,

√
D11, . . . ,

√
D4)] = [Fpm : Fp] = m

. We know that G(F/Fp(t,
√
D11, . . . ,

√
D4)) = A4

5 × A4
3. Now

Fpm(t,
√
D11, . . . ,

√
D34)/Fp(t,

√
D11, . . . ,

√
D4)

is a Galois extension with a cyclic Galois group. Hence

G(F/Fpm(t,
√
D11, . . . ,

√
D4))

is a normal subgroup of A4
5 × A4

3 whose corresponding quotient group

M = G(Fpm(t,
√
D11, . . . ,

√
D1)/Fp(t,

√
D11, . . . ,

√
D1))

is cyclic. The only two possible choices for M are 1 and A3. If M = A3 then m = 3.

Since Fpm(t)/Fp(t) is a Galois extension it follows that G(E/Fpm(t)) is an index

three normal subgroup of S4
5 × S6

2 × S4
3 . But no such subgroup exists and hence
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M = 1. This implies that m = 1 i.e. Fp is algebraically closed in E.

Let t0 ∈ Fp . If we apply Theorem 6 to the Galois extensions arising from poly-

nomials of degree 3 (such as f1) which satisfy the hypothesis of the theorem.

Representative of the No. of roots in Fp Number of elements

Conjugacy Class

1 f1(t0, s) has 3 roots in Fp 1
6
p+O(

√
p)

(12) f1(t0, s) has 1 root in Fp 1
2
p+O(

√
p)

(123) f1(t0, s) has no roots in Fp 1
3
p+O(

√
p)

The Conjugacy classes of G(E/Fp(t)) are direct product of the Conjugacy classes

of G(Fij/Fp(t)) and G(Fi/Fp(t)). The representatives of the Conjugacy classes

corresponding to which e(t0, s) has no solution in Fp are (12)6 × ((12345))n1 ×
((12)(345))n2 × (123)4 where n1 + n2 = 4. The set R can alternatively be described

as the set {t ∈ Fp|e(t, s) has no solution in Fp}. The cardinality of this set by the

Density theorem is (1
2
)6(11

30
)4(1

3
)4p+O(

√
p). This is what Theorem 3 states.
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Chapter 5

What Next ?

From the first chapter we know that the size of the smallest complete arc in PG(2, q)

satisfies √
2q ≤ nq ≤

√
q logc q (5.1)

where c is some universal constant. However, a complete arc with cardinality in

this interval has not been explicitly constructed. The arc constructed by Giulietti

and Ughi is close to the lower bound for all primes p ≡ 3 mod 4 and p ≤ 31 and is

complete. However it fails to be complete for larger primes.

The natural question one could ask is that is it possible to add more points to

the original construction in order to obtain a small complete arc for all primes. For

large primes the curve described by equation (3.11) has certain “nice” properties

but is by no means unique. This leads us to conjecture that we should be able to

add more points on curves of degree 2 to the original construction of Giulietti and

Ughi to obtain a complete arc of small cardinality.

We know from Theorem 4 that the number of missing points on the curve given

by equation (3.11) is some proportion of p . Based on this observation we propose

the following construction. At each step we should consider a curve of degree 2 and

add points on this curve to our arc to obtain a larger arc. At the ith step we choose

the curve Ci and add ci(p)
√
q points. As we keeping adding more points to our arc

the number of missing points should become smaller and hopefully ci(p) ≥ cj(p) for

i < j. For each prime we expect the process to terminate after a finite number of
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steps and eventually we hope to construct a complete arc. This complete arc should

have
mq∑
i=1

ci(p)
√
q

points where mq is the number of curves we have to add in order to obtain a complete

arc. Fisher conjectured that the average size of a complete arc is
√

3q log q ([6]).

Keeping this in mind we conjecture that∑
c(p) < O(log q).

We expect the number of points in this complete arc to have cardinality O(
√
q log q)

and depending on c this number should be close to the upper bound of inequality

(5.1).
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