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Several recent works have demonstrated that phase-field methods for

modeling fracture are capable of yielding complex crack evolution patterns in

materials. This includes the nucleation, turning, branching, and merging of

cracks subject to a variety of quasi-static and dynamic loadings. What fol-

lows will demonstrate how phase-field methods for fracture can be applied to

problems involving materials subject to electromechanical coupling and the

problem of hydraulic fracture. Brittle fracture is a major concern in piezoelec-

tric ceramics. Fracture propagation in these materials is heavily influenced by

the mechanical and electrical fields within the material as well as the boundary

conditions on the crack surfaces. These conditions can lead to complex multi-

modal crack growth. We develop a continuum thermodynamics framework for

a damaging medium with electromechanical coupling subject to four different
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crack-face boundary conditions. A theory is presented to reproduce imperme-

able, permeable, conducting, and energetically consistent crack-face boundary

conditions, the latter of which requires a finite deformation formulation. A

primary application of hydraulic fracturing involves the injection of fluid into

a perforated wellbore with the intention of fracturing the surrounding reser-

voir and stimulating its overall production. This process involves the coupling

of fluid flow with material failure, which must account for the interactions of

several cracks, both natural and man-made. Many of the questions on the

effects these interactions have on the performance of the frac treatments are

unanswered. We develop a continuum thermodynamics framework for fluid

flow through a damaging porous medium in order to represent some of the

processes and interactions that occur during hydraulic fracturing. The model

will be capable of simulating both Stokes flow through cracks and Darcy flow

through the porous medium. The flow is coupled to the deformation of the

bulk solid medium and the evolution of cracks within the material. We utilize

a finite deformation framework in order to capture the opening of the frac-

tures, which can have substantial effects on fluid pressure response. For both

models, a fully coupled non-linear finite element formulation is constructed.

Several benchmark solutions are investigated to validate the expected behavior

and accuracy of the method. In addition, a number of interesting problems

are investigated in order to demonstrate the ability of the method to respond

to various complexities like material anisotropy and the interaction of multiple

cracks.
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Chapter 1

Introduction

The phase-field methodology has emerged as a powerful tool for mod-

eling the evolution of microstructures and the interactions of defects in a wide

range of materials and physical processes [1–5]. Phase-field methods can be

implemented to simulate large-scale evolution of material microstructure and

defect motion without the need to explicitly track interfaces or defects. In

particular, phase-field methods for modeling fracture have been shown to be

capable of yielding very complex crack patterns in three-dimensional solids [6–8].

The approach utilizes a continuous order parameter to characterize material

degradation and crack propagation. Discrete crack surfaces are replaced by a

smeared zone of damaged material and the evolution of the cracks is captured

naturally by the solution of a system of differential equations. One strength

of this modeling approach lies in the fact that there are no additional con-

stitutive rules required within the theory that dictate when a crack should

nucleate, grow, change direction, or split into multiple cracks. Cracks and

their growth simply emerge as solutions to the governing partial differential

equations of the model. A particularly unique and striking feature of the ap-

proach is that all calculations are performed entirely on the initial, undeformed

configuration. There is no need to disconnect, eliminate, move elements, or
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introduce additional discontinuous basis functions, as is commonly done in the

discrete crack computational fracture mechanics approaches. This results in a

significant simplification of the numerical implementation, and a simple and

direct pathway from two-dimensional to three-dimensional applications. The

primary objective of what follows is to extend the phase-field model of fracture

to two problems that involve additional physics, specifically, the brittle frac-

ture of piezoelectric ceramics and the hydraulically driven fracture of porous

solids.

1.1 Fracture of Piezoelectric Ceramics

Over the past few decades there have been extensive investigations on

fracture mechanics concepts for piezoelectric ceramics. There exists numerous

works on the linear electroelastic fields near crack tips [9–24], the effects of crack

face boundary conditions on crack tip fields and energy release rates [25–33],

and on the effects of ferroelastic and ferroelectric switching on fracture tough-

ness [34–37]. Modeling approaches that explicitly account for crack propagation

have been developed to a lesser extent. Some notable contributions in this

area have come from Arias et al. [38], Verhoosel et al. [39], and Linder et al. [40]

on cohesive zone type approaches, and Abdollahi and Arias [41], Miehe et al. [42],

and Xu et al. [43] on phase-field approaches to fracture.

In order for the phase-field model to properly represent brittle fracture

in the purely mechanical case, assuming the absence of contact, the formula-

tion must, and does, lead to traction-free crack surfaces. However, electrical

2



boundary conditions on the crack surfaces can vary depending on the medium

inside the crack as well as on idealizations based upon model assumptions. The

most common electrical boundary conditions, which are the ones discussed in

this work, are permeable, impermeable, conducting, and energetically consis-

tent. The main goal of Chapter 3 is to describe how these different electrical

boundary conditions are implemented through the phase-field framework, and

to describe how they affect fracture behaviors, in particular, crack propagation.

1.2 Hydraulic Fracture

The method of propagating fractures with hydraulically pressurized

fluids is common in many engineering applications, particularly in the field of

geology. Certainly the most notable of these is the stimulation of oil and gas

wells, but other applications include waste disposal [44], in situ stress measure-

ment [45], the stimulation of ground water wells [46,47], and geothermal reservoir

development [48]. The advent of massive hydraulic fracturing and horizontal

drilling in recent decades has made the extraction of oil and gas from un-

conventional reservoirs, particularly shale, economically viable. Additionally,

heat extraction from subsurface geothermal systems has the potential to be a

significant source of renewable carbon-free energy both world-wide and in the

U.S. [49,50]. As such, the optimization of the many applications related to fluid

driven fracturing is becoming increasingly important.

Conventional modeling approaches to hydraulically fractured systems

have assumed symmetric, planar, bi-wing crack geometries. Analytical 2D

3



models were developed that made use of simplifying geometrical assumptions

for fracture height and width in order to arrive at solutions in closed form.

One such model, the Perkins-Kern-Nordgren (PKN) model, was formulated

for fractures where the crack height is much smaller than crack length. The

crack cross-section was assumed to be elliptical and to maintain a constant

height along the length of the crack [51,52]. Another popular model, named af-

ter the work by Kristianovic, Geertsma, and de Klerk (KGD), was formulated

for fractures where the crack height is much larger than crack length. In this

case the crack cross section was assumed to have constant width [53,54]. The

coupling of these simplifying geometrical assumptions with fluid mass conser-

vation and the Poiseuille law for the fluid flow in the cracks yielded closed

form solutions for the crack growth history. Both models have also been mod-

ified to include leak-off of the pressurized fluid into the surrounding porous

rock. Later, planar three-dimensional and pseudo-three-dimensional computa-

tional models were developed that incorporate anisotropic fracture properties

of the rock layers to predict more complex fracture height, length, and width

growth profiles [55,56]. Several commercial production codes are based on these

ideas and are in use today [56]. Additional studies, most notably by Detour-

nay and co-workers [57–59], have revisited planar crack geometries, plane strain

and penny shape cracks, and carefully investigated the crack tip behavior and

propagation regimes of hydraulic fractures. These asymptotic analyses and

analytical solutions provide valuable insights into some of the fundamental

behaviors of fluid driven fractures and supply test cases for comparison with
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numerical methods developed for more complex crack surface evolutions.

Recently research efforts have largely shifted towards the modeling of

more complex fracture geometries. Microseismic mappings performed on hy-

draulically fractured wells have revealed that complex fracture growth is more

prevalent than had been initially estimated and that such phenomena oc-

cur with increased frequency in unconventional reservoirs [60,61]. In particular,

induced hydraulic fractures interact with pre-existing propped and natural

fractures as well as other anisotropic features and inhomogeneities in the ma-

terial [62,63]. Due to the low permeability of unconventional reservoirs, a proper

understanding of fracture evolution is paramount to evaluating and ensuring

the desired production of the well. Many of the same issues exist for enhanced

geothermal reservoir development along with the additional complications as-

sociated with thermal effects and the generation of thermal cracks. Ultimately,

the production of energy resources from these types of reservoirs can be im-

proved with the development and utilization of high fidelity numerical tools

that model the coupled fluid, thermal, and mechanical behaviors properly

while allowing for complex crack growth topologies and interactions.

There exists several works on the numerical modeling of the fluid driven

fracture process. Many of these approaches assume that the network of poten-

tial crack paths is known, e.g. a rectangular lattice of potential crack surfaces

exists a priori, and the fluid loading then acts to open parts of said network

as the fluid injection process proceeds [64–70]. The method developed in this

work seeks to address cases where the crack path is not known a priori. Other
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approaches for generic crack path evolution also exist, and each is thought to

have certain strengths and weaknesses. Overall, the methods can be grouped

into two types of approaches: (i) sharp interface methods where the cracks

are represented explicitly and thus require constitutive rules for crack prop-

agation and (ii) diffuse crack models where a significant challenge resides in

representing physical behaviors within the cracks like the pressure and flow of

fluids.

Of note for sharp interface methods are boundary element methods [71]

and discrete crack representations within finite element methods [72–77]. Bound-

ary element methods for determining the evolution of complex crack patterns

have the advantage of being highly computationally efficient. Meshes are only

needed on the boundaries of the domain and on the crack surfaces. Growth

laws for the crack front are postulated relating the front velocity and direc-

tion to the local stress intensity factors. The disadvantages of the method are

associated with difficulties for the incorporation of nonlinear or time depen-

dent material responses in the bulk elastic material, and also in the handling of

topological changes in the crack growth evolution like crack merging or branch-

ing. The discrete crack finite element methods usually implement numerical

enrichment functions to allow cracks to grow through elements [75,78] or they

relocate nodal positions such that cracks grow along element boundaries [76].

Both approaches also implement special element types at the crack front in

order to capture the linear elastic near-tip K-fields for elastic problems. Such

finite element methods will of course allow for nonlinear and time-dependent
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behavior in the bulk material, although any nonlinear behavior affecting the

crack tip fields may negate the utility of using the special crack tip elements

and any crack growth laws based upon the stress intensities. While the topo-

logical changes associated with crack merging and branching can be addressed

using level set methods and re-meshing, the necessity of additional constitutive

rules for crack branching, direction selection, and nucleation remain.

Examples of diffuse crack approaches include peridynamics [79,80], gradi-

ent damage mechanics [81,82], and the phase-field methods presented herein and

by other recent studies [6–8,83–92]. Peridynamics is a nonlocal theory in which

material points interact with all other material points that reside within a

nearby “horizon”. As with the phase-field method, cracks are not tracked

explicitly but rather emerge naturally from the model equations. Gradient

damage mechanics approaches and phase-field fracture approaches are very

similar with minor differences in the details of how localization occurs and the

length scale over which damage is able to spread. All of these diffuse crack

methods alleviate many of the issues related to the topological changes in crack

path evolutions associated with branching, turning, merging, and nucleation.

However, there are challenges associated with modeling the fluid flow through

cracks and the interaction of pressurized fluids with crack faces.

1.3 Scope of Study

The dissertation is organized as follows. In Chapter 2 the phase-field

approach to quasi-static brittle fracture is reviewed. A framework which uti-
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lizes a micro-force balance law is developed, which acts as the foundation upon

which the more complicated theories in the proceeding chapters are developed.

Additionally, an analysis of the crack-tip behavior for various choices of the so-

called degradation function of the strain energy is presented. Chapter 3 focuses

on the implementation of the phase-field method of fracture for piezoelectric ce-

ramics. The formulation developed is implemented within the context of linear

piezoelectric constitutive relationships, where the material polarization is as-

sumed to be frozen in the material. However, the general framework described

herein may be extended to a wider variety of nonlinear constitutive behaviors.

For example, the work of Abdollahi and Arias [41] describes a very similar im-

plementation of several of the boundary conditions listed above. They also

couple the phase-field fracture model with a phase-field model that captures

structure evolution growth in ferroelectric solids. This work presents an al-

ternative approach for the implementation of the electromechanical boundary

conditions and adds a finite deformation theory for the energetically consis-

tent conditions into the framework. Also, the problem of “anti-healing” with

respect to the order parameter far from the crack surface is addressed by in-

troducing a new degradation function. How this new function affects material

response is discussed and compared to the standard formulation. The purpose

of Chapter 4 is to enhance the phase-field/variational approach to fracture by

coupling the physics of flow through porous media and cracks with the me-

chanics of fracture. The main modeling challenge addressed herein, which is a

challenge for all diffuse crack representations, is on how to allow for the flow
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of fluid and the action of fluid pressure on the aggregate within the diffuse

damage zone of the cracks. There have been a few very recent studies which

address the implementation of the phase-field method for fracture in poroelas-

tic media [93–95]. The primary distinction in this work is in the presentation of

the governing balance laws, and then the development of constitutive relation-

ships through Coleman and Noll-type analysis procedures and, in particular,

the handling of the fluid flow equations, which recover the Stokes equations

for the fluid flow within cracks. Finally, in Chapter 5 the overall contributions

of the work are summarized and new directions associated with the work are

suggested. With each introduction of a new model and new physics there

will be some overlapping of the discussion and development of the governing

equations, in particular the phase-field equations. The motivation behind the

repetition is that there is often switching of variables and the quantities they

represent due to the multitude of physics introduced and the desire to use

conventional variable representations where ever possible. Thus, Chapters 2,

3, and 4 are complete in terms of model development and the contents may be

individually understood without thorough reading of the others. Throughout

the presentation Einstein notation will be used and the usual convention of

summation over repeated indices is implied.
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Chapter 2

The Phase-field Model for Brittle Fracture

2.1 Introduction

In the following we review how Griffith’s foundational theory for brittle

fracture [14] is utilized in the variational approach to fracture. In particular,

utilizing the approach developed by Gurtin et al. [96], it is shown that the phase-

field approach to fracture can reproduce Griffith’s theory with the simultaneous

solution of micro-force and momentum balance laws. Next, various forms of

the strain-energy degradation function are presented and analysed. A study

of the resulting “crack tip” fields draws comparisons to cohesive zone models.

2.2 General Theory
2.2.1 Griffith’s Theory of Brittle Fracture and the Variational Ap-

proach to Fracture

Consider an arbitrary volume of material V bounded by surface S con-

taining a set of discrete cracks defined by the possibly discontinuous surface

Sc. For a completely elastic material, Griffith’s theory states that the total

energy Φ of the volume would be the sum of the stored strain energy in V and

the fracture surface energy of Sc minus the work done by the applied loads ti
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and bi,

Φ =

∫

V

Ω(εij)dV +

∫

Sc

GcdS −
∫

V

biuidV −
∫

S

tiuidS , (2.1)

where Ω is the elastic strain energy density in the material εij is the small-strain

tensor such that εij = 1
2
(ui,j+uj,i) and , j represents differentiation with respect

to the xj direction. Small deformation assumptions will be used throughout

the discussion. Gc represents the critical energy release rate or twice the

fracture surface energy in Griffith’s theory of brittle fracture. Note that here

we are claiming that all fracture surfaces are traction free. To simplify the

discussion, cracks will be allowed to heal. Then, Griffith’s theory reduces to

finding a kinematically admissible ui and the configuration of crack surfaces

Sc given V , S, ti, bi, and Gc such that Φ is minimized, or in the language of

variational calculus,

δΦ = 0 . (2.2)

If the configuration of resulting crack surfaces Sc is known a priori, then (2.2)

may be solved and a growth criterion may be established, making up the

foundation of much of the fracture mechanics literature that has developed

over the last century. On the contrary, if Sc is unknown, then clearly, as the

set of possible configurations of Sc will always be infinite, a solution to the

above variational statement in its current form is cumbersome, if not hopeless.

Following the formulation initially proposed by Francfort and Marigo [6] the

fracture surface energy
∫
Sc
GcdS is approximated by a volume integration of
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the phase-field parameter µ such that,

∫

Sc

GcdS ≈
∫

V

Gc

[
(1− µ)2

4`0

+ `0µ,iµ,i

]
dV ≡

∫

V

ψµdV , (2.3)

where `0 is a length-scale that governs the size of the region over which the

phase-field transitions from 0 to 1 (which can be thought of as completely failed

to entirely intact). This region will be referred to as the process zone. This

approach is based on the variational approximation by elliptic functionals [97,98].

Now that the discrete traction free surfaces Sc have been removed, the strain

energy must be modified such that regions contained in V where µ is near 0

cannot carry strain energy. Hence ψd is defined,

ψd(εij, µ) = fd(µ)Ω(εij) , (2.4)

where fd(µ) is referred to as the degradation function and must, at a minimum,

satisfy the following conditions [94,99],

fd(0) = 0, fd(1) = 1, fd
′(0) = 0 . (2.5)

The interpretation of the first two conditions is obvious, i.e. cracked material

(µ = 0) should have no stiffness and intact material (µ = 1) should behave

in the normal elastic fashion. The implication of the third condition will

be discussed shortly. Making use of the divergence theorem, the variational
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equation (2.2) now reduces to,

0 =

∫

V

[(
fd(µ)

∂Ω

∂εij

)

,j

+ bi

]
δuidV

+

∫

V

[
fd
′(µ)Ω−Gc

(
1

2`0

(1− µ) + 2`0µ,ii

)]
δµdV

+

∫

S

([
fd(µ)

∂Ω

∂εij
nj − ti

]
δui + [2Gc`0µ,ini] δµ

)
dS

, (2.6)

where ni is the unit vector normal to the surface S. Noting that (2.6) holds

for arbitrary combinations of δui and δµ we conclude the following,(
fd(µ)

∂Ω

∂εij

)

,j

+ bi = 0 in V

fd
′(µ)Ω−Gc

(
1

2`0

(1− µ) + 2`0µ,ii

)
= 0 in V

ti = fd(µ)
∂Ω

∂εij
nj on S

µ,ini = 0 on S

. (2.7)

Here the rationale behind the third requirement in (2.5) can be realized

as the first derivative of fd appears in the δµ volume equation. In fact, an

additional requirement should be included, fd′(µ) ≥ 0, such that an increase

in strain energy, Ω, should only induce a decrease in µ. A decomposition of the

strain energy Ω is often used to ensure that degradation only occurs as a result

of tensile deformations. Such a decomposition will be utilized in Chapter 4

that is based on the work of Miehe et al. [89]. Requiring fd′(0) = 0 ensures that

µ > 0 for any deformation and converges to µ = 0 for a fully broken state, as

negative values of µ would have no physical interpretation.

The defining feature of the phase-field approach to fracture, as elabo-

rated in much detail by the work of Bourdin and others [7,100], is that in the
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limit as the length scale `0 goes to zero, the solution of the variational equation

(2.6) converges to that for the discrete fracture surface representation (2.1).

2.2.2 Casting the Phase-field Approach to Fracture as a Balance
of Micro-forces

In contrast to defining a total energy and developing the governing

equation through the use of variational principles, here we describe how the

same equations can be derived through the analysis of fundamental continuum

balance laws. Credit for the development of the approach that will be employed

herein is owed to the work of Fried and Gurtin [101,102]. Again, a phase-field

quantity µ is introduced to describe material degradation and represent crack

surface energy. We need also to introduce a set of conjugate forces associated

with changes in this quantity. To this end, we define λ as an external surface

micro-force such that λµ̇ is the power expended per unit area of surface by

sources external to the volume under consideration, γ is an external body

micro-force such that γµ̇ is the power expended per unit volume by external

sources, and π is an internal micro-force per unit volume such that πµ̇ is the

power expended internally on the material per unit volume [96]. We also assume

that on the surface there is a balance between the applied surface micro-force

λ and an internal material micro-force vector ξi such that,

λ = ξjnj on S . (2.8)
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It is then also assumed that there exists a net balance of this set of micro-forces

such that, ∫

S

λ dS +

∫

V

γ dV +

∫

V

π dV = 0 . (2.9)

Application of the divergence theorem, (2.8), and the argument that the micro-

force balance must hold for any arbitrary volume V yields the pointwise micro-

force balance equation,

ξi,i + γ + π = 0 . (2.10)

Likewise, in the quasi-static setting, mechanical equilibrium can be

stated as, ∫

S

tidS +

∫

V

bidV = 0 , (2.11)

where bi is the body force per unit volume and ti is the traction vector. Equi-

librium of a surface element yields a relationship between the traction and the

Cauchy stress tensor,

ti = σjinj on S , (2.12)

where σij is the symmetric Cauchy stress tensor. The Cauchy stress can be

shown to be symmetric by an analysis of the balance of angular momentum.

Using the divergence theorem and recognizing that the integral balance must

hold for any arbitrary volume, we arrive at the differential form for the equation

of equilibrium as,

σji,j + bi = 0 in V . (2.13)

Next, the balance of energy under quasi-static conditions dictates that

the total change to the internal energy of a closed the system is equivalent
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to the external work and heat introduced to the system. Written in integral

form,

d

dt

∫

V

edV =

∫

V

(biu̇i + γµ̇+ r) dV +

∫

S

(tiu̇i + λµ̇− qini) dS . (2.14)

We have introduced r as the heat input per unit volume per unit time and qi

as the components of the heat flux vector. Invoking small strain and rotation

assumptions and applying the above balance laws with the divergence theorem,

the change in internal energy density is,

ė = σjiε̇ij − πµ̇+ ξiµ̇,i + r − qi,i . (2.15)

The Second Law of thermodynamics dictates that the internal entropy of the

system must at least increase in the same amount as the entropy input to the

system. The entropy input is defined as the heat input divided by the absolute

temperature θ and the Second Law can be written as,

d

dt

∫

V

sdV ≥
∫

V

r

θ
dV −

∫

S

qini
θ
dS , (2.16)

which, subject to the previously mentioned assumptions, can be reduced to,

θṡ ≥ r − qi,i +
1

θ
qiθ,i . (2.17)

The Hemholtz free-energy density is defined as ψ = e−sθ. Under the principle

of equi-presence the Hemholtz free energy density ψ, as well as σji, π, ξi, s,

and qi are allowed to depend freely on εij, µ, µ,i, µ̇, θ, and θ,i. Additional

dependencies can be shown to vanish. Then, (2.17) becomes,

∂ψ

∂εij
ε̇ij+

∂ψ

∂µ
µ̇+

∂ψ

∂µ,i
µ̇,i+

∂ψ

∂µ̇
µ̈+

∂ψ

∂θ
θ̇+

∂ψ

∂θ,i
θ̇,i ≤ σjiε̇ij−πµ̇+ξiµ̇,i+sθ̇−

1

θ
qiθ,i .

(2.18)
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Following the procedures developed by Coleman and Noll [103], given that this

expression is linear in ε̇ij, µ̇,i, µ̈, and θ̇, the inequality will hold for arbitrary

time histories of the parameter set if,

∂ψ

∂εij
= σji,

∂ψ

∂µ,i
= ξi,

∂ψ

∂µ̇
= 0,

∂ψ

∂θ,i
= 0, and

∂ψ

∂θ
= −s . (2.19)

The remaining terms result in the simplified dissipation inequality,
(
π +

∂ψ

∂µ

)
µ̇+

1

θ
qiθ,i ≤ 0 . (2.20)

Here we decide to be slightly over restrictive and recognize that (2.20) can be

satisfied by setting the internal micro-force π and heat flux qi to,

π = −∂ψ
∂µ
− βµ̇

qi = −κijθ,j
, (2.21)

with β ≥ 0 and κij, the material thermal conductivity, positive definite. Each

are allowed to depend on all the relevant parameters discussed above. More

generally we would include cross terms involving µ̇ and θ,i. The micro-force

balance law of (2.10) becomes, in terms of µ,
(
∂ψ

∂µ,i

)

,i

− ∂ψ

∂µ
+ γ = βµ̇ in V . (2.22)

We now complete the comparison by defining the Hemholtz free energy density

explicitly as,

ψ = fd(µ)Ω(εij) +Gc

[
(1− µ)2

4`0

+ `0µ,iµ,i

]
. (2.23)

Thus, if β and λ are taken to vanish then application of (2.23) with (2.8),

(2.13), (2.12), and (2.13) yields identical equations to those described by (2.7).
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However, a framework has been constructed upon which more complex theories

can be developed.

2.3 Analysis and Discussion
2.3.1 Degradation Function

To this point, the degradation function fd has been left to remain gen-

eral beyond the satisfaction of (2.5). The majority of the literature has adopted

the originally proposed quadratic form [6],

f qd (µ) = µ2 . (2.24)

This form has the advantage that it is especially simple to implement in a so

called “staggered” scheme, (i.e. when ui is solved for fixed µ, then µ is solved

for fixed ui, and this is alternated until a certain degree of convergence is

achieved) since both governing equations are rendered linear. An alternative

form, originally proposed by Borden [99] and will be referred to as the cubic

form, is,

f cd(µ) = µ2 [s (µ− 1)− 2µ+ 3] , (2.25)

where s is the slope at µ = 1. For s ≥ 0 , s � 1, this form has some

very beneficial features for solving linear elastic brittle fracture problems (Ω =

1
2
cijklεijεkl). These features can be most readily demonstrated by an analysis

of homogeneous material response (i.e. µ,i = 0). If uniaxial loading conditions

are adopted and external body forces and micro-forces are taken to be zero

then the equations (2.13) and (2.22) can be solved to give evolutions of stress
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Figure 2.1: Homogeneous uniaxial material response. Strain is normalized by
ε0 =

√
Gc/E`0 and stress is normalized by σ0 =

√
GcE/`0. The cubic form of

the degradation function fd results in both a more linear initial stress-strain
response and a higher rate of residual stress decay for large strain.
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and µ as functions of applied strain. The results are summarized in Figure 2.1.

The first positive feature is that the cubic degradation function results in a

stress-strain response that is exactly linear nearly up until the strain value

associated with the critical peak stress (there is a small region of increasing

stress after the large region of initial linear response). This is a consequence

of the fact that fd′(1) = 0 when s = 0 and no degradation occurs (i.e. µ = 1)

up until a critical strain threshold that corresponds to ε/ε0 =
√

1/6, where

ε0 =
√
Gc/E`0. This is in contrast with the quadratic form which experiences

non-linear stress-strain behavior at the very onset of straining. The second

desirable feature of the cubic degradation function is that the stress decays at

a slightly higher rate for large strain than that for the quadratic form. In fact,

the cubic form decays like 1
12

(
ε0
ε

)3 as compared to 1
4

(
ε0
ε

)3 for the quadratic

form. Another feature of the cubic form is that it results in a larger realized

maximum stress value than that for the quadratic case. The peak stress value

for the cubic case is σc =
(

27
50

√
3
5

)
σ0 as opposed to σc =

(
9
16

√
1
6

)
σ0 for the

quadratic case, where σ0 =
√
GcE/`0. These uniaxial peak stress values serve

as good estimates for material tensile strength. Note that if the parameter

s is chosen to be 0 then the model will not be capable of capturing crack

nucleation and so, for practical purposes, s is chosen to be positive but very

close to 0. Alternative forms of the degradation function are introduced in

Chapter 3 which have characteristics that are similar to the cubic form but

have additional features that are beneficial for modeling piezoelectricity.
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2.3.2 Mesh Dependency of the Fracture Surface Energy

Another useful analytical solution of the phase-field equations is the

resulting µ profile for a fully cracked one dimensional bar. If the length of the

bar is chosen to be long compared to `0 then approximate boundary conditions

can be chosen as µ,1 = 0 at x = ±∞. Forcing also that µ = 0 at x = 0 then

(2.22) with β, γ = 0 leads to,

µ(x) = 1− e−
∣∣∣ x2`0 ∣∣∣ . (2.26)

Evaluation of (2.3) with (2.26) for an infinitely long bar and normalizing by

bar cross-sectional area identically gives Gc
[6,7]. In fact, evaluation of (2.3)

with (2.26) from x = −10`0 to x = 10`0 gives 0.99996Gc. This analytical result

corresponds to a jump discontinuity in displacement ux at x = 0. However, the

phase-field method for fracture is typically implemented in the context of (at

least) C0 finite elements [8,84] and displacements are discretized by a continuous

field. Thus, the jump in displacement occurs over some finite length scale he

associated with the element size where the crack exists (or where µ is close to

zero). For piece-wise linear finite element spaces he is precisely the element

height. For large enough displacements (i.e. when the residual crack stresses

have sufficiently decayed) the phase-field µ takes on the limit form of,

µ(x) =





1− e
(
x+he/2

2`0

)
, x < −h

e

2

0 , −h
e

2
≤ x ≤ he

2

1− e−
(
x−he/2

2`0

)
, x >

he

2

. (2.27)
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(a) (b)

Figure 2.2: These plots illustrate the difference between the analytical and
discretized representations of the phase-field crack “surface”. (a) shows the
phase-field profile for the analytical case (solid line) and discretized case (dot-
ted line). (b) shows the crack opening displacement as a function of location in
the for the analytical and discretized cases respectively. he is a characteristic
length scale associated with the discretization (i.e. element size). These re-
sults are specific to a piece-wise linear discretization, however, similar features
are present for any continuous representation of the displacement field.

The results are illustrated in Figure 2.2. Now, evaluation of (2.3) with (2.27)

for an infinitely long bar and again normalizing by bar cross-sectional area

gives Gc

(
1 + he

4`0

)
which corresponds to the fracture toughness adjustment

factor suggested by Bourdin [84]. In other words, the Gc implemented in the

numerical model should obey,

Gc =
Gactual
c(

1 + he

4`0

) , (2.28)

in order to achieve optimal accuracy.
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2.3.3 The Phase-Field Model Crack-tip Fields and Comparison to
Cohesive Fracture Zone Models

For materials that meet certain geometric requirements there exists a

region surrounding the crack tip where the asymptotic K-fields dominate the

displacement and stress fields in the material. This is the small-scale yielding

condition. This region is commonly referred to as the K-annulus and surrounds

a zone at the crack tip where non-linear material responses are present and

is itself surrounded by a region where higher-order terms are relevant as the

effect of specimen boundaries becomes significant. This idea is illustrated

in Figure 2.3. For quasi-static (or slow) mode-I loadings under small-scale

yielding Irwin developed the relationship between energy release rate G and

mode-I stress intensity factor KI for isotropic plane-strain conditions such

that,

KI =

√
GE

(1− ν2)
, (2.29)

and suggested that a crack will propagate when the stress intensity factor

KI = KIc, or equivalently G = Gc, regardless of the specifics of the non-

linearity [104]. Similar relationship may be found for mode-II and mode-III.

In order to characterize the non-linear response of the phase-field model

at the crack tip a finite-element mesh was constructed to be sufficiently large

(2000`0×2000`0) such that it can be argued to be far away from the non-linear

processes at the tip. The following symmetric weak form of the phase-field

equations was implemented within the finite-element method:
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Find ui ∈ Sui and µ ∈ Sµ such that for all δui ∈ Vui and δµ ∈ Vµ,
∫

V

(σjiδεij − πδµ+ ξiδµ,i) dV =

∫

S

tiδuidS . (2.30)

The previously derived Hemholtz free energy (2.23) along with constitutive

relations (2.19) and (2.21) are used where Ω is taken such that Ω = 1
2
cijklεijεkl

and cijkl is the typical isotropic compliance tensor. Here the body force bi,

external micro-body force γ, external micro-surface force λ, and dissipation

constant β are taken to be zero. Dirichlet displacement boundary conditions

associated with the asymptotic mode-I K-field displacements are applied to

the boundary of the finite-element mesh,

ux(x, y) =
KIc

2E

√
r(x, y)

2π
(1 + ν) [3− 4ν − cos (θ(x, y))] cos

(
θ(x, y)

2

)

uy(x, y) =
KIc

2E

√
r(x, y)

2π
(1 + ν) [3− 4ν − cos (θ(x, y))] sin

(
θ(x, y)

2

) .

(2.31)

The value used for KIc is,

KIc =

√√√√Gc

(
1 + he

4`0

)
E

(1− ν2)
, (2.32)

which corresponds to the adjustment factor (2.28). The displacement and vir-

tual displacement fields ui and δui as well as the phase-field and virtual phase-

field parameters µ and δµ are discretized using piece-wise bi-linear quadrilat-

eral elements. A graded, structured mesh was generated such that an element

size of he = `0/10 existed in regions where degradation was expected. In fact,

sufficient resolution of field gradients only requires a uniform mesh near the
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K-annulus 
FEM mesh 
boundary 

Non-linear  
material response 

Crack 

Figure 2.3: This picture illustrates the K-annulus idea. If the specimen di-
mensions and crack length is sufficiently large compared to the length scale
associated with non-linear material than there exists a region surrounding the
crack tip where the asymptotic K-fields for the displacements and stresses
are dominant. Inside this region is the non-linear material response associ-
ated with the failure mechanism and outside terms influenced by specimen
boundaries are significant. The finite-element boundary is contained within
the K-annulus such that the crack tip behavior of the phase-field model can
be analyzed.
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tip of cracks, or at the origin of the specimen, and long slender elements can

be used to resolve the phase-field behind the crack tip.

A hybrid coupled Newton-Raphson scheme was used to obtain con-

verged numerical solutions. This scheme takes advantage of the stability of

the staggered approach where each field (ui and µ) is solved for individually

while the other field is held fixed and the procedure is alternated. At the com-

pletion of a fixed number of staggered iterations, a Newton-Raphson method

for the fully coupled problem is solved such that both fields are computed

simultaneously using the full tangent stiffness matrix of the residual (2.30).

In some sense, the staggered scheme provides a “good-enough” initial guess

so that the fully coupled scheme is able to achieve convergence. The hybrid

scheme is by no means infallible and application of the scheme requires a de-

gree of trial and error in determining a balance between the fixed number of

staggered iterations and magnitude of overall load increments. The number

of staggered iterations can be alternatively based on the size of a norm of the

residual or field updates or both. If successful, the hybrid scheme provides

solutions where convergence of the residual is guaranteed. In the following

analysis, both the quadratic and cubic forms of the degradation function were

used for purposes of comparison.

Figure 2.4 shows the resulting phase-field fracture fields. The images are

centered at the origin of the specimen. Note that no phase-field nodal degrees

of freedom are specified a priori but, instead, evolve naturally in response to the

applied K-field displacements at the boundary. The existence of the significant
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(a) (b)

Figure 2.4: The resulting phase-fields for the K-field problem near the origin.
The actual domain size is 2000`0× 2000`0 and the pictured size is 30`0× 30`0.
(a) Quadratic form of the degradation function fd, (b) Cubic form of the
degradation function fd.
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non-linear response for the quadratic form of the degradation function leads

to a “bulbing” type behavior of the phase-field at the tip. This increases the

total surface energy of the crack and, as expected, the “tip” falls short of the

origin. The cubic form does not exhibit this behavior.

Figure 2.5 shows plots of the stresses and displacements and com-

pares them to the asymptotic linear elastic K-field solution and the Dugdale-

Barenblatt cohesive zone model [105,106], which assumes a constant traction sep-

aration relationship (shown in Figure 2.5a). The separation traction for the

Dugdale-Barenblatt model is set to the maximum observed σyy ahead of the

crack tip for the phase-field model for each degradation function. These values

correspond closely to the uniaxial peak stress values derived in Section 2.3.1

where,
σmax
yy = 1.105σc (quadratic)

σmax
yy = 1.002σc (cubic)

. (2.33)

The size Rp of the cohesive zone is determined from the critical energy release

rate Gc and the separation traction such that,

Rp =
π

8

(
KIc

σmax
yy

)2

⇒
Rq
p = 6.67`0 quadratic

Rc
p = 2.57`0 cubic

. (2.34)

There is some ambiguity in choosing the origin for the Dugdale-Barenblatt

model. A simple equilibrium analysis developed by Irwin on the asymptotic K-

field suggests that a reasonable approach is to place the origin at the center of

the process zone, Rp/2. Figure 2.6 shows a comparison of the observed phase-

field for the K-field problem with the analytical phase-field profile (2.26) shifted
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Figure 2.5: Plots of (a) stress and (b) crack opening displacement for the
K-field boundary value problem for the quadratic and cubic degradation func-
tions. Values associated with perfectly linear elastic fracture mechanics and
the Dugdale-Barenblatt cohesive zone model are included for comparison pur-
poses. The phase-field crack opening displacements are calculated using (2.35).
Figures describing the Dugdale-Barenblatt model are included on the stress
plot.
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Figure 2.6: Plots comparing the observed phase-field values for the K-field
asymptotic loading with the analytical result (2.26) along the x-axis. The
analytical result is shifted to start from the middle of the estimated Dugdale-
Barenblatt process zone size (2.34). The profile is significantly perturbed by
the presence of straining around the crack tip for the quadratic degradation
function.

to the centers of the estimated Dugdale-Barenblatt process zones according to

(2.34). Here the early onset of degradation for the quadratic form of the

degradation function can be clearly seen. In contrast, the analytical profile is

nearly identical to the observed profile for the cubic degradation function.

Unlike the Dugdale-Barenblatt cohesive zone model, where the traction

separation behavior is confined to a line directly in front of the crack tip, the

non-linear process associated with crack opening for the phase-field occurs over
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the length scale `0 in the direction orthogonal to the crack. The phase-field

crack opening displacements shown in Figure 2.5b are generated using what

is referred to by Bourdin and others [93] as a Γ-convergence construction such

that,

δy =

∫ ∞

−∞
uy(x, y)µ,y(x, y)dy , (2.35)

is evaluated for points along the crack. This integral can be thought of as the

phase-field approximation of the displacement jump discontinuity,

uyny|y=0+

y=0− = u+
y − u−y = δy . (2.36)

While the comparison to the Dugdale-Barenblatt model is imperfect

for several reasons, the results shown in Figure 2.5 suggest that the phase-

field approach to brittle fracture can be viewed as having similar features and

functionality to that of cohesive zone fracture models. Due to the higher peak

stress and larger degree of linearity in the stress response, the cubic degra-

dation function performs significantly better in approximating brittle fracture

and in reproducing the expected cohesive zone behaviors. The delayed onset

of degradation for the cubic form has also been shown to improve results for

cases where usage of the quadratic form has lead to nucleation of degradation

at the application of load or in other regions of material where cracks are not

expected to form.

The preceding analysis is not intended to be comprehensive, as the

results shown are dependent not only on the specific form of the degradation

function, but also on the choice of the surface energy functional (2.3). While
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the form chosen in this analysis is certainly the most common form used in the

literature, several alternative forms have been purposed and each have their

own merits [107,108]. Instead, the intention of the analysis is to shed light on

features of the variational approach to fracture that are often overlooked in

much of the literature.
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Chapter 3

A Phase-field Model for Fracture in
Piezoelectric Ceramics1

3.1 Introduction

In the following, the governing equations are derived, including reintro-

ducing those governing the phase-field, from integral balance laws. We then

use thermodynamic arguments to develop general constitutive relationships

between all system variables. Section 3.2.2 describes, in a general form, how

the permeable, impermeable, and conducting boundary conditions are imple-

mented. Section 3.2.3 then develops the finite deformation framework required

for the implementation of energetically consistent boundary conditions. The

degradation function and its affects on the model material behavior are exam-

ined here. Section 3.3 provides a short discussion as to how the formulation

is implemented numerically with the finite element method and addresses a

small nuance in implementation of the conducting boundary conditions. Sec-

tion 3.4 details three specific numerical simulations, the first provides model

verification, the second describes the affect of each boundary condition on

1Based on the journal publication: Wilson, Zachary A., Borden, Michael J., and
Landis, Chad M., A phase-field model for fracture in piezoelectric ceramics, Inter-
national Journal of Fracture, Volume 183(2), 2013, Pages 135-153, ISSN 1573-2673,
http://dx.doi.org/10.1007/s10704-013-9881-9.
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crack propagation, and the last illustrates a potential advantage of model-

ing fracture in piezoelectric ceramics using the phase-field approach. Finally,

some concluding remarks are presented and the limitations and strengths of

the phase-field approach are considered.

3.2 General Theory

In this section, the equations governing a small deformation, mechan-

ically and electrically quasi-static, isothermal, electromechanical boundary

value problem will be reviewed.

Consider a volume of material, V , bounded by the surface, S. The total

force balance is written as
∫

S

tidS +

∫

V

bidV = 0 (3.1)

where bi is the body force per unit volume and ti is the traction vector. Equi-

librium of a surface element yields a relationship between the traction and the

Cauchy stress tensor,

ti = σjinj on S (3.2)

where σij is the symmetric Cauchy stress tensor and ni is a unit vector normal

to the surface S directed outward from the volume. The Cauchy stress is

symmetric due to the balance of angular momentum. Using the divergence

theorem and recognizing that the integral balance must hold for any arbitrary

volume, we arrive at the differential form for the equation of equilibrium as,

σji,j + bi = 0 in V. (3.3)
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Again, the infinitesimal strain-displacement compatibility conditions are

εij =
1

2
(ui,j + uj,i) (3.4)

where εij is the infinitesimal strain tensor and ui is the displacement vector.

A total charge balance can be written as
∫

S

ωdS +

∫

V

qdV = 0 (3.5)

where q is the free charge per unit volume in V and ω is the free charge per unit

area (note that when the domain is finite ω must also account for the effective

charge due to material and free-space outside of V ) residing on S. Applying

Gauss’s Law to a surface element, we arrive at a relationship between electric

displacement, Di, and the surface charge per unit area,

Dini = −ω on S. (3.6)

Then, using the divergence theorem, the differential form of Gauss’s Law ap-

pears as

Di,i = q in V. (3.7)

Finally, under quasi-static conditions Maxwell’s laws dictate that the electric

field, Ei, can be written as the gradient of a potential, φ, such that

Ei = −φ,i. (3.8)

A phase-field or order parameter µ is introduced which describes mate-

rial degradation such that when µ = 1 the material can be considered entirely
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intact and when µ = 0 the material can be considered to be completely failed.

Following the original work of [96], a set of external surface (λ) and volume

(γ) micro-forces are then introduced that exert power during changes of the

phase-field parameter. A set of internal micro-forces (π and ξi) are introduced

to balance the external micro-forces such that they satisfy balance laws of the

form ∫

S

λdS +

∫

V

(γ + π) dV = 0 (3.9)

and

ξini = λ. (3.10)

By the divergence theorem and arbitrary volume arguments, we find

∫

V

(ξi,i + γ + π) dV = 0 ⇒ ξi,i + γ + π = 0 in V. (3.11)

Next, the isothermal form of the Second Law of thermodynamics dic-

tates that the total change to the Helmholtz free energy, ψ, of a closed system

cannot exceed the work done on the system. Written in integral form,

∫

V

ψ̇dV ≤
∫

V

(biu̇i + φq̇ + γµ̇) dV +

∫

S

(tiu̇i + φω̇ + λµ̇) dS (3.12)

We allow the ψ, ξi, σij, Ei, and π to depend on εij, Di, µ, µ,i, and µ̇ and the

second law inequality becomes,

∂ψ

∂εij
ε̇ij +

∂ψ

∂Di

Ḋi +
∂ψ

∂µ
µ̇+

∂ψ

∂µ,i
µ̇,i +

∂ψ

∂µ̇
µ̈ ≤

σjiε̇ij + EiḊi + ξiµ̇,i − πµ̇.
(3.13)
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Given that this expression is linear in ε̇ij, Ḋi, µ̇,i, and µ̈, the inequality will

hold for arbitrary time histories of the parameter set if,

∂ψ

∂εij
= σji,

∂ψ

∂Di

= Ei,
∂ψ

∂µ,i
= ξi, and

∂ψ

∂µ̇
= 0. (3.14)

The remaining terms result in the simplified dissipation inequality,
(
π +

∂ψ

∂µ

)
µ̇ ≤ 0. (3.15)

This inequality is satisfied by setting the internal micro-force π as,

π = −∂ψ
∂µ
− βµ̇, (3.16)

with β ≥ 0 allowing β to depend on all the relevant parameters discussed

above. Thus, the micro-force balance law of (3.11) becomes, in terms of µ,
(
∂ψ

∂µ,i

)

,i

− ∂ψ

∂µ
+ γ = βµ̇ in V. (3.17)

A similar Second Law analysis can be preformed on the electrical en-

thalpy based on the Legendre transformation

h = ψ − EiDi (3.18)

which results in
∫

V

(
ḣ+ EiḊi + ĖiDi

)
dV ≤

∫

V

(biu̇i + φq̇ + γµ̇) dV +

∫

S

(tiui + φω̇ + λµ̇) dS

(3.19)

The chain-rule and divergence theorem lead to

∂h

∂εij
ε̇ij +

∂h

∂Ei
Ėi +

∂h

∂µ
µ̇+

∂h

∂µ,i
µ̇,i +

∂h

∂µ̇
µ̈ ≤

σjiε̇ij −DiĖi + ξiµ̇,i − πµ̇
(3.20)
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and again by the same arguments used above,

∂h

∂Ei
= −Di (3.21)

with all other equations of (3.14) and (3.15) remaining the same and noting

that ψ should be replaced by h and partial derivatives with respect to the

other independent variables hold E instead of D fixed. In summary, the pre-

ceding Second Law analysis reveals constitutive relationships between stress,

deformation, electric displacement, electric field, and the phase-field parame-

ter that are derived from a single Helmholtz free energy density or electrical

enthalpy density function.

3.2.1 Phase-Field Fracture Formulation

Again, we introduce the phase-field approach to fracture. For a brittle

piezoelectric material, the total stored energy ΩSE of the volume would be the

sum of the free energy and the fracture surface energy,

ΩSE =

∫

V

ψ̄ (εij, Di) dV +

∫

Sc

GcdS (3.22)

where Gc represents the critical energy release rate or twice the fracture surface

energy in Griffith’s theory of brittle fracture. In order to avoid the difficulty

inherent in numerically tracking the fracture surface Sc the surface is approx-

imated by the phase-field parameter µ. The formulation initially proposed

by [6] and discussed in Chapter 2 is used to approximate the fracture energy,

namely,
∫

Sc

GcdS ≈
∫

V

Gc

[
(1− µ)2

4`0

+ `0µ,iµ,i

]
dV ≡

∫

V

ψµdV (3.23)
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where `0 is a length-scale that governs the size of the region over which the

phase-field transitions from 0 to 1 (completely failed to entirely intact). ψµ

will be added to the partial Hemholtz free energy density ψ̄ or partial electri-

cal enthalpy h̄ such that the total Hemholtz free energy density or electrical

enthalpy will effectively be ψ = ψ̄ + ψµ or h = h̄+ ψµ. Appendix A describes

the transformation between energy functions in greater detail.

3.2.2 Boundary Conditions

In addition to approximating the fracture surface energy, the formula-

tion must ensure that the boundary conditions of the discrete crack surfaces

are properly represented by the phase-field parameter. Mechanically, the prob-

lems investigated by this work primarily employ traction-free crack surfaces.

Electrically, several possible boundary conditions are discussed. The perme-

able boundary condition model, first proposed by [11], recognizes that under

the assumptions of linear piezoelectricity, there is no distinction between the

undeformed and deformed configurations. Thus, the crack faces are closed

and the electrical fields distribute themselves as if the crack does not exist.

The impermeable boundary conditions were introduced by [13] and acknowledge

that fracture generally occurs when cracks are open. Since the permittivity

of the crack gap is usually much lower than that of the solid, its permittivity

is idealized to be zero. In contrast, conducting boundary conditions assume

that the crack is filled with a conducting fluid such that the electric potential

within the crack is homogeneous. Lastly, energetically consistent boundary
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conditions, account for the fact that cracks are often open and, in addition,

electrical fields can permeate the crack gap. The crack faces are effectively

treated as parallel plate capacitors, which also gives rise to closing tractions.

These last boundary conditions will be developed using a finite deformation

framework and will be presented in Section 3.2.3.

Generally, the Helmholtz free energy for a reversible but nonlinear elec-

tromechanical material is written in terms of the strain and electric displace-

ment components, and the electrical enthalpy is given in terms of the strain and

electric field. Our prescription for the construction of the associated degraded

or damaged energies is simply to pre-multiply the appropriate independent

variable by a degradation function f(µ) that satisfies the following criteria

f(1) = 1 and f(0) = 0. (3.24)

Thereafter, the energy retains exactly the same form, but is in terms of the de-

graded variables. The variables that are degraded and the energy function that

is implemented depend upon the type of crack face boundary conditions that

are being reproduced. Specifically, each of the first three boundary conditions

are implemented in the following way:

εPij ≡ f(µ)εij, E P
i ≡ Ei (Permeable) (3.25a)

εIij ≡ f(µ)εij, E I
i ≡ f(µ)Ei (Impermeable) (3.25b)

εCij ≡ f(µ)εij, DC
i ≡ f(µ)Di (Conducting) (3.25c)
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Using the results of (3.14) and (3.21) respectively, the chain rule leads to

σij =
∂hP
∂εPij

· ∂ε
P
ij

∂εij
= f(µ)

∂hP
∂εPij

and Di = − ∂hP
∂E P

i

(3.26a)

σij = f(µ)
∂hI
∂εIij

and Di = −f(µ)
∂hI
∂E I

i

(3.26b)

σij = f(µ)
∂ψC
∂εCij

and Ei = f(µ)
∂ψC
∂DC

i

(3.26c)

where hI = h
(
εIij, E

I
i , µ, µ,i

)
, hP = h

(
εPij, E

P
i , µ, µ,i

)
, and ψC = ψ

(
εCij, D

C
i , µ, µ,i

)
.

Therefore, by (3.24), when µ = 0 the material is completely degraded and,

σij = 0 for Permeable (3.27a)

σij = 0 and Di = 0 for Impermeable (3.27b)

σij = 0 and Ei = 0 for Conducting (3.27c)

The results listed in (3.27) only govern the material behavior within

the completely degraded region. However, if we are to consider the resulting

boundary conditions, we must analyze the fields in the surrounding mate-

rial just outside of the degraded boundary layer region. For all three cases,

continuity of traction implies that all stresses normal to the boundary layer

must be zero, i.e. traction-free. However, as is expected, the stresses that

are tangential to the crack faces do not necessarily vanish. In the permeable

case, the crack surface does not perturb the electrical fields aside from any

coupling to the mechanical fields that are affected by the traction-free condi-

tions. An additional one-dimensional analysis of the permeable case is given

in Appendix B, which demonstrates that degrading entire terms in the energy
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functional instead of the independent variables is not always appropriate. In

the impermeable case, the degraded region acts as a region of zero permittiv-

ity resulting in vanishing electric displacements. Then, continuity of electric

displacements requires that the normal component of electric displacement

adjacent to the boundary layer must be zero; however, like the traction-free

conditions, normal continuity of electric displacement imposes no restrictions

on the tangential components outside of the boundary layer. Finally, for the

conducting case where the electric field vanishes within the crack, continuity

of the electric potential requires that tangential components of electric field

adjacent to the boundary layer are zero but places no restriction on normal

components of the electric field.

Explicitly, the parts of the free energy density or electrical enthalpy

density associated with the degraded linear piezoelectric response of the ma-

terial for each of the crack-face boundary conditions listed above is as follows

h̄P =
1

2
f(µ)2cEijklεijεkl − f(µ)eijkEiεjk −

1

2
κεijEiEj (3.28a)

h̄I = f(µ)2

(
1

2
cEijklεijεkl − eijkEiεjk −

1

2
κεijEiEj

)
(3.28b)

ψ̄C = f(µ)2

(
1

2
cDijklεijεkl − hijkDiεjk +

1

2
βεijDiDj

)
(3.28c)

Here cEijkl and cDijkl are fourth rank tensors of elasticity, eijk and hijk are third

rank tensors of piezoelectricity, and κεij and βεij are second rank dielectric

tensors. Note that in the absence of degradation (µ = 1) all three forms

represent classical linear piezoelectricity. Also, for the problems studied in

this work, all material response is assumed to be reversible.
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3.2.3 Finite Deformation Formulation

The formulation for the energetically consistent boundary conditions

is not as straightforward as outlined above. The complication arises because

these boundary conditions are dependent on the crack opening displacement,

which is part of the solution of the problem itself. The strategy of the original

formulation for the energetically consistent boundary conditions is to capture

the effects of the electrical fields carried by the medium filling the crack by

using the linear kinematics solution to approximate the new volume of the

space created by the open crack [28]. For piezoelectric materials, this allows for

the use of linear solutions in the bulk material that are coupled to nonlinear

crack-face boundary conditions. Hence, even while the overall linearity of the

problem is lost, the nonlinearity is confined to the crack faces, which allows

for some analytical solutions, and efficient numerical solution techniques [29].

As noted by [28], even though energetic consistency can be obtained within a

linear kinematics setting, the only fully consistent approach to the inclusion

of free space within a crack gap and the associated electrical tractions is to

resort to a finite deformation framework. For the implementation of these

boundary conditions within the phase-field approach there are two issues to

consider. First, the introduction of the phase-field degradation function to the

free energy now makes the problem nonlinear everywhere, and so the ability

to obtain analytical solutions is hopeless for crack problems of interest. Fur-

thermore, since the crack is now a diffuse region of material the identification

of the crack opening displacement is not a trivial task, although it can be
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approximated. In order to avoid the crack opening identification and to intro-

duce a fully consistent theory, the approach used in this work is to resort to a

finite deformation formulation of the problem. Hence, volume and geometry

changes due to the existence of open cracks are accounted for explicitly within

the theory. In this section, upper-case indices and the “ ˜ ” symbol will be used

to denote quantities in the reference or Lagrangian configuration, and lower-

case indices will denote quantities in the deformed or Eulerian configuration.

We let V0 refer to the reference volume bounded by the surface S0, and let V

be the deformed volume bounded by the surface S. A point in the reference

configuration is labeled with the position vector X. After some process of

deformation, this particle moves to a new location labeled with the position

vector x. The deformation gradient is defined as

FiJ ≡
∂xi
∂XJ

(3.29)

This work employs the Green-Lagrange strain tensor as the measure of defor-

mation defined by

ε̃IJ ≡
1

2
(FkIFkJ − δIJ) (3.30)

where δIJ is the Kronecker delta. The reference electric field vector is calcu-

lated as

ẼI = − ∂φ

∂xk

∂xk
∂XI

= EkFkI = −φ,I (3.31)

and the reference gradient of the phase-field parameter is

µ,I = µ,iFiI (3.32)
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Note that the Green-Lagrange strain tensor, the reference electric field, and

the reference phase-field gradient are objective measures of strain, electric field

and phase-field gradients, respectively, which can be used to characterize these

quantities acting within the material in free energy functions and constitutive

relations. From (3.1)

0 =

∫

S

tidS +

∫

V

bidV =

∫

S0

PKiNKdS0 +

∫

V0

biJdV0 (3.33)

where J is the determinant of F and PKi are the components of the first

Piola-Kirchhoff stress tensor defined as

PKi ≡ JσjiF
−1
Kj (3.34)

and is linked to the reference traction (force per unit of reference area) as

follows

PJiNJ = t̃i on S0 (3.35)

The divergence theorem and arbitrary volume arguments lead to the differen-

tial form of the equation of equilibrium

PJi,J + biJ = PJi,J + b̃i = 0 in V0 (3.36)

Similarly, from (3.5) we derive the differential form of Gauss’s Law for

large deformation

D̃I,I = qJ = q̃ in V0 (3.37)

where the nominal electric displacement D̃J is defined such that
∫

S

DinidS =

∫

S0

D̃INIdS0 (3.38)
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as

D̃J ≡ JDiF
−1
Ji (3.39)

and is linked to the reference surface charge as follows

D̃INI = −ω̃ on S0 (3.40)

Lastly, from (3.9)

0 =

∫

S

λdS +

∫

V

(γ + π) dV =

∫

S

ξinidS +

∫

V

(γ + π) dV

=

∫

S0

ξiF
−1
Ji NJJdS0 +

∫

V0

(γ + π) JdV0

We define ξ̃J as

ξ̃J = JξiF
−1
Ji (3.41)

which leads to
∫

V0

(
ξ̃I,I + γJ + πJ

)
dV ⇒ ξ̃I,I + γ̃ + π̃ = 0 in V0 (3.42)

and

ξ̃INI = λ̃ on S0 (3.43)

At this point the electrical enthalpy can take on a multitude of forms designed

to capture all of the finite deformation effects of interest. In this work we

are still interested in piezoelectric ceramics and as such the deformations will

remain small. Hence, we adopt a “quasi-linear” form for the electrical enthalpy

analogous to the Saint Venant-Kirchoff model for nonlinear elasticity written

as
h̄EC = f(µ)2

(
1

2
cIJKLε̃IJ ε̃KL − eKIJẼK ε̃IJ

− 1

2
(κIJ − κ0δIJ)ẼIẼJ

)
− Jκ0

2
F−1
Ik F

−1
Jk ẼIẼJ

(3.44)
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where κ0 is the linear dielectric permittivity of free-space 8.854×10−12 C/Vm.

The terms multiplied by the degradation function represents the quasi-linear

finite deformation extension of the electrical enthalpy density (3.28b) for im-

permeable boundary conditions for the material in the absence of the free space

that it occupies. Then, the last term represents the electrical enthalpy of the

free-space throughout the entire domain of interest, including any new volume

that is generated by the opening of cracks. The constitutive relationships are

then derived as follows

∂hEC
∂FiJ

= PJi,
∂hEC

∂ẼI
= −D̃I ,

∂hEC
∂µ,I

= ξ̃I ,

and
∂hEC
∂µ

= −π̃ − β̃µ̇.
(3.45)

Note, for the problems investigated by this work we seek solutions for β = β̃ =

0.

3.2.4 Degradation Function

In the preceding discussion, we have allowed the degradation function

f to remain general with the lone requirement being the satisfaction of (3.24).

Most previous works, in many cases dedicated solely to mechanical fracture,

have utilized a linear form, which results in a quadratic coefficient on stress,

i.e.

f(µ) = µ (3.46)

We refer to (3.46) as the standard degradation function. Unfortunately, in the

piezoelectric framework, this functional form leads to at least one physically
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undesirable behavior as it allows for “anti-damaging” for the cases where im-

permeable or energetically consistent cracks are occurring. Recall that under

quasi-static conditions, the weak form utilized by the finite element method

amounts to the minimization of potential energy. We then consider the imper-

meable crack boundary condition formulation. Ignoring the contributions due

to external work, we find that potential energy is minimized as the Hemholtz

free energy is minimized, or, equivalently, through a partial Lengendre trans-

formation, as the electrical enthalpy density is minimized with respect to µ

for a given strain and electric field state. If we allow strain, electric field, and

gradients of the phase-field to be constant, we can preform a term-by-term

analysis of how the potential energy is minimized as a function of µ. We list

each term below for which a conclusion may be drawn,

1

2
µ2cEijklεijεkl is minimized as µ→ 0 (3.47a)

−1

2
µ2κεijEiEj is minimized as µ→ ±∞ (3.47b)

Gc
(1− µ)2

4`0

is minimized as µ→ 1 (3.47c)

where the first two statements result from the positive-definiteness of cEijkl

and κεij respectively. The piezoelectric term, which depends upon strain and

electric field, has no definiteness, but is usually overwhelmed by the elastic

and dielectric terms.

Clearly, (3.47b) poses a potential issue. In regions of the body where

there exists little to no strain and large electric field, the phase-field parameter

can grow to values much larger than 1. This “anti-damaging” effect has no
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Figure 3.1: The squares of the standard and modified degradation functions
plotted for phase-field values slightly outside the desired range of 0 to 1

physical basis and is problematic in the model. Therefore, we consider the

new degradation function

f(µ) =

√√√√s

[
1−

(
s− 1

s

)µ2]
(3.48)

where s > 1 determines the limit of f 2 as µ → ∞. Notice that the

square of this function is a bell curve. We will refer to this as the modified

degradation function. For a choice of s slightly larger than 1, the influence of

(3.47b) driving large values of µ is sufficiently reduced for reasonable electric

fields. More importantly, even in the event that values of µ exceed the desired

range of 0 to 1, the influence of the phase-field on the physics is limited by the

degradation function which is, in turn, limited by the chosen value of s. Note

also that for s� 1 the modified degradation function converges, in the region
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Figure 3.2: 1-D Homogeneous behavior. Solid lines depict the behavior when
homogeneity is expected. Dashed lines represent the behavior not likely to
occur due to the onset of localization.

of interest, to the standard degradation function. The square of the standard

and modified degradation functions for s = 1.1 and s = 1.001 are plotted in

Figure 3.1 for clarity.

Like the cubic degradation function discussed in Chapter 2, the modi-

fied degradation function provides a second improvement to the model that is

best illustrated when considering homogeneous, uniaxial mechanical response.

For this analysis, we set φ = 0 in the entire domain V . Figure 3.2 illustrates

the results. As seen in the Figure 3.2a, as s approaches 1, the material re-

sponse remains nearly perfectly linear up to a critical stress value much like

the cubic degradation form. Note that the material response after reaching

the peak stress is not indicative of actual material behavior. In reality, once

the critical stress is realized, the damage will localize and the homogeneous
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solution depicted by the equations above will no longer be valid. This is rep-

resented by dashed lines in the figure. For the results presented in Section 3.4

the value s = 1.1 is chosen as it sufficiently reduces the “anti-damaging” effect.

3.3 Computational Formulation

We employ the principal of virtual work to represent the governing

equations of section 3.2 concisely in the following weak forms:

• Quasi-linear piezoelectricity with permeable and impermeable crack con-

ditions: ∫

V

(σjiδεij −DiδEi − πδµ+ ξiδµ,i) dV =
∫

V

(biδui − qδφ+ γδµ) dV

+

∫

S

(tiδui − ωδφ+ λδµ) dS

(3.49)

• Quasi-linear piezoelectricity with conducting crack conditions:
∫

V

(σjiδεij + EiδDi − πδµ+ ξiδµ,i) dV =
∫

V

(biδui + φδq + γδµ) dV

+

∫

S

(tiδui + φδω + λδµ) dS

(3.50)

• Finite deformation theory with energetically consistent crack conditions:
∫

V0

(
PJiδFiJ − D̃IδẼI − π̃δµ+ ξ̃Iδµ,I

)
dV0 =

∫

V0

(
b̃iδui − q̃δφ+ γ̃δµ

)
dV0

+

∫

S0

(
t̃iδui − ω̃δφ+ λ̃δµ

)
dS0

(3.51)
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The finite element equations are derived by discretizing the above equa-

tions by the Galerkin approximation method and applying the constitutive re-

lations described in the previous section. For (3.49) and (3.51), we discretize

ui, φ, and µ in the usual way as the sum of the product of global shape func-

tions and nodal constants, which we refer to as degrees of freedom. For (3.50),

we introduce a new quantity ϕi. As described by [109] and [110] it can be shown

that in the absence of free charge q, the electrical displacements Di can be

derived from a vector potential ϕj such that

Di = ∈ijkϕj,k (3.52)

where ∈ijk is the 3rd-rank permutation tensor. For this formulation we dis-

cretize the vector potential ϕi instead of the scalar electric potential φ. It

is worth noting that in a general 3-dimensional setting, the vector potential

formulation introduces two more degrees of freedom per node than what is

required for the scalar potential formulation. However, in two dimensions,

only one component of the vector potential is required and thus, the number

of nodal degrees of freedom for either formulation is equivalent. The primary

motivation for introducing the vector potential is to make possible the usage

of the relations derived in section 3.2.2 for conducting crack-face boundary

conditions. This utilizes the Helmholtz free energy density. If, instead, one

choses to use an electrical enthalpy density, terms involving negative powers

of the degradation function f(µ) appear in the weak formulation. These terms

are poorly behaved as µ→ 0 (i.e. in or near cracks) and led to highly unstable

computational behavior.
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3.3.1 Solution Method

Due to the coupled nature of the constitutive relations, the Galerkin

method gives rise to a system of nonlinear equations. Two strategies were

developed to solve the system. The first is a fully coupled Newton-Raphson

method. The second amounts to a Newton-Raphson staggered scheme. For

this second scheme, the phase-field degrees of freedom are held constant while,

for all cases except the finite deformation, a linear system is solved for the

displacements and electric potential. In the finite deformation case, the elec-

tromechanical equations at fixed µ are nonlinear and the Newton-Raphson

method must be used for their solution. Once the displacement and potential

degrees of freedom are calculated they are held constant as a Newton-Raphson

scheme is used to solve the micro-force balance equations and calculate the

phase-field degrees of freedom. This process is repeated until convergence is

achieved. As might be expected, the fully coupled scheme exhibits fast con-

vergence rates (on the order of 4-5 iterations for a reasonable load step), but is

highly unstable with respect to the load increment, especially at loads where

significant crack propagation occurs. The staggered scheme, to the contrary,

routinely requires 300-500 iterations to satisfy similar convergence criteria, but

is far less sensitive to the load increment size. The results presented in the

following discussion were all calculated using the staggered scheme.
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  40ℓ
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Figure 3.3: 1-D BVP for crack closing tractions. Displacements and electric
potential are prescribed on the top surface to induced electric field and corre-
sponding crack closer tractions. The phase-field parameter µ is set to zero for
a row of elements on the lower boundary.

3.4 Results and Discussion

In this section we present three calculations to demonstrate the capa-

bilities of the model. First, a 1-D boundary value problem is constructed to

demonstrate the presence of crack closing tractions in the energetically consis-

tent formulation and is verified with analytical results. Second, effects on crack

lengths for each crack face boundary condition are modeled for a thick double

cantilever beam boundary value problem. Lastly, a boundary value problem

involving three point bending with an off-set notch is modeled to demonstrate

the effects of electric field on fracture trajectories.
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3.4.1 1-D Model of Crack Closing Tractions

As detailed in section 3.2.2, energetically consistent crack face bound-

ary conditions give rise to crack closing tractions. For a simple one-dimensional

boundary value problem, it is possible to obtain an analytical solution. Specif-

ically, we considered the boundary value problem detailed in Figure 3.3. An

initial displacement, u0, and electric displacement, φ0, is applied at the top

of a long piece of piezoelectric material of length L0 which initially rests on

the ground (φ = 0). We denote the resulting separation displacement and

electric potential as ∆u and ∆φ respectively. Using the infinitesimal strain

displacement relations (3.4)

ε =
u0 −∆u

L0

(3.53)

in the solid. The system stored energy is

ΩSE = A0L0hsolid + A0∆uhgap (3.54)

where A0 is the product of the material width and thickness, and the electrical

enthalpy density of the gap between the solid and the ground is

hgap =
1

2
κ0E

2
gap (3.55)

Energetically consistent boundary conditions dictate that the stored energy of

the system remains constant with respect to variations in the gap size. Hence,

∂ΩSE

∂∆u
= 0 =

∂

∂ε

dε

d∆u
(A0L0hsolid) +

∂

∂∆u
(A0∆uhgap)

= −A0
∂hsolid
∂ε

+ A0hgap

(3.56)
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Figure 3.4: Crack closing tractions for the BVP presented in Figure 3.3

and upon application of (3.8) the uniform stress in the piezoelectric strip is

σ = hgap =
1

2
κ0

(
∆φ

∆u

)2

(3.57)

In order to verify the computational formulation, we discretize the

above boundary value problem using 8-noded quadrilateral finite elements,

where the resulting mesh is fine near the crack and gradually coarsened as one

approaches the top edge. The bottom-most element is completely degraded

(i.e. µ = 0) and the displacements of the top nodes of that element are recorded

and used to calculate the analytical result. The stress in the upper elements

of the mesh represents the uniform stress in the material, which must be the

same as the crack closing traction. The corresponding results are illustrated
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Figure 3.5: The double cantilever beam specimen. An overall electric field is
applied in the vertical direction and changes of the phase-field crack length are
observed for the various crack-face boundary conditions. The material is poled
in the x3-directions as shown where xI represents coordinates in problems
involving insulating-type crack-face boundary conditions and xC represents
coordinates in problems involving conducting crack-face boundary conditions.

by Figure 3.4. The resulting tractions are determined for two different applied

displacements. As is evident by the figure, the finite deformation formulation

for handling energetically consistent crack-face tractions is able to accurately

capture the crack closing tractions that appear for the simple one-dimensional

strip model.
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3.4.2 Double Cantilever Beam

In this section we focus on a thick double cantilever beam boundary

value problem detailed by Figure 3.5a. 3780 8-noded quadrilateral elements

were used as shown in Figure 3.5b. This example illustrates the resulting

crack length dependencies on applied electric field for the various crack face

boundary conditions that were discussed earlier in the text. In order to study

the equilibrium behavior, we have allowed for complete reversibility (i.e. the

cracks are allowed to "heal"). The specimen is initially deformed with an

applied displacement u0 until an appropriate crack length is attained. Then,

the displacement is held constant as an electric potential φ0 (or scalar potential

ϕ0) is applied and the resulting crack length is recorded.

As discussed in section 3.3, the conducting boundary conditions lead to

a formulation that does not include φ as a degree of freedom. The electric po-

tential φ is thus not explicitly determined (or utilized as an essential boundary

condition) in the current formulation and is not trivial to compute. However,

for the current boundary value problem, it can be shown that φ is constant

on the right and left boundaries and the difference between the two constants

is equal to the sum of the electrical forces caused by the application of ϕ on

the top and bottom surfaces. A derivation of this result goes as follows. Let

the unit vector s be chosen such that n × s = ez, where ez is the unit vector

normal to the two-dimensional plane containing the structure. The electrical
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virtual work statement can be written as,
∑

I

δϕIF I =

∫

s

δωφ ds

=

∫

sω

∂δϕ

∂s
φ ds+

∫

sφ

∂δϕ

∂s
φ ds

=

∫

sω

∂

∂s
(δϕφ)− δϕ∂φ

∂s
ds+

∫

sφ

∂δϕ

∂s
φ ds

= δϕAφAB − δϕCφCD −
∫ A

C

δϕ
∂φ

∂s
ds

+ (δϕB − δϕA)φAB + δϕDφCD − δϕBφAB

−
∫ D

B

δϕ
∂φ

∂s
ds+ (δϕC − δϕD)φCD

= −
∫ A

C

δϕ
∂φ

∂s
ds−

∫ D

B

δϕ
∂φ

∂s
ds

Here, δϕI represent arbitrary variations of the nodal vector potential at the Ith

node, and F I is the associated work-conjugate nodal electrical “force” quantity.

This formula reveals two features of the nodal electrical forces for the vector

potential formulation. First, if we consider any node I on an electrode that

is not on any termination point of that electrode, and taking δϕI = 1 and

all other δϕJ 6=I = 0, the formula indicates that F I = 0. So, on a bounding

surface, the force-free condition corresponds to a constant electric potential, i.e.

an electroded surface. Then, if we take δϕ = 1 on the surface between points

A and C and zero elsewhere, the formula shows that φCD − φAB =
∑
A→C

F I ,

where the summation is on the nodes that lie between points A and C on the

surface. The same formula can be obtained by taking δϕ = 1 on the surface

between points B and D and zero elsewhere, in which case the right-hand-side
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changes to summing the forces between nodes B and D. In either case, this

formula demonstrates that the potential drop between two electrodes can be

computed by summing the forces along the boundary connecting two adjacent

termination points. Finally the total charge residing between any two points,

A and B, on an electrode can also be computed in a straightforward manner

using, ∫

s

ω ds = −
∫

s

Dini ds =

∫ B

A

∂ϕ

∂s
ds = ϕB − ϕA. (3.58)

Thus, the applied electric field may be obtained through a post process-

ing routine. In the following simulations, electric fields are applied parallel to

the poling direction of the piezoelectric material. Hence, the material is poled

in the x3-directions as shown in Figure 3.5a where xI represents coordinates

in problems involving insulating-type crack-face boundary conditions and xC

represents coordinates in problems involving conducting crack-face boundary

conditions.

The results for the permeable and conducting boundary conditions are

plotted in Figures 3.6a and 3.6b where a0, the pre-electric field crack length, is

approximately 160 `0. Prior to the application of electrical loading, this crack

length is achieved by a suitable choice of the cantilever arm displacement u0.

We observe that resultant crack lengths differ distinctly as a result of the var-

ious applied crack face boundary conditions during electrical loading. In the

permeable case, the crack is relatively unaffected by the application of field. It

should be noted that in the permeable case the electric field is applied prior to
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Figure 3.6: Change in crack length under electrical loading for the double can-
tilever beam. (a) Permeable boundary conditions. (b) Conducting boundary
conditions (c) Impermeable and energetically consistent boundary conditions.
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the fixed displacement because the piezoelectric effect creates strain through-

out the specimen, and an initial displacement of the loaded end. After the

electric field is applied, each node on the mechanically loaded end is given an

additional fixed displacement u0. This procedure is not required for the other

cases because, at least nominally, the electric field in the cantilever arms is

zero, and the extra piezoelectric strain is negligible. Figure 3.6c illustrates the

difference between the impermeable (insulating) and the energetically consis-

tent boundary conditions. These sets of results indicate that crack growth can

be either impeded or encouraged depending upon applied electric field and

the boundary conditions on the crack. Specifically, an applied electric field

tends to grow electrically conducting cracks, and heal insulating cracks. For

the permeable case, the electrical field has no effect on the crack growth as

is expected. In addition, these behaviors are naturally captured by the phase

field formulation.

3.4.3 Off-Set Three Point Bending

Lastly, we acknowledge that the true value of the phase-field approx-

imation to fracture is the facility to capture complex, multi-mode, curving

crack path trajectories. In this section, a non-symmetric three-point bending

boundary value problem [42] is presented to demonstrate this capability and

its particular importance in applications involving piezoelectric ceramics. The

offset notch, three-point bending, boundary value problem is chosen based on

the manifestation of both large normal and shear stresses in the vicinity of the
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Figure 3.7: The offset notch, three point bending boundary value problem.
An overall electric field is applied in the horizontal direction and the material
is poled in the vertical direction. An initial phase-field crack of length 12`0 is
set at an offset of 16`0 from the specimen center.

crack tip resulting in mixed mode fracture. In addition, unlike many boundary

value problems where mode II loading is present, large compressive stresses

only appear near the application of load and not in the vicinity of the crack

tip. This is important, as a shortcoming of the current model is that degra-

dation can emerge in compression in the same manner as it does in tension.

Modifications of the phase-field approach to address this issue are available

for the mechanical case [8]. Further developments are required for a consistent

treatment of the piezoelectric case, which must recognize that tensile stresses

can arise even when the strains are contractile due to the piezoelectric effect.

The boundary value problem studied here is shown in Figure 3.7.

Specifically, we consider the contrast between an electrically unloaded

specimen and one with a horizontally applied electric field. The “notch” de-
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(a)

(b)

Figure 3.8: (a) Phase-field values after crack propagation when electrical load-
ing is not present. (b) Phase-field values after crack propagation in the pres-
ence of electrical loading and impermeable crack-face boundary conditions.
(Left) x1 poling. (Right) x3 poling.
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picted by Figure 3.7 is modeled by a pre-imposed degradation field. The

material is poled in the x1 and x3 directions and the crack is modeled as

both permeable and impermeable for purposes of comparison. The resulting

phase-field values for both poling directions, x1 on the left and x3 on the right,

with impermeable crack-face boundary conditions are plotted in Figure 3.8.

A plot of the electrically unloaded crack paths are contained in Figure 3.8a

and loaded in Figure 3.8b. The experimental observations on this geometry

are performed on ferroelectric materials (see [111]) making the physical veracity

of the resulting crack trajectories in the figure difficult to ascertain. However,

it is clear that the model is capable of capturing such non-trivial crack paths.

In addition, such behaviors appear to be substantially affected by electrical

loadings. In this particular simulation, the difference between the angles at

which the crack initially propagates from the notch is very small for for the x1

poled case, but is estimated to be approximately 18◦ for the x3 poled case.

Figure 3.9 depicts the contrasts in crack trajectories when the perme-

able and impermeable crack face boundary conditions are implemented for

the x3 poling case. In each Figure 3.9(a-d) the left specimen is modeled with

a permeable crack and the right one is modeled with an impermeable crack.

Figure 3.9a depicts the resulting crack trajectories when there is no electrical

loading present. As expected, there is no visible difference in the resulting

crack propagation. However, when electrical loading is present, Figure 3.9b,

we observe that crack trajectories are unaffected in the permeable case and,

as discussed above, are substantially affected in the impermeable case. By
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Figure 3.9: (a) Phase-field values after crack propagation when electrical load-
ing is not present. (b) Phase-field values after crack propagation in the pres-
ence of electrical loading. (c) Horizontal component of electric field prior to
crack propagation. (d) Horizontal component of electric field following crack
propagation. (Left) Permeable conditions. (Right) Impermeable conditions.
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looking at the electric fields in the x1 direction prior to crack propagation

(Figure 3.9c) and following crack propagation (Figure 3.9d), we gain some in-

sight into what drives these results. It is well known that an applied electric

field perpendicular to the poling direction of a linear piezoelectric material will

lead to shear straining. In the permeable case, as expected, we observe that the

electric field is unperturbed by the presence of the crack and is thus uniform

throughout the body. This leads to a uniform shear strain and the fields near

the crack tip remain relatively unchanged. However, due to the impermeable

boundary conditions, the electric field behind the crack tip vanishes, but the

electric potential in regions of the body where the material is intact must be

continuous. The transition zone between these two states, near the crack tip,

results in a concentration of electric field. Thus, the increased shearing effect

in this area of localized electric field affects the direction in which the crack

propagates.

The corresponding structural responses for each impermeable simula-

tion are plotted in Figure 3.10. We introduce the dimensionless quantity m,

which is proportional to the resultant moment M = Fd/2, as

m =
Fdh
th3

/
√

cEiiiiGC
`0

=
Fd
√
`0

th2
√
cEiiiiGC

(3.59)

where i is the poling direction of the material, d = 36`0, and h = 40`0. This

data demonstrates a distinct variance in load versus displacement response of

the specimen. In fact, the specimen with the applied electric field sustains

about twice the force of the electrically unloaded one, whereas the overall
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Figure 3.10: Structural response describing the relationship between applied
displacements and dimensionless moment for the offset three-point bending
BVP with impermeable crack-face boundary conditions.
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structural stiffness behavior is essentially identical up to a critical value. For

the material poled in the x1 direction, the application of electric field causes

piezoelectric strains that are restrained by the boundary conditions. For this

reason, the change in applied displacement is plotted along the x-axis of the

figure. It should be noted that the phase-field plots of Figure 3.8 represent the

solution immediately after the peak force has been realized for each specimen

respectively and, like the crack trajectories, the permeable solutions mimic

the structural response of the electrically unloaded specimen. Overall, this

simulation indicates that electrical loadings can not only impact the structural

response of a material (as alluded to in section 3.4.2), but can also redirect

the propagation of a crack.
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Chapter 4

Phase-field Modeling of Hydraulic Fracture1

4.1 Introduction

We begin by developing the general balance laws and conducting a

thorough thermodynamic analysis. We then propose constitutive equations

that reproduce the desired responses at the various limits of the phase-field

variable. In Section 4.3, we summarize our model equations and outline the

numerical methods used to solve the equations. Finally, in Section 4.4, the

approach developed is shown to compare favorably to several important ana-

lytical solutions. More complex and interesting calculations are also presented

to illustrate some of the advantageous features of the approach.

4.2 General Theory

The coupled nature of the problem, with different fluid flow regimes

occurring through the intact porous solid and through cracks, and the evolu-

tion of a phase-field parameter to identify cracks, will be developed and out-

1Based on the journal publication: Zachary A. Wilson and Chad M. Lan-
dis, Phase-field modeling of hydraulic fracture, Journal of the Mechanics and
Physics of Solids, Volume 96, November 2016, Pages 264-290, ISSN 0022-5096,
http://dx.doi.org/10.1016/j.jmps.2016.07.019.
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lined here. Throughout the presentation of the general theory the governing

equations will be presented in the reference configuration. The relationships

between the current and reference configurations are linked through the defor-

mation gradient. The components of the deformation gradient, FiJ , are given

by,

FiJ =
∂xi
∂XJ

, (4.1)

where xi are the Cartesian coordinates of a material point of the aggregate

in the current state defined by the spatial domain V bounded by the surface

S, and XI are Cartesian coordinates of the same material point in the refer-

ence state corresponding to the reference domain V0 bounded by the surface

S0. Index notation will be used throughout the presentation with summation

assumed over repeated indices, lowercase indices referring to the current con-

figuration, and uppercase indices referring to the reference configuration. The

relationship between surface elements in the reference and current configura-

tions is given by Nanson’s formula as nidS = JF−1
Ji NJdS0, and for volume

elements is dV = JdV0, where ni and NJ are components of the unit normal

to the surface in the current and reference configurations respectively, J is

the determinant of the deformation gradient, and F−1
Ji is the inverse of the

deformation gradient such that F−1
Ji = ∂XJ/∂xi.

4.2.1 Mass Balances

First consider the conservation of mass for a fractured, fluid saturated,

porous solid. Following the work of Coussy [112–116] the porous solid and the
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fluid will together be referred to as the aggregate. In order to develop the

theory within the phase-field framework we identify the total reference domain

V0, which contains both cracks and pores and is unchanging while fluid may

be convected into and out of this domain.

First, the total solid mass of the system remains fixed for all time, and

as such, conservation of mass for the solid can be written as,

D

Dt

∫

V0

(1− φ) ρsJ dV0 = 0 , (4.2)

where φ is the reference volume fraction of porosity in the aggregate, which is

assumed to always be filled by fluid, and ρs is the mass density of the solid.

The notation D/Dt represents the time derivative with respect to an observer

attached to a material point of the aggregate. Given that this equation must

hold for any arbitrary region of the reference domain, the integrand must be

zero pointwise, i.e.

D

Dt
[(1− φ) ρsJ ] ≡ ˙[(1− φ) ρsJ ] = 0 . (4.3)

Equation (4.3) is the mass balance equation for the solid.

The total conservation of mass for the system is given by,

D

Dt

∫

V0

[
(1− φ) ρs + φρf

]
J dV0 = −

∫

S0

ρf w̃INI dS0 +

∫

V0

ρfm̃ dV0 , (4.4)

where ρf is the mass density of the fluid, w̃I is the volume of fluid traversing

a unit of reference area of the aggregate per unit of time, and m̃ is the fluid

volume injected per unit of reference volume. Note that the nominal fluid flux
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w̃I is related to the true fluid flux wi as wi = w̃KFiK/J . The right-hand side

of the equation represents the mass that enters the system through its surface

and volume respectively.

Combining (4.2) and (4.4), the conservation of fluid mass of the system

is,
D

Dt

∫

V0

φρfJ dV0 = −
∫

S0

ρf w̃INIdS0 +

∫

V0

ρfm̃dV0 . (4.5)

Applying the divergence theorem, and taking (4.5) to be valid for any arbitrary

volume, the point-wise form of the fluid mass balance becomes,

˙(φρfJ) = −
(
ρf w̃I

)
,I

+ ρfm̃ . (4.6)

4.2.2 Momentum Balances

Anticipating how the equations of this theory will eventually be solved

numerically, the focus of the momentum balance equations will be placed on

the aggregate and then on the fluid. For the aggregate, the balance of linear

momentum is written as,

D

Dt

∫

V0

[
(1− φ) ρsvi + φρf

(
vi + v

f/s
i

)]
J dV0

=

∫

S0

t̃i dS0 +

∫

V0

b̃i dV0 −
∫

S0

ρf w̃KNK

(
vi + v

f/s
i

)
dS0

+

∫

V0

ρfm̃
(
vi + v

f/s
i

)
dV0

. (4.7)

The components of the traction per unit reference area and body force per

reference volume are t̃i and b̃i. Note that the tractions and body forces ap-

pearing here are external to the solid/fluid aggregate. Additionally, we adopt
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the following ansatz that the average fluid velocity relative to the solid aggre-

gate, vf/si , is related to the true fluid flux by wi = φv
f/s
i . The left-hand side

of (4.9) represents the rate of change of the total momentum of the solid/fluid

aggregate contained within the domain V0. The right-hand side of the equation

consists of two parts; the sum of the external forces acting on the volume, and

the fluid momentum convected and injected into the volume. Note that it is

assumed that the fluid injected by external sources is injected into the volume

with the same velocity as the existing fluid. Next, the standard hypothesis is

adopted such that the first Piola-Kirchhoff stress components, PJi, are related

to the nominal surface traction by,

t̃i = PJiNJ on S0 . (4.8)

The Cauchy stress is related to the first Piola-Kirchhoff stress in the normal

manner as, σji = FjKPKi/J .

Application of the traction-stress relation (4.8), the divergence theo-

rem, the mass balance equations (4.3) and (4.6), and noting that the momen-

tum balance must hold for arbitrary volumes leads to the pointwise form for

Newton’s second law for the aggregate,

PKi,K + b̃i

= (1− φ) ρsJv̇i + φρfJ
˙(

vi + v
f/s
i

)
+ φρfJ

(
vi + v

f/s
i

)
,K
F−1
Kj v

f/s
j

.

(4.9)

The time derivative,
◦

( ) for an observer moving with a fluid particle is given

by,
◦

(a) = ȧ+ a,iv
f/s
i = ȧ+ a,KF

−1
Ki v

f/s
i . (4.10)
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Therefore, (4.9) can be re-written as,

PKi,K + b̃i = (1− φ) ρsJv̇i + φρfJ

◦(
vi + v

f/s
i

)
. (4.11)

Next, the balance of angular momentum for the aggregate is given by,

D

Dt

∫

V0

εijk

[
(1− φ) ρsxjvk + φρfxj

(
vk + v

f/s
k

) ]
JdV0

=

∫

S0

εijkxj t̃k dS0 +

∫

V0

εijkxj b̃k dV0

−
∫

S0

ρf w̃MNMεijkxj

(
vk + v

f/s
k

)
dS0

+

∫

V0

ρfm̃εijkxj

(
vk + v

f/s
k

)
dV0

. (4.12)

Here εijk are the components of the permutation tensor, and xi are the compo-

nents of the position of a particle in the current configuration of the aggregate.

Application of the previously established procedures yields the pointwise con-

sequence of the angular momentum balance as,

εijk
(
PLjFkL − Jρfwjvk − Jρfwkvj

)
= 0 → PKiFjK = PKjFiK . (4.13)

The implication of (4.13) is that the aggregate Cauchy stress is symmetric.

For the fluid, the linear momentum balance is,

D

Dt

∫

V0

φρf
(
vi + v

f/s
i

)
JdV0

=

∫

S0

t̃fi dS0 +

∫

V0

(
b̃fi + f̃ sfi

)
dV0

−
∫

S0

ρf w̃KNK

(
vi + v

f/s
i

)
dS0 +

∫

V0

ρfm̃
(
vi + v

f/s
i

)
dV0

. (4.14)

Here, the components of the net traction on the fluid per unit of aggregate ref-

erence area are t̃fi , the components of the fluid body force per unit of aggregate
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reference volume supplied by external sources are b̃fi , and the components of

the body force per unit aggregate reference volume that the solid places upon

the fluid are f̃ sfi . Here we adopt the ansatz that the fluid traction t̃fi is related

to the fluid stress by,

t̃fi = φTKiNK = φ (τji − pδij) JF−1
KjNK , (4.15)

where the components of the first Piola-Kirchhoff stress in the fluid are TJi, and

the Cauchy fluid stress components have been decomposed into the hydrostatic

pressure p and the deviatoric part τij. Here we have introduced the Kronecker

delta components δij. Again, notice that fluid momentum is convected and

injected into the volume of the aggregate being considered. Analysis of (4.14)

using the previously discussed procedures along with (4.10) and (4.15) gives

the pointwise form for Newton’s second law for the fluid,

(φTJi),J + b̃fi + f̃ sfi = φρfJ

◦(
vi + v

f/s
i

)
. (4.16)

The balance of angular momentum for the fluid is,
D

Dt

∫

V0

εijkφρ
fxj

(
vk + v

f/s
k

)
JdV0

=

∫

S0

εijkxj t̃
f
k dS0 +

∫

V0

εijkxj

(
b̃fk + f̃ sfk

)
dV0

−
∫

S0

ρf w̃MNMεijkxj

(
vk + v

f/s
k

)
dS0

+

∫

V0

ρfm̃εijkxj

(
vk + v

f/s
k

)
dV0

. (4.17)

The analysis of this integral form provides the pointwise form of angular fluid

momentum,

εijk
(
φTLjFkL − Jρfwjvk − Jρfwkvj

)
= 0 → TLiFjL = TLjFiL . (4.18)
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We note that (4.11) and (4.16), along with the relationship for the fluid force

on the solid per unit aggregate volume, f̃ fsi = −f̃ sfi , can be used to derive

Newton’s second law for the solid as,

(PJi − φTJi),J + b̃i − b̃fi︸ ︷︷ ︸
b̃si

−f̃ sfi = (1− φ) Jρsv̇i . (4.19)

Here we have introduced the definition of the external body force acting on

the solid per unit aggregate volume b̃si .

4.2.3 Micro-forces and their Balance

Within this theory the material is allowed to fail or damage according to

the phase-field theory of fracture for brittle solids. Using the phase-field dam-

age parameter, following the approach of Fried, Gurtin, and others [101,102,117],

we need also to introduce a set of conjugate forces associated with changes in

this quantity. To this end, we define ι̃ as an external surface micro-force such

that ι̃µ̇ is the power expended per unit area of aggregate surface by sources

external to the volume under consideration, γ̃ is an external body micro-force

such that γ̃µ̇ is the power expended per unit aggregate volume by external

sources, and π̃ is an internal micro-force per unit aggregate volume such that

π̃µ̇ is the power expended internally on the material per unit volume [96]. We

also assume that on the surface there is a balance between the applied surface

micro-force ι̃ and the material micro-force vector ξ̃i such that,

ι̃ = ξ̃JNJ on S0 . (4.20)

77



It is then also assumed that there exists a net balance of this set of micro-forces

such that, ∫

S0

ι̃ dS0 +

∫

V0

γ̃ dV0 +

∫

V0

π̃ dV0 = 0 . (4.21)

Application of the divergence theorem, (4.20), and the argument that the

micro-force balance must hold for any arbitrary volume yields the pointwise

micro-force balance equation,

ξ̃I,I + γ̃ + π̃ = 0 . (4.22)

4.2.4 Energy Balances

Next, consider the balance of energy in the solid/fluid aggregate. The

integral form for the first law of thermodynamics for a given aggregate volume

is written as,

D

Dt

∫

V0

[
1
2

(1− φ) ρsvi vi + (1− φ) ρses
]
JdV0

+
D

Dt

∫

V0

[
1
2
φρf

(
vi + v

f/s
i

) (
vi + v

f/s
i

)
+ 1

2
φρfAv

f/s
i v

f/s
i + φρfef

]
JdV0

=

∫

S0

t̃ivi dS0 +

∫

V0

[
b̃ivi + b̃fi v

f/s
i

]
dV0 +

∫

S0

t̃fi v
f/s
i dS0 +

∫

V0

m̃pdV0

+

∫

S0

ι̃µ̇ dS0 +

∫

V0

γ̃µ̇dV0 −
∫

S0

q̃JNJ dS0 +

∫

V0

r̃dV0

−
∫

S0

ρf w̃KNK

[
1
2

(
vi + v

f/s
i

) (
vi + v

f/s
i

)
+ 1

2
Av

f/s
i v

f/s
i + ef

]
dS0

+

∫

V0

ρfm̃
[

1
2

(
vi + v

f/s
i

) (
vi + v

f/s
i

)
+ 1

2
Av

f/s
i v

f/s
i + ef

]
dV0

.

(4.23)
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Again, notice that the definitions of the body forces are in terms of the forces

per unit aggregate reference volume such that the total body force b̃i is simply

the sum of the external body force per unit aggregate volume on the fluid b̃fi

and the external body force per unit aggregate volume on the solid b̃si . Also

appearing in the energy balances are the volumetric sources of heat r̃ supplied

per unit reference volume of the aggregate per unit of time. Note that the total

heat supply to the aggregate r̃ includes heat supplied both to the solid and to

the fluid, which is partitioned as r̃ = r̃s + r̃f . Then, q̃I are the components

of the net heat flux traversing a unit reference area of the aggregate per unit

of time. Likewise, the total heat flux q̃I represents contributions from the

solid and the fluid such that it can be partitioned into contributions per unit

aggregate reference area as q̃I = q̃sI + q̃fI . The additional freshly introduced

quantities are the internal energy per unit mass of solid es, the internal energy

per unit mass of fluid ef , and the tortuosity A.

The left-hand side of this energy balance equation contains the time

rate of change of the kinetic and internal energy contained within a region of

the solid/fluid aggregate. Aside from the term containing the tortuosity, each

of these terms is conventional, with the kinetic and internal energies of the solid

and fluid partitioned through the porosity. The additional term 1
2
φρfAv

f/s
i v

f/s
i

accounts for the kinetic energy of the fluid per unit aggregate volume that is

omitted by the term 1
2
φρf

(
vi + v

f/s
i

) (
vi + v

f/s
i

)
. Since

(
vi + v

f/s
i

)
is the

average velocity of the fluid, it is valid to claim that the integral of the av-

erage velocity is equivalent to the integral of the velocity, however such a
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relationship does not hold for the square of the velocity and the square of

the average velocity. Hence, it is common to introduce the tortuosity to ac-

count for this discrepancy. Note that the form for the kinetic energy correction
1
2
φρfAv

f/s
i v

f/s
i assumes that the fluctuation of the total fluid velocity about

its average value is proportional to the average relative velocity of the fluid

with respect to the solid, vf/si . In general, the tortuosity A will depend upon

the specific structure of the porosity, the porosity itself, and the relative fluid

velocity vf/si
[112].

The first line of the right-hand side of this energy balance equation

includes the power expended by the total traction on the aggregate surface, the

power expended by the external body forces on the solid and fluid accounted

for separately, the power expended by the fluid stress on the relative velocity

at the surface (the power expended by the fluid stress on the aggregate velocity

vi is included in the work done by the total traction), and the power expended

by external sources to inject additional fluid volume into the aggregate. The

second line of the right-hand side includes the power expended by external

micro-forces on the surface and in the volume of the aggregate, and the rate

of heat supplied to the aggregate volume across its surface and to the volume

directly. Note that since it is an internal force, the internal micro-force π̃ does

not enter the energy balance equation. This is analogous to the fact that the

internal force that the solid places upon the fluid, f̃ sfi , does not enter this

energy balance equation either. Finally, the last two lines of the right-hand

side represent the energy convected into the volume through its surface, and
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injected into the volume directly. Note that these terms contain both kinetic

and stored energy contributions from the fluid, and it is assumed that the

fluid injected directly into the volume arrives with the prevailing kinetic and

internal energy of the existing fluid.

The analysis of the energy balance equation requires the use of the mass

balances (4.3) and (4.6), the momentum balances (4.11) and (4.16), and the

micro-force balance (4.22), leading to the following pointwise form for the first

law for the solid/fluid aggregate,

(1− φ) Jρsės + φJρf
◦
ef +φJρf

◦(
1
2
Av

f/s
i v

f/s
i

)

= (PJi − φτ̃Ji) vi,J + φτ̃Ji

(
vi + v

f/s
i

)
,J

+ φpJ

◦
ρf

ρf
+ p ˙(φJ)

+
[
p
(
φJF−1

Ji

)
,J
− f̃ sfi

]
v
f/s
i + ξ̃I µ̇,I − π̃µ̇− q̃I,I + r̃

. (4.24)

Here we have introduced the first Piola-Kirchhoff stress in the fluid associated

with the deviatoric part of the fluid stress τji, τ̃Ji = JF−1
Jk τki.

It is also useful to analyze the energy balances for the solid and fluid

separately, noting that the sum of the solid and fluid energies must equate to

the solid/fluid aggregate energy. For the solid, the first law energy balance is,

D

Dt

∫

V0

[
1
2

(1− φ) ρsvi vi + (1− φ) ρses
]
JdV0

=

∫

S0

(
t̃i − t̃fi

)
vi dS0 +

∫

V0

b̃sividV0 +

∫

S0

ι̃µ̇ dS0 +

∫

V0

γ̃µ̇dV0

−
∫

S0

q̃sJNJ dS0 +

∫

V0

(
r̃s + r̃fs

)
dV0 +

∫

V0

$̇fsdV0

. (4.25)

Note, that as for the body forces, the surface traction can be decomposed into

its solid and fluid contributions per unit aggregate reference area. In (4.25)
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the traction associated with the solid is t̃si = t̃i − t̃fi . The mechanical power

density that the fluid transfers to the solid per unit of time is $̇fs, and the

thermal power density that the fluid transfers to the solid per unit of time is

rfs. The mechanical power per reference volume that the solid transfers to the

fluid, $̇sf , the force that the solid imparts upon the fluid, f̃ sfi , and the heat

that the solid transfers to the fluid, r̃sf , are each the opposites of those from

the fluid to the solid. The mechanical power density that the fluid transfers

to the solid, $̇fs, consists of the dot product of the force density of the fluid

on the solid with the solid velocity and the fluid pressure working to open up

additional porosity. Hence, the power term $̇fs, is given by,

$̇fs = f̃ fsi vi + pJφ̇ . (4.26)

The pointwise form for the first law for the solid obtained from the analysis of

(4.25), (4.3), (4.19), (4.22), and (4.26) is,

(1− φ) Jρsės = (PJi − φτ̃Ji) vi,J +p ˙(φJ)+ ξ̃I µ̇,I− q̃sI,I + r̃s− r̃sf− π̃µ̇ . (4.27)

Adopting the following stress partition, the solid stress P s
Ji is defined as,

(1− φ)P s
Ji = PJi − φTJi , (4.28)

and (4.27) can be rewritten as,

(1− φ) Jρsės =
[
(1− φ)P s

Ji − φJF−1
Ji p
]
vi,J + p ˙(φJ)

− π̃µ̇+ ξ̃I µ̇,I − q̃sI,I + r̃s − r̃sf
. (4.29)
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Then, the first law energy balance for the fluid is simply the difference between

the aggregate energy balance and the solid energy balance,

φJρf
◦
ef +φJρf

◦(
1
2
Av

f/s
i v

f/s
i

)

= φJp

◦
ρf

ρf
+ φτ̃Ji

(
vi + v

f/s
i

)
,J

− q̃fI,I + r̃f + r̃sf +
[
p
(
φJF−1

Ji

)
,J
− f̃ sfi

]
v
f/s
i

. (4.30)

4.2.5 Entropy Inequalities

In this section the entropy inequalities arising from the second law of

thermodynamics for the solid, fluid, and solid/fluid aggregate are analyzed.

First, consider the continuum form for the second law of thermodynamics for

the solid,

D

Dt

∫

V0

(1− φ) ρsssJdV0 ≥ −
∫

S0

q̃sJNJ

θs
dS0 +

∫

V0

r̃s − r̃sf
θs

dV0 . (4.31)

Here, the left-hand side of the inequality is the rate of change of the entropy in

the solid, and the right-hand side represents the entropy transfer to the solid.

Next, we introduce the Helmholtz free energy per unit mass for the solid as,

ψs = es − ssθs . (4.32)

Application of (4.3), (4.27), and (4.32) yields the pointwise form for the en-

tropy inequality for the solid as,

(1− φ) Jρsψ̇s ≤
[
(1− φ)P s

Ji − φJF−1
Ji p
]
vi,J + p ˙(φJ)

− π̃µ̇+ ξ̃I µ̇,I − (1− φ) Jρsssθ̇s − 1

θs
q̃sIθ

s
,I

. (4.33)
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We now assume that the Helmholtz free energy of the solid ψs, the solid

stress P s
Ji, the internal micro-force vector ξ̃I , the internal micro force π̃, the

solid entropy density ss, and the heat flux in the solid q̃sI , each can depend

upon the temperature in the solid θs, its gradient θs,I , the true porosity φJ ,

the phase-field variable µ, its gradient µ,I , its rate µ̇, and the deformation

gradient FiJ . The velocity gradient is related to the material time derivative

of the deformation gradient as ḞiK = FjKvi,j. Equation (4.33) becomes,

0 ≥
[
(1− φ) Jρs

∂ψs

∂FiJ
− (1− φ)P s

Ji + φJF−1
Ji p

]
vi,J

+

[
(1− φ) Jρs

∂ψs

∂µ,I
− ξ̃I

]
µ̇,I +

[
(1− φ) Jρs

∂ψs

∂µ
+ π̃

]
µ̇

+

[
(1− φ) Jρs

∂ψs

∂µ̇

]
µ̈+

[
(1− φ) Jρs

∂ψs

∂(φJ)
− p
]

˙(φJ)

+ (1− φ) Jρs
[
∂ψs

∂θs
+ ss

]
θ̇s +

[
(1− φ) Jρs

∂ψs

∂θs,I

]
θ̇s,I +

1

θs
q̃sIθ

s
,I

. (4.34)

Following the procedures of Coleman and Noll [103], Equation (4.34) must hold

for all admissible processes associated with arbitrary variations of vi,j, µ̇,I , µ̇,

µ̈, ˙(φJ), θ̇s, and θ̇s,I . The inequality is linear in vi,j, µ̇,I , µ̈, ˙(φJ), θ̇s, and θ̇s,I ,

which implies that the coefficients contracted with these terms must be zero

in order for the inequality to hold for all admissible processes, leading to the
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following constitutive equations for the solid,

(1− φ)P s
Ji = (1− φ0) J0ρ

s
0

∂ψs

∂FiJ
+ φJF−1

Ji p

ξ̃I = (1− φ0) J0ρ
s
0

∂ψs

∂µ,I

p = (1− φ0) J0ρ
s
0

∂ψs

∂(φJ)

ss = −∂ψ
s

∂θs

∂ψs

∂µ̇
=
∂ψs

∂θs,I
= 0

. (4.35)

Notice that for the reference configuration relationships we have used the fact

that (1 − φ)ρsJ = (1 − φ0)ρs0J0 from (4.3), where the subscript “0” refers to

the values of the quantities in the reference state. The reduced form of the

dissipation inequality for the solid is then,
[
(1− φ) Jρs

∂ψs

∂µ
+ π̃

]
µ̇+

1

θs
q̃sIθ

s
,I ≤ 0 . (4.36)

This reduced dissipation inequality is satisfied if,

π̃ = − (1− φ0) J0ρ
s
0

∂ψs

∂µ
− βµ̇− ηIθs,I

q̃sI = −η̄I µ̇− κsIJθs,J
, (4.37)

with the positivity condition,

βµ̇2 + µ̇ηIθ
s
,I + θs,I η̄I µ̇+ θs,Iκ

s
IJθ

s
,J ≥ 0 ∀ µ̇, θs,I . (4.38)

Each of the newly introduced material properties, β, ηI , η̄I , and κsIJ are allowed

to depend upon µ,I , µ, µ̇, (φJ), θs, θs,I , and FiJ . Note that κsIJ is the thermal

conductivity tensor for the solid skeleton.
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We now consider the fluid. For the fluid, the second law inequality is,

D

Dt

∫

V0

φρfsfJdV0 ≥−
∫

S0

q̃fJNJ

θf
dS0 +

∫

V0

r̃f + r̃sf

θf
dV0

−
∫

S0

ρf w̃JNJs
f dS0 +

∫

V0

ρfm̃sfdV0

. (4.39)

Here, the left-hand side of the inequality is the rate of change of the entropy in

the fluid, and the right-hand side represents the entropy transfer to the fluid

including the entropy of the convected and injected fluid. The Helmholtz free

energy for the fluid is,

ψf = ef − sfθf . (4.40)

Application of (4.6), (4.30), and (4.40) leads to the pointwise form for the

second law inequality for the fluid as,

φJρf
◦
ψf ≤φJp

◦
ρf

ρf
− φJρfsf

◦
θf +φτ̃Ji

(
vi + v

f/s
i

)
,J

− φJρf
[

1
2

◦
Av

f/s
i + A

◦(
v
f/s
i

)]
v
f/s
i

+
[
p
(
φJF−1

Ji

)
,J
− f̃ sfi

]
v
f/s
i − 1

θf
q̃fI θ

f
,I

. (4.41)

In contrast to the analysis of the second law for the solid, here we do not invoke

the principle of equipresence, i.e. that each dependent quantity depends upon

each of the independent quantities. Instead, we take a slightly more restrictive

set of assumptions for the analysis of (4.41). We assume that the Helmholtz

free energy of the fluid ψf , the fluid pressure p, and the entropy density of the

fluid sf are dependent only on the density of the fluid ρf , the fluid velocity

gradient vfi,J = vi,J +v
f/s
i,J , the temperature of the fluid θf , and the temperature
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gradient in the fluid θf,I . The remaining dependent quantities include the fluid

stress τ̃Ji, the heat flux in the fluid q̃fI , and the interaction force between the

solid and fluid f̃ sfi , each of which can depend upon ρf , θf , θf,I , φ, v
f
i,J , as well

as the relative fluid velocity vf/si , its rate with respect to the fluid
◦(

v
f/s
i

)
, the

deformation gradient FiJ , and the phase-field parameter µ. Equation (4.41)

then becomes,

0 ≥φJ
[
ρf
∂ψf

∂ρf
− p

ρf

] ◦
ρf +φJρf

[
∂ψf

∂θf
+ sf

] ◦
θf +φJρf

∂ψf

∂θf,I

◦
θf,I

+ φJρf
∂ψf

∂vfi,J

◦(
vfi,J

)
+φJρf

[
1
2

◦
Av

f/s
i + A

◦(
v
f/s
i

)]
v
f/s
i

−
[
p
(
φJF−1

Ji

)
,J
− f̃ sfi

]
v
f/s
i +

1

θf
q̃fI θ

f
,I − φτ̃Jivfi,J

. (4.42)

Equation (4.42) must hold for all admissible processes associated with arbitrary

variations of
◦
ρf ,

◦
θf ,

◦
θf,I , v

f
i,J ,

◦(
vfi,J

)
, vf/si , and

◦(
v
f/s
i

)
. The inequality is linear

in
◦
ρf ,

◦
θf ,

◦(
vfi,J

)
, and

◦
θf,I , which implies that the coefficients contracted with

these terms must be zero in order for the inequality to hold for all admissible

processes, leading to the constitutive equations for the fluid,

p =
(
ρf
)2∂ψf

∂ρf

sf = −∂ψ
f

∂θs

∂ψf

∂θf,I
= 0,

∂ψf

∂vfi,J
= 0

. (4.43)
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and the reduced dissipation inequality for the fluid,

0 ≥
[
φJρf

(
1
2

◦
Av

f/s
i + A

◦(
v
f/s
i

))
− p
(
φJF−1

Ji

)
,J

+ φ,J τ̃Ji + f̃ sfi

]
v
f/s
i

− τ̃Ji (wi,J + φvi,J) +
1

θf
q̃fI θ

f
,I

.

(4.44)

This reduced dissipation inequality for the fluid is satisfied if,

τ̃Ji = νiJkL (wk,L + φvk,L) + τ̂Ji

q̃fI = −κfIJθf,J + q̂I

f̃ sfi = p
(
φJF−1

Ji

)
,J
− φ,J τ̃Ji − χijvf/si − φJρf

(
1
2

◦
Av

f/s
i − A

◦(
v
f/s
i

))
+ f̂ sfi

.

(4.45)

Here we have focused on the direct terms for the deviatoric fluid stress, the fluid

heat flux, and the solid/fluid interaction force introducing the positive definite

material tensors of the fluid viscosity νiJkL, the thermal conductivity of the

fluid κfIJ , and the fluid impermeability of the porous solid χij. Each of these

material tensors is allowed to depend upon ρf , θf , θf,I , φ, v
f
i,J , v

f/s
i ,

◦(
v
f/s
i

)
, FiJ ,

and µ. The additional functions τ̂Ji, q̂I , and f̂ sfi are not written out explicitly

for the sake of brevity, but their general construction and positivity constraint

is analogous to that spelled out for the solid in (4.37) and (4.38). In practice,

each of these functions will usually be taken to vanish, as will the cross terms

in (4.37).

At this point there remains one quantity that has not been constrained,

the heat transferred from the solid to the fluid, r̃sf = −r̃fs. For this we consider
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the second law inequality for the solid/fluid aggregate as a whole,

D

Dt

∫

V0

[
(1− φ) ρsss + φρfsf

]
JdV0

≥ −
∫

S0

(
q̃sJNJ

θs
+
q̃fJNJ

θf

)
dS0 +

∫

V0

(
r̃s + r̃fs

θs
+
r̃f + r̃sf

θf

)
dV0

−
∫

S0

ρf w̃JNJs
f dS0 +

∫

V0

ρfm̃sfdV0

.

(4.46)

Here, the left-hand side of the inequality is the rate of change of the entropy in

the aggregate, and the right-hand side represents the entropy transfer to the

aggregate including entropy convected and injected into the aggregate by the

fluid. Applying the previously derived constitutive equations, the pointwise

form is,

0 ≤ 1

θf

{
φτ̃Jiv

f
i,J − φJρf

[
1
2

◦
Av

f/s
i + A

◦(
v
f/s
i

)]
v
f/s
i

+
[
p
(
JφF−1

Ji

)
,J
− f̃ sfi

]
v
f/s
i − 1

θf
q̃fI θ

f
,I

}

+
1

θs

{[
(1− φ) Jρs

∂ψs

∂µ
+ π̃

]
µ̇− 1

θs
q̃sIθ

s
,I

}
+
r̃sf
(
θs − θf

)

θsθf

. (4.47)

The two terms in brackets have already appeared in the dissipation inequalities

for the fluid (4.44) and solid (4.36) and each is already constrained to be non-

negative. Hence, (4.47) still does not offer a clear constraint upon the heat

transferred between the solid and fluid. However, a reasonable approach is to

take the interpretation that each of the components of (4.47) must satisfy the

inequality independently of the others. Then, the third term will satisfy the
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inequality if,

r̃sf = h̃sf
(
θs − θf

)
. (4.48)

Here, h̃sf is an effective heat transfer coefficient for the porous solid/fluid

system, which must be positive and can depend upon each of the independent

variables associated with the fluid and the solid.

4.2.6 The Solid Free Energy

At this point the model is relatively general and has many material

properties that must be specified. In this section a free energy potential is de-

vised that simultaneously models the linear poroelasticity of Biot-type models

and the onset and propagation of fluid filled fractures within the medium. To-

ward this end a “poro-enthalpy” potential Ωs is proposed that can be derived

from the Hemholtz free energy by the following Legendre transformation,

(1− φ0) J0ρ
s
0Ωs = (1− φ0) J0ρ

s
0ψ

s − Jpφ . (4.49)

Then, the entropy inequality for the solid (4.33) can be rewritten as,

(1− φ) JρsΩ̇s ≤
[
(1− φ)P s

Ji − φpJF−1
Ji

]
vi,J − φJ ṗ

− π̃µ̇+ ξ̃I µ̇,I − (1− φ) Jρsssθ̇s − 1

θs
q̃sIθ

s
,I

, (4.50)
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and the constitutive relations outlined by (4.35) and (4.37) can be written in

terms of Ωs as,

(1− φ)P s
Ji = (1− φ0) J0ρ

s
0

∂Ωs

∂FiJ
+ φpJF−1

Ji

ξ̃I = (1− φ0) J0ρ
s
0

∂Ωs

∂µ,I

φJ = − (1− φ0) J0ρ
s
0

∂Ωs

∂p

ss = −∂Ωs

∂θs

∂Ωs

∂µ̇
=
∂Ωs

∂θs,I
= 0

π̃ = − (1− φ0) J0ρ
s
0

∂Ωs

∂µ
− βµ̇− ηIθs,I

q̃sI = −η̄I µ̇− κsIJθs,J

. (4.51)

Consider the following simple poro-enthalpy for reversible, hyperelastic, isother-

mal behavior,

(1− φ0) J0ρ
s
0Ωs =gd(µ)Ω+(FiJ) + Ω−(FiJ)− [α + (1− α) gm(µ)] (J − 1) p

− [1− gm(µ)]
p2

2N
− φ0p+

Gc

4`0

[
(1− µ)2 + 4`2

0µ,Iµ,I
] .

(4.52)

Here an additive decomposition of the elastic strain-energy Ωel = Ω++ Ω− has

been employed so degradation is driven by the presence of tensile deformations.

The material constants α, N , and Gc are a coupling coefficient commonly

referred to as the Biot coefficient, the Biot tangent modulus, and Griffith’s

critical energy release rate, respectively, and φ0 is the intrinsic porosity. Note

that we invoke the compatibility relations described in Coussy [95] (pp. 79) to

relate the Biot coefficient, the intrinsic porosity φ0, and Biot’s tangent modulus
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such that,
1

N
=

(α− φ0) (1− α)

K
. (4.53)

where K is the bulk modulus of the aggregate.

The last term in (4.52) is ubiquitous to the second order theory for

phase-field fracture theories as originally proposed by Francfort and Marigo [6]

in their pioneering work on the variational approach to fracture, where `0 is a

nonlinear process zone length scale. The degradation function gd(µ) is left in

general terms for the sake of simplicity. In practice, the cubic formulation [99]

described in Chapter 2 will be used,

gd(µ) = f cd(µ) = µ2 [s (µ− 1)− 2µ+ 3] , (4.54)

with s� 1.

Finally, the form of the function gm(µ) in (4.52) is chosen such that

gm(0) = 1, g′m(0) = 0, gm(1) = 0, g′m(1) = 0, and 0 ≤ gm(µ) ≤ 1 in order to

cause the porosity to approach unity within open cracks, as will be discussed

in more detail shortly. A simple function that satisfies these requirements is,

gm(µ) ≡





1
1− 3µ2 + 2µ3

0

;
;
;

µ < 0
0 ≤ µ ≤ 1
µ > 1

, (4.55)

and is adopted in this work. In fact, gm is simply 1− gd(µ) when s = 0.

For additional clarity, the constitutive relations of (4.51) can be written
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explicitly using the poro-enthalpy potential (4.52), β = 0, and ηI = 0 as,

(1− φ)P s
Ji = gd(µ)

∂Ω+

∂FiJ
+
∂Ω−

∂FiJ
+ [φ− α− gm(µ) (1− α)] JF−1

Ji p

φJ = φ0 + [α + gm(µ) (1− α)] (J − 1) + [1− gm(µ)]
p

N

π̃ = −gd′(µ)Ω+(FiJ) +
Gc

2`0

(1− µ) + gm
′(µ)

[
(1− α) (J − 1) p− 1

2N
p2

]

ξ̃I = 2Gc`0µ,I

.

(4.56)

Using (4.28) the total aggregate stress is,

PJi = gd(µ)
∂Ω+

∂FiJ
+
∂Ω−

∂FiJ
− [α + gm(µ) (1− α)] JF−1

Ji p+ φτ̃Ji . (4.57)

Additionally, the spectral decomposition of the stored strain energy for an

isotopic solid as described in the work of Miehe et al. [89] is adopted. The

strain energy takes the form,

Ω+(εIJ) =
λs

2
〈εKK〉2 + µs

(
〈ε1〉2 + 〈ε2〉2 + 〈ε3〉2

)

Ω−(εIJ) = −λ
s

2
〈−εKK〉2 − µs

(
〈−ε1〉2 + 〈−ε2〉2 + 〈−ε3〉2

)

εIJ =
1

2
(FkIFkJ − δIJ)

, (4.58)

where λs and µs are the Lamé material constants, εIJ is the Green-Lagrangian

finite strain measure, and ε(1,2,3) are the principal strains. If we neglect the

(typically small) effects of fluid shear stress and adopt the assumptions of

infinitesimal deformations such that (J − 1) ≈ εKK and products of displace-

ment gradients are neglected, the theory recovers linear poroelasticity when

the phase-field parameter µ = 1 (and gm(µ = 1) = 0) [112,118].

On the contrary, if µ = 0 then gm(µ = 0) = 1 and there are two

important features of the model to note. First, in the presence of an opening
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strain state, the aggregate stress is PJi = −JF−1
Ji p which corresponds to a

Cauchy stress of σji = −pδij. Second, the porosity φ satisfies φJ = φ0+(J−1),

which implies that φ = φ0 in the absence of deformation (i.e. J = 1), and

φ → 1 for large opening deformations as J → ∞. It is tempting here to

expect that the porosity φ should be equal to 1 where ever a crack exists, or

µ = 0, regardless of the deformation. In fact, initial attempts were made to

develop the theory on the basis that φ = φ0 + (1− µ) (1− φ0). Due to the

diffuse nature of the phase-field, however, cracks required too much fluid mass

influx to grow. The nuance lies in the fact that the phase-field µ is actually

representing a zero thickness surface in the undeformed configuration. This

surface has a finite energy associated with it, which is “smeared” out over the

length scale `0 but should have no volume when undeformed. The volume

created by a change in opening of the crack, though, should be identically

equal to the deformation at that point, or
·

(φJ) = J̇ , which is exactly what is

recovered in the present theory when µ = 0.

Lastly, the rationale for the constraints on the derivative of gm(µ) at

the endpoints can be understood by considering the micro-force balance in the

absence of phase-field gradients and micro-body forces, i.e. when π̃ = 0. For

such homogeneous cases, if g′m(µ) 6= 0 at µ = 0 and µ = 1, then the third term

in (4.56) can drive the phase-field parameter outside of the range of 0 ≤ µ ≤ 1.
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4.2.7 The Fluid Momentum Equation and Free Energy

Generally, as a result of small crack openings, hydraulic fractures are

characterized by low Reynolds number flows. In this section the fluid momen-

tum equation (4.16) is reduced under the assumptions of isothermal, creeping

Newtonian flow. The goal is to simultaneously describe the Darcy-type flow

regimes that occur in fully intact regions of the porous aggregate while also

properly representing the laminar flow that is present in crack interiors. To

this end, the following constitutive relationships are proposed,

τij = gS(µ)νf
[
wi,j + wj,i − 1

3
wk,kδij + φ

(
vi,j + vj,i − 1

3
vk,kδij

)]

f̃ sfi = p
(
φJF−1

Ji

)
,J
− φ,J τ̃Ji − gD(µ)φJ

νf

κ
wi

. (4.59)

Here νf is the fluid viscosity, κ is the isotropic intrinsic permeability for the

aggregate, and gS(µ) and gD(µ) are indicator functions of the phase-field for

the Stokes and Darcy flow regimes. The indicator functions are chosen such

that,
gS(µ)→ 1 and gD(µ)→ 0 as µ→ 0

gS(µ)→ 0 and gD(µ)→ 1 as µ→ 1
. (4.60)

The specific forms chosen are,

gS(µ) = (1− µ)2

gD(µ) = µn
, (4.61)

where the Stokes function has been chosen based on its simplicity and ease of

implementation and the Darcy function is chosen such that the impermeability

(which is typically quite high) is degraded more rapidly in the presence of

cracks. The choices made for the indicator functions in (4.61) will be shown
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to reproduce the desired behaviors for the numerical experiments conducted,

which will be described in the following sections. For the Darcy indicator

function n = 4, 6, 8 will be compared. Applying (4.59) and (4.61) within

(4.16) and neglecting inertial terms based upon the assumption of low Reynolds

number creeping flows, the fluid momentum equation becomes,
[
gS(µ)νf

(
wi,j + wj,i − 1

3
wk,k + φ

(
vi,j + vj,i − 1

3
vk,k
))
JF−1

Jj

]
,J

− JF−1
Ji p,J − JgD(µ)

νf

κ
wi = 0

. (4.62)

Equation (4.62) is analogous to the Brinkman equation [119] where the material

coefficients depend directly on the phase-field parameter µ. When µ = 1

Darcy flow laws are recovered, and when µ = 0 the equations for Stokes flow

are recovered.

Additionally, we allow for a compressible fluid and use a linearized

relationship between fluid pressure and fluid density to approximate small

changes in the fluid density. To this end the following free-energy density for

the fluid is proposed,

ψf =
1

cf

(
ρf0
ρf

+ ln
(
ρf
)
)

. (4.63)

From (4.63) the density pressure relationship becomes,

ρf = ρf0 + cfp . (4.64)

In the absence of the phase-field micro-force balance laws, and the Stokes

flow characterization for fluid flow in cracks, the equations presented above
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reduce to the nonlinear poroelastic theories developed by Coussy and co-

workers [112–116], which have been shown to be in agreement with Biot’s classical

theory [118,120,121].

4.3 Numerical Implementation

The numerical experiments presented in the following sections will be

for isothermal, isotropic, quasi-static material behavior with steady-state fluid

flows. To summarize, the following balance and kinematic equations will enter
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into the numerical model:

PJi,J + b̃i = 0 in V0

PJiNJ = t̃i on St

ui = ûi on Su

FiJ = δiJ + ui,J

ξ̃I,I + γ̃ + π̃ = 0 in V0

ξ̃INI = ι̃ on Sι

µ = µ̂ on Sµ

(
τjiJF

−1
Jj

)
,J
− JF−1

Ji p,J − JgD(µ)
νf

κ
wi = 0 in V0

1

ρf
˙(φρfJ) +

(
JF−1

Ji wi
)
,J

+
ρf,J
ρf
JF−1

Ji wi − m̃ = 0 in V0

(τji − pδij) JF−1
Jj NJ = t̃fi on Sf

wi = ŵi on Sw

p = p̂ on Sp

. (4.65)
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Then, the corresponding virtual work statement that will serve as the weak

form of these equations for the finite element analysis is,
∫

V0

[
PJiδFiJ + ξ̃Iδµ,I − π̃δµ

]
dV0

∫

V0

[(
τ̃Ji − pJF−1

Ji

)
δwi,J + gD(µ)

νf

κ
Jwiδwi

]
dV0

∫

V0

[
−
(

1

ρf
˙(φρfJ) + JF−1

Ji wi,J +
ρf,J
ρf
JF−1

Ji wi

)
δp

]
dV0

=

∫

V0

(
b̃iδui + γ̃δµ− m̃δp

)
dV0

+

∫

S0

t̃iδuidS0 +

∫

S0

ι̃δµdS0 +

∫

S0

t̃fi δwidS0

. (4.66)

For the numerical method the unknown nodal quantities include the displace-

ments of the aggregate ui, which is simply the difference between the material

point positions in the current and reference configurations, the relative flux of

the fluid with respect to the solid wi, the fluid pressure p, and the phase-field

parameter µ. The stresses, PJi and τ̃Ji, internal micro-forces ξ̃I and π̃, porosity

φ, and fluid density ρf are determined constitutively from (4.56)-(4.59) and

(4.64). We note that the derivations of the governing equations constructed in

the previous sections were done so in the reference configuration, which is the

domain on which the numerical calculations are performed. The importance in

distinguishing between the reference configuration and the current configura-

tion lies in a proper representation of the fluid mass and momentum balances,

particularly in regions with degradation. However, for the brittle, linearly elas-

tic materials addressed in this work there is no real advantage in distinguishing
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the Green-Lagrange strain and its linearized small strain measure. This is due

to the fact that the geologically relevant structures investigated in this work

undergo relatively small displacements and deformations. In order to simplify

the implementation, we believe it is suitable to adopt this small deformation

approximation within the stress and micro-force constitutive equations.

In terms of the numerical discretization, standard continuous Galerkin

finite element methods are sufficient for the solution of the aggregate equi-

librium and micro-force balance equations. Hence, bilinear quadrilateral ele-

ments are used to solve these equations. However, for the fluid flow equations

it is well-known that the elements must satisfy the LBB conditions [122–124].

For the two-dimensional numerical investigations described here we have used

Taylor-Hood elements [125] with biquadratic interpolations for the relative flux

wi, and bilinear interpolations for the fluid pressure p. The evolution equation

that appears in the fluid mass balance is solved using an implicit backward

Euler approximation. The fully coupled equations are nonlinear and stan-

dard Newton-Raphson procedures are implemented to solve for all quantities

of interests simultaneously. This is in contrast with many other phase-field

approaches where staggered schemes are used to solve for specific quantities

while all other fields are held fixed [95]. For matrix inversion, a parallel, sparse,

direct solver from the MUMPS package for the PETSc library is used to solve

the problems that are discussed in the next section [126–129].
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4.4 Results and Discussion

This section presents a series of benchmark solutions that the theory

must, at a minimum, recover in order to properly model the hydraulic fracture

process. Many of these simple solutions are readily recovered if the crack sur-

faces are identified explicitly by a discrete crack method, but are not trivial

for diffuse crack descriptions like the phase-field approach to fracture. The

comparison of the model with these foundational problems for which analyti-

cal solutions have been developed serves to establish confidence in the theory

for when more complex problems are investigated. The three most funda-

mental problems that are addressed in this paper are the steady, laminar flow

through parallel crack faces, the fluid-loading of a free surface as in Terza-

ghi’s consolidation problem, and the uniform pressurization of a plane-strain

center crack in an isotropic, impermeable, elastic, infinite solid. After agree-

ment is established for these three fundamental problems, an investigation of

the Kristianovic-Geerstma-de Klerk problem (a plane strain center crack in an

impermeable, elastic, infinite domain subject to a constant point injection at

the center of the crack) is carried out. Finally, a problem that includes multiple

cracks interacting and merging is presented to demonstrate the advantageous

features of the phase-field method.

4.4.1 Laminar Flow between Fixed Parallel Plates

A proper representation of the fluid flow field through the system is

needed to produce the correct pressure field. This pressure then drives the
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solution for the deformation of the aggregate and the evolution of the phase-

field within the system. We note that there are also shear stresses within the

fluid, but that the influence of fluid shear stress on the aggregate is small.

Without a correct representation of the fluid flow, particularly within cracks,

an accurate description of crack evolution would be hopeless. Sub-surface

cracks are characterized by two long length scales, the crack height and crack

length, and one small length scale, the width/opening or crack aperture. Thus,

the fluid flow inside the crack is well approximated by the flow between two

fixed parallel plates such that the crack walls make up the two plates. Because

of the relatively small openings of cracks in these sub-surface materials, the

flow is laminar. Assuming the fluid is a Newtonian fluid, the solution to the

Navier-Stokes equations for this simplified geometry yields a parabolic flow

profile where the total fluid flux through a cross-section per unit crack height

is

qy = −(Wn)3

12 νf
p,y . (4.67)

The result is proportional to the pressure gradient, p,y along the length direc-

tion of the crack y (see the inset of Figure 4.2), and dependent on the cube

of the crack opening aperture Wn = ∆un. Thus, it is crucial that the crack

opening displacement is properly incorporated into the theory. Due to the fact

that the cracks are represented by a diffuse field, ∆un is not a readily avail-

able local quantity for phase-field methods. In order to address this issue, the

present theory utilizes a finite deformation framework such that the effects of

the crack opening are accounted for in the solution of the fluid flow balances,
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which are naturally dependent on the deformation within cracks.

There is, however, an additional issue that arises for the present the-

ory when numerical discretizations are implemented. As shown in Figure 4.1

and discussed in Chapter 2 the analytic solution to the phase-field theory for

fracture has a jump discontinuity in displacement. As previously mentioned,

standard Galerkin methods are used to discretize the displacement field ui,

which forces the resulting field to be C0 continuous. Thus, the opening in the

discretized setting occurs over some discretization length scale associated with

the element size, as shown in the figure.

For the discretized case the crack opening width can be estimated as,

W h
n ≈ he (1 + en) , (4.68)

where en is the nominal strain of a line element perpendicular to the crack

plane and he is the length scale associated with the discretization. It can be

shown that the total crack opening displacement is approximated properly by

the discretized method [93] (i.e. heehn = ∆uhn ≈ ∆un), but, according to (4.68),

the actual crack opening width will be over estimated. In order to account for

this discrepancy our approach is to use a scaled viscosity defined as,

νfs = νf
(

1 + en
en

)3

= νf
(

λn
λn − 1

)3

, (4.69)

where λn is the stretch ratio of a line element perpendicular to the crack plane

and can be determined using the deformation gradient FiJ with gradients of
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(a) (b)

(c) (d)

Figure 4.1: These plots illustrate the difference between the analytical and dis-
cretized representations of the material stretch normal to a phase-field crack.
(a) shows the phase-field profile before deformation (solid line) and after open-
ing (dotted line) in the deformed configuration for the analytical case. (b)
shows the phase-field profile before deformation (solid line) and after opening
(dotted line) in the deformed configuration for the discretized case. (c) and
(d) show the crack opening displacement as a function of location in the ref-
erence configuration for the analytical and discretized cases respectively. he
is a characteristic length scale associated with the discretization (i.e. element
size).
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Figure 4.2: These simulations demonstrate the ability of the theory to ac-
curately represent the flow through cracks of different openings. A pressure
differential is applied between the top and bottom surfaces. The contour plot
above shows the phase-field damage profile, which in the undeformed con-
figuration (not shown) is identical for both the open and closed crack. The
solutions for the fluid flow in the vertical direction wy are shown with blue
lines for the case of a closed (a) and open (b) diffuse crack. The color contours
and red lines indicate the phase-field parameter in the deformed configura-
tion. When the crack is nearly closed (a) there is only enhanced Darcy-like
flow (blue line) in the damaged region, as can be seen in the included insert.
However, when the crack opens (b) the proper channel flow (blue line) within
the crack is recovered such that the net fluid flux is in agreement with laminar
flow through fixed parallel plates. The fluid flows (blue line) are normalized
by w∗ = −p,y`20

νf
.
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the phase-field as,

λn = FiJniNJ = FiJ
µ,iµ,J√

µ,kµ,k
√
µ,Lµ,L

=

√
µ,Kµ,K

F−1
Ik F

−1
Jk µ,Iµ,J

. (4.70)

Equation (4.68) is derived based on the objective to obtain equality in flux

for two channels of different initial widths, h(1) and h(2), each subjected to

the same opening displacement, ∆u
h(1)
n = ∆u

h(2)
n , and the same gradient of

pressure. Then using (4.67), this implies that,

q(1)
y = −

(
W

h(1)
n

)3

12 νf(1)

p,y = −

(
W

h(2)
n

)3

12 νf(2)

p,y = q(2)
y , (4.71)

where W h(1,2)
n = h(1,2)

(
1 + e

(1,2)
n

)
as described above. The average nominal

strains over the width of each channel are e(1)
n and e(2)

n . Since the crack opening

displacement for each channel is taken to be equivalent then,

∆uh(1)
n = ∆uh(2)

n ⇒ e(1)
n h(1) = e(2)

n h(2) . (4.72)

Substituting this into (4.71) and algebraic manipulation gives,
(
h(1)

h(2)
+ e

(2)
n

)3(
h(2)
)3

νf(1)

=

(
1 + e

(2)
n

)3(
h(2)
)3

νf(2)

. (4.73)

Then, if h(1) is taken to represent the idealized case where the initial crack

width is zero and h(2) is taken to be the element size in the finite element

mesh equation (4.69) is recovered.

Equation (4.70) is the same measure as that described in Miehe [94].

A simpler approach that does not require the determination of the direction
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normal to the crack is to utilize the Jacobian of the deformation gradient,

which is a reasonable approximation for the normal stretch in highly damaged

elements, i.e. λn ≈ J . Another potential issue with the scaling (4.68) is

that if the stretch is equal to unity or less, the scaled viscosity will approach

infinity or become negative. If the phase-field parameter µ is not equal to

one in these regions, or the Stokes indicator function gS(µ) > 0, the scaling

as presently proposed will cause issues in the solution of the fluid momentum

balance (4.62). For instance, as seen in Figure 4.1 the stretch is localized to

the region of maximum damage, and regions just outside the localization of

deformation where the phase-field is still transitioning but the stretch may be

unity or less are be subject to the issues described. To address this we restrict

the scaling at a value as to not overwhelm Darcy’s law. Effectively, a critical

stretch λc is chosen such that if λn < λc the scaling acts as if the crack did not

exist and Darcy-like behavior is approximately recovered. The critical stretch

is chosen to be λc = 1 + 2
√
Gc/E`0 which corresponds to roughly 5 times the

strain level [8] associated with the material peak stress during homogeneous

uniaxial straining. Thus, the scaling is chosen such that,

νfs = νf ×min

((
λn

〈λn − 1〉

)3

,

(
λc

λc − 1

)3
)

. (4.74)

Note that it is advantageous to numerical computations based on Newton-

Raphson type schemes to have smooth tangent stiffness components. Thus,

convergence results for the coupled N-R scheme can be improved by adopting

a smooth rendition of the viscosity scaling outlined by (4.74). A smooth piece-
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wise scaling function based on λc can be defined as,

Fν(λn) ≡





(
λc

λc − 1

)3

; λn ≤ 1

(
λn (λn − 2) + (1− 2λc)

2

5 + λn (λn − 2) + 4λc (λc − 2)

)3

; 1 ≤ λn ≤ 2λc − 1

(
λn

λn − 1

)3

; λn ≥ 2λc − 1

(4.75)

such that a smooth rendition of (4.74) is νfs = νfFν(λn).

Figure 4.2 demonstrates how the flow profile evolves for a given pressure

gradient with a large versus a small crack opening. A crack is imposed by

setting µ = 0 for a line of elements through the thickness of a thin strip of

material. A pressure drop is imposed in the vertical direction and fluid flows

through the strip. The flow evolves according to the opening imposed on the

crack, starting as an enhanced Darcy-type flow in the region of damage and

transitioning to a full Stokes-type flow.

Figure 4.3 illustrates how well the dependence on crack opening is cap-

tured with and without the viscosity scaling for various element sizes. The

total flux through a strip of length 200`0 is calculated. The volumetric flow

rate is normalized by q∗ = −p,y`3
0

/
νf in the plot. The results clearly demon-

strate that if the scaling is not used, accuracy cannot be expected unless the

crack opening displacement divided by the mesh size, ∆uhn
/
he, is well above

unity. The solutions for the scaled viscosity deviate slightly from the result

for strictly Darcy flow as a result of the enhanced Darcy zone that can be

observed in Figure 4.2. This is a result of the damage in the neighborhood of
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the crack and the Darcy degradation function (4.61).

A remarkable feature of the viscosity scaling is that there is no explicit

dependence on a length scale associated with the discretization. This is in stark

contrast with other approaches that utilize the phase-field method to model

the hydraulic fracture problem, see [94,95]. The approach adopted in these other

models is to use Reynolds lubrication theory directly, i.e. (4.67), by solving the

Darcy equation but modifying the permeability based on the crack opening

displacement. For instance in Miehe et al. (2015) [94] the approach requires

that the stretch normal to the crack plane be multiplied by the square of a

length scale associated with the numerical discretization. A similar approach

is also used in Mikelic et al. (2015) [95].

4.4.2 Performance of the Viscosity Scaling for Arbitrarily Oriented
Cracks

The Brinkman type equation (4.62), is capable of reproducing Reynold’s

lubrication theory as described in the previous section. This result is critical

for the proper modeling of the flow within the crack. The studies conducted

in Section 4.4.1 utilized a uniform mesh with the major axis of the fracture

aligned with the structured grid. The results shown in Figures 4.2 and 4.3 are

characterized by two features of the numerical solution: 1) The deformation

within the crack localizes at the element level as discussed earlier and portrayed

in Figure 4.1. Since quadrilateral bi-linear (Q1) elements were utilized for the

displacements the resulting Jacobian of deformation in the cracked elements
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Figure 4.3: This plot shows the dependence of the fluid flux on crack opening
for the flow through a cracked strip of permeable material. The initial length
of the strip is 200`0 and the middle-most element is completely degraded as
in Figure 4.1b. The solid black line corresponds to the analytical solution
of flow between two fixed, discrete parallel plates (4.67). The purple, green,
and orange lines correspond to cases where the fluid viscosity is not scaled for
different element sizes. The red, yellow and blue lines correspond to the scaling
(4.74) for various element sizes. The scaling results in excellent agreement with
the analytical calculation for crack apertures of practical interest. The damage
zone about the crack leads to an enhanced Darcy-type behavior for situations
where the crack is essentially closed. This explains the slight discrepancy
between the scaled solutions and the Darcy solution (dotted line) where no
crack (i.e. no damage) is present. Without the scaling, accurate solutions
cannot be expected until the normalized crack aperture is on the order of the
mesh size.
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Crack Direction 

Crack Direction 

(a) (b) 

Figure 4.4: Representative elements and element deformations. (a) Crack di-
rection is aligned with element orientation. The Jacobian of the deformation
gradient is constant. (b) Crack direction is not aligned with element orienta-
tion. The Jacobian of the deformation gradient is not uniform for this element.

is constant. 2) The average fluid velocity wi is discretized using 9-noded bi-

quadratic quadrilateral elements (Q2) and, hence the parabolic profile of flow

within an element can be represented exactly.

In contrast, when the orientation of the crack does not align with the

underlying mesh, the characteristics listed above are not true in general. The

deformation within the crack still localizes at the element level; however, the

resulting Jacobian is not necessarily constant for the Q1 element. In addition,

the parabolic flow profile is not attainable for an element with an arbitrary

orientation with respect to the direction along the crack length. Figure 4.4

illustrates two distinct types of element-wise deformation for the Q1 element.

The consequence of these responses is that the lubrication theory result
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Figure 4.5: This figure shows the revisited results of Figure 3 for cases where
the underlying numerical mesh is not oriented in the direction of the crack.
The red lines show the results where the element is rotated 45◦ clock-wise with
respect to the crack. The green lines show the results where the element is
rotated 26.57◦ clock-wise with respect to the crack. The blue lines represent
a mesh that is oriented in the same direction as the crack. The coefficients
in (4.76) were chosen to minimizes the error for the 45◦ case for reasonable
deformations. In both cases, the error is significantly larger for stretches ap-
proaching unity and higher. This is a consequence of element distortion. It is
important to note that even though some error is introduced by the rotated
elements, the overall cubic dependence on crack aperture is maintained.
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of Stokes’ equation is not exactly reproduced in these cases and this leads to

some solution inaccuracy associated with the mesh orientation dependence.

The resulting error may be reduced if an effective element-wise Jacobian is

chosen and used in the viscosity scaling equation (4.74). It may be chosen as

follows,

Jele = 0.7× avg[J ]ele + 0.3×max[J ]ele , (4.76)

where the first term indicates the average Jacobian in a given element and

the second term indicates the maximum Jacobian in the element, which will

always occur at an element corner for the Q1 element. The coefficients were

determined empirically based on an element oriented at 45◦ with respect to

the direction of the crack. Clearly the exact point-wise Jacobian is recovered

for deformations where the Jacobian is uniform. The calculations performed

in Section 4.4.1, specifically those illustrated in Figure 4.3, were performed

again for 2 different meshes where the majority of elements were oriented at

45◦ and 26.57◦ respectively. The results of those calculations and the meshes

themselves are shown in Figure 4.5. As can be clearly seen, the presence of el-

ements that are not aligned with the crack gives rise to some error, especially

when the deformations are large and the elements become distorted. That

being said, the problems studied in this work undergo openings in the range

of ∆uhn/`0 ≈ 10−3 − 10−1 corresponding to errors with respect to Reynolds

lubrication theory of nearly zero for the 0◦ orientation, 4% for the 45◦ orienta-

tion, and 15% for the 26.57◦ orientation within this range of relative openings.

Note that even though error is introduced for these discretizations, the cubic
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dependence of flux on crack aperture is generally maintained.

4.4.3 Fluid Loading of a Surface and Consolidation

Perhaps the most classical problem in poromechanics is Terzaghi’s con-

solidation problem [118]. A rock or soil layer of thickness L rests on a rigid

impermeable base and is subject to a constant applied traction ty = −p0 on

the top surface. The more relevant case for pressurized fractures is the case

when the applied load is the consequence of the surface being in contact with

a fluid at pressure p0. For this class of uniaxial strain problems the governing

equations for displacement and fluid pressure according to Biot theory can be

decoupled. For constant loading, Biot theory reduces to Terzaghi’s consolida-

tion theory, which gives a homogenous diffusion equation with constant coef-

ficients for the evolution of the fluid pressure field. Thus, the one-dimensional

initial-boundary value problem for fluid pressure can be written as,

∂p

∂t
− c∂

2p

∂x2
= 0 x ∈ [0, L], t ≥ 0

p = p0 x = 0 , t ≥ 0

∂p

∂x
= 0 x = L , t ≥ 0

p =
(νu − ν)

α (1− 2ν) (1− νu)
p0 x ∈ (0, L], t = 0+

c =
2κµs (1− ν) (νu − ν)

νfα2(1− 2ν)2 (1− νu)

. (4.77)

Here no distinction is made between the current and reference configurations.

The resulting pressure field can be integrated to yield the displacement ux (see
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Detournay [118]). The diffusivity coefficient, c, is dependent on the intrinsic

permeability, κ, the fluid viscosity, νf , the shear modulus of the aggregate, µs,

the Biot coefficient, α, and the Poisson’s ratio of the drained and undrained

aggregate, ν and νu. Following Detournay [118] and Coussy [95] the undrained

Poisson ratio νu may be determined in terms of the our model parameters as,

νu =
3νφ0

(
cfK − 1

)
+ α2 (1− 2ν) + 3αν (1 + φ0)

3φ0 (cfK − 1)− α2 (1− 2ν) + 3α (1 + φ0)
, (4.78)

where we use cf = 1
/
Kf and Kf is the bulk modulus of the fluid.

Note that the use of the symbol ν for Poisson’s ratios and for viscosity

is unfortunate, but is pointed out here to emphasize the distinction. The

pore pressure field at the instant of loading corresponds to the homogeneous

undrained response (i.e. if the material were loaded but fluid was not allowed

to enter or leave the system). The reason that this problem is relevant to the

phase-field fracture model is that the diffuse phase-field crack surface should

act as a permeable boundary. In other words, the solution to (4.65) subject

to the following boundary conditions,

µ = 0 X ≤ 0 , t ≥ 0

p = p0 X ≤ 0 , t ≥ 0

wx = 0 X = L , t ≥ 0

ux = 0 X = L , t ≥ 0

, (4.79)

should approximate the solution to (4.77) for 0 ≤ X ≤ L and t ≤ 0. Note

that in (4.79) the tractions on the crack surface are not specified. Figure 4.6

shows the results of calculations when the surface is identified explicitly and
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when the surface is modeled with the phase-field and compares them with

the exact solution provided by Detournay [118]. The bulk modulus and fluid

compressibility are chosen such that the undrained Poisson ratio is νu = 0.26.

The other relevant material parameters are taken as α = 0.45, ν = 0.22, and

L = 200`0. On the left plot is the displacement ux of the surface at X = 0

normalized by the initial instantaneous settlement for t = 0+,

u∗ =
p0L (1 + ν) (1− 2νu)

3K (1− 2ν) (1− νu)
, (4.80)

and on the right plot is the fluid pressure p/p0 at the impermeable boundary

at X = L as each quantity varies over the dimensionless time τ = (ct/4L2).

The results demonstrate excellent agreement between Biot theory, mix-

ture theory, and the phase-field method developed herein. The only slight dis-

crepancy that can be noticed is that the settlement of the layer at early times

is slightly greater for the phase-field formulation. This is due to the fact that

the permeability of the aggregate is increased in regions of degradation, and

thus, fluid diffusion happens more quickly near the boundary. This behavior

only affects the fields in a boundary layer on the order of the fracture surface

length scale `0. In other words, the pressure response far away from the surface

is unchanged.

4.4.4 Pressurized Cracks

The third verification of the model acts to demonstrate that the theory

is capable of properly describing the critical pressure loading levels at which
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Figure 4.6: These plots show the comparison of the phase-field approach(b) to
analytical solutions(a) for the time-dependent poroelastic consolidation pro-
cess. The pore fluid is incompressible. A normal traction is applied to the
left boundary or surface (X = 0) at time t = 0+ and the surface displace-
ment(c) and pore pressure at the right boundary (X = L)(d) are plotted as
functions of time. Note that for the phase-field description the left boundary
is not a true boundary, but rather is represented by a damaged phase-field.
In other words, this can be thought of as the right half of a symmetric pres-
surized crack. The plots demonstrate excellent agreement with the discrete
and analytical solutions to the problem. For these simulations the mesh size
is he = `0/4.
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cracks within the system should grow. As seen in the previous section, pressur-

ized fluid induces tractions on the crack faces and acts to open up the fractures.

The cracks should experience the proper deformation and must propagate at

the appropriate critical conditions. To demonstrate that the theory does in-

deed recover the aforementioned phenomena, a plane-strain center crack in an

infinite, isotropic, impermeable, elastic medium is analyzed. If the crack is

subject to a uniform pressure then this problem lends itself to a simple lin-

ear elastic fracture mechanics solution with which comparisons can be made.

The propagation of the crack for fixed pressure conditions is unstable, so the

modeling approach is to set a crack at a desired length by imposing that the

phase-field be zero along the desired length of elements. Then, the entire sys-

tem is subject to a uniform pressure that is increased until the crack begins

to propagate. The infinite domain is represented with high fidelity by using

a Dirichlet-to-Neumann map [130,131] on the outermost boundary of the circu-

lar finite element mesh. By conducting the study for various imposed crack

lengths, the theory can be verified against the linear elastic fracture mechan-

ics solution. According to linear elastic fracture mechanics, the relationship

between the critical pressure and the crack length is,

pc
σ0

=

√
`0

πa
, (4.81)

where a is the crack half-length and σ0 =
√
E ′Gc/`0.

Figure 4.7 shows the results of these calculations. As expected, the

phase-field theory reproduces the LEFM result with remarkable accuracy with
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the exception of when the crack length is short with respect to the length scale

`0. This is to be expected given that the assumption of a small-scale process

zone is no longer valid. The length scale `0 can be shown to be directly analo-

gous to the process zone size from cohesive zone descriptions of cracks like the

Dugdale-Barenblatt model as described in Chapter 2. As such, discrepancies

arise for short cracks where the process zone length scale becomes significant

in relation to the crack length a and this represents a deviation from a regime

where linear elastic fracture mechanics is applicable.

4.4.5 The Kristianovic-Geerstma-de Klerk Problem

Now we discuss the apparently simple problem of a plane strain hy-

draulic fracture in an impermeable, elastic, infinite domain subject to the

constant rate injection of an incompressible, Newtonian fluid. This geometry

is typically termed the KGD fracture geometry after Kristianovic, Geerstma,

and de Klerk [53,132]. In the last two decades, a group of researchers lead by

E. Detournay has revisited this problem, as well as a few other simple geome-

tries like the penny-shaped crack, and conducted state-of-the-art analytical

and numerical studies [57–59,133]. A concise summary of their results for imper-

meable rocks can be found in Detournay [57]. A particularly notable result in

these works is the introduction of a dimensionless parameter comparing the

material fracture toughness to the fluid viscosity,

K = 4KIc

(
3π2E ′

3
Qνf

)−1/4

. (4.82)
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Figure 4.7: This plot is a comparison of the phase-field method to the linear
elastic fracture mechanics solution for the critical pressure values for propa-
gation of a plane-strain center crack embedded in an infinite medium. For
the phase-field method a crack of given length is designated with Dirichlet
boundary conditions and the pressure is increased for the entire mesh until
the crack begins to grow unstably. The infinite medium is modeled with a
Dirichlet-to-Neumann mapping on the boundary elements of a circular mesh.
The phase-field method proposed in this work is in excellent agreement with
classical linear elastic fracture mechanics predictions. For these simulations
a graded mesh is used with the mesh size in the vicinity of the crack being
he = `0/5, Poisson ratio ν = 0.25 and

√
Gc/E`0 = 0.001.
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This dimensionless toughness can be used to delineate the dominating regime

of fracture propagation for the KGD crack, toughness versus viscosity-dominated

propagation. Based on the assumption that the crack aperture is very small in

the systems of interest and inertial terms may be neglected, the hydraulic frac-

ture problem involves two mechanisms of dissipation that drive the fracture

propagation process. In the toughness-dominated regime, where K→∞, the

energy dissipated by the flow of viscous fluid is small compared to the energy

that is dissipated at the crack tip through the creation of new fracture surfaces.

In the viscosity-dominated regime, where K→ 0, the energy dissipated by the

flow of viscous fluid is far greater than the dissipation due to the creation of

new fracture surfaces. In fact, a primary conclusion of Detournay (2004) [57]

is that when K < 1 the solution can be accurately approximated by a limit

solution constructed on the assumption that the rock has zero toughness, and

when K > 4 the solution may be approximated by a limit solution constructed

on the assumption that the injected fluid has zero viscosity.

Since no assumptions related to the viscosity or toughness have been

made in the construction of this phase-field theory, the model should be able

to capture both limiting regimes, as well as the transition between them. Fig-

ure 4.8 contains plots of the injection pressure, crack opening at the injection

site, and crack length results for a plane-strain crack subjected to a constant

injection rate for K = 54.63 (toughness-dominated (a)-(c)) and K = 0.9714

(viscosity-dominated (d)-(f)). A small initial crack of half-length a = 5`0 is

embedded in an infinite domain (again using a Dirichlet-to-Neumann map on
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Figure 4.8: Phase-field simulation comparisons to the solutions from Ref. [57]
for the 2D KGD crack configuration. (a-c) show results for the toughness-
dominated regime K = 54.63, and (d-f) for the viscosity-dominated regime
K = 0.9714 for various choices of the Darcy degradation function gD. Note
that models assuming inviscid fluid behavior cannot capture the viscosity dom-
inated regime and would predict behaviors associated with the dashed lines in
(d-f). A graded mesh is used with he = `0/5 in the vicinity of the crack, Pois-
son’s ratio ν = 0.25,

√
Gc/E`0 = 0.001, `2

0/κ = 1012, (νfQ)/(σ0`
3
0) = 8×10−16

for (a-c), and (νfQ)/(σ0`
3
0) = 8× 10−9 for (d-f).
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the outer boundary to model the infinite domain) and the crack is subjected

to a constant injection rate m̃ at its center. The normal flux of fluid on the

outer boundary of the phase-field modeled region is enforced to be zero. For

slow enough injection rates, the process resides in the toughness-dominated

regime and for high rates of injection, the crack propagates in the viscosity-

dominated regime. In each case the functional forms for gD(µ) = µ4, µ6, and

µ8 were studied. For the toughness-dominated regime the results are effectively

independent of gD(µ) and the curves for each case are indiscernible. The func-

tion gD(µ) does play a role in the viscosity-dominated regime as illustrated in

Figure 4.8. In general, the results are in very good agreement with the limit

solutions developed and outlined by Detournay [57]. The slight discrepancies

may be explained by the fact that the location of the crack tip is “blurred”

since there is a Dugdale-Barrenblatt type of process zone that exists near the

tip region in the phase-field model.

The toughness-dominated regime is characterized by uniform pressure

in the crack, and thus, the results in this regime correlate to the results where

a uniform pressure is imposed for the whole domain. On the other hand, the

viscosity-dominated regime is characterized by a non-uniform pressure distri-

bution along the length of the crack. Dotted lines on the viscosity-dominated

regime plot illustrate how the crack would behave for the prescribed injec-

tion rate if the assumption of uniform pressure were adopted. The difference

highlights the necessity of properly modeling the flow within the crack and, in

particular, its dependence on crack opening.
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Figure 4.9: These plots show comparisons of the phase-field simulation to
the solutions from Ref. [57] for the crack opening profile of the 2D KGD crack
configuration. (a) Shows results for three different time steps for a case when
fracture toughness is the dominant dissipative mechanism K = 54.63. (b)
Shows results for three different time steps for a case when fluid viscosity is
the dominant dissipative mechanism K = 0.9714. The Darcy degradation
function gD(µ) = µ8 was used for these calculations.
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Figure 4.10: These plots show comparisons of the phase-field simulation to
the solutions from Ref. [57] for the crack pressure profile of the 2D KGD crack
configuration. (a) Shows results for three different time steps for a case when
fracture toughness is the dominant dissipative mechanism K = 54.63. (b)
Shows results for three different time steps for a case when fluid viscosity is
the dominant dissipative mechanism K = 0.9714. The Darcy degradation
function gD(µ) = µ8 was used for these calculations.
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Figures 4.9 and 4.10 illustrate the comparison between the phase-field

calculations and the analytical solution for crack opening and fluid pressure

respectively. As with the other quantities characterizing the process in Fig-

ure 4.8, these plots demonstrate reasonable agreement between the phase-field

model and the analytical solutions for the crack opening profiles as a function

of time. As previously mentioned, the analytic solutions used for compari-

son correspond to the limit solutions which contain a singularity in pressure

for the viscosity dominated case. Much like the K-field solution discussed in

Chapter 2 the phase-field model is not capable of reproducing the singularity.

4.4.6 Multiple Crack Interaction

Here, for illustrative purposes, we show results of a calculation where

fluid is injected into a small center crack (half-length a = 10`0) that then

propagates and merges with two “natural” outer cracks. The overall domain is

a rectangle with dimensions of 160`0×80`0. The surface normal displacements

and surface normal fluid flux on the outer boundaries are zero. After merging,

fluid fills the natural cracks and they begin to propagate from each end in

a deflected direction. Contour plots describing the fluid pressure and crack

geometry are shown for four different time steps in Figure 4.11. For this

simulation the Biot coefficient is α = 0.45, and the initial porosity is φ0 =

0.1. As in the consolidation solution, an increase in pore pressure is observed

in the undamaged material surrounding the crack. Figure 4.12 shows the

injection pressure as a function of fluid volume injected into the middle crack.
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(a) (b)

(c) (d)

Figure 4.11: A merging crack simulation with injection of fluid into the mid-
dle crack at a constant rate. Solutions for the fluid pressure and phase-field
fracture parameter are shown for four different time steps, (a)V/`3

0 = 0.1,
(b)V/`3

0 = 0.85, (c)V/`3
0 = 0.9, and (d)V/`3

0 = 3.5. A uniform mesh with
he = `0/2 is used, Poisson’s ratio ν = 0.25,

√
Gc/E`0 = 0.001, `2

0/κ = 1014,
α = 0.45, φ0 = 0.1, cf/ρf0 = 0.01364, and (νfQ)/(σ0`

3
0) = 5× 10−12.
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Figure 4.12: A plot of the injection pressure versus the volume of fluid injected
into the middle crack. The dip in pressure corresponds to the moment that the
middle crack merges with the outer cracks. Labels are included that correspond
to the snap shots in Figure 4.11.

The merging of the three cracks corresponds with a drop in the injection

pressure as it takes time for the natural cracks to completely open and fill with

fluid. Although it is not necessarily geologically relevant in its simplicity, this

simulation provides an example of the capabilities of the modeling approach to

capture complex behaviors such as crack merging and non-planar propagation.

Another interesting calculation that exhibits the model capabilities is

the simultaneous propagation of several parallel cracks. In the simulation

shown in Figure 4.13 two or three cracks of initial length 10`0 are generated
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(a) (b)

(c) (d)

Figure 4.13: Simultaneous injection of multiple parallel cracks. (a,c) Two
cracks with an initial spacing of 20`0. (b,d) Three cracks with an initial spacing
of 15`0. The initial length of each crack is 10`0.
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in a large block of material (2000`0×2000`0). The spacing between the cracks

is 20`0 for the two cracks and 15`0 for the three cracks. Then, each crack is

subjected to an equal constant rate of fluid injection. The presence of the

multiple cracks have a “stress shadow” effect on one another and, as a result,

the cracks tend to propagate in a direction away each other. In the case where

three cracks are present the propagation of the middle crack is stunted by

the presence of the cracks on the outside. A good understanding of these

interactions is important as simultaneous injection of multiple fractures from

horizontal wells is becoming common practice in the petroleum industry. The

propagation of these cracks is also heavily influenced by the insitu stress state

in the rock, which could easily be implemented in the model as force boundary

conditions. A clear advantage of the approach is that no additional degrees of

freedom are needed as the number of initial fractures is increased, as long as

there is sufficient mesh resolution in the vicinity of the added fractures.
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Chapter 5

Summary and Future Directions

The advantages of the variational approach to modeling fracture have

been well established in the decades since the inception of the approach. The

main contribution of this work is the extension of the model to the fracture of

piezoelectric ceramics and the fluid driven fracture of poroelastic solids. The

general construction of the phase-field approach to fracture was reviewed and

a framework that utilizes fundamental balance laws and thermodynamic anal-

yses was introduced. This framework allows for the systematic development

of constitutive relationships from a single free energy functional governing all

the physics in the solid. All that is left is to choose the form of the free energy

such that the appropriate crack face boundary conditions are reproduced.

An analysis of the crack tip behavior of the phase-field model was con-

ducted for the purely mechanical case. The results suggest that the model

behaves in a similar fashion to a cohesive zone model, where the process zone

is proportional to the phase-field regularization parameter `0. The model was

compared to the somewhat simplistic Dugdale-Bareblatt model which assumes

constant cohesive tractions at the crack tip. Potential future investigations

could include comparisons of the model with more sophisticated cohesive zone
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laws. Also, direct extraction the traction separation relationship from the

phase-field solution could be possible, but is not trivial due to the non-locality

of the crack opening displacement.

Next, a phase-field model was introduced to capture the quasi-static

propagation of cracks in piezoelectric ceramics for four distinct crack-face

boundary condition approaches. Both a small deformation linear kinemat-

ics framework and a finite deformation framework were developed to describe

linear piezoelectric response. Another degradation function was introduced

to address undesired consequences of the classic quadratic function when ex-

tended to include electro-mechanical coupling. A number of numerical simula-

tions were presented that detail, separately, the onset of crack-closing tractions

in the presence of electrical field when the energetically consistent crack-face

boundary conditions are adopted, the contrasting influence of applied electric

fields when each of the different crack-face boundary conditions are imple-

mented, and the influence of applied electric field on resulting fracture geome-

tries.

As mentioned above, a strength of this phase-field approach is that all

of the physics, including the evolution of new surfaces created by fracture, are

contained within a single free-energy functional. Thus, all fracture phenomena,

including growth, turning, and branching naturally result from the solution of

the governing balance laws with the constitutive relations at hand. This is

particularly useful in a piezoelectric setting, where the behaviors of a crack

are highly dependent on the electro-mechanical coupling within the material
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and the boundary conditions that are assumed to exist on the crack faces. As

illustrated by [41], the formulation can be extended to ferroelastic materials in

which the electro-mechanical coupling becomes even more complex. In con-

trast, approaches that identify explicit fracture surfaces require constitutive

rules for crack growth, turning, branching, and initiation. Additionally, nu-

merical procedures (element splitting, basis enrichment, etc.) are required to

administer each of these rules, which can become unwieldy especially in three

dimensions. The phase-field approach obviates the need for any such rules or

special numerical procedures other than perhaps adaptive mesh refinement,

which can also be of use for these other approaches. It should be recognized

that the phase-field approach implicitly enforces a crack growth criterion based

upon a critical total energy release rate. For piezoelectric and ferroelectric ma-

terials such a condition is necessary for crack growth, but it is not necessarily

sufficient. A decisive set of experiments that is able to account for the effects

of ferroelectric switching and electrical discharge or drift across the crack gap

that can clearly identify a fundamental crack growth criterion has yet to be

devised and performed for such materials. Hence, the predictive capabilities of

the present form of the phase-field approach is limited by the physical veracity

of the mode-independent critical energy release rate crack growth criterion.

If a valid mode-dependent crack growth criterion is established then such be-

havior can be included within the phase-field modeling approach via either a

mode-dependent degradation function, or a mode-dependent fracture energy.

Lastly, this work has outlined the development of a phase-field model
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for describing the fracturing of a fluid-saturated porous continuum. The gov-

erning equations were again derived in a general framework through the means

of fundamental balance laws and Coleman-Noll thermodynamic analysis type

procedures. In addition, specific constitutive equations were provided to re-

cover Biot theory in the bulk and incompressible Stokes flow inside cracks. The

numerical implementation of these equations was briefly described and several

simple solutions were analyzed to verify the expected behavior of the model.

With the help of a finite-deformation framework for the governing equations

and a mesh-independent viscosity scaling approach, the theory was shown to

recover the proper dependence of fluid flow on crack opening displacement

when aligned with the underlying mesh.

One short coming of the current model, however, is that some error is

induced in the flow calculations when cracks propagate at angles oblique to

the mesh. Some tentative investigations have been conducted on implementing

more sophisticated discretization schemes to mitigate the error. An attractive

option is the divergence-free B-spline discretizations developed by Evans and

Hughes [134]. These basis functions possess the added advantage that mass bal-

ance for the Darcy-Brinkman-Stokes equations is satisfied exactly, as opposed

to the satisfaction in the weak sense in the current approach. It’s anticipated

that the smoothness of the basis will diminish the ill-effects associated with

oblique crack propagation. The difficulty here lies in the fact that the Jacobian

of the deformation is not constant in the crack if higher-order basis function

are used. The scaling developed in Chapter 4 utilizes the fact that the Jaco-
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bian is constant, and the derivation of a scaling for more general cases proves

to be cumbersome (see Appendix C).

The current model was also verified against simple problems in consol-

idation theory and linear elastic fracture mechanics. Then, the significantly

more complex problem of a plane-strain crack subject to uniform fluid injection

was investigated. The model was shown to compare favorably to the asymp-

totic solutions developed by Detournay et al. [57] for both situations where

fracture toughness is the dominant dissipation mechanism and where fluid vis-

cous drag is the dominant dissipation mechanism. Successfully representing

both regimes without introducing any regime-dependent constitutive relation-

ships demonstrates the robustness of the modeling approach. Lastly, a couple

of model problems that demonstrate the true advantages of a phase-field ap-

proach to fracture were described. Crack interactions that resulted in crack

path deflection and merging were observed. These phenomena were shown to

have a significant impact on fluid injection pressure response. With the confi-

dence established by the favorable comparison to simple analytical solutions,

it has been shown that the phase-field model for fracture can be a power-

ful tool in understanding many of the more complex behaviors that occur in

multi-physics problems.

135



Appendices

136



Appendix A

Energy Transformations

Here we demonstrate the transformations between energy functions for

piezoelectricity. Consider a Helmholtz free energy for conducting crack-face

boundary conditions of the form,

ψ = ψ̄(fεij︸︷︷︸
ε̄ij

, fDi︸︷︷︸
D̄i

) + ψµ(µ, µ,i) (A.1)

σij = f
∂ψ̄

∂(fεij)
, Ei = f

∂ψ̄

∂(fDi)
,

η = f ′εij
∂ψ̄

∂(fεij)
+ f ′Di

∂ψ̄

∂(fDi)
+
∂ψµ

∂µ
, ξi =

∂ψµ

∂µ,i

Next, consider a full Legendre transformation on the electrical and mechanical

terms to define the Gibbs free energy as,

g = ψ − σijεij − EiDi (A.2)
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The variation of the Gibbs free energy is,

δg = δψ − σijδεij − εijδσij − EiδDi −DiδEi

=
∂ψ̄

∂(fεij)
(f ′εijδµ+ fδεij)

+
∂ψ̄

∂(fDi)
(f ′Diδµ+ fδDi) +

∂ψµ

∂µ
δµ+

∂ψµ

∂µ,i
δµ,i

− σijδεij − εijδσij − EiδDi −DiδEi

= −εijδσij −DiδEi +
∂ψµ

∂µ,i
δµ,i +

[
f ′εij

∂ψ̄

∂(fεij)
+ f ′Di

∂ψ̄

∂(fDi)
+
∂ψµ

∂µ

]
δµ

= −εijδσij −DiδEi +
∂ψµ

∂µ,i
δµ,i +

[
f ′

f
εijσij +

f ′

f
DiEi +

∂ψµ

∂µ

]
δµ

(A.3)

Next, assume the Gibbs free energy can be written in the form,

g = ḡ(σij/f︸ ︷︷ ︸
σ̄ij

, Ei/f︸ ︷︷ ︸
Ēi

) + gµ(µ, µ,i) (A.4)

Now, the variation of the Gibbs free energy is written as,

δg =
∂ḡ

∂(σij/f)
(δσij/f − δµf ′σij/f 2)

+
∂ḡ

∂(Ei/f)
(δEi/f − δµf ′Ei/f 2) +

∂gµ

∂µ
δµ+

∂gµ

∂µ,i
δµ,i

=
1

f

∂ḡ

∂(σij/f)
δσij +

1

f

∂ḡ

∂(Ei/f)
δEi +

∂gµ

∂µ,i
δµ,i

−
[
f ′

f 2

∂ḡ

∂(σij/f)
σij +

f ′

f 2

∂ḡ

∂(Ei/f)
Ei −

∂gµ

∂µ

]
δµ

(A.5)

However, enforcing the equality of the two forms of δg for arbitrary variations

of the stress and electric field yields,

δσij, δEi arbitrary→ εij = − 1

f

∂ḡ

∂(σij/f)

Di = − 1

f

∂ḡ

∂(Ei/f)

(A.6)
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This allows us to write a reduced form for δg as,

δg = −εijδσij−DiδEi +

[
f ′

f
εijσij +

f ′

f
DiEi +

∂ψµ

∂µ

]
δµ+

∂ψµ

∂µ,i
δµ,i

=
∂gµ

∂µ
δµ+

∂gµ

∂µ,i
δµ,i

(A.7)

Finally, this reduced equality must hold for arbitrary variations of δµ and δµ,i

yielding,

δµ, δµ,i arbitrary→
∂ψµ

∂µ
=
∂gµ

∂µ
,

∂ψµ

∂µ,i
=
∂gµ

∂µ,i
(A.8)

The final set of relationships can be collected in the following forms.
∂ψµ

∂µ
=
∂gµ

∂µ
,

∂ψµ

∂µ,i
=
∂gµ

∂µ,i

σij/f =
∂ψ̄

∂(fεij)
= σ̄ij(ε̄ij, D̄i)

Ei/f =
∂ψ̄

∂(fDi)
= Ēi(ε̄ij, D̄i)

fεij = − ∂ḡ

∂(σij/f)
= ε̄ij(σ̄ij, Ēi)

fDi = − ∂ḡ

∂(Ei/f)
= D̄ij(σ̄ij, Ēi)

(A.9)

The first set of equations implies that, without any effect on the derived micro-

force quantities, we can take ψµ = gµ. The next sets of equations imply

that the ε̄ij(σ̄ij, Ēi) and D̄ij(σ̄ij, Ēi) constitutive relationships are the inverse

of the σ̄ij(ε̄ij, D̄i) and Ēi(ε̄ij, D̄i) form. For a general nonlinear constitutive

relationship, such an inverse may not be possible to obtain. However, for linear

piezoelectric materials the inversion is well-known. Hence, the Helmholtz and

Gibbs free energies for a material with conducting cracks are written as,

ψ̄ = 1
2
f 2cDijklεijεkl − f 2hkijDkεij + 1

2
f 2βεijDiDj

ḡ = −1
2
sEijklσijσkl/f

2 − dkijEkσij/f 2 − 1
2
κσijEiEj/f

2
(A.10)
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The electrical enthalpy, is then just a partial Legendre transformation on the

electrical terms, and a partial inversion of the constitutive relationships, and

is written as,

h̄ = h̄(fεij, Ei/f)

= 1
2
f 2cEijklεijεkl − ekijEkεij − 1

2
κεijEiEj/f

2
(A.11)

Note that the relationships between the various forms of the elastic, piezo-

electric, and dielectric coefficients are well-known, and once one set has been

determined the others can be computed via simple linear algebraic manipula-

tions.
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Appendix B

Comparison of the Implementation of
Electro-mechanical Boundary Conditions with

Other Purposed Methods

Here we compare our approach for the construction of the phase-field

electrical enthalpy for permeable crack face boundary conditions to another

appearing in the literature. To greatly simplify the demonstration we resort

to a simple one-dimensional model with homogeneous fields. For this case, the

electrical enthalpy, h, of a linear piezoelectric material is given as,

h = 1
2
cEε2 − eεE − 1

2
κεE2 (B.1)

Here cE is the elastic stiffness at constant electric field, E, e is the piezoelectric

coefficient, and κε is the dielectric permittivity at constant strain, ε. For the

construction of the phase-field free energy we will use the degradation function

f(µ) = µ, which leads to the phase-field free energy,

h = 1
2
µ2cEε2 − µeεE − 1

2
κεE2 +

Gc

4l0
(µ− 1)2 (B.2)

This is in contrast to that used by Abdollahi and Arias [41] (AA) who proposed

to degrade all energy terms including strain in with the same functional form,

hAA = 1
2
µ2cEε2 − µ2eεE − 1

2
κεE2 +

Gc

4l0
(µ− 1)2 (B.3)
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The solutions to the phase-field order parameter for each of these cases is,

∂h

∂µ
= µcEε2 − eεE +

Gc

2l0
(µ− 1) = 0

→ µ =
Gc/2l0 + eεE

Gc

/
2l0 + cEε2

(B.4)

and
∂hAA

∂µ
= µcEε2 − µeεE +

Gc

2l0
(µ− 1) = 0

→ µAA =
Gc/2l0

Gc

/
2l0 + cEε2 − eεE

(B.5)

Within the regions identified as cracks the strain becomes singular and the

limiting forms for the order parameters become,

µ ≈ eE

cEε
and µAA ≈ 1

cEε2
for large ε (B.6)

These results can now be applied within the stress and electric displacement

relationships as,

σ =
∂h

∂ε
= µ2cEε− µeE = 0

D = −∂h
∂ε

= µeε+ κεE =

(
κε +

e2

cE

)
E





as ε→∞ (B.7)

Notice that the electric displacement is now related to the electric field by the

dielectric permittivity at constant stress σ, κσ = κε + e2/cE, which is exactly

the behavior that should be recovered near a permeable crack. In contrast,

the stress and electric displacement from the enthalpy form used by AA are,

σ =
∂h

∂ε
= µ2cEε− µ2eE = 0

D = −∂h
∂ε

= µ2eε+ κεE = κεE





as ε→∞ (B.8)
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which does not recover the desired behavior near permeable cracks. This

may be viewed as a small correction, but the question persists for nonlinear

material models. The approach described herein offers a concrete procedure

for transforming any electromechanical energy functional into one suitable for

applications within the phase-field fracture framework.
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Appendix C

Alternative Derivation of the Equivalent Flux
Viscosity Scaling

Here we described an alternative form of the derivation for scaling the

viscosity inside a phase-field crack. This derivation is more general than that

presented in Chapter 4 and will be shown to recover the result (4.69). We will

restrict our analysis to one-dimension and will define the y direction as the

direction normal to the crack surface such that,

uy = f(y), wx = g(y), ux = uz = wy = wz = 0 (C.1)

Let uhy be the discretization of the crack opening displacement such that

uhy (−h/2) = −∆un/2 and uhy (h/2) = ∆un/2 which means that all the crack

opening displacement occurs over −h/2 ≤ y ≤ h/2. The material stretch can

then be written as,

λy = λn = 1 +
∂uhy
∂y

, (C.2)

and clearly satisfies, ∫ h/2

−h/2
(λn − 1) dy = ∆un . (C.3)

The derivation will take advantage of a few idealizations. First, the

phase-field µ is taken to be zero everywhere within the crack (i.e. −h/2 ≤
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y ≤ h/2). Thus, only terms governing Stoke’s flow will appear in the fluid

momentum balance equation (4.62) over the domain of interest. Next, the

flow whx will be taken to be zero at the crack walls (whx(±h/2) = 0), effectively

simulating a crack in an impermeable surrounding medium. With whk,k = 0,

the simplified one-dimensional form of the fluid momentum balance (4.62) is,

0 =

(
1

λn
νfFν(λn)whx,y

)

,y

− λnp,x , (C.4)

where Fν(λn) is the yet unknown viscosity scaling function. We need only to

solve this equation in the weak sense, or,
∫ h/2

−h/2

(
1

λn
νfFν(λn)whx,yδw

h
x,y + λnp,xδw

h
x

)
dy , (C.5)

where we have applied the divergence theorem and used the fact that δwhx(±h/2) =

0. Also, the total flux in the crack is,
∫ h/2

−h/2
λnw

h
xdy = q . (C.6)

The goal of the scaling is to reproduce the lubrication theory result, i.e.,

q =
−p,x(∆un)3

12νf
. (C.7)

We now make the assumption that the individual forms of the fluid

flow and stretch are known a priori,

whx = w0Nw(y) and λn = 1 + ε0Nλ(y) . (C.8)

From (C.3),

ε0 =
∆un∫ h/2

−h/2Nε(y)dy
, (C.9)
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and from (C.6) and (C.7),

w0 =
−p,x(∆un)3

12νf
[∫ h/2
−h/2Nw(y)dy + ∆un

∫ h/2
−h/2Nε(y)Nw(y)dy∫ h/2
−h/2Nε(y)dy

] (C.10)

Combining with (C.5) gives,

(∆un)3

12

∫ h/2

−h/2


 Fν(λn)

1 + ∆unNε(y)∫ h/2
−h/2Nε(y

′)dy′

(
dNw

dy

)2


 dy

=



∫ h/2

−h/2
Nw(y)dy + ∆un

∫ h/2
−h/2Nε(y)Nw(y)dy
∫ h/2
−h/2Nε(y)dy




2
(C.11)

Hence, the scaling function Fν should be chosen such that (C.11) is satisfied.

Unfortunately, to date no general solution strategy had been developed for

(C.11). The equation is significantly reduced when the stretch is chosen to be

constant, or Nε(y) = 1,

Fν(λn) = 12

(
1 + ∆un/h

∆un

)3

(∫ h/2
−h/2Nw(y)dy

)2

∫ h/2
−h/2

(
dNw
dy

)2

dy
. (C.12)

Now, if a quadratic polynomial is chosen for fluid flow as in Chapter 4,

Nw(y) =

(
1−

(
2y

h

)2
)

, (C.13)

then the scaling function is,

Fν(λn) =

(
1 + ∆un/h

∆un/h

)3

=

(
λn

λn − 1

)3

(C.14)

which is the same result as derived in Chapter 4.
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Appendix D

Dimensionless Form of the Model Equations

First we define the following dimensionless strain scaling parameter,

ε0 ≡
√

Gc

E`0

, (D.1)

and define a dimensionless coordinate system such that,

x̄i ≡
xi
`0

, ūi ≡
ui
ε0`0

. (D.2)

The normalized small strain tensor is,

ε̄ij =
1

2

(
∂ūi
∂x̄j

+
∂ūj
∂x̄i

)
=
εij
ε0

(D.3)

The Hemhotlz free energy (2.23) can be normalized as,

ψ̄ ≡ ψ

Eε2
0

=
1

2
fd(µ)

cijkl
E

(
εij
ε0

)(
εkl
ε0

)
+

1

4
(1− µ)2 + (`0µ,i) (`0µ,i) , (D.4)

where E is some characteristic material modulus. For the isotropic case E is

Young’s modulus. We now define the following stiffness tensor,

c̄ijkl ≡
cijkl
E

, (D.5)

and rewrite the normalized Hemholtz free energy as,

ψ̄ =
1

2
fd(µ)c̄ijklε̄ij ε̄kl +

1

4
(1− µ)2 +

∂µ

∂x̄i

∂µ

∂x̄i
. (D.6)
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New constitutive relationships can be developed in a similar fashion as,

∂ψ̄

∂ε̄ij
=

σji
Eε0

≡ σ̄ji

∂ψ̄

∂
(
∂µ
∂x̄i

) =
ξi

Eε2
0`0

≡ ξ̄i

−∂ψ̄
∂µ
− β

Eε2
0

µ̇ =
π

Eε2
0

≡ π̄

. (D.7)

Thus, the normalized weak form statement:

Find ūi ∈ Sūi and µ ∈ Sµ such that for all δūi ∈ Vūi and δµ ∈ Vµ,

∫

V

(
σ̄jiδε̄ij − π̄δµ+ ξ̄i

∂δµ

∂x̄i

)
dV =

∫

V

(
b̄iδūi + γ̄δµ

)
dV +

∫

S

t̄iδūidS . (D.8)

where,

b̄i ≡
bi`0

Eε0

, t̄i ≡
ti`0

Eε0

and γ̄ ≡ γ

Eε2
0

. (D.9)

A nice advantage of the normalized formulation is that in the absence of body

forces and under boundary conditions that are traction free or displacement

controlled, only the material parameters ν, ε0 and `0 are needed to construct

a solution for ui and µ.

Normalization of the piezoelectric model equations proceeds in basi-

cally the same fashion as above. For the poroelasticity model equations, the

flow equations require extra consideration. First, we simply extend the above

normalizations to the finite deformation theory,

FiJ =
∂xi
∂XJ

=
∂ui
∂XJ

+
∂Xi

∂XJ

= ε0
∂ūi
∂X̄J

+
∂X̄i

∂X̄J

. (D.10)
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Next we adopt the following normalizations,

p̄ ≡ p

Eε0

, κ̄ ≡ κ

`2
0

, ρ̄f =
ρf

ρf0
, w̄i ≡

wit0
`0

and ν̄f ≡ νf

t0Eε0

.

(D.11)

Here we have introduced a characteristic time scale t0 and a reference fluid

density ρf0 . Also, the normalized deviatoric fluid stress is,

τ̄ji ≡
t0τji
Eε0

. (D.12)

and normalized external sources are defined as,

m̄ ≡ m̃ t0 and t̄fi ≡
t̃fi `0

Eε0

. (D.13)

With these definitions in hand, we can now write the normalized weak form

of the fluid momentum balance and fluid mass balance by dividing the corre-

sponding terms in (4.66) by Eε0/t0. This gives,
∫

V0

[(
τ̄jiJF

−1
Jj − p̄JF−1

Ji

) ∂δw̄i
∂X̄J

+ gD(µ)
ν̄f

κ̄
Jw̄iδw̄i

]
dV0

∫

V0

[
−
(

1

ρ̄f

.(
φρ̄fJ

)
+JF−1

Ji

∂w̄i
∂X̄J

+
1

ρ̄f
∂ρ̄f

∂X̄J

JF−1
Ji w̄i

)
δp̄

]
dV0

=

∫

V0

(−m̄δp̄) dV0 +

∫

S0

t̄fi δw̄idS0

. (D.14)
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Appendix E

Tension/Compression Asymmetry for Biot
Theory

Consider the poro-enthalpy (4.50) defined in Chapter 4 meant to recover

linear Biot poroelastic theory. Specifically, consider the Biot coefficient cross

term, namely,

(1− φ0) J0ρ
s
0Ωs = . . .− [α + (1− α) gm(µ)] (J − 1) p+ . . . (E.1)

Typical materials involved in hydraulic fracturing are deep within the earth’s

crust and are subject to very large compressive stress states. Due to the

phase-field coupling in the above expression, large but geologically realistic

compressive strains and pore-pressures act to significantly perturb the phase-

field response in the material. We propose a tension/compression asymmetry

that is similar in spirit to the tension/compression decomposition of the strain

energy,

(1− φ0) J0ρ
s
0Ωs = . . .− α (J − 1) p− FB(α, φ0, J, µ)p+ . . . , (E.2)

where,

FB =





(1− α) (J − 1) gm(µ) ; J ≥ 1

−CBφ0

(
1− e(1−α)(J−1)gm(µ)/(CBφ0)

)
; J < 0

(E.3)
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The positive constant CB should be chosen to be small compared to 1 and

controls the sharpness of the transition between tensile response and compres-

sive response. A smaller CB corresponds to a sharper transition. The corre-

sponding terms in the stress, porosity, and micro-force in (4.56) and (4.57) are

unchanged when J ≥ 1. However, for J < 1 they take the form,

φJ = . . .+ α (J − 1)− CBφ0

(
1− e(1−α)(J−1)gm(µ)/(CBφ0)

)
+ . . .

PJi = . . .− αJF−1
Ji p− (1− α) gm(µ)e(1−α)(J−1)gm(µ)/(CBφ0)JF−1

Ji p+ . . .

π̃ = . . .+ gm
′(µ) (1− α) (J − 1) e(1−α)(J−1)gm(µ)/(CBφ0)p+ . . .

(E.4)

Furthermore, the term involving the Biot tangent modulus can be linearized

about a reference pressure such that,

(1− φ0) J0ρ
s
0Ωs = . . .−[1− gm(µ)]

p2

2N
+. . . →

{
− [1− gm(µ)]

(p− p0)2

2N

}

(E.5)
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