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This work puts Isogeometric Analysis, a new analysis framework for computational engineering

and sciences, on a firm mathematical foundation. FEM-like theory is developed in which optimal

in h approximation properties for NURBS spaces with boundary conditions and inverse estimates

are shown. This, in turn, grants straightforward extensions of the theory to stabilized formulations

of incompressible and advection dominated phenomena.

This work also continues the development of residual-basedturbulence models for incom-

pressible fluid flow based on the multiscale paradigm. Novel turbulent closures, inspired by well-

known stabilized methods, are derived and tested within theunsteady parallel isogeometric incom-

pressible flow solver that was written as a part of this work.

The latter part of this dissertation focuses on the fluid-structure interaction (FSI) problem. A

fully-coupled FSI formulation is proposed and a methodology for deriving shape derivative jacobian

matrices is presented, allowing for a monolithic solution of the FSI system at the discrete level, and

rendering the fluid and structural computations more robust. These ideas are implemented in the
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form of an isogeometric parallel fluid-structure interaction solver. This technology is used to per-

form computations of contemporary interest and importancein patient-specific vascular simulation

and modeling.
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Chapter 1

Introduction

This dissertation makes an attempt to establish Isogeometric Analysis as a bona-fide analysis frame-

work for solving problems of contemporary interest and importance in computational engineering

and sciences. It also focuses on the design of novel formulations and numerical procedures for

computation of turbulent fluid flow and fluid-structure interaction, using isogeometric analysis as a

platform for these developments.

1.1 Background and Motivation

1.1.1 Isogeometric Analysis

Isogeometric analysis based on NURBS (non-uniform rational B-splines) was introduced in [52] and

further expanded on in [18]. The objectives of isogeometricanalysis are to generalize and improve

upon Finite Element Analysis (FEA) in the following ways: 1)To provide more accurate modeling

of complex geometries and to exactly represent common engineering shapes such as circles, cylin-

ders, spheres, ellipsoids, etc.; 2) To fix exact geometries at the coarsest level of discretization and

eliminate geometrical errorsab initio; 3) To vastly simplify mesh refinement of complex industrial

geometries by eliminating the necessity to communicate with the CAD description of geometry; 4)

To provide systematic refinement procedures, including classicalh- andp-refinements analogues,

and to develop a new “k-refinement” procedure that increases the smoothness almost everywhere

of element functions beyond the standardC0-continuity of finite elements and exhibits improved

accuracy and efficiency compared with classicalp-refinement. The references [18, 52] provide a

comprehensive introduction to the main ideas and procedures, and computational verification of

its veracity and potential. In particular, optimal inh convergence rates with respect to the poly-

nomial order were attained for linear elasticity examples and convergence to thin shell solutions

was observed. Thek-refinement strategy was shown to converge to monotone solutions for linear
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advection-diffusion examples with sharp internal and boundary layers. Further study of isogeomet-

ric analysis showed that results superior to standard finiteelements are obtained in the context of

structural vibrations.

In a sense, isogeometric analysis is a superset of FEA. Standardh- andp-methods can be

reproduced, but isogeometric analysis includes directions and possibilities not available in standard

FEA. Some of these have been explored in [18, 52] and many others identified. At the same time,

isogeometric analysis has many features in common with FEA,in particular, it invokes the isopara-

metric concept in which dependent variables and the geometry share the same basis functions. We

note that, despite the geometry being fixed at the coarsest level of discretization, the mesh, and the

corresponding basis, can be refined and order-elevated while maintaining the original exact geome-

try. The isoparametric concept possesses important properties relevant to the analysis of structures

(see [44, 52]) and the Lagrangian description of continuousmedia for which the geometry and mesh

need to be updated by the displacement field.

The above developments create an opportunity for a successful application of the isogeo-

metric methodology to computational fluid dynamics, in particular, turbulent flows (the pioneering

studies of boundary layer turbulence [62, 63, 65, 89] shouldbe mentioned in this regard), and fluid-

structure interaction (FSI), which are primary goals of this dissertation. Both areas present a great

challenge to the Computational Mechanics community at large, and are of great interest to Sandia

National Laboratories and the Office of Naval Research, whomare primary sponsors of this work.

1.1.2 Turbulence Modeling and Simulation

Classically, and to this day, turbulence modeling and simulation is classified, according to the com-

putational effort involved, into RANS (Reynolds-AveragedNavier-Stokes), LES (Large-Eddy Sim-

ulation), and DNS (Direct Numerical Simulation), RANS being the least expensive and DNS being

the most costly. In RANS only the very large scales of the flow are retained in the computations

and most of the time steady solutions are sought. Because of its inexpensive nature RANS is the

most popular technology when it comes to large-scale industrial computations. The major draw-

back of RANS is the fact that it heavily relies on models whichare “tuned” for very specific flow

conditions and geometrical configurations. This casts a shadow of doubt on predictive capabilities

of RANS technology. For a good comprehensive review of RANS turbulence modeling see Wilcox

[113]. DNS, as can be inferred from its name, resolves the flowall the way down to the Kol-

mogorov scales, the smallest eddies present in the flow (see Pope [80] for details and definitions).

The following estimate is widely used in computational fluiddynamics

N ≈ Re9/4, (1.1)
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whereN is the number of points neccessary to fully resolve a turbulent flow in a 3-dimensional cube

in the absence of boundary layers.Re appearing in (1.1) is the Reynolds number of the flow, which

is typically several thousand or several million for a variety of industrial applications. It is precisely

relation (1.1) that makes DNS prohibitively expensive to apply to flows of industrial interest.

While RANS and DNS are on the opposite ends of the spectrum in terms of the computa-

tional expense, LES falls somewhere in between the two extremes. Kolmogorov theory of cascade

(see Pope [80]) postulates the existence of the so-calledinertial sub-range. Inertial sub-range refers

to the set of scales in the flow which are smaller than the ones directly affected by geometry, bound-

ary conditions, and forcing (here assumed to be confined to the lowest wave numbers) yet larger

than the ones dominated by the viscosity. It is believed thatscales in the inertial subrange behave

in a universal fashion and, on average, transfer energy fromlarge or energy carrying, to small or

viscous scales by means of a nonlinear mechanism which is reflected in the structure of the incom-

pressible Navier-Stokes equations (INS). LES places a “cut-off” somewhere in the inertial subrange

and aims to represent the energy carrying scales and approximate the effect of the smaller scales on

them. Universality of the scales in the inertial sub-range greatly simplifies the modeling task. The

above mentioned characteristics render LES more accurate than RANS and much less expensive

than DNS.

As a starting point of the classical LES developments a notion of a spatial filter, possess-

ing the properties of homogeneity and symmetry (see the ground breaking paper of Leonard [67]),

is introduced. This filter induces the separation of large and small spatial scales in the flow field.

Application of this filter to the INS supplemented with a closure model for the resultant “sub-grid”

stress (the main difficulty in LES modeling) yields a system of LES equations, now written in terms

of the filtered quantities. A variety of closures exist, the most popular ones (for example Smagorin-

sky type models, see [91], [34]) make use ofad hocnonlinear viscosities to represent the sub-grid

stress. LES equations are then approximated numerically with the grid size capable of representing

scales in the inertial sub-range. LES is successfully applied to a variety of important turbulent flows,

yet the structure of the methods and models often requires explicit application of the so-called test

filters and the presence of the homogeneous directions in theflow. This renders classical LES pro-

cedures cumbersome to properly extend to complex geometrical configurations. On the theoretical

side, very little justification is given to the exact form of the model terms. From the standpoint of

numerical analysis, addition ofad hocnonlinear viscosities upsets the consistency of the method

rendering higher-order approaches useless, as the consistency error will always dominate the ap-

proximation error.

In order to circumvent serious drawbacks of the classical LES framework, Hughes, Mazzei

and Jansen [48] proposed the variational multiscale method(VMM or VMS), in which a concept

of filtering was abandoned in favor of the a-priori scale separation via variational projections, and
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models based on eddy viscosities were included in the small-scale equations only, while consistency

was preserved in the large-scale equations. The static eddyviscosity based on the Smagorinsky

model version of the VMM was studied in Hugheset al. [49], Hughes, Oberai, and Mazzei [50],

and Oberai and Hughes [75]. The model was found to work very well for homogeneous isotropic

flows and fully developed, equilibrium and non-equilibrium, turbulent channel flows. The dynamic

version of the VMM based on the Germano procedure [34] was tested in Holmenet al. [42] and

Hughes, Wells and Wray [55]. Results superior to the static model were reported. Of note are a

series of works by Ramakrishnan and Collis [81–84] who explored VMS in the context of a DG

formulation of compressible flow as well as that of Farhat andKoobus [24], and Koobus and Farhat

[61], who obtained good results with the unstructured grid finite volume compressible flow code.

While theoretically more sound, the original version of theVMM was found lacking in prac-

tical aspects. At least two scales are necessary in the discretization, which can be achieved through

discrete projection (see Calo [14], Farhat and Koobus [24])or hierarchical bases (see Ramakrishnan

and Collis [84], Jansen and Tejada-Martinez [57].) This technology, while easily implementable

in the case of spectral discretizations and structured meshes, is not readily available in a lot of the

unstructured grid codes. Employing an eddy viscosity in thesmall scales is also viewed as an in-

efficient mechanism, as the small scales, represented in thecomputation, are being “sacrificed” to

retain full consistency of the large scales. For the case of the spectral discretization in 3D, with a

cut-off placed at the half of the wave-number space, consistency is retained only on 12.5% of the

modes, which is strikingly small. One can hardly call such a method consistent.

Recently Calo [14] and Hughes, Calo, and Scovazzi [51] proposed the variationally consis-

tent residual-based turbulence modeling approach, in which all the scales are accounted for consis-

tently and the use of eddy viscosities is avoided completely. All resolved scales are viewed as large

scales, hence the efficiency issue is obviated from the outset. The philosophy of this new method

is to try and solve for the fine scales, which reside in an infinite dimensional space, analytically,

and include their effect in the coarse scale system, which isfinite dimensional. Obtaining exact

expressions for the fine scale variables is just as daunting as solving the original Navier-Stokes sys-

tem, hence various approximations are necessary in order tomake the method practical. Note that

the coarse scale equations are exact, so the only “modeling”component of the present approach

is the analytical approximation of the fine scales. Preliminary evidence of the success of the new

method were reported in Calo [14]. This approach is pursued further in this work. A parallel, tran-

sient, three-dimensional isogeometric flow solver was written for the purposes of validating the new

approach.
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1.1.3 Fluid-Structure Interaction

A big part of this dissertation is the development of an isogeometric fluid-structure interaction pro-

cedures with particular emphasis on arterial modeling and blood flow, which is an area of research

currently receiving considerable attention. It is believed that the ability of NURBS to accurately rep-

resent smooth exact geometries, that are natural for arterial systems, but unattainable in the faceted

finite-element representation, and the high order of approximation of NURBS (shown in this thesis),

should render fluid and structural computations more physiologically realistic.

Initial attempts to simulate blood flow in arteries made use of simplified geometries. This

approach had limited applicability because of its inability to represent complex flow phenomena oc-

curring in real blood vessels. The concept of patient-specific cardiovascular modeling was first es-

tablished in [97], where real-life geometries were used to simulate blood flow. This opened the door

for designing predictive tools for vascular modeling and treatment planning. Dramatic improve-

ments in the computational results were observed in [97], yet the blood vessel wall was treated as

being rigid. As was shown earlier, for example with the flexible and rigid wall computations [105–

108], the rigid wall assumption precludes pressure wave propagation and overestimates wall shear

stress. There exists a variety of methods to include the effect of the moving wall in computations,

the most prevalent being the arbitrary Lagrangian-Eulerian (ALE) approach. For a general discus-

sion of ALE, the reader is referred to [20, 22, 23, 46, 66] and references therein. Applications of

ALE to hemodynamics are discussed in [26, 30, 33, 74] and references therein. Some of the other

techniques include the coupled momentum method [28], the immersed finite element method [116],

and the space-time finite element method [99, 100, 102]. Thiswork adopts the ALE framework.

The arterial wall is treated as a nonlinear elastic solid in the Lagrangian description governed by

the equations of elastodynamics. Blood is assumed to be a Newtonian viscous fluid governed by

the incompressible Navier-Stokes equations written in theALE form. The fluid velocity is set equal

to the velocity of the solid at the fluid-solid interface. Thecoupled FSI problem is written in the

variational form such that the stress compatibility condition at the fluid-solid interface is enforced

weakly. The ALE equations require the specification of the fluid region motion. This motion is

found by solving an auxiliary static linear-elastic boundary-value problem for which the fluid-solid

boundary displacement acts as a Dirichlet boundary condition (see, e.g., [58]).

Fluid-structure coupling has been a topic of discussion in the literature on the subject. In

this work, monolithic discretization is employed, meaningthat there is one mesh, which embodies

both the fluid and the structure. Also, a monolithic solutionapproach is adopted, namely fluid and

solid solution increments are solved for simultaneously. The effect of the mesh motion on the fluid

equations is accounted for in the jacobian matrix by means ofdiscrete shape derivatives. The latter

require derivation, which is one of the contributions of this thesis. As a result, a lot of the coupling

issues are obviated from the outset, rendering the method robust.
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1.2 Dissertation Outline and Discussion of Major Developments

Chapter 2 of this dissertation gives and overview of the NURBS-based isogeometric analysis frame-

work. We introduce B-spline polynomials and NURBS, focusing only on issues necessary for sub-

sequent developments. For background, the interested reader may consult standard references, such

as Rogers [85], Piegl and Tiller [79], and Farin [25]. Basic definitions are given, and construction

of solution spaces, refinement algorithms, and geometricalmodeling approaches are discussed.

Chapter 3 of this thesis is devoted to the mathematical studyof isogeometric analysis with NURBS

as a basis. We focus onh-refinement. The geometry of the mapping between ad-cube in the para-

metric space (d is the number of space dimensions) and its image in physical space requires the

introduction of concepts and spaces not utilized in standard FEA. The reason for this is that when

the continuity of the interpolant is sufficiently high, one cannot stay in a single element and invoke

a standard Bramble-Hilbert estimate. A notion of “support extension” is necessitated, but produces

the following complication: If a functionu is assumed to be of classHm in the support extension in

the physical domain, its pull-back by the geometrical mapping is no longer anHm-function in the

support extension in the parametric domain. Rather, it is ofclassHm on the supports of individual

elements comprising the support extension in the parametric domain, but with reduced regularity

across the internal element boundaries. This new non-standard space is a Hilbert space, and its

approximation properties are key to our developments. It may be thought of as intermediate in con-

tinuity between standard Sobolev spaces and the “broken” Sobolev spaces utilized in the analysis

of Discontinuous Galerkin Methods [3, 78]. For this reason we refer to these new spaces as “bent”

Sobolev spaces.

We establish approximation properties of NURBS within so-called “patches” that is,d-

cubes in the parametric domain and their images in physical space under the geometric mapping.

The union of patches in physical space comprises the geometry. First, a new Bramble-Hilbert

lemma is established that utilizes the concept of support extension developed here and expresses

how functions in bent Sobolev spaces, involving the regularity constraints of B-spline spaces, are

approximated by B-splines. This result enables us to overcome the difficulties previously men-

tioned, and we feel it may be of interest in its own right. NURBS are projective transformations

of B-splines (Farin [25]) and their approximation properties are established with the aid of the new

Bramble-Hilbert lemma. These results depend crucially on the specific structure of NURBS basis

functions engendered by the projective transformation. The approximation results are generalized to

include strongly imposed Dirichlet boundary data. In Section 4, we establish inverse inequalities for

NURBS. These are required, for example, in the convergence analysis of stabilized methods. Our

results in are developed for a single patch, however, they may be generalized in a straightforward
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way to geometries composed of multiple patches by standard techniques.

We apply the new approximation results obtained to obtain error estimates for problems

of interest. We begin with linear elasticity theory. This isa standard symmetric, positive-definite,

elliptic problem for which a minimum principle exists and optimal error estimates follow directly

from the approximation results. Next we consider stabilized formulations of incompressible and

almost incompressible isotropic elasticity. Here, in order to obtain stability and error estimates, we

require both the new approximation result and inverse estimates for NURBS. As is usual for sta-

bilized methods, these results pertain to a wide variety of displacement and pressure interpolatory

combinations. We follow these developments with the more technically challenging case of inf-sup

(i.e., Babuška-Brezzi, or BB) stable Galerkin methods. Wefocus on the case ofC0-continuous

interpolations across element boundaries and, in particular, on the case of the displacement field

one order higher than the pressure. (When we speak of “order”of a NURBS basis, we are thinking

of the polynomial order of their B-spline progenitors.) This case is somewhat analogous to known

BB-stable finite elements (see, e.g, Brezzi-Fortin [11]). However, geometric aspects of NURBS

and isogeometric analysis provide new analytical challenges. In isogeometric analysis, the exact

geometry is fixed patch-wise by the coarsest mesh and maintained, along with its parameteriza-

tion, throughouth-refinement. This is a distinguishing feature of isogeometric analysis and one not

shared by FEA. To facilitate analysis, the notion of a “vertex mesh” is introduced, which may be

thought of as a coarsening of the “control net” or “control mesh” of NURBS theory. NURBS are not

interpolatory and so the coefficients of basis functions (i.e, “control points,” or “generalized coordi-

nates”) in the geometrical mapping do not lie on the geometryand thus do not have a direct physical

interpretation. The control net is the piece-wise multilinear interpolant of the control points. In

three dimensions it is a mesh of trilinear hexahedral elements. At the coarsest level of discretization

it is often quite distinct from the exact geometry. However,as the mesh ish-refined, the control

mesh converges to the physical mesh. (In a sense, use of low-order finite elements may be viewed

as performing analysis on a particular control mesh rather than an actual geometry.) The theoretical

analysis of mixed Galerkin methods for the incompressible problem presented herein utilizes the

concept of the vertex mesh. We are able to prove inf-sup stability and establish quasi-optimal error

estimates by employing the approximation results for NURBS. In our final application, we consider

stabilized methods for scalar advection-diffusion. Utilizing standard arguments, along with the new

approximation results and inverse estimates, we establishstability and error estimates analogous to

those for finite elements.

We present several numerical calculations to test the mathematical results. In all cases that

fall within the hypotheses of the mathematical results, thecomputed error estimates were found to

be consistent with theory. We also tested some cases that do not satisfy our hypotheses. For exam-

ple, in the analysis of a linear elastic boundary-value problem for a plate with a circular hole, the
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geometrical mapping utilized is singular at one corner point of the domain. (This was a choice, not a

necessity.) Consequently, the hypotheses of our theory arenot satisfied. Nevertheless, optimal rates

of convergence were still obtained. In other examples, concerning incompressible elastic analysis

by the mixed Galerkin method, we tested displacement-pressure combinations that were smoother

thanC0 across element boundaries. Recall, our mathematical results for the BB-stable theory are

only applicable in theC0 case. In particular, we tested cubic displacements combined with quadratic

pressure, but bothC1-continuous across element interfaces. In the examples presented, and some

others not shown, we found this combination to be stable and optimally convergent. We conjec-

ture that for additional smoothness, beyondC0, across element interfaces, elements of this type,

with displacements one order higher than pressure, are mathematically stable and optimally con-

vergent. We did not investigate pressures that are discontinuous across element boundaries, but,

inspired by the spectral element work of Maday, Patera, and Ronquist [69], and others, we conjec-

ture that for pressure two orders lower than displacements,error estimates suboptimal by one order

can be proven. We did study stabilized methods and mixed Galerkin methods on the driven cavity

Stokes flow problem. (The equations of Stokes flow are form-identical to the equations of isotropic

incompressible elasticity.) The solution of the driven cavity possesses pressure singularities and

represents a stringent stability test. All stabilized methods, and mixed Galerkin methods with dis-

placement (i.e., velocity in this case) one order higher than pressure, proved stable. On the other

hand, equal-order interpolations for mixed Galerkin methods were manifestly unstable. Finally,

we numerically verified error estimates for Stabilized Methods for an advection-diffusion problem

with a boundary layer. By excising the boundary layer domain, we demonstrated optimal “interior

estimates” for unresolved cases.

The above developments render NURBS-based isogeometric analysis a bona-fide computa-

tional technology.

Chapter 4 of this dissertation focuses on further developing the variationally consistent residual-

based turbulence modeling approach, proposed by Calo [14] and Hughes, Calo, and Scovazzi [51],

and integrating it with isogeometric analysis. We review the concept of the small-scale Green’s

function, introduced in Hughes and Sangalli [54]. The small-scale Green’s function is a fundamen-

tal object in the design and analysis of variational multiscale methods.

We make use of the small-scale Green’s function to develop the theoretical formulation

of the resiual-based turbulence model. It is the philosophyof this document that incompressible

Navier-Stokes equation system, with the associated initial and boundary conditions, adequately

describes turbulence phenomena. Thus, the goal of turbulence modeling is to accurately approx-

imate solutions to INS. Following the approach of Calo [14] and Hughes and Sangalli [54], we

represent the solution space, comprised of velocity and pressure, as the sum decomposition of a
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finite-dimensional space of functions, coming from the discretization, and its infinite-dimensional

compliment in the full space. We then derive the form of the multiscale model for the incompress-

ible Navier-Stokes equations, which explicitly depends onthe small-scale Green’s operator for both

the velocity and pressure. Assuming the localization property of the small-scale Green’s function

we propose local algebraic models for small-scale velocityand pressure by making use of the large

body of experince in stabilized methods theory.

The new formulation is tested on a fully-developed turbulent channel flow at Reynolds num-

berReτ = 395 based on friction velocity. This is a standard benchmark test case in the turbulence

literature (see, e.g., [72]). As analytical results are notavailable for this test case, it is customary to

verify the computations against DNS, a high-fidelity simulation, which resolves all spatial and tem-

poral scales of the problem. In the computations we used firstorder NURBS, which are identical

to C0-continuous tri-linear hexahedral finite elements, and employed k-refinement to obtain dis-

cretizations of orderp = 2 andp = 3, maintaining the continuity of the basis functions at theCp−1

level. For low order NURBS results of the simulations are competitive with, and even superior to the

state-of-the-art eddy-viscosity based approaches popular in the LES community. Dramatic increase

in accuracy is observed when going from aC0-continuous linear to aC1-continuous quadratic dis-

cretizaton. Results are further improved forC2-contionous cubics. High-order, high-continuity

NURBS results also appear to be competitive with spectral discretizations, which are considered

optimal for computing turbulent flows, albeit on very simplegeometries. On the basis of these ob-

servations one may conclude that the geometric flexibility of NURBS, combined with their high

order of approximation, may potentially make them an ideal tool for simulating turbulent flows in

complex geometric configurations of industrual interest. As a step in this direction, we also present

a computation involving a fully developed three-dimensional turbulent flow over an Eppller 387

wing section at Reynolds numberRe = 100, 000 based on the cord length, andα = 2◦ angle of

attack. Computations of this kind are of interest in the areaof hydroacoustics for the purposes of

predicting turbulence-induced noise (see, e.g., [76, 77]). Turbulent and laminar regions co-exist in

this flow. As a result, a good turbulence model needs to automatically adjust in different parts of

the domain to reflect various flow regimes. Our computationalresults compare very well with the

experimental findings.

Chapter 5 of this thesis focuses on the fluid-structure interaction problem. A NURBS-based isogeo-

metric fluid-structure interaction formulation, couplingincompressible fluids with nonlinear elastic

solids, and allowing for large structural displacements, is developed. This methodology, encompass-

ing a very general class of applications, is applied to problems of arterial blood flow modeling and

simulation. We formulate the FSI problem mathematically atthe continuous level, give the discrete

formulation, and show the details of the time integration algorithm. Linearization of the discrete
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FSI system is discussed in detail. A methodology for deriving shape derivatives is presented, which

is one of the main contributions of this thesis. Shape derivatives are tangent operators (tangent

matrices in finite dimensions) that reflect changes in the equations of motion with respect to the

perturbations of the spatial domain. They are necessary fora consistent linearization of the discrete

FSI equations, and, as a consequence, the development of robust fully-coupled solution algorithms.

The difficulty in deriving these tangent operators lies in the fact that the fluid integrals of the vari-

ational fomulation are taken over a spatial configuration that directly depends on the displacement

of the fluid domain. To circumevnt this difficulty, we change variables and work on the reference

element, which allows us to pass the derivatives inside the integral operators. Using identities that

are standard in nonlinear continuum mechanics, we arrive atthe shape derivative matrices that are

form-identical to other tangent matrices in nonlinear finite element and isogeometric analysis, and

whose implementation is straightforward.

We test the new formulation on two benchmark problems, and present an application in-

volving flow in a patient-specific abdominal aorta. Our results compare well with the reference

computations of other researchers.
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Chapter 2

Isogeometric Analysis Framework and

Construction of Analysis-Suitable

Geometries

2.1 A brief review of isogeometric analysis employing NURBS

This section gives a very brief overview of isogeometric analysis based on NURBS. A more detailed

description of the isogeometric approach may be found in [18, 52]. For an introductory text on

NURBS, see Rogers [85], while a more detailed treatment is given in the book of Piegl and Tiller

[79]. Mathematical theory of isogeometric analysis forh-refined meshes may be found in the recent

work of Bazilevset al. [6].

2.1.1 One-dimensional B-splines

A B-spline basis is comprised of piece-wise polynomials joined with prescribed continuity. In order

to define a B-spline basis of polynomial orderp in one dimension one needs the notion of aknot

vector. A knot vector in one dimension is a set of coordinates in the parametric space, written as

Ξ = {ξ1, ξ2, ..., ξn+p+1}, wherei is the knot index,i = 1, 2, ..., n+p+1, ξi ∈ [0, 1] is theith knot,

andn is the total number of basis functions. A knot vector is said to beopenif its first and last knots

are repeatedp + 1 times. Basis functions formed from an open knot vector are interpolatory at the

end points of the parametric interval, but they are not, in general, interpolatory at the interior knots.

Given Ξ and p, B-spline basis functions are defined recursively startingwith piecewise
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constants(p = 0) :

Bi,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(2.1)

Forp = 1, 2, 3, ..., they are defined by

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ). (2.2)

Basis functions of orderp havep − 1 continuous derivatives at knots. If a knot is repeated

k times, then the number of continuous derivatives decreasesby k. When the multiplicity of a knot

is exactlyp, the basis function is interpolatory. Basis functions form apartition of unity, each one

is compactly supported on the interval[ξi, ξi+p+1], and they are point-wise non-negative. These

properties are important and make these functions attractive for use in analysis.

2.1.2 Multi-dimensional B-splines and geometrical objects

Let α be a positive integer such that1 ≤ α ≤ d, whered is the number of space dimensions. Given

α knot vectorsΞγ,pγ , γ = 1, . . . , α, multi-dimensional B-splines are constructed by taking tensor

products of their one-dimensional counterparts:

Bi1,...,iα(ξ1, . . . , ξα) = ⊗α
γ=1Biγ ,pγ(ξγ). (2.3)

B-spline functions are defined on a parametric domain(0, 1)α, andpγ is the polynomial order in the

parametric directionγ.

Objects of B-spline geometry can be most generally characterized as unions ofpatchesin

R
d. A patch is an image under a mapping of the parametric interval (0, 1)α, expressed as a linear

combination of spline basis functions (2.3) and points inR
d, that is,

Ω = {F(ξ) | ξ ∈ (0, 1)α}, (2.4)

F(ξ) =
∑

i∈I

CiBi(ξ),

whereI is the index set

I = {i = (i1, . . . , iα) ∈ N
α | 1 ≤ iγ ≤ nγ + pγ + 1}, (2.5)

Ω represents an object and theC’s are the so-calledcontrol points. Various geometrical objects

may be obtained by varyingα, namely: the case ofα = 1 corresponds to aB-spline curve, α = 2
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generates aB-spline surface, and aB-spline solidis obtained by settingα = 3. A piece-wise

linear interpolation of the control points for curves, and apiece-wise multi-linear interpolation of

the control points for surfaces and solids is called acontrol mesh.

2.1.3 NURBS functions and geometry

The geometric framework based on B-splines is limited in that basic elements of engineering de-

sign, such as exact circles, ellipses, and other conic sections cannot be obtained by using B-spline

functions alone. NURBS were devised to overcome this shortcoming. NURBS geometrical objects

in R
d are preciselyprojective transformationsof B-spline geometrical objects inRd+1 (see Farin

[25]), that is,

Ω = {F(ξ) | ξ ∈ (0, 1)α},
F(ξ) = P(

∑

i∈I

{Ĉi, wi}Bi(ξ)) =

∑

i∈I

(
Ĉi

wi
)(

wiBi(ξ)
∑

j∈I wjBj(ξ)
) =

∑

i∈I

Ci
wiBi(ξ)

w(ξ)
=
∑

i∈I

CiRi(ξ). (2.6)

In the aboveĈi,Ci are inR
d, wi ∈ R, strictly positive, is theweight, andw(ξ) =

∑

i∈I wiBi(ξ)

is theweighting function. The weighting function is defined on the geometry and stays unchanged

throughout the refinement process. The last line of (2.6) defines NURBS basis functions{Ri}i∈I :

Ri(ξ) =
wiBi(ξ)

w(ξ)
. (2.7)

It is important to note that while a B-spline basis depends only on the structure of the knot vec-

tor, construction of a NURBS basis requires information about the geometry. Multi-dimensional

NURBS basis functions are no longer tensor products of one-dimensional entities, in contrast with

B-splines. Properties such as partition of unity, positivity, and compact support are retained for

NURBS bases. Continuity of NURBS functions is also the same as that of B-splines.

Examples of a B-spline curve, a toriodal NURBS surface, and the corresponding control

meshes are given in Figure 2.1.
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Figure 2.1: (a) B-spline, piecewise quadratic curve inR
2. Control point locations are denoted by

•’s. (b) Toroidal NURBS surface. (c) Control net for toroidalsurface.
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2.1.4 Analysis framework based on NURBS

Isogeometric analysis framework consists of the followingitems and features:

1. A physical domain consists of a union of patches, each defined as an image of the parametric

space as

Ω = {F(ξ) | ξ ∈ (0, 1)α} (2.8)

2. A mesh for a NURBS patch is defined by the union of NURBS elements, denoted byK, each

one being an image under a NURBS map of a knot span in the parametric space

K = {F(ξ) | ξ ∈ Q = ⊗α
γ=1(ξiγ ,γ , ξiγ+miγ ,γ)}. (2.9)

wheremiγ is the multiplicity of knotξiγ ,γ .

3. The basis for the solution space in the physical domain is defined through a composite map-

ping as follows:

Ni = Ri ◦F−1, i ∈ I. (2.10)

This definition gives the isoparametric construction [44],that is, the fields in question (e.g.,

displacement, velocity, temperature, etc.) are represented in terms of the same basis functions

as the geometry. Coefficients of the basis functions, orcontrol variables, are the degrees-

of-freedom of the discrete system. The isoparametric approach is most convenient for appli-

cations involving Lagrangian and ALE descriptions of continuous media where geometry is

constantly updated as the physical system evolves in time.

4. Boundaries of NURBS geometrical objects are themselves lower dimensions NURBS objects

(e.g., a NURBS solid is bounded by NURBS surfaces, which, in turn, are bounded by NURBS

curves). As a result, the easiest way to set Dirichlet boundary conditions on a patch face is to

constrain control variables that correspond to that face. Interpolation or projection needs to be

employed in cases when the prescribed function is not in the discrete space. This amounts to

“strong” satisfaction of the boundary conditions. An alternative formulation of Dirichlet con-

ditions can be based on “weak” satisfaction, a standard feature of the discontinuous Galerkin

method. Neumann boundary conditions are satisfied as in the standard finite element method.

5. Mesh refinement strategies are developed from a combination of knot insertionandorder el-

evationtechniques. These enable analogues of classicalh-refinement andp-refinement meth-

ods, and the new possibility ofk-refinement.
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h-refinement: Knot insertion

The analogue ofh-refinement isknot insertion. Knots may be inserted without changing a curve

geometrically or parametrically. Given a knot vectorΞ = {ξ1, ξ2, ..., ξn+p+1}, let ξ̄ ∈ [ξk, ξk+1[

be a desired new knot. The newn + 1 basis functions are formed recursively, using (2.1) and (2.2),

with the new knot vectorΞ = {ξ1, ξ2, ..., ξk, ξ̄, ξk+1, ..., ξn+p+1}. The newn + 1 control points,

{C̄1, C̄2, ..., C̄n+1}, are formed from the original control points,{C1,C2, ...,Cn}, by

C̄i = αiCi + (1 − αi)Ci−1 (2.11)

where

αi =











1 1 ≤ i ≤ k − p,
ξ̄−ξi

ξi+p−ξi
k − p + 1 ≤ i ≤ k,

0 k + 1 ≤ i ≤ n + p + 2

(2.12)

Knot values already present in the knot vector may be repeated as above but as described

earlier, the continuity of the basis will be reduced. Continuity of the curve is preserved by choosing

the control points as in (2.11) and (2.12). Each unique internal knot value may appear no more than

p times or the curve becomes discontinuous.

An example of knot insertion is presented in Figure 2.2. The original curve consists of

quadratic B-splines. The knot vector isΞ = {0, 0, 0, 1, 1, 1}. The curve is shown on the left with

basis functions below. A new knot is inserted atξ̄ = 0.5. The new curve, shown on the right, is

geometrically and parametrically identical to the original curve, but the basis functions, below the

curve, and control points are changed. There is one more of each. This process may be repeated to

enrich the solution space by adding more basis functions of the same order while leaving the curve

unchanged. This subdivision strategy is seen to be analogous to the classicalh-refinement strategy

in finite element analysis.

Remark 2.1.1. An h-refinement procedure was described for NURBS curves. NURBS surfaces and

solids are h-refined by inserting knots into each parametricdirection sequentially. The same holds

for p- and k-refinements, as described below.

p-refinement: Order elevation

The polynomial order of basis functions may be increased without changing the geometry or pa-

rameterization. It is important to note that each unique knot value inΞ must be repeated to preserve

discontinuities in thepth derivative of the curve being elevated. The number of new control points

depends on the multiplicities of existing knots. This strategy of order elevationis an analogue of

p-refinement in finite element analysis.
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Original curve,Ξ = {0, 0, 0, 1, 1, 1} Refined curve,Ξ = {0, 0, 0, .5, 1, 1, 1}
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Figure 2.2: Knot insertion. Control points are denoted by•’s.

As is the case ofh-refinement by way of knot insertion, the solution space spanned by the

order elevated basis functions contains the space spanned by the original functions. Thus, it is

possible to order elevate without changing the geometry of the B-spline curve. Less obviously, it

can be done so as to leave the parameterization of the curve intact. The process for doing this

involves subdividing the curve into many Bézier curves by knot insertion (see [85] or [79] for a

discussion of Bézier curves), order elevating each of these individual segments, and then removing

the unnecessary knots to combine the segments into one, order-elevated, B-spline curve. Several

efficient algorithms exist which combine the steps so as to minimize the computational cost of the

process.

An example of order elevation is depicted in Figure 2.3. The original curve and quadratic

basis functions, shown on the left, are the same as considered in the previous example. This time the

multiplicity of the knots is increased by one. The numbers ofcontrol points and basis functions each

increase by one. The locations of the control points change,but the elevated curve is geometrically

and parametrically identical to the original curve. There are now four cubic basis functions. The

locations of control points for this elevated curve are different than those in the previous example
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Original curve,Ξ = {0, 0, 0, 1, 1, 1} Refined curve,Ξ = {0, 0, 0, 0, 1, 1, 1, 1}
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Figure 2.3: Order elevation. Control points are denoted by•’s.

(cf. Fig. 2.2).

k-refinement

An alternative order elevation strategy takes advantage ofthe fact that the processes of knot insertion

and order elevation do not commute. If a unique knot value,ξ̄, is inserted between two distinct knots

in a curve of orderp, the number of continuous derivatives of the basis functions at ξ̄ is p − 1. As

described above, if we subsequently elevate the order toq, the multiplicity of every distinct knot

value (including the knot just inserted) is increased so that discontinuities in thepth derivative of

the basis are preserved, that is, the basis still hasp − 1 continuous derivatives at̄ξ. If instead we

elevated the order of the original curve toq and only then inserted a unique knot value, the basis

would haveq − 1 continuous derivatives at̄ξ. This latter procedure is referred to ask-refinement. It

has no analogue in standard finite element analysis.

It is believed the concept ofk-refinement is important and potentially a superior approach

to high-precision analysis thanp-refinement. Simple linear advection-diffusion calculations as well

as some turbulent flow results, presented later in this this document, indicate that this may be the
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case. Another advantage ofk-refinement is that the increase in the number of degrees of freedom

from one refinement to the next is substantially smaller thanin the case ofp-refinement. It can be

shown that in one dimension starting withn basis functions and performingr refinements gives

O(n(r + 1)) degrees of freedom in the case ofp-refinement, andO(n + r) degrees of freedom for

the k, which is quite a big difference. Keep in mind, too, that ind dimensions these numbers are

raised to thed power. Of course, if the physical situation dictates a certain lower level of continuity

at a knot value (e.g., the corners in the geometry, discontinuous material properties, etc.) this can

always be incorporated into the process by knot duplication, so no generality is lost.
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Figure 2.4:k-refinement takes advantage of the fact that knot insertion and order elevation do not
commute. (a) Base case of one linear element. (b) Classicp-refinement approach: knot insertion
followed by order elevation results in seven piecewise quadratic basis functions that areC0 at inter-
nal knots. c) Newk-refinement approach: order elevation followed by knot insertion results in five
piecewise quadratic basis functions that areC1 at internal knots.
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2.2 Construction of Analysis-Suitable Vascular Models

A large part of this work is fluid-structure iteraction analysis of vascular flows using patient-specific

geometrical configurations. In order to carry out these simulations, one needs to construct analysis-

suitable geometrical models from medical imaging data. In Zhanget al. [] we have devised a set of

procedures which accomplish this task. The summary of thesedevelopments is given in this section.

Construction of patient-specific models for isogeometric analysis is a process involving four

stages, described below.

1. In scanned Computed Tomography (CT), or Magnetic Resonance Imaging (MRI), of patient-

specific data, intensity contrast may not be sufficiently sharp, images are often “noisy”, and

the luminal surface is frequently blurred. As a result, preprocessing of of the CT/MRI data

is necessary to improve its quality. Techniques such as contrast enhancement [115], filtering

[5], classification [104], and segmentation [114] are employed for this purpose.

2. The blood vessel surface model can then be constructed from preprocessed imaging data us-

ing isocontouring methods. The two main isocontouring methods, that make use of imaging

data, are: primal contouring or marching cubes [68], and dual contouring [60]. The latter is

chosen in this work for isosurface extraction, as it tends togenerate control meshes possess-

ing better aspect ratios. In some cases geometric editing isrequired to remove unnecessary

components and features. Once the luminal surface is identified, skeletonization technique

[35] is employed in order to find paths.

3. We have developed a skeleton-based sweeping method to construct hexahedral NURBS con-

trol meshes for blood vessels [117]. The template faceted control polygon of a circle, pro-

jected onto the true surface, is swept along the arterial path to create a quadrilateral surface

control mesh for a given arterial branch. Arterial branchesare also arranged in a hierar-

chy, ranging from the largest to the smallest. Different cross-section templates are applied

to different branches in the hierarchy. Templates for various branch intersections, such as

bifurcations and trifurcations, are also worked out and applied on a case-by-case basis. See

[117] for details.

4. Finally, solid NURBS meshes are constructed by filling in the volumes radially from the

outer surface inward. Arterial wall meshes are obtained by extending the outer surface in the

normal direction by a user-prescribed amount.

Stages 3 and 4 of the process are demonstrated on a simple example in Figure 2.5. A more

complicated example of a patient-specific abdominal aorta is shown in Figure 2.6, where all four
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stages of the model generation process, as well as the analysis result using techniques of Chapter 5

of this thesis are depicted.

Figure 2.5: Stages 3 and 4 of the patient-specific cardiovascular model construction for isogeomet-
ric analysis. Left: depiction of a cross-section surface template. Cross-section surface is bounded
by a closed quadratic NURBS curve defined in terms of the control polygon consisting of 16 points.
Middle: arterial path identified by skeletonization. Right: solid NURBS geometry, ready for refine-
ment and analysis.
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Figure 2.6: The abdominal aorta model is divided into 26 patches, and each color represents one
different patch. (a) - volume rendering result; (b) - isocontouring result; (c) - surface model and
its path after removing unnecessary components; (d) - control mesh; (e) - solid NURBS mesh after
refinement (73,314 elements); (f) - fluid-structure interaction simulation results: contours of the
arterial wall velocity (cm/s) during late cystole plotted on the current configuration. Only major
branches are kept in (d-f).
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Chapter 3

Isogeometric Analysis: Approximation,

stability and error estimates for

h-refined meshes

3.1 Preliminaries

In what follows, letd ≥ 2 be the dimension of the physical domain of interest. Throughout the

analysis, we will make use of the classical Lebesgue spacesLp(Ω), endowed with the norm‖ ·
‖Lp(Ω), whereΩ ⊂ R

d is a generic open domain, and1 ≤ p ≤ ∞. We also will need the Sobolev

spacesW k,p(Ω), for k a positive integer and1 ≤ p ≤ ∞, endowed with the usual norm‖ · ‖W k,p(Ω)

and seminorm| · |W k,p(Ω), see [1] for details. For the Hilbert spacesW k,2(Ω) we will switch to

the notationHk(Ω), and, accordingly,‖ · ‖Hk(Ω) and | · |Hk(Ω) will be used for their norms and

seminorms, respectively. We setH0(Ω) := L2(Ω), and

‖ · ‖H0(Ω) ≡ | · |H0(Ω) := ‖ · ‖L2(Ω).

The spaces of continuous functions onΩ with kth-order continuous derivatives will be de-

noted byCk(Ω).

The rest of this section will be devoted to the introduction of the univariate and the multivari-

ate (tensor product) B-spline basis functions and related spaces, the NURBS (non-uniform rational

B-spline) basis functions, function space, and the NURBS geometrical mapF. This presentation is

quite brief and notationally oriented1; a more complete introduction to NURBS and isogeometric

1Be aware that some of the notation and terminology containedhere is different from that of [52]. Care should be
exercised in comparing the two.
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analysis can be found in [52].

3.1.1 Univariate splines

For anyα, 1 ≤ α ≤ d, given positive integersmα andnα, we introduce the (ordered) knot vector

Ξα := {0 = ξ1,α, ξ2,α, . . . , ξnα+mα,α = 1}, (3.1)

where we allow repetition of knots, that is, we only assumeξ1,α ≤ ξ2,α ≤ . . . ≤ ξnα+mα,α. We

assume theΞα’s areopenknot vectors, that is, the firstmα as well as the lastmα knots are repeated

(see [52,§2.1]).

Through the iterative procedure detailed in [87, Theorem 4.15] or in [52, §2.2] one con-

structsmα-order B-spline basis functions, which are piecewise polynomials of degreepα := mα−1

on the subdivision (3.1)2. If a knotξi,α is not repeated, then the B-spline basis functions havepα−1

continuous derivatives atξi,α. In general, at a knotξi,α repeatedk times, with1 ≤ k ≤ pα + 1, the

B-spline basis functions havepα − k continuous derivatives, wherepα − k = −1 is allowed and

stands for a discontinuity. The B-splines basis functions are denoted byBi,α, for i = 1, . . . , nα;

eachBi,α is non-negative and supported in(ξi,α, ξi+mα,α). The interval(ξi,α, ξi+1,α) is referred to

as a knot span. The B-spline basis functions constitute a partition of unity, namely,

nα
∑

i=1

Bi,α = 1 (3.2)

A typical example is presented in Figure 3.1. The space ofsplinesis denoted by

Sα ≡ S(Ξα, pα) := span{Bi,α}i=1,...,nα . (3.3)

3.1.2 Multivariate tensor product splines

Assume thatd knot vectorsΞα, with 1 ≤ α ≤ d, are given. Let(0, 1)d ⊂ R
d be an openparametric

domain, referred to as apatch. Associated with the knot vectorsΞα there is ameshQ, that is, a

partition of(0, 1)d into d-dimensional open knot spans, or elements,

Q ≡ Q(Ξ1, . . . ,Ξd) :=
{

Q = ⊗d
α=1(ξiα,α, ξiα+1,α)|Q 6= ∅,mα ≤ iα ≤ nα − 1

}

. (3.4)

2We adhere to the terminology in which the “degree” of a quadratic, cubic, quartic, etc., polynomial is 2, 3, 4, etc.,
respectively, and the corresponding “order” is 3, 4, 5, etc., respectively. This is not the the usual terminology used inthe
finite element literature, but is frequently used in the splines literature. In [18, 52] we use the finite element terminology
to emphasize the similarities with finite elements.
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Figure 3.1: Example of a quadratic (p1 = 2) B-spline basis in one dimension derived from the knot
vectorΞ = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 0.8, 1, 1, 1}. Note that due to the open knot vector (i.e., the
first and last knots are repeatedp1 +1 times), the first and last basis functions are interpolatory(i.e.,
they take on the value 1 at the first and last knots). The continuity at interior knotsξi is Cp1−mi ,
wheremi is the number of repetitions of knotξi. For example, only the interior knot0.8 is repeated,
and the continuity there isCp1−2 = C0. At the other knots the continuity isCp1−1 = C1, the
maximal continuity of quadratic B-splines.

We denote byhQ the diameter of the elementQ ∈ Q.

The tensor product B-spline basis functions are defined as

Bi1...id := Bi1,1 ⊗ . . . ⊗ Bid,d; (3.5)

The tensor-product spline spaceS is:

S ≡ S(Ξ1, . . . ,Ξd; p1, . . . , pd) := ⊗d
α=1S(Ξα, pα) = span{Bi1...id}n1,...,nd

i1=1,...,id=1. (3.6)

To a (non empty) elementQ = ⊗d
α=1(ξiα,α, ξiα+1,α) ∈ Q, we associatẽQ ⊂ (0, 1)d defined

as

Q̃ := ⊗d
α=1(ξiα−mα+1,α, ξiα+mα ,α). (3.7)

The setQ̃ will be referred to as thesupport extensionof Q, since it is the union of the supports of

basis functions whose support intersectsQ. An illustration of support extensions is presented later

in Figure 3.3.

The functions inS are piecewise polynomials of degreepα in the α coordinate. The reg-

ularity of eachd-dimensional basis functionBi1...id across the element boundaries depends on the

regularity of the one-dimensional basis functionsBiα,α, for 1 ≤ α ≤ d, at the corresponding knots.

Given two adjacent elementsQ1 andQ2 we denote bymQ1,Q2 the number of continuous deriva-

tives across their common(d − 1)-dimensional face∂Q1 ∩ ∂Q2; mQ1,Q2 = −1 is associated with

a discontinuity. For the subsequent analysis, we introducethe following “bent” Sobolev spaceof
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orderm ∈ N

Hm :=












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



































v ∈ L2((0, 1)d) such that

v|Q ∈ Hm(Q),∀Q ∈ Q, and

∇
k(v|Q1

) = ∇
k(v|Q2

) on∂Q1 ∩ ∂Q2,

∀k ∈ N with 0 ≤ k ≤ min{mQ1,Q2,m − 1}
∀Q1, Q2 with ∂Q1 ∩ ∂Q2 6= ∅



















































; (3.8)

where∇
k denotes the (k-linear) kth-order partial derivative operator, while∇0v = v. This is a

well-defined Hilbert space, endowed with the seminorms

|v|2Hi :=
∑

Q∈Q

|v|2Hi(Q), 0 ≤ i ≤ m (3.9)

and norm

‖v‖2
Hm :=

m
∑

i=0

|v|2Hi . (3.10)

Indeed, the trace of∇kv is well defined on∂Q1 ∩ ∂Q2, for 0 ≤ k ≤ min{mQ1,Q2,m − 1} (see

[1]). We also need the restriction ofHm to a given support extensioñQ, which is denoted by

Hm(Q̃) := {v|Q̃|v ∈ Hm}, and endowed with the seminorm and norm

|v|2
Hi(Q̃)

:=
∑

Q′∈Q
Q′∩Q̃ 6=∅

|v|2Hi(Q′) and ‖v‖2
Hm(Q̃)

:=
m
∑

i=0

|v|2
Hi(Q̃)

. (3.11)

The bent Sobolev spaces are intermediate in continuity between standard Sobolev spaces and so-

called “broken” Sobolev spaces [78] utilized in the analysis of discontinuous Galerkin methods.

3.1.3 NURBS and the geometry of the physical domain

We associate to each of the tensor-product B-spline basis functionsBi1...id a strictly positive con-

stantweightwi1...id and acontrol pointCi1...id ∈ R
d; we also introduce theweighting function

w :=

n1,...,nd
∑

i1=1,...,id=1

wi1...idBi1...id , (3.12)

which, due to the partition of unity and non-negativity properties of B-spline bases, is strictly greater

than zero and is smooth on each element, along with its reciprocal. The NURBS basis functions on
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the patch(0, 1)d are defined by a projective transformation (see Farin [25]):

Ri1...id =
wi1...idBi1...id

w
, (3.13)

and, accordingly, the NURBS space on the patch, denoted byN , is

N ≡ N (Ξ1, . . . ,Ξd; p1, . . . , pd;w) := span{Ri1...id}n1,...,nd

i1=1,...,id=1. (3.14)

The NURBS geometrical mapF is given by

F =

n1,...,nd
∑

i1=1,...,id=1

Ci1...idRi1...id ; (3.15)

F is a parameterization of the physical domainΩ of interest (see [52]), that is,

F : (0, 1)d → Ω.

We assume thatF is invertible, with smooth inverse, on each elementQ ∈ Q.

Finally, each elementQ ∈ Q is mapped into an element

K = F(Q) := {F(ξ)|ξ ∈ Q}, (3.16)

and analogouslỹQ, the support extension ofQ, is mapped into

K̃ = F(Q̃). (3.17)

We then introduce the meshK in the physical domainΩ

K := {K = F(Q)|Q ∈ Q}, (3.18)

and the spaceV of NURBS onΩ (which is thepush-forwardof the spaceN of NURBS on the

patch)

V ≡ V(p1, . . . , pα) := span{Ri1...id ◦ F−1}n1,...,nd

i1=1,...,id=1 (3.19)

NURBS are capable of representing all conic sections, such as circles and ellipses, and

consequently cylinders, spheres, tori, ellipsoids, are also exactly representable. See [18, 52] and the

standard texts [25, 79, 85] for examples.
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3.2 Approximation properties of the NURBS space

We consider now a family of meshes{Qh}h on (0, 1)d, where eachQh is defined as in Section 2.2,

andh denotes the family index, representing the global mesh size

h = max{hQ|Q ∈ Qh}.

The family of meshes is assumed to beshape regular, that is, the ratio between the smallest edge

of Q ∈ Qh and its diameterhQ is bounded, uniformly with respect toQ andh. This implies that

the mesh islocally quasi-uniform—the ratio of the sizes of two neighboring elements is uniformly

bounded. Following the construction in the previous section, associated with the family of meshes

{Qh}h we introduce the families of meshes on the physical domain{Kh}h, and the spaces{Sh}h,

{Nh}h, {Vh}h, and{Hm
h }h endowed with their respective norms.

In practical applications, the geometry of the physical domain Ω is frequently described

on a mesh of relatively few elements, while the computation of an approximate solution to the

problem is performed on a refined mesh (fine enough to achieve desired accuracy). Therefore, we

assume that there is acoarsest meshQh0 in the family {Qh}h, of which all the other meshes are

a refinement, and that the description of the geometry is fixedat the level ofQh0 . This means that

the weighting functionw of (3.12) and the geometrical mapF in (3.15) are assigned inSh0 and

(Nh0)
d, respectively, and are the same for everyh. When the mesh and the spaces are refined (see

[52, §2.4] for details on the refinement procedures), the weightswi1...id are selected so thatw stays

fixed (see [52, equation (6)]); in a similar way, the control pointsCi1...id are adjusted such thatF

remains unchanged. Thus the geometryand its parameterization are held fixed in the refinement

process. See Figure 3.2 for an illustration of this idea.

In what follows, we will denote byC a positive,dimensionlessconstant, possibly different at

each occurrence, which depends only on the space dimensiond, on the polynomial degreespα, α =

1, 2, ..., d, and on the shape regularity of the mesh family{Qh}h. Observe that thepα are considered

fixed, since we only addressh-refinement in this paper (see [52,§2.4], [18]). We will denote byCs

another positive, dimensionless constant, possibly different at each occurrence, which may also

depend on the geometry ofΩ but still not onh. Specifically,Cs depends on theshapeof Ω, but not

on itssize; thereforeCs is by assumption homogeneous of order0 with respect tow and∇F, where

∇F is the matrix of partial derivatives of the coordinate components ofF, that is,Cs is invariant

if w and∇F are scaled by a multiplicative factor. Actually,Cs only depends on the dimensionless

functionsw/‖w‖L∞(Ω) and∇F/‖∇F‖L∞(Ω). Furthermore, ifCs appears in alocal estimate, then

it depends only on the local values ofw and∇F.
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Figure 3.2:h-refinement with NURBS. In this illustration a NURBS patch ismapped onto a quarter
of a square domain with a circular hole in physical space. Theminimum degree NURBS required
to exactly represent the geometry is quadratic. The open knot vectors areΞ1 = {0, 0, 0, 0.5, 1, 1, 1}
andΞ2 = {0, 0, 0, 1, 1, 1}, as illustrated. The exact geometry is represented at the coarsest level of
discretization, and it and its parameterization are unchanged during refinement. In particular, the
geometrical mapF and the weighting functionw are unchanged during refinement.
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3.2.1 Approximation with splines on a patch in the parametric domain

Our first lemma states the local approximation properties ofthe spline spaceSh. It is an extension of

the classical result (see Bramble and Hilbert [10]). Our estimate involves bent Sobolev seminorms

and spaces (3.8)–(3.9), which will be needed, in the following sections, when dealing with NURBS

on the parametric and physical domains. Letp be defined as

p := min
1≤α≤d

{pα}. (3.20)

Lemma 3.2.1. Let k and l be integer indices with0 ≤ k ≤ l ≤ p + 1. GivenQ ∈ Qh, Q̃ as in

(3.7),v ∈ Hl
h, there exists ans ∈ Sh such that

|v − s|Hk
h
(Q̃) ≤ Chl−k

Q |v|Hl
h
(Q̃). (3.21)

Proof. Consider an elementQ ∈ Qh and its corresponding support extensionQ̃. The number of

elementsQ′ forming the support extensioñQ and the degree of regularity of the functions inSh or

Hl
h across the internal element boundaries inQ̃ may vary, according to the multiplicities of knots

in the underlying knot vectors (see Section 2.2). Nevertheless, it is clear that there is only a finite

number ofpatternsfor all the possible support extensionsQ̃ of any mesh of the family{Qh}h, and

the maximum number of them depends only onpα and on the space dimensiond. It is not restrictive,

therefore, to prove (3.21) for a particularQ̃, with the constantC appearing in (3.21) independent of

the size of elements forming̃Q.

For the proof, we associate tõQ a reference support extension̂Q through a piecewise affine

mapG : Q̂ → Q̃ such that each elementQ′ ∈ Q̃ is the image of a hypercubeG−1(Q′) which has

unit edge length, whereG−1(Q′) := {G−1(ξ)|ξ ∈ Q′} (see Figure 3.3).

Let Ĥm
c be the pullback ofHm

h (Q̃) throughG

Ĥm
c :=

{

v̂|v̂ = v ◦ G, v ∈ Hm
h (Q̃)

}

, (3.22)

wherec is a vector of positive real numbers with the following meaning: assume that we have

an ordering of the internal boundariese of the elements inQ̃ (e consists ofd − 1-dimensional

hypercubes, that is, line segments ford = 2 or rectangles ford = 3) and a corresponding ordering

on the internal boundarieŝe in Q̂. Also, define on eache andê a unique normal directionne andnê.

If e is shared between the two adjacent elementsQ1 andQ2 belonging toQ̃, then, by construction,

a functionv ∈ Hm
h (Q̃) hasmatchingnormal derivatives one, up to the ordermin{mQ1,Q2,m− 1}
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Piecewise affine map

NURBS map

Q̂

Q̃

K

K̃

Q

G

G−1

F

F−1

0
0

1

1

2

2

3

3

4

4

5

5

ξi1,1 ξi1+1,1

ξi2,2

ξi2+1,2

Figure 3.3: Depiction of the support extensionsK̃, Q̃, and correspondinĝQ. For non-repeated
knots, the case illustrated would conform to quadratic B-splines or NURBS (i.e.,pα = 2). Quadratic
splines and NURBS have support over three knot spans in each direction. That is, each basis func-
tion is supported by a3 × 3 mesh of elements. The support extensions are confined to individual
patches in the multipatch case, assuming the patches are adjoined inC0-continuous fashion.

(see definition (3.8))

∂i

∂ni
e

(

v|Q1

)

=
∂i

∂ni
e

(

v|Q2

)

one = ∂Q1 ∩ ∂Q2, 0 ≤ i ≤ min{mQ1,Q2,m − 1}. (3.23)

When i = 0, the equality above expresses continuity ofv across∂Q1 ∩ ∂Q2. For the pullback

v̂ = v ◦ G, condition (3.23) is equivalent to

∂i

∂ni
ê

(

v̂|G−1(Q1)

)

= (ce)
i ∂i

∂ni
ê

(

v̂|G−1(Q2)

)

on ê = G−1(e), (3.24)

0 ≤ i ≤ min{mQ1,Q2,m − 1},

where the constantce equals the ratio of the lengths of the two elementsQ1 andQ2 in the direction

of ne. The vectorc collects all of these coefficients. Since all of the meshes are (uniformly) shape

regular and locally quasi-uniform, the coefficientsce belong to a compact set bounded away from
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0. Together with the spacêHm
c , we introduce the usual broken Sobolev space of orderm

Ĥm :=
{

v̂ | v̂ = v ◦ G, v|Q′ ∈ Hm(Q′),∀Q′ with Q′ ∩ Q̃ 6= ∅
}

, (3.25)

for which no conditions on the derivatives on the internal boundaries are assumed. We haveĤm
c ⊂

Ĥm, for anyc. We define onĤm the seminorms and norm

|v̂|2
Ĥi :=

∑

Q′∈Qh

Q′∩Q̃ 6=∅

|v̂|2Hi(G−1(Q′)), 0 ≤ i ≤ m, and ‖v̂‖2
Ĥm :=

m
∑

i=0

|v̂|2
Ĥi , (3.26)

and we recall that

‖v̂‖2
Ĥm ≤ C

(

‖v̂‖2
L2(Q̂)

+ |v̂|2
Ĥm

)

, ∀v̂ ∈ Ĥm. (3.27)

Let P̂ represent the set of piecewise polynomial functions of degree at mostl− 1 on Q̂, that

is, the set of functions that are polynomials of the prescribed degree on each element formingQ̂,

and defineP̂c := P̂ ∩ Ĥl
c. Observe that

P̂c ⊂ {v̂ | v̂ = v ◦ G, v ∈ Sh} . (3.28)

By (3.27), (3.28), usual scaling arguments, and sincek ≤ l, in order to prove (3.21) it is

then sufficient to find, given̂v ∈ Ĥl
c, a suitablês ∈ P̂c such that

‖v̂ − ŝ‖L2(Q̂) + |v̂ − ŝ|Ĥl ≤ C|v̂|Ĥl , (3.29)

with C independent of̂v andc. Let Π̂c : Ĥl → P̂c be theL2(Q̂)-projection onto the spacêPc. We

prove that (3.29) holds true for̂s := Π̂cv̂, that is we are going to show that

‖v̂ − Π̂cv̂‖L2(Q̂) + |v̂ − Π̂cv̂|Ĥl ≤ C|v̂|Ĥl , ∀v̂ ∈ Ĥl
c, (3.30)

uniformly with respect toc.

We prove (3.30) by contradiction. Because

|Π̂cv̂|Ĥl = 0, ∀v̂ ∈ Ĥl, ∀c, (3.31)

assuming that (3.30) is false implies the existence of a sequence{cj}j∈N of vectors and a sequence

{v̂j}j∈N of functions inĤl
cj

such that

‖v̂j − Π̂cj
v̂j‖L2(Q̂) = 1, (3.32)
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and

|v̂j |Ĥl = 1/j. (3.33)

As discussed above, the components ofcj are in a compact set; therefore it is not restrictive to

assume that the sequence{cj}j∈N converges towards a limitc∞ (i.e., the components ofcj converge

to the corresponding components ofc∞).

Recall that the spacêHl is compactly embedded intoL2(Q̂). Therefore, defininĝηj :=

v̂j − Π̂cj
v̂j , since‖η̂j‖Ĥl ≤ C‖v̂j − Π̂cj

v̂j‖L2(Q̂) + C|v̂j|Ĥl(Q̂) is uniformly bounded, it is not

restrictive to assume that the functionsη̂j converge towards a limit̂η∞ in L2(Q̂). By (3.31) and

(3.33),{η̂j}j∈N is also a Cauchy sequence in̂Hl, hencêηj → η̂∞ in Ĥl. Therefore

|η̂∞|Ĥl = lim
j→∞

|η̂j |Ĥl = 0,

that is,

η̂∞ ∈ P̂. (3.34)

In fact, sinceη̂j ∈ Ĥl
cj

, it is easy to see that the conditions of (3.24) pass to the limit, yielding

η̂∞ ∈ Ĥl
c∞

. This means that̂η∞ ∈ P̂c∞ , and

η̂∞ = Π̂c∞ η̂∞. (3.35)

We have

‖Π̂c∞ η̂∞‖L2(Q̂)

≤
∥

∥

∥
Π̂c∞ η̂∞ − Π̂cj

η̂∞

∥

∥

∥

L2(Q̂)
+
∥

∥

∥
Π̂cj

η̂∞ − Π̂cj
η̂j

∥

∥

∥

L2(Q̂)
+ ‖Π̂cj

η̂j‖L2(Q̂)

= I + II + III.

It is easy to see thatI → 0 when j → ∞; indeed, we can have bases forPcj
that converge

to a basis forPc∞ . Moreover, sincêΠcj
is uniformly bounded,II = ‖Π̂cj

(η̂∞ − η̂j)‖L2(Q̂) ≤
‖η̂∞ − η̂j‖L2(Q̂) → 0. Clearly,III = 0. Thus,Π̂c∞ η̂∞ = 0, and so by (3.35), we finally get

η̂∞ = 0, (3.36)

which is in contradiction with (3.32), which implies

‖η̂∞‖L2(Q̂) = lim
j→∞

‖η̂j‖L2(Q̂) = 1.

This proves (3.30).
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In [87, Chapter 12] a projector on the spline spaceSh is introduced. The projector, here

denoted byΠSh
, with the present notation is written as

ΠSh
v :=

n1,...,nd
∑

i1=1,...,id=1

(λi1...idv) Bi1...id , ∀v ∈ L2((0, 1)d) (3.37)

where theλi1...id aredual basis functionals, that is,

λj1...jd
Bi1...id = 1 if jα = iα, ∀1 ≤ α ≤ d,

λj1...jd
Bi1...id = 0 otherwise.

From [87, Chapter 12], the functionalsλi1...id can be represented by functions with local

support. This induces local stability properties onΠSh
. We summarize the previous properties in

the following result, proved in [87, Theorem 12.6]:

Lemma 3.2.2. We have

ΠSh
s = s, ∀s ∈ Sh (spline preserving), (3.38)

‖ΠSh
v‖L2(Q) ≤ C‖v‖L2(Q̃), ∀v ∈ L2((0, 1)d),∀Q ∈ Qh (stability). (3.39)

Lemma 3.2.3. LetΠSh
: L2((0, 1)d) → Sh satisfy (3.38) and (3.39), and0 ≤ k ≤ l ≤ p + 1; then

for all Q ∈ Qh

|v − ΠSh
v|Hk(Q) ≤ Chl−k

Q |v|Hl(Q̃), ∀v ∈ Hl
h(Q̃) ∩ L2((0, 1)d). (3.40)

Proof. Let s be as in Lemma 3.2.1; then, using (3.38),

|v − ΠSh
v|Hk(Q) = |v − s + ΠSh

(v − s)|Hk(Q)

≤ |v − s|Hk(Q) + |ΠSh
(v − s)|Hk(Q)

= I + II.

Using (3.21) we get straightforwardly

I ≤ Chl−k
Q |v|Hl

h(Q̃).

The usual inverse inequality for polynomials yields

|ΠSh
(v − s)|Hk(Q) ≤ Ch−k

Q ‖ΠSh
(v − s)‖L2(Q),
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whence, making use of (3.39) and (3.21), we get

II ≤ Ch−k
Q ‖v − s‖L2(Q̃) ≤ Chl−k

Q |v|Hl
h
(Q̃).

3.2.2 Approximation with NURBS on a patch in the parametric domain

In this section we derive the approximation properties of the NURBS space on the patch(0, 1)d. We

define the projectorΠNh
: L2((0, 1)d) → Nh as

ΠNh
v :=

ΠSh
(wv)

w
, ∀v ∈ L2((0, 1)d), (3.41)

wherew is defined by (3.12).

Lemma 3.2.4. Letk and l be integer indices with0 ≤ k ≤ l ≤ p + 1; we have

|v − ΠNh
v|Hk(Q) ≤ Csh

l−k
Q ‖v‖Hl

h(Q̃), ∀v ∈ Hl
h,∀Q ∈ Qh (3.42)

Proof. Recalling thatw ∈ Sh0 ⊂ Sh, it follows easily that, ifv ∈ Hl(Q̃), then alsowv ∈ Hl(Q̃).

Therefore, making use of the definition (3.41), the Hölder inequality, and (3.40), we have

|v − ΠNh
v|Hk(Q) =

∣

∣

∣

∣

1

w
(wv − ΠSh

wv)

∣

∣

∣

∣

Hk(Q)

≤ C

k
∑

i=0

∣

∣

∣

∣

1

w

∣

∣

∣

∣

W i,∞(Q)

|wv − ΠSh
wv|Hk−i(Q)

≤ Chl−k
Q

k
∑

i=0

∣

∣

∣

∣

1

w

∣

∣

∣

∣

W i,∞(Q)

|wv|Hl−i
h

(Q̃)

≤ Chl−k
Q

k
∑

i=0

∣

∣

∣

∣

1

w

∣

∣

∣

∣

W i,∞(Q)

l−i
∑

j=0

∑

Q′∈Qh

Q′∩Q̃6=∅

|w|W j,∞(Q′) |v|Hl−(i+j)(Q′) .

Since0 ≤ i + j ≤ l in the last summations, we get (3.42), with a constantCs that depends on

|1/w|W i,∞(Q)|w|W j,∞(Q′), that is, only depends on the weight functionw and its reciprocal1/w on

Q̃, and is uniformly bounded with respect to the mesh size.
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3.2.3 Approximation with NURBS in the physical domain

The following lemma gives estimates for the change of variable from the patch to the physical

domain.

Lemma 3.2.5. Let m be a non-negative integer,Q ∈ Qh and K = F(Q). For all functions

v ∈ Hm(K), it holds that

|v ◦ F|Hm(Q) ≤ Cs ‖det ∇F−1‖1/2
L∞(K)

m
∑

j=0

‖∇F‖j
L∞(Q)|v|Hj (K) (3.43)

|v|Hm(K) ≤ Cs ‖det ∇F‖1/2
L∞(Q) ‖∇F‖−m

L∞(Q)

m
∑

j=0

|v ◦ F|Hj(Q) (3.44)

Proof. We will address the casem ≥ 1, the casem = 0 being trivial. We start by introducing the

function

F̌ =
F

‖∇F‖L∞(Q)
: Q → Ǩ (3.45)

A direct derivation gives

∇
kF = ‖∇F‖L∞(Q)∇

kF̌ (3.46)

where here and in what followsk indicates an integer with1 ≤ k ≤ m. From (3.46) we get

‖∇kF‖L∞(Q) ≤ ‖∇F‖L∞(Q)‖∇kF̌‖L∞(Q). (3.47)

Let nowξ be any point inQ andx = F(ξ). We then have by definition

x = ‖∇F‖L∞(Q)F̌(ξ), (3.48)

ξ = F̌−1

(

x

‖∇F‖L∞(Q)

)

. (3.49)

As a consequence we have

F−1(x) = ξ = F̌−1

(

x

‖∇F‖L∞(Q)

)

. (3.50)

which, by derivation, gives

∇
kF−1(x) = ∇

kF̌−1

(

x

‖∇F‖L∞(Q)

)

‖∇F‖−k
L∞(Q). (3.51)
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Taking theL∞ norm, identity (3.51) gives

‖∇kF−1‖L∞(K) ≤ ‖∇kF̌−1‖L∞(Ǩ)‖∇F‖−k
L∞(Q). (3.52)

By Lemma 3 in [16], there exists a constantC depending only onm such that, for allξ ∈ Q,

‖∇m(v ◦ F)(ξ)‖ ≤ C

m
∑

j=1

‖∇jv(x)‖
∑

i∈I(j,m)

‖∇F(ξ)‖i1‖∇2F(ξ)‖i2 ...‖∇mF(ξ)‖im , (3.53)

where

I(j,m) = {i = (i1, i2, ..., im) ∈ N
m : i1 + i2 + ...+ im = j, i1 +2i2 + ...+mim = m}. (3.54)

A change of variables, bound (3.53) and the Hölder inequality give

|v ◦F|Hm(Q) (3.55)

≤ C‖det ∇F−1‖1/2
L∞(K)

m
∑

j=1

|v|Hj (K)

∑

i∈I(j,m)

‖∇F‖i1
L∞(Q)‖∇2F‖i2

L∞(Q)...‖∇mF‖im
L∞(Q).

Using (3.47) and recalling (3.54), the above bound easily gives

|v ◦F|Hm(Q) ≤ C‖det∇F−1‖1/2
L∞(K)

m
∑

j=1

|v|Hj(K)‖∇F‖j
L∞(Q) (3.56)

·
∑

i∈I(j,m)

‖∇F̌‖i1
L∞(Q)‖∇2F̌‖i2

L∞(Q)...‖∇mF̌‖im
L∞(Q)

≤ C ′(m, ‖∇F̌‖W m,∞(Q)) ‖det ∇F−1‖1/2
L∞(K)

m
∑

j=1

‖∇F‖j
L∞(Q)|v|Hj (K).

Applying Lemma 3 of [16] to the inverse functionF−1, similar arguments give

|v|Hm(K) ≤ C‖det ∇F‖1/2
L∞(Q)

m
∑

j=1

|v ◦F|Hj(Q)

∑

i∈I(j,m)

‖∇F−1‖i1
L∞(K)

‖∇2F−1‖i2
L∞(K)

...‖∇mF−1‖im
L∞(K)

.

Applying (3.52) to bound (3.57), following the same steps asalready performed in (3.56) it finally
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follows that

|v|Hm(K) ≤ C ′′(m, ‖∇F̌−1‖W m,∞(Ǩ)) ‖det ∇F‖1/2
L∞(Q) ‖∇F‖−m

L∞(Q)

m
∑

j=1

|v ◦F|Hj(Q). (3.57)

Bounds (3.43) and (3.44) are proven, provided we show thatC ′ andC ′′ behave asshape

dependent constantsCs (see Section 3). From the above calculations it immediatelyfollows thatC ′

andC ′′ are continuous functions of‖∇F̌‖W m,∞(Q) and‖∇F̌−1‖W m,∞(Ǩ), respectively. Observe

that∇F̌ and∇F̌−1 are0-homogeneous with respect to∇F, and so areC ′ andC ′′. Furthermore,

from (3.46) and (3.51)

‖∇F̌‖W m,∞(Q) =
‖∇F‖W m,∞(Q)

‖∇F‖L∞(Q)
≤ ‖∇F‖W m,∞(Q) inf

x∈K
‖∇F−1(x)‖ (3.58)

‖∇F̌−1‖W m,∞(Ǩ) ≤
m
∑

j=0

‖∇jF−1‖L∞(K)‖∇F‖j
L∞(Q); (3.59)

recalling that the NURBS mapF is fixed, uniform boundedness with respect to the mesh-size easily

follows.

We define the projectorΠVh
: L2(Ω) → Vh as

ΠVh
v := (ΠNh

(v ◦ F)) ◦F−1, ∀v ∈ L2(Ω). (3.60)

We refer to (3.60) as the push-forward of the NURBS projector. It is defined in Figure 3.4 and its

approximation properties are stated in the next result.

FF

(0, 1)d(0, 1)d

ΩΩ
R R

v

v ◦ F

ΠVh
v

ΠNh
(v ◦F)

Figure 3.4:ΠVh
v is the push-forward of the NURBS projectorΠNh

(v ◦ F), wherev ∈ L2(Ω) and
v ◦F ∈ L2((0, 1)d).
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Theorem 3.2.1.Let k and l be integer indices with0 ≤ k ≤ l ≤ p + 1; let Q ∈ Qh, K = F(Q),

Q̃ andK̃ as in (3.7) and (3.17), respectively; we have

|v − ΠVh
v|Hk(K) ≤ Csh

l−k
K

l
∑

i=0

‖∇F‖i−l
L∞(Q̃)

|v|Hi(K̃), ∀v ∈ L2(Ω) ∩ H l(K̃), (3.61)

wherehK is the element size in the physical domain defined as

hK = ‖∇F‖L∞(Q)hQ. (3.62)

Proof. Using (3.60), and then (3.44), we have

|v − ΠVh
v|Hk(K) = |v − (ΠNh

(v ◦F)) ◦ F−1|Hk(K)

≤ Cs‖det ∇F‖1/2
L∞(Q)‖∇F‖−k

L∞(Q)

k
∑

i=0

|v ◦F − ΠNh
(v ◦ F)|Hi(Q)

(3.63)

Notice that sincev ∈ H l(K̃), we havev ◦ F ∈ Hl
h(Q̃) and we can use the estimate of (3.42) on

each term|v ◦ F − ΠNh
(v ◦ F)|Hi(Q), obtaining

|v ◦F − ΠNh
(v ◦ F)|Hi(Q) ≤ Csh

l−k
Q ‖v ◦ F‖Hl+i−k

h (Q̃)

≤ Csh
l−k
Q

l+i−k
∑

j=0

|v ◦ F|
Hj

h(Q̃)
.

(3.64)

Since0 ≤ i ≤ k in (3.63) and0 ≤ j ≤ l + i − k in (3.64), the two sums over the indices collapse

into one and we have

|v − ΠVh
v|Hk(K) ≤ Cs‖det ∇F‖1/2

L∞(Q)‖∇F‖−k
L∞(Q)h

l−k
Q

l
∑

i=0

|v ◦ F|Hi
h
(Q̃)

= Cs‖det ∇F‖1/2
L∞(Q)‖∇F‖−k

L∞(Q)h
l−k
Q

l
∑

i=0

∑

Q′∈Qh

Q′∩Q̃ 6=∅

|v ◦ F|Hi(Q′).
(3.65)

Using (3.43) on each term|v ◦ F|Hi
h
(Q′) of the last summation of (3.65) we get

|v ◦ F|Hi(Q′) ≤ Cs‖det ∇F−1‖1/2
L∞(K ′)

i
∑

j=0

‖∇F‖j
L∞(Q′)|v|Hj(K ′), (3.66)

where, as before,F(Q′) = K ′. From (3.65) and (3.66), since0 ≤ i ≤ l and0 ≤ j ≤ i, by
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coalescing the double summation onto a single sum, we have

|v − ΠVh
v|Hk(K) ≤ Cs‖∇F‖−k

L∞(Q)h
l−k
Q

l
∑

i=0

∑

K ′∈Kh

K ′∩K̃ 6=∅

‖∇F‖i
L∞(Q′)|v|Hi(K ′)

≤ Cs‖∇F‖−k
L∞(Q̃)

hl−k
Q

l
∑

i=0

‖∇F‖i
L∞(Q̃)

|v|Hi(K̃),

(3.67)

where we also used‖det ∇F‖1/2
L∞(Q)‖det ∇F−1‖1/2

L∞(K) ≤ Cs. Multiplying and dividing the right-

hand side of (3.67) by‖∇F‖l
L∞(Q̃)

, and using the definition of the element size in the physical

domain (3.62) we obtain

|v − ΠVh
v|Hk(K) ≤ Cs

‖∇F‖l−k
L∞(Q̃)

‖∇F‖l−k
L∞(Q)

hl−k
K

l
∑

i=0

‖∇F‖i−l
L∞(Q̃)

|v|Hi(K̃). (3.68)

Subsuming the fraction in the above inequality intoCs, we finally get (3.61).

As a corollary we have the global error estimate stated below.

Theorem 3.2.2.Letk and l be integer indices with0 ≤ k ≤ l ≤ p + 1, we have

∑

K∈Kh

|v − ΠVh
v|2Hk

h
(K)

≤ Cs

∑

K∈Kh

h
2(l−k)
K

l
∑

i=0

‖∇F‖2(i−l)
L∞(F−1(K))

|v|2Hi(K),∀v ∈ H l(Ω). (3.69)

Remark 3.2.1. We note from Theorem 3.2.1 and Theorem 3.2.2 that the NURBS spaceVh on the

physical domainΩ delivers the optimal rate of convergence, as for the classical finite element spaces

of degreep. Note that a bound on thekth-order seminorm of the errorv − ΠVh
v requires a control

on the full lth-order norm ofv, unlike for finite elements (or splines, as in (3.40)) where only the

lth-order seminorm ofv is involved in the right-hand side of the estimate. This is due to the role

played by the weighting functionw and the geometrical mapF.

Note moreover that the estimates stated in Theorem 3.2.1 and3.2.2 aredimensionallycon-

sistent. IndeedCs is a dimensionless constant, while bothhK and‖∇F‖L∞(F−1(K)) have dimen-

sions of length; the patch(0, 1)d is dimensionless while the physical spaceΩ is a dimensional

space, which implies that∇F has the dimensions of length. The coefficients‖∇F‖i−l
L∞(F−1(K)))

compensate for the different dimensions of the the seminorms |v|Hi inside the summation of (3.61)

and (3.69).
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3.2.4 Spaces with boundary conditions

Dealing with boundary conditions in the variational formulation of continuum mechanics problems

requires Sobolev spaces of functions satisfying boundary constraints. The analysis developed in the

previous sections can be adapted to this context with only minor modifications, as sketched below.

We focus our attention on the case of Dirichlet boundary conditions for second-order differ-

ential operators of the type discussed later in Section 5-6.Let ∂Ω be the boundary ofΩ ⊂ R
d, with

d = 2, 3, andΓD ⊂ ∂Ω the part of the boundary where the Dirichlet conditions hold. Moreover

assume, for the sake of simplicity, thatΓD is the union of element faces (ford = 3) or edges (for

d = 2), and letγD = F−1(ΓD). For the purposes of analysis of the numerical methods, we need

a projector fromHk(Ω) into Vh which preserves the nullity of the traces onΓD and with the same

approximation properties as stated in Theorem 3.2. Let

H1
ΓD

(Ω) =
{

v ∈ H1(Ω) | v = 0 on ΓD

}

,

and accordingly

H1
γD

((0, 1)d) =
{

v ∈ H1((0, 1)d) | v = 0 on γD

}

,

Assume, for the sake of simplicity, thatSh ⊂ C0((0, 1)d). It is easy to verify (see [52] or

[87]) that the tensor product B-spline basis functions give

Sh ∩ H1
γD

((0, 1)d) = span{Bi1...id | Bi1...id ∈ H1
γD

((0, 1)d), 1 ≤ iα ≤ nα, 1 ≤ α ≤ d}. (3.70)

It seems natural therefore to modify the definition of (3.37), restricting to such a basis in

(3.70). Therefore we set

Π0
Sh

v :=
∑

iα=1,...,nα

Bi1...id
∈H1

γD
((0,1)d)

(λi1...idv)Bi1...id , ∀v ∈ H1
γD

((0, 1)d), (3.71)

where, since (3.70),Π0
Sh

: H1
γD

((0, 1)d) → Sh ∩ H1
γD

((0, 1)d).

The projectorsΠ0
Nh

: H1
γD

((0, 1)d) → Nh ∩ H1
γD

((0, 1)d) andΠ0
Vh

: H1
ΓD

(Ω) → Vh ∩
H1

ΓD
(Ω) can be defined accordingly:

Π0
Nh

v :=
Π0

Sh
(wv)

w
, ∀v ∈ H1

γD
((0, 1)d),

Π0
Vh

v :=
(

Π0
Nh

(v ◦ F)
)

◦F−1, ∀v ∈ H1
ΓD

(Ω);

The key tool of our analysis, Lemma 3.2.1, admits the following extension.
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Lemma 3.2.6. Letk and l be integer indices with0 ≤ k < l ≤ p + 1 and l ≥ 1; givenQ ∈ Qh, Q̃

as in (3.7),v ∈ Hl
h(Q̃) ∩ H1

γD
((0, 1)d), there exists ans ∈ Sh ∩ H1

γD
((0, 1)d) such that

|v − s|Hk
h
(Q̃) ≤ Chl−k

Q |v|Hl
h
(Q̃). (3.72)

The proof is similar. From Lemma 3.2.6, the rest of the analysis follows in a straight forward

manner as in the previous sections, leading to the result below.

Theorem 3.2.3.Letk and l be integer indices with0 ≤ k < l ≤ p + 1, we have

∑

K∈Kh

|v − Π0
Vh

v|2
Hk

h(K)

≤ Cs

∑

K∈Kh

h
2(l−k)
K

l
∑

i=0

‖∇F‖2(i−l)
L∞(F−1(K))

|v|2Hi(K),∀v ∈ H l(Ω) ∩ H1
ΓD

(Ω). (3.73)

3.3 Inverse inequalities for NURBS

In this section, we prove some inverse inequalities which resemble the ones for finite elements

spaces.

Theorem 3.3.1.We have

|v|H2(K) ≤ Csh
−1
K |v|H1(K) ∀K ∈ Kh, ∀v ∈ Vh, (3.74)

Proof. Lemma 3.2.5 yields

|v|H2(K) ≤ Cs‖det ∇F‖1/2
L∞(Q)‖∇F‖−2

L∞(Q)‖v ◦ F‖H2(Q) (3.75)

where, as before,F(Q) = K. Moreover

‖v ◦ F‖H2(Q) ≤ C

∥

∥

∥

∥

1

w

∥

∥

∥

∥

W 2,∞(Q)

‖w(v ◦ F)‖H2(Q) (3.76)

Sincew(v ◦F) is a polynomial of global degreep1 · . . . · pd, for a usual inverse inequality we have

‖v ◦F‖H2(Q) ≤ C h−1
Q

∥

∥

∥

∥

1

w

∥

∥

∥

∥

W 2,∞(Q)

‖w(v ◦F)‖H1(Q) (3.77)
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We now have, again using Lemma 3.2.5,

‖w(v ◦ F)‖H1(Q) ≤ C‖w‖W 1,∞(Q)‖v ◦ F‖H1(Q)

≤ Cs‖w‖W 1,∞(Q)‖det ∇F−1‖1/2
L∞(K)

1
∑

j=0

‖∇F‖j
L∞(Q)|v|Hj (K).

(3.78)

Joining all of the above bounds, we finally get

|v|H2(K) ≤ Csh
−1
Q

1
∑

j=0

‖∇F‖j−2
L∞(Q)|v|Hj (K) (3.79)

Let now vK represent the constant function equal to the average ofv on K; note that

vK ∈ Vh. Therefore, applying (3.79), classical polynomial interpolation results, and recalling that

‖∇F‖−1
L∞(Q)hK = hQ, it easily follows that

|v|H2(K) = |v − vK |H2(K)

≤ Csh
−1
Q

1
∑

j=0

‖∇F‖j−2
L∞(Q)|v − vK |Hj(K)

≤ Csh
−1
K |v|H1(K).

More general inverse inequalities can be easily derived following the approach given above.

In particular, the following result holds.

Theorem 3.3.2.Letk and l be integer indices with0 ≤ k ≤ l; we have

‖v‖Hl(K) ≤ Cs hk−l
K

k
∑

i=0

‖∇F‖i−k
L∞(F−1(K))

|v|Hi(K) ∀K ∈ Kh, ∀v ∈ Vh. (3.80)

3.4 Applications to physical problems

In this section we obtain error estimates for NURBS applied to some linear physical problems. The

basis of the analyses is the approximation and inverse estimates of the previous sections. After con-

sidering classical Galerkin methods for elliptic problems, we consider application of stabilized and

BB-stable methods to saddle-point problems, and finally we study stabilized methods for advective-

diffusive problems.
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3.4.1 Elasticity

We start by considering the classical two- and three-dimensional linear elastic problem. We assume

that the boundary∂Ω is decomposed into a Dirichlet partΓD and a Neumann partΓN ; as usual,ΓD

andΓN are the unions of element edges (ford = 2) and faces (ford = 3), respectively. Moreover,

let f : Ω → R
d be the given body force andg : Ω : ΓN → R

d the given traction onΓN .

Then, the mixed boundary-value problem forΩ ⊂ R
3, supported onΓD and free onΓN ,

reads










∇ · Cε(u) + f = 0 in Ω

u = 0 on ΓD

Cε(u) · n = g on ΓN ,

(3.81)

where(∇·) is the divergence,n is the unit outward normal at each point of the boundary and the

fourth-order tensorC is defined by

Cw = 2µ

[

w +
ν

1 − 2ν
tr(w)I

]

(3.82)

for all second-order tensorsw, wheretr represents the trace operator andµ > 0, 0 ≤ ν < 1/2 are,

respectively, the shear modulus and Poisson’s ratio. The case of inhomogeneous Dirichlet data can

be reduced to (3.81) by standard means. The stress,σ, is given by Hooke’s law,σ = Cε.

Assuming for simplicity a regular loadingf ∈ [L2(Ω)]d andg ∈ [L2(ΓN )]d, we introduce

also

< ψ,v >= (f ,v)Ω + (g,v)ΓN
∀v ∈ [H1(Ω)]d, (3.83)

where( , )Ω, ( , )ΓN
indicate, as usual, theL2 scalar products onΩ andΓN , respectively. The

variational form of problem (3.81) then reads: findu ∈ [H1
ΓD

(Ω)]d such that

(Cε(u), ε(v))Ω =< ψ,v > ∀v ∈ [H1
ΓD

(Ω)]d (3.84)

As is well known, this is an elliptic problem. In order to solve it using NURBS, we follow

the same Galerkin approach adopted for classical finite elements, that is, we restrict the original

problem to the finite-dimensional NURBS space: finduh ∈ Vh such that

(Cε(u), ε(v))Ω =< ψ,v > ∀v ∈ Vh, (3.85)

where

Vh = [Vh]d ∩ [H1
ΓD

(Ω)]d, (3.86)

with Vh a NURBS space built as described in the previous sections.

45



The stability and consistency of the discrete problem (3.85) follow immediately. Therefore,

a classical convergence analysis easily gives

|u− uh|H1 ≤ C(ν) inf
vh∈Vh

|u− vh|H1(Ω). (3.87)

As a consequence, the interpolation properties of the past section give the optimal convergence of

the method with respect to the norm and degree used: assumingquasi-uniform mesh refinement,

hK ≃ h, andminα pα = k, u ∈ [Hk+1(Ω)]d we have

|u− uh|H1(Ω) ≤ C(ν,u)Csh
k; (3.88)

moreover, assuming the regularity of the problem, i.e.

‖u‖H2(Ω) ≤ C‖f‖L2(Ω) (3.89)

for all f ∈ L2(Ω), wheneverg = 0, the following L2 estimate easily follows using an Aubin-

Niestche argument

‖u− uh‖L2(Ω) ≤ C(ν,u)Csh
k+1. (3.90)

3.4.2 Incompressible and almost incompressible isotropicelasticity – stabilized meth-
ods

It is well known that the constantC in bound (3.87) tends to+∞ as the Poisson ratioν → 1/2. As

it happens for classical finite elements, in such cases the NURBS discretization (3.85) is expected

to give non-satisfactory approximation results. In order to treat both this (almost incompressible)

case and the limit (incompressible) case, we rewrite problem (3.84) in the standard mixed form.

For notation simplicity we now set the shear modulus2µ = 1, and define the positive

constant

ε =
1 − 2ν

ν
(3.91)

The incompressible case is represented byε = 0.

The mixed variational formulation of (3.81) then reads: find(u, p) ∈ H1
ΓD

(Ω) × L2(Ω)

such that










(ε(u), ε(v))Ω − (∇ · v, p)Ω =< ψ,v > ∀v ∈ [H1
ΓD

(Ω)]d

(∇ · u, q)Ω + ε(p, q)Ω = 0 ∀q ∈ L2(Ω).

(3.92)

Throughout this section and the next, we assume thatΓD 6= ∂Ω. If ΓD = ∂Ω andε = 0,
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the space for the pressure needs to be replaced by

L2
0(Ω) =

{

q ∈ L2(Ω) |
∫

Ω
q = 0

}

(3.93)

in order for the problem to have a unique solution.

Wheneverε > 0, the stability of the problem and the good properties of the NURBS space

guarantee optimal error bounds for Galerkin’s method applied to (3.92). On the other hand, similarly

to classical finite elements, we expect the Galerkin discretization with NURBS to suffer from lack

of stability asε → 0. In general, unless certain combination of spaces(Vh, Ph) are found (see next

section), the approximation properties of the numerical method are well known to deteriorate as

ε → 0; even worse, the limit caseε = 0 can suffer from complete lack of stability and spurious

modes. One way to avoid this is to adopt a stabilized formulation of (3.92).

We start by introducing the discrete spaces for displacements and pressures

Vh = [Vh]d ∩ [H1
ΓD

(Ω)]d (3.94)

Ph = Vh ∩ H1(Ω) (3.95)

Note that we are requiring continuity also on the pressures and, for the moment, we are

assuming equal-order displacement and pressure fields. Following [45], [32, 53], and [21] we intro-

duce the following stabilized formulations:

SUPG:

BSUPG(u, p;v, q) = (ε(u), ε(v))Ω − (∇ · v, p)Ω + (∇ · u, q)Ω + ε(p, q)Ω

+α
∑

K∈Kh

h2
K(−∇ · ε(u) + ∇p,∇q)K (3.96)

FSUPG(v) =< ψ,v > +α
∑

K∈Kh

h2
K(f ,∇q)K (3.97)

GLS:

BGLS(u, p;v, q) = (ε(u), ε(v))Ω − (∇ · v, p)Ω − (∇ · u, q)Ω − ε(p, q)Ω

−α
∑

K∈Kh

h2
K(−∇ · ε(u) + ∇p,−∇ · ε(v) + ∇q)K (3.98)

FGLS(v) =< ψ,v > −α
∑

K∈Kh

h2
K(f ,−∇ · ε(v) + ∇q)K (3.99)
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DW (Douglas-Wang):

BDW (u, p;v, q) = (ε(u), ε(v))Ω − (∇ · v, p)Ω − (∇ · u, q)Ω − ε(p, q)Ω

−α
∑

K∈Kh

h2
K(−∇ · ε(u) + ∇p,∇ · ε(v) + ∇q)K (3.100)

FDW (v) =< ψ,v > −α
∑

K∈Kh

h2
K(ψ,−∇ · ε(v) + ∇q)K (3.101)

whereα is a positive constant at our disposal. The discrete NURBS problem then reads: find

(uh, ph) ∈ Vh × Ph such that

B(uh, ph;v, q) = F (v) ∀(v, q) ∈ Vh × Ph (3.102)

where the bilinear formB(·, ·) and the functionalF (·) depend on which of the three methods above

is adopted.

For the three methods here presented, there hold optimal andε−uniform error bounds in the

natural norms of the problem. Given the interpolation and inverse inequality results of the previous

sections, the proof of this result follows in step-by-step fashion its finite element counterpart. For

the SUPG method, see Theorem 4.1 in [45], while for the GLS andDW methods see respectively

Theorem 3.1, case (ii), and Theorem 3.2, case (ii), in [32]. For completeness we include, in the next

lemma, a very brief sketch of the proof of the stability result for the GLS case, the other two cases

being very similar; we will make use of the notation

|||(v, q)|||2 := ‖ε(v)‖2
L2(Ω) + (1 + ε)‖q‖2

L2(Ω). (3.103)

We recall the Korn inequality

diam(Ω)−2‖v‖2
L2(Ω) + |v|2H1(Ω) ≤ Ckorn‖ε(v)‖2

L2(Ω).

Lemma 3.4.1.Let the constant0 < α < C−1
inv, whereCinv is the (shape dependent) constant of the

inverse inequality stated in Lemma 3.3.1. Then, there exists Cs > 0, independent of the mesh size,

such that

sup
(v,q)∈Vh×Ph

BGLS(u, p;v, q)

|||(v, q)||| ≥ Cs|||(u, p)|||. (3.104)

Proof. We follow the approach of [32]. The inf-sup condition (3.104) is equivalent to the following:

given any(u, p) ∈ Vh ×Ph, there exists a(v, q) ∈ Vh ×Ph and two positive constantsCs, C
′
s

such

48



that

BGLS(u, p;v, q) ≥ Cs|||(u, p)|||2 (3.105)

|||(v, q)|||2 ≤ C ′
s
|||(u, p)|||2.

Inequalities (3.105) allow one to establish the uniform stability condition by selecting the appropri-

ate test function for the bilinear form. We start by recalling an argument given in Verfürth [109] that

gives the existence of two positive constantsCs andC ′
s

such that

sup
06=v∈Vh

(∇ · v, q)Ω
|v|H1(Ω)

≥ Cs‖q‖L2(Ω) − C ′
s
(
∑

K∈Kh

h2
K‖∇q‖2

L2(K))
1/2, ∀q ∈ Ph. (3.106)

The above inequality relies solely on the interpolation estimate, which for the NURBS approxi-

mation space was established in Theorem 3.2.3. The following bound is immediate, provided the

inverse estimate (Theorem 3.3.2) holds together with the bound onα (0 < α < C−1
inv):

BGLS(u, p;u,−p) ≥ Cs|u|2H1(Ω) + ε‖p‖2
L2(Ω)

+α
∑

K∈Kh

h2
K‖∇p‖2

L2(K) ∀(u, p) ∈ Vh × Ph, (3.107)

with Cs = Ckorn(1 − αCinv).

Considerw ∈ Vh which achieves the supremum in (3.106) forq = p (w can be rescaled

such that|w|H1(Ω) = ‖p‖L2(Ω), which is what is assumed in the sequel). Then the following bound

holds:

BGLS(u, p;w, 0) ≥ −Cs|u|2H1(Ω) + C ′
s
‖p‖2

L2(Ω)

−C ′′
s

∑

K∈Kh

h2
K‖∇q‖2

L2(K), (3.108)

whereCs, C ′
s
, andC ′′

s
are positive and(u, p) ∈ Vh × Ph. Denoting(v, q) = (u − δw,−p) and

combining (3.107) and (3.108) we arrive at

BGLS(u, p;v, q) ≥ Cs(|u|2H1(Ω) + (1 + ε)‖p‖2
L2(Ω)), (3.109)

with a suitable choice for a positive parameterδ. On the other hand we have

|v|2H1(Ω) + (1 + ε)‖q‖2
L2(Ω) ≤ Cs(|u|2H1(Ω) + (1 + ε)‖p‖2

L2(Ω)). (3.110)

which, in conjunction with (3.109), completes the proof of the uniform stability (3.104).
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The uniform stability result of Lemma 3.4.1 combined with the inverse inequalities of Sec-

tion 3.3 and the interpolation estimates of Section 3.2.3 leads to error estimates which are optimal.

Let k = min (p1, p2, .., pd) wherep1, p2, .., pd are as the anisotropic polynomial degrees ofVh.

Then, ifu ∈ Hk+1(Ω) andp ∈ Hk(Ω),

|u− uh|H1(Ω) + ‖p − ph‖L2(Ω) ≤ C(u, p) Cs hk. (3.111)

Moreover, assuming as in Section 5.1 the regularity of the problem and making use of the Aubin-

Niestche argument, we get

‖u− uh‖L2(Ω) ≤ C(u, p) Cs hk+1. (3.112)

Remark 3.4.1. Similar results can be obtained for any pair of continuous NURBS spacesVh, Ph.

It is not required that the displacement and pressure spacesbe based on the same knot vectors and

polynomial degree. Ifu ∈ Hs+1(Ω) andp ∈ Hs(Ω), then

|u− uh|H1(Ω) + ‖p − ph‖L2(Ω) + h−1‖u− uh‖L2(Ω) ≤ C(u, p) Cs hk,

k = min {s, ku, kp + 1} (3.113)

whereku andkp are the minimal anisotropic polynomial degrees used for displacements and pres-

sures, respectively.

3.4.3 Incompressible and almost incompressible isotropicelasticity – a BB-stable
method

In this section we introduce pairs of displacement and pressure NURBS spaces suitable for the

approximation of problem (3.92) without the necessity of adding stabilizing terms. Given a positive

isotropic degreek, we introduce the spaces of displacements and pressures

Vh = [Vh(k + 1, . . . , k + 1)]d ∩ [H1
ΓD

(Ω)]d, (3.114)

Ph = Vh(k, . . . , k) ∩ H1(Ω), (3.115)

whereVh(k + 1, . . . , k + 1) andVh(k, . . . , k) denote the NURBS spaces introduced in (3.19), of

degreek+1 andk, respectively. We assume that inVh no continuity of derivatives is enforced across

the element boundaries, that is, in each coordinate direction, the internal knots are repeatedk + 1

times. By construction, there is a basis function that is interpolatory at each vertex of the mesh. The

control point associated with each vertex is physically located at that vertex. These control points

are a subset of the control points comprizing the control net. For this subset, the control points are
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identical to the nodal points of finite elements.

We are now able to introduce the discrete problem: find(uh, ph) ∈ Vh × Ph such that











(ε(uh), ε(v))Ω − (∇ · v, ph)Ω =< ψ,v > ∀v ∈ Vh

(∇ · uh, q)Ω + ε(ph, q)Ω = 0 ∀q ∈ Ph

(3.116)

We recall that

h = max
Q∈Qh

hQ.

Moreover, in what follows we denote byhmax a quantity, representing a mesh-size, which depends

only on the problem domain, mesh family shape-regularity, and polynomial degreek. We have the

following a priori error estimate.

Theorem 3.4.1.There existshmax > 0 such that forh ≤ hmax,

|u− uh|H1(Ω) + ‖p − ph‖L2(Ω) ≤ Cs

(

inf
vh∈Vh

|u− vh|H1(Ω) + inf
qh∈Ph

‖p − qh‖L2(Ω)

)

. (3.117)

where(u, p) is the solution of problem (3.92) and(uh, ph) is the solution of problem (3.116).

Theorem 3.4.1 and the interpolation estimates of Section 3.2.3 lead to error estimates which

are optimal: ifu ∈ Hk+1(Ω) andp ∈ Hk(Ω),

|u− uh|H1(Ω) + ‖p − ph‖L2(Ω) ≤ C(u, p) Cs hk. (3.118)

The proof of Theorem 3.4.1 follows directly from the Babuška-Brezzi inf-sup (stability) condition

stated in the next theorem, and the classical theory of mixedfinite element methods (see [11]).

Theorem 3.4.2.There existshmax > 0 andCs > 0 such that the inf-sup condition

sup
v∈Vh

(∇ · v, q)
|v|H1(Ω)

≥ Cs‖q‖L2(Ω), ∀q ∈ Ph, (3.119)

holds provided that

h ≤ hmax. (3.120)

The proof of Theorem 3.4.2 requires some preliminary results and Lemma 3.2.3. We denote

by F̄h the (piecewise multilinear) nodal interpolant ofF, and byΩ̄h the image of̄Fh, that is

F̄h : (0, 1)d −→ Ω̄h. (3.121)
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Note that the domain̄Ωh depends on the meshQh. We also introduce finite-dimensional spaces on

the patch(0, 1)d,

V̂h =
{

v̂ : (0, 1)d → R
d | v̂ = v ◦ F , v ∈ Vh

}

, (3.122)

P̂h =
{

q̂ : (0, 1)d → R | q̂ = q ◦ F , q ∈ Ph

}

, (3.123)

and onΩ̄h:

V̄h =
{

v̄ : Ω̄h → R
d | v̄ = v̂ ◦ F̄−1

h , v̂ ∈ V̂h

}

, (3.124)

P̄h =
{

q̄ : Ω̄h → R | q̄ = q̂ ◦ F̄−1
h , q̂ ∈ P̂h

}

, (3.125)

GivenK ∈ Kh, we define the correspondingvertex element̄K as

K̄ = F̄h(F−1(K)) =
{

x ∈ Ω̄h|x = F̄h(F−1(y)), y ∈ K
}

(3.126)

The mesh of allK̄’s is referred to as thevertex mesh̄Kh. The union of allK̄ ∈ K̄h givesΩ̄h; also

note that theK̄ ’s are bilinear quadrilaterals and trilinear hexahedra inR
2 andR

3, respectively.K̄h

may be thought of as a coarsening of thecontrol net, or control mesh, in NURBS theory (see [18,

52]). The control net facilitates a geometric interpretation of the control points as it is a piecewise

multilinear interpolation ofall the control points. We recall thatFh interpolates only a subset of

the control points. See Box 1 for a schematic illustration ofthe setup and the relation between

mappings.
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Box 1. Geometrical setup.

Q is a parametric element,K is a geometric element, and̄K is a vertex element.K andK̄ are the

images ofQ under the mappingsF andF̄h, respectively. The tangent bundlesTQ, TK andTK̄ consist

of base points andd-dimensional vector spaces emanating from the base points.Corresponding to the

mappingsF andF̄h are the tangent mapsTF andT F̄h (and likewise their inverses). For example, we write

TF = (F, ∇F) and thus the tangent maps base points,ξ 7−→ F(ξ), and vectors by the linear transformation

ê(ξ) 7−→ ∇F(ξ)ê(ξ). Composite tangent maps transform by the chain rule, as illustrated in the figure.

Vertex elements are multilinear maps of parametric elements. ThusF̄h is bilinear in two dimensions and

trilinear in three. Geometric elements are portions of the exact geometry defined by NURBS. Underh-

refinement, the vertex elements converge to the geometric elements.πQ, πK andπK̄ are the canonical

projections onto the base elements.

Takingξ at a corner ofQ, we havex = F(ξ) andx̄ = F̄h(ξ), as shown, andT F̄h(ξ) = (F̄h(ξ), ∇F̄h(ξ))

andT F̄−1
h (x̄) = (F̄−1

h (x̄), ∇F̄−1
h (x̄)). The edge lengths are given byhêα

= ‖êα‖ andhēα
= ‖ēα‖,

1 ≤ α ≤ d. Furthermore,̄eα(x̄) = ∇F̄h(ξ)êα(ξ) andêα(ξ) = ∇F̄−1
h (x̄)ēα(x̄), from which easily follows

hēα
≤ ‖∇F̄h‖L∞(Q)hêα

andhêα
≤ ‖∇F̄−1

h ‖L∞(K̄)hēα
, and in turn (3.137).

Let x = F(ξ) where ξ ∈ Q is arbitrary. Likewise,ξ = F−1(x). SinceF ◦ F−1(x) = x,

∇F(ξ)∇F−1(x) = I, the identity matrix, and so∇F(ξ)−1 = ∇F−1(x). We write this as(∇F)−1 =

∇F−1 ◦ F. It is necessary to be careful with compositions and base points in the analysis. Similar results

may be derived for the other mappings.
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Lemma 3.4.2. There existsh′
max > 0 (only dependent on the shape regularity of the meshQh

and on the shape ofΩ), such that givenQ ∈ Qh, K = F(Q), K̄ as in (3.126) and assuming that

hQ ≤ h′
max, thenF̄h is a one-to-one mapping fromQ into K̄ and we have

‖∇F̄h‖L∞(Q) ≤ Cs‖∇F‖L∞(Q) (3.127)

‖∇F̄−1
h ‖L∞(K̄) ≤ Cs‖∇F−1‖L∞(K) (3.128)

‖det∇F̄h‖L∞(Q) ≤ Cs‖∇F‖d
L∞(Q) (3.129)

‖det∇F̄−1
h ‖L∞(K̄) ≤ Cs‖∇F−1‖d

L∞(K) (3.130)

Proof. We introduce the mapE and its derivative3

E = F̄h −F, ∇E = ∇F̄h − ∇F (3.131)

Note that a classical result gives the estimate for the interpolation error

‖∇E‖L∞(Q) ≤ CiehQ‖∇2F‖L∞(Q); (3.132)

therefore, we have4

‖∇F−1
∇E‖L∞(Q) ≤ ‖∇F−1‖L∞(Q)‖∇E‖L∞(Q) ≤ Cie‖∇F−1‖L∞(K)hQ‖∇2F‖L∞(Q).

In particular, if

hQ‖∇2F‖L∞(Q)‖∇F−1‖L∞(K) ≤ C−1
ie /2, (3.133)

then

‖∇F−1
∇E‖L∞(Q) ≤

1

2
. (3.134)

We set

h′
max := max

Q∈Qh

K=F(Q)

{

C−1
ie

2‖∇2F‖L∞(Q)‖∇F−1‖L∞(K)

}

;

3If linear NURBS are utilized,F andF̄h are the same and thusE = 0.
4We need to elaborate on the geometric meaning of∇F

−1
∇E. ∇F

−1(x) is a linear map from the tangent space
TxK to TξQ, wherex = F(ξ). Likewise,∇F(ξ):TξQ −→ TxK is its inverse. However,∇F̄h(ξ):TξQ → Tx̄K̄,
wherex̄ = F̄h(ξ). Thus, the images of∇F(ξ) and∇F̄h(ξ) reside in different tangent spaces, namely,TxK andTx̄K̄,
respectively. To make sense of∇F

−1
∇E, we need to identify the linear spaceTx̄K̄ with TxK so that∇E(ξ) =

∇F̄h(ξ)−∇F(ξ) may be viewed as a linear map fromTξQ to TxK. In other words, if̂e(ξ) 7−→ ∇F̄h(ξ)ê(ξ) ∈ Tx̄K̄,
then∇F̄h(ξ)ê(ξ) is parallel transported toTxK.
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condition (3.133) can be stated ash ≤ h′
max, which we assume in what follows. Observe that

∇F̄h(ξ) = ∇F(ξ) + ∇E (ξ) = ∇F(ξ)
(

Ī + (∇F)−1(ξ)∇E(ξ)
)

∀ξ ∈ Q, (3.135)

whence

‖∇F̄h‖L∞(Q) ≤
3

2
‖∇F‖L∞(Q), (3.136)

that is,Cs = 3
2 in (3.127). Furthermore, fixingξ ∈ Q, the right hand side of (3.135) is a non-singular

matrix, and, in particular,

‖
(

Ī + (∇F)−1(ξ)∇E(ξ)
)−1 ‖ ≤ (1 − ‖(∇F)−1(ξ)∇E(ξ)‖)−1 ≤ 2.

Therefore,∇F̄h is nonsingular and

‖(∇F̄h)−1‖L∞(Q) = ‖
(

Ī + (∇F)−1
∇E

)−1
(∇F)−1‖L∞(Q)

≤ ‖
(

Ī + (∇F)−1
∇E

)−1 ‖L∞(Q)‖(∇F)−1‖L∞(Q)

≤ 2‖∇F−1‖L∞(K).

Since‖∇F̄−1
h ‖L∞(K̄) = ‖(∇F̄h)−1‖L∞(Q), we get (3.128). The estimates (3.129) and (3.130)

follow easily from (3.127) and (3.128), respectively.

Given an elementQ ∈ Qh, let ê1 and ê2 be tangent vectors associated with any two ad-

jacent edges having lengthshê1 = ‖ê1‖ andhê2 = ‖ê2‖, respectively. Let̄e1 and ē2 denote the

corresponding edges of̄K, of lengthshē1 andhē2, respectively. Then, we have (see Box 1)

hē1

hē2

≤ ‖∇F̄−1
h ‖L∞(K̄)‖∇F̄h‖L∞(Q)

hê1

hê2

≤ Cs. (3.137)

where we also used the shape regularity ofQh in the last bound.

We have indeed more, as stated in the next result.

Lemma 3.4.3. Under the assumption of Lemma 3.4.2, the family of vertex meshes{K̄h}h is shape-

regular.

Proof. Since a uniform bound on the edge lengths ratio follows immediately from (3.137), we are

only left to prove a minimum angle condition for{K̄h}h. We will start addressing the cased = 2. In

addiction to the notation introduced above, denote byθ̄ the angle shared by the two adjacent edges

ē1 andē2 of K̄. We will prove that

| sin θ̄| ≥ Cs > 0. (3.138)
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Denoting byê1 and ê2 the two corresponding edges ofQ, andξ ∈ Q the common vertex,

then basic geometrical arguments give

| sin θ̄| =
‖ē1 × ē2‖
‖ē1‖ ‖ē2‖

=
‖∇F̄h(ξ)ê1 × ∇F̄h(ξ)ê2‖
‖∇F̄h(ξ)ê1‖ ‖∇F̄h(ξ)ê2‖

(3.139)

where “×” stands for the cross product. Sinceê1 and ê2 are orthogonal, then‖Aê1 × Aê2‖ =

|det A|‖ê1‖‖ê2‖ for all matricesA ∈ R
2×2. Therefore, from (3.139), we have

| sin θ̄| ≥ |det ∇F̄h(ξ)|
‖∇F̄h(ξ)‖2

. (3.140)

The uniform lower bound (3.138) now follows from (3.140) andLemma 3.4.2.

The cased = 3 follows similarly, the main difference being that now the inequality

|det A|‖ê1‖‖ê2‖‖ê3‖ = | (Aê1 × Aê2) · Aê3|
≤ ‖Aê1 × Aê2‖‖A‖‖ê3‖, (3.141)

which holds for any orthogonal vectorŝe1, ê2 andê3, is used to bound‖∇F̄h(ξ)ê1 × ∇F̄h(ξ)ê2‖
from below.

In order to prove Theorem 3.4.1 we use amacroelementtechnique (see [95],[94]). A

macroelementM̄ is a connected set of elements̄K ∈ K̄h (precisely,M̄ is the interior of the union

of the closure of adjacent elements̄K), therefore a subset of̄Ωh. In two dimensions we consider

macroelements made of two quadrilaterals that share an edge, while in three dimensions we con-

sider macroelements made of four adjacent hexahedra such that each shares two faces with other

two hexahedra and one edge with the last hexahedron. We denote byhM̄ the diameter ofM̄ . We

assume that the meshQh is made at least of2× 1 or of 2× 2× 1 elements whend = 2 or d = 3 re-

spectively, so that a macroelement partitioninḡMh of Ω̄h can be found (with possibly overlapping

macroelements) such that eachK̄ ∈ K̄h is contained in at least one and no more than two (ifd = 2)

or four (if d = 3) macroelements̄M of M̄h.

We associate to a macroelementM̄ ∈ M̄h the set

M̂ = F̄−1
h (M̄ ) =

{

ξ ∈ (0, 1)d such that̄Fh(ξ) ∈ M̄
}

.

M̂ is a macroelement on(0, 1)d.
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For a macroelement̄M we define the spaces

V̄0,M̄ = V̄h|M̄ ∩ H1
0 (M̄ ), (3.142)

P̄M̄ = P̄h|M̄ ; (3.143)

moreover, for brevity we denote by(·, ·)M̄ theL2(M̄ ) scalar product.

The next step is to obtain a local inf-sup condition, for the spacesV̄0,M̄ andP̄M̄ .

Lemma 3.4.4. Under the assumption of Lemma 3.4.2, there exists a constantCs > 0 such that,

givenM̄ ∈ M̄h and given anȳq ∈ P̄M̄ , there exists āv ∈ V̄0,M̄ for which

(∇ · v̄, q̄)M̄ ≥ CshM̄ |q̄|H1(M̄) − C ′
s
hM̄ ‖∇F̄−1

h ‖L∞(M̄) ‖q̄‖L2(M̄ ),

|v̄|H1(M̄) ≤ 1.
(3.144)

Proof. In [94], a similar inf-sup condition for quadrilateral Taylor-Hood type elements, which in

our context correspond to the case whenw is constant andd = 2, is proven. The purely polynomial

case ford = 3 is an easy extension of that result. We take it as a starting point for our analysis:

specifically, from [94] one can easily obtain:

w = constant ⇒ sup
v̄∈V̄0,M̄

(∇ · v̄, q̄)M̄
|v̄|H1(M̄)

≥ CshM̄ |q̄|H1(M̄), ∀q̄ ∈ P̄M̄ . (3.145)

Note that a key ingredient of the proof in [94] (and thereforeof (3.145)) is the regularity of the

mesh, here given by Lemma 3.4.3.

The inf-sup condition (3.145) implies that, whenw is not a constant and introducinḡw =

w ◦ F̄−1
h , we have

sup
v̄∈V̄0,M̄

(∇ · (w̄v̄), w̄q̄)M̄
|w̄v̄|H1(M̄)

≥ CshM̄ |w̄q̄|H1(M̄), ∀q̄ ∈ P̄M̄ . (3.146)

Givenq̄ ∈ P̄M̄ , we denote bȳv∗ ∈ V̄0,M̄ a function which realizes maximum of the quantity

(∇ · (w̄v̄), w̄q̄)M̄/|w̄v̄|H1(M̄ ). We want to show that

(∇ · v̄∗, q̄)M̄
|v̄∗|H1(M̄)

≥ CshM̄ |q̄|H1(M̄ ) − C ′
s
hM̄ ‖∇F̄−1

h ‖L∞(M̄)‖q̄‖L2(M̄), (3.147)

which gives (3.144).
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Denoting byw̄mv the mean value of̄w onM̄ , we have

(∇ · (w̄v̄∗), w̄q̄)M̄ = (w̄∇w̄ · v̄∗, q̄)M̄ + (w̄2
∇ · v̄∗, q̄)M̄

= (w̄∇w̄ · v̄∗, q̄)M̄ + ((w̄2 − w̄2
mv)∇ · v̄∗, q̄)M̄ + (w̄2

mv∇ · v̄∗, q̄)M̄
= I + II + III.

(3.148)

Recalling that̄Fh(M̂) = M̄ and making use of the chain rule, we have

‖w̄‖L∞(M̄) = ‖w‖L∞(M̂ ),

‖∇w̄‖L∞(M̄) ≤ ‖∇w‖L∞(M̂)‖∇F̄−1
h ‖L∞(M̄),

(3.149)

while, from the Friedrich-Poincaré inequality,

‖w̄ − w̄mv‖L∞(M̄ ) ≤ ChM̄‖∇w̄‖L∞(M̄)

≤ ChM̄‖∇w‖L∞(M̂)‖∇F̄−1
h ‖L∞(M̄)

(3.150)

and

‖v̄∗‖L2(M̄) ≤ ChM̄‖∇v̄∗‖L2(M̄). (3.151)

Notice also that, from the definition ofCs and recalling that̄wmv is positive, we can write

‖w‖L∞(M̂) ≤ Csw̄mv

‖∇w‖L∞(M̂) ≤ Csw̄mv .
(3.152)

Therefore, using the Cauchy-Schwarz inequality, (3.149),(3.151), and (3.152), we have

I = (w̄∇w̄ · v̄∗, q̄)M̄
≤ ‖w̄‖L∞(M̄)‖∇w̄‖L∞(M̄ )‖v̄∗‖L2(M̄)‖q̄‖L2(M̄ )

≤ ChM̄‖w‖L∞(M̂)‖∇w‖L∞(M̂ )‖∇F̄−1
h ‖L∞(M̄ )|v̄∗|H1(M̄)‖q̄‖L2(M̄)

≤ hM̄Csw̄
2
mv‖∇F̄−1

h ‖L∞(M̄)|v̄∗|H1(M̄ )‖q̄‖L2(M̄).

(3.153)

Furthermore, using the Cauchy-Schwarz inequality, (3.149), (3.150), and (3.152), we have

II = ((w̄2 − w̄2
mv)∇ · v̄∗, q̄)M̄

≤ ‖w̄ − w̄mv‖L∞(M̄)‖w̄ + w̄mv‖L∞(M̄)|v̄∗|H1(M̄ )‖q̄‖L2(M̄)

≤ ChM̄‖∇w‖L∞(M̂)‖w‖L∞(M̂)‖∇F̄−1
h ‖L∞(M̄)|v̄∗|H1(M̄ )‖q̄‖L2(M̄)

≤ hM̄Csw̄
2
mv‖∇F̄−1

h ‖L∞(M̄)|v̄∗|H1(M̄)‖q̄‖L2(M̄ ),

(3.154)
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while, of course,

III = w̄2
mv(∇ · v̄∗, q̄)M̄ . (3.155)

Using again the chain rule and (3.149), we have

|q̄|H1(M̄ ) = |w̄q̄

w̄
|H1(M̄)

≤ ‖∇(w̄q̄)

w̄
‖L2(M̄) + ‖w̄q̄∇

1

w̄
‖L2(M̄)

≤ ‖ 1

w̄
‖L∞(M̄)‖∇(w̄q̄)‖L2(M̄) + ‖∇ 1

w̄
‖L∞(M̄)‖w̄‖L∞(M̄ )‖q̄‖L2(M̄)

≤ ‖ 1

w
‖L∞(M̂)|w̄q̄|H1(M̄ ) + ‖∇F̄−1

h ‖L∞(M̄)‖∇
1

w
‖L∞(M̂)‖w‖L∞(M̂ )‖q̄‖L2(M̄),

(3.156)

which implies, using‖ 1
w‖−1

L∞(M̄)
≥ Csw̄mv, as well as‖∇ 1

w‖L∞(M̂ )‖w‖L∞(M̂) ≤ Cs,

|w̄q̄|H1(M̄) ≥ ‖ 1

w
‖−1

L∞(M̄)

(

|q̄|H1(M̄) − ‖∇F̄−1
h ‖L∞(M̄)‖∇

1

w
‖L∞(M̂)‖w‖L∞(M̂)‖q̄‖L2(M̄)

)

≥ Csw̄mv

(

|q̄|H1(M̄) − ‖∇F̄−1
h ‖L∞(M̄)‖q̄‖L2(M̄)

)

.

(3.157)

In a similar way, using also the Poincaré inequality‖w̄v̄∗‖L2(M̄) ≤ ChM̄ |w̄v̄∗|H1(M̄), we

have

|v̄∗|H1(M̄ ) ≤ ‖ 1

w
‖L∞(M̂)|w̄v̄∗|H1(M̄) + ‖∇F̄−1

h ‖L∞(M̄)‖∇
1

w
‖L∞(M̂)‖w̄v̄∗‖L2(M̄ )

≤
(

‖ 1

w
‖L∞(M̂) + ChM̄‖∇F̄−1

h ‖L∞(M̄)‖∇
1

w
‖L∞(M̂)

)

|w̄v̄∗|H1(M̄).
(3.158)

Moreover, following the steps as in (3.156)–(3.157) and usinghM̄ ≤ hM̂‖∇F̄h‖L∞(M̂) ≤ ‖∇F̄h‖L∞(M̂ )

together with‖∇F̄−1
h ‖L∞(M̄)‖∇F̄h‖L∞(M̂) ≤ Cs‖∇F−1‖L∞(F(M̂))‖∇F‖L∞(M̂ ) ≤ Cs, we have

|w̄v̄∗|H1(M̄) ≥ Csw̄mv|v̄∗|H1(M̄ ) (3.159)

Recalling that̄v∗ attains the supremum in (3.146), we can now collect the estimates (3.157),
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(3.159) and (3.153)–(3.155), getting

hM̄ w̄mv

(

|q̄|H1(M̄ ) − ‖∇F̄−1
h ‖L∞(M̄)‖q̄‖L2(M̄)

)

≤ CshM̄ |w̄q̄|H1(M̄)

≤ Cs

(∇ · (w̄v̄∗), w̄q̄)

|w̄v̄∗|H1(M̄)

≤ Cs

I + II + III

w̄mv|v̄∗|H1(M̄)

≤ Cs

(

hM̄ w̄mv‖∇F̄−1
h ‖L∞(M̄)‖q̄‖L2(M̄) +

w̄mv(∇ · v̄∗, q̄)
|v̄∗|H1(M̄)

)

,

(3.160)

which is, after dividing byw̄mv , (3.147). This concludes the proof.

We can get now a global inf-sup condition for the spacesV̄h ∩ H1
0 (Ω̄h) andP̄h. We set

h̄ = max
K̄∈K̄h

hK̄ . (3.161)

Lemma 3.4.5. Under the assumption of Lemma 3.4.2, there exists a constantCs > 0 such that,

given anyq̄ ∈ P̄h, there exists āv ∈ V̄h ∩ H1
0 (Ω̄h) for which

(∇ · v̄, q̄) ≥ Cs





∑

K̄∈K̄h

h2
K̄ |q̄|2H1(K̄)





1/2

− C ′
s
h̄‖∇F̄−1

h ‖L∞(Ω̄h)‖q̄‖L2(Ω̄h),

|v̄|H1(Ω̄h) ≤ 1.

(3.162)

Proof. For each macroelement̄M ∈ Mh, let w̄M̄ ∈ V̄h ∩ H1
0 (Ω̄h) such thatw̄M̄ = 0 in Ω̄h/M̄

and, according to Lemma 3.4.4,

(∇ · w̄M̄ , q̄)M̄ ≥ CshM̄ |q̄|H1(M̄) − C ′
s
hM̄ ‖∇F̄−1

h ‖L∞(M̄) ‖q̄‖L2(M̄ ),

|w̄M̄ |H1(M̄) ≤ 1.

Setting

w̄ =
∑

M̄∈Mh

hM̄ |q̄|H1(M̄)w̄M̄ ,

it is easy to see that (3.162) holds true for the rescaled vector fieldv = w̄/|w̄|H1(Ω̄h).

We are now ready to show the following proposition, which is the counterpart of Lemma

3.4.5 for the NURBS spacesVh, Ph.
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Proposition 3.4.1.Under the assumption of Lemma 3.4.2, there exists a constantCs > 0 such that,

given anyq ∈ Ph, there exists av ∈ Vh ∩ H1
0 (Ω) for which

(∇ · v, q) ≥ Cs





∑

K∈Kh

h2
K |q|2H1(K)





1/2

− C ′
s
h‖q‖L2(Ω),

|v|H1(Ω) ≤ 1.

(3.163)

Proof. Given any functionq in Ph, we definêq ∈ P̂h andq̄ ∈ P̄h

q̂ = q ◦ F q̄ = q̂ ◦ F̄−1
h (3.164)

Due to Lemma 3.4.5, we have the existence of a functionv̄ ∈ V̄h such that (3.162) holds true. We

introduce the functionŝv ∈ V̂h andv ∈ Vh as

v̂ = v̄ ◦ F̄h v = v̂ ◦ F−1 (3.165)

Recalling Lemma 3.4.2 and that‖∇F−1‖L∞(Ω)‖∇F‖L∞((0,1)d) ≤ Cs, change of variables leads to

the bounds

‖q̂‖L2((0,1)d) ≤ Cs‖∇F−1‖d/2
L∞(Ω)‖q‖L2(Ω), (3.166)

|v̂|H1((0,1)d) ≤ Cs‖∇F−1‖d/2−1
L∞(Ω)|v̄|H1(Ω̄h), (3.167)

‖q̄‖L2(Ω̄h) ≤ Cs‖q‖L2(Ω), (3.168)

hK |q|H1(K) ≤ CshK̄ |q̄|H1(K̄) ∀K̄ ∈ K̄h, (3.169)

|v|H1(Ω) ≤ Cs|v̄|H1(Ω̄h). (3.170)

A direct change of variables and simple algebra now give

(∇ · v, q) =

∫

Ω
(∇ · v)q

=

∫

(0,1)d

tr(|det∇F|∇F−T
∇v̂T )q̂

=

∫

(0,1)d

tr( [ |det∇F|∇F−T − |det∇F̄h|∇F̄−T
h ] ∇v̂T ) q̂

+

∫

(0,1)d

tr(|det∇F̄h|∇F̄−T
h ∇v̂T )q̂

= I + II.

(3.171)
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We now note that

(detA)A−T = Cof(A) ∀A ∈ R
d×d, detA 6= 0 (3.172)

whereCof(A) is the cofactor matrix ofA. Therefore, from the definition of̄Fh and classical inter-

polation results, it follows

‖ |det∇F|∇F−T − |det∇F̄h|∇F̄−T
h ‖L∞((0,1)d) ≤ Cs ‖∇F‖d−1

L∞((0,1)d)
h (3.173)

where a factor‖∇2F‖L∞((0,1)d)/‖∇F‖L∞((0,1)d) was included inCs. Note that this estimate re-

quires the use of NURBS of at least quadratic level. If linearNURBS are utilized the actual ge-

ometry is the vertex mesh. Inequality (3.173) is an estimateof the difference between the actual

geometry and the corresponding vertex mesh.

As a consequence, using first the Holder inequality and (3.173), then (3.167) and (3.166),

and recalling that|v̄|H1(Ω̄h) ≤ 1 and‖∇F−1‖L∞(Ω)‖∇F‖L∞((0,1)d) ≤ Cs, we obtain

I ≥ −Cs‖∇F‖d−1
L∞((0,1)d)

h ‖q̂‖L2((0,1)d)|v̂|H1((0,1)d)

≥ −Csh‖q‖L2(Ω). (3.174)

For termII, first a change of variables and then using (3.162) we get

II =

∫

Ω̄h

tr(∇v̄)q̄ ≥ Cs





∑

K̄∈K̄h

h2
K̄ |q̄|2H1(K̄)





1/2

− C ′
s
h̄‖∇F̄−1

h ‖L∞(Ω̄h)‖q̄‖L2(Ω̄h) (3.175)

Without showing the details, using the bounds (3.168), (3.169), using Lemma 3.4.2 and

recalling that̄h ≤ h‖∇F‖L∞((0,1)d), we easily have

Cs





∑

K̄∈K̄h

h2
K̄ |q̄|2H1(K̄)





1/2

− C ′
s
h̄‖∇F̄−1

h ‖L∞(Ω̄h)‖q̄‖L2(Ω̄h)

≥ Cs





∑

K∈Kh

h2
K |q|2H1(K)





1/2

− C ′
s
h‖q‖L2(Ω). (3.176)

Bounds (3.175) and (3.176) now give

II ≥ Cs





∑

K∈Kh

h2
K |q|2H1(K)





1/2

− C ′
s
h‖q‖L2(Ω). (3.177)
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After rescaling ofv, the identity (3.171) with the bounds (3.174) and (3.177), (3.162) and (3.170),

finally give (3.163).

Replacingq with q − qmv in (3.163), whereqmv is the mean value ofq on Ω, we get the

following obvious corollary.

Corollary 3.4.1. As in Proposition 3.4.1, given anyq ∈ Ph, there exists av ∈ Vh ∩ H1
0 (Ω) such

that

(∇ · v, q) ≥ Cs





∑

K∈Kh

h2
K |q|2H1(K)





1/2

− C ′
s
h‖q‖L2(Ω)/R,

|v|H1(Ω) ≤ 1.

(3.178)

We are now able to show the proof of Theorem 3.4.2.

Proof. (Theorem3.4.2) We will use an argument from Verfürth (see [109]). Due to the validity of

the continuous inf-sup condition onΩ and recalling thatPh ∈ L2(Ω), we have the existence of a

fixed positive constantC∗
shape such that for allq ∈ Ph there exists aw ∈ H1

0 (Ω) such that

(∇ ·w, q) ≥ C∗
shape‖q‖L2(Ω)/R (3.179)

|w|H1(Ω) ≤ 1 (3.180)

where we introduced the notationC∗
shape in order to keep track of the constants in what follows.

Using the scaled Poincaré inequality

‖w‖L2(Ω) ≤ diam(Ω)|w|H1(Ω),

bound (3.180) is equivalent to





∑

K∈Kh

‖∇F‖−2
L∞(F−1(K))

‖w‖2
L2(K)





1/2

+ |w|H1(Ω) ≤ Cs (3.181)

From Theorem 3.2.3 there exists a NURBS functionwI ∈ H1
0 (Ω) such that, for allK ∈ Kh,

‖w −wI‖2
L2(K) ≤ Csh

2
K

(

‖∇F‖−2
L∞(F−1(K))

‖w‖2
L2(K̃)

+ |w|2
H1(K̃)

)

, (3.182)

and, using also (3.181)

|wI |H1(Ω) ≤ Cs











∑

K∈Kh

‖∇F‖−2
L∞(F−1(K))

‖w‖2
L2(K)





1/2

+ |w|H1(Ω)






≤ Cs. (3.183)
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First integrating by parts, then using the Cauchy-Schwarz inequality and (3.179), finally applying

(3.182) and (3.181), it follows

(∇ ·wI , q) = (∇ · (wI −w), q) + (∇ ·w, q)

≥ −
∑

K∈Kh

‖wI −w‖L2(K)|q|H1(K) + C∗
shape‖q‖L2(Ω)/R

≥ −Cs





∑

K∈Kh

‖∇F‖−2
L∞(F−1(K))

‖w‖2
L2(K̃)

+ |w|2
H1(K̃)





1/2



∑

K∈Kh

h2
K |q|2H1(K)





1/2

+ C∗
shape‖q‖L2(Ω)/R

≥ −Cshape,1





∑

K∈Kh

h2
K |q|2H1(K)





1/2

+ C∗
shape‖q‖L2(Ω)/R (3.184)

Now, due to Corollary 3.4.1 and integrating by parts, we havethe existence of av ∈ Vh ∩
H1

0 (Ω) such that

(∇ · v, q) ≥ Cshape,2





∑

K∈Kh

h2
K |q|2H1(K)





1/2

− Cshape,3 h‖q‖L2(Ω)/R (3.185)

|v|H1(Ω) ≤ 1 (3.186)

We now introducev′ = wI + αv with α = Cshape,1 /Cshape,2 . From (3.184) and (3.185) it follows

(∇ · v′, q) ≥ (αCshape,2 − Cshape,1 )





∑

K∈Kh

h2
K |q|2H1(K)





1/2

+ (C∗
shape− αCshape,3 h)‖q‖L2(Ω)/R

= (C∗
shape−

Cshape,1 Cshape,3

Cshape,2
h)‖q‖L2(Ω)/R (3.187)

¿From (3.183) and (3.186) it is immediate to show that

|v′|H1(Ω) ≤ Cs (3.188)

Assume now that the meshQh satisfies

h ≤ h′′
max :=

1

2

C∗
shapeCshape,2

Cshape,1 Cshape,3
(3.189)

64



Then from (3.187) it follows

(∇ · v′, q) ≥
C∗

shape

2
‖q‖L2(Ω)/R (3.190)

for all meshes in the family.

Therefore, joining (3.190) and (3.188), we have found a positive constantC∗
shape such that

for all q ∈ Ph we have the existence of av′ ∈ Vh that satisfies

(∇ · v′, q) ≥
C∗

shape

2
‖q‖L2(Ω)/R (3.191)

|v′|H1(Ω) ≤ Cs (3.192)

Finally, note that the control on the globally constant pressures follows easily due to the fact that

ΓD 6= ∂Ω. The proposition is proved.

Remark 3.4.2. Note that, in order for Theorem 3.4.1 to be valid, both the bound (3.189) and the

assumptions of Lemma 3.4.2 must be satisfied. Therefore thehmax in Theorem 3.4.1 is given by

hmax = min (h′
max, h′′

max)

Remark 3.4.3. The numerical tests of the last section seem to show that the method is stable and

convergent for practical values of the mesh size. Then, the condition h ≤ hmax, which is needed

in the present theoretical analysis, does not seem to be restrictive in the practical case we have

considered.

Remark 3.4.4. The analysis of this section can be extended straightforwardly to the anisotropic

case where the displacement space is of polynomial degreep1 +1, p2 +1, .., pd +1 and the pressure

spacep1, p2, .., pd. The only point which differs is the starting polynomial inf-sup condition (3.145),

while the rest remains identical. The extension of such inf-sup condition to the anisotropic case can

be obtained with an easy modification of Lemma 3.2 in [94].

3.4.4 Advection-diffusion

As before, letΩ be the physical domain, and letΓD ≡ ∂Ω. Let f : Ω → R be the given body

force; a : Ω → R
d is the spatially varying velocity vector andK : Ω → R

d×d is the diffusivity

tensor, assumed symmetric positive definite; homogeneous Dirichlet boundary conditions onΓD are
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prescribed. The boundary value problem consists of solvingthe following equation foru : Ω → R:

Lu = f in Ω, (3.193)

u = 0 onΓD, (3.194)

where

Lu = a · ∇u − ∇ · (K∇u). (3.195)

For the purposes of analysis we assume divergence-free advective velocity field and isotropic diffu-

sion:

∇ · a = 0, (3.196)

K = κI, (3.197)

whereκ is a positive constant. The weak formulation of (3.193) is: find u ∈ H1
ΓD

(Ω) such that

∀v ∈ H1
ΓD

(Ω):

B(u, v) = F (v) in Ω, (3.198)

where

B(u, v) = (v,a · ∇u)Ω + (∇v, κ∇u)Ω, (3.199)

F (v) = (v, f)Ω. (3.200)

We wish to approximate (3.198) numerically in the NURBS spaceVh defined in Section 3.1 of this

document. Galerkin’s method is known to be unstable for (3.198) when advection dominates, so

we choose to concentrate on the set of techniques known as “stabilized methods”, namely SUPG,

GLS and Multiscale (dubbed MS for brevity). The MS version isalso referred to as the adjoint, or

”unusual,” stabilized method in the literature. These methods were designed to enhance stability

of Galerkin’s approach without compromising its accuracy.For background and early literature on

these formulations we refer the reader to [12], while the state-of-the-art literature on the subject may

be found in [2, 8, 9, 13, 17, 19, 37, 39, 40, 61, 70, 101]. Defining Ω̃ = ∪K,K ∈ Kh (i.e., the union

of element interiors) andVh = Vh ∩ H1
ΓD

(Ω), stabilized methods are stated as follows:

SUPG: finduh ∈ Vh such that∀vh ∈ Vh

BSUPG(uh, vh) = FSUPG(vh) in Ω, (3.201)
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with

BSUPG(u, v) = B(u, v) + (a · ∇v τ,Lu)Ω̃, (3.202)

FSUPG(v) = F (v) + (a · ∇v τ, f)Ω̃. (3.203)

GLS: finduh ∈ Vh such that∀vh ∈ Vh

BGLS(uh, vh) = FGLS(vh) in Ω, (3.204)

with

BGLS(u, v) = B(u, v) + (Lv τ,Lu)Ω̃, (3.205)

FGLS(v) = F (v) + (Lv τ, f)Ω̃. (3.206)

MS: finduh ∈ Vh such that∀vh ∈ Vh

BMS(uh, vh) = FMS(vh) in Ω, (3.207)

with

BMS(u, v) = B(u, v) − (L∗v τ,Lu)Ω̃, (3.208)

FMS(v) = F (v) − (L∗v τ, f)Ω̃, (3.209)

whereL∗ is an adjoint ofL and is given as

L∗v = −a · ∇v − κ∆v. (3.210)

In expressions (3.201)-(3.207) a stabilization parameterτ appears, its definition is critical for ac-

curacy, stability and convergence characteristics of the above methods. We adopt expressions pre-

sented in Franca, Frey and Hughes [31] and give them here for completeness:

τ(x, PeK(x)) =
hK

2‖a(x)‖ξ(PeK(x)) (3.211)

PeK(x) =
‖a(x)‖hK

2κ
(3.212)

ξ(PeK(x)) = min{mkPeK(x), 1} (3.213)

mK = min{1

3
,

2

Cinv
} (3.214)
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The above expressions are defined from error analysis considerations. K is any element in the

partition Kh of Ω, Cinv is the smallest constant satisfying the local inverse estimate of Theorem

3.3.1 with a corresponding definition ofhK .

We briefly show analysis of stabilized formulations for advection-diffusion employing NURBS

approximation spaces. The approach we use is very similar tothat of the stabilized formulations of

incompressible elasticity. In what follows we concentrateon SUPG, other methods are analyzed in

a similar fashion.

Lemma 3.4.6. The bilinear form defined in (3.201) inherits the following stability property:

BSUPG(w,w) ≥ C|||w|||2 ∀w ∈ Vh, (3.215)

where

|||w|||2 = κ‖∇w‖2
L2(Ω) + ‖τ1/2a · ∇w‖2

L2(Ω). (3.216)

The above result, which can be easily verified (see, for example, Franca, Frey and Hughes

[31]), is a consequence of boundary conditions, definition of the stabilization parameterτ , and the

inverse estimate of Theorem 3.3.1. Continuity properties of BSUPG(·, ·) are stated in the following

lemma.

Lemma 3.4.7. The bilinear form defined in (3.201) is continuous in the following sense:

BSUPG(w, v) ≤ C|||w||| ||||v|||| ∀w ∈ Vh, ∀v ∈ H1
ΓD

(Ω) ∩ H2(Ω̃), (3.217)

with the norm above is defined as

||||v||||2 = κ‖∇v‖2
L2(Ω) + ‖τ−1/2v‖2

L2(Ω) (3.218)

+ ‖τ1/2a · ∇v‖2
L2(Ω) + ‖τ1/2κ∆v‖2

L2(Ω̃).

This result follows by a direct computation. Having established coercivity and continuity,

we proceed with the error estimate as follows. Define the following quantities

e = u − uh (numerical error) (3.219)

η = u − Π0
Vh

u (interpolation error) (3.220)

eh = Π0
Vh

u − uh = Π0
Vh

e (discrete error), (3.221)
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and compute:

|||eh|||2 ≤ C B(eh, eh) (coercivity)

= C B(eh,−η) (Galerkin orthogonality)

≤ C|||eh||| ||||η|||| (continuity). (3.222)

Relation (3.222) combined with the triangle inequality gives a bound on the numerical error in the

solution in terms of the interpolation error

|||e||| ≤ C||||η||||. (3.223)

The following theorem establishes convergence rates of themethods in question posed over

NURBS spaces.

Theorem 3.4.3.Assumingu ∈ Hp+1, there existsCs > 0 such that

|||u − uh|||2 ≤ C
∑

K

(‖a‖L∞(K)hK
2p+1 + κhK

2p)

p+1
∑

i=0

‖∇F‖2(i−p−1)
L∞(F−1(K))

|u|2Hi(K) (3.224)

Proof. Given the definition ofτ , the following bounds are easily established (see, for example,

Franca, Frey and Hughes [31]):

‖τ−1/2η‖2
L2(K) ≤ C(κ/h2

K + ‖a‖L∞(K)/hK)‖η‖2
L2(K), (3.225)

‖τ1/2a · ∇η‖2
L2(K) ≤ C(κ + ‖a‖L∞(K)hK)‖∇η‖2

L2(K), (3.226)

‖τ1/2κ∆η‖2
L2(K) ≤ C(κh2

K + ‖a‖L∞(K)h
3
K)‖∆η‖2

L2(K). (3.227)

Using inequality (3.223) together with the above bounds, the local error estimate (3.61), and sum-

ming over all the elements inKh yields the final result.

3.5 Numerical Examples

In this section we report on the results of numerical computations performed with NURBS. We

consider examples from compressible and incompressible linear elasticity as well as advection-

diffusion. The first two examples were already presented in [52], we repeat them here as evidence

in support of convergence theory put forth in the preceding sections of this document. On all the

convergence plots the error quantity plotted on the ordinate axis is absolute. In all cases computa-

tional results are in agreement with the theoretical findings.
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3.5.1 Solid elastic circular cylinder subjected to internal pressure loading

This problem falls within the framework of Section 3.4.1. The problem specification is shown in

Figure 3.5. It is a simple matter to obtain an exact solution assuming the pressure varies at most cir-

cumferentially (see Gould [36], pp. 117-119). The internalpressure was assumed to vary ascos(2θ)

and the exact solution is thus of classC∞. Meshes developed fromh-refinement are shown in Fig-

ure 3.6. Quadratic, cubic, and quartic NURBS were employed.As in all of the examples considered

herein, the exact geometry is incorporated in the coarsest mesh and is maintained throughout the

refinement process. A rational quadratic basis is the minimum order capable of exactly representing

the cylindrical geometry. The cubic and quartic cases were obtained from the quadratic case by

k-refinement [18, 52], in which case the degree of continuity was increased toC2 andC3, respec-

tively. The rates of convergence of the error measured in theenergy norm (the natural norm for

the problem, equivalent to theH1-norm) are presented in Figure 3.7. The rates of convergencefor

quadratic, cubic, and quartic NURBS elements are optimal, that is, 2, 3, and 4, respectively. This

problem falls within the hypotheses of our theoretical framework and the optimal convergence rates

are consistent with the results of Section 3.4.1.

uz = 0

Zero shear
Internal pressure

P = P (θ)

Top view

Ro

Ri

Figure 3.5: Thick cylinder pressurized internally.

3.5.2 Infinite elastic plate with circular hole under constant in-plane tension in the
x-direction

This is a two-dimensional problem of linear elasticity, falling within the framework of section 5.1.

The infinite plate is modeled by a finite quarter plate. The exact solution (Gould [36], pp. 120-123),
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Mesh 1 Mesh 2

Mesh 3 Mesh 4

Figure 3.6: Solid circular cylinder meshes
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Figure 3.7: Solid circular cylinder with varying internal pressure. Convergence of the error in the
energy norm for quadratic, cubic, and quartic NURBS discretizations.

Exact traction
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Figure 3.8: Elastic plate with a circular hole: problem definition.
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evaluated at the boundary of the finite quarter plate, is applied as a Neumann boundary condition.

The setup is illustrated in Figure 3.8.Tx is the magnitude of the applied stress at infinity,R is the

radius of the traction-free hole,L is the length of the finite quarter plate,E is Young’s modulus, and

ν is Poisson’s ratio. As in the previous example, a rational quadratic basis is the minimum order

capable of exactly representing a circle.

The first six meshes used in the analysis are shown in Figure 3.9. The cubic and quartic

NURBS are obtained by order elevation of the quadratic NURBSon the coarsest mesh (for details

of the geometry and mesh construction, see [52]). Continuity of the basis isCp−1 everywhere, ex-

cept along the line which joins the center of the circular edge with the upper left-hand corner of the

domain. There it isC1 as is dictated by the coarsest mesh employing rational quadratic parameteri-

zation. Convergence results in theL2-norm of stresses (which is equivalent to theH1-seminorm of

the displacements) are shown in Figure 3.10. As can be seen, theL2-convergence rates of stress for

quadratic, cubic, and quartic NURBS are 2, 3, and 4, respectively. The geometrical mapping used in

this example does not conform to the assumptions of the theory, namely, in the elements adjacent to

the upper left-hand corner of the domain‖F−1‖W 1,∞ is not uniformly bounded. This was a choice,

not a neccessity. Nevertheless, optimal convergence ratesare still attained.

Mesh 1 Mesh 2 Mesh 3

Mesh 4 Mesh 5 Mesh 6

Figure 3.9: Elastic plate with circular hole. Meshes produced byh-refinement (knot insertion).
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Figure 3.10: Error measured in theL2-norm of stress vs. mesh parameter.
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3.5.3 Constrained block subjected to a trigonometric load

In this two-dimensional example we consider a fully constrained square of incompressible elastic

material loaded externally. This problem falls within the framework of Sections 3.4.2 and 3.4.3. It

was designed by Auricchioet al. [4], and the setup is illustrated in Figure 3.11, whereu = (u, v)

is a displacement vector,µ is the shear modulus andL is the edge half-length. Note that in this case

pressure is determined up to an arbitrary constant, so for the purposes of computing anL2 error of

the pressure field, the constant mode is removed from the pressure solution. The load and boundary

conditions are selected in such a way that the analytical solution is easily obtained. We give them

here for completeness:

u = −cos2 x cos y sin y

2

v =
cos2 y cos x sin x

2
p = sin(x2y)

f1 = µ cos y sin y(1 − 4 cos2 x) − 2xy cos(x2y)

f2 = −µ cos x sinx(1 − 4 cos2 y) − x2 cos(x2y) (3.228)

u = 0 u = 0

u = 0

u = 0(−L,−L)

(L,L)(−L,L)

(L,−L)

f = (f1, f2)

L = π/2

µ = 40

Figure 3.11: Trigonometric load problem setup.

75



Meshes 1, 3, and 5 used in the computations are shown in Figure3.12. Distortion of the

mesh was introduced at the coarsest level of discretizationand maintained throughout the refine-

ment. Three studies were performed for this problem. In the first study we used aC1-continuous

rational quadratic basis for bothu andp and employed the Douglas-Wang stabilized formulation.

The results of this study are shown on the top plot of Figure 3.13. The other stabilized methods

behaved in the same fashion and thus the results are not shown. Optimal convergence of theL2-

norm and theH1-seminorm of the displacement error and theL2-norm of the pressure error is

obtained. The results are consistent with the theoretical predictions of Section 3.4.2. In the second

study we used BB-compatible spaces: aC0 rational quadratic basis forp andC0 rational cubic

basis foru obtained from the former by degree elevation. These spaces are stable and convergent

within Galerkin’s method according to the results of Section 3.4.3. The first four of the five meshes

were used in the calculations and the results are presented in the middle plot of Figure 3.13. All

results converge optimally, in agreement with the theory inSection 3.4.3. In the third study we

again used quadratic pressure and cubic displacement, butC1-continuity was enforced. This case is

not covered in the theory of Section 3.4.3, yet optimal convergence is again obtained, as shown in

the bottom plot of Figure 3.13. We conjecture that this type of discretization is BB-stable.

Mesh 1 Mesh 3 Mesh 5

Figure 3.12: Trigonometric load problem meshes produced byh-refinement (knot insertion).

3.5.4 Driven cavity problem

The driven cavity problem is a two-dimensional Stokes flow calculation that is often used as a

test of numerical stability. The equations of Stokes flow areidentical to the equations of linear,

isotropic, incompressible elasticity, only the interpretation is different. In Stokes flowu = (u, v)

is the velocity vector andµ is the dynamic viscosity (see, e.g., [44]). In the exact specification of

this problem, the velocity boundary condition is discontinuous at the upper two corners, that is,

at (0, L) and (L,L); see Figure 3.14 for the problem setup. This produces singular pressures in
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Figure 3.13: Trigonometric load problem. Convergence to the analytical solution for displacement
and pressure. Top: Douglas-Wang stabilization, equal-order, quadratic,C1-continuous bases. Mid-
dle: Galerkin’s method, cubic displacement, quadratic pressure,C0-continuous bases. Bottom:
Galerkin’s method, cubic displacement, quadratic pressure,C1-continuous bases.
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both corners which tend to cause unstable formulations to fail in dramatic fashion. The mesh is

comprised of16×16 square elements. In the first two examples, the pressure discretization is taken

to beC1 quadratic splines. The velocity space is the same in the firstexample and consists ofC1-

cubic splines in the second. Figure 3.15 compares solutionsobtained with the Galerkin formulation.

As expected, the equal-order combination produces an unstable result, as is especially apparent for

pressure, while the mixed interpolation case appears to be quite stable. The solution is very similar

to that presented in Franca, Frey and Hughes [31]. Figure 3.16 shows a stabilized GLS computation

for equal-order cases. Both thep = 2 andp = 3 results appear stable and are again in general

agreement with [31]. As may be gleaned from Figures 3.15 and 3.16, the velocity at the upper

corners is set tou = (1, 0). This is referred to as the “leaky” boundary condition treatment (see

[44] for further elaboration).

Remark 3.5.1. Three-dimensional computations of other boundary-value problems (not shown)

with the same bases used in this study yielded consistent results, namely, the stabilized methods

produced stable calculations with equal-order NURBS whereas the Galerkin formulation did not,

and the Galerkin method with velocity one order higher than pressure produced stable results when

both velocity and pressure had the same order of continuity across element boundaries. Our theoret-

ical results in Section 3.4.3 only pertain toC0-continuous interpolations, but there is considerable

evidence that the higher-order uniformly continuous casesare stable as well.

3.5.5 Advection-diffusion in a hollow cylinder

The problem geometry and parameters are given on Figure 3.17. The axisymmetric analytical solu-

tion behaves logarithmically in the radial direction and exponentially in the axial direction, viz.,

u(r, z) =
(eaz/κ − eaL/κ) log(r)

(1 − eaL/κ) log(2)
(3.229)

Four meshes, composed of 32, 256, 2,048 and 16,384 elements,were used. The first three are

depicted in Figure 3.18. The meshes are “biased” toward the outflow where a boundary layer occurs.

Two values of the diffusivity were considered. In the first case,κ was chosen to be 0.025, which

produces a solution than can be fairly well resolved by meshes 2-4. In the second case,κ was

selected to be0.00625, and the boundary layer is fairly well resolved only by the finest mesh. A

rational quadratic basis is employed in each parametric direction and no symmetry was assumed, yet

a pointwise axisymmetric response was obtained in all casesas can be seen in Figure 3.19. All three

stabilized formulations were implemented and compared with the Galerkin solution. In the case of

the larger value ofκ, all methods produced an optimally convergent solution in both theL2-norm

andH1-seminorm as can be seen in Figure 3.20. This is consistent with the theory of Section 3.4.4.
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u = 0u = 0

u = 0

u = (1, 0)

(0, 0) (L, 0)

(0, L) (L,L)

L = 1
µ = 0.5

Figure 3.14: Driven cavity problem setup.

Figure 3.15: Driven cavity problem. Velocity vectors superposed on pressure contours. Left:
Galerkin solution with equal-order discretization (p = 2). Right: Galerkin solution with unequal-
order discretization (p = 2 for the pressure andp = 3 for the velocity).
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Figure 3.16: Driven cavity problem. Velocity vectors superposed on pressure contours. GLS solu-
tion with equal-order discretization. Left:p = 2, Rightp = 3.
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The same error norms were computed for the case of smaller diffusivity (κ = 0.00625). Galerkin’s

method produced a globally oscillatory solution on coarsermeshes, which resulted in a large global

L2-error compared with the stabilized solutions (see Figure 3.21). TheH1-error for all methods was

suboptimal, which is not surprising, as the major contribution comes from the very thin, unresolved,

outflow boundary layer. In order to remove the effect of the boundary layer, we computed the error

on the part of the domain which excludes it (i.e.,{0 < z < 4.95} × {1 < r < 2}). TheH1-error is

much better behaved for the stabilized methods. The optimalorder of convergence is observed for

bothH1- andL2-norms in these cases. The results are typical of stabilizedfinite element methods

in that “localization” or “interior” estimates can be proven (see, e.g., Johnson, Nävert and Pitk̈aranta

[59] and Wahlbin [111]). These estimates are also knownnot to hold for Galerkin finite element

methods, for which unresolved layers result in global pollution. This phenomenon is also evident

here in Figure 3.21. On the finest mesh, error measures for theGalerkin and stabilized methods

seem to coincide, which suggests that the asymptotic regimehas been reached.

u = 0u = 0

u = log r
log 2

Flow

∂u
∂r = ePe(z)−ePe(L)

(1−ePe(L))2 log 2

|a| = 1
κ = 0.025, 0.00625

L = 5, Ri = 1, Ro = 2

Pe(z) = |a|z/κ = z/κ

Figure 3.17: Advection-diffusion in a hollow cylinder. Problem setup.
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Figure 3.18: Advection-diffusion in a hollow cylinder. Meshes 1-3.

82



Solution on the whole domain

Zoom on the outflow boundary layer

Figure 3.19: Advection-diffusion in a hollow cylinder. Solution contours on the finest mesh,κ =
0.025.
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Figure 3.20: Advection-diffusion in a hollow cylinder,κ = 0.025. Convergence rates.
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Figure 3.21: Advection-diffusion in a hollow cylinder,κ = 0.00625. Convergence rates.
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Figure 3.22: Advection-diffusion in a hollow cylinder,κ = 0.00625. Convergence rates outside of
the boundary layer.
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Chapter 4

Variationally Consistent Multiscale

Turbulence Modeling

4.1 Small-scale Green’s operator, small-scale Green’s function, and

connection with stabilized methods

In this section we review the concepts of the small-scale Green’s operator and the small-scale

Green’s function introduced in Hughes and Sangalli [54]. These objects play a fundamental role

in the design and analysis of numerical methods based on the variational multiscale approach. Fur-

ther in this chapter we will apply the VMS ideas to turbulencemodeling.

Let V be a Hilbert space, endowed with the inner-product(·, ·)V , and the norm‖ · ‖V =

(·, ·)1/2
V . Let V ∗ be its dual and let< ·, · >V,V ∗ denote a duality paring betweenV andV ∗. Let

L : V → V ∗ represent a linear isomorphism, and letf ∈ V ∗.

Consider the following abstract variational problem: Findv such that∀w ∈ V ∗

< w,Lv >V ∗,V =< w, f >V ∗,V . (4.1)

Formally, solution of (4.1) may be expressed by means of a Green’s operatorG : V ∗ → V as

v = Gf. (4.2)

Let V̄ be a closed subspace ofV . We will refer toV̄ as the space of coarse or large scales.

Let P : V → V̄ be a linear projector ontōV , with P2 = P, and V̄ = RangeP. We define

V ′ = KerP and refer to it as the space of small or fine scales. It is also a closed subspace ofV .
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With this construction, the spaceV engenders a decomposition

V = V̄ ⊕ V ′. (4.3)

The above decomposition means that anyu ∈ V has a unique representationu = ū + u′, where

ū ∈ V̄ , u′ ∈ V ′, ū = Pu, andu′ = u − Pu.

The aim of the VMS approach is to approximate (4.1) inV̄ and obtain the solution̄v = Pv,

wherev solves the full problem (4.1). It is shown in Hughes and Sangalli [54] that the above design

condition is met when the following variational formulation is employed: Find̄v ∈ V̄ such that

∀w̄ ∈ V̄

< w̄,Lv̄ >V ∗,V − < w̄,LG′Lv̄ >V ∗,V =< w̄, f >V ∗,V − < w̄,LG′f >V ∗,V . (4.4)

G′ above is the small-scale Green’s operator, it is defined as

G′ = G − GPT (PGPT )−1PG, (4.5)

wherePT : V̄ ∗ → V ∗ is the transpose ofP.

Approximate solutions to (4.1) are typically constructed in finite-dimensional spaces. For

V̄ finite-dimensional, one has the following characterization of the fine scales: there exists a set of

functionals{µi}N
i=1 ∈ V ∗, such that

< µi, u >V ∗,V = 0 ∀i = 1, . . . , N ⇐⇒ Pu = 0, (4.6)

whereN is the dimension of̄V . In this case, the small-scale Green’s operator (4.5) becomes

G′ = G − GµT (µGµT )−1µG, (4.7)

where

µG(ν) =









< µ1,Gν >V ∗,V

...

< µN ,Gν >V ∗,V









∀ν ∈ V ∗, (4.8)

GµT =
[

Gµ1 . . . GµN

]

, (4.9)
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and

µGµT =









< µ1,Gµ1 >V ∗,V . . . < µ1,GµN >V ∗,V

...
. . .

...

< µN ,Gµ1 >V ∗,V . . . < µN ,GµN >V ∗,V









∈ R
N×N . (4.10)

The above abstract framework extends to the case whenL in (4.1) is a second-order linear par-

tial differential operator,V = H1
0 (Ω), V ∗ = H−1(Ω), andΩ ∈ R

d is the spatial domain. In this

case the solution operatorG in (4.2) is represented by a Green’s function,g : Ω × Ω → R, as

v(x) =

∫

Ω
g(x,y)f(y)dΩ. (4.11)

V̄ is identified with a finite-dimensional subspace ofV . It is defined as a span of a set of basis func-

tions, such as trigonometric polynomials, standard polynomial finite element functions, or NURBS.

A linear projector may be a defined through a scalar product(·, ·) : V × V → R on V , possibly

different from(·, ·)V , as

(w̄,Pu) = (w̄, u) ∀w̄ ∈ V̄ , u ∈ V. (4.12)

This construction leads to an orthogonal projector, that is, ū is orthogonal tou′ with respect to the

scalar product(·, ·), where, as before,̄u = Pu andu′ = u − ū. In the case when the scalar product

is taken to be theH1
0 (Ω) inner product,P becomes theH1

0 -projector. AnL2-projector is obtained

when the scalar product is theL2(Ω) inner product. Just as before, the space of fine scales,V ′, may

be characterized by

∫

Ω
µi(x)u(x)dΩ = 0 ∀i = 1, . . . , N ⇐⇒ Pu = 0, (4.13)

whereµi(x) are distributions and the integral is interpreted in the distributional sense. For example,

when V̄ is a standard finite element space comprised of piece-wise polynomial functions andH1
0

projector is used, from (4.12) one obtains

0 =

∫

Ω
∇Ni(x) · ∇u′(x)dΩ =

∫

Ω̃
−∆Ni(x)u′(x)dΩ +

∫

Γ̃
J∇Ni(x) · nKu′(x)dΓ, (4.14)

where{Ni(x)}N
i=1 is a basis forV̄ , n is the element boundary outward unit normal vector,J·K is

the standard “jump” operator, and̃Γ andΩ̃ denote the union of element boundaries and interiors,
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respectively. Comparing the above expression with (4.14),one may think ofµi’s as:

µi(x) = −∆Ni(x) on Ω̃, andµi(x) = J∇Ni(x) · nK on Γ̃. (4.15)

In the case ofL2 projection, one can setµi(x) = Ni(x).

Let B(·, ·) : V × V → R represent the bi-linear form associated withL. Then the VMS

formulation (4.4) becomes: Find̄v ∈ V̄ , such that∀w̄ ∈ V̄

B(w̄, v̄) −
∫

Ω
L∗w̄(x)v′(x)dΩ =

∫

Ω
w̄(x)f(x)dΩ, (4.16)

where

v′(x) =

∫

Ω
g′(x,y)(Lv̄ − f)(y)dΩ, (4.17)

L∗ is the adjoint ofL, and the above integrals are interpreted in the sense of distributions.g′(x,y) in

(4.17) is the small-scale Green’s function, which in directanalogy with (4.7), takes on the following

definition

g′(x,y) = g(x,y) −
[

∫

Ω g(x, ỹ)µ1(ỹ)dỹ . . .
∫

Ω g(x, ỹ)µN (ỹ)dỹ
]

(4.18)

×









∫

Ω×Ω g(x̃, ỹ)µ1(x̃)µ1(ỹ)dx̃dỹ . . .
∫

Ω×Ω g(x̃, ỹ)µ1(x̃)µN (ỹ)dx̃dỹ
...

. ..
...

∫

Ω×Ω g(x̃, ỹ)µN (x̃)µ1(ỹ)dx̃dỹ . . .
∫

Ω×Ω g(x̃, ỹ)µN (x̃)µN (ỹ)dx̃dỹ









−1

×









∫

Ω g(x̃,y)µ1(x̃)dx̃
...

∫

Ω g(x̃,y)µN (x̃)dx̃









.

Small-scale Green’s function in (4.18) depends on the full Green’s function for the contin-

uous problem as well as on the functionalsµi, which define the relationship between the solution

of the continuous problem and its discrete counterpart. As aresult, different numerical methods are

obtained for different choices of the linear projectorP. Dependence on the particular discretization

is also reflected inµi’s.

It is argued in Hughes and Sangalli [54] that whileg(x,y) is globally supported overΩ×Ω,

g′(x,y) is highly localized for the right choice of the projector. The latter property opens the door

for the design of efficient numerical methods which deliver near optimal discrete solutions. Indeed,
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inserting (4.17) into (4.16), one obtains the formulation:Find v̄ ∈ V̄ such that∀w̄ ∈ V̄

B(w̄, v̄)−
∫

Ω×Ω
L∗w̄(x)g′(x,y)Lv̄(y)dxdy = (4.19)

∫

Ω
w̄(x)f(x)dΩ −

∫

Ω×Ω
L∗w̄(x)g′(x,y)f(y)dxdy.

Localization property of the small-scale Green’s functionimplies that integrals overΩ × Ω may be

restricted to much smaller subdomains, and are conducive toefficient implementations.

For the case of a 1-D steady advection-diffusion equation, if one approximates the solution

with C0-continuous finite elements and demandsH1 optimality of the discrete solution with respect

to its continuous counterpart, integrals overΩ×Ω reduce to the sum of the integrals overΩe ×Ωe,

whereΩe is an individual element. Furthermore, only moments ofg′ are required as the element-

level residuals reside in polynomial spaces. For the case oflinear elements and element-wise con-

stant forcing, average of the element-level Green’s function is sufficient to obtain anH1-optimal

method, which is SUPG [12]. The situation is different in multi-dimensions. Since fine scales

are not confined to element interiors, support ofg′ escapesΩe × Ωe. Moments of element-level

Green’s function are no longer enough to construct anH1-optimal method and one needs to resort

to approximation. One such approximation embodies a familyof well-known stabilized methods,

which mimic the structure of the VMS formulation by replacing (4.19) with: Findv̄ ∈ V̄ such that

∀w̄ ∈ V̄

B(w̄, v̄)−
∑

e

∫

Ωe

L∗w̄(x)τ(x)Lv̄(x)dx = (4.20)

∫

Ω
w̄(x)f(x)dΩ −

∑

e

∫

Ωe

L∗w̄(x)τ(x)f(x)dx,

where an element-wise functionτ(x) is a stabilization parameter that reflects the properties of

the small-scale Green’s function. Despite their simplicity, stabilized methods perform remarkably

well for incompressible and advection-dominated phenomena as can be inferred from the previous

chapter. This is a direct consequence of the localization property of the fine-scale Green’s function.

Stabilized methods of the form (4.20) can also be viewed as VMS methods with local algebraic

approximations to the fine scales. Namely,

v′(x) =

∫

Ω
g′(x,y)(Lv̄ − f)(y)dΩ ≈ τ(x)(Lv̄ − f)(x). (4.21)

This approximation will be employed in the next section in which we derive a class of residual-based

turbulence models based on the VMS approach.
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4.2 Theoretical formulation of residual-based turbulencemodeling

In this section we present the theoretical formulation of the the variationally consistent residual-

based turbulence model. We begin with the incompressible Navier-Stokes problem posed over

continuous spaces and apply the VMS methodology in order to derive a class of residual-based

turbulence models. Time dependent, incompressible Navier-Stokes partial differential equations are

taken as a departure point for the upcoming developments. Itis believed that a suitable class of weak

solutions of INS are in fact turbulent solutions. For the purposes of the numerical treatment of INS,

existence and sufficient regularity of solutions is assumeda priori. For details of the mathematical

theory of the INS the reader is referred to Foiaset al. [29], and references therein.

4.2.1 Continuous formulation of incompressible Navier-Stokes equations

Space−time cylinder

Space−time slab

T

0
tn

tn+1

ΩΩ

ΓΓ

Q
B Qn

Bn

Figure 4.1: A graphical depiction of a space-time cylinder and a space-time slab.

Let Ω ∈ R
d be the physical domain of the problem,Γ = ∂Ω is its boundary and(0, T ) is

a time interval of interest. LetQ = Ω × (0, T ) be the space-time cylinder obtained by extruding

the spatial domainΩ along the time axis, andB = Γ × (0, T ) be its lateral boundary. Let(0, T )

be decomposed intonmax time intervals such that(0, T ) = ∪n=nmax
n=1 (tn, tn+1). As a resultQ is

decomposed into space-time slabsQn = Ω×(tn, tn+1), with lateral boundariesBn = Γ×(tn, tn+1),

wheren = 1, . . . , nmax. For an illustration of these concepts see Figure 4.1.
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Incompressible Navier-Stokes equations in the weak or variational form on the space-time

slab n are stated as: Find a velocity-pressure pairV = (v, p) ∈ Vn,v = 0 onBn, such that

∀W = (w, q) ∈ Vn,w = 0 onBn

Bn(W ,V ) = Fn(W ) (4.22)

whereBn(·, ·) is a semi-linear form andFn(·) is a linear functional defined as

Bn(W ,V ) = (−∂w

∂t
, ρv)Qn + (w(t−n+1), ρv(t−n+1))Ω

− (∇sw, ρv ⊗ v + pI − µ∇sv)Qn + (q,∇ · v)Qn (4.23)

and

Fn(W ) = (w, ρf)Qn − (w(t+n ), ρv(t−n )). (4.24)

In the above equations∇s(·) = 1
2(∇(·) + ∇(·)T ) is the symmetric gradient,(·, ·) is theL2 inner

product,f : Ω → R
d is the body force per unit mass,I is the identity tensor, andρ andµ are

the density and viscosity of the fluid. Of particular interest is the case of smallerµ that generates

“turbulent” solutions, that is, solutions possessing a wide range of spatial and temporal scales.

Quantityv(t±n ) is defined in a standard way as

v(t±n ) = lim
ǫ→0

v(tn ± ǫ). (4.25)

Variational equations (4.22-4.24) imply satisfaction of linear momentum, incompressibility con-

straint, and initial conditions, namely

L(v, p) − ρf = 0 on Qn, (4.26)

∇ · v = 0 on Qn, (4.27)

v(t+n ) − v(t−n ) = 0 on Ω, (4.28)

where

L(v, p) = ρ
∂v

∂t
+ ρ∇ · (v ⊗ v) + ∇p −∇ · (2µ∇sv). (4.29)

We also introduce the “advective” form of the above operator

Ladv(v, p) = ρ
∂v

∂t
+ ρv · ∇v + ∇p − µ∆v. (4.30)
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It is obtained from (4.29) by using the incompressibility constraint in the advective and the viscous

stress terms.

Remark 4.2.1. Typically one takes the velocity-pressure function spaceVn = Vn,u × Vn,p, where

Vn,u = H1(H1
0 (Ω)

d
, (tn, tn+1)) andVn,p = L2(L2

0(Ω), (tn, tn+1)). L2
0(Ω) is the spaceL2 func-

tions with zero integral average. No-slip boundary conditions imposed on the space of velocities

are not necessary for the upcoming developments, the choicewas made in the interest of simplicity.

Remark 4.2.2. In the above the INS equations are formulated on a space-timeslab, and global in

time solutions are defined recursively, that is, problem (4.22) is solved on thenth time slab with the

initial condition, imposed weakly, coming from then − 1st time slab. Indexn is then incremented

and the procedure repeats. This variational formulation isnon-standard, it is given here so as to

elucidate the upcoming developments.

4.2.2 Decomposition of spaces

We define a linear projectorP = {Pv ,Pp} as

(W̄ ,PV ) = (W̄ ,V ) ∀W̄ ∈ V̄n,V ∈ Vn, (4.31)

where(·, ·) is a scalar product onVn, not necessarily norm-inducing, and

(W̄ ,PV ) = (w̄,Pvv)v + (q̄,Ppp)p ∀{w̄, q̄} ∈ V̄n, {v, p} ∈ Vn (4.32)

In (4.32),Pv andPp are the velocity and pressure projectors, and(·, ·)v and(·, ·)p are scalar products

on the spaces of velocity and pressure functions. We take thespace of coarse scalesV̄n to be a finite-

dimensional subspace ofVn. As before, the spaceVn admits a decomposition

Vn = V̄n ⊗ V ′
n, (4.33)

where the space of fine scalesV ′
n, infinite-dimensional, is the orthogonal complement ofV̄n in Vn

with respect to the scalar product(·, ·). Decomposition (4.33) splits the problem (4.22) into two

sub-problems: Find̄V ∈ V̄n,V ′ ∈ V ′
n, such that

Bn(W̄ , V̄ + V ′) = Fn(W̄ ) ∀W̄ ∈ V̄n, (4.34)

and

Bn(W ′, V̄ + V ′) = Fn(W ′) ∀W ′ ∈ V ′
n. (4.35)
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Equations (4.34) are known as the coarse-scale problem, while equations (4.35) define the fine-

scale problem. In what follows, we will approximately solvethe fine-scale problem forV ′ in

terms of residual quantities involvinḡV . We will then introduce the result into the coarse-scale

equations, which depend on the fine-scalesV ′. As a result, we will obtain a method which only

involves the coarse scales. This approach will yield a classof residual-based discrete formulations

for incompressible fluid flow, which are also considered to bemodels of turbulence in this work.

4.2.3 The fine-scale problem

Equation (4.35) may be rewritten in the following form: Find{v′, p′} ∈ V ′
n such that∀{w′, q′} ∈

V ′
n

< w′,Nv̄(v′) + ∇p′ >Qn + < q′,∇ · v′ >Qn (4.36)

= − < w′, rM >Qn − < q′, rC >Qn ,

where

< w′,Nv̄(v′) + ∇p′ >Qn = (w′,Nv̄(v′) + ∇p′)Q̃n
(4.37)

+ (w′, J2µ∇sv′ · nK)P̃n\Pn
+ (w′(t+n ), ρv′(t+n ))Ω,

< w′, rM >Qn = (w′,Ladv(v̄, p̄) − ρf)Q̃n
(4.38)

+ (w′, J2µ∇sv̄ · nK)P̃n\Pn
+ (w′(t+n ), ρ(v̄(t+n ) − v(t−n )))Ω,

< q′,∇ · v′ >Qn= (q′,∇ · v′)Q̃n
, (4.39)

< q′, rC >Qn= (q′,∇ · v̄)Q̃n
. (4.40)

rM andrC are generalized momentum and continuity residuals, andNv̄(v′), defined as

Nv̄(v′) = ρ
∂v′

∂t
+ ρv̄ · ∇v′ + ρv′ · ∇v̄ + ρv′ · ∇v′ − µ∆v′, (4.41)

is a nonlinear advection-diffusion-reaction operator with coefficients that depend on the coarse-scale

solution. Generalized momentum and continuity residuals contain the Navier-Stokes PDE residual

on element interiors, the viscous flux jump on element boundaries, and the residual of the initial

condition at the bottom of the space-time slab. It is assumedthat the space of coarse-scale functions
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are of classC0. Note that if the continuity of the coarse scales isC1 or greater, the viscous flux

jump term is not present in the definition of the momentum residual.

4.2.4 Derivation of the fine-scale model

Small-scale equations (4.36) are posed over the space of finescalesV ′
n. The spaceV ′

n is a subspace

of Vn possessing the following characterization:

{v, p} ∈ V ′
n ⇐⇒ {Pvv = 0,Ppp = 0}, (4.42)

that is,V ′
n ∈ KerP. As a result, the small-scale equations may be thought of as being posed over a

constrained subspace ofVn. The fine-scale problem may be restated over the full spaceVn with the

aid of a Lagrange multiplier approach. Introducing a pair ofLagrange multipliers{λv, λp} ∈ V̄∗
n,

the dual space of̄Vn, we get the following variational formulation: Find{v′, p′} ∈ Vn, {λu, λp} ∈
V̄∗

n, such that∀{w, q} ∈ Vn and∀{µv, µp} ∈ V̄∗
n

< w,Nv̄(v′) + ∇p′ >Qn − < Pvw,λv > = − < w, rM >Qn , (4.43)

< q,∇ · v′ >Qn − < Ppq, λp > = − < q, rC >Qn , (4.44)

< µv,Pvv
′ > = 0, (4.45)

< µp,Ppp
′ > = 0. (4.46)

In the strong form the above equations are

Nv̄(v′) + ∇p′ − PT
v λv = −rM , (4.47)

∇ · v′ − PT
p λp = −rC , (4.48)

Pvv
′ = 0, (4.49)

Ppp
′ = 0 (4.50)

We are going to formally obtain a solution to the above systemof PDEs by making use of Green’s

operators. For this purpose we replaceNv̄ with its linear counterpart̃Nv̄ by removing the quadratic

term, that is

Ñv̄(v′) = ρ
∂v′

∂t
+ ρv̄ · ∇v′ + ρv′ · ∇v̄ − µ∆v′. (4.51)

This is not a bad assumption provided the fine scales are “small”. One way to retain the quadratic

term is to expandv′ in perturbation series as shown in Calo [14]. The latter alsorequires smallness

assumption on the fine scales.
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The new fine scale momentum equation (4.47) now reads

Ñv̄(v′) + ∇p′ − PT
v λv = −rM (4.52)

Denoting byGv the Green’s operator for̃Nv̄, equation (4.52) implies

v′ + Gv∇p′ − GvPT
v λv = −GvrM . (4.53)

applyingPv to the above equation, using (4.49), and solving forλv, we obtain

λv = (PvGvPT
v )−1(PvGvrM + PvGv∇p′). (4.54)

Insertingλv back into (4.53), yields

v′ + G′
v∇p′ = −G′

vrM , (4.55)

where

G′
v = Gv − GvPT

v (PvGvPT
v )−1PvGv (4.56)

is now a small-scale Green’s operator forÑv̄ andPv. The above expression is form-identical to

(4.5). Note that according to (4.55) the small-scale velocity is driven by the momentum residual of

large scales as well as the fine-scale pressure gradient. In order to obtain the expression forp′, we

apply the divergence operator to (4.55) and make use of (4.48) to obtain

∇ · G′
v∇p′ = rC −∇ · G′

vrM − PT
p λp. (4.57)

Operator∇ · G′
v∇ in the above equation may be thought of as a Shur complement ofthe small-

scale constrained problem. Denoting byS its inverse (S = (∇ · G′
v∇)−1), we solve for small-scale

pressure as

p′ = S(rC −∇ · G′
vrM − PT

p λp). (4.58)

Applying Pp to the above equation, making use of (4.50), and solving forλp , we get

λp = (PpSPT
p )−1PpS(rC −∇ · G′

vrM ). (4.59)
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Insertingλp from (4.59) into the fine-scale pressure equation (4.58) we obtain

p′ = S ′rC − S ′∇ · G′
vrM , (4.60)

where

S ′ = S − SPT
p (PpSPT

p )−1PpS (4.61)

is now a small-scale Green’s operator for the pressure. Notethat it is also form-identical to (4.5).

Combining (4.55) with (4.60) gives the following solution to the fine scale equations

[

v′

p′

]

=

[

−G̃′
v −G′

v∇S ′

−S ′∇ · G′
v S ′

] [

rM

rC

]

, (4.62)

with

G̃′
v = G′

v − G′
v∇S ′∇ · G′

v. (4.63)

The second term on the right hand side of the above expressionreflects the fine-scale divergence

constraint.

Remark 4.2.3. Note that (4.62) involves only small-scale Green’s operators. The corresponding

small-scale Green’s functions are expected to be highly attenuated, which justifies the use of local

residual-based models for the fine scales.

4.2.5 The coarse-scale problem

Equation (4.34) defines the coarse-scale problem. Direct manipulation of (4.34), assuming the space

V̄ is comprised of functions that are at leastC0−continuous across element boundaries, gives the

following formulation of the coarse-scale problem: Find{v̄, p̄} ∈ V̄n, such that∀{w̄, q̄} ∈ V̄n

Bn(W̄ , V̄ ) − Fn(W̄ ) (4.64)

+ < L∗(w̄, q̄),v′ >Qn −(∇ · w̄, p′)Q̃n

− (ρv̄ · ∇w̄T ,v′)Q̃n
− (ρ∇sw̄,v′ ⊗ v′)Q̃n

= 0

where the third term on the left-hand-side is

< L∗(w̄, q̄),v′ >Qn = (−ρ
∂w̄

∂t
− ρv̄ · ∇w̄ −∇q̄ −∇ · 2µ∇sw̄,v′)Q̃n

(4.65)

+ (J2µ∇sw̄ · nK,v′)P̃n\Pn
+ (ρw̄(t−n+1),v

′(t−n+1))Ω.
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The above variational form precisely indicates the manner in which unresolved components of the

solution influence the large scales.

Remark 4.2.4. The first two terms on the left-hand-side of (4.64) correspond to the Galerkin part

of the formulation. Terms three and five of (4.64) may be identified with the so-called cross stresses,

while term six represents the Reynolds stress in the language of classical turbulence modeling.

Introducing fine-scales (4.62) into the coarse-scale system (4.64), we obtain the formulation:

Find{v̄, p̄} ∈ V̄n such that∀{w̄, q̄} ∈ V̄n

Bn(W̄ , V̄ ) − Fn(W̄ )− < L∗(w̄, q̄), G̃′
vrM >Qn − < L∗(w̄, q̄),G′

v∇S ′rC >Qn

+(∇ · w̄,S ′∇ · G′
vrM )Q̃n

− (∇ · w̄,S ′rC)Q̃n
+ (ρv̄ · ∇w̄T , G̃′

vrM + G′
v∇S ′rC)Q̃n

−(ρ∇sw̄, {G̃′
vrM + G′

v∇S ′rC} ⊗ {G̃′
vrM + G′

v∇S ′rC})Q̃n
= 0. (4.66)

4.2.6 Approximate closures and connection with stabilizedmethods

Fine scale equations (4.62) appear to be just as complex as the original Navier-Stokes system.

Solving them exactly is not a viable option, hence modeling is necessary. For this purpose let

(x, t),x = {xα}d
α=1, denote the coordinates of a physical space-time elementK × (tn, tn+1), and

let (ξ, θ), ξ = {ξα}d
α=1, denote the coordinates of a parent space-time elementK̂ × (−1, 1). Here

θ is non-dimensional time. Letπ : K̂ → K be a bijection, and let(−1, 1) map onto(tn, tn+1) by

a simple linear mapping.

We will first give an approximation of the action ofG′
v, the small-scale Green’s operator for

Ñv̄, defined in (4.51), and the projectorPv, on the momentum residual. We assume the following

local algebraic model:

G′
vrM ≈ τM (Ladv(v̄, p̄) − ρf) on Q̃n. (4.67)

In the above,τM is ad × d matrix defined as

τM =
1

ρ
({(∂θ

∂t
)2 + v̄T ∂ξ

∂x

T ∂ξ

∂x
v̄ + (CI

µ

ρ
)2(

∂ξ

∂x

∂ξ

∂x

T

) : (
∂ξ

∂x

∂ξ

∂x

T

)}I

+ ∇sv̄ · ∇sv̄)−1/2. (4.68)

This definition is inspired by the theory of stabilized methods for reactive-advective-diffusive

systems (see, for example, Shakib, Hughes and Johan [88], Hughes and Mallet [47]). MatrixτM

is, by construction, symmetric and positive-definite. It incorporates the spatial and temporal scales

of the discretization, as well as specific geometrical features by making use of local geometrical

mappings.
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Remark 4.2.5. Definition (4.68) is non-standard in that it includes the “reaction” contribution

∇sv̄ · ∇sv̄. This term is present due to the reactive component in the definition of Ñv̄(v′). In

contrast to (4.68), most current stabilized methods for incompressible Navier-Stokes equations make

use of a simplified definition, which omits the reaction term and rendersτM isotropic (diagonal with

identical entries), that is

τM = τMI =
1

ρ
{(∂θ

∂t
)2 + v̄T ∂ξ

∂x

T ∂ξ

∂x
v̄ + (CI

µ

ρ
)2(

∂ξ

∂x

∂ξ

∂x

T

) : (
∂ξ

∂x

∂ξ

∂x

T

)}−1/2I (4.69)

We also define the local approximation to the gradient operator g ≈ ∇ as

g =
∂ξ

∂x

T

1, (4.70)

and the divergence operator as∇· ≈ −gT . Negative sign is used in order to preserve the transpose

property of the these operators at the discrete level. In (4.70)1 is ad−dimensional vector of ones.

We approximate the inverse of the small-scale Shur complement operatorS ′ by a scalarτC

as follows. Recall thatS = (∇ · G′
v∇)−1, thus, in light of the developments in this section, we

defineτC as

τC = (gT τMg)−1, (4.71)

and the action ofS ′ on the generalized continuity residual is approximated via

S ′rC ≈ −τC∇ · v̄ on Q̃n. (4.72)

By virtue ofτM being positive-definite,τC > 0 if ‖g‖ > 0.

We approximate the action of̃G′
v = G′

v − G′
v∇S ′∇ · G′

v on the generalized momentum

residual as

G̃′
vrM ≈ τ ′

M (Ladv(v̄, p̄) − ρf) (4.73)

= (τM − cττMgτCgT τM )(Ladv(v̄, p̄) − ρf) on Q̃n,

where0 ≤ cτ < 1. The strict inequality on the right rendersτ ′
M positive definite, as will be shown

later. The latter property is of crucial importance for the overall stability of the numerical method.

Finally, within the proposed framework, the “cross” termsG′
v∇S ′rC andS ′∇ · G′

vrM en-

gender the following approximations:

G′
v∇S ′rC ≈ −τMgτC∇ · v̄ on Q̃n, (4.74)
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and

S ′∇ · G′
vrM ≈ τCgT τM (Ladv(v̄, p̄) − ρf) on Q̃n. (4.75)

In summary, the following matrix-vector form, written in the spirit of (4.62), states a local

algebraic relationship between fine-scales and residuals of the discrete system:

[

v′

p′

]

≈
[

−τ ′
M τMgτC

−τCgT τM −τC

] [

(Ladv(v̄, p̄) − ρf)

∇ · v̄

]

on Q̃n, (4.76)

with

τ ′
M = τM − cττMgτCgT τM (4.77)

Note that the model tightly couples the fine-scale velocity and pressure to both momentum

and continuity residuals.

Combining (4.76) with the coarse scale variational equations (4.66) gives rise to the formulation

of the residual-based turbulence model: FindV̄ ∈ V̄n such that∀W̄ ∈ V̄n

Bn(W̄ , V̄ )n − Fn(W̄ )

− (L∗(w̄, q̄), τ ′
M (Ladv(v̄, p̄) − ρf))Q̃n

− (L∗(w̄, q̄), [τMgτC ]∇ · v̄)Q̃n

+ (∇ · w̄, [τCgTτM ](Ladv(v̄, p̄) − ρf))Q̃n
+ (∇ · w̄, τC∇ · v̄)Q̃n

+ (ρv̄ · ∇w̄T , τ ′
M (Ladv(v̄, p̄) − ρf) − [τMgτC ]∇ · v̄)Q̃n

− (ρ∇sw̄, (τ ′
M (Ladv(v̄, p̄) − ρf) − [τMgτC ]∇ · v̄)
⊗ (τ ′

M (Ladv(v̄, p̄) − ρf) − [τMgτC ]∇ · v̄))Q̃n
= 0. (4.78)

The above model encompasses a whole class of well-known discrete formulations for incompress-

ible fluid flow. In what follows, we demonstrate that various simplifications to (4.76) and (4.78)

reproduce existing methods that are well-accepted in the computational mechanics community. As-

suming from the outset an element-wise divergence-free velocity field, that is∇ · v̄ = 0, and

replacingL∗ with ρv̄ · ∇w̄ as in SUPG, simplifies (4.78) to: Find̄V ∈ V̄n such that∀W̄ ∈ V̄n

Bn(W̄ , V̄ )n − Fn(W̄ )

+ (ρv̄ · (∇w̄ + ∇w̄T ), τM (Ladv(v̄, p̄) − ρf))Q̃n

− (ρ∇sw̄, τM (Ladv(v̄, p̄) − ρf) ⊗ τM (Ladv(v̄, p̄) − ρf))Q̃n
= 0. (4.79)
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This formulation is given in Calo [14], where the concept of residual-based turbulence modeling

was introduced.

One can extract a set of well-known stabilized methods for INS (see, for example Tezduyar

and Sathe [101], Codina and Soto [17], and Tejada-Martinez and Jansen [98], as well as references

therein) by omitting the last two terms from the left-hand-side of (4.78), and disregarding the “cross”

terms, which represent coupling of momentum and continuityresiduals in the model for the prime

quantities (4.76). With these assumptions we obtain: FindV̄ ∈ V̄n such that∀W̄ ∈ V̄n

Bn(W̄ , V̄ )n − Fn(W̄ )

− (L∗(w̄, q̄), τM (Ladv(v̄, p̄) − ρf))Q̃n
+ (∇ · w̄, τC∇ · v̄)Q̃n

= 0, (4.80)

whereτM is replaced by its diagonal counterpartτMI, andτC takes on alternative definitions, or is

often omitted.

Formulations of type (4.80) are ad-hoc extensions of linearstabilized methods to incom-

pressible Navier-Stokes equations, which are nonlinear. On the other hand, formulation (4.78), and

its simplified version, (4.79), are a direct consequence of the VMS approach, which accounts for

the nonlinearities present in the underlying PDEs. The latter is more consistent with the idea of

turbulence modeling that attempts to account for the scalesthat are missing from the discretization

step. Nevertheless, stabilized and residual-based formulations are very similar, and, in this light,

stabilized methods can be considered aspartial models of turbulent fluid flow.

The following lemma establishes symmetry and positivity property ofτ ′
M . The latter is of

crucial importance for the stability of the discrete formulation (4.78).

Lemma 4.2.1.τ ′
M is symmetric and positive-definite.

Proof. Symmetry ofτ ′
M is clear from definition (4.77) while its positivity is shownas follows.

Consider the following orthogonal decomposition ofR
d:

R
d = V ⊕ V ⊥, (4.81)

where

V = {v | v = gp, ∀p ∈ R}, (4.82)

V ⊥ = {w | (w,v)τM
= 0, ∀v ∈ V }, (4.83)

where(w,v)τM
= (w, τMv)l2(Rd), is an inner-product onRd induced byτM . Then, anyv ∈ R

d
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may be decomposed intov = v1 + v2,v1 = gp ∈ V,v2 ∈ V ⊥ and

vTτ ′
Mv = (v1 + v2)

TτM (v1 + v2)

− cτ (v1 + v2)
T τMgτCgT τM (v1 + v2)

= v1τMv1 + v2τMv2

− cτ (gp)T τMgτCgTτM (gp + v2)

− cτv
T
2 τMgτCgT τM (gp + v2). (4.84)

The term on the last line of (4.84) is identically zero, asgτCgT τM (gp + v2) ∈ V . The term prior

to it may be handled as

cτ (gp)T τMgτCgTτM (gp + v2) =

cτp(gT τMg)(gT τMg)−1gTτM (gp + v2) =

cτ (gp)T τMgp + cτ (gp)T τMv2 = cτv
T
1 τMv1. (4.85)

Thus, there existsC > 0 such that

vTτ ′
Mv = (1 − cτ )vT

1 τMv1 + vT
2 τMv2 ≥ C ‖ v ‖2, (4.86)

provided0 ≤ cτ < 1. Positivity ofτ ′
M is established.

4.3 Numerical examples

This section presents two turbulent fluid flow examples: a fully developed turbulent flow between

two infinite parallel plates, and a flow over a section of an Eppler 387 airfoil. In all cases residual-

based turbulence modeling approach is used. Time discretization makes use of a generalized-α

algorithm (see Chung and Hulbert [15] for details). Parallel implementation using MPI [73] as a

programming paradigm is employed. Test cases were run on a 1024 compute node Cray-Dell Linux

cluster “lonestar”, maintained by the Texas Advanced Computing Center (TACC) [96].

4.3.1 Turbulent channel flow atReτ = 395

In this numerical example a fully developed turbulent flow between two parallel plates is considered.

Reynolds number of the flow, defined in terms of friction velocity uτ and channel half-widthδ as

Reτ = uτ δ
ν , is 395, which is a standard benchmark test cases for newly emerging numerical methods

for turbulent fluid flow. Hereuτ =
√

τw is the friction velocity, andτw is the average wall shear

stress.ν = µ/ρ is the dynamic viscosity of the fluid. Infinite domain is simulated by means of a
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Solid wall

Flow driven by pressure gradient

Figure 4.2: Turbulent channel. Problem setup.

finite rectangular domain of dimension2π × 2 × 4/3π in the stream-wise, wall-normal, and span-

wise directions, respectively. The flow is driven by a constant pressure gradient, as illustrated in

Figure 4.2. Periodic boundary conditions are imposed in thestream-wise and span-wise directions,

while wall-normal direction inherits a zero velocity Dirichlet boundary condition.

Meshes of163, 323, and643 rectangular elements, with uniform spacing in the periodic

directions, and stretched in the wall-normal direction by ahyperbolic tangent function, are used in

this study. B-spline bases of order one, two, and three are constructed on these meshes to generate

discrete solution spaces for velocity and pressure, assumed to be equal order. For B-splines of order

p, Cp−1-continuity of the basis functions is enforced, leading tok−refinement on every fixed mesh.

This construction, for a mesh ofn3 elements, generates(n + 1)× (n + p)× (n + 1) basis functions

for a discretization of orderp. Due to no-slip boundary conditions, the open-knot vector construct

generatesn + p univariate spline basis functions in the wall-normal direction. Periodic boundary

conditions in the remaining directions give rise to a univariate basis which is comprised ofn + 1

periodic splines. This number is independent of the polynomial order of the discretization.. Note

that linear splines are equivalent to tri-linear hexahedral finite elements.

Figure 4.3 shows stream-wise velocity contours at an instant in time for a medium cubic

simulation. The flow is characterized by a very thin boundarylayer where turbulent structures are

generated, and later propagate into the core region, which is fully turbulent.

Statistics of the mean flow, or primary statistics, and fluctuations, or secondary statistics,

are computed by means of averaging the solution fields in timeand periodic flow directions. To
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asses performance of the method, results are compared with abenchmark DNS computation of

[72], which is taken as an “exact solution”, and which made use of a spectral method with2563

points. Results are reported in Figures 4.4-4.6. On all plots mean stream-wise velocity is scaled

by the friction velocityuτ and is denoted byu+. The root-mean-square deviations of the three

velocity components,urms, vrms, andwrms, also appear in the non-dimensional form scaled by the

friction velocity. These quantities are plotted againsty+ = yuτ/ν, the non-dimensional distance

from the wall in so-called “wall units”. The following observation can be made about the results of

this computational study:

• Convergence of all statistics, primary and secondary, to the DNS results is apparent in all

cases. As expected, mean quantities converge faster to the DNS than the fluctuations.

• Higher order simulations outperform their linear counterparts on the basis of the number of

degrees of freedom used in computations. Mean quantities are much more accurate in the

case of higher order discretizations. Most dramatic increase in accuracy is observed when

going from a linear to a quadratic discretization, which adds only one extra layer of control

variables in the wall-normal direction. Note the remarkable accuracy in predicting the mean

stream-wise velocity for the case of a medium cubic spline simulation, especially considering

how few degrees of freedom are employed.

• In some cases secondary statistics curves appear to be non-smooth, which suggests that the

flow may need to be advanced for a longer time period and/or a larger sample size needs to

be used for the computation of statistical quantities. In particular, 643 cubics need additional

simulation time in order to reach a statistically statinarystate.

• Results appear to be competitive with, if not superior to, computations with standard methods

making use of turbulence models based on eddy viscosities.
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a) Stream-wise view

b) Span-wise view

Figure 4.3: Turbulent channel flow. Stream-wise velocity contours in different views.
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Figure 4.4: Turbulent channel flow, results using linear elements. Top left: convergence of the mean
flow, top right: convergence ofurms, bottom left: convergence ofvrms, bottom right: convergence
of wrms.
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Figure 4.5: Turbulent channel flow, results using quadraticsplines. Top left: convergence of the
mean flow, top right: convergence ofurms, bottom left: convergence ofvrms, bottom right: conver-
gence ofwrms.
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Figure 4.6: Turbulent channel flow, results using quartic splines. Top left: convergence of the mean
flow, top right: convergence ofurms, bottom left: convergence ofvrms, bottom right: convergence
of wrms.
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4.3.2 Flow over Eppler 387 airfoil

C
2C

2C

2C

2C

u = (1, 0, 0)

u · n = 0

u · n = 0

u = 0

Figure 4.7: Flow over Eppler airfoil problem setup. Computational domain and boundary condi-
tions.

Computations of a fully-developed flow over Eppler 387 airfoil at Reynolds numberRe =

100, 000, based on the cord lengthC, andα = 2◦ angle of attack are presented in this example.

The flow is at low Mach number, hence the incompressibility assumption is valid in this situation.

Problem setup and boundary conditions are given in Figure 4.7. Two- and three-dimensional sim-

ulations are performed. In the three-dimensional case the domain was given a thickness of0.12C

and periodic boundary conditions were applied in the span-wise direction.

Figure 4.8 shows the mesh, comprised of 12,690 and 126,900 cubic NURBS elements

used in the two- and three-dimensional simulations, respectively. It was generated in the spirit a

C−grid. Basis functions used areC2-continuous in the direction normal to the airfoil surface and

C0-continuous in the span-wise direction. Mixed order of continuity, that is bothC0 andC2, is

employed in the direction tangential to the airfoil.

Figure 4.9 shows a snapshot of stream-wise velocity and pressure contours for a two-

dimensional simulation. Results are in good agreement withthose of Oberai, Roknaldin and Hughes

[76, 77]. Note the coherence of the vortical structures shown on the stream-wise velocity plot

4.9a. These structures are a consequence of a two-dimensional description of the flow. In three-

dimensions these structures break up into smaller eddies, which is a fundamental turbulence mech-

anism. Also note the smoothness of the pressure contours shown on 4.9b.
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a) Full mesh

b) Zoom on the boundary layer mesh

Figure 4.8: Flow over Eppler airfoil. NURBS mesh for both two-dimensional and three-dimensional
calculations. Span-wise resolution was reduced to one linear element for a two-dimensional calcu-
lation.
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a) Stream-wise velocity

b) Pressure

Figure 4.9: Flow over Eppler airfoil. Snapshots of stream-wise velocity and pressure fields for
a two-dimensional calculation. Note the coherence of the vortical structures and smoothness of
pressure contours.
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In designing airfoils, quantities such lift and drag are of great importance to aeronautical

engineers as they define airfoil performance characteristics. These are functionals of the flow fields

and their values change dramatically when the flow undergoestransition from laminar to turbulent.

Predicting these quantities of interest accurately behooves one to go to a full three-dimensional

description of the flow, wherein lies a great computational challenge. Figure 4.10 shows the stream-

wise velocity and the trailing-edge pressure contours on a span-wise slice of the computational

domain. Note that the coherent structures, characteristicof the two-dimensional description, are

no longer present. Instead, the flow possesses a multitude ofspatial and temporal scales, and ap-

pears chaotic. To further illustrate the point Figure 4.11 depicts isosurfaces of span-wise velocity

fluctuations. Fine-grained solution structures occur in parts of the domain where the flow is highly

turbulent, namely the trailing edge of the airfoil and its wake. In other parts of the domain the

flow is nearly two-dimensional. Situations like this present a great modeling challenge: a “good”

turbulence model must be able to identify various flow regimes and adapt accordingly.

Figure 4.12 shows the plot of the pressure coefficient distribution along the airfoil upper and

lower surfaces. It is defined asCp = 1
2

p−p∞
ρu2

∞
. p∞, the reference pressure, is set equal to zero, and

u∞, the reference velocity is set equal to the magnitude of the velocity vector at the inflow of the

computational domain. Results of the three-dimensional computation are in excellent agreement

with the experimental findings of [71].
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a) Stream-wise velocity

b) Pressure

Figure 4.10: Flow over Eppler airfoil. Snapshots of stream-wise velocity and trailing edge pressure
fields for a three-dimensional calculation. Pressure fluctuations are a source of hydrodynamically
generated noise.
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Figure 4.11: Flow over Eppler airfoil. Span-wise velocity isosurfaces for a three-dimensional cal-
culation.
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. Excellent

agreement between a three-dimensional computation and experimental data is observed.
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Chapter 5

Isogeometric Fluid-Structure

Interaction Analysis with Applications

to Arterial Blood Flow

5.1 Formulation of the fluid-structure interaction problem

Ωf
0

Ωs
0

Γfs
0

Ωf
t

Ωs
t

Γfs
tχ(X, t)

Figure 5.1: Abstract setting for the fluid-structure interaction problem. Depiction of the initial and
the current configurations related through the ALE mapping.The initial configuration also serves
as the reference configuration.

In this section we present the formulation of the fluid-structure interaction problem. We

begin by introducing notation. LetΩ0 ∈ R
d, d = 2, 3, open and bounded, be the initial or the
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reference configuration. LetΩt ∈ R
d, open and bounded, represent the current configuration,

namelyΩt is the image ofΩ0 under the motionx = χ(X , t) with x ∈ Ωt,X ∈ Ω0, andt ∈ (0, T ),

the time interval of interest. In what follows,x will be referred to as current coordinates, andX as

reference coordinates. Note thatχ(X, 0) = X. The domainΩ0 admits a decomposition

Ω0 = Ωf
0 ∪ Ωs

0, (5.1)

whereΩf
0 is a subset ofΩ0 occupied by the fluid, andΩs

0 is a subset ofΩ0 occupied by the solid.

The decomposition is non-overlapping, that is

Ωf
0 ∩ Ωs

0 = ∅. (5.2)

Likewise,

Ωt = Ωf
t ∪ Ωs

t , (5.3)

with

Ωf
t ∩ Ωs

t = ∅. (5.4)

Let Γfs
0 denote the boundary between the fluid and the solid regions inthe initial configuration, and,

analogously, letΓfs
t be its counterpart in the current configuration. The above setup is illustrated in

Figure 5.1. It is important to emphasize that the motion of the fluid domain is not the particle motion

of the fluid. It does, however, conform to the particle motionof the arterial wall. The Lagrangian

description is adopted for the artery wall.

5.1.1 The solid problem

This section gives a weak formulation of the hyperelastic nonlinear solid in the Lagrangian descrip-

tion. Let Vs = Vs(Ωs
0) denote the trial solution space for displacements and letWs = Ws(Ωs

0)

denote the trial weighting space for the linear momentum equations. Letu denote the displacement

of the solid body with respect to the initial configuration and letws be the weighting function for

the momentum equation. We also assume that the displacementsatisfies the boundary condition,

u = gs on Γs,D
0 , the Dirichlet part of the solid domain boundary. The variational formulation is

stated as follows: Findu ∈ Vs such that∀ws ∈ Ws,

Bs(ws,u) = F s(ws) (5.5)
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where

Bs(ws,u) =

(

ws, ρs
0

∂2u

∂t2

)

Ωs
0

+ (∇Xw
s,FS)Ωs

0
, (5.6)

and

F s(ws) = (ws, ρs
0f

s)Ωs
0
+ (ws,hs)

Γs,N
0

. (5.7)

The above relations are written over the reference configuration. The subscriptX on the partial

derivative operators indicates that the derivatives are taken with respect to the material coordinates

X. Γs,N
0 is the Neumann part of the solid boundary,hs is the boundary traction vector,ρ0

s is

the density of the solid in the initial configuration, andf s is the body force per unit mass. The

displacementu is defined as

u(X, t) = χ(X , t) −X, (5.8)

F is the deformation gradient

F =
∂χ

∂X
= I +

∂u

∂X
, (5.9)

andS is the second Piola-Kirchhoff stress tensor. We consider the following constitutive models:

Case 1The St.Venant-Kirchhoff constitutive relation:

S = C : E, (5.10)

where

E =
1

2
(F TF − I), (5.11)

C = λsI ⊗ I + 2µs(III − 1

3
I ⊗ I), (5.12)

IIJKL =
1

2
(δIKδJL + δILδJK), (5.13)

E is the Green-Lagrange strain tensor,δIJ is the Kronecker delta, andλs andµs are the Lamé

constants. Note that the fourth-order elastic tensorC is assumed constant in this model.

The St. Venant-Kirchhoff model is not without shortcomings. It exhibits a seemingly spuri-
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ous material instability under states of strong compression. However this is not felt to be important

in the present applications. The essential point is that it represents an objective generalization of

the linear isotropic theory to the nonlinear case. Of course, there is no physical justification of the

model beyond the linear strain regime.

Case 2Material model treated in Simo and Hughes [90]. HereS comes from the gradient of the

elastic potentialφ, namely

S = 2
∂φ

∂C
, (5.14)

whereC is the Cauchy-Green strain tensor defined as

C = F TF . (5.15)

The elastic potential engenders a sum decomposition

φ = φiso + φdil, (5.16)

whereφiso is the energy associated with the volume-preserving or isochoric part of the motion,

while φdil reflects the volume-changing or dilatational component of the deformation. This de-

composition is due to the fact that materials respond differently in bulk and in shear. We assume

three-dimensional elastic medium and perform the following multiplicative decomposition of the

deformation gradientF :

F = J1/3F , (5.17)

whereJ = detF , the determinant ofF , andF = J−1/3F . Note that detF = 1, henceF is associ-

ated with the volume-preserving part of the motion, whileJ1/3 is the volume-changing component.

Let

C = F
T
F , (5.18)

in direct analogy with (5.15). Then

φiso =
1

2
µs(trC − 3), (5.19)

and

φdil =
1

2
κs(

1

2
(J2 − 1) − lnJ). (5.20)
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Note that this model, as opposed to St. Venant-Kirchhoff, satisfies all the necessary normalization

conditions. In particular, the lnJ term in the definition ofφdil precludes material instabilities for

states of strong compression.

For the above definition of elastic potential, second Piola-Kirchhoff stress tensor becomes

S = µsJ−2/3(I − 1

3
trC C−1) +

1

2
κs(J2 − 1)C−1, (5.21)

and the fourth-order tensor of elastic moduli is

C = 4
∂2φ

∂C∂C
= (

2

9
µsJ−2/3trC + κsJ2)C−1 ⊗C−1 (5.22)

+(
2

3
µsJ−2/3trC − κs(J2 − 1))C−1 ⊙C−1

−2

3
µsJ−2/3(I ⊗C−1 +C−1 ⊗ I).

In (5.22) the⊗ symbol is used to denote an outer product of two second-rank tensors, and

(C−1 ⊙C−1)IJKL =
(C−1)IK(C−1)JL + (C−1)IL(C−1)JK

2
(5.23)

Parametersµs andκs may be identified with Lamé constants of the linear elastic model, denotedµl

andλl, by considering the case when the current and the reference configurations coincide. Then

the elastic tensor (5.22) reduces to the form given in (5.12), and, by inspection,

µs = µl (5.24)

κs = λl +
2

3
µl. (5.25)

5.1.2 Motion of the fluid subdomain problem and the ALE mapping

This section gives a weak formulation of the motion of the fluid subdomain. Partial differential

equations of linear elastostatics subject to Dirichlet boundary conditions coming from the displace-

ments of the solid region define the ALE mappingχ(X, t) on the fluid domain. This construction,

which is by no means unique, imposes sufficient regularity onthe ALE mapping so as to make

the fluid problem (5.35) well-posed. For precise conditionson the regularity of the ALE map, see

Nobile [74]. In the discrete setting, the fluid subdomain motion problem is referred to as “mesh

moving.”

Let δ denote the displacement of the fluid domain from its initial configuration

δ(X, t) = χ(X, t) −X (5.26)
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and let ∂δ
∂t be its velocity in the reference configuration. We also definethe displacement and the

velocity of the fluid subdomain in the current configuration as a push-forward of the respective

quantities in the reference domain, that is,

γ(x, t) = δ ◦χ−1(x, t) = δ(χ−1(x, t), t) (5.27)

β(x, t) =
∂δ

∂t
◦ χ−1(x, t) =

∂δ

∂t
(χ−1(x, t), t) (5.28)

Let Ωt̃ be the configuration ofΩ0 at t̃ < t. We think of this as a “nearby” configuration

that in numerical computations will typically represent the final configuration of the previous time

step. Then, let̃γ be the displacement of the reference domain at timet̃. LetVm = Vm(Ωf
t ) denote

the trial solution space of displacements and letWm = Wm(Ωf
t ) denote the weighting space for

the “elastic equilibrium” equations. The variational formulation of the problem is stated as follows:

Findγ ∈ Vm such that∀wm ∈ Wm,

Bm(wm,γ) = 0, (5.29)

subject to

γ |
Γfs

t
= u ◦ χ−1|

Γfs
t

, (5.30)

and

wm |
Γfs

t
= 0, (5.31)

where

Bm(wm,γ) = (∇s
xw

m, 2µm∇s
x(γ − γ̃) + λm∇x · (γ − γ̃))

Ωf
t
. (5.32)

The above relations are written over the current configuration. The subscriptx on the partial

derivative operators indicates that the derivatives are taken with respect to the current coordinates

x. Constantsµm andλm are the Lamé parameters of the linear elastic model characterizing the

motion of the fluid region. Their choice at the continuous level should be such that the problem

(5.29) is well-posed. In the discrete setting they should beselected such that the fluid mesh quality

is preserved for as long as possible. In particular, mesh quality can be preserved by dividing the

elastic coefficients by the Jacobian of the element mapping,effectively increasing the stiffness of

the smaller elements [103], which are typically placed at fluid-solid interfaces. For advanced mesh

moving techniques see [92, 93]. Parts of the boundary of the fluid region may also have motion
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prescribed to them independent of the motion of the solid region. This is handled in a standard way

as a Dirichlet boundary condition. The remainder of the fluidregion boundary is subjected to a

“zero stress” boundary condition.

As a result of the above construction, the ALE mapping for theentire domain may be defined

in a piece-wise fashion, namely:

χ(X , t) =

{

u(X , t) +X ∀X ∈ Ωs
0

δ(X, t) +X ∀X ∈ Ωf
0

. (5.33)

Note that (5.27) together with (5.30) imply

δ = γ ◦χ = u onΓfs
0 , (5.34)

which makes the ALE map (5.33) continuous on the fluid-solid boundary.

5.1.3 The fluid problem

In this section we give a weak formulation of the incompressible Navier-Stokes fluid on a moving

domain in the ALE description. Motion of the fluid domain was constructed in the previous section,

and is given by (5.33). LetVf = Vf (Ωf
t ) denote the trial solution space of velocities and pressures

and letWf = Wf (Ωf
t ) denote the trial weighting space for the momentum and continuity equa-

tions. Let{v, p} denote the particle velocity-pressure pair and{wf , qf} the weighting functions

for the momentum and continuity equations. We also assume that the fluid particle velocity field

satisfies the boundary condition,v = gf on Γf,D
t , the Dirichlet part of the fluid boundary. The

variational formulation is stated as follows: Find{v, p} ∈ Vf such that∀{wf , qf} ∈ Wf ,

Bf ({wf , qf}, {v, p};β) = F f ({wf , qf}) (5.35)

where

Bf ({wf , qf}, {v, p};β) =

(

wf , ρf ∂v

∂t

)

Ωf
t

+
(

wf , ρf (v − β) · ∇xv
)

Ωf
t

(5.36)

+(qf ,∇x · v)
Ωf

t
− (∇x ·wf , p)

Ωf
t

+
(

∇s
xw

f , 2µf∇s
xv
)

Ωf
t

,

and

F f ({wf , qf}) = (wf , ρff f )
Ωf

t
+ (wf ,hf )

Γf,N
t

. (5.37)
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The above equations are written over the current configuration and(·, ·) defines the corresponding

L2 inner product. The subscriptx on the partial derivative operators indicates that the derivatives

are taken with respect to the current coordinatesx. Γf,N
t is the Neumann part of the fluid domain

boundary,hf is the boundary traction vector,f f is the body force per unit mass, andρf andµf

are the density and the dynamic viscosity of the fluid, respectively. β is the velocity of the fluid

subdomain defined in (5.28).

Remark 5.1.1. Note that the quantity∂v∂t is not the spatial particle acceleration, instead it is a

push-forward of the material particle acceleration definedas

∂v

∂t
=

∂v̂

∂t
◦χ−1, (5.38)

wherev̂ = v ◦χ.

Remark 5.1.2. Also note that, unless the Lagrangian description is utilized in the fluid domain,

β 6= v.

5.1.4 The coupled problem

In this section we present the coupled FSI problem, which is based on the individual subproblems

introduced in previous sections of this chapter. The variational formulation for the coupled problem

is stated as: Find{v, p} ∈ Vf , u ∈ Vs, andγ ∈ Vm such that∀{wf , qf} ∈ Wf , ∀ws ∈ Ws, and

∀wm ∈ Wm,

Bf ({wf , qf}, {v, p};β) − F f ({wf , qf}) +

Bs(ws,u) − F s(ws) + Bm(wm,γ) = 0. (5.39)

with the following auxiliary relations holding in the senseof traces:

v|
Γfs

t
=

∂u

∂t
◦ χ−1|

Γfs
t

, (5.40)

wf |
Γfs

t
= ws ◦χ−1|

Γfs
t

, (5.41)

as well as equations (5.30) and (5.31).

Relationship (5.40), the kinematic constraint, equates the fluid velocity with that of the

solid at the fluid-solid boundary. Equation (5.41) leads to the compatibility of the Cauchy stresses

at the fluid-solid interface. Indeed, integrating by parts,settingwm = 0, and assuming sufficient
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regularity of the solution fields in (5.39), gives

0 =
〈

wf ,Lf (v, p;β) − ρfff
〉

Ωf
t

+
〈

qf ,∇x · v
〉

Ωf
t

+
〈

wf ,σσσfn
f
t − hf

〉

Γf,N
t

+
〈

wf ,σσσfn
f
t

〉

Γfs
t

+ 〈ws,Ls(u) − ρs
0f

s〉Ωs
0

+ 〈ws,Pns
0 − hs〉

Γs,N
0

+ 〈ws,Pns
0〉Γfs

0
, (5.42)

where< ·, · >Ω and< ·, · >Γ denote volume and surface integrals, respectively. In (5.42) the

following definitions apply:

Lf (v, p;β) = ρf ∂v

∂t
+ ρf (v − β) · ∇xv −∇x · σσσf , (5.43)

σσσf = −∇xpI + 2µf∇s
xv, (5.44)

Ls(u) = ρs
0

∂2u

∂t2
−∇X · P , (5.45)

P = FS, (5.46)

andnf
t andns

0 are the unit outward normal vectors to the fluid domain in the current, and the solid

domain in the reference configurations, respectively. Standard arguments of distribution theory for

(5.42) imply that the fluid and the solid PDEs hold in the interior of their respective domains, and the

Neumann boundary conditions are satisfied on the appropriate parts of the fluid and solid domain

boundaries. Selecting test functions that vanish everywhere in the domain except at the fluid-solid

interface in (5.42) gives

〈

wf ,σσσfn
f
t

〉

Γfs
t

+ 〈ws,Pns
0〉Γfs

0
= 0. (5.47)

Transporting the second term in (5.47) to the current configuration, yields

〈

wf ,σσσfn
f
t

〉

Γfs
t

+
〈

ws ◦ χ−1,σσσsns
t

〉

Γfs
t

= 0, (5.48)

whereσσσs is the Cauchy or true stress tensor. It is symmetric and is related to the first Piola-Kirchhoff
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stress tensorP through the Piola identity (see, e.g., [43])

σσσs = J−1PF T . (5.49)

Finally, using relationship (5.41) we arrive at the weak compatibility of surface tractions on the

fluid-solid interface in the current configuration:

〈

wf ,σσσfn
f
t + σσσsns

t

〉

Γfs
t

= 0. (5.50)

5.2 Formulation of the fluid-structure interaction problem at the dis-

crete level

In this section we give a formulation of the FSI equations (5.39) in the discrete setting. We begin

by defining spatial discretization of the problem. Our only requirement on the trial weighting and

solution spaces is that they areH1-conforming. Although we will only show examples which make

use of the isogeometric approach, formulation presented here may be employed in conjunction with

standard finite elements. Having defined the semi-discrete forms, we present the time advancement

algorithm, which is the generalized-α method introduced in Chung and Hulbert [15].

5.2.1 Approximation spaces for ALE formulations and enforcement of kinematic
compatibility conditions

We begin by considering the discretization of the referencedomainΩ0. Here, and in what follows,

we will use the same notation for discrete objects as for their continuous counterparts to simplify

presentation. Let

{N̂A(X)}A∈It , X ∈ Ω0 (5.51)

denote a set of basis functions defined onΩ0, and letIt denote the index set of all basis functions

defined onΩ0. These functions do not depend on time, they are “fixed” in space on the reference

domain. Consider a discrete ALE mappingχ(X, t), which mapsΩ0 ontoΩt, the current configu-

ration, and which can be expressed as a linear combination ofbasis functions in (5.51), and control

pointsχA ∈ R
3 (or nodal coordinates in standard finite elements) as

χ(X, t) =
∑

A∈It

χA(t)N̂A(X) (5.52)
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We also choose to approximate the displacement field of the solid problem (5.5) in the same basis,

that is

u(X, t) =
∑

A∈Is

UA(t)N̂A(X), (5.53)

whereIs ⊂ It is the index set of basis functions supported on the solid domain. This approach

amounts to an isoparametric description. We assume that allbasis functions in the reference con-

figuration are at leastC0-continuous, which automatically makes themH1-conforming. We also

requireN̂A’s with support in both fluid and solid subdomains to beC0-continuous acrossΓfs
0 .

In contrast to the solid problem, the fluid subdomain motion (5.29) and the fluid (5.35)

problems are posed over the current configuration with unknown fields being functions of the spatial

coordinatesx. In order to approximate the unknown fields in the current domain, we define another

set of basis functions,{NA(x, t)}A∈If
, as a push-forward of (5.51) to the current domain by the

discrete ALE map (5.52), that is

NA(x, t) = N̂A ◦χ−1(x, t) = N̂A(χ−1(x, t)) ∀A ∈ If , x ∈ Ωt, (5.54)

whereIf ⊂ It is the index set of basis functions supported on the fluid domain. The above basis is

used to approximate fluid velocity and pressure, and the fluidregion displacement as

v(x, t) =
∑

A∈If

V A(t)NA(x, t), (5.55)

p(x, t) =
∑

A∈If

PA(t)NA(x, t), (5.56)

γ(x, t) =
∑

A∈If

ΥA(t)NA(x, t). (5.57)

Note that due to the motion of the fluid domain, the basis functions in (5.54) are time-dependent.

Kinematic compatibility conditions (5.30) and (5.40), as well as conditions on the weight-

ing spaces, (5.31) and (5.41), are essential for the continuous FSI problem (5.39) to ensure proper

coupling. In the discrete setting there is a variety of ways of incorporating them into the formula-

tion. For example, condition (5.40) may be imposed weakly (see, e.g., Bazilevs and Hughes [7])

by constructing additional terms on the fluid-solid interface using ideas of discontinuous Galerkin

methods. As a result, incompatible fluid and solid discretizations may be employed. This approach

is not adopted here. Instead, in our discrete formulation, we choose to satisfy the above mentioned

conditions strongly as shown in the following.

Continuity of the discrete ALE mapping at the fluid-solid interface is ensured as follows. Let
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Ifs = If ∩ Is denote the indexed set of basis functions (and the associated geometry and solution

degrees of freedom) supported on the fluid-solid boundary. Then, settingΥA = UA ∀A ∈ Ifs

gives

u|
Γfs

0
=
∑

A∈Ifs

UAN̂A|Γfs
0

=
∑

A∈Ifs

ΥA(NA ◦ χ)|
Γfs

0
= γ ◦χ|

Γfs
0

, (5.58)

which is precisely (5.30). Continuity of the ALE map together with continuity of the basis in the

reference configuration assures that the basis functions inthe current configuration are at leastC0-

continuous, and thusH1-conforming.

Kinematic compatibility condition (5.40), which ensures that the fluid particles adhere to

the fluid-solid boundary, is satisfied by settingV A = ∂UA/∂t ∀A ∈ Ifs. Indeed,

∂u

∂t
|
Γfs

0
=
∑

A∈Ifs

∂UA

∂t
N̂A|Γfs

0
=
∑

A∈Ifs

V A(NA ◦ χ)|
Γfs

0
= v ◦ χ|

Γfs
0

, (5.59)

which is exactly (5.40).

Condition (5.31) is satisfied by setting to zero the weighting functions for the mesh motion

problem supported on the fluid-solid interface, while a unique set of basis functions at the fluid-solid

interface guarantees (5.41).

Finally, we demonstrate the following result:

Lemma 5.2.1. Letv =
∑

A∈If
V ANA. Then∂v

∂t =
∑

A∈If
∂V A/∂tNA, where∂v

∂t is defined as

in (5.38).

Proof. Recall that∂v∂t is the push-forward of the material fluid acceleration defined as∂v
∂t = ∂v̂

∂t ◦
χ−1, wherev̂ = v ◦ χ. Then

v̂ = v ◦χ = (
∑

A∈If

V ANA) ◦ χ (5.60)

=
∑

A∈If

V A(NA ◦χ) =
∑

A∈If

V AN̂A

Taking a partial time derivative and composing withχ−1, we obtain

∂v

∂t
=

∂v̂

∂t
◦χ−1 = (

∑

A∈If

∂V A

∂t
N̂A) ◦χ−1 =

∑

A∈If

∂V A

∂t
NA, (5.61)

which is the desired result.

The interpretation of the above lemma is that the coefficients ∂V A/∂t are the control
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variables for the material acceleration. SettingV A = ∂UA/∂t ∀A ∈ Ifs implies ∂V A/∂t =

∂2UA/∂t2 ∀A ∈ Ifs, which, in turn, leads to the continuity of the material acceleration across the

fluid-solid boundary.

Remark 5.2.1. Same basis functions are used for the pressure as for the fluidparticle velocity

and the displacement of the fluid region. This is not necessary. One may use a different basis for

pressure in order to satisfy the discrete BB condition. See,for example, Nobile [74] for use of mixed

interpolations in the ALE setting.

5.2.2 The semi-discrete problem

Let Vf
h ,Vs

h,Vm
h andWf

h ,Ws
h,Wm

h be the finite dimensional subspaces of their infinite dimensional

counterparts. We approximate the coupled fluid-structure interaction problem (5.39) as follows:

Find{v, p} ∈ Vf
h ,u ∈ Vs

h, andγ ∈ Vm
h such that∀{wf , qf} ∈ Wf

h , ∀ws ∈ Ws
h, and∀wm ∈ Wm

h ,

Bf ({wf , qf}, {v, p};β) − F f ({wf , qf})+

((v − β) · ∇xw
f ,v′)

Ω̃f
t

+ (∇xqf ,
1

ρf
v′)

Ω̃f
t
+

(∇x ·wfρfτC ,∇x · v)
Ω̃f

t
− (wf ,v′ · ∇xv)Ω̃f

t
−

(∇xw
f ,

1

ρf
v′ ⊗ v′)

Ω̃f
t

+ (v′ · ∇xw
fτ ,v′ · ∇xv)Ω̃f

t
+

Bs(ws,u) − F s(ws) + Bm(wm,γ) = 0, (5.62)

with the following definition of terms:

v′ = τM (Lf (v, p;β) − ρff f ), (5.63)

τM = (
Ct

∆t2
+ (v − β) ·G(v − β) + CI(

µf

ρf
)2G : G)−1/2, (5.64)

τC = (g · τMg)
−1, (5.65)

and

τ = (v′ ·Gv′)−1/2. (5.66)
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In expressions (5.64-5.66)G is a second rank metric tensor

G =
∂ξ

∂x

T ∂ξ

∂x
, (5.67)

g is a vector obtained by contractingG on its first index as

g = (g)i =
d
∑

j=1

(G)ji, (5.68)

and ∂ξ
∂x is the inverse Jacobian of the mapping between the elements in the parent and physical

domains. In (5.62) the symbol̃Ωf
t is used to denote the fact that integrals are taken over element

interiors.

The first eight terms of (5.62) pertain to the fluid description. The formulation origi-

nates from the multiscale residual-based turbulence modeling paradigm proposed in Calo [14], and

Hughes, Calo, and Scovazzi [51], and treated in detail in theprevious chapter. Residual-based

formulation of fluid flow may be viewed as an extension of well-known stabilized methods to the

nonlinear realm. Terms on the first line emanate from Galerkin’s method. Terms three, four, and

five represent the standard SUPG stabilization for INS extended to the ALE description. Terms six

and seven model the second cross-stress and the Reynolds stress contributions. The eighth term is

not motivated by multiscale arguments, it merely provides additional residual-based stabilization

for term six, which is advection-like (see Taylor, Hughes, and Zarins for details [97]). Terms nine

and ten of (5.62) pertain to the description of the nonlinearsolid, while the last term represents the

mesh motion. Galerkin’s method is employed for both as it is optimal for strongly elliptic problems.

5.2.3 Time integration of the FSI system

In this section we present the time integration algorithm for semi-discrete equations (5.62). The

method is an application of generalized-α algorithm proposed by Chung and Hulbert [15] for the

equations of structural dynamics, and extended to the equations of fluid mechanics by Jansen, Whit-

ing, and Hulbert [56]. In the context of fluid-structure interaction, generalized-α method was ap-

plied to coupling of the linearized Euler equations with thenonlinear structure in one spatial dimen-

sion by Kuhl, Hulshoff, and de Borst [64]. In this section we give details of the method as it applies

to the semi-discrete formulation (5.62).

We begin by making the following observations. In the solid region, where the basis func-

tions are independent of time, solution coefficients of the displacement, velocity, and acceleration

129



fields are related through time derivatives. That is, for every basis functionA,

AA =
∂V A

∂t
=

∂2UA

∂t2
,∀A ∈ Is, (5.69)

whereAA’s are acceleration coefficients. Denoting by˙(·) and(̈·) the first and second time deriva-

tives, we setAA = ÜA andV A = U̇A, ∀A ∈ Is.

In the fluid region the situation is similar. Thanks to lemma 5.2.1, coefficients of the fluid

velocity and material acceleration are also related through time derivatives despite the fact that the

basis functions used in the expansion of these fields are time-dependent. As a result, we also set

AA = ÜA andV A = U̇A, ∀A ∈ If . Note that there is no “fluid displacement” in our formulation,

U̇A andÜA are simply labels that we chose for fluid velocity and acceleration coefficients in the

interest of a concise presentation of the time integration algorithm.

The above observations, together with the the discrete kinematic compatibility conditions,

allow one to have a unique set of degrees of freedom representing displacement, velocity, and accel-

eration for the coupled fluid-structure system. Likewise, letΥA, Υ̇A, andΫA, ∀A ∈ If represent

the coefficients of the mesh displacement, velocity, and acceleration, respectively. We define three

discrete nonlinear residuals as:

Rmom
A,i (U , U̇ , Ü ,P ,Υ, Υ̇, Ϋ) =

(NAei, ρ
f ∂v

∂t
+ ρf (v − β) · ∇xv − ρff f )

Ωf
t
+

(∇xNAei,−pI + 2µf∇s
xv)Ωf

t
− (NAei,h

f )
Γf,N

t
+

((v − β) · ∇xNAei,v
′)

Ω̃f
t

+ (∇x · NAei, ρ
f τC∇x · v)

Ω̃f
t
−

(NAei,v
′ · ∇xv)Ω̃f

t
− (∇xNAei,

1

ρf
v′ ⊗ v′)

Ω̃f
t
+

(v′ · ∇xNAeiτ ,v′ · ∇xv)Ω̃f
t

+ (N̂Aei, ρ
s
0

∂2u

∂t2
− ρs

0f
s)Ωs

0
+

(∇XN̂Aei,F (u)S(u))Ωs
0
− (N̂Aei,h

s)
Γs,N

0
. (5.70)

Rcont
A (U , U̇ , Ü ,P ,Υ, Υ̇, Ϋ) =

(NA,∇x · v)
Ωf

t
+ (∇xNA,

1

ρf
v′)

Ω̃f
t

(5.71)
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and

Rmesh
A,i (U , U̇ , Ü ,P ,Υ, Υ̇, Ϋ) =

(∇xNAei, 2µ
m∇s

x(γ − γ̃) + λm∇x · (γ − γ̃))
Ωf

t
. (5.72)

In the aboveei be theith Cartesian basis vector, andU , P , Υ, and their time derivatives, collect

the discrete solution coefficients into a single vector of unknowns.Rmom
A,i is the combined fluid and

solid residual of the linear momentum equations for theAth basis function in the spatial direction

i, Rcont
A is the residual of the fluid continuity equation for theAth basis function, andRmesh

A,i is

the residual of the mesh motion equations for theAth basis function in theith spatial direction.

Note that in contrast to more traditional presentations, nodistinction is made between the fluid and

solid momentum residuals. Coupled PDEs are treated as one physical system. This presentation

foreshadows the implementation of the method in which the fluid and solid partitions contribute to

a global nonlinear equation system according to their designation.

Genealized-α time integration algorithm consists of the following: given the solution at time level

tn, find the solution at time leveltn+1, such that

Rmom
A,i (Un+αf

, U̇n+αf
, Ün+αm ,P n+1,Υn+αf

, Υ̇n+αf
, Ϋn+αm) = 0A,i, (5.73)

Rcont
A (Un+αf

, U̇n+αf
, Ün+αm ,P n+1,Υn+αf

, Υ̇n+αf
, Ϋn+αm) = 0A,

Rmesh
A,i (Un+αf

, U̇n+αf
, Ün+αm ,P n+1,Υn+αf

, Υ̇n+αf
, Ϋn+αm) = 0A,i.

Genealized-α method forces nonlinear residuals, evaluated at two temporal locationsn + αm and

n + αf defined as

(·)n+αm = (·)n + αm ((·)n+1 − (·)n) (5.74)

(·)n+αf
= (·)n + αf ((·)n+1 − (·)n) , (5.75)

to vanish identically. Fluid and solid displacement, velocity, and acceleration solution coefficients

are now related through the Newmark formulas (see, e.g., [44]

U̇n+1 = U̇n + ∆t((1 − γ)Ün + γÜn+1), (5.76)

Un+1 = Un + ∆tU̇n +
∆t2

2
((1 − 2β)Ün + 2βÜn+1). (5.77)

Mesh motion coefficients engender the same relationships. Parametrsαm andαf are selected so

as to ensure second order accuracy and unconditional stability of the time integrator. For a second
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order linear ODE system with constant coefficients, which isrelated to the solid and the mesh parts

of the FSI problem, Chung and Hulbert [15] showed that secondorder accuracy is ensured if

γ =
1

2
− αf + αm, (5.78)

and

β =
1

4
(1 − αf + αm)2, (5.79)

while unconditional stability is guaranteed if

αm ≥ αf ≥ 1

2
. (5.80)

Results (5.78) and (5.80) were also shown by Jansen, Whiting, and Hulbert [56] to hold true for a

first order linear ODE system with constant coefficients, which is related to the fluid part of the FSI

system. Condition (5.79) is only applicable to the second order case. In order to have strict control

over high frequency damping, both sources parametrizeαm andαf with ρ∞, the spectral radius of

the amplification matrix at an infinitely large time step. Optimal high frequency damping occurs

when all the eigenvalues of the amplification matrix take on the same value, and are equal to−ρ∞.

In this case, for the second order system, Chung and Hulbert [15] derive

αh
m =

2 − ρh
∞

1 + ρh
∞

, (5.81)

αh
f =

1

1 + ρh
∞

,

while for the first order system Jansenet al. [56] give

αj
m =

1

2
(
3 − ρj

∞

1 + ρj
∞

), (5.82)

αj
f =

1

1 + ρj
∞

,

where superscripts distinguish the quantities coming fromtwo different methods. The above equa-

tions show that for the same values ofρ∞ (that is,ρh
∞ = ρj

∞) there is an implied mismatch between

the acceleration levels for the fluid and the solid, while fordifferent values ofρ∞ (that is,ρh
∞ 6= ρj

∞)

there is an implied mismatch in the velocity levels for both systems. Both inconsistencies are elim-

inated forρh
∞ = ρj

∞ = 1, the case of zero high frequency damping which also corresponds to the

midpoint rule. This fact was also noted in Kuhl, Hulshoff, and de Borst [64]. In this work, we adopt
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expressions (5.82), thus making the fluid part of the problemoptimally damped, and examine the

eigenvalues of the amplification matrix for a second order linear ODE system at an infinitely large

time step:

lim
∆t→∞

λ = {
−1 + (αj

m − αj
f )

1 + (αj
m − αj

f )
,
−1 + (αj

m − αj
f )

1 + (αj
m − αj

f )
, 1 − 1

αj
f

}. (5.83)

Inserting (5.82) into the expression above, we get

lim
∆t→∞

λ = {−1 − 3ρj
∞

3 + ρj
∞

,
−1 − 3ρj

∞

3 + ρj
∞

,−ρj
∞}. (5.84)

While the third eigenvalue remains unchanged, the first two are different, but it is a simple matter to

show that they are monotone decreasing functions ofρj
∞ and

1

3
≤ |−1 − 3ρj

∞

3 + ρj
∞

| ≤ 1 ∀|ρj
∞| ≤ 1, (5.85)

which means that the spectral radius of the amplification matrix never exceeds unity in magnitude

and no instabilities are incurred in a second order system. Note that this choice of parameters does

not upset second order accuracy and unconditional stability of the method because conditions (5.78

-5.80) are preserved.

Remark 5.2.2. It should be noted that Newmark relationships (5.76) constitute an approximation

to time derivatives. They are used directly on the solution coefficients of the discrete FSI problem.

This approximation is valid due to the fact that our discreteFSI problem was formulated in a way

that solution coefficients are truly related through time derivatives.

5.3 Linearization of the discrete FSI system: a methodologyfor com-

puting shape derivatives

Fully discrete system (5.73) constitutes a set of nonlinearalgebraic equations to be solved at each

time step of the generalized-α time integrator. Inside the time integration loop Newton’smethod

is used as the main driver. The latter requires an appropriate linearization of (5.73). We will work

with acceleration and pressure increments, thus we define the following quantities. LeẗUB,j collect

acceleration degrees of freedom for every basis functionB and every Cartesian directionj. Note

that the kinematic constraint (5.40) implies that there is aunique set of acceleration degrees of

freedom at the fluid-solid interface. LetPB collect the fluid pressure degrees of freedom for every

basis functionB, and letΫB,j denote the mesh accelerations degrees of freedom. Newton iteration
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for the discrete FSI system (5.73) is

Rmom,ν
A,i +

∂Rmom,ν
A,i

∂Ün+1
B,j

∆Ün+1,ν
B,j + (5.86)

∂Rmom,ν
A,i

∂Pn+1
B

∆Pn+1,ν
B +

∂Rmom,ν
A,i

∂Ϋn+1
B,j

∆Ϋn+1,ν
B,j = 0,

Rcont,ν
A +

∂Rcont,ν
A

∂Ün+1
B,j

∆Ün+1,ν
B,j +

∂Rcont,ν
A

∂Pn+1
B

∆Pn+1,ν
B +

∂Rcont,ν
A

∂Ϋn+1
B,j

∆Ϋn+1,ν
B,j = 0,

Rmesh,ν
A,i +

∂Rmesh,ν
A,i

∂Ün+1
B,j

∆Ün+1,ν
B,j +

∂Rmesh,ν
A,i

∂Pn+1
B

∆Pn+1,ν
B +

∂Rmesh,ν
A,i

∂Ϋn+1
B,j

∆Ϋn+1,ν
B,j = 0,

supplemented with the update formulas

Ün+1,ν+1
B,j = Ün+1,ν

B,j + ∆Ün+1,ν
B,j , (5.87)

U̇n+1,ν+1
B,j = U̇n+1,ν

B,j + γ∆t∆Ün+1,ν
B,j , (5.88)

Un+1,ν+1
B,j = Un+1,ν

B,j + β(∆t)2∆Ün+1,ν
B,j , (5.89)

Ϋn+1,ν+1
B,j = Ϋn+1,ν

B,j + ∆Ϋn+1,ν
B,j , (5.90)

Υ̇n+1,ν+1
B,j = Υ̇n+1,ν

B,j + γ∆t∆Ϋn+1,ν
B,j , (5.91)

Υn+1,ν+1
B,j = Υn+1,ν

B,j + β(∆t)2∆Ϋn+1,ν
B,j , (5.92)

Pn+1,ν+1
B = Pn+1,ν

B + ∆Pn+1,ν
B , (5.93)

whereν is the Newton iteration index. Residuals in equations (5.86) are taken at the intermediate

time levelstn+αm andtn+αf
, while partial derivatives are taken with respect to the solution vari-

ables at time leveltn+1 as indicated by the superscripts. The resulting scheme falls in the class of

predictor-multicorrector algorithms (see, e.g., Brooks and Hughes [12]).

Derivatives of the momentum, continuity, and mesh motion residuals with respect to solu-

tion variables define the so-calledtangent matrices. In particular, derivatives of the momentum and

continuity residuals with respect to the mesh motion variables are referred to asshape derivatives.

Computation of shape derivatives is required for consistent linearization of the discrete FSI system.

To the authors’ knowledge, the only reference in which this issue is addressed is [26], where shape
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derivative operators based on space-continuous ALE formulation of incompressible Navier-Stokes

equations are derived. It is advocated in this work that the relevant object in nonlinear analysis is not

the “continuum tangent”, which is a discretization of a derivative operator of the continuous formu-

lation, but the “algorithmic tangent”, which is a tangent matrix that is derived from a given discrete

formulation. It is precisely the latter that gives quadratic convergence of the Newton iteration, and

is most robust in practice.

In this section we focus on presenting a methodology for deriving shape derivatives and pro-

vide explicit expressions for these tangent matrices coming from our discrete formulation of the FSI

problem. These results are new and comprise one of the main contributions of this dissertation. This

methodology is applicable to other FSI formulations, including the space-time approach advocated

in [99, 100, 102].

5.3.1 Shape derivatives

We begin by introducing notation. Letx = x(ξ) denote the mapping between the elements in the

parent and the physical domains defined on each element. Let∂x
∂ξ

be the Jacobian of this mapping,

let ∂ξ
∂x = ∂x

∂ξ
−1

be its inverse, and letJξ = det∂x
∂ξ

be its determinant. Cartesian basis will be

used throughout and, in what follows, operations on vectorsand tensors will be expressed through

operations on their components in the Cartesian basis. Letxi andξi denote theith component of

x andξ, respectively, and let(∂x
∂ξ

)ij = ∂xi

∂ξj
, and(

∂ξ
∂x )ij = ∂ξi

∂xj
be the components of the Jacobian

and its inverse.

The following identities, standard in nonlinear continuummechanics (see, e.g., Holzapfel

[43]) will be used in the sequel:

D(
∂ξi

∂xj
) = − ∂ξi

∂xl
D(

∂xl

∂ξk
)
∂ξk

∂xj
, (5.94)

and

DJξ = Jξ
∂ξj

∂xi
D(

∂xi

∂ξj
), (5.95)

whereD denotes a general derivative operator. Summation convention on repeated indices is used

throughout. Making use of equations (5.94 - 5.95) and the chain rule of differentiation, we obtain

D(Jξ
∂ξi

∂xj
) = Jξ(

∂ξl

∂xk
D(

∂xk

∂ξl
)
∂ξi

∂xj
− ∂ξi

∂xl
D(

∂xl

∂ξk
)
∂ξk

∂xj
), (5.96)
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and, furthermore,

D(Jξ
∂ξi

∂xj

∂ξm

∂xn
) = (5.97)

Jξ{
∂ξl

∂xk
D(

∂xk

∂ξl
)
∂ξi

∂xj
− ∂ξi

∂xl
D(

∂xl

∂ξk
)
∂ξk

∂xj
}∂ξm

∂xn
− Jξ

∂ξi

∂xj

∂ξm

∂xl
D(

∂xl

∂ξk
)
∂ξk

∂xn
.

Our task is to derive expressions for shape derivatives in a term-by-term fashion. We will

treat several terms in detail so as to make the underlying procedures clear. Results for the rest of the

terms will be stated without derivation.

Consider the expression

∂Rmom
A,i

∂ΫB,j

. (5.98)

This is a derivative of the discrete residual of momentum equation with respect to mesh acceleration

degrees of freedom. In (5.98), temporal as well as iterationsuperscripts are omitted in the interest

of a concise exposition. This derivative is active in the fluid region only, so we consider just the

Navier-Stokes contributions to the discrete residual.

Acceleration term

We begin with the acceleration contribution to the shape derivative matrix, that is

∂
∑Nel

e=1

∫

Ωe
NA,i ρf ∂vi

∂t dΩe

∂ΫB,j

. (5.99)

In (5.99)Nel is the number of elements in the fluid mesh,Ωe is the domain of the spatial element,

and the underlined index indicates that no sum is taken over it. Subscripti on the basis function

NA is used to denote a Cartesian direction and index the resultant matrix contribution. Otherwise,

no distinction is made between basis functions approximating different components of the solution

vector.

Taking the partial derivative operator inside the sum over the elements, for a given element

e we obtain

∂
∫

Ωe
NA,iρ

f ∂vi

∂t dΩe

∂ΫB,j

. (5.100)

In (5.100) we cannot take the partial derivative operator inside the integral, as the region of integra-

tion directly depends on the mesh motion. In order to circumvent this difficulty, we change variables
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under the integral,x→ ξ. With this change of variables expression (5.100) becomes

∫

Ω̂e

N̂A,i ρ̂f ∂v̂i

∂t

∂Jξ

∂ΫB,j

dΩ̂e, (5.101)

where(̂·) is used to denote the fact that the quantity is a function of the parent domain variableξ.

Note that basis functions, and particle density and acceleration in the parent domain are independent

of the mesh motion variables, hence the partial derivative only affects the Jacobian determinant.

Using expression (5.95) in (5.101) gives

∫

Ω̂e

N̂A,i ρ̂f ∂v̂i

∂t

∂(∂xk

∂ξl
)

∂ΫB,j

∂ξl

∂xk
Jξ dΩ̂e (5.102)

The term
∂(

∂xk
∂ξl

)

∂ΫB,j

∂ξl

∂xk
is analyzed as follows. Recall the definition ofxk

xk(ξ) = χk(ξ) = δk(ξ) + Xk(ξ), (5.103)

whereXk are components of a local geometrical mapping andδk are components of the local mesh

displacement in the reference domain. Then,

∂xk

∂ξl
=

∂δk

∂ξl
+

∂Xk

∂ξl
, (5.104)

which implies

∂(∂xk

∂ξl
)

∂ΫB
j

=
∂(∂δk

∂ξl
)

∂ΫB
j

, (5.105)

as the second term in (5.104) is independent of the mesh motion. Mesh displacementδk(ξ) is

defined as a linear combination of mesh displacement coefficients and basis functions, that is

δk(ξ) =

Nshl
∑

A=1

ΥA,kN̂A,k(ξ), (5.106)

whereNshl is the number of element basis functions. The above implies

∂(∂xk

∂ξl
)

∂ΫB,j

∂ξl

∂xk
= αfβ∆t2

∂N̂B,j

∂ξl

∂ξl

∂xj
. (5.107)

In (5.107) we made use of Newmark update formulas (5.76) the relationship between displacements
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at time levelstn+1 andtn+αf
. Inserting (5.107) into (5.102), changing variables back to the physical

domain, and summing over the elements of the fluid mesh, we finally get

Nel
∑

e=1

αfβ∆t2
∫

Ωe

NA,i ρf ∂vi

∂t

∂NB,j

∂xj
dΩe. (5.108)

Matrix (5.108) is the contribution to the shape derivative matrix (5.98) from the acceleration term

present in the discrete momentum equations of the INS system. It appears to be form-identical to the

matrices that contribute to the tangents in the analysis of fluids and solids, and its implementation

in a finite element and isogeometric codes is standard.

Advection term

In the acceleration term the coupling between the momentum residual and the mesh motion

variables occurs exclusively through the determinant Jacobian of the ALE mapping. Other terms

of the discrete INS system exhibit more complex coupling. For instance, consider the advective

contribution to the momentum residual

Nel
∑

e=1

∫

Ωe

NA,i ρf (vk − βk)
∂vi

∂xk
dΩe = (5.109)

Nel
∑

e=1

∫

Ωe

NA,i ρfvk
∂vi

∂xk
dΩe −

Nel
∑

e=1

∫

Ωe

NA,i ρfβk
∂vi

∂xk
dΩe.

Restricting the sum to a single element, changing variablesto the parent domain, and taking the

derivative with respect to the mesh acceleration degrees offreedom gives

∫

Ω̂e

N̂A,i ρ̂f (v̂k − β̂k)
∂v̂i

∂ξl

∂( ∂ξl

∂xk
Jξ)

∂ΫB,j

dΩ̂e −
∫

Ω̂e

N̂A,i ρ̂f ∂v̂i

∂ξl

∂ξl

∂xk

∂β̂k

∂ΫB,j

Jξ dΩ̂e (5.110)

Using relation (5.96) in the first term of (5.110) gives

∫

Ω̂e

N̂A,i ρ̂f (v̂k − β̂k)
∂v̂i

∂ξl
(
∂ξm

∂xn

∂( ∂xn

∂ξm
)

∂ΫB,j

∂ξl

∂xk
− (5.111)

∂ξl

∂xn

∂( ∂xn

∂ξm
)

∂ΫB,j

∂ξm

∂xk
)Jξ dΩ̂e

Changing variables back to the physical domain, taking the sum over the elements in the fluid mesh,
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and accounting for the second term of (5.110), we get

Nel
∑

e=1

αfβ∆t2
∫

Ωe

NA,i ρf (vk − βk)
∂vi

∂xk

∂NB,j

∂xj
dΩe− (5.112)

Nel
∑

e=1

αfβ∆t2
∫

Ωe

NA,i ρf (vk − βk)
∂vi

∂xj

∂NB,j

∂xk
dΩe−

Nel
∑

e=1

αfγ∆t

∫

Ωe

NA,i ρf ∂vi

∂xj
NB,j dΩe.

Matrix (5.112) is the contribution to the shape derivative matrix (5.98) from the advection term

present in the momentum equations of the INS system. It also appears to be form-identical to the

matrices that contribute to the tangents in the analysis of fluids and solids, but contains more terms

than its acceleration counterpart. Implementation is alsostandard in this case.

Pressure stabilization term

As a final example we present the derivation of the contribution to the shape derivative from

the discrete continuity equation, that is

∂Rcont
A

∂ΫB,j

. (5.113)

Consider the pressure contribution from the stabilizing terms, that is

Nel
∑

e=1

∫

Ωe

∂NA

∂xi

τM

ρf

∂p

∂xi
dΩe. (5.114)

As before, restricting to a single element and changing variables gives

∫

Ω̂e

∂N̂A

∂ξk

∂ξk

∂xi

τ̂M

ρ̂f

∂p̂

∂ξl

∂ξl

∂xi
Jξ dΩ̂e. (5.115)

Taking the derivative with respect to the acceleration degrees of freedom and isolating terms inde-

pendent of the mesh motion we get

∫

Ω̂e

∂N̂A

∂ξk

1

ρ̂f

∂p̂

∂ξl

∂(τ̂M
∂ξk

∂xi

∂ξl

∂xi
Jξ)

∂ΫB,j

dΩ̂e =

∫

Ω̂e

∂N̂A

∂ξk

τ̂M

ρ̂f

∂p̂

∂ξl

∂(∂ξk

∂xi

∂ξl

∂xi
Jξ)

∂ΫB,j

dΩ̂e+ (5.116)

∫

Ω̂e

∂N̂A

∂ξk

1

ρ̂f

∂p̂

∂ξl

∂ξk

∂xi

∂ξl

∂xi
Jξ

∂τ̂M

∂ΫB,j

dΩ̂e.

The last term on the right-hand-side of the above expressioninvolves the derivative of̂τM with
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respect to the mesh acceleration degrees of freedom. It is, in principle, present in the tangent matrix

and is computable, but in this work it is omitted. In order to handle the first term on the right-hand-

side of (5.116) we employ relation (5.97) to obtain

∫

Ω̂e

∂N̂A

∂ξk

τ̂M

ρ̂f

∂p̂

∂ξl
(
∂ξm

∂xn

∂( ∂xn

∂ξm
)

∂ΫB,j

∂ξk

∂xi

∂ξl

∂xi
− (5.117)

∂ξl

∂xn

∂( ∂xn

∂ξm
)

∂ΫB,j

∂ξm

∂xi

∂ξk

∂xi
−

∂ξk

∂xn

∂( ∂xn

∂ξm
)

∂ΫB,j

∂ξm

∂xi

∂ξl

∂xi
)Jξ dΩ̂e.

Changing variables back to the physical domain and summing over the fluid domain elements gives

the following contribution to the shape derivative

Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA

∂xi

τM

ρf

∂p

∂xi

∂NB,j

∂xj
dΩe− (5.118)

Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA

∂xi

τM

ρf

∂p

∂xj

∂NB,j

∂xi
dΩe−

Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA

∂xj

τM

ρf

∂p

∂xi

∂NB,j

∂xi
dΩe.

As before, these matrices and their implementation in a finite element FSI solver are standard. In

what follows we give, without derivation, expressions for shape derivative contributions from some

of the remaining terms in the formulation.

Pressure gradient term

−
∂
∑Nel

e=1

∫

Ωe

∂NA,i

∂xi
p dΩe

∂ΫB,j

= (5.119)

−
Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA,i

∂xi
p
∂NB,j

∂xj
− ∂NA,i

∂xj
p
∂NB,j

∂xi
dΩe.
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Viscous stress term

∂
∑Nel

e=1

∫

Ωe

∂NA,i

∂xk
µf (

∂vi

∂xk
+ ∂vk

∂xi
) dΩe

∂ΫB,j

= (5.120)

Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA,i

∂xk
µf (

∂vi

∂xk
+

∂vk

∂xi
)
∂NB,j

∂xj
−

∂NA,i

∂xj
µf (

∂vi

∂xk
+

∂vk

∂xi
)
∂NB,j

∂xk
−

∂NA,i

∂xk
µf ∂vi

∂xj

∂NB,j

∂xk
− ∂NA,i

∂xk
µf ∂vk

∂xj

∂NB,j

∂xi
dΩe.

Body force term

∂
∑Nel

e=1

∫

Ωe
NA,iρ

ff f
i dΩe

∂ΫB,j

=

Nel
∑

e=1

∫

Ωe

NA,iρ
f

∂f f
i

∂ΫB,j

+ αfβ∆t2NA,iρ
ff f

i

∂NB,j

∂xj
dΩe. (5.121)

Continuity constraint term

∂
∑Nel

e=1

∫

Ωe
NA

∂vi

∂xi
dΩe

∂ΫB,j

=

Nel
∑

e=1

αfβ∆t2
∫

Ωe

NA(
∂vi

∂xi

∂NB,j

∂xj
− ∂vi

∂xj

∂NB,j

∂xi
) dΩe. (5.122)

Continuity least-squares term

∂
∑Nel

e=1

∫

Ωe

∂NA,i

∂xi
τC

∂vk

∂xk
dΩe

∂ΫB,j

= (5.123)

Nel
∑

e=1

αfβ∆t2
∫

Ωe

∂NA,i

∂xi
τC

∂vk

∂xk

∂NB,j

∂xj
−

∂NA,i

∂xj
τC

∂vk

∂xk

∂NB,j

∂xi
−

∂NA,i

∂xi
τC

∂vk

∂xj

∂NB,j

∂xk
dΩe.
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Streamline diffusion stabilization term

∂
∑Nel

e=1

∫

Ωe
(vk − βk)

∂NA,i

∂xk
τM (vl − βl)

∂vi

∂xl
dΩe

∂ΫB,j

= (5.124)

−
Nel
∑

e=1

αfγ∆t

∫

Ωe

∂NA,i

∂xj
τM (vk − βk)

∂vi

∂xk
NB,j +

∂NA,i

∂xk
τM (vk − βk)

∂vi

∂xj
NB,j dΩe

+

Nel
∑

e=1

αfβ∆t2
∫

Ωe

(vl − βl)
∂NA,i

∂xl
τM(vk − βk)

∂vi

∂xk

∂NB,j

∂xj
−

∂NA,i

∂xj
τM (vl − βl)

∂vi

∂xl
(vk − βk)

∂NB,j

∂xk
−

(vl − βl)
∂NAi

∂xl
τM

∂vi

∂xj
(vk − βk)

∂NB,j

∂xk
dΩe

Contributions to the shape derivative matrix given in this section are implemented in our software

used to compute numerical examples presented in the sequel.With these contributions to the tangent

matrix we observed satisfactory nonlinear convergence of the FSI system within the time step. It is

possible that including additional terms in the tangent matrix may lead to a better performance of

the nonlinear solver for other problem classes.

5.4 Numerical examples

In all the examples, the wall is modeled by two elements and four C1-continuous second order

basis functions through the thickness. See [52] for furtherdetails regarding modeling of shell-like

structures as solids.

5.4.1 Wave propagation in an elastic tube

Our first test case, taken from Greenshields and Weller [38],deals with wave propagation in a fluid-

filled elastic tube. In this example the tube length isL = 10 cm, its inner radius isRi = 1 cm, and

its outer radius isRo = 1.2 cm. The solid region is enclosed betweenRi andRo while the fluid

occupies the rest of the tube. The problem setup and boundaryconditions are illustrated in Figure

5.2. Material properties representative of blood flow in arteries are defined as follows: the density

of the solid isρs = 1 g
cm3 , and Young’s modulus and Poisson’s ratio areE = 107 dyn

cm2 andν = 0.3,

respectively. The fluid density is alsoρf = 1 g
cm3 , and its viscosity isµf = 0.04 g

cm s.

The computational mesh, consisting of 6,080 quadratic NURBS elements, is shown in Fig-
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Figure 5.2: Wave propagation in a fluid-filled elastic tube problem setup.H(t) is the Heaviside
function.

ure 5.3. Att = 0 a step change in pressure is applied at the fluid inflow boundary to the system

that is initially at rest (all initial fields are zero). The pulse causes a pressure wave to propagate

down the tube. Figure 5.4 presents snapshots of fluid pressure at various times. Four radial cuts are

shown on each of the plots to demonstrate that the computed solution is pointwise axisymmetric.

For visualization purposes, pressure in the solid region isset to zero to create a sharp contrast at the

fluid-solid interface. As a result, radial wall displacement, which is on the order of 5%, is visible in

the figure.

Figure 5.5a shows the outer wall displacement, while Figure5.5b shows the centerline fluid

pressure at various times. Isogeometric results are compared with reference computations of Green-

shields and Weller [38], who employed a small-strain, small-displacement formulation of the solid.

Discrepancies between results are assumed attributable tothe fully nonlinear model used in the

present study versus the linear model utilized in [38]. Nevertheless, results are in fairly good agree-

ment with the reference computations, as well as with the Joukowsky solution (see Greenshields

and Weller [38] for details). These observations provide tentative confirmation that the coupled

momentum method for hemodynamics, proposed by Figueroaet al. [28], in which the fluid and

the structure exhibit strong coupling, but the geometry stays fixed at a reference configuration, is an

adequate description for blood flow calculations.
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Figure 5.3: Wave propagation in a fluid-filled elastic tube mesh consisting of 6,080 NURBS ele-
ments.
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t = 1.6ms t = 2.8ms

t = 4.0ms t = 5.2ms

t = 6.4ms t = 7.6ms

Figure 5.4: Wave propagation in a fluid-filled elastic tube. Contours of fluid pressure at various
radial slices. Solution remains pointwise axisymmetric
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Figure 5.5: Wave propagation in a fluid-filled elastic tube. (a) Outer wall radial displacement.
(b) Centerline pressure. Computational results of Greenshields and Weller [38] are plotted for
comparison.
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5.4.2 Blood flow in an idealized aneurysm

Figure 5.6: Idealized aneurysm problem setup.

In this test case, taken from [27, 86], we examine pulsatile flow in an idealized aneurysm.

The problem setup is shown in Figure 5.6. A time-periodic velocity waveform, specified at the

inflow plane, is parabolically distributed over the circular surface. The period of the wave,T , is

0.84s. The domains proximal and distal to the aneurysm region areassumed to have rigid walls,

while the aneurysm wall is elastic. The density of the solid,its Young’s modulus, and Poisson’s

ratio areρs = 1.2 g
cm3 , E = 6 × 106 dyn

cm2 , andν = 0.3, respectively. The fluid density and dynamic

viscosity areρf = 1.012 g
cm3 andµf = 0.035 g

cm s, respectively. A resistance boundary condition is

applied at the outflow. The value of the resistance constant is CR = 300 dyn s
cm5 . For implementation

of boundary conditions employing various pressure-flow relationships, see Heywoodet al. [41] and

Vignonet al. [110]. The mesh, consisting of 14,630 quadratic NURBS elements, is shown in Figure

5.7.

Figure 5.8 shows velocity vectors superimposed on the axialvelocity contours in the aneurysm

region at different times. A135◦ “pie” slice was cut out of the domain in order to exhibit the flow
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Figure 5.7: Idealized aneurysm mesh consisting of 14,630 NURBS elements.

features. Distensibility of the wall contributes significantly to the unsteadiness of the flow. Never-

theless, the flow remains axisymmetric, as may be discerned from symmetry of the velocity vectors.

As in the previous example, no axisymmetry in the solution isassumed at the outset. It should

be noted that the peak Reynolds number, estimated to be about1,400-1,500 based on the largest

diameter, is close to the transitional value for circular pipe flow (see, e.g., White [112]). Thus, rela-

tively small perturbations in the geometry and/or flow conditions may lead to much more complex,

unsteady solutions. Figure 5.9 shows the inflow and outflow waveforms. Note the outflow lags

the inflow due to the distensibility of the aneurysm wall. This well-known phenomenon was also

observed in the computations of Figueroaet al. [28]. Figure 5.9 also shows reference results from

[27, 86]. The agreement is excellent despite the differences in the wall models (a nonlinear shell

was used in [27, 86]).
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t ≈ 0T t ≈ 1
5T

t ≈ 2
5T t ≈ 3

4T

Figure 5.8: Idealized aneurysm. Velocity vectors superimposed on axial velocity contours at various
times. Top right and bottom left correspond to the systolic and diastolic phases, respectively. Note
that the flow is axisymmetric.
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Figure 5.9: Idealized aneurysm. Inflow and outflow waveforms. Notice the time lag attributable to
the distensibility of the wall.
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5.4.3 Patient-specific abdominal aorta

Figure 5.10: Patient-specific abdominal aorta geometry.

We present fluid-structure interaction calculations of a patient-specific abdominal aorta for

a healthy over-55 volunteer obtained from 64-slice CT angiography. The geometrical model, which

contains most major branches of a typical abdominal aorta, is shown in Figure 5.10. The inferior

mesenteric artery was not clearly captured in the imaging and was omitted in the geometrical model.

The fluid properties are:ρf = 1.06 g
cm3 , µf = 0.04 g

cm s. The solid is characterized by the density

ρs = 1 g
cm3 , Young’s modulus,E = 4.144× 106 dyn

cm2 , and Poisson’s ratio,ν = 0.4. A periodic flow

waveform, with periodT = 1.05s, is applied at the inlet of the aorta, while resistance boundary

conditions are applied at all outlets. The solid is fixed at the inlet and at all outlets. Material and

flow rate data, as well as resistance values are taken from Figueroaet al. [28], with the following

exception. Poisson’s ratio is taken to be 0.4, not 0.5 as in [28], as the latter is not allowed in the

pure displacement formulation of an elastic solid. Wall thickness for this model is taken to be 15%

of the nominal radius of each cross-section of the fluid domain model. The computational mesh,

consisting of 52,420 quadratic NURBS elements, is shown in Figure 5.11.

Figure 5.12 shows velocity isosurfaces plotted on the current configuration of the geometry

at various times during the cardiac cycle. The flow appears tobe fully three-dimensional and un-

steady, with most of the unsteadiness occurring in late diastole. Figure 5.13 shows the distribution
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Figure 5.11: Patient-specific abdominal aorta mesh consisting of 52,420 quadratic NURBS ele-
ments.

of flow among the branches. As in the previous example, the outflow lags the inflow due to the

distensibility of the arterial wall. Although perfect matching with [28] cannot be expected because

the geometry and analysis models are different, the overallflow distribution and the time lag are in

qualitative agreement.
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t ≈ 1/5T t ≈ 2/5T

t ≈ 3/5T t ≈ 4/5T

Figure 5.12: Patient-specific abdominal aorta. Isosurfaces of the velocity magnitude plotted on the
deformed geometry at various times.
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Figure 5.13: Patient-specific abdominal aorta. Inlet and outlet flow waveforms. Flowrates (cm3/s)
versus time (s).
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Chapter 6

Conclusions and Future Work

In this thesis the mathematical study of Isogeometric Analysis based on NURBS, an extension of

classical finite element analysis, was initiated. We developed approximation properties based on a

new Bramble-Hilbert lemma and new inverse estimates for thecases at hand. Our study focused

onh-refinement and did not treat order-elevation methods such as p- or k-refinement, which will be

a subject of future research. We applied the method to several cases of physical interest, namely,

elasticity, isotropic incompressible elasticity and Stokes flow, and advection-diffusion. These serve

as linear model problems for applications such as turbulentfluid flow and fluid-structure interac-

tion, also treated in this dissertation. We considered standard primal and mixed Galerkin methods

as well as stabilized methods. All of our numerical results were consistent with our theoretical pre-

dictions. We also performed some numerical tests involvingsingularities and unresolved layers that

went beyond the limits of the hypotheses of our mathematicalresults. These tests suggest that we

have barely scratched the surface in that many other interesting mathematical properties, yet to be

rigorously established, are possessed by Isogeometric Analysis.

We have developed a class of discrete formulations for incompressible fluid flow based on

the multiscale paradigm and the concept of fine-scale Green’s function. These residual-based for-

mulations are considered to be models of turbulence in this work. New methods were tested in

the parallel isogeometric unsteady flow solver, developed as a part of this thesis. Results appear

to be competitive with, and often superior to state-of-the-art, eddy-viscosity based formulations.

Increased accuracy was noted for high-order, high-continuity discretizations native to Isogeometric

Analysis. Future research efforts will be focused on improving accuracy of local fine-scale ap-

proximations which are embedded in the VMS methodology. Additional benchmark test cases, as

well as flows of industrial complexity need to be computed to obtain a fuller understanding of the

performance of newly proposed methods.

We have developed a NURBS-based isogeometric fluid-structure interaction capability cou-
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pling incompressible fluids with nonlinear elastic solids and allowing for large structural displace-

ments, and applied it to problems of arterial blood flow. We have also developed a set of procedures

allowing us to construct analysis-suitable NURBS geometries directly from patient-specific imaging

data. The new approach is evaluated on two benchmark problems and applied to the fluid-structure

interaction of a patient-specific abdominal aorta. Very good results are obtained for the benchmark

computations and the results for our patient-specific modelare in qualitative agreement with the

results of other researchers using similar models. Future developments will address extensions to

hyperelastic materials with anisotropy and viscoelasticity, which are capable of representing more

physically realistic behavior of the arterial wall. Solid incompressibility and near-incompressibility

will be dealt with by means of a mixed formulation employing displacement and pressure. Com-

parisons with standard finite elements are also planned.
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