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This work puts Isogeometric Analysis, a new analysis fraor&Wor computational engineering
and sciences, on a firm mathematical foundation. FEM-lilk®ith is developed in which optimal
in h approximation properties for NURBS spaces with boundanditmns and inverse estimates
are shown. This, in turn, grants straightforward extersiofiithe theory to stabilized formulations
of incompressible and advection dominated phenomena.

This work also continues the development of residual-basdailence models for incom-
pressible fluid flow based on the multiscale paradigm. Nawddulent closures, inspired by well-
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pressible flow solver that was written as a part of this work.

The latter part of this dissertation focuses on the fluidestire interaction (FSI) problem. A
fully-coupled FSI formulation is proposed and a methodyplfay deriving shape derivative jacobian
matrices is presented, allowing for a monolithic solutiémhe FSI system at the discrete level, and

rendering the fluid and structural computations more roblibiese ideas are implemented in the
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form of an isogeometric parallel fluid-structure interantisolver. This technology is used to per-
form computations of contemporary interest and importangatient-specific vascular simulation

and modeling.
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Chapter 1

Introduction

This dissertation makes an attempt to establish Isoge@mwetealysis as a bona-fide analysis frame-
work for solving problems of contemporary interest and intigace in computational engineering
and sciences. It also focuses on the design of novel forrook@nd numerical procedures for
computation of turbulent fluid flow and fluid-structure irgetion, using isogeometric analysis as a
platform for these developments.

1.1 Background and Motivation

1.1.1 Isogeometric Analysis

Isogeometric analysis based on NURBS (non-uniform ratiBreplines) was introduced in [52] and
further expanded on in [18]. The objectives of isogeometnialysis are to generalize and improve
upon Finite Element Analysis (FEA) in the following ways: T provide more accurate modeling
of complex geometries and to exactly represent common eagirg shapes such as circles, cylin-
ders, spheres, ellipsoids, etc.; 2) To fix exact geomettitiseacoarsest level of discretization and
eliminate geometrical erro@b initio; 3) To vastly simplify mesh refinement of complex industrial
geometries by eliminating the necessity to communicath thi¢ CAD description of geometry; 4)
To provide systematic refinement procedures, includingsital - and p-refinements analogues,
and to develop a newk“refinement” procedure that increases the smoothness atveiywhere

of element functions beyond the standart-continuity of finite elements and exhibits improved
accuracy and efficiency compared with classjeaiefinement. The references [18, 52] provide a
comprehensive introduction to the main ideas and procsedamed computational verification of
its veracity and potential. In particular, optimal inconvergence rates with respect to the poly-
nomial order were attained for linear elasticity exampled eonvergence to thin shell solutions
was observed. The-refinement strategy was shown to converge to monotoneicadutor linear



advection-diffusion examples with sharp internal and lofaum layers. Further study of isogeomet-
ric analysis showed that results superior to standard felments are obtained in the context of
structural vibrations.

In a sense, isogeometric analysis is a superset of FEA. &tdhd and p-methods can be
reproduced, but isogeometric analysis includes direstaond possibilities not available in standard
FEA. Some of these have been explored in [18, 52] and manysoithentified. At the same time,
isogeometric analysis has many features in common with FEparticular, it invokes the isopara-
metric concept in which dependent variables and the gegrsbare the same basis functions. We
note that, despite the geometry being fixed at the coarsedtdédiscretization, the mesh, and the
corresponding basis, can be refined and order-elevated miiintaining the original exact geome-
try. The isoparametric concept possesses important giepeelevant to the analysis of structures
(see [44, 52]) and the Lagrangian description of continunedia for which the geometry and mesh
need to be updated by the displacement field.

The above developments create an opportunity for a sucteggblication of the isogeo-
metric methodology to computational fluid dynamics, in jgatar, turbulent flows (the pioneering
studies of boundary layer turbulence [62, 63, 65, 89] shbaldhentioned in this regard), and fluid-
structure interaction (FSI), which are primary goals o$tilissertation. Both areas present a great
challenge to the Computational Mechanics community aelaagd are of great interest to Sandia
National Laboratories and the Office of Naval Research, wagrprimary sponsors of this work.

1.1.2 Turbulence Modeling and Simulation

Classically, and to this day, turbulence modeling and st is classified, according to the com-
putational effort involved, into RANS (Reynolds-Averagsdvier-Stokes), LES (Large-Eddy Sim-
ulation), and DNS (Direct Numerical Simulation), RANS bgithe least expensive and DNS being
the most costly. In RANS only the very large scales of the flogvratained in the computations
and most of the time steady solutions are sought. Becauds imexpensive nature RANS is the
most popular technology when it comes to large-scale indlistomputations. The major draw-
back of RANS is the fact that it heavily relies on models which “tuned” for very specific flow
conditions and geometrical configurations. This casts dshaf doubt on predictive capabilities
of RANS technology. For a good comprehensive review of RAlNBuUlence modeling see Wilcox
[113]. DNS, as can be inferred from its name, resolves the #ttvthe way down to the Kol-
mogorov scales, the smallest eddies present in the flow (@ee [BO] for details and definitions).
The following estimate is widely used in computational fldichamics

N ~ Re%/*, (1.1)



whereN is the number of points neccessary to fully resolve a turtitdlew in a 3-dimensional cube
in the absence of boundary layefge appearing in (1.1) is the Reynolds number of the flow, which
is typically several thousand or several million for a vrief industrial applications. It is precisely
relation (1.1) that makes DNS prohibitively expensive tplgpo flows of industrial interest.

While RANS and DNS are on the opposite ends of the spectrumrimst of the computa-
tional expense, LES falls somewhere in between the twomese Kolmogorov theory of cascade
(see Pope [80]) postulates the existence of the so-cialgtial sub-range Inertial sub-range refers
to the set of scales in the flow which are smaller than the oinestly affected by geometry, bound-
ary conditions, and forcing (here assumed to be confinedetdothiest wave numbers) yet larger
than the ones dominated by the viscosity. It is believed shates in the inertial subrange behave
in a universal fashion and, on average, transfer energy faoge or energy carrying, to small or
viscous scales by means of a nonlinear mechanism which éeted in the structure of the incom-
pressible Navier-Stokes equations (INS). LES places adfflisomewhere in the inertial subrange
and aims to represent the energy carrying scales and apmatexihe effect of the smaller scales on
them. Universality of the scales in the inertial sub-rangeaty simplifies the modeling task. The
above mentioned characteristics render LES more accurateRANS and much less expensive
than DNS.

As a starting point of the classical LES developments a natiba spatial filter, possess-
ing the properties of homogeneity and symmetry (see thengrbueaking paper of Leonard [67]),
is introduced. This filter induces the separation of large small spatial scales in the flow field.
Application of this filter to the INS supplemented with a alos model for the resultant “sub-grid”
stress (the main difficulty in LES modeling) yields a systerhBS equations, now written in terms
of the filtered quantities. A variety of closures exist, thestpopular ones (for example Smagorin-
sky type models, see [91], [34]) make useadfhocnonlinear viscosities to represent the sub-grid
stress. LES equations are then approximated numericatlytive grid size capable of representing
scales in the inertial sub-range. LES is successfully egpb a variety of important turbulent flows,
yet the structure of the methods and models often requinglicapplication of the so-called test
filters and the presence of the homogeneous directions ificile This renders classical LES pro-
cedures cumbersome to properly extend to complex georaketdanfigurations. On the theoretical
side, very little justification is given to the exact form bktmodel terms. From the standpoint of
numerical analysis, addition @fd hocnonlinear viscosities upsets the consistency of the method
rendering higher-order approaches useless, as the asistrror will always dominate the ap-
proximation error.

In order to circumvent serious drawbacks of the classic& Eamework, Hughes, Mazzei
and Jansen [48] proposed the variational multiscale mefdiM or VMS), in which a concept
of filtering was abandoned in favor of the a-priori scale safi@n via variational projections, and



models based on eddy viscosities were included in the ssoale equations only, while consistency
was preserved in the large-scale equations. The static @ddgsity based on the Smagorinsky
model version of the VMM was studied in Hughesal. [49], Hughes, Oberai, and Mazzei [50],
and Oberai and Hughes [75]. The model was found to work velly/farehomogeneous isotropic
flows and fully developed, equilibrium and non-equilibriutarbulent channel flows. The dynamic
version of the VMM based on the Germano procedure [34] wasdda Holmenet al. [42] and
Hughes, Wells and Wray [55]. Results superior to the stabdehwere reported. Of note are a
series of works by Ramakrishnan and Collis [81-84] who exguldVMS in the context of a DG
formulation of compressible flow as well as that of Farhat adbus [24], and Koobus and Farhat
[61], who obtained good results with the unstructured grddivolume compressible flow code.

While theoretically more sound, the original version of tHdM was found lacking in prac-
tical aspects. At least two scales are necessary in theetiztion, which can be achieved through
discrete projection (see Calo [14], Farhat and Koobus [@4iierarchical bases (see Ramakrishnan
and Collis [84], Jansen and Tejada-Martinez [57].) Thiswtedogy, while easily implementable
in the case of spectral discretizations and structured eses$t not readily available in a lot of the
unstructured grid codes. Employing an eddy viscosity ingtmall scales is also viewed as an in-
efficient mechanism, as the small scales, represented itotheutation, are being “sacrificed” to
retain full consistency of the large scales. For the casbefpectral discretization in 3D, with a
cut-off placed at the half of the wave-number space, cassistis retained only on 12% of the
modes, which is strikingly small. One can hardly call suchedhmnd consistent.

Recently Calo [14] and Hughes, Calo, and Scovazzi [51] pe@dhe variationally consis-
tent residual-based turbulence modeling approach, intwdliche scales are accounted for consis-
tently and the use of eddy viscosities is avoided complefdlyresolved scales are viewed as large
scales, hence the efficiency issue is obviated from the bui$e philosophy of this new method
is to try and solve for the fine scales, which reside in an itfidimensional space, analytically,
and include their effect in the coarse scale system, whidhiie dimensional. Obtaining exact
expressions for the fine scale variables is just as daunsisglaing the original Navier-Stokes sys-
tem, hence various approximations are necessary in ordeake the method practical. Note that
the coarse scale equations are exact, so the only “modetimgiponent of the present approach
is the analytical approximation of the fine scales. Prelanynevidence of the success of the new
method were reported in Calo [14]. This approach is pursugtidr in this work. A parallel, tran-
sient, three-dimensional isogeometric flow solver wastamifor the purposes of validating the new
approach.



1.1.3 Fluid-Structure Interaction

A big part of this dissertation is the development of an iswgetric fluid-structure interaction pro-
cedures with particular emphasis on arterial modeling doddoflow, which is an area of research
currently receiving considerable attention. It is belgbtieat the ability of NURBS to accurately rep-
resent smooth exact geometries, that are natural forarsystems, but unattainable in the faceted
finite-element representation, and the high order of appratcon of NURBS (shown in this thesis),
should render fluid and structural computations more plggically realistic.

Initial attempts to simulate blood flow in arteries made uksimplified geometries. This
approach had limited applicability because of its inapilit represent complex flow phenomena oc-
curring in real blood vessels. The concept of patient-$jgecardiovascular modeling was first es-
tablished in [97], where real-life geometries were usednukate blood flow. This opened the door
for designing predictive tools for vascular modeling arehtment planning. Dramatic improve-
ments in the computational results were observed in [9%]theeblood vessel wall was treated as
being rigid. As was shown earlier, for example with the fléxiand rigid wall computations [105-
108], the rigid wall assumption precludes pressure wavpagation and overestimates wall shear
stress. There exists a variety of methods to include theteffethe moving wall in computations,
the most prevalent being the arbitrary Lagrangian-Euleff_E) approach. For a general discus-
sion of ALE, the reader is referred to [20, 22, 23, 46, 66] aefénences therein. Applications of
ALE to hemodynamics are discussed in [26, 30, 33, 74] andarbées therein. Some of the other
techniques include the coupled momentum method [28], tiedraed finite element method [116],
and the space-time finite element method [99, 100, 102]. Whik adopts the ALE framework.
The arterial wall is treated as a nonlinear elastic solichi tagrangian description governed by
the equations of elastodynamics. Blood is assumed to be @aoN@m viscous fluid governed by
the incompressible Navier-Stokes equations written inAthe form. The fluid velocity is set equal
to the velocity of the solid at the fluid-solid interface. Tewupled FSI problem is written in the
variational form such that the stress compatibility coinditat the fluid-solid interface is enforced
weakly. The ALE equations require the specification of tha@fhegion motion. This motion is
found by solving an auxiliary static linear-elastic boundealue problem for which the fluid-solid
boundary displacement acts as a Dirichlet boundary camd{gee, e.g., [58]).

Fluid-structure coupling has been a topic of discussiorh@literature on the subject. In
this work, monolithic discretization is employed, meanthgt there is one mesh, which embodies
both the fluid and the structure. Also, a monolithic solutamproach is adopted, namely fluid and
solid solution increments are solved for simultaneoushe &ffect of the mesh motion on the fluid
equations is accounted for in the jacobian matrix by meawtisafete shape derivative$he latter
require derivation, which is one of the contributions oftthiesis. As a result, a lot of the coupling
issues are obviated from the outset, rendering the methmssto



1.2 Dissertation Outline and Discussion of Major Developmats

Chapter 2 of this dissertation gives and overview of the NI3Riased isogeometric analysis frame-
work. We introduce B-spline polynomials and NURBS, focgsamly on issues necessary for sub-
sequent developments. For background, the interestedrre@y consult standard references, such
as Rogers [85], Piegl and Tiller [79], and Farin [25]. Basgfiitions are given, and construction
of solution spaces, refinement algorithms, and geometricaleling approaches are discussed.

Chapter 3 of this thesis is devoted to the mathematical stfithogeometric analysis with NURBS
as a basis. We focus dnrefinement. The geometry of the mapping betwedrcabe in the para-
metric spaced is the number of space dimensions) and its image in physjpEesrequires the
introduction of concepts and spaces not utilized in stah&&A. The reason for this is that when
the continuity of the interpolant is sufficiently high, onennot stay in a single element and invoke
a standard Bramble-Hilbert estimate. A notion of “suppateasion” is necessitated, but produces
the following complication: If a functiom is assumed to be of clagg™ in the support extension in
the physical domain, its pull-back by the geometrical magps no longer ar{™-function in the
support extension in the parametric domain. Rather, it dasfsH " on the supports of individual
elements comprising the support extension in the paramatrinain, but with reduced regularity
across the internal element boundaries. This new non-atdrgpace is a Hilbert space, and its
approximation properties are key to our developments. it beathought of as intermediate in con-
tinuity between standard Sobolev spaces and the “brokehdl8o spaces utilized in the analysis
of Discontinuous Galerkin Methods [3, 78]. For this reasanrefer to these new spaces as “bent”
Sobolev spaces.

We establish approximation properties of NURBS within atled “patches” that is¢-
cubes in the parametric domain and their images in physpgadesunder the geometric mapping.
The union of patches in physical space comprises the gepmeirst, a new Bramble-Hilbert
lemma is established that utilizes the concept of suppdeansion developed here and expresses
how functions in bent Sobolev spaces, involving the regmylaonstraints of B-spline spaces, are
approximated by B-splines. This result enables us to oweecthe difficulties previously men-
tioned, and we feel it may be of interest in its own right. NURBre projective transformations
of B-splines (Farin [25]) and their approximation propestare established with the aid of the new
Bramble-Hilbert lemma. These results depend cruciallyhenspecific structure of NURBS basis
functions engendered by the projective transformatiore dfproximation results are generalized to
include strongly imposed Dirichlet boundary data. In Setd, we establish inverse inequalities for
NURBS. These are required, for example, in the convergenalysis of stabilized methods. Our
results in are developed for a single patch, however, theybeeageneralized in a straightforward



way to geometries composed of multiple patches by stanéatthiques.

We apply the new approximation results obtained to obtaiorexstimates for problems
of interest. We begin with linear elasticity theory. Thisaistandard symmetric, positive-definite,
elliptic problem for which a minimum principle exists andtiopal error estimates follow directly
from the approximation results. Next we consider stahilifgrmulations of incompressible and
almost incompressible isotropic elasticity. Here, in ordeobtain stability and error estimates, we
require both the new approximation result and inverse esésfor NURBS. As is usual for sta-
bilized methods, these results pertain to a wide varietyisgldcement and pressure interpolatory
combinations. We follow these developments with the marbrigally challenging case of inf-sup
(i.e., BabuSka-Brezzi, or BB) stable Galerkin methods. fdéis on the case af°-continuous
interpolations across element boundaries and, in paaticoh the case of the displacement field
one order higher than the pressure. (When we speak of “oode@’NURBS basis, we are thinking
of the polynomial order of their B-spline progenitors.) Fleiase is somewhat analogous to known
BB-stable finite elements (see, e.g, Brezzi-Fortin [11]owever, geometric aspects of NURBS
and isogeometric analysis provide new analytical chalengn isogeometric analysis, the exact
geometry is fixed patch-wise by the coarsest mesh and madatanlong with its parameteriza-
tion, throughout:-refinement. This is a distinguishing feature of isogeoinetnalysis and one not
shared by FEA. To facilitate analysis, the notion of a “venteesh” is introduced, which may be
thought of as a coarsening of the “control net” or “controlsimeof NURBS theory. NURBS are not
interpolatory and so the coefficients of basis functiores (control points,” or “generalized coordi-
nates”) in the geometrical mapping do not lie on the geonaid/thus do not have a direct physical
interpretation. The control net is the piece-wise mukifin interpolant of the control points. In
three dimensions it is a mesh of trilinear hexahedral elésnét the coarsest level of discretization
it is often quite distinct from the exact geometry. Howeas,the mesh i&-refined, the control
mesh converges to the physical mesh. (In a sense, use ofrtimrfinite elements may be viewed
as performing analysis on a particular control mesh rattean &in actual geometry.) The theoretical
analysis of mixed Galerkin methods for the incompressib@blem presented herein utilizes the
concept of the vertex mesh. We are able to prove inf-supli#yadind establish quasi-optimal error
estimates by employing the approximation results for NURB®ur final application, we consider
stabilized methods for scalar advection-diffusion. @tilg standard arguments, along with the new
approximation results and inverse estimates, we estadtidility and error estimates analogous to
those for finite elements.

We present several numerical calculations to test the metieal results. In all cases that
fall within the hypotheses of the mathematical results,c@puted error estimates were found to
be consistent with theory. We also tested some cases thattdatisfy our hypotheses. For exam-
ple, in the analysis of a linear elastic boundary-value lemobfor a plate with a circular hole, the



geometrical mapping utilized is singular at one corner poithe domain. (This was a choice, not a
necessity.) Consequently, the hypotheses of our theomadrgatisfied. Nevertheless, optimal rates
of convergence were still obtained. In other examples, egnieg incompressible elastic analysis
by the mixed Galerkin method, we tested displacement-pressombinations that were smoother
thanC" across element boundaries. Recall, our mathematicattsesulthe BB-stable theory are
only applicable in the2? case. In particular, we tested cubic displacements cordbiite quadratic
pressure, but both''-continuous across element interfaces. In the examplespied, and some
others not shown, we found this combination to be stable gidhally convergent. We conjec-
ture that for additional smoothness, beyafit}, across element interfaces, elements of this type,
with displacements one order higher than pressure, areematically stable and optimally con-
vergent. We did not investigate pressures that are disamis across element boundaries, but,
inspired by the spectral element work of Maday, Patera, ambjRist [69], and others, we conjec-
ture that for pressure two orders lower than displacements; estimates suboptimal by one order
can be proven. We did study stabilized methods and mixedridalmethods on the driven cavity
Stokes flow problem. (The equations of Stokes flow are foremiidal to the equations of isotropic
incompressible elasticity.) The solution of the drivenitapossesses pressure singularities and
represents a stringent stability test. All stabilized roe) and mixed Galerkin methods with dis-
placement (i.e., velocity in this case) one order highen thi@essure, proved stable. On the other
hand, equal-order interpolations for mixed Galerkin mdthavere manifestly unstable. Finally,
we numerically verified error estimates for Stabilized Meth for an advection-diffusion problem
with a boundary layer. By excising the boundary layer domai@ demonstrated optimal “interior
estimates” for unresolved cases.

The above developments render NURBS-based isogeomealigsna bona-fide computa-
tional technology.

Chapter 4 of this dissertation focuses on further devetppiire variationally consistent residual-
based turbulence modeling approach, proposed by Calo iithHaghes, Calo, and Scovazzi [51],
and integrating it with isogeometric analysis. We review toncept of the small-scale Green'’s
function, introduced in Hughes and Sangalli [54]. The sraadlle Green’s function is a fundamen-
tal object in the design and analysis of variational muttisanethods.

We make use of the small-scale Green’s function to develepthiboretical formulation
of the resiual-based turbulence model. It is the philosophthis document that incompressible
Navier-Stokes equation system, with the associated lirdtid boundary conditions, adequately
describes turbulence phenomena. Thus, the goal of tutilBrodeling is to accurately approx-
imate solutions to INS. Following the approach of Calo [14Hddughes and Sangalli [54], we
represent the solution space, comprised of velocity andgspre, as the sum decomposition of a



finite-dimensional space of functions, coming from the ihiszation, and its infinite-dimensional
compliment in the full space. We then derive the form of thdtiseale model for the incompress-
ible Navier-Stokes equations, which explicitly dependstensmall-scale Green’s operator for both
the velocity and pressure. Assuming the localization mtypef the small-scale Green’s function
we propose local algebraic models for small-scale velaity pressure by making use of the large
body of experince in stabilized methods theory.

The new formulation is tested on a fully-developed turbutdrannel flow at Reynolds num-
ber Re, = 395 based on friction velocity. This is a standard benchmarkdase in the turbulence
literature (see, e.g., [72]). As analytical results areawatlable for this test case, it is customary to
verify the computations against DNS, a high-fidelity sintiolia, which resolves all spatial and tem-
poral scales of the problem. In the computations we useddiidgr NURBS, which are identical
to C%-continuous tri-linear hexahedral finite elements, and leysal k-refinement to obtain dis-
cretizations of ordep = 2 andp = 3, maintaining the continuity of the basis functions at @ !
level. For low order NURBS results of the simulations are petitive with, and even superior to the
state-of-the-art eddy-viscosity based approaches populae LES community. Dramatic increase
in accuracy is observed when going froni’&-continuous linear to &''-continuous quadratic dis-
cretizaton. Results are further improved fo¢-contionous cubics. High-order, high-continuity
NURBS results also appear to be competitive with spectsdrdtizations, which are considered
optimal for computing turbulent flows, albeit on very simpkometries. On the basis of these ob-
servations one may conclude that the geometric flexibilftiNORBS, combined with their high
order of approximation, may potentially make them an ideal for simulating turbulent flows in
complex geometric configurations of industrual interest.afstep in this direction, we also present
a computation involving a fully developed three-dimensioturbulent flow over an Eppller 387
wing section at Reynolds numb&e = 100,000 based on the cord length, and= 2° angle of
attack. Computations of this kind are of interest in the afelydroacoustics for the purposes of
predicting turbulence-induced noise (see, e.g., [76,. 7IiJjbulent and laminar regions co-exist in
this flow. As a result, a good turbulence model needs to autoatly adjust in different parts of
the domain to reflect various flow regimes. Our computatioesllts compare very well with the
experimental findings.

Chapter 5 of this thesis focuses on the fluid-structure actéon problem. A NURBS-based isogeo-
metric fluid-structure interaction formulation, coupliimgompressible fluids with nonlinear elastic
solids, and allowing for large structural displacemergtslgveloped. This methodology, encompass-
ing a very general class of applications, is applied to molsl of arterial blood flow modeling and
simulation. We formulate the FSI problem mathematicallthatcontinuous level, give the discrete
formulation, and show the details of the time integratiogoathm. Linearization of the discrete



FSI system is discussed in detail. A methodology for deghshape derivatives is presented, which
is one of the main contributions of this thesis. Shape devies are tangent operators (tangent
matrices in finite dimensions) that reflect changes in theatgps of motion with respect to the
perturbations of the spatial domain. They are necessay donsistent linearization of the discrete
FSI equations, and, as a consequence, the developmenust falty-coupled solution algorithms.
The difficulty in deriving these tangent operators lies ia fact that the fluid integrals of the vari-
ational fomulation are taken over a spatial configuratiat thirectly depends on the displacement
of the fluid domain. To circumevnt this difficulty, we changariables and work on the reference
element, which allows us to pass the derivatives insiderttegyial operators. Using identities that
are standard in nonlinear continuum mechanics, we arritleeashape derivative matrices that are
form-identical to other tangent matrices in nonlinear érétement and isogeometric analysis, and
whose implementation is straightforward.

We test the new formulation on two benchmark problems, aedgmt an application in-
volving flow in a patient-specific abdominal aorta. Our resg@ompare well with the reference
computations of other researchers.
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Chapter 2

Isogeometric Analysis Framework and
Construction of Analysis-Suitable
Geometries

2.1 A brief review of isogeometric analysis employing NURBS

This section gives a very brief overview of isogeometriclgsia based on NURBS. A more detailed
description of the isogeometric approach may be found in §28. For an introductory text on
NURBS, see Rogers [85], while a more detailed treatmentvisngin the book of Piegl and Tiller
[79]. Mathematical theory of isogeometric analysis/fierefined meshes may be found in the recent
work of Bazilevset al. [6].

2.1.1 One-dimensional B-splines

A B-spline basis is comprised of piece-wise polynomialagai with prescribed continuity. In order
to define a B-spline basis of polynomial ordem one dimension one needs the notion dret
vector. A knot vector in one dimension is a set of coordinates in th@metric space, written as
= ={&,&, ..., Entpi1}, Wherei is the knot indexj = 1,2,....,n+p+1, & € [0,1] is theit? knot
andn is the total number of basis functions. A knot vector is sailg¢openif its first and last knots
are repeateg + 1 times. Basis functions formed from an open knot vector airolatory at the
end points of the parametric interval, but they are not, imegal, interpolatory at the interior knots.
Given = and p, B-spline basis functions are defined recursively startidiy piecewise
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constantgp = 0) :

1 if & <& <&,
B; = 2.1
0(8) { 0 otherwise. (2.1)
Forp =1,2,3, ..., they are defined by
Bip©) = "5 B, @)+ S B ), 2.2)
gz—i—p - 5@ £z+p+1 - £z+1

Basis functions of order havep — 1 continuous derivatives at knots. If a knot is repeated
k times, then the number of continuous derivatives decrdasésWhen the multiplicity of a knot
is exactlyp, the basis function is interpolatory. Basis functions forimaatition of unity, each one
is compactly supported on the intenvg), ;4,+1], and they are point-wise non-negative. These
properties are important and make these functions atteaftir use in analysis.

2.1.2 Multi-dimensional B-splines and geometrical objest

Let « be a positive integer such that< « < d, whered is the number of space dimensions. Given
« knot vectors=, ,, ,v = 1,...,a, multi-dimensional B-splines are constructed by takingste
products of their one-dimensional counterparts:

Bh,...,ia (517 s 750{) = ®?leBiwpw (57) (2.3)

B-spline functions are defined on a parametric dong@jn)®, andp,, is the polynomial order in the
parametric direction.

Objects of B-spline geometry can be most generally chatiaete as unions opatchesin
R?. A patch is an image under a mapping of the parametric intéfvad)®, expressed as a linear
combination of spline basis functions (2.3) and point®f that is,

Q={F() £ (0,1)"}, (2.4)
F(£) =) CiBi(¢),
iel
wherel is the index set
I'={i=(i1,...,7a) e N* |1 < i, <ny+p,+1}, (2.5)

Q) represents an object and th&s are the so-called¢ontrol points Various geometrical objects
may be obtained by varying, namely: the case af = 1 corresponds to B-spline curvea = 2
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generates &-spline surfaceand aB-spline solidis obtained by settingr = 3. A piece-wise
linear interpolation of the control points for curves, andiece-wise multi-linear interpolation of
the control points for surfaces and solids is callembatrol mesh

2.1.3 NURBS functions and geometry

The geometric framework based on B-splines is limited in Basic elements of engineering de-
sign, such as exact circles, ellipses, and other conicosectiannot be obtained by using B-spline
functions alone. NURBS were devised to overcome this sborittg. NURBS geometrical objects
in R¢ are preciselyprojective transformationsf B-spline geometrical objects iR*+! (see Farin
[25]), that is,

Q={F()[£<(0,1)"},
F(¢) = P(Z{Ci,wi}Bi(E)) =

1€l
G, wBi§) | _
;( w; )(Zjef w;Bj(§) )
St -y ane), 26)

iel 5) el

In the aboveC;, C; are inR%, w; € R, strictly positive, is thaveight andw(§) = > ;. wiBi(§)
is theweighting function The weighting function is defined on the geometry and staghanged
throughout the refinement process. The last line of (2.6defNURBS basis functionfsR; };c;:

w;B;(§)
R;(&) = o) (2.7)

It is important to note that while a B-spline basis dependy on the structure of the knot vec-
tor, construction of a NURBS basis requires informationuttibe geometry. Multi-dimensional
NURBS basis functions are no longer tensor products of amefsional entities, in contrast with
B-splines. Properties such as partition of unity, pogitivand compact support are retained for
NURBS bases. Continuity of NURBS functions is also the sasthat of B-splines.

Examples of a B-spline curve, a toriodal NURBS surface, dedcbrresponding control

meshes are given in Figure 2.1.
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Figure 2.1: (a) B-spline, piecewise quadratic curvékin Control point locations are denoted by
e’'s. (b) Toroidal NURBS surface. (c) Control net for toroicalrface.
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2.1.4 Analysis framework based on NURBS
Isogeometric analysis framework consists of the followilegns and features:

1. A physical domain consists of a union of patches, eacheatfis an image of the parametric
space as

Q={F(&) &< (0,1)"} (2.8)

2. A mesh for a NURBS patch is defined by the union of NURBS elgmealenoted by<, each
one being an image under a NURBS map of a knot span in the parasgace

K ={F(€) | €€ Q=826 06 im0} (2.9)

wherem;_ is the multiplicity of knot¢;_ .

3. The basis for the solution space in the physical domaiefimed through a composite map-
ping as follows:

N, =RioF! icl (2.10)

This definition gives the isoparametric construction [44§t is, the fields in question (e.g.,
displacement, velocity, temperature, etc.) are repreddantterms of the same basis functions
as the geometry. Coefficients of the basis functionsgamtrol variables are the degrees-
of-freedom of the discrete system. The isoparametric agbrés most convenient for appli-
cations involving Lagrangian and ALE descriptions of conbus media where geometry is
constantly updated as the physical system evolves in time.

4. Boundaries of NURBS geometrical objects are themsebwesridimensions NURBS objects
(e.g.,aNURBS solid is bounded by NURBS surfaces, whichyrim,tare bounded by NURBS
curves). As aresult, the easiest way to set Dirichlet boyndanditions on a patch face is to
constrain control variables that correspond to that faterpolation or projection needs to be
employed in cases when the prescribed function is not inidwate space. This amounts to
“strong” satisfaction of the boundary conditions. An ati@iive formulation of Dirichlet con-
ditions can be based on “weak” satisfaction, a standardifeatf the discontinuous Galerkin
method. Neumann boundary conditions are satisfied as in@hdard finite element method.

5. Mesh refinement strategies are developed from a combinatiknot insertionandorder el-
evationtechniques. These enable analogues of classicafinement ang-refinement meth-
ods, and the new possibility &frefinement
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h-refinement: Knot insertion

The analogue of-refinement iknot insertion Knots may be inserted without changing a curve
geometrically or parametrically. Given a knot vect@r= {¢1,&s, ..., &npi1}, 161 E € [&k, Eppa|

be a desired new knot. The new#- 1 basis functions are formed recursively, using (2.1) ang))(2.
with the new knot vector= = {&1,&2, ..., &k, €, Ekt1y vy Entpr1 }- The newn + 1 control points,
{Cy, Cs,...,C,41}, are formed from the original control pointsCy, Cs, ..., C,, }, by

Ci=aCi+(1-0a;)Ci (2.11)
where
1 1<i<k—p,
o = &i;ﬁi& k—p+1<i<k, (2.12)
0 k+1<i<n+p+2

Knot values already present in the knot vector may be regesteabove but as described
earlier, the continuity of the basis will be reduced. Cauitiynof the curve is preserved by choosing
the control points as in (2.11) and (2.12). Each unique iaidtnot value may appear no more than
p times or the curve becomes discontinuous.

An example of knot insertion is presented in Figure 2.2. Thgimal curve consists of
quadratic B-splines. The knot vectords= {0,0,0,1,1,1}. The curve is shown on the left with
basis functions below. A new knot is insertedéat= 0.5. The new curve, shown on the right, is
geometrically and parametrically identical to the oridioarve, but the basis functions, below the
curve, and control points are changed. There is one morechf ddnis process may be repeated to
enrich the solution space by adding more basis functionseo$ame order while leaving the curve
unchanged. This subdivision strategy is seen to be anatagatne classicah-refinement strategy
in finite element analysis.

Remark 2.1.1. An h-refinement procedure was described for NURBS curveRB8 surfaces and
solids are h-refined by inserting knots into each paramatiiection sequentially. The same holds
for p- and k-refinements, as described below.

p-refinement: Order elevation

The polynomial order of basis functions may be increasetiomit changing the geometry or pa-
rameterization. It is important to note that each unique katue in= must be repeated to preserve
discontinuities in the!" derivative of the curve being elevated. The number of nevirobpoints
depends on the multiplicities of existing knots. This stggt of order elevationis an analogue of
p-refinement in finite element analysis.
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Original curve,= = {0,0,0,1,1,1} Refined curve: = {0,0,0,.5,1,1,1}

1 1
0 0
0 0
0 0
0 0
0 1 0 05 1
Original basis functions New basis functions
1
0.8
0.6
0.4
0.2
G0 1 00 0.5 1

Figure 2.2: Knot insertion. Control points are denotecisy

As is the case ofi-refinement by way of knot insertion, the solution space spdrby the
order elevated basis functions contains the space spann#tetoriginal functions. Thus, it is
possible to order elevate without changing the geometrih®f-spline curve. Less obviously, it
can be done so as to leave the parameterization of the cunaetin The process for doing this
involves subdividing the curve into many Bézier curves ptkinsertion (see [85] or [79] for a
discussion of Bézier curves), order elevating each ofghiedividual segments, and then removing
the unnecessary knots to combine the segments into one;aledated, B-spline curve. Several
efficient algorithms exist which combine the steps so as tmike the computational cost of the
process.

An example of order elevation is depicted in Figure 2.3. Thegimal curve and quadratic
basis functions, shown on the left, are the same as condidetiee previous example. This time the
multiplicity of the knots is increased by one. The numbersaritrol points and basis functions each
increase by one. The locations of the control points chamgiethe elevated curve is geometrically
and parametrically identical to the original curve. There mow four cubic basis functions. The
locations of control points for this elevated curve areatiéht than those in the previous example
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Original curve,= = {0,0,0,1,1,1} Refined curve: = {0,0,0,0,1,1,1,1}

1r 1
0.8 0.
0.6 0.
0.4 0.
0.2 0.
0 1 0 1
Original basis functions New basis functions
1
0.8
0.6
0.4
0.2
O0 1

Figure 2.3: Order elevation. Control points are denoted’sy

(cf. Fig. 2.2).

k-refinement

An alternative order elevation strategy takes advantagfeedact that the processes of knot insertion
and order elevation do not commute. If a unique knot vauis,inserted between two distinct knots
in a curve of ordep, the number of continuous derivatives of the basis funstiaig isp — 1. As
described above, if we subsequently elevate the order tioe multiplicity of every distinct knot
value (including the knot just inserted) is increased so discontinuities in the!” derivative of
the basis are preserved, that is, the basis stillphasl continuous derivatives &t If instead we
elevated the order of the original curve ¢@nd only then inserted a unique knot value, the basis
would haveg — 1 continuous derivatives &t This latter procedure is referred to kasefinementlt
has no analogue in standard finite element analysis.

It is believed the concept dfrefinement is important and potentially a superior apgnoac
to high-precision analysis thgmarefinement. Simple linear advection-diffusion calcwas as well
as some turbulent flow results, presented later in this thésuchent, indicate that this may be the
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case. Another advantage lefefinement is that the increase in the number of degreesetfdm
from one refinement to the next is substantially smaller fhahe case op-refinement. It can be
shown that in one dimension starting withbasis functions and performingrefinements gives
O(n(r + 1)) degrees of freedom in the casepafefinement, and(n + r) degrees of freedom for
thek, which is quite a big difference. Keep in mind, too, thatlitimensions these numbers are
raised to thel power. Of course, if the physical situation dictates a d@ettawer level of continuity

at a knot value (e.g., the corners in the geometry, discootis material properties, etc.) this can
always be incorporated into the process by knot duplicasomo generality is lost.
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Figure 2.4:k-refinement takes advantage of the fact that knot insertimhaader elevation do not
commute. (a) Base case of one linear element. (b) Classtfinement approach: knot insertion
followed by order elevation results in seven piecewise catambasis functions that are” at inter-
nal knots. c) Nevk-refinement approach: order elevation followed by knotiitige results in five
piecewise quadratic basis functions that@feat internal knots.
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2.2 Construction of Analysis-Suitable Vascular Models

A large part of this work is fluid-structure iteraction argiyof vascular flows using patient-specific
geometrical configurations. In order to carry out these ktans, one needs to construct analysis-
suitable geometrical models from medical imaging data.Harnget al. [] we have devised a set of
procedures which accomplish this task. The summary of theselopments is given in this section.

Construction of patient-specific models for isogeometnialgsis is a process involving four
stages, described below.

1. In scanned Computed Tomography (CT), or Magnetic Resenkmnaging (MRI), of patient-
specific data, intensity contrast may not be sufficientlyrghienages are often “noisy”, and
the luminal surface is frequently blurred. As a result, ppepssing of of the CT/MRI data
is necessary to improve its quality. Techniques such asastrenhancement [115], filtering
[5], classification [104], and segmentation [114] are emgtbfor this purpose.

2. The blood vessel surface model can then be constructaddreprocessed imaging data us-
ing isocontouring methods. The two main isocontouring m@s$h that make use of imaging
data, are: primal contouring or marching cubes [68], and doiatouring [60]. The latter is
chosen in this work for isosurface extraction, as it tendgetoerate control meshes possess-
ing better aspect ratios. In some cases geometric editirggisred to remove unnecessary
components and features. Once the luminal surface is fiehtskeletonization technique
[35] is employed in order to find paths.

3. We have developed a skeleton-based sweeping methoddtrucirhexahedral NURBS con-
trol meshes for blood vessels [117]. The template facetedraopolygon of a circle, pro-
jected onto the true surface, is swept along the arteridl {watreate a quadrilateral surface
control mesh for a given arterial branch. Arterial branches also arranged in a hierar-
chy, ranging from the largest to the smallest. Differentssreection templates are applied
to different branches in the hierarchy. Templates for waribranch intersections, such as
bifurcations and trifurcations, are also worked out andiagpn a case-by-case basis. See
[117] for detalils.

4. Finally, solid NURBS meshes are constructed by fillinghe volumes radially from the
outer surface inward. Arterial wall meshes are obtainedXgreling the outer surface in the
normal direction by a user-prescribed amount.

Stages 3 and 4 of the process are demonstrated on a simplelexariigure 2.5. A more
complicated example of a patient-specific abdominal asrshown in Figure 2.6, where all four
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stages of the model generation process, as well as the enadgslt using techniques of Chapter 5
of this thesis are depicted.

Cross-section template Arterial path Analysis suitable geometry

Figure 2.5: Stages 3 and 4 of the patient-specific cardioNasmodel construction for isogeomet-
ric analysis. Left: depiction of a cross-section surfacegkate. Cross-section surface is bounded
by a closed quadratic NURBS curve defined in terms of the obptilygon consisting of 16 points.
Middle: arterial path identified by skeletonization. Rigbolid NURBS geometry, ready for refine-
ment and analysis.
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(a) Volume rendering (b) Isocontouring (c) Surface model & path

(d) Control mesh (e) Solid NURBS (f) Simulation results

Figure 2.6: The abdominal aorta model is divided into 26 Ipaé¢ and each color represents one
different patch. (a) - volume rendering result; (b) - isdaming result; (c) - surface model and
its path after removing unnecessary components; (d) - comiesh; (e) - solid NURBS mesh after
refinement (73,314 elements); (f) - fluid-structure intéoac simulation results: contours of the
arterial wall velocity (cm/s) during late cystole plotted the current configuration. Only major
branches are kept in (d-f).
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Chapter 3

Isogeometric Analysis: Approximation,
stability and error estimates for
h-refined meshes

3.1 Preliminaries

In what follows, letd > 2 be the dimension of the physical domain of interest. Througtthe
analysis, we will make use of the classical Lebesgue spat&3), endowed with the nornf -

| zr (02), whereQ C R? is a generic open domain, and< p < co. We also will need the Sobolev
spacedV*?(Q), for k a positive integer antl < p < oo, endowed with the usual norf \|Wk,p(9)
and seminorny - |yyx.p(q), see [1] for details. For the Hilbert spacHs®2(Q) we will switch to
the notationH*((2), and, accordingly]| - |5y @nd| - | gy Will be used for their norms and
seminorms, respectively. We s&f' (Q) := L?(Q2), and

[ - ||H0(Q) = |H0(Q) = ||L2(Q)-

The spaces of continuous functions @with k*-order continuous derivatives will be de-
noted byC*(Q).

The rest of this section will be devoted to the introductibthe univariate and the multivari-
ate (tensor product) B-spline basis functions and relgtedes, the NURBShon-uniform rational
B-spling basis functions, function space, and the NURBS geomeétriep F. This presentation is
quite brief and notationally orientéda more complete introduction to NURBS and isogeometric

1Be aware that some of the notation and terminology contalireed is different from that of [52]. Care should be
exercised in comparing the two.
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analysis can be found in [52].

3.1.1 Univariate splines

For anya, 1 < a < d, given positive integers:, andn,,, we introduce the (ordered) knot vector

Eoc = {0 - 51,047 52,047 s 7§na+ma,oz = 1}7 (31)

where we allow repetition of knots, that is, we only assumg < &0 < ... < &notma,ar WE
assume th&,’'s areopenknot vectors, that is, the first,, as well as the lash,, knots are repeated
(see [5252.1)).

Through the iterative procedure detailed in [87, Theorefblor in [52, §2.2] one con-
structsm,-order B-spline basis functions, which are piecewise patyials of degre@,, := m,—1
on the subdivision (3.%) Ifa knot¢; ., is not repeated, then the B-spline basis functions pavel
continuous derivatives &t . In general, at a kna; , repeated: times, withl < k < p, + 1, the
B-spline basis functions haye, — k continuous derivatives, wheyg, — kK = —1 is allowed and
stands for a discontinuity. The B-splines basis functiorsdenoted by3; , fori = 1,...,n,;
eachB; , is non-negative and supported(#) o, itm..o). The interval(&; o, &i11.q) is referred to
as a knot span. The B-spline basis functions constitutetdiparof unity, namely,

S B =1 (3.2)

i=1

A typical example is presented in Figure 3.1. The spacpbihesis denoted by

So = S(Eaapa) = Spar{Bi,a}izl,...,na' (33)

3.1.2 Multivariate tensor product splines

Assume thatl knot vectorsg,,, with 1 < o < d, are given. Let0,1)? ¢ R be an opeparametric
domain referred to as @atch Associated with the knot vectois, there is ameshQ, that is, a
partition of (0, 1)¢ into d-dimensional open knot spans, or elements,

Q = Q(Eh o 7Ed) = {Q = ®i:1(§ia,aa§ia+1,a)‘ Q 7é ®7ma < ioz < Na — 1} . (34)

2\We adhere to the terminology in which the “degree” of a quidjraubic, quartic, etc., polynomial is 2, 3, 4, etc.,
respectively, and the corresponding “order” is 3, 4, 5, e&spectively. This is not the the usual terminology usetthén
finite element literature, but is frequently used in thersgdiliterature. In [18, 52] we use the finite element ternagyl
to emphasize the similarities with finite elements.
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Figure 3.1: Example of a quadratig, (= 2) B-spline basis in one dimension derived from the knot
vector= = {0,0,0,0.2,0.4,0.6,0.8,0.8,1,1,1}. Note that due to the open knot vector (i.e., the
first and last knots are repeategd+ 1 times), the first and last basis functions are interpolatioey,
they take on the value 1 at the first and last knots). The coityimt interior knots; is CP1~",
wherem; is the number of repetitions of kngt. For example, only the interior kn6t8 is repeated,
and the continuity there i€71=2 = (C°. At the other knots the continuity i€”*~! = C*, the
maximal continuity of quadratic B-splines.

We denote by the diameter of the elemefit € Q.
The tensor product B-spline basis functions are defined as

Bil---id = Bi1,1 ®...xQ Bid,cﬁ (35)
The tensor-product spline spa&es:

S§=8 C S P 7pd) = ®i:18(5a7pa) = Spar{Bil...id}Zii.ilfid:y (36)

W

To a (non empty) elemei® = ®%_, (&, 0+ &inira) € Q, WE associat€) c (0,1)? defined
as
Q = ®i:1(£ia—ma+1,a7 gi(wma,a)- (37)

The setQ will be referred to as theupport extensionf @, since it is the union of the supports of
basis functions whose support interse@tsAn illustration of support extensions is presented later
in Figure 3.3.

The functions inS are piecewise polynomials of degrgg in the o coordinate. The reg-
ularity of eachd-dimensional basis functiof;, . ;, across the element boundaries depends on the
regularity of the one-dimensional basis functidsg ., for 1 < o < d, at the corresponding knots.
Given two adjacent element3; and(@; we denote byng, g, the number of continuous deriva-
tives across their commd@ — 1)-dimensional fac&Q; N 0Q2; mq, g, = —1 is associated with
a discontinuity. For the subsequent analysis, we introdibedollowing “bent” Sobolev spacef
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orderm €¢ N
v e L?((0,1)%) such that

vQ € H™(Q),vQ € Q, and

H™ = ; 3.8
VE(vg,) = VF(vg,) on0Q1 N 0Q2, (3:8)

Vk € Nwith 0 < k < min{mg, g,,m — 1}
VQ1, Q2 with 0Q1 N OQ2 #

where V* denotes thek(linear) k*"-order partial derivative operator, whi€% = v. This is a

well-defined Hilbert space, endowed with the seminorms

w3, = Z \v\%ﬁ(Q), 0<i<m (3.9)
QeQ
and norm .
[Vl Fm = 0l3 (3.10)
=0

Indeed, the trace 0¥ v is well defined oQ N 9Qs, for 0 < k < min{mg, g,,m — 1} (see
[1]). We also need the restriction 6{" to a given support extensio, which is denoted by
H™(Q) = {vIQ\v € H™}, and endowed with the seminorm and norm

|U|2 z(Q) = Z |’U|%{i(Q’) and HUH2 m(@) = Z |U|2 z(Q) (3-11)
Qe i=0
Q'NQ#0D

The bent Sobolev spaces are intermediate in continuity dmivstandard Sobolev spaces and so-
called “broken” Sobolev spaces [78] utilized in the anayafi discontinuous Galerkin methods.

3.1.3 NURBS and the geometry of the physical domain

We associate to each of the tensor-product B-spline basdifums B;, ;, a strictly positive con-
stantweightw;, _;, and acontrol pointC;, ;, € R?; we also introduce theveighting function

ni,...,Ng

w = Z Wiy iy Biy . iys (3.12)

i1=1,....iq=1

which, due to the partition of unity and non-negativity pegjes of B-spline bases, is strictly greater
than zero and is smooth on each element, along with its i@z@pr The NURBS basis functions on
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the patch(0, 1) are defined by a projective transformation (see Farin [25]):

ir.igBin .
Rz’l...id:iwlm(;u e (3.13)

and, accordingly, the NURBS space on the patch, denoted by

N =N(E1, .., Easp1y - pasw) = Span{ Ry, iy b2y - (3.14)

The NURBS geometrical ma@ is given by

niy..,n

F = Z Ci,iyRisis; (3.15)

11=1,...,ig=1

F is a parameterization of the physical dom&imf interest (see [52]), that is,
F:(0,1)¢ - Q.

We assume thdf is invertible, with smooth inverse, on each elem@nt Q.
Finally, each elemer® € Q is mapped into an element

K =F(@Q):={F(¢)I €}, (3.16)

and analogously), the support extension @f, is mapped into

=F(Q). (3.17)
We then introduce the medhin the physical domait
K:={K=F(Q)|Q € <}, (3.18)

and the spac# of NURBS on) (which is thepush-forwardof the space\V' of NURBS on the
patch)
V=V(p1,...,pa) = spaq Ry, i, o B} (3.19)

11 17 5

NURBS are capable of representing all conic sections, sactireles and ellipses, and
consequently cylinders, spheres, tori, ellipsoids, ae ekactly representable. See [18, 52] and the
standard texts [25, 79, 85] for examples.
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3.2 Approximation properties of the NURBS space

We consider now a family of mesh¢€), },, on (0, l)d, where each),, is defined as in Section 2.2,
andh denotes the family index, representing the global mesh size

h = max{hq|Q € Qu}.

The family of meshes is assumed todiepe regularthat is, the ratio between the smallest edge
of Q € 9y, and its diametehg is bounded, uniformly with respect 9 andh. This implies that
the mesh idocally quasi-uniform—the ratio of the sizes of two neighboring elements is uniflgr
bounded. Following the construction in the previous sectassociated with the family of meshes
{9}, we introduce the families of meshes on the physical dorfin},, and the spacegSy } 1,
{Nw}ths {Vn }n, and{H}"}, endowed with their respective norms.

In practical applications, the geometry of the physical dom2 is frequently described
on a mesh of relatively few elements, while the computatibaro approximate solution to the
problem is performed on a refined mesh (fine enough to achiesieed accuracy). Therefore, we
assume that there is@arsest mesk),,, in the family {9}, },, of which all the other meshes are
a refinement, and that the description of the geometry is fatehle level ofQ;,. This means that
the weighting functionw of (3.12) and the geometrical madpin (3.15) are assigned i, and
(Nho)d, respectively, and are the same for evkrywhen the mesh and the spaces are refined (see
[52, §2.4] for details on the refinement procedures), the weights;, are selected so that stays
fixed (see [52, equation (6)]); in a similar way, the controints C;, . ;, are adjusted such that
remains unchanged. Thus the geometny its parameterization are held fixed in the refinement
process. See Figure 3.2 for an illustration of this idea.

In what follows, we will denote by’ a positive dimensionlessonstant, possibly different at
each occurrence, which depends only on the space dimefsiorthe polynomial degrees,, a =
1,2, ...,d, and on the shape regularity of the mesh fanii®, };,. Observe that thg,, are considered
fixed, since we only addregsrefinement in this paper (see [52.4], [18]). We will denote by
another positive, dimensionless constant, possibly riffeat each occurrence, which may also
depend on the geometry 6fbut still not on h. Specifically,C; depends on thehapeof €2, but not
on itssize thereforeC; is by assumption homogeneous of ordevith respect tav andVF, where
VF is the matrix of partial derivatives of the coordinate comgats ofF, that is,C, is invariant
if wandVF are scaled by a multiplicative factor. Actually,; only depends on the dimensionless
functionsw/||w|| ) andVF /|| VF|| 1~ (o). Furthermore, i’ appears in ¢ocal estimate, then
it depends only on the local values®wfand VF.
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Coarsest mesh ] ]
Patch(0, 1)? Physical domain

First refinement ] ]
Patch(0, 1)? Physical domain

Second refinement ] ]
Patch(0, 1)? Physical domain

Figure 3.2:h-refinement with NURBS. In this illustration a NURBS patcimapped onto a quarter
of a square domain with a circular hole in physical space. mhemum degree NURBS required
to exactly represent the geometry is quadratic. The opetvMemtors are=; = {0,0,0,0.5,1,1,1}
and=,; = {0,0,0,1, 1,1}, as illustrated. The exact geometry is represented at duesest level of
discretization, and it and its parameterization are ungedrduring refinement. In particular, the
geometrical mag#* and the weighting functiomw are unchanged during refinement.
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3.2.1 Approximation with splines on a patch in the parametrc domain

Our first lemma states the local approximation propertigh@spline spacsy,. Itis an extension of
the classical result (see Bramble and Hilbert [10]). Ouingetie involves bent Sobolev seminorms
and spaces (3.8)—(3.9), which will be needed, in the follgngections, when dealing with NURBS
on the parametric and physical domains. p&ke defined as

pi= lgggd{pa}- (3.20)
Lemma 3.2.1. Let k and! be integer indices with < k <[ < p+ 1. GivenQ € Qy, Q asin
(3.7),v € ‘H!, there exists ar € S, such that

v = sl gy < Chg’f\v\w@. (3.21)

Proof. Consider an elemert® € Q,, and its corresponding support extensi@n The number of
elementgy’ forming the support extensiof and the degree of regularity of the functionsSp or
Hﬁl across the internal element boundaries)imay vary, according to the multiplicities of knots
in the underlying knot vectors (see Section 2.2). Neveetf®lit is clear that there is only a finite
number ofpatternsfor all the possible support extensio@sof any mesh of the familyf Oy, }1,, and
the maximum number of them depends onlypgrand on the space dimensidnlt is not restrictive,
therefore, to prove (3.21) for a particul@; with the constan€” appearing in (3.21) independent of
the size of elements forming.

For the proof, we associate €a reference support extensignthrough a piecewise affine
mapG : Q — Q such that each eleme@ € Q is the image of a hypercub@~!(Q’) which has
unit edge length, wher€—1(Q’) := {G~1(¢)|¢ € Q'} (see Figure 3.3).

Let H™ be the pullback of{*(Q) throughG

Hm = {ﬁ|@ —voG,ve H;’:(@)} , (3.22)

wherec is a vector of positive real numbers with the following mesni assume that we have
an ordering of the internal boundariesof the elements irQ (e consists ofd — 1-dimensional
hypercubes, that is, line segments do& 2 or rectangles forl = 3) and a corresponding ordering
on the internal boundarigsin Q. Also, define on eachandé a unique normal direction, andn,.

If e is shared between the two adjacent eleméntand(, belonging toQ, then, by construction,

a functionv € H}*(Q) hasmatchingnormal derivatives om, up to the ordemin{mg, q,,m — 1}
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\\/

\
Eirt12 \ i
G €i2,2

@\ e .

F—l
4 ir1 &ip+1,1
/ NURBS map
3
G—l

2

1 Piecewise affine map

0

o 1 2 3 4 5

Figure 3.3: Depiction of the support extensiolis Q, and corresponding). For non-repeated
knots, the case illustrated would conform to quadratic Basp or NURBS (i.e.p, = 2). Quadratic
splines and NURBS have support over three knot spans in eaegttidn. That is, each basis func-
tion is supported by 8 x 3 mesh of elements. The support extensions are confined tddoel
patches in the multipatch case, assuming the patches aiaeajn C°-continuous fashion.

(see definition (3.8))

o' o' . .
i (U‘Ql) = ni (’U|Q2) one =0Q; N0Q2, 0<i<min{mg, g,,m—1}. (3.23)

Wheni = 0, the equality above expresses continuityvodicrosso@); N Q2. For the pullback
v = v o G, condition (3.23) is equivalent to

Y

o ; . R _
(U\Gfl(Ql)) = (Ce) @ (U\Gfl(Qg)) one =G 1(6), (3.24)

on’

e

0 <4 < min{mg, Q,,m — 1},

where the constant. equals the ratio of the lengths of the two elemepi{sand(, in the direction
of n.. The vectorc collects all of these coefficients. Since all of the meshegamiformly) shape
regular and locally quasi-uniform, the coefficiematsbelong to a compact set bounded away from
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0. Together with the spac:]é(g“, we introduce the usual broken Sobolev space of arder
= {00 =00 G, ug € H™(Q),YQ' with @' N Q # 0}, (3.25)

for which no conditions on the derivatives on the internalitaries are assumed. We h&@g‘ C
H™, for anyc. We define ori{™ the seminorms and norm

m
02 = Y [fie gy 0<i<m, and 8|, = [0,  (3.26)
Q’EQ}L =0
Q'NQ#0D

and we recall that
6112, < C (1101220 + 10 ) - VO €H™ (3.27)

Let P represent the set of piecewise polynomial functions of elegt most — 1 on Q, that
is, the set of functions that are polynomials of the presctilegree on each element formiQyy
and defineP,. := P N H.. Observe that

PeC{i]|t=0v0G,veS}. (3.28)

By (3.27), (3.28), usual scaling arguments, and sikice [, in order to prove (3.21) it is
then sufficient to find, given € #., a suitables € P, such that

”® - ‘§HL2(Q) + ‘® - g‘ﬂl < C’{)’ﬂh (329)

with C independent ob andc. LetII,. : H! — P, be theL?(Q)-projection onto the spacg.. We
prove that (3.29) holds true fér:= Il.4, that is we are going to show that

10 = TLed|| o) + 18 = Meblyy < Clolyy, V0 € H, (3.30)

uniformly with respect ta.
We prove (3.30) by contradiction. Because

bl =0,  VoeH, Ve, (3.31)

assuming that (3.30) is false implies the existence of aesemr{c; } ;cn Of vectors and a sequence
{#;}jen of functions in., - such that

195 = Te, b5l 120 = 1 (3.32)
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and
[0l = 1/7. (3.33)

As discussed above, the componentspfire in a compact set; therefore it is not restrictive to
assume that the sequen(as } ;o converges towards a limit,, (i.e., the components ef; converge
to the corresponding componentsagf).

Recall that the spac®! is compactly embedded intbQ(Q). Therefore, defining); :=
b; — e, 0, sinceli;lly < Clloj — e, 951l 120y + Clojlye is uniformly bounded, it is not
restrictive to assume that the functiofisconverge towards a limif, in LZ(Q). By (3.31) and
(3.33),{7;} jen is also a Cauchy sequencefifl, henceij; — i, in H'. Therefore

Mool = JIL“QO 1Ml = 0,

that is,
Moo € P. (3.34)

In fact, sincen; < HlC] it is easy to see that the conditions of (3.24) pass to thi, lyielding
fiso € H._. This means thaj,, € P, and

fioo = e Tino- (3.35)
We have

||HcooﬁoOHL2(Q)

S Hcoof/oo - chf/oo‘

oy [esioo = Thesi |, o+ Ml sl g
=I+1I+1I1.

It is easy to see that — 0 whenj — oo; indeed, we can have bases B, that converge
to a basis forP.,.. Moreover, sincdl, is uniformly bounded,/I = ||Ic, (7 — 7j)ll 20y <
1100 — ﬁjHL2(Q) — 0. Clearly,I1T = 0. Thus,II._ 7. = 0, and so by (3.35), we finally get

floo = 0, (3.36)
which is in contradiction with (3.32), which implies
”7700”L2(Q) = ]151010 ”ﬁjHLz(Q) =1

This proves (3.30). O
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In [87, Chapter 12] a projector on the spline sp&geis introduced. The projector, here
denoted bylls, , with the present notation is written as

N1y...Ng
sv:= Y (i) Biy iy, Yve L*((0,1)%) (3.37)

i1=1,....i4=1
where the)\;, ;, aredual basis functionals, that is,

MrjaBinig =1 1 ja =ia, VI < < d,
Aj..jgBiy.ig =0 otherwise
From [87, Chapter 12], the functionals,. ;, can be represented by functions with local

support. This induces local stability propertiesldg, . We summarize the previous properties in
the following result, proved in [87, Theorem 12.6]:

1.0

Lemma 3.2.2. We have

IIs, s = s, Vs € S, (spline preserving), (3.38)
s, vl 2y < C”””m((gy Yo e L2((0,1)4),VQ € Qy, (stability). (3.39)

Lemma 3.2.3. LetIls, : L?((0,1)¢) — S}, satisfy (3.38) and (3.39), arl< k < [ < p + 1; then
forall Q € 9y,

[0 =T, vlgeig) < Chg oy Yo € HL(Q) N LP((0,1)%). (3.40)
Proof. Let s be as in Lemma 3.2.1; then, using (3.38),

v — HShU|H’€(Q) =lv—s+1s,(v— S)|Hk(Q)
< |U — 3|H’“(Q) + |H3h('U - 8)|Hk(Q)
=1+1I.

Using (3.21) we get straightforwardly
I—k
I Chq ol gy
The usual inverse inequality for polynomials yields

s, (v = 8)| g0y < Chg* s, (v — 5) |l £2(Q).
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whence, making use of (3.39) and (3.21), we get

IT < Chg kH”_S”m < Chls k\v\Hl

3.2.2 Approximation with NURBS on a patch in the parametric domain

In this section we derive the approximation properties efftURBS space on the pat¢h, 1)¢. We
define the projectofly;, : L((0,1)4) — N}, as

II
Ty, v = M, Yo e L2((0,1)%), (3.41)

w

wherew is defined by (3.12).

Lemma 3.2.4. Letk and! be integer indices with < k <[ < p + 1; we have
v — Ty, 0] ey < Cshgknvnwé), Yo € HL,VQ € O (3.42)

Proof. Recalling thatw € S, C Sy, it follows easily that, ifv € H!(Q), then alsowv € H'(Q).
Therefore, making use of the definition (3.41), the Holdequality, and (3.40), we have

1
o= M olnq) = | (w0 = Tl )

HMQ)
k

<C>y

1=0

1

lwv — HS;LwU’Hk*i Q
w'W’“"’(Q) @

[wolp-ig)

Z Z ’w’WJOO(Q |v] - (49 (Q)

'W“’O( ) j=0 Q'cQy
Q'NQ#AD

‘WLOO )

Since0 < i+ j < [in the last summations, we get (3.42), with a constanthat depends on
|1/w|yyico (@)Wl gry, that is, only depends on the weight functierand its reciprocal /w on
@, and is uniformly bounded with respect to the mesh size. O
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3.2.3 Approximation with NURBS in the physical domain

The following lemma gives estimates for the change of végidtom the patch to the physical
domain.

Lemma 3.2.5. Let m be a non-negative intege) € Q, and K = F(Q). For all functions
v € H™(K), it holds that

—1111/2 = j
[0 0 Flm(g) < Co | det VEU|2 ) ZO IVFI w015 (10 (3.43)
]:
1/2 —m
|U|Hm(K) < Cs H det VFHL/oo(Q) HVFHLoo(Q) Z% |U © F|HJ(Q) (3-44)
j:

Proof. We will address the case > 1, the casen = 0 being trivial. We start by introducing the

function -
F=—— Q- K (3.45)
[VF| Lo (q)
A direct derivation gives
V*F = | VF||~( V'F (3.46)

where here and in what followsindicates an integer with < £ < m. From (3.46) we get
IV*E| oo () < IIVF oo | V¥ oo () - (3.47)

Let now¢ be any point inQ andz = F(£). We then have by definition

z = ||VF|| 1) F(€), (3.48)
- T
c_p <7> . (3.49)
IVF| Lo q)

As a consequence we have

Flz)=¢=F"! <L> . (3.50)
IVFE| L q)
which, by derivation, gives
VF () = VFF! < ”” > IVE[E o (3.51)
IVF| e () L=(@
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Taking theL®° norm, identity (3.51) gives
IV F | oo r6) < VP oo (i) I VRN L2 () (3.52)

By Lemma 3 in [16], there exists a const&nidepending only omn such that, for alt € @,

HVm(vOF)(i)HSCZI!Vjv(x)II Yo IVEQIMIVPEE]™=..[V"FE)I™, (3.53)

i€l(jm)
where
I(j,m) = {i = (i1,49,..rim) € N™ : i1 4ig+ ... im = j, i1+ 20z + ... + miy, =m}. (3.54)
A change of variables, bound (3.53) and the Holder inetyugive
[v o F|gmq) (3.55)

< Clldet V2 00 > olmry Y. IIVFII IV2F |2 ()~ I V" Fll 5
(K) (®) Q)
j iel(j,m)

Using (3.47) and recalling (3.54), the above bound easiggi
1/2 - j
00 F|gm(g) < C||det VE[}2 )Z [0l 60) | VE I ) (3.56)

Y IVE ) IVPE s ) IV F I )
iel(j,m)

< C'(m, | VE |l (q)) || det VETH[Z ZHVFH% N

Applying Lemma 3 of [16] to the inverse functidh—!, similar arguments give

[Vl 1) < Cl det VE[ 2

ZlvoFIHj(@ > HVF_llli ||V2F 1||Loo(K IVTE
= icI(j,m)

Applying (3.52) to bound (3.57), following the same stepslasady performed in (3.56) it finally
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follows that
~o 1 —m m
[0l ac) < C" (M [VE ™ [yymoe ) ”detVFHL{,O(Q) IVFI 20 > [veFlusg). (357)
j=1

Bounds (3.43) and (3.44) are proven, provided we showdiand C” behave ashape
dependent constan€s; (see Section 3). From the above calculations it immedidtdigws thatC’
andC” are continuous functions chV]?‘HWm,w(Q) andHV]?“lHWm,oo(K), respectively. Observe
that VF and VF—! are0-homogeneous with respect WF, and so ar&” andC”. Furthermore,
from (3.46) and (3.51)

: | VF | .

IVEIwme@) = g < IVFlwm=@ 2t IVF @I @58)

IVE ypmeo ity € D IVIF oo (1) | VEI o (0 (3.59)
§=0

recalling that the NURBS maB is fixed, uniform boundedness with respect to the mesh-sigitye
follows.

O

We define the projectdily, : L?(2) — V), as
My, v := (I, (voF)) o F71 Vo € L*(9). (3.60)

We refer to (3.60) as the push-forward of the NURBS projeditiois defined in Figure 3.4 and its
approximation properties are stated in the next result.

Q v R Q HV}L v

voF HNh(UOF)

(0,1)7 (0,1)4

Figure 3.4:11y, v is the push-forward of the NURBS projecti, (v o F), wherev € L?(2) and
voF € L2((0,1)9).
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Theorem 3.2.1.Letk and! be integer indices with < k <[ <p+1;letQ € 9, K = F(Q),
Q and K as in (3.7) and (3.17), respectively; we have

v — Ty, vl e gy < Cshl ’“ZHVFHLOO(Q gz, Yee LXH(QNH(K), (361)
=0

whereh g is the element size in the physical domain defined as
hic = | VF|| () hg- (3.62)
Proof. Using (3.60), and then (3.44), we have
v — Ty, v] ey = [0 = (Mg, (0 0 F)) 0 B~ e
k (3.63)

)”VF”Zfo(Q) Z ’U oF — HNh (U ° F)‘HZ(Q)
=0

< Gy det VF|}/2,

Notice that sincey € H'(K), we havev o F € H! (Q) and we can use the estimate of (3.42) on
each termv o F — Iy, (v o F)|gi(g), obtaining

[voF —Tly, (vo F)lai(q) < Cshgy "[v o Fllyution g

- Iti—k (3.64)
< Cahg® Y woFly g
j=0
Since0 <i < kin(3.63) and) < j <1+ — kin (3.64), the two sums over the indices collapse
into one and we have

1/2
[v = Thy, 0] sy < Col det VI 2 o IV LK o)y ’CZ\UOF\W &)
=0
s l (3.65)
= Cil| det VF ;2 o IVFIZE 0" S S oo Flag)
=0 Q'cQy
Q'NQ#D
Using (3.43) on each terfa o F|H2(Q,) of the last summation of (3.65) we get
—1nl/2
[0 o Flpiqy < Cill det VEY 2 ZHVFHLOO(Q o] 15 (3.66)

where, as beforel'(Q’') = K’. From (3.65) and (3.66), sinde < i < [ and0 < j < i, by
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coalescing the double summation onto a single sum, we have

[0 = Ty, 0| e i) < Csl VEILE () kZ Y IVl ol
=0 K'E!Ch
K'NKA0 (3.67)

l
< GlIVEILE 510" DIV EI w00l sc)-
=0

where we also usefidet VF|| /2 \|I det VE- Y12 < C,. Multiplying and dividing the right-

L°°(Q L (K)
hand side of (3.67) by VF|’ and using the definition of the element size in the physical

L=(Q)’
domain (3.62) we obtain
o — Ty, | <CHV i~ ”ZHVFH JJo] (3.68)
v — v _ Ul rri/ o - .
VpVIHR(K) = HVFH Leo(Q)! T HY(K)
Subsuming the fraction in the above inequality iatg we finally get (3.61). O

As a corollary we have the global error estimate stated below

Theorem 3.2.2.Letk and! be integer indices with < k <[ < p + 1, we have

> o =Ty, vl ) SCe Y pa=H) Z IVFIRE o e [V s V0 € H(S). (3.69)

Keky, Keky,
Remark 3.2.1. We note from Theorem 3.2.1 and Theorem 3.2.2 that the NUR®® Bp on the
physical domairf delivers the optimal rate of convergence, as for the cladsinite element spaces
of degreep. Note that a bound on th*-order seminorm of the errar — Iy, v requires a control
on the full**-order norm ofv, unlike for finite elements (or splines, as in (3.40)) whemty dhe
[t"-order seminorm o is involved in the right-hand side of the estimate. This is tiuthe role
played by the weighting functian and the geometrical map.

Note moreover that the estimates stated in Theorem 3.2. B.2n2l aredimensionallycon-
sistent. Indeed’; is a dimensionless constant, while bdth and || VF || ;-1 (x)) have dimen-
sions of length; the patck, 1)¢ is dimensionless while the physical spdeds a dimensional
space, which implies thd&F has the dimensions of length. The coefficig/¥aF | "L;i(F,l(K)))
compensate for the different dimensions of the the sem@jetip: inside the summation of (3.61)
and (3.69).
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3.2.4 Spaces with boundary conditions

Dealing with boundary conditions in the variational formitn of continuum mechanics problems

requires Sobolev spaces of functions satisfying boundamgtcaints. The analysis developed in the

previous sections can be adapted to this context with onfypnmodifications, as sketched below.
We focus our attention on the case of Dirichlet boundary ¢ for second-order differ-

ential operators of the type discussed later in Sectionl%60S be the boundary df ¢ R, with

d = 2,3, andT’p C 09 the part of the boundary where the Dirichlet conditions hditbreover

assume, for the sake of simplicity, tHag, is the union of element faces (fdr= 3) or edges (for

d = 2), and letyp = F~1(I'p). For the purposes of analysis of the numerical methods, wd ne

a projector fromiH*(2) into V,, which preserves the nullity of the traces Bp and with the same

approximation properties as stated in Theorem 3.2. Let

HE (@) ={veH(Q)|v=00onTp},
and accordingly
HL,((0,0)%) = {v e HY(©0.1)") v =0onp},
Assume, for the sake of simplicity, th&), ¢ C°((0,1)?). Itis easy to verify (see [52] or
[87]) that the tensor product B-spline basis functions give

SpNH ((0,1)%) = spaf{ B, i, | Biy iy € H ((0,1)7), 1 <ig <ng, 1 < <d}. (3.70)

It seems natural therefore to modify the definition of (3,3@ktricting to such a basis in
(3.70). Therefore we set

thv = Z (>‘i1~~~idv) Bilmidv Vv € Hip((ov 1)d)’ (3-71)
i(x:17---7na

Biy..ig€Hy ((0,1)%)

where, since (3.70J1g, : H ((0,1)%) — Sy N HI ((0,1)4).
The projectord1}. : H1 ((0,1)%) — Nj, N HI ((0,1)%) andII§, : H{ (Q) — Vp N
H} () can be defined accordingly:

% (wv
0, v = % Yo e H! ((0,1)%),

H?;hv = (H?\/h(fu oF))o F! Y € H%D(Q);

The key tool of our analysis, Lemma 3.2.1, admits the foltayvextension.
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Lemma 3.2.6. Letk and/ be integer indices with < k <l < p+ 1andl > 1; givenQ € 9y, Q
asin (3.7)v € H,(Q) N H!_ ((0,1)%), there exists am € S, N H!_((0,1)) such that

-k

The proof is similar. From Lemma 3.2.6, the rest of the angalfigdlows in a straight forward
manner as in the previous sections, leading to the reswtbel

Theorem 3.2.3.Letk and!( be integer indices with < k < [ < p + 1, we have

0 2
Z |U—th“|Hﬁ(K)
Keky

l

-k i—1
<G Y TS IVEIR B oy 0 Yo € HU(Q) 0 HE (). (3.73)
Keky =0

3.3 Inverse inequalities for NURBS

In this section, we prove some inverse inequalities whicemgble the ones for finite elements
spaces.

Theorem 3.3.1.We have
g2y < Cshit olp ey VK € Ky, Yo € Wy, (3.74)
Proof. Lemma 3.2.5 yields
1/2

[0l 2(x) < Calldet VEIY2 ) IVFIT2 o lv 0 Fll 2 (3.75)

where, as befordf'(Q)) = K. Moreover

1
Wliw2ee(@)
Sincew(v o F) is a polynomial of global degres - ... - p4, for a usual inverse inequality we have
1|1
[voFly2q) < Chg ||— l[w(v o F)|| () 3.77)
W2 (Q)

43



We now have, again using Lemma 3.2.5,

[w(v o F)|lg1q) < Cllwllwieg)llvoFllmq)

12 ! ; (3.78)
< Collwllroo (gl det VE 12 4 2; VR o 01215 ()
j:
Joining all of the above bounds, we finally get
1
— —2
[0l a250) < Cshggt Y IIVFI] )05 1) (3.79)

J=0

Let now vi represent the constant function equal to the average a@f K’; note that
vk € Vp. Therefore, applying (3.79), classical polynomial intdgtion results, and recalling that
IVF|| % )i = hq, it easily follows that

[0l g2 (k) = [v — vi |2 (k)

1
< Cehg' Y HVFH]L;Z(Q)!U — VK| (k)
=0

< Cghl_(l‘v‘Hl(K).
0

More general inverse inequalities can be easily derivddviahg the approach given above.
In particular, the following result holds.

Theorem 3.3.2.Letk and!( be integer indices with < k < [; we have
k .
ol < Cohl Y IVFIE por gy vligy VK € Ky, Yo € V. (3.80)
=0
3.4 Applications to physical problems

In this section we obtain error estimates for NURBS appleesidme linear physical problems. The
basis of the analyses is the approximation and inverse a&siof the previous sections. After con-
sidering classical Galerkin methods for elliptic probleme consider application of stabilized and
BB-stable methods to saddle-point problems, and finallytweysstabilized methods for advective-
diffusive problems.
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3.4.1 Elasticity

We start by considering the classical two- and three-diioeaslinear elastic problem. We assume
that the boundaryX? is decomposed into a Dirichlet pdfp and a Neumann palty; as usuall'p
andTI’y are the unions of element edges (flox= 2) and faces (forl = 3), respectively. Moreover,
let f : Q — R be the given body force angl: Q : T'y — R? the given traction off' .

Then, the mixed boundary-value problem forc R?, supported o' and free o'y,

reads
V. .Ce(u)+f=0 in Q
u=0 onl'p (3.81)
Ce(u) n=g on 'y,

where(V-) is the divergencen is the unit outward normal at each point of the boundary aed th
fourth-order tenso€ is defined by

14

Cw =2
w=cpwt o)

tr(w)I (3.82)

for all second-order tensots, wheretr represents the trace operator and 0, 0 < v < 1/2 are,
respectively, the shear modulus and Poisson’s ratio. Tée ceinhomogeneous Dirichlet data can
be reduced to (3.81) by standard means. The stveds,given by Hooke’s lawg = Ce.
Assuming for simplicity a regular loadingjc [L2(Q)]? andg € [L?(T'x)]?, we introduce
also
<,v>=(f,v)g+ (gv)ry Yve [H(Q), (3.83)

where(, )a, (, )ry indicate, as usual, the? scalar products of andT y, respectively. The
variational form of problem (3.81) then reads: find: [H%D(Q)]d such that

(Ce(u),e(v))g =< ¥,v > Yo € [H%D(Q)]d (3.84)

As is well known, this is an elliptic problem. In order to selit using NURBS, we follow
the same Galerkin approach adopted for classical finite exi¢sn that is, we restrict the original
problem to the finite-dimensional NURBS space: find< V}, such that

(Ce(u),e(v))o =<,v > Vv € Vy, (3.85)

where
Vi = Vil N [Hp, ()17, (3.86)

with V;, a NURBS space built as described in the previous sections.
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The stability and consistency of the discrete problem (3@&tow immediately. Therefore,
a classical convergence analysis easily gives

|u—uh|H1 < C(I/) ’UiIéth |u—'vh|H1(Q). (387)
As a consequence, the interpolation properties of the jpatiba give the optimal convergence of
the method with respect to the norm and degree used: assuuasiuniform mesh refinement,
hx ~ h, andmin, p, = k, u € [H*+1(Q)]? we have

[ — uhl 1 o) < O, w)Coh; (3.88)
moreover, assuming the regularity of the problem, i.e.
ullg20) < Clifll2@) (3.89)

for all f € L?(f2), wheneverg = 0, the following L? estimate easily follows using an Aubin-
Niestche argument
[ — whl 20y < C(v, w)Csh* . (3.90)

3.4.2 Incompressible and almostincompressible isotropalasticity — stabilized meth-
ods

It is well known that the constart in bound (3.87) tends te-cc as the Poisson ratio — 1/2. As

it happens for classical finite elements, in such cases theB&Jdiscretization (3.85) is expected

to give non-satisfactory approximation results. In oraetréat both this (almost incompressible)

case and the limit (incompressible) case, we rewrite prot{&84) in the standard mixed form.
For notation simplicity we now set the shear modulys = 1, and define the positive

constant
N 1—2v

14
The incompressible case is represented by0.
The mixed variational formulation of (3.81) then reads: findp) € H{ (Q) x L*(Q)
such that

€ (3.91)

(e(u),e(v))o — (V- v,p)a=<9,v>  Vove[H (Q)]
(3.92)
(V-u,q)o+e(p,q)o =0 Vg € L?(9).

Throughout this section and the next, we assumelihat: 0. If I'p = 02 ande = 0,
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the space for the pressure needs to be replaced by

L3(Q) = {q € L*(Q) | /Q q=0} (3.93)

in order for the problem to have a unique solution.

Whenever: > 0, the stability of the problem and the good properties of thERBS space
guarantee optimal error bounds for Galerkin’s method apb (3.92). On the other hand, similarly
to classical finite elements, we expect the Galerkin diszaon with NURBS to suffer from lack
of stability ass — 0. In general, unless certain combination of spgdés P, ) are found (see next
section), the approximation properties of the numericathoe are well known to deteriorate as
e — 0; even worse, the limit case = 0 can suffer from complete lack of stability and spurious
modes. One way to avoid this is to adopt a stabilized formaratf (3.92).

We start by introducing the discrete spaces for displactsreerd pressures

Vi = Wuin[HE, (Q)° (3.94)
P, = VyNHY(Q) (3.95)
Note that we are requiring continuity also on the pressures #or the moment, we are

assuming equal-order displacement and pressure fieldewkiad) [45], [32, 53], and [21] we intro-
duce the following stabilized formulations:

SUPG:
B (u,piv,q) = (e(u),e(v))a — (V- v,p)a + (V- u,q)a +£(p. q)a
ta > hi(-V-e(u) + Vp, Va)k (3.96)
KeKy,
FSUPC(v) =< v > +a Y hi(f,V)k (3.97)
KeKy,
GLS:
B (u,p; v, q) = (e(u),e(v))a — (V- v,p)a — (V- u,q)a — £(p,9)o
—a > hi(=V-e(u)+ Vp,—V e(v) + Vo) (3.98)
Keky
FES(w) =< v > —a Y hi(f,—V -e(v) + Vo)x (3.99)
Keky,
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DW (Douglas-Wang):

BPY (u,p;v,q) = (e(u),e(v))a — (V- v,p)a — (V- u,q)a — (p, )0

—a Y hg(=V-e(u)+ Vp,V e(v) + Vq)x (3.100)
Keky
FPV(v) =<gp,v>—a Y hi(,~V-e(v) + Vq)k (3.101)
Keky

where« is a positive constant at our disposal. The discrete NURB®BIpm then reads: find
(up,pn) € Vi x Py such that

B(up,pp;v,q) = F(v)  Y(v,q) € Vi x Py (3.102)

where the bilinear fornB(-, -) and the functionaF'(-) depend on which of the three methods above
is adopted.

For the three methods here presented, there hold optimal-amaiform error bounds in the
natural norms of the problem. Given the interpolation aneélise inequality results of the previous
sections, the proof of this result follows in step-by-staphion its finite element counterpart. For
the SUPG method, see Theorem 4.1 in [45], while for the GLSRWmethods see respectively
Theorem 3.1, case (ii), and Theorem 3.2, case (ii), in [38t.d®@mpleteness we include, in the next
lemma, a very brief sketch of the proof of the stability ré$oit the GLS case, the other two cases
being very similar; we will make use of the notation

(@, )II* := lle(@)l[720y + (1 + &)llal720)- (3.103)

We recall the Korn inequality

dIaITI(Q) 2||’U||L2(Q —|—|’U|H1 <Ckorn||5( )H%Q(Q)

Lemma 3.4.1. Let the constand < o < C’mv, whereC;,, is the (shape dependent) constant of the
inverse inequality stated in Lemma 3.3.1. Then, theresxist> 0, independent of the mesh size,

such that
BGLS(

u,p;v,q
sup ) > eyl )l (3.104)
(V,Q)E€VL X Py, (v, 9]

Proof. We follow the approach of [32]. The inf-sup condition (3.)@&lequivalent to the following:
given any(u, p) € Vj, x Py, there exists &v, q) € V}, x P, and two positive constants,, C?, such

48



that

v

BEES (u, py v, q) Coll| (w, )| (3.105)

.l < Clllew, I

A

Inequalities (3.105) allow one to establish the uniforniosity condition by selecting the appropri-
ate test function for the bilinear form. We start by recalan argument given in Verfurth [109] that
gives the existence of two positive constafitsandC?, such that

V - v,q
sup DD 5 g — O ST R ValZag) Y2 Vae P (3.106)
0£vev, |VE1(Q) Kekn

The above inequality relies solely on the interpolatiorineste, which for the NURBS approxi-
mation space was established in Theorem 3.2.3. The folgpwound is immediate, provided the
inverse estimate (Theorem 3.3.2) holds together with timtd@na (0 < o < C; 1):

muv

B (u,pru, —p) > Calulfp gy + ellplF2(q)

+a > |Vl V(w,p) €Vix Py, (3.107)
KeKky,

with 05 = Ckorn(l — OéCim,).

Considerw € V}, which achieves the supremum in (3.106) fo= p (w can be rescaled
such thatw|x1 () = ||pl|£2(q), which is what is assumed in the sequel). Then the followingniol
holds:

BOLS (u, pyw,0) > —Cs|u|§{1(g)+cé||p\|%2(9)

—Cy Y hklValZa, (3.108)
Keky,

whereCs, Cf, andC? are positive andu,p) € Vj, x P,. Denoting(v,q) = (u — dw, —p) and
combining (3.107) and (3.108) we arrive at

B (u, p;0,9) > Col|ulFn ) + (1 +9)lIpl72(0)); (3.109)
with a suitable choice for a positive parameieOn the other hand we have
03 + L+ ) lalFz) < Calluln gy + 1 +8)lpl3 ). (3.110)

which, in conjunction with (3.109), completes the prooftud iniform stability (3.104). O
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The uniform stability result of Lemma 3.4.1 combined witk thverse inequalities of Sec-
tion 3.3 and the interpolation estimates of Section 3.2a84d0 error estimates which are optimal.
Let £ = min (p1,p2,..,pq) Wherep;, ps, .., pq are as the anisotropic polynomial degrees/pf
Then, ifu ¢ H*1(Q) andp € H*(Q),

w — wnlm) + lp = pallz2(e) < C(u,p) Cs h-. (3.111)

Moreover, assuming as in Section 5.1 the regularity of tldlem and making use of the Aubin-
Niestche argument, we get

Ju — upl| L2 () < C(u,p) Cs HF. (3.112)

Remark 3.4.1. Similar results can be obtained for any pair of continuousRBS space¥,, P;.
It is not required that the displacement and pressure sphedsased on the same knot vectors and
polynomial degree. i € H5"(Q) andp € H*(R), then

lw— wnlio) + P — pallre) + 27w — wpllr2) < Clu,p) Cs bF,
k =min{s, ky, k, + 1} (3.113)

wherek, andk, are the minimal anisotropic polynomial degrees used fopldisements and pres-
sures, respectively.

3.4.3 Incompressible and almost incompressible isotropielasticity — a BB-stable
method

In this section we introduce pairs of displacement and presBlURBS spaces suitable for the
approximation of problem (3.92) without the necessity afing stabilizing terms. Given a positive
isotropic degreé:, we introduce the spaces of displacements and pressures

Vi = Wh(k+1,... k+1)4n[HE () (3.114)
P, = Vu(k,....,k)nHY(Q), (3.115)

whereV,(k 4+ 1,...,k + 1) andVy(k, ..., k) denote the NURBS spaces introduced in (3.19), of
degreek+1 andk, respectively. We assume thatlij no continuity of derivatives is enforced across
the element boundaries, that is, in each coordinate directhe internal knots are repeated- 1
times. By construction, there is a basis function that isrjpdlatory at each vertex of the mesh. The
control point associated with each vertex is physicallyated at that vertex. These control points
are a subset of the control points comprizing the contral Ret this subset, the control points are
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identical to the nodal points of finite elements.
We are now able to introduce the discrete problem: fiagl, p;) € V}, x P, such that

(e(up),e(v))g — (V -v,pp)o =< ¥, v > Yo eV,

(3.116)
(V-up,q)o +e@nq)a=0 Vg € P,
We recall that
h = ho.
B

Moreover, in what follows we denote By,,... a quantity, representing a mesh-size, which depends
only on the problem domain, mesh family shape-regularitg polynomial degreé. We have the
following a priori error estimate.

Theorem 3.4.1. There existd,,,, > 0 such that forh < A0z,

u = wilingoy + 0 = pllao) < Co (int, = valimngoy + inf 1= o ) - (417)

where(u, p) is the solution of problem (3.92) arfd;,, p,) is the solution of problem (3.116).

Theorem 3.4.1 and the interpolation estimates of Secti®:3 Bad to error estimates which
are optimal: ifu € H**1(Q) andp € H*(9Q),

lw— wpl (o) + Ip — Prllr2) < C(u,p) Cs hE. (3.118)

The proof of Theorem 3.4.1 follows directly from the Babaf&rezzi inf-sup (stability) condition
stated in the next theorem, and the classical theory of nfir@d element methods (see [11]).

Theorem 3.4.2. There exist$,,.. > 0 andC; > 0 such that the inf-sup condition

V.
sup (V-v,q)

> Csllallz2), Vg € P, (3.119)
vev, |VlHi(q)

holds provided that
h < hmaz- (3.120)

The proof of Theorem 3.4.2 requires some preliminary resutd Lemma 3.2.3. We denote
by F}, the (piecewise multilinear) nodal interpolant®f and by, the image off';,, that is

F - (0,1) — Q. (3.121)
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Note that the domaif2;,, depends on the mesd),. We also introduce finite-dimensional spaces on
the patch(0, 1),

v, = {@:(0,1)d—>Rd|f):voF,’UGVh}, (3.122)

B, = {(j:(O,l)da]R{Mj:qu,quh}, (3.123)
and onQ),:

v, = {@;QhHRdm:@oF};l,@th}, (3.124)

B, = {q:QhHR\(j:qugl,(jeP}, (3.125)

GivenK € K, we define the correspondinvgrtex elemeni as

K=F,(F 1K) ={zeWlz=F,F (y), ye K} (3.126)

The mesh of allK’’s is referred to as theertex mesti,,. The union of allk € IC;, givesQ,; also
note that thek’s are bilinear quadrilaterals and trilinear hexahedr&irandR?, respectively.kC;,
may be thought of as a coarsening of tteatrol net or control meshin NURBS theory (see [18,
52]). The control net facilitates a geometric interpretatof the control points as it is a piecewise
multilinear interpolation ofall the control points. We recall th&;, interpolates only a subset of

the control points. See Box 1 for a schematic illustratiorthef setup and the relation between
mappings.
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Box 1. Geometrical setup.

T(FoF')=TFoTF,'

T(F,oF")=TF, oTF"

— T

TF, 4 TF
_2 e é2 TQ —
X = -1 -1
e TF, - TF x
! pOE g
g e \ Ttk
F, F
— Q —_—
_ — —
X Fh—l F_1 P
Vertex Parametric Geometric
element W Slemen
FoF'
F, oF"'

Q is a parametric elemenfy is a geometric element, and is a vertex elementX and K are the
images of) under the mappingB andF,, respectively. The tangent bundl€g), TK andT K consis
of base points and-dimensional vector spaces emanating from the base poldsresponding to the
mappingsF andF, are the tangent mafgdF and7'F;, (and likewise their inverses). For example, we write
TF = (F, VF) and thus the tangent maps base poifits— F(¢), and vectors by the linear transformation
é(&) — VF(£)é(€). Composite tangent maps transform by the chain rule, astrigited in the figure.
Vertex elements are multilinear maps of parametric elemenhusF;, is bilinear in two dimensions and
trilinear in three. Geometric elements are portions of tk@cegeometry defined by NURBS. Under
refinement, the vertex elements converge to the geometmesits. 7o, 7x andrz are the canonical
projections onto the base elements.

Taking¢ at a corner of), we haver = F(¢) andz = Fy, (), as shown, and@'F,(¢) = (Fp,(€), VFL(€))
andTF,; () = (F,'(z),VF,'(z)). The edge lengths are given by, = [|é,| andh., = [éa]],
1 < a < d. Furthermoreg, (z) = VF;,(£)é.(€) andé, (€) = VF;, ' (7)én(Z), from which easily follows
he, < |VE4| @ he, andhe, < ||[VE, || &) he,, and in turn (3.137).

Let z = F(¢) whereé € @ is arbitrary. Likewise,( = F~!(z). SinceF o F~l(z) = uz,
VF(§)VF~1(z) = 1, the identity matrix, and sWF(£)~! = VF~1(z). We write this af VF)~! =
VF~!oF. Itis necessary to be careful with compositions and basetpai the analysis. Similar results

may be derived for the other mappings.

53



Lemma 3.4.2. There exists/, .. > 0 (only dependent on the shape regularity of the m@gh
and on the shape dt), such that giver) € 9, K = F(Q), K as in (3.126) and assuming that

hg <h] thenF, is a one-to-one mapping frof into KX and we have

max’

[VE (@) < Csll VF| 1o () (3.127)
IVE | oo () < Col VE ™! oo () (3.128)
|det VE L[| () < Call VE[|{oo () (3.129)
At VE, | e () < Col[VE | ) (3.130)

Proof. We introduce the map and its derivativé
E=F, -F, VE = VF, - VF (3.131)
Note that a classical result gives the estimate for thepotation error
IVE| (@) < CichqllV?Fl|=(o); (3.132)

therefore, we have

IVE'VE| o) < IVF oo I VEl (@) < Ciel[VF |1 (1)1 | V2F | oo ) -

In particular, if
hQll VT | @) I VE | i) < Cio'/2, (3.133)

then

IVF ' VE| 1(q) < (3.134)

N —

We set

-1
e = 325 {2HV2FH Ciﬁw 1 };
E oo - o0
K:F(Z}) L>(Q) Lo (K)

3If linear NURBS are utilizedF andF}, are the same and thi& = 0.

“We need to elaborate on the geometric meaning & 'VE. VF~!(z) is a linear map from the tangent space
T.K to T¢Q, wherex = F(¢). Likewise, VF(¢):T:Q — T, K is its inverse. HoweverVF;,(£):T:Q — T: K,
wherez = F, (). Thus, the images 0V F (¢) and VF,, (€) reside in different tangent spaces, nam@lyk andT: K,
respectively. To make sense ®F 'V E, we need to identify the linear spadé K with 7, K so thatVE(¢) =
VF,(¢) — VF(£) may be viewed as a linear map fréfaQ to T, K. In other words, i£(€) — VF(£)é(¢) € Tz K,
thenVF,,(£)é(¢) is parallel transported 16, K.
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condition (3.133) can be stated /as< A/ which we assume in what follows. Observe that

VE,(§) = VF(§) + VE (§) = VF(§) ([ + (VF) (Y VE()) VEeQ, (3135
whence 5
[VF| o) < §HVF||L°°(Q)7 (3.136)
thatis,Cs = % in (3.127). Furthermore, fixing € @, the right hand side of (3.135) is a non-singular
matrix, and, in particular,
| (I+(VE)HOVEE) | < (1= [(VE)(OVEE ™ <2

Therefore VF}, is nonsingular and

= O\ — = _ —1 _
(VER) @) = | ({+ (VE)'VE) ™ (VE) | 1(q)
= _ —1 _
<[ (T4 (VF)'VE) || 1= (VF) | 1= (g
<2 VF ™ oo (i)

Since||VE, sy = I(VER) 1= (), We get (3.128). The estimates (3.129) and (3.130)
follow easily from (3.127) and (3.128), respectively. O

Given an elemenf) € 9y, let é; andé,; be tangent vectors associated with any two ad-
jacent edges having lengtths, = |é1|| andhe, = ||é2], respectively. Le€; andé, denote the
corresponding edges &f, of lengthsh;, andh,, respectively. Then, we have (see Box 1)

hél n—1 o hé1
he, <|VF, HLOO(K)HVFh||L°O(Q)h_é2 < Cs. (3.137)
where we also used the shape regularit@gfin the last bound.

We have indeed more, as stated in the next result.

Lemma 3.4.3. Under the assumption of Lemma 3.4.2, the family of vertekesd«;, };, is shape-
regular.

Proof. Since a uniform bound on the edge lengths ratio follows imatety from (3.137), we are
only left to prove a minimum angle condition fdiC;, },. We will start addressing the cade= 2. In
addiction to the notation introduced above, denoté liye angle shared by the two adjacent edges
e, ande, of K. We will prove that

|sinf| > Cs > 0. (3.138)
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Denoting byé; andés the two corresponding edges @f and{ € @ the common vertex,
then basic geometrical arguments give
[Ex x & _ [VER(§ér x VE4(E)és]
[en]l llezll  (IVE(&érll IVEL(E)és|
where “x” stands for the cross product. Sinée andé, are orthogonal, thefjdé; x Aés| =
| det Al||é1]|||é2]| for all matricesA € R?*2. Therefore, from (3.139), we have

(3.139)

|sin | =

| det VF(§)]

|sind| > — .
IVEL(E)]?

(3.140)
The uniform lower bound (3.138) now follows from (3.140) dre&inma 3.4.2.
The casel = 3 follows similarly, the main difference being that now thedguality

|det Aflléx|[[lézl[llésl] = | (Aéy x Aép) - Aés|
< [|Aé x Aéql[||Allllés |, (3.141)

which holds for any orthogonal vectogs, é; andés, is used to bound VF,(£)é; x VF,(€)és||
from below. O

In order to prove Theorem 3.4.1 we useracroelementechnique (see [95],[94]). A
macroelemenfl/ is a connected set of elemertsc K, (precisely,M is the interior of the union
of the closure of adjacent elemers), therefore a subset 61,. In two dimensions we consider
macroelements made of two quadrilaterals that share an adije in three dimensions we con-
sider macroelements made of four adjacent hexahedra satkdhbh shares two faces with other
two hexahedra and one edge with the last hexahedron. Weedbpét,; the diameter of\/. We
assume that the mesdy, is made at least &f x 1 or of 2 x 2 x 1 elements whed = 2 ord = 3 re-
spectively, so that a macroelement partitionity, of (2, can be found (with possibly overlapping
macroelements) such that eahc K, is contained in at least one and no more than twd f 2)
or four (if d = 3) macroelementd/ of M.

We associate to a macroelem@te M;, the set

~ —

N =F; N (M) = {g € (0,1)% such thatf', () € M} .

M is a macroelement of, 1)%.
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For a macroelement/ we define the spaces

Vour = Viur NHy(M), (3.142)
Py = Py (3.143)

moreover, for brevity we denote Wy, -),;; the L2(M) scalar product.
The next step is to obtain a local inf-sup condition, for thacesl/, ;; and Py;.

Lemma 3.4.4. Under the assumption of Lemma 3.4.2, there exists a conStant 0 such that,
givenM € M,, and given any] € Pj;, there exists @ € V}, ;; for which

V0,05 > Csharldliin — Cohar IVE ) roo cim @l 22011
( @)z = Cshiglal g iy — Cshar IVE, | Lo iy 1l 2 i (3.144)

|IB|H1(1\7I) <1

Proof. In [94], a similar inf-sup condition for quadrilateral TaylHood type elements, which in
our context correspond to the case wheis constant and = 2, is proven. The purely polynomial
case ford = 3 is an easy extension of that result. We take it as a startiing fmr our analysis:
specifically, from [94] one can easily obtain:

(V ‘v, q_)]\7[

w = constant = sup

vev, n  |0lm o)

Note that a key ingredient of the proof in [94] (and therefofe3.145)) is the regularity of the
mesh, here given by Lemma 3.4.3.

The inf-sup condition (3.145) implies that, whenis not a constant and introducing =
woF; !, we have

sup (V ) (@@),QDQ)M

1 — - > Cshy®q| g1 () Vg € Py. (3.146)
VeV, 1 WO g1 (5

Giveng € Py, we denote by* € ‘7})7]\—4 a function which realizes maximum of the quantity
(V- (00),wq) y; /|00 g1 (yy- We want to show that

vV -5*,9) ) . _
% > Cohiigldl i (iry — Coht IVE oo i 1) 221y (3.147)
v ’Hl(M)

which gives (3.144).
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Denoting byw,,, the mean value ofy on M, we have

(V- (00"),0q) 5y = (@V@ -0, @) 57 + (@°V - 0, @)y
= (’LZ)VZU 7Q)M + ((w - QI}72er)V : ’D*,Q_)M + (wgrwv : ,D*v Q)M
=1+ II+1I1I.
(3.148)
Recalling thaff";, (M) = M and making use of the chain rule, we have
1@ oo () = 1wl oo (g7
L= e (3.149)
190 e i) < 1700 e )|V o it
while, from the Friedrich-Poincaré inequality,
W — Wiy || oo iy < Chyr || V0| poo (17
| | oo (1) W IV oo iy - (3.150)
< Ch]V[vaHLoo(M)”VFh ”LOO(M
and
0™ 2(iry < Chygl| VO™ 25y - (3.151)

Notice also that, from the definition @f; and recalling thato,,,,, is positive, we can write

]l e sy < Coomo 6152
V]l oo ) < CsBmo- '

Therefore, using the Cauchy-Schwarz inequality, (3.1@)51), and (3.152), we have
I = (wVw-0%,q)

< @l oo iy VO oo i) 107 | 22 iy @l 22 7y (3.153)
< ChMHwHLoo(M)HVWHLoo(M)HVF;lHLOO(M)\@*\Hl(M)H¢7”L2(M)

< hog Csti, [V E | oo 0y |07 | oy 12 2y
Furthermore, using the Cauchy-Schwarz inequality, (3,149150), and (3.152), we have

IT = ((0* — w2,V - 0%, @)1

< W — Winw || poo (i) [|W + Winw || poo (12 v G L2 (w7
| [l oo iy I I (_M_)l\ ’Hl(M)_[ 53 a) (3.154)
< Chyg IV wl| poo iy [0l oo (i) IV, oo () [0 2 (i) 1€ 22 )

ShMCswzanVFle”Loo YO L @l 2 iy
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while, of course,
I1T = @2, (V - 9%,§) 17 (3.155)

Using again the chain rule and (3.149), we have

~ o
@l iy = | L oy
V(wq) -
< =5 2y + ||qu—||L2(M

1 _
< HEHLOO(M ”V(WJ)”H ) T ”V_”LOO(M ”wHLoo HQHL2 Y

1 _
HwHLoo(M 0] g1 3y + I VEL oo ) HV HLoo(M [w]] oo )HqHLZ(M)v
(3.156)
which implies, usinqyﬂzio(m > CytWmy, as well aq\V%HLOO(M)HwHLw(M) < Cs,

_ 1, _ _ = 1 _
a0y 2 172 o <|q|H1<M) - HVFthLw(M)||v5||mm||w||Lw(M)uquLz<M>)

> CyW (|q_|H1(M) - HVFZIHLOO(M)||<?HL2(M)) :
(3.157)
In a similar way, using also the Poincaré inequalityv™ || .2 (yy) < Chyy|w00*| g1 (i), We
have

|——*

0% oy < Ml — HLoo(M 00" 1 gy + [ VF | oo gy v~ Moo i 1007 | L2 a1

i (3.158)
< (uanmm +ChMHVFngLw(M)||V;||LW(M)) [0 1111

Moreover, following the steps as in (3.156)—(3.157) andgai; < hM||VFh\|LOO(M) < HVFhHLOO(M)

together with| VE, || oc (57) | VE R oo (41) < Col VE ™ oo (i) | VF | oo (1) < Csr We have
00" 1 (5y 2 Csmo| 0| 131 (3.159)

Recalling that* attains the supremum in (3.146), we can now collect the estign(3.157),
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(3.159) and (3.153)—(3.155), getting

Pt (1210 iy = IVER o i1l 22 )
< Cshyr |04 g (3
(V - (@5"), wq)

[ 00* | 1 3z (3.160)
T+ I1+1IIT

wmv”‘_’*’Hl(M)

< Cs

<,

_ = _ Winy V. 1_7*7 q
< C (thmvHVFh1”Lo<>(1\71)HQHL2(M) + ¥> 7

10| 1 iy

which is, after dividing byw,,.,, (3.147). This concludes the proof. O

We can get now a global inf-sup condition for the spaldes) H}(€2),) and ;. We set

h = max hg. (3.161)
KeKy
Lemma 3.4.5. Under the assumption of Lemma 3.4.2, there exists a conStant 0 such that,
given anyg € P, there exists @ € Vj, N HE () for which

1/2
_ 2 152 7 -l J
(V-0,q) > Cs ( Z thHl(K)) — C4h||VF, HLOO(Qh)”qHL2(Qh)’ (3.162)

I_{Eﬁh
0], < 1.

Proof. For each macroelemedtl € My, letw,; € V, N HE(Qy) such thatwy; = 0in Qp,/M
and, according to Lemma 3.4.4,

(V- @51,@) 51 > Cshogldl g vy — Cobg I VE oo iy 10 22y
<

| i | g iy < 1
Setting
W= Tyl @y,
]\Z[EM;L
it is easy to see that (3.162) holds true for the rescalecowéield v = w/|w| g1 (q,)- O

We are now ready to show the following proposition, whichhis tounterpart of Lemma
3.4.5 for the NURBS spacés,, P,.
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Proposition 3.4.1. Under the assumption of Lemma 3.4.2, there exists a conStant0 such that,
given anyg € P, there exists @ € Vj, N Hg(Q) for which

1/2

(V-v,q) >Cs | Y Bklali | — Cibllalrz),

Ker, (3.163)
|U|H1(Q) <1

Proof. Given any functiony in Py, we defingj € P, andg € P,

Due to Lemma 3.4.5, we have the existence of a functian 1}, such that (3.162) holds true. We
introduce the function$ € V,, andv € V,, as

v=v0F, wv=00F! (3.165)

Recalling Lemma 3.4.2 and thaW F ! | < () |VF| Lo ((0,1¢) < Cs, change of variables leads to
the bounds

lallz2oays < CElIVEIZ2 g lgllz2@), (3.166)
9] 1 ((0,1)0) < Cs||VF_1HCLl/£(§)|17|H1(Q,L), (3.167)
1l 2@, < Csllallz (), (3.168)
hiclalmxy < Cshiglal g VK € K, (3.169)
[v|m0) < C 10| 1.@,)- (3.170)

A direct change of variables and simple algebra now give
(V0.0 = [ (Vo)
Q
= / tr(|detVF|VFTVaT)g
(0,1)4
= / tr([|detVF|VE~T — ydetVFh\VF;T] vol) g (3.171)
(0,1)4

+ / tr(|det VF,|VF, T VaT)g
(0,1)¢

=I+11I.
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We now note that
(detA)A™T = Cof(A) VA e R detA #0 (3.172)

whereCof (A) is the cofactor matrix of\.. Therefore, from the definition df, and classical inter-
polation results, it follows

| [det VE|VE ™" — |det VEL|VE, " || oo ((0,1)0) < Cs HVFHLOO h (3.173)

(0,1)%)

where a factorﬂVQFHLoo((O,l)d)/HVFHLOO((OJ)d) was included inC;. Note that this estimate re-
quires the use of NURBS of at least quadratic level. If lind&iRBS are utilized the actual ge-
ometry is the vertex mesh. Inequality (3.173) is an estinoéitime difference between the actual
geometry and the corresponding vertex mesh.

As a consequence, using first the Holder inequality and 83, Xfien (3.167) and (3.166),
and recalling thafv| 1, ) < 1 and\|VF—1||Loo(Q)||VF\|L00((071)d) < Cs, we obtain

I > —Cs ||VF||LOO(01 hHQHB ((0,1)d |’U|H1(01))
> —Cshllqlr2()- (3.174)

For termI1, first a change of variables and then using (3.162) we get

1/2
H:/Q tr(Vo)g > C. (Z Wldlh x ) — Cih|\ VE e lal 2@,y (3:175)
h KeKy

Without showing the details, using the bounds (3.168),63),lusing Lemma 3.4.2 and
recalling thath < h|[VF| Lo ((0,1y4), We easily have

1/2
(Z hlalsn ) — CohlIVE o llal r2 o)

Keky

1/2
(Z h qu(K> _C;hHQHLQ(Q)- (3.176)

KeKy,

Bounds (3.175) and (3.176) now give

1/2
1> C, ( > hiqum) — Clhllgll 20 (3.177)

Keky
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After rescaling ofv, the identity (3.171) with the bounds (3.174) and (3.173)162) and (3.170),
finally give (3.163). O

Replacingg with ¢ — ¢,.,, In (3.163), wherey,,, is the mean value af on €2, we get the
following obvious corollary.

Corollary 3.4.1. As in Proposition 3.4.1, given anyc P, there exists @ € Vj, N H(Q) such
that

1/2
(V-v,q) > Cs Z hi |Q|H1 — Cehllall 20y ms
. (3.178)

|’U|H1(Q) S 1.

We are now able to show the proof of Theorem 3.4.2.

Proof. (Theorem3.4.2) We will use an argument from Verfurth (see [109]).eDa the validity of
the continuous inf-sup condition di and recalling that;, € L?(12), we have the existence of a

fixed positive constant'y,, . such that for ally € P, there exists av € H{ () such that

(V-w,q) > Copapellall 2y /r (3.179)

where we introduced the notatid@H,,. in order to keep track of the constants in what follows.
Using the scaled Poincaré inequality

wlr2(0) < diam(Q)|w] g1 (o),

bound (3.180) is equivalent to

1/2
( Z VFLi(Fl(K))w%%K)) + |'w|H1(Q) < Cs (3-181)
Keky

From Theorem 3.2.3 there exists a NURBS function ¢ H(}(Q) such that, for allK € Iy,
Jw — le%Q(K) < Csh%( (HVF”Zi(Fq(K))”wH + ‘w’Hl(K ) (3.182)

and, using also (3.181)

1/2
[wili) < Cs ( Z VFLi(Fl(K))w%%K)) +|wlgio) | <Cs  (3.183)
Keky
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First integrating by parts, then using the Cauchy-Schwaeguality and (3.179), finally applying
(3.182) and (3.181), it follows

(V-wr,q) = (V- (w; —w),q) + (V- w,q)
2> - Z lwr — w2y |2l () + Cshapell 21l 2 ) /-

Keky,
1/2 1/2
—Cs [ > ||VF||230(F71(K H’w||L2(K +|w|§{1(f<) > hilalin
Keky, Keky,
+ Cehapell @l 2 () /r
1/2
= —Cshapel ( > h%{qzl(m) + Cahapellall 2 () /r (3.184)
KeKy,

Now, due to Corollary 3.4.1 and integrating by parts, we hheeexistence of @ € V;, N
HZ(Q) such that

1/2
(V- v,q) = Cshape2 ( Z thHl(K) — Cshapes 1lqll L2y~ (3.185)
KeKy,

We now introducev’ = w; + aw with o = Cshaper /Cshape2 - From (3.184) and (3.185) it follows

1/2
(V- 'U/a q > (aCshapez - C'shapel) Z h%{|Q|§{1(K)
Keky

+ (Cshape — @Cshapes 1) [lqll 2 ) /r

* C, h IC h
(Cshape — Wh)“QHLQ(Q)/R (3.187)

¢From (3.183) and (3.186) it is immediate to show that
| gy < Cs (3.188)

Assume now that the mesDy, satisfies

h< B 1 C hapecshape2

max "

3.189
2 Cshapel Cshape3 ( )
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Then from (3.187) it follows

Cen
(V-v'.q) 2 =3 dllzo) = (3.190)

for all meshes in the family.
Therefore, joining (3.190) and (3.188), we have found atp@sconstan shape such that
for all ¢ € P, we have the existence oftd ¢ 1}, that satisfies

Ch
(V- v'0) > = llall20yr (3.191)

[V 1) < Cs (3.192)

Finally, note that the control on the globally constant puess follows easily due to the fact that
I'p # 9. The proposition is proved. O

Remark 3.4.2. Note that, in order for Theorem 3.4.1 to be valid, both therlzb(8.189) and the

assumptions of Lemma 3.4.2 must be satisfied. Thereforg,thein Theorem 3.4.1 is given by
hinae = min (h;naa:v h;;un:)

Remark 3.4.3. The numerical tests of the last section seem to show that é¢fteochis stable and

convergent for practical values of the mesh size. Then, dhditon h < h,.x, Which is needed

in the present theoretical analysis, does not seem to bdatat in the practical case we have
considered.

Remark 3.4.4. The analysis of this section can be extended straightfathyao the anisotropic
case where the displacement space is of polynomial degred, p, + 1, .., pg + 1 and the pressure
spacep, p2, .., pqg- The only point which differs is the starting polynomiatufp condition (3.145),
while the rest remains identical. The extension of suclsupf-condition to the anisotropic case can
be obtained with an easy modification of Lemma 3.2 in [94].

3.4.4 Advection-diffusion

As before, let2 be the physical domain, and B, = 99Q. Let f : & — R be the given body
force;a : Q — R is the spatially varying velocity vector afld : Q@ — R%*? is the diffusivity
tensor, assumed symmetric positive definite; homogenewich[@t boundary conditions o, are
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prescribed. The boundary value problem consists of soltviadollowing equation for, : Q — R:

Lu=f InQ, (3.193)
u=0 onIp, (3.194)

where
Lu=a-Vu—V-(KVu). (3.195)

For the purposes of analysis we assume divergence-freetagveelocity field and isotropic diffu-
sion:

V.a = 0, (3.196)
— ol (3.197)

wherex is a positive constant. The weak formulation of (3.193) isdfi. H%D(Q) such that
Vv € Hp (Q):

B(u,v) = F(v) in€Q, (3.198)

where
B(u,v) = (v,a-Vu)g+ (Vv,kVu)q, (3.199)
Fw) = (@ fa. (3.200)

We wish to approximate (3.198) numerically in the NURBS spdg¢cdefined in Section 3.1 of this
document. Galerkin’s method is known to be unstable for9d®)when advection dominates, so
we choose to concentrate on the set of techniques knownadsliztd methods”, namely SUPG,
GLS and Multiscale (dubbed MS for brevity). The MS versiomlso referred to as the adjoint, or
"unusual,” stabilized method in the literature. These rodthwere designed to enhance stability
of Galerkin’s approach without compromising its accurdegr background and early literature on
these formulations we refer the reader to [12], while theestd-the-art literature on the subject may
be found in [2, 8, 9, 13, 17, 19, 37, 39, 40, 61, 70, 101]. Defjfiin= UK, K € K, (i.e., the union

of element interiors) antl;, = V;, N H%D(Q), stabilized methods are stated as follows:

SUPG: findu,, € V}, such thatvv, € V3,

BSUPC (4 vp)) = FSUPC () inQ, (3.201)
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with

BTG (y,v) = B(u,v)+ (a- Vo, Lu)s, (3.202)
FUPC) = Fu)+(a-VuT, fg. (3.203)

GLS: finduy, € V}, such thatvv,, € V},

BES (uy, vp) = FE5(vy)  inQ, (3.204)

with
BYLS(u,v) = B(u,v)+ (Lo, Lu)g, (3.205)
FCLS () = F)+ (Lo, g (3.206)

MS: find u;, € V}, such thatvv, € V,

BMS (uy, vp) = FMS(wy,)  inQ, (3.207)

with
BMS(u,v) = B(u,v) — (LT, Lu)g, (3.208)
FMS) = F(v)— (L7, f)a, (3.209)

whereL* is an adjoint ofZ and is given as
L*v = —a-Vv— kAv. (3.210)

In expressions (3.201)-(3.207) a stabilization parametappears, its definition is critical for ac-
curacy, stability and convergence characteristics of bow@ methods. We adopt expressions pre-
sented in Franca, Frey and Hughes [31] and give them her@fopleteness:

(@ Pac(@) = grtre(Pec(z) (3211)
Pac(r) = L2l (3212
§(Pec(z) = minfmyPec(r), 1) (3219
mg = min{%,G—} (3.214)
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The above expressions are defined from error analysis @asiohs. K is any element in the
partition ICj, of Q, C;,,, is the smallest constant satisfying the local inverse ed@nof Theorem
3.3.1 with a corresponding definition bf;.

We briefly show analysis of stabilized formulations for acti@n-diffusion employing NURBS
approximation spaces. The approach we use is very simithatmf the stabilized formulations of
incompressible elasticity. In what follows we concentraeSUPG, other methods are analyzed in
a similar fashion.

Lemma 3.4.6. The bilinear form defined in (3.201) inherits the followirtglslity property:
BSUPCG ( w) > C|||wl||]*?  Yw € Vi, (3.215)
where
lwl||* = &l VWl 2y + 172 - Vwl? 2. (3.216)

The above result, which can be easily verified (see, for el@nfpanca, Frey and Hughes
[31]), is a consequence of boundary conditions, definitibthe stabilization parameter, and the
inverse estimate of Theorem 3.3.1. Continuity propertieBd’ 7., ) are stated in the following
lemma.

Lemma 3.4.7. The bilinear form defined in (3.201) is continuous in thediwihg sense:
BSPC (w,v) < Cl[wl|[ [[I[o]l[|  Vw € Vi, Vv e Hp,(Q) N H?(S), (3.217)
with the norm above is defined as

NP = &IVl g + 1772001 2 (3.218)

+ 7 2a- Vol? o) + 172 RA0 )17 (-

This result follows by a direct computation. Having estsiidid coercivity and continuity,
we proceed with the error estimate as follows. Define theahg quantities

e = wu—uy (Numerical error) (3.219)
n = wu-—1II}u (interpolation error) (3.220)
en = IIj,u—u,=1II), e (discrete error) (3.221)
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and compute:

llenl|> < C Blen,ep,) (coercivity)
= C B(en,—n) (Galerkin orthogonality)
Clllenll[ 1l[nllll - (continuity). (3.222)

IN

Relation (3.222) combined with the triangle inequalityegiva bound on the numerical error in the
solution in terms of the interpolation error

el < Cll1nlll]- (3.223)

The following theorem establishes convergence rates ahttbods in question posed over
NURBS spaces.

Theorem 3.4.3.Assuming: € HPT, there exist€’; > 0 such that

p+1

= wnll? < &S (lallzoeaoyhac®™ + i) S IVEIREE o lulfrr) - (3:224)
K 1=0

Proof. Given the definition ofr, the following bounds are easily established (see, for @kam
Franca, Frey and Hughes [31]):

I7=20l1? L2 1y < O/ + llall Lo i) /o) 11 L2 ) (3.225)
17 2a - V1% 20y < Cls + @l oo ) i) V01 L2 16 (3.226)
17126801 1) < ClihFe + llall oo (0 B3O NAD 2 ) (3.227)

Using inequality (3.223) together with the above bounds,ldical error estimate (3.61), and sum-
ming over all the elements K}, yields the final result. O

3.5 Numerical Examples

In this section we report on the results of numerical comparia performed with NURBS. We
consider examples from compressible and incompressibéaiielasticity as well as advection-
diffusion. The first two examples were already presente®2j, [we repeat them here as evidence
in support of convergence theory put forth in the precedigisns of this document. On all the
convergence plots the error quantity plotted on the ordimats is absolute. In all cases computa-
tional results are in agreement with the theoretical fingling
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3.5.1 Solid elastic circular cylinder subjected to intern&pressure loading

This problem falls within the framework of Section 3.4.1. eTproblem specification is shown in
Figure 3.5. Itis a simple matter to obtain an exact solutEsuaning the pressure varies at most cir-
cumferentially (see Gould [36], pp. 117-119). The intepralssure was assumed to vary.as 26)
and the exact solution is thus of class®. Meshes developed fromrefinement are shown in Fig-
ure 3.6. Quadratic, cubic, and quartic NURBS were employedn all of the examples considered
herein, the exact geometry is incorporated in the coarseshrand is maintained throughout the
refinement process. A rational quadratic basis is the minmirarder capable of exactly representing
the cylindrical geometry. The cubic and quartic cases wetaioed from the quadratic case by
k-refinement [18, 52], in which case the degree of continuiég mcreased t@’? andC?, respec-
tively. The rates of convergence of the error measured iretfezgy norm (the natural norm for
the problem, equivalent to thE'-norm) are presented in Figure 3.7. The rates of convergiemce
guadratic, cubic, and quartic NURBS elements are optirhal, is, 2, 3, and 4, respectively. This
problem falls within the hypotheses of our theoretical fesvork and the optimal convergence rates
are consistent with the results of Section 3.4.1.

uz =0 J@ Internal pressure

Zero shear P = P(0)

/ Top view

Figure 3.5: Thick cylinder pressurized internally.

3.5.2 Infinite elastic plate with circular hole under constant in-plane tension in the
x-direction

This is a two-dimensional problem of linear elasticity/ifad within the framework of section 5.1.
The infinite plate is modeled by a finite quarter plate. Thecegalution (Gould [36], pp. 120-123),
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Mesh 1 Mesh 2
Mesh 3 Mesh 4

Figure 3.6: Solid circular cylinder meshes
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Figure 3.7: Solid circular cylinder with varying internalgssure. Convergence of the error in the
energy norm for quadratic, cubic, and quartic NURBS diszaébns.

Exact traction
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Figure 3.8: Elastic plate with a circular hole: problem ditm.

72



evaluated at the boundary of the finite quarter plate, isieggls a Neumann boundary condition.
The setup is illustrated in Figure 3.8, is the magnitude of the applied stress at infinRyis the
radius of the traction-free holé, is the length of the finite quarter platg,is Young’s modulus, and
v is Poisson’s ratio. As in the previous example, a rationadgatic basis is the minimum order
capable of exactly representing a circle.

The first six meshes used in the analysis are shown in Fig@rteThe cubic and quartic
NURBS are obtained by order elevation of the quadratic NURB$e coarsest mesh (for details
of the geometry and mesh construction, see [52]). Contirafithe basis is”?~! everywhere, ex-
cept along the line which joins the center of the circularesdith the upper left-hand corner of the
domain. There it i0! as is dictated by the coarsest mesh employing rational gtiagrarameteri-
zation. Convergence results in thé-norm of stresses (which is equivalent to tHé-seminorm of
the displacements) are shown in Figure 3.10. As can be de=h?4convergence rates of stress for
guadratic, cubic, and quartic NURBS are 2, 3, and 4, respdytiThe geometrical mapping used in
this example does not conform to the assumptions of theyheamely, in the elements adjacent to
the upper left-hand corner of the dom&if ~!||;;1.- is not uniformly bounded. This was a choice,
not a neccessity. Nevertheless, optimal convergence aegestill attained.

Mesh 1 Mesh 2 Mesh 3

ANNNNNY
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N |

7777
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Mesh 4 Mesh 5 Mesh 6

Figure 3.9: Elastic plate with circular hole. Meshes pratlibyh-refinement (knot insertion).
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Figure 3.10: Error measured in tfié-norm of stress vs. mesh parameter.
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3.5.3 Constrained block subjected to a trigonometric load

In this two-dimensional example we consider a fully coried square of incompressible elastic
material loaded externally. This problem falls within tmarhework of Sections 3.4.2 and 3.4.3. It
was designed by Auricchiet al. [4], and the setup is illustrated in Figure 3.11, where= (u,v)

is a displacement vectaqy,is the shear modulus ardis the edge half-length. Note that in this case
pressure is determined up to an arbitrary constant, so éoptinposes of computing it error of
the pressure field, the constant mode is removed from theymeesolution. The load and boundary
conditions are selected in such a way that the analyticatisal is easily obtained. We give them
here for completeness:

cos®  cos ysiny

u = 5
v cos® y cos x sin x
B 2
p = sin(z%)
fi = pcosysiny(l —4cos®x) — 2xy cos(z%y)
fo = —pcoszsinz(l —4cos?y) — z? cos(z%y) (3.228)
=0
(-L1) ) (L.L)
f=(012)
u=20 L=m/2 u=20
w =40

Figure 3.11: Trigonometric load problem setup.
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Meshes 1, 3, and 5 used in the computations are shown in F&ggliPe Distortion of the
mesh was introduced at the coarsest level of discretizatimhmaintained throughout the refine-
ment. Three studies were performed for this problem. In tis¢ $tudy we used &'-continuous
rational quadratic basis for botla andp and employed the Douglas-Wang stabilized formulation.
The results of this study are shown on the top plot of Figuie.3The other stabilized methods
behaved in the same fashion and thus the results are not si®@ptimal convergence of the?-
norm and theH '-seminorm of the displacement error and thenorm of the pressure error is
obtained. The results are consistent with the theoretieigtions of Section 3.4.2. In the second
study we used BB-compatible spacesC'a rational quadratic basis fgr and C° rational cubic
basis foru obtained from the former by degree elevation. These spaeestable and convergent
within Galerkin’s method according to the results of Set®04.3. The first four of the five meshes
were used in the calculations and the results are presamtida@ imiddle plot of Figure 3.13. All
results converge optimally, in agreement with the theorgéttion 3.4.3. In the third study we
again used quadratic pressure and cubic displacemen;'bentinuity was enforced. This case is
not covered in the theory of Section 3.4.3, yet optimal cayece is again obtained, as shown in
the bottom plot of Figure 3.13. We conjecture that this typdiscretization is BB-stable.

Mesh 1 Mesh 3 Mesh 5

Figure 3.12: Trigonometric load problem meshes producekttsfinement (knot insertion).

3.5.4 Driven cavity problem

The driven cavity problem is a two-dimensional Stokes floucudation that is often used as a
test of numerical stability. The equations of Stokes flow idemtical to the equations of linear,
isotropic, incompressible elasticity, only the interpten is different. In Stokes flow = (u,v)

is the velocity vector ang is the dynamic viscosity (see, e.g., [44]). In the exact gpation of
this problem, the velocity boundary condition is discontins at the upper two corners, that is,
at (0,L) and (L, L); see Figure 3.14 for the problem setup. This produces singukssures in
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Wl llp = prlly2 e

lw —wpll, 2

llp = prlly2

v .

u*u%’ Pis
.
1

107 —

4
10°F [|e 7’“’}1,”[{2

Figure 3.13: Trigonometric load problem. Convergence ¢oahalytical solution for displacement
and pressure. Top: Douglas-Wang stabilization, equadtpgiadraticC'-continuous bases. Mid-
dle: Galerkin’s method, cubic displacement, quadraticgues, C-continuous bases. Bottom:
Galerkin’s method, cubic displacement, quadratic presgu-continuous bases.
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both corners which tend to cause unstable formulationsitanfalramatic fashion. The mesh is
comprised ofl6 x 16 square elements. In the first two examples, the pressunetirstion is taken
to beC! quadratic splines. The velocity space is the same in theefesinple and consists 6 -
cubic splines in the second. Figure 3.15 compares solutibtzsned with the Galerkin formulation.
As expected, the equal-order combination produces anhlagesult, as is especially apparent for
pressure, while the mixed interpolation case appears taibe stable. The solution is very similar
to that presented in Franca, Frey and Hughes [31]. Figushdaws a stabilized GLS computation
for equal-order cases. Both tlpe= 2 andp = 3 results appear stable and are again in general
agreement with [31]. As may be gleaned from Figures 3.15 ah€, 3he velocity at the upper
corners is set taw = (1,0). This is referred to as the “leaky” boundary condition tneamt (see
[44] for further elaboration).

Remark 3.5.1. Three-dimensional computations of other boundary-valiblpms (not shown)
with the same bases used in this study yielded consistamtsesamely, the stabilized methods
produced stable calculations with equal-order NURBS whgthe Galerkin formulation did not,
and the Galerkin method with velocity one order higher theespure produced stable results when
both velocity and pressure had the same order of continugityss element boundaries. Our theoret-
ical results in Section 3.4.3 only pertain €-continuous interpolations, but there is considerable
evidence that the higher-order uniformly continuous casesstable as well.

3.5.5 Advection-diffusion in a hollow cylinder

The problem geometry and parameters are given on Figure BtiE7axisymmetric analytical solu-
tion behaves logarithmically in the radial direction ang@xentially in the axial direction, viz.,

(eaz/n _ eaL//{) log(r)
(1= /) log(2)

u(r,z) = (3.229)
Four meshes, composed of 32, 256, 2,048 and 16,384 elemeis,used. The first three are
depicted in Figure 3.18. The meshes are “biased” towardutfwes where a boundary layer occurs.
Two values of the diffusivity were considered. In the firsté&a: was chosen to be 0.025, which
produces a solution than can be fairly well resolved by meshd. In the second case,was
selected to b@®.00625, and the boundary layer is fairly well resolved only by theefhmesh. A
rational quadratic basis is employed in each parametmction and no symmetry was assumed, yet
a pointwise axisymmetric response was obtained in all casean be seen in Figure 3.19. All three
stabilized formulations were implemented and comparet thi¢ Galerkin solution. In the case of
the larger value of, all methods produced an optimally convergent solutiondthlhe Z2-norm
and H'-seminorm as can be seen in Figure 3.20. This is consistémtivg theory of Section 3.4.4.
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0.1) u = (1,0)

(L, L)

L=1
u=0 p=105 u=0
(0,0) w=0 (L,0)

Figure 3.14: Driven cavity problem setup.
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—224

- 189
- 155
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Pressure.
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9.26
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-16.7
-204
-24.1

-278
-315
-35.2
-38.9

-18.9
-224
-258
-29.3
-32.7
-36.2

Figure 3.15: Driven cavity problem. Velocity vectors sygmsed on pressure contours. Left:
Galerkin solution with equal-order discretizatign € 2). Right: Galerkin solution with unequal-
order discretizationy(= 2 for the pressure ang= 3 for the velocity).
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Figure 3.16: Driven cavity problem. Velocity vectors symesed on pressure contours. GLS solu-
tion with equal-order discretization. Left:= 2, Rightp = 3.
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The same error norms were computed for the case of smalfasigify (v = 0.00625). Galerkin’s
method produced a globally oscillatory solution on coamseshes, which resulted in a large global
L?-error compared with the stabilized solutions (see Figu2&)3 TheH *-error for all methods was
suboptimal, which is not surprising, as the major contidoutomes from the very thin, unresolved,
outflow boundary layer. In order to remove the effect of thermary layer, we computed the error
on the part of the domain which excludes it (if0,< z < 4.95} x {1 < r < 2}). The H!-error is
much better behaved for the stabilized methods. The optomtr of convergence is observed for
both H'- and L2-norms in these cases. The results are typical of stabifinéié element methods
in that “localization” or “interior” estimates can be pravésee, e.g., JohnsonaMert and Pitkranta
[59] and Wahlbin [111]). These estimates are also knownto hold for Galerkin finite element
methods, for which unresolved layers result in global galu This phenomenon is also evident
here in Figure 3.21. On the finest mesh, error measures fdG#herkin and stabilized methods
seem to coincide, which suggests that the asymptotic regandeen reached.

lal =1

K = 0.025,0.00625

L=5Rj=1R,=2

Pe(z) =lalz/k = z/k

Flow ———

__logr \

Figure 3.17: Advection-diffusion in a hollow cylinder. Piem setup.
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Figure 3.18: Advection-diffusion in a hollow cylinder. Me=s 1-3.

82



1

[ 09
- 08
- 07
- 08
I— 05
- 04

- 03

Solution on the whole domain

- 04

Zoom on the outflow boundary layer

Figure 3.19: Advection-diffusion in a hollow cylinder. Sitibn contours on the finest mesh,=
0.025.

83



-= Gal
—— SUPG
—— GLS
-v- MS
3 1
2
10" L 10" L
107" h 10° 107" h 10°

Figure 3.20: Advection-diffusion in a hollow cylindet,= 0.025. Convergence rates.

-=- Gal -a- Gal
-e- SUPG -e- SUPG
—— GLS —- GLS
-+ MS -v- MS

?0 h ll; 100 h ll;

Figure 3.21: Advection-diffusion in a hollow cylindet,= 0.00625. Convergence rates.
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Figure 3.22: Advection-diffusion in a hollow cylindet,= 0.00625. Convergence rates outside of
the boundary layer.
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Chapter 4

Variationally Consistent Multiscale
Turbulence Modeling

4.1 Small-scale Green’s operator, small-scale Green’s fation, and
connection with stabilized methods

In this section we review the concepts of the small-scalee@seoperator and the small-scale
Green's function introduced in Hughes and Sangalli [54]eSéhobjects play a fundamental role
in the design and analysis of numerical methods based oratfegional multiscale approach. Fur-
ther in this chapter we will apply the VMS ideas to turbuleneedeling.

Let V' be a Hilbert space, endowed with the inner-product)y,, and the norm| - ||y =
(-, ~)%,/2. Let V* be its dual and lek -,- >y~ denote a duality paring betweénandV*. Let
L : V — V*represent alinear isomorphism, andfet V*.

Consider the following abstract variational problem: Finsuch that/w € V*

< w, Lv Sy y=< W, f >yEy o 4.2)
Formally, solution of (4.1) may be expressed by means of @@®peratog : V* — V as
v=gf. (4.2)

Let V be a closed subspace 6t We will refer toV as the space of coarse or large scales.
Let? : V — V be a linear projector ontd’, with P2 = P, andV = RangeP. We define
V'’ = Ker P and refer to it as the space of small or fine scales. It is aldosed subspace df.
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With this construction, the spadé engenders a decomposition
V=vVeoV. (4.3)

The above decomposition means that ang V' has a unique representatian= @ + v/, where
aeV,u eV u="Pu andu = u — Pu.

The aim of the VMS approach is to approximate (4.1)imnd obtain the solution = Pv,
wherewv solves the full problem (4.1). It is shown in Hughes and SHii§d] that the above design
condition is met when the following variational formulatiés employed: Findi € V such that
Yw eV

< W, LU >y y — < W, LG'LO Sy y=< w0, [ >yv — <0, LG [ >y-y . (4.4)
G’ above is the small-scale Green’s operator, it is defined as
G =G -gP"(PGP")~'Pg, (4.5)

wherePT : V* — V* is the transpose @P.

Approximate solutions to (4.1) are typically constructadinite-dimensional spaces. For
V finite-dimensional, one has the following characterizatid the fine scales: there exists a set of
functionals{;}~ , € V*, such that

<pp,u>yry=0 Vi=1,...,N <= Pu=0, (4.6)
whereN is the dimension of/. In this case, the small-scale Green’s operator (4.5) besom
G =G —Gu" (uGu") " pg, (4.7)
where

< p1, G >yey
uGv) = : Yv eV, (4.8)

< N, GV Syey

o’ =1 Gum ... Gun | (4.9)
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and

<p1, G Svey oo < pLGUN Svey

<pN,Gpr Sveyv o oo < pN,GUN Svev

The above abstract framework extends to the case whan(4.1) is a second-order linear par-
tial differential operatory = H}(Q), V* = H~1(Q2), andQ € R? is the spatial domain. In this
case the solution operatgrin (4.2) is represented by a Green'’s functign; Q x 2 — R, as

o(x) = /Q a(x, y) f(y)de (4.11)

V is identified with a finite-dimensional subspacéflt is defined as a span of a set of basis func-
tions, such as trigopnometric polynomials, standard patyiabfinite element functions, or NURBS.
A linear projector may be a defined through a scalar pro¢uet : V- x V' — R onV, possibly
different from(-, )y, as

(w,Pu) = (w,u) Y € V,ueV. (4.12)

This construction leads to an orthogonal projector, thai is orthogonal ta:” with respect to the
scalar product, -), where, as before; = Pu andu’ = u — u. In the case when the scalar product
is taken to be theZ}(€2) inner product;? becomes théf}-projector. AnL2-projector is obtained
when the scalar product is thie (€2) inner product. Just as before, the space of fine scilesnay

be characterized by

/ wi(x)u(x)dQ2=0 Vi=1,...,N < Pu=0, (4.13)
Q
wherey;(x) are distributions and the integral is interpreted in thérithistional sense. For example,
whenV is a standard finite element space comprised of piece-wis@guial functions and}
projector is used, from (4.12) one obtains

0= / VN;(x) - Vu/(x)dQ = /~ —AN;(x)u' (x)dQ + /[[VNZ'(X) -n]u’(x)dT, (4.14)

Q Q r

where{N;(x)}¥_, is a basis for/, n is the element boundary outward unit normal vecfdy,is

the standard “jump” operator, aftlandQ denote the union of element boundaries and interiors,
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respectively. Comparing the above expression with (4ddg, may think ofu;’s as:
wi(x) = —AN;(x) onQ, andy;(x) = [VN;(x) -n] onT. (4.15)

In the case of 2 projection, one can set;(x) = N;(x).
Let B(-,-) : V x V — R represent the bi-linear form associated with Then the VMS

formulation (4.4) becomes: Findle 7, such that/ € 7
B(w, ) — /Q Cra(x) (x)dQ = /Q B(x) f (x)dL, (4.16)
where
V60 = [ o y)(€T = i), (4.17)

L* is the adjoint of£, and the above integrals are interpreted in the sense abdisons. ¢’ (x,y) in
(4.17) is the small-scale Green’s function, which in dirthlogy with (4.7), takes on the following

definition

I y) = 9663) = | fo oG m@)T - o o(x,7)un(3)dy (4.18)
Joree 9 DR FVARAT .. [0 93 ) (R (7)dxdy |

x : : :
Jaxa & ¥)un ()1 (¥)dxdy ... [o. o9& )y &) pn (y)dxdy

Jo 9%, y) i (%)dx

Jo 9, y)pn (X)dx

Small-scale Green'’s function in (4.18) depends on the fulle®'’s function for the contin-
uous problem as well as on the functionals which define the relationship between the solution
of the continuous problem and its discrete counterpart. #esalt, different numerical methods are
obtained for different choices of the linear projecirDependence on the particular discretization
is also reflected im;’s.

It is argued in Hughes and Sangalli [54] that while, y) is globally supported oveR x €2,
¢ (x,y) is highly localized for the right choice of the projector. eltatter property opens the door
for the design of efficient numerical methods which deliveamoptimal discrete solutions. Indeed,
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inserting (4.17) into (4.16), one obtains the formulatisind v € V' such thatvw € V

B(w,0)— A Qﬁ*w(X)g’(X,y)E@(Y)dxdyz (4.19)

[ atoseaa~ [ crawg xy)fixay.
Localization property of the small-scale Green'’s funciimplies that integrals oveR x 2 may be
restricted to much smaller subdomains, and are conducigitient implementations.

For the case of a 1-D steady advection-diffusion equatfaime approximates the solution
with C%-continuous finite elements and demartisoptimality of the discrete solution with respect
to its continuous counterpart, integrals ogek () reduce to the sum of the integrals o¥er x €.,
where(), is an individual element. Furthermore, only momentg/cdre required as the element-
level residuals reside in polynomial spaces. For the cafina#r elements and element-wise con-
stant forcing, average of the element-level Green’s foncis sufficient to obtain adf!-optimal
method, which is SUPG [12]. The situation is different in tikdimensions. Since fine scales
are not confined to element interiors, supportyoescapes?. x .. Moments of element-level
Green'’s function are no longer enough to construcHaroptimal method and one needs to resort
to approximation. One such approximation embodies a faofilyell-known stabilized methods,
which mimic the structure of the VMS formulation by replagi@#.19) with: Finds € V' such that
Yw eV

B@,5)-Y" /Q Lr (%) r(x) Lo (x)dx = (4.20)

/Q w(x) f(x)dQ — Z . LA0(x)7(x) f (x)dx,

where an element-wise functionx) is a stabilization parameter that reflects the properties of
the small-scale Green'’s function. Despite their simplictabilized methods perform remarkably
well for incompressible and advection-dominated phenarancan be inferred from the previous
chapter. This is a direct consequence of the localizatiopgaty of the fine-scale Green’s function.
Stabilized methods of the form (4.20) can also be viewed asS\fivethods with local algebraic
approximations to the fine scales. Namely,

V(x) = /Qg'(x, YLD — f)(y)d ~ 7(x) (L0 — f)(x). (4.21)

This approximation will be employed in the next section inehhwe derive a class of residual-based
turbulence models based on the VMS approach.
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4.2 Theoretical formulation of residual-based turbulencemodeling

In this section we present the theoretical formulation @f tihe variationally consistent residual-
based turbulence model. We begin with the incompressiblel&tokes problem posed over

continuous spaces and apply the VMS methodology in ordeetivael a class of residual-based
turbulence models. Time dependent, incompressible N&timkes partial differential equations are
taken as a departure point for the upcoming developmeritsbéddieved that a suitable class of weak
solutions of INS are in fact turbulent solutions. For thegmses of the numerical treatment of INS,
existence and sufficient regularity of solutions is assumedori. For details of the mathematical

theory of the INS the reader is referred to Fagasl. [29], and references therein.

4.2.1 Continuous formulation of incompressible Navier-Stkes equations

Space-time cylinder

\ Space-time slab

T \
tn+1
Q
B B, 9,
tn
0
T T

Figure 4.1: A graphical depiction of a space-time cylinded a space-time slab.

Let Q € R? be the physical domain of the problein,= 9 is its boundary ando, T) is
a time interval of interest. Le@ = Q x (0,7") be the space-time cylinder obtained by extruding
the spatial domaiif2 along the time axis, an8 = I" x (0,7") be its lateral boundary. L&D, T")
be decomposed intdmax time intervals such thaf0, 7)) = U —1"*(t,,tn11). As a resultQ is
decomposed into space-time sl@®s = Qx (t,,, t,+1), with lateral boundarieB,, = I'x (t,,, t+1),
wheren = 1,...,nmax For anillustration of these concepts see Figure 4.1.
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Incompressible Navier-Stokes equations in the weak ogtranial form on the space-time
slabn are stated as: Find a velocity-pressure pgdir= (v,p) € V,,v = 0o0onJB,, such that
YW = (w,q) € Vp,,w=00n5,

Bn(W, V) = F,(W) (4.22)

whereB,, (-, -) is a semi-linear form and, (-) is a linear functional defined as

0
Bu(W.,V) = (=52, pv)0, + (Wt ). polti))o
- (Vw,pv@v+pI — pViv)g, + (q,V -v)g, (4.23)
and
Fo(W) = (w,pf)a, — (w(ty), po(ty)). (4.24)

In the above equation§*(:) = 1(V(-) + Vv (-)") is the symmetric gradient;, -) is the L2 inner
product, f : © — R< is the body force per unit mas$,is the identity tensor, angd and .. are
the density and viscosity of the fluid. Of particular interissthe case of smallei that generates
“turbulent” solutions, that is, solutions possessing aeménge of spatial and temporal scales.
Quantityv(t:5) is defined in a standard way as

v(tE) = lin% v(t, £e). (4.25)

Variational equations (4.22-4.24) imply satisfaction iolebr momentum, incompressibility con-
straint, and initial conditions, namely

L(v,p)—pf=0 on Q,, (4.26)
Vov=0 on Q, (4.27)
v(t)) —wv(t,)=0 on €, (4.28)
where
L(v,p) = P%—TZ +pV - (v®@v)+ Vp— V- (2uV°v). (4.29)

We also introduce the “advective” form of the above operator

Ladn(v,p) = pg—? + pv - Vv + Vp — pAw. (4.30)
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It is obtained from (4.29) by using the incompressibilitynstraint in the advective and the viscous
stress terms.

Remark 4.2.1. Typically one takes the velocity-pressure function space= V, ,, x V, ,, Where
Vpu = H(HN D, (tn,tas1)) andV,,, = LALE(Q), (tn, tns1)). L2(Q) is the space.? func-
tions with zero integral average. No-slip boundary comtis imposed on the space of velocities
are not necessary for the upcoming developments, the chaisenade in the interest of simplicity.

Remark 4.2.2. In the above the INS equations are formulated on a spacediaie and global in
time solutions are defined recursively, that is, probler@Ztis solved on the!” time slab with the
initial condition, imposed weakly, coming from the- 1% time slab. Index: is then incremented
and the procedure repeats. This variational formulatioma-standard, it is given here so as to
elucidate the upcoming developments.

4.2.2 Decomposition of spaces

We define a linear projectdr = {P,, P, } as
(W, PV)=(W,V) YW €V,,V €V, (4.31)
where(+, -) is a scalar product om,,, not necessarily norm-inducing, and
(W, PV) = (@, Pyv)u + (¢, Ppp)p V{w,q} € Vi, {v,p} € Vn (4.32)

In (4.32),P, andP, are the velocity and pressure projectors, and, and(-, -),, are scalar products
on the spaces of velocity and pressure functions. We takeptiee of coarse scal¥'s to be a finite-
dimensional subspace f,. As before, the spack, admits a decomposition

Vo=V, @V, (4.33)

where the space of fine scalgs, infinite-dimensional, is the orthogonal complemendifin V),
with respect to the scalar produgt-). Decomposition (4.33) splits the problem (4.22) into two
sub-problems: Find” € V,,, V' € V!, such that

Bo(W,V 4+ V') = F,(W) YW €V, (4.34)

and

B,(W' .V +V')=F,(W') YW'eV,. (4.35)

93



Equations (4.34) are known as the coarse-scale problente whuations (4.35) define the fine-
scale problem. In what follows, we will approximately soliree fine-scale problem foV”’ in
terms of residual quantities involviny’. We will then introduce the result into the coarse-scale
equations, which depend on the fine-sc&&s As a result, we will obtain a method which only
involves the coarse scales. This approach will yield a adésssidual-based discrete formulations
for incompressible fluid flow, which are also considered tartmelels of turbulence in this work.

4.2.3 The fine-scale problem

Equation (4.35) may be rewritten in the following form: Fifrd’,p'} € V! such that/{w’,¢'} €
28

<w Np()+Vp >0, +<¢,V-v >g, (4.36)

= —< w/7TM >Qn — < qlﬂrc >Q7L7
where

<w',Np(v') + Vp' >0, = (0, Ny (v') + VD)5, (4.37)
+ (W', [2uV°0" - n]) 5\ p, + (W (87), pV ()0,

<w',ry >g, = (W, Laan(,D) — pf)g, (4.38)
+ (W', [20Vi0 - n])p \p, + (W (t)), p(0(E)) —v(t,))e,

< q,a \E U/ >9,= (qla V- U,)Q7L, (439)

<dq,rc>0,= (¢, V-0)g . (4.40)

n

r); andrec are generalized momentum and continuity residuals,/égtb’), defined as

ov’

Np(v') = Par

+pv-Vv' +pv' - Vo + pv' - Vo' — pAv', (4.41)

is a nonlinear advection-diffusion-reaction operatoihvibefficients that depend on the coarse-scale
solution. Generalized momentum and continuity residuaigain the Navier-Stokes PDE residual
on element interiors, the viscous flux jump on element boreslaand the residual of the initial
condition at the bottom of the space-time slab. It is assutingithe space of coarse-scale functions
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are of clasC?. Note that if the continuity of the coarse scale<i5 or greater, the viscous flux
jump term is not present in the definition of the momentumcreesl.

4.2.4 Derivation of the fine-scale model

Small-scale equations (4.36) are posed over the space aicfaes)/,. The spacé’), is a subspace
of V,, possessing the following characterization:

{v,p} €V, <= {P,v=0,P,p =0}, (4.42)

that is,V/, € Ker P. As a result, the small-scale equations may be thought oéiaglposed over a
constrained subspace Bf. The fine-scale problem may be restated over the full spaaeith the
aid of a Lagrange multiplier approach. Introducing a paitafrange multiplier§,, \,} € Vz,
the dual space 0f,,, we get the following variational formulation: Find’, p'} € V,,, {\u, \p} €
V¥, such that/{w, ¢} € V,, andV{p,, up} € Vi

<w,Np(')+Vp >g, — <Pyw, A\, >=— <w,ry >0,, (4.43)
<q, Vv >g, —<Ppg, N\ >=—<gq,7¢c >0,, (4.44)

<y, Pov’ > =0, (4.45)

< iy, Ppp’ > = 0. (4.46)

In the strong form the above equations are

Np(') +Vp' —PIX, = -7y, (4.47)
Vv =PI, = —rc, (4.48)

P’ =0, (4.49)

Pop =0 (4.50)

We are going to formally obtain a solution to the above systéfADEs by making use of Green’s
operators. For this purpose we repldég with its linear counterpany by removing the quadratic
term, that is

/

L pv - Vv + pv' - Vo — pAv'. (4.51)

N@(U,) = PE

This is not a bad assumption provided the fine scales are I'sr@ale way to retain the quadratic
term is to expand’ in perturbation series as shown in Calo [14]. The latter edspires smallness
assumption on the fine scales.
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The new fine scale momentum equation (4.47) now reads
Np@) +Vp —PIA, = —ry (4.52)
Denoting byG, the Green’s operator foX, equation (4.52) implies
v+ G, VP — G PI A, = —Gurur. (4.53)
applyingP, to the above equation, using (4.49), and solvingXpywe obtain
Ao = (PuGoPL) " H(PuGurat + PuGu VD). (4.54)
Inserting\,, back into (4.53), yields
v+ G,Vp = —G,ru, (4.55)
where
G, =Gy, — G, P (P,G, P 'P,G, (4.56)

is now a small-scale Green’s operator 0§, andP,. The above expression is form-identical to
(4.5). Note that according to (4.55) the small-scale v&jdsidriven by the momentum residual of
large scales as well as the fine-scale pressure gradientdén i obtain the expression fpf, we
apply the divergence operator to (4.55) and make use of)(#o4ibtain

V-GVp =rc—V-Gry —PiAp. (4.57)

OperatorV - GV in the above equation may be thought of as a Shur complemehedamall-
scale constrained problem. Denoting®jts inverse § = (V - G/ V)~1), we solve for small-scale
pressure as

P =8(rc =V -Gyra — PLA). (4.58)
Applying P, to the above equation, making use of (4.50), and solving\farwe get

Ap = (PoSPL) ' PpS(rc — V - G ). (4.59)
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Inserting\,, from (4.59) into the fine-scale pressure equation (4.58) btaio
p =8rc -8V -Gru, (4.60)
where
§'=8-8P/(P,SP})"'P,S (4.61)

is now a small-scale Green’s operator for the pressure. thatdt is also form-identical to (4.5).
Combining (4.55) with (4.60) gives the following solutiomthe fine scale equations

vilZ] % TGVE (4.62)
I -sv.g, & ro
with
G =G —GVS'V-g. (4.63)

The second term on the right hand side of the above expressil@tts the fine-scale divergence
constraint.

Remark 4.2.3. Note that (4.62) involves only small-scale Green’s opegatd he corresponding
small-scale Green’s functions are expected to be highbnatited, which justifies the use of local
residual-based models for the fine scales.

4.2.5 The coarse-scale problem

Equation (4.34) defines the coarse-scale problem. Directpukation of (4.34), assuming the space
YV is comprised of functions that are at ledst—continuous across element boundaries, gives the
following formulation of the coarse-scale problem: Fifwel p} € V,, such that/{w, g} € V,

B,(W,V) — F,(W) (4.64)
+ < LY(w,q),v" >, —(V-w,p)g5,
—(pp- V', v)s — (pViw,v' ®@v)5 =0

where the third term on the left-hand-side is
X[ = = /! aﬁ) — — — S, — /
< LY(w,q),v >9, = (—pﬁ —pv-Vw —Vq—V - 2uV°w,v') 5 (4.65)
+ ([2uV°w - 0], )5 p, + (Pt 1)V (t71))e.
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The above variational form precisely indicates the manmevhich unresolved components of the
solution influence the large scales.

Remark 4.2.4. The first two terms on the left-hand-side of (4.64) corregpmnthe Galerkin part
of the formulation. Terms three and five of (4.64) may be ifiedtwith the so-called cross stresses,
while term six represents the Reynolds stress in the laregofglassical turbulence modeling.

Introducing fine-scales (4.62) into the coarse-scale sy§de64), we obtain the formulation:
Find {,p} € V, such that{w,} € V,

Bp(W, V) = F,(W)— < L*(w,q),Gyru >0, — < L¥(w,q),G,VS'rc >,
HV-w,8'V-Gra)s, — (V-w,8r¢)g, + (p0- Vo' ,Gory + G VSre)s
—(pViw, {G,ra + GoVS're} @ {Gra + G, VS re}) g, = 0. (4.66)

4.2.6 Approximate closures and connection with stabilizedhethods

Fine scale equations (4.62) appear to be just as complexeasritfinal Navier-Stokes system.
Solving them exactly is not a viable option, hence modelmgeécessary. For this purpose let
(z,t),x = {z,}%_,, denote the coordinates of a physical space-time elefgent(t,,, t,+1), and
let (£,0),€& = {¢,}2_,, denote the coordinates of a parent space-time elefﬁient(—l, 1). Here
0 is non-dimensional time. Let : K — K be a bijection, and let—1, 1) map onto(t,, t,4+1) by
a simple linear mapping.

We will first give an approximation of the action 6f, the small-scale Green’s operator for
Ny, defined in (4.51), and the project®y,, on the momentum residual. We assume the following

local algebraic model:

g;’l"M ~ TM(Eadv('l_Jaﬁ) - p.f) on Qn (467)

In the abovesr,, is ad x d matrix defined as

1, 00, 0eTOE_  p, 0 0ET € 0g”
TM—;({(E) v o 8_mv ( I;) (8_m<9_ac -(8—ma—$ )}
+ Vo - Vo)~ /2, (4.68)

This definition is inspired by the theory of stabilized mathdor reactive-advective-diffusive
systems (see, for example, Shakib, Hughes and Johan [88hdduand Mallet [47]). Matrix-j,
is, by construction, symmetric and positive-definite. ttdrporates the spatial and temporal scales
of the discretization, as well as specific geometrical feetlby making use of local geometrical
mappings.

98



Remark 4.2.5. Definition (4.68) is non-standard in that it includes the aaion” contribution
V5o - V5o. This term is present due to the reactive component in theitiefi of AV (v'). In
contrast to (4.68), most current stabilized methods foompressible Navier-Stokes equations make
use of a simplified definition, which omits the reaction tend sendersr ;; isotropic (diagonal with
identical entries), that is

1 .00

T T
TM:TMI:;{( 708" 08 N)z(aﬁg

o¢ oe”
—_— 2 —_ —_ u— —_ —_
8t) Y ox Z?a:v ( Ip Oz Ox

e WV (4.69)

)= (
We also define the local approximation to the gradient opegat: V as

o T
g a_i 1, (4.70)

and the divergence operator¥s ~ —g’ . Negative sign is used in order to preserve the transpose
property of the these operators at the discrete level. fO§4. is ad—dimensional vector of ones.

We approximate the inverse of the small-scale Shur compieoperatorS’ by a scalar¢
as follows. Recall thaf = (V - G,V)~!, thus, in light of the developments in this section, we
definer¢ as

e =(g'Tng) ", (4.71)
and the action of’ on the generalized continuity residual is approximated via
S're =~ —1cV -v0nQ,. (4.72)

By virtue of 7, being positive-definitero > 0 if ||g|| > 0.
We approximate the action &, = G/ — G/ VS'V - G, on the generalized momentum
residual as

QNI)TJ\/[ ~ T?\/](ﬁadv ('Eﬁ) - P.f) (4.73)

= (Tym — c;TugTe8 Tar)(Laaw (D, D) — pf) 0N O,

where0 < ¢, < 1. The strict inequality on the right render§, positive definite, as will be shown
later. The latter property is of crucial importance for tvell stability of the numerical method.

Finally, within the proposed framework, the “cross” tergisVS'rc andS’V - Gl r s en-
gender the following approximations:

GVS're ~ —1pgTeV - v on O, (4.74)
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and
S'V-Glry ~ TCgTTM(EadU(Tz,ﬁ) —pf)on 0,. (4.75)

In summary, the following matrix-vector form, written inetspirit of (4.62), states a local
algebraic relationship between fine-scales and residfitfe aiscrete system:

/ ., = .
v ~ 7'7]!/[ TMETC ( adv (v ) ) on Qm (4.76)
P’ —Tcg TM  —TC V-
with
7"M =TN — CTTMchgTTM 4.77)

Note that the model tightly couples the fine-scale velocitgt pressure to both momentum
and continuity residuals.

Combining (4.76) with the coarse scale variational equati@.66) gives rise to the formulation
of the residual-based turbulence model: Fiid= V,, such thatyW < V),

Bpy(W, V), — F(W)

— (L7 ( @), Tt (Laaw(0,0) = pf)) g, — (L*(@,9), [TmgTc]V - D)5,
+ (V- , [rog" Tm](Laaw(0,0) — pf))g, + (V-w,70V - 0)g

+ (pv - Voo, 70 (Lago (8,D) — pf) — [TugTc]V - )5,

— (pVw, (T (Laaw(0,5) — pf) — [TmgTc|V - ©)

® (T (Lado (0, D) — pf) — [TugTc]V - 0)) 5 = 0. (4.78)

n

The above model encompasses a whole class of well-knowretisiormulations for incompress-
ible fluid flow. In what follows, we demonstrate that variousglifications to (4.76) and (4.78)
reproduce existing methods that are well-accepted in thgpatational mechanics community. As-
suming from the outset an element-wise divergence-freecitglfield, that isV - v = 0, and
replacingC* with pv - Vw as in SUPG, simplifies (4.78) to: Fifd € V,, such thattW ¢ V),

Bn(W,V),, — F,(W)
—+ (p’l_) . (Vﬁ) + V’lIJT)7 TM(EadU(’l_%ﬁ) - p.f))@
— (pV°w, Ta1(Laaw(V,0) = pf) © Tar(Laaw(V,0) — pf))g, =0 (4.79)
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This formulation is given in Calo [14], where the concept e$idual-based turbulence modeling
was introduced.

One can extract a set of well-known stabilized methods f@& (Bee, for example Tezduyar
and Sathe [101], Codina and Soto [17], and Tejada-MartinezJansen [98], as well as references
therein) by omitting the last two terms from the left-hamdiesof (4.78), and disregarding the “cross”
terms, which represent coupling of momentum and contimeaisjduals in the model for the prime
quantities (4.76). With these assumptions we obtain: Find V,, such thattW ¢ V),

B,(W, V), — F,(W)
- (E*(ﬁ)a Q)7TM(£adv(ﬁaﬁ) - p.f))Qn + (V cw, ¢V - @)Qn =0, (480)

wherer ) is replaced by its diagonal counterpagi I, andr takes on alternative definitions, or is
often omitted.

Formulations of type (4.80) are ad-hoc extensions of lirstabilized methods to incom-
pressible Navier-Stokes equations, which are nonlinearth® other hand, formulation (4.78), and
its simplified version, (4.79), are a direct consequencé®MMS approach, which accounts for
the nonlinearities present in the underlying PDEs. Thedat more consistent with the idea of
turbulence modeling that attempts to account for the s¢chlsare missing from the discretization
step. Nevertheless, stabilized and residual-based fatioobs are very similar, and, in this light,
stabilized methods can be considereghadial models of turbulent fluid flow.

The following lemma establishes symmetry and positivitygarty of7/,,. The latter is of
crucial importance for the stability of the discrete foratidn (4.78).

Lemma 4.2.1. 7, is symmetric and positive-definite.

Proof. Symmetry of7’,, is clear from definition (4.77) while its positivity is shovas follows.
Consider the following orthogonal decompositionkst:

RI=V VL, (4.81)

where
V ={v|v=gp, ¥pecR} (4.82)
Vi={w|(w,v)., =0, VvecV}, (4.83)

where(w, v)r,, = (W, Tyv)y, rae), IS an inner-product oR? induced byr ;. Then, anyv € R?
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may be decomposed into= v, + vy, v, =gp € V,v, € V- and

vl v = (v1 + vo) T (V) + )

— cr(v1 +vo) T ryrgrogt Ta (V1 + v2)

= VITMV1 + V2T V2

— c-(gp) Tagreg” T (gp + v2)

— ;v TigTog” Ta(gp + va). (4.84)

The term on the last line of (4.84) is identically zerogas.g” 7/ (gp + v2) € V. The term prior
to it may be handled as

CT(gP)TTMgTCgTTM(gP +v2) =

crp(g’ Tvg)(g Tve) g Ti(ep + va) =
cr(gp)" Tagp + cr(gp) Tiv2 = vl Ty (4.85)
Thus, there exist6’ > 0 such that
vlrhv = (1 - c)vTryv +vlTyve > O v | (4.86)
provided0 < ¢, < 1. Positivity of 7y, is established. O

4.3 Numerical examples

This section presents two turbulent fluid flow examples: b fukveloped turbulent flow between
two infinite parallel plates, and a flow over a section of anl&pp87 airfoil. In all cases residual-
based turbulence modeling approach is used. Time disatietizmakes use of a generalized-
algorithm (see Chung and Hulbert [15] for details). Palaftgplementation using MPI [73] as a
programming paradigm is employed. Test cases were run oB&cdnpute node Cray-Dell Linux
cluster “lonestar”, maintained by the Texas Advanced CdmpguCenter (TACC) [96].

4.3.1 Turbulent channel flow atRe, = 395

In this numerical example a fully developed turbulent flownsen two parallel plates is considered.
Reynolds number of the flow, defined in terms of friction vépa., and channel half-widtld as
Re, = %‘5 is 395, which is a standard benchmark test cases for newdygeng numerical methods
for turbulent fluid flow. Herew, = /7, is the friction velocity, and-, is the average wall shear
stress.v = u/p is the dynamic viscosity of the fluid. Infinite domain is simtgd by means of a

102



Solid wall

Flow driven by pressure gradit

Figure 4.2: Turbulent channel. Problem setup.

finite rectangular domain of dimensi@r x 2 x 4/3x in the stream-wise, wall-normal, and span-
wise directions, respectively. The flow is driven by a consfaressure gradient, as illustrated in
Figure 4.2. Periodic boundary conditions are imposed irstream-wise and span-wise directions,
while wall-normal direction inherits a zero velocity Dihiet boundary condition.

Meshes of163, 323, and64? rectangular elements, with uniform spacing in the periodic
directions, and stretched in the wall-normal direction byyperbolic tangent function, are used in
this study. B-spline bases of order one, two, and three arstieated on these meshes to generate
discrete solution spaces for velocity and pressure, agstoriee equal order. For B-splines of order
p, CP~1-continuity of the basis functions is enforced, leading tarefinement on every fixed mesh.
This construction, for a mesh af elements, generatés + 1) x (n +p) x (n + 1) basis functions
for a discretization of ordey. Due to no-slip boundary conditions, the open-knot vectorstruct
generates: + p univariate spline basis functions in the wall-normal dil@t. Periodic boundary
conditions in the remaining directions give rise to a uriatar basis which is comprised af+ 1
periodic splines. This number is independent of the polyiaborder of the discretization.. Note
that linear splines are equivalent to tri-linear hexahkfilnde elements.

Figure 4.3 shows stream-wise velocity contours at an ihstatime for a medium cubic
simulation. The flow is characterized by a very thin boundayer where turbulent structures are
generated, and later propagate into the core region, whifthly turbulent.

Statistics of the mean flow, or primary statistics, and flatans, or secondary statistics,
are computed by means of averaging the solution fields in &inteperiodic flow directions. To
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asses performance of the method, results are compared vogmehmark DNS computation of
[72], which is taken as an “exact solution”, and which made aka spectral method wit?563
points. Results are reported in Figures 4.4-4.6. On allsphoéan stream-wise velocity is scaled
by the friction velocityu, and is denoted by, ™. The root-mean-square deviations of the three
velocity componentsy, s, Vrms, andw, s, also appear in the non-dimensional form scaled by the
friction velocity. These quantities are plotted agaipst= yu. /v, the non-dimensional distance
from the wall in so-called “wall units”. The following obseation can be made about the results of
this computational study:

e Convergence of all statistics, primary and secondary, €¢o0iNS results is apparent in all
cases. As expected, mean quantities converge faster ta\Befan the fluctuations.

e Higher order simulations outperform their linear counsetp on the basis of the number of
degrees of freedom used in computations. Mean quantiteesnach more accurate in the
case of higher order discretizations. Most dramatic ire@da accuracy is observed when
going from a linear to a quadratic discretization, whichsddly one extra layer of control
variables in the wall-normal direction. Note the remarkadtcuracy in predicting the mean
stream-wise velocity for the case of a medium cubic splimaufation, especially considering
how few degrees of freedom are employed.

e In some cases secondary statistics curves appear to benumiks which suggests that the
flow may need to be advanced for a longer time period and/orgai@ample size needs to
be used for the computation of statistical quantities. Inigaar, 64> cubics need additional
simulation time in order to reach a statistically statinstigte.

e Results appear to be competitive with, if not superior toppotations with standard methods
making use of turbulence models based on eddy viscosities.
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a) Stream-wise view

b) Span-wise view

Figure 4.3: Turbulent channel flow. Stream-wise velocitgitoars in different views.
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Figure 4.4: Turbulent channel flow, results using lineam&ets. Top left: convergence of the mean
flow, top right: convergence af,.,,, bottom left: convergence af.,,s, bottom right: convergence
of Wy
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Figure 4.5: Turbulent channel flow, results using quadrspiines. Top left: convergence of the
mean flow, top right: convergence @f,,,s, bottom left: convergence af.,,,s, bottom right: conver-
gence Oofw, .
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Figure 4.6: Turbulent channel flow, results using quartlnsg. Top left: convergence of the mean
flow, top right: convergence af,.,,s, bottom left: convergence af.,,s, bottom right: convergence
of Wy
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4.3.2 Flow over Eppler 387 airfoll

u-n=20
u=20 2C¢
U:(l,0,0) -
2C — °C
C
2C
u-n=20

Figure 4.7: Flow over Eppler airfoil problem setup. Compiotzal domain and boundary condi-
tions.

Computations of a fully-developed flow over Eppler 387 airéd Reynolds numbeRe =
100, 000, based on the cord lengtfi, anda = 2° angle of attack are presented in this example.
The flow is at low Mach number, hence the incompressibilituagotion is valid in this situation.
Problem setup and boundary conditions are given in Figufe Bvo- and three-dimensional sim-
ulations are performed. In the three-dimensional case ¢heath was given a thickness 0fl2C
and periodic boundary conditions were applied in the spese-@irection.

Figure 4.8 shows the mesh, comprised of 12,690 and 126,96i2 &URBS elements
used in the two- and three-dimensional simulations, ras@he It was generated in the spirit a
C—grid. Basis functions used afe?-continuous in the direction normal to the airfoil surfacela
CP-continuous in the span-wise direction. Mixed order of aurity, that is bothC® and C?, is
employed in the direction tangential to the airfoil.

Figure 4.9 shows a snapshot of stream-wise velocity andsprescontours for a two-
dimensional simulation. Results are in good agreementtivitbe of Oberai, Roknaldin and Hughes
[76, 77]. Note the coherence of the vortical structures show the stream-wise velocity plot
4.9a. These structures are a consequence of a two-dimahsiescription of the flow. In three-
dimensions these structures break up into smaller eddi@shvis a fundamental turbulence mech-
anism. Also note the smoothness of the pressure contoungaho4.9b.
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a) Full mesh

b) Zoom on the boundary layer mesh

Figure 4.8: Flow over Eppler airfoil. NURBS mesh for both tdionensional and three-dimensional
calculations. Span-wise resolution was reduced to onardialement for a two-dimensional calcu-
lation.

110



a) Stream-wise velocity

b) Pressure

Figure 4.9: Flow over Eppler airfoil. Snapshots of streaimewelocity and pressure fields for
a two-dimensional calculation. Note the coherence of théiocad structures and smoothness of
pressure contours.
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In designing airfoils, quantities such lift and drag are ofa importance to aeronautical
engineers as they define airfoil performance charactesisiihese are functionals of the flow fields
and their values change dramatically when the flow underggaasition from laminar to turbulent.
Predicting these quantities of interest accurately beé®mne to go to a full three-dimensional
description of the flow, wherein lies a great computatiomalllenge. Figure 4.10 shows the stream-
wise velocity and the trailing-edge pressure contours opaa-svise slice of the computational
domain. Note that the coherent structures, charactenétibe two-dimensional description, are
no longer present. Instead, the flow possesses a multitugigatill and temporal scales, and ap-
pears chaotic. To further illustrate the point Figure 4.&pidts isosurfaces of span-wise velocity
fluctuations. Fine-grained solution structures occur irispaf the domain where the flow is highly
turbulent, namely the trailing edge of the airfoil and itskea In other parts of the domain the
flow is nearly two-dimensional. Situations like this presamgreat modeling challenge: a “good”
turbulence model must be able to identify various flow regirmed adapt accordingly.

Figure 4.12 shows the plot of the pressure coefficient digtion along the airfoil upper and
lower surfaces. It is defined &, = %%. Do, the reference pressure, is set equal to zero, and
U, the reference velocity is set equal to the magnitude of #hecity vector at the inflow of the
computational domain. Results of the three-dimensionaiprdation are in excellent agreement
with the experimental findings of [71].
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a) Stream-wise velocity

b) Pressure

Figure 4.10: Flow over Eppler airfoil. Snapshots of streaise velocity and trailing edge pressure
fields for a three-dimensional calculation. Pressure fatains are a source of hydrodynamically
generated noise.
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Figure 4.11: Flow over Eppler airfoil. Span-wise velocigpsurfaces for a three-dimensional cal-
culation.
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Experiment

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/C

Figure 4.12: Flow over Eppler airfoil. Plot of the pressunefficientC, = 525=. Excellent

agreement between a three-dimensional computation arediggntal data is observed.
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Chapter 5

Isogeometric Fluid-Structure
Interaction Analysis with Applications
to Arterial Blood Flow

5.1 Formulation of the fluid-structure interaction problem

x(X,1)

Figure 5.1: Abstract setting for the fluid-structure intgi@n problem. Depiction of the initial and
the current configurations related through the ALE mappiRige initial configuration also serves
as the reference configuration.

In this section we present the formulation of the fluid-stuoe interaction problem. We
begin by introducing notation. Led, € R? d = 2,3, open and bounded, be the initial or the
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reference configuration. Lé2; € R? open and bounded, represent the current configuration,
namely(, is the image of), under the motion: = x (X, t) withx € Q;, X € Qq, andt € (0,7,

the time interval of interest. In what follows, will be referred to as current coordinates, aXidas
reference coordinates. Note thatX,0) = X. The domairt2, admits a decomposition

Qo = QU g, (5.1)

WhereQ{; is a subset of2, occupied by the fluid, anf; is a subset of), occupied by the solid.
The decomposition is non-overlapping, that is

Qf nag=0. (5.2)
Likewise,

Q=0 U, (5.3)
with

0l nag =0. (5.4)

Let Pgs denote the boundary between the fluid and the solid regiotieimitial configuration, and,
analogously, IeF{ * be its counterpart in the current configuration. The abotgpsis illustrated in
Figure 5.1. Itis important to emphasize that the motion effthid domain is not the particle motion
of the fluid. It does, however, conform to the particle motarthe arterial wall. The Lagrangian
description is adopted for the artery wall.

5.1.1 The solid problem

This section gives a weak formulation of the hyperelastiglinear solid in the Lagrangian descrip-
tion. LetV* = V*(Qf) denote the trial solution space for displacements antéet= W?*(€})
denote the trial weighting space for the linear momentunatqgus. Letu denote the displacement
of the solid body with respect to the initial configuratiorddat w* be the weighting function for
the momentum equation. We also assume that the displacesatisfies the boundary condition,
u = g° on FS’D, the Dirichlet part of the solid domain boundary. The vaoiaal formulation is
stated as follows: Find € V* such thatvw® € W?,

B (w*, u) = F*(w®) (5.5)
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where

82
B (w®,u) = (w®, py g |+ (Vxw®, FS)q,, (5.6)
I ) o 8
and
F*(w*) = (w", g f ) + (w0, ). (5.7)

The above relations are written over the reference confiigura The subscriptX on the partial
derivative operators indicates that the derivatives dentavith respect to the material coordinates
X. FS’N is the Neumann part of the solid boundaty’ is the boundary traction vectop is

the density of the solid in the initial configuration, ayfd is the body force per unit mass. The
displacement: is defined as

F is the deformation gradient
ox ou
F=o5=T+5% (5.9)

andS is the second Piola-Kirchhoff stress tensor. We considefdliowing constitutive models:
Case 1The St.Venant-Kirchhoff constitutive relation:

S—C:E, (5.10)
where
"
E=S(F'F-1), (5.11)
C:AW®I+2MG—§I®D, (5.12)
1
Irjkr = 5(5IK5JL +010sK), (5.13)

E is the Green-Lagrange strain tensdry is the Kronecker delta, and® and p° are the Lamé
constants. Note that the fourth-order elastic teidsisrassumed constant in this model.
The St. Venant-Kirchhoff model is not without shortcomingsxhibits a seemingly spuri-
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ous material instability under states of strong compresdiowever this is not felt to be important
in the present applications. The essential point is thagtasents an objective generalization of
the linear isotropic theory to the nonlinear case. Of cqutsere is no physical justification of the
model beyond the linear strain regime.

Case 2Material model treated in Simo and Hughes [90]. H8reomes from the gradient of the
elastic potential), namely

S = 25—2, (5.14)

whereC is the Cauchy-Green strain tensor defined as
C=F"F. (5.15)

The elastic potential engenders a sum decomposition
¢ = Qiso + Pait, (5.16)

where ¢;,, is the energy associated with the volume-preserving othmac part of the motion,
while ¢4;; reflects the volume-changing or dilatational componenthef deformation. This de-
composition is due to the fact that materials respond diffdly in bulk and in shear. We assume
three-dimensional elastic medium and perform the follguinultiplicative decomposition of the
deformation gradienF:

F =J'F, (5.17)

whereJ = detF, the determinant of", andF = J~'/3F. Note that deF" = 1, henceF is associ-
ated with the volume-preserving part of the motion, whilé? is the volume-changing component.

Let

C-F'F, (5.18)

in direct analogy with (5.15). Then

1 _
¢iso = 5#8 (trC - 3)7 (519)
and
1 s 1 2

Pait = 5k (§(J —1) —InJ). (5.20)
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Note that this model, as opposed to St. Venant-Kirchhoffsfas all the necessary normalization
conditions. In particular, the lhterm in the definition ofp4; precludes material instabilities for
states of strong compression.

For the above definition of elastic potential, second Pkitahhoff stress tensor becomes

S = s J 231 — % trC C') + %FLS(J2 —-1nc, (5.21)

and the fourth-order tensor of elastic moduli is
P2
~“acac T ‘oM
2
+(§ps.]‘2/3trC —k¥J2-1))Ccteoc?

sJ72BwC + k2IHC @ C! (5.22)

2
_gMSJ—2/3(I ® Cc! + Cc! ) I)
In (5.22) ther symbol is used to denote an outer product of two second-emgots, and

(C ik (C N+ (CH(C Yk

. (5.23)

(CrteoC kL=

Parameters® andx® may be identified with Lamé constants of the linear elasticlet, denoted:!
and\!, by considering the case when the current and the referend@arations coincide. Then
the elastic tensor (5.22) reduces to the form given in (542), by inspection,

@t = (5.24)

2
k= A+ g,ﬁ. (5.25)

5.1.2 Motion of the fluid subdomain problem and the ALE mappirg

This section gives a weak formulation of the motion of thedlsubdomain. Partial differential

equations of linear elastostatics subject to Dirichletrimtary conditions coming from the displace-
ments of the solid region define the ALE mappixgX , ¢) on the fluid domain. This construction,
which is by ho means unique, imposes sufficient regularitthenALE mapping so as to make
the fluid problem (5.35) well-posed. For precise conditionghe regularity of the ALE map, see
Nobile [74]. In the discrete setting, the fluid subdomain iofproblem is referred to as “mesh
moving.”

Let & denote the displacement of the fluid domain from its init@hfiguration

8(X, 1) =x(X,t) - X (5.26)
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and Iet%—‘ts be its velocity in the reference configuration. We also dettireedisplacement and the
velocity of the fluid subdomain in the current configuratian eapush-forward of the respective

guantities in the reference domain, that is,

y(x,t) =d o X_l(a:,t) = 5(X_1(as,t),t) (5.27)

Bla.t) = 20 o x 7 @.t) = 20 (x e 1).1) (5.28)

Let Q; be the configuration of)y at¢ < t. We think of this as a “nearby” configuration
that in numerical computations will typically represeng fimal configuration of the previous time
step. Then, lefy be the displacement of the reference domain at fimet V™ = V™ (Q/) denote
the trial solution space of displacements andAét’ = Wm(Q{) denote the weighting space for
the “elastic equilibrium” equations. The variational farlation of the problem is stated as follows:
Find~ € V™ such thatvw™ € W™,

B™(w™,5) =0, (5.29)
subject to
Vlprs = wo X s, (5.30)
and
w"™ |pps =0, (5.31)
where
B™(w™, ) = (Vaw™ 20" V(v = 5) + A" Vo - (v = F))gs - (5.32)

The above relations are written over the current configomati he subscript on the partial
derivative operators indicates that the derivatives dtertavith respect to the current coordinates
x. Constantg™ and \™ are the Lamé parameters of the linear elastic model claizicg the
motion of the fluid region. Their choice at the continuouseleshould be such that the problem
(5.29) is well-posed. In the discrete setting they shouldddected such that the fluid mesh quality
is preserved for as long as possible. In particular, meslhitguan be preserved by dividing the
elastic coefficients by the Jacobian of the element mapgifiggtively increasing the stiffness of
the smaller elements [103], which are typically placed atfkolid interfaces. For advanced mesh
moving techniques see [92, 93]. Parts of the boundary of thé fegion may also have motion
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prescribed to them independent of the motion of the solitbredrhis is handled in a standard way
as a Dirichlet boundary condition. The remainder of the fi@idion boundary is subjected to a
“zero stress” boundary condition.

As aresult of the above construction, the ALE mapping foethiire domain may be defined
in a piece-wise fashion, namely:

u(X,t)+ X VX € Qf
x(X,t) = (X,1) ? . (5.33)
(X, )+ X VX €O
Note that (5.27) together with (5.30) imply
6zfyoxzu0nfgs, (5.34)

which makes the ALE map (5.33) continuous on the fluid-sotidriglary.

5.1.3 The fluid problem

In this section we give a weak formulation of the incompigssNavier-Stokes fluid on a moving
domain in the ALE description. Motion of the fluid domain wamstructed in the previous section,
and is given by (5.33). Lep/ = Vf(Q{) denote the trial solution space of velocities and pressures
and letw’/ = Wf(Q{) denote the trial weighting space for the momentum and coityirequa-
tions. Let{v,p} denote the particle velocity-pressure pair gad’, ¢/} the weighting functions

for the momentum and continuity equations. We also assuatethile fluid particle velocity field
satisfies the boundary condition, = g/ on I'/"”, the Dirichlet part of the fluid boundary. The
variational formulation is stated as follows: Fifid, p} € V/ such that/{w/, ¢/} € W/,

Bf({w?, ¢}, {v,p}; 8) = F ({wf,¢'}) (5.35)
where
B ({w!,¢'},{v,p}; B) = (wf fa—”) + (wf flo—B)-v v) (5.36)
Y Y 9 9 ap (915 Q{ ,P T Q{ .
and
FI({w!,q"}) = (w!, p' ) op + (w!, hT) . (5.37)
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The above equations are written over the current configuratnd(-, -) defines the corresponding
L? inner product. The subscripton the partial derivative operators indicates that theveévies
are taken with respect to the current coordinatesF{ Vis the Neumann part of the fluid domain
boundary,h” is the boundary traction vectof/ is the body force per unit mass, ap and 1./
are the density and the dynamic viscosity of the fluid, retbgelg. 3 is the velocity of the fluid
subdomain defined in (5.28).

Remark 5.1.1. Note that the quantity%—"; is not the spatial particle acceleration, instead it is a
push-forward of the material particle acceleration defiraed

a_v—a_f)o -1
at ot X

(5.38)
wherev = v o x.

Remark 5.1.2. Also note that, unless the Lagrangian description is w@dizn the fluid domain,
B #wv.

5.1.4 The coupled problem

In this section we present the coupled FSI problem, whiclaget on the individual subproblems
introduced in previous sections of this chapter. The viarial formulation for the coupled problem
is stated as: Findv,p} € V/, u € V¥, andy € V™ such that/{w/, ¢/} € W/, vw® € W*, and
Yw™ e W,

B! ({w’, ¢’} {v,p}; 8) - FI({w’,¢"}) +
Bf¥(w®,u) — F*(w®) + B"™(w™,~v) = 0. (5.39)

with the following auxiliary relations holding in the sensktraces:

ou _
'U\F{s = 5 5% I‘F{S, (5.40)
w’ Ipps = w0 X—l\F{S, (5.41)

as well as equations (5.30) and (5.31).

Relationship (5.40), the kinematic constraint, equatesflinid velocity with that of the
solid at the fluid-solid boundary. Equation (5.41) leadsh® ¢compatibility of the Cauchy stresses
at the fluid-solid interface. Indeed, integrating by pasttfingw™ = 0, and assuming sufficient
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regularity of the solution fields in (5.39), gives

o:<wf,£f(v,p;5)—pfff>9tf

w, Prg) s (5.42)

where< -,- >q and< -,- >p denote volume and surface integrals, respectively. n2j5tde
following definitions apply:

£ (0,p:8) = 0+ (0~ ) Ve - Ty 0, (5.43)
o/ = —V,pI 4+ 21/ Vi, (5.44)
s 882u
L) =pygm —Vx - P, (5.45)
P=FS, (5.46)

andn{ andng are the unit outward normal vectors to the fluid domain in theent, and the solid
domain in the reference configurations, respectively. &teharguments of distribution theory for
(5.42) imply that the fluid and the solid PDEs hold in the iiteof their respective domains, and the
Neumann boundary conditions are satisfied on the appreppats of the fluid and solid domain
boundaries. Selecting test functions that vanish everyavimethe domain except at the fluid-solid
interface in (5.42) gives

<wf,afn{> + (', Pg) . =0, (5.47)

rfs

Transporting the second term in (5.47) to the current cordigpn, yields
<wf,afn{>rfs + (w® o X_l,asnf>1,{s =0, (5.48)
t

whereo? is the Cauchy or true stress tensor. Itis symmetric andasa@ito the first Piola-Kirchhoff
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stress tensaP through the Piola identity (see, e.g., [43])
o' =J 'PFT. (5.49)

Finally, using relationship (5.41) we arrive at the weak patibility of surface tractions on the
fluid-solid interface in the current configuration:
<wf,afn{ n crsnf> — 0. (5.50)

rfe

5.2 Formulation of the fluid-structure interaction problem at the dis-
crete level

In this section we give a formulation of the FSI equation89%.in the discrete setting. We begin
by defining spatial discretization of the problem. Our ordguirement on the trial weighting and
solution spaces is that they af€ -conforming. Although we will only show examples which make
use of the isogeometric approach, formulation presentszirhay be employed in conjunction with
standard finite elements. Having defined the semi-discoetad, we present the time advancement
algorithm, which is the generalized-method introduced in Chung and Hulbert [15].

5.2.1 Approximation spaces for ALE formulations and enforement of kinematic
compatibility conditions

We begin by considering the discretization of the referadmmain(),. Here, and in what follows,
we will use the same notation for discrete objects as for tt@mitinuous counterparts to simplify
presentation. Let

{NA(X)}acr,, X € (5.51)

denote a set of basis functions defined(qy and let/; denote the index set of all basis functions
defined orn(2y. These functions do not depend on time, they are “fixed” ircepan the reference
domain. Consider a discrete ALE mappiggX, ¢), which maps2, onto ), the current configu-
ration, and which can be expressed as a linear combinatibasi$ functions in (5.51), and control
pointsx 4 € R? (or nodal coordinates in standard finite elements) as

X(X,t) =Y xat)Na(X) (5.52)
Ael;

125



We also choose to approximate the displacement field of tliek m@blem (5.5) in the same basis,
that is

u(X,t) = Z UA(t)NA(X)> (5.53)
A€l

wherel, C I, is the index set of basis functions supported on the solidademThis approach
amounts to an isoparametric description. We assume thhasit functions in the reference con-
figuration are at least’’-continuous, which automatically makes thdii-conforming. We also
require N 4’s with support in both fluid and solid subdomains tod& continuous acrosE{;S.

In contrast to the solid problem, the fluid subdomain moti6r29) and the fluid (5.35)
problems are posed over the current configuration with wvkrfgelds being functions of the spatial
coordinatese. In order to approximate the unknown fields in the current @iomwve define another
set of basis functions{Na(z,t)} sc1,, as a push-forward of (5.51) to the current domain by the
discrete ALE map (5.52), that is

Na(x,t) = Nyox Nx,t) = Na(x " (z,t) VAcI;, xcy, (5.54)

wherel; C I, is the index set of basis functions supported on the fluid donmice above basis is
used to approximate fluid velocity and pressure, and the flagbn displacement as

’U(w7t) - Z VA(t)NA(w7t)7 (555)
AGIf
AGIf

Y(x,t) = > Talt)Na(z,1). (5.57)
AGIf

Note that due to the motion of the fluid domain, the basis fonstin (5.54) are time-dependent.

Kinematic compatibility conditions (5.30) and (5.40), aslvas conditions on the weight-
ing spaces, (5.31) and (5.41), are essential for the canis &SI problem (5.39) to ensure proper
coupling. In the discrete setting there is a variety of walymeoorporating them into the formula-
tion. For example, condition (5.40) may be imposed weakde (®.9., Bazilevs and Hughes [7])
by constructing additional terms on the fluid-solid intedaising ideas of discontinuous Galerkin
methods. As a result, incompatible fluid and solid discediins may be employed. This approach
is not adopted here. Instead, in our discrete formulatianchoose to satisfy the above mentioned
conditions strongly as shown in the following.

Continuity of the discrete ALE mapping at the fluid-soliddrface is ensured as follows. Let
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I;s = Iy N I, denote the indexed set of basis functions (and the assogatametry and solution
degrees of freedom) supported on the fluid-solid boundahenTsettingY 4 = U4 VA € Iy,
gives

ulps = D UaNalyge = Y Yaao Xl =70 Xl (5.58)
Ae[fs AEIfS

which is precisely (5.30). Continuity of the ALE map togethiath continuity of the basis in the
reference configuration assures that the basis functioth@iourrent configuration are at le&s?t-
continuous, and thuB '-conforming.

Kinematic compatibility condition (5.40), which ensurémt the fluid particles adhere to
the fluid-solid boundary, is satisfied by settibgy = OU 4/0t VA € Iy,. Indeed,

%—?|ng = Agl:fs ag—tANMng = Agl:fs VA(Nyo X)|F£s =vo X|ng, (5.59)
which is exactly (5.40).

Condition (5.31) is satisfied by setting to zero the weightunctions for the mesh motion
problem supported on the fluid-solid interface, while a uriget of basis functions at the fluid-solid
interface guarantees (5.41).

Finally, we demonstrate the following result:

Lemma5.2.1.Letv = 3, VaNa. ThenGg =37, 9V 4/0tNa, where%y is defined as

in (5.38).
Proof. Recall that%—? is the push-forward of the material fluid acceleration defiae%—g = %—‘;’ )

x~ !, wheret = v o x. Then

b=vox=() VaNa)ox (5.60)
AEIf
=Y VaNaox)= > VaNa
AGIf AGIf

Taking a partial time derivative and composing with*, we obtain

Jv 0 _ oV 4 - _ ov
E:EOX 1:( a—tANA)OX 1:Z—ANA> (5.61)
AEIf AEIf
which is the desired result. O

The interpretation of the above lemma is that the coeffisiélit 4 /0t are the control
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variables for the material acceleration. SettWig, = 0U 4/0t VA € Iy, implies 0V 4 /0t =
9%U 4/0t? YA € Iy, which, in turn, leads to the continuity of the material decation across the
fluid-solid boundary.

Remark 5.2.1. Same basis functions are used for the pressure as for theghriitle velocity
and the displacement of the fluid region. This is not necgsgane may use a different basis for
pressure in order to satisfy the discrete BB condition. 8sesxample, Nobile [74] for use of mixed
interpolations in the ALE setting.

5.2.2 The semi-discrete problem

Let V,{, Ve, Vit andW}’:, Wi, Wi be the finite dimensional subspaces of their infinite dinuaredi
counterparts. We approximate the coupled fluid-structateraction problem (5.39) as follows:
Find{v,p} € V!, u € V;, andy € V}" such that/{w’, ¢/} € W/, vw*® € Wi, andvaw™ € Wi,

Bl ({w’. ¢’} {v,p}: B) - F/({w’ ¢’ })+
1
(v = B) - Vaw! v)or + (Vaa!, et
(Ve -w!plrc,V, - v) (w!, v - V,v)

ol — ol

1
! ! AW . f I -
(mew , f'v ®’U)Q{ —|—('v Vw7 v va)Q{—l—

B*(w?®, u) — F*(w®) + B™(w™,v) =0, (5.62)

with the following definition of terms:

v =1L (v,p; 8) — ' ), (5.63)
= (S (0= 8)- Gl B)+ O (G G2 (5.6
N e , .
TC = (g . TMg)_l, (5.65)
and
7= Gv) 2 (5.66)
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In expressions (5.64-5.6@5 is a second rank metric tensor

0T og
= 5% 92’ (5.67)
g is a vector obtained by contractirgg on its first index as
d
g=1(9)i=Y _(G)i (5.68)

J=1

and g—g is the inverse Jacobian of the mapping between the elemeriteiparent and physical
domains. In (5.62) the symbél{ is used to denote the fact that integrals are taken over eleme
interiors.

The first eight terms of (5.62) pertain to the fluid descriptioThe formulation origi-
nates from the multiscale residual-based turbulence rimagdphradigm proposed in Calo [14], and
Hughes, Calo, and Scovazzi [51], and treated in detail inptle®ious chapter. Residual-based
formulation of fluid flow may be viewed as an extension of welbwn stabilized methods to the
nonlinear realm. Terms on the first line emanate from Gakskinethod. Terms three, four, and
five represent the standard SUPG stabilization for INS eladrio the ALE description. Terms six
and seven model the second cross-stress and the Reynelss @bntributions. The eighth term is
not motivated by multiscale arguments, it merely providéditional residual-based stabilization
for term six, which is advection-like (see Taylor, Hughes Zarins for details [97]). Terms nine
and ten of (5.62) pertain to the description of the nonliredid, while the last term represents the

mesh motion. Galerkin’s method is employed for both as iptsnoal for strongly elliptic problems.

5.2.3 Time integration of the FSI system

In this section we present the time integration algorithmdemi-discrete equations (5.62). The
method is an application of generalizadalgorithm proposed by Chung and Hulbert [15] for the
equations of structural dynamics, and extended to the emqgatf fluid mechanics by Jansen, Whit-
ing, and Hulbert [56]. In the context of fluid-structure irgetion, generalized- method was ap-
plied to coupling of the linearized Euler equations with tlomlinear structure in one spatial dimen-
sion by Kuhl, Hulshoff, and de Borst [64]. In this section weegdetails of the method as it applies
to the semi-discrete formulation (5.62).

We begin by making the following observations. In the soéidion, where the basis func-
tions are independent of time, solution coefficients of tispldcement, velocity, and acceleration
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fields are related through time derivatives. That is, forgwasis functionA,

B oV 4 B 9%U 4

AA—W—W,VAEIS, (569)

where A 4's are acceleration coefficients. Denoting (b)/and('-') the first and second time deriva-
tives, we setd 4, = U 4 andV 4 = U 4, VA € I,.

In the fluid region the situation is similar. Thanks to lemma2.5, coefficients of the fluid
velocity and material acceleration are also related thndirge derivatives despite the fact that the
basis functions used in the expansion of these fields aredapendent. As a result, we also set
Ay=U andV 4 =U4, VA€ I;. Note that there is no “fluid displacement” in our formulatjo
U 4 andU 4 are simply labels that we chose for fluid velocity and acegien coefficients in the
interest of a concise presentation of the time integratigarahm.

The above observations, together with the the discretaridtie compatibility conditions,
allow one to have a unique set of degrees of freedom repiegatisplacement, velocity, and accel-
eration for the coupled fluid-structure system. LikewiseX 4, Y 4, andY 4, VA € Iy represent
the coefficients of the mesh displacement, velocity, anélacation, respectively. We define three
discrete nonlinear residuals as:

Ri"(U.U,U,P, X, Y. Y) =

ov
(Naei,p' =2+ pl (v = B8) - Vov — pl f1) g+
(VaNaei, —pI + 25/ Viv)gs — (Naei, h)prv+
(v =PB)-ViNaei,v')gr + (Vo - Naei, p' 70V, - V)~
1
(Naei, v V:v'”)@{ — (VzNae;, F’U/ ® ’U/)Q{+

2

_ \J sa u s £5
(v - VoNaeT, v - Vav)gr + (NAei,PoW — 05 f% g+
(VxNaei, F(u)S(u))ay — (Naei, ). (5.70)

RY™U,U,U,P, X, Y, Y) =

1
(NA7 V:B : ,U)Qtf + (VINAa FUI)Qf (571)

t
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and

RZLES}L(U7 U, U, P, T, T, T) =
(VaNaei, 24" V3 (y = 7) + A"V - (v = F))gy- (5.72)

In the abovee; be thei!” Cartesian basis vector, aid, P, Y, and their time derivatives, collect
the discrete solution coefficients into a single vector dnowns. R7{?"™ is the combined fluid and
solid residual of the linear momentum equations for & basis function in the spatial direction
i, R§™ is the residual of the fluid continuity equation for thé" basis function, and?7ys*" is
the residual of the mesh motion equations for #ié basis function in the!" spatial direction.
Note that in contrast to more traditional presentationsjistinction is made between the fluid and
solid momentum residuals. Coupled PDEs are treated as grsicphsystem. This presentation
foreshadows the implementation of the method in which thid find solid partitions contribute to
a global nonlinear equation system according to their design.

Genealizedx time integration algorithm consists of the following: givehe solution at time level
t", find the solution at time level't!, such that

Rxﬁ'm(Un-l—ap Un+af7 Un—i—ozm7 Py, Tn+af7 Tn—l—afa Tn—l—am) = OA,ia (5.73)
. . .. . .
Ri{)n (Un+af7 Un+af7 Un+am7 Pn—l—la Tn+af7 Tn—l—afa Tn—l—am) - OA;

h . . ..
Rg,eis (Un+ocf7 Un+af7 Un—i—ozm7 Pn—l—l; Tn+af7 Tn—l—af; Tn—l—am) = OA,Z'-

Genealizedr method forces nonlinear residuals, evaluated at two teahpmcationsn + «.,, and
n + oy defined as

(Dntam = (In + am ((n+1 — ()n) (5.74)
(')n-i—ozf = ()n + Qg ((')n+1 - ()n)’ (575)

to vanish identically. Fluid and solid displacement, vélgand acceleration solution coefficients
are now related through the Newmark formulas (see, e.g,, [44

Un+1 = Un + At((l - ’Y)Un + ’YUn-i-l)a (576)
. At? .. ..
Upt1=U,+AtU, + T((l —20)U,, + 26U p41). (5.77)

Mesh motion coefficients engender the same relationshipsanietrso,,, and oy are selected so
as to ensure second order accuracy and unconditionalistaifithe time integrator. For a second
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order linear ODE system with constant coefficients, whialelated to the solid and the mesh parts
of the FSI problem, Chung and Hulbert [15] showed that seaoddr accuracy is ensured if

1
’yzi—af—kam, (5.78)
and
1 2
ﬂ:Z(l—af—i—am) , (5.79)

while unconditional stability is guaranteed if

am > ap > =, (5.80)

N |

Results (5.78) and (5.80) were also shown by Jansen, Whéimd) Hulbert [56] to hold true for a

first order linear ODE system with constant coefficients,cluhis related to the fluid part of the FSI
system. Condition (5.79) is only applicable to the seconttocase. In order to have strict control
over high frequency damping, both sources parametrjz@nda with p.., the spectral radius of

the amplification matrix at an infinitely large time step. @yl high frequency damping occurs
when all the eigenvalues of the amplification matrix takef@game value, and are equaHp..

In this case, for the second order system, Chung and Hulbetrive

2 — ph
h 0o
— 5.81
T T (5.81)
1
h __
T

while for the first order system Jansenal. [56] give

1.3 —pl
o, = —(3 ), (5.82)
21+ pho
: 1
aic: -
1+ poo

where superscripts distinguish the quantities coming fremdifferent methods. The above equa-
tions show that for the same valuessgf (that is,pl’, = péo) there is an implied mismatch between
the acceleration levels for the fluid and the solid, whiledifierent values op., (that is,pl, # p?;o)
there is an implied mismatch in the velocity levels for bogetems. Both inconsistencies are elim-
inated forpl, = p?;o = 1, the case of zero high frequency damping which also correfpto the
midpoint rule. This fact was also noted in Kuhl, Hulshoffdade Borst [64]. In this work, we adopt
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expressions (5.82), thus making the fluid part of the probdgtmmally damped, and examine the
eigenvalues of the amplification matrix for a second orderdr ODE system at an infinitely large
time step:

-1+ ady — o -1+ ol — o 1
At—o0 1+ (o — o) 14 (ady — o) o
! ! f
Inserting (5.82) into the expression above, we get
—1-3pls —1-3p2 :
lim \={ Pee. Poo i, (5.84)
At—o0 3+ pjoo 3+ p(ﬂ)o

While the third eigenvalue remains unchanged, the first i@adferent, but it is a simple matter to
show that they are monotone decreasing functiorﬁ,@hnd

1, —1-3p :
s < 2 <1yl <1, (5.85)
3 3+ pbo

which means that the spectral radius of the amplificatiorrimnagver exceeds unity in magnitude
and no instabilities are incurred in a second order systente Mat this choice of parameters does
not upset second order accuracy and unconditional stabflihe method because conditions (5.78
-5.80) are preserved.

Remark 5.2.2. It should be noted that Newmark relationships (5.76) ctuigtian approximation
to time derivatives. They are used directly on the solutioefficients of the discrete FSI problem.
This approximation is valid due to the fact that our discref® problem was formulated in a way
that solution coefficients are truly related through timeidatives.

5.3 Linearization of the discrete FSI system: a methodologfor com-
puting shape derivatives

Fully discrete system (5.73) constitutes a set of nonlirdgebraic equations to be solved at each
time step of the generalized-time integrator. Inside the time integration loop Newtomethod

is used as the main driver. The latter requires an apprepliregarization of (5.73). We will work
with acceleration and pressure increments, thus we defin@llowing quantities. LeffB,j collect
acceleration degrees of freedom for every basis funcBeend every Cartesian directign Note
that the kinematic constraint (5.40) implies that there isnaue set of acceleration degrees of
freedom at the fluid-solid interface. L& collect the fluid pressure degrees of freedom for every
basis functionB, and letY B,; denote the mesh accelerations degrees of freedom. Newtation
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for the discrete FSI system (5.73) is

mom,v

mom,v A, 41,
T g A o
7.7
a Zwm’y Zwm,u
i n+1,v i yntly
— & APt A =0,
L
7.7
aRcont,l/ .
cont,v A n+1,v
Ry g AU,
B)j
t, t,
ORY™ it | OFY™ i
oPFTt TR aTyi T
7]
o mgsh,u
RZL?S}””Jrfli”AU"ﬂ’”Jr
, +1 B,
i oUp, !
mesh,v mesh,v
opnt B oY B.j ’
7]
supplemented with the update formulas
prthv+l _ pntly + ALY (5.87)
B.j —YB,j Bj '
Sl w4+l prndl, et
g5t = Ui+ aaa g, (588)
L+l 1, yntl,
UBE 2 g 4 BAN AT, (589
T%—ZLV—H _ T%—;LV + AT%—;LV’ (5.90)
,'ryé—;l,u-i-l — T%—ZLV + ’yAtAT%-Zl’V, (5-91)
Ty S T AT (592
Pg"rLV"rl — Pg+171’ + APgJ’_l’V’ (593)

wherev is the Newton iteration index. Residuals in equations (be86 taken at the intermediate
time levelst,,1,, andt,q i while partial derivatives are taken with respect to theitsoh vari-
ables at time level,,, ; as indicated by the superscripts. The resulting schenwifathe class of
predictor-multicorrector algorithms (see, e.g., Brookd &lughes [12]).

Derivatives of the momentum, continuity, and mesh motiaiduals with respect to solu-
tion variables define the so-calltéahgent matricesln particular, derivatives of the momentum and
continuity residuals with respect to the mesh motion vademlare referred to ashape derivatives
Computation of shape derivatives is required for considieearization of the discrete FSI system.
To the authors’ knowledge, the only reference in which thésié is addressed is [26], where shape
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derivative operators based on space-continuous ALE famoum of incompressible Navier-Stokes
equations are derived. Itis advocated in this work thatétevant object in nonlinear analysis is not
the “continuum tangent”, which is a discretization of a dative operator of the continuous formu-

lation, but the “algorithmic tangent”, which is a tangenttriathat is derived from a given discrete

formulation. It is precisely the latter that gives quadraibnvergence of the Newton iteration, and
is most robust in practice.

In this section we focus on presenting a methodology foviegishape derivatives and pro-
vide explicit expressions for these tangent matrices cgrfiam our discrete formulation of the FSI
problem. These results are new and comprise one of the matntadions of this dissertation. This
methodology is applicable to other FSI formulations, inahg the space-time approach advocated
in [99, 100, 102].

5.3.1 Shape derivatives

We begin by introducing notation. Lat = (&) denote the mapping between the elements in the
parent and the physical domains defined on each elemen%_be the Jacobian of this mapping,

let g—g = g—g_l be its inverse, and lef; = detg—fg be its determinant. Cartesian basis will be
used throughout and, in what follows, operations on ve@astensors will be expressed through
operations on their components in the Cartesian basiszLahd¢; denote the* component of

x andg, respectively, and Ie(t8£ )ij = ggl, and(ag) i = gﬁj be the components of the Jacobian

and its inverse.

The following identities, standard in nonlinear continuamechanics (see, e.g., Holzapfel
[43]) will be used in the sequel:

D o, 3&D Oxy | Ok

(axj T Oxy 0&, Oy’ (5.94)
and
0¢; ., O0x;
DJg = Jeg 2D 8£J) (5.95)

whereD denotes a general derivative operator. Summation commrenti repeated indices is used
throughout. Making use of equations (5.94 - 5.95) and theahde of differentiation, we obtain

i o9&
c%cj axk

c%ck

o0& & Oy, O
D(—
¢

D
(Je or; Oz, 0& O,

) = Je(5—D(5)

ok, (5.96)
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and, furthermore,

D(J; 5. ) = (5.97)

08 15 02k y 06 _ O 1y Oty Ok y Obm _ ; O& Obm p, D1\ Ok
Oz 0 0x; Oz 0& Ox;’ Ox, COx; Om  0& Oxy

Jed

Our task is to derive expressions for shape derivatives @rma-by-term fashion. We will
treat several terms in detail so as to make the underlyinggpires clear. Results for the rest of the
terms will be stated without derivation.

Consider the expression

mom
aRA’Z

= . 5.98
AN:Y ( )

This is a derivative of the discrete residual of momenturraéqu with respect to mesh acceleration
degrees of freedom. In (5.98), temporal as well as iteradigrerscripts are omitted in the interest
of a concise exposition. This derivative is active in thedltegion only, so we consider just the
Navier-Stokes contributions to the discrete residual.
Acceleration term

We begin with the acceleration contribution to the shapevdive matrix, that is

Ov;
aZNdl Qe Nai p! % dfde

= . 5.99
o, (5.99)

In (5.99) NV, is the number of elements in the fluid mesh, is the domain of the spatial element,
and the underlined index indicates that no sum is taken oveSubscripti on the basis function
N4 is used to denote a Cartesian direction and index the resultatrix contribution. Otherwise,
no distinction is made between basis functions approximgadifferent components of the solution
vector.

Taking the partial derivative operator inside the sum okierglements, for a given element
e we obtain

ov;
9 Jo, Nagp! T de

9T

(5.100)

In (5.100) we cannot take the partial derivative operatsidi@ the integral, as the region of integra-
tion directly depends on the mesh motion. In order to circaimithis difficulty, we change variables
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under the integralr — £. With this change of variables expression (5.100) becomes

/ N, 5100 O 4q (5.101)
. 0t aYp,

where(f) is used to denote the fact that the quantity is a function efg@wrent domain variablg
Note that basis functions, and particle density and acaiiber in the parent domain are independent
of the mesh motion variables, hence the partial derivativg affects the Jacobian determinant.

Using expression (5.95) in (5.101) gives

00,0058 ag
Nag pf ZL2067 5L g a0y, 5.102
/Q N G e e (5.102)

a( 2%k
The term% g—f; is analyzed as follows. Recall the definitionagf
B,j

r(€) = Xx (&) = 01(§) + Xi(£), (5.103)

whereX;, are components of a local geometrical mapping @nare components of the local mesh
displacement in the reference domain. Then,

ox, 08,  0X,

R (5.104)

which implies

o05) _ oG (5.105)
oYB — 9YB’ '
J J

as the second term in (5.104) is independent of the mesh motidesh displacement, (&) is
defined as a linear combination of mesh displacement casfisiand basis functions, that is

Nsni

k(&) =Y TarNax(é), (5.106)

A=1

whereNy;,; is the number of element basis functions. The above implies

oFe) o8 ONg; o¢
—08° B g par2— 2L IS 5.107
oy, o~ P g ou, (5.107)

In (5.107) we made use of Newmark update formulas (5.76)dla¢éionship between displacements
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attime levels,, 1 andi, 1., . Inserting (5.107) into (5.102), changing variables badkée physical
domain, and summing over the elements of the fluid mesh, wiyfiget

AN
ZafﬂAt / NAzpfa”’ axB-J A9, (5.108)

Matrix (5.108) is the contribution to the shape derivativatrx (5.98) from the acceleration term
present in the discrete momentum equations of the INS systappears to be form-identical to the
matrices that contribute to the tangents in the analysisuafdland solids, and its implementation
in a finite element and isogeometric codes is standard.
Advection term

In the acceleration term the coupling between the momenésidual and the mesh motion
variables occurs exclusively through the determinant iacoof the ALE mapping. Other terms
of the discrete INS system exhibit more complex couplingr iRstance, consider the advective
contribution to the momentum residual

8112

el
/ Nas o/ (0 = Bo) o A9 = (5.109)

i/N T 2% 40y %:I/N 75,9 40
A v — e — A -
— Ja. P Dy —Ja. P b

Restricting the sum to a single element, changing variatolebe parent domain, and taking the
derivative with respect to the mesh acceleration degres@fiom gives

. 90, 02T 0i; 06 P, -
Na; ol (o — Bp)—mt — 22k 7 dQe—/ Na, pf === Je dQ. 5.110
o Ai P ( k ﬁk)agl aTBJ a, agl al’k aTB] 3 ( )

Using relation (5.96) in the first term of (5.110) gives

00 06 O(5E) 0¢

—_—— 5.111
9 Bz, Oy, Oz (5:111)

o€, 0<§2‘;:> O

/ Nag ' (0 — Br)

)Je d€2e

Changing variables back to the physical domain, taking tine aver the elements in the fluid mesh,
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and accounting for the second term of (5.110), we get

el (921 8
2 o f _ v J
E arBAt / Nai p’ (v [3)8 o 8% dQ (5.112)
avl a ’,
E Oéfﬁﬁt2/ Na,p’ Uk—ﬁk) 3 bd dQe.—
l’j T

7 Ov;i
Zaf’}/At/ NAZp UNB]dQ

Matrix (5.112) is the contribution to the shape derivativatrix (5.98) from the advection term
present in the momentum equations of the INS system. It gdpears to be form-identical to the
matrices that contribute to the tangents in the analysisumf€land solids, but contains more terms
than its acceleration counterpart. Implementation is siandard in this case.
Pressure stabilization term

As a final example we present the derivation of the contrmiouto the shape derivative from
the discrete continuity equation, that is

8Rcont
. (5.113)
0T B,
Consider the pressure contribution from the stabilizimgn that is
Nel
ON4 A Op
> /Q ar; pf om; e (5.114)

As before, restricting to a single element and changingaisées gives

Q 8£k 8—%p_f8_&8_xlj5 dQe (5115)

Taking the derivative with respect to the acceleration eegrof freedom and isolating terms inde-
pendent of the mesh motion we get

@i@% O — ONa Tur ap% a0+ (5.116)
o, 06 p1 06 otp, “ o, 04 BT 04 ot g, ’ '

8NA 1 8p8§k aflj (97A'M

2 dQ..
Q agk Pf afl axl axl OTBJ»

The last term on the right-hand-side of the above expressiarives the derivative of; with
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respect to the mesh acceleration degrees of freedom. ritpsiriciple, present in the tangent matrix
and is computable, but in this work it is omitted. In order &mtlle the first term on the right-hand-
side of (5.116) we employ relation (5.97) to obtain

ONA 7 0p 06 O(5E-) 06, 06

Ty (G 5.117
Qe agk ﬁf aé‘l(awn 8TB’]- Ox; Ox; ( )

06 O(GE) 0, 06,
al’n aYB,j 81’, Z?xl

ol .
0% Ve, afm@)Jg ds,.
al’n aTB,j 81’, 81’,

Changing variables back to the physical domain and summiagtbe fluid domain elements gives
the following contribution to the shape derivative

Nel
N ONpg ;
e=1

—_— = dQ.— 5.118
. 0v; pl Ox; Oz d ( )

Nel

N ONg ;
Y asBAL ONay Op T257 4
e=1

Nel

N ONg ;
N agpae [ ONATM 0D OB 4o
e=1

As before, these matrices and their implementation in aefigliement FSI solver are standard. In
what follows we give, without derivation, expressions foage derivative contributions from some
of the remaining terms in the formulation.

Pressure gradient term

DYDY [, “5ip A,
lfo O - (5.119)
ot 5,

Nel
ON4; ONBj; ONy; ONB;
_§ OéfﬂAtz A Bj Ay B.j

dSQe.
8361 p axl axl p awi

e=1
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Viscous stress term

ON i 8’!@ ov
0322 Jo, o (ga + Ga) A9 (5.120)
CAGSY '
Nel
ON 4 ; ov;  Ov, ONBj
D opBAr | =il (o ak) 5 -
- Qe Tl Tl Ty wl
Z?NA,i f( 8@1 8’Uk aNB,z B
8%1 H 8xk 8952 8xk
Ad v_' Bj A,iufaik' énge.
oxy, 81‘1 oxy, oxy, axl Ox;
Body force term
o Napfff a. Na ! ONg.
Zezt Jo, Nair!f} = Naip’ +arBARN L =21 g0, (5.121)
oTp,; : A L Oay
B,j e—1 "% B.,j J
Continuity constraint term
O fo, NaZe dQ. vi ONpj  9v; ONp,j
= — At [ Na( = L) d.. 5.122
8TBJ- Zafﬁ / Al 8:EZ 8:El 8:% Ox; ) ( )
Continuity least-squares term
ONa,
626 1JQ. 8; Cé)xk dQ (5 123)
ANSY '
Nel
ONa, ONp,
ZafﬁAt2 8A gvk B]
—~ 0, O T ax]
aNAZ avk 8NB,J
0z axk Oz
Nai ON
? A”TC% B dQ..
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Streamline diffusion stabilization term

O3 Jo, (vn 5k) o v (U — B) 5% dQ,

L 5.124
L ON 4 ov; ONa,; ov;
_ ;aﬂm /Q Ty (0% = Bu) G No + e (v = 0u) 5t N de
_|_
Ne; A 5 aNA&, avl 8NB,1‘
;afﬂ t /Qe(’vz - B) o1, v (Vk — @c)awk oz -
ONa; dv; ONp,j
o, T (v — 51)6 (v — Br) Drn
(9]\7Ai (%Z aNB,l
(o — B) oz TM(9 ](vk — Br) e dSe

Contributions to the shape derivative matrix given in thst®n are implemented in our software
used to compute numerical examples presented in the séfilklthese contributions to the tangent
matrix we observed satisfactory nonlinear convergenchefSI system within the time step. Itis
possible that including additional terms in the tangentrixaay lead to a better performance of
the nonlinear solver for other problem classes.

5.4 Numerical examples

In all the examples, the wall is modeled by two elements amd &' -continuous second order
basis functions through the thickness. See [52] for furthetails regarding modeling of shell-like
structures as solids.

5.4.1 Wave propagation in an elastic tube

Our first test case, taken from Greenshields and Weller fR&]ls with wave propagation in a fluid-
filled elastic tube. In this example the tube lengttiis- 10 cm, its inner radius ig?; = 1 cm, and
its outer radius iR, = 1.2 cm. The solid region is enclosed betweBnand R, while the fluid
occupies the rest of the tube. The problem setup and bourdaditions are illustrated in Figure
5.2. Material properties representative of blood flow irraes are defined as follows: the density
of the solid isp* = 1 %, and Young's modulus and Poisson’s ratio &re= 107 dyQ andv = 0.3,
respectively. The fluid density is algd = 1 W and its viscosity igi/ = 0.04 -3 Cm -

The computational mesh, consisting of 6,080 quadratic NBREBments, is shown in Fig-
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p=p,H() -0
’ Zero traction p
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wWvv-n=0 \ wWvv-n=0
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Fluid region

Solid region

u-n=0 / u-n=0

Zero traction

Inflow surface Radial cut Outflow surface

Figure 5.2: Wave propagation in a fluid-filled elastic tubelpem setup.H (t) is the Heaviside
function.

ure 5.3. Att = 0 a step change in pressure is applied at the fluid inflow boyniathe system
that is initially at rest (all initial fields are zero). Thelpe causes a pressure wave to propagate
down the tube. Figure 5.4 presents snapshots of fluid pesswarious times. Four radial cuts are
shown on each of the plots to demonstrate that the computatiosois pointwise axisymmetric.
For visualization purposes, pressure in the solid regicetso zero to create a sharp contrast at the
fluid-solid interface. As a result, radial wall displacermamhich is on the order of%, is visible in

the figure.

Figure 5.5a shows the outer wall displacement, while Figubsé shows the centerline fluid
pressure at various times. Isogeometric results are cadpéth reference computations of Green-
shields and Weller [38], who employed a small-strain, srdaplacement formulation of the solid.
Discrepancies between results are assumed attributahle tiully nonlinear model used in the
present study versus the linear model utilized in [38]. Nihadess, results are in fairly good agree-
ment with the reference computations, as well as with th&dwsky solution (see Greenshields
and Weller [38] for details). These observations providdative confirmation that the coupled
momentum method for hemodynamics, proposed by Figuet@d. [28], in which the fluid and
the structure exhibit strong coupling, but the geometryssfexed at a reference configuration, is an
adequate description for blood flow calculations.
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Figure 5.3: Wave propagation in a fluid-filled elastic tubesmeonsisting of 6,080 NURBS ele-
ments.
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Figure 5.4: Wave propagation in a fluid-filled elastic tubeon@urs of fluid pressure at various
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5.4.2 Blood flow in an idealized aneurysm
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Figure 5.6: Idealized aneurysm problem setup.

In this test case, taken from [27, 86], we examine pulsatie fh an idealized aneurysm.
The problem setup is shown in Figure 5.6. A time-periodicoeiy waveform, specified at the
inflow plane, is parabolically distributed over the cirautarface. The period of the wavé, is
0.84s. The domains proximal and distal to the aneurysm regiorassamed to have rigid walls,
while the aneurysm wall is elastic. The density of the sdtigl,Young’s modulus, and Poisson’s
ratio arep® = 1.2 35, E = 6 x 10° SXQ andz/ = 0.3, respectively. The fluid density and dynamic
viscosity arep/ = 1. 012 o= anduf =0.035 = Cm - respectively. A resistance boundary condition is
applied at the outflow. The value of the resistance conssafiki= 300 ‘iy—n?f' For implementation
of boundary conditions employing various pressure-floatiehships, see Heywoaat al. [41] and
Vignonet al. [110]. The mesh, consisting of 14,630 quadratic NURBS etdsjés shown in Figure
5.7.

Figure 5.8 shows velocity vectors superimposed on the e&latity contours in the aneurysm
region at different times. A35° “pie” slice was cut out of the domain in order to exhibit theaflo
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Figure 5.7: Idealized aneurysm mesh consisting of 14,63&BIS elements.

features. Distensibility of the wall contributes signifitig to the unsteadiness of the flow. Never-
theless, the flow remains axisymmetric, as may be discernedgymmetry of the velocity vectors.
As in the previous example, no axisymmetry in the solutioassumed at the outset. It should
be noted that the peak Reynolds number, estimated to be abtfi-1,500 based on the largest
diameter, is close to the transitional value for circulgrepilow (see, e.g., White [112]). Thus, rela-
tively small perturbations in the geometry and/or flow ctindis may lead to much more complex,
unsteady solutions. Figure 5.9 shows the inflow and outflowefeams. Note the outflow lags
the inflow due to the distensibility of the aneurysm wall. iell-known phenomenon was also
observed in the computations of Figueetaal. [28]. Figure 5.9 also shows reference results from
[27, 86]. The agreement is excellent despite the differericeghe wall models (a nonlinear shell
was used in [27, 86]).
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Figure 5.8: Idealized aneurysm. Velocity vectors supeoiseol on axial velocity contours at various
times. Top right and bottom left correspond to the systatid diastolic phases, respectively. Note
that the flow is axisymmetric.
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5.4.3 Patient-specific abdominal aorta
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Figure 5.10: Patient-specific abdominal aorta geometry.

We present fluid-structure interaction calculations of #gpd-specific abdominal aorta for
a healthy over-55 volunteer obtained from 64-slice CT agigiphy. The geometrical model, which
contains most major branches of a typical abdominal astahown in Figure 5.10. The inferior
mesenteric artery was not clearly captured in the imagidgraas omitted in the geometrical model.
The fluid properties arep! = 1.06 % ! =0.04 %S The solid is characterized by the density
p* =1 35, Young's modulusf = 4.144 x 10° % and Poisson’s ratio; = 0.4. A periodic flow
waveform, with periodl” = 1.05s, is applied at the inlet of the aorta, while resistance Haon
conditions are applied at all outlets. The solid is fixed atitilet and at all outlets. Material and
flow rate data, as well as resistance values are taken frooefeget al. [28], with the following
exception. Poisson’s ratio is taken to be 0.4, not 0.5 as8if s the latter is not allowed in the
pure displacement formulation of an elastic solid. Waltkimess for this model is taken to be%5
of the nominal radius of each cross-section of the fluid donmaddel. The computational mesh,
consisting of 52,420 quadratic NURBS elements, is showrigarg 5.11.

Figure 5.12 shows velocity isosurfaces plotted on the atigenfiguration of the geometry
at various times during the cardiac cycle. The flow appeatsetéully three-dimensional and un-
steady, with most of the unsteadiness occurring in lataal@msFigure 5.13 shows the distribution
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Figure 5.11: Patient-specific abdominal aorta mesh camgistf 52,420 quadratic NURBS ele-

ments.

of flow among the branches. As in the previous example, thitoautags the inflow due to the
distensibility of the arterial wall. Although perfect mhtag with [28] cannot be expected because
the geometry and analysis models are different, the ovéwalldistribution and the time lag are in

gualitative agreement.
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Figure 5.12: Patient-specific abdominal aorta. Isosusfatehe velocity magnitude plotted on the
deformed geometry at various times.
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Chapter 6

Conclusions and Future Work

In this thesis the mathematical study of Isogeometric Asialpased on NURBS, an extension of
classical finite element analysis, was initiated. We depedoapproximation properties based on a
new Bramble-Hilbert lemma and new inverse estimates foicdses at hand. Our study focused
on h-refinement and did not treat order-elevation methods ssiph @ k-refinement, which will be
a subject of future research. We applied the method to devasas of physical interest, namely,
elasticity, isotropic incompressible elasticity and ®®Kow, and advection-diffusion. These serve
as linear model problems for applications such as turbdlait flow and fluid-structure interac-
tion, also treated in this dissertation. We considereddstahprimal and mixed Galerkin methods
as well as stabilized methods. All of our numerical resulésenconsistent with our theoretical pre-
dictions. We also performed some numerical tests involgingularities and unresolved layers that
went beyond the limits of the hypotheses of our mathemat@sllts. These tests suggest that we
have barely scratched the surface in that many other ititegamiathematical properties, yet to be
rigorously established, are possessed by Isogeometrilygisa

We have developed a class of discrete formulations for iqeessible fluid flow based on
the multiscale paradigm and the concept of fine-scale Gsdanttion. These residual-based for-
mulations are considered to be models of turbulence in tloidkwNew methods were tested in
the parallel isogeometric unsteady flow solver, developed part of this thesis. Results appear
to be competitive with, and often superior to state-of-dine-eddy-viscosity based formulations.
Increased accuracy was noted for high-order, high-coityinliscretizations native to Isogeometric
Analysis. Future research efforts will be focused on imprgwvaccuracy of local fine-scale ap-
proximations which are embedded in the VMS methodology. iatthl benchmark test cases, as
well as flows of industrial complexity need to be computedhitam a fuller understanding of the
performance of newly proposed methods.

We have developed a NURBS-based isogeometric fluid-steigiteraction capability cou-
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pling incompressible fluids with nonlinear elastic solia&l allowing for large structural displace-
ments, and applied it to problems of arterial blood flow. Weghalso developed a set of procedures
allowing us to construct analysis-suitable NURBS georastilirectly from patient-specific imaging
data. The new approach is evaluated on two benchmark preldachapplied to the fluid-structure
interaction of a patient-specific abdominal aorta. Verydyoesults are obtained for the benchmark
computations and the results for our patient-specific madelin qualitative agreement with the
results of other researchers using similar models. Futeveldpments will address extensions to
hyperelastic materials with anisotropy and viscoelastieihich are capable of representing more
physically realistic behavior of the arterial wall. Solittbompressibility and near-incompressibility
will be dealt with by means of a mixed formulation employinigplacement and pressure. Com-
parisons with standard finite elements are also planned.
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