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Supervisors: Kamy Sepehrnoori and Mojdeh Delshad 

 

As easy target reservoirs are depleted around the world, the need for intelligent enhanced 

oil recovery (EOR) methods increases. The first part of this work is focused on modeling 

aspects of novel chemical EOR methods for naturally fractured reservoirs (NFR) 

involving wettability modification towards more water wet conditions. The wettability of 

preferentially oil wet carbonates can be modified to more water wet conditions using 

alkali and/or surfactant solutions. This helps the oil production by increasing the rate of 

spontaneous imbibition of water from fractures into the matrix. This novel method cannot 

be successfully implemented in the field unless all of the mechanisms involved in this 

process are fully understood. A wettability alteration model is developed and 

implemented in the chemical flooding simulator, UTCHEM. A combination of laboratory 

experimental results and modeling is then used to understand the mechanisms involved in 

this process and their relative importance.  

 

The second part of this work is focused on modeling surfactant/polymer floods using a 

fully implicit scheme. A fully implicit chemical flooding module with comprehensive 

oil/brine/surfactant phase behavior is developed and implemented in general purpose 

adaptive simulator, GPAS. GPAS is a fully implicit, parallel EOS compositional reservoir 
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simulator developed at The University of Texas at Austin. The developed chemical 

flooding module is then validated against UTCHEM.  
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Chapter 1: Introduction 
 

As oil resources are depleted around the world, finding easy targets for primary oil 

recovery becomes more difficult. On the other hand, the demand for energy and crude oil 

increases rapidly. This calls for more efficient production of existing oil resources by 

conducting intelligent secondary and tertiary oil recovery methods. Chemical flooding 

processes can increase the recovery factor of existing oil reservoirs and help us with the 

current energy crises. Examples of classic chemical flooding processes are: polymer 

flooding, surfactant/polymer flooding and alkali/surfactant/polymer flooding. The above 

mentioned methods are well-studied for conventional (single porosity) sandstone 

reservoirs.  

 

Chemically induced wettability alteration has been studied by many researchers during 

the past few years as one of the newly developed chemical flooding methods. This 

method can improve the oil recovery from Naturally Fractured Reservoirs (NFR) which 

are mostly carbonates. Most carbonate reservoirs are preferentially oil-wet. This 

decreases the secondary and tertiary oil recovery performance of such reservoirs to a 

great extent since the matrix does not spontaneously imbibe the injected aqueous phase. 

The injected aqueous phase is therefore produced through the fracture network without 

improving the recovery of the preferentially oil-wet fractured carbonates. A wettability 

alteration to more water-wet conditions can greatly improve the recovery efficiency of 

such reservoirs by improving the spontaneous imbibition of aqueous phase into the 

matrix and expulsion of the oleic phase into the fractures. The mechanisms involved in 

this process should be fully understood before it can be applied in the field. One of the 

goals of this work is to study these mechanisms and to model the wettability alteration 

process based on laboratory measurements. It is then desired to study the scale 

dependency of oil recovery by such methods to be able to infer the time required for oil 

recovery in field scale based on laboratory scale experiments.  
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One of the most important tasks in any chemical flooding project is its design and 

optimization in field scale. A robust chemical flooding design is the key to field scale 

chemical flooding success. A design is robust if it is not sensitive to reservoir 

heterogeneity and rock/fluid variations in the reservoir. Modeling of robust chemical 

flooding designs such as salinity gradient design requires comprehensive surfactant phase 

behavior modeling capability. On the other hand, optimization of field scale chemical 

floods requires a large computational capability where fully implicit formulation 

combined with parallel computation helps managing such optimizations more efficiently. 

Therefore, there is a need for a fully implicit, parallel chemical flooding simulator with 

comprehensive surfactant phase behavior. General Purpose Adaptive Simulator (GPAS) 

is a fully implicit, parallel, compositional EOS simulator developed at The University of 

Texas at Austin. A major contribution of this work is the development of a general and 

comprehensive chemical flooding module and its implementation in GPAS.  

 

In Chapter 2, literature survey of the related topics is presented. Chapter 3 gives a brief 

introduction of UTCHEM, the implicit pressure explicit concentration (IMPEC) chemical 

compositional simulator of UT and discusses the development of its wettability alteration 

model. Chapter 4 is dedicated to validation of the wettability alteration model of 

UTCHEM and presents successful historymatching of two laboratory experiments 

involving wettability alteration. Scaleup methodology for wettability alteration of NFR is 

presented in Chapter 5 and UTCHEM is used to evaluate the importance of various 

recovery mechanisms in different matrix sizes. GPAS simulator is briefly introduced in 

Chapter 6 and the development of its fully implicit chemical flooding module with 

comprehensive surfactant phase behavior is explained in detail. The development of the 

new chemical flooding module of GPAS is validated in Chapter 7 by comparing results 

of similar cases to UTCHEM. Chapter 8 contains the summary and most important 

conclusions of the work presented in other chapters. It also contains the recommendations 

for future research.  
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Chapter 2: Literature Survey 
 

Fluid flow in porous media and ultimate oil recovery from oil reservoirs is affected by 

several parameters, one of the most important of which is wettability. In this chapter an 

overview of the concept of wettability and its impacts on the reservoir performance are 

provided. Also, the concept of wettability alteration and its impacts on enhanced oil 

recovery methods (EOR) from naturally fractured reservoirs (NFR) are studied. The 

definition of EOR is then presented and some EOR processes are briefly discussed with 

more emphasis on NFRs.  

 

The second part of this work is focused on development of a fully implicit, parallel 

chemical flooding module. Therefore a brief literature survey of fully implicit and 

parallel numerical simulation is presented along with a review of chemical flood 

modeling.  

2.1 Wettability 

Wettability is defined as “the tendency of one fluid to spread on or adhere to a solid 

surface in the presence of other immiscible fluids.” Wettability is governed by the surface 

free energy of a substrate and by the wetting solution. The surface that has a higher free 

energy tends to be replaced by a liquid that has a lower surface energy, to reduce the total 

free energy of the system (Somasuundrara and Zhang, 2004).  

 

Wettability is an important factor controlling phase trapping and multiphase flow because 

the most wetting fluid tends to occupy the smallest pores while the least wetting fluid 

distributes in the larger pores. 

 

In a porous media, wettability is generally classified as either homogeneous or 

heterogeneous. In the homogeneous case, the entire rock surface has a uniform molecular 

affinity for either water or oil. On the other hand, heterogeneous wettability indicates 
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distinct surface regions that exhibit different affinities for oil or water. Homogeneous 

systems have three classifications: 1) strongly water wet, 2) strongly oil wet, and 3) 

intermediate wet. Two kinds of heterogeneous wettability are recognized: 1) mixed-

wettability related to distinct and separate water-wet and oil-wet surfaces, which coexist 

in a porous medium, or 2) spotted, fractional, dalmatian or speckled wettability, which 

refers to continuous water-wet surfaces enclosing macroscopic regions of discontinuous 

oil-wet surfaces or vice versa (Radke, Kovsek and Wong, 1992; Anderson, 1986). 

2.2 Wettability Measurement 

The most popular methods of wettability measurements used in the petroleum industry 

are: 1) Contact angle measurement, 2) Amott wettability index and 3) United States 

Bureau of Mines or USBM method. Each of these methods is described below. 

2.2.1 Contact Angle Measurement 

Contact angle is the most universal measure of the wettability of surfaces. Early studies 

of wetting phenomena showed that the wetting properties of a solid are dominated by the 

outermost layer of molecules (Morrow, 1990).  

 

Wetting could be described in terms of the spreading coefficient. The spreading 

coefficient, σ LSG , is defined as follows for a liquid spreading on solid in the air: 
LSG SG SL LGσ γ γ γ= − −         Eq.2.1 

where γ SG  , γ SL , and γ LG  are solid/gas, solid/liquid and liquid/gas interfacial tensions, 

respectively. When σ LSG is positive, spreading of the liquid occurs spontaneously. Since it 

is very difficult to determine γ SG  directly, Young's equation considers the equilibrium 

between force vectors at the Solid/Liquid/Gas interface: 

cos( )SG SL LGγ γ γ θ= +         Eq.2.2 

where θ is the angle of contact that the liquid/gas interface subtends with the solid/liquid 

interface (Fig. 2.1). 
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Figure 2.1 shows that contact angle, θ (between the denser fluid and the solid surface), 

which is a direct measure of the surface wettability. A contact angle of 0° indicates that 

the surface is totally hydrophilic, whereas an angle of 180° means that it is totally 

hydrophobic (Somasuundrara and Zhang, 2004). Different types of contact angles and 

spreading in an idealized system of polished surfaces/crude oil/brine, are illustrated in 

Fig. 2.2. Normally polished quartz crystals are used to represent sandstone reservoirs, and 

polished calcite crystals are used as representative of carbonate reservoirs. 

 

To determine contact angles in a system of oil/brine/solid, two parallel mineral plates are 

submerged in brine and then a drop of oil is introduced between the plates. When the 

plates are moved relative to each other, advancing and receding conditions can be 

observed, water-advancing contact angles are reported as defining wettability because 

they are considered relevant to water flooding (Morrow, 1990). 

 

Other techniques to measure contact angle include direct measurement based on 

projected or photographed images as well as indirect evaluations in which the angle is 

calculated from measured dimensions or measured mass of sessile drops (Somasuundrara 

and Zhang, 2004) (Fig. 2.3). 

 

Because of many factors, such as surface roughness, presence of sharp edges in the 

formation, heterogeneity and composition of the rock and precipitation of hydrocarbon 

compounds on the rock surface, normally a range of contact angles coexist in a reservoir 

rock. Thus a single contact angle measured on a polished crystal can not be sufficient to 

determine the wettability of a reservoir rock. The situation gets even more complicated, if 

attention is paid to the difference between advancing and receding angles of an interface 

in the porous media. All of these facts put a big question mark on the validity of 

describing reservoir wettability by a simple equilibrium contact angle (Morrow, 1990). 

2.2.2 The Amott Test 

In this method, reservoir cores and reservoir fluids can be used. The Amott test is based 

on the fact that the wetting phase generally imbibes spontaneously into the core, 
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displacing the nonwetting phase. The average wettability is determined by the amount of 

oil or water spontaneously imbibed in a core sample compared to the same values when 

flooded. In this way the displacement-by-oil ratio can be calculated as the ratio of the 

water volume displaced by spontaneous oil imbibition alone, divided by the total water 

volume displaced by both oil imbibition and centrifugal (forced) displacement. A similar 

displacement-by-water ratio can be calculated (Morrow, 1990).  

 

Several researchers (Morrow, 1990) use a modification of the Amott wettability test 

called the Amott-Harvey relative displacement index. This is defined as the 

displacement-by-water ratio minus the displacement-by-oil ratio. This parameter merges 

the two ratios into a single index, I, that ranges between +1 for complete water wet 

surfaces and –1 for complete oil wet surfaces. The system is defined to be water-wet 

when 0.3 ≤ I  ≤ 1, intermediate wet when – 0.3 < I < 0.3 and oil-wet when –1 ≤ I ≤  − 

0.3(Morrow, 1990). A weakness of the Amott test is its failure to distinguish between 

important degrees of strong water-wetness, all of which will give an index of, or very 

close to, unity (Morrow, 1990). 

2.2.3 The USBM Method 

The US Bureau of Mines (USBM) wettability index test is based on the fact that the work 

required for the wetting fluid to displace the nonwetting fluid from the core is less than 

the work required for the opposite displacement, and the required work is proportional to 

the area under the capillary pressure curve. The index, W, is the logarithm of the ratio of 

the areas under centrifuge-measured capillary pressure curves for both increasing and 

decreasing wetting phase saturation. The index, W may vary from -∞ (strongly oil wet) to 

+∞ (strongly water wet) but generally it is between –1.5 and 1.0. The larger the absolute 

value of W, the greater the wetting preference. One of the weaknesses of this method is 

that it cannot recognize very strongly water wet systems.  

2.3 Reservoir Wettability 

Reservoir wettability is determined by complex interface boundary conditions acting 

within the pore space of sedimentary rocks. These conditions have a dominant effect on 
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interface movement and associated oil displacement. For many years it was believed that 

most of the reservoirs were very strongly water wet (Morrow, 1990; Anderson, 1986). 

The reason for this belief was that all of the researchers used to assume that water 

originally occupied the reservoir trap and while oil accumulated, water was kept in the 

finer pore spaces by capillary forces and as films on pore surfaces overlaid by oil. 

However more evidence about the effects of crude oil on wetting behavior has now led to 

wide acceptance of the idea that most reservoirs are at wettability conditions other than 

very strongly water wet. It has been inferred that mixed-wet conditions can be caused by 

destabilization of thin brine films coating the rock grain and that the adsorption of polar 

components such as resins and asphaltenes from the crude oil are involved in wettability 

reversal. 

 

Cuiec (1984) cites many authors who have reported a high percentage of the reservoirs 

studied by them to be non-water wet.  For instance, in the work of Treiber et al. (1971) it 

was found that out of 30 sandstone reservoirs, 15 were oil wet and two had neutral or 

intermediate wettability. Out of 25 carbonate reservoirs, 21 were found to be oil wet and 

two to have intermediate wettability. In all the reservoirs examined, 66% were oil wet, 

7% neutral, and 27% water wet. These results were obtained using advancing contact 

angle measurements. These authors categorized a reservoir as water-wet if the contact 

angle was between 0° and 75°. Contact angles between 75° and 105° where deemed 

intermediate wet and contact angles between 105° and 180° where reported as oil wet. 

Chillingar and Yen (1983) also used contact angle measurements to evaluate wettability 

of 161 carbonate reservoirs with various lithology (limestone, dolomite limestone, 

dolomite and calcitic dolomite). They reported that 80% of these reservoirs where oil wet 

or strongly oil wet. The oil wet nature of some of these reservoirs was attributed to a 

bitumen coating. They deemed a reservoir as water wet if the measured contact angle was 

between 0 and 80 (8 reservoirs). Reservoirs with contact angles ranging from 80 to 100 

were categorized as intermediate wet (12 reservoirs). Contact angles measured from 100 

to 160 were reported as oil wet (65 reservoirs) and if the contact angle was larger than 

160, the reservoir was deemed strongly oil wet (15 reservoirs).  
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2.4 Wettability Alteration 

“Wettability alteration” is used in literature to address any change in the original 

wettability of a rock, either spontaneously or by EOR methods.  

2.4.1 Spontaneous Wettability Alteration in Conventional Reservoirs  

How is it that most of the reservoirs are found to be oil wet, if all of them were initially 

saturated with water? Adsorption of polar compounds from crude oil on the surface of 

reservoir rocks plays a critical role in determining the wetting properties of reservoir-rock 

surfaces. Most of the researchers believe that precipitation of heavy oleic compounds on 

the surface of the reservoir rocks is the reason for this change in wettability of the 

reservoirs from their initially water-wet state towards more oil-wet conditions (Anderson, 

1986-1; Morrow, 1990; Al-Maamari and Buckley, 2000). Some investigators say that 

heavy compounds such as asphaltenes, resins, and high molecular weight hydrocarbons 

are responsible. Among them, asphaltenes are considered the primary wettability altering 

agents. Al-Maamari and Buckley (2000) conclude that instability of asphaltenes could 

cause asphaltene precipitation which results in alteration of wettability of the surface to 

oil-wet conditions. 

 

Asphaltenes exist in colloidal suspensions in oil. These suspensions are caused by resins 

that are adsorbed onto the surface of asphaltenes, preventing the asphaltenes from 

flocculating due to the repulsive forces between the adsorbed resins and resin molecules 

in the solution. Asphaltenes are considered as the major portion of the surface-active 

components of the crude oil. Their molecular structure consists of aromatic, naphthenic 

groups and heteroatoms such as oxygen, sulfur, and nitrogen. This molecular structure 

has properties similar to that of surfactants and this is the reason that asphaltenes are 

strongly surface active. Reservoir rock surfaces are electrically charged and thus the polar 

segments of an asphaltene molecule are oriented towards the surface and the non-polar 

portions are pointed away from it, which makes the surface oil-wet. For instance, it has 

been reported that the wettability of Berea sandstone core is altered from its normal 

water-wet condition to neutral wettability because of the adsorption of asphaltenes and 
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resins on its surface (Kim et al., 1990). Clementz (1982) found that adsorption of 

petroleum heavy ends can offer a benefit because the adsorbed layer can stabilize 

potentially damaging formation clay minerals against dispersion and subsequent 

migration. Also surfactant adsorption is reduced when the adsorbed layer is present on 

clay mineral surfaces. 

 

Several researchers claim that oil induced changes in rock wettability from water wet to 

mixed wet could lead to a higher oil recovery (Jadhunandan and Morrow, 1992; Jain, 

Chattopadhyay and Sharmah, 2002). Jadhunandan and Morrow (1992) concluded that 

waterflood recovery from sandstone is optimum at close to neutral wettability (I ≈ 0.1 or 

0.3). Tie and Morrow (2005) reached to same conclusion for carbonate rocks. Others 

claim that wetting conditions other than strongly water wet are preferable (Morrow, Lim 

and Ward, 1986). Wang (1986) stated that during waterflood, a strongly water-wet core 

ceases to produce oil as soon as water breaks through, while a mixed-wet core continues 

producing oil for many pore volumes yielding very low residual oil saturation (Sor). He 

also showed that wettability of reservoir cores could be altered in both directions, i.e. 

strongly water-wet Berea sandstone could be made mixed-wet by aging with crude oil, 

and mixed-wet Loudon core could be made more water-wet using extraction with 

toluene. Caution should be used in judging the best wettability condition for oil recovery, 

since not only the amount of oil recovered, but also the rate of recovery is important from 

economics perspective. Salathiel (1973) reported that laboratory-prepared mixed-wet 

systems gave low residual oil saturations (Sor), by extended waterflood. He also found 

that oil saturation continued to decline as long as water was injected into mixed-wet 

cores, while with the same oil in a water-wet core, the oil saturation quickly reached a 

constant value. He explained this phenomenon through the existence of strongly oil-wet 

paths that are connected in consolidated media and allow oil to flow continuously even at 

very low oil saturations. These strongly oil-wet paths are generated at those parts of the 

pore surfaces in contact with crude oil, while the remainder stays strongly water wet. 
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2.4.2 Wettability Alteration in Naturally Fractured Reservoirs 

The impact of wettability on EOR recovery mechanisms in naturally fractured reservoirs 

is different compared with conventional oil reservoirs. Water wet conditions are 

considered favorable for oil recovery in naturally fractured reservoirs (Hatibogglu and 

Babadagli, 2004; Babadagli, 2003), since oil production from fractured reservoirs mostly 

occurs by spontaneous water imbibition and oil expulsion from the matrix into the 

fracture network (Chen et al., 2000). Thus in the case of naturally fractured reservoirs, 

the tendency of the matrix (which contains almost all of the oil reserves) to imbibe water 

is very important for both ultimate oil recovery and the rate of recovery. Thomas (1987) 

concludes that for a low permeability water-wet fractured chalk, significant 

improvements in oil recovery can be obtained by water injection. This is completely 

different than the observation of Wang (1986) where he states that strongly water-wet 

cores cease to produce oil as soon as water breaks through. Austad (1997) studied 

spontaneous imbibition of water into low permeable chalk at different wettabilities using 

surfactants. He studied the effect of interfacial tension, core size, and wettability on the 

recovery of oil from cores, with and without surfactant. He observed good recoveries for 

water wet cores using brine, especially for short cores. He also found that it is possible to 

imbibe water into nearly oil-wet chalk using a cationic surfactant. To describe this 

process, he suggested that the surfactant turns the chalk more water-wet during the 

imbibition process.  

 

Based on the observations of many researchers (Hatibogglu and Babadagli, 2004, Chen et 

al., 2000; Thomas, 1987; Austad, 1997; Babadagli, 2003; Al-Hadherami and Blunt, 2000, 

Liu et al., 2008; Hirasaki et al., 2004), ultimate oil recovery from naturally fractured 

reservoirs increases as the wetting condition of the matrix is shifted towards more water 

wet conditions. Hence, it has recently been tried to alter the wettability of NFR towards 

more water-wet conditions. There are two major methods for wettability alteration. One 

is elevation of temperature or thermal procedures and the other is the use of surface 

active agents or surfactants. The second method of wettability alteration, namely 

surfactant injection, is the main scope of this work. 
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Al-Hadherami and Blunt (2000) examined thermal alteration in wettability and were able 

to change the wetting condition of a carbonate towards more water-wet conditions by 

elevation of temperature, resulting in enhanced water imbibition and more oil recovery. 

They concluded desorption of asphaltenes from rock surfaces was responsible for 

wettability alteration. Olsen (1991) observed an increase in oil production from oil-wet 

cores in core floods due to rise in temperature. He concluded that this was because of 

alteration of wettability towards more water-wet conditions. There are more examples of 

thermal induced wettability alteration in the literature, but it is beyond the scope of this 

work. 

2.5 Effect of Wettability on Petrophysical Properties 

Wettability of a rock controls the configuration distribution of fluids in the porous 

medium, which affects the petrophysical properties such as residual oil saturation, 

relative permeability and capillary pressure. These effects are briefly discussed.  

2.5.1 Effect of Wettability on Residual Oil Saturation 

Wetting phase has more tendencies to be in contact with the rock surface which results in 

distribution of this phase in smaller pores and as a thin film on the surface of bigger 

pores. This distribution makes the wetting phase less mobile than the non-wetting phase 

which is present in the larger pores, due to higher capillary forces (Hirasaki et al., 2004). 

Figure 2.4 (Hirasaki et al., 2004) shows the relationship between residual oil saturation 

and Amott-Harvey wettability index taken from three references. All the three references 

report the minimum residual oil saturation to be in neutral-wet conditions, i.e. Amott-

Harvey coefficients of about zero. As seen in Fig. 2.4, as the rock tends towards more 

water-wetness, I > 0, and more oil-wetness, I < 0, residual oil saturation increases and 

these increases are almost mirror image of each other. In other words, if the Amott-

Harvey coefficient of a rock is zero, then changing the wettability of the rock to more 

water-wet conditions such that I = 0.3, will increase the residual oil saturation of the rock 

almost the same as if the rock was made more oil-wet with I = − 0.3. 



 12

2.5.2 Effect of Wettability on Relative Permeability 

Distribution of the wetting phase in smaller pores, as mentioned above, makes the flow of 

this phase harder and this means lower relative permeability for the wetting phase at an 

equal saturation with the non-wetting phase (Anderson, 1987). Hence, generally it could 

be concluded that wettability of a phase and its relative permeability are reversely 

proportional, i.e. if wettability of a phase increases, its relative permeability would 

decrease. Craig (1971) gives some rules of thumb about the relative permeability curves 

for different wetting conditions. He states that generally initial water saturation of water-

wet systems is higher than 20% to 25%, whereas it is less than 15% for oil-wet systems. 

Craig (1971) also gives a rule of thumb about the crossover point of water and oil relative 

permeabilities. He states that the crossover point occurs in water saturations more than 

50% in water-wet systems and less than 50% for oil-wet systems. This could be described 

by the relative permeability endpoints of the two phases at different wetting conditions. 

In a strongly water-wet system, endpoint relative permeability to oil is high (normally 

near 1), but water relative permeability endpoint is low (0.15 to 0.3) which results in a 

crossover point at water saturations greater than 50%. In an oil-wet system, water relative 

permeability endpoint is generally greater (0.4 to 0.7) and oil relative permeability is less 

than unity, resulting in a crossover point at water saturations more than 50% (Hirasaki et 

al., 2004). 

2.5.3 Effect of Wettability on Capillary pressure and Capillary 
Desaturation Curves 

Capillary pressure is defined as the pressure difference between the wetting and non-

wetting phases. Lake (1989) claims that capillary pressure is due to high curvature in 

boundaries between different homogeneous phases. Young-Laplace equation could be 

used to relate capillary pressure to contact angle (which is a measure of wettability as 

described in Section 2.2.1), pore curvature, and interfacial tension as shown in Eq.2.3 

( )2
c

Cos
P

R
σ θ

=          Eq.2.3 
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where Pc is the capillary pressure between the two phases, σ is interfacial tension 

between the two immiscible fluids, θ is contact angle and R is radius of the curvature 

where the pores are assumed to be cylinders. For the non-wetting phase to be able to 

enter a pore, its pressure should exceed the capillary entry pressure which is a function of 

the pore throat diameter. The smaller the pore throat diameter, the higher the capillary 

entry pressure is. In oil-wet reservoirs, since oil is distributed in smaller pores and 

capillary entry pressures are high for these pores, most of the oil is trapped and bypassed 

in water floods. One way of overcoming the capillary forces is to reduce the interfacial 

tension between the two phases, which would result a smaller capillary pressure as 

described in Eq.2.3. This could be done by surface active agents or surfactants. 

 

Capillary pressure is normally defined as oil pressure minus water pressure (regardless of 

wettability conditions) in reservoir engineering, and plotted versus water saturation. 

Based on the wettability condition of the rock, such plots might have positive and 

negative values such as graphs shown by Craig (1971). Based on this definition of 

capillary pressure, if a rock is strongly water-wet, i.e. I ~ 1, then its spontaneous 

imbibition curve would only be positive and residual oil saturation would be achieved at 

zero capillary pressure. If the rock is intermediate or neutral wet, then it would have less 

tendencies to imbibe water spontaneously and oil saturation in that rock would be higher 

at the end of spontaneous imbibition compared to a strongly water-wet rock. In this case 

it would be possible to increase water saturation of the core by forced imbibition, which 

results in a capillary pressure curve with positive and negative portions. If the rock is oil-

wet then it would have no tendency for imbibing water, resulting in negative capillary 

pressures. Examples of such capillary pressure data are found in Craig (1971). 

 

Capillary number, Nc, introduced by Brownell and Katz (1949) is a dimensionless 

number resulting from the ratio of viscous to capillary forces. Up to a certain capillary 

number known as critical capillary number, Ncc, a phase is not mobilized. But eventually 

when Nc > Ncc, as this ratio increases, i.e. viscous forces overcome the capillary forces, 

more amount of each phase is mobilized and as a result of this, residual phase saturations 
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decrease. This effect could be shown in capillary desaturation curves (CDC), in which 

residual phase saturations are plotted against capillary number, Nc. If a rock is strongly 

water-wet, then Ncc of water is higher than Ncc of oil and it is easier to mobilize oil than 

water. This is the result of phase distributions and the fact that in a water-wet rock, water 

tends to occupy smaller pores. Obviously in an oil-wet rock this reverses because of the 

same reason. Figure 2.5 shows an good example of CDC curves for different fluids in 

Berea sandstone core presented by Pope et al. (1982). Mohanty (1983) shows the effect 

of wettability on oil capillary desaturation curves as presented in Fig. 2.6. The shape and 

characteristics of capillary desaturation curves depend also on rock types besides the 

wettability. This could be observed by comparing Figs. 2.6 and 2.7. Figure 2.7 (Kamath 

et al., 2001) shows oil capillary desaturation curves for three oil-wet to neutral-wet 

carbonates. The main observation is extremely lower (about three orders of magnitude) 

critical capillary numbers for carbonate rocks compared to the Berea sandstone with 

approximately same wettability condition. This different behavior could be due to 

different pore size and fluid distributions and different porosity, and permeability of the 

two rock types (Hirasaki et al., 2004). 

2.6 Surfactants Used for Enhanced Oil Recovery 

Surfactants or surface active agents are usually large molecules with minimum one 

hydrophilic and minimum one hydrophobic portion. This dual nature enables surfactants 

to exist at the interface of water and other fluids (such as oil) and to reduce the surface 

energy.  

 

Surfactant concentration has a strong effect on surfactant behavior. At low concentrations 

anionic surfactants, as described below, ionize to a cation and an anionic monomer if 

dissolved in aqueous phase (Akstinat, 1981). If the surfactant concentration is then 

increased, the lypophilic portions of the monomers start to aggregate and form micelles 

which might contain several monomers. After a certain concentration known as the 

critical micelle concentration (CMC), further increase in the surfactant concentration will 

only increase the micelle concentration. Figure 2.8 shows a schematic of surfactant 

monomer concentration versus total surfactant concentration (Lake, 1989). Other 
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parameters such as temperature, brine salinity, and hardness play a more critical role in 

surfactant/oil/brine phase behavior. 

2.6.1 Classification of surfactants 

Four groups of surfactants based on the polar portion are (Lake, 1989): 

 

1. Anionics: The molecule is electrically neutralized with an inorganic metal cation. 

When dissolved in aqueous phase, the molecule is ionized into a cation and the 

anionic monomer. This group of surfactants has been used widely in oil industry 

for their good retention resistance, stability, and low cost. 

2. Cationics: A positively charged polar portion results in a cationic surfactant. The 

molecules of these surfactants are electrically neutralized with an inorganic anion. 

This group of surfactants has not been widely used in chemical floods since they 

are easily adsorbed by negatively charged surface of interstitial clays. 

3. Nonionics: These molecules exhibit surfactant properties due to electronegativity 

contrasts between their constituents. Nonionics are poorer surfactants compared to 

anionic surfactants but work much better in high salinities. This group of 

surfactants is recently used more extensively in chemical floods as primary 

surfactant. 

4. Amphoterics: These surfactants exhibit properties of two or more groups of 

previously discussed surfactants and have not been used in chemical flooding. 

2.6.2 Surfactant/Brine/Oil Phase Behavior 

Conventionally the surfactant/oil/brine phase behavior is shown on a ternary diagram and 

usually the surfactant pseudocomponent is placed at the top apex, brine is placed at the 

lower left apex and lower right apex represents oil. The phase behavior is strongly 

controlled by salinity of the brine among other variables such as temperature and 

cosolvent concentration. Surfactants used in chemical flooding processes, typically 

exhibit good aqueous-phase solubility and poor oil-phase solubility at low brine salinities. 

Thus at low brine salinities, an overall composition in the two phase region will split into 

two phases: an excess oil phase and a water external microemulsion phase. The excess oil 
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phase is essentially pure oil and the microemulsion phase is consisted of brine, surfactant 

and some solubilized oil which is at the center of micelles. This phase environment is 

referred to as Winsor Type I system, a lower phase microemulsion or Type II(-) system. 

The last terminology is due to the fact that the system consists of two phases and the 

slope of the tie lines in the two phase region is negative (Winsor, 1954; Nelson and Pope, 

1978; Lake, 1989). Figure 2.9 shows a schematic for phase behavior of a Type II(−) 

system. 

 

At high brine salinities, surfactant solubility in the aqueous phase is drastically reduced 

due to electrostatic forces. Thus at high brine salinities, an overall composition in the two 

phase region will split into an oil external microemulsion phase and an excess brine 

phase. In this case the brine phase would essentially contain no surfactant and some of 

the brine phase is solubilized in the microemulsion phase at the center of the micelles. 

This system is referred to as a Winsor Type II, an upper microemulsion or a Type II(+) 

system (Winsor, 1954; Nelson and Pope, 1978, Lake, 1989) (Fig. 2.10). 

 

At the brine salinities between the two extremes discussed above, there exists a third type 

of phase behavior in which three phases (a brine phase, a microemulsion phase and an oil 

phase) coexist. The microemulsion phase could be water or oil external depending on 

salinity and overall composition. This system is known as a Winsor Type III, a middle-

phase microemulsion or a Type III system (Winsor, 1954; Nelson and Pope, 1978, Lake, 

1989) (Fig. 2.11). 

2.6.3 Phase Behavior and Interfacial Tension 

Reed and Healy (1974) correlated the interfacial tension (IFT) and phase behavior of 

microemulsion systems. Figure 2.12 shows their correlation. In this figure σ32 and σ31 are 

interfacial tensions between the microemulsion/excess oil and microemulsion/excess 

brine respectively. As could be seen in this figure, σ32 decreases drastically as brine 

salinity increases and σ31 increases drastically as brine salinity increases. The salinity at 

the crossover point of these two interfacial tensions is called the optimum salinity and the 

interfacial tension of the whole system is minimized at this salinity. The IFT of the 
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system at the optimum salinity is normally about 1 μN/m which is good enough to reduce 

the capillary forces to negligible values and result in recovery of bypassed and trapped oil 

saturations. 

2.7. Enhanced Oil Recovery 

Willhite (1986) defines enhanced oil recovery as any process that helps recover more oil 

from a reservoir than what the reservoirs can produce by its own energy. This is a very 

general definition and includes gas injection for maintenance of pressure and 

waterflooding. Lake (1989) defines EOR as a process that recovers oil from a reservoir 

by injection of materials not normally present in the reservoir. This definition is more 

specific and excludes the above mentioned processes. Three categories can be specified 

for EOR processes based on the second definition: thermal oil recovery, miscible 

flooding and chemical flooding. The later is the subject of this study. Several chemical 

flooding processes are defined and discussed below. 

2.7.1. Polymer Flooding 

Polymer flooding is probably the simplest chemical EOR process. The main objective in 

a polymer flood is to improve the efficiency of the flood by decreasing water mobility 

(Sorbie, 1991). This is done by injection of water soluble polymers that increase water 

viscosity and therefore decrease water mobility. This decrease in water mobility can also 

help preventing viscous instability at the polymer/oil bank front. As water viscosity 

increases its fractional flow decreases and this increases the displacement sweep 

efficiency. The permeability reduction effects of polymer reduce the effective 

permeability of the high permeability channels and improve the areal sweep efficiency. 

Recent studies have shown that increasing the injected mass of polymer results in better 

mobility control and sweep efficiency which results in more profitability (Anderson et 

al., 2006).  

 

Two types of polymers have been used for field applications: polysaccharides and 

partially hydrolyzed polyacrylamides (HPAM). Recent advances in polymer technology 

have increased the limits of polymer flooding to a great extent. Levitt and Pope (2008) 
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have presented polymers with high viscosities at high salinities (up to 170,000 ppm NaCl 

with greater than 17,000 ppm CaCl2 present). They have also shown that if calcium 

concentration can be kept below 200 ppm, polyacrylamide polymers can be used up to 

100 °C. Levitt and Pope (2008) also suggest that for higher concentrations of calcium at 

high temperatures, sodium metaborate or copolymers such as sodium 2-acrylamide-2-

methylpropane sulfate (AMPS) could be used to increase the calcium tolerance.  

 

Huh and Pope (2008) have shown that polymer floods are capable of reducing the 

residual oil saturation to values lower that residual oil saturation to waterfloods, provided 

the polymer flood is used as a secondary recovery mechanism, i.e. a waterflood is not 

performed prior to the polymer flood.  

 

The above mentioned findings may stretch the application range for polymer flooding.  

2.7.2. Alkaline Flooding 

In this chemical EOR process an alkaline agent is injected into a reservoir. The classic 

reason for injection of alkali in the past was to create some in-situ soap (surfactant) from 

the acidic components of the crude oil which then would help lowering the interfacial 

tension (IFT) between the oil and water and help mobilizing the trapped oil. When an 

alkaline agent is injected into a reservoir, the hydroxide anions reduce the concentration 

of hydrogen in the aqueous phase. This helps in solubilization of some of the acidic 

components of the oil in the aqueous phase and generation of in-situ soap.  

 

Besides the above mentioned application of alkaline flooding, recently researchers have 

focused on wettability alteration effects of some alkalis. A large portion of world’s oil 

reserves are contained in carbonate formations (Roehl and Choquette, 1985) most of 

which are naturally fractured. The fracture network has much higher permeability 

compared to the matrix. Most of these carbonate reservoirs are mixed-wet to 

preferentially oil-wet (Downs and Hoover, 1989). The combination of the low matrix 

permeability and the preferentially oil-wt nature of carbonate formations result in poor 

primary oil recovery factors in such reservoirs. Waterflooding of these formations is not 
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efficient due to very small tendency for imbibition of the injected aqueous solution by the 

oil-wet matrix. To improve the oil recovery from such formations, it is required to 

improve the rate of imbibition of the injected aqueous phase into the matrix. One way of 

achieving this goal is by alteration of the wettability of the matrix rock towards more 

water-wet conditions. Many researchers have recently studied the imbibition rate of 

aqueous solutions into preferentially oil-wet carbonate rocks. Hirasaki and Zhang (2004) 

and Adibhatla and Mohanty (2008) have studied oil recovery from such formations using 

a combination of anionic surfactants (propoxyl ethoxyl sulfates) and an alkali (sodium 

carbonate). They concluded that at ultra-low IFTs achieved by the anionic surfactants, the 

oil can be recovered by virtue of buoyancy and wettability alteration. Zhang et al. (2008) 

have shown that an alkali such as sodium carbonate is capable of drastically reducing the 

contact angle of an oil droplet on both quartz (SiO2) and calcite (CaCO3). On the quartz 

surface (Fig. 2.13) the initial contact angle of 130° was reduced to 105° after 25 hours of 

aging in a 4.8% Na2CO3 solution. The wettability alteration effects of the alkali were 

even more on the calcite surface (Fig. 2.14) where the initial contact angle of 120° was 

reduced to 75° after 25 hours. This significant change in the wetting characteristics of the 

carbonate surfaces can increase the imbibition rate of the injected aqueous solutions into 

the matrix rock of fractured carbonates and increase the recovery factor to a great extent. 

A complete definition of wettability and contact angle is given earlier in this chapter. 

2.7.3. Surfactant/Polymer Flooding 

This chemical EOR method is probably the most widely studied and used process after 

polymer flooding up to this day. A surfactant or a group of surfactants and other 

chemicals such as cosolvents are designed and tailored for the rock fluid system of the 

target reservoir. The chemicals are injected into the reservoir as a finite slug that also 

contains polymer for mobility control. This chemical slug is then pushed towards the 

production wells by a polymer drive. The surfactant slug helps recovering the oil in two 

important ways: oil solubilization and oil mobilization. The former is the result of 

creation of a microemulsion phase. Microemulsions are thermodynamically stable phases 

containing surfactants, aqueous electrolytes and oleic components. Oil mobilization is the 
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result of IFT reduction by the surfactant(s). The mobilization process will be discussed in 

the following sections. 

 

The most important advantage of surfactant/polymer process over polymer flooding is 

recovery of the residual oil. Although polymer flooding may have a lower residual oil 

saturation compared to waterfloods (Huh and Pope, 2008), it is not capable of reducing 

residual oil saturation to values close to zero. Surfactant/polymer floods on the other hand 

are capable of reducing the residual oil to low values (Osterioh and Jante, 1992; Wang et 

al., 2008). In fact, in many lab tests recoveries very close to 100% OOIP are reported 

(Delshad, 1990; Zhao et al., 2008; Flaaten et al., 2008). For a successful 

surfactant/polymer flood in the field, besides the choice of chemicals suitable for the 

specific properties of the target reservoir there are other important steps to be taken. The 

most important of these steps is design and optimization of the flood in the field scale. 

This is when numerical simulation plays a crucial role for design and optimization of 

chemical floods. The development of a fully implicit, parallel chemical flooding module 

is the subject of Chapter 6. Design and optimization of chemical floods in field scale are 

discussed in the following chapters. 

 

2.7.3.1 Surfactant/Polymer Flood Simulators 

 
There are very few reservoir simulators that have capability of modeling 

surfactant/polymer floods. Examples include commercial simulators of ECLIPSE 100, 

CMG-STARS and UT developed simulators of UTCHEM, GPAS, and UTCOMP. A 

brief description of the capability of some of these codes is presented here. 

 

ECLIPSE 100 
 

ECLIPSE simulator models polymer viscosity as function of polymer concentration and 

salinity and shear rate generally by input of tables by user specifying polymer viscosity as 

a function of the above mentioned parameters. Polymer adsorption and permeability 
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reduction effects of polymer can also be modeled using ECLIPSE (ECLIPSE Technical 

Documentation, 2008).  

 

Surfactant model of ECLIPSE is fully implicit and it is limited to Winsor Type I (Winsor, 

1954) floods where the surfactant is only present in an aqueous external ME phase. 

Relative permeability curves in ECLIPSE are functions of capillary number using a table 

that describes the transition of relative permeability curves as function of log10 of 

capillary number. Capillary pressure is scaled with IFT and as IFT is reduced due to 

presence of surfactant, the capillary pressure is reduced. ECLIPSE also models surfactant 

adsorption on the rock surface (ECLIPSE Technical Documentation, 2008).  

 

UTCHEM 
 

Polymer viscosity in UTCHEM is modeled as a 3rd order parabolic function of polymer 

concentration. Effects of salinity (both anions and cations) and temperature on polymer 

viscosity are modeled. Correlation presented by Meter and Bird (1964) is used for 

modeling effect of shear rate on polymer viscosity with an effective shear rate calculated 

for the porous medium. Polymer adsorption, permeability reduction effects of polymer 

and the inaccessible pore volume by polymer is also modeled in UTCHEM (UTCHEM 

Technical Documentation).  

 

Surfactant/oil/brine phase behavior as function of salinity (anions and cations), 

temperature and co-solvent concentration is modeled using Hand’s rule (Hand, 1939). 

IFT can be calculated in two ways: using Huh's correlation (1979) modified by Hirasaki 

(1981) and Delshad et al. (1996) or using the correlation introduced by Healy and Reed 

(1974) and corrected by Hirasaki (1981). Surfactant adsorption and the consequent 

reduction of pore volume are modeled in UTCHEM. ME viscosity as a function of ME 

composition is calculated in UTCHEM (UTCHEM Technical Documentation). 
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GPAS 
 
The first chemical flooding module of GPAS was published by John et al. (2005). This 

development was based on a hybrid approach where the material balance equation of the 

hydrocarbon components and water were solved implicitly and then the material balance 

equation of the aqueous components such as surfactant, polymer and salt were solved 

explicitly. This implementation had two important shortcomings from the formulation 

point of view:  

1. The volume of the oil dissolved in the microemulsion (ME) phase was neglected.  

2. The volume of the surfactant was neglected in the volume constraint equation.  

These two problems lead to inaccurate results specially when the height of binodal curve 

is small and/or the amount of injected surfactant is large in which case the volume of the 

oil solubilized in the ME phase is significant and cannot be neglected. Another important 

limitation of this development was its limitation to model only Type I or Type II(-) 

oil/brine/surfactant phase behavior where an excess oleic phase is in equilibrium with a 

ME phase. In 2007 Han et al. published a fully implicit chemical flooding module of 

GPAS which removed the two formulation limitations of the hybrid model (i.e. the 

volume of oil in the ME was considered and the volume of surfactant was taken into 

account in the volume constraint). But the limitation of the phase behavior to only two 

phase regions was not removed.  

2.7.4. Alkaline/Surfactant Flooding 

As mentioned above, the resources locked in naturally fractured carbonates are enormous 

and can have a huge effect on the energy security if unlocked. Hirasaki and Zhang (2004) 

and Adibhatla and Mohanty (2008) have used anionic surfactants to reach ultra low IFTs. 

Since the surface of carbonate rocks are normally positively charged in low pH, they 

have used alkalis such as sodium carbonate to reduce the adsorption of anionic 

surfactants to the carbonate surface. This is possible since carbonate surface becomes 

negatively charged in the presence of sodium carbonate. Hirasaki and Zhang (2004) 

suggest that the trapped oil in carbonate rocks is held in place by capillarity and 

wettability. Thus if capillary forces are diminished by ultra low IFTs and wettability is 
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modified to more water-wet conditions, the trapped oil can be produced. They show by 

conventional imbibition cell test experiments that in the absence of capillary forces and 

by the help of wettability alteration, the trapped oil in an originally oil-wet core can be 

produced under gravity drainage. Kumar et al. (2005) proposed that the wettability of 

carbonate surfaces is controlled by adsorption of asphaltenes. They found that anionic 

surfactants could remove the adsorbed asphaltenes and induce partial water-wetness. 

Adibhatla and Mohanty (2008) have also studied the oil recovery from carbonate rocks 

using anionic surfactants and alkaline solutions. They conclude that the surfactant lowers 

the IFT and alters the wettability as it diffuses into the matrix, enabling gravity to drain 

the oil upwards. They claim that the oil recovery rate increases as matrix permeability 

increases, fracture height or spacing decreases and the wettability alteration properties of 

the surfactant increases. They have also found that oil recovery is not necessarily 

enhanced by increasing the surfactant concentration and this is due to the fact that neither 

IFT reduction, nor wettability alteration are linearly correlated with surfactant 

concentration. Adibhatla and Mohanty (2008) named this oil recovery mechanism as 

“Surfactant-Aided Gravity Drainage.”  

 

In Chapter 4 of this work, one of the experiments performed by Hirasaki and Zhang 

(2004) is modeled to shed some light on the mechanisms involved in oil recovery from 

fractured oil-wet carbonates.  

2.7.5. Oil Recovery Methods for NFRs 

Some researchers have suggested use of non-ionic and cationic surfactants for modifying 

the wettability and enhancing the water imbibition rate in NFRs (Austad and Milter, 

1997; Austad et al., 1998; Standes and Austad, 2000). They have performed their studies 

on oil-wet chalk cores and used non-ionic and cationic surfactants to prevent adsorption 

of surfactants to positively charged chalk surface. Since the cationic surfactants do not 

reduce IFT to ultralow values, capillary imbibition of the aqueous phase would still be 

the dominate recovery mechanism. Chen et al. (2000) have also used nonionic surfactants 

for enhancement of spontaneous imbibition and Spinler et al. (2000) evaluated 46 

different commercially available surfactants to improve spontaneous imbibition of chalk 
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samples. Austad et al. (2005 and 2007) proposed seawater injection as an improved oil 

recovery method for chalk formations and proposed a chemical model for wettability 

modification effects of seawater on chalk surface. They observed that neutral/moderately 

water-wet chalk surface becomes more water-wet in contact with seawater. The 

explanation was that the positively charged chalk surface becomes oil-wet by adsorption 

of negatively charged carboxylic acids present in the crude oil. Free divalent cations 

(Ca2+ active at low temperatures and Mg2+ active at high temperatures) present in 

seawater are claimed to attract the carboxylic acids and separate them from the chalk 

surface. This results in a water-wet surface that promotes spontaneous imbibition of 

aqueous phase, increasing the oil recovery. This recovery method will not be studied in 

this work.  

2.8 Scale Dependency of EOR Methods for NFRs 

Many of the EOR processes mentioned in Section 2.7 are tested in laboratory scale before 

going to pilot or commercial scale operations. A very important issue is then 

determination of the efficiency of these processes in field scale. In other words, does the 

recovery efficiency change from laboratory to field scale? How do different recovery 

mechanisms scale with reservoir size? Here two methods are specified to infer the 

performance of certain recovery mechanisms in field scale from their performance in 

laboratory scale. The first method discussed in Section 2.8.1 is based on dimensionless 

study of the system. The second method is based on numerical simulation where the 

results of a laboratory experiment are matched with an adequate numerical model. Then 

the matching parameters can be used to study the effect of reservoir size on different 

recovery mechanisms.  

2.8.1 Dimensionless Analysis of Laboratory Experiments 

Dependency of the results of laboratory experiments on reservoir size can be specified 

using dimensionless recovery curves or dimensionless recovery times. Laboratory alkali 

and surfactant floods have shown a great potential in increasing oil recovery for 

reservoirs that are naturally fractured with low permeability mixed-wet matrix rocks. 

Fractured, mixed-wet formations usually have poor waterflood performance because the 
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injected water tends to flow in the fractures and spontaneous imbibition into the matrix is 

generally insignificant. Surfactants or alkalis have successfully been used to change the 

wettability and enhance oil recovery by increased imbibition of the water into the matrix 

rock. The oil recovery mechanisms using surfactant/alkali mixtures are enhanced 

imbibition and buoyancy due to combined effects of reduced interfacial tension, reduced 

mobility ratio, and wettability alteration. An important question is that how do these 

recovery mechanisms scale with reservoir size? 

 

Many researchers have made attempts to scale up imbibition test results from laboratory 

scale to field scale using a dimensionless time for imbibition. There are two major 

categories amongst these proposed scaling groups: most of them, assume that the main 

mechanism for oil production is capillary imbibition. Correlations proposed by Mattax 

and Kyte (1961), Cuiec et al. (1990), Kazemi et al. (1992), Zhang et al. (1996), Ma et al. 

(1997) and Babadagli (2001), fall into this category. All of these researchers claim that 

the imbibition time scales with the square of some measure of the length of the matrix 

blocks. There is another category of scaling groups which assumes that the main 

mechanism controlling the imbibition is buoyancy. In this category, the correlation 

proposed by Cuiec et al. (1990) (Eq.2.4) could be mentioned, which dictates that 

imbibition time scales with matrix block size. Some researchers such as Hirasaki and 

Zhang (2004) and Adibhatla and Mohanty (2006) claim that when a surfactant solution 

designed to lower the IFT to ultra low values is used for enhancement of the imbibition 

process the mechanisms are different. At early times, capillary imbibition is the dominant 

force but once IFT is reduced to ultra low values the gravity forces dominate the recovery 

process. 

 

Cuiec et al. (1990) proposed a reference time based on the gravity forces (the ratio of 

viscous to gravity forces) as follows: 

o
g

Lt
gk

μ
ρ

=
Δ

    Eq.2.4 

where tg is the gravity reference time, μo is oil viscosity, k is absolute permeability, L is 

the length of the rock sample and Δρ is density difference between oil and water. If 
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gravitational and buoyancy forces are dominating the imbibition process, then dividing 

the experimental time with this reference time would result in one recovery curve for all 

the cases regardless of the matrix rock size. 

 

Li and Horne (2006) introduced a generalized dimensionless time including almost all of 

the parameters present in an imbibition process for cocurrent flow except the wettability 

shift. Their dimensionless time is based on an analytical solution of the flow equations 

(Darcy’s law) and reads as 

( )2
2

e c wf wi
d

e a

k P S S
t c t

Lφμ
−

=         Eq.2.5 

where td is dimensionless time, c is the ratio of gravity to capillary forces, Swf is the 

wetting phase saturation at the front, ke
* is effective permeability of the two phases at Swf, 

Pc
* is the capillary pressure at Swf, μe is the effective viscosity of the two phases, Swi is 

initial wetting phase saturation, φ is the porosity, La is the characteristic length of the core 

and t is experimental time. They introduce an effective mobility for the experiment as 

follows: 
* * *

*
* *

e w nw
e

e nw w

k M MM
M Mμ

= =
−

        Eq.2.6 

where Me
* is the effective mobility at Swf and Mw

* and Mnw
* are wetting and non-wetting 

phase mobilities at Swf respectively. As could be seen in Eq.2.5, Li and Horne (2006) 

claim that the dimensionless time scales with reciprocal of length squared. Figure 2.15 

shows resulting recovery curves for several experiments when the dimensionless time is 

used.  

 

Ma et al. (1997) have proposed an equation for calculation of the characteristic length 

based on core geometry and boundary conditions. Li and Horn (2006) used the following 

equation proposed by Ma et al.: 

1 i

b
c n

i

i A

VL
A
l=

=

∑
          Eq.2.7 
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where Lc is the characteristic length, Vb is bulk volume of the core, Ai is any surface open 

to imbibition, lAi is the distance from Ai to the no flow boundary and n is number of 

surfaces open to imbibition. The characteristic length for the field is the distance between 

fracture faces. Therefore, the dimensionless time required to reach maximum recovery is 

inversely proportional to the square of fracture spacing. 

 

Ma et al. (1997) proposed a dimensionless number for the rate of imbibition as follows: 

( )
2

cos
D

cw o

kt t
L

θσ
φ μ μ

=         Eq.2.8 

where tD is dimensionless time, t is time, k is rock permeability, φ is porosity, σ is 

interfacial tension, μw and μo are water and oil viscosities, θ is the contact angle, and Lc is 

the characteristic length specified in Eq.2.7. 

 

Hognesen et al. (2004) tested the dimensionless time correlation developed by Li and 

Horne (2006) for their imbibition experiments in carbonate rocks performed for a wide 

range of experimental conditions of interfacial tension, permeability, initial water 

saturation, core height and diameter, temperature, and sulfate concentration. All the 

parameters were scaled very well when the normalized oil recovery was plotted versus 

dimensionless time once the height of the core was used as the shape factor. They 

concluded that gravitational forces were significant oil recovery mechanisms in their 

experiments. 

2.8.2 Scale Dependency of Recovery Mechanisms used for NFRs 
Using Numerical Modeling  

Adibhatla et al. (2005) developed a simulator that incorporated variation of IFT and 

wettability as the results of surfactant diffusion and imbibition into a matrix rock. 

Numerical model successfully matched the results of their lab scale experiments. A 

simulation study was then carried out using the parameters that matched the lab scale 

experiment to model larger fracture blocks. Their results indicated that it takes over 100 

years to recover about 60% oil from a 10m by 10m matrix block compared to 30 days in 
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the lab scale core. They concluded that the oil production decreases as the matrix block 

height increases or surfactant alters wettability to a lesser degree, or permeability 

decreases. 

 

The time dependence of imbibition process and upscaling of the laboratory imbibition 

test results was also addressed by Stoll et al. (2008) using a 1D model to simulate 

numerous imbibition experiments. Their results indicated that the imbibition in the 

absence of buoyancy forces is very slow and diffusion-limited after the wettability 

alteration. Consequently, the wettability alteration of oil-wet fractured carbonates is not 

economically feasible unless there is a faster transport mechanism such as forced 

imbibition with viscous or buoyancy forces. Stoll et al. (2008) calculations indicated that 

the time scale of diffusion scales with length of sample squared. Therefore, it would take 

about 200 years before the same recovery is obtained from a meter scale matrix block 

compared to 100 days in one cm core plug. 

 

Although laboratory experiments are essential, it is impossible to predict the performance 

of these complex processes with only laboratory experiments. Reservoir simulation is 

required to scale up the process from laboratory to field conditions and to understand and 

interpret the data. Without detailed and mechanistic simulations it is very unlikely that a 

cost-effective process can be developed and applied economically. The predictive 

simulations of such complex processes will reduce the risk of failure of the field projects.  

2.9 Modeling Aspects of Wettability Alteration in NFRs 

As mentioned in Section 2.7.4, chemicals such as alkali and/or surfactants are capable of 

changing the wettability of matrix formation towards more water wet conditions and 

improve the rate of imbibition of the injected aqueous phase into the matrix. This 

increases the oil recovery from NFRs with preferentially oil wet formations (Hirasaki and 

Zhang, 2004, Adibhatla and Mohanty, 2008). Some researchers have modeled the 

wettability alteration effects of alkali or surfactant mixtures to better understand such 

processes.  
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Castillo (2003) modeled the wettability alteration of alkali or surfactants in UTCHEM 

using the effect of wettability on petrophysical properties such as relative permeability 

and capillary pressure. In this model the user can specify the initial and altered wetting 

conditions of the rock. This is done by specifying water and oil relative permeability and 

water-oil capillary pressure tables for each wettability condition as input. Time dependent 

wettability alteration is modeled using an input threshold value for a tracer concentration 

representing the alkali or surfactant concentration in each gridblock. The injected 

surfactant advances in the reservoir and when its concentration is greater than a threshold 

value specified as an input parameter, the tables for altered wetting conditions are used. 

 

Anderson (2006) used the model developed by Castillo (2003) and Fathi Najafabadi 

(2005) to study the effect of wettability on the oil recovery from NFRs. He was able to 

successfully model many published core floods that involving chemically induced 

wettability alteration.  

 

Adibhatla et al. (2005) developed a 3D numerical simulator with the capability of 

modeling wettability alteration effects of surfactants. This simulator is finite-volume and 

can model flow of two phases and four components using fully implicit scheme. Residual 

phase saturations, relative permeability and capillary pressure curves in this model are 

functions of IFT and wettability. Contact angle is used in this model as a representation 

of the wetting state of each phase and residual phase saturations are interpolated based on 

their contact angle (Adibhatla et al. 2005). They were able to match oil recovery from 

alkali surfactant imbibition tests with this numerical simulator.  

 

ECLIPSE simulator has also a wettability alteration model. The change in the wettability 

of the rock by adsorption of surfactant on the rock surface is modeled using two relative 

permeability tables for two extreme wetting conditions and interpolating between them 

using a weight factor, F (ECLIPSE Technical Documentation, 2008).  
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Delshad et al. (2006) used the wettability alteration model of UTCHEM (Fathi 

Najafabadi, 2005) to model an imbibition cell test published by Hirasaki and Zhang 

(2004). The matching parameters were then used to study the effect of wettability 

alteration in pilot scale.  

 

Fathi Najafabadi et al. (2008) used the wettability alteration model of UTCHEM (Fathi 

Najafabadi, 2005) to model a dynamic chemical flood laboratory experiment performed 

on a fractured block at UT Austin. This experiment contained three parts; a waterflood 

followed by alkali flood for enhancing the wettability towards more water-wet conditions 

and an alkali surfactant flood for reducing the residual oil in the matrix. All three parts of 

this experiment were modeled and very good match between the recorded experimental 

recovery curves and the simulated curves was obtained. They concluded that a small 

viscous gradient can improve the recovery from NFRs to a great extent and static 

imbibition cell tests are not representative of dynamic conditions of the reservoir.  

 

Delshad et al. (2009) used the models published by Delshad et al. (2006) and Fathi 

Najafabadi et al. (2008) to study the effect of matrix size on the recovery rate from NFRs. 

They concluded that in static imbibition conditions where gravity is the dominant oil 

recovery mechanism (due to reduction of capillary pressure to ultra low values by 

surfactant), the oil recovery rate scales with the height of the matrix block.  

2.10 Reservoir Simulation Using Fully Implicit Scheme 

A brief description of the fully implicit scheme is presented here along with its 

advantages and disadvantages.  

2.10.1 Definition of Fully Implicit Method 

When a partial differential equation (PDE), such as material balance equation of a species 

in the reservoir, is solved numerically, the equation should be discretized both in space 

and time. To obtain the solution of the PDE in the next time level, the dependency on 

time could be treated at the present time level and if so, the formulation is called explicit 

in time. If the time dependency is treated at the next time level, then the formulation is 
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called fully implicit. One method for solving a system of non linear equations arising 

from discretization of the material balance and volume constraint equations in a reservoir 

simulation is the Newton’s method described below. 

2.10.2 Newton’s Method for Solving Fully Implicit System of PDEs 

In reservoir simulation, we use Newton’s method for solving a system of non-linear 

equations arising from discretization of governing PDEs using an implicit method. 

Suppose that we have a non-linear system of equations given below  

( ) 0, 1, 2, ... ,f X i n= =
��

       Eq.2. 9 

where  

( )1 2, , ..., nX x x x=
G G G G         Eq.2. 10 

is a solution to Eq.2. 9. This exact solution at a new time level can be approximated by 

the solution at the previous time level as follows: 
1k k kX X Xδ+ = +

� � �
        Eq.2. 11 

The increment vector ( kXδ
�

) is obtained as follows: 

( ) ( ) ( ) ( )1 1k k k k kX f X f X J X f Xδ
− −⎡ ⎤′= − = −⎣ ⎦� � � � �� � �

    Eq.2. 12 

where ( )kJ X
�

 is called the Jacobian of the system.  

 

This method has a second-order convergence when the approximate solution is near the 

exact solution and converges after few iterations. The stability of the Newton’s method is 

maintained even with large changes in dependant variables (Anthony et al., 1980).  

2.10.3 Advantages and Disadvantages of Fully Implicit Scheme 

Fully implicit methods are very stable and can tolerate much larger timesteps compared 

to explicit methods. On the other hand the computational over head of fully implicit 

methods are larger per timestep compared to explicit methods. Another disadvantage of 

fully implicit methods is the truncation error associated with large timestep sizes. It is 

also more difficult to implement high-order methods in fully implicit scheme to reduce 
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spatial truncation errors and this is also considered one of the disadvantages of the fully 

implicit method (Anthony et al., 1980). 
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Figure 2.1: Interfacial tensions and contact angle. 

 
Figure 2.2: Idealized examples of contact angle and spreading (Morrow, 1990). 

 

 
Figure 2.3: Schematic diagram of contact angle setup (Somasuundaran and Zhang, 2004). 
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Figure 2.4: Effect of wettability on residual oil saturation (Anderson, 2006). 

 

 
Figure 2.5: Capillary desaturation curves of different fluids in Berea sandstone (Pope et 

al., 2000). The curves are fits to the data using the dependency of residual phase 

saturations on trapping number (Eq.3.16). 
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Figure 2.6: Effect of wettability on CDCs of Berea sandstone (Mohanty, 1983) Figure 

regenerated by Anderson (2006). The curves are fits to the data using the dependency of 

residual phase saturations on trapping number (Eq.3.16). 
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Figure 2.7: Effect of wettability on capillary desaturation curves for three carbonate rocks 

(Kamath et al., 2001). Figure regenerated by Anderson (2006). The curves are fits to the 

data using the dependency of residual phase saturations on trapping number (Eq.3.16). 
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Figure 2.8: Schematic plot of surfactant behavior in aqueous phase, based on changes in 

surfactant concentration (Lake, 1989). 

 

 
Figure 2.9: Type II(-) or Type I system illustration (Lake, 1989). 

 

 
Figure 2.10: II(+)  or Type II system illustration (Lake, 1989). 



 37

 

 
Figure 2.11: Type III system illustration (Lake, 1989). 

 

 
Figure 2.12: Optimal salinity is defined to be the salinity at which the water and oil 

solubilization ratios coincide which normally coincides with the salinity where oil-MW 

and MW-aqueous IFTs coincide (Healy and Reed, 1976). 
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Figure 2.13: Contact angle data versus time using different alkalis on quartz plates 

(Zhang et al., 2008). 

 

 
Figure 2.14: Contact angle data versus time using different alkalis on calcite plates 

(Zhang et al., 2008). 
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Figure 2.15: Use of the scaling factor proposed by Li and Horne (2006) yields similar oil 

recovery curves for imbibition tests with different rock/fluid properties. 
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Chapter 3: Implementation of Wettability Alteration 
Model in UTCHEM 

 

3.1 Introduction to UTCHEM Simulator 

The three-dimensional multiphase multicomponent chemical compositional simulator of 

The University of Texas, UTCHEM, is the result of an extensive research. (Satoh, 1984; 

Saad, 1989; Bhuyan, 1989; Delshad et al., 1996; Aldejain, 1989 and Liu et al., 1994). 

The simulator is capable of accounting for complex surfactant/oil/brine phase behavior, 

petrophysical properties, chemical reactions, and heterogeneous porous media properties. 

It uses advanced concepts in high-order numerical accuracy and dispersion control. And 

can make up to four fluid phases (gas, aqueous, oleic, and microemulsion) and solid 

phases. Formation of microemulsion (ME) is only possible above the critical micelle 

concentration of the surfactant (CMC). ME is a thermodynamically stable mixture of 

water, surfactant, cosolvent, electrolytes, and oil. UTCHEM has many applications both 

in modeling enhanced oil recovery processes and enhanced remediation of contaminated 

aquifers, some of which are listed below (UTCHEM technical manual, 2000). 

 

UTCHEM groundwater applications: 

• NAPL spill and migration in both saturated and unsaturated zones 

• Partitioning interwell test in both saturated and unsaturated zones of aquifers 

• Remediation using surfactant/cosolvent/polymer 

• Remediation using surfactant/foam 

• Remediation using cosolvents 

• Bioremediation 

• Geochemical reactions (e.g., heavy metals and radionuclides) 

 

UTCHEM oil reservoir applications: 

• Waterflooding 
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• Single well, partitioning interwell, and single well wettability tracer tests 

• Polymer flooding 

• Profile control using gel 

• Surfactant flooding 

• High pH alkaline flooding 

• Microbial EOR 

• Surfactant/foam and ASP/foam EOR 

• Formation damage 

3.2 UTCHEM Formulation 

The flow equations are solved by a block-centered finite difference scheme. The solution 

method used in UTCHEM is implicit in pressure and explicit in concentration. It is 

optional for the user to use One-, two-point upstream, and third-order spatial 

discretization, knowing that the third-order method is the most accurate. To increase the 

stability and robustness of the second-and third-order methods, a flux limiter that is total-

variation-diminishing (TVD) has been added (Liu, 1993 and Liu et al., 1994). The 

balance equations considered are as follows:  

1. The mass balance equation for each species.  

2. The overall mass balance on volume occupying components, i.e. water, oil, 

surfactant, co-solvent and air, which yields aqueous phase pressure. Adding the 

capillary pressure between the phases gives other phase pressures. 

3. The energy balance equation. 

 

Each of these equations is described briefly below. More complete description could be 

found in UTCHEM technical manual (UTCHEM technical manual, 2000). 

3.2.1 Mass Conservation Equations 

Few assumptions are made in developing the flow equations, the most important of which 

are the following:  
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1. There is local thermodynamic equilibrium except for tracers and dissolution of 

organic components  

2. Porous medium and fluids are slightly compressible 

3. Mixing is ideal 

4. Dispersion is Fickian 

5. Darcy’s law applies.  

6. No flow boundary conditions are assumed and no dispersive flux is allowed 

across the impermeable boundaries. 

 

The mass conservation equation for componentκ in terms of overall volume of 

componentκ per unit pore volume is defined as 

( ) ( )
1

pn

C C u D R
t κ κ κ κ κ κφ ρ ρ

=

⎡ ⎤∂
+ ∇ − =⎢ ⎥∂ ⎣ ⎦

∑ A A A
A

GG G� �i       Eq.3.1 

where 

Cκ
� = overall volumetric concentration of component k, (L3/L3) 

κρ = density of component k , (m/L3) 

CκA = concentration of component k in phase A , (L3/L3) 

uA
G = volumetric flux of phase A , (L/t) 

DκA

G
� = dispersive flux of component k in phase A , (L2/t) 

Rκ = total source/sink flow for component k, (m/L3t) 

φ = porosity, (L3/L3)   

 

The overall volume of componentκ , mentioned in Eq.3.1 is computed as follows forκ = 

1 to nc: 

1 1

ˆ ˆ1
pcv nn

k
C C S C Cκ κ κ κ

= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑ A A

A

�        Eq.3.2 

where 

Cκ
� = overall volumetric concentration of componentκ , (L3/L3) 
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ncv= total number of volume-occupying components 

Ĉκ = adsorbed concentration of spicesκ , (L3/L3) 

np= number of phases 

Sℓ= saturation of phase A , (L3/L3) 

As described before, the dispersive flux is assumed to be Fickian and calculated as 

D S K Cκ κ κφ= ∇A A A A

GG G� i          Eq.3.3 

where 

DκA

G
� = dispersive flux of componentκ in phase A , (L2/t) 

KκA

GG
= dispersion tensor of spicesκ in phase A , (L2/t) 

The magnitude of the vector flux for each phase, uA
G used in Eq.3.1 is computed as 

follows: 

( ) ( ) ( )22 2
x y zu u u u= + +A A A A

G        Eq.3.4 

The phase flux using Darcy’s law is 

( )rk Ku P hγ
μ

= − ∇ − ∇A
A A A

A

GG G GG         Eq.3.5 

where 

K
GG

= permeability tensor, (L2) 

rk A = relative permeability of phase, A  (L2/L2) 

μA = viscosity of phase A , (m/Lt) 

γ A = specific weight of phase A , (m/L2t2) 

h = vertical depth, (L) 

The source term in Eq.3.1 Rκ , is a combination of all rate terms for componentκ : 

( )1 sR S r r Qκ κ κ κφ φ= + − +∑ A A        Eq.3.6 
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where Qκ  is the injection or production rate for component κ per bulk volume, rκA and 

srκ are the reaction rates for componentκ in phase A and the solid phase s, respectively 

(Bhuyan, 1989, UTCHEM technical manual, 2000).  

3.2.2 The Pressure Equation 

A mass balance over all volume-occupying components yields the pressure equation. 

Darcy’s law is substituted for the flux term of each phase and definition of capillary 

pressure is used. It is also noted that as stated in Eq.3.7, sum of concentrations of all of 

the components in each phase is equal to 1. 

1
1

cvn

Cκ
κ =

=∑ A           Eq.3.7 

Then the pressure equation in terms of the reference phase pressure (phase 1) is 

1
1 1

1 1 1

p p cvn n n

t rTc r c r c c
PC K P K D K P Q
t κ

κ

φ λ λ λ
= = =

∂
+ ∇ ∇ = −∇ ∇ +∇ ∇ +

∂ ∑ ∑ ∑A A A
A A

G G GG G G G G G G G G
i i i i i i   Eq.3.8 

where 

tC = total system compressibility, (Lt2/m) 

D = depth, (L) 

K
GG

= permeability tensor, (L2) 

1P = pressure of phase 1, (Lt2/m) 

1cP A = capillary pressure between the given phaseA and phase 1, (Lt2/ m) 

Qκ = source/sink flow for componentκ per bulk volume. (L3/L3t) 

r cλ A = relative mobility, (m/Lt) 

rTcλ = total relative mobility, (m/Lt) 

The relative mobilities ( r cλ A and rTcλ ) and total compressibility ( tC ) in Eq.3.8 are 

calculated based on the following equations: 

1

cvn
r

r c
k Cκ κ

κ

λ ρ
μ =

= ∑A
A A

A

         Eq.3.9 
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1

pn

rTc r cλ λ
=

= ∑ A
A

                    Eq.3.10 

1

cvn
o

t rC C C Cκ κ
κ =

= + ∑ �                    Eq.3.11 

where 
oCκ = component compressibility 

rC = rock compressibility 

3.2.3 The Energy Balance Equation 

Assuming that energy is only a function of temperature and energy influx in the reservoir 

happens only by advection and heat conduction, the energy balance equation would be in 

the following form: 

( )
1 1

1
p pn n

s vs v p T H LC S C T C u T T q Q
t

φ ρ φ ρ ρ λ
= =

⎡ ⎤ ⎡ ⎤∂
− + + ∇ − ∇ = −⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦

∑ ∑A A A A A A
A A

G G
i             Eq.3.12 

where 

T = Reservoir temperature 

vsC = Soil heat capacity at constant volume, (Q/Tm)  

vC A = Phase A heat capacity at constant volume, (Q/Tm) 

pC A = Phase A  heat capacity at constant pressure, (Q/Tm) 

Tλ = Thermal conductivity, (QL/tT) 

Hq = Enthalpy source term per bulk volume, (Q/tL3) 

LQ = Heat loss to overburden and underburden formations, (Q/tL2) 

 

3.2.3.1 Effect of Temperature on Surfactant Phase Behavior 

 
The results of an extensive literature survey on the effect of temperature on surfactant 

phase behavior are presented in Appendix A. This appendix also contains the physical 

models used in UTCHEM for capturing the effect of temperature on rock/fluid system. 

The correlations used in UTCHEM are validated in this appendix and the resulting 
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conclusion is that these correlations do a great job in modeling the effect of temperature 

on rock/fluid properties (such as oil viscosity) and surfactant phase behavior. 

3.3 Wettability Alteration Models  

Waterfloods in naturally fractured reservoirs have usually very low performances, unless 

the reservoir formation is water-wet and has a high tendency for imbibing the injected 

water. Alkali/surfactants solutions have been used in mixed- and oil-wet formations to 

change the wetting state of matrix rock to more water-wet conditions, thus increasing the 

tendency of the matrix for imbibing the injected water and improve the oil recovery from 

naturally fractured reservoirs (Hirasaki and Zhang, 2004; Adibhatla and Mohanty, 2008). 

Reservoir simulation is required for scale up of the experimental results and feasibility 

study of chemical floods. Most of the commercial and academic reservoir simulators do 

not account for the wettability alteration effect of alkali/surfactants and thus can not 

model chemical floods accurately. It was decided to adopt UTCHEM, the University of 

Texas chemical compositional oil reservoir simulator, to model the effect of wettability 

alteration on relative permeabilities, residual saturations and capillary pressure in the 

matrix rock. This was accomplished in two steps. First a table lookup option was added 

to the simulator to allow input of two or more relative permeability and capillary pressure 

tables, each representing a wetting state of the rock. The appropriate table then was used 

based on the concentration of surfactant in each gridblock (Castillo, 2003). In the second 

approach, which is the subject of this work, two extreme wetting conditions, i.e. initial 

and final wetting conditions are considered. Each wetting state is represented by a set of 

relative permeability, capillary pressure and capillary desaturation curves. Relative 

permeability of each phase is then calculated by interpolating between these two extreme 

wettability conditions using a scaling factor, ω. These methods are described below. 

3.3.1 Table Look up Option Using Tracers 

The first approach to add the capability of modeling wettability alteration was the 

addition of a table lookup option. Using this option, the user can specify the initial and 

altered wetting conditions of the rock. This is done by specifying water and oil relative 

permeability and water-oil capillary pressure tables for each wettability condition as 
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input. Time dependent wettability alteration is modeled using an input threshold value for 

a tracer concentration representing the alkali or surfactant concentration in each 

gridblock. The injected surfactant advances in the reservoir and when its concentration is 

greater than a threshold value specified as an input parameter, the tables for altered 

wetting conditions are used (Castillo, 2003).  

 

This method is a very simple way of modeling wettability alteration and has two 

limitations. First, the wettability alteration is a step function which may not be 

representative of what may happen in the reservoir. In reality, the change in the 

wettability may happen gradually not as a step function. The second limitation is that 

tracer component is used as the wettability modifier and therefore, all the other properties 

of surfactant such as interfacial tension reduction and oil mobilization are ignored. These 

properties of surfactants are important and help the improved oil recovery in naturally 

fractured reservoirs. A more general wettability alteration model was then developed and 

implemented in UTCHEM (Fathi, 2005).  

3.3.2 Wettability Alteration Model Using Surfactants 

This model is based on the effect of surfactant on relative permeability and residual 

saturation of each phase. Two extreme wetting conditions are assumed, original and final 

wetting conditions, and relative permeability of each phase in each gridblock is 

calculated for each extreme case. The relative permeability used for each gridblock, 

which is referred to as actual relative permeability, at each timestep is then obtained by 

interpolation between these two extreme values. The relative permeabilities are 

calculated using Corey-type exponential functions (Fathi, 2005; Delshad et al., 2006). 

The existing relative permeability model in UTCHEM is first discussed. 

 

3.3.2.1 Relative Permeability Model in UTCHEM 

 
Corey relative permeabilities are calculated for each gridblock as shown in Eq.3.13. 

no
r r nk k S= A
A A A          Eq.3.13 
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where A  is water, oil or microemulsion phase, o
rk A  is the relative permeability endpoint for 

phase A  , and nA  is the Corey exponent of phase A  and nS A  is the normalized saturation 

of phase A  calculated by Eq.3.14. 

1

1
p

r
n n

r

S SS
S

=

−
=

− ∑
A A

A

A
A

        Eq.3.14 

where SA is the saturation of phaseA  and rSA is the residual saturation of phase A . As 

mentioned before, in addition to the wettability alteration effect, surfactants also reduce 

the interfacial tension between the oil and aqueous phases and mobilize the oil. This 

effect is modeled by means of a dimensionless group called trapping number, which is a 

combination of capillary number and bond number (Eq.3.15) and can adequately model 

the combined effect of viscous, capillary, and buoyancy forces in three dimensions 

(Delshad, 1990; Delshad et al., 1994; Jin, 1995, UTCHEM technical manual, 2000). 
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     Eq.3.15 

As the surfactant enters a gridblock, interfacial tension is reduced and trapping number is 

increased. Interfacial tension reduction and oil mobilization effect of surfactants, affects 

the residual phase saturations, endpoint relative permeabilities and exponents. 

Mobilization effect on residual phase saturations is modeled in UTCHEM as follows 

(Delshad et al., 1986; UTCHEM technical manual, 2000): 
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+
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A

       Eq.3.16 

where high
rSA and low

rSA are residual saturations of phase A  at high and low capillary numbers 

respectively (given as input parameters), TA  is the input trapping parameter of phase A  

and TN
A
 is trapping number of phaseA Mobilization effects on endpoint relative 

permeabilities are modeled by Eq.3.17 (Delshad et al., 1986; UTCHEM technical 

manual, 2000). 
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higho
rk A and 

lowo
rk A represent the endpoint relative permeability of phase A   at low and high 

capillary numbers respectively. 'rSA , '
low

rSA  and '
high

rSA  correspond to the residual saturations 

of the conjugate phase. Equation 3.18 shows the relative permeability exponents as a 

function of capillary number (Delshad et al., 1986; UTCHEM technical manual, 2000). 
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      Eq.3.18 

where lownA and highnA represent the Corey exponents for low and high capillary numbers 

respectively specified as input parameters. 

 

Another important parameter that is affected by both wettability and IFT, is capillary 

pressure. In UTCHEM, capillary pressure is modeled as follows: 

( )1 pcEom
c pc

ow

P C Sσ
σ

= − A        Eq.3.19 

where pcC  and pcE are user defined endpoint and exponents and omσ  and owσ denote 

oil/ME and oil/water IFTs respectively.  

 

3.3.2.2 Code Modifications to Model Wettability Alteration 

 
Section 3.3.2.1 explains the case when only one wetting state is defined for the entire 

simulation period. To model wettability alteration, two sets of relative permeability, 

capillary pressure, and capillary desaturation curves are required corresponding to each 

wetting state. The existing one-dimensional arrays rS A , 
lowo

rk A , lownA , cP  and TA  were 

changed into two dimensional arrays with the first dimension being equal to the number 

of gridblocks and the second dimension equal to 2 for the two extreme wetting 

conditions. Two flags were defined to assist the user in using this option. The first flag, 

IWALT, indicates if wettability alteration is used (IWALT = 1) or not (IWALT = 0) and 

the second flag (IWALF) enables the user to choose the method of interpolation of 
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relative permeabilities and capillary pressure based on the two extreme wetting 

conditions. In each time step, relative permeability of each phase is calculated for each 

extreme wettability condition using Eqs.3.13 through 3.18 as described above. The actual 

relative permeability and capillary pressure of the gridblock ( actual
rk A and actual

cP ) are then 

obtained by interpolation between these two extreme values based Eqs.3.20 and 3.21 

respectively. 

( )1 11actual final original
r r rk k kω ω= + −A A A       Eq.3.20 

( )2 21actual final original
c c cP P Pω ω= + −       Eq.3.21 

where 1ω and 2ω are the interpolation scaling factors for relative permeability and capillary 

pressure respectively and final  and original  indicate values corresponding to the two 

extreme wetting states, i.e. final and initial wettability states, respectively.  

 

In this work three options are provided for determination of the scaling factors, 1ω  and 

2ω . If the flag for interpolation is equal to zero (IWALF=0) then 1ω  and 2ω  are specified 

by the user as a constant input parameter. Wettability alteration occurs if the 

concentration of surfactant is above CMC in each gridblock. If IWALF = 1, scaling 

factors 1ω  and 2ω  are calculated based on Eq.3.22: 

1 2

ˆ
ˆ

surf

surf surf

C
C C

ω ω= =
+

        Eq.3.22 

where ˆ
surfC and surfC represent the adsorbed and total fluid surfactant concentration 

respectively. This equation was used since it is known that surfactants can alter the 

wettability of the rock by adsorbing on the rock surface (Chillingar and Yen, 1983; 

Anderson, 1986; Lake, 1989; Al-Maamari and Buckley, 2000). Therefore a relationship 

between the amount of surfactant adsorbed on the rock surface and the state of wettability 

alteration of the rock is proposed here. It is obvious that ω should be in the range of zero 

to one and this equation satisfies this condition. Also, it should be noted that when the 

surfactant slug reaches a gridblock, total surfactant concentration in that gridblock starts 

to increase until it reaches a maximum that could be less than or equal to the injected 
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surfactant concentration and then eventually it starts to decrease when the slug passes 

through the gridblock. At the same time, as the surfactant slug reaches the gridblock, the 

amount of surfactant adsorbed by the gridblock increases and reaches a maximum after a 

while and since the adsorption is modeled as an irreversible process here, the adsorbed 

concentration remains at that maximum once the surfactant slug passes the gridblock. To 

a monotonic change with time, the value calculated by Eq.3.22 in each time step is 

compared with the value from the previous time step and the larger value is stored so that 

the historical maximum of 1ω  and 2ω  for each gridblock is used in the interpolation. 

 

FORTRAN subroutine TRAP which calculates the relative permeability and capillary 

pressure curves as a function of trapping number (Eqs.3.13 through 3.18) is called twice, 

calculating the relative permeability and capillary pressure curves of each extreme 

wetting condition. Then WETMODEL subroutine is called where the relative 

permeability and capillary pressure curves are calculated using Eq.3.20 and Eq.3.21 

depending on the value of IWALF flag.  

3.3.3 Wettability Alteration Model Using Other Wettability Modifiers 

The wettability alteration model discussed in Section 3.3.2 (Fathi, 2005) is further 

generalized to wettability modifiers other than surfactants such as pH, salinity, alkali.  

 

When alkali is the wettability alteration agent, IWALF=2 can be used which models the 

alkali as a tracer and when its concentration is greater than a constant threshold value, 

relative permeability and capillary pressure curves are interpolated using constant values 

of 1ω  and 2ω  provided by the user.  

 

If wettability is assumed to be a function of salinity for low salinity waterflood 

applications, then IWALF=3 is used. The scaling factors 1ω  and 2ω  are obtained from 

Eq.3.23 based on the salinity of the gridblock: 

51 51
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−
        Eq.3.23 
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where 51
oC  is the initial salinity of the gridblock at the beginning of the simulation (eq/L), 

51C  is the salinity of the gridblock at any timestep (eq/L) and 5injC  is the injected salinity 

(eq/L). It should be noted that this equation is based on the assumption that initial 

reservoir salinity is greater than injected salinity and in fact the lower salinity of injected 

water is the cause of wettability alteration. This simple correlation for salinity needs to be 

validated against laboratory experiments. 

 

The input flag IWALF is equal to 4 (IWALF=4) allows wettability alteration as a function 

of pH. The user would provide a pH limit as an input parameter and if the pH of a 

gridblock was greater than the provided value, the final wetting relative permeability and 

capillary pressure curves are used instead of the initial wetting curves. The gridblock 

values of pH are calculated using the geochemical options of UTCHEM. 
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Chapter 4: Validation of Wettability Alteration Model of 
UTCHEM 

 
For validation of the implemented wettability alteration model described in Chapter 3, 

two laboratory experiments are modeled using the modified code. The first experiment is 

a static imbibition cell test conducted by Hirasaki and Zhang (2004) and the second is a 

dynamic fracture block experiment conducted at UT Austin (Fathi et al., 2008). Anderson 

(2006) gives the modeling procedure for the imbibition cell test. The match obtained by 

Anderson (2006) is improved in this work and later used to study the effect of matrix 

block size on the oil recovery (Chapter 5). This chapter gives full description of the 

matching procedure and obtained results for each experiment. More important than the 

above, this chapter summarizes some interesting insights obtained from the modeling of 

the experiments. 

4.1 Modeling Wettability Alteration in a Static Imbibition Cell Test 

4.1.1 Description of the Experiment 

Hirasaki and Zhang (2004) used formation brine, crude oil and core samples of a 

dolomite formation (Yates field) to conduct several imbibition cell tests. This formation 

is preferentially oil-wet (Yang and Wadleigh, 2000) and Hirasaki and Zhang (2004) 

tested many alkaline/surfactant solutions to find the best design for the rock/fluid 

combination of the target reservoir. Since the carbonate formations are positively charged 

at low pH values, the adsorption of anionic surfactants used by Hirasaki and Zhang 

(2004) is very high at low pH values. To solve this problem they used an alkali (sodium 

carbonate) to increase the pH. They report that addition of the alkali changed the surface 

charge of the carbonates at high pH values and reduced surfactant adsorption to a great 

extent. Anderson (2006) modeled several experiments performed at Rice University 

besides the specific experiment discussed in this chapter. The results of some of these 

modeling are included in the final DOE report submitted by Hirasaki et al. (2004). 
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In this work, an attempt was made to improve the history match of one of the 

experiments as a validation of the wettability alteration model of UTCHEM. Table 4.1 

summarizes the core and fluid properties of the experiment. The core sample was oil 

flooded to residual water saturation and aged for 24 hours at 80 °C. Oil recovery was 

measured by placing the oil-saturated core in an imbibition cell test filled with either 

formation brine or alkaline/ surfactant solution (Fig. 4.1). The surfactant solution was a 

mixture of 0.025 wt% CS-330 (C12-3EO-sulfate) and 0.025 wt% TDA-4PO-sulfate (C13-

4PO-sulfate) with 0.3 M sodium carbonate added to reduce the surfactant adsorption.  

 

The driving forces include capillary pressure and buoyancy. Spontaneous imbibition did 

not occur when partially oil saturated dolomite core samples were placed in a cell test 

filled with brine for one to two weeks (Fig. 4.1). This is another confirmation of the 

preferentially oil-wet nature of the matrix core. The formation brine was then replaced 

with the alkaline/surfactant solution. There was significant spontaneous imbibition when 

the brine was replaced by the alkaline/surfactant solution. The buoyancy driven gravity 

drainage was reported to be the dominant recovery mechanism rather than counter current 

capillary imbibition. This was supported by the appearance of oil on the top of the core 

rather than the sides of the core. The initial oil saturation was 0.68. The experimental 

cumulative oil recovery was about 44% of the original oil in place (OOIP) as shown in 

Fig. 4.2. The oil was recovered in about 138 days.  

4.1.2 Modeling Approach 

A 3D numerical model was set up to simulate the experiment and validate the wettability 

alteration model. A homogeneous Cartesian grid with 7x7x7 gridblocks was set up to 

simulate both the rock and fluids in the cell surrounding the core. A 5x5x5 portion of the 

middle grids was given petrophysical properties representing the rock (Table 4.2) and the 

remaining gridblocks were given properties representing the imbibition cell (i.e. porosity 

of one, permeability of 1,000 D, and zero capillary pressure). Figure 4.3 shows a vertical 

cross section through the center of the model. This figure shows the initial surfactant 

concentration for the imbibition simulation where the blue region (zero initial surfactant 
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concentration) is the “rock gridblocks” and the red region (0.05% initial surfactant 

concentration) is the “non-rock gridblocks.” 

 

Table 4.1 shows the porosity, permeability, and initial oil saturation and Table 4.2 gives 

the relative permeability and capillary pressure parameters of the rock gridblocks 

obtained from matching the experiment. The difficulty of this simulation model is that it 

does not have any wells to induce flow, the convective fluxes are extremely small, and 

there are extreme property changes between rock and non-rock gridblocks. 

 

Figure 4.4 shows the capillary desaturation curves that result from the parameters of 

Table 4.2. One should note that, it is harder to mobilize the oil if the rock is oil-wet since 

the CDC curve of the oil is more to the right in this case which means that the IFT needs 

to be reduced to lower values (higher trapping numbers) in order to mobilize the oil. The 

oil CDC is shifted to the left when the system becomes water-wet resulting in easier 

mobilization of the oil (Fig.4.4).  

 

Figure 4.5 shows the relative permeability exponents obtained from the match (Table 4.2) 

as trapping number increases based on Eq.3.17. Based on Fig. 4.5, the relative 

permeability end point is lower for the wetting phase. This is in agreement with the 

findings of literature as mentioned in Chapter 2. The wetting phase tends to be in contact 

with the rock surface and thus occupies the smaller pores. This limits the mobility of the 

wetting phase and results in lower relative permeability endpoints for that phase. 

 

Figure 4.6 shows the relative permeability exponents (Table 4.2) as a function of trapping 

number as described by Eq.3.18. The relative permeability exponents obtained by 

matching the experiment are also consistent with the findings in the literature; if a phase 

is the wetting phase, then it has a high relative permeability exponent which means that it 

would have a low relative permeability at each value of normalized saturation based on 

Eq.3.13 since normalized saturation is bounded by 0.0 and 1.0.  
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Figures 4.7, 4.8 and 4.9 show the actual relative permeability curves generated by the 

input of Table 4.2 for each of the water and oil phases at three different trapping 

numbers. In each of these figures, the relative permeability curves are given for three 

wetting conditions: water-wet, oil-wet and mixed-wet. The mixed-wet curves are 

resulting from interpolation between the water-wet and oil-wet curves using ω1=0.5 

(option of IWALF=0). It is interesting to observe the shift in the relative permeability 

curves as trapping number increases. At low trapping number of 10-7 (Fig. 4.7), the 

relative permeability curves are curved with high residual phase saturations. As the 

trapping number increases (Figs. 4.8 and 4.9), the curvature of the relative permeability 

curves decreases. This is due to the fact that based on Fig. 4.6, the relative permeabilities 

become straight lines (a value of 1.0 is used for Corey exponent at high trapping number) 

as trapping number increases. The relative permeabilities increase as trapping number 

increases for entire range of water saturation (Figs 4.7, 4.8, and 4.9). This is due to the 

increase in the relative permeability endpoint as a function of trapping number as 

described in Fig. 4.5.  

 

Capillary forces are the main reason for trapping of the oil in the core plug at its initial 

preferentially oil-wet condition (Hirasaki and Zhang, 2004). Figure 4.10 shows the 

capillary pressure curves obtained from the input parameters of Table 4.2 for the initial 

and final wetting states and for wettability alteration using ω2=0.5. The resulting capillary 

pressure curve from the wettability alteration model is mixed-wet with positive and 

negative values. This curve shows a zero capillary pressure at water saturation of 0.52.  

 

An initial simulation was run to determine the oil recovery based on an assumption that 

the wettability is not altered from the original oil-wet conditions. This simulation only 

models the effect of surfactant and soap on interfacial tension reduction and oil 

mobilization. Surfactant concentration in gridblocks representing the oil-wet core initially 

increases primarily due to an effective molecular diffusion and impacts the onset of oil 

being produced from the core but very little impact on final oil recovery. An effective 

molecular diffusion/dispersion of 6.5x10-5 ft2/d was used in the simulation. Based on 
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published data of Lam and Schechter (1987) and others, the expected surfactant 

molecular diffusion would be several magnitudes smaller than was simulated. Therefore, 

the value presented here can be described as a pseudo diffusion/dispersion coefficient. 

 

Once the surfactant concentration within a gridblock exceeds the critical micelle 

concentration, microemulsion is formed, interfacial tension is reduced, and capillary 

pressure is reduced to zero. This process allows for slow imbibition of surfactant solution 

and oil displacement. The results are given in Fig. 4.11 where the maximum oil recovery 

is about 24% OOIP with at least an order of magnitude slower imbibition rate compared 

to the experimental results. Based on this result, it is clear that additional mechanisms are 

taking place to enhance the oil recovery. 

 

Next, the enhanced simulator was used to model combined interfacial tension reduction 

and wettability alteration effects of surfactant/alkali solution on oil recovery. It was 

assumed that the final wettability condition was water-wet with relative permeability and 

capillary pressure parameters as shown in Table 4.2. The option of IWALF=0 (wettability 

alteration based on surfactant concentration with user defined constant scaling factors) 

was used for modeling this experiment and both of the interpolation scaling factors for 

this simulation were assumed to be a constant value of 0.5. A fairly good agreement 

between the simulated and experimental oil recoveries are obtained as shown in Fig.4.11. 

The distribution of surfactant concentration and oil saturation are given in Figs. 4.12 and 

4.13 after 10 days of imbibition. There is a good agreement between the surfactant 

concentration and oil saturation as shown in Figs. 4.12 and 4.13. The rock gridblocks 

with higher surfactant concentration have lower oil saturation. These two figures also 

indicate the role of gravity in the oil recovery from the core plug. The rock gridblocks in 

the lower parts of the core have smaller oil saturations due to gravity drainage of the oil. 

The result with wettability alteration gives a much better agreement with the laboratory 

data than the case without wettability alteration. The simulation with wettability 

alteration has a faster response to oil production and a higher cumulative oil recovery. 

This is due to the increase in oil relative permeability and initial change in capillary 
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pressure from negative to positive during the wettability alteration process. Therefore, 

more surfactant solution is imbibed into the rock gridblocks displacing more oil before 

the interfacial tension reduction decreases the capillary pressure to zero. Alteration of the 

wettability towards more water-wet conditions increased the mobility of the oil and its 

final recovery and recovery rate as shown in Fig. 4.11. Successful modeling of this 

experiment validates the wettability alteration model and its implementation in UTCHEM 

for the spontaneous imbibition test.  

 

Chapter 5 presents results of scale up study based on this experiment.  

4.2 Modeling Wettability Alteration in a Fractured Block 

The Fractured Block experiment was performed at The University of Texas at Austin in 

the Petroleum and Geosystems Engineering Department. The experiment was carried out 

by Dr. Q. P. Nguyen and his Post Doctoral Fellow, J. Zhang. This section describes the 

details of the experiment and the details and steps taken in modeling it using the 

enhanced UTCHEM simulator with the wettability alteration model.  

 

After modeling the experiment, the matching parameters are used to investigate the effect 

of various design and reservoir parameters on oil recovery. Chapter 5 gives the results of 

scale up study using the conditions of this experiment. 

4.2.1 Experimental Description and Results 

The experiment was designed to aid in a better understanding of mechanisms occurring in 

flow of fluids such as alkali and surfactant in naturally fractured formations. The 

experiment can also improve our understanding of the relative importance of capillary, 

viscous, and buoyancy forces. Alkali agent was used as a wettability modifier and 

surfactant solution was used to lower the interfacial tension and enhance oil recovery by 

oil emulsification (Fathi et al., 2008).  
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The matrix rock used in this study was Texas cream limestone. The crude oil was 

McElroy oil and the alkali was sodium metaborate. Oil viscosity and density at 30 °C are 

10 Pa.s and 843.8 kg/m3 respectively.  

 

Nine Texas cream cores of 3′′ x 1′′ x 1′′ were placed together following the pattern shown 

in Fig. 4.14. Each of these blocks was cut precisely to the mentioned dimensions from a 

larger block of outcrop. The composite fractured block was 9′′ long, 3′′ wide, and 1′′ high 

and was placed horizontally as shown in Fig. 4.14. The fracture aperture was not constant 

and measurable and was much less than 1 mm Two end caps were designed to distribute 

injected fluids uniformly over the entire end face of the block (Fig. 4.14). The entire 

rock-end cap assembly was coated with epoxy to ensure fixed placement of the cores and 

consistent fracture aperture during the experiment. The core was then saturated with 

crude oil as follows. First the block outlet was closed and the air from the setup was 

evacuated for 3 hours. An under-pressure of smaller than -13 psi was obtained. The setup 

maintained its under-pressure even after the vacuuming was stopped for preparation of 

the saturation stage. This indicated that the setup was free of any leaks. Crude oil and 

water were then injected at a constant volumetric fraction of 95% oil and 5% water. The 

block outlet remained closed during the injection until the pressure inside the block was 

higher than atmospheric pressure as indicated by a pressure transducer. The injection was 

then continued with the open outlet for 7 days and oil and water were produced. The 

production volumetric ratio was different than that of the injection for a transient period 

(about three days) and after that the system reached the steady state and the injected and 

produced ratios were identical. The experimental setup was flipped every half a day to 

eliminate any gravity segregation. The pore volume of the rock was 120 ml, determined 

by measuring its mass change before and after oil saturation. Material balance methods 

are more precise compared to volumetric calculations. Due to variable fracture apertures 

and unknown matrix heterogeneity, there is a relatively large uncertainty in the pore 

volume calculated by volumetric methods. Using a matrix porosity of 0.3 and fracture 

aperture of 1 mm, one can calculate the pore volume of the setup to be 133 ml which is 

close to the value obtained by material balance method. It should be noted that the 
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porosity of the matrix rock may not be uniformly 0.3 and the fracture aperture is variable 

and much less than 1 mm at some points. Therefore the pore volume obtained by material 

balance is more reliable and was used in the modeling. The block then underwent the 

aging process with crude oil at 40ºC for 3 weeks. It was cooled down to room 

temperature before starting the first fluid injection stage.  

 

Figure 4.15 shows the oil recovery for the three different fluid injection steps. Injection of 

4.8 wt% NaCl solution at 5 ml/hr resulted in an ultimate recovery of about 15% OOIP. 

As shown in Fig. 4.15, during the first few hours of waterflood, no oil was produced from 

the setup. This delay was due to the volume of the tube connecting the fracture block 

setup to the sample collection unit. This was not properly communicated to the modeling 

group at the time of modeling of the experiment. Next, water containing 1 wt% sodium 

metaborate (NaBO2) and 3.8 wt% NaCl injected at the same rate mobilized additional 

15% OOIP. The producing oil cut was reduced to zero at the end of the alkaline flood. A 

mixture of alkali/surfactant was then injected at the same flow rate, rendering incremental 

recovery of 6% OOIP (Figure 4.15). The surfactant solution contained 1.5 wt% 

PetroStep®S-1 and 0.5 wt% PetroStep®S-2, 2 wt% secondary butanol as co-solvent, 1 

wt% sodium metaborate, and 3.8 wt% NaCl. This surfactant formulation formed a 

microemulsion with the crude oil which exhibits an IFT of 0.0008 mN/m. It is important 

to note that the pressure gradient was around 0.8 psi/ft throughout the experiment. This 

pressure gradient corresponds to the pressure difference at the inlet and outlet of the 

setup. 

4.2.2 Modeling the Fractured Block Experiment 

The main assumptions for modeling this experiment are as follows: 

• During the waterflood, the flow is dominated by capillary pressure. The initial 

mixed-wet nature of the rock creates both positive and negative capillary pressure. 

The negative capillary pressure traps a large amount of oil in the matrix.  

• After the introduction of alkali solution, the wettability of the matrix rock is 

altered towards water-wet conditions and this causes a shift in the petrophysical 



 61

properties such as relative permeability and capillary pressure. Capillary pressure 

becomes positive and oil is expelled under capillary and viscous forces. 

• During the alkali/surfactant flood, the IFT is reduced to ultra low values causing 

the following changes in petrophysical properties: 

o Residual saturations of oil, water, and microemulsion decrease 

o Relative permeability curves becomes more linear for all three phases 

o Capillary pressure diminishes 

 
4.2.2.1 Base Case Simulation Model 

 
A 3D discrete fracture model consisting of 6 fractures was used (Fig.  4.16). Two of these 

fractures are parallel and four are perpendicular to the flow direction. The end caps were 

modeled as fractures and the injection and production wells were placed in these 

openings to model the same conditions as the experiment. The matrix gridblock size was 

1/3′′ x 1/3′′ x 1/3′′. Fracture aperture was 1 mm (0.039372''). Third order finite difference 

method (Liu et al., 1994) is used in these simulations that reduces the numerical 

dispersion to a great extent and eliminate the instabilities caused by abrupt changes in 

grid size. Sensitivity of the results to the matrix block size is presented later. Fracture 

gridblocks are assumed to have a porosity of 1 as opposed to 0.298 for matrix blocks 

(based on laboratory material balance). Fracture permeability was used as a matching 

parameter since the fracture aperture was not measured precisely and was variable 

throughout the setup. A uniform and isotropic matrix permeability of 3.36x10-14 m2 (34 

md) was used based on laboratory measurements. Figure 4.16 shows the 3D view of the 

permeability distribution in the base case simulation model. A uniform initial saturation 

was assumed based on the measured values. Table 4.3 summarizes the base case 

simulation parameters. 

 

4.2.2.2 Modeling the Waterflood Part of the Experiment 

 
As mentioned above, waterflood part of the experiment is dominated by capillary forces 

and a correct estimation of capillary pressure and relative permeability is essential for 
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modeling of this part. Based on laboratory measurements the initial wetting state of the 

rock was mixed-wet. This is essential information for choosing the initial relative 

permeability and capillary pressure curves. Fracture relative permeability curves are 

expected to be higher and more linear compared to those for the matrix. Residual 

saturations in the matrix were assumed to be higher than those in the fractures. Since the 

waterflood experiment is governed by capillary forces, a reasonable estimate of initial 

capillary pressure endpoint is essential. The fracture capillary pressure is assumed to be 

zero. To get an initial estimate of the matrix capillary pressure, Carman-Kozeny 

correlation (Eq.4.1) and a cylindrical tube capillary pressure (Eq.2.3) were used.  

8kR
φ

=           Eq.4.1 

where k is the permeability, φ is the porosity, and R is the average pore throat radius. 

Eq.4.1 gives an average pore throat radius of 0.95 μm for matrix blocks. Using an 

oil/water IFT of 30 mN/m (based on laboratory measurements using the ring method) and 

a contact angle of 86º, capillary pressure of 0.6 psia is obtained using Eq.2.3. It should be 

noted that this is only an initial guess on the endpoint value of the capillary pressure 

curve. The capillary pressure curve is one of the most important and uncertain matching 

parameters in this study and the final curve obtained from the history matching is shown 

in Fig. 4.17.  

 

Table 4.4 summarizes the relative permeability and capillary pressure parameters and 

Fig. 4.17 shows the resulting relative permeability and capillary pressure curves used for 

modeling the waterflood experiment. These curves represent the initial mixed-wet state of 

the matrix rock. Figure 4.18 indicates an excellent match of waterflood oil recovery data. 

This figure captures the initial time of the experiment where no oil production is 

observed. It also gives a reasonable match of the oil recovery and oil recovery rate (slope 

of the recovery curve) at all times during the waterflood. 

 

The negative capillary pressure (Fig. 4.17) is the main reason for holding oil in place and 

the plateau oil recovery at the end of the waterflood (Fig. 4.18). As water saturation 
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increases in a gridblock, the capillary pressure decreases until it reaches zero at the water 

saturation of 0.41. This is referred to as the critical water saturation where the capillary 

pressure sign changes at this saturation. The water saturation would still increase as the 

viscous pressure gradient forces more water into the gridblock, but from then on, the 

capillary pressure would become negative and grow more negative as water saturation 

increases. Eventually the gridblock reaches a point where the viscous pressure gradient of 

water is as large as the existing negative capillary pressure and causes the oil production 

to cease. Figures 4.19 and 4.20 show oil saturation and pressure profiles viewed from the 

top in the middle layer during the waterflood. The following observations were made: 

• The capillary imbibition of the injected water occurs uniformly across the 

simulation domain. To illustrate this phenomenon, the oil saturation distribution 

after 1.9 days of static (no viscous pressure gradient) imbibition simulation with 

the same model parameters is presented in Fig. 4.21. It should be noted that the 

range of the color scale has been modified in this figure to better visualize the 

saturation gradient. The white parts of the graph fall out of the visualized range.  

• Pressure gradient decreases with time.  

• The water saturation front moves much slower in the matrix compared to the 

fractures. 

• There is a significant difference between oil saturation in matrix cells on either 

side of a fracture perpendicular to the flow direction. This is due to directions of 

imbibition and viscous forces. For the cells on the left of the fracture, the 

imbibition happens in the opposite direction of the bulk flow but for the cells on 

the right of the fracture these two phenomena happen in the same direction. As a 

result the oil saturation of the cell on the right side of the fracture is higher 

compared to the cell on the left. 

• After 1.9 days (0.7 PV) of waterflood, water saturation becomes nearly uniform 

and at critical water saturation and the remaining oil is held in the matrix by the 

capillary forces (Fig. 4.19). 

• In Fig. 4.19, the oil saturation in the fractures (especially the ones in Y direction 

or perpendicular to flow direction) is higher than that of matrix. This may be 
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explained by two phenomena, one an artifact of the experimental setup and one an 

artifact of numerical simulation. The viscous gradient pushes the oil forward and 

to the boundaries of the setup due to the presence of two high conductivity 

fractures in the direction of flow (X direction). Since the fractures in the Y 

direction are dead ends, the only way for transport of material from these fractures 

is transportation in the X direction (the viscous gradient in the Y direction pushes 

towards the dead end). This causes accumulation of oil transported from the X 

direction fractures in Y direction fractures and this is an artifact of the 

experimental setup. Another factor causing this accumulation is an artifact of 

numerical simulation and is related to transmissibility calculations. Figure 4.22 

shows that for the range of saturations in the matrix blocks for matrix cells at 

initial wetting state, oil relative permeability is much lower than water relative 

permeability. On the other hand Fig. 4.23 shows that for the same range of 

saturations, oil relative permeability is comparable to water relative permeability 

in the fractures. This means that due to upstream waiting of transmissibilities, 

transport of oil from the matrix into the fractures is easy and transport of oil from 

the fractures into the matrix is hard. So the oil is accumulated in the fractures and 

oil saturation in the fractures increases. 

• The experiment was conducted under a low pressure gradient of less than 1 psi/ft 

and the simulation pressure gradient is in agreement with the experimental data 

(Fig. 4.20). This along with the close match of oil production indicates that the 

numerical model captures the basic mechanisms involved in the waterflooding 

experiment of the mixed-wet fractured block. 

 

4.2.2.3 Modeling the Alkali Flood Part of the Experiment 

 
In order to produce the trapped oil in the matrix at the end of the waterflood, one needs to 

overcome the capillary forces responsible for trapping the remaining oil in the matrix. 

One approach is to change the wetting state of the rock towards more water-wet 

conditions using a wettability modifying agent such as an alkaline solution. A water-wet 

rock exhibits a positive capillary pressure and can imbibe water spontaneously. The 
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relative permeability curves become more favorable in a water-wet rock where water 

mobility decreases whereas oil mobility increases. Sodium metaborate was used in this 

work to alter the wettability towards more water-wet conditions.  

 

To model the alkaline flood part of the experiment, the previous relative permeability and 

capillary pressure curves are preserved and assumed to correspond to initial wetting state 

of the rock. A second set of relative permeability and capillary pressure curves 

representing the altered wetting state are introduced. The wettability alteration model is 

used and the IWALF=2 option is activated. This option models the wettability alteration 

based on concentration of a tracer which is assumed to be the wettability alteration agent. 

The values of the scaling factors are assumed to be ω1=ω2=0.5. Table 4.5 gives the 

water-wet relative permeability and capillary pressure parameters. Figure 4.22 compares 

matrix relative permeability curves for initial and final wettability conditions. The initial 

wetting curves (solid curves in Fig. 4.22) cross at a water saturation of 0.34 whereas the 

final wetting curves cross at a water saturation of 0.60. Another important difference 

between the two curves is the endpoint relative permeabilities. The oil endpoint of the 

initial wetting (mixed-wet) is smaller compared to the final wetting (water-wet) and visa 

versa for the water endpoints. These are consistent with the fact that at water-wet 

conditions the mobility of the oil increases. Figures 4.23 and 4.24 give the fracture 

relative permeability and matrix capillary pressure curves respectively. A Comparison of 

Figs. 4.22 and 4.23, indicates that the fracture relative permeability curves  have smaller 

curvature and higher endpoints for each phase and wetting state compared to the matrix 

curves. This honors the fact that fluid flow in the fractures is much easier than the matrix 

due to the nature of the fractures. It should also be noted that we do not assume straight 

line relative permeability curves for the fractures at low capillary numbers (Fig. 4.23). 

This honors the fact that the fractures are not ideal slits and the relative permeability 

curves may not be straight lines due to the roughness of the fracture walls which creates a 

tortuous pore space. Figure 4.25 shows a very good match obtained for the water and 

alkaline flood part of the experiment using the relative permeability and capillary 

pressure curves of Figs. 4.22, to 4.24. Figure 4.26 shows the quality of the match for the 
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alkali flood part of the experiment for a better comparison. This match is considered very 

good since the oil recovery and oil recovery rate are estimated by the numerical model to 

a great extent at each time during both the water and alkali flood stages. 

 

Figures 4.27 and 4.28 show the oil saturation distribution in the middle layer of the model 

during the alkaline flood and the corresponding normalized alkaline concentration, 

respectively. The color scale of Fig. 4.27 is chosen to be the same that of Fig. 4.19 for 

consistency. It is clearly seen that the oil is swept from the regions flooded by the alkali. 

We assume zero physical dispersion and molecular diffusion for the alkali at this point. 

The sensitivity of the simulation results to molecular diffusion is presented later in the 

Section 4.2.3.4. The gridblocks near the boundaries and farther from the fractures, which 

are not swept by the alkali, still have high remaining oil saturation. Most of the injected 

alkali is produced quickly from the X direction fractures and very small portion is forced 

into the matrix blocks by viscous forces (Fig. 4.28). As a result of this, at the end of alkali 

flood (after 1.68 PVs of alkali injection) only about 1/3 of the matrix blocks have been 

effectively flooded by alkali (Fig. 4.28C). Therefore, it is the best practice to start the 

alkali flood at the early stages of the secondary recovery from naturally fractured rocks in 

order to take advantage of the small capillary gradients due to mixed-wet or intermediate 

wetting state of the rock and push as much alkali as possible into the matrix for a more 

effective wettability alteration and oil recovery. The sensitivity of oil recovery to 

injection scenario is presented later in this chapter. 

 

Figure 4.29 gives the pressure profiles which indicate a very low pressure gradient 

compared to those observed during waterflood simulations (Fig. 4.20). The color scale of 

Fig. 4.29 is kept the same as that of Fig. 4.20 for consistency.  

 

4.2.2.4 Modeling the Alkali/Surfactant Flood Part of the Experiment 

 

Although the alkali leads to an additional 15% oil recovery after the waterflood by virtue 

of the wettability alteration of the matrix, it cannot reduce the IFT and produce the 
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trapped oil held in place by capillary forces. At the end of alkali flood a large amount of 

trapped oil is present in the matrix. Injection of a surfactant solution can reduce the 

oil/water IFT and recover the residual oil by both solubilization and mobilization. Alkali 

is still injected in the surfactant solution for its original purpose of wettability alteration 

as well as to reduce surfactant adsorption and maintain the same salinity as the alkaline 

flood (1 wt% sodium metaborate, and 3.8 wt% NaCl) for consistency. 

 

Laboratory measured surfactant phase behavior data were used to tune the surfactant 

phase behavior model in UTCHEM and obtain the simulation parameters. Table 4.6 

presents phase behavior input parameters. 

 

The relative permeability and capillary pressure used in matching waterflood and alkaline 

flood were still representative for modeling the surfactant/alkali experiment. Therefore, 

matching parameters for the surfactant flood were capillary desaturation curves to model 

the impact of interfacial tension or more generally trapping number on relative 

permeability and capillary pressure (Eq.3.15) gives the definition of trapping number 

used in UTCHEM). Figure 4.30 shows the capillary desaturation curves (residual 

saturation as a function of trapping number) used to match the alkali/surfactant flood. 

 

As surfactant reduces the oil/water IFT, trapping number (Eq.3.15) increases and residual 

phase saturations are mobilized as described by capillary desaturation curves of Fig. 4.30. 

Delshad et al. (2006) discuss the effect of trapping number on residual phase saturations 

and the way it is modeled in the UTCHEM simulator. Figure 4.31 shows the comparison 

of simulation results and experimental oil recoveries for all of the three stages of the 

experiment. Figure 4.32 shows the quality of the match obtained for the alkali/surfactant 

part of the experiment. As shown in this figure, the model can match the measured oil 

recovery to a great extent demonstrating that the numerical model captures the physics of 

the experiment. Figure 4.33 gives oil recovery results as a function of pore volumes fluid 

injected. As shown in this figure, about 3.15 PVs are injected into the fractured block 

during the whole experiment. This is close to what may happen in reality for a reservoir 



 68

and this makes the results much more interesting and practical. Figure 4.34 shows the oil 

saturation profile during alkali/surfactant flood. Figure 4.35 shows the normalized alkali 

concentration profiles where most of the fractured block is flooded with alkali by the end 

of the experiment. Figure 4.36 gives the surfactant concentration distribution. 

Comparison of Figs. 4.34 and 4.36 shows that the gridblocks swept by surfactant have 

lower oil saturations compared to those with no surfactant. After 1.2 PVs of surfactant 

injection, the surfactant has invaded a relatively small portion of the rock volume because 

of low mobility of viscous surfactant-rich microemulsion phase and large permeability 

contrast between the fracture and matrix. Figure 4.37 shows the oil pressure profiles 

indicating that high microemulsion viscosity (a maximum of 20 Pa.s compared to 10 and 

1 Pa.s for oil and water respectively) causes a slightly higher pressure gradient compared 

to the alkaline flood (Fig. 4.29). These results indicate a very important aspect of 

surfactant flooding of naturally fractured formations and that is the need for mobility 

control. Similar to the surfactant flooding in conventional single porosity formations, we 

need a mobility control agent such as foam for improved sweep efficiency.  

4.2.3 Sensitivity Studies  

After history matching the experimental results and calibrating the model to represent the 

experiment, several sensitivity studies are performed. The goal of these studies is to 

examine the importance of key process design parameters including injection strategies, 

injection rate and fracture/matrix permeability ratio and simulation model parameters 

such as grid size and molecular diffusion. 

 

4.2.3.1 Grid Refinement 

 
Although UTCHEM has a higher order numerical scheme that minimizes the numerical 

dispersion (Liu et al., 1994), we still performed a grid refinement study to ensure that the 

grid sizes are adequate for the chemical flooding simulations. Gridblock sizes were 

reduced from 1/3'' x 1/3'' x 1/3'' in the base case simulation to 1/6'' x 1/6'' x 1/6''. Figure 

4.38 compares the results with those of the base case and laboratory. The difference 

between the base case and the mesh refinement case was relatively small.  
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The finer mesh predicts a slightly smaller final oil recovery compared to the base case 

(Fig. 4.38). This may appear to be counter intuitive since smaller grid sizes means 

smaller numerical dispersion which results in sharper fronts and higher oil recoveries. It 

is important to notice that the above conclusion is only relevant for conventional single 

porosity and permeability reservoirs and may not be true for fractured reservoirs. The 

main problem with fractured systems is vast permeability contrast between the fractures 

and matrix which limits transportation of injected fluids into the matrix. Coarser grids 

(more numerical dispersion) help in this case and make this transport easier. Hence, in 

simulation of fractured reservoirs the finer the grid is the lower the recovery will be 

obtained. 

 

4.2.3.2 Injection Scenario 

 
We explored different injection scenarios and compared the results with oil recovery 

obtained in the laboratory experiment. Figure 4.39 compares the oil recovery results for 

(1) alkaline flooding with no pre-waterflood (AF only), (2) alkaline/surfactant flooding 

from the beginning (ASF only), and (3) Alkaline flood from the beginning followed by 

alkaline/surfactant flooding with no pre-waterflood (AF + ASF). If alkali is injected from 

the beginning of the experiment, the initial oil recovery is much higher compared to the 

results of the base case (Fig. 4.39). The reason is obvious; the sooner the alkali is 

injected, the sooner the wetting state of the rock is altered to water-wet and the sooner the 

trapped oil is expelled from matrix to fractures. Injection of alkali/surfactant solution 

from the beginning would result in a faster recovery and greater final oil recovery 

compared to the base case (about 9% OOIP). The incremental oil is about 11%OOIP 

compared to the alkali only flood (AF). These results need to be further evaluated for 

economic feasibility of each process for field scale operations.  
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4.2.3.3 Injection Scenario 

 
Several simulations were performed with different fracture permeability than that used in 

the base case. It is expected that as fracture/matrix permeability contrast increases, the 

residence time of the injected fluid in the reservoir decreases as well as the performance 

of the flood. Figure 4.40 shows that the slope of the recovery curve increases as the 

fracture/matrix contrast decreases. 

 

4.2.3.4 Effective Molecular Diffusion Coefficient 

 
In the base case, the molecular diffusion coefficients of both surfactant and alkali were 

assumed to be zero. A simulation was performed where a relatively large effective 

molecular diffusion coefficient of 9.3x10-5 ft2/day was used for both surfactant and alkali. 

Figure 4.41 shows that molecular diffusion has very negligible effect on the oil recovery. 

 

4.2.3.5 Injection Scenario 

 
The laboratory experiment was performed with constant rate injection and constant 

pressure production. The sensitivity of the results to injection rate is studied by changing 

the injection rate to half, twice, 5 times, and 10 times the original experimental flow rate. 

For the purpose of comparison, the pore volumes injected were the same as the 

experiment in order to maintain similar chemical mass. Figures 4.42 and 4.43 show 

similar final oil recovery despite the injection rate used. The higher injection rates, 

however, reduce oil recoveries of water and alkaline flood due to shorter residence times. 

The waterflood part of the experiment is dominated by capillary forces. The capillary 

forces also dominate the flow in cells affected by alkali and undergone the wettability 

alteration during the alkali flood. The residence time is very important in capillary 

dominated flow since more residence time means more time for capillary imbibition to 

occur which results in higher oil recoveries. The surfactant flood appears to be more 

effective as injection rate increases but this is the result of higher remaining oil saturation 

after the alkaline flood. 
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4.3 Summary and Conclusions 

1. Sequential injection of water, alkaline, and surfactant/alkaline in a mixed-wet 

fractured carbonate block was performed. High waterflood residual oil saturation 

was drastically reduced by injection of sodium metaborate as a wettability 

modifier. 

2. Residual oil saturation remained after the alkali injection was further reduced by 

injection of a surfactant solution due to ultra-low interfacial tension and oil 

mobilization.  

3. Experimental results were successfully modeled using UTCHEM with a 

wettability alteration model.   

4. A combination of ultra low interfacial tension of surfactant solution and 

wettability alteration of sodium metaborate has a great potential in recovering 

significant bypassed oil from mixed wet fractured carbonates. The main recovery 

mechanisms are wettability alteration, interfacial tension reduction, 

emulsification, and oil mobilization.  

5. In a field application, it is very important to inject the chemicals before the critical 

water saturation is reached. The reason is the lack of any considerable gradient for 

transport of the chemicals into the matrix after the viscous forces are balanced 

with negative capillary forces.  

6. Dynamic laboratory experiments and modeling are required to evaluate chemical 

floods for naturally fractured reservoirs. Imbibition cell experiments are not 

representative of the field operations and lack the viscous forces that may play a 

critical role in the design of field applications and scale up studies from laboratory 

to field scale. 
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Table 4.1: Core Properties of Imbibition Experiment performed by Hirasaki and Zhang (2004) 

Diameter (in) 1.5 
Length (in) 3 
Porosity (%) 24 
Permeability (md) 122 
Brine 5.815 g/l NaCl 
Crude oil viscosity, cp 19 
Initial oil saturation 0.68 
Aging 24 hr at 80 °C  
Time in brine (days) 8 
Oil recovery in brine (%OOIP) 0 
Surfactant CS-330+ TDA-4PO 
Surf. conc (wt%) 0.025+0.025 
Na2CO3 (Molar) 0.3 
Time in surf (days) 138 
Oil recovery in surf (%OOIP) 44 
Remaining oil saturation 0.38 

 
Table 4.2: Relative Permeability and Capillary Pressure Parameters (Imbibition Cell Test Simulation) 

Oil-Wet Water-Wet  
Oil Water Oil Water

Residual saturation 0.28 0.12 0.25 0.12 
Endpoint relative permeability 0.80 0.56 1 0.26 
Relative permeability exponent 3.3 1.4 1.3 3 
Trapping parameters (Tℓ) 1,000 20,000 1,500 200 
Capillary pressure endpoint (CPC) -15 7 
Capillary pressure exponent (EPC) 6 2 
Wettability scaling factor (ω) 0.5 

 
Table 4.3: Simulation input parameters for base case model of fracture block experiment 

Simulation Parameters Matrix Fracture 
Grid 31x11x3 
Grid size (m) 0.085 0.001 
Porosity 0.298 1 
Permeability (m2) 3.36x10-13 1.97x10-10 
Initial water saturation 0.14 0.99 
Flow rate (m3/day) 5.66x10-6 
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Table 4.4: Relative permeability and capillary pressure parameters corresponding to initial wetting used for 

modeling the waterflood part of Fracture Block experiment. 

Simulation Parameters Matrix Fracture 
Residual water saturation 0.1 0.05 
Residual oil saturation 0.4 0.35 
Water rel. perm. endpoint 0.3 0.4 
Oil rel. perm. endpoint 0.4 0.6 
Water rel. perm. Exponent 2 1.5 
Oil rel. perm. Exponent 3 1.8 
Wettability  Mixed-wet Mixed-wet 
Positive capillary pressure endpoint (psia) 0.3 0 
Negative capillary pressure endpoint (psia) -0.43 0 
Capillary pressure exponent 3 0 
Water saturation at zero capillary pressure 0.41 0 

 
Table 4.5: Water-wet relative permeability and capillary pressure parameters used for modeling the 

wettability alteration caused by the alkali in Fracture Block experiment.  

Simulation Parameters Matrix Fracture 
Residual water saturation 0.2 0.1 
Residual oil saturation 0.2 0.05 
Water rel. perm. endpoint 0.2 0.3 
Oil rel. perm. endpoint 0.7 1 
Water rel. perm. Exponent 2.5 2 
Oil rel. perm. Exponent 2 1.5 
Wettability Water-wet Water-wet 
Capillary pressure endpoint (psia) 0.3 N/A 
Capillary pressure exponent 3 N/A 

 
Table 4.6: Surfactant phase behavior parameters for modeling alkali/surfactant flood part of the Fracture 

Block experiment based on laboratory measurements  

Height of binodal curve at zero salinity (vol. frac.) 0.037 
Height of binodal curve at optimum salinity (vol. frac.) 0.035 
Height of binodal curve at twice optimum salinity (vol. frac.) 0.038 
Lower effective salinity limit for Type III phase behavior (eq/lit. water) 0.77 
Upper effective salinity limit for Type III phase behavior (eq/lit. water) 1.15 
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Figure 4.1: Illustration of the imbibition cell test experiment performed by Hirasaki and 
Zhang (2004). The core plug on the left is placed in brine and no oil is recovered even 
after 2 weeks. The right core plug is placed in alkaline/surfactant solution and almost 

immediately oil recovery is initiated. 
 

 
Figure 4.2: Imbibition cell test oil recovery results by Hirasaki and Zhang (2004). The 

green curve (triangle symbols) is modeled for validation of UTCHEM. 
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Figure 4.3: Initial surfactant concentration (Volume fraction) for the imbibition test 

model. 
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Figure 4.4: Capillary desaturation curves used in the simulation. 
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Figure 4.5: Endpoint relative permeability as a function of trapping number used in the 

modeling of the imbibition cell test experiment. 
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Figure 4.6: Relative permeability exponents as a function of trapping number used in the 

modeling of the imbibition cell test experiment. 
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Figure 4.7: Calculated relative permeability curves for different wetting conditions at low 

trapping number of 10-7. 
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Figure 4.8: Calculated relative permeability curves for different wetting conditions at 

trapping number of 10-5. 
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Figure 4.9: Calculated relative permeability curves for different wetting conditions at 

trapping number of 10-3. 
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Figure 4.10: Calculated capillary pressure curves for different wetting conditions. 
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Figure 4.11: Comparison of simulated and laboratory imbibition oil recovery. 
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Figure 4.12: Surfactant concentration (volume fraction) after 10 days of imbibition. 
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Figure 4.13: Oil saturation distribution after 10 days of imbibition. 

 

 
Figure 4.14: Fractured block setup preparation and the schematic of the final setup. 
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Figure 4.15: Laboratory measured oil recovery curve. 

 

 
Figure 4.16: 3D view of permeability (md) distribution in the base case simulation model. 
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Figure 4.17: Relative permeability and capillary pressure curves used for modeling the 

waterflood part of the Fractured Block experiment (initial wetting, mixed-wet). 
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Figure 4.18: Comparison of laboratory and simulated waterflood oil recovery. 
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A) Initial B) After 0.6 days (0.22 PV) of waterflood 

C) After 1.2 days (0.44 PV) of waterflood D) After 1.9 days (0.7 PV) of waterflood 

 

 

Figure 4.19: Oil saturation profiles in the middle layer during the waterflood. 
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A) Initial 

 

B) After 0.6 days (0.22 PV) of waterflood 

 

C) After 1.2 days (0.44 PV) of waterflood 

 

D) After 1.9 days (0.7 PV) of waterflood 

 

 

Figure 4.20: Oil pressure profiles in the middle layer during the waterflood. 

 

 
Figure 4.21: Oil saturation distribution in the middle layer after 1.9 days of pure capillary 

imbibition (no viscous forces). White cells fall out of the visualization range. 
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Figure 4.22: Matrix relative permeability curves for initial and final wetting states. 
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Figure 4.23: Fracture relative permeability curves for initial and final wetting states 
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Figure 4.24: Matrix capillary pressure curves for initial and final wetting states. 
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Figure 4.25: Comparison of experimental and simulated oil recoveries for the waterflood 

and alkali flood part of the Fractured Block experiment. 
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Figure 4.26: The quality of the match between the model and experiment for alkali flood 

part of the Fractured Block experiment. 

 

 

A) After 1.4 days (0.52 PV) of alkali flood 

 

B) After 2.8 days (1.04 PV) of alkali flood 

 

C) After 4.5 days (1.68 PV) of alkali flood 

 

Figure 4.27: The oil saturation distribution in the middle layer during the alkali flood 
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A) After 1.4 days (0.52 PV) of alkali flood 

 

B) After 2.8 days (1.04 PV) of alkali flood 

 

C) After 4.5 days (1.68 PV) of alkali flood 

 

Figure 4.28: Normalized alkali concentration in the middle layer during the alkali flood. 

 

 

A) After 1.4 days (0.52 PV) of alkali flood 

 

B) After 2.8 days (1.04 PV) of alkali flood 

 

C) After 4.5 days (1.68 PV) of alkali flood 

 

Figure 4.29: Pressure profiles (psia) in the middle layer during the alkali flood. 
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Figure 4.30: The capillary desaturation curves for initial and final wetting states used to 

match the alkali/surfactant part of the Fractured Block experiment. 
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Figure 4.31: The quality of the match obtained for all three stages of the Fractured Block 

experiment. 
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Figure 4.32: The quality of the match between the simulation and laboratory 

measurements for the alkali/surfactant part of the Fractured Block experiment. 
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Figure 4.33: Comparison of simulation and laboratory recovery curves in pore volumes 

injected. (AF stands for alkali flood and ASF stands for alkali/surfactant flood). 
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A) After 0.6 days (0.4 PV) of alkali/surfactant flood B) After 1.2 days (0.8 PV) of alkali/surfactant flood 

 

C) After 1.8 days (1.2 PV) of alkali/surfactant flood 

 

Figure 4.34: Simulated oil saturation profiles in the middle layer of the setup during the 

alkali/surfactant flood. 

 

 

A) After 0.6 days (0.4 PV) of alkali/surfactant flood B) After 1.2 days (0.8 PV) of alkali/surfactant flood 

 

C) After 1.8 days (1.2 PV) of alkali/surfactant flood 

 

Figure 4.35: Simulated normalized alkali concentration profiles in the middle layer for 

the alkali/surfactant flood. 
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A) After 0.6 days (0.4 PV) of alkali/surfactant flood B) After 1.2 days (0.8 PV) of alkali/surfactant flood 

 

C) After 1.8 days (1.2 PV) of alkali/surfactant flood 

 

Figure 4.36: Simulated surfactant concentration (Vol. %) profiles in the middle layer for 

the alkali/surfactant flood. 

 

 

A) After 0.6 days (0.4 PV) of alkali/surfactant flood B) After 1.2 days (0.8 PV) of alkali/surfactant flood 

 

C) After 1.8 days (1.2 PV) of alkali/surfactant flood 

 

Figure 4.37: Simulated pressure profiles in the middle layer for the alkali/surfactant 

flood. 
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Figure 4.38: Effect of mesh refinement on simulation results of the Fractured Block 

modeling. 
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Figure 4.39: Simulated oil recovery for different injection scenarios compared to the base 

case injection. 
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Figure 4.40: simulated oil recovery sensitivity to fracture/matrix permeability ratio. 
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Figure 4.41: Sensitivity of simulated oil recovery to molecular diffusion. 
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Figure 4.42: Sensitivity of simulated oil recovery to injection rate (constant rate injection, 

constant pressure production). 
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Figure 4.43: Sensitivity of simulated oil recovery to injection rate (Results of Fig. 4.42 

plotted versus injected pore volumes). 
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Chapter 5: Scale Up Methodology for Wettability 
Modification in Fractured Carbonates 

 

5.1 Introduction 

Laboratory alkali and surfactant floods have shown a great potential in increasing oil 

recovery for reservoirs that are naturally fractured with low permeability mixed-wet 

matrix rocks. Fractured, mixed-wet formations usually have poor waterflood performance 

because the injected water tends to flow in the fractures and spontaneous imbibition into 

the matrix is generally insignificant. Surfactants or alkalis have successfully been used to 

change the wettability and enhance oil recovery by increased imbibition of the water into 

the matrix rock. The oil recovery mechanisms using surfactant/alkali mixtures are 

enhanced imbibition and buoyancy due to combined effects of reduced interfacial 

tension, reduced mobility ratio, and wettability alteration. 

 

Although laboratory experiments are essential, it is impossible to predict the performance 

of these complex processes with only laboratory experiments. Reservoir simulation is 

required to scale up the process from laboratory to field conditions and to understand and 

interpret the data. Without detailed and mechanistic simulations it is very unlikely that a 

cost-effective process can be developed and applied economically. The predictive 

simulations of such complex processes will reduce the risk of failure of the field projects. 

A compositional chemical reservoir simulator (UTCHEM) with wettability alteration 

capability is used for this study. This chapter focuses on the scale up simulations of two 

different oil recovery experiments in carbonate rocks using chemicals for wettability 

modification. Several imbibition rate scaling groups are tested in an attempt to scale the 

lab results to larger field scale matrix blocks (Delshad et al., 2009). 
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5.2 Scale Up of the Imbibition Cell Test Experiment 

The laboratory alkaline/surfactant imbibition experiment reported by Hirasaki and Zhang 

(2004) is used for the scale up study. This is a static imbibition cell experiment as 

described in Section 4.1.1. The approach taken for modeling of the experiment is 

presented in Section 4.1.2.  

 

The effect of matrix block size on oil recovery is investigated keeping the same 

simulation model properties as those obtained by history match of the imbibition cell test 

presented in Table 4.1 and Table 4.2. Preserving all of the simulation parameters obtained 

from modeling the experiment (such as grid size, relative permeability and capillary 

pressure curves, etc.) will ensure that the scaled model is representative of the same 

conditions as that of the experiment. The scale up is performed to investigate the effect of 

matrix height and volume separately. First several simulations are performed increasing 

the height as much as 5 ft which is 20 times larger than that of the lab core of 0.25 ft 

while keeping the area of the model the same as that of the experiment. The increase in 

height is preformed by adding more layers to the model keeping the grid size the same as 

that of the lab model. In a separate set of simulations, the volume of the block is 

increased as much as 125 times the core bulk volume. This is done by increasing the 

number of gridblocks in all three directions while keeping the grid size the same as that 

of the experiment. The modeling results for the effect of matrix height are shown in Fig. 

5.1 where the time of oil recovery to reach the same recovery of 44% as the lab core 

increases significantly as the block height increases.  

 

The top surface and four side surfaces of the core are open to imbibition similar to the 

experimental set up. The characteristic length based on Eq.2.7 is as follows for this case: 

2 28
c

hxL
h x

=
+

         Eq.5.1 

where h is the height of the core and x is its lateral dimension. Figure 5.2 shows the effect 

of matrix height on the characteristic length (Eq.5.1). As shown in this figure, the 

characteristic length does not change a lot as the matrix height is increased to even 20 
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times as large as the experiment (5 ft). The simulation times for different matrix heights 

are normalized by the corresponding Lc
2. The recovery curves should merged to one 

curve if the imbibition recovery time scales with the inverses of characteristic length as 

both Ma et al. (1995) and Li and Horne (2006) suggested. However, the recovery curves 

did not converge when the simulation time was scaled using Lc
2 (Fig. 5.3). Figure 5.4 

shows the results of Fig. 5.1 plotted against the dimensionless time proposed by Li and 

Horne (2006) (Eq.2.13). As shown in this figure, not only their dimensionless time does 

not bring the results closer, it diversifies the results. This indicates that the experiment of 

the Hirasaki and Zhang (2004) was not dominated by capillary imbibition. Another 

reason for the poor performance of this dimensionless time could be the fact that the 

characteristic length proposed by Ma et al. (1995) (Eq.2.7) for this case (Eq.5.1) does not 

vary to a great extent as the matrix area is kept constant and matrix height is increased as 

shown in Fig. 5.2. 

 

Next the height of the matrix was used as a characteristic length and the simulation time 

was divided by the height of matrix in each simulation. Figure 5.5 shows the results of 

this analysis. As shown in this figure, the recovery curves for different matrix heights 

tend to aggregate to a single curve when the simulation time is divided by the height of 

the matrix. The gravity time (tg) of Eq.2.4 was then tried to scale the simulation times 

obtained with different matrix height. Figure 5.6 presents the oil recovery as a function of 

simulation times normalized by tg where the oil recovery curves are collapsed to nearly 

one curve. This is an indication of a gravity dominated flow where the dominant 

mechanism is the buoyancy. The theoretical calculations confirmed the significance of 

buoyancy-driven gravity drainage under the low interfacial tension condition of the 

experiment. This is consistent with the findings of Hirasaki and Zhang (2004) and 

Adibhatla and Mohanty (2006). 

 

The volume of the block was then increased by as much as 125 times the lab core. Figure 

5.7 shows the effect of increasing the bulk volume of the setup on calculated 

characteristic length proposed by Ma et al. (1995) based on Eq.5.1. This figure indicates 
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that a relatively large range of the characteristic lengths are covered in this case. The 

simulated cumulative recoveries are shown in Fig. 5.8. Increasing the volume of the 

matrix increases the time required for recovering the same amount of oil as that of the 

experiment (44% OOIP). To see if the characteristic length proposed by Ma et al. (1995) 

works for this case, the simulation times for each case are divided by Lc
2. Figure 5.9 

shows these results and once again one can see that the recovery curves do not aggregate 

when divided by Lc
2. Since in this case the characteristic length covers a relatively large 

range of values, the divergence of the recovery curves can only be due to the fact that the 

experiment is not dominated by capillary imbibition.  

 

The height of the matrix is tested then as a characteristic length and the results are shown 

in Fig. 5.10. The recovery curves for different cases fall on top of each other when the 

simulation time is divided by matrix height (Fig. 5.10). The simulation times are then 

normalized by the gravity time (tg) and the oil recovery curves for different matrix block 

volumes collapse to essentially one curve (as shown in Fig. 5.11), re-emphasizing the fact 

that the buoyancy was a dominant mechanism in this case. 

 

The recovery times computed for different matrix block sizes in Fig. 5.12 indicate that if 

the reservoir conditions were the same as the ones used in the experiment then to attain 

the same oil recovery as the lab core it takes about 7.5 years for the block size of 0.67 m 

wide x 1.5 m high and 15 years for the block size of 1.37 m wide by 3 m high. Therefore, 

the imbibition time increases proportional to the height of the block size. These results 

are consistent with those of Adibhatla et al. (2005). They specify that it takes 10 years for 

1 m wide x 1 m high block and 100 years for 10 m wide x 10 m high block to reach the 

same oil recovery indicating that the time scales with the height of the core. 

5.3 Scale Up of the Fractured Block Experiment 

Section 4.2.1 gives the description of the Fractured Block experiment and Section 4.2.2 

gives a detailed explanation of the modeling procedure. The same simulation parameters 

obtained from modeling the experiment are used to study the effect of matrix block size 

on oil recovery. These parameters can be found in Table 4.3 through Table 4.6. 
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Only one matrix block (as shown in Fig. 5.13) is modeled for the scale up study to reduce 

the computation time and to be able to keep the same grid resolution to minimize the 

numerical dispersion. The single matrix block is surrounded by several fractures 

depending on the scale up scenario of enlarging the area, height or volume. To maintain 

comparable viscous forces to the experiment, pressure constraint injection and production 

wells are used with the same pressure gradient of the experiment. Same pore volumes of 

water, alkaline, and surfactant/alkaline are injected as those of the experiment. The height 

of the matrix is increased as much as ten times keeping the area the same as the 

experiment with sealed left and right hand side faces. The reason for sealing the left and 

right faces is to isolate the effect of matrix height on the oil recovery. The block area is 

increased as much as 81 times keeping the height the same as the experiment. The top 

and bottom of the matrix are sealed in this case to isolate the effect of matrix area on oil 

recovery. The volume of the matrix block is increased as much as 64 times the 

experiment with all faces open to flow. Injection and production wells are placed in the 

fractures at the back and front of the matrix block along the longer face of the matrix. For 

the purpose of comparison, a single matrix block as the lab size is also simulated for each 

case referred to as the "Base" in the figures. Figures 5.14 through 5.16 show the oil 

recoveries for height, areal, and volume scale up where the oil recovery increases with 

larger block sizes because of longer residence times.  

 

An attempt was made to scale the results using Eq.2.4 and Eq.2.7. The simulated alkali 

flood oil recovery curves for larger block thicknesses collapsed to nearly one curve when 

Ma's dimensionless time (tD) was used as shown in Fig. 5.17. The injection times and oil 

recoveries of waterflood are subtracted for these analyses. Simulation results for larger 

block areas are plotted versus tD in Fig. 5.18. The results indicate that the larger block 

sizes recover oil faster as a result of viscous gradient that is not accounted for in Ma's 

dimensionless time. The gravity reference time (tg) gave very poor scaling for this case. 
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Figure 5.18 shows that even a small viscous gradient aided in recovery of oil from larger 

matrix blocks. Due to the complexity of the experiment in using alkali for wettability 

alteration and surfactant for reducing interfacial tension, each flood was dominated by 

different magnitudes of gravity, capillary, and viscous forces. A new dimensionless time 

is required to adequately scale the results of this experiment by taking different recovery 

mechanisms into account. 

5.4 Summary and Conclusions 

1. The imbibition cell test results were dominated by the buoyancy driven gravity 

drainage. 

2. A published dimensionless time based on gravity was able to successfully scale 

the imbibition oil recovery results with increased height and volume of matrix 

block consistent with the laboratory observation. The reason for this is the 

dominance of gravity in this experiment. 

3. The imbibition times increased linearly with the length scale for the static 

imbibition experiment. This is also due to the dominance of gravity rather than 

capillary forces. 

4. The scaling of imbibition experiments showed that the rate of imbibition and oil 

recovery were much faster under the low IFT conditions compared to diffusion-

dominated high IFT experiments reported in the literature. The ultra low IFTs 

reduce the capillary forces and result in dominance of buoyancy forces which 

accelerates the oil recovery process. 

5. The fractured block experimental conditions was used for the scale up study and 

the results indicated that even a small viscous gradient aided in recovery of oil 

from larger matrix blocks.  

6. Due to the complexity of the fractured block experiment in using alkali for 

wettability alteration and surfactant for reducing interfacial tension, each flood 

was dominated by different magnitudes of gravity, capillary, and viscous forces. 

7.  A new dimensionless time is required to adequately scale the results of the 

fractured block experiment by taking into account different recovery mechanisms. 
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Figure 5.1: Effect of core height on oil recovery based on imbibition cell experiment. 
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Figure 5.2: Effect of matrix height on characteristic length for the imbibition cell test. 
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Figure 5.3: Results of Fig. 5.1 plotted versus simulation time divided by Lc

2. 
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Figure 5.4: Results of Fig. 5.1 plotted versus dimensionless time proposed by Li and 

Horne (2006). 
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Figure 5.5: Results of Fig. 5.1 plotted versus simulation time divided by matrix height. 
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Figure 5.6: Oil recovery vs. dimensionless time based on gravity for effect of matrix 

height on oil recovery (Results of Fig. 5.1 plotted vs. dimensionless time based on gravity 

proposed by Cuiec et al., (1990)). 
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Figure 5.7: Effect of increasing the volume of the matrix on characteristic length for 

Hirasaki and Zhang (2004) imbibition cell test based on Eq.5.1. 
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Figure 5.8: Effect of matrix bulk volume on oil recovery based on imbibition cell test 

experiment. 
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Figure 5.9: Results of Fig. 5.8 plotted versus simulation time divided by Lc

2 proposed by 

Ma et al. (1995). 
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Figure 5.10: Results of Fig. 5.8 plotted versus simulation time divided by height of the 

matrix. 
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Figure 5.11: Oil recovery vs. dimensionless time based on gravity for effect of matrix 

bulk volume on oil recovery (Results of Fig. 5.8 plotted vs. dimensionless time based on 

gravity proposed by Cuiec et al., (1990)). 
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Figure 5.12: Recovery time vs. matrix bulk volume based on imbibition cell test results. 
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Figure 5.13: A single block of the Fractured Block experiment used for scale up 

simulations. 
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Figure 5.14: Effect of matrix height on oil recovery from the Fractured Block experiment 

(diamonds show the beginning of alkali flood and ovals show the start of alkali/surfactant 

flood). 
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Figure 5.15: Effect of matrix area on oil recovery from the Fractured Block experiment 

(diamonds show the beginning of alkali flood and ovals show the start of alkali/surfactant 

flood). 

 

0

5

10

15

20

25

30

35

40

0.01 0.1 1 10 100

Injection Time (Days)

C
um

ul
at

iv
e 

O
il 

R
ec

ov
er

y 
(%

O
O

IP
) Base-V 

8 x V
64 x V 

 
Figure 5.16: Effect of matrix volume on oil recovery from the Fractured Block 

experiment (diamonds show the beginning of alkali flood and ovals show the start of 

alkali/surfactant flood). 
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Figure 5.17: Dimensionless time by Ma et al. (1995) used for scaling the effect of matrix 

height on oil recovery. 
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Figure 5.18: Dimensionless time by Ma et al. (1995) used for scaling the effect of matrix 

area on oil recovery. 



 111

Chapter 6: Chemical Flooding Module of GPAS 
 

6.1 Introduction to GPAS  

General purpose adaptive reservoir simulator (GPAS) is a fully implicit, parallel reservoir 

simulator developed at The Department of Petroleum and Geosystems Engineering in 

The University of Texas at Austin (Wang et al., 1997; Parashar et al., 1997; Wang et al., 

1999; John et al., 2005; Marcondes et al., 2005 and Han et al., 2007). This simulator has 

corner point and unstructured grid options in addition to structured Cartesian grid 

(Marcondes et al., 2008). A list of physical modules is as follows: 

1. Equation of state (EOS) compositional module. This module uses Peng-Robinson 

EOS to model miscible floods such as gas injection (Wang et al., 1999).  

2. Chemical flooding module which is the focus of this study and models the 

injection of chemicals (surfactant and polymer) to recover the oil (Han et al., 

2007 and Fathi Najafabadi et al., 2009). In this chapter a detailed explanation of 

this module is presented.  

3. Thermal flooding module which uses the energy balance to model thermal 

flooding processes such as steam injection (Varavei and Sepehrnoori, 2009).  

4. Dual-porosity module for modeling NFRs (Naimi-Tajdar et al., 2007 and 

Tarahhom et al., 2009).  

5. Geomechanics module for modeling the effect of stress and strain on porosity and 

permeability (Pan et al., 2007 and Pan et al., 2009).  

6. Asphaltene precipitation module for modeling the effect of asphaltene 

precipitation (Fazelipour et al., 2008).  

7. Wellbore module for modeling the fluid flow in the wellbore (Pourafshary et al., 

2008).  

 

Figure 6.1 shows the structure of GPAS. The IPARS framework handles input of 

simulation parameters and parallel computation. It also allocates the memory required for 
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the global arrays. The gridding and discretization of the governing equations is then 

performed as instructed by the user in the input file. Different physical models such as 

EOS compositional and chemical flooding are then called as instructed by the user in the 

input file.  

6.2 Chemical Flooding Module of GPAS 

The first chemical flooding module of GPAS was published by John et al. (2005). This 

development was based on a hybrid approach where the material balance equation of the 

hydrocarbon components and water were solved implicitly and then the material balance 

equation of the aqueous components such as surfactant, polymer and salt were solved 

explicitly. This implementation had two important shortcomings from the formulation 

point of view:  

1. The volume of the oil dissolved in the microemulsion (ME) phase was neglected.  

2. The volume of the surfactant was neglected in the volume constraint equation.  

 

Another important limitation of this development was that the oil/brine/ surfactant phase 

behavior was limited to Type I (Winsor, 1954) where an excess oleic phase is in 

equilibrium with a ME phase.  

 

In 2007, Han et al. published a fully implicit chemical flooding module of GPAS which 

removed the two formulation limitations of the hybrid model (i.e. the volume of oil in the 

ME was considered and the volume of surfactant was taken into account in the volume 

constraint) but this development was still limited to Type I phase behavior. The 

contribution of the current development is to overcome this limitation and implement a 

comprehensive surfactant phase behavior in the chemical flooding module of GPAS. 

 

The importance of this development is in the need for a fast and effective reservoir 

simulator capable of modeling robust chemical flooding designs such as salinity gradient 

design. Robust designs are those that are not sensitive to rock and/or fluid variations in 

the reservoir. Usually this is achieved by inducing a gradient or taking advantage of a 

natural one that shifts the oil/brine/surfactant phase behavior with the goal of keeping the 
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injected chemical slug close to optimum conditions as long as possible. This will ensure 

that each pore swept by the surfactant goes through the optimum conditions and its 

residual oil is mobilized. To model such designs, one would need comprehensive 

surfactant phase behavior. This capability already exists in UTCHEM chemical flooding 

simulator. The development in GPAS has advantages of being fully implicit and parallel 

for commercial scale simulations.  

 

This chapter discusses in detail the newly developed fully implicit chemical flooding 

module of GPAS with comprehensive phase behavior. The governing equations and their 

derivatives are presented as well as physical property and phase behavior models. 

6.2.1 Model Assumptions  

The following assumptions are made in the development of the chemical flooding module 

of GPAS: 

1. Isothermal conditions are assumed.  

2. No free gas is present. 

3. Corner plait point formulation is assumed where the excess oleic phase is pure oil 

and the excess aqueous phase does not contain any surfactants and dissolved 

hydrocarbons. 

4. Symmetrical binodal curve formulation is based on modified Hand’s rule (Hand, 

1939; Treybal, 1963). 

5. Effect of divalent cations and alcohols on surfactant phase behavior is not 

modeled. 

6. Polymer has no effect on surfactant phase behavior. 

7. The effect of pressure on surfactant phase behavior is neglected.  

8. No surfactant is present in the reservoir at initial conditions. 

9. Physical dispersion and molecular diffusion are neglected. 

6.2.2 Overview of the Chemical Flooding Module 

The phase behavior calculation is the same as that in UTCHEM and is based on the 

empirical observation that equilibrium phase concentration ratios are straight lines on a 
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log-log scale (Hand, 1939; Treybal, 1963). Physical property models describing the flow 

and transport of surfactant and polymer species are the same as those in UTCHEM. The 

physical property models include surfactant phase behavior, interfacial tension, capillary 

desaturation, viscosity, adsorption, and relative permeability as a function of trapping 

number. Polymer properties include viscosity as a function of polymer concentration, 

salinity and shear rate, permeability reduction, inaccessible pore volume, and adsorption. 

 

Material balance equations (Eqs.6.3 and 6.4 discussed in Section 6.2.3.2) are solved for 

nc hydrocarbon components, na aqueous components and water. Thus, the total number of 

components during the chemical flood would be nc+ na+1. The unknowns in a gridblock 

are the number of moles per pore volume of nc+ na+1 components, iN , plus aqueous 

phase pressure, P . Hence we need nc+ na+2 equations per gridblock to evaluate the 

unknowns. These equations are the material balance equations for nc+ na+1 components 

and a volume constraint equation. A detailed description of these equations is described 

in this chapter. The non-linear system of equations is solved numerically using Newton’s 

method. The details are discussed below. 

 

Figure 6.2 shows the flowchart of the chemical flooding module. In the first timestep it is 

assumed that there are no surfactants in the reservoir. The whole simulation is performed 

by Integrated Parallel Accurate Reservoir Simulator (IPARS) (Parashar et al., 1997) 

framework. Section 6.2.5 gives more details about the framework. A subroutine called 

INFLUID0 is called once by the framework at the beginning of the simulation. This 

subroutine calculates the molar densities and number of moles of each component per 

pore volume based on the user input. A subroutine called XSTEP is then called by the 

framework to calculate the solution of each timestep based on the previous timestep 

solution and the changes induced by injection and production wells.  

 

As shown in Fig.6.2, the first subroutine called by XSTEP is PROPIN. In this subroutine 

the vector of unknowns of each gridblock at the previous timestep (denoted as xG ) is 

assumed to be the solution at nth Newton iteration (denoted as nxG ). Just for one time 
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before the Newton iteration starts, this nxG  is assumed to be the solution to the Newton’s 

iteration (denoted as newxG ). The XSTEP calls a subroutine called TRAPN to calculate the 

trapping number for each phase in each gridblock. PROP subroutine is then called by 

XSTEP where residual saturations, relative permeability curves, and viscosities are 

calculated. XSTEP then calls the XWELL subroutine where the flow rates and 

bottomhole pressures of each well are calculated. Then subroutines TRANSPORT and 

RESIDUALS calculate the residual of material balance equations for each component 

(Eq.6.5) and the residual of volume constraint equation (Eq.6.1) respectively. XSTEP 

checks for convergence of the solution, meaning that whether or not the residuals are 

close enough to zero. Based on the outcome of this check two routes may be taken. If the 

solution is converged, then the iteration stops and this solution vector newxG  is declared as 

the true solution for the current timestep. Next, subroutines SURFACE and AVERAGE 

are called to calculate the flow rates at surface conditions and the average reservoir 

properties respectively. The loop for obtaining the solution for the next timestep is then 

started by calling the PROPIN subroutine (Fig.6.2).  

 

On the other hand, if the solution is not converged, JACOBIAN subroutine is called by 

XSTEP to construct the Jacobian at oldxG  where old newx x=
G G . After the calculation of the 

Jacobian matrix, the SOLVER subroutine is called to solve the linear system of equations 

using the PETSc linear solver (Balay et al., 1997) and obtain the new solution at the 

current Newton’s iteration, newxG . Section 6.3 describes the solution procedure in more 

details. After obtaining the new vector of unknowns, newxG , the molar densities, mole 

fractions of each component in each phase, IFT and the new phase saturations are 

calculated in XIMPSURF subroutine. This subroutine uses the Hand’s rule to calculate 

volumetric concentrations of the brine, oil and surfactant pseudo-components in each 

phase and converts them to mole fractions. The convergence is checked once again and 

the iteration is repeated until the solution converges.  
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6.2.3 Governing Equations 

6.2.3.1 The Volume Constraint Equation 

 
At each time, the sum of volume of all volume-occupying components should be the 

same as the pore volume. The total pore volume consists of the fluid volumes and the 

adsorbed surfactant volume and the volume occupying components are water, surfactant, 

and oleic components. This constraint is defined as follows: 
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  Eq.6.2 

 

6.2.3.2 Material Balance Equations 

 

Since a complete oil/brine/surfactant phase behavior model as a function of salinity is 

considered in this work, up to 3 liquid phases may coexist. This leads to 5 different 

possibilities for phases depending on the concentration of surfactant, oil, and electrolytes: 

1. Aqueous and oleic phases coexist. 
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2. ME and oleic phases coexist. 

3. ME and aqueous phases coexist. 

4. Three phases (aqueous, ME and oleic) coexist. 

5. Single ME, oil, or water phase. 

 

It should be noted that the gaseous phase is not currently considered in the chemical 

module. The aqueous and oleic components can partition into the ME phase. The 

surfactant is assumed to be only in the aqueous phase if its concentration is below critical 

micelle concentration (CMC) and only in the ME phase if its concentration is above 

CMC. It is also assumed that oleic components cannot partition into excess aqueous 

phase. Using these assumptions and neglecting physical dispersion, the material balance 

equation for any hydrocarbon component is as follows: 
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 Eq.6.3 

where subscripts 2 and 3 refer to oleic and ME phases respectively. The number of 

hydrocarbon components is denoted as nc. 

 

The material balance equation for the aqueous components such as water, surfactant, salt, 

polymer, and tracer is described as follows: 
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  Eq.6.4 

where subscripts 1 and 3 refer to aqueous and ME phases, respectively. The number of 

aqueous components except water is denoted as na and water is last component denoted 

by nc+ na+1.  

 

Based on the above, the residual of the material balance equation for each component can 

be written as follows: 
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     Eq.6.5 

where 

( )( )o
fr PPc −+= 1φφ          Eq.6.6 

For Cartesian grids, the flux of each component is calculated over each of the faces of a 

gridblock if that face is open to flow. I, J and K indicate the position of the gridblock in 

the x, y and z directions respectively. The Fi(I+1/2,J,K) in Eq.6.5 denotes the flux of 

component i in the x direction and between I and I+1 gridblocks. These fluxes can be 

further expanded as follows: 
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where Tij is chosen based on the upstream direction as follows:  
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where Tij and vj for each gridblock are obtained using the properties of that gridblock: 
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To obtain the residual of material balance equation (Eq.6.5) for each component, one 

needs to calculate the flow rate of that component in the injection and production wells. 

The flow rate of water, qwater, for a well on injection rate constraint is calculated based on 

the flow rate of water at surface conditions water surface
q , the productivity index (PI) of the 

gridblock, ( )t z
PI , and the sum of the productivity indices of all of the well blocks in that 

injector as follows: 
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m z

q PI
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=

=

∑
      Eq.6.38 

where PI of each gridblock, , ( )t z
PI  is the sum of the PIs of all phases present in that 

gridblock: 
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where the PI for each phase, ( )j z
PI , is calculated as follows: 
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The derivatives of       Eq.6.38 are obtained as 

follows: 
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The flow rate of other aqueous components for a constant rate injection well is calculated 

based on the water injection rate as follows: 
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Derivatives of Eq.6.43 are calculated as below. 
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The source term for a constant bottomhole pressure injection well is 
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Derivatives of the water injection rate for a pressure constraint well are as follows: 
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The derivatives of injection rates of other components mentioned in Eq.6.45 are 

calculated below. 
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For a constant pressure production well the sink term and its derivatives would be: 
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6.2.3.3 Accumulation Term 

 
The accumulation term in residual of material balance equations (Eq.6.5) is only 

dependant on primary variables at its own gridblock. Therefore its derivative is calculated 

as follows: 
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6.2.3.4 Flux Term 

 
The derivatives of flux term in residual of material balance equation (Eq.6.5) are more 

complicated because the flux term is dependent on primary variables at six neighbor 

gridblocks as well as those at its own gridblock. Here we derive the derivative of 

( )1/ 2, ,i I J KF +  for an aqueous component only i.e. the flux between (I,J,K) and (I+1,J,K) 

gridblocks. The derivatives of the remaining terms and the derivatives of flux for 

hydrocarbon components can be derived following similar procedures. Several indices 

are omitted for simplicity.  
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If I+1 gridblock is upstream cell, the above equation is rewritten as 
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If I gridblock is upstream, then 
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   Eq.6.55 

 

6.2.3.4 Physical Properties  

 
Physical properties such as molar density, relative permeability, viscosity, and mole 

fraction of each phase and their derivatives can be calculated based on values of 

dependent parameters in the following order: 
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1 1 2 2 3 3, , , , ,C C C C C C� � �  
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Overall and Fluid Concentrations  
 
Oil/brine/surfactant phase behavior is calculated using the total fluid concentration of oil, 

brine and surfactant pseudocomponents. The total fluid concentrations are calculated 

from the overall and adsorbed surfactant concentrations. 

 

The overall concentration of water in each gridblock is calculated as follows: 

water

waterNC
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=1
~          Eq.6.56 

where 
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The derivatives of overall water concentration are then calculated as follows: 
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The total in-fluid concentration of water is calculated as follows: 
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where 3Ĉ  is the adsorbed surfactant concentration. Since the adsorbed surfactant 

concentration is normally very small compared to the pore volume, the derivatives of 

fluid concentration of water C1 could be assumed to be the same as those of its overall 

concentration, 1
~C . Overall concentration of oil and its derivatives are calculated as 

follows: 
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The same assumption as above is made for oil. Therefore, derivatives of C2 are the same 

as those of 2
~C . 
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Similarly one can calculate the overall concentration of surfactant and its derivatives. The 

derivatives of the total fluid concentration of surfactant are presented later in this chapter. 

surf

surfN
C

ξ
=3

~          Eq.6.65 

where 

( )( )1o o o
surf surf surfc P Pξ ξ= + −        Eq.6.66 

3

1

0

surf

i

if i surfC
N

if i surf

ξ
⎧ =⎪∂

= ⎨∂ ⎪
≠⎩

�
       Eq.6.67 

( )3
2
surf o o

surf surf
surf

NC c
P

ξ
ξ

∂
= −

∂

�
       Eq.6.68 

The overall concentration of polymer in wt% is calculated as follows:  
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Since the effect of divalent cations and temperature on the effective salinity are neglected 

in this development, the effective salinity, CSE is calculated as follows:  



 130

51 16.037 salt
SE water

water

NC C
N

ξ= =       Eq.6.71 

where the constant 16.037 is the unit conversion for lb/ft3 to eq/L of NaCl to be 

consistent with UTCHEM. The derivatives of effective salinity are calculated as follows: 

2

16.037

16.037

0

water

water

SE water salt

i water

if i salt
N

C N if i water
N N

for other components

ξ

ξ

⎧ =⎪
⎪

∂ ⎪
= − =⎨∂ ⎪

⎪
⎪
⎩

     Eq.6.72 

16.037 o oSE salt
water surf

water

C Nc
P N

ξ∂
=

∂
      Eq.6.73 

 

Polymer and Surfactant Fluid Concentrations  

 
Similar to UTCHEM, Langmuir type isotherms (Eq.6.74) are used to model both 

surfactant and polymer adsorption. The minimum in Eq.6.74 ensures that the overall 

adsorbed concentration of component κ does not exceed its overall concentration in a 

gridblock.  

( )
( )

ˆ
ˆ min , 3 4

ˆ1

a C C
C C or

b C C
κ κ κ

κ κ

κ κ κ

κ
⎛ ⎞−
⎜ ⎟= =
⎜ ⎟+ −⎝ ⎠

�
�

�     Eq.6.74 

where 

1 2 SEa a a Cκ κ κ= +         Eq.6.75 

Total fluid concentration of component κ, fCκ  is calculated by subtracting the adsorbed 

concentration Ĉκ  from overall concentration for each species. Eq.6.74 is rearranged and 

solved. This results in a quadratic equation with two roots. The physically valid solution 

is the always positive root since the adsorbed concentration cannot be negative (for more 

details refer to Appendix B). 
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2

1

1 1 1

ˆ 1 1 4
2

f C C C CC C C a b a b b
b C C C

κ κ κ
κ κ κ κ κ κ κ κ

κ

⎛ ⎞⎛ ⎞⎜ ⎟= − = − − + + + − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� � � ��
� � �  Eq.6.76 

The derivatives of the total fluid concentration of component κ is then calculated as 

follows: 

1

1

f f f f
SE

i i i SE i

CC C C C C C
N N N C NC C

κ κ κ κ κ

κ

∂∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂∂ ∂

� �
� �      Eq.6.77 

where 

1 1 1

1 11 1
2

fC b C b CA a
bC C CB

κ κ κ κ κ
κ

κ

⎡ ⎤⎛ ⎞⎛ ⎞∂
= − − − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

� �
� � �     Eq.6.78 

1

1 11 1
2

fC b C a
C CB

κ κ κ
κ

κ

⎡ ⎤⎛ ⎞∂
= + − +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

�
� �       Eq.6.79 

1

1 11 1
2

fC b C a
C CB

⎡ ⎤⎛ ⎞∂
= + − +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

�
� �
κ κ κ

κ
κ

      Eq.6.80 

where 

2

1 1 1

1 1 4b C b C b CA a a
C C C
κ κ κ κ κ κ

κ κ

⎛ ⎞
= − − + + + − +⎜ ⎟

⎝ ⎠

� � �
� � �     Eq.6.81 

2

1 1

1 4b C b CB a
C C
κ κ κ κ

κ

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠

� �
� �       Eq.6.82 

1

1

f f f f
SE

SE

CC C C C C C
P C P C P C P

κ κ κ κ κ

κ

∂∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

�� �
     Eq.6.83 

The derivatives of overall surfactant concentration (κ = 3) used in the above equations are 

presented in Eq.6.67 and Eq.6.68 and the derivatives of overall polymer concentration (κ 

= 4) are presented in Eq.6.70. 
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Number of Moles of Polymer and Surfactant  

 
Since GPAS is an EOS simulator, it is important to calculate the number of moles of each 

component per pore volume at each timestep. The total fluid concentrations of surfactant 

and polymer can be converted into number of moles as follows: 

3 4f fN C orκ κ κξ κ= =         Eq.6.84 

3 4
f f

i i

N C or
N N

κ κ
κξ κ∂ ∂

= =
∂ ∂

       Eq.6.85 

( ) 3 4
f f

o o fN Cc C or
P P

κ κ
κ κ κ κξ ξ κ∂ ∂

= + =
∂ ∂

     Eq.6.86 

 

Phase Compositions 

 
The fluid concentration of surfactant is calculated as follows: 

3 3
3

1
ˆ1

f f
surf surf f

surf surf

N N
C C

Cξ ξ
⎛ ⎞

= ≈ =⎜ ⎟⎜ ⎟−⎝ ⎠
      Eq.6.87 

The same assumption used for calculation of total water or oil fluid concentrations is used 

for the surfactant, i.e. the adsorbed surfactant concentration is assumed to be small and 

the derivatives of total fluid concentration of surfactant, 3C , are assumed to be the same 

as those of the overall concentration, 3
fC . 

 

C3 from Eq.6.87 should be above CMC for the surfactant to be active and to reduce the 

interfacial tension. If C3 is less than CMC, only oleic and aqueous phases exist and all 

aqueous species reside in the water phase. If C3 is above CMC, then the surfactant 

becomes active and three distinct phase environments may exist based on the salinity. At 

salinities lower than CSEL, it is assumed that surfactant does not partition into the oleic 

phase, but some of the hydrocarbon components are dissolved in the aqueous phase 

creating a water-external ME phase (Type I). Figure 2.9 shows the idealized schematic of 

a ternary diagram in Type I environment. As shown in Fig. 2.9, the overall compositions 

falling in the area below the binodal curve would result in two phases with their 
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compositions given by the tie lines. Any overall composition falling in the area above the 

binodal curve would result in a single phase ME. At salinities above CSEU, an oil-external 

ME phase containing all of the surfactant and some aqueous components is in 

equilibrium with an aqueous phase. This phase environment is called Winsor Type II 

(Fig. 2.10). For salinities between the CSEL and CSEU the phase behavior is shown in Fig. 

2.11. The binodal curve has two two-phase regions that are connected through the 

invariant point. The invariant point and the pure water and oil pseudo-components are 

vertices of an inner triangle. Overall compositions falling in this area would result in 

three phases (aqueous, oleic and ME) in equilibrium. Overall phase compositions falling 

in the left and right lobes of the ternary diagram result in a Type II and Type I phase 

behavior, respectively. Overall compositions falling in the area above the binodal curve 

would result in a single ME phase.  

 

The binodal curve is obtained from Eq.6.88: 
1

3 3

2 1

1, 2,3j j

j j

C C
A j

C C

−
⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

       Eq.6.88 

For each phase, the sum of the Cij should be unity. This constraint in conjunction with 

Eq.6.88 results in the calculation of phase concentrations, provided parameter A is 

known.  

 

Parameter A is a function of a normalized effective salinity which is the effective salinity 

divided by the optimal salinity. Since we do not currently consider the effect of divalent 

cations, co-solvent, and temperature on the phase behavior, the effective salinity is 

simply the total anion concentration (Eq.6.71). The optimal salinity however is calculated 

as follows: 

2
SEL SEU

SEOP
C CC +

=         Eq.6.89 

Parameter A is related to the height of binodal curve:  
2

3max,

3max,

2
0,1,2

1
s

s
s

C
A s

C
⎛ ⎞

= =⎜ ⎟⎜ ⎟−⎝ ⎠
       Eq.6.90 
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The heights of binodal curve at 0, 1 and twice the optimal salinity are estimated based on 

the solubilization ratios measured in the lab and are input parameters. The A parameter is 

linearly interpolated based on salinity as follows: 

( )

( )

0 1 1

2 1 1

1

1

SE
SE SEOP

SEOP

SE
SE SEOP

SEOP

CA A A C C
C

A
CA A A C C
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⎧ ⎛ ⎞
− − + ≤⎪ ⎜ ⎟

⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ − − + >⎜ ⎟⎪ ⎝ ⎠⎩

     Eq.6.91 

Derivatives of the A parameter would then be calculated as follows: 

( )
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CCif
V

C
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CCif
V

C
C

AA

V
A

12

01

     Eq.6.92 

The phase compositions are computed from Eq.6.88 and the constraint that for each 

phase the sum of Cij should be unity for the volume occupying components, i.e., water, 

oil and surfactant.  

 

Oleic and Aqueous 

 
If C3

f ≤ CMC then surfactant does not reduce the IFT and there is no ME phase. All of the 

surfactant if present is in the aqueous phase. Based on the above we have 

1
11

1 3

CC
C C

=
+

         Eq.6.93 

( )

311
1

11
2

1 3 1 3

CCC C
C V VV
V C C C C

∂∂⎛ ⎞∂ +⎜ ⎟∂ ∂ ∂⎝ ⎠∂= −
∂ + +

      Eq.6.94 

3
31

1 3

CC
C C

=
+

         Eq.6.95 

( )

313
3

31
2

1 3 1 3

CCC C
C V VV
V C C C C

∂∂⎛ ⎞∂ +⎜ ⎟∂ ∂ ∂⎝ ⎠∂= −
∂ + +

      Eq.6.96 

21 13 23 33 12 32 0C C C C C C= = = = = =       Eq.6.97 
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13 23 33 3221 12 0C C C CC C
V V V V V V

∂ ∂ ∂ ∂∂ ∂
= = = = = =

∂ ∂ ∂ ∂ ∂ ∂
    Eq.6.98 

22 1C =           Eq.6.99 

22 0C
V

∂
=

∂
         Eq.6.100 

 

ME and Aqueous 

 
If 3

fC  > CMC and CSE ≥ CSEU then phase environment is Winsor Type II (Fig. 2.10) 

where there are ME and aqueous phases in equilibrium. Electrolytes, surfactant, and oil 

pseudo-components concentrations in the ME phase are calculated using two parameters 

WS1 and WS2 as follows:  

3

2

1 CWS
C

=          Eq.6.101 

C3 and C2 indicate the total fluid concentrations of the surfactant and aqueous 

components respectively. The derivatives of WS1 are 

3 3 2

2 2

( 1) 1 C C CWS
V C V C V

⎛ ⎞∂ ∂∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠

      Eq.6.102 
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AWS =          Eq.6.103 
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      Eq.6.105 
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    Eq.6.106 

where 

22*11 WSWSWSWS ++=α  

( )23 131 2 1C WS C= − +        Eq.6.107 
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231333 1 CCC −−=         Eq.6.109 
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The corner plait point assumption helps calculating other phase compositions: 

11 21 311, 0C C C= = =         Eq.6.111 

0312111 =
∂
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∂

V
C

V
C

V
C        Eq.6.112 

If the concentration of the surfactant in the ME phase is smaller or equal to the total fluid 

concentration of surfactant (C33 ≤ C3), then the surfactant solubilizes aqueous and oleic 

components and forms a single ME phase. The phase compositions and their derivatives 

are 

333223113 ;; CCCCCC ===        Eq.6.113 
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Oleic and ME 

 
If 3

fC  > CMC and CSE ≤ CSEL then phase environment is Winsor Type I or where ME and 

oleic phases are in equilibrium. Composition of the ME phase is calculated as follows: 

3

1

1 CWS
C

=          Eq.6.117 
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       Eq.6.118 
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where 

1 1 2 2WS WS WS WSα = + × +  
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Corner plait point assumption is used again to obtain the composition of other phase: 

22 12 321, 0C C C= = =         Eq.6.125 

0322212 =
∂
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=
∂

∂
V
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V

C        Eq.6.126 

The surfactant concentration in the ME phase and its derivatives are calculated using 

Eq.6.109 and Eq.6.110 respectively. Same as Type II phase environment, there may be a 

single ME phase if C33 ≤ C3 in which case Eq.6.113 through Eq.6.116 describe the phase 

compositions and their derivatives.  

 

Oleic, ME, Aqueous 

 
For the conditions of 3

fC  > CMC and CSEL < CSE < CSEU there are three possibilities for 

the phase environment. Based on Fig. 2.11, if the overall composition falls within the 

triangular region enclosed by the invariant point and the oil and brine pseudo-components 

then three phases (ME, oleic and aqueous) coexist. In this case the composition of the 

ME phase is calculated as follows: 
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=1         Eq.6.127 
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( )AWS −= 422         Eq.6.129 
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       Eq.6.138 

6 1 7 8WS WS WS= − −         Eq.6.139 

6 7 8WS WS WS
V V V

∂ ∂ ∂
= − −
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       Eq.6.140 

The following conditions give the location of overall composition in the ternary diagram 

of Fig. 2.11 and whether three phases are present: 

2: 7A C WS>          Eq.6.141 

1: 6B C WS>          Eq.6.142 

1
3

8:
6

C WSC C
WS

<         Eq.6.143 

2: 7D C WS≤          Eq.6.144 
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2
3

8:
7

C WSE C
WS

<         Eq.6.145 

If condition A (Eq.6.141) was valid and either of conditions B (Eq.6.142) or C (Eq.6.143) 

were correct as well, or if conditions D and E were correct, then overall composition falls 

within the three phase triangle of Fig. 2.11 and the three phases coexist. Eq.6.146 

specifies the condition for existence of three phases. This condition checks if overall 

composition is falling within the three phase region (Fig. 2.11), using geometric 

conditions of Eq.6.141 through Eq.6.145. If the outcome of Eq.6.146 is true, then three 

phases are present and ME phase composition is calculated as follows: 

(A&(B or C)) or (E&D)       Eq.6.146 

13 6C WS=          Eq.6.147 

13 6C WS
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         Eq.6.148 
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         Eq.6.150 

33 8C WS=          Eq.6.151 

33 8C WS
V V

∂ ∂
=
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         Eq.6.152 

The assumption of corner plait point is used to compute the composition of the excess 

aqueous and oleic phases: 

11 21 311, 0C C C= = =         Eq.6.153 
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C        Eq.6.156 

If the outcome of Eq.6.146 was not true then the conditions of Eq.6.157 determine 

whether the overall composition is in Type II lobe of Fig. 2.11.  

(C2 ≤ WS7) & (C3 ≥ C2 WS8/WS7)      Eq.6.157 
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If the conditions of Eq.6.157 are met, then the phase environment is Type II and the 

phase compositions and their derivatives are obtained using Eq.6.101 through Eq.6.116.  

 

If neither conditions of Eq.6.146, nor those of Eq.6.157 are met then the overall 

composition is in the Type I lobe of Fig. 2.11 and phase compositions and their 

derivatives follow Eq.6.117 through Eq.6.126.  

 

Concentration of Other Aqueous Components in Aqueous and ME Phases 

 
After calculation of the concentration of three volume occupying pseudo-components in 

each phase, we can now calculate the concentration of other components in the ME and 

aqueous phases. It is assumed that the composition of the oil in the ME is the same as that 

of the excess oleic phase, therefore oil composition does not vary during the simulation.  

 

Since the aqueous phase is assumed to be free of surfactant and oleic components, one 

can calculate the concentration of polymer in the aqueous phase as follows if this phase 

exists. 

41 100
f

poly poly

water water

M N
C

M N
=         Eq.6.158 

Eq.6.158 gives the polymer concentration in aqueous phase in wt% to be consistent with 

UTCHEM. The derivatives of C41 are as follows: 
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   Eq.6.159 
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=
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      Eq.6.160 

The concentration of polymer in the ME phase is given by  
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13
43 100

f
poly poly

water water

M N C
C

M N
=        Eq.6.161 

Polymer concentration is normalized by water concentration since polymer is assumed to 

be only soluble in water. The derivatives of C43 are obtained as follows: 

1343 13 13
2100

f f f
poly poly poly poly water

water water water water

M N N C NC C C N
V M N V N V N V

⎛ ⎞∂∂ ∂ ∂
= + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 Eq.6.162 

Since the effects of divalent cations, cosolvent and temperature on phase behavior are 

neglected, the effective salinity is the same as the salt concentration in the aqueous phase 

and C51 is obtained from Eq.6.71 and its derivatives are given in Eq.6.72 and Eq.6.73. 

The concentration of salt in the ME is 

53 13 SEC C C=          Eq.6.163 

The salinity in the ME phase is normalized by the volume of water in ME phase. The 

derivatives of C53 are defined as follows: 

53 13
13

SE
SE

C C CC C
V V V

∂ ∂ ∂
= +

∂ ∂ ∂
       Eq.6.164 

 

Solubilization Ratios  

 
Solubilization ratios are key parameters used for IFT calculation. Solubilization ratio of 

water, R13, is defined as the volume of water solubilized in the microemulsion phase 

divided by the volume of surfactant in that phase: 
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The oil solubilization ratio is calculated as follows: 
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Figure 2.12 illustrates the relationship between the oil and water solubilization ratios and 

salinity. At low salinities anionic surfactants tends to prefer the water more than oil and 

thus the solubilization ratio of water is much larger than that of oil. By increasing the 

salinity, one can make anionic surfactants more oil soluble. Solubilization ratios of water 

and oil become equal at the point where the water solubility of the surfactant becomes 

equal to its oil solubility. This is referred to as optimum conditions as mentioned in 

Chapter 2. Figure 2.12 also illustrates the correlation between IFTs and solubilization 

ratios. The calculation of IFTs for oil/ME and brine/ME is discussed later. 

 

Molar Density 

 
Aqueous phase molar density, ξwater, is discussed in Eq.6.57. Aqueous phase molar 

density is a function of pressure only and its derivative is as follows:  

0

o o
water waterwater c if V P

V otherwise
ξξ ⎧ =∂

= ⎨∂ ⎩
       Eq.6.169 

Molar density of the oleic phase is obtained from the EOS as a function of pressure, 

temperature, and oil phase composition: 

( )22 ,, ixTPf=ξ         Eq.6.170 

where 
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x
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2,

2,
2         Eq.6.171 

Since composition of the oil in microemulsion phase is the same as that of the excess 

oleic phase, There is no need to modify the existing derivatives of ξ2. 

 

Molar density of the ME phase is obtained using its composition as follows: 

3 13 23 33water oil surfC C Cξ ξ ξ ξ= + +       Eq.6.172 

3 13 23 33
13 23 33

surfwater oil
water oil surf

C C CC C C
V V V V V V V

ξξ ξ ξξ ξ ξ
∂∂ ∂ ∂ ∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

 Eq.6.173 
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Molar Phase Compositions  

 
Molar phase compositions are calculated for the current phase environment in each 

gridblock at each timestep. The number of moles of each component in each phase is 

calculated first and then, the sum of the number of moles of all of the components present 

in a phase gives the total number of moles of that phase. The mole fraction of each 

component in a phase is obtained by dividing the number of moles of that component by 

total number of moles of all components of that phase.  

 

Oleic and Aqueous 

 
If fluid surfactant concentration is less than the CMC, only aqueous and oleic phases are 

present. Surfactant is assumed to be in the aqueous phase. The number of moles of each 

component in the aqueous phase can be written as follows considering the assumptions 

mentioned in Section 6.2.1. 
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      Eq.6.174 
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     Eq.6.175 
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surf
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    Eq.6.176 
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    Eq.6.177 
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     Eq.6.178 
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,1 1
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tractrac if V NN
V for all other parameters

=∂ ⎧
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     Eq.6.179 

,1 0iN
for hydrocarbon component i

V
∂

=
∂

     Eq.6.180 

Total number of moles in the aqueous phase, NT,1, is obtained as follows: 

1,1,1,1,1,1, tracsaltsurfpolywaterT NNNNNN ++++=     Eq.6.181 

,1 ,1 ,1 ,1
f f

surf polyT water salt tracN NN N N N
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    Eq.6.182 

The mole fraction of component i in the aqueous phase, xi1, is calculated from: 
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  Eq.6.184 

The mole fractions of the oleic phase and their derivatives are obtained as follows since 

the oleic phase is assumed to consist of hydrocarbon components only. 
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∑     Eq.6.185 

The derivatives of oleic phase mole fractions with respect to number of moles of a 

hydrocarbon component per pore volume are as follows: 
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      Eq.6.186 
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The derivatives of oleic phase mole fractions with respect to the number of moles of 

aqueous components and pressure are zero: 

2 0ix for pressure and aqueous components
V

∂
=

∂
    Eq.6.187 

As mentioned before, there is no microemulsion phase in this case, hence, 

03
3 =

∂
∂

=
V
xx i

i          Eq.6.188 

 

Aqueous and ME 

 
It is assumed that surfactant and oleic components are in the microemulsion phase. 

Aqueous components are partitioned into the microemulsion and aqueous phases based 

on the volume of water in each phase. The moles of water partitioned into the 

microemulsion phase, Nwater,3, is calculated based on the volume of the water in ME 

phase. 
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  Eq.6.190 
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  Eq.6.192 

The number of moles of polymer in the ME phase and its derivatives are 

,3 13 3 1/f
poly polyN N C S C=        Eq.6.193 
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 Eq.6.194 

A similar approach is taken for the number of moles of salt in the ME. 

,3 13 3 1/salt saltN N C S C=         Eq.6.195 

,3 13 3 3 13 13 3 13 31
2

1 1 1 1

salt salt salt salt saltN N C S S N C C N S N C SC
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  Eq.6.196 

Number of moles of tracer in the ME phase is calculated similar to salt. 

,3 13 3 1/trac tracN N C S C=         Eq.6.197 
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  Eq.6.198 

The number of moles of the surfactant in the ME is easy to figure out since we assume 

that surfactant is only in the ME phase. 
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surf surfN N=          Eq.6.199 
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        Eq.6.200 

In this case, oleic components are only in the ME phase so we have 
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The total number of moles in ME phase and its derivative is as follows: 
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  Eq.6.204 

The mole fraction of all components except the hydrocarbons is as follows: 
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      Eq.6.206 

For any hydrocarbon component we have  

3
,3

i
i

T

Nx
N

=          Eq.6.207 

( )

,3

,3 ,33

,3
2

,3

1 1 Ti

T T ki

Tk i

kT

NN if i k
N N Nx

NN N if i k
NN

⎧ ⎛ ⎞∂
− =⎪ ⎜ ⎟⎜ ⎟∂⎪∂ ⎝ ⎠= ⎨ ∂∂ ⎪− ≠⎪ ∂

⎩

     Eq.6.208 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−=
∂
∂

P
N

N
N

NP
x T

T

i

T

i 3,

3,3,

3 1        Eq.6.209 

Number of moles of water in the aqueous phase is as follows: 

3,1, waterwaterwater NNN −=        Eq.6.210 
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∂
∂ 3,1,        Eq.6.211 

As mentioned before, the aqueous components partition into different phases based on 

the volume of water in each phase. 

,1 11 1 1 1 1/ /f f
poly poly polyN N C S C N S C= =       Eq.6.212 
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    Eq.6.213 

,1 11 1 1 1 1/ /salt salt saltN N C S C N S C= =       Eq.6.214 
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     Eq.6.215 

,1 11 1 1 1 1/ /trac trac tracN N C S C N S C= =       Eq.6.216 
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     Eq.6.217 

There are no surfactant or hydrocarbon components in the excess aqueous phase based on 

corner plait point assumption.  
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        Eq.6.218 

We can calculate the total number of moles of the aqueous phase as 

1,1,1,1,1, tracsaltpolywaterT NNNNN +++=      Eq.6.219 

V
N

V
N

V
N

V
N

V
N tracsaltpolywaterT

∂
∂

+
∂

∂
+

∂
∂

+
∂

∂
=

∂
∂ 1,1,1,1,1,     Eq.6.220 

The mole fractions of each component in the aqueous phase and their derivatives are then 

calculated as follows: 
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      Eq.6.222 

Since there is no oleic phase present, we have 
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Oleic and ME 

 
In this case the aqueous components are assumed to be in the microemulsion phase only. 

The oleic phase consists of only hydrocarbon components and since the composition of 
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solubilized oil in the microemulsion is assumed to be the same as the oleic phase, the 

composition of remaining oleic phase does not change. The mole fraction of the oleic 

phase can be written as follows: 
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∑     Eq.6.224 

The derivation of Eq.6.224 can be found in Appendix B. For a hydrocarbon component i 

the derivatives of xi2 are: 
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Eq.6. 225 

For aqueous component i the derivatives of xi2 are zero. 
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         Eq.6.226 

The derivatives of mole fractions of all components in the oleic phase with respect to 

pressure are zero. 
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The number of moles of the oleic components dissolved in the ME phase is 
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where F is defined in Eq.6.230 and its derivative WRT pressure is as follows: 
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  Eq.6.233 

The number of moles of each hydrocarbon component in the ME phase is computed as 

follows: 
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The number of moles of aqueous components per pore volume in the ME phase are 

obtained keeping in mind that aqueous components are only in the ME phase. 
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       Eq.6.237 

The derivatives of these components are as follows: 
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       Eq.6.238 

The total number of moles per pore volume in the ME phase is then obtained as 
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   Eq.6.240 

Eq.6.205 and Eq.6.206 give the mole fraction of each component in the ME phase and 

the derivatives respectively. Since there is no aqueous phase present, we have 
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         Eq.6.241 

 

 



 152

Oleic, Aqueous, ME 

 
If all three phases coexist then the mole fractions of the ME phase are obtained as 

follows. Based on our assumption, the surfactant component is entirely in the ME phase 

as specified by Eq.6.199. First we need to calculate the number of moles of water and 

hydrocarbons in the ME phase. Number of moles of water per pore volume in the ME 

phase and its derivatives is obtained as follows: 

,3 13 3 33/water waterN C C Cξ= �        Eq.6.242 
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     Eq.6.243 

The number of moles of hydrocarbons per pore volume in the ME phase is obtained as 

follows: 

,3 2 23 3 33/oilN C C Cξ= �         Eq.6.244 

The derivatives of Eq.6.244 are 
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Number of moles of each hydrocarbon component in ME phase is calculated as follows: 
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The derivative of Eq.6.246 for hydrocarbon component i WRT hydrocarbon component 

k, is 
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    Eq.6.247 

Derivative of Eq.6.246 for hydrocarbon component i WRT aqueous component k, is 
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The derivative WRT pressure is 
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The aqueous components are partitioned into the aqueous and ME phases according to 

the volume of water in each phase (Eq.6.193 through Eq.6.200). Total number of moles 

in the ME phase is computed as follows: 

,3 ,3 ,3 ,3 ,3 ,3
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  Eq.6.251 

The mole fractions of components in the ME phase and the derivatives follow Eq.6.205 

and Eq.6.206, respectively. Calculation of the aqueous phase mole fractions is similar to 

what was explained in Eq.6.210 through Eq.6.222. Since we assume that the composition 

of the solubilized oil in the ME is the same as that of the free excess oil, the mole fraction 

of each hydrocarbon component in the oleic phase does not change and is computed from 

Eq.6.224 with derivatives given in Eq.6. 225 through Eq.6.227.  
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Relative Permeabilities as a Function of Trapping Number 

 
The calculation of the IFTs and relative permeabilities is function of the phase behavior. 

Corey type relative permeability functions are used. The residual saturations and relative 

permeability curves are functions of the trapping number (Delshad, 1990). Here we 

describe the relative permeability calculation for each phase environment. 

 

Two Phases Aqueous and Oleic 

 
The relative permeabilities are obtained as follows: 
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End point and exponent of the relative permeability of phase j is scaled based on the 

saturation of its conjugate phase, j'. Trapping number is given in Eq.3.15. For a special 

case when the principal direction of permeability tensor is on the x, y, and z axes of the 

simulation and the reservoir is horizontal (not dipped), one can write Eq.3.15 as follows 

(Jin, 1994): 
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 Eq.6.259 

where 

owjj σσ =′          Eq.6.260 

j′Φ  in  Eq.6.259 is the flow potential of the conjugate phase that is pushing the displaced 

phase. It should be noted that in this case the surfactant concentration is below the CMC 

and it is assumed that surfactant does not form a ME phase or change the IFT between 

the oleic and aqueous phases. The definition of trapping number given in Eq.6.259 is 

taken from Jin (1994) for a special case when the principal direction of permeability 

tensor is in the directions of x, y, and z axes of the simulation. 

 

The endpoint and exponent of the relative permeability curves, o
rjk  and nj, are linearly 

interpolated between their values at high and low trapping number based on the residual 

saturation of the conjugate phase. In this case, it is obvious that the conjugate of the oleic 

phase is the aqueous phase and visa versa. This relationship for the relative permeability 

endpoints is stated in Eq.6.253. For relative permeability exponents we have 
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The derivatives of the relative permeability curves are written as follows: 
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where 
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Aqueous and ME 

 
The formulation is the same as the one specified above except that surfactant 

concentration is above CMC, the ME phase is formed, and IFT is reduced. Based on the 

above, Eq.6.252 through Eq.6.254 are relevant to the Type II system except that in this 

case the conjugate of the aqueous phase is the ME phase and visa versa. Hydrocarbon 

components are present in the ME phase only. Phase saturations and their derivatives are 

obtained as follows: 
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The derivatives of oil saturation are zero. Eq.6.258 is used for calculation of the residual 

saturations and Eq.6.259 gives the trapping number. The IFT between the aqueous/ME 

interface is calculated based on Chun Huh equation (1979) modified by Hirasaki (1981) 

and Delshad et al. (1996), as follows: 
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Eqs.6.258 through 6.264 are relevant for this case except Eq.6.260 which is replaced with 

Eq.6.274. The derivatives of the trapping number are as follows: 
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The mass density of the ME phase is calculated as follows: 

( )3 13 33 1 23 2C C Cρ ρ ρ= + +        Eq.6.276 

It should be noted that although an oleic phase does not exist in this case, we would still 

need to calculate the oil density and its derivatives to be used for calculation of the ME 

density. Equations 6.266 and 6.267 are used for the oleic and aqueous phases and the 

derivative of the ME mass density is calculated as follows: 
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  Eq.6.277 

The derivative of the IFT in Eq.6.275 is calculated as follows: 
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The derivatives of the normalized saturation and the relative permeability exponent are 

the same as specified in Eqs.6.268 and 6.269.  

 

Oleic and ME 

 
The calculation of relative permeability curves is very similar to what was specified 

above for aqueous and ME phases except that in this case we need to calculate the IFT 

between the ME/oleic interface. Equations 6.252 through 6.254 are used. Aqueous 

components are in the ME phase only and phase saturations and the derivatives are as 

follows: 
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    Eq.6.286 

The derivatives of the aqueous phase saturation are zero. Equation 6.258 is used for 

residual phase saturations and Eq.6.259 gives the trapping number. The IFT of ME/oleic 

phases is calculated as follows: 
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      Eq.6.288 

We can use Eqs.6.261 through 6.264 for calculation of relative permeability exponents, 

the derivative of the relative permeability, the derivative of the endpoint relative 

permeability and derivative of residual saturation, respectively. The derivative of the 

trapping number is obtained using Eq.6.275. ME mass density is calculated using 

Eq.6.276 and the derivative of the ME mass density is obtained from Eq.6.277. Equations 

6.266 and 6.267 are used to calculate the mass density of the oleic and aqueous phases 

and the derivatives. The derivative of the IFT is calculated as follows: 
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The derivatives of the normalized saturation and the relative permeability exponent are 

the same as what is specified in Eq.6.268 and Eq.6.269.  

 

Aqueous, Oleic and ME 

 
We assume that the conjugate of the oleic phase is the aqueous phase and visa versa. For 

the ME phase, the conjugate is determined based on the saturation of the oleic and 

aqueous phases. If the aqueous phase is at residual saturation and the saturation of the 

oleic phase is above residual, then the oleic phase is assumed to be the conjugate of the 

ME phase. Otherwise the aqueous phase is assumed to be the conjugate of the ME phase. 

The relative permeability of each phase is calculated from Eq.6.252 and the relative 

permeability endpoint is calculated from Eq.6.253. Normalized saturations are obtained 

from Eq.6.295. 
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The phase saturations and the derivatives are calculated below: 
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Derivatives of the aqueous, oleic and ME phases are obtained from Eq.6.271, Eq.6.285 

and Eq.6.286, respectively. Residual saturations and trapping number are the same as 

Eqs.6.258 and 6.259. Equation 6.273 gives the IFT for the aqueous/ME and the IFT of 

the oleic/ME is obtained from Eq.6.287. The derivatives of the trapping number are 

calculated from Eq.6.275. Equations 6.266 and 6.267 are used to calculate the mass 

density of the aqueous and oleic phases and the derivatives. Mass density of the ME 

phase and its derivatives are specified in Eq.6.276 and Eq.6.277 respectively. Equations 

6.278 through 6.283 are used to calculate the derivatives of the aqueous/ME IFT. 

Equations 6.289 through Eq.6.294 give the derivatives of the oleic/ME IFT. Derivatives 

of normalized saturations and the relative permeability exponents are obtained from 

Eq.6.268 and Eq.6.269 respectively. 

 

Phase Viscosities  

 
There are two options in GPAS for oleic viscosity calculation. It could be obtained from 

the equation of state as a function of pressure, temperature and composition, or it could 

be specified by the user as an input. If oil viscosity is specified by the user, then it is 

assumed to remain constant during the simulation for the following reasons: 

1. The simulation is assumed to be isothermal and thus the oil viscosity does not 

change due a change in temperature. 
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2. Oil composition is constant and thus oil viscosity cannot change due to a change 

in the composition. 

3. Polymer is water soluble and since no water is assumed in the oleic phase, then 

there is no polymer in the oleic phase to change its viscosity. 

4. Neglect the effect of pressure on oil viscosity.  

 

The aqueous and ME viscosity in the absence of polymer is calculated as follows: 
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where α1 through α5 are input parameters obtained by matching the measured ME phase 

viscosities in the lab.  

 

If polymer is added to the surfactant solution, the aqueous and ME phase viscosities are 

calculated as follows: 

( ) ( ) ( )1 2 3 2 1 3 4 1 5 2
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where 
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Eq.6.300 specifies the dependency of polymer viscosity on polymer concentration and 

salinity. Polymer viscosity is also a strong function of shear rate and is modeled as 

follows (Meter and Bird, 1964). 
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where 1/ 2γ�  is the shear rate at which viscosity is the average of o
pμ  and μw and Pα is an 

empirical coefficient. Meter and Bird (1964) have developed Eq.6.301 for flow of 

polymer in tubes. In a permeable medium, μp is the apparent viscosity and the shear rate 

is an equivalent shear rate, eqγ� . The in-situ shear rate for phase A  is obtained from 

modified Blake-Kozeney capillary bundle equation for multiphase flow (Lin, 1981, 

Sorbie, 1991). 
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  Eq.6.303 

where cγ� is equal to 3.97C sec-1 and C is the shear rate coefficient used for taking non-

ideal effects such as slip at the pore wall into account (Wreath et al., 1990; Sorbie, 1991). 

The average permeability used in Eq.6.302 is calculated as follows: 
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The derivatives of Eq.6.299 are obtained as follows: 
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  Eq.6.305 

where 
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If shear rate dependency of polymer viscosity is modeled, then the derivatives of 

Eq.6.306 are used in the RHS of Eq.6.307 to obtain the final derivatives of polymer 

viscosity as follows: 
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        Eq.6.308 

This concludes the formulation of the chemical flooding module.  

6.2.4 Solution Procedure 

Finite difference scheme is applied to Eq.6.3 and Eq.6.4 and the resulting nb(nc+na+2) 

equations for nb number of gridblocks are solved simultaneously using the fully implicit 

algorithm. Each gridblock has nc+na+2 unknowns denoted as follows: 

( )1 1 1 2,..., , ,..., , ,
c c c aI n n n n H Ox N N N N P N+ +=

G      Eq.6.309 

where subscript I denotes Ith gridblock. The vector of total unknowns consists of nb 

vectors of Eq.6.309 such as the one shown in Eq.6.310: 

( )1 2, ,...,
bnx x x x=

G G G G          Eq.6.310 

Newton’s method is used to solve the non-linear system of equations. The residual vector 

(Eq.6.1) and the finite difference formulation of Eqs.6.3 and 6.4 (as a function of xG ) is 

then evaluated. xG  is considered as the solution vector in the new time level if the 

constraint of ( ) 0R x ≈
GG G  is satisfied. Other convergence criteria such as “sufficiently small” 

pressure and saturation changes for a given change in xG  can also be used. This criterion 

becomes very useful when a small change in composition causes a large saturation 

change. 
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Newton’s method is applied in three steps to solve the system of equations described 

above. 

1. Guess a solution vector. Usually the solution vector at the old timestep is used as 

the initial guess for the next step. At the beginning of the simulation, the initial 

conditions are used as the guessed solution vector.  

2. The guessed solution vector is used to calculate the residual vector. The 

convergence is checked to see if the solution is good enough. In order to calculate 

the residual vector, one needs to calculate the variables depending on xG  such as 

molar density, molar composition, relative permeability, phase viscosities and 

sink and source terms. Section 6.2.3 describes this procedure in detail.  

3. If the residual vector is converged, then the guessed solution is accepted as the 

true solution of the system for the new timestep. If the residual vector has not 

converged then a new solution vector is guessed using the Jacobian (J) of the 

system evaluated at the current guessed solution. Steps 2 and 3 are then repeated 

until convergence is reached. The new solution vector is guessed by updating X
G

 

as follows: 
new oldX X X= + Δ

G G G
        Eq.6.311 

where XΔ
G

 is obtained from Eq.6.312: 

( ) ( )old oldJ X X R XΔ = −
G G G G

       Eq.6.312 

Equation 6.312 is written as follows: 
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where 
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6.2.5 Framework and the Linear Solver for Parallel Processing 

As shown in Eq.6.313, number of linear equations to be solved for Newton iteration is a 

function of both number of components and number of gridblocks. This means that as 

these numbers increase, so does the computational overhead. When running large cases, 

this can cause the simulation to be very slow or the memory to be insufficient for running 

on a single processor. To overcome this problem, one can run large problems in parallel. 

The parallelization method used in GPAS is relatively simple. The total number of 
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gridblocks is divided by the number of processors. This allows each processor to 

calculate the Jacobian and residual vector of the gridblocks associated to it 

simultaneously. This makes the simulation much faster and the required memory for each 

processor is reduced. In order to calculate the Jacobian and residual vector of a gridblock 

adjacent to a neighboring gridblock that belongs to another processor, some information 

from that gridblock (such as its mobility) is required. Therefore the two processors need 

to communicate this information during the simulation. GPAS uses a framework called 

Integrated Parallel Accurate Reservoir Simulator (IPARS) (Parashar et al., 1997) for the 

allocation of memory, decomposition of the simulation domain and communication 

between the processors. IPARS uses Message Passing Interface (MPI) (Gropp et al., 

1994) functions for communication between processors.  

 

After construction of the Jacobian matrix and the residual vector by each processor, a 

solver should gather all the information from each processor and solve the linear system 

of equations shown in Eq.6.313. So the solver should support parallel processing. The 

Portable Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 1997) from 

Argonne National Laboratory is a linear solver that supports parallel computation and is 

used in GPAS.  

6.3 Summary 

In this chapter we first introduced GPAS in Section 6.1. Then we took a close look at the 

chemical flooding module of GPAS in Section 6.2. The main assumptions in the 

development were stated in Section 6.2.1. An overview of the chemical flooding module 

was presented in Section 6.2.2. In Section 6.2.3 we specified the governing equations and 

physical properties and their derivatives. The solution procedure was described in Section 

6.2.4 and the parallel computing procedure was given in Section 6.2.5. 
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Figure 6.1: Structure of GPAS (Solid lines: completed modules; dashed lines: projects 

under development). 
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Chapter 7: Validation of GPAS Chemical Flooding 
Module 

 

7.1 Introduction 

In Chapter 6 we discussed the new chemical flooding module of GPAS with 

comprehensive oil/brine/surfactant phase behavior. This new development is validated 

against the results of UTCHEM. It should be noted that UTCHEM and GPAS have 

different assumptions and formulations. The most important differences between 

UTCHEM and GPAS are as follows: 

1. In UTCHEM, the rock/fluid system is assumed to be slightly compressible 

whereas in GPAS the oil density is obtained from the Peng-Robinson EOS. The 

difference in phase behavior and resulting oil phase properties may lead to 

differences between the results of the two simulators. 

2. UTCHEM uses an IMPEC approach and GPAS is a fully implicit simulator. This 

means that in general, results of GPAS are more diffusive compared to UTCHEM 

(Anthony et al., 1980).  

3. GPAS uses a single point upstream method whereas UTCHEM has the option of 

higher order numerical scheme and a flux limiter in addition to single point 

upstream. Therefore, for the purpose of comparison and validation, we used single 

point upstream option in UTCHEM. 

4. Automatic timestep controls of UTCHEM and GPAS are different. In UTCHEM, 

there are 3 automatic timestep controls: 1- based on dimensional changes in 

concentration (ΔCmax) of the first three components (water, oil and surfactant). 2- 

based on dimensional changes in concentration of all components and 3- based on 

dimensionless change in concentration (ΔCDmax) of all components. GPAS has 

one automatic timestep option which is based on dimensionless changes in 

concentration (ΔCDmax) of oil and water components and pressure. One should be 

careful about these options when comparing the two simulators.  
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Several validation test cases were set up. First few 1D cases are presented and the results 

obtained from GPAS are compared to UTCHEM results. Then 2D vertical cases are 

presented. Next the results of UTCHEM and GPAS for 3D cases are compared. A 

heterogeneous example is presented afterwards. A case study is then presented that 

benchmarks UTCHEM versus GPAS for cases with different number of gridblocks. 

Validation of parallel processing option of GPAS is presented next. 

7.2 Validation 1D Cases 

Validation tests are performed for waterflood, polymer flood, and surfactant/polymer 

floods. The model geometry and physical properties are based on a 1D coreflood 

simulation documented as Example 6 in the benchmark input files of UTCHEM 

(UTCHEM 9.82).  

 

The core dimension is 0.8785' x 0.1104' x 0.1104' with 80 gridblocks in the x direction. 

The gridblock sizes are 0.01098' x 0.1104' x 0.1104'. Permeability and porosity are 236 

md and 0.1988 respectively. The core is placed horizontally and is subjected to constant 

rate injection and constant pressure production. The outlet is open to atmospheric 

pressure. Oil and water viscosities are 0.995 cp and 24.3 cp respectively. Initial water 

saturation in the core is assumed to be different for different recovery processes (0.3829 

for water and polymer floods and 0.6 for the surfactant polymer flood). Table 7.1 

summarizes input parameters used in the coreflood simulations. 

 

Relative permeability curves of aqueous and oleic phases at low and high trapping 

numbers are presented in Fig. 7.1 and Fig. 7.2 respectively. Figure 7.3 shows the 

capillary desaturation curves used in these simulations. Table 7.2 summarizes the relative 

permeability and capillary desaturation input parameters.  

 

Polymer properties are given in Table 7.3. Figure 7.4 presents polymer viscosity as a 

function of polymer concentration at effective salinity of 0.3 eq/L and shear rate of 10 

sec-1. Figure 7.5 shows the effect of salinity on polymer viscosity at a polymer 



 174

concentration of 0.12 wt% and shear rate of 10 sec-1. In Fig. 7.7 the shear thinning 

behavior of polymer viscosity is shown as a function of shear rate for polymer 

concentration of 0.12 wt% and effective salinity of 0.3 eq/L.  

 

Table 7.4 gives the surfactant phase behavior and IFT input parameters used in 

surfactant/ polymer simulation. 

7.2.1 Simulation of 1-D Waterflood 

The injection rate is 0.001 ft3/day and water is injected for 1 PVs (2.12 days). Automatic 

time step is used with UTCHEM and GPAS. UTCHEM time step is based on maximum 

dimensional concentration change (ΔCmax) of 1% for each component (IMES=3). GPAS 

uses a maximum dimensionless concentration change (ΔCDmax) of 1% for each 

component. Figure 7.7 compares the recovery factors of UTCHEM and GPAS where a 

good match is obtained. Figures 7.8 and 7.9 show the quality of the match for oil and 

water production rates respectively.  

 

Figures 7.10 through 7.13 show saturation and pressure profiles at 0.2 PVs (0.4233 days) 

and 0.57 PVs (1.21 days) of water injection. A very good match is obtained between the 

two simulators.  

 

GPAS has a fully implicit formulation which means that each timestep can be more CPU 

intensive compared to UTCHEM. On the other hand, with the fully implicit formulation 

much larger timesteps are possible. The CPU times are 19 sec for GPAS and 0.43 sec for 

UTCHEM. GPAS takes 732 timesteps with an average timestep of 0.0029 days. 

UTCHEM takes 1000 timesteps with an average timestep of 0.00212 days.  

 

1D waterflood simulation was repeated with constant time steps of 0.001 and 0.01 days. 

The first value is smaller than that taken in the previous simulation and the second value 

is an order of magnitude larger. Figure 7.14 shows that GPAS solution is still accurate 

while UTCHEM results vary greatly when the time step is increased to a constant value 

of 0.01 days. There are warning messages in UTCHEM warning file about large material 
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balance errors. It takes 6 secs for GPAS with time steps of 0.01 days and 47 seconds with 

time steps of 0.001 days to simulate this waterflood. UTCHEM needs 0.7 secs with 

constant time step of 0.001 day. It is important to note that in practice, one never uses a 

constant time step for the entire simulation time. 

 

Figures 7.15 through 7.17 compare oil production rate, oil saturation profile and aqueous 

phase pressure profiles for the constant timestep cases. It is clearly seen that as timestep 

gets larger, the smearing of the oil production rate and oil saturation profile estimated by 

GPAS increases due to increased truncation errors.  

7.2.2 1D Polymer Flood Simulation 

The injection rate is 0.001 ft3/day and a continuous polymer slug at 0.12 wt% is injected 

for 1.5 PVs (3.2 days). Initial salinity is 0.4 eq/L and the injected salinity is 0.3 eq/L to 

test the salinity dependency of polymer viscosity. Tables 7.1 through 7.3 give the input 

parameters. 

 

Automatic timestep control was used for both GPAS and UTCHEM. Maximum change 

in concentration of each component for UTCHEM is 1% (IMES = 3) and maximum 

dimensionless concentration change for GPAS is 1%. 

 

Figure 7.18 shows almost identical results for oil recovery of UTCHEM and GPAS. 

Figures 7.19 and 7.20 favorably compare oil and water production rates.  

 

Figures 7.21 and 7.22 compare GPAS and UTCHEM results of produced polymer and 

anion concentration respectively. It is noted that GPAS results show more smearing 

indicating its higher numerical dispersion. It is interesting to see that the smearing of 

anion concentration is very close to symmetric (Fig. 7.22) but the polymer production 

smearing is not symmetric (Fig. 7.21). The difference might be due to polymer adsorption 

that suppresses numerical dispersion at early time.  
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Profiles of polymer concentration are presented in Figs. 7.23 and 7.24 at 0.2 PVs (0.423 

days) and 0.48 PVs (1.02 days) respectively. It is interesting to note that as time passes, 

the smearing in GPAS results increases. At 0.2 PVs the polymer concentration profiles 

predicted by two simulators almost overlap (Fig. 7.23) but at 0.48 PVs the profile 

predicted by GPAS shows small smearing compared to UTCHEM results (Fig. 7.24).  

 

Figures 7.25 and 7.26 show anion concentration profiles at different times. Once again 

there is smearing evident in GPAS results. Figures 7.27 and 7.28 show the saturation 

profiles at 0.2 and 0.48 PVs respectively. The saturation profiles match to a great extent 

and so do the pressure profiles presented in Figs. 7.29 and 7.30 at 0.2 and 0.48 PVs 

respectively. The close agreement in pressure profiles and breakthrough times validates 

the correct implementation of polymer properties in GPAS. 

 

GPAS takes 49 seconds and UTCHEM takes 6.5 seconds to run this case on the same 

computer. It takes 12000 timesteps with an average timestep of 0.000267 days running 

UTCHEM. GPAS takes 989 steps with an average timestep size of 0.00323 days. This 

may be a reason for smearing in GPAS results since GPAS takes timesteps that are an 

order of magnitude larger than UTCHEM.  

 

The same case was repeated with constant time steps of 0.0005 and 0.005 days. Figure 

7.31 compares cumulative oil recovery for constant timesteps. Figure 7. 32 compares oil 

production rates where UTCHEM results greatly deteriorate as timestep increases. For 

timesteps of 0.005 days UTCHEM predicts a higher oil production rate at initial times 

and a lower rate at later times compared to the smaller timestep simulation. GPAS results 

show a smaller oil production rate at early times and larger rate at later times. This 

behavior can be explained by polymer concentration shown in Fig. 7.33. Figure 7.34 

compares the produced anion concentration where GPAS shows significant smearing at 

larger timestep of 0.005 days. Figures 7.35 and 7.36 compare polymer and anion 

concentration profiles at 0.5 PVs (1.06 days) of polymer flood.  
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The CPU times with constant timesteps for UTCHEM are 1 and 3.8 seconds for 0.005 

and 0.0005 day timesteps respectively. GPAS CPU times are 35 and 253 seconds for 

0.005 and 0.0005 day timesteps respectively. 

7.2.3 1D Surfactant/Polymer Flood Simulation 

Surfactant phase behavior parameters are given in Table 7.4. The initial water saturation 

is 0.6 and polymer properties are in Table 7.3. 

 

Two slugs are injected: first the chemical slug containing 1 vol.% surfactant, 0.43 eq/L 

anion and 0.12 wt% polymer is injected at a rate of 0.001 ft3/day for 0.3 PVs (0.64 days). 

The polymer flood chase containing 0.3 eq/L salt and 0.12 wt% polymer is then injected 

for 1.2 PVs (2.56 days). The initial salinity is 0.3 eq/L which is below the lower limit of 

three phase region (CSEL=0.33 eq/L in Table 7.4). The injected slug is at optimum salinity 

of 0.43 eq/L and the chase polymer flood has the same salinity as the initial of 0.3 eq/L. 

Automatic time step option is used for both simulators. Maximum change in the 

concentration for UTCHEM is 0.001 (IMES = 3)) and maximum dimensionless change in 

concentration for GPAS is 0.001.  

 

Figure 7.37 shows the good match obtained for oil recovery. Figures 7.38 and 7.39 

compare oil and water productions rates respectively. Figures 7.40 and 7.41 show very 

close agreement for effluent polymer and anion concentrations in the aqueous phase 

present. Figure 7.42 compares the concentration of surfactant in ME phase.  

 

Figures 7.43 through 7.47 show profiles of polymer concentration in aqueous and ME 

phases, anion concentration in aqueous and ME phases, surfactant concentration in ME 

phase, saturation, and pressure at 0.2 PVs (0.423 days). There is an excellent agreement 

between the results of the two simulators. Figures 7.48 through 7.52 show the profiles at 

0.5 PVs (1.06 days). 
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7.3 2D Simulations 

A 2D vertical cross section 660' in x, 66' in y and 100' in z direction is simulated. The 

cross section is divided into 10 horizontal and 5 vertical grids. An injector with a constant 

rate of 100 bbls/d is placed in the first grid in the x direction and is completed through 

five layers. The producer is at constant pressure and is placed at the 10th horizontal grid 

and is completed through all layers. The porosity is 0.2 and horizontal and vertical 

permeabilities are 100 and 10 md respectively. The reservoir is assumed to be at the 

pressure of 200 psia initially and the production well operates at this pressure. Table 7.5 

summarizes reservoir input parameters.  

 

Water and oil viscosities are 0.995 and 2.43 cp respectively. Table 7.6 summarizes the 

relative permeability and capillary desaturation parameters. Polymer and surfactant 

properties are specified in Table 7.3 and Table 7.4 respectively. Water, polymer, and 

surfactant/polymer flood are simulated with both GPAS and UTCHEM.  

7.3.1 Waterflood  

Two components (oil and water) are considered and the reservoir is assumed to be at 

residual water saturation of 0.2. Water is injected at 100 bbls/day for 3000 days (1.93 

PVs).  

 

Figure 7.53 shows the excellent agreement in oil recovery factors between UTCHEM and 

GPAS results. Figures 7.54 and 7.55 show similar oil and water production rates.  

 

Figures 7.56 and 7.57 compare water pressure and oil saturation profiles at 310 days (0.2 

PVs) and 773 days (0.5 PVs). Figure 7.57 shows oil gravity override and both simulators 

capture this effect. This gravity override changes the pressure gradient in the z direction 

as evident in Fig. 7.56 A and 7.56 B.  

 

These results validate the implementation of gravity in GPAS and show its capability for 

simulation of 2D waterflood problems.  
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The results explained above are obtained using variable timesteps. For UTCHEM the 

maximum concentration change of water and oil is 0.01 (IMES = 3) and for GPAS 

maximum dimensionless concentration change of water and oil is 0.01. The CPU times 

are 17 secs for GPAS and 0.7 secs for UTCHEM.  

7.3.2 Polymer Flood  

Four components of water, oil, salt and polymer are simulated. The reservoir is assumed 

to be at residual water saturation of 0.2. A polymer solution containing 0.1 wt% polymer 

is injected at 100 bbls/day for 3000 days (1.93 PVs). Initial salinity is 0.4 eq/L NaCl and 

that in the injected polymer solution is 0.3 eq/L salt.   

 

Figures 7.58 through 7.62 compare recovery factors, oil and water production rates and 

polymer and salt effluent concentrations respectively. A very good match is obtained 

between the results of the two simulators. Figures 7.63 through 7.66 compare pressure, 

oil saturation, polymer, and salt concentration profiles at 310 days (0.2 PVs) and 773 

days (0.5 PVs). Figure 7.65 shows polymer concentration profiles. The salinity profile 

(Fig. 7.66) shows that salinity front is more dispersed and travels faster compared to 

polymer front since salt is not adsorbed on the rock as opposed to polymer.  

 

The results are obtained by using automatic timestep selection in both simulators. For 

UTCHEM the maximum concentration change of the first three components is set to be 

0.01 and for GPAS maximum dimensionless concentration change is set at 0.01. GPAS 

simulates this problem in 47 secs and UTCHEM in 1.2 secs.  

7.3.3 Surfactant/Polymer Flood  

The reservoir is assumed to be at residual oil saturation of 0.3. Initial reservoir salinity is 

assumed to be 0.3 eq/L. A chemical slug containing 1 Vol. % surfactant, 0.1 wt. % 

polymer and 0.43 eq/L salt is injected at 100 bbl/day for 465 days (0.3 PVs). Then a 

polymer chase is injected for 2035 days (1.31 PVs). The polymer chase contains 0.1 wt. 

% polymer and 0.3 eq/L of salt.  
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Maximum change in concentration of the first three components is 0.001 (IMES=2) and 

GPAS uses 0.01 or 0.001 as the maximum dimensionless concentration change of each 

component.  

 

Figure 7.67 shows the comparison of oil recovery factors where the blue solid line is 

UTCHEM result and the two dotted lines are GPAS results. The red dotted curve from 

GPAS gives better agreement to UTCHEM results when a stiffer concentration tolerance 

of ΔCDmax=0.001 is used. Figure 7.67 shows that increasing the maximum concentration 

tolerance in GPAS by an order of magnitude has a small effect and reduces the oil 

recovery from 21.7 % OOIP to 21.5 % OOIP. However, the increase in the concentration 

tolerance has a great effect on the CPU time required and reduces CPU time from 166 

secs to 44 secs. It takes 7 secs to run with UTCHEM.  

 

Figure 7.68 compares oil production rates. Figure 7.69 shows the effluent polymer 

concentration in aqueous phase. GPAS with larger concentration tolerance (the green 

curve) shows an earlier breakthrough and higher polymer concentration. Figure 7.70 

shows the effluent aqueous phase salinity with close agreement. Figure 7.71 compares the 

effluent ME phase surfactant concentration where UTCHEM predicts a slightly earlier 

breakthrough and the two GPAS curves are very close.  

 

Figure 7.72 compares pressure profiles at 310 days (0.2 PVs) and 773 days (0.5 PVs). 

There is a very good agreement between the pressure profiles from two simulators. 

Figure 7.73 gives the oil saturation profiles. Figure 7.74 compares the surfactant 

concentration in the ME phase with good agreement between GPAS and UTCHEM. 

Figures 7.75 and 7.76 give polymer and salinity profiles in the ME phase. High polymer 

adsorption causes the polymer front to be delayed compared to the surfactant front (Figs. 

7.74 and 7.75).  
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7.4 3D Simulations 

The reservoir model is 660'x660'x100' and is discretized in 10x10x5 gridblocks. 

Horizontal permeability is 100 md and vertical permeability is 10 md. Table 7.7 

summarizes input parameters. Relative permeability and capillary desaturation 

parameters used are those from Section 4.3 (Table 7.6). Polymer and surfactant properties 

used in this case are described in Table 7.3 and Table 7.4 respectively.  

7.4.1 Waterflood  

Initial water saturation is 0.3. An injector with constant rate of 1000 bbls/day and a 

constant pressure producer with 200 psia are used. Only two components (water and oil) 

are simulated.  

 

Automatic timestep option is used. Maximum concentration change is 0.001 for 

UTCHEM whereas GPAS is run twice, once with no concentration restriction 

(ΔCDmax=1) and once with maximum change in concentration of 0.1 (ΔCDmax=0.1).  

 

Figure 7.77 compares recovery factors. GPAS with maximum concentration change of 

0.1 runs in 11 secs and gives a very close recovery factor compared to UTCHEM which 

runs in 3.7 secs (Fig. 7.77). GPAS with no concentration restriction runs in 5.7 secs and 

gives a fairly close recovery compared to UTCHEM. Figures 7.78 and 7.79 compare oil 

and water production rates where the production rates are more smeared in GPAS as a 

result of larger numerical dispersion compared to UTCHEM.  

 

Figures  7.80 and 7.81 compare the pressure and oil saturation profiles of UTCHEM and 

GPAS (ΔCDmax=1) at 358 days (0.226 PVs) and 854 days (0.55 PVs). Pressure profiles 

are reasonably close but oil saturation front is more dispersed in GPAS results compared 

to UTCHEM especially at 0.226 PVs.  

 

Figures 7.82 and 7.83 compare the pressure and oil saturation profiles of UTCHEM and 

GPAS with (ΔCDmax= 0.1) at 318 days (0.2 PVs) and 854 days (0.55 PVs). The pressure 



 182

profiles of GPAS are now closer to UTCHEM and the reason is clearly due to smaller 

numerical dispersion. Figure 7.83 shows a great improvement in the oil saturation 

profiles of GPAS with 0.1 concentration restriction compared to the case with no 

concentration restriction (Fig. 7.81).  

7.4.2 Polymer Flood  

Initial water saturation is 0.3 with initial salinity of 0.5 eq/L. Two polymer slugs are 

injected. First a slug containing 1000 ppm (0.1 wt.%) and 0.3 eq/L salt is injected for 0.6 

PVs (930 days). The first slug is followed by a second polymer slug containing 500 ppm 

(0.05 wt.%) and salinity of 0.1 eq/L.  

 

UTCHEM with automatic timestep is used and maximum concentration change of all 

components is 0.1% (IMES = 3). Three simulations are performed with GPAS with 

automatic timestep selection but different tolerance for maximum change in 

dimensionless concentration. The concentration tolerances are 100% (ΔCDmax=1), 10% 

(ΔCDmax=0.1) and 0.01% (ΔCDmax=0.01). Maximum courant number for UTCHEM is 0.1 

which results in a maximum timestep of 1.55 days. The maximum timestep for GPAS is 

set to 30 days for the first slug and 50 days for the second slug. UTCHEM simulates this 

case in 16 secs and GPAS in 21.8, 29.1 and 148 secs as the concentration constraint is 

tightened.  

 

Figure 7.84 compares the recovery factors. It is interesting to note that although GPAS 

uses a much looser timestep control compared to UTCHEM, it is still able to predict the 

results of UTCHEM to a great extent. The GPAS recovery factor curve with 

ΔCDmax=0.01 virtually overlaps with UTCHEM result with ΔCDmax=0.001. Figures 7.85 

and 7.86 compare the oil and water production rates respectively. As concentration 

constraint on GPAS is tightened, the oil and water production rates get closer and closer 

to that predicted by UTCHEM (Figs. 7.85 and 7.86). Similar observation is made for the 

effluent polymer and anion concentrations in Figs. 7.87 and 7.88 respectively.  
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Profiles from the least accurate case simulated by GPAS are compared to those obtained 

from UTCHEM at 310 days (0.2 PVs) and 930 days (0.6 PVs). Figure 7.89 shows the 

pressure profiles with good agreement between the results. Figure 7.90 shows the oil 

saturation profiles where GPAS results are slightly more smeared as evident in Fig. 7.90-

A. Figure 7.91 shows very similar polymer concentration profiles for both simulators As 

a result of that, both simulators predict the distance travelled by polymer almost 

identically (Fig. 7.91). But the smearing takes place behind the polymer front due to 

numerical dispersion. Figure 7.92 compares the anion concentration profiles (eq/L) and it 

is evident the anion front is dispersed ahead and behind the front. As a result of this, the 

distance traveled by the anion fronts in UTCHEM and GPAS is not the same at any given 

time. The dispersion in the salinity front can explain discrepancies in oil recoveries since 

polymer viscosity is a strong function of salinity (Eq.6.300 and Table 7.3).  

 

In general, it can be concluded that looser concentration constraints may produce 

reasonably good results in polymer flood compared to waterfloods. The main reason is 

the polymer adsorption that limits the smearing of the polymer front and results in more 

accurate recovery predictions with looser concentration constraints compared to 

waterfloods.  

7.4.3 Surfactant/Polymer Flood 

The reservoir described in Section 7.4 is assumed to have an initial residual oil saturation 

of 0.3 (Table 7.6). Initial reservoir salinity is 0.3 eq/L. A chemical slug containing 1 vol. 

% surfactant, 1000 ppm polymer, and 0.43 eq/L salt is injected for 465 days (0.3 PVs). 

This slug is chased with a polymer drive containing 1000 ppm polymer at 0.3 eq/L 

salinity for 2035 days (1.31 PVs).   

 

Both UTCHEM and GPAS use the automatic timestep control and maximum 

concentration change of UTCHEM is 0.01% (IMES = 3). Three different simulations 

with GPAS are presented where ΔCDmax is varied from 1 to 0.1 to 0.01. Maximum 

courant number of 0.1 is used for UTCHEM and maximum timesteps of 5 and 30 days 

are used for GPAS in the first and second slug. 
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Figure 7.93 compares the oil recovery indicating that GPAS result with ΔCDmax =1 is not 

very far from UTCHEM result using concentration tolerance of 0.001. As the 

concentration constraint is tightened in GPAS, the recovery factor converges to 

UTCHEM results. There is a significant improvement in GPAS oil recovery results when 

the concentration tolerance is reduced from 1 to 0.1 but the CPU time moderately 

increases from 199 to 582 sec (Fig. 7.93). The tighter concentration constraint of 0.01 

requires a significantly higher CPU of 2980.3 secs. Figures 7.94 and 7.95 compare the oil 

and water production rates respectively. GPAS with ΔCDmax =1 predicts the oil and water 

rates to a great extent and as the concentration tolerance is reduced, GPAS and UTCHEM 

results become closer (Figs. 7.94 and 7.95). Figures 7.96 through 7.98 show polymer, 

anion and surfactant concentration histories respectively. As the concentration tolerance 

is reduced , the difference between the breakthrough times of surfactant and polymer is 

also reduced and the results are in better agreement because of reduced numerical 

dispersion in GPAS. Despite the loose concentration constraint of GPAS the effluent 

surfactant concentrations are still very close to those from UTCHEM (Fig. 7.98). The 

main reason is that surfactant adsorption nearly eliminates the smearing of surfactant 

front.  

 

The results discussed in this section are for GPAS with the largest concentration 

constraint of ΔCDmax =1. The results of GPAS runs with smaller concentration tolerance 

are expected to be closer to UTCHEM results. Figure 7.99 compares the pressure profiles 

after 310 days (0.2 PVs) and 773 days (0.5 PVs). The pressure profiles are very close but 

GPAS gives the pressures slightly higher than UTCHEM. Figure 7.100 compares the oil 

saturation profiles and it is interesting to note that the results are very close. The main 

reasons for this similarity are surfactant and polymer adsorptions that help reducing the 

smearing of polymer and surfactant fronts. The most important parameters in 

surfactant/polymer flood are surfactant and electrolytes concentration and the phase 

behavior. Figure 7.101 favorably compares the profiles of surfactant concentration in the 

ME phase at 0.2 and 0.5 PVs. A small smearing behind the surfactant bank can be 
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observed after 0.5 PVs (Fig. 7.101 C and D). Figure 7.102 shows the profiles of polymer 

concentration in the ME phase at 0.2 and 0.5 PVs. Figure 7.103 compares anion 

concentration profiles in the ME phase at 0.2 and 0.5 PVs. It is interesting to see that the 

profiles are almost identical. Aqueous phase anion concentration was pretty smeared 

during the polymer flood (Fig. 7.92). The reason is that ME phase anion concentration is 

directly dependant on the concentration of water in the ME phase (Eq.6.163). The 

concentration of water in the ME phase is a function of solubilization ratio of water and 

in turn a function of surfactant concentration in the ME phase (Eq.6.88). Since surfactant 

adsorption results in an accurate modeling of surfactant concentration at each time, the 

anion concentration in the ME phase is also modeled more accurately compared to 

aqueous phase anion concentration and shows less smearing (Figs. 7.92 and 7.103).  

7.4.4 3D Surfactant/Polymer Flood in a Heterogeneous Reservoir 

As final validation is a 3D model with heterogeneous permeability. The reservoir model 

has dimensions of 660'x660'x50' with a quarter of five spot well pattern. It is discretized 

to 11x11x5 gridblocks with gridblock dimensions of 60'x60'x10'.  

 

Figure 7.104 gives the x (or y) direction permeability. The vertical to horizontal 

permeability ratio ( /v hk k ) is 0.01. Porosity is assumed to be 0.136. Initial reservoir 

pressure is 2000 psia and initial water saturation is 0.65. Initial salinity is 0.4 eq/L. Table 

7.8 summarizes simulation input parameters.  

 

Relative permeability and polymer properties are based on those presented by Saad 

(1989) for history matching of a real surfactant/polymer flood pilot. Table 7.9 

summarizes the relative permeability and CDC parameters. Polymer properties are given 

in Table 7.10. The oil/brine/surfactant phase behavior, IFT, and ME viscosity parameters 

are given in Table 7.11.  

 

A 0.3 PV (1560 days) of chemical slug composed of water with 2 vol.% surfactant, 200 

ppm polymer, and 0.3 eq/L salt is injected. The injection rate is 100 bbls/day. Then the 



 186

chase polymer drive with 300 ppm polymer and salinity of 0.15 eq/L is injected for 0.11 

PVs (640 days). A post water injection at 0.15 eq/L salinity is continued for 0.51 PVs 

(2700 days). The producer operates at 200 psia pressure. This is a salinity gradient 

starting in the Type II(+) region and ending in Type I region. 

 

Maximum concentration change used for the first three components of UTCHEM is 

0.001 (IMES = 2). GPAS uses a dimensionless concentration change of 1 (ΔCDmax=0.01). 

Maximum timesteps for GPAS is set on 10 days and for UTCHEM, maximum courant 

number is set on 0.01. Figure 7.105 compares the recovery factors predicted by 

UTCHEM and GPAS. Although GPAS uses relatively large concentration tolerance, it 

still gives a recovery factor very close to UTCHEM. GPAS simulates this case in 1560 

secs and UTCHEM takes 363 secs. 

 

Figure 7.106 shows a good agreement for oil production rate between the two codes. 

GPAS computes the breakthrough of oil to a great extent and maximum oil production 

rate of UTCHEM and GPAS are very close. The water production rates are also in 

agreement (Fig. 7.107). Figure 7.108 shows the effluent polymer concentration in the 

aqueous phase. There is a very good agreement between UTCHEM and GPAS in this 

case. Figures 7.109 and 7.110 compare aqueous phase anion concentration and ME phase 

surfactant concentration.  

 

Figure 7.111 gives the comparison of pressure profiles (psia) at 0.2 PVs (1055 days) and 

0.5 PVs (2622 days) with very close agreement. The oil saturation profiles (Fig. 7.112) at 

0.2 PVs are very close, but there is a slight difference at 0.5 PVs and this difference leads 

to slightly different oil and water production rates (Figs. 7.106 and 7.107). The main 

cause of this difference is the difference in density and fluid compressibility calculations. 

UTCHEM assumes slightly compressible fluids and fluid densities are calculated as a 

function of composition and pressure. GPAS uses Peng-Robinson EOS for calculation of 

the oleic phase density. This leads to slight differences in oil density and compressibility 

especially when pressure gradients are large (Fig. 7.111). A close agreement in surfactant 
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concentration profiles in the ME phase is given in Fig. 7.113 due to surfactant adsorption 

and small grid sizes that limit the numerical dispersion. Figure 7.114 shows the polymer 

concentration profiles in the ME phase at 0.2 and 0.5 PVs injected. There is a good 

agreement between the profiles predicted by UTCHEM and GPAS. Similar to the case 

for surfactant concentration profiles, the reason is polymer adsorption and small grid 

sizes. Figure 7.115 compares the anion concentration profiles in the ME phase and one 

can see a reasonably good agreement between the results of the two simulators.  

7.5 Single Processor Efficiency of GPAS 

The objective is to test the CPU times and efficiency of GPAS for larger problem sizes. 

The simulations of this section are all in homogeneous reservoirs. First waterflood 

simulations with two components of oil and water are presented. Then polymer floods 

with four components of oil, water, salt and polymer are discussed and at last 

surfactant/polymer floods with 5 components (water, oil, surfactant, polymer and salt) are 

evaluated. A base case for each process is presented and the results of GPAS are 

compared with UTCHEM. Base case model is 250'x250'x10' with a quarter of five spot 

well pattern. This domain is discretized to 11x11x2 with gridblock size of 

22.727'x22.727'x5'.  

 

To create larger reservoirs, the base case pattern is repeated keeping the size of the grids 

the same as the base case. The base case has 242 gridblocks. To generate a reservoir with 

484 gridblocks, number of layers of the base case is doubled. The quarter five spot 

pattern of the base case is repeated to create a five spot pattern of 21x21x2 gridblocks 

which is a reservoir with 882 gridblocks. Doubling the number of layers of this five spot 

pattern gives reservoirs with 1764 and 3528 gridblocks. 

 

Reservoir permeability in the x and y directions is 500 md with vertical permeability of 

50 md. Porosity is 0.2 and initial reservoir pressure is 2000 psia. Initial water saturation 

varies for different processes. Producers are on 2000 psia bottomhole pressure and 

injectors inject at a constant rate of 2 STB/(day.ft). Oil and water viscosities are 4.0 and 

0.86 cp respectively. Table 7.12 gives key input parameters.  
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Relative permeability and capillary desaturation curves used in this section are presented 

in Table 7.9. Polymer properties used in this section are given in Table 7.10. The 

oil/brine/surfactant phase behavior, IFT and ME viscosity parameters are given in Table 

7.13.  

7.5.1 Waterflood  

The model with an initial water saturation of 0.37 is waterflooded for 3337.5 days (3.0 

PVs). An important observation is that UTCHEM results become unstable if courant 

number of larger than 0.4 are used. Therefore the automatic timestep control in 

UTCHEM with maximum courant number of 0.4 and maximum concentration change of 

0.001 (IMES = 2) for water and oil components is used. This allows UTCHEM to take 

large timesteps without compromising the numerical stability.  

 

The results obtained by GPAS are very sensitive to timestep size. As larger and larger 

timesteps are taken, truncation errors increase and the results are more diffuse and 

dispersed. Two simulations for GPAS are presented. In one simulation, maximum 

dimensionless concentration change in each timestep is 0.1 (ΔCDmax=0.1) and in the 

second run, this tolerance is increased to 20% (ΔCDmax=0.2). The maximum timestep is 

500 days.  

 

Figures 7.116 and 7.117 show the comparison of recovery factors and oil production rate. 

As concentration tolerance increases, the difference increases due to increased truncation 

errors in GPAS. Figure 7.118 compares CPU times required as a function of number of 

gridblocks. If GPAS results with 20% concentration tolerance are considered adequate, 

then GPAS is unconditionally faster than UTCHEM. If GPAS results with 10% 

concentration tolerance are considered adequate, then GPAS is faster than UTCHEM in 

problems with more than about 700 gridblocks.  
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7.5.2 Polymer Flood Benchmarking 

The model described in Section 7.5 with an initial water saturation of 0.5 is used for 

polymer flooding. Polymer solution containing 500 ppm polymer with 0.25 eq/L salinity 

is injected for 1.5 PVs (1668.75 days) and followed by water at 0.15 eq/L salinity for 

another 1.5 PVs (1668.75 days). Initial reservoir salinity is 0.4 eq/L. Automatic timestep 

control with maximum courant number of 0.2 and a maximum concentration tolerance of 

0.001 (IMES = 2) for water and oil components is used in UTCHEM.  

 

Two cases for GPAS are presented. In one simulation, maximum dimensionless 

concentration change in each timestep is 0.1 (ΔCDmax=0.1) and in the second run, this 

tolerance is increased to 20% (ΔCDmax=0.2) with a maximum timestep of 500 days.  

 

Figures 7.119 and 7.120 compare the polymer flood recovery factors and oil production 

rates. As expected, the recovery factors and oil rates are fairly close and the higher 

concentration tolerance with GPAS exhibit more smearing in the results. Figures. 7.121 

and 7.122 compare the aqueous phase polymer and anion concentrations where numerical 

dispersion is clearly observed in GPAS results due to large timesteps. Figure 7.123 

compares the CPU times. If GPAS results with 20% concentration tolerance are 

considered satisfactory, then GPAS is faster than UTCHEM when the number of 

gridblocks is larger than 600. If the results with 10% concentration tolerance are 

considered adequate, then GPAS is faster than UTCHEM when more than about 900 

gridblocks is used.  

7.5.3 Surfactant/Polymer Flood  

The reservoir described in Section 7.5 is assumed to have initial oil at residual saturation 

of 0.35. Reservoir and fluid properties are the same as the case in Section 7.5.2. Three 

slugs are injected; the surfactant slug contains 2 Vol. % surfactant, 500 ppm polymer and 

0.25 eq/L anions. The surfactant slug is injected for 335 days (0.3 PVs). The polymer 

chase is injected next with 500 ppm polymer at a salinity of 0.15 eq/L. The polymer drive 

is injected for 465 days (0.4 PVs). The reservoir is then waterflooded at the same salinity 
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as that of the polymer chase (0.15 eq/L) for 700 days (0.65 PVs). Relative permeability, 

polymer, and surfactant properties are presented in Tables 7.9 to 7.11 respectively.  

 

The results are obtained running both UTCHEM and GPAS with automatic timestep 

control options. For UTCHEM the maximum courant number is 0.2 with the constant 

concentration tolerance for water, oil and surfactant of 0.001 (IMES =2). GPAS is used 

with the default timestep control (CVGOPT = 1). This option works based on overall 

water and hydrocarbon component concentration. A maximum timestep of 10 days is 

chosen for GPAS. Two cases are presented for GPAS. In the first case, the timesteps are 

chosen based on the criteria that maximum dimensionless change in concentration of 

water and oil components does not exceed 0.01 (ΔCDmax=0.01). This tolerance is 

increased to 0.03 for the second simulation (ΔCDmax=0.03). 

 

Figure 7.124 compares the recovery factors simulated by UTCHEM and GPAS for the 

base case where a good agreement is observed. Figures 7.125 and 7.126 show the oil and 

water production rates. It is interesting to see that although the production rates are not 

exactly the same, the trend in the oil recovery curve of GPAS is very close to UTCHEM 

(Fig. 7.125). It is noticed that as the tolerance in GPAS is increased, the oscillation in the 

oil and water production rates increases. Figures 7.127 and 7.128 show the concentration 

of polymer and anion in the effluent aqueous phase respectively. Figure 7.129 shows 

surfactant concentration in the effluent ME phase with a good agreement between the 

results. The slight differences in the results of UTCHEM and GPAS could be due to 

higher truncation errors of GPAS. These errors increase quickly as the timestep size 

increases (Anthoney, et al., 1980).  

 

Figure 7.130 compares the times step sizes where GPAS has relatively less oscillations in 

the timestep size compared to UTCHEM and takes timesteps that are orders of magnitude 

larger than those taken by UTCHEM. Even though GPAS takes much larger timesteps, it 

is still slower than UTCHEM in the base case with 242 gridblocks. UTCHEM takes only 

11 seconds whereas GPAS with a concentration tolerance of 0.01 (ΔCDmax=0.01) takes 
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32.4 seconds and 24.5 seconds for the larger tolerance. Thus GPAS is slower than 

UTCHEM by a factor of 2.23 to run the base case. However, this ratio decreases as the 

number of gridblocks increases. Figure 7.131 compares the CPU times required by 

UTCHEM and GPAS to simulate a surfactant/polymer flood as the number of gridblocks 

increases. The figure shows that if number of gridblocks is larger than about 2300, then 

GPAS with concentration tolerance of 0.03 (ΔCDmax=0.03) runs faster than UTCHEM.  

7.6 Parallel Processing 

To test the parallel processing capability and performance of GPAS after the addition of 

comprehensive chemical module, a relatively large five spot surfactant/polymer flood 

model was set up and run on multiple processors. The reservoir model is 4422'x4422'x50' 

and it is discretized in 128x128x5 gridblocks. Table 7. 14 summarizes the input 

parameters. Table 7. 15 gives the polymer viscosity, adsorption, and permeability 

reduction parameters. Relative permeability and capillary desaturation data are the same 

as those in Table 7.6. Surfactant phase behavior, microemulsion viscosity, and IFT 

parameters are presented in Table 7.16.  

 

The reservoir is assumed to be at residual oil saturation. Initial reservoir salinity is 

assumed to be 0.3 eq/l which is below the lower limit of Type III region (Table 7.16). 

The four injectors inject a chemical slug containing 1 vol. % surfactant and 1000 ppm 

polymer and 0.43 eq/l salt. The chemical slug is injected for 2380.8 days (0.3 PVs). After 

that a polymer chase containing 1000 ppm polymer and 0.3 eq/l salt is injected for 0.87 

PVs (6926.2 days).  

 

This case is simulated with 8, 16, 32 and 64 processors. The simulation results overlap 

and simulation time decreases as number of processors increases. Figure 7.132 shows the 

recovery factors and Figs. 7.133 and 7.134 compare the oil and water production rates 

obtained from the parallel simulations. Figures 7.135 and 7.136 give the effluent salt 

concentration and surfactant concentration in microemulsion phase respectively. Due to 

high polymer adsorption, polymer does not breakthrough even after 1.17 PVs of 

injection.  
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Figure 7.137 shows the simulation time as a function of number of processors and Fig. 

7.138 compares the speedup obtained with the ideal speedup line (a line with slope of 

unity). It is interesting to see that the speedup from 8 processors to 16 processors is very 

close to ideal but the performance deteriorates as the number of processors increases 

beyond 32. This is due to the fact that as number of processors increases, so does the time 

required for communication between the processors and this increases the simulation 

time causing the speed up to be less than ideal. It can be seen in Fig. 7.138 that the 

speedup of GPAS is not far from ideal and this proves parallel processing to be a 

powerful tool for reduction of simulation time and feasible simulation of field scale 

chemical floods.  
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Table 7.1: 1D coreflood input parameters 

Core dimension, ft 0.8785x0.1104x0.1104 
Grid size, ft 0.01098x0.1104x0.1104 

Number of gridblocks 80x1x1 
Permeability, md 236 

Porosity 0.1988 
Water viscosity, cp 0.995 

Oil viscosity, cp 24.3 
Injection rate, ft3/day 0.001 

 

Table 7.2: Relative permeability and capillary desaturation input parameters for 1D 

coreflood simulations. 

 Water Oil 
 Low trapping No. High trapping No. Low trapping No. High trapping No.

Relative permeability endpoint 0.0275 0.5 1 1 
Relative permeability exponent 1.12 1 1.3 1 

Residual saturation 0.382 0 0.3803 0 
Trapping parameter 1865 8000 

 

Table 7.3: Polymer input parameters for 1D coreflood, 2D, and 3D homogeneous 

simulations. 

Viscosity parameters, Ap1, Ap2, Ap3, Sp 10.21, 17.77, 626.14, -0.6 
Shear rate parameters , γc,  γ1/2, Pα 4.0, 56.1, 1.643 
Adsorption parameters, a41, a42, b4 9.5, 0, 100 
Permeability reduction parameters, Crk, Brk 0.0186, 100 
 

Table 7.4: Surfactant phase behavior and IFT input parameters for 1D coreflood, 2D 

vertical and 3D homogeneous simulations. 

Heights of binodal curve at 0, opt. and twice opt. salinity, HBN70, HBN71, HBN72 0.05, 0.03, 0.05 
Lower salinity limit of three phase region(CSEL), eq/L 0.33 
Upper salinity limit of three phase region (CSEU), eq/L 0.53 

Surfactant adsorption parameters, a31, a32, b3 1.5, 0.5, 1000 
ME viscosity parameters, α1,α2,α3, α4, α5  1.5, 1.45, 0, 0.9, 1.7

Interfacial tension parameters, a, c 10, 0.35 
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Table 7.5: 2D simulation input parameters 

Reservoir size, ft 660x66x0.100 
Grid size, ft 66x0.66x0.20 

Number of gridblocks 10x1x5 
Horizontal and vertical permeability, md 100, 10 

Porosity 0.2 
Water viscosity, cp 0.995 

Oil viscosity, cp 2.43 
Injection rate, ft3/day 100 

 

Table 7.6: Relative permeability and capillary desaturation input parameters for 2D and 

3D homogeneous cases 

 Water Oil 
 Low trapping No. High trapping No. Low trapping No. High trapping No.

Relative permeability endpoint 0.2 1 1 1 
Relative permeability exponent 1.5 1 1.3 1 

Residual saturation 0.2 0 0.3 0 
Trapping parameter 300 1000 

 

Table 7.7: Input parameters for 3D homogeneous simulations. 

Reservoir size, ft 660x660x0.100
Grid size, ft 66x0.66x0.20 

Number of gridblocks 10x10x5 
Horizontal and vertical permeability, md 100, 10 

Porosity 0.2 
Water viscosity, cp 0.995 

Oil viscosity, cp 2.43 
Injection rate, ft3/day 1000 
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Table 7.8: Input parameters for 3D heterogeneous simulations. 

Reservoir size, ft 660x660x50 
Grid size, ft 60x60x10 

Number of gridblocks 11x11x5 
Permeability, md Heterogeneous (Fig. 7.104) 

Porosity 0.136 
Water viscosity, cp 0.86 

Oil viscosity, cp 4. 
Injection rate, ft3/day 561.5 

 

Table 7.9: Relative permeability and CDC curves used in the 3D heterogeneous. 

 Water Oil 
 Low trapping No. High trapping No. Low trapping No. High trapping No.

Relative permeability endpoint 0.11 1 0.95 1 
Relative permeability exponent 1 1 2.16 2.16 

Residual saturation 0.37 0 0.35 0 
Trapping parameter 1865 59074 

 

Table 7.10: Polymer input parameters used in 3D heterogeneous simulations. 

Viscosity parameters, Ap1, Ap2, Ap3, Sp 81, 2700, 2500, 0.17 
Shear rate parameters, γc,  γ1/2, Pα 20, 10, 1.8 
Adsorption parameters, a41, a42, b4 0.7, 0.0, 100 

Permeability reduction parameters, Crk, Brk 0.0186, 1000 
 

Table 7.11: Surfactant phase behavior and IFT parameters used in 3D heterogeneous 

simulations. 

Heights of binodal curve at 0, opt. and twice opt. salinity, HBN70, HBN71, HBN72 0.06, 0.04, 0.06 
Lower salinity limit of three phase region(CSEL), eq/L 0.177 
Upper salinity limit of three phase region (CSEU), eq/L 0.344 

Surfactant adsorption parameters, a31, a32, b3 1.5, 0.5, 1000 
ME viscosity parameters, α1,α2,α3, α4, α5  2.5, 2.3, 10, 1, 1. 

Interfacial tension parameters, a, c 9, 0.2 
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Table 7.12: Input parameters for the case for CPU comparison of GPAS and UTCHEM. 

Reservoir size, ft 250x250x10 
Grid size, ft 22.727x22.727x2 

Number of gridblocks 11x11x5 
Permeability, md 500 

Porosity 0.2 
Water viscosity, cp 0.86 

Oil viscosity, cp 4. 
Injection rate, ft3/(day.ft) 2 

 

Table 7.13: Surfactant phase behavior and IFT parameters used in CPU comparison. 

Heights of binodal curve at 0, opt. and twice opt. salinity, HBN70, HBN71, HBN72 0.06, 0.035, 0.06 
Lower salinity limit of three phase region(CSEL), eq/L 0.177 
Upper salinity limit of three phase region (CSEU), eq/L 0.344 

Surfactant adsorption parameters, a31, a32, b3 1.5, 0.5, 1000 
ME viscosity parameters, α1,α2,α3, α4, α5  2.5, 2.3, 10, 1, 1. 

Interfacial tension parameters, a, c 9, 0.2 
 

Table 7. 14: Input parameters for parallel simulations. 

Reservoir dimension, ft 4224x4224x50 
Grid size, ft 33x33x10 

Number of gridblocks 128x128x5 
Horizontal permeability, md 100 

Vertical Permeability, md 10 
Water and oil viscosity, cp 0.995, 2.43 

Porosity 0.2 
Injection rate, ft3/day 1000 

 

Table 7. 15: Polymer input parameters used in parallel simulations. 

Viscosity parameters, Ap1, Ap2, Ap3, Sp 10.21, 17.77, 626.14, -0.6 
Shear rate parameters, γc,  γ1/2, Pα 4, 56.1, 1.643 
Adsorption parameters, a41, a42, b4 9.5, 0.0, 100 

Permeability reduction parameters, Crk, Brk 0.0186, 1000 
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Table 7.16: Surfactant phase behavior and IFT parameters used in parallel simulations. 

Heights of binodal curve at 0, opt. and twice opt. salinity, HBN70, HBN71, HBN72 0.05, 0.03, 0.05 
Lower salinity limit of three phase region(CSEL), eq/L 0.33 
Upper salinity limit of three phase region (CSEU), eq/L 0.53 

Surfactant adsorption parameters, a31, a32, b3 1.5, 0.5, 1000 
ME viscosity parameters, α1,α2,α3, α4, α5  0, 0, 0, 0.0, 1.7 

Interfacial tension parameters, a, c 10, 0.35 
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Figure 7.1: Relative permeability curves at low trapping numbers used in 1D coreflood 

simulations. 
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Figure 7.2: Relative permeability curves at high trapping numbers used in 1D coreflood 

simulations. 
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Figure7.3: Capillary desaturation curves used in 1D coreflood simulations. 
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Figure 7.4: Polymer viscosity as a function of polymer concentration at an effective 

salinity of 0.3 eq/L and shear rate of 10 sec-1. 

 



 200

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Effective salinity (eq/L)

Po
ly

m
er

 v
is

co
si

ty
 (c

p)

 
Figure 7.5: Polymer viscosity as a function of effective salinity at polymer concentration 

of 0.12 wt% and shear rate of 10 sec-1. 
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Figure 7.6: Polymer viscosity as a function of shear rate at effective salinity of 0.3 eq/L 

and polymer concentration of 0.12 wt%. 
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Figure 7.7: Comparison GPAS and UTCHEM waterflood oil recovery factors for 1D 

simulation. 
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Figure 7.8: Comparison of oil production rates of UTCHEM and GPAS for a 1D 

waterflood simulation. 
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Figure 7.9: Comparison of water production rates of UTCHEM and GPAS for a 1D 

waterflood simulation. 
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Figure 7.10: Oil and water saturation profiles at 0.2 PVs (0.4233 days) of water injection 

in a 1D simulation. 
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Figure 7.11: Comparison of pressure profiles at 0.2 PVs (0.4233 days) of water injection 

in a 1D coreflood simulation. 
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Figure 7.12: Comparison of saturation profiles at 0.57 PVs (1.21 days) of water injection 

in a 1D coreflood simulation. 
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Figure 7.13: Comparison of pressure profile at 0.57 PVs (1.21 days) of water injection in 

1D coreflood simulation. 
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Figure 7.14: Comparison of waterflood cumulative oil recovery of UTCHEM and GPAS 

in a 1D core using constant timesteps. 
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Figure 7.15: Comparison of waterflood oil production rates of UTCHEM and GPAS in a 

1D core using constant timesteps. 
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Figure 7.16: Comparison of oil saturation profiles of UTCHEM and GPAS in waterflood 

simulation of a 1D core using constant timesteps. 
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Figure 7.17: Comparison of aqueous phase pressure profiles of UTCHEM and GPAS in 

waterflood simulation of a 1D core using constant timesteps. 
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Figure 7.18: Comparison of 1D polymer flood cumulative oil recovery with automatic 

timestep control. 
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Figure 7.19: Comparison of 1D polymer flood oil production rate with automatic 

timestep control. 
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Figure 7.20: Comparison of 1D polymer flood water production rate with automatic 

timestep control. 
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Figure 7.21: Comparison of produced polymer concentration (wt%) of GPAS and 

UTCHEM with automatic timestep control in 1D polymer flood. 
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Figure 7.22: Comparison of produced anion concentration (eq/L) for 1D polymer flood 

with automatic timestep control. 
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Figure 7.23: Comparison of polymer concentration profiles at 0.2 PVs (0.423 days) of 

polymer injection. 
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Figure 7.24: Comparison of polymer concentration profiles after 0.48 PVs (1.02 days) of 

polymer injection. 
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Figure 7.25: Comparison of anion concentration profiles after 0.2 PVs (0.423 days) of 

polymer injection. 
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Figure 7.26: Comparison of anion concentration profiles after 0.48 PVs (1.02 days) of 

polymer injection. 
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Figure 7.27: Comparison of saturation profiles at 0.2 PVs (0.423 days) of polymer 

injection. 
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Figure 7.28: Comparison of saturation profiles at 0.48 PVs (1.02 days) of polymer 

injection. 
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Figure 7.29: Comparison of pressure profiles at 0.2 PVs (0.423 days) of polymer 

injection. 
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Figure 7.30: Comparison of pressure profiles at 0.48 PVs (1.02 days) of polymer 

injection. 
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Figure 7.31: Comparison of polymer flood oil recovery with constant timesteps. 7.31 
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Figure 7. 32: Comparison of 1D polymer flood oil production rate with constant 

timesteps. 

 



 214

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

2.2 2.25 2.3 2.35 2.4 2.45

Injection time (Days)

Pr
od

uc
ed

 p
ol

ym
er

 c
on

ce
nt

ra
tio

n 
(w

t%
) 

GPAS, 0.0005 
day timesteps

GPAS, 0.005 
day timesteps

UTCHEM, 0.0005 
day timesteps

UTCHEM, 0.005 
day timesteps

 
Figure 7.33: Comparison of polymer concentration with constant timesteps. 
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Figure 7.34: Comparison of anion concentration with constant timesteps. 
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Figure 7.35: Polymer concentration profiles at 0.5 PV polymer injection with constant 

timesteps. 
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Figure 7.36: Anion concentration profiles at 0.5 PV polymer injection with constant 

timesteps. 
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Figure 7.37: Comparison of 1D surfactant/polymer recovery factors. 
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Figure 7.38: Comparison of 1D surfactant/polymer oil production rate. 
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Figure7.39: Comparison of 1D surfactant/polymer water production rate. 
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Figure 7.40: Comparison of 1D surfactant/polymer polymer concentration. 
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Figure 7.41: Comparison of 1D surfactant/polymer aqueous phase anion concentration. 
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Figure 7.42: Comparison of 1D surfactant/polymer surfactant concentration in ME phase. 
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Figure 7.43: Comparison of polymer concentration in aqueous and ME phases at 0.2 PVs 

(0.423 days). 
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Figure 7.44: Comparison of anion concentration in aqueous and ME phases 0.2 PVs 

(0.423 days). 
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Figure 7.45: Comparison of surfactant concentration in ME phase at 0.2 PVs (0.423 

days). 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Dimensionless distance (XD)

Ph
as

e 
sa

tu
ra

tio
n

Water, UTCHEM

Water, GPAS

Oil, UTCHEM
Oil, GPAS

ME, UTCHEM

ME, GPAS

 
Figure 7.46: Comparison of saturations at 0.2 PVs (0.423 days). 
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Figure 7.47: Comparison of pressure profile at 0.2 PVs (0.423 days). 
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Figure 7.48: Comparison of polymer concentration in aqueous and ME phases at 0.5 PVs 

(1.06 days). 
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Figure 7.49: Comparison of anion concentration in aqueous and ME phases (at 0.5 PVs 

(1.06 days). 
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Figure 7.50: Comparison of surfactant concentration in ME phase 0.5 PVs (1.06 days). 
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Figure 7.51: Comparison of phase saturations after 0.5 PVs (1.06 days). 
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Figure 7.52: Comparison of pressure profiles at 0.5 PVs (1.06 days). 

 



 224

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2

Cumulative injection (PVs)

R
ec

ov
er

y 
fa

ct
or

 (%
O

O
IP

)

UTCHEM

GPAS

 
Figure 7.53: Comparison of waterflood recovery factors for 2D case 
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Figure 7.54: Comparison of 2D waterflood oil production rates. 
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Figure 7.55: Comparison of 2D waterflood water production rates. 

7.55 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.56: Comparison of pressure (psia) profiles for 2D waterflood. 



 226

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.57: Comparison of oil saturation profiles for 2D waterflood r. 7.57 
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Figure 7.58: Comparison of 2D polymer flood recovery factors. 
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Figure 7.59: Comparison of 2D polymer flood oil production rates. 
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Figure 7.60: Comparison of 2D polymer flood water production rates. 
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Figure 7.61: Comparison of 2D polymer flood effluent polymer concentration. 
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Figure 7.62: Comparison of 2D polymer flood effluent salt concentration. 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.63: Comparison of pressure profiles (psia) for 2D polymer flood. 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.64: Comparison of oil saturation profiles for 2D polymer flood 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.65: Comparison of polymer concentration (wt%) for 2D polymer flood. 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.66: Comparison of salinity profiles (eq/L) for 2D polymer flood. 
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Figure 7.67: Comparison of 2D surfactant/polymer flood recovery factors. 
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Figure 7.68: Comparison of 2D surfactant/polymer flood oil production rates. 
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Figure 7.69: Comparison of aqueous phase polymer concentration for 2D 

surfactant/polymer flood. 
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Figure 7.70: Comparison of aqueous phase salinity for 2D surfactant/polymer flood. 
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Figure 7.71: Comparison of ME phase surfactant effluent for 2D surfactant/polymer 

flood. 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.72: Comparison of pressure profiles (psia) for 2D surfactant/polymer flood. 



 234

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.73: Comparison of oil saturation profiles for 2D surfactant/polymer flood. 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.74: Comparison of surfactant concentration (Vol.%) profiles in ME phase for 2D 

surfactant/polymer flood. 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure7.75: Comparison of polymer concentration (wt. %) profiles in ME phase for 2D 

surfactant/polymer flood. 

 

 

A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure7.76: Comparison of anion concentration (eq/L) profiles in ME phase for 2D 

surfactant/polymer flood. 
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Figure 7.77: Comparison of 3D waterflood recovery factors. 
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Figure7.78: Comparison of 3D waterflood oil production rates. 
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Figure7.79: Comparison of 3D waterflood water production rates. 
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A) GPAS after 358 days (0.226 PVs) 

 

B) UTCHEM after 358 days (0.226 PVs) 

 

C)GPAS after 854 days (0.55 PVs) 

 

D) UTCHEM after 854 days (0.55 PVs) 

 

 

Figure 7.80: Comparison of pressure profiles (psia) for 3D waterflood. GPAS with 

ΔCDmax= 1 
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A) GPAS after 358 days (0.226 PVs) 

 

B) UTCHEM after 358 days (0.226 PVs) 

 

C)GPAS after 854 days (0.55 PVs) 

 

D) UTCHEM after 854 days (0.55 PVs) 

 

 

Figure 7.81: Comparison of oil saturation profiles for 3D waterflood. GPAS with 

ΔCDmax= 1. 
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A) GPAS after 318 days (0.2 PVs) 

 

B) UTCHEM after 318 days (0.2 PVs) 

 

C)GPAS after 854 days (0.55 PVs) 

 

D) UTCHEM after 854 days (0.55 PVs) 

 

 

Figure7.82: Comparison of pressure profiles (psia) for 3D waterflood. GPAS with 

ΔCDmax= 0.1 
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A) GPAS after 318 days (0.2 PVs) 

 

B) UTCHEM after 318 days (0.2 PVs) 

 

C)GPAS after 854 days (0.55 PVs) 

 

D) UTCHEM after 854 days (0.55 PVs) 

 

 

Figure7.83: Comparison of oil saturation profiles for 3D waterflood. GPAS with ΔCDmax= 

0.1. 
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Figure 7.84: Comparison of 3D polymer flood recovery factors. 
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Figure 7.85: Comparison of 3D polymer flood oil production rates. 
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Figure 7.86: Comparison of 3D polymer flood water production rates. 
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Figure 7.87: Comparison of produced aqueous phase polymer concentration for 3D 

polymer flood. 
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Figure 7.88: Comparison of produced aqueous phase anion concentration for 3D polymer 

flood. 
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A) GPAS after 310 days (0.2 PVs) 
 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 930 days (0.6 PVs) 
 

D) UTCHEM after 930 days (0.6 PVs) 

 

 

Figure 7.89: Comparison of pressure (psia) profiles predicted for 3D polymer flood. 

GPAS with ΔCDmax=1.0. 
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A) GPAS after 310 days (0.2 PVs) 
 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 930 days (0.6 PVs) 

 

D) UTCHEM after 930 days (0.6 PVs) 

 

 

Figure 7.90: Comparison of oil saturation profiles for 3D polymer flood. GPAS with 

ΔCDmax=1.0. 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 930 days (0.6 PVs) 

 

D) UTCHEM after 930 days (0.6 PVs) 

 

 

Figure 7.91: Comparison of polymer concentration profiles for 3D polymer flood. GPAS 

with ΔCDmax=1.0. 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 930 days (0.6 PVs) 

 

D) UTCHEM after 930 days (0.6 PVs) 

 

 

Figure 7.92: Comparison of anion concentration profiles for 3D polymer flood. GPAS 

with ΔCDmax=1.0. 
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Figure 7.93: Comparison of recovery factors for 3D surfactant/polymer flood 
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Figure 7.94: Comparison of oil production rates for 3D surfactant/polymer flood. 
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Figure 7.95: Comparison of water production rates for 3D surfactant/polymer flood. 
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Figure 7.96: Comparison of produced aqueous phase polymer concentration for 3D 

surfactant/polymer flood. 
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Figure 7.97: Comparison of produced aqueous phase anion concentration for 3D 

surfactant/polymer flood. 
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Figure 7.98: Comparison of produced ME phase surfactant concentration for 3D 

surfactant/polymer flood. 
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.99: Comparison of pressure profiles for 3D surfactant/polymer flood.  
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A) GPAS after 310 days (0.2 PVs)  

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.100: Comparison of oil saturation profiles for 3D surfactant/polymer flood  
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A) GPAS after 310 days (0.2 PVs) 
 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.101: Comparison of ME phase surfactant concentration profiles (Vol.%) for 3D 

surfactant/polymer flood.  
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A) GPAS after 310 days (0.2 PVs) 

 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.102: Comparison of ME phase polymer concentration profiles (wt. %) for 3D 

surfactant/polymer flood. 
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A) GPAS after 310 days (0.2 PVs) 
 

B) UTCHEM after 310 days (0.2 PVs) 

 

C)GPAS after 773 days (0.5 PVs) 

 

D) UTCHEM after 773 days (0.5 PVs) 

 

 

Figure 7.103: Comparison of ME phase anion concentration profiles (eq/L) for 3D 

surfactant/polymer flood. 
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Figure 7.104: Permeability (md) distribution for 3D heterogeneous case 
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Figure 7.105: Comparison of recovery factors for 3D surfactant/polymer flood in a 

heterogeneous reservoir. 
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Figure 7.106: Comparison of oil production rate for surfactant/polymer flood in a 3D 

heterogeneous reservoir. 
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Figure 7.107: Comparison of water production rates for surfactant/polymer flood in a 3D 

heterogeneous reservoir. 
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Figure 7.108: Comparison of produced aqueous phase polymer concentration for 

surfactant/polymer flood in a 3D heterogeneous reservoir  
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Figure 7.109: Comparison of produced aqueous phase anion concentration for 

surfactant/polymer flood in a 3D heterogeneous reservoir. 
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Figure 7.110: Comparison of produced ME phase surfactant concentration (for 

surfactant/polymer flood in a 3D heterogeneous reservoir. 

 



 260

 

A) GPAS after 1055 days (0.2 PVs) 
 

B) UTCHEM after 1055 days (0.2 PVs) 

 

C)GPAS after 2622 days (0.5 PVs) 

 

D) UTCHEM after 2622 days (0.5 PVs) 

 

 

Figure 7.111: Comparison of reservoir pressure (psia) for surfactant/polymer flood of a 

3D heterogeneous reservoir. 
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A) GPAS after 1055 days (0.2 PVs) 
 

B) UTCHEM after 1055 days (0.2 PVs) 

 

C)GPAS after 2622 days (0.5 PVs) 

 

D) UTCHEM after 2622 days (0.5 PVs) 

 

 

Figure 7.112: Comparison of oil saturation profiles for surfactant/polymer flood of a 3D 

heterogeneous reservoir. 
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A) GPAS after 1055 days (0.2 PVs) 

 

B) UTCHEM after 1055 days (0.2 PVs) 

 

C)GPAS after 2622 days (0.5 PVs) 

 

D) UTCHEM after 2622 days (0.5 PVs) 

 

 

Figure 7.113: Comparison of surfactant concentration profiles in the ME phase (Vol. %) 

for surfactant/polymer flood of a 3D heterogeneous reservoir. 
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A) GPAS after 1055 days (0.2 PVs) 

 

B) UTCHEM after 1055 days (0.2 PVs) 

 

C)GPAS after 2622 days (0.5 PVs) 

 

D) UTCHEM after 2622 days (0.5 PVs) 

 

 

Figure 7.114: Comparison of polymer concentration profiles in the ME phase (wt. %) for 

surfactant/polymer flood in a 3D heterogeneous reservoir. 
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A) GPAS after 1055 days (0.2 PVs) 

 

B) UTCHEM after 1055 days (0.2 PVs) 

 

C)GPAS after 2622 days (0.5 PVs) 

 

D) UTCHEM after 2622 days (0.5 PVs) 

 

 

Figure 7.115: Comparison of anion concentration profiles in the ME phase (eq/L) for 

surfactant/polymer flood in a 3D heterogeneous reservoir.  
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Figure 7.116: Comparison of waterflood recovery factors predicted by UTCHEM and 

GPAS for the base case benchmark. 
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Figure 7.117: Comparison of waterflood oil production rates for the base case 

benchmark. 
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Figure 7.118: Comparison of waterflood CPU times as a function of number of cells. 
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Figure 7.119: Comparison of polymer flood recovery factors for the base case 

benchmark. 
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Figure 7.120: Oil production rates for the base case polymer flood benchmark. 
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Figure 7.121: Produced aqueous phase polymer concentration for the base case 

benchmark.  
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Figure 7.122: Comparison of produced aqueous phase anion concentration for the base 

case benchmark. 
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Figure 7.123: Comparison of CPU times for polymer flood in a homogeneous reservoir as 

a function of number of gridblocks. 
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Figure 7.124: Comparison of surfactant/polymer flood recovery factors for the base case 

benchmark. 
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Figure 7.125: Comparison of oil production rates for the base case surfactant/polymer 

flood benchmark. 
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Figure 7.126: Comparison of water production rates for the base case surfactant/polymer 

flood benchmark. 
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Figure 7.127: Comparison of produced aqueous phase polymer concentration for the base 

case surfactant/polymer benchmark. 
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Figure 7.128: Comparison of produced aqueous phase anion concentration for the base 

case surfactant/polymer benchmark. 
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Figure 7.129: Comparison of produced ME phase surfactant concentration for the base 

case surfactant/polymer benchmark. 
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Figure 7.130: Comparison of actual timesteps taken by UTCHEM and GPAS for the base 

case surfactant/polymer flood benchmark. 
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Figure 7.131: Comparison of CPU times for surfactant/polymer flood in a homogeneous 

reservoir as a function of number of gridblocks. 
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Figure 7.132: Surfactant/polymer flood oil recoveries and computation times for several 

processor configurations. 
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Figure 7.133: Surfactant/polymer oil production rate for parallel simulations. 
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Figure 7.134: Water production rate for surfactant/polymer parallel simulations. 
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Figure 7.135: Effluent anion concentration for surfactant/polymer parallel simulations. 
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Figure 7.136: Effluent surfactant concentration in the microemulsion phase for parallel 

simulations. 
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Figure 7.137: Surfactant/polymer flood simulation time vs. number of processors. 
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Figure 7.138: Speedup as a function of number of processors. 
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Chapter 8: Summary and Conclusions 
 

This work consisted of two major parts. The first part of the research focused on the 

development, implementation, and validation of a wettability alteration module in 

UTCHEM simulator. The wettability alteration model was validated against two 

laboratory experiments. The recovery mechanisms were very different in these two 

experiments. An attempt was also made to scale up the static imbibition test and dynamic 

fractured block experiments to larger matrix blocks. Based on the results of this study, it 

was confirmed that viscous gradient has a significant effect on the oil recovery from 

NFRs and cannot be neglected in the laboratory results. Therefore, experiments under 

dynamic conditions give better insights about the recovery mechanisms involved in 

chemical flooding of NFRs compared to static imbibition experiments. Mobility control 

such as foam is required to increase the sweep efficiency of the injected chemicals in 

large matrix blocks. The most important conclusions are as follows: 

• Wettability modification of mixed or oil wet matrix rocks to water-wet conditions 

using chemicals such as alkali or surfactant has great potentials in producing oil 

from naturally fractured carbonate reservoirs. 

• The time of recovery for static experiment where gravity is the dominating 

recovery mechanism scales linearly with matrix height. The process is very slow 

and takes many years before any recovery enhancements is observed. 

• Due to complexity of the mechanisms involved in the fractured block dynamic 

experiment, the existing scaling groups failed to predict the time of oil recovery 

for all of the three stages of the experiment in larger matrix blocks. A new 

scaling group is needed to predict the time of the recovery for field scale 

applications where gravity, capillarity, and viscous gradient play a role. 

 

The second contribution of this research is the implementation and validation of a 

comprehensive oil/brine/surfactant phase behavior in a fully implicit and parallel 

reservoir simulator, GPAS. This development was performed and validated as follows: 
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• A new phase was added to the simulator to account for the ME phase. The 

chemical flooding module can now handle up to three liquid phases and the 

transition of phase behavior with salinity. 

• The material balance equations of aqueous components were modified to allow 

for partitioning of aqueous components in the aqueous and ME phases. 

• A new variable was added for interfacial tension between  water/ME. This new 

IFT is calculated based on the phase environment and presence of both water and 

ME phases. 

• Oil/brine/surfactant phase behavior calculations were extended to all possible 

phase environments in a chemical flood. Depending on the surfactant and anion 

concentrations, there may be 5 different phase environments.  

• The relative permeability of water, oil and, ME phases as a function of trapping 

number was added for all possible phase environments.  

• Polymer adsorption calculations, shear rate dependency of polymer viscosity and 

permeability reduction effects of polymer were corrected and validated against 

UTCHEM. 

• The Jacobian of the system was modified to account for the newly added phase 

and partitioning of aqueous components in the aqueous and ME phases. 

• The wettability alteration model of UTCHEM for surfactants was successfully 

added to GPAS. 

• Several test cases of water, polymer, and surfactant/polymer floods were 

successfully compared with UTCHEM. These test cases included 1D corefloods, 

2D vertical cross-sections and 3D homogeneous cases.  

• Results of surfactant polymer flood in a 3D reservoir with heterogeneous 

permeability field were successfully compared to UTCHEM.  

• Performed a systematic comparison of the efficiency on a single processor 

computer between UTCHEM and GPAS. The timesteps in GPAS are much 

larger than UTCHEM as expected. However, this study shows that there is a 

large overhead associated with the calculations in GPAS for each timestep. One 

of the reasons for this is the PETSc solver performs poorly as number of 
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gridblocks increases. The other reason is that the automatic timestep control 

option of GPAS is not optimized for chemical flooding. 

• The results of GPAS are very sensitive to timestep size. Hence, it is a matter of 

judgment on how to compare GPAS and UTCHEM with respect to the 

simulators’ computational time and accuracy. The larger the timesteps of GPAS 

and its concentration tolerances are, the faster it runs. But this comes with the 

price of losing the accuracyof the simulation results due to increased truncation 

errors. 

• UTCHEM runs faster compared to GPAS for small size problems. However, as 

the number of gridblocks increases, GPAS becomes faster. 

• Parallel simulations showed a close to ideal speedup for chemical flooding 

module of GPAS. A chemical flood simulation in a reservoir with 81920 

gridblocks takes 48.9 hrs on 8 processors. This time is reduced to 7.5 hrs when 

64 processors are used.  

 

Recommendations for future work can be divided into two categories; implementation of 

new physical models and recommendations for improving the numerical computation.  

 

Recommendations regarding implementation of different physical models are as follows: 

• One of the most important limitations of the current formulation of GPAS is the 

assumption of no free gas at the time of chemical flooding. This limits the application 

of the simulator to waterflooded reservoirs only where the oil is almost free of gas. 

Since GPAS uses an EOS, it may be a good research idea to try and couple the EOS 

module with the chemical flooding module to remove this limitation. 

• The wettability alteration model of UTCHEM can be coupled with the dual porosity 

model to allow for better modeling of NFRs.  

• The effect of hardness on both polymer and surfactant phase behavior is significant 

and it is recommended to implement an additional component to represent the 

hardness (total divalent cations as an equivalent of calcium concentration). 
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• Cosolvents are needed in many chemical flooding formulations for phase stability and 

removing viscous gels. Cosolvents also affect the oil/brine/surfactant phase behavior. 

It is recommended to add the effect of cosolvents on phase behavior.  

• GPAS has a thermal flooding module but this module is not coupled with the 

chemical flooding module at this time. It is recommended to couple these modules to 

be able to model surfactant polymer floods at elevated temperatures. 

• Interest in alkali/surfactant/polymer (ASP) flooding is increasing nowadays due to its 

interesting features such as in-situ soap generation and low surfactant adsorption. It is 

recommended to add the capability of modeling ASP floods to GPAS by coupling a 

geochemical module with the chemical flooding module. 

• Deviated and horizontal wells are very popular at the present time and it is 

recommended to add this capability to GPAS. 

 

Recommendations regarding improvement of numerical computation are as follows: 

• IMPES and fully implicit schemes have their advantages and disadvantages. Adaptive 

implicit methods may be used to have the advantages of both of these methods at the 

same time and improve the computation time to a great extent. 

• Efficiency of the PETSc solver decreases as the problem size increases (the Jacobian 

matrix becomes larger). It is recommended to use more efficient solvers in GPAS to 

improve the CPU time for larger data sets. 

• The timestep control of GPAS is not optimized for chemical flooding. It is 

recommended to conduct more research on optimization of the automatic time step 

control for chemical flooding. The timestep selection needs to be based on either flux 

or relative changes in the residuals of the material balance equations in the previous 

timesteps. It is also recommended to take the number of iterations in the previous two 

timesteps into account and prevent timestep enlargements when the number of 

iterations is increasing. 
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Nomenclature 

1 2 3, , ,p p p pA A A S  Polymer viscosity model parameters 

0 1 2, ,A A A  Parameters used for calculation of Height of bimodal curve in Hand’s rule 

,a c  Chun-Huh IFT correlation parameters 

1 2, ,i i ia a b  Adsorption model parameters for component i 

iC  Volume of component i in fluid per fluid volume, fraction 

iC�  
Overall volume of component i per pore volume, fraction 

ˆ
iC  

Adsorbed volume of component i per pore volume, fraction  

f
iC  Volume of component i in fluid per pore volume, fraction 

ijC  Volume of component i in phase j per volume of phase j, fraction 

SEC  Effective salinity, meq/ml 

,SEL SEUC C  Lower and upper limits of effective salinity respectively, meq/ml 

SEOPC  Optimum salinity, meq/ml 

41 43,C C  Concentration of polymer in aqueous and ME phases respectively, wt% 

3max,sC  Maximum height of binodal curve at salinity s 

CMC  Critical micelle concentration 

o
ic  Compressibility of component i at reference pressure, psi-1 

,i injc  Injected concentration of component i in aqueous phase 

     Surfactant: vol. fraction 
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     Polymer: wt% 

     Salt: meq/ml 

     Tracer: lbmole/L 

fc  Rock compressibility 

D  Depth, ft 

g  Acceleration of gravity 

k  
Absolute permeability tensor 

rjk  Relative permeability of phase j, fraction 

, ,x y zk k k  Absolute permeability in x, y and z directions respectively, md 

iM  Molecular weight of component i, lbmole/lb 

iN  Moles of component i per pore volume, lbmole/ft3 

f
iN  Moles of component i in fluid per pore volume, lbmole/ft3 

,i jN  Moles of component i in phase j per pore volume , lbmole/ft3 

,T jN  Total number of moles of phase j per pore volume, lbmole/ft3 

jTN  Trapping number of phase j 

an  Total number of aqueous components except water 

bn  Total number of gridblocks 

cn  Total number of oleic components 

jn  Relative permeability exponent of phase j 

Pα  Model parameter for shear rate dependency of polymer viscosity 
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oP  Reference pressure, psi 

jP  Fluid pressure of phase j, psi 

wfP  Well bottomhole pressure, psi 

iq  Sink or source of component i, lbmole/day 

R
G

 
Residual vector 

IR
G

 
Residual vector for gridblock I  

3RA  Solubilization ratio of phase A   

VR  Residual of volume constraint 

or  Equivalent well radius, ft 

wr  Well radius, ft 

jS  Saturation of phase j, fraction 

jrS  Residual saturation of phase j, fraction 

jT  Trapping number model parameter of phase j 

t  Time, day 

bV  Bulk volume, ft3 

X
G

 
Solution vector 

IX
G

 
Solution vector for gridblock I 

ijx  Mole fraction of component i in phase j, fraction  

, ,x y zΔ Δ Δ  Gridblock length in x, y and z directions respectively, ft 
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,t bz z  Top and bottom wellblock respectively 

1 2 3 4 5, , , ,α α α α α  Microemulsion viscosity correlation parameters 

γ�  Shear rate, sec-1 

jγ  Specific gravity of phase j, psi/ft 

jμ  Viscosity of phase j, cp 

pμ  Viscosity of water with polymer, cp 

wμ  Viscosity of pure water, cp 

iξ  Molar density of component i, lbmole/ft3 

o
iξ  Molar density of component I at reference pressure, lbmole/ft3 

jξ  Molar density of phase j, lbmole/ft3 

jρ  Mass density of phase j, lb/ft3 

3σ A  Interfacial tension between phase A and the ME phase, mN/m 

OWσ  Interfacial tension between oil and aqueous phase 

jτ  Trapping number model parameter of phase j 

ϕ  Porosity, fraction 

rϕ  Porosity at reference pressure, fraction 

 
Superscripts and Subscripts 
High High trapping number 

Low Low trapping number 

O End point 
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i Index for component 

For ˆ, , , f
i i i iC C C C� and ijC  

     1:water 

     2: oil 

     3: surfactant 

     4: polymer 

For other symbols 

     1 to nc: oleic component 

     nc + 1 to nc + na: aqueous component except water 

     water: water 

     oil: oil 

     poly: polymer 

     salt: salt 

     trac: tracer  

j  Index for phase 

     1: aqueous  

     2: oleic 

     3: ME 

j′  Conjugate phase 

z  Well gridblock 
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Appendix A: Effect of Temperature on Reservoir Fluid 
Properties and Surfactant Solutions 

The effect of temperature on surfactant phase behavior is not general and can be very 

different for different surfactant molecules or the mixture of different surfactants.  

 

A1.1.1. Phase Transition  

 
An increase in temperature would normally shift the phase equilibrium of anionic 

surfactant solutions towards the lower phase microemulsions. This means that the anionic 

surfactants normally become more water-soluble and less oil-soluble as temperature 

increases. Figure A.1 illustrates this effect for an anionic surfactant (PDM 337) studied 

by Novosad (1982). He found that a middle phase microemulsion of the above mentioned 

anionic surfactant becomes lower phase microemulsion as temperature is increased. 

 

A1.1.2. Solubilization Parameters 

 
Healy and Reed (1976) observed that for a constant salinity, increasing the temperature 

would result in a decrease in solubilization of oil and an increase in solubilization of 

water in the microemulsion phase. Solubilization ratio or solubilization parameter of oil 

is defined as the ratio of volume of oil in the microemulsion phase to volume of 

surfactant in that phase, Vo/Vs. A similar definition is used for solubilization parameter of 

water as Vw/Vs. Optimum salinity is defined as the salinity in which the IFT of both 

microemulsion/oil and microemulsion/water interfaces is equal. 

 

This is consistent with the observation of Novosad (1982) mentioned in the previous 

section. Figure A.2 shows solubilization ratios measured by Healy and Reed (1976) for 

an anionic surfactant at two different temperatures and a range of salinities. The 

surfactant studied was a monoethanol amine salt of dodecyl-orthoxylene sulfonic acid. 

Table A.1 summarizes the surfactants used in the work of each of the authors mentioned 

in this dissertation. Looking at Figure A.2 suggests that solubilization ratio at optimum 
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salinity decreases with increasing temperature. This is confirmed by work of Puerto and 

Reed (1983) presented in Figure A.3. As shown in this figure, the systems studied by 

Puerto and Reed (1983) also show a similar trend, i.e. the optimum solubilization 

parameter decreases with temperature. Figure A.4 shows the results of a study by Aoudia 

and Wade (1995). They studied propoxylated C14 alcohol sodium sulfates. As shown in 

Figure A.4, the trend of the data is the same as suggested by other authors. Figure A.5 

shows the correlation presented by Austad and Skule (1996). They also suggest that 

optimum solubilization ratio decreases with increasing temperature. Dwarakanath and 

Pope (2000) studied phase behavior of sodium dihexyl sulfosuccinate and Dense None 

Aqueous Phase Liquids (DNAPL) and found that although optimum salinity increases 

with temperature, the solubilization ratio versus normalized salinity (salinity divided by 

optimum salinity) remains the same for a range of temperatures. Figure A.6 shows their 

volume fraction diagram for four different temperatures.  

 

A.1.1.3. IFT 

 
Healy and Reed (1976) presented measured IFTs for different temperatures and a range 

of salinities (Fig. A.7). Ziegler (1988) presented a similar plot (Figure A.8). As seen in 

both of these figures, for both of the microemulsion/oil and microemulsion/water 

interfaces, the IFT increases as temperature is increased at a constant salinity. Based on 

these results, the IFT at the optimum salinity also increases with increasing temperature. 

As shown in Fig. A.4, Healy and Reed (1976) found that as temperature is doubled (from 

74 ºF to 150 ºF) IFT at the optimum salinity is almost increased by a factor of 2.6 (from 

0.0009 dyne/cm to 0.0024 dyne/cm). 

 

A.1.1.4. Optimal Salinity 

 
As shown in Fig. A.9, the optimum salinity normally increases with increasing 

temperature. This figure shows results from four different references and all of these 

results suggest that salinity at optimum conditions increases linearly with temperature. 
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A.1.1.5. Surfactant Retention 

 
Novosad (1982) investigated effect of temperature on adsorption and retention of two 

anionic surfactants in Berea cores. Surfactant retention and adsorption tend to decrease 

with increasing temperature from 25 to 70 ºC for both of the surfactants studied. The 

decrease in surfactant retention could be explained by the shift in the phase transition 

with temperature. As mentioned in Section A1.1.1, increasing the temperature would 

shift the phase behavior towards lower microemulsions. This means that surfactant 

concentration in the trapped oil phase decreases with increasing temperature and thus 

surfactant retention is reduced. 

 

A1.1.6. Critical Micelle Concentration 

 
Noll (1991) measured CMC of three different commercial sulfonate surfactants used for 

foam creation and suggested that CMC increases with temperature. Bourrel and 

Schechter (1988) show some of the results of Flokhart (1957) where CMC of sodium 

dodecyl sulfate is plotted as function of temperature. These data suggest linear 

dependency of CMC on temperature in the temperature range of interest. These data are 

plotted in Fig. A.10. 
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A1.1.7 Oil Viscosity 

 
The results presented here are based on the data of Miadcnye et al. (1993). They report 

viscosity data for North Sea crude oil measured by Ahrabi et al. (1987). They also report 

viscosity measurements for three different oil samples that they call light, medium and 

heavy oils respectively, taken from Al-Besharah et al. (1989). These data are plotted in 

Fig. A.11. As shown in this figure, oil viscosity could be reduced by orders of magnitude 

with few degrees increase in temperature. This is one of the most important driving 

forces of thermal oil recovery.  

 

A1.1.8. Water Viscosity 

 
Viscosity of reservoir brine is also a function of temperature. Temperature dependency of 

a brine containing 4 wt% NaCl is presented in Fig. A.12. This data is obtained from Mc 

Cain’s reservoir fluid properties book (McCain, 1989).  

 

A1.1.9. Density  

 
Phase densities are functions of the component densities and the density of all of 

reservoir fluids is temperature dependant. It is desired to look at temperature dependency 

of reservoir fluids in this work.   

 

A2. Revisiting Temperature Dependency of Phase Behavior and Fluid 

Properties in UTCHEM 
 

A2.1. Effective salinity  

 
As mentioned in Section 1.1.4., increasing the temperature would normally increase the 

optimum salinity of a crude oil/brine/surfactant formulation for anionic surfactants. This 

means that the effective salinity is decreased as temperature is increased. This is modeled 

in UTCHEM as described by Eq.A.1.  



 290

( )
51

1SE
T ref

CC
T Tβ

=
+ −

         Eq.A.1 

It should be noted that this equation introduces a nonlinear relationship between the 

effective salinity and temperature. Figure A.13 shows the quality of the fit to 

experimental data of Fig. A.9 using Eq.A.1. It seems the data have linear trend, and the 

existing correlation seems to be off for some of the data, especially for the data from 

Healy and Reed (1976). To see the performance of a linear correlation, Eq.A.2 was also 

examined.  

( )'
51 1SE T refC C T Tβ⎡ ⎤= − −⎣ ⎦         Eq.A.2 

Figure A.14 compares the fits using UTCHEM model with linear fits to the data. One 

could see that for the data of Healy and Reed (1976), the linear fit seems to be better, 

whereas the existing correlation in UTCHEM seems to be a better fit for the Ziegler 

(1988) data and the existing correlation and the linear fit almost overlap for the data of 

Audia and Wade (1995). The relative error for these correlations are compared and values 

are summarized in Table A.2. As shown in this table, existing UTCHEM correlation 

works better for the Ziegler (1988) data by having a relative error of 5.31% compared to 

the linear correlation which has 15% error. On the other hand, the linear correlation 

works better for the data of Healy and Reed (1976) with a relative error of 2.5% 

compared to the existing UTCHEM correlation which has 7.8% error. The proposed 

model also predicts the Dwarakanath and Pope data with a smaller error (1.32%) 

compared to the existing model (8.22%). As expected, both of the correlations give 

reasonable estimates of the Audia and Wade (1995) data. Based on this analysis, it was 

decided to add the correlation of Eq.A.2 to UTCHEM to improve its ability in predicting 

phase behavior changes with temperature.  

 

A2.2. Height of Binodal Curve 

 
In UTCHEM we model the heights of binodal curves as linear functions of temperature. 

Eq.A.3 shows the correlation used in UTCHEM: 

( )3,max , , , 0,1 2BNC m BNT m refC H H T T m or= + − =      Eq.A.3 
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where C3,max is the height of binodal curve at temperature T, HBNC,m is height of binodal 

curve at reference temperature for m times optimum salinity, HBNT,m is slope of binodal 

curve versus temperature for m times optimum salinity and Tref is the reference 

temperature. To see if this correlation is good enough to represent the behavior of 

surfactants as function of temperature, the data from Puetro and Reed (1983) and Aoudia 

and Wade (1995) was used. Solubility parameters measured by these researchers at 

optimum salinity (presented in Figs. A.3 and A.4) were converted to heights of binodal 

curve using Eq.A.4. 

3,max *

1
2

C
σ

=           Eq.A.4 

It should be mentioned that this equation works in limiting case of very small surfactant 

concentrations. The results of this conversion are presented in Figs. A.15 and A.16 for 

Puetro and Reed and Aoudia and Wade data respectively. As shown in these figures, the 

dependency of height of binodal curve on temperature at optimum salinity has a linear 

trend for all of the data and therefore the correlation used in UTCHEM is adequate. 

 

A2.3. Oil and Water Viscosities 

 
The correlation used for temperature dependency of phase viscosities in UTCHEM is as 

of Eq.A.5. 

,
1 1exp ,k k ref x

ref

b for water oil or air
T T

μ μ κ
⎛ ⎞⎡ ⎤

= − =⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
    Eq.A.5 

Oil viscosities measured by Ahrabi et al. (1987) and Al-Besharah et al. (1989) are plotted 

in Fig. A.8 and were matched with Eq.A.5 shown in Fig. A.17. As shown in this figure, 

Eq.A.5 is able to match the data to a good extent. Figure A.18 shows the match obtained 

with the water viscosity data from McCain (1989) using Eq.A.5. This figure shows that 

although Eq.A.5 can not match the data of water viscosity as good as the oil viscosity, but 

the match is still good enough and no more correlations are required. 
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A2.4. Critical Micelle Concentration of Surfactants 

 
CMC was treated as a constant in UTCHEM. After finding some data on the dependency 

of CMC on temperature, a linear correlation was implemented in the code to represent 

this dependency. The user requires giving two additional parameters for this correlation: 

the slope of CMC as a function of temperature and the temperature at which the initial 

CMC is measured. The good thing about such a model is that one can easily go back to a 

constant CMC just by inputting a slope of zero to the simulator. The correlation 

implemented is as of Eq.A.6: 

( )CMC ref refCMC S T T CMC= − +        Eq.A.6 

where CMC is the critical micelle concentration at elevated temperature, SCMC is the slope 

of CMC as function of temperature, CMCref is the CMC at reference temperature denoted 

as Tref. 

 

A2.5. Density 

 
There is no temperature dependency of component densities in UTCHEM at the present 

time, but it is desired to have such correlations in the simulator.  
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Table A.1:List of surfactants used in each of the references. 

Reference Surfactant used 
Flokhart (1957) sodium dodecyl sulfate 

Healy and Reed (1976) monoethanol amine salt of dodecyl-orthoxylene sulfonic acid
Novosad (1982) PDM 337 (a synthetic sulfonate) 

Puetro and Reed (1983) alkylarylsulfonate: bl-C12BTXSNa 
Zelegler (1988) synthetic alkylaryl sulfonate (AAS) 

Noll (1991) DDTAB  and three sulfonate surfactants 
Audia and Wade (1995) propxylated C14 alcohol sodium sulfates (C14EX(PO)n) 
Austad and Skule (1996) C12-o-xylene sulfonate 

Dwarakanath and Pope (2000) sodium dihexyl and sodium diamyl sulfosuccinate 

 

Table A.2: Comparison of relative errors for the two correlations used to model temperature dependency of 

effective salinity. 

Relative 

      error (%) 

Healy and 

Reed (1976) 

Zelegler 

(1988) 

Audia and 

Wade (1995) 

Dwarakanath and 

Pope (2000) 

UTCHEM correlation 7.80 5.31 1.12 8.22 

Linear correlation 2.50 15.00 3.77 1.32 

 

 
Figure A.1: Effect of temperature on phase transition of an anionic surfactant (Novosad, 

1982). 
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Figure A.2: Effect of temperature on solubilization ratio of an anionic surfactant, (Healy 

and Reed, 1976). 

 

Optimum salubilization parameter vs. temperature 
(Puetro and Reed, 1983)
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Figure A.3: Effect of temperature on optimum solubilization ratio of an anionic surfactant 

(Poetro and Reed, 1983). 
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Optimum solubilization parameter vs. temperature 
(Aoudia and Wade, 1995)
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Figure A.4: Effect of temperature on optimum solubilization ratio of three different 

anionic surfactants and octane (Aoudia and Wade, 1995). 

 

 
Figure A.5: Effect of temperature on optimum solubilization ratio for C12-o-xylene 

sulfonate and live crude oil (Austad and Skule, 1996). 

 



 296

 
Figure A.6: Volume fraction diagram for a mixture of 2-Propanol and sodium dihexyl 

sufosuccinate at different temperatures (Dwarakanath and Pope, 2000). 

 

 
Figure A.7: Effect of temperature on IFT of microemulsions created by anionic 

surfactants (Healy and Reed, 1976). 
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Figure A.8: Effect of temperature on IFT of microemulsions created by anionic 

surfactants (Ziegler, 1988). 
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Figure A.9: Effect of temperature on optimum salinity. 
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Dependency of CMC on temperature for sodium dodecyl 
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Figure A.10: Temperature dependency of CMC for sodium dodecyl sulfate (Bourrel and 

Schechter, 1988). 
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Figure A.11: Effect of temperature on oil viscosity, based on Ahrabi et al. (1987) and Al-

Besharah et al. (1989). 
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Brine viscosity vs temperature
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Figure A.12: brine viscosity as a function of temperature (McCain, 1989). 
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Figure A.13: Using UTCHEM effective salinity correlation to fit optimum salinity data 

found in the literature. 
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Fitting the salinity data using existing UTCHEM correlation
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Figure A.14: Comparing the existing and proposed correlations for temperature 

dependency of effective salinity (Data from Fig. A.9). 

 

Dependancy of optimum HBNC on temperature 
(based on data from Puetro and Reed, 1983)
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Figure A.15: Confirmation of linear dependency of HBNC on temperature (based on 

Puetro and Reed, 1983). 
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Dependancy of optimum HBNC on temperature
(based on data from Aoudia and Wade, 1995)
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Figure A.16: Confirmation of linear dependency of HBNC on temperature (based on 

Aoudia and Wade, 1995). 
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Figure A.17: Comparison of computed oil viscosity and measured data. 
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Water Viscosity vs temperature
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Figure A.18: Comparison of computed water viscosity and measure data of McCain (Fig. 

A.12) 
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Appendix B: Derivation of Equations of Chapter 6 
 

B1 The Adsorption Isotherm 

The adsorbed concentration of surfactant and polymer components is specified by 

Langmuir isotherms. Dividing the adsorbed concentration by overall water concentration, 

Eq.6.74 can be rewritten as follows 

1 1

1

1 1

ˆ
ˆ

3 4ˆ
1

C Ca
C CC or

C C Cb
C C

κ κ
κ

κ

κ κ
κ

κ

⎛ ⎞
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⎝ ⎠= =
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⎝ ⎠
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� �

� �
� �

      Eq.B.1 

Equation B.1 can then be rewritten as follows knowing that the total in-fluid 

concentration of each component is its overall concentration less its adsorbed 

concentration 

1
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1
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     Eq.B.2 

We can now rename the variables of Eq.B.2 as follows: 

1 1

fC CX and
C C

κ κ α= =
�

� �        Eq.B.3 

Now Eq.B.2 can be rewritten as 

( )2 1 0i i ib X a b Xα α+ + − − =       Eq.B.4 

Eq.B.4 has only one physically reasonable root (since the adsorbed concentration can not 

be negative), which is 

( )( )21 1 4
2 i i i i i

i

X a b a b b
b

α α α= − − + + + − +     Eq.B.5 

Changing the variables of Eq.B.3 back to original variables, one can rewrite Eq.B.5 as 

shown in Eq.6.76. 
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B.2 Mole Fraction of Hydrocarbon Components in Oleic Phase 

We would like to derive Eq.6.224 which states that the mole fraction of hydrocarbon 

components in the oleic phase does not change although some of the oil is solubilized in 

the ME phase. The mole fraction of each component in the ME phase is written as: 

,3
3

,3

i
i

T

N
x

N
=          Eq.6.205 

where 

Ni,3: moles/PV of component i in ME phase 

NT,3: Total number of moles of ME phase 

Our main assumption is that the mole fraction of component i in the oleic phase is the 

same as that of the ME phase 

,2 ,3

,2 ,3

i i

oil oil

N N
N N

=          Eq.B.6 

where 

, ,
1

cn

oil j i j
i

N N
=

= ∑        Eq.B.7 

Eq.B.6 can be rewritten as 

,2 ,3 ,3 ,2i oil i oilN N N N=         Eq.B.8 

Since hydrocarbon components are only present in the ME and oleic phases, we know 

that 

,2 ,3i i iN N N= +         Eq.B.9 

Combining Eq.B.8 and Eq.B.9 would result in 

,2 ,2
,2

,2 ,3

1

c

i oil i oil
i n

oil oil
i

i

N N N N
N

N N N
=

= =
+ ∑

      Eq.B.10 

Therefore for a hydrocarbon component, we can write Eq.B.11 that is used in Eq.6.224: 

,2
,2

,2

1

c

i i
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N N
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        Eq.B.11 
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