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Acquired resistance to the antiestrogen tamoxifen constitutes a major clinical 

challenge in breast cancer therapy. However, the mechanisms involved are still poorly 

understood. Therefore, the overall goal and focus of this dissertation are to better 

understand the phenomenon of tamoxifen resistance. In preliminary studies, we generated 

two independently derived isogenic MCF-7 breast cancer cell line variants (TAMR1 and 

TAMR2) that were resistant to the inhibitory growth effects of tamoxifen. Using serial 

analysis of gene expression (SAGE), we identified CtIP (CtBP-interacting protein), a 

BRCA1 (Breast cancer 1)- and CtBP (C-terminal binding protein)-interacting protein, as 

one of the most significantly down-regulated transcripts in the aforementioned tamoxifen 

resistant cells. We hypothesized that CtIP silencing constitutes a critical event for the 

development of tamoxifen resistance in breast cancer. We found that silencing 

endogenous CtIP in tamoxifen sensitive cells confers tamoxifen resistance and estrogen 

independence. On the other hand, re-expression of CtIP in tamoxifen resistant cells 
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restores sensitivity to the inhibitory growth effects of tamoxifen. Importantly, poor 

clinical response to neo-adjuvant endocrine therapy is associated with CtIP deficiency in 

primary breast carcinomas. Meta-analysis of seven publicly available gene expression 

microarray data sets shows that CtIP expression is significantly associated with estrogen 

receptor (ER), disease free survival and breast cancer metastasis status. Furthermore, we 

found CtIP protein expression in a majority of ER positive breast cancer cell lines, but 

none or very little CtIP expression in ER negative lines. These findings indicate that CtIP 

silencing may be a novel mechanism for the development of tamoxifen resistance in 

breast cancer, and suggest that CtIP is likely associated with ER function and that CtIP 

gene and protein expression may be useful biomarkers for breast cancer prognosis and 

clinical management. Subsequent studies found a BRCA1-CtIP-CtBP complex in 

tamoxifen sensitive but not resistant cells, whereas BRCA1 is associated with ER in both 

cell lines. We also observed different patterns of occupancy by BRCA1, CtIP and CtBP 

on ERE (Estrogen Response Element) region of the pS2 promoter after E2 or tamoxifen 

treatment. These results support the potential involvement of a BRCA1-CtIP-CtBP 

complex in the development of tamoxifen resistance. 



 viii 

Table of Contents 

List of Tables.....................................................................................................xii 

List of Figures...................................................................................................xiii 

List of Abbreviations ......................................................................................... xv 

Chapter 1: Introduction ........................................................................................1 
1.1. Overview of breast cancer ....................................................................1 

1.2. Estrogen ...............................................................................................3 

1.2.1. Biosynthesis, endogenous sources and physiologic functions ....3 

1.2.2. Metabolism...............................................................................7 
1.2.3. Estrogen’s role in normal breast development and breast cancer7 

1.3. Estrogen receptors .............................................................................. 10 

1.3.1. Two estrogen receptors ........................................................... 10 
1.3.2. Estrogen receptor α................................................................. 10 

1.3.3. Estrogen receptor β ................................................................. 11 

1.3.4. Estrogen receptor knock out mice ........................................... 13 

1.4. Mechanisms of ER action................................................................... 14 
1.4.1. Classical genomic actions of ER ............................................. 14 

1.4.2. Nonclassical genomic actions of ER ....................................... 16 

1.4.3. Nongenomic actions of ER ..................................................... 18 

1.4.4. Ligand-independent activation of ER ...................................... 21 
1.5. Overview of endocrine therapies ........................................................ 21 

1.6. Tamoxifen.......................................................................................... 26 

1.6.1. Pharmacology......................................................................... 26 

1.6.2. Clinical aspects ....................................................................... 27 
1.6.3. Mechanism of action............................................................... 28 

1.7. Tamoxifen resistance.......................................................................... 30 

1.7.1. Loss of ER expression /function.............................................. 31 

1.7.2. Altered expression of ERβ ...................................................... 32 



 ix 

1.7.3. Pharmacological mechanisms ................................................. 32 

1.7.4. Altered expression of coregulatory proteins ............................ 33 
1.7.5. Crosstalk between ER and growth factor receptor signaling 

pathways.................................................................................. 35 

1.8. Overview of SAGE and its use in breast cancer research .................... 38 

1.9. CtIP, a protein with multiple partners and putative functions including 
tumor suppression............................................................................. 41 

1.10. Dissertation aims .............................................................................. 45 

Chapter 2: Materials and Methods...................................................................... 48 

2.1. Human breast cancer cell lines............................................................ 48 
2.2. Chemicals .......................................................................................... 48 

2.3. SAGE................................................................................................. 49 

2.4. SAGE library analysis ........................................................................ 49 

2.5. Real-time quantitative RT-PCR.......................................................... 52 
2.6. Western blot analysis.......................................................................... 52 

2.7. Electroporation................................................................................... 53 

2.8. RNA Interference ............................................................................... 54 

2.9. Generation of double-stably transfected Tet-off TAMR1 cells with 
doxycycline inducible restoration of CtIP ......................................... 54 

2.10. In vitro cell proliferation assays........................................................ 55 

2.11. DNA methylation analyses ............................................................... 55 

2.12. Immunoprecipitation ........................................................................ 56 
2.13. Chromatin immunoprecipitation assays ............................................ 57 

2.14. Human breast carcinoma samples ..................................................... 58 

2.15. Immunohistochemistry and statistical analyses ................................. 58 
2.16. Meta-analysis of breast cancer microarray data sets .......................... 59 

Chapter 3: Global gene expression analysis identifies CtIP (RbBP8) as one of the 
most significantly downregulated transcripts in tamoxifen resistant human 
breast cancer cells ..................................................................................... 61 
3.1. Introduction........................................................................................ 61 

3.2. Results ............................................................................................... 64 



 x 

3.2.1. Generation and characterization of tamoxifen resistant MCF-7 cell 
line variants ............................................................................. 64 

3.2.2. SAGE libraries generation ...................................................... 64 

3.2.3. Differential expression analysis of SAGE libraries.................. 67 

3.2.4. Validation of SAGE Findings ................................................. 71 

3.2.5. CtIP gene promoter methylation study .................................... 73 
3.3. Discussion.......................................................................................... 73 

Chapter 4: CtIP silencing as a novel mechanism of tamoxifen resistance in human 
breast cancer ............................................................................................. 83 

4.1. Introduction........................................................................................ 83 
4.2. Results ............................................................................................... 86 

4.2.1. Silencing endogenous CtIP in tamoxifen sensitive MCF-7 cells 
confers tamoxifen resistance and estrogen independence.......... 86 

4.2.2. Re-expression of CtIP in tamoxifen resistant cells restores 
sensitivity to the inhibitory growth effects of tamoxifen........... 89 

4.2.3. Poor clinical response to endocrine therapy is associated with CtIP 
deficiency in breast cancer patients .......................................... 93 

4.2.4. CtIP expression is associated with ER, disease free survival and 
breast cancer metastasis status ................................................. 95 

4.2.5. CtIP expression in human breast cancer cell lines.................... 98 

4.3. Discussion........................................................................................ 100 

Chapter 5: Involvement of a BRCA1-CtIP-CtBP complex in the development of 
tamoxifen resistance................................................................................ 105 

5.1. Introduction...................................................................................... 105 

5.2. Results ............................................................................................. 108 
5.2.1 Expression of other corepressors and ER phosphorylation in 

tamoxifen resistant cells......................................................... 108 

5.2.2. BRCA1, CtIP and CtBP forms a complex in vivo in tamoxifen 
sensitive but not resistant cells ............................................... 111 

5.2.3. BRCA1 interacts with ER in vivo in both tamoxifen sensitive and 
resistant cells ......................................................................... 113 

5.2.4. Occupancy by ER, BRCA1, CtIP and CtBP on E2-responsive gene 
(pS2) promoter in MCF-7 cells .............................................. 113 



 xi 

5.3. Discussion........................................................................................ 116 

Chapter 6: Concluding remarks........................................................................ 120 
6.1. Summary.......................................................................................... 120 

6.2. Future Directions.............................................................................. 126 

References: ...................................................................................................... 130 

Vita….............................................................................................................. 159 



 xii 

List of Tables 

Table 3.1. Representative partial profile and display format of genes identified by the 

i-Sight platform and functional categorization (unrelated experiment). ..... 69 

Table 3.2. Cell-cycle and cell proliferation related genes differentially expressed in 

tamoxifen resistant MCF-7 cells. .............................................................. 70 



 xiii 

List of Figures 

Figure 1.1. U.S. breast cancer incidence and mortality rate trends. .................................. 2 

Figure 1.2. Chemincal structures of common estrogens. .................................................. 4 

Figure 1.3. Steroid biosynthesis pathways. ...................................................................... 6 

Figure 1.4. Structure and functional domains of ERα and ERβ. .................................... 12 

Figure 1.5. Genomic action of ER. ................................................................................ 17 

Figure 1.6. Non-genomic ER signaling and its crosstalk with growth factor receptor 

pathways involving the MAPK and PI3K-AKT pathways......................... 19 

Figure 1.7. Chemical structures of common SERMs. .................................................... 24 

Figure 1.8. Domain structure of human CtIP (hCtIP)..................................................... 42 

Figure 2.1. Schematic representation of the SAGE protocol. ......................................... 51 

Figure 3.1. Development of tamoxifen resistant MCF-7 cell line variants...................... 65 

Figure 3.2. In vitro characterization of parental MCF-7, TAMR1 and TAMR2 cells. .... 66 

Figure 3.3. Summary of i-sight Discovery platform....................................................... 68 

Figure 3.4. CtIP expression levels in parental MCF-7, TAMR1 and TAMR2 cells ........ 72 

Figure 3.5. CtIP promoter methylation study................................................................. 74 

Figure 4.1. Silencing of CtIP protein expression in tamoxifen sensitive MCF-7 cells 

confers tamoxifen resistance and estrogen independence in vitro. ............. 87 

Figure 4.2. Tamoxifen resistant cells regain sensitivity to the inhibitory growth effects 

of tamoxifen upon restoration of CtIP protein expression.......................... 90 

Figure 4.3. Poor clinical response to endocrine therapy is significantly associated with 

CtIP deficiency in primary breast carcinomas. .......................................... 94 

Figure 4.4. CtIP expression is associated with ER status and prognosis in breast 

cancer. ...................................................................................................... 96 



 xiv 

Figure 4.5. CtIP protein expression in breast cancer cell lines as determined by 

Western blot analysis................................................................................ 99 

Figure 5.1. Western blot analysis of NCoR and CtBP in MCF-7, TAMR1 and 

TAMR2 cells. ......................................................................................... 109 

Figure 5.2. Western blot analysis of phospho-ER at serine 118 in MCF-7, TAMR1 

and TAMR2 cells. .................................................................................. 110 

Figure 5.3. BRCA1, CtIP and CtBP form a complex in vivo in tamoxifen sensitive 

MCF-7 cells but not in tamoxifen resistant TAMR1 cells. ...................... 112 

Figure 5.4. Endogenous interaction of BRCA1 with ER in MCF-7 and TAMR1 cells. 114 

Figure 5.5. ChIP analysis of ER, BRCA1, CtIP and CtBP on pS2 gene promoter in 

MCF-7 cells............................................................................................ 115 

Figure 5.6. Schematic hypothetical model of the proposed BRCA1-CtIP-CtBP 

repressor complex in tamoxifen sensitive and resistant breast cancer 

cells. ....................................................................................................... 118 



 xv 

List of Abbreviations 

4-OH-TAM: 4-hydroxytamoxifen 

ANG1: Angiopoieting-1 

BRCA1: Breast cancer 1, early onset 

CtBP: C-terminal binding protein 

CtIP: CtBP-interacting protein 

CCNA2: Cyclin A2 

CCNF: Cyclin F 

CDC45L: CDC45 cell division cycle 45-like 

E1: Estrone 

E2: 17β-Estradiol 

E3: Estriol 

EBAG9: Estrogen receptor binding site associated, antigen, 9 

ER: Estrogen receptor 

FAT: FAT tumor suppressor homolog 1 

Ikaros: zinc finger protein, subfamily 1A, 1 

LMO4: LIM domain only 4 

PgR: Progesterone receptor 

REA: Prohibitin 2 

SAGE: Serial analysis of gene expression 

SEM: Standard error mean 

SERM: Selective estrogen receptor modulator 

TSSC3: Pleckstrin homology-like domain, family A, member 2 

ZBRK1: Zinc finger protein 350



 1 

Chapter 1: Introduction 

 

1.1. OVERVIEW OF BREAST CANCER 

Breast cancer is the most frequently diagnosed cancer and ranks second among 

cancer death in women in the United States (American Cancer Society, 2007). It is 

estimated, by the American Cancer Society, that about 240,510 American women will be 

diagnosed with breast cancer in 2007, and approximately 40,460 women diagnosed with 

breast cancer will die of the disease. Figure 1.1. shows the recent incidence and mortality 

rate trends of breast cancer in the United States. In effort to eradicate this disease, 

intensive epidemiologic, clinical and genetic studies have been conducted and led to the 

identification of a number of risk factors associated with breast cancer (Bernstein and 

Ross, 1993; Mettlin, 1999; Pike et al., 1993). Besides being female and getting older, 

women with inherited genetic mutations in the BRCA1 and BRCA2 genes, family history 

of breast cancer, high breast tissue density, biopsy-confirmed hyperplasia, and high-dose 

radiation are at higher risk of developing breast cancer. Additional factors that are also 

believed to contribute to increased risk include early onset of menstruation, nulliparity or 

delayed first childbirth (i.e. never having children or a first pregnancy after age 30), late 

menopause, long-term estrogen replacement therapy, extended use of oral contraceptives, 

postmenopausal obesity, and alcohol consumption (Bernstein and Ross, 1993; Mettlin, 

1999; Pike et al., 1993). Breast carcinoma arises from the epithelium of the mammary 

gland, which includes the breast milk-producing lobules and the ducts that carry milk to 

the nipple. However, it is still not yet clear about the pathway to breast cancer 

development. There is some evidence from animal models and molecular genetic analysis 

to indicate that the breast epithelium undergoes a transformation from normal to 
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Figure 1.1. U.S. breast cancer incidence and mortality rate trends.  

This figure was obtained from the National Cancer Institute 
(http://planning.cancer.gov/disease/Breast-Snapshot.pdf). 
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hyperplastic, followed by the appearance of atypia, progressing through a noninvasive 

preneoplastic phase called ductal carcinoma in situ (DCIS) to invasive carcinoma, in 

which the basement membrane has been breached (Lakhani, 1999). Histologically, 

invasive ductal carcinomas (IDCA) are the most frequently observed invasive type, 

representing about 80 percent of total invasive breast cancer cases, while only 5 to 10 

percent of breast cancers are infiltrating lobular carcinomas (ILCA) (van de Vijver, 

1993). The treatment and prognosis of breast cancer are influenced in part according to 

staging categories at the time of diagnosis. Currently, the most commonly used staging 

system that has designated staging by TNM (primary tumor, regional lymph nodes and 

distant metastasis) classification is provided by the American Joint Committee on Cancer 

(AJCC) (Singletary et al., 2002; Woodward et al., 2003). In the clinic, treatment options 

may include surgery (lumpectomy or mastectomy with removal of some of the axillary 

lymph nodes), radiation therapy, chemotherapy, endocrine therapy and targeted 

biological therapy, usually used in combination.  

 

1.2. ESTROGEN 

1.2.1. Biosynthesis, endogenous sources and physiologic functions 

Sex steroids, including the naturally occurring estrogens Estrone (E1), 17β-

estradiol (E2), and estriol (E3) (Figure 1.2.), are derivatives of cholesterol. The steroid 

production process involves many enzymatic steps, most of which use cytochrome P450 

heme-containing enzymes (Figure 1.3.). The rate-limiting step in steroidogenesis is the 

transfer of cholesterol from the cytosol to the inner membrane of the mitochondrion, 
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Figure 1.2. Chemical structures of common estrogens. 
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where the cleavage of the side chain of cholesterol occurs by the cytochrome P450 

enzymes. The last step in estrogen synthesis is aromatization that converts androgens to 

estrogens. This reaction is catalyzed by the P450 aromatase monooxygenase enzyme 

complex present in the smooth endoplasmic reticulum. The principal sites of aromatase 

expression in women are the ovarian granulosa cells (premenopausal), the placental 

syncytiotrophoblast (pregnant), and the adipose and skin fibroblasts (postmenopausal) 

(Simpson et al., 1994). Aromatase activity has also been detected in muscle (Matsumine 

et al., 1986), brain (Balthazart and Absil, 1997; Balthazart et al., 1990; Garcia-Segura et 

al., 1999; Naftolin et al., 1975), bone (Sasano et al., 1997; Shozu and Simpson, 1998) and 

the testes (Brodie and Inkster, 1993). Another group of enzymes that also plays important 

roles in steroidogenesis is the family of 17β-hydroxysteroid dehydrogenases (17β-HSDs). 

In fact, the more potent 17β-estradiol is converted from estrone by type 1 of 17β-HSD 

(Figure 1.3.). In women, the theca and granulosa cells of the ovaries are the primary 

sources of estradiol, while estrone and estriol are synthesized primarily in the liver from 

estradiol. At menopause, estrogen production from ovaries significantly decreases. 

Therefore, in postmenopausal women, estrogen is primarily formed by aromatization of 

C19 steroids in peripheral tissues (Grodin et al., 1973). Ovarian function and estrogen 

synthesis are regulated by the pituitary gonadotrophins, follicle-stimulating hormone 

(FSH) and luteinizing hormone (LH). For instance, genes responsive to FSH control the 

expression of steroidogenic enzymes (Richards, 1994). In men, the major sources of 

estrogen are the peripheral tissues, like adipose and skin (MacDonald et al., 1979). It is 

estimated that only about 15% of the circulating level of estrogen is synthesized in the 

testes (Hemsell et al., 1974). Estrogen has widespread physiologic functions. In women, 

estrogen regulates the menstrual cycle, development of secondary sexual characteristics 

(including normal breast development) and reproduction. In addition, it is involved in the 
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Figure 1.3. Steroid biosynthesis pathways. 
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modulation of bone density, regulation of lipoprotein synthesis and cholesterol transport 

(Christiansen et al., 1981; Eriksen et al., 1988; Oursler et al., 1991; Paganini-Hill et al., 

1996). Estrogen is also thought to have neuroprotective (Green et al., 1997; Henderson, 

1997) and vasoprotective actions (Kim et al., 1999; White et al., 1995). In young adult 

men, estrogen is essential for fusion of epiphyses and maintenance of bone mass (Carani 

et al., 1997; Morishima et al., 1995; Smith et al., 1994).  
 

1.2.2. Metabolism 

Estrogens are metabolized through the catechol pathway. Phase I metabolism is 

catalyzed by several cytochrome P450 enzymes and yields predominantly 2-

hydroxycatechol estrogens (Jefcoate et al., 2000; Liehr, 2000) or 4-hydroxycatechol 

estrogens (Hayes et al., 1996). Catechol estrogens can further undergo continuous 

metabolic redox cycling, a process that can yield estrogen quinones and hydroquinones. 

Phase II detoxication pathways include sulfation, methylation and reaction with 

glutathione (GST) (Cavalieri et al., 2000). The catechol estrogens, for instance, can be 

methylated by catechol O-methyltransferase to form methoxylated estrogen metabolites 

(Gruber and Huber, 2001). The conjugates are excreted into the bile or urine.  

 

Note: Although estrogens occur naturally in several structurally related forms as 

described above, the predominant intracellular estrogen is17β-estradiol (E2). Therefore, 

in the following dissertation, the term estrogen refers to17β-estradiol (E2).  
  

1.2.3. Estrogen’s role in normal breast development and breast cancer 

Although mammary development begins during embryogenensis, major breast 

development in women is not initiated until the onset of puberty. Normal breast 
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development at puberty and during sexual maturity is stimulated by and dependent on the 

high levels of estrogen produced by the ovary. In young women, the lobular units of the 

terminal ducts of the breast tissue are highly responsive to estrogen. Mammary epithelial 

cells seem to be the main site of estrogen action. Estrogen stimulates the growth and 

differentiation of the ductal epithelium, as well as the growth of connective tissue (Porter, 

1974).  

 

The role of estrogen as a fundamental factor in the etiology and progression of 

human breast cancer has been well documented. The first evidence suggesting a 

relationship between estrogen and breast cancer growth was reported by George Beatson 

more than 100 years ago who discovered that ovariectomy could lead to breast cancer 

regression in premenopausal women (Beatson, 1896). The importance of ovarian function 

and ovarian hormones in breast cancer development was subsequently confirmed by 

work on mice (Allen and Doisy, 1983; Lathrop and Loeb, 1916). Since then, there has 

been considerable evidence from numerous studies that associates increased risk of breast 

cancer with prolonged exposure to estrogens. The extent of exposure to ovulary cycles, 

including early menarche, late first full-term pregnancy and late menopause, is one of the 

most important endogenous causes associated with a higher risk for development of 

sporadic breast cancer (Pike et al., 1993). In postmenopausal women, in spite of the 

dramatic decrease of serum estrogen levels at menopause, the concentration of estrogen 

in breast cancer tissues is more than 20-fold higher than that present in the plasma and 

does not differ significantly from that in premenopausal patients, indicating a more 

significant role of local biosynthesis of estrogen in postmenopausal breast cancer patients 

which is further supported by the observation of high levels of aromatase in their breast 

tumors (Castagnetta et al., 1996; Miller and O'Neill, 1987; Pasqualini et al., 1996). Long-



 9 

term replacement therapy (estrogen replacement therapy, with estrogen alone or hormone 

replacement therapy, with estrogen plus progestin), which also elevates blood levels of 

estrogen, can significantly increase breast cancer risk (Collaborative Group on Hormonal 

Factors in Breast Cancer, 1997), and the greatest increase in breast cancer risk appears to 

be associated with hormone replacement therapies that combine estrogen and progestin 

(Schairer et al., 2000).  

 

How estrogen contributes to the development of breast cancer remains complex. 

Current evidence has suggested that estrogen may promote breast cancer by acting either 

as an initiator or as a promoter. Recent animal studies have demonstrated that estrogen 

and its catechol metabolites are carcinogens in various tissues including mammary glands 

(Harvell et al., 2000; Nandi et al., 1995; Shull et al., 1997; Turan et al., 2004; Yager, 

2000; Yager and Liehr, 1996; Yue et al., 2003). Catechol estrogens are capable of redox 

cycling, a process that produces quinone intermediates that can form unstable DNA 

adducts (Cavalieri et al., 1997) and reactive oxygen species that can oxidatively damage 

lipids and DNA (Cavalieri et al., 2000; Liehr, 2000; Mobley et al., 1999; Nutter et al., 

1994; Yager and Liehr, 1996). Thus, estrogen has been proposed to have genotoxic 

activity (Liehr, 2000). On the other hand, the role of estrogen as a tumor promoter in 

breast cancer is well established from both experimental and clinical observations. For 

instance, the growth of several human breast cancer cell lines, such as the MCF-7 cell 

line, require estrogen in vitro and in vivo. It is now clear that estrogen promotes breast 

cancer progression by stimulating malignant cell proliferation. The proliferative effects of 

estrogen are mediated by estrogen receptors (See ESTROGEN RECEPTORS section for 

detail). Antiestrogens, aromatase inhibitors and ovariectomy, all of which block or limit 

the promotional effects of estrogen, are effective in treating some breast cancer patients.  
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1.3. ESTROGEN RECEPTORS 

1.3.1. Two estrogen receptors 

Estrogen’s biological and physiological effects are mediated by estrogen receptors 

(ERs). Estrogen receptors are members of the nuclear hormone receptor superfamily that 

function as transcription factors when bound by their respective ligands. The estrogen 

receptor was first described in the uterus of rats (Jensen and Jacobson, 1962; Jensen et al., 

1968; Toft and Gorski, 1966). It is now known that there are two subtypes of ER, ERα 

and ERβ, encoded by different genes (Green et al., 1986a; Kuiper et al., 1996) (Figure 

1.4.).  
 

1.3.2. Estrogen receptor α 

ERα was the first cloned estrogen receptor and it was isolated and sequenced 

from MCF-7 human breast cancer cells in the late 1980s (Green et al., 1986b; Greene et 

al., 1986; Walter et al., 1985). The human ERα gene is located on chromosome 6q 

(Menasce et al., 1993) and its protein contains 595 amino acids with a molecular weight 

of 66 kDa (Green et al., 1986b). A 46 kDa isoform and several splicing variants of ERα 

have also been described, although their biological function remains unclear (Flouriot et 

al., 2000; Murphy et al., 1997; Poola et al., 2000). ERα consists of six functional 

domains (A-F) transcribed by eight exons (Figure 1.4.) (Kumar et al., 1987; Kumar et al., 

1986). The N-terminal A/B domain contains a hormone-independent transcriptional 

activation function 1 (AF1), a constitutive activation function contributing to ERα 

transcriptional activity. The C domain corresponds to the DNA binding domain (DBD), 

which is highly conserved in the primary sequence of members of the nuclear hormone 
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receptor superfamily. It contains two functional zinc fingers and is involved in specific 

binding of the receptor to target DNA sites. The D domain is the hinge region and 

contains the nuclear localization signal. The ligand-binding domain (LBD) in the C-

terminal (the E/F region) harbors an activation function 2 (AF2), which is a ligand-

dependent activation function. This domain also interacts with coregulatory proteins. As 

described above, estrogen stimulates breast cancer cell proliferation through its 

interaction with and activation of the estrogen receptor. About two-thirds of breast 

cancers are ERα positive, while only 15-25% of normal breast epithelial cells express 

ERα (Ali and Coombes, 2002). Thus, endocrine manipulation is developed to block the 

effect of estrogen on malignant cells. The positivity of ERα, along with PgR 

(Progesterone receptor), is a historically proved prognostic marker in predicting response 

to endocrine therapy in breast cancer patients. In the clinic, patients with ERα (+) breast 

cancer show a 53% objective response rate to endocrine therapy. Among these patients, 

69% are ERα (+) and PgR (+) and 32% are ERα (+) and PgR (-) (Horwitz, 1988). In 

contrast, only 13% ERα (-) patients respond to endocrine therapy (Horwitz, 1988).  
 

1.3.3. Estrogen receptor β 

ERβ was cloned, ten years later after ERα, from a rat prostate cDNA library 

(Kuiper et al., 1996), and the gene encoding ERβ is located on chromosome 14 in human 

(Enmark et al., 1997). The wild type full-length human ERβ protein generally consists of 

530 amino acids (Ogawa et al., 1998), although a number of ERβ isoforms have been 

described (Lewandowski et al., 2002). ERβ is structurally similar to ERα (Figure 1.4.). 

They are highly homologous in their DBDs (96%) and have moderate sequence identity 

in the LBD (53%) (Kuiper et al., 1997; Ogawa et al., 1998). But the N-terminal region 

(AF1) between ERα and ERβ has only about a 30% identity (Ogawa et al., 1998). 
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Figure 1.4. Structure and functional domains of ERα and ERβ.  
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Functionally, the transcriptional activity of ERα is mediated by AF1 and AF2 (Berry et 

al., 1990; Kumar et al., 1987; Tora et al., 1989), whereas ERβ activity is mediated by 

AF2 only, due to lack of AF1 activity (Hall and McDonnell, 1999). In addition to the 

domain difference, the tissue abundance and distribution of ERα and ERβ also differ. 

Although overlapped expression of ERα and ERβ has been found in breast, brain, 

cardiovascular system, urogenital tract and bone (Enmark et al., 1997; Gustafsson, 1999; 

Kuiper et al., 1997; Taylor and Al-Azzawi, 2000), ERα is predominantly expressed in 

breast, ovarian stroma, uterus and vagina, and is the main subtype of ER in the liver 

(Kuiper et al., 1997). In contrast, ERβ is present in several nonclassic target tissues such 

as the kidney, intestinal mucosa, lung, bone, brain, immune system and prostate (Kuiper 

et al., 1997). Moreover, the role of ERβ in breast cancer growth and development is not 

as clear as the role of ERα and is still controversial (Speirs, 2002). Large studies are 

needed to determine whether ERβ may play a critical role in either breast carcinogenesis 

or disease progression.  
 

1.3.4. Estrogen receptor knock out mice 

To gain further insights into the physiological roles of ERα and ERβ in estrogen 

target tissues, mutant mice that lack ERα (αERKO), ERβ (βERKO) or ERα and ERβ 

(αβERKO) have been generated (Couse et al., 1999; Krege et al., 1998; Lubahn et al., 

1993). Interestingly, a loss of either of ERα and/or ERβ is not lethal, and the mice 

survive to adulthood (Couse et al., 1999; Krege et al., 1998; Lubahn et al., 1993). The 

female αERKO mice are infertile and have hypoplastic uteri and hyperemic ovaries with 

no detectable corpora lutea (Lubahn et al., 1993). αERKO males appear overtly normal, 

but have decreased fertility (Lubahn et al., 1993). Mice lacking of ERβ (βERKO) 

developed normally, and females are fertile and exhibit normal sexual behavior, but have 
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fewer and smaller litters than wild-type mice, a result of reduced ovarian efficiency 

(Krege et al., 1998). In addition, the βERKO females have normal breast development 

and lactate normally (Krege et al., 1998). Fertility of male βERKO mice are not affected, 

but older males display signs of prostate and bladder hyperplasia (Krege et al., 1998). In 

αβERKO mice, both sexes exhibit normal reproductive tract development but are 

infertile (Couse et al., 1999). Significantly, ovaries of adult αβERKO females contain 

seminiferous tubule-like structures, an ovarian phenotype that is distinct from that of the 

individual ERKO mutants, which indicates that both receptors are required for the 

maintenance of germ and somatic cells in the postnatal ovary (Couse et al., 1999).  

 

While the crucial role of ERα in the etiology and progression of breast cancer 

have been repeatedly and firmly established, the role of ERβ in breast cancer is still 

controversial (Speirs, 2002). Therefore, in the following dissertation, we limit our 

discussion to ERα that will simply be referred as ER unless otherwise indicated. 
 

1.4. MECHANISMS OF ER ACTION 

1.4.1. Classical genomic actions of ER 

In the classical model of ER action (Figure 1.5.), estrogen diffuses into the cell 

and binds to ER in the nucleus. This binding induces a conformational change of the 

receptor, which leads to dissociation from heat shock proteins and formation of receptor 

dimers. The activated ER then binds as a dimer to small palindromic DNA motifs known 

as estrogen response elements (EREs) that are present in the promoter regions of 

estrogen-responsive genes. The consensus estrogen response element sequence is defined 

as 5’GGTCAnnnTGACC3’ where n denotes a random nucleotide (Walker et al., 1984). 

However, only a small number of the most estrogen inducible genes contain these 
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consensus EREs. In most cases, variant EREs or even partial EREs that are often 

separated by many base pairs mediate the inducibility of estrogen, either alone or in 

combination (El-Ashry et al., 1996; Pike, 1999). Promoter-bound ER recruits and forms a 

complex with coregulatory proteins, which function as intermediates between the 

receptor and the general transcriptional machinery and subsequently modulate 

transcriptional activity of estrogen-responsive genes. Transcription of many genes is 

increased by estrogen, while transcription of some others is repressed (Dobrzycka et al., 

2003). Two different domains, AF1 and AF2, mediate transcriptional activity of ER. AF1 

is constitutively active and its activity is hormone-independent and regulated by 

phosphorylation, whereas AF2 is integral to the LBD and its activation hormone-

dependent (Smith, 1998; Tsai and O'Malley, 1994; Webster et al., 1989). The two 

activating domains can act synergistically and/or independently in a cell and promoter 

context specific manner (Gronemeyer, 1991). ER coregulatory proteins include 

coactivators, such as AIB1 and SRC3, that enhance ER transcriptional activity and 

corepressors, such as NCoR-1 and SMRT, that decrease ER transcriptional activity 

(Horwitz et al., 1996; McKenna et al., 1999). Typically, coactivators bind ER when the 

receptor is bound by estrogen. Coactivators enhance ER-driven transcription through 

different mechanisms including the recruitment of histone acetyltransferase (HAT) 

complex which help unwind the DNA, allowing gene transcription to occur (Horwitz et 

al., 1996; McKenna et al., 1999). Furthermore, some of the coactivators themselves 

possess intrinsic histone acetyltransferase activity (Chen et al., 1997; Spencer et al., 

1997). In contrast, corepressor proteins influence ER transcriptional activity at least in 

part through the recruitment of histonedeacetylase complexes (HDAC) which allow DNA 

to wrap more tightly around the core histone proteins (Chen and Evans, 1995; Horlein et 

al., 1995). In fact, these coregulatory proteins may be indeed as important as ER itself in 
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mediating transcriptional activity as well as influencing tumor growth. For example, 

AIB1, an ER coactivator, is overexpressed in 65% of breast cancers and is gene-

amplified in about 5-10% (Anzick et al., 1997; Bouras et al., 2001; List et al., 2001b; 

Murphy et al., 2000), strongly suggesting its important role in breast cancer. In addition, 

reducing the level of AIB1 has been shown to impede ER-mediated gene transcription as 

well as tumor growth in cell line models (List et al., 2001a). Moreover, high levels of 

AIB1 were reported to enhance the agonistic activity of tamoxifen in breast cancer cells, 

which may also contribute to tamoxifen resistance (Shou et al., 2004; Smith et al., 1997; 

Takimoto et al., 1999). In summary, the classical genomic action of ER involves ligand 

binding to the receptor, dissociation of heat shock proteins from the receptor and receptor 

dimerization. The receptor dimer then binds to EREs located in the promoter regions of 

estrogen responsive genes, recruits coregulatory proteins, and activates transcription. In 

this dissertation, we will focus on the classical genomic mode of action of ER via 

interaction with DNA recognition motifs such as ERE elements.  
 

1.4.2. Nonclassical genomic actions of ER 

Besides the classical genomic mechanism of direct DNA binding (EREs), ER has 

also been shown to regulate gene expression at alternative regulatory DNA sequences 

such as AP-1, SP-1, and other poorly defined non-ERE sites (Kushner et al., 2000; Ray et 

al., 1997; Safe, 2001) (Figure 1.5.). For instance, ER can indirectly modulate AP-1 

response elements through its interaction with AP-1 transcription factors such as c-fos 

and c-jun (Webb et al., 1995), which regulate genes involved in many cellular processes, 

including proliferation, differentiation, cell motility and apoptosis (Altucci et al., 1996; 

Dong et al., 1999; Geum et al., 1997; Kushner et al., 2000). In this circumstance, ER 

mediates transcription via tethered interaction to specific promoter complexes through 
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Figure 1.5. Genomic action of ER. 

(A) Classical pathway. (B) Non-classical pathway. See text for detail. 
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protein-protein interaction rather than functions as the major transcription factor. These 

nonclassical genomic ER signaling pathways, particularly at the AP-1 sites, could be 

important clinically. Its been shown that tamoxifen can act as an agonist on genes under 

the control of an AP-1 response element (Paech et al., 1997; Webb et al., 1995). 

Moreover, elevated levels of activated jun N-terminal kinase and phosphorylated c-jun 

together with increased levels of AP-1 transcriptional activity have been reported in both 

preclinical models of tamoxifen resistance and in human tumor samples (Johnston et al., 

1999; Schiff et al., 2000), suggesting that ER signaling through AP-1 sites may play 

important roles in the development of tamoxifen resistance in breast cancer.  
 

1.4.3. Nongenomic actions of ER 

The traditional ligand-induced ER signaling pathway involving nuclear 

interaction as described above usually takes hours or days for gene transcription and 

protein synthesis to occur. However, estrogen has also been shown to be able to exert 

stimulatory effects that cannot be explained by transcriptional mechanisms because of its 

rapid onset (within seconds or minutes of the addition of estrogen) (Pietras and Szego, 

1977). This rapid and nongenomic activity is also called MISS (membrane initiated 

steroid signaling) (Nemere et al., 2003). However, the receptors responsible for this rapid 

estrogen activity and their precise cellular localization still remain controversial. Several 

studies suggest this activity is mediated by a small portion of traditional ER, an 

alternatively spliced truncated form of ER, or other membrane receptors distinct from 

classic ER (Figtree et al., 2003; Filardo, 2002; Levin, 2002; Li et al., 2003). Some of 

these studies using various techniques also suggest that a small pool of ER is located in 

the plasma membrane and cytoplasm (Figtree et al., 2003; Levin, 2002; Li et al., 2003). 

Nevertheless, the nongenomic activity has been found to be the predominant type of 
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Figure 1.6. Non-genomic ER signaling and its crosstalk with growth factor receptor 
pathways involving the MAPK and PI3K-AKT pathways.  
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estrogen signaling at least in some tissues such as bone and endothelial cells (Kousteni et 

al., 2002; Li et al., 2003). Other examples of effects mediated by this alternative pathway 

include the rapid insulinotropic effect of estrogen on pancreatic β cells (Nadal et al., 

1998), the short-term vasodilation of coronary arteries (Kim et al., 1999), and rapid 

activation of growth signaling pathways in neuronal cells (Watters et al., 1997). The 

nongenomic activity of ER results in elevated cell proliferative and survival signals 

through the activation of proliferation-related factors, such as growth factor receptors, 

MAPKs, PI3K, and Akt, in target cells. However, mechanisms by which estrogen 

activates membrane ER function are still not clear. One postulated mechanism involves 

activation of growth factor signaling through direct interaction between activated 

membrane ER and growth factors. ER has been reported to bind to membrane signaling 

molecules including insulin-like growth factor receptor 1 (IGFR1), the p85 regulatory 

subunit of PI3K, Src and Shc (Castoria et al., 2001; Kahlert et al., 2000; Simoncini et al., 

2000; Song et al., 2002). In this case, estrogen activates growth signaling just like a 

growth factor binding to its membrane receptor, which leads to the activation of key 

molecules such as MAPK or Akt. Another well-studied potential mechanism for MISS 

activity of ER involves indirect interaction of the EGFR and activation of its downstream 

kinases like ERK, MAPK and Akt (Levin, 2002; Levin, 2003). In both circumstances, 

these kinases, once activated by nongenomic ER activity, can in turn phosphorylate ER 

as well as its coregulators or other components of the transcriptional machinery to 

enhance nuclear ER transcriptional activity (Shou et al., 2004; Stoica et al., 2003; Sun et 

al., 2001) (Figure 1.6.).  
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1.4.4. Ligand-independent activation of ER 

Most nuclear receptors are phosphoproteins (Weigel, 1996). As we discuss above, 

ER can be phosphorylated by enzymes such as mitogen-activated protein kinases, which 

are activated in response to various growth signalings and transduce extracellular signals 

to intracellular targets by way of membrane receptors (Figure 1.6.). Phosphorylation of 

ER by these protein kinases usually results in ligand-independent activation of the 

receptor and creates crosstalk between the ER signaling pathways and other growth 

signaling pathways (Kato, 2001; Lannigan, 2003). Phosphorylation of the ER occurs 

predominantly on specific serine residues in the AF1 region of ER. Of particular interest 

is serine 118, which is phosphorylated by MAP kinases ERK1 and ERK2 (Kato et al., 

1995), resulting in ligand-independent activation of ER (Bunone et al., 1996). In addition 

to S118 phosphorylation, upon EGF stimulation, serine 167 in AF1 is also 

phosphorylated by ribosomal S6 kinase RSK (Joel et al., 1998), which is itself activated 

by ERK1/2. Furthermore, phosphorylation of S167 has also been implicated in the 

PI3K/Akt pathway. The serine/threonine protein kinase Akt (also known as protein 

kinase B) is one of the downstream targets of PI3K (Datta et al., 1999). Akt can 

phosphorylate ER at S167, resulting in ligand-independent activation of ER (Campbell et 

al., 2001; Martin et al., 2000). Besides S118 and S167, phosphorylation of S104 and 

S106, which is mediated by cyclin A/CDK2 complex, has also been reported in U-2 OS 

human osteosarcoma cells (Rogatsky et al., 1999).  
 

1.5. OVERVIEW OF ENDOCRINE THERAPIES 

Endocrine therapy is currently the most important systemic treatment of ER-

positive breast cancer at all stages. As adjuvant therapy for patients with early stage ER-

positive breast cancer, recent data from long-term follow-up of patients treated by 
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endocrine therapy suggests this therapy is curative in many patients (Early Breast Cancer 

Trialists' Collaborative Group, 2005). In addition to these benefits in early stage disease, 

endocrine therapy is also very effective in the treatment of advanced metastatic breast 

cancer (Moy and Goss, 2006). Current endocrine therapies are based on targeting the ER 

signaling pathway by blocking the action of estrogen on its receptor or reducing 

circulating estrogen levels.  

 

The non-steroidal tamoxifen, a selective estrogen receptor modulator (SERM), 

has been used for the treatment of all stages of ER (+) breast cancer for more than 25 

years (Jordan, 2003). It is also the first approved drug by the FDA as a cancer 

chemopreventive for reducing breast cancer incidence in both pre- and post-menopausal 

women at high risk of developing breast cancer (Jordan, 2003). It acts by blocking the 

action of estrogen at the ER within breast tumors. In the adjuvant setting, tamoxifen 

treatment in women with operable breast cancer for five years show a maximal benefit 

with a 51% reduction in recurrence and about 28% reduction in overall mortality (Ali and 

Coombes, 2002). Thus, the widespread use of tamoxifen during the last 30 years certainly 

contributed to the significant decrease of national breast cancer mortality rates over the 

past 15 years (Early Breast Cancer Trialists' Collaborative Group, 2005). Because of the 

success of tamoxifen, several other SERMs such as toremifene, idoxifene, arzoxifene and 

raloxifene, have been developed and are in clinical test or use (Coombes et al., 1995; 

Milla-Santos et al., 2001; Miller, 2002; Pyrhonen et al., 1999).  
 

SERMs are a new category of agents that represent a major therapeutic advance 

for clinical practice. Unlike estrogens, which are uniformly agonists, and pure 

antiestrogen, which are uniformly antagonists, SERMs exert selective agonist or 
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antagonist effects on various estrogen target tissues. For instance, in addition to its ER 

antagonism in the breast and brain, tamoxifen acts as an ER agonist in bone, liver and 

uterus (MacGregor and Jordan, 1998). These tissue selective effects of tamoxifen have 

been associated with an increased incidence of endometrial cancer, cerebrovascular and 

venous thromboembolic events, as reported by the ATAC study group (Barker, 2006). 

Besides tamoxifen, other well-known SERMs include toremifene, raloxifene and 

arzoxifene (Figure 1.7.). These agents are also mixed agonists/antagonists of the ER. 

Toremifene, which is a triphenylethylene derivative and structurally similar to tamoxifen, 

has very similar preclinical and clinical activities as well as side effects to those of 

tamoxifen (Howell et al., 2004). However, unlike tamoxifen, toremifene does not produce 

detectable DNA adducts in rats (Hard et al., 1993). To date, the use of teromifene is 

restricted by the FDA to postmenopausal women with metastatic breast cancer (Lewis 

and Jordan, 2005). Raloxifene, which is a benzothiophene derivative, is the most widely 

studied newer SERM. Raloxifene binds to ER with an affinity equal to estradiol (Black et 

al., 1983). Like tamoxifen, it acts as an antagonist in breast tissue and inhibits estrogen-

induced cell proliferation (Liu et al., 2003). Raloxifene possesses less estrogenic effects 

in endometrium than tamoxifen, but has similar effects in bone as estradiol (Balfour and 

Goa, 1998). Therefore, raloxifene is approved for treatment and prevention of 

osteoporosis in postmenopausal women, because it was shown to maintain bone density 

in this population (Ettinger et al., 1999; Rossouw et al., 2002). In the multiple outcomes 

of raloxifene evaluation (MORE) trial, raloxifene therapy compared with placebo was 

associated with a reduced incidence of invasive, ER (+) breast cancer, without the 

increased risk of endometrial cancer (Cauley et al., 2001; Cummings et al., 1999). 

Additionally, clinical trials to evaluate raloxifene as a breast cancer chemopreventive and 

its ability to reduce the incidence of coronary heart disease are currently ongoing 
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Figure 1.7. Chemical structures of common SERMs.  
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(Mosca, 2001; Vogel et al., 2002). Arzoxifene (old name LY 353381) is a long-acting 

raloxifene analog, which inhibits breast cancer cell growth more potently than raloxifene 

or tamoxifen in vitro (Dhingra, 1999). Arzoxifene is also shown to protect against bone 

loss and reduce serum cholesterol levels in ovariectomized rats (Ma et al., 2002; Sato et 

al., 1998). Moreover, it is also devoid of the uterotrophic effects of tamoxifen (Suh et al., 

2001). Nonetheless, with the hope for ideal SERMs that will mimic estrogen’s benefits in 

the bone, brain and heart and yet will block the harmful effects of estrogen in the breast 

and uterus, research efforts are currently under way to develop more tissue selective 

SERMs which will ultimately provide a new paradigm for improving the health of 

women.  

 

In addition to SERMs, fulvestrant (Faslodex, ICI 182, 780), a pure estrogen 

antagonist that provides complete ER antagonism without any agonist effects, is currently 

in clinical use for the treatment of advanced breast cancer in postmenopausal women 

with recurrence or progression following antiestrogens such as tamoxifen. Fulvestrant 

targets and degrades the ER thereby inhibiting estrogen signaling through the ER (Morris 

and Wakeling, 2002; Robertson et al., 2005).  

 

In postmenopausal women, local estrogen synthesis relies on the cytochrome 

P450 enzyme aromatase. Aromatase inhibitors (AIs), especially the third-generation non-

steroidal AIs, which highly selectively reduce peripheral estrogen synthesis by 

suppressing aromatase activity have been developed and licensed for clinical use. Results 

from the ATAC (Arimidex, Tamoxifen, Alone or in combination) clinical trial of post 

menopausal women showed that anastrozole, a third generation AI, compared favorably 

with tamoxifen (Howell et al., 2005). However, anastrozole demonstrated only a 
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marginal five-year survival advantage over tamoxifen in large clinical trials (Barker, 

2006). Moreover, it is still too early to judge the long-term adverse effects of AI 

treatment associated with prolonged estrogen restriction. At least, a longer-term view of 

patterns of adverse effects of anastrozole have emerged, as reported in an update from the 

ATAC study, in which more frequent bone fractures together with increased alkaline 

phosphotase and hypercalcaemia, and an increase in hypercholesterolemia were observed 

(Buzdar et al., 2006). Although these concerns warrant further longer-term follow-up to 

fully assess its long-term effects, Anastrozole has now been accepted as an alternative 

first-line treatment to tamoxifen (Barker, 2006).  
 

1.6. TAMOXIFEN 

1.6.1. Pharmacology 

Tamoxifen belongs to the category of triphenylethylene derivatives. It is 

administered to patients as trans-tamoxifen and primarily metabolized to N-

desmethyltamoxifen and trans-4-hydroxytamoxifen (4-OH-TAM) by members of the 

cytochrome P450 family, CYP3A and CYP2D6, respectively (Marsh and McLeod, 2007; 

Osborne, 1998). 4-OH-TAM, the active metabolite of tamoxifen, has an affinity for ER 

similar to that of 17β-estradiol (Buckley and Goa, 1989). The metabolites of tamoxifen 

are subject to conjugation leading to excretion by sulfation and glucuronidation 

(Nishiyama et al., 2002) predominantly in the feces. Tamoxifen is usually referred to as a 

selective estrogen receptor modulator (SERM), which has both estrogenic and 

antiestrogenic effects, depending on different tissues. In breast tissue, tamoxifen’s 

antagonistic activity accounts for its tumor inhibitory ability, while it is estrogenic in the 

bone and stimulates endometrial proliferation. The dimethylaminoethoxy side chain and 

the trans configuration are essential for the antiestrogenic activity of tamoxifen (Buckley 
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and Goa, 1989). The usual dosage is 20 mg/day by mouth (Sunderland and Osborne, 

1991), and it will take several weeks for tamoxifen to reach its therapeutic blood levels, 

although its serum concentration varies from patient to patient (Buckley and Goa, 1989). 

The serum half-life of tamoxifen and its metabolites ranges from 7 to 14 days (Buckley 

and Goa, 1989). Indeed, tamoxifen can even be detected in serum for several weeks and 

in tumor tissue for several months after treatment is stopped (Lien et al., 1991).  
 

1.6.2. Clinical aspects 

Tamoxifen was originally developed as an oral contraceptive, but later the 

potential of its antiestrogenic action was recognized (Jordan, 2003). It was approved for 

the treatment of advanced breast cancer by the FDA in 1977 (Osborne, 1998). In 1985, 

tamoxifen was approved by the FDA as an adjuvant therapy with chemotherapy in 

postmenopausal women with lymph node-positive breast cancer, and one year later, the 

use of adjuvant tamoxifen alone was further approved in the same group of patients 

(MacGregor and Jordan, 1998). In 1989 and 1994, the FDA approved the use of 

tamoxifen in the treatment of premenopausal women with ER positive advanced breast 

cancer and the claim that tamoxifen prolonged the overall survival of patients with breast 

cancer, respectively (MacGregor and Jordan, 1998). Thus, with beneficial effects in both 

pre- and post-menopausal women with ER positive breast cancer either in an adjuvant 

setting or for the treatment of advanced metastatic disease, tamoxifen has become the 

first-line endocrine agent for treating breast cancer. Furthermore, tamoxifen became the 

first drug approved by the FDA in 1999 to prevent breast cancer after data from clinical 

trials showed it reduced the chance of developing breast cancer by 50% in high-risk pre- 

and post-menopausal women (Cuzick et al., 2003; Fisher et al., 1998). In addition, results 

from adjuvant breast cancer trials showed 5-year tamoxifen therapy reduces the incidence 
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of contralateral second primary breast tumor by 50% (Early Breast Cancer Trialists' 

Collaborative Group, 1998). In postmenopausal women, long-term tamoxifen treatment 

slightly increases the bone density of the axial skeleton (Love et al., 1992). However, 

tamoxifen may decrease bone mineral density in premenopausal women (Powles et al., 

1996). In spite of its benefits in treating breast cancer patients, there have been many 

concerns with the side effects of tamoxifen. The most serious side effect of tamoxifen is 

its potential tumor-promoting activity. Long-term usage of tamoxifen has been associated 

with an increased incidence of endometrial cancer in breast cancer patients, mostly due to 

its estrogenic activity in the uterus (Early Breast Cancer Trialists' Collaborative Group, 

1998). In addition, tamoxifen has also been reported to be a potent hepatocarcinogen in 

rats (Williams et al., 1993) and its electrophilic metabolites can form covalent DNA 

adducts (Osborne, 1998). But the mechanisms by which tamoxifen induces liver 

carcinogenesis in rats are still not known. Other common side effects of tamoxifen 

include menopausal symptoms and thromboemolic events (Osborne, 1998).  
 

1.6.3. Mechanism of action 

Tamoxifen basically functions through its ability to bind the ER thereby 

competing with available estrogens and blocking their effects. Since tamoxifen has 

tissue-specific agonist-antagonist activity, the most important biological consequence of 

occupying ER with tamoxifen becomes whether the activated receptor complex induces 

an antiestrogenic or estrogenic response. However, it is still not clear about the 

mechanisms of the tissue selective, mixed estrogenic-antiestrogenic activity of tamoxifen. 

As discussed previously, the transcription activity of the ER is mediated by AF1 and 

AF2. The activity of AF1 and AF2 differs depending on the cellular environment and 

promoter context (Tzukerman et al., 1994). Unlike estrogen which is an pure agonist and 
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ICI 182,780 which blocks both AF1 and AF2 activity (Metzger et al., 1995), tamoxifen, 

as well as other SERMs such as raloxifene, inhibits AF2 but not AF1 activation of ER 

and thereby ER activity (Ali and Coombes, 2002). In the breast, ER activity is mainly due 

to the activation of AF2. Thus, tamoxifen acts largely as an antagonist in breast cells. In 

contrast, the activation of AF1 of ER is more significant in other tissues like the 

endometrium, in which tamoxifen is an ER agonist (Ali and Coombes, 2002). Moreover, 

using protein crystallography and techniques evaluating surface changes, recent research 

progress in understanding the conformational changes of ER when bound to different 

ligands suggests that the unique change of ER confirmation induced by tamoxifen, as 

well as other SERMs, may explain the particular pharmacological properties of tamoxifen 

in target tissues. Upon binding to estrogen, helix 12 of ER is positioned over the 

hydrophobic ligand binding pocket, which is essential for the recruitment of coactivators 

to the AF2 site and subsequent transcription initiation (Brzozowski et al., 1997; Pike et 

al., 2000). In contrast, although tamoxifen bind at the same site within ER, which is the 

hydrophobic ligand binding pocket, as estrogen, its side chain is too large to fit within the 

pocket, preventing the reorientation of helix 12 and thereby the formation of a competent 

AF2 region (i.e. disrupting AF2) (Shiau et al., 1998). Therefore, the conformational 

changes of ER induced by estrogen and tamoxifen are structurally different, and these 

events resulting from different ligands binding subsequently translate into agonism or 

antagonism at the receptor. In addition, differential expression and recruitment to the ER 

of coregulator proteins may also be a mechanism to explain the action as well as the 

mixed agonistic-antagonistic activity and tissue selectivity of tamoxifen. To date, more 

than 20 coregulatory proteins have been discovered that bind to ERs and modulate their 

function, acting either as coactivators or a corepressors (Hall et al., 2001). It has been 

shown that tamoxifen-bound ER interacts with NCoRs, resulting in repression of its 
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agonist activity. Moreover, a recent study (Shang and Brown, 2002) found that both 

tamoxifen and raloxifene induce the recruitment of corepressors to target gene promoters 

in mammary cells. In contrast, in endometrial cells, tamoxifen acts like estrogen by 

stimulating the recruitment of coactivators to a subset of genes, whereas this recruitment 

does not occur with raloxifene, which lacks estrogen agonistic effect in the endometrium. 

Furthermore, this estrogen-like activity of tamoxifen in the uterus was dependent on a 

high level of steroid receptor coactivator 1 (SRC-1) expression (Shang and Brown, 2002). 

Therefore, variable local concentration of different coregulatory proteins may contribute 

to the unique pharmacology of tamoxifen. Alternatively, tamoxifen-ER complex may 

also activate transcription by tethering to promoters that do not contain the classical 

estrogen response elements, in this case, through the interaction between the receptor 

complex and other DNA-bound transcription factors (Shang and Brown, 2002).  
 

1.7. TAMOXIFEN RESISTANCE 

Since the recognition of the role of estrogen as a fundamental factor in the 

etiology and progression of human breast cancer, treatment of breast cancer has, for a 

long time, been directed towards inhibiting the tumor promoting effects of estrogen. 

Tamoxifen is the most commonly used antiestrogen for the treatment of patients with ER 

positive breast cancer. It has been shown to be effective in halting breast cancer 

progression and has also been recently approved as a chemopreventive agent for reducing 

breast cancer incidence in both pre- and post-menopausal women at high risk. Despite the 

clear beneficial effects of tamoxifen in treating breast cancer patients, most initially 

tamoxifen responsive breast tumors acquire resistance. This constitutes a major clinical 

challenge in breast cancer therapy. Indeed, almost all patients with advanced metastatic 

disease and as many as 40% of patients receiving adjuvant tamoxifen eventually relapse 
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and die from their disease. However, the mechanisms underlying tamoxifen resistance are 

still poorly understood. Better understanding the mechanisms involved may suggest 

novel strategies to overcome tamoxifen resistance and further improve breast cancer 

survival. Thus, clarification of the mechanisms for resistance would have important 

clinical implications. Several different mechanisms have been proposed to contribute to 

the development of tamoxifen resistance. We will discuss some most commonly 

hypothesized mechanisms in the following paragraphs.  
 
Postulated mechanisms of tamoxifen resistance 

1.7.1. Loss of ER expression /function 

Since expression of ER is the main predictor of response to tamoxifen therapy, it 

is clear that lack of ER expression is the main mechanism of de novo resistance to 

tamoxifen, with the majority (90%) of ER/PgR negative tumors not responding to 

antiestrogens (Clarke et al., 2001). It is also known that the effects of tamoxifen are 

primarily mediated through the ER. In this respect, loss of ER expression has been 

hypothesized to be responsible for acquired resistance to tamoxifen. However, most 

studies demonstrated that ER expression is maintained following the development of 

tamoxifen resistance in most tumors that were initially ER positive, tamoxifen sensitive 

(Gutierrez et al., 2005; Johnston et al., 1995). In fact, only 17-28% of patients with 

acquired resistance to tamoxifen lose ER expression (Gutierrez et al., 2005; Johnston et 

al., 1995). Additionally, studies have shown that about two-thirds of patients who had 

relapsed on tamoxifen still responded to the pure ER antagonist faslodex (Howell et al., 

1996), and similar clinical benefit was also provided by aromatase inhibitors (Osborne et 

al., 2002). These observations suggest that ER still expresses and continues to regulate 

tumor growth in many tamoxifen resistant patients. Mutations of ER that can alter the 

function of the receptor might also affect the response to antiestrogens. However, such 
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mutations are relatively uncommon in human primary breast carcinomas (Karnik et al., 

1994; Roodi et al., 1995). Thus, they appear not to contribute significantly to resistance to 

tamoxifen. 
 

1.7.2. Altered expression of ERβ  

As we discussed in previous sections of this chapter, a second ER was cloned 

from a rat prostate cDNA library in 1996 (Kuiper et al., 1996) and subsequently named as 

ERβ to distinguish it from the classical ER, which was later renamed ERα. The role of 

ERβ in tamoxifen resistance is still not clear. Recent studies showed that transcription of 

AP-1 dependent genes is increased when ERβ is bound to tamoxifen, raloxifene or ICI 

164, 384 (Paech et al., 1997). Interestingly, another study found that the levels of ERβ 

mRNA is about 2-fold higher that ERα levels in tamoxifen resistant tumors when 

compared to tamoxifen sensitive tumors (Speirs et al., 1999). These observations might 

suggest a role of ERβ in the resistance to tamoxifen. However, there are also other 

studies reporting that ERβ has a negative effect on ERα-promoted transcription (Hall and 

McDonnell, 1999; Pettersson et al., 2000). Therefore, more work is still needed to 

elucidate the role of ERβ in the development of tamoxifen resistance.  
 

1.7.3. Pharmacological mechanisms 

It has been proposed that reduced intra-tumoral concentration of tamoxifen and 

increased metabolism of tamoxifen to agonistic metabolites could be potential 

mechanisms of resistance. In a nude mice xenograft model used to study tamoxifen 

resistance in vivo, resistant tumors were characterized by markedly lower intracellular 

tamoxifen levels and by isomerization of the potent antiestrogenic metabolite trans-4-

hydroxy-tamoxifen to the less potent cis isomer (Osborne et al., 1991). Moreover, in a 
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later human study (Johnston et al., 1993) that tested tamoxifen concentration in 51 

patients with locally recurrent breast cancer, serum tamoxifen concentrations were found 

similar in patients with acquired and de novo resistance. But intra-tumoral concentrations 

were significantly lower in patients with acquired resistance. The authors concluded that 

reduced intra-tumoral tamoxifen levels during prolonged therapy may be an important 

mechanism for acquired resistance in breast cancer (Johnston et al., 1993). In addition, 

tamoxifen is primarily metabolized to N-desmethyltamoxifen and 4-hydroxytamoxifen. 

N-desmethyltamoxifen can be converted to a further active metabolite 4-hydroxy-N-

desmethyltamoxifen by cytochrome P450 enzyme CYP2D6 (Desta et al., 2004). This 

metabolite was found present in the blood at higher concentrations than 4-

hydroxytamoxifen in patients that received adjuvant tamoxifen (Stearns et al., 2003). 

Interestingly, baseline plasma 4-hydroxy-N-desmethyltamoxifen concentrations were 

lower in women who carried a variant CYP2D6 allele than in those who carried the wild-

type genotype (Stearns et al., 2003). In addition, patients with a wild-type CYP2D6 allele 

had significantly decreased plasma levels of 4-hydroxy-N-desmethyltamoxifen when co-

treated with paroxetine, a selective serotonin reuptake inhibitor (SSRI) which is often 

prescribed to alleviate tamoxifen-associated hot flashes and can inhibit CYPs (Stearns et 

al., 2003). Therefore, these results indicate that pharmacogenomic effects as well as drug 

interactions may alter the metabolism and efficacy of tamoxifen, which may further 

influence therapeutic outcomes from tamoxifen treatment.  
 

1.7.4. Altered expression of coregulatory proteins 

Since coactivators and corepressors have important function in mediating the 

transcriptional activation by the ER, altered expression patterns of coregulatory proteins 

could contribute to tamoxifen resistance.  
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AIB1 (also known as NCOA3, SRC3, RAC3 and ACTR) is an ER coactivator 

which was identified on the basis of its frequent amplification in breast cancer (Anzick et 

al., 1997). Cell line studies showed that AIB1 enhances the agonistic activity of 

tamoxifen (Webb et al., 1998). Consistent with the in vitro results, a recent study 

measuring AIB1 expression by western blot analysis in 187 patients who had received 

tamoxifen adjuvant therapy and 119 patients who had received no adjuvant therapy 

showed that, in patients receiving adjuvant tamoxifen therapy, high AIB1 expression was 

associated with worse disease free survival (DFS), which is indicative of tamoxifen 

resistance (Osborne et al., 2003). In contrast, high AIB1 expression in patients not 

receiving adjuvant tamoxifen therapy was associated with better prognosis and longer 

DFS (Osborne et al., 2003). In addition to AIB1, experimental data also showed that 

overexpression of SRC1 (NCOA1) enhances estrogen-stimulated expression of target 

genes and increases tamoxifen’s agonist activity (Smith et al., 1997; Tzukerman et al., 

1994). However, no evidence to date regarding the overexpression of SRC1 in samples 

from patients with tamoxifen resistant tumors is available, and therefore it requires 

further validation in clinical settings.   

 

In contrast to estrogen-bound ER which recruits coactivators, tamoxifen-bound 

ER usually recruits corepressors, which, in turn, recruit HDACs, facilitating chromatin 

condensation through histone deacetylation and inhibition of ER-regulated genes 

(Lavinsky et al., 1998; McKenna et al., 1999). N-CoR1 was shown to be strongly 

associated with endogenous ER in the presence of the mixed anti-estrogen, trans-

hydroxytamoxifen, while only weak association was observed in the absence of ligand 

(Lavinsky et al., 1998). In addition, blocking the activity of N-CoR1 by anti-N-CoR1 IgG 
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reversed repression by trans-hydroxytamoxifen-bound ER, therefore converting trans-

hydroxytamoxifen into agonist in MCF-7 cells (Lavinsky et al., 1998). Moreover, 

subsequent studies on a mouse model of tamoxifen resistance revealed that N-CoR1 

levels declined in many of the tumors (MCF-7 xenografts) that acquired resistance to the 

antiproliferative effects of tamoxifen, relative to tumors retaining a response to the drug 

(Lavinsky et al., 1998). Together, these data raise the possibility that a decrease in levels 

of N-CoR1 could cause a shift in tamoxifen from antagonist to agonist, which further 

contributes to resistance. However, no clinical data are available to date to further support 

this hypothesis. A report from another study also showed no difference in levels of 

SMRT (NCoR2, another ER corepressor) mRNA in a cohort of 19 tamoxifen-resistant 

human breast tumor samples compared with tamoxifen-treated or untreated tumors (Chan 

et al., 1999). Thus, the role of corepressors in the development of tamoxifen resistance 

still remains to be elucidated, requiring large clinical studies.  
 

1.7.5. Crosstalk between ER and growth factor receptor signaling pathways 

As we discussed in the previous sections of this chapter, while non-genomic 

activity of ER can activate growth factor signaling pathways, the downstream kinase 

cascade can in turn phosphorylate ER and its coregulatory proteins to enhance ER 

nuclear transcriptional activity, which creates a bidirectional molecular crosstalk between 

ER and growth factor pathways. The ER is known to be activated through 

phosphorylation at multiple sites, mostly within AF1, by various signaling kinases in the 

growth factor pathways, including MAPKs ERK1 and ERK2, Akt, c-Src, pp90rsk1 and 

CDK2 (for detail, see Nongenomic actions of ER and Ligand-independent activation of 

ER sections of this chapter). As a result, stimuli such as growth factors that increase 

intracellular growth signaling kinase activities can induce ER transactivation even in the 
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absence of ligand or in the presence of tamoxifen (Ali and Coombes, 2002; Ali et al., 

1993; Shou et al., 2004), which could play a potential role in tamoxifen resistance. 

ERK1/2 expression and activity are increased in several cell line models of endocrine 

resistance (Coutts and Murphy, 1998; Shim et al., 2000) and elevated ERK1/2 activity 

has been shown to correlate with shorter duration of response to endocrine therapy in 

clinical breast cancer (Gee et al., 2001). Recently IGF-II was also reported to induce an 

increase of both IGF-1R and EGFR activation in tamoxifen resistant cells (Hutcheson et 

al., 2003) (Knowlden et al., 2003). In addition to directly activating ER, growth factor 

signaling may also indirectly modulate ER activity by regulating its coregulatory proteins 

mostly through phosphorylation. Phosphorylation of coactivators enhances ER-dependent 

transcription even in the absence of ligand or in the presence of antiestrogens (Ali et al., 

1993; Hong and Privalsky, 2000; Shou et al., 2004), probably resulting from their 

increased nuclear localization (Wu et al., 2002), their enhanced binding ability with ER 

(Font de Mora and Brown, 2000) and direct activation of their intrinsic enzymatic 

activities (Lopez et al., 2001). An example would be the ER coactivator AIB1 (SRC3), 

which can be phosphorylated and activated by a variety of signaling kinases (Font de 

Mora and Brown, 2000; Wu et al., 2002). Formation of a potent transcriptional 

coactivator complex as a result of phosphorylation has been shown to convert tamoxifen-

bound ER into an estrogen agonist rather than an antagonist in some experimental 

systems (Shou et al., 2004). On the other hand, phosphorylation of the corepressor SMRT 

was found to cause its nuclear export, preventing its access to and repression of ER 

transcriptional activity in the nucleus (Hong and Privalsky, 2000). Thus, increased 

growth factor receptor signaling pathways and their downstream kinase activities during 

tamoxifen treatment may lead to tamoxifen resistance in breast cancer via direct or 

indirect modulation of ER function. 
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In addition, considerable experimental and clinical evidence suggests that 

overexpression or activation of the EGFR/HER2 signaling pathway and its crosstalk with 

ER are associated with a poor response to tamoxifen and may contribute to resistance to 

tamoxifen. It has long been proposed that HER2 is involved in resistance to tamoxifen. 

HER2-overexpressing MCF-7 cells were shown to be estrogen dependent but tamoxifen 

resistant in vivo (Benz et al., 1993) and the inhibitory effect of tamoxifen on cell 

proliferation can be restored by treating these cells with the MAPK inhibitor U0126 

(Kurokawa and Arteaga, 2001). In addition, increases in EGFR and HER2 protein 

expression have also been observed in tamoxifen resistant cells (Knowlden et al., 2003). 

Furthermore, a recent study demonstrated that in vivo growth of HER2-overexpressing 

MCF-7 cells was stimulated by tamoxifen, and molecular cross-talk between the ER and 

HER2 pathways was increased in these cells, with cross-phosphorylation and activation 

of both the ER and the EGFR/HER2 receptors, the signaling molecules Akt and ERK 1/2, 

and AIB1 with both estrogen and tamoxifen treatment (Shou et al., 2004). Interestingly, 

tamoxifen acts as an agonist on endogenous estrogen responsive genes in these HER2 

overexpressing cells, which is due to the ability of tamoxifen-bound ER complex to 

recruit coactivators such as AIB1 rather than corepressors as observed in parental MCF-7 

cells (Shou et al., 2004). Moreover, all these phenomena were blocked by gefitinib, an 

EGFR-tyrosine kinase inhibitor (Shou et al., 2004). These pre-clinical findings suggest 

that tamoxifen-stimulated growth of HER2-overexpressing cells, both in vitro and in 

vivo, is highly dependent on bidirectional crosstalk between ER and HER2. Consistent 

with experimental data, clinical studies also have shown that patients with tumors that 

overexpressed HER2 or EGFR are relatively resistant to tamoxifen but still responded 

well to aromatase inhibitors (Dowsett et al., 2001; Ellis et al., 2001). Moreover, as we 
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discussed above, the ER coactivator AIB1 can be phosphorylated by kinases in the HER2 

signaling pathway. Interestingly, a more recent study demonstrated that patients whose 

tumors expressed high levels of both AIB1 and HER-2 had poor outcomes (such as 

shortened disease free survival) with tamoxifen therapy, suggesting that the antitumor 

activity of tamoxifen in patients with breast cancer may be determined, in part, by tumor 

levels of AIB1 and HER-2 (Osborne et al., 2003). Taken together, this evidence supports 

an important role of EGFR/HER2 growth factor receptor pathway in both de novo and 

acquired resistance to tamoxifen.  
 

1.8. OVERVIEW OF SAGE AND ITS USE IN BREAST CANCER RESEARCH 

With the completion of the Human Genome Project in 2003, we now have access 

to the complete sequence information on all the genes encoded by the human genome. 

However, to fully understand the complex pathophysiology of diseases such as cancer, 

this information may still not be sufficient. Therefore, comprehensive approaches that 

will enhance our understanding of how the different genes are altered in the various 

cancer processes and how complex gene interactions produce particular outcomes are of 

much importance so that the foundation for the next level of complexity can be created. 

In the past few years, numerous techniques, including the cDNA library analysis known 

as Expressed Sequence Tags (ESTs) and cDNA microarray analysis, have been 

developed for the analysis of global gene expression changes in which thousands of 

genes can be assayed simultaneously. In parallel with such developments, Velculescu et 

al. in 1995 (Velculescu et al., 1995) described a completely different technical approach 

for the analysis of global gene expression, serial analysis of gene expression (SAGE). It 

is a novel, extremely powerful, efficient and comprehensive approach for analyzing 

global gene expression profiles.  
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SAGE technique is based on the principle that a short nucleotide sequence (i.e. 14 

base-pair tag) contains sufficient information to uniquely identify a transcript provided 

that the tag is obtained from a defined position within the transcript (Velculescu et al., 

1995; Velculescu et al., 1997). Using this short sequence and ligating series of “tags” 

back to back (concatemers) allows for the efficient analysis, both qualitative and 

quantitative, of all mRNA transcripts. Thus, the expression level of a transcript is directly 

proportional to the number of times a specific tag is observed in the final count. Unlike 

chip-based gene expression assays, SAGE provides a statistical description of the mRNA 

population present in a cell without prior selection of the genes to be studied. In addition 

to the digital format information generated by SAGE, the SAGE data obtained can be 

directly compared with data generated from any other laboratory or with data in public 

databases. Furthermore, SAGE databases can be constantly updated and subjected to re-

interpretation. An additional key feature of the SAGE technique, which makes it 

potentially much more powerful than other technologies, is that in the initial step one 

obtains both quantitative information on the abundance of each mRNA and a partial 

sequence. Other techniques for the analysis of global gene expression changes such as 

cDNA microarray rely on microchips using arrays of oligonucleotides or cDNA on solid 

supports, and most require very expensive hardware for the analysis of the data. All 

microarray approaches available so far require the previous knowledge of sequence 

information from specific genes or EST sequences. In contrast, SAGE provides 

qualitative and quantitative information on known as well as unknown transcripts. All of 

these constitute the major advantages of the SAGE method. One disadvantage of SAGE 

is that this methodology is not ideal for the comparison of multiple samples, for example 

hundreds of samples, in a relatively short time compared to microarray approaches. 
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However, this can be overcome by increasing the sequencing power of the performing 

laboratory.  

 

In breast cancer research, SAGE has been used to analyze and compare epithelial 

populations from normal breast epithelium and ductal carcinoma in situ (DCIS) lesions. 

As a result, various chemokines and cytokines such as HIN1, LIF, IL-8 and GRO were 

observed downregulated in DCIS when compared to normal tissue (Porter et al., 2001). 

The Aldaz lab is one of a few experts in the country at utilizing SAGE. The effects of 

estrogen on gene expression in estrogen-dependent breast cancer cells were first 

investigated by the Aldaz lab using SAGE (Charpentier et al., 2000). This study 

demonstrated that a discrete number of genes were found to be upregulated by estradiol 

treatment, among which five novel genes were identified and cloned (E2IG1-5). The 

Aldaz lab has also used SAGE to generate a high resolution transcriptome analysis for the 

identification of breast cancer biomarkers and molecular signatures of relevance in 

diagnosis and prognosis of human breast cancer (Abba et al., 2004; Abba et al., 2005; Hu 

et al., 2004). In addition, similar approaches were being used to study hormonal 

regulation of mammary epithelial cells from genetically modified mice (Aldaz et al., 

2002; Hu et al., 2004). Summaries of searchable SAGE library databases can be viewed 

at a specially created web site: http://sciencepark.mdanderson.org/ggeg. Novel statistical 

methods for SAGE analysis have also been developed (Baggerly et al., 2003). SAGE 

libraries generated by Dr. Aldaz’s lab were also donated to the to the CGAP’s SAGE 

database http://www.ncbi.nlm.nih.gov/SAGE.  
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1.9. CTIP, A PROTEIN WITH MULTIPLE PARTNERS AND PUTATIVE FUNCTIONS 
INCLUDING TUMOR SUPPRESSION 

The human CtIP gene (CtBP interacting protein and also known as RBBP8) 

encodes an 897 amino acid nuclear protein that is widely expressed in various human 

tissues (Fusco et al., 1998; Schaeper et al., 1998; Wong et al., 1998; Yu and Baer, 2000). 

CtIP was originally discovered as a binding partner to the co-repressor CtBP (Figure 

1.8.). The interaction between these two proteins is disrupted by the adenoviral 

oncoprotein E1A (Schaeper et al., 1998).  

 

CtIP is known to interact with various tumor suppressor proteins (Figure 1.8.). 

CtIP’s LECEE motif was found to bind Rb family (Rb and p130) and from this derives its 

alternative name RBBP8 for Rb binding protein 8 (Fusco et al., 1998; Meloni et al., 

1999). CtIP was also found to bind the tumor suppressor BRCA1 (Li et al., 1999; Sum et 

al., 2002; Wong et al., 1998; Yu et al., 1998). Ikaros (zinc finger protein, subfamily 1A, 

1) family members, proteins of importance in lymphoid development and differentiation, 

also bind CtIP. The Ikaros proteins are also known to behave as tumor suppressors and 

are found dysregulated in human leukemias (Koipally and Georgopoulos, 2002; Rebollo 

and Schmitt, 2003). CtIP was also reported to bind the LIM-domain protein LMO4 (LIM 

domain only 4) (Sum et al., 2002). LMO4 plays a role in mammary differentiation and it 

is known to be overexpressed in breast cancer (Visvader et al., 2001). This protein also 

appears to play a role in transcriptional repression and interacts also with the tumor 

suppressor BRCA1 (Breast cancer 1, tumor suppressor).  

 

Recent studies suggest that CtIP plays an important role in cell cycle regulation 

and DNA damage response (Foray et al., 2003; Li et al., 2000; Liu and Lee, 2006; Wu- 
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Figure 1.8. Domain structure of human CtIP (hCtIP). 

The hCtIP protein contains a CtBP-binding motif, an Rb-binding motif and a 
phosphorylation site that corresponds to Ser327. The region between amino acid 
positions 45-160 is a coiled-coil that mediates homodimerization of CtIP. The ATM 
target sites that correspond to Ser664 and Ser 745 are shown. The hCtIP-interacting 
proteins, BRCA1, Rb and CtBP, are shown. BRCA1 also interacts with AF-2 domain on 
ER through its N-terminal region. 
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Baer and Baer, 2001; Yu and Chen, 2004). CtIP was reported to be hyperphosphorylated 

in cells exposed to ionizing radiation (Li et al., 2000; Wu-Baer and Baer, 2001). As 

shown in Figure 1.8. two sites have been identified as targets of phosphorylation by the 

ATM kinase. It has also been suggested that the interaction between CtIP and BRCA1 

during the G2 phase of the cell cycle is required for activation of the checkpoint kinase 

Chk1 [reviewed by (Chinnadurai, 2006)]. Thus, highlighting the importance of CtIP as a 

potential regulator of the G2/M transition via Chk1 during the DNA damage response.  

The role of CtIP in normal cell cycle regulation, in particular at the G1/S transition, is a 

bit more controversial or complex, as reported by Wen-Hwa Lee’s laboratory (Chen et 

al., 2005). On the one hand it has been reported that depletion of CtIP in Rb +/+ MEFs or 

in NIH3T3 cells leads to Rb hypophosphorylation and cell cycle arrest. Such cell cycle 

arrest was not evident in CtIP depleted Rb -/- MEFs or Saos-2 cells suggesting that the 

CtIP mediated arrest is Rb dependent. This would point to CtIP as a promoter of cell 

cycle progression and cell proliferation (oncogenic?). On the other hand reported 

evidence has also been provided that CtIP clearly behaves as a co-repressor of gene 

transcription and possibly as a tumor suppressor gene (as will be discussed in the 

following paragraphs) (Chinnadurai, 2006; Liu and Lee, 2006; Wu and Lee, 2006). 

However, it has also been reported that cell cycle regulation by the CtIP/Rb complex may 

not be uniform in different cell types, since MCF10A immortalized mammary epithelial 

cells continue to proliferate in spite of being depleted of CtIP (Liu and Lee, 2006). 

 

It was shown that inactivation of CtIP in mice leads to early embryonic lethality, 

and the life span of Ctip+/- heterozygotes, which have haploid insufficiency for Ctip, was 

shortened due to the development of multiple types of tumors. This finding clearly 
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demonstrates that CtIP is a critical protein in early embryogenesis and implicates CtIP in 

tumorigenesis (Chen et al., 2005).  

 

The CtIP-BRCA1 interaction takes place via the BRCT domains of BRCA1 

where most mutations occur in BRCA1 breast cancer patients. Furthermore, such protein-

protein interaction is abolished by tumor-associated mutations in the BRCT domains (Li 

et al., 1999; Wong et al., 1998; Yu et al., 1998), suggesting that interaction between CtIP 

and BRCA1 is of functional relevance in breast cancer suppressor activity. It has been 

shown that amino acid residues 299-345 of CtIP mediate the interaction with the BRCT 

domains (Wong et al., 1998; Yu and Baer, 2000; Yu and Chen, 2004). Recently, it was 

also reported that phosphorylation at CtIP’s Ser327, possibly via a Cdk, appeared to be 

critical for the aforementioned interaction (Varma et al., 2005; Yu and Chen, 2004). 

(Figure 1.8.) Available evidence also suggests that CtIP is involved in transcriptional 

repression [reviewed in (Chinnadurai, 2006; Wu and Lee, 2006)]. As mentioned, CtIP 

interacts with the co-repressor CtBP. The CtIP-LMO4-BRCA1 complex acts as a 

transcriptional repressor on specific gene targets (Sum et al., 2002). CtIP may also 

participate in transcriptional repression by its interaction with Ikaros proteins in an 

HDAC independent manner. Significantly, recent studies demonstrated that BRCA1, 

CtIP and ZBRK1 (zinc finger protein 350, transcriptional repressor) form a repressor 

complex exerting its action on various genes. Specifically it was demonstrated that a 

recognition site for ZBRK1 at the promoter of the Angiopoieting-1 (ANG1) is 

responsible for repression in expression exerted by the BRCA1-CtIP-ZBRK1 complex 

(Furuta et al., 2006). Furthermore, disruption in complex formation leads to ANG1 up-

regulation that in turn promotes endothelial cell survival and vascular enlargement, of 

much relevance in tumorigenesis. 



 45 

 

1.10. DISSERTATION AIMS 

The role of estrogen as a fundamental factor in the etiology and progression of 

human breast cancer has been well documented. The extent of exposure to ovulatory 

cycles is one of the most important endogenous causes associated with a higher risk for 

development of sporadic breast cancer (Pike et al., 1993). Thus, treatment of breast 

cancer has, for a long time, been directed towards inhibiting the tumor promoting effects 

of estrogen. Tamoxifen is the most commonly used antiestrogen for the treatment of 

breast cancer and has been approved by the FDA as a preventive agent (Jordan, 2003; 

Osborne, 1998).  

 

Although tamoxifen has been shown to be effective in halting breast cancer 

progression, a very important clinical problem is the development of tamoxifen resistance 

in patients chronically exposed to this antiestrogen. This constitutes a major clinical 

challenge in breast cancer therapy. For many women, resistance develops after the first 

phase of tamoxifen treatment (Katzenellenbogen et al., 1997). Furthermore, a very 

significant portion of patients with localized breast cancer, and all of the patients with 

metastatic disease become resistant to antiestrogen therapies (Ali and Coombes, 2002). In 

most cases of resistance, the ER is still present and apparently continues regulating tumor 

growth. Unfortunately, the mechanisms involved in the development of tamoxifen 

resistance are still poorly understood. Although, as we discussed in the previous sections 

of this chapter, numerous mechanisms have been proposed to contribute to the 

development of tamoxifen resistance, much work is still needed to learn whether some of 

the postulated mechanisms so far can explain resistance to tamoxifen therapy in a 

majority of patients, or simply each of the enumerated possibilities account for minor 
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portions of resistant cases. Thus, studies geared at better understanding the precise and 

most common mechanisms involved in tamoxifen resistance are of considerable clinical 

significance.  

 

The studies described in this dissertation are designed with the overall goal of 

better understanding the phenomenon of tamoxifen resistance. In preliminary studies, we 

generated MCF-7 breast cancer cell line variants that are resistant to the inhibitory 

growth effects of tamoxifen. These new isogenic breast cancer cell lines represent a 

unique model that closely resembles the in vivo scenario. Based on the fact that most of 

the enumerated putative causes for resistance to tamoxifen will be reflected by changes in 

gene expression of key players representing directly or indirectly the involved pathways, 

we hypothesize that most cases of tamoxifen resistance are the result of a cellular 

adaptation phenomenon which will have a direct reflection in the patterns of global gene 

expression. Therefore, the first aim of this dissertation was to identify key genes involved 

in the development and manifestation of tamoxifen resistance in breast cancer, as well as 

direct or indirect bio-markers of tamoxifen resistance with promise for potential use in 

the clinical management of breast cancer patients, by defining the global gene expression 

profiles of above-mentioned tamoxifen resistant isogenic MCF-7 breast cancer cell lines 

and comparing them with their tamoxifen sensitive parental MCF-7 counterpart through 

the use of the combination of a comprehensive and unbiased powerful global gene 

expression approach SAGE with state-of-the-art bioinformatic and statistical approaches. 

As a result of the SAGE databases mining, we identified that the transcript encoding for 

CtIP (also known as Retinoblastoma binding protein 8, RBBP8) was significantly down-

regulated (15-fold) in both tamoxifen resistant cell lines when compared to their 

tamoxifen sensitive parental MCF-7 counterpart. CtIP has been shown to be a binding 
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partner of tumor suppressors, BRCA1 (Li et al., 1999; Sum et al., 2002; Wong et al., 

1998; Yu et al., 1998) and Rb (Fusco et al., 1998; Meloni et al., 1999), and also forms 

heterodimers with the transcriptional co-repressor CtBP (Schaeper et al., 1998). Recent 

studies with mutant mice have suggested that CtIP itself may be a tumor susceptibility 

gene (Chen et al., 2005). Interestingly, other studies demonstrated that BRCA1 physically 

interacts with ER and inhibits transcriptional activity of the receptor (Fan et al., 2001; 

Zheng et al., 2001). Moreover, CtIP was also shown to form a complex with BRCA1 and 

the transcriptional co-repressor CtBP, which is important for the repression of p21 

promoter activity (Li et al., 1999). Based on the significant level of CtIP downregulation 

and the importance of its direct links with important tumor suppressors and regulators of 

gene expression, we hypothesize that CtIP silencing constitutes a critical event for the 

development of tamoxifen resistance in breast cancer. We further speculate that CtIP 

could bridge BRCA1 and CtBP to form a transcriptional repressor complex, which in turn 

may modulate ER signaling pathways through the interaction between BRCA1 and ER 

and account for the inhibitory growth effects of tamoxifen. In order to circumvent the 

transcriptional inhibitory effects of tamoxifen, tamoxifen resistant cells could silence 

CtIP expression, which in turn, disrupts the repressor complex and allows breast cancer 

cells to resume proliferation. Thus, we focused our studies on CtIP and functionally 

characterized its mechanistic role in the development of tamoxifen resistance. Results are 

presented in subsequent chapters.  
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Chapter 2: Materials and Methods 

 

2.1. HUMAN BREAST CANCER CELL LINES 

The MCF-7 cell line batch used in these studies is derived directly from the 

original MCF-7 cell line. MCF-7 cells were maintained in IMEM (phenol red free) 

medium (Invitrogen, CA) supplemented with 5% fetal bovine serum (FBS) (Hyclone, 

UT), glutamine (2 mM) and gentamicin (50 μg/ml). The tamoxifen resistant MCF-7 

isogenic cell line variants (termed TAMR1 and TAMR2) were generated by culturing 

MCF-7 cells under continuous 4-OH-TAM (1 μM) exposure for approximately two 

years. TAMR1 cells were maintained in phenol red free IMEM plus 5% fetal bovine 

serum, glutamine (2 mM), gentamicin (50 μg/ml) and 4-OH-TAM (1 μM). TAMR2 cells 

were maintained in phenol red free IMEM plus 5% charcoal stripped fetal bovine serum 

(CSS, Hyclone, UT), glutamine (2 mM), gentamicin (50 μg/ml) and 4-OH-TAM (1 μM). 

Other breast cancer cell lines used, including T-47D, SUM-44-PE, ZR-75-1, MDA-MB-

231, MDA-MB-435, SKBR3 and BT-474, were maintained in DMEM (Cambrex Bio 

Science, MD) supplemented with 10% FBS. The BT-483 cell line was maintained in 

RPMI (Cambrex Bio Science, MD) supplemented with 10% FBS. The UACC-812 breast 

cancer cell line was grown in L-15 medium (Invitrogen, CA) supplemented with 10% 

FBS. All cells were maintained in a 37°C, 5% CO2 humidified incubator. Cell culture 

media was changed every 2 to 3 days.  
 

2.2. CHEMICALS 

We purchased 4-OH-TAM and 17-β-Estradiol (E2) from Sigma-Aldrich, MO. 
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2.3. SAGE  

Serial analysis of gene expression (SAGE) was performed on tamoxifen sensitive 

parental MCF-7 line and tamoxifen resistant TAMR1 and TAMR2 lines. All analyses 

were performed while cells were exponentially growing. Total RNA was isolated using 

TRIzol reagent (Invitrogen, CA) following the manufacturer’s protocol. SAGE libraries 

were generated following standard procedures as originally described by Velculescu et al. 

(Velculescu et al., 1995) (Figure 2.1.) and mostly using commercially available reagents 

(I-SAGE kit, Invitrogen, CA). In brief, total RNA was first bound to oligo (dT) magnetic 

beads that capture poly A+ RNA directly from the sample. Double stranded cDNA was 

then synthesized on the beads containing the mRNA and cleaved by an anchoring 

enzyme, Nla III. The cleaved cDNA was divided into two tubes and ligated with LS 

Adapters A and B that contain unique primer binding sites, the recognition sequence (5'-

GGGAC) for a tagging enzyme. The cDNA was further cut by a tagging enzyme, BsmFI 

and blunt-end-filled in. The enzyme BsmFI cuts 10 and 14 bases in the 3' direction from 

its recognition site, thus adding the "Tag" sequence to the linkers. Ditags (~102 bp) were 

formed by ligation, amplified using PCR, digested with anchoring enzyme, isolated and 

concatenated to form concatemers (~500 to ~800 bp). Concatemers were finally cloned 

into the pZErO vector to obtain a SAGE library. Sequencing was performed using an 

ABI 3700 DNA Analyzer (Applied Biosystems, CA). SAGE libraries were generated at 

an approximate resolution of 60,000 SAGE tags per library.  
 

2.4. SAGE LIBRARY ANALYSIS 

SAGE tag extraction from sequencing files was performed using the SAGE2000 

software v.4.0 (a kind gift of Dr. Kinzler, John Hopkins University, Baltimore, MD). 

Prior to analysis, all three SAGE libraries generated from parental MCF-7, TAMR1 or 
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TAMR2 cells were processed to correct abundances for spurious contributions due to 

sequencing errors. Sequencing errors could contaminate a library with spurious tags and 

also decrease the real abundance of actual tags. To correct for sequencing errors, we used 

a dynamic approach similar to that proposed by Colonge and Feger (Colinge and Feger, 

2001), which accounts for potential contribution from sequencing errors by considering 

all neighborhoods of similar tags throughout the entire library. For tag-to-gene mapping, 

a refined version of NCBI’s SAGEmap map was used 

(ftp://ftp.ncbi.nih.gov/pub/sage/map/Hs/NlaIII). Differential Expression Analysis: To 

extract the biologically relevant genes, an ANOVA-based multivariate approach called 

multiple linear contrast analysis (MLCA) was employed. Using combinations of 

appropriately defined contrasts, any expression pattern across the libraries can be defined 

and genes matching that pattern at a desired confidence level extracted. The MLCA is to 

our knowledge unique to the i-Sight platform and very flexible allowing to identify genes 

based on very specific expression patterns at the required level of statistical stringency. 

The MLCA was applied to gene-level data to extract individual genes with the desired 

expression profiles. Alternatively, iterative k-means clustering was used to first group the 

genes in groups with similar expression patterns and then apply the MLCA to the cluster 

centroids to extract clusters that match the desired expression signatures. Although the 

primary analysis is gene-centered, the original tag-based data after correction and 

normalization were also analyzed to provide an independent analysis path that is free of 

potential biases introduced in the tag-to-gene mapping and aggregation steps. Expression 

Patterns and Contrasts: Two contrasts were defined in order to identify differentially 

expressed genes in the tamoxifen resistant cells, one comparing the average expression 

level in the two resistant cell lines to that of the parental strain and the second one 

comparing the expression levels between the two resistant strains. The null hypothesis for 
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Figure 2.1. Schematic representation of the SAGE protocol.  

Adapted from (Velculescu et al., 1995). 
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first contrast tests for lack of differential expression between resistant and parental strains 

and the second tests for consistent expression between the two resistant cell lines.  

Significance of the null hypotheses for these tests was set at the 95% level after a 

Bonferoni-type adjustment for the multiplicity of comparisons.  
 

2.5. REAL-TIME QUANTITATIVE RT-PCR 

RNA samples for real-time PCR analyses were the same as those used in SAGE. 

Primers for amplification of CtIP were designed through Primer3 web-based software 

(www.genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi). The forward and reverse 

primers used were 5’GAAGAGGAGGAATTGTCTACTGCC3’ and 

5’CCACAAACGCTTTCTGCTTG3’. SYBR green PCR master mix was purchased from 

Applied Biosystems, CA. All of the real-time RT-PCR reactions were performed using 

the ABI Prism 7700 Sequence Detection system (Applied Biosystems, CA). Cycling 

conditions were 94 °C for 1 minute, followed by 40 cycles at 94 °C 12 seconds and 60 °C 

for 1 minute. We used 18S rRNA as the control gene for normalization. For each sample, 

PCR reactions were performed in triplicate for CtIP gene and control 18S rRNA gene. 

Statistical significance was determined by a student t-test.  
 

2.6. WESTERN BLOT ANALYSIS 

Cells were washed twice with ice-cold 1× PBS and then lysed with RIPA buffer 

[10 mM Tris, 5 mM EDTA, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 1% 

deoxycholate, PH 7.2, 1× protease inhibitor cooktail (Roche Applied Science, IN)]. Cell 

lysates were passed 10 times through 21-gauge needle and microcentrifuged at 21,000×g 

for 10 minutes at 4°C. Supernatants were collected and protein concentration was 

measured with Pierce Protein Assay Kit (Pierce, Rockford, IL), according to the 
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manufacturer’s instruction. Equal amount (30-50 μg) of protein from each sample was 

separated on 6-10% SDS-PAGE and transferred to PVDF membranes by electroblotting. 

Blots were first blocked with blocking buffer [5% milk in 1× Tris-buffered saline 

containing 0.1% Tween-20 (TBS-T)] for 1 hour and then incubated with primary 

antibodies for 1-2 hours at room temperature or overnight at 4 °C. After washing 3 times 

in TBS-T, blots were incubated with horseradish peroxidase-labeled secondary antibodies 

for another 1 hour. Labeled proteins were detected using KPL Protein DetectorTM 

chemiluminescence detection reagents and exposed to X-ray films. Antibodies used for 

western analysis were: CtIP (14-1; T-16, Santa Cruz, CA; 19E8, GeneTex, TX), ER (HC-

20, Santa Cruz, CA), anti-Flag (M2, Sigma, MO), β-actin (AC-15, Sigma, MO), BRCA1 

(Ab-1, Calbiochem, CA), CtBP (MS mAb, BD Biosciences Pharmingen, CA), NCoR 

(rabbit Ab, Upstate, CA), Phospho-Estrogen Receptor alpha (Ser118) (16J4, Mouse mAb, 

Cell Signaling, MA).  
 

2.7. ELECTROPORATION 

Cells were seeded into 150-mm plates (1.5×106 cells/plate) and allowed to reach a 

logarithmic growth phase the day before electroporation. On day of electroporation, cells 

were harvested, washed twice in 1× PBS, and resuspended in basal growth IMEM media 

(no supplements). Plasmid DNA (10 µg) was first added to the bottom of a 0.4 cm 

electroporation cuvet (Bio-Rad Laboratories, CA), followed by the addition of 4×106 

resuspended cells. The cuvet was then placed into the cuvet holder of the Gene Pulser II 

system (Bio-Rad Laboratories, CA) and pulsed (270 V, 1050 µF). Electroporated cells 

were immediately transferred to normal growth medium and maintained in a 37°C/5% 

CO2 humidified incubator until further experiments. 
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2.8. RNA INTERFERENCE 

Potential siRNA target sites on CtIP mRNA were selected using the siRNA target 

finder algorithm from Ambion (http://www.ambion.com/techlib/misc/siRNA_finder). 

siRNA Expression Cassette (SEC), which encodes siRNA targeting the selected siRNA 

target site on CtIP mRNA (from 2492 to 2512, NM_002894; 

AATGATAGCTTGGAAGATATG), were generated downstream of the human H1 

polymerase III promoter by PCR using the Ambion Silencer Express siRNA Expression 

Cassette Kits and following manufacturer’s protocol. A negative control SEC expressing 

siRNA with no significant homology to human, mouse or rat genome sequences was also 

generated by the same method. The SECs were cloned into the mammalian expression 

pSEC-puro vector (Ambion) and sequenced to confirm that the clones were the desired 

sequences. To obtain cell clones that stably expressed siRNAs targeting CtIP, MCF-7 

cells were transfected with either pSEC-CtIP-puro or pSEC-Control-puro by 

electroporation. One day later, puromycin (0.6 μg/ml) was added into the culture 

medium. After 3 weeks of selection, puromycin resistant clones were picked up, 

expended and analyzed for CtIP expression levels by immunoblotting. The stable clone 

that gave the lowest level of CtIP expression was frozen at –80°C for future use.  
 

2.9. GENERATION OF DOUBLE-STABLY TRANSFECTED TET-OFF TAMR1 CELLS 
WITH DOXYCYCLINE INDUCIBLE RESTORATION OF CTIP 

The Tet-off gene expression system was purchased from BD Biosciences 

Clontech, CA. Full-length human CtIP cDNA with three N-terminal Flag epitope tags 

was cloned into pTRE2hyg response vector (pTRE2hyg-FLAG-CtIP). To generate 

double-stable Tet-off TAMR1 cell clones, cells were co-transfected with pTet-Off and 

pTRE2hyg-FLAG-CtIP vectors. After electroporation, cells were plated in 10-cm dishes 
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and allowed to grow in regular medium containing 4-OH-TAM (1 μM) plus DOX (1 

μg/ml) for 48 hours. Cells were then selected for resistance to G418 (800 μg/ml) and 

hygromycin B (200 μg/ml). Fresh DOX (1 μg/ml) was added to tamoxifen-containing 

medium (regular culture medium for TAMR1 cells) every 2 days to maintain a constant 

suppression of CtIP expression during the selection process. Hygromycin and G418 

double-resistant colonies began to appear after 3-4 weeks of selection. Thirty-seven large 

and healthy colonies were isolated using cloning cylinders and transferred to individual 

wells for expansion. Each clone was first screened by immunoblotting using anti-Flag 

M2 antibody for DOX-responsive CtIP expression in the presence or absence of 1 μg/ml 

DOX. We then used anti-CtIP (14-1) antibody to assess the total CtIP protein in the 

positive clones. Clone #32, in which the level of total CtIP protein expressed upon the 

withdrawal of DOX was similar to that produced in the parental MCF-7 cells, was chosen 

for further studies.  
 

2.10. IN VITRO CELL PROLIFERATION ASSAYS 

Prior to treatment, cells were cultured in estrogen-free medium for 48 hours. On 

day 0, 1×104 cells in estrogen-free medium were plated in triplicate in 12-well plates. E2 

(10 nM), 4-OH-TAM (10 nM) or ethanol (vehicle control, 1 μl/ml) was added directly 

into the medium at the same time. Fresh medium with the adequate treatment was 

changed every 2 days. Cell counts were performed at various time-points as indicated in 

figures.  
 

2.11. DNA METHYLATION ANALYSES 
Genomic DNA isolation 

Genomic DNA from MCF-7 and TAMR1 cells was isolated by standard methods 

using phenol and Proteinase K.  
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Bisulfite modification of genomic DNA 

Bisulfite treatment of genomic DNA converts non-methylated cytosines (C) to 

uracils (U), which will be ultimately detected as thymidines (T). The bisulfite 

modification reaction was carried out using CpGenome DNA modification kit 

(Chemicon, CA) following manufacturer’s protocol.  
 
PCR amplification and genomic sequencing 

About 150 ng of bisulfite-treated genomic DNA was used as template for PCR 

reaction. Primers amplifying a CpG-rich region found on CtIP gene promoter (-384 to -

102) were designed as following: forward primer: 

5’TTTTTTTATAGTTTTAGAAAGTGTT3; reverse primer: 

5’ACCCAAAAATAATACTAAAATAAC3’. PCR amplification was carried out with a 

hot-start at 94 °C for 10 minutes, followed by 36 cycles of amplification (30 sec at 94 °C, 

30 sec at 52 °C and 40 sec at 70 °C) and a final 7 minutes extension at 70 °C. Each PCR 

product was resolved on a 1.2% agarose gel and purified with QIAquick gel extraction kit 

(Qiagen, CA). Purified PCR products were subject to direct sequencing using an ABI 

3700 DNA Analyzer (Applied Biosystems, CA). The same forward primer used for PCR 

amplification was used as sequencing primer. We also treated TAMR1 cells with 5-aza-

2’-deoxycytidine, a DNA methylation inhibitor, at different concentration (1, 2, and 3 

μM) for 72 hours.  
 

2.12. IMMUNOPRECIPITATION 

To prepare cell lysates, cells were washed twice in ice-cold 1× PBS and lysed in 

0.5% NP-40 buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 0.5% NP-40, 10% 

glycerol, and protease inhibitor cooktail). For immunoprecipitation, approximately 500 μl 



 57 

cell lysates (from ~1×107 cells) were co-incubated with each indicated antibody for 2 

hours at 4°C. After adding 50 μl protein A/G beads (Santa Cruz, CA), the mixture was 

rocked at 4°C for 2 hours. Beads were then extensively washed three times with 0.5% 

NP-40 buffer and finally boiled for 10 minutes in 2× SDS loading buffer (0.1M Tris-HCl, 

pH 6.8, 4% SDS, 20% glycerol, 0.1% β-mercaptoethanol and 0.004% bromphenol blue). 

Supernatants were loaded onto 6-10% SDS-PAGE, followed by western blot analysis 

using primary antibodies as indicated. Antibodies used for IP are as following: CtIP (H-

300, Santa Cruz, CA), BRCA1 (C-20, Santa Cruz, CA), ER (HC-20, Santa Cruz, CA), 

and CtBP (H-440, Santa Cruz, CA). 
 

2.13. CHROMATIN IMMUNOPRECIPITATION ASSAYS 

ChIP assays were carried out with the ChIP assay kit (Upstate Biotechnology, IL) 

as previously described (Shang et al., 2000). All reagents used were provided by the kit. 

MCF-7 cells were grown in 150 mm plates to 90% confluence in hormone-free media 

supplemented with 5% charcoal-dextran stripped serum for 7 days. Cells were then 

treated with 10-8 M estradiol, 10-6 M 4-OH-TAM or control vehicle for 1 hour. After 

being washed once with PBS (room temperature), cells were subsequently fixed with 1% 

formaldehyde in PBS at 370C for 10 min. At the end of fixation, cells were quickly rinsed 

with ice-cold PBS twice, scraped into 1 ml of ice-cold PBS and spinned down at 3000 

rpm for 2 min at 4 0C. Cell pellets were lysed with 300 μl of lysis buffer and incubated on 

ice for 10 min. Lysates were sonicated three times for 15 seconds each at 50% duty cycle 

using an Out Control intensity of 3 followed by microcentrifugation at 4 °C, 14000×g for 

10 minutes. Soluble chromatin was diluted 1:10 in dilution buffer and immunocleared by 

incubating with sheared salmon sperm DNA–Protein A/G agarose (50 μl/1 ml chromatin 

preparation) for 2 h at 4°C. For immunoprecipitation of protein-DNA complex, specific 
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antibodies were added and incubated overnight at 4°C, followed by addition of 50 μl 

salmon sperm DNA–Protein A/G agarose for another 1 h at 4°C. Precipitates were 

washed sequentially with 1 ml of low-salt wash buffer, high-salt wash buffer, and LiCl 

wash buffer and were washed twice with 1 ml of TE buffer. The DNA-protein complex 

was eluted with 100 µL of freshly made elution buffer (1% SDS, 0.1 M NaHCO3) and 

heated at 65 °C overnight to reverse the formaldehyde cross-linking. DNA fragments 

were then purified with a Qiagen Gel Extraction kit (Qiagen, CA) and subject to PCR 

amplification with the following primers for the promoter region of the pS2: −430F: 5’-

ATTAGCTTAGGCCTAGAC-3’; −245R: 5’-TACTCATATCTGAGAGGCCCT-3’.  
 

2.14. HUMAN BREAST CARCINOMA SAMPLES  

Primary breast cancer formalin-fixed, paraffin-embedded tissue samples were 

collected retrospectively from 59 postmenopausal patients with stage II-III ER (+) breast 

carcinomas (median age 78 years; range 60 to 92). The 59 patients were treated at a 

single institution (Instituto Valenciano Oncología, Valencia, Spain) between 1999 and 

2002 with four months neoadjuvant endocrine therapy consisting of tamoxifen (23 

patients) or letrozole (36 patients) for large non-operable or locally advanced ER (+) 

breast cancers. All patients gave written informed consent before the submission of tumor 

samples for CtIP analyses, and the local ethic committee approved the study protocol and 

informed consent form. Determination of response to the referred endocrine adjuvant 

therapy was made after 4 months of patient follow-up.  
 

2.15. IMMUNOHISTOCHEMISTRY AND STATISTICAL ANALYSES 

Samples were obtained from the described primary breast cancer tissues prior to 

endocrine therapy. Tissue sections were obtained from formalin fixed paraffin embedded 
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samples. Tissue sections were deparaffinized with xylene and rehydrated by graded 

alcohols. Endogenous peroxidase activity was blocked with 3% H2O2 in water for 10 

minutes. The sections were then boiled in 10mM Citrate Buffer (pH 6.0) for 15 minutes 

in a microwave oven followed by a 20-minute cool down at room temperature to retrieve 

antigenic epitopes. The tissue samples were exposed to 10% goat serum in PBS, in order 

to block unspecific antibody binding, for 30 minutes and incubated with an anti-CtIP 

antibody (H-300, rabbit polyclonal, 1:100 dilution) for 1 hour at room temperature. The 

sections were then washed, incubated with a goat-anti-rabbit secondary antibody, 

developed with DAB, and counter stained with Harris´ hematoxylin for microscopic 

evaluation. CtIP expression levels were then scored blindly using the immunoreactive 

score (IRS) method as previously described (Chui et al., 1996; Friedrichs et al., 1993). In 

brief, the IRS was calculated by multiplying the percentage of CtIP-positive cells (scored 

0 to 4: 0, 0%; 1, 0-25%; 2, 26-50%; 3, 51-75%; 4, >75%) with the CtIP staining intensity 

(scored 0 to 3: 0, none; 1, weak; 2, moderate; 3, strong). We used One-way ANOVA 

followed by Tukey’s test post hoc comparisons, and Pearson’s correlation test to assess 

the association between CtIP protein status (raw IRS scores) and clinical response to 

endocrine therapy. All statistical analyses were two side, and p<0.05 was considered as 

statistically significant. Analyses were conducted using SPSS version 11.5 software 

(SPSS Inc., Chicago, Illinois).  
 

2.16. META-ANALYSIS OF BREAST CANCER MICROARRAY DATA SETS 

CtIP gene expression profiles and clinicopathological data of 828 breast 

carcinomas were obtained from seven published and publicly available breast cancer 

microarray data sets (Gruvberger et al., 2001; Perou et al., 1999; Sorlie et al., 2003; van 

de Vijver et al., 2002; Wang et al., 2005; West et al., 2001; Zhao et al., 2004). The 
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Oncomine cancer microarray database (http://ww.oncomine.org) was employed for data 

collection, processing and visualization (Rhodes et al., 2004). CtIP gene expression was 

log-transformed, median centered for each gene expression dataset, and SD normalized to 

1 per array. The gene module application was employed for differential expression 

analysis (two side t-test). We used a meta-analysis approach to determine and summarize 

the CtIP mRNA expression pattern from the seven independent studies. Meta-analysis is 

a set of statistical techniques or procedures for combining information from different 

studies. In our studies, we combined CtIP gene expression information from the above-

mentioned seven publicly available microarray data sets, which contain gene expression 

information all from ER positive or negative primary breast carcinomas. However, the 

topics of these published studies were neither related to CtIP itself nor to response to 

endocrine therapy, and none of these studies has examined CtIP gene expression levels in 

their individual microarray data set. In fact, we collected only CtIP gene expression 

information that has already been included in the microarray data sets. We computed 

summary estimates (effect sizes) of CtIP expression changes by the Standardized Mean 

Difference (SMD) method using the exact t values and sample size for each groups. To 

calculate the pooled effects of CtIP profile each study was weighed by the inverse of the 

individual and between-study variance according to a random effects model. Meta-

analysis was carried out using Comprehensive Meta-Analysis software (Biostat Inc., NJ).  

All effect sizes were presented with 95% CI based on the estimated variances.  
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Chapter 3: Global gene expression analysis identifies CtIP (RbBP8) as 
one of the most significantly downregulated transcripts in tamoxifen 

resistant human breast cancer cells 

 

3.1. INTRODUCTION  

The role of estrogen as a fundamental factor in the etiology and progression of 

human breast cancer has been well documented. It was already observed, more than 100 

years ago, that ovariectomy could lead to breast cancer regression in pre-menopausal 

patients (Beatson, 1896). The extent of exposure to ovulary cycles is one of the most 

important endogenous causes associated with a higher risk for development of sporadic 

breast cancer (Pike et al., 1993). Estrogen sustains the growth of breast cancer cells that 

express the receptor for this hormone. Indeed, approximately 70% of breast cancer 

patients are positive for estrogen receptor (ER) or progesterone receptor (PgR) expression 

at diagnosis. Therefore, for a long time, treatment of breast cancer has been directed 

towards inhibiting the tumor promoting effects of estrogen. Tamoxifen, a non-steroidal 

antiestrogen, has been used as standard first-line endocrine therapy for patients with 

estrogen receptor positive breast cancers since 1970s, during which time over 400,000 

lives have been saved (Jordan, 2003). Although other drugs such as aromatase inhibitors 

may be slightly more effective than tamoxifen, tamoxifen is still the most used 

antiestrogen and will remain so for several years to come because of its well-documented 

benefits (Wong and Ellis, 2004). Tamoxifen is also the first approved drug by the FDA as 

a cancer chemopreventive for reducing breast cancer incidence in both pre- and post-

menopausal women at high risk (Jordan, 2003). As adjuvant therapy, tamoxifen reduces 

the risk of recurrence and improves overall survival in early breast cancer (Osborne, 
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1998). It is also effective for patients with untreated metastatic breast cancer (Osborne, 

1998).  

 

Despite the benefits of tamoxifen in treating breast cancer, unfortunately, many 

tumors that initially respond to tamoxifen therapy develop resistance. This phenomenon 

has become a serious obstacle in breast cancer treatment. For many women, resistance 

develops after the first phase of tamoxifen treatment (Katzenellenbogen et al., 1997). 

Interestingly, in most cases tamoxifen resistance is reversible, suggesting a cellular 

adaptation mechanism rather than a permanent genetic alteration (Katzenellenbogen et 

al., 1997). Moreover, almost all patients with advanced metastatic disease and as many as 

40% of patients receiving adjuvant tamoxifen eventually relapse and die from their 

disease (Normanno et al., 2005). The mechanisms involved in the development of 

tamoxifen resistance are still poorly understood. Numerous mechanisms have been 

proposed to contribute to the development of tamoxifen resistance, including altered drug 

metabolism, loss of expression or mutation of ER (This is a rare occurrence in the 

development of resistance. In fact, loss of ER expression has been demonstrated only in 

17-28% of patients with acquired resistance to tamoxifen (Gutierrez et al., 2005; Johnston 

et al., 1995) and mutations of ER have rarely been found in human primary breast 

carcinomas.), lack of expression of progesterone receptor, increased expression of 

estrogen receptor β, post-translational modifications of ER (These modifications could be 

the result of oncogenic activation of other growth factor signaling pathways.), altered 

expression of co-regulators and increased growth factor signaling (See Chapter 1 for 

details). Interestingly, a recent study demonstrated that DIBA, an ER zinc finger 

inhibitor, restores the antagonistic action of tamoxifen in tamoxifen resistant breast 

cancer cells through targeted disruption of the ER DNA-binding domain and its 
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interaction with the proximal N-terminal domain to suppress ligand-dependent and -

independent ER transcription and influence the recruitment of cofactor to the ER (Wang 

et al., 2006). These findings strengthen the important role of ER in the development of 

tamoxifen resistance and suggest a possible new approach in modifying tamoxifen 

resistance (Wang et al., 2006). However, whether these postulated mechanisms so far 

could explain resistance to tamoxifen therapy in a majority of patients is still unclear. 

Thus, studies geared at better understanding the precise and most common mechanisms 

involved in tamoxifen resistance are of considerable clinical significance. Better 

understanding the precise mechanisms involved in tamoxifen resistance and tumor 

recurrence may suggest novel strategies to circumvent tamoxifen resistance and improve 

survival rate in breast cancer.  
 

We hypothesize that most cases of anti-estrogen resistance are the result of a 

cellular adaptation phenomenon that will have a direct reflection in the patterns of global 

gene expression. With the aim of identifying key genes involved in the development of 

tamoxifen resistance, we defined the global gene expression profiles of recently 

developed tamoxifen resistant MCF-7 breast cancer cell lines and compared them with 

their tamoxifen sensitive parental MCF-7 counterpart by using serial analysis of gene 

expression (SAGE). We observed that the mRNA expression of CtIP, a BRCA1- and 

CtBP-interacting protein, is 15-fold downregulated in the tamoxifen resistant cells when 

compared to their tamoxifen sensitive counterparts.  
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3.2. RESULTS 

3.2.1. Generation and characterization of tamoxifen resistant MCF-7 cell line 
variants 

To better understand the phenomenon of tamoxifen resistance, we generated two 

independently derived isogenic MCF-7 breast cancer cell line variants (TAMR1 and 

TAMR2) that are resistant to the inhibitory growth effects of tamoxifen. The TAMR1 and 

TAMR2 variants were developed by growing parental MCF-7 cells under chronic 

exposure to 4-OH-TAM (1 μM) for approximately two years (Figure 3.1.). These cells 

were maintained in phenol red-free IMEM medium containing 5% fetal bovine serum 

(TAMR1) or 5% charcoal-stripped fetal bovine serum (TAMR2) plus 4-OH-TAM (1 

μM). As shown in Figure 3.2.A, in contrast to their parental MCF-7 cells, both TAMR1 

and TAMR2 cells cultured in estrogen-depleted medium proliferated in the presence of 

tamoxifen. Additionally, despite continuous exposure to 4-OH-TAM, both tamoxifen 

resistant variants are still estrogen responsive (Figure 3.2.B) as compared to control 

vehicle treatment (Figure 3.2.C) and express equivalent levels of ER protein as their 

parental MCF-7 cells (Figure 3.4.C). Therefore, both TAMR1 and TAMR2 cells express 

functional ER, as do their parental MCF-7 cells. The tamoxifen resistant phenotypes of 

these cells appear not to be a consequence of changes in ER expression or function. 

These data are also consistent with the clinical findings that the majority of patients with 

acquired resistance to tamoxifen still express functional estrogen receptors (Gutierrez et 

al., 2005; Johnston et al., 1995).  
 

3.2.2. SAGE libraries generation 

To identify key changes in gene expression that are associated with, and may 

cause, the development of tamoxifen resistance, we performed extensive Serial Analysis 
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Figure 3.1. Development of tamoxifen resistant MCF-7 cell line variants.  
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Figure 3.2. In vitro characterization of parental MCF-7, TAMR1 and TAMR2 cells. 

Growth curves of parental MCF-7, TAMR1 or TAMR2 cells cultured in the presence of 
10 nM 4-OH-TAM (A), 10 nM E2 (B) or vehicle (C). The results are presented as mean 
± SEM of triplicate determinations. 
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of Gene Expression (SAGE) analyses on the TAMR1 and TAMR2 variants described 

above and their parental MCF-7 cell line (all analyses were performed while at 

exponentially growing). SAGE is a novel and powerful approach to analyze global gene 

expression. The SAGE technique is based on the principle that a short nucleotide 

sequence (i.e. 14 base pairs tag) contains sufficient information to uniquely identify a 

transcript, provided it is isolated from a defined position within the transcript (Velculescu 

et al., 1995; Velculescu et al., 1997). Using this short sequence and ligating series of 

“tags” back to back (concatemers), allows for the efficient analysis, both qualitative and 

quantitative, of all mRNA transcripts. We sequenced a minimum of 60,000 tags per cell 

line library providing virtually a complete picture of the entire transcriptome. This 

allowed us to identify key changes of gene expression involved in tamoxifen resistance.  
 

3.2.3. Differential expression analysis of SAGE libraries 

The SAGE libraries obtained from the parental MCF-7, TAMR1 and TAMR2 

cells were analyzed using a unique and state-of-the-art approach, the i-Sight discovery 

platform. A summary of i-Sight Discovery platform is shown in figure 3.3. This platform 

is a statistical advanced platform, which provides numerous web based tools specially 

developed for SAGE analyses. It allows one to organize the genes of any analysis or 

comparison by functional categories (based on gene Ontology annotations) and evaluate 

the statistical contribution of each functional category, as representatively shown in Table 

3.1. 

 

The MLCA analysis at the gene-level data identified 243 genes that were 

upregulated and 247 downregulated by at least a fold of 2 at a statistical significance 

level of 95% in the tamoxifen resistant relatively to tamoxifen sensitive parental MCF-7 
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Figure 3.3. Summary of i-sight Discovery platform. 
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Table 3.1. Representative partial profile and display format of genes identified by the i-
Sight platform and functional categorization (unrelated experiment).  

(*) Scores significant at the 95.0% level according to a chi-square test are shown. 
Categories highlighted in blue are those at the most detailed level of the given annotation 
hierarchy that have a significant score. All categories are active links that lead to the 
specific genes ID. 
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Table 3.2. Cell-cycle and cell proliferation related genes differentially expressed in 
tamoxifen resistant MCF-7 cells.  
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cells. Some of the key genes identified using this approach and their roles in cell cycle 

regulation are summarized in Table 3.2. The differential pattern seems to indicate that in 

tamoxifen resistant cells, most upregulated, such as CDC45L, CCNA2, CCNF and 

CDC20, are those related to transition through cell cycle and on the other hand many 

anti-proliferative genes, including PLK, FAT, TSSC3 and REA, are downregulated as are 

several mitosis-related genes. Among the key genes identified, one gene named CtIP 

(also known as Retinoblastoma binding protein 8, RBBP8) was particularly interesting to 

us, because it was significantly down-regulated (15-fold) in both tamoxifen resistant cell 

lines when compared to their tamoxifen sensitive parental MCF-7 counterpart (Figure 

3.4.A). 
 

3.2.4. Validation of SAGE Findings 

In order to validate the SAGE findings, we performed real-time RT-PCR using 

the same RNA samples for SAGE analysis and confirmed significantly lower CtIP 

mRNA expression in the tamoxifen resistant cells than in the tamoxifen sensitive parental 

MCF-7 cells (Figure 3.4.B). Next, we determined whether the differential expression of 

CtIP detected at the mRNA level could also be observed at the protein level. By western 

analysis, we detected high levels of CtIP protein in the tamoxifen sensitive parental 

MCF-7 line, but not in the two tamoxifen resistant lines (Figure 3.4.C). In fact, both 

TAMR1 and TAMR2 cells appear to express little or no CtIP protein. Together, the 

above data confirm that the expression of CtIP is significantly decreased in tamoxifen 

resistant cells at both mRNA and protein levels and raise the possibility that CtIP 

silencing could be a novel mechanism for the development of tamoxifen resistance.  
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Figure 3.4. CtIP expression levels in parental MCF-7, TAMR1 and TAMR2 cells 

as determined by SAGE (A), real-time PCR (B) and western analysis (C).  ER protein 
levels in these cells were also determined (C). 
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3.2.5. CtIP gene promoter methylation study 

It is well known that methylation of cytosine residues at cytosine-guanine sites 

(CpG islands) usually located in the promoter region of genes, can be a specific 

mechanism of transcriptional repression (Nan et al., 1997). Our search through the UCSC 

Genome Browser has identified typical CpG islands in the CtIP promoter region (Figure 

3.5.A). To determine whether silencing of CtIP expression in tamoxifen resistant cells 

(TAMR1 cells) is the result of promoter methylation, we performed bisulfite genomic 

sequencing of a CpG-rich island found on the CtIP gene promoter region (from -384 to –

102). We did not find any evidence of CpG methylation at the investigated region. In 

addition, we also did not observe any significant restoration of CtIP expression after 

treating TAMR1 cells with 5-aza-2’-deoxycytidine, a CpG methylation inhibitor (Figure 

3.5.B). Thus, in the tamoxifen resistant cells, methylation appears not to be the major 

mechanism for CtIP silencing. 

 

Together, the above data identify and confirm that the expression of CtIP is 

significantly decreased in tamoxifen resistant cells at both mRNA and protein levels and 

raise the possibility that CtIP silencing could be a novel mechanism for the development 

of tamoxifen resistance. We also ruled out promoter methylation as the mechanism for 

Ctip silencing.  
 

3.3. DISCUSSION 

The clinical use of antiestrogens such as tamoxifen has been shown to be 

extremely effective in inhibiting ER-positive breast cancer progression. However, 

acquired resistance to tamoxifen therapy remains one of the major clinical challenges to 
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Figure 3.5. CtIP promoter methylation study.  

(A) Notice a CpG Island 5’ of CtIP coding region (from UCSC Genome Browser). (B) 
TAMR1 cells were treated without (n/t) or with 5-Aza-2’-deoxycytidine (1, 2, or 3 µM) 
for 72 hours. CtIP expression was determined by RT-PCR. Untreated parental MCF-7 
cells were used as a positive control (left lane). GAPDH was used as loading control. In 
addition, bisulfite genomic sequencing of a CpG-rich island found on the CtIP gene 
promoter region (from -384 to –102) didn’t find any evidence of CpG methylation.  
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overcome in the treatment of breast cancer. Unfortunately, the precise mechanisms of 

tamoxifen resistance are still poorly understood. Indeed, to date genes that confer an 

acquired resistance to tamoxifen have not been identified yet. Although numerous 

postulated mechanisms as previously described have been proposed to contribute to the 

development of tamoxifen resistance, none of them so far has been validated to explain 

resistance to tamoxifen therapy in a majority of patients. Interestingly, most of the 

enumerated putative causes for resistance to tamoxifen will be reflected by changes in 

gene expression of key players representing directly or indirectly the involved pathways. 

Therefore, we hypothesized that most cases of tamoxifen resistance are the result of a 

cellular adaptation phenomenon, which will have a direct reflection in the patterns of 

global gene expression. 

 

In the current study, we developed and in vitro characterized MCF-7 human 

breast cancer cell line variants that are resistant to the growth inhibitory effects of 

tamoxifen. Based on the results that a functional ER is still present in these cells and 

apparently regulates cell proliferation, the development of tamoxifen resistance in these 

new isogenic cells appears not to result from loss or changes of ER expression/function. 

To test our hypothesis, we have used a powerful global gene expression methodology 

SAGE to identify key players implicated in resistance to tamoxifen by defining global 

gene expression profiles of these two independently derived isogenic tamoxifen resistant 

MCF-7 breast cancer cell line variants and their parental tamoxifen sensitive MCF-7 line. 

Through mining the SAGE databases using state-of-the-art bioinformatic and statistical 

approaches, we observed different gene expression patterns between tamoxifen resistant 

cells and their parental tamoxifen sensitive cells. As a result, our studies also led to the 
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identification of a number of highly differentially expressed genes in tamoxifen resistant 

MCF-7 cells.  

 

Among key transcripts with increased expression in tamoxifen resistant cells, we 

identified several important regulators of cell cycle transition, including CDC45L, 

CCNA2 (cyclin A2) and CCNF (cyclin F). CDC45L is an essential component of the 

replication fork involved in DNA unwinding during replication elongation (Pacek et al., 

2006). Besides its role in the initiation of DNA replication, CDC45L has also been 

implicated in initiation of S-phase (Saha et al., 1998). Thus, the significant upregulation 

of this gene in tamoxifen resistant cells may indicate a novel link between enhanced 

DNA replication process and tamoxifen unresponsiveness. Cyclin A2 (CCNA2) binds 

and activates cdk2 kinase and promotes DNA synthesis in S phase and G2/M transition 

(Pagano et al., 1992). Deregulation of the expression of this cyclinA2 was shown to be 

associated with oncogenesis in some cancers (Dutta et al., 1995; Masaki et al., 2003). 

More interestingly, it was reported that the cyclin A2/cdk2 complex can phosphorylate 

and enhance the transcriptional activity of ER (Trowbridge et al., 1997). Moreover, our 

recent paper has shown that tamoxifen, as well as E2, induce expression of cyclin A2 in 

MCF- 7 cells (Hodges et al., 2003). Interestingly, in our analysis from the isogenic MCF-

7 variants, we observed that only in the tamoxifen resistant variants cyclinA2 is 

overexpressed about 8 fold compared to parental MCF-7 cells. On the other hand we did 

not find major differences in other critical cyclins such as cyclin D1 and E in all these 

exponentially growing cells. This raises the possibility that cyclinA2 might be directly 

induced by tamoxifen, which in turn, coupled with cdk2 kinase, increases the 

transcriptional activity of ER and then induces the expression of several growth related 

genes, constituting a positive regulatory loop in tamoxifen resistant cells. Therefore, the 
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role of cyclin A2 in the development of tamoxifen resistance deserves additional 

investigation. In addition to cyclin A2, we also observed a significant increase in CCNF 

(cyclin F) expression in tamoxifen resistant cells compared with parental cells. Cyclin F 

is a new member of the cyclin family and related to cyclin A and B by sequence (Kraus et 

al., 1994). This member also belongs to the F-box protein family which is characterized 

by an approximately 40 amino acid motif, the F-box (Bai et al., 1996). However, the 

function of cyclin F is still unknown. Thus far, no association of cyclin F expression with 

breast cancer and tamoxifen resistance has been reported. Whether this cyclin plays a role 

dependent or independent of other cyclins in breast cancer progression or the 

development of resistance to tamoxifen requires further functional characterization.  

 

Interestingly, SAGE also identified upregulation of EBAG9 (estrogen receptor 

binding site associated antigen 9), an estrogen-responsive gene, in tamoxifen resistant 

cells. EBAG9 has been shown to be upregulated after estrogen treatment, which is 

mediated through ER which binds to the estrogen-responsive element (ERE) found in the 

5'-flanking region of this gene (Ikeda et al., 2000; Watanabe et al., 1998). EBAG9 gene is 

located at chromosome 8q23, a region that is frequently amplified in tumors (Ikeda et al., 

2000). Moreover, its protein product is a tumor-associated antigen that is expressed at 

high frequency in a variety of cancers including breast cancer (Ikeda et al., 2000; 

Watanabe et al., 1998). Based on these observations together with SAGE findings, we 

can speculate that EBAG9 might play a role in breast cancer progression, perhaps 

through its modulation of hormonal regulation and/or response of breast cancer cells.  

 

In contrast to the upregulated genes found in tamoxifen resistant cells, most 

downregulated key genes have anti-proliferative function, some of which also serve as 
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tumor suppressors. One of these downregulated genes, CtIP (RbBP8), appeared to be 

particularly interesting due to the significant level of its deregulation (15-fold) and the 

importance of its direct links with important tumor suppressors (BRCA1 and Rb) and 

regulators of gene expression (CtBP). Therefore, we functionally characterized its 

mechanistic role in the development of tamoxifen in further detail and will describe and 

discuss the role of CtIP in resistance to tamoxifen in detail in next chapters of this 

dissertation.  

 

The transcript of the gene FAT, which an ortholog of the Drosophila fat gene, was 

found significantly decreased (7-fold) in tamoxifen resistant cells. The Drosophila fat 

locus encodes a tumor suppressor gene, and recessive (loss-of-function) mutations lead to 

hyperplastic overgrowth of the imaginal discs (Bryant et al., 1988). The gene product 

belongs to the cadherin superfamily, a group of integral membrane proteins characterized 

by the presence of cadherin-type repeats (Mahoney et al., 1991) . It encodes a 

transmembrane protein containing 34 cadherin repeats in association with a number of 

other motifs (Mahoney et al., 1991) . Analysis of the expression of human FAT homolog 

in fetal and adult tissues revealed that FAT mRNA is present in many epithelial and some 

endothelial and smooth muscle cells (Dunne et al., 1995). Thus, FAT probably functions 

as an adhesion molecule and signaling receptor, and is likely to be important in 

developmental processes and cell communication. Currently, whether FAT is involved in 

mammary development or modulates breast epithelium functions is unknown. In addition 

to the FAT tumor suppressor, we also observed that TSSC3 (tumor suppressing 

subtransferable candidate 3) was downregulated 6-fold in tamoxifen resistant cells 

compared to sensitive parental cells. The TSSC3 gene is one of several genes in the 

imprinted gene domain of chromosome 11p15.5, which is considered to be an important 
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tumor suppressor gene region (Qian et al., 1997). TSSC3 is also the first apoptosis-related 

gene found to be imprinted in placenta, liver, and fetal tissues, where it is expressed from 

the maternal allele during normal human development (Qian et al., 1997). Moreover, 

TSSC3 appears to be a potential growth inhibitory gene, since in a study that examined 

the imprinting status of TSSC3 in normal human adult brain, neuroblastomas, 

medulloblastomas, and glioblastomas, strong allelic bias resembling imprinting could 

only be detected in most tumors but not in normal human adult brain or blood (Muller et 

al., 2000).  

 

We have discussed in chapter one the importance of the ER coregulatory proteins 

in mediating transcriptional activity by the ER and therefore altered expression of 

coregulators may contribute to the tamoxifen resistance phenotype. Interestingly, in our 

SAGE studies, we observed a significant decrease in the expression of a gene named 

REA (repressor of estrogen receptor activity). REA encodes a 37-kDa protein that is an 

ER-selective coregulator (Montano et al., 1999). It interacts directly with ER and that this 

interaction is ligand-dependent and is observed preferentially with the dominant negative 

ER and with the antiestrogen-bound ER (Montano et al., 1999). REA markedly 

potentiates the inhibitory effectiveness of dominant negative ERs as well as the inhibitory 

activity of antiestrogens. In addition, REA competes with the coactivator SRC1 for 

modulation of ER transcriptional activity, while the protein itself lacks intrinsic 

transcription-repression activity (Montano et al., 1999). These in vitro findings suggest 

that REA may play an important role in determining the sensitivity of estrogen target 

cells, including breast cancer cells, to antiestrogens and estrogens. Animal studies (Mussi 

et al., 2006) showed that REA deletion in mice was embryonic lethal. REA heterozygous 

mutant mice exhibit specific morphological phenotypes such as faster mammary ductal 
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elongation in virgin animals, increased lobuloalveolar development during pregnancy, 

and delayed mammary gland involution after weaning, which are associated with 

significantly increased cell proliferation and ER transcriptional activities (Mussi et al., 

2006). These in vivo observations indicate that REA is a physiological modulator of ER 

function in the mammary gland and consequently a reduction or loss of REA function 

may cause overactivation of ER and increase breast cancer risk in humans (Mussi et al., 

2006). On the basis of its role as an ER-selective coregulator in modulating ER activity 

and sensitivity to antiestrogens, REA, whose downregulation was found by SAGE in 

tamoxifen resistant cells, appears to be another very relevant gene associated with the 

development of resistance to antiestrogens. It is possible that in order to overcome the 

inhibitory growth effects of tamoxifen and survive during prolonged antiestrogen 

exposure, tamoxifen resistant cells chronically enhance ER signaling and reduce 

antiestrogen sensitivity by downregulating REA. Therefore, our SAGE results together 

with previous known function of REA make it another good candidate gene for 

tamoxifen resistance in breast cancer and thereby deserves further detailed investigations. 

 

To summarize our SAGE studies, we provide a detailed analysis of gene 

expression at a global level in our recently developed in vitro cell line models of 

tamoxifen resistance. As a result, more than 400 transcripts were found differentially 

expressed in tamoxifen resistant cells compared to their sensitive counterparts, with about 

243 genes upregulated and 247 genes downregulated by at least a fold of 2 at a statistical 

significance level of 95%. We observed that most key genes identified overexpressing in 

tamoxifen resistant cells are related to the control of cell proliferation and cell cycle 

progression (including CCNA, CCNF, CDC45 and EBAG9) and on the other hand the 

expression of many anti-proliferative genes including some tumor suppressors and ER 
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coregulators (including CtIP, FAT, TSSC3 and REA) are significantly decreased. It 

appears that tamoxifen exposed cells might bypass the inhibitory growth effects of 

tamoxifen and continue proliferating in spite of the presence of antiestrogen by on one 

hand enhancing cell survival and proliferative signal pathways to confront tamoxifen’s 

inhibitory effects, on the other hand decreasing growth inhibitory signaling pathways 

directly or indirectly activated by tamoxifen.  

 

Among key changes identified, CtIP is of particular interest to us, since this gene, 

which is directly linked with important tumor suppressors and the transcriptional 

corepressor, is downregulated approximately 15-fold in tamoxifen resistant cells. In 

addition, recent studies with mutant mice have suggested that CtIP itself may be a tumor 

susceptibility gene (Chen et al., 2005). Therefore, our follow-up studies were focused on 

CtIP and its role in endocrine resistance. In the present study, we also determined that in 

the tamoxifen resistant cells CtIP silencing appears not to result from promoter CpG 

methylation. A previous screening of 89 human tumor cell lines derived from various 

tissues failed to detect any homozygous deletions of the CtIP locus (Wong et al., 1998). 

However, analysis of CtIP cDNA from these 89 cell lines revealed five missense and 

eleven silent mutations (Wong et al., 1998). It remains to be determined whether genetic 

alterations play a role in silencing CtIP expression in the tamoxifen resistant cells. It has 

also been shown that E2F6, a member of the E2F family of transcriptional regulators, can 

be recruited to the CtIP promoter and repress transcription of the CtIP gene (Oberley et 

al., 2003). Moreover, two consensus E2F-binding sites that are functionally repressed by 

Rb were found on the CtIP promoter (Liu and Lee, 2006). Interestingly, CtIP was shown 

to activate its own promoter (Liu and Lee, 2006). Therefore, it is also possible that the 
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lack of CtIP expression in the tamoxifen resistant cells is the result of transcriptional 

regulatory events. 
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Chapter 4: CtIP silencing as a novel mechanism of tamoxifen resistance 
in human breast cancer 

 

4.1. INTRODUCTION 

It has long been established that estrogen is involved in breast carcinogenesis. 

Treatment of breast cancer has, for a long time, been directed towards inhibiting the 

tumor promoting effects of estrogen. In fact, the concept that changing the hormone 

milieu of the patient with breast cancer could lead to tumor regression was recognized 

even before anti-hormones and synthetic endocrine agents were available. As mentioned 

earlier removal of the ovaries was prescribed in advanced breast cancer cases with the 

hope that this would cause tumor regression and control its growth (Beatson, 1896). The 

clinical use of an antiestrogen for the treatment of breast cancer was first reported by 

Cole et al. in 1971, who described the potential use of tamoxifen in the management of 

breast cancer (Cole et al., 1971). Today, tamoxifen is the endocrine therapy of choice for 

all stages of estrogen receptor-positive breast cancer (Osborne, 1998) and is currently 

prescribed for the prevention of breast cancer in both pre- and post-menopausal women at 

high risk (Fisher et al., 1998; Jordan, 2003). Almost all patients with estrogen receptor-

positive tumors in western countries have been treated with this drug either as adjuvant 

therapy following surgery or as first-line treatment for advanced disease. The level of 

response to this therapy usually correlates with the expression of ER and possibly PgR, in 

the tumor. Generally, the highest response rates are seen in tumors expressing both ER 

and PgR (70%), with lower response rates in ER (-) but PgR (+) tumors (45%), and in ER 

(+) but PgR (-) tumors (34%), and lowest response rates in ER and PgR negative tumors 

(<10%) (Honig, 1996). Unlike the widely used cytotoxic chemotherapies, tamoxifen 

treatment is well tolerated (Osborne, 1998). In addition, tamoxifen also demonstrates the 
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ability to increase both disease free and overall survival (Early Breast Cancer Trialists' 

Collaborative Group, 1992). Although this approach to breast cancer therapy is effective, 

much is still unknown about how tamoxifen inhibits breast cancer development. 

Tamoxifen belongs to a family of drugs named selective estrogen receptor modulator 

(SERM). In other words, tamoxifen effects are tissue specific, acting as an antagonist of 

estrogen in some tissues like the breast and an agonist in others such as bone and 

endometrium. As a consequence, the higher risk for endometrial carcinoma in women 

exposed to long-term tamoxifen treatment constitutes more than an undesirable side 

effect.  

 

Another important clinical problem is that, of those tumors that initially respond 

to tamoxifen therapy, a significant fraction eventually becomes resistant to such 

therapies. Furthermore, almost all patients with advanced breast cancer eventually 

develop tamoxifen resistance and acquire estrogen independent growth. Nevertheless, 

some of these patients still respond at least temporarily to second and third line endocrine 

therapy. For example, many tumors which have developed tamoxifen resistance are likely 

to still respond to pure antiestrogens such as ICI 182,780 (Howell et al., 1996). This 

indicates that some of the mechanisms involved in tamoxifen resistance appear to be 

specific for this compound or type of compounds. In addition, it has been observed that 

the specific resistance to endocrine therapy is in many instances reversible, which suggest 

a cellular adaptation phenomenon rather than a genetic based alteration. Nevertheless, the 

issue of resistance to tamoxifen constitutes a major clinical challenge. Although 

numerous mechanisms have been proposed to contribute to the resistance to tamoxifen 

therapy, we still understand very little about the precise and most common mechanisms 

by which resistance to tamoxifen develop.  
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Since our research interest is to better understand the phenomenon of tamoxifen 

resistance, we developed two isogenic tamoxifen resistant in vitro models based on MCF-

7 breast cancer cell line, which expresses functional wide-type ER and grows maximally 

in estrogen-containing media but exhibits dramatic growth inhibition when treated with 

antiestrogens (Soule et al., 1973). These resistant lines were derived by maintaining 

MCF-7 breast cancer cells under continuous 4-OH-TAM exposure for approximately two 

years. After an initial period of growth arrest the breast cancer cell line variants regained 

active exponential growth in spite of exposure to a high 4-OH-Tam concentration  (see 

Chapter 3, Results section). In order to identify genes implicated in the development of 

tamoxifen resistance, we obtained and compared global gene expression profiles of the 

mentioned tamoxifen resistant cell variants and their parental tamoxifen sensitive cells by 

using serial analysis of gene expression (SAGE). SAGE is a powerful, comprehensive 

and unbiased global gene expression method that allows one to obtain a snap-shot of all 

genes expressed (i.e. transcriptome) (Velculescu et al., 1995). Our analysis of the gene 

expression data identified various dysregulated genes in tamoxifen resistant cells when 

compared with their tamoxifen sensitive counterparts. We first focused our analysis 

specifically on genes that play critical roles in cell cycle progression and cell 

proliferation. Among these we identified, the CtIP (RBBP8) transcript was 

downregulated (practically silent) approximately 15-fold in tamoxifen resistant cells. 

These results were validated by multiple approaches at the gene and protein expression 

level. CtIP is a binding partner of tumor suppressors, BRCA1 (Li et al., 1999; Sum et al., 

2002; Wong et al., 1998; Yu et al., 1998) and Rb (Fusco et al., 1998; Meloni et al., 1999), 

and also forms heterodimers with the transcriptional corepressor CtBP (Schaeper et al., 

1998). Emerging evidence also suggests that CtIP may itself act as a tumor suppressor 
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gene (Chen et al., 2005). Based on the significant level of CtIP downregulation and the 

importance of its direct links with important tumor suppressors and regulators of gene 

expression, we hypothesize that downregulation of CtIP constitutes a critical event for the 

development of tamoxifen resistance in breast cancer cells. Therefore, the present study 

was designed to further characterize the functional role of CtIP in the development of 

tamoxifen resistance and evaluate the clinical relevance of CtIP as a potential biomarker 

of the tamoxifen resistant phenotype as well as for breast cancer prognosis.  
 

4.2. RESULTS 

4.2.1. Silencing endogenous CtIP in tamoxifen sensitive MCF-7 cells confers 
tamoxifen resistance and estrogen independence 

To further explore the putative role of CtIP in the development of tamoxifen 

resistance, we first examined whether silencing the expression of endogenous CtIP in 

tamoxifen sensitive cells can induce a tamoxifen resistant phenotype. Knockdown of CtIP 

protein levels in tamoxifen sensitive parental MCF-7 cells was achieved using RNA 

interference techniques. As shown in Fig. 4.1.A, in the resulting clone (MCF-7/CtIP 

siRNA) stably transfected with a vector expressing siRNA targeting CtIP mRNA, the 

silencing of CtIP protein levels reproduces quite closely the expression difference 

observed between the tamoxifen sensitive (parental MCF-7) and tamoxifen resistant 

(TAMR1 and TAMR2) cells. The negative control siRNA clone (MCF-7/(-) control 

siRNA) showed unchanged CtIP protein levels when compared to parental MCF-7 cells 

(Fig. 4.1.A). In addition, we observed an equal level of ER expression in all three clones, 

indicating that ER protein expression was not affected by the siRNA intervention (Fig. 

4.1.A).  
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Figure 4.1. Silencing of CtIP protein expression in tamoxifen sensitive MCF-7 cells 
confers tamoxifen resistance and estrogen independence in vitro.  

(A) Western blot analysis of CtIP and ER proteins in parental MCF-7 cells, MCF-7/(-) 
control siRNA and MCF-7/CtIP siRNA stable clones. Growth curves of control and 
MCF-7/CtIP siRNA cells treated with 4-OH-TAM (B) or vehicle control (C) for 2 weeks. 
The results are presented as mean ± SEM of triplicate determinations. * and ** indicate 
p<0.05 and p<0.01 by t-test, respectively. (D) Growth curves of control and MCF-7/CtIP 
siRNA cells exposed to E2 for 10 days. Each data point and error bar show the mean ± 
SEM. Note that Y-axis scales for cell number in B and C are different from D. 
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To test whether silenced CtIP expression in parental MCF-7 cells leads to the 

tamoxifen sensitive-to-tamoxifen resistant transition, we next compared cell proliferation 

between MCF-7/CtIP siRNA and MCF-7/(-) control siRNA cells under various stimuli. 

Hormone-starved experimental and control siRNA cells were exposed to 4-OH-TAM for 

2 weeks and cell numbers were determined at various time points as indicated (Fig. 

4.1.B). Growth of MCF-7/(-) control siRNA cells was inhibited by exposure to 

tamoxifen, whereas growth of MCF-7/CtIP siRNA cells was not inhibited by tamoxifen, 

indicating acquired resistance to tamoxifen (p<0.05) (Fig. 4.1.B). Interestingly, when 

cultured in conditions completely devoid of estrogen, inhibition of the growth of MCF-

7/(-) control siRNA cells was observed, indicating estrogen dependence. On the other 

hand, CtIP silenced MCF-7/CtIP siRNA cells grew continuously even in the absence of 

estrogen, suggesting the acquisition of an additional relevant phenotypic characteristic, 

i.e. estrogen independent growth (p<0.001) (Fig. 4.1.C). Interestingly, the MCF-7/CtIP 

siRNA cells still retain response to estrogen-stimulated cell proliferation when exposed to 

estradiol (Fig. 4.1.D), indicating that ER is still functional and capable of regulating cell 

growth. In fact, after 10 days in culture in the presence of estrogen, the cell number of 

both control and MCF-7/CtIP siRNA cells increased about 145-fold (Fig. 4.1.D), which is 

5 to 8 times more than that of the MCF-7/CtIP siRNA cells cultured in the presence of 

tamoxifen (Fig. 4.1.B) or in the absence of estrogen (Fig. 4.1.C) respectively (over the 

same time period), suggesting that estrogen still appears to stimulate cell proliferation in 

MCF-7 cells regardless of CtIP status. Taken together, these data indicated that CtIP 

silencing leads to resistance to the inhibitory growth effects of tamoxifen and estrogen 

independent growth in vitro.  
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4.2.2. Re-expression of CtIP in tamoxifen resistant cells restores sensitivity to the 
inhibitory growth effects of tamoxifen 

Next, we addressed the reciprocal question of whether re-expression of CtIP in 

tamoxifen resistant cells abrogates resistance to tamoxifen. Since both tamoxifen resistant 

lines have similar proliferation profiles in the presence of tamoxifen, we selected the 

TAMR1 cell line for further functional studies. To this end, a Tet-off inducible gene 

expression system was employed to re-express CtIP in the tamoxifen resistant TAMR1 

cells. TAMR1 cells were transiently co-transfected with Tet-off inducible vectors 

containing N-terminal Flag-tagged full-length human CtIP cDNA. After transfection, 

cells were immediately divided equally into two batches. The first batch was treated with 

4-OH-TAM or vehicle, and cultured in the presence of doxycycline (DOX). The second 

batch was treated with 4-OH-TAM or vehicle, but cultured in the absence of DOX. 

Expression of FLAG-CtIP was analyzed by immunoblotting after 72 hours of 

transfection. FLAG-CtIP was only detected in TAMR1 cells cultured without DOX (Fig. 

4.2.A, bottom panel: left), indicating the restoration of CtIP is tightly controlled by DOX. 

Cell proliferation was determined in TAMR1 cells with or without CtIP re-expression. 

This experiment showed that cells with restored CtIP protein expression displayed a 

significant growth inhibition by tamoxifen in comparison with control cells having no 

CtIP restoration (Fig. 4.2.A, bottom panel: middle). Without tamoxifen treatment (vehicle 

control), transient CtIP restoration had no significant effect on TAMR1 cell proliferation 

(Fig. 4.2.A, bottom panel: right). Thus, transient restoration of CtIP appeared to abrogate 

resistance to tamoxifen in tamoxifen resistant cells. 

 

To further confirm the observations derived from the transient transfection 

experiments, we developed double-stably transfected TAMR1 Tet-off FLAG-CtIP cells. 
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Figure 4.2. Tamoxifen resistant cells regain sensitivity to the inhibitory growth effects of 
tamoxifen upon restoration of CtIP protein expression.  

(A) (up panel) TAMR1 cells were transiently co-transfected with the pTet-off regulatory 
vector and the pTRE2hyg-FLAG-CtIP inducible expression vector containing N-terminal 
Flag-tagged full-length human CtIP cDNA. After transfection, cells were immediately 
divided equally into two batches. The first batch was treated with tamoxifen or vehicle, 
and cultured in the presence of doxycycline (DOX). The second batch was treated with 
tamoxifen or vehicle, but cultured in the absence of DOX. Cell growth assays were 
performed 72 hours after transfection. (bottom panel: left) Expression of FLAG-CtIP 
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protein in TAMR1 cells transiently co-transfected with inducible FLAG-CtIP expression 
vectors and cultured in the presence or absence of doxycycline (DOX) for 3 days. 
(bottom panel: middle and right) Transient CtIP restoration partially abrogates resistance 
to tamoxifen in TAMR1 cells. TAMR1 cells were transiently co-transfected with 
inducible FLAG-CtIP expression vectors and treated with 4-OH-TAM (bottom panel: 
middle) or vehicle control (bottom panel: right) in the presence or absence of DOX for 3 
days. Cell proliferation was determined as shown. Percent cell number (bottom panel: 
middle) represents cell numbers relative to vehicle control treated cells. The results are 
presented as mean ± SEM of triplicate determinations. 
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Figure 4.2. (B) Total CtIP protein expression in the double-stably transfected TAMR1 
Tet-off FLAG-CtIP clone 32 cells in the presence or absence of DOX. CtIP expression in 
parental MCF-7 cells is shown for comparative purpose. (C) CtIP re-expression upon 
DOX withdrawal restores sensitivity to the inhibitory growth effects of tamoxifen in 
TAMR1 Tet-off FLAG-CtIP clone 32 cells. The proliferation of clone 32 cells under the 
treatment of 4-OH-TAM was determined in the presence (black bars) or absence (white 
bars) of DOX. *, p<0.05 by t-test. (D) Effect of E2 on the proliferation of clone 32 cells 
cultured with or without DOX. Note that Y-axis scales for cell number in C and D are 
different from each other. 
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Among the various stably transfected clones obtained, clone 32 was selected for further 

study. This clone showed no CtIP expression in the presence of DOX but similar CtIP 

protein levels to those produced in parental MCF-7 cells upon DOX withdrawal, as 

determined by western blot analysis (Fig. 4.2.B). Next, we measured the growth of the 

double-stably transfected TAMR1 Tet-off FLAG-CtIP cells under conditions in which 

CtIP restoration was either induced or repressed. Cells from clone 32 were cultured in 

two different conditions. Half of the cells were grown in hormone-free medium 

containing DOX while the other half was cultured in the same medium but devoid of 

DOX. After 3 days of incubation, cells were treated with either E2, 4-OH-TAM or 

vehicle control. As shown in Fig. 4.2.C, the growth of TAMR1 Tet-off FLAG-CtIP cells 

was significantly inhibited by tamoxifen when DOX was removed from the medium as 

compared to cells from the same clone but cultured in the presence of DOX (p<0.05). 

Cells still responded well to estrogen regardless of DOX status (Fig. 4.2.D). Taken 

together, these results demonstrate that sensitivity to the inhibitory growth effects of 

tamoxifen in previously tamoxifen-resistant cells is restored, at least partially by CtIP re-

expression.  
 

4.2.3. Poor clinical response to endocrine therapy is associated with CtIP deficiency 
in breast cancer patients 

To determine whether there is a relationship between CtIP status and endocrine 

therapy response in vivo, we evaluated CtIP expression by immunohistochemistry (IHC) 

in 59 ER+, non-operable primary breast carcinomas (i.e. prior to treatment) from patients 

who received endocrine therapy as single neo-adjuvant therapy. Based on the clinical 

response to the therapy after four months of follow-up, patients were classified into 4 

groups: complete response (CR), 4 cases (7%); partial response (PR), 32 cases (54%); 

stable disease (SD), 17 cases (29%), and progressive disease (PD), 6 cases (10%). These 
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Figure 4.3. Poor clinical response to endocrine therapy is significantly associated with 
CtIP deficiency in primary breast carcinomas.  

(A) CtIP expression patterns in human breast carcinomas. CtIP expression was evaluated 
by immunohistochemistry and semi-quantified using immunoreactive scores (IRS) in 59 
inoperable hormone receptor-positive primary breast carcinomas (prior to treatment) 
from patients who received endocrine therapy as single neoadjuvant therapy. 
Representative tumor CtIP immunoreactivity (IRS scores 0, 4, 8 and 12) is shown. (B) 
CtIP status strongly correlates with clinical response to endocrine therapy (Pearson 
Correlation, p=0.004), and patients with progressive disease (PD) have significantly 
lower CtIP IRS than those who completely respond to endocrine therapy (CR). **, 
p=0.006 by ANOVA and Tukey’s post tests. Complete response (CR), partial response 
(PR), stable disease (SD), and progressive disease (PD). 
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cases are representative of a larger cohort previously reported in which CR was reported 

to be between 4% and 10% (Eiermann et al., 2001). Immunoreactive scores (IRS) for 

CtIP were used to semiquantify IHC staining intensity and percentage of positive cells 

(Chui et al., 1996; Friedrichs et al., 1993). IRS ranging from 0 to 12 represents CtIP 

protein staining from undetectable to the highest expression level respectively (Fig. 

4.3.A). One-way ANOVA analysis of CtIP IRS revealed significantly different CtIP 

expression in the 4 response groups (p=0.01). Remarkably, we observed that patients who 

had the worst response to endocrine therapy (defined as progressive disease, PD) had 

significantly lower CtIP expression than those who had the best response to endocrine 

therapy (defined as complete response, CR) (p=0.006) (Fig. 4.3.B). Moreover, Pearson’s 

correlation analysis showed a significant correlation between CtIP status and clinical 

response to endocrine therapy (p=0.004). These data indicate that poor response to 

endocrine therapy is associated with CtIP deficiency in breast cancer patients.  
 

4.2.4. CtIP expression is associated with ER, disease free survival and breast cancer 
metastasis status 

To further explore the clinical relevance of CtIP expression in breast cancer, we 

evaluated information of seven publicly available breast cancer gene expression 

microarray data sets (Gruvberger et al., 2001; Perou et al., 1999; Sorlie et al., 2003; van 

de Vijver et al., 2002; Wang et al., 2005; West et al., 2001; Zhao et al., 2004) through the 

use of the web-based Oncomine cancer microarray database (http://www.oncomine.org) 

(Rhodes et al., 2004). Clinico-pathological and gene expression data from a total of 828 

breast carcinomas was obtained using this publicly available resource. Since ER plays a 

critical role in the clinical management of breast cancer patients, we first analyzed levels 

of CtIP mRNA expression in the mentioned microarray sets according to ER status of the 

tumors (Fig. 4.4.A). By using a meta-analysis approach, we directly compared CtIP 
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Figure 4.4. CtIP expression is associated with ER status and prognosis in breast cancer.  

CtIP gene expression profiles and clinico-pathological data of 828 breast carcinomas 
were obtained from seven published and publicly available breast cancer microarray data 
sets as described in Materials and Methods. Data were collected and visualized using the 
Oncomine cancer microarray resource. (A) Oncomine’s database output and meta-
analysis showing CtIP expression patterns relative to ER status across seven breast cancer 
microarray studies. CtIP transcripts are represented as normalized expression units ± 
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standard error (95% CI). (B) Oncomine’s database output of CtIP expression patterns 
relative to Disease Free Survival (DFS) in two of the seven data sets that have 5 years 
follow-up information available. The van de Vijver et al. dataset (left) shows a significant 
association between loss of CtIP expression and relapse (p=0.019). The Sorlie et al. study 
(right) shows a trend which does not reach statistical significance (p=0.069). Meta-
analysis (pooling both studies together) shows an excellent statistical inverse correlation 
between decreased CtIP expression and breast cancer relapse (p=0.004). (C) Oncomine’s  
database output of CtIP expression patterns related to metastasis status (left, the van de 
Vijver et al. study; right, the Sorlie et al. study). The analysis shows a statistical 
significant decrease of CtIP expression in association with metastatic breast carcinomas  
(p=0.029). 
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expression profiles between 590 ER positive (+) and 238 ER negative (-) breast 

carcinomas by combining all seven microarray data sets. We found a dramatically 

significant association between high CtIP expression and ER (+) status in breast 

carcinomas (p<0.0001) (Fig. 4.4.A). Next, we analyzed CtIP expression profiles versus 

disease free survival (DFS) in two microarray data sets that had at least 5 years of follow-

up clinical information available. Analysis from the study of Van de Vijver et al. (van de 

Vijver et al., 2002) showed a statistical significant association between loss of CtIP and 

disease relapse (p=0.019). A trend was also found in the Sorlie et al. study (Sorlie et al., 

2003) but did not reach statistical significance (p=0.069), possibly due to the low number 

of samples (Fig. 4.4.B). However, by using the meta-analysis approach and pooling both 

studies together, we found a highly significant association between decreased CtIP 

expression and disease relapse (p=0.004) (Fig. 4.4.B).  Furthermore, CtIP mRNA 

expression levels were significantly lower in invasive breast carcinomas that had distant 

metastasis when compared with breast cancer counterparts that did not metastasize 

(p=0.029) (Fig. 4.4.C). 
 

4.2.5. CtIP expression in human breast cancer cell lines 

To perform a comparative analysis of CtIP expression levels, we determined CtIP 

protein expression by western blot analysis in 10 human breast cancer lines. As can be 

observed in Figure 4.5., 3 out of 6 ER positive (+) breast cancer lines express abundant 

CtIP (MCF-7, T-47-D and ZR-75-1) and one of these lines (BT-483) expresses some 

CtIP, i.e. in total 4/6 express detectable CtIP. In contrast, 4 out of 4 ER negative (-) breast 

cancer lines either do not express CtIP at all or very little (UAC 812, MDA-MB-231, 

MDA-MB-435, SKBR3).  
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Figure 4.5. CtIP protein expression in breast cancer cell lines as determined by western 
blot analysis.  

Estrogen receptor (ER) expression status is also indicated as (+) positive or (-) negative. 
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4.3. DISCUSSION 

Previous SAGE studies identified CtIP as one of the most significantly 

downregulated transcripts in two independently developed tamoxifen resistant cell lines 

when compared to their tamoxifen sensitive parental MCF-7 line. Immunoblotting 

analyses not only validated the SAGE observations but also demonstrated a dramatic 

difference in CtIP protein expression levels; with high levels of protein expression in 

parental MCF 7 breast cancer cells and practically undetectable levels of CtIP protein 

product in the tamoxifen resistant derivative isogenic cell lines. In the present study, we 

describe the functional involvement of CtIP in the development of tamoxifen resistance.  

 

Based on RNAi studies, we showed that silencing the expression of CtIP in 

tamoxifen-sensitive parental MCF-7 cells confers tamoxifen resistance in vitro. Thus, we 

were able to reproduce the tamoxifen resistant phenotype simply by shutting down the 

expression of one gene i.e. CtIP. Notably, CtIP silencing also leads to estrogen 

independent growth in vitro, suggesting that the development of tamoxifen resistance and 

estrogen independence might share common mechanisms in breast cancer cells. 

Moreover, we showed in the reciprocal experiment that re-expression of CtIP in 

tamoxifen resistant cells restores sensitivity to the inhibitory growth effects of tamoxifen. 

It is worth mentioning here that we employed an inducible mammalian expression system 

rather than a conventional constitutive gene expression system to re-express CtIP in the 

resistant cells. The strength of this approach is that it avoids dealing with the effects of 

CtIP expression in the resistant cells during the selection process which was conducted 

under the presence of tamoxifen. In other words, we can re-express CtIP expression at 

will once the double-stable transfectants have been established. Taken together, these 
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results demonstrate that CtIP silencing is critical for the development of tamoxifen 

resistance in breast cancer cells, and suggest that CtIP silencing may be a novel 

mechanism by which cells can circumvent the inhibitory effects of tamoxifen to resume 

proliferation and ultimately acquire resistance to tamoxifen. 

 

Consistent with the in vitro observations, immunohistochemical evaluation of 

CtIP protein expression in primary breast carcinomas prior to adjuvant treatment revealed 

a significant relationship between CtIP status and patients’ response to endocrine therapy. 

We observed that patients with progressive disease and resistance to endocrine therapy 

had significantly lower CtIP levels in their primary breast cancers than those who 

completely respond. These data suggest that CtIP status in breast tumors may be a 

potential prognostic biomarker to predict response to endocrine therapy in the clinic. To 

evaluate the prognostic value of CtIP determination as a biomarker of endocrine response 

would require further studies in larger patient cohorts. Additionally, to date no 

information is available regarding the role of CtIP in breast cancer tumorigenesis or 

prognosis. In the present study, our meta-analysis from seven publicly available breast 

cancer gene expression data sets provided very interesting correlations. Analysis of the 

only two gene expression data sets with patients’ follow-up information revealed that 

decreased CtIP expression was significantly associated with relapse-free survival and 

development of breast cancer metastasis. Thus, tumors with low levels of CtIP expression 

appear to behave more aggressively than tumors with high levels of CtIP expression. 

These results suggest that decrease or loss of CtIP may play a significant role in breast 

cancer progression. These data also raise the possibility that determination of CtIP 

expression may be of value as a prognostic marker in breast cancer.  
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In addition, we found a significant association of CtIP expression with ER status. 

Furthermore, expression studies from 10 breast cancer cell lines found abundant CtIP 

protein expression in ER (+) breast cancer cell lines, such as MCF-7, T-47-D and ZR-75-

1, but not in any of the ER (-) lines. Even though the sample is small, these observations 

strengthen the possible reverse association between ER expression and CtIP expression in 

breast cancer, as also observed in primary breast carcinomas. These findings also suggest 

that CtIP may function in a pathway or pathways associated with ER signaling and 

perhaps regulate ER-mediated cell proliferation. Interestingly, while ER (-) cells that are 

intrinsically resistant to tamoxifen treatment express either none or very little CtIP 

protein, BT-474, an ER (+) but tamoxifen resistant breast cancer cell line (Wang et al., 

2006), also expresses nearly undetectable CtIP protein when compared to ER (+) and 

tamoxifen sensitive lines such as MCF-7 and T-47-D, which further supports the 

important role of CtIP in the development of tamoxifen resistance. 

 

The human CtIP (also known as RBBP8) encodes an 897 amino acid nuclear 

protein that is widely expressed in various human tissues (Fusco et al., 1998; Schaeper et 

al., 1998; Wong et al., 1998; Yu and Baer, 2000). It was initially identified as a co-factor 

of transcriptional co-repressor CtBP (Schaeper et al., 1998). CtIP is also known to 

interact with tumor suppressors, Rb family proteins (Rb and p130) (Fusco et al., 1998; 

Meloni et al., 1999) and BRCA1 (Li et al., 1999; Sum et al., 2002; Wong et al., 1998; Yu 

et al., 1998), as well as the transcriptional repressors such as LIM-only protein LMO4 

(Sum et al., 2002) and Ikaros family members (Koipally and Georgopoulos, 2002). 

Recent studies suggest that CtIP plays an important role in cell cycle regulation and DNA 

damage response (Foray et al., 2003; Li et al., 2000; Liu and Lee, 2006; Wu-Baer and 

Baer, 2001; Yu and Chen, 2004). Emerging evidence also suggests that CtIP may itself 
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be a tumor susceptibility gene. Analysis of CtIP cDNA from 89 human tumor cell lines 

revealed five missense and eleven silent mutations (Wong et al., 1998). In a more recent 

screening study of 109 colon cancers, CtIP was found to be a frequent target for 

microsatellite instability (MSI) (Vilkki et al., 2002). More importantly, it has been shown 

that inactivation of CtIP in mice leads to early embryonic lethality, and the life span of 

Ctip+/- heterozygotes, which have Ctip haploid insufficiency, was shortened due to the 

development of multiple types of tumors. These findings demonstrate that CtIP is a 

critical protein in early embryogenesis and implicates an important role of CtIP in 

tumorigenesis (Chen et al., 2005). In addition, CtIP interacts with the BRCT domains of 

BRCA1 where most mutations occur in BRCA1 breast cancer patients, and such protein-

protein interaction is abolished by tumor-associated mutations in the BRCT domains (Li 

et al., 1999; Wong et al., 1998; Yu et al., 1998), suggesting that interaction between CtIP 

and BRCA1 is of functional relevance in the breast cancer suppressor activity. It has been 

shown that amino acid residues 299-345 of CtIP mediate its interaction with the BRCT 

domains of BRCA1 (Wong et al., 1998; Yu and Baer, 2000; Yu and Chen, 2004). 

Recently, it was also reported that phosphorylation at Ser327 in CtIP appeared to be 

critical for its interaction with BRAC1 BRCT domains (Varma et al., 2005; Yu and Chen, 

2004). Available evidence suggests that CtIP is involved in transcriptional repression 

[reviewed in (Chinnadurai, 2006; Wu and Lee, 2006)]. Significantly, recent studies 

demonstrated that BRCA1, CtIP and ZBRK1 form a repressor complex at a recognition 

site of ZBRK1 in ANG1 promoter and a defect of this complex formation de-represses 

ANG1 transcription, promoting endothelial cell survival and vascular enlargement 

(Furuta et al., 2006). Interestingly, other studies demonstrated that BRCA1 physically 

interacts with ER and inhibits transcriptional activity of the receptor (Fan et al., 2001; 

Zheng et al., 2001). In this study, we found that high CtIP expression is significantly 
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associated with ER (+) status. Thus, it is possible that CtIP may functionally be linked 

with ER signaling via its interaction with BRCA1. Moreover, CtIP was also shown to 

form a complex with BRCA1 and the transcriptional co-repressor CtBP, which is 

important for the repression of p21 promoter activity (Li et al., 1999). Together, it raises 

the possibility that in physiological conditions, CtIP could bridge BRCA1 and CtBP to 

form a transcriptional repressor complex, which in turn may modulate ER signaling 

pathways through the interaction between BRCA1 and ER. Therefore, we hypothesize 

that, in tamoxifen sensitive cells, BRCA1, CtIP and CtBP form a transcriptional repressor 

complex that leads to inhibition of a full ER positive transcriptional response, accounting 

for the inhibitory growth effects of tamoxifen. In order to circumvent the transcriptional 

inhibitory effects of tamoxifen, tamoxifen resistant cells silence CtIP expression, which 

in turn, disrupts the repressor complex and allows breast cancer cells to resume 

proliferation.  

 

To summarize, results from the present study clearly demonstrate that CtIP 

silencing is critical for the development of tamoxifen resistance in breast cancer cells, and 

indicate that CtIP silencing may be a novel mechanism by which cells can circumvent the 

inhibitory effects of tamoxifen to resume proliferation and ultimately acquire resistance 

to this widely used antiestrogen. Furthermore, the association of CtIP deficiency with 

poor clinical response to endocrine therapy, disease free survival and breast cancer 

metastasis status suggests that CtIP gene and protein expression may be useful 

biomarkers for breast cancer prognosis and clinical management. Finally, the findings 

that CtIP expression is significantly associated with estrogen receptor positive status and 

CtIP protein expression was found in a majority of ER positive breast cancer cell lines 

but not in ER negative lines suggest that that CtIP is likely associated with ER function.  
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Chapter 5: Involvement of a BRCA1-CtIP-CtBP complex in the 
development of tamoxifen resistance 

 

5.1. INTRODUCTION 

Tamoxifen, an antiestrogen, has been used for endocrine treatment of all stages of 

estrogen receptor (ER) positive breast cancer for almost three decades and was the first 

approved drug by the FDA as a cancer chemopreventive for reducing breast cancer 

incidence in both pre- and post-menopausal women at high risk (Jordan, 2003). As 

adjuvant therapy, tamoxifen reduces the risk of recurrence and improves overall survival 

in early breast cancer. It is also effective for patients with untreated metastatic breast 

cancer (Osborne, 1998). Despite the benefits of tamoxifen in treating breast cancer, 

unfortunately, almost all the breast cancers that initially respond to tamoxifen therapy 

develop resistance. The mechanisms involved in the development of tamoxifen resistance 

are still poorly understood. For many women, resistance develops after the first phase of 

tamoxifen treatment (Katzenellenbogen et al., 1997). Moreover, all patients with 

advanced metastatic disease ultimately become resistant to antiestrogen therapies. In 

most cases of resistance, the ER is still present and apparently continues regulating tumor 

growth. 

 

In order to better understand the phenomenon of tamoxifen resistance, we 

developed MCF-7 breast cancer cell line variants that are resistant to the inhibitory 

growth effects of tamoxifen. These new isogenic breast cancer cell lines represent a 

unique model that closely resembles the in vivo scenario. Using serial analysis of gene 

expression (SAGE), we defined the global gene expression profiles of the mentioned 

tamoxifen resistant MCF-7 breast cancer cell lines and compared them with their 
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tamoxifen sensitive parental MCF-7 counterpart. By mining the SAGE databases using a 

novel suite of bioinformatic tools, we identified CtIP, a BRCA1- and CtBP-interacting 

protein, as one of the most significantly down-regulated transcripts in tamoxifen resistant 

breast cancer cells. This result was independently confirmed by quantitative real-time 

RT-PCR and western blot analyses. In previous studies, we found that silencing 

endogenous CtIP in tamoxifen sensitive breast cancer cells confers tamoxifen resistance 

and estrogen independence. On the other hand, re-expression of CtIP in tamoxifen 

resistant breast cancer cells restores sensitivity to the inhibitory growth effects of 

tamoxifen. Importantly, CtIP protein expression status strongly correlates with clinical 

response to neo-adjuvant endocrine therapy and patients with progressive disease express 

significantly lower CtIP protein in their primary breast carcinomas than those who 

respond. Meta-analysis of seven publicly available gene expression microarray data sets 

shows that CtIP expression is significantly associated with estrogen receptor (ER), 

disease free survival and breast cancer metastasis status. Furthermore, in expression 

studies we found CtIP protein expression in a majority of ER positive breast cancer cell 

lines that we tested, but none or very little CtIP expression in ER negative lines. 

Together, these findings indicate that CtIP silencing might be a novel mechanism for the 

development of tamoxifen resistance in breast cancer, suggest that CtIP is likely 

associated with ER function and that CtIP gene and protein expression may be useful 

biomarkers for breast cancer prognosis and clinical management. 

 

CtIP is an 897-amino-acid nuclear protein that was initially identified as a co-

factor of transcriptional corepressor CtBP (Schaeper et al., 1998). Subsequently, it was 

demonstrated that CtIP also interacts with two important tumor suppressors, Rb family 

proteins (Rb and p130) (Fusco et al., 1998; Meloni et al., 1999) and BRCA1 (Wong et al., 
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1998; Yu et al., 1998; Li et al., 1999; Sum et al., 2002). CtIP binds CtBP via its PLDLS 

motif. CtBP can repress gene transcription in a histone deacytlase (HDAC)-dependent or 

-independent manner (Chinnadurai, 2002). Rb family proteins bind CtIP at the LECEE 

motif. Mutation on this motif disrupts their interaction (Meloni et al., 1999). BRCA1 

interacts with CtIP through its C-terminal BRCT repeats. This interaction is mediated via 

the N-terminal 133 to 369 amino acids of CtIP (Wong et al., 1998; Yu and Baer, 2000) in 

a phosphorylation-dependent manner (Yu and Chen, 2004). More importantly, tumor-

associated mutations in the BRCT domain (common in BRCA patients) abolish this 

interaction (Wong et al., 1998; Yu et al., 1998; Li et al., 1999), suggesting that tumor-

suppressive functions of BRCA1 could be modulated by CtIP. The CtIP-BRCA1 

complex also plays a critical role in cell cycle checkpoint control and transcriptional 

activation of genes, such as p21 and GADD45, after DNA damage (Li et al., 2000; Yu 

and Chen, 2004). In addition, BRCA1 also physically interacts with ER and inhibits 

ligand-dependent and -independent transactivation of the receptor (Fan et al., 2001; 

Zheng et al., 2001). Interestingly, a study on the BRCA1- and BRCA2-associated familial 

breast cancer has suggested that the majority of such tumors are less likely to respond to 

antiestrogen than sporadic tumors (Osin et al., 1998). Furthermore, a recent report also 

demonstrated that loss of full-length Brca1 could alter the agonist/antagonist activity of 

tamoxifen in mammary epithelial cells, suggesting a potential role of BRCA1 in the 

cellular response to tamoxifen (Jones et al., 2005). More significantly, very recently it 

was shown that inactivation of CtIP in mice leads to early embryonic lethality, and the 

life span of Ctip+/- heterozygotes, which have haploid insufficiency for Ctip, was 

shortened due to the development of multiple types of tumors. This finding clearly 

demonstrates that CtIP is a critical protein in early embryogenesis and implicates an 

important role of CtIP in tumorigenesis (Chen et al., 2005). Since CtIP binds BRCA1 and 
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CtBP using different motif, it has been shown that CtIP can bridge BRCA1 and CtBP to 

form a complex, which is important for the regulation of the transactivation of the p21 

promoter (Li et al., 1999). In summary, abundant evidence has accumulated in recent 

years suggesting that CtIP likely plays critical roles in tumor suppression as well as in 

transcriptional corepression. Our observations indicating that loss of CtIP expression is 

involved in the development of tamoxifen resistance and CtIP is likely associated with 

ER function. Together, all evidence raises the possibility that in physiological conditions, 

CtIP could bridge BRCA1 and CtBP to form a transcriptional repressor complex, which 

in turn may modulate ER signaling pathways through the interaction between BRCA1 

and ER, and that downregulated CtIP expression could lead to the disruption of a 

functional BRCA1-CtIP-CtBP complex that may contribute to the development of 

tamoxifen resistance. Therefore, in this chapter, we test the potential involvement of a 

BRCA1-CtIP-CtBP complex in the development of tamoxifen resistance. 
 

5.2. RESULTS 

5.2.1 Expression of other corepressors and ER phosphorylation in tamoxifen 
resistant cells 

Since decreased expression of ER corepressors may contribute to tamoxifen 

resistance, we examine the protein expression level of NCoR in tamoxifen resistant cell 

lines. As shown in figure 5.1., compared to tamoxifen sensitive parental MCF-7 cell line, 

there is no significant change in NCoR protein expression in both tamoxifen resistant cell 

lines (TAMR1 and TAMR2). Besides, we also determined the level of the transcriptional 

corepressor CtBP and found no difference in protein expression between tamoxifen 

sensitive and resistant cells (Figure 5.1.). These data indicate that the tamoxifen resistant 

phenotype of these isogenic cells is unlike the result of altered expression corepressors. In 
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Figure 5.1. Western blot analysis of NCoR and CtBP in MCF-7, TAMR1 and TAMR2 
cells.  
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Figure 5.2. Western blot analysis of phospho-ER at serine 118 in MCF-7, TAMR1 and 
TAMR2 cells.  

Total ER expression is also shown as a control.  



 111 

addition, it is known that the ER is subject to phosphorylation by a variety of signaling 

kinases, resulting in its activation in the absence of ligand or the presence of tamoxifen. 

Of particular interest, serine 118 of ER can be phosphorylated by MAP kinases ERK1 

and ERK2 (Kato et al., 1995), resulting in ligand-independent activation of ER (Bunone 

et al., 1996). Therefore, we tested the level of phosphorylated ER at serine 118 using a 

phospho-specific antibody. In figure 5.2., interestingly we observed a relatively decreased 

level of phospho-serine 118 of ER in tamoxifen resistant cells compared to parental cells. 

These findings suggest that ligand-independent activation of ER, at least the 

phosphorylation at serine 118 by elevated growth signalings, does not play a significant 

role in the development of resistance to tamoxifen in our experimental cell line models.   
 

5.2.2. BRCA1, CtIP and CtBP forms a complex in vivo in tamoxifen sensitive but not 
resistant cells 

To test whether BRCA1, CtIP and CtBP can form a complex in vivo, we carried 

out Co-immunoprecipitation assays in sensitive parental MCF-7 cells. MCF-7 cell lysates 

were immunoprecipitated with anti-BRCA1, anti-CtIP or a control antibody. As can be 

observed (Figure 5.3.A), the BRCA1 antibody can co-immunoprecipitate CtBP, and the 

CtIP antibody can also pull down both BRCA1 and CtBP. Since BRCA1 binds CtIP via 

its BRCT domains and CtIP in turn binds CtBP, these results suggest that the three 

proteins may be part of a common complex. Unlike tamoxifen sensitive MCF-7 cells, 

when TAMR1 cell lysates were immonuprecipitated with anti-BRCA1, anti-CtIP and 

anti-CtBP antibodies, CtBP protein was detected, except in its own immunoprecipitates, 

neither in BRCA1 nor in CtIP immunoprecipitates (Figure 5.3.B). These findings indicate 

that the BRCA1, CtIP and CtBP complex is disrupted in tamoxifen resistant cell possibly 

due to decreased availability of CtIP caused by its silencing.  
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Figure 5.3. BRCA1, CtIP and CtBP form a complex in vivo in tamoxifen sensitive MCF-
7 cells but not in tamoxifen resistant TAMR1 cells.  

(A) MCF-7 cell lysates were prepared in IP buffer and immunoprecipitated with anti-
BRCA1 antibody, anti-CtIP antibody or control IgG antibody. The immunoprecipitates 
were resolved on SDS-PAGE and followed by western blot using anti-BRCA1 or anti-
CtBP antibodies, as indicated. (B) TAMR1 lysates were immunoprecipitated with anti-
BRCA1, anti-CtIP, anti-CtBP or control IgG antibodies, followed by immunoblotting 
with anti-CtBP antibody. IP: immunoprecipitation; WB: western blot.  
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5.2.3. BRCA1 interacts with ER in vivo in both tamoxifen sensitive and resistant 
cells 

Previous studies reported that BRCA1 is associated with ER directly in vivo (Fan 

et al., 2001). To confirm these findings and determine whether endogenous interaction 

between BRCA1 and ER is present in our experimental models, we carried out 

coimmunoprecipitation assays in both tamoxifen sensitive parental MCF-7 and tamoxifen 

resistant TAMR1 cells. As a result, strong association of BRCA1 and ER was found in 

both cell lines (Figure 5.4.A&B). To analyze the effect of estrogen and tamoxifen on the 

endogenous interaction between BRCA1 and ER, we treated MCF-7 cells with estrogen, 

tamoxifen or vehicle control for 30 minutes. Cells were harvested and lysed. 

Immunoprecipitation were performed using BRCA1 antibody or control IgG, followed by 

western analysis with ER and BRCA1 antibodies as indicated. An endogenous interaction 

of ER with BRCA1 was observed in these cells in the absence of ligand, and this 

interaction was significantly reduced after estrogen treatment but enhanced in the 

presence of tamoxifen (Figure 5.4.C).  
 

5.2.4. Occupancy by ER, BRCA1, CtIP and CtBP on E2-responsive gene (pS2) 
promoter in MCF-7 cells 

To determine whether BRCA1, CtIP and CtBP can regulate ER function in a 

physiological manner, we performed a ChIP (Chromatin Immnunoprecipitation) assay on 

parental MCF-7 cells on the promoter of a well-characterized estrogen-responsive gene, 

pS2. As can be observed (Figure 5.5.), when cells were treated with vehicle control (first 

lane), all proteins were detected associated with the ERE containing region of the pS2 

promoter. After estrogen treatment (middle lane), the amount of ER protein appeared to 

increase, but the other 3 proteins BRCA1, CtIP and CtBP were not detected or barely so. 
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Figure 5.4. Endogenous interaction of BRCA1 with ER in MCF-7 and TAMR1 cells. 

MCF-7 (A) or TAMR1 (B) cells were lysed in IP buffer and immunoprecipitated with 
anti-BRCA1 or anti-ER antibodies. The immunoprecipitates were separated on SDS-
PAGE followed by western blot using anti-ER or anti-BRCA1 antibodies, respectively. 
(C) MCF-7 cells were treated with estrogen, 4-OH-TAM or vehicle control for 30 
minutes. Cell lysates were prepared and immunoprecipitated with anti-BRCA1 or control 
IgG antibody. The immunoprecipitates were resolved on SDS-PAGE and immunoblotted 
using anti-BRCA1 or anti-ER antibodies, as indicated. IP: immunoprecipitation; WB: 
western blot.  
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Figure 5.5. ChIP analysis of ER, BRCA1, CtIP and CtBP on pS2 gene promoter in MCF-
7 cells. 
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On the other hand, after treatment with the antiestrogen 4-OH-TAM, ER also increased in 

abundance but the rest of the proteins BRCA1, CtIP and CtBP were retained in the ERE 

containing region of the pS2 promoter. 
 

5.3. DISCUSSION 

Previous studies indicated that decreased level of ER corepressor might contribute 

to tamoxifen resistance (Lavinsky et al., 1998). In the present study, we show that the 

protein expression level of ER corepressor NCoR, as well as transcriptional corepressor 

CtBP, are not significantly changed in our tamoxifen resistant experimental cell line 

models. In addition, phosphorylation of ER by growth factors-activated protein kinases 

usually results in activation of the receptor and creates crosstalk between the ER 

signaling pathways and other growth signaling pathways (Kato, 2001; Lannigan, 2003), 

even in the absence of ligand or in the presence of tamoxifen (Ali and Coombes, 2002; 

Ali et al., 1993; Shou et al., 2004), which could play a potential role in tamoxifen 

resistance. Our results showed ER phosphorylation at least at serine 118 is not elevated in 

tamoxifen resistant cells. Together, these data indicate that CtIP silencing observed in our 

experimental models appears to be rather an independent mechanism than integrated with 

either downregulation of corepressors or with ligand-independent activation of ER by 

growth factor receptors pathways, although integration with other possibility such as 

increased coactivators expression still needs to be ruled out.  

 

As mentioned, BRCA1, CtIP and CtBP have been shown to be able to form a 

complex in vivo (Li et al., 1999). In current studies, we determined that BRCA1, CtIP and 

CtBP form a complex in vivo but only observed in tamoxifen sensitive but not resistant 

cells. This is possibly due to the lower availability of CtIP caused by its silencing in the 
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resistant cells thereby disrupting the complex formation. Nonetheless, these findings 

support the potential involvement of a BRCA1-CtIP-CtBP complex in the development 

of tamoxifen resistance. In addition, studies also unveiled that BRCA1 physically 

interacts with ER (Fan et al., 2001) and inhibits transcriptional activity of the receptor 

(Fan et al., 2001; Zheng et al., 2001). It has also been shown that BRCA1 along with ER 

is associated with estrogen-responsive gene promoters in the absence of estrogen and 

promoter occupancy by BRCA1 is reduced upon estrogen treatment (Zheng et al., 2001). 

Here, we observed a strong endogenous interaction of ER with BRCA1 in both tamoxifen 

sensitive and resistant cells. Furthermore, in parental MCF-7 cells this interaction is 

downregulated when cells were treated with estrogen, whereas tamoxifen enhances this 

interaction. In consistent with the observation of our Co-IP results and those previous 

findings (Zheng et al., 2001), we observed in ChIP assays that, in the absence of ligand, 

ER and BRCA1 are associated with EREs at the pS2 promoter. After challenging cells 

with E2, more ER is recruited to the promoter region, while BRCA1 dissociates from the 

promoter. In addition, we also observed that CtIP and CtBP behave in the same fashion 

as BRCA1 on the pS2 promoter when responding to E2. Interestingly, tamoxifen 

appeared to stabilize BRCA1, CtIP and CtBP on the pS2 gene promoter. Taken all these 

evidence together, the present studies strongly support the potential involvement of a 

BRCA1-CtIP-CtBP complex in the development of tamoxifen resistance and also raises 

the possibility that in tamoxifen sensitive cells, BRCA1, CtIP and CtBP form a repressor 

complex on estrogen-responsive gene promoter with unliganded ER and repress target 

gene transcription. Upon estrogen stimulation, ER undergoes a conformational change 

that leads to the release of the BRCA1-CtIP-CtBP repressor complex from the promoter 

and facilitates the recruitment of co-activators to promote target gene transcription. 

Unlike estrogen, the antiestrogen tamoxifen stabilize 
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Figure 5.6. Schematic hypothetical model of the proposed BRCA1-CtIP-CtBP repressor 
complex in tamoxifen sensitive and resistant breast cancer cells.  

(A) In tamoxifen sensitive cells, BRCA1, CtIP and CtBP form a repressor complex on 
estrogen-responsive gene promoter with unliganded ER and repress target gene 
transcription. Upon estrogen stimulation, ER will undergo a conformational change that 
leads to the release of the BRCA1-CtIP-CtBP repressor complex from the promoter and 
facilitates the recruitment of co-activators to promote target gene transcription. Unlike 
estrogen, the antiestrogen tamoxifen stabilize the repressor complex on the promoter, 
resulting in the repression of target gene transcription. (B) In tamoxifen resistant cells, in 
order to circumvent the inhibitory effects of being under high tamoxifen concentrations, 
cells chronically silence CtIP expression, which, in turn, disrupts the BRCA1-CtIP-CtBP 
repressor complex, lifting the repressive barrier and allowing target gene transcription 
and ultimately cell proliferation even in the presence of tamoxifen. 
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the repressor complex on the promoter, resulting in the repression of target gene 

transcription. On the other hand, in tamoxifen resistant cells, in order to circumvent the 

inhibitory effects of being under high tamoxifen concentrations, cells chronically silence 

CtIP expression, which, in turn, disrupts the BRCA1-CtIP-CtBP repressor complex, 

lifting the repressive barrier and allowing target gene transcription and ultimately cell 

proliferation even in the presence of tamoxifen (Figure 5.6.).  

 

In summary, the studies presented in this chapter exclude decreased expression of 

corepressors and ligand-independent activation of ER as possible causes responsible for 

the tamoxifen resistance phenotype of our experimental cell line models. In addition, our 

findings strongly indicate the potential involvement of a BRCA1-CtIP-CtBP complex in 

the development of resistance to tamoxifen in breast cancer cells.  
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Chapter 6: Concluding remarks 

6.1. SUMMARY 

Breast cancer is by far the most common cancer in women in the Western world. 

Estrogen plays a pivotal role in the etiology and progression of human breast cancer. 

Therefore, for a long time, treatment of breast cancer has been directed towards inhibiting 

the tumor promoting effects of estrogen. Tamoxifen treatment is the first line of 

endocrine therapy for patients with estrogen receptor positive breast cancers. Tamoxifen 

belongs to a family of drugs named SERM (Selective Estrogen Receptor Modulator). 

Although other drugs such as aromatase inhibitors may be slightly more effective than 

tamoxifen, it is still the most used antiestrogen and will remain so for several years to 

come because of its well-documented benefits. As adjuvant therapy, tamoxifen reduces 

the risk of recurrence and improves overall survival in early breast cancer. It is also 

effective for patients with untreated metastatic breast cancer (Osborne, 1998). 

Furthermore, tamoxifen is also being used as a cancer chemopreventive for reducing 

breast cancer incidence in both pre- and post-menopausal women at high risk (Jordan, 

2003). Despite the benefits of tamoxifen in treating breast cancer, unfortunately, many 

tumors that initially respond to tamoxifen therapy develop resistance. This phenomenon 

has become a serious obstacle in breast cancer treatment. In the clinic, almost all patients 

with advanced metastatic disease and as many as 40% of patients receiving adjuvant 

tamoxifen eventually relapse and die from their disease (Normanno et al., 2005). The 

mechanisms involved in the development of tamoxifen resistance are still poorly 

understood. Although numerous mechanisms have been proposed to contribute to the 

development of tamoxifen resistance, much work is still needed to learn whether some of 

the postulated mechanisms so far can explain resistance to tamoxifen therapy in a 
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majority of patients, or simply each of the enumerated possibilities account for minor 

portions of resistant cases. Therefore, the overall goal of this dissertation is to better 

understand the phenomenon of tamoxifen resistance. 

 

Working towards our overall goal, we first developed ER expressing, isogenic 

breast cancer cells that are resistant to the inhibitory effects of tamoxifen. These new 

isogenic breast cancer cell lines represent a unique model that closely resembles the in 

vivo scenario. Based on the fact that most of the enumerated putative causes for 

resistance to tamoxifen will be reflected by changes in gene expression of key players 

representing directly or indirectly the involved pathways, we hypothesized that most 

cases of tamoxifen resistance are the result of a cellular adaptation phenomenon which 

will have a direct reflection in the patterns of global gene expression. Therefore, to test 

our hypothesis, in chapter 3 we aimed to identify key genes involved in the development 

and manifestation of tamoxifen resistance in breast cancer, as well as direct or indirect 

biomarkers of tamoxifen resistance with promise for potential use in the clinical 

management of breast cancer patients. We defined and compared global gene expression 

profiles of the mentioned tamoxifen resistant cell variants and their parental tamoxifen 

sensitive breast cancer cells by using serial analysis of gene expression (SAGE). SAGE is 

a powerful, comprehensive and unbiased global gene expression method that allows one 

to obtain a snap-shot of all genes expressed (Velculescu et al., 1995). We provided a 

detailed analysis of gene expression at a global level in above-mentioned cell line models 

of tamoxifen resistance. By mining the SAGE databases using state-of-the-art 

bioinformatic and statistical approaches, we observed different gene expression patterns 

between tamoxifen resistant cells and their parental tamoxifen sensitive cells. As a result, 

more than 400 transcripts were found differentially expressed in tamoxifen resistant cells 
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compared to their sensitive counterparts, with about 243 genes upregulated and 247 genes 

downregulated by at least a fold of 2 at a statistical significance level of 95%. We 

observed that most key genes identified overexpressing in tamoxifen resistant cells are 

related to the control of cell proliferation and cell cycle progression (including CCNA, 

CCNF, CDC45 and EBAG9) and on the other hand the expression of many anti-

proliferative genes including some tumor suppressors and ER coregulators (including 

CtIP, FAT, TSSC3 and REA) are significantly decreased. Our results appear to suggest 

that tamoxifen exposed cells might bypass the inhibitory growth effects of tamoxifen and 

continue proliferating in spite of the presence of antiestrogen by on one hand enhancing 

cell survival and proliferative signal pathways to confront tamoxifen’s inhibitory effects, 

on the other hand decreasing growth inhibitory signaling pathways directly or indirectly 

activated by tamoxifen.  

 

Among these key changes identified, one gene named CtIP (also known as 

Retinoblastoma binding protein 8, RBBP8) was particularly interesting to us, because we 

observed that the expression of the transcript for CtIP is downregulated 15-fold in 

tamoxifen resistant cells when compared to their tamoxifen sensitive counterparts. This 

result was independently confirmed by quantitative real-time RT-PCR and western blot 

analyses. By reviewing the literature of CtIP, we found that the biological function of 

CtIP is still poorly understood. Neither known enzymatic activity nor functional domains 

are found on the CtIP protein. Thus, studies geared at better understanding the function of 

CtIP have been focused on the biological significance derived from the interactions with 

its binding partners. CtIP was initially identified as a co-factor of transcriptional co-

repressor CtBP (Schaeper et al., 1998). CtIP is also known to interact with tumor 

suppressors, Rb family proteins (Rb and p130) (Fusco et al., 1998; Meloni et al., 1999) 
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and BRCA1 (Li et al., 1999; Sum et al., 2002; Wong et al., 1998; Yu et al., 1998), as well 

as the transcriptional repressors such as LIM-only protein LMO4 (Sum et al., 2002) and 

Ikaros family members (Koipally and Georgopoulos, 2002). Recent studies suggest that 

CtIP plays an important role in cell cycle regulation and DNA damage response (Foray et 

al., 2003; Li et al., 2000; Liu and Lee, 2006; Wu-Baer and Baer, 2001; Yu and Chen, 

2004). Emerging evidence also suggests that CtIP may itself be a tumor susceptibility 

gene (Wong et al., 1998) (Vilkki et al., 2002). More importantly, it has been shown that 

inactivation of CtIP in mice leads to early embryonic lethality, and the life span of 

Ctip+/- heterozygotes, which have Ctip haploid insufficiency, was shortened due to the 

development of multiple types of tumors. These findings demonstrate that CtIP is a 

critical protein in early embryogenesis and implicates an important role of CtIP in 

tumorigenesis (Chen et al., 2005). Based on the significant level of CtIP downregulation 

and the importance of its direct links with important tumor suppressors and regulators of 

gene expression, we hypothesized that CtIP silencing constitutes a critical event for the 

development of tamoxifen resistance in breast cancer.  

 

In chapter 3, we also investigated the mechanism causing CtIP downregulation in 

tamoxifen resistant cells. We focused on one of the most common causes of gene 

silencing, which is the promoter CpGs methylation. However, we found no evidence of 

CpG methylation on the CtIP gene promoter region in tamoxifen resistant cells, ruling out 

promoter methylation as the mechanism for CtIP silencing. Therefore, the mechanism 

associated with CtIP downregulation in resistant cells deserves future studies. One 

possible start point in the future could be the investigation of the involvement of a 

transcriptional regulatory mechanism.  
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In chapter 4, we aimed to focus on the functionally characterization of the role of 

CtIP in the development of tamoxifen resistance. We demonstrated that silencing 

endogenous CtIP by means of siRNA in tamoxifen sensitive breast cancer cells confers 

tamoxifen resistance and estrogen independence. On the other hand, re-expression of 

CtIP in tamoxifen resistant breast cancer cells restores sensitivity to the inhibitory growth 

effects of tamoxifen. Importantly, poor clinical response to endocrine therapy was found 

to be associated with CtIP deficiency in primary breast carcinomas. Additionally, meta-

analysis of publicly available gene expression microarray data sets shows that CtIP 

expression is significantly associated with ER, disease free survival and breast cancer 

metastasis status. Furthermore, in expression studies we found CtIP protein expression in 

a majority of ER positive breast cancer cell lines that we tested, but none or very little 

CtIP expression in ER negative lines. Our results demonstrate that CtIP silencing is 

critical for the development of tamoxifen resistance in breast cancer cells, and indicate 

that CtIP silencing may be a novel mechanism by which cells can circumvent the 

inhibitory effects of tamoxifen to resume proliferation and ultimately acquire resistance 

to this widely used antiestrogen. In addition, the association of CtIP deficiency with poor 

clinical response to endocrine therapy, disease free survival and breast cancer metastasis 

status suggests a potential use of CtIP gene and protein expression in the clinic as 

biomarkers for breast cancer prognosis and clinical management. Thus, future validation 

of these ideas in large patients cohort is warranted. Furthermore, the possible reverse 

association identified between ER expression and CtIP expression in breast cancer 

suggest that CtIP is likely associated with ER function.  

 

Available evidence suggests that CtIP is involved in transcriptional repression 

[reviewed in (Chinnadurai, 2006; Wu and Lee, 2006)]. Interestingly, other studies 
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demonstrated that BRCA1 physically interacts with ER and inhibits transcriptional 

activity of the receptor (Fan et al., 2001; Zheng et al., 2001). Moreover, CtIP was also 

shown to form a complex with BRCA1 and the transcriptional co-repressor CtBP, which 

is important for the repression of p21 promoter activity (Li et al., 1999). Based on these 

known CtIP function and the findings from chapter 4, we speculated that CtIP may bridge 

BRCA1 and CtBP to form a transcriptional repressor complex, which in turn may 

modulate ER signaling pathways through the interaction between BRCA1 and ER, and 

that downregulated CtIP expression could lead to the disruption of a functional BRCA1-

CtIP-CtBP complex that may contribute to the development of tamoxifen resistance.  

 

In chapter 5, by showing similar expression of the ER corepressor NCoR as well 

as the transcriptional corepressor CtBP between tamoxifen sensitive and resistant cells, 

we first ruled out the possibility of decreased corepressors expression as a cause of the 

tamoxifen resistant phenotype of our cell line models. Moreover, we also determined that 

ligand independent activation of ER by enhanced growth signaling at least at the site of 

serine 118 is also unlikely to be another alternative explanation for our resistant models. 

Based on these observations, it seems to suggest that CtIP silencing observed in our 

experimental models could be rather an independent than an integrated mechanism. 

However, this still needs future studies to exclude whether CtIP silencing is integrated 

with other known causes such as increased coactivator expression. We next further tested 

the potential involvement of a BRCA1-CtIP-CtBP complex in the development of 

tamoxifen resistance. Our results demonstrated the formation of a BRCA1-CtIP-CtBP 

complex in tamoxifen sensitive but not tamoxifen resistant cells, supporting a potential 

role of such protein complex in the development of tamoxifen resistance. In addition, we 

observed a strong endogenous association between ER and BRCA1 in both sensitive and 
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resistant cells. Interestingly, this in vivo interaction is disrupted upon estrogen treatment 

but enhanced by addition of tamoxifen. Moreover, we demonstrated that, under 

physiological context, ER, BRCA1, CtIP and CtBP are associated with ERE elements of 

the promoter region of the endogenous estrogen responsive gene pS2 in the absence of 

ligand. Upon treating cells with estrogen, the BRCA1-CtIP-CtBP complex appears to 

dissociate with the promoter. On the other hand, tamoxifen seems to stabilize this 

complex on the pS2 promoter. All these data strongly support the potential involvement 

of a BRCA1-CtIP-CtBP complex in modulating ER signaling and the development of 

tamoxifen resistance.  

 

6.2. FUTURE DIRECTIONS 

In this dissertation, we demonstrated that CtIP expression is significantly 

decreased both at mRNA and protein levels in tamoxifen resistant cells when compared 

to their parental tamoxifen sensitive counterparts. It is known that methylation of 

cytosine residues at cytosine-guanine sites (CpG islands) located in the promoter region 

of genes is a common mechanism of transcriptional repression. However, we found no 

evidence of CpG methylation on the CtIP gene promoter region in tamoxifen resistant 

cells, ruling out promoter methylation as the mechanism for CtIP silencing. Therefore, 

future work is needed to investigate the mechanism associated with CtIP downregulation 

in tamoxifen resistant cells. It has been shown that the human CtIP promoter contains two 

consensus E2F-binding sites, TCTCCCGC and TTCGCCGC only 19bp from each other 

and very close to the transcription start site, which behave as repressive elements for CtIP 

expression (Liu and Lee, 2006). Interestingly, it has also been shown that E2F6, a 

member of the E2F family of transcriptional regulators, can be recruited to the CtIP 

promoter and repress transcription of the CtIP gene (Oberley et al., 2003). It is known 
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that E2F1-3 function as transcriptional activators while E2F4, E2F5 and E2F6 act 

predominantly as repressors. However, E2F6 is significantly different to the other E2F 

family members in that it lacks the C-terminal trans-activation domain while retaining the 

DNA binding domain and E2F6 has been shown to act as a potent transcriptional 

repressor in general. Based on this evidence, it is possible that CtIP downregulation in 

tamoxifen resistant cells may be the consequence of increased transcriptional repression 

by E2F6 on the CtIP promoter via the aforementioned E2F-binding sites.  Thus, one start 

point in the future could be the investigation of whether E2F6 plays a role in CtIP 

downregulation in tamoxifen resistant cells through a transcriptional regulatory 

mechanism.  

 

Our studies described in chapter 4 and 5 demonstrate that CtIP silencing is critical 

for the development of tamoxifen resistance in breast cancer cells and strongly support 

the potential involvement of a BRCA1-CtIP-CtBP complex in modulating ER signaling 

and the development of tamoxifen resistance. These findings also led us to propose a 

hypothetical model of the BRCA1-CtIP-CtBP repressor complex in tamoxifen sensitive 

and resistant breast cancer cells (Figure 5.6.). Knowing the potential involvement of this 

complex in the development of resistance to tamoxifen, future work should aim to dissect 

detailed roles of such complex in modulating ER function as well as response to 

antiestrogens, which will provide us with novel insights on how CtIP silencing could 

ultimately lead to resistance to tamoxifen. Our hypothesis would be that CtIP may play a 

role as a corepressor of ER activity and such repressive activity of CtIP may be linked to 

the inhibitory growth effects exerted by tamoxifen. We further speculate that CtIP may 

exert repression on ER transcriptional activity through the interaction with BRCA1 and 

CtBP to form a transcriptional repressor complex. Therefore, future investigation could 
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focus on determining whether CtIP is a repressor of ER activity, whether the effect of 

CtIP accounts for the antagonist activity of tamoxifen, and whether CtIP exerts repression 

on ER transcriptional activity through the formation of a transcriptional repressor 

complex with BRCA1 and CtBP. The effect of CtIP (depletion or overexpression) on the 

ER transcriptional activity and the antagonist activity of tamoxifen could be tested by 

means of the ERE-TK luciferase reporter assays and monitoring expression of 

endogenous E2-responsive genes. In addition, the CtIP mutants that are deficient in their 

ability to bind either BRCA1 (S327A mutant) or CtBP (D-PLDLS mutant) could be used 

to determine whether the putative repressive effect of CtIP on ER transcriptional activity 

requires the interaction between CtIP and BRCA1 or CtIP and CtBP.  

 

In addition, another potential line of future research would be to characterize roles 

of other important key genes identified by SAGE in the development of tamoxifen 

resistance. In this dissertation, we extensively characterized the functional role of one of 

the most interesting genes (CtIP) in the development of tamoxifen resistance. In fact, by 

defining and comparing global gene expression profiles of tamoxifen sensitive and 

resistant cell lines, we observed several other highly differentially expressed genes as 

discussed in chapter 3 that could also play important roles in the development of 

resistance. Therefore, future studies should also aim to clarify roles of these other 

important genes in tamoxifen resistance by using similar strategies described in this 

dissertation. One very interesting candidate gene could be REA, which is an ER selective 

coregulator and has been shown to be significantly downregulated in tamoxifen resistant 

cells. Previous in vitro and in vivo studies suggest that REA may play an important role 

in determining the sensitivity of estrogen target cells, including breast cancer cells, to 

antiestrogens and estrogens and that REA is a physiological modulator of ER function in 
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the mammary gland (Montano et al., 1999; Mussi et al., 2006). Therefore, it is possible 

that besides silencing CtIP, tamoxifen resistant cells could also downregulate REA to 

desensitize them to the inhibitory effects of tamoxifen and thereby achieve maximal 

growth capability in the presence of tamoxifen.  

 

Overall, the research findings described and discussed in this dissertation 

contribute to our understanding of mechanisms of tamoxifen resistance in breast cancer. 

The in vitro tamoxifen resistant breast cancer cell line models we developed over years 

have been proven to be a unique and excellent source to study antiestrogen resistance. 

Indeed, global gene expression profiles of these experimental models generated by 

SAGE, which will be ultimately available in public domains, provide us, as well as other 

investigators in this field, a valuable resource for the identification of novel targets 

implicated in the development of tamoxifen resistance. I hope the identification of CtIP 

silencing as a novel mechanism for the development of tamoxifen resistance in breast 

cancer and its potential use as a biomarker for breast cancer prognosis and clinical 

management will open-up a myriad of novel possibilities both for the 

diagnostic/prognostic fields as well as for therapeutic areas of breast cancer.  
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