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of their environment. These additions will allow the framework to be applied

more easily, to a much larger domain of multi-agent problems.
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Chapter 1

Introduction

A large number of problems are best solved with coordinated dis-

tributed computation. Some of these problems include controlling large num-

bers of robots, coordinating parallel processing and organizing numerous dis-

parate consumer devices, such as PDAs, cell phones and personal navigation

systems. In addition logically separate entities, such as “intelligent” agents and

characters in entertainment computing, often involve coordinated distributed

computation. As the cost of processors is reduced concurrent with the rise in

communications, the size and importance of these domains will dramatically

increase.

This dissertation will refer to any computational entity as a node of

computation or an agent. This notion of an agent is designed to be very broad

and flexible. This dissertation will be concerned with multi-agent problems

that have the following characteristics

1. There is a well specified global objective.

2. Agents need to coordinate to achieve this objective.

3. Agents are adaptive.
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4. Agents do not need centralized control.

5. There are many agents.

The insistence on a well specified objective is to differentiate from many

multi-agent domains that are plagued with blurry objectives such as “work well

together,” or act “believably.” These objectives are often found in entertain-

ment computing literature [10, 42]). Instead the focus will be on problems

where the objective can be mathematically defined in the form of a func-

tion. The second charactersitic is needed to avoid distributed problems where

each agent is independent as far as the global objective is concerned. These

problems reduce to finding competent single agent learners. The third charac-

tersitic is highly desirable in any system and is especially important in large

systems since failure in one part of the system can lead to global catastrophic

failure when adaptation is not possible. The fourth charactersitic is important

since heavily centralized control defeats the benefit of distributed low cost pro-

cessors. Finally the last charactersitic forces a solution that cannot be easily

hand crafted for a small set of specific interactions.

Unfortunately most existing systems fail at these problems in numerous

ways. They often need centralized control and even small problems can cause

catastrophic failure. In addition existing systems tend not to scale well to large

numbers of agents. Interestingly economic principles often address these is-

sues, as economies are built upon large groups of adaptive, autonomous agents

(humans). In contrast to most agent models, the COIN (“COllective INtel-
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ligence”) framework designed at NASA/Ames builds large, efficient collective

systems by extending these economic principles, using concepts such as learn-

ability to help form off equilibrium incentives [71]. COIN treats a distributed

processing problem like an economy, where each node of computation is a self-

interested learner, which maximizes a private utility. If the private utilities

are set up correctly, then the self-interested learners will act to optimize the

world utility for the entire system. This framework includes several mathe-

matical models for collective learning and provides an excellent starting point

for building successful multi-agent systems.

This dissertation will focus on finding solutions to the collective learn-

ing problem within the COIN framework. The first two chapters summarize

research related to collectives and will provide an overview of the COIN frame-

work. Chapter 4 then introduces time-extended problems in collectives includ-

ing the Time Extended Bar Problem. Chapter 5 presents a series of solutions

addressing the difficulties coming from limited communication. This chapter

shows a method by which the noise-cancelation effect of an important utility

can be preserved under communication restraints, allowing COIN theory to

be applicable to a much larger domain of problems. Chapters 6 and 7 show

how the COIN framework can be used to address the temporal credit assign-

ment problem present in single agent reinforcement learning algorithms and

evolutionary algorithms respectively. The later chapter then shows how COIN

theory can be used to leverage some of the benefits of reinforcement learning

in an evolutionary algorithm. Chapters 8 and 9 show how multi-agent systems

3



can learn in time extended tasks, and unify credit assignment problem aris-

ing from multi-agent systems and the credit assignment problem coming from

multi-time-step problems. Chapter 8 uses a discrete problem, while chapter

9 uses a continuous problem. In addition chapter 9 introduces visualization

techniques to improve understanding of inherently complex multi-agent sys-

tems. Finally chapters 10 and 11 apply the COIN framework to data-mining

problems.
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Chapter 2

Background and Related Work

2.1 Rule Based Systems

Many early multi-agent systems consisted of monolithic programs that

specified agent behavior for a specific problem. These systems were unprinci-

pled and the ability of the agents to interact depended on the programmer’s

intuition. Some more general principles of multi-agent interaction came out

of entertainment computing. The entertainment computing community intro-

duced notions of collective scripts and agent role playing [33]. These systems

though generally had fuzzy objectives, and the community was satisfied with

agents that looked like they were acting collectively. When a script failed there

was an emphasis on recovering in a way that looked believable. While these

systems worked well in some domains, they would not be suitable to problems

with harder objectives. There is also some multi-agent work that has come

out of software engineering [30, 40], but these systems only provide a loose

framework and their applicability or performance is not readily apparent.

More recently there have been several attempts at a more principled

approach to rule-based collective learning. The CONSA system [68] provides

a somewhat general framework for interaction between agents. This system
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specifies roles and assignments where agents can take on different roles, de-

pending on their place in a role graph. There are also various team operators

that direct the proper agents to take joint actions. To avoid some the brit-

tleness of previous systems, they implement a conflict resolution paradigm,

where agents can argue about conflicting goals. This architecture has been

applied to various military applications such as helicopter combat as well as

some civilian uses, such as personal assistants [50]. While it has achieved a

number of successes, it also has retained many of the problems of rule-based

approaches. The process of forming the rule hierarchy is highly labor intensive

and only a small portion of the universal rule sets can be used. The system

also still has robustness problems where it can fail catastrophically even in

certain simple situations.

2.2 Economics

Macroeconomic theory is relevant to multi-agent learning since it ad-

dresses systems that contain huge numbers of adaptive self-interested agents.

Often economists provide methods to reach a desirable equilibrium such as

Walras’s method for achieving clear markets through a process called taton-

nement [73]. Another important equilibrium point is the “Nash equilibrium”

where every agent has achieved its best possible strategy given the strategy of

other agents [45]. Under certain conditions Nash showed that this equilibrium

will always be reached. These economic principles are valuable since they can

often be moved to more general problems. While useful, these algorithms tend

6



to assume perfect knowledge in addition to centralized control, although some

improvements have been made [21].

Some of these economic principles have been directly applied to multi-

agent problems. For the domain of coordinating multiple rovers, a technique

called “TraderBot” was created where agents could autonomously trade goals

[83]. In this problem a collection of rovers tried to maximize the amount

of information retrieved by arriving at goal sites, while minimizing the total

distance traveled. Initially a central authority would assign the rovers goals

using a fixed (possibly random) algorithm. The rovers would then “own” these

goals, but at every time step they could sell them in an auction. When the

reserve price of the auction is equal to the rover’s expected utility of reaching

the goal, another agent will always win the auction if it can reach the goal

more efficiently. The auction pushes the system to a local optimum in the

assignment of rovers to goals. However the system may be far away form a

global optimum, especially since the rovers do not learn so they cannot correct

inaccurate goal-utility predictions. In addition the system has a centralized

node, representing a single point of failure, and while the rovers can continue

to operate independently, they have little coordination ability without the

central node. In a related architecture, Sandholm and Lesser created an “au-

tomated negotiation system” where self-interested agents could autonomously

negotiate contracts with each-other to complete tasks [53]. In this system

various contract operators were introduced to setup a framework for efficient

negotiation.

7



2.3 Artificial Life

Artificial life is concerned with making learning algorithms that are

inspired by principles found in living organisms. These biologically inspired

learners often exhibit very desirable properties, such as robustness and the

ability to adapt. One important field of artificial life is evolution, which uses

the concept of evolutionary adaptation found in nature. Since evolutionary

systems typically involve evolving large populations of algorithms, they can

be effective in some multi-agent domains. A multi-agent system can allow for

a large genetic population leading to faster learning and superior performance.

In [4] it was shown that evolution of neural networks could be success-

fully applied to multi-agent predator/prey domains. In this problem a group

of prey had the task of traveling from a start position to a goal as fast as

possible, while avoiding a predator (Figure 2.1). Evolving online, the prey was

able to develop complex behavior and evolved quickly when there was a large

population of prey. This problem however did not need cooperation between

prey. Also the evolution typically caused the population to converge to a single

behavior, making it inappropriate for many multi-agent domains.

Another common field in artificial life is simulated ant colonies [18, 52,

72]. These colonies are inspired by the organizational ability of ants, and are

often used in path finding algorithms. Ant colonies have been successfully

applied to network routing [18], where artificial “ant” were sent as packets

through the network, recorded timing information and updating routing tables.

The ant-based routers were shown to have higher bandwidth and lower latency

8



Figure 2.1: “Prey” evolves online to avoid predator.

than the traditional network routing systems. While ant colonies have had

many successes, so far their applicability has been somewhat limited.

2.4 Reinforcement Learning

A reinforcement learner (RL) learns a solution to a Markov decision

process by using rewards received as a result of actions [43, 63, 65]. Formally,

given a state s, an RL takes an action a, receives a reward r and transi-

tions to the next state s′. In deterministic environments the values r and s′

are functions of s. In non-deterministic environments they are sampled from

probability distributions conditioned on s. Often reinforcement learning algo-
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rithms have to be modified in non-deterministic environments to avoid cycles.

However note the the RL does not need to know these distributions. They

are implicitly determined from the environmental input received during ex-

ploration. Since they do not need to know these distributions ahead of time,

reinforcement learning is a form of model free learning. The goal of the RL to

take the right actions to maximize some function of the rewards it receives.

Some reinforcement learners do not work for full Markov decision pro-

cesses and instead try to maximize the immediate reward received from an

action, given the state. This is often done by keeping a table of action/state

pairs that contain information about the previous rewards. The learner then

chooses an action from the table based on the either a softmax or an ε-greedy

approach. With the softmax approach, the action is usually chosen with the

Boltzmann distribution, where the probability of choosing action a in state s

is:

eQ(s,a)/T∑
a′∈A eQ(s,a′)/T

(2.1)

where Q(s, a) is the table value for action a in state s, and A is the set of all

possible action from state s. With the ε-greedy approach the action associated

with the highest table value is taken with probability 1 − ε, and a random

action is taken with probability ε. Learners that update table values based

solely on the immediate reward will be referred throughout this dissertation

as a “simple” learner.

Another popular class of reinforcement learners is one that maximizes

a discounted sum of rewards received by the learner. Often these learners

10



are used when there is a series of rewards received over time, such as a robot

receiving feedback as it wanders through its surroundings. The discounted

sum can either be over the life of the learner
∑∞

t=0 γtrt or over an episode

of length L for episodic tasks
∑L

t=0 γtrt. A Q-learner is the most popular

of this type of learner [74]. Q-learners work by computing a Q value for each

state/action pair. This value is computing by combining an immediate reward,

with an estimate of future rewards derived from the Q values of other states.

For deterministic environments the Q value for state s and action a can be

updated by the following formula:

Q(s, a) = r + max
a′

Q(s′, a′) (2.2)

where r is the reward after taking action a in state s, and s′ is the next state

entered. Q-learners can often learn quickly, since even though they optimize a

long term goal, they receive an immediate reward for every action. Note that

this update formula is policy independent in that it is not concerned with the

actions the agent actually takes in the future.

A learner very similar to a Q-learner is a Sarsa learner. The update

rule for Sarsa is:

Q(s, a) = r + Q(s′, a′) (2.3)

where a′ is the action that the agent takes in the following state s′. This

differs from Q-learning in that the action, a′, used for the table lookup is the

actual action taken instead of the best action possible from this state. Learners

like Sarsa are called “on-policy” learners since a′ is determined by the policy,
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instead of learners like Q-learners which are called “off-policy” learners. More

convergence proofs have been done for off-policy learners, but in generally it

is not clear which type is better. This paper uses both types of learners, with

results showing that there is not a significant difference between the two in

collective domains.

When the state space is continuous, Q-tables cannot be directly used for

creating a policy for deciding the best action for a given state. Instead function

approximators, such as neural networks, are often used to replace the Q-tables

[75]. Typically there will be a function approximator for each action. The

value computed from r + maxa′ Q(s′, a′) will then be used as the target value

to train the function approximator for state s. There are also many heuristics

for “tiling” the state space, so that different regions of the space use different

function approximators [64]. However many of these methods are ad-hoc and

there are very few convergence guaranties when function approximations need

to be used. In addition, in many domains, Q-learning works very poorly

in conjunction with function approximators, since the “max” operator often

increases the error present in the Q-value approximations [66].

While RLs perform well on many single agent problems, they typically

have difficulties on multi-agent ones. If a single RL is used then the state

spaces of all the agents have to be combined. This state space generally grows

combinatorially causing the learner to learn too slowly. If each agent has its

own RL then they may not coordinate their actions well. Some work has

been done to reduce the state space to allow multi-robot learning [41], but
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many the coorperation issues are still unresolved. Leveraging game theory

and reinforcement learning, Hu and Wellman provided an algorithm [35] where

through Q-learning a pair of agents could reach a Nash equilibrium in general

sum games, even when the agents did not know the reward function or state

transition probabilities. However this algorithm scaled exponentially with the

number of agents. More appropriate for a larger number of agents, Mataric

has shown [41] that groups of foraging robots could be made to cooperate by

constructing a set of utilities appropriate for the domain. Even though they

could be effective, hand tailored private utilities often had to be laboriously

modeled and were not “adaptive” to changing environments. In addition, the

ability of a designer to hand tailor a utility may not scale well with the number

of agents.

2.5 Team Games

One way for reinforcement learners to work together is to employ a

learning paradigm known as a “team game.” In a team game, each reinforce-

ment learner receives as a reward value, the overall performance of the entire

system. This way, when the learners optimize their reward values they are

optimizing the global objective.

A well known application of team games is the Crites and Barto elevator

problem [23]. In this problem they tried to optimize the average squared

waiting time of elevator passengers in a four elevator system. This problem was

challenging since the state space was very large. Given the position, direction,
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speed and buttons pushed on each elevator the total state space had 1022 states.

To reduce the state space they gave each elevator its own reinforcement learner,

which received the global objective of the average squared waiting time as its

reward. After 60,000 hours of simulation time their solution gave superior

results to the state of the art elevator control algorithm at the time. While

team games are effective when there are a very small number of agents, they

do not scale well to large numbers of agents. This problem occurs since in

large systems an agent has trouble discerning its contribution to the team.
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Chapter 3

Collective Intelligence Framework

COIN (“COllective INtelligence”) is a framework for controlling collec-

tions of agents [70, 71, 79–81]. This framework is designed for situations where

there is no centralized control and where there is a clear global objective func-

tion that needs to be optimized. It also shows its greatest benefits when used

with a large collection of agents.

The COIN framework assumes that each agent has its own reinforce-

ment learner that is able to learn to take actions that will result in high

rewards. The task of COIN then is to create a system of rewards such that

when each agent receives high rewards, the global objective function will be

close to maximized. Also COIN needs to create a reward system that is sim-

ple enough that a reinforcement learner can learn it in a reasonable amount of

time. In some ways COIN theory is related to the fundamental principles of

economics where high economic output depends on individuals in large popu-

lations greedily optimizing their own needs. The COIN designer is analogous

to a government, which tries to create a sufficiently complex rule set so that

individuals do not profit from hurting society, but not a set so complicated

that no one can follow it. The task of COIN designers is often much easier
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than the government though, since they have absolute control of the learning

systems, and of the reinforcements that are used. However in other ways COIN

theory differs greatly from traditional economic theory in that it provides for

off-equilibrium incentives and is concerned with the learnability of problems,

which will be discussed later in this chapter.

3.1 Formal COIN Model and Notation

COIN assumes that all the information about the world is stored in a

Euclidean vector z, known as the worldline. This information is comprehensive

and includes all of the environment, the agents’ outward behavior as well as

the agents’ internal parameters and learning systems. Any non-deterministic

behavior can be modeled as a random number generator that is in a non-

observable portion of z. The state of the world at a given time t is zt and is

assumed to progress at discrete time intervals.

An agent η is any computational entity that has an effect on a portion

of the world line zη. The parts of the worldline that are not affected by

the actions of η will be referred to as z η̂. In this dissertation a union of

worldline elements will be expressed as a comma delineated list enclosed by

parenthesis. For example the worldline z could be expressed as (z η̂, zη), a

change in the worldline caused by η could be expressed as (z η̂, z
′
η) or a change

in the worldline caused by fixing everything that η can influence to a constant

Cη could be expressed as (z η̂, Cη).Note that this is a very general notion of

an agent and may include mathematical constructs that are traditionally not
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thought of as agents.

The goal of COIN theory is to maximize an arbitrary function of the

world line referred to as the global utility G(z). Example of global utilities

include such things as the GDP for an economic system, or total bandwidth in

a network. While the overall objective is to maximize G(z), each node will try

to maximize its own private utility function gη(z). The goal of COIN is to find

ways of creating private utilities so that each agent is capable of maximizing

their own gη(z), and through maximizing gη(z), G(z) is also maximized.

3.2 Principles of Private Utilities

Private utilities must have certain properties so that a collective sys-

tem will achieve a state of high global utility. Creating a utility with these

properties is non-trivial and many obvious solutions fail. Consider for exam-

ple a global utility which is simply a sum of private utilities G(z) =
∑

gη(z).

Even though this system has the property that if all the agents have a high

private utility, then there may be a high global utility, this system will fail to

achieve a high global utility, even if the agents are perfectly competent. An

example of this is the classic “Tragedy of Commons” scenario, where a large

group of herders are raising sheep on a grassy island. Let the global utility

be the number of sheep on the island and the private utility of a herder be

the number of sheep that the herder has on the island. Here the global utility

is the sum of private utilities. In this scenario, an individual herder will be

encouraged to keep bringing sheep to the island, since this action will help his
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own utility. However, due to environmental constraints if all the herders try

to maximize their utility, all the grass on the island will be eaten, all the sheep

will die, and the global utility will collapse.

COIN theory introduces a class of utilities, known as factored utilities,

that are more likely to achieve a high global optimum.

Definition: A utility gη(z) is factored if any change agent η makes to

the world line that results in a higher gη(z) also results in a high global utility:

gη(z) ≥ gη(z
′) ⇔ G(z) ≥ G(z′) (3.1)

where z′ and z differ only in the state of agent η.

If an agent takes an action (i.e. changes the world in some way) that

increases the value of a factored utility, then that action will increase the value

of the global utility given every other agents’ actions. It can be shown that if

all the agents in a system greedily maximize a factored utility then the global

utility will reach a local maximum. One important factored utility is the global

utility, which is factored by definition. Systems that use the global utility as

the private utility are team games.

A factored utility is only useful in maximizing the global utility if the

agents in a system are able to learn to achieve high values for their private

utilities. Highly learnable utilities are therefore preferable to less learnable

ones. COIN theory defines the learnability of a utility U of an agent η as

the ratio of the change in U caused by η’s actions to the change in U caused

by all the other agents’ actions.
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Definition: The differential learnability of a utility gη for agent η

is

λη,gη(z) ≡
‖~∇zηgη(z)‖
‖~∇z η̂

gη(z)‖
. (3.2)

where η̂ refers to all agents other than η.

Learnability represents an agent’s ability to “see” the results of its

actions. As a consequence agents with highly learnable private utilities should

be able to maximize their utilities almost as well as if they were in a single agent

system. Learnability can also be interpreted as a ratio of “signal to noise.”

Under this interpretation the portion of an agent’s utility that it influences

is the signal. In turn the part of the utility that an agent cannot influence

is considered noise since it is not giving information about how the agent

can improve its action. A highly learnable utility has a high signal to noise

ratio, since the agent’s action will have significant influence over the value of

the utility compared to the background noise caused by the actions of other

agents.

3.3 Intelligence

One way to measure how well an agent is performing its task, is to

measure the value of utilities in systems that the agent performed in. Mea-

suring an agent against its private utility may be useful in seeing how well

the agent is learning its own utility. In contrast measuring an agent against

the global utility may show how well the agent is contributing to the entire

system, and may give an idea of how factored the agent’s private utility is with
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respect to the global utility. However evaluating an agent based on its utility

performance has numerous problems. One issue is that scaling the utility may

influence the perception of how well the agent is performing. A more impor-

tant problem is that the observer does not know how hard it is for an agent to

reach certain level of utility. It is possible that a poorly designed agent could

achieve high utility values because the problem was very easy. Conversely, a

very good agent could be associated with low utility values, simply because

the problem was hard.

Another way to measure the performance of an agent is with intelligence

values

Definition: The intelligence of an agent η’s action with respect to

utility U is

εU,η(z) ≡
∫

dz′ηΘ(U(z)− U((z η̂, z
′
η))) (3.3)

The function Θ(x) is the Heaviside function which is equal to 1 when x ≥ 0

and equal to 0 when x < 0. The intelligence of an agent’s action is always in

the range [0, 1] and can be interpreted as percentile rank of the performance

of the action, with respect to all other possible actions that the agent could

have taken. For example if an agent had an intelligence of 0.6 with respect to

a utility, sixty percent of all possible other actions would achieve lower values

of that utility (see Figure 3.1). Note that if utility U1 is factored with respect

to utility U2 then εU1,η is equal to εU2,η.
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Figure 3.1: The intelligence of an agent’s action is equal to the percentile rank
of that action compared to all possible actions. Here the intelligence of η with
respect to U is equal to a

a+b
.

3.4 Central Equation

The probability of achieving a given value of global utility, G, given the

parameter setting made by the collective designer, s, can be decomposed as

follows:

p(G|s) =

∫
dεGp(G|εG, s)

∫
dεgp(εG|εg, s)p(εg|s) (3.4)

where εg is the intelligence with respect to an agent’s private utility and εG

is intelligence with respect to the global utility. The vector s represents all

the free parameters of the worldline that the collective designer is able to set.

These include things such as the agent’s reinforcement learning algorithm and

the agent’s private utility functions. The job of the collective designer is to set
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values of s so that the system has a high probability of achieving high values

of G.

The three terms of this decomposition summarize the important issues

in collective learning. Term three of the equation, p(εg|s), can be used to

measure how well an agent is able to learn its utility. If the probability dis-

tribution of the third term is peaked around high values εg, then the private

utility g(z) is probably highly learnable. The second term, p(εG|εg, s), can be

used to measure how well the agents are coordinating their activities. If the

probability distribution of the second term is peaked around high values of εG

then the private utilities are likely to be close to being factored with respect to

G. Finally the first term, p(G|εG, s), shows how well the system is overcoming

local minima. This dissertation will be mostly concerned with terms two and

three. The methods presented in this dissertation can usually be combined

with standard optimization methods, such as random restarts to achieve high

values of global utility.

3.5 Difference Utilities

There is an intrinsic tradeoff between factoredness and learnability.

One of the largest issues in COIN research is to find a good compromise be-

tween the two. This issue is important because when using a utility with high

factoredness and learnability, even systems that have agents with simple learn-

ing mechanisms can achieve high global utility. Other methods such as team

games are factored, but often have low learnability. Especially when there are
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many agents, the influence that one agent has on its own utility is usually

dominated by the influence of other agents. In contrast individualistic greedy

utilities, such as the amount of time a driver takes to get himself home, are

often highly learnable, but not factored.

One important class of utilities that makes a good compromise between

factoredness and learnability is the class of difference utilities: Definition: the

Difference Utility for agent η is:

DUη(z) ≡ G(z)− Γ(f(z)) (3.5)

where Γ is independent of η. Difference utilities have been proven to be fac-

tored with respect to G(z). In addition, there are a number of choices for Γ

and f which will cause the second term to subtract out much of the noise in

the first term that is caused by the actions of other agents. When this happens

the difference utility will be far more learnable than a team game.

One difference utility known to have high learnability is know as the

AU 1 [78]: Definition: the AU for agent η is:

AUη(z) ≡ G(z)− Ezη [G((z η̂, zη))|zη] (3.6)

This is the difference utility where f(·) is the global utility and Γ(·) is an

expectation taken over the values of zη. This utility can be shown to be the

most learnable difference utility in some senses. However this utility is usually

1AU stands for “Aristocrat Utility” showing an agent’s effect on G compared to an
“average” effect on G.
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not very practical to compute, especially if G is a complicated function. Even

if it is approximated with Monte-Carlo methods, it takes a lot of computation

time, requiring many evaluations of G.

3.5.1 Wonderful Life Utility

The Wonderful Life Utility (WLU) is a Difference Utility that is easier

to compute than AU, and still has high learnability. To define the WLU one

first defines the effect set of an agent η, Seff
η (z), as all the components in the

worldline that are affected by a change in η.

Definition: The effect set for agent η is

Seff
η (z) ≡ {i|~∇zη(zi) 6= ~0}. (3.7)

where i is an index of vector z.

The clamping operator CLσ(z) is then defined as an operator that

transforms z to z′ such that all the components in z′ that correspond to ele-

ments in a set σ are clamped to a vector ~κ.

Definition: the Wonderful Life Utility for agent η is:

WLUη(z) ≡ G(z)−G(CLSeff
η

(z)) (3.8)

where ~κ is a vector fixed ahead of time.

When ~κ is set to the zero vector, the clamped global utility approxi-

mates what the world would be like without agent η, therefore the WLU can

be interpreted as approximating the agent’s contribution to a system. Note
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that the WLU does not actually need to calculate what a system would be like

without an agent. Instead G(CLSeff
η

(z)) can be computed with little knowl-

edge since the clamping is done irrespective of the system’s dynamics. Since

the WLU models the agent’s own contributions, it is much easier to learn

than the global utility, yet it can be proven that it still retains its desirable

factoredness property. Using 3.2 the learnability for the WLU utility is:

λη,WLUη(z)

λη,G(z)
=

‖~∇ẑη
G(z)‖

‖~∇ẑη
G(z)− ~∇ẑη

G(CLSeff
η

(z))‖
. (3.9)

It can be seen from this equation that when ~∇ẑη
G(z) and ~∇ẑη

G(CLSeff
η

(z))

are close, the WLU will be highly learnable. This will usually happen when

the number of agents is large compared to the effect set.

Note that the clamping vector, ~κ , can be set to other values besides the

zero vector. One choice that is in some ways optimal is the set the clamping

vector the the expected action of agent η. This dissertation will refer to a

WLU that uses this form of clamping vector as WLU~a. In addition often

an agent η only affects the worldline components in zη. In these cases the

clamping and effect set operators are not needed and the WLU can be defined

as:

WLUη(z) ≡ G(z)−G((z η̂, ~κ)) (3.10)

3.5.2 Illustrative Example using WLU

This chapter will use several variants of the Minority Game to illustrate

the value of the WLU [20]. In the classic Minority Game agents simultaneously
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choose to be a member of either team 1 or team 2. After the agents decide, the

team with the least members wins, and all the agents of this team receives a

utility of 1, and all the agents of the larger team receive a utility of zero. This

problem poses many issues for agent learning since if too many agents learn to

be part of the team with the highest utility, their actions will be self-defeating

and will cause them to receive a low utility.

A related canonical problem in collective decision making is known as

“Arthur’s El Farol Bar Problem” [7]. In the classic version of the Bar Problem,

100 agents decide whether to go to a bar. The bar is most enjoyable when less

than 60 agents attend. If more than 60 attend, the agents would have been

better off staying home.

This chapter will focus on an extended version of the Bar Problem.

In this problem each agent decides which night to attend a bar each week.

Also each agent has a reinforcement learner that tries to maximize a reward

it receives every week. The global objective of this problem is to maximize

the total profit of the bar owner. The bar owner does not like the bar to be

under-capacity since he will get very little revenue, however he does not want

the bar to be too crowded since he then he will have to hire more people. This

is an interesting problem because if all the agents develop the same strategy,

then they will all attend on the same night, making the bar overly crowded

and thereby hurting the global objective.

To put the n agent Bar Problem into the COIN framework, the world-

line, z, can be defined as binary 7 by n matrix. If agent η goes to bar k, the
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matrix element zk,η will have a value of one, otherwise it will have a value of

zero. Let xk(z) =
∑

η zk,η be the attendance for night k. Total utility for a

single night is xk(z)e(−xk(z)/c) and peaks when the number of agents attending

that night is equal to c as shown in Figure 3.2. The global utility is then

G(z) =
∑7

k=1 xk(z)uk(z). To illustrate the benefits of applying certain COIN

principles to maximize the global utility, three different trials were performed,

each with their own utility system. The performance of each utility system

was then measured (Figure 3.3).
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Figure 3.2: Utility for a single bar when c = 3.
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Figure 3.3: WLU displays superior performance in El Farol Bar Problem (ran-
dom actions taken for first 100 time steps).

In the first trial each agent received the Wonderful Life Utility WLUη =

G(z) − G((z η̂,~0)). Since each patron makes its decision independently, the

effect for an agent just includes itself, the column vector for agent η. The

clamped worldline is therefore z − zη where zη the z matrix with all of the

columns other than column η set to the zero vector. The solution the agents

found with this reward was for most of them to go to the bar on one night

with a few going all the other nights. This turned out to be a very good

solution, since the six nights where very few agents attended received very

high rewards. The majority of the patrons that attended the same night

would appear to be sacrificing themselves for the benefits of the others, since

that night is overcrowded. However, the agents attending this night are still
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being greedy with respect to their own utility and are simply taking the action

that maximizes the WLU .

In the second trial a team game solution was implemented where each

patron received the global utility, G(z). The agents using this utility were

able to steadily improve, but learned very slowly because all the noise caused

by the other agents. The third trial consisted of agents receiving a “selfish”

utility which was equivalent the utility for a single night divided by the num-

ber of agents attending that night: e−xk(z)/c. The agents receiving a selfish

utility did even worse as their performance actually decreased over time. The

more competent an agent got at maximizing its reward the worse the system

behaved, since the agents would lose their reward by making sacrifices.

3.5.3 Effect Sets

In the formulation of the Bar Problem there were no issues with effect

sets for an agent η extending beyond zη. As an example of a problem with effect

set issues, suppose that the Bar Problem is changed so that all the patrons

are divided into leader and follower agents. The leader agents will make all

the decisions and each leader will have its own set of follower agents that will

always go to the bar on the same night as the leader. Since the actions of the

leader agent affects all of its followers, using the WLUη = G(z) − G((z η̂,~0))

formulation is not possible, since a leader agent η will affect the components

of z η̂ corresponding to the follower agents. In this case, the full formulation of

WLU, which includes effect sets, has to be used for the WLU to be factored.
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In this dissertation effect sets will not be an issue in most of the problems.

The main exception is in Chapter 6, where effect sets need to be computed to

determine an action’s effect on future rewards.

3.6 COIN Theory Applied to Other Domains

COIN theory has been applied to data networking tasks where signifi-

cant gains can be achieved over the popular Bellman-Ford algorithm [79]. In

this application a collection of routing agents is created, where each agent

learns a routing vector that controls the proportion of packets a router sends

out on its various outbound links. Each agent has a simple reinforcement

learner that has a routing vector as its output and the routing vectors from all

the other agents as its input. The reward is created by applying the Wonderful

Life Utility, so that when an agent tries to optimize its reward it will choose

a routing vector that will not work cross-purposes with respect to the global

objective of maximizing the network bandwidth.

COIN theory has also been applied to the NASA problem of helping

minimize information loss of constellations of satellites around various planets

communicating with earth [77]. In this problem a satellite could be forced to

lose valuable data, when it could no longer communicate with Earth for a long

enough period of time to cause its data buffer to overfill. Situations such as

this happen often when satellites lose their direct line of site to Earth when

going behind a planet (Figure 3.4). However when there are many satellites, a

satellite that may not be able to communicate directly with Earth, may still be
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able to relay its information through other satellites nearby. This is a natural

application of the distributed agent paradigm since these satellites need some

fundamental degree of autonomy as a result of the high communications delay

due to the speed of light. The collective solution to this problem addressed

terms one and two of the central equation. In the solution, agents used sim-

ulated annealing, but instead of making random exploration steps they used

a reinforcement learner, learning from a team game, to make the exploration

step.

Figure 3.4: Satellites may be forced to throw out valuable data when they lose
line-of-site to Earth (dotted line). However they may be able to relay informa-
tion to another satellite (dashed line). The theory of collectives can be used to
create a distributed algorithm that minimizes the satellites’ information loss.
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Chapter 4

Time-Extended Collectives

Collective learning in time-extended domains, such as Markov Deci-

sion Processes (MDPs), adds significant complications over collective learning

in single time step environments. Both single time step rewards and time

extended utilities must be used carefully. While single time step rewards

are generally used with reinforcement learners in MDPs, in collective envi-

ronments, many simple rewards including the “global reward” may not be

markovian when all the agents are not completely observable. Also rolling up

single time step rewards into a single time-extended utility will not always be

useful since decisions must be made at each time step. This chapter explores

some solutions to this problem using the Time Extended Bar Problem as an

example.

In fully observable, deterministic domains, episodic time extended prob-

lems can be posed as a single step problem by rolling up all the states and

actions into a single state and action in a larger space. The single combined

action of the single step learner can then be decomposed into all the single

time step actions that need to be taken. Since the environment is fully ob-

servable and deterministic, all the actions that need to be taken will be known
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from the start. A major difficulty with this approach is that it will not work

in non-deterministic or partially observable environments. This is due to the

fact that the action taken by the single step learner is not reactive and cannot

be used to generate an action for a state that it does not expect to be in.

Perhaps even a more significant difficulty with this approach is that the size

of the single state and action space will grow exponentially with the number

of time steps.

Single agent Partially Observable Markov Decision Process (POMDP)

learning problems can be solved using reinforcement learners methods, such

as Q-learning and Sarsa [19]. One solution to the multi-agent problem is to

turn it into a single agent problem, by rolling up all the states and actions

of all the agents into one state and action in a large space. This method

however, leads to similar problems to rolling up the time steps, in that the

state and action spaces will grow exponentially with the number of agents.

Using individual learning agents, will allow for a manageable action space, but

in a fully observable MDP, the state space will still grow exponentially with

the number of agents. If the learners state is restricted to the “local” state of

the agent, then the learning problem becomes manageable, but many rewards

that would be markovian in a single agent system may not be markovian in

the multi-agent one. Figure 4.1 shows a case when this is true. Suppose agent

1 always went from state A to B to C to D. Agent 2 moves from A to E to F to

G or from A to F to G. On the transition from F to G, the global reward will

be 10 if the previous state was A, since agent 1 would be making the transition
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from B to C at this time step. In contrast the global reward would be 0 if

the previous state was E since agent 1 would be making the transition from

C to D at this time step. In this case the global utility is non-markovian if

the agents can only see their own states, since the reward probabilities depend

upon previous states. However in many cases the Markov property can be

violated in this way, and the system can still obtain high performance, since

often the other agents act mostly as environmental noise. The global reward

can also be made Markovian by restricting the transition diagram to a tree.

This restriction can be interpreted as adding a time stamp to the state of an

agent. Note that this will in general only work in episodic domains.

Figure 4.1: Global Utility may be non-markovian in multi-agent domain
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4.1 Definitions

This sections will give the definition of the collective POMDP problem

used in this chapter and more precisely define a single agent system. Let S be

the set of states an agent can be in and T be the set of directed transitions

between two states in S. The set T therefore determines the actions an agent

can take. The global reward received after an action is a function of the new

state that the agent is in after the action is performed. In the multi-agent case,

each agent, η, is in a single state s ∈ S and its actions are still restricted to

those allowed by T . Let us define the matrix Lη to be a state by time matrix

for agent η. An element Lη,t,s is equal to one if agent η is in state s at time t

and zero otherwise. This chapter, and much of this thesis will focus on three

different forms of global reward for this multi-agent system.

• Rt(z) = f(
∑

η Lη,t)

• Rt(z) =
∑

s∈S fs(
∑

η Lη,t,s)

• Rt(z) =
∑

s∈S as

∑
η Lη,t,s

where f(·) is an arbitrary function, fs(·) is an s-indexed element of a set of

arbitrary function, and as is an element of an s-indexed constant vector.

The first reward is the most general case when agent identities do not

matter, being an arbitrary function of the number of agents at each state 1.

1The sum does not lose information if agent identities do not matter since the value of
Lη,t is binary.

35



This type of reward is very hard to learn in general, since it may not offer

any form of locality. Many rewards of this type may confound agents using

difference utilities, since nothing may be cancelled out. This thesis will be

more focused on rewards of the second type, which are linear combinations of

functions of the number of agents at each state. Note that the Bar Problem is

in this form, since the global utility is a sum of the amount of agent satisfaction

at each bar, which is a function solely of the number of agents at each bar.

Congestion problems can usually be posed in this form too. The last reward is

simply a linear combination of the number of agents at each state. Even though

many multi-agent problems have this form, it is not an interesting multi-agent

problem since an optimal solution is found when each agent greedily optimizes

based on its own state. Congestion problems or the Tragedy of Commons do

not arise in this form.

4.2 WL Rewards

For this problem, the time-extended WLU can be defined as:

WLU(z) = G(z)−G((L̂η, Cη)) (4.1)
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where Cη is the fixed clamping matrix for agent η. The WLU can then be

decomposed into single time step rewards as follows:

WLU(z) = G(z)−G((L̂η, Cη))

=
∑

t

R(zt)−
∑

t

R(L̂η,t, Cη,t)

=
∑

t

(R(zt)−R(L̂η,t, Cη,t))

A WL reward can therefore be defined:

WLRη(zt) = R(zt)−R(L̂η,t, Cη,t) (4.2)

Notice that this reward is a function of the world line for a single time

step, therefore it is only useful in Markovian domains. It is also only factored

through time since the second term of the WLR is independent of the agent’s

state. In Chapter 9, the second term of the obvious WLR is not independent

of state and is only factored for a single time step. Chapter 9 will show how

to construct a fully factored WLR for this situation.

The simplest way to maximize the WLU is through Monte-Carlo esti-

mation. If a single step simple learner is used, the reward used at time t is

simply the future WLRs:

Rmc =
∑
t′>t

WLRη,t (4.3)

the simple learner then incorporates this reward into its tables as follows:

Q′(s, a) = αRmc + (1− α)Q(s, a) (4.4)
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where the reward Rmc is received after the agent took action a in state s, and

α is the learning rate. Q-learning and Sarsa can be viewed the same as the

this simple learner, except that estimates of the future rewards are used. For

example for Sarsa the reward would be:

Rsarsa = WLRη,t + Q(s′, a′) (4.5)

where s′ and a′ are the state and action for time step t + 1.

4.3 Time Extended Bar Problem

The TEBP is similar to the Bar Problem, except that the agents have

to make a sequence of choices, and their utility is based upon the final bar

they end up at. In the TEBP the agents have fewer choice of which bars to

attend than in the Extended Bar Problem. Each day a player can only choose

to attend the same bar, or the bars next to the one he attended the previous

day. The actions space for the agent therefore has a size of three and the state

space is equal to the number of bars. This is an episodic task where every

four days the agents are reset to a random position, at which point they are

given a reward based on their last choice of bar to attend. This task forces

the agents to come up with a sequence of four actions that will maximize their

final utility at the end of four days.

4.3.1 WLU with TEBP

This section shows that the WLU can also be applied to time extended

version of the Bar Problem. Here the same utilities used in the single time
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Figure 4.2: Time Extended Bar Problem. Circles represent bars, figures repre-
sent patrons attending a bar and arrows represent the transitions that patrons
can take from week to week. Each week a patron can choose to attend the
same bar or the bars next to the one he attended the previous week.

step version of the Bar Problem will be used by the agents at every time step

of an episode. In future chapters this thesis will show why this is the correct

way to apply a difference utility to a Markov Decision Problem. As in the bar

problem, experiments were performed using WLU, team game utilities (TG)

and selfish utilities (SU). The learning algorithm used by the agents is the

Temporal Difference version of Sarsa. This section will show that the choice of

utility is important and that the time extended nature of the problem cannot

be ignored. However, the results will also show that the parameters of the

learning algorithm is not significant.
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4.3.1.1 TD(0) Sarsa Learner

Figure 4.3 shows the results of the comparison of the three utilities,

using a TD(0) version of Sarsa. This version is equivalent to standerd Sarsa

learning with one step look-ahead. As expected the SU reward does poorly,

with performance actually going down with time. The TG reward also does

very poorly, in fact much worse than in the standard Bar Problem. This lower

performance is probably due to the Time Extended Bar Problem being much

harder to learn. The WLU does well, achieving within 0.84 of optimal.
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Figure 4.3: TD(0) Sarsa

4.3.2 TD(0) vs. TD(1) vs. TD(0.8)

Next how the parameters for temporal difference affects performance

was investigated. TD(0) as discussed before is standard Sarsa learning with

40



one step look-ahead. TD(1) is standard Monte-Carlo learning where all the

future rewards are looked at equally. TD(0.8) is a compromise between the

two. The results (Figure 4.4) show that WLU performs almost equally with

the different values of lambda.
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Figure 4.4: Comparison Between Values of Lambda

4.3.2.1 Learning while Ignoring Future Rewards

To test if the time extended learning was needed, experiment were ran

using learning methods that only take into account immediate rewards. This

is the same type of learner used in the original bar problem. This learner can

be seen as a Sarsa learner with discount factor of 0. As expected the results

(Figure 4.5) show that this type of learner is not able to learn as well. However

the solution still performes well above random because the number of bars is
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small. Within one time step an agent is able to reach 3 out of seven bars.
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Figure 4.5: Performance of Learner with no Look-ahead
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Chapter 5

Communication Restrictions

Many methods for coordinating the actions of autonomous agents in

a large multi-agent system, including the framework of collectives, are de-

signed to work in situations where those agents can fully communicate with

one another [13, 23, 39, 54, 69, 78]. However, many problems impose commu-

nication restrictions among the agents, rendering the coordination problem

more difficult [11]. Examples of these problems, include controlling collections

of rovers, constellations of satellites and packet routers, where an agent may

only be able to directly communicate with a small number of other agents.

In addition, even if there are other indirect ways to share information, they

may be costly and an agent may be unwilling to share, if doing so would hurt

its private utility. In all of these problems, the collective’s designer faces the

following difficult task:

• ensuring that, as far as the provided world utility function is concerned,

the agents do not work at cross-purposes (i.e., making sure that the

private utilities of the agents and the world utility are “aligned”).

• ensuring that agents can achieve their private utilities when they do not

have access to a broad communication network allowing giving them
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access to global information.

These issues are at odds with each other and in fact in many cases it will

be impossible for agents to achieve high values of a private utility which is

aligned with the world utility. In addition even if the world utility, computed

with global information, can be broadcast to all the agents, agents may not

be able to effectively use this information to select actions that will be useful

to them and to the overall system. In fact many methods of incorporating

local information into the world utility can lead to reduced performance as

communication increases (Figure 5.1). This example shows the performance

of a system (described in detail in Section 5.3) with respect to the amount of

communication available to the agents. Note that increasing the amount of

information to which the agents have access can have deleterious effects on the

performance of the system. This chapter will discuss the reasons for this ap-

parent paradox and show how some problems associated with communication

restrictions can be overcome by modifying the agents’ utility functions.

Furthermore, issues related to communication restrictions can also be

addressed by agents aggregating into teams sharing a utility function. Many

types of team formation have been shown to be effective in different do-

mains [48, 51]. In this chapter’s domain, utility sharing encourages team mem-

bers to pool their information together, effectively reducing the impact of the

communication restrictions. As the size of a team grows, the amount of in-

formation to which an agent has access also grows. However, even if large
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Figure 5.1: Performance vs. Communication Level when World Utility is com-
bined with partial world information. When the world utility is known, adding
additional information about the world can actually hurt performance. Using
standard methods more than 60% of world information has to be revealed
before improvements can be made on the world utility. With better designed
utilities presented later in this chapter, even limited partial information can
be used to increase performance.

teams have access to more information, the agents now face the problem of

determining the contribution of their actions to the utility.

This chapter will explore how moderate communication restrictions can

be overcome by modifying the agents’ utilities. It will then show that team

formation can be used when there are severe communication restrictions, and

will explore the tradeoff between team size and communication restrictions.
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Section 5.1 will give a brief description of existing methods for handling agent

communications and team formation. Section 5.3 will describe the problem

domain and present the collective-based solution to this problem. Section 5.4

will present the simulation results, which will then be discussed.

5.1 Existing Methods for Agent Communication and
Team Formation

Issues related to agent communication and team formation have been

studied separately for many years from a variety of viewpoints. Literature

closer to the focus of this chapter, where teams are used to overcome limited

communication is less common and tends to come form sensor-fusion research.

In addition there is a large body of related work on multi-agent systems and

how to coordinate multiple agents.

5.1.1 Communication Among Agents

The study of communication among agents has taken on many forms.

Much work has been done on low level communication issues, such as agent

communication languages and physical implementation of communications [24,

25, 57]. At a higher level Pynadath and Tambe have formalized many aspects

of agent communications [49], including observability and explicit communi-

cation. For multi-agent Markov decision processes, Xule et al. dealt with

the problem of partially hidden states of other agents [82]. In their system

communication of an agent state had a cost and they presented a number
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of algorithms that traded off cost of communication versus the expected gain

from the knowledge obtained from the communication. A number of researches

have noted that often little communication is needed to coordinate agents [9],

and that in many cases local communication is sufficient [27, 56]. However

these observations are only true in certain specific domains.

5.1.2 Teams

The concept of teams can be found most often in human economies.

For example, corporations are often setup with team structures where em-

ployees are members of a team or group (e.g., through sharing a bonus for

successful completion of a project) and each team member benefits when the

team successfully contributes to the goals of the corporation. Spontaneous

team formation in agents has also been studied at a theoretical level. Axtell

has shown that for small sizes of teams there can be a stable Nash equilibrium,

but that the stability breaks down when teams go beyond a certain size [8].

Similarly this chapter will show that even when team formation is created in

a top-down manner that there are still issues with how learnable a utility can

be when there are large teams.

There has been extensive research on rule-based agent team formations.

Tambe has shown that coordination rules can be used successfully in many

fields including military engagement [67]. A common mechanism to coordinate

team agents is for teams to have “joint intentions” [22] where team agents need

to work for a common goal. Groz coins the term “SharedPlan” [32] to refer
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to this concept. As described later, this chapter will borrow from this concept

by having team members share a common utility. Even more related to this

chapter is work done in the field of sensor fusion. Fox has shown that when the

amount of information that a robot receives is restricted, teams of robots, with

different sensors, can work together to solve the robot localization problem [26].

In addition it has been shown that teams can share sensor information to

estimate unobservable parts of the world in robotic soccer domains [62].

5.2 Communication Restricted Utilities

In general to compute a difference utility there may need to be enough

communication to infer the value of the entire worldline. For some specific

classes of utility such as the WLU, this communication demand may be re-

laxed, since many of the elements of the worldline cancel out and may be

ignored. However in many real world problems there is not enough communi-

cation between agents to compute even the less demanding utilities. In these

cases one must approximate the utility under the constraints of the communi-

cation restrictions.

Mathematically one can represent the communication restrictions for

an agent η as elements of the worldline that are not observable. It is possible to

decompose the worldline z into a component observable by agent η, zoη , and a

component hidden from agent η, zhη (this chapter will denote the concatenated

state z by z = (zoη , zhη)). In this chapter, the communication level for agent
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η will be defined as:

Bη =
|zoη |
|z|

(5.1)

where |zoη | is the number of observable elements in the worldline and |z| is the

total number of elements in the worldline. Note that B is always in the range

[0.0, 1.0].

If the WLU for agent η depends on any component of zhη then η cannot

compute it directly. Instead this section will introduce different approxima-

tions to the WLU that vary in their balance between learnability and factored-

ness. In the four utilities discussed below, the first two letters of the utility

represent how the two terms of the difference utility get their information. “B”

stands for “broadcast” meaning that the world utility is broadcast to the sys-

tem, “T” stands for “truncated” meaning that the hidden values are ignored,

and “E” stands for “estimated” meaning that the hidden variable is estimated

from the observed variables.

5.2.1 Broadcast/Truncated Utility (BTU)

The first private utility that will be presented for systems with commu-

nication restrictions is a variant of WLU, where the clamping removes not only

agent η’s contribution, but also the contribution of all agents that η cannot

observe by clamping the state (zoη ,~0):

BTUη(z) = G(z)−G(CLη((z
oη ,~0))) (5.2)

where ~0 is the vector whose components are all zero, and CLη clamps all

components of agent η to the zero vector. Note that BTU , as well as BEU
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(discussed below), assume that the true world utility can be broadcast despite

the communication restriction. In many applications, this is a reasonable

assumption since the world utility can often be computed once and broadcast

throughout the environment [29]. More complex forms of broadcasting are

often used for distributed multi-agent systems [17], but in this chapter will

assume a very simple global broadcast of a single number. In many domains it

is also reasonable to assume world utility can even be obtained directly from

the environment without broadcasting [56].

Note that despite this “broader” clamping, BTU is still factored. This

is because BTU is in the form of a difference utility, which only specifies that

the second term cannot depend on the state of η. Any clamping that includes

the state of η will result in a factored utility, regardless of how much more is

clamped. However, this utility may have much more noise than a pure WLU

since much more than η has been clamped. Intuitively, only part of the noise,

the part that was observable, has been removed from η’s utility. The BTU is

the utility used for Figure 5.1, and this noise issue causes the BTU to exhibit

the poor performance shown in the graph.

As an example, consider a situation where agent η is an employee in a

large company. Proper WLU would remove the impact of the other employees

from employee η’s private utility, since their general effect would be present

both in the first term G and the second term G(CLη(z)). But if employee η

can only communicate with a fraction of the employees, all the employees with

whom it cannot communicate will also also be clamped in the second term.
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Then the subtraction will not remove their effect from employee η’s utility.

The influence those employee have on η’s utility will be noise, and employee

η will have a harder time seeing the effect of its actions on its utility.

5.2.2 Truncated/Truncated Utility (TTU)

The second private utility is conceptually similar to BTU except that

both terms are computed under the communication restrictions:

TTUη(z) = G((zoη ,~0))−G(CLη((z
oη ,~0))) (5.3)

This utility is no longer factored with respect to the world utility, because

the first term in the difference utility is G((zoη ,~0)) instead of G(z). While not

being factored with world utility, TTU can have better learnability than BTU .

This is because both terms are computed using the same truncated state, and

thus the systematic error may be removed in the subtraction for certain types

of world utility functions [76].

Continuing with the previous example, in this case the contribution of

employees that are hidden from η will not appear in either term of TTU , since

both terms are computed with the communication restriction. Therefore this

utility will have good learnability, since the noise from the hidden employees

will not clutter η’s utility. As long as G((zoη ,~0)) is sufficiently close to G(z),

this utility will be close to being factored and gains due to reduced noise will

outweigh the loss in factoredness. However, if the assumption that G((zoη ,~0))

is close to G(z) does not hold (e.g, some hidden employees are crucial to the

company’s profit) then TTU will not produce good system performance.
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5.2.3 Broadcast/Estimated Utility (BEU)

This utility is similar to BTU , except that instead of clamping the

components of zhη to zero, their values are estimated given the values of zoη :

BEUη(z) = G(z)−G(CLη((z
oη , E[zhη |zoη ]))) (5.4)

where E[·] is the expectation operator. As long as this estimate is not influ-

enced by the actions of η beyond zη, this utility is still factored, since the first

term of the difference equation is still G(η). While both BTU and BEU are

factored, BEU may have less noise, depending on how good the estimate of

zhη is.

As in the previous example, suppose that there are a large number of

employees that are hidden from η, but that η can approximate their contribu-

tion to the company based on the employees that it can observe. In this case

the first term of BEU will contain all of the employees’ contribution to G(z),

but the second term will subtract out the hidden employees’ inferred contri-

bution. Even if effects of the hidden elements cannot be perfectly estimated, a

lot of noise can still potentially be eliminated from the system. Note however

that if the estimate is particularly poor, noise can also be introduced into the

system.
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5.2.4 Estimated/Estimated Utility (EEU)

This utility is similar to TTU , except that in both terms, the value of

zhη is estimated:

EEUη(z) = G((zoη , E[zhη |zoη ]))−G(CLη((z
oη , E[zhη |zoη ]))) (5.5)

As was the case with TTU this utility is not factored with respect to the world

utility G. However, with a good estimate of zhη , the value G((zoη , E[zhη |zoη ]))

will be much closer to G(z) than G((zoη ,~0)), so this utility can be much closer

to being factored with respect to G(z) than can TTU .

Following the example, EEU provides an advantage over TTU in that

even if there are hidden employees whose actions strongly impact the com-

pany’s profits, if the actions of those employees can be predicted, then EEU

will be close to being factored. This utility retains the benefits of TTU (both

terms computed the same way, leading to good learnability) while being much

closer to being factored than TTU can be. Note that unlike with BEU , if the

estimate of the hidden components is not particularly good, in general, noise

will not be added to the system because both terms of the utility use the same

estimate. Instead, the quality of the estimate only affects how close this utility

is to being factored with respect to G(z).

5.2.5 Team Formation

As discussed above, communication restrictions can have serious neg-

ative effects on the utility functions of the agents. One way to remedy this
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situation is to let agents form “teams” which “share” their knowledge of the

worldline. More precisely the observable worldline for any member of a team

will be the union of all the observable worldlines of the individual team mem-

bers:

zoT =
⋃
η∈T

zoη (5.6)

where T is the set of agents in the team and zoT is the observable worldline

for the team. Note that team information sharing can be viewed as another

form of communication and one can define the effective communication level

of an agent in a team as:

Beffη =
|zoT |
|z|

. (5.7)

However, this chapter will always refer to it as information sharing to differ-

entiate from communication that happens between agents independent of the

formation of teams. In real world situations team information sharing may

have very different properties from general communication. It may have dif-

ferent constraints, different costs and may be imposed at different times in the

creation of a system. There are also many different ways to form teams, but

in this chapter will use a relatively simple model. A team is defined as an

aggregation of agents where each agent:

• belongs to one and only one team;

• receives the utility of the team; and

• shares knowledge of the worldline with its team members.
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Note that since all the members of the team share a utility, anything

an agent does to help another agent in the team will also help itself. It will

therefore assume that if possible the agents will share information with each

other, whenever it is needed. Instead of having team members always share

information, one could have each agent choose whether it wanted to share in-

formation. However the act of sharing would have to be added to the action

space of the agent, possibly greatly increasing the size of that space, and there-

fore reducing the speed of learning. In addition adding information sharing

to the action space would greatly increase the complexity of the problem as

agents would gain and lose information continuously, based on the actions of

other agents. Results for cases where agents can choose to share information

are discussed in Section 5.5.

5.3 Bar Problem Experiments

To test the effectiveness of team formation and the new utilities, exper-

iments were performed on the Modified Bar Problem, and the Time Extended

Bar Problem (TEBP). Since this chapter concentrates on the effects of the

utilities rather than on the RL algorithms that use them, very simple RL al-

gorithms are used. One would expect that even marginally more sophisticated

RL algorithms would give better performance.

For the Modified Bar Problem, each player η has a 7-dimensional vector

giving its estimates of the utility it would receive for choosing each possible

bar. The decisions are made using the vector, with an ε-greedy learner with ε
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set to 0.05. All of the vectors are initially set to zero and there is a learning

rate decay is 0.99. For the TEBP, each agent uses a Sarsa-learner. In every

episode its 3 first rewards are zero and the last reward depends on the final

bar attendance as computed in the single time step variant. The learner is an

ε-greedy learner with ε set to 0.05 and γ = 0.9. The learning rate is set to

0.99v(s,a) where v(s, a) is a count of the number of times an agent took action

a in state s.

5.3.1 Communication Restrictions and Team Formation

The communication restrictions are modeled in the bar problem by

controlling how many other agents one agent can “talk” to. Without this

communication the agent cannot know what the other agents have done. Here

the communication level B will represent the fraction of all the agents to

which an agent can talk. When B = 1.0 an agent can talk to the all other

agents, whereas when B = 0.0 an agent has no communication, and thus is

only aware of its own action. In the Bar Problem, communication restrictions

are reduced to how xk(z) is computed. For truncated versions of the WLU,

(BTU and TTU), xk(z
oη) is used, which returns how many of the observable

patrons are going on bar k (note since in BTU the first term is broadcast, the

agent does not need to compute it). For utilities using an estimate of the state

(BEU and EEU), xk(z
oη) is scaled, and 1

B
xk(z

oη) represents the estimate of

how many patrons actually went on bar k. For example when B = 0.25, it is

assumed that xk(z
oη) is really only accounting for one quarter of the patrons,
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so it can be scaled by 1
0.25

= 4. Note this is an extremely simple estimation

procedure and does not take any information an agent collects to modify how

it forms this estimate.

Teams in the Bar Problem are modeled by creating disjoint groups of

agents of approximately equal size. Every member of the team receives the

same utility. In addition, the members of a team will be allowed to pool

together all the information known by the team members. This means that

each team member can get information about any agent that any of the team

members can talk to. Therefore for the attendance for bar k that an agent η

receives as a member of team k is: xk(z
oT ) where zoT =

⋃
η′∈T zoη′ .

5.4 Results

The performance of the four versions of the WLU was tested with

varying levels of communication, with and without teams. The test were

conducted using the Bar Problem and Time Extended Bar Problem with 100

agents and with c = 5. All of the trials were conducted for 1000 episodes, and

were run 25 times.

5.4.1 Communication Restrictions without Teams

The first set of experiments were conducted without teams (team size =

1). Figure 5.2 shows the performance of the four utilities with different levels of

communication. When the communication level is high, the utilities converge

to WLU so the resulting performance converges. When communication is
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very low, the BTU and BEU have the best performance because their first

term G is not affected by the communication restriction. They essentially

are reduced to using the global utility as their individual utility, and give

moderately good performance. Note that the performance of BTU is worse at

50% communication than at 5%. This counterintuitive result is explained by

how the utility is computed in the bar problem. With less communication, the

total number of agents that can be seen is small, and the contribution of the

second term is small. With 50% communication on the other hand, the second

term will be large enough to have an impact on the utility. However, because

both at 5% and 50% communication levels xk(z
oη) is significantly different than

xk(z), neither provide a usable second term. In fact, rather than subtracting

out noise, the second term adds noise.

For most levels of communication restriction, the EEU performs the

best and performs up to 75% closer to optimal than utilities which use the same

information. Recall that EEU and TTU are not factored, whereas BTU and

BEU are. What helps EEU in this case is that though it is not factored,

as long as the estimate for G in the first term is sufficiently close to G, it

is close to being factored. Furthermore, because both the first and second

terms use the same estimate for the state, the subtraction does remove noise,

as intended. The utility TTU performs worst of all since, even though there

may not be much noise in the utility, not only is it not factored with respect

to the world utility, but due to the truncation, it may be very far from being

factored.
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Figure 5.2: Performance of four utility functions without teams for a range
of communication levels (including error bars). For moderate communication
levels EEU performs best. For very low communication BTU performs best
since, it uses information from world utility.

Figure 5.3 gives a clearer view of the performances at a fixed level

of communication restriction (40% and 70%). EEU is clearly superior at

40% communication. At 70% communication TTU displays the problem with

utilities that are not factored: the more the agents learn the worse the system

performance becomes. Because this system is not factored (or in this case,

not close to being factored), the agents maximizing their private utilities does

not maximize the world utility. Ironically, because TTU has good learnability

(i.e., the slope of TTU shows no sign of flattening out at t = 1000) the agents

learn to do the wrong thing successfully. BTU and BEU on the other hand

are factored so G does not decrease. However, because of learnability issues,
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Figure 5.3: Learning rates of four utility functions at 40% communication
(left). EEU learns far quicker, since it produces a much less noisy signal. Note
that even though TTU is highly learnable, it is not close to being factored with
respect to G, so it has a flat learning curve. At 70% communication (right)
TTU is closer to factored and can learn quickly, but still sightly non-factored,
causing performance to eventually go down.

after an initial period of improvement, the agents encounter a difficult signal

to noise problem and the system performance stops improving.

5.4.2 Communication Restrictions with Teams

Even using the best utility, EEU , a high level of performance cannot

be achieved if the communication level is too low. However if agents can form

small teams where information sharing is allowed between team members,

good performance is possible even when communication between teams is low.

Figure 5.4 shows the tradeoffs between choices of team size at different levels of

communication. At most communication levels, there is an optimal team size

that lies between the extremes of not having teams (team size = 1), and only

having a single team (team size = 100). The best team size is typically around

5 or 10 agents. This optimum represents to best balance between having small
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team sizes which produce a more learnable utility and large team sizes which

allows for more information sharing.
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Figure 5.4: Performance with different team sizes and communication levels.
Each graph is for a different utility. From top-left, clockwise the utilities
used are: BTU , TTU , EEU , BEU . The two utilities, BEU and EEU , that
estimate hidden values rather than ignoring them, perform much better than
their conterparts, BTU and TTU .

With the non-factored utilities EEU and TTU this balance comes from

the tradeoff between factoredness and learnability. Even though as team sizes

get smaller, the utilities become more learnable, they also become less factored

since as information sharing goes down, the first term in the difference equation

diverges from G. For the factored utilities BEU and BTU there is a tradeoff

between two different ways noise comes into the system. When teams are large,

more components have to be clamped in the second term of the difference

equation allowing more noise from the first term to remain. When teams are
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small, the lack of information sharing has a similar effect, in that many of the

components in the second term are clamped because their values are unknown.

Figure 5.5 shows that even when having teams is possible, the choice

of utility is still critical. As in the case without teams, the EEU tends to

perform best under most team sizes. Even though it is not factored, it has up

to 25% higher performance than a gη = G system. Only with very small team

sizes do the factored utilities perform better. When team sizes are very large,

there are no hidden agents, so all the utilities converge to the same values.

Due to the high learnability of EEU , its superiority is even more pronounced

when the agents do not have much time to learn as shown in figure 5.5 (right).
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Figure 5.5: Performance of four utility functions at 10% communication. EEU
performs best for most team sizes under normal learning time (left).The signal
to noise advantages of EEU become more apparent when learning time is
reduced to 1/8 of original time (right).

5.4.3 Time Extended Results

To test the effectiveness of our methods on a more difficult problem,

the same experiments were performed on Time Extended Bar Problem. This
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problem is harder since it is a Markov Decision Process, unlike the conventional

Bar Problem which is a single step problem. In this problem agents have to find

the best sequence of four actions instead of just a single action. To maximize

comparability between the two problems, the time expended problems were

tested identically to the non-time extended problems, except that they were

conducted over 4000 learning steps instead of 1000.1

Figure 5.6 shows that the time extended problem is significantly harder.

In trials with large team sizes, the agents were unable to learn at all on this

problem. This happens because when the teams were large, the signal-to-noise

ratio of the agents’ utilities went down since the utilities contain the noise from

all the other agents on a team. The signal-to-noise problem is a bigger issue

with the Time Extended Bar Problem than with the original Bar Problem,

since the noise is compounded in every time step. Even if an agent were able

to take the correct action in the last three time steps, it may perform poorly

if a noisy utility caused it not to take the correct action in the first time step.

Also agents using utilities BTU and BEU suffered at low communication levels

because the amount of noise in these utilities goes up as the communication

level goes down, since less of the noise from other agents gets subtracted out.

Figure 5.7 shows that at 5% communication, the only effective utility is EEU .

All the other utilities have very low performance, resulting in actions that are

not much better than random for most team sizes. This situations contrasts to

1both experiments were conducted for 1000 episodes, but the Time Extended problem
has four steps per episode.
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the the easier non-time-extended problem, where many of the utilities would

result in a reasonable performance, especially with large team sizes.
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Figure 5.6: Performance with different team sizes and communication levels
for Time Extended Bar Problem. Each graph is for a different utility. From
top-left, clockwise the utilities used are: BTU , TTU , EEU , BEU . The two
utilities, BEU and EEU , that estimate hidden values rather than ignoring
them, perform much better than their conterparts, BTU and TTU . Note that
with large team sizes, agents can not effectively learn in the time extended
problem

5.4.4 Information Sharing Costs

In the previous experiments there is no cost for sharing information

with team members. Since all agents always share information with fellow

team members, any sharing cost will be constant and will cancel out in the

difference utility. Therefore information sharing cost will not influence the
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Figure 5.7: Performance of four utility functions at 5% communication. Su-
periority of EEU is even more clear in the time extended problem.

actions of the agents.

Another approach to information sharing is allowing the agents to de-

cide whether or not they will share information, and charge them every time

they decide to share. The difficulty of this approach is that it greatly in-

creases the complexity of the system. Not only do the agents have an increase

in their action space, but also their ability to compute their utility continuously

changes as team members decide whether or not to share. To reduce noise one

could abandon teams and let agents have different utilities. While not being

in teams, agents could be in groups that share information. However, if each

agent’s utility is only factored to the world utility, and not factored to the

group, then they may never choose to share information.
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This approach was tested with two utilities:

TCEEUη = EEUTη − |Tη|c (5.8)

CEEUη = EEUη − c (5.9)

where c is the information sharing costs, Tη is the set of agents that are on the

same team as agent η and | · | is the set cardinality operator. The first utility

is simply the EEU used previously minus the sharing cost. The second utility

is like the TCEEU , except that only the individual agent is clamped. Agents

using this second utility are not in teams, since each agent has its own utility.

Note that the CEEU is likely to have much less noise than the TCEEU since

only a single agent is clamped instead of an entire team. This difference in

signal-to-noise level of the two utilities will increase with larger team sizes.

To test the effectiveness of these utilities, experiments were performed

where the cost of information sharing was c = mĜ
100n

where there are m agents in

each group out of a total of n agents, and Ĝ is the maximum possible value of

G.2 Figure 5.8 shows that agents that could choose whether to share informa-

tion performed worse than agents that always shared information. The agents

that were not in teams (using CEEU) had the lowest performance, since they

rarely chose to share information. This low performance may be surprising

since the CEEU has much less noise than the other utilities. However since

these agents were not sharing information, their estimate of the worldline was

2The maximum average utility per agent is Ĝ/n. With a 1% sharing cost per each agent,
the cost is Ĝ/100n. When sharing with m group members the cost is mĜ/100n.
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much worse, therefore the CEEU was not be very close to being factored.

Since the utility had less noise, the agents are learning quickly, but since the

utility was not factored they were learning to take the wrong actions.

Agents in teams (using TCEEU) that chose whether to share informa-

tion performed significantly better, since they eventually learned that sharing

was helpful to the team, and therefore chose to share most of the time. How-

ever agents using TCEEU that always shared information performed the best,

since there was much less noise in this scenario. When agents could choose to

share, the utility was less stable since it could change dramatically depending

on whether other agents in the team chose to share at a particular time step.

Note that these results shown here illustrate what can happen when the cost
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Figure 5.8: When agents can choose whether or not to share information, the
problem becomes much more difficult and performance goes down.

67



of sharing is at a particular level. If the cost of sharing changed, the results

could change. For instance, in a system that had a very high cost of sharing

information, the the systems that always communicated could perform worse

than systems that could choose whether or not to communicate.

5.5 Discussion

This chapter focuses on the problem of designing a collective of au-

tonomous agents in the presence of severe communication restrictions. In such

cases, private utilities which rely on agents having access to a fully connected

communication network may break down. Four different utility functions were

presented that each make different tradeoffs among what is available to an

agent and how that information should be used. It was shown that one utility

in particular, EEU , does far better than all the others in almost all experi-

ments. Agents using this utility learn much faster and achieve better results on

the traditional and time extended variants of the Bar Problem. Furthermore

agents using this utility can perform well with far more restricted communi-

cation.

In addition, this chapter showed that team formation improves the per-

formance of the system by as much as 25% on top of the 75% performance

increase achieved by using better utilities. This was due to the increased

information available to the members of a team, which alleviated the commu-

nication restriction imposed on the agents.

This performance boost was achieved using a simple team model, where
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team members which had a common utility always chose to share information.

Also for simplicity, there were no costs to share information. In certain do-

mains sharing costs may be significant, but in many cases this cost will not

effect the applicability of our utility functions. For example if the sharing cost

is solely a function of team size, it will cancel out in the difference utilities. In

these domains the collective designer should include the cost of sharing in the

global utility and adjust the group size so as to maximize performance in the

specific domain.

Furthermore, in many problems agents can choose whether to share

information or not, and consequently incur a cost or not. Results show that

in such cases, agents have a difficult time in learning to maximize their utility

functions. This is due to the constant change in how an agent perceives the

world, which now depends on the sharing choices of many other agents. This

in effect creates a more noisy learning environment.
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Chapter 6

A Multi-agent View of Reinforcement

Learning for Markov Decision Processes

Single agent reinforcement learnings in time-extended domains and

multi-agent systems share a common dilemma, known as the credit assign-

ment problem [63]. Multi-agent systems have the structural credit assignment

problem of determining how an agent contributes to the global utility. Effec-

tive credit assignment is critical for the agents to learn quickly and to learn

to collaborate. Utilities coming from the theory of collectives can be seen as

tools for supplying credit assignment. For example the WLU in a loose sense

returns the individual agent’s contribution to the global utility without a lot

of spurious noise.

In a single agent domain, the temporal credit assignment problem is

concerned with how an action taken at a particular time step affects the final

outcome. For example, if a player wins a game of checkers, it may be difficult

for that player to determine which of his many moves were the most important

in helping him win, and which moves may have actually been detrimental.

Many reinforcement learning heuristics have been made to try to assign proper

credit assignment. The goal of these heuristics is to make the learner converge
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to the correct policy, in a speedy manner, or to at least make a good tradeoff

between correctness and speed. Many of these heuristics can be seen as a

tradeoff between factoredness and learnability, where an agent designer may

be satisfied with the agent not converging to the optimal policy as long as it

converges quickly to a reasonable policy.

This chapter will pose the single agent time-extended problem as a

multi-agent single time step problem, transferring the temporal credit assign-

ment problem into a structural credit assignment problem. This credit assign-

ment problem will then be solved using the theory of collectives. In many

cases the collective solution will be equivalent to popular reinforcement learn-

ers. However this equivalence will be valuable, since it will allow users to

pose many problems either as a structural or a temporal credit assignment

problem, and choose the one that is easiest to work with. In addition, this

equivalence lays the basis for solving time-extended collectives, where both

credit assignment problems are present.

6.1 Setup

Consider a Markov Decision Process (MDP) for a single agent. This

chapter will convert this into a multi-agent problem, but to avoid confusion,

the term “node” will be used for the newly constructed agents, and the term

“MDP agent” will always refer to the original single agent. Let the number of

nodes in a collective equal the number of states in the MDP, with a one-to-

one mapping between states and nodes. The state associated with a node η is
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indicated as s(η). Let the action space of η be the transitions out of state s(η).

For each episode, all the nodes of the collective perform a single action. The

action a node, η, takes is determined by the policy table for the node, Q(s(η)),

where Q(s(η), a) is the value of node η’s table for action a. The collection of

all of the nodes’ policy tables will be referred to as Q. Note that Q can also

be seen as the policy for the entire MDP.

The worldline for an episode is formed by having the MDP agent follow

the actions specified by the nodes until a terminal state is reached. Let R be the

vector of rewards received by the MDP agent and Rt be the reward received at

time step t. Let S be the vector of states entered by the MDP agent and St be

the state entered at time step t. The worldline for an episode is composed of all

the rewards received by the MDP agent, the states entered by the MDP agent

and the internal learning parameters of the nodes. Formally the worldline z is

represented as:

z = (R,S, Q) (6.1)

The world utility is equal to the undiscounted sum of rewards:

G(z) =
∑

t

Rt (6.2)

Now the utilities for the nodes need to be computed. Let T (η) be the

first time that the MDP agent was in state s(η). It is assumed that all the

rewards after time T (η) are hidden from η 1. It is also assumed that all compo-

1For simplicity it is assumed that even if state s(η) is entered more than once that η only
knows the value of the first reward received. If this assumption is not used, the utilities will
represent “average visit” methods instead of “first visit” methods [65].
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nents of S are hidden other than ST (η)+1. Despite these hidden components it

will be assumed that G(z) may be known. Note that the observable worldline

for a node η in which state s(η) was never entered is undefined since T (η) will

be undefined. These nodes will receive no reinforcement at all.

As an example take the gridworld problem (Figure 6.1). In the classic

problem the agent can move from grid square to grid square, until it reaches

a terminal state. The agent can move in four directions, and the state is

determined by which grid square the agent is in. This problem can be broken

down into nodes, where each grid square is assigned a node. At the beginning

of the episode each node independently chooses an action from one of four

possible moves. The MDP agent then follows the actions chosen by the nodes,

until it reaches the terminal square. All the nodes associated with grid squares

that the MDP agent actually went through are updated at the end of the

episode.

6.2 WLU and Monte-Carlo Estimation

While G could be used for the node utilities, it would cause them to

learn very slowly. In fact this solution would solve the MDP much slower

than standard reinforcement learning methods. A more learnable utility is the

WLU, defined as:

WLUη = G(z)−G(CLEffη(z)) (6.3)

where CL is the clamping operator and Effη is the effect set for node η. For

now it will be assumed that the clamping is to the zero vector and that the
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Figure 6.1: Classic Gridworld Problem broken down into multiple nodes. Each
grid square is assigned a node, which chooses an action at the beginning of
each episode. The agent then follows these actions. Nodes from squares agent
went through are updated (black arrows).

effect set includes all rewards and states after and including time T (η):

Effη =
⋃

t≥T (η)

(Rt, St) (6.4)

This effect set is a worst-case scenario since a decision a node makes at time

step T (η) could change the entire path of the MDP agent, and therefore change

all of the future rewards. However an action by η cannot affect rewards that

were already received, prior to time step T (η). Note that the effect set includes

all of the hidden components of z so that the second term of WLU can be

computed despite the communication restriction2. From equations 6.2, 6.3,

2It is assumed that the Eff operator is defined for hidden elements. If not the BTU and
BEU utilities can be used as shown later.
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6.4 one can simplify WLU as follows:

WLUη =
∑

t

Rt −
∑

t<T (η)

Rt (6.5)

=
∑

t≥T (η)

Rt (6.6)

When WLU is used, the collection of nodes is equivalent to a system where

the update rule for each state is the sum of the rewards after that state was

entered. This corresponds to “first visit” monte-carlo estimation where Q-table

updates are defined in the same way.

6.3 TTU and Immediate Rewards

It is also possible to have the nodes use the four utilities designed for

domains with communication restrictions: BTU , TTU , BEU , EEU . Because

of the clamping, the communication restriction has no effect on the second

term, since all the hidden components are clamped in the second term. There-

fore the second term of the four utilities is the same as the second term for

WLU . The utilities WLU , BTU and BEU are equivalent. However the two

utilities that do not use broadcast information, TTU and EEU , are different.

TTU is defined as:

TTUη(z) = G((zoη ,~0))−G(CLEffη((z
oη ,~0))) (6.7)

=
∑

t≤T (η)

Rt −
∑

t<T (η)

Rt (6.8)

= RT (η) (6.9)
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The second term is the same as the second term in WLU where all the rewards

from times equal to or greater than T (η) are clamped. In the first term all the

rewards greater than T (η) are truncated due to the communication restriction.

This leaves only the immediate reward, RT (η), remaining after the subtraction.

Note that this is not a good utility for an MDP, since it can cause the node to

take actions that maximize the immediate reward at the cost of future rewards.

6.4 EEU and Q-Learning

The EEU can be computed as follows:

EEUη(z) = G(((zoη , E[zhη |zoη ])))−

G(CLEff(η)((z
oη , E[zhη |zoη ]))) (6.10)

= G(((zoη , E[zhη |zoη ])))−
∑

t<T (η)

Rt (6.11)

To compute the first term of this utility it is necessary to estimate the values

for the set of rewards contained in the hidden components of z. The notation

R̂t will be used to refer to the estimate of the reward at time t. The EEU can

now be simplified as follows:

EEUη(z) = G(((zoη , E[zhη |zoη ])))−
∑

t<T (η)

Rt (6.12)

=
∑

t≤T (η)

Rt +
∑

t>T (η)

R̂t −
∑

t<T (η)

Rt (6.13)

= RT (η) +
∑

t>T (η)

R̂t (6.14)
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If the agent will follow the optimal policy it is possible to estimate
∑

t>T (η) R̂t

as maxa Q(ST (η)+1, a). The utility EEU can then be represented as

EEUη(z) = RT (η) + max
a

Q(ST (η)+1, a) (6.15)

A system of nodes that uses this definition of EEU is performing Q-learning3.

6.5 Discounting as Uncertainty in Credit Assignment

An alternative way to model effect sets is to use a worldline with an

“effect mask”. The new worldline will be referred to as z′ = (z, m) where z is

the original worldline and m is the effect mask. The effect mask will consists

of node effect masks, mη, each of which has the same number of elements as

z. Each element of the effect mask mηi will correspond to the element zi. If

node η effects worldline element zi then mηi = 0, otherwise mηi = 1. The

clamping operator, CLη(z, m), will return (z′′, m) where for each element i,

z′′i = zimηi. It will be assumed that the global utility will ignore the effect

masks. If the elements of the effect masks are not observable then it is not

possible to compute WLU . However, one can compute BEU and EEU . To

compute the second term of these utilities it is necessary to estimate the values

of the effect masks corresponding to reward values. The effect element for each

reward element Rt will be referred to as mηRt
. Let pt be the probability that

mηRt
= 0. If it is assumed that the probability that a node affects a future

3Here the state is only being updated the first time it is entered. Most forms of Q-learning
do an update every time the state is entered. However since Q-learning is off-policy, this
makes no difference as far as convergence
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reward will fall exponentially with time, then one can make the following

probability assignments:

∀t<T (η) pt = 1 (6.16)

∀t≥T (η) pt = γt−T (η) (6.17)

The expected value of mηRt
is 1 − p, since it is a Bernoulli random variable.

BEU can now be computed as follows:

BEUη =
∑

t

Rt − (
∑

t<T (η)

Rt +
∑

t≥T (η)

(1− γt−T (η))Rt) (6.18)

=
∑

t≥T (η)

Rt −
∑

t≥T (η)

(1− γt−T (η))Rt (6.19)

=
∑

t≥T (η)

γt−T (η)Rt (6.20)

Each node therefore will maximize a discounted sum of rewards, when using

BEU . This provides another interpretation to the discounting of rewards other

than the interest rate interpretation commonly used [36]. Here the discounting

comes from uncertainty in how an agent’s action affects future states. It is an

uncertainty in credit assignment.

6.6 Discussion

This chapter unified the structural credit assignment problem present

in single-time-step multi-agent systems and the temporal credit assignment

present in time-extended single-agent systems. It did this by showing the rela-

tionship between the three utilities, WLU, EEU and TTU to the three different
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reinforcement learning methods, monte-carlo estimation, Q-learning and im-

mediate reward learning, respectively. In each case the relation between the

utility and the reinforcement learner was made through a specific construction

of a collective. However the relation goes deeper than this specific construction

as the utilities and their associated RL exhibit many of the same salient prop-

erties. The TTU which is not structurally factored is related to an immediate

reward which will break a time-extended system, since it is not factored with

time. Similarly the EEU depends on good estimates to become close to be-

ing factored, like the Q-learner which depends on good Q-function estimates.

When the Q-function estimate is poor, Q-learners will often diverge, similar

to the case where the hidden component estimate of the EEU is poor causing

the performance of the collective to collapse.

The unification of the credit assignment problems can lead to ways of

solving problems that are both time-extended and mutli-agent. However the

temporal credit assignment problem and structural credit assignment prob-

lem is entangled. This leads to some difficulties as the complicated effect sets

between nodes of the same MDP agent and nodes between different MDP

agents are difficult to analyze. Chapter 8 will address this problem by sepa-

rating the two credit assignment problems, allowing Q-learning to be used in

a multi-agent system. However, many other solutions are possible, some of

which cannot relate to Q-learning directly.
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Chapter 7

Genetic Algorithms and Collectives

This chapter will show that if a singe-agent problem is structured in

such a way that it can be solved with a genetic algorithm (GA), then it can

naturally be solved by a collective, using simple evolutionary learners. Evo-

lutionary algorithms and genetic algorithms usually work with strings of bits,

with each string encoding a solution to a problem. A single bit-string is often

referred to as a chromosome and is partitioned into n genes. Genes have a

fixed location on a chromosome, which can be specified by a beginning and end

index of the bit-string. The actual bit pattern for a particular gene location

on a chromosome is referred to as an allele. In many GA problems, the genes

are carefully chosen to refer to meaningful structures in the problem solution.

While the structures, specified by the alleles, may be somewhat independent,

the utility of one allele typically depends on other alleles present in the chro-

mose. Due to this interdependence, how to chose a good collection of alleles

is a natural problem for a collective, where each member of the collective can

chose an allele. This chapter will refer to the bits that correspond to an allele

in the GA solutions, instead as a sub-bit-strings while the full solution will be

referred to as a bit-string. Each member of the collective will chose a sub-bit-

string, and the concatenation of all the sub-bit-strings will form the bit-string
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for the full solution. The goal of each member of the collective will be to chose

a sub-bit-string that will lead to the highest possible global utility, given the

choices of all the other members.

Genetic algorithms are concerned with discovering a chromosome that

works well for a particular task. This chapter will show how the search for

high performing chromosomes can be cast as a multi-agent learning problem,

with a mapping from agents to genes. It will then show how improvements

can be achieved relative to existing genetic algorithms. To avoid confusion,

this chapter will always refer to these agents as “nodes.” Instead, the term

“agent” will be used in a traditional sense referring to the entity, such as a

rover, that has some of its characteristics specified by a chromosome. For

example, consider a simple problem where there is a rover that is defined by

two genes: one for height and one for color. In this problem there would be

two nodes. The action space of one of the nodes would be a choice of color and

the action space of the other node would be a choice of height. The actions of

the collective define a full solution. There are many ways that the nodes can

make their choices and may be limited by the number of height sub-bit-strings

and color sub-bit-strings available as shown in Figure 7.1.

7.1 Multi-Time-Step Episodic Tasks

Consider a task where an agent takes a series of actions over time until

it reaches a goal state after T time steps. During the episode the agent enters

T states and receives T rewards. In a general, possibly non-markovian domain,
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Figure 7.1: Simple genome with two genes. Each node in the collective choses
a bit-string associated with a gene. The choice of the two nodes represents a
full solution.

each reward is a function of all the states that preceded it. Each state is a

function of all the actions that preceded it. Each action is a function a bit-

string that controls the agent. In a GA, this bit-string is the chromosome

that is produced by the system. In the collective the bit-string will instead

be a concatenation of the bit-strings chosen by the nodes. Let B be this

bit-string. This bit-string is a concatenation of n sub-bit-strings, where each

sub-bit-string, Bη, is chosen at the beginning of the episode by a node η:
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B = (B1, B2, ..., Bn) (7.1)

Note that the location of each sub-bit-string, Bη, in the full bit-string corre-

sponds to a gene. The global utility can now be written as follows:

G(z) =
∑

t

Rt(z) (7.2)

=
∑

t

Rt(s≤t(z)) (7.3)

=
∑

t

Rt(s≤t(a<t(B))) (7.4)

where s≤t(·) is the state function, which computes a list of the agent’s states

before and including time t from the actions. In turn the action function,

a<t(·), computes the actions taken before time t as a function of B.

The task of the collective is to produce the bit-string, B, that induces

the highest possible value of G. To do this each node has to be able to evaluate

the Bη it chose at the beginning of the episode. In most genetic algorithms

there are not separate evaluations for each allele. Instead there is an evaluation

for an entire chromosome, which is usually the global utility for the episode.

7.2 Node Utilities

After an episode a node needs a way to evaluate its action (choice of

Bη). A node can do this by calculating its utility, based on the rewards and

state transitions that were recorded during the episode. One possible choice of

utility is the global utility, G. This would be similar to the evaluation a genetic
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algorithm makes on a choice of chromosome. However, the global utility may

be a poor choice, since as discussed in previous chapters, it is hard to learn

from in many domains. If there are many nodes, the global utility may give

little information about the contribution of a single node. Another choice of

utility is the Wonderful Life Utility:

WLUη(z) =
∑

t

(Rt(B)−Rt((B η̂, Cη))) (7.5)

where Cη is the clamping bit-string for agent η. If R(B) is relatively smooth

in the vicinity of B then the WLU will usually cancel out much of the noise

caused by other nodes, and will return approximately η’s contribution to the

global utility. However there are many problems with this approach. First of

all R(B) is usually a very complex function of B, requiring the computation

of the dynamics of the system. Also due to this complexity, R(B) may not

be very smooth in the vicinity of B and therefore WLU may not be able to

eliminate much noise from the utility. In addition the dynamics of the system

may not be known, or too cumbersome to compute. Therefore it may not

possible to compute the rewards directly from the chromosome, making it

impossible to compute the WLU in its current form.

Rather than computing WLU directly from B it is possible to make

an estimate of WLU, using the reward and state values recorded during the

episode. Let R =
⋃

t Rt be the set of rewards received during the episode and

S =
⋃

t St be the states entered during the episode. The first term of the

WLU can then be trivially computed as
∑

t Rt. Computing the second term is
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more difficult since it is hard to determine how replacing Bη with Cη affected

the reward functions. However it is possible to find out for certain time steps

which Rt((B η̂, Cη)) are almost equal to Rt, by looking at the sensitivity of the

agents actions to Bη. Let the action sensitivity at time t be defined as:

Lη,t(B) =
δat((B η̂, Bη))

δBη

(7.6)

In addition define Tη as the first time step in which Lη,t(B) is greater than

a threshold τ . For all t < Tη, the choice of Bη has little influence on the

agent’s actions and therefore the agents rewards. It is therefore possible to

approximate Rt((B η̂, Cη) as Rt for all t < Tη. If the values of Rt((B η̂, Cη) for

all t ≥ Tη are crudely approximated to zero then the WLU can be computed

as follows:

WLUη =
∑

t

Rt −
∑
t<Tη

Rt (7.7)

=
∑
t≥Tη

Rt (7.8)

7.2.1 Monte Carlo Estimation

Suppose that the state space is partitioned into n disjoint regions, with

each region, Sη, being associated with node, η. Suppose that the action of

the agent when it is in region Sη is solely determined by Bη. In this case the

sensitivity Lη,t(B) will be zero for every time step in which the agent is not

in region Sη. Therefore Tη will be the first time step that the agent entered

region Sη.
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Consider the special case where the action and state space is discrete

and each node is associated with a state. In addition let each sub-bit-string

encode an action. In this case a node using WLU will be using the sum of

future rewards to evaluate its action. Therefore a collective using WLU in

this case will be performing “first visit” monte-carlo estimation.

7.3 RBFs for Markov Decision Problems

This section will discuss a collective based solution for continuous Markov

Decision Problems, in domains where it is not possible to calculate Rt((B η̂, Cη)).

In this solution, the actions that the agent takes will be determined by a neural

network that maps states to actions. For simplicity it will be assumed that the

action is one-dimensional therefore there is only one output unit. The weights

of the neural network will be determined by the chromosome. The most im-

portant choice to be made in this problem, is the type of neural network that

will be used.

7.3.1 Multi-Layer Perceptron

Consider a two layer Multi-Layer Perceptron (MLP) where each sub-

bit-string, Bη, determines one of the network weights 1. At each time step the

1Instead if each Bη determines a hidden unit, the collective will have a close similarity
to the “Neuron” SANE (Symbiotic Adaptive Neural Evolution) and ESP (Enforced Sub-
Populations) methods [31, 44]. Like ESP each node maintains its own “sub-population”,
and no mixing of population members will ever be done between sub-populations, since the
nodes are independent. A collective can be made closer to the SANE algorithm if nodes
can share their populations. SANE and ESP use a global utility. Collectives that use more
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current state is fed into the input layer of the MLP, and the action for the

agent in that state is taken from the output layer as shown in Figure 7.2. For

MLPs with sigmoid activation functions, the output of the network is:

a(s) = g(
∑

i

wiφi(s)) (7.9)

where φi(s) is the evaluation for hidden unit i and g(x) is the sigmoid function

which equals 1
1+e−x . The action sensitivity for a time t is therefore:

Lη,t(B) =
δat((B η̂, Bη))

δBη

= g(
∑

i

wiφi(st))(1− g(
∑

i

wiφi(st)))
δ
∑

i wiφi(st)

δwη

= g(
∑

i

wiφi(st))(1− g(
∑

i

wiφi(st)))φη(st)

Note that the action sensitivity will be low either when the network is satu-

rated or the activation of the hidden unit is low. If the network is saturated,

little information is going to be gained from the episode, and some external

mechanism will usually have to be applied to get the system out of saturation.

In general there is no reason to expect the output of the hidden unit to be

low, so that the first time a node’s action has significant impact on the output

of the network is likely to be very early in the episode. Therefore the value of

Tη is likely to be close to zero for most nodes. This problem arises from the

highly distributed nature of MLPs, where every weight will have an influence

on the network output at most time steps. In this case the second term of the

learnable utilities such as WLU more closely resemble Eugenic Algorithms [6].
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WLU will be close to zero and the WLU will essentially be the global utility

resulting in a credit assignment problem.

State

Action

Weights
Chosen by
Learning

Nodes

Figure 7.2: Multi-layer perceptron mapping states to actions. Here the state
space is three-dimensional and the action space is one-dimensional. All the
weights in the MLP are determined by the learning nodes.

7.3.2 Radial Basis Function Networks

To alleviate the credit assignment problem, radial basis function net-

works (RBFNs) can be used instead. Like the MLP, the state will be fed into

the input layer of the RBFN and the action will be determined by the output

of the RBFN (see Figure 7.3). Consider a standard RBFN with n bases with
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fixed width d. The output of the RBF is a linear sum of the basis activations:

a(s) =
∑

η

wiφη(s) (7.10)

where φη(s) is the basis function and weight wη is the action of node η. For

RBFNs, the action sensitivity at time t is simply equal to φη(st), the activation

of the basis function. RBFNs typically use gaussian activation functions of the

form:

φη(s) = e
1
2
(s−cη)2/d2

(7.11)

where cη is the centroid of the basis function. Due to the localized nature

of this type of activation function, one can expect that the value of Lη,t will

be very low for most states. Only states that are close to the centroid will

produce significant activation. Therefore Tη will be equal to the time that the

agent entered a state that was close to the centroid φη.

One difficulty with using RBFNs in a reinforcement learning problem,

is how to set the basis centers. Typically a clustering method is used such as

k-means or EM, but in real-time domains, the RBFN needs to be used as data

points are being produced. One solution to this problem is to periodically

cluster the data points using all the available data. However many clustering

algorithms make Gaussian assumptions that are often broken in reinforcement

learning problems, such the pole-balancing problem (see Figure 7.4).

Instead of using clustering, basis centers can be added dynamically.

With the dynamic method, a new basis is added at the location of the current

state whenever the activation of the closest basis function is below a threshold.
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Figure 7.3: The RBFN maps states to actions. Here basis function are placed
when needed. Weight of the basis function determines height of curve in
diagram, and is set with evolutionary methods.

7.3.3 Results

RBFNs were tested in the double pole balancing experiment with both

the team game utility and the WL utility. In this experiment there is a cart

that can move in one axis (see Figure 7.5). Two poles of different length are

attached to the cart, and can pivot at the attachment point. The agent can

apply a positive or negative force to the cart. The goal of the agent is to keep

the two poles from falling while keeping the position of the cart within a fixed

set of bounds. The state space consists of six values: the position and velocity
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Figure 7.4: Data points of the states entered during a cart-pole experiment
(x’s) and cluster centers produced by k-means (circles). Algorithms that make
a gaussian assumption do not form satisfactory clusters in this reinforcement
learning problem

of the cart, and the angles and angular velocities of the two poles. At each

time step a reward of 1 is received. The episode ends when the angles of either

of the poles goes outside of fixed bounds or when the cart position goes outside

of bounds.

The learning algorithms were evaluated based on the number of episodes

that needed to be completed before the poles could be balanced for 50,000 time

steps. In this particular problem, the length of one of the poles was one meter

and the other was one tenth of a meter. The time resolution was 20 millisec-
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Figure 7.5: A cart with two poles attached can move with one degree of
freedom and each pole can rotate with one degree of freedom. Since the poles
have different lengths, by applying a force to the cart, both poles can be
balanced indefinitely.

onds. For all five algorithms the same code base was used to simulate the pole.
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The results for 400 runs are in the following table:

Algorithm Average Episodes Deviation in Mean
SANE 12,600 ?
ESP 3,800 ?
NEAT 3,578 257
RBF (G) 4,025 178
RBF (WLU)2,815 91

The results show that the RBFN using a team game utility performs

almost as well as the two existing high performance algorithms: ESP and

NEAT [31, 58]. This is to be expected since these algorithms have some fea-

tures in common. Similar to NEAT, the RBF used here grows as hidden

nodes are needed. Also similar to ESP, the collective evolves separate “sub-

populations.” However the results for using WLU are significantly better than

for G. This can be expected since the WLU for a node eliminates the reward

values that the node could not possibly influence, therefore giving it a cleaner

signal.
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Chapter 8

Discrete Rover Problem

This chapter will present an application of the theory of collectives

to a NASA domain. The abstract version of the problem will be presented

as the “Multi-agent Gridworld.” The abstract problem can then be applied

to the more NASA specific example of multiple rovers collecting information

on Mars. Even in the abstraction, the addition of multiple agents changes

the gridworld problem significantly, since the reward collection for competing

agents has to be defined. This problem is also significantly more complex than

either traditional gridworld problems, or single time step multi-agent problems,

since it involves credit assignment issues across both agents and time. Thus

for the collective-based approach to work in such problems, two fundamental

issues need to be addressed:

1. the agents need to learn the action sequence that will provide good values

for their payoff utility functions, i.e., agents need to achieve their own

goals; and

2. the agents’ learning their own payoff utilities needs to benefit the world

utility, i.e., the agents’ utilities need to be “aligned” with the world
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utility so that the agents do not work at cross-purposes, as far as the

world utility is concerned.

The first of these issues has been dealt with extensively in the single

agent context; there are many reinforcement learning systems [65], (e.g., Q-

learners [74]) that have successfully been applied to real world problems [14,

15]. The second issue is addressed with the framework of collectives.

This chapter will show how the framework of collectives can be extended

to a problem where agents need to maximize a time-extended utility function

through selecting sequences of actions. It will show that in this significantly

more complex domain, agents that use collective-based utilities provided so-

lutions that are significantly superior to agents that either use team games

or “natural” utilities. Section 8.1 will describe the gridworld problem domain

and develop a collective based solution to the design of agents’ payoff utili-

ties. Section 8.2 will present simulation results that show that collective-based

solutions significantly outperform both traditional and more “natural” solu-

tions. Finally, Section 8.3, will show that by studying the Nash equilibrium of

a simple system, one can demonstrate how collective-based algorithms achieve

performance unattainable by systems using “selfish” payoff functions.

8.1 Multi-agent Grid World Problem

A common reinforcement learning problem is the Grid World Prob-

lem [65], where an agent navigates about a two-dimensional n × n grid. At
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each time step, the agent can move up, down, right or left one grid square, and

receives a reward after each move. The observable state space for the agent

is its grid coordinate, and the reward it receives depends on the grid square

to which it moves. In the episodic version, which is the focus of this paper,

the agent moves for a fixed number of time steps, and then is returned to its

starting location. This problem typically requires the use of a reinforcement

learner that can maximize a sum of rewards in contrast to one that maximizes

an immediate reward, since the agent may have to cross squares of low reward

value to enter the squares of high value. Q-learners or the Sarsa algorithm [65]

are often used for this problem.

This chapter applies the theory of collectives to a multi-agent version

of the grid world problem. In this instance of the problem there are mul-

tiple agents navigating the grid simultaneously interacting with each others’

rewards. This reward interaction is modeled through the use of tokens that are

distributed throughout the grid squares of the gridworld (Figure 8.1). Each

token has a value between zero and one, and each grid square can have at

most one token. When an agent moves into a grid square, it receives a reward

for the value of the token and then removes the token so that a reward will

no longer be received when another agent enters the grid square. However,

all the tokens are reset at the end of an episode. The global objective of the

Multi-agent Grid World Problem is to collect the highest aggregated value of

tokens in a fixed number of time steps.

The Multi-agent Grid World Problem is an idealized version of many
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Figure 8.1: Agents Collecting Tokens of Varying Value.

real world problems, including the control of multiple planetary exploration

vehicles (e.g., rovers on the surface of Mars, collecting rocks in an attempt to

maximize total scientific return, submersible under Europa examining poten-

tial life signs). Furthermore, the agent interaction provides a critical study

of coordination and interference, as the agents have the potential to work at

cross-purposes. This problem is particularly interesting in a multi-agent set-

ting because each agent attempting to maximize the value of the tokens it

collects, can drive the world utility to severely sub-optimal values. As such,
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the design of the payoff functions is crucial in this problem, an issue which is

address below.

8.1.1 Collective-Based Solution

To pose the Multi-agent Grid World Problem in the form of the collec-

tive framework it is necessary to define:

• Lη,t: The matrix representing the location of an agent. If agent η at

time t is in location (x, y), then Lη,t,x,y = 1; otherwise Lη,t,x,y = 0.

Furthermore, {Lη,t} denotes the set all the agents’ location matrices.

• La
η,t: The location matrix agent η would have had at time t, had it taken

action a at time step t− 1.

• Lη: The location matrix of agent η across all time (Lη =
∑

t Lη,t).

• Lη,<t: The location matrix of agent η across times less than t (Lη,<t =∑
t′<t Lη,t′).

• Lt: The location matrix of all agents at time t (Lt =
∑

η Lη,t).

• L: The location matrix of all agents across all time (L =
∑

t Lt =∑
t

∑
η Lη,t).

• L<t: The location matrix of all agents across times less than t (L<t =∑
t′<t L

′
t =

∑
t′<t

∑
η Lη,t′).
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• L η̂: The location matrix of all agents other than η across all time (L η̂ =

L− Lη).

• L η̂,<t: The location matrix of all agents other than η across times less

than t (L η̂,<t = L<t − Lη,<t).

• Θ: The initial token value matrix (e.g., Θx,y contains the initial value of

the token at location (x, y)).

The space Z is composed of Θ and the set of all possible location

matrices, {Lη,t}, given the length of an episode. A worldline z is a point in

this space, i.e., the combination of the token configurations Θ, along with

a particular set {Lη,t}. To facilitate utility computation, it is convenient to

define V (L, Θ), which returns the value of a token received from a location

matrix. Formally:

V (L, Θ) =
∑
x,y

Θx,y min(1, Lx,y). (8.1)

The global utility G(z) is the sum off all the tokens collected during an

episode:

G(z) = V (L, Θ). (8.2)

Based on the definitions and world utility given above, it is possible

now derive the collective-based utility functions for this domain. In this for-
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mulation, the AU (given in Chapter 3) becomes:

AUη(z) = G(z)−
∑
~a∈ ~Aη

p~aV (L η̂ + L~a
η, Θ) (8.3)

where Aη is the set of possible action sequences agent η can take. The second

term in the equation is the expected value of the global utility over all the

possible actions of agent η.

Now, it is possible to formulate the WL utilities for this domain. First,

setting the clamping parameter CLη to the null vector, one obtains the WL

utility, where the agent is removed from the worldline:

WLU
~0
η (z) = G(z)− V (L η̂, Θ). (8.4)

This utility returns an agent’s contribution to the world utility. Note, this

utility differs from one where the values of the tokens present in the locations

visited by the agent are summed (i.e., a selfish utility). WLU
~0 gives the value

of the tokens in locations not visited by other agents, i.e., the values of token

that would not have been picked up had agent η not been in the system.

Next, define the WL utility resulting from agent η taking the fictitious

average action, where it partially takes all possible actions:

WLU~a
η (z) = G(z)− V (L̂η +

∑
~a∈ ~Aη

p~aL
~a
η, Θ) (8.5)

Because these utilities are based on the performance on a full episode,

they are problematic to work with directly. This section will therefore intro-

duce single time step “rewards” that will help in learning the set of actions
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(e.g., through Q-learners or Sarsa learners) that will lead to good values for the

utility. Note, that the utilities will be undiscounted sums of these rewards. To

create rewards, first decompose an arbitrary utility U in the following manner:

U(L) =
∑

t

U(L<t+1)− U(L<t). (8.6)

Now, define the single time step reward Rt by:

Rt(L) = U(L<t+1)− U(L<t) (8.7)

Now it is possible to generate the four single time step reward versions

of the four utilities1:

GRt(z) = V (L<t+1, Θ)− V (L<t, Θ) (8.8)

ARη,t(z) = GRt(z)−
∑
~a∈ ~Aη

p~a(V (L̂η,<t+1 + L~a
η,<t+1, Θ)

−V (L̂η,<t + L~a
η,<t, Θ)) (8.9)

WLR
~0
η,t(z) = GRt(z)− (V (L η̂,<t+1, Θ)− V (L η̂,<t, Θ)) (8.10)

WLR~a
η,t(z) = GRt(z)−

V

L̂η,<t+1 +
∑
~a∈ ~Aη

p~aL
~a
η,<t+1, Θ


− V

L̂η,<t +
∑
~a∈ ~Aη

p~aL
~a
η,<t, Θ

 (8.11)

Note that as expressed above the formulation for AR and WLR~a has

significant drawbacks. First, the set of all possible action sequences is very

1In the actual implementation there are some tie breaking rules if more than one agent
goes into the same square at the same time.
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large, and grows exponentially with t. Second, without prior information, the

average path contains little information and for WLR is similar to clamping

to zero. To side-step these issues, the approximation is made that each action

is equally likely, and computes the average action over the actions available to

the agent in the previous time step:

ARη,t(z) = GRt(z)−
∑

a∈Aη,t−1

pa(V
(
L̂η,<t+1 + La

η,<t+1, Θ
)

−V
(
L̂η,<t + La

η,<t, Θ
)
)

WLRa
η,t(z) = GRt(z)−

V

L̂η,<t+1 +
∑

a∈Aη,t−1

paL
a
η,<t+1, Θ


− V

L̂η,<t +
∑

a∈Aη,t−1

paL
a
η,<t, Θ



Note, the average action sequence has been replaced with the sequence

of average actions, that is the sequence where at each time step the average

action has been taken. Because of the arbitrariness of the clamping operator

(see discussion in Chapter 3) and the fact that theoretically, clamping to any

fixed vector results in a factored system, this approximation is milder for WLa

than it is for AU .

8.2 Experimental Results

To evaluate the effectiveness of the collective-based approach in the

Multi-agent Grid World, experiments on three different types of token distri-
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butions were conducted. The payoff utility function investigated included: (i)

the Selfish Utility (SU), where each agent receives the weighted total of the

tokens that it alone collected. It is the natural extension of the single agent

problem, and represents the optimal utility in the single rover domain; (ii)

the Team Game (TG) utility where each agent received the full world utility;

(iii) the WL
~0 utility, where there clamping parameter is set to ~0. Intuitively,

this utility computes the contribution an agent makes to the token collection,

by looking at the difference in the total token collection with and without

that agent; (iv) the WL~a utility, where there clamping parameter is set to ~a,

representing the difference between the utility value resulting from an agent’s

actual action and its “smeared” action; and (v) the AU, where the agent’s

contribution is computed as the difference between the action it took and its

expected action.

The following subsections evaluate the five payoff utilities using three

different distributions of tokens. Since the author is unaware of any standard

gridworld benchmarks that specify reward distributions, artificial distributions

of tokens were created that could illustrate the important collective learning

issues. The first set of tokens is the most “unnatural,” but requires the agents

to optimize a sum of rewards instead of an immediate reward, while working

together, if high world utility is to be achieved. The second set of tokens has

similar properties to the first set, but has smoother transitions in token values.

The final set is randomly generated from Gaussian kernels on every trial, to

illustrate that the collective-based principles still hold on less hand crafted
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Figure 8.2: Distribution of Token Values in “Corner” World

token distributions.

8.2.1 Corner World Token Value Distribution

The first experimental domain investigated consisted of a world where

the “highly valued” tokens are concentrated in one corner, with a second con-

centration near the center where the rovers are initially located. The rest

of the world is uniformly filled with tokens of little importance. Figure 8.2

conceptualizes this distribution for a 20x20 world.

Figure 8.3 (left) shows the performance of the different payoff utilities
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Figure 8.3: Effect of Payoff Utility on System Performance. Left: 40 Rovers
on a 20x20 grid. Right: 100 Rovers on a 32x32 grid.

for 40 agents on a 400 unit-square world for the token value distribution shown

in Figure 8.2, and where an episode consists of 20 time steps (error bars of ±

one σ are included, though they are smaller than the symbols). The perfor-

mance measure in these figures is “normalized” world utility given by V (L,Θ)
V (1n,Θ)

,

where 1n is the n × n matrix of ones. This normalized utility provides the

fraction of token values that was collected by the agents (a value of 1 means

all available tokens were collected).

The results show that SU produced poor results, results that were in-

deed worse than random actions. This is caused by all agents aiming to acquire

the most valuable tokens, and congregating towards the corner of the world

where such tokens are located. In essence, in this case agents using the SU

payoff competed, rather than cooperated with one another. The agents using

TG fared marginally better, but their learning was slow. This system was

plagued by the signal-to-noise problem associated with each agent receiving

the full world reward for each individual action they took. Notice both the
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Figure 8.4: Scaling Properties of Different Payoff Functions.

selfish agents and those trained with TG had a drop in their performance in

the early going, as they learned the “wrong” actions (as far as the world utility

is concerned). Agents using TG payoffs overcame this early setback whereas

selfish agents never did. In contrast, agents using WL
~0 and AU performed

very well, and agents using WL~a performed almost optimally. In each of these

three cases, the reinforcement signal the agents received was both factored and

showed how their actions affected the world reward more clearly than did the

TG reinforcement signal.

For a scaled up version of the same token value distribution, Figure 8.3

(right) shows the results for 100 agents on a 1024 unit-square grid, where an
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episode consists of 32 time steps. Qualitatively, the results are similar to the

40 agent case. However, note that the team game agents have a harder time

learning, because in this case the reinforcement signal is even further diluted.

Furthermore, the performance of WL~a is now clearly superior to that of WL
~0,

showing that using the degree of freedom given by the clamping parameter

provides significant improvements over solutions aimed at “endogenizing ex-

ternalities” or similar to the Groves mechanism (WL
~0).

Figure 8.4 explores the scaling issue in more detail. As the number

of agents was increased, the difficulty of the problem was kept the same by

increasing the size of the gridworld, and allocating more time for an episode.

Specifically the ratio of the number of agents to total number of grid squares

and the ratio of the number of agents to total value of tokens was held constant.

In addition the ratio of the furthest grid square from the agents’ starting

point to the total amount of time in an episode was also held constant. The

scaling results show that agents using TG payoffs were not hampered as much

by the noise associated with other agents when the number of agents was

low. As the system scaled up however their performance deteriorated rapidly.

Agents using WL and AU payoffs on the other hand were not strongly affected

by the increase in the size of the problem. This underscores the need for a

payoff utility function that has good signal-to-noise properties so that in large

systems, the agents have an opportunity to learn the actions that will maximize

their payoff utilities.

107



8.2.2 Incline World Token Value Distribution

The second experimental domain investigated was a world where the

“highly valued” tokens are still concentrated in one corner, but where there is

a “ridge” of moderately high values along a side, starting from the opposite

corner. The actual distribution for the token values Θx,y on a two dimensional

(x,y) map is given by:

Θx,y = 1.0−
(

x

s
(1.0 − s− y

s
)

)
−

(
0.5

s− y

s

)
(8.12)

where s is the one dimensional “size” of the map (i.e., s = 20 for 40 agents,

and s = 32 for 100 agents). Figure 8.5 conceptualizes this distribution for a

10x10 world (s=10).

Figure 8.6 shows the performance of the different payoff utilities for 40

agents and 100 agents on 400 and 1024 unit-square worlds, respectively, on

the token value distribution given by Equation 8.12. The results show that

the WL payoff is unaffected by the change in the token value distribution.

Both TG and SU payoffs in contrast perform better in this case, showing a

much larger sensitivity to the token distribution. The improvements in SU

are easily explained: The area surrounding the high token values contains

sufficiently many tokens that even when the SU agents are all trying to reach

the high valued tokens, they help the world utility.

Though agents using TG collect a larger portion of token as compared

to the previous token configuration, the lack of improvement displayed in the

system where agents use TG payoffs is noteworthy. Because of the noise in
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the system, these agents do not even learn to “walk” in the right direction in

the allotted number of episodes.

8.2.3 Random World Token Value Distribution

The final set of experiments investigates the behavior of agents in a

gridworld where the token values are randomly distributed. In this world, for

N agents, there are N/3 Gaussian ‘attractors’ whose centers are randomly dis-

tributed. Figure 8.7 shows an instance of the gridworld using this distribution

for the 20x20 world, used in the experiments with 40 agents.

Figure 8.8 shows that the performance of the agents in the “random”

world are very similar to the “incline” world, but for the poorer performance of
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Figure 8.6: Effect of Payoff Utility on System Performance for Incline World
Token Value Distribution. Left: 40 Rovers on a 20x20 grid. Right: 100 Rovers
on a 32x32 grid.

the SU payoff function. This can be explained by the token value distributions:

there are many “dry” patches, and agents aiming for the high valued token

do not necessarily get the consolation of mid-valued tokens. The WL payoff

again does well for both clamping parameters.

This experiment illustrates that when agents need to use a “divide and

conquer” approach, the selfish utility performs poorly. Furthermore, these

experiments illustrate that the collective-based payoff functions are superior

across a wide range of token distributions ranging from smooth to irregular to

random.

8.3 Nash Equilibrium and World Utility Optimum

Figure 8.9 illustrates a simple example with two agents in a six square

world, where each agent can choose to move left or right for two time steps.

There are two tokens, one of values 5 and the other of value 10 that the agents
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can pick up by entering the appropriate square.

Consider the joint set of moves where agent 1 moves right twice, and

agent 2 moves left twice 2. In this scenario agent 2 picks up a token worth

10 units on the first time step and then nothing. Agent 1 does not pick up

any tokens. Figure 8.9 summarizes the reward and utility values associated

with this move. Agent 1 receives an SU of 10 (10 for the first step, 0 for the

second) whereas agent 2 receives an SU of 0. This results in a world reward of

10 for the first time step and 0 for the second, resulting in a world utility of 10.

Incidentally, this is the solution the system settles into if the agents are indeed

2The second step of agent 2 is arbitrary.
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Figure 8.8: Effect of Payoff Utility on System Performance for Random World
Token Value Distribution. Left: 40 Rovers on a 20x20 grid. Right: 100 Rovers
on a 32x32 grid.

using SU as their payoff utilities. For SU, this is a Nash Equilibrium: There

is no unilateral moves that a player can make that will improve its utility.

Now analyze the WL
~0 payoff utility for agent 2 for this set of moves:3

For the first time step, the WL reward is the same as SU: agent 2 receives 10

for picking up the token. It is in the second time step though the differences

emerges: The first term of WL as given in Equation 8.11 (i.e., the world reward

for time step 2) is 0 for this time step as no tokens are picked up. However,

in the worldline where agent 2 has been clamped to zero, the first parameter

of the V function, L η̂, does not include the locations of agent 2, causing this

function do disregard any tokens agent 2 previously picked up. This causes

agent 2 to credit agent 1 for picking up the token of value 10 in the second

time step. Agent 2 then computes a value of 10 for the world reward of this

state where it’s clamped its action to ~0. The WL reward for agent 2 for this

3Both AU and WL with clamping to ~a provide similar results, but they are omitted them
for clarity.
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time step is then given by: WLRη2,t=2 = 0− 10 = −10.

0

Agent 1 Agent 2

0

Agents Taking Non-optimal Actions (G = 10)

Agent 1 Agent 2

0 10
0

5

Agents Taking Optimal Actions (G = 15)

10 5

GG WLU
η1        η2

WLU
η1        η2

SU
η1        η2

SU
η1        η2

t=1t=1 1010 0        100        10 0        100        10

t=2t=2 00 0       -100       -10 0    00    0

TotalTotal 1010 0       00       0 0        100        10

GG WLU
η1        η2

WLU
η1        η2

SU
η1        η2

SU
η1        η2

t=1t=1 00 0        00        0 0        00        0

t=2t=2 1515 10       510       5 10        510        5

TotalTotal 1515 10        510        5 10       510       5

Figure 8.9: WLU Nash Equilibria and World Utility Optima

Now the time-extended WLU for agent 2 can be computed by summing

the WLRs. This results in a WLU of 0, even though agent 2 picks up a token

weighted 10 (10 for t=1 and -10 for t=2). The interpretation for this “counter-

intuitive” utility value is clear: because that token would have been picked up

by agent 1 at another time step, the net effect of agent 2’s actions on the world

utility was nil, resulting in a WLU value of 0 for agent 2 for this set of actions.
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Because moving to the right twice provides a WLU value of 5 for agent 2 (as

detailed in Figure 8.9), an agent maximizing its WL payoff utility will take

this second action. Similarly agent 1 moving right twice will receive a WLU

of 10. As this simple example shows, each agent maximizing its WLU leads

the system to the world utility maximum where both tokens are picked up.

The game-theoretic equilibrium states for WLU and SU can be ana-

lyzed in these two solutions: The SU is in a Nash equilibrium for the first set

of moves, in that neither agent can improve its SU by unilaterally changing

its actions. Therefore, the system is “stuck” in this suboptimal solution. Fur-

thermore, even if the agents stumble upon the second solution by accident,

they will not remain there, as this solution is unstable with payoff utilities

given by SU: Agent 2 can change its move (in future episodes) and improve its

payoff utility from 5 to 10. That this move reduces agent 1’s utility from 10

to 0, and the world utility from 15 to 10 has no influence on agent 2’s actions.

Furthermore, this solution is also Pareto-optimal, in that there is no set of

joint moves that improves the utility of both agents. This example shows a

simple case where Pareto optimality and optimum of the world utility do not

necessarily coincide4, and simply seeking a Pareto-optimal solution will not

necessarily lead to high values of the world utility function.

On the other hand agents whose payoff utilities are given by the WLU

are in a Nash Equilibrium in the second set of actions. They will therefore

4Note, in this case the world utility optimum is also a Pareto-optimal, but there are no
guarantees that the system will stumble upon the “desirable” Pareto optimal solution.
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seek this solution as it offers higher payoff utilities for each agent. The use

of WLU has the net effect of “aligning” the Nash equilibrium of the agents

with the world utility optimum, ensuring that when the agents optimize their

payoff utilities, the world utility is also at a local – and in this case also the

global – optimum.

8.4 Discussion

This chapter focuses on the problem of designing a collective of au-

tonomous agents that individually learn sequences of actions such that the

resultant sequence of joint actions achieves a predetermined global objective.

In particular it addresses the problem of controlling multiple agents in a grid-

world, a problem related to many real world problems including exploration

vehicles trying to maximize aggregate scientific data collection (e.g., rovers on

the surface of Mars).

This chapter illustrates how the theory of collectives can be used to

leverage the work done on existing reinforcement learners that are able to work

with sequences of actions, so that they can be extended to multi-agent prob-

lems. In this domain, the critical issue of what utility functions those agents

should strive to maximize is addressed. This chapter extends the previous

results on collective intelligence to agents attempting to maximize sequences

of actions, and used Q-learning with rewards set by the theory of collectives.

The results demonstrate that agents using collective-derived goals outperform

both “natural” extensions of single agent algorithms and global reinforcement
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learning solutions based on “team games”.

Even the simplest collective-derived utility, WL
~0, showed marked im-

provement over greedy and team game utilities as it was able to scale well,

while still directing agents to “work together.” To try to increase performance

further, this chapter presented two utilities in addition to WL
~0: WL~a and AU.

While WL
~0 performed well in these problems, WL~a provided further improve-

ments, and approached the optimal solution in many cases. This improvement

was due to WL~a returning an agents contribution compared to an average ac-

tion rather than to the more extreme case comparing it to no action at all. The

experimental results confirm the theoretical analysis that shows WL~a having

a higher learnability than WL
~0.

While WL~a proved to be a superior utility, the investigations revealed

an interesting situation where AU, the theoretically “best” strategy, was not

necessarily the best approach in practice. Although AU is theoretically supe-

rior to WLU (higher learnability), two issues prevent one from fully exploiting

its power: First, the “expected” action is impossible to compute in a time

extended setting, since even a simple case where an agent has four actions and

ten time steps leads to 410 possible actions. Even Monte Carlo sampling of

such a space will yield highly inaccurate estimates of the potential actions and

their rewards. Second, estimating the correct probability distributions over the

possible actions causes the utility values to change, creating a self-consistency

problem. To sidestep both issues, the algorithm used in this chapter focused

on the last time step (e.g., current step for the agent) and approximated the
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AU with the agent taking each of the four actions possible in that time step

with equal likelihood. The resulting utility function provided good solutions,

but the performance of such a “handicapped” AU did not exceed those of the

conceptually simpler WL
~0 and was well below that of WL~a.

Finally, a game-theoretic analysis of the utilities provided by the the-

ory of collectives sheds light on the reasons for the dramatic improvements

obtained over selfish utilities and team games: While the Nash equilibrium of

the system in which each agent pursues a selfish goal does not correspond to

a globally good solution, the global optimum is indeed a Nash equilibrium of

the system in which agents use collective-based utilities. Furthermore, such

utilities provide “good” off-equilibrium signals to lead the system into desir-

able equilibrium states, whereas systems in which all agents use team game

utilities fail to reach the desirable states (e.g., Nash equilibrium states which

also are optima of the world utility) due to the excessive “noise” in the system.
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Chapter 9

Continuous Rover Problem

The Multi-agent Gridworld Problem is a good problem to test many

of the theories of collective learning over sequences of actions. However this

problem is limited in two primary ways. The first way it is limited is that

the problem is discrete in both its action space and its state space. In addi-

tion, it is difficult to generalize the solution to a continuous problem since the

table-based learning methods used depend on this discreteness, since Q-values

for all possible state and action pairs have to be recorded. Even though it

is possible to extend the table-based methods to continuous domains, some

theoretical difficulties with common approaches to doing this can lead to poor

results. This makes it difficult to apply the solutions to the Multi-agent Grid-

world Problem to continuous problems. Yet one expects to find continuous

problems in real-world settings since many sensory inputs are continuous and

actions that a rover needs to take may be continuous. The other limitation of

the Multi-agent Gridworld Problem is that the solutions are hard to general-

ize. Solutions to this problem involve finding paths, using x,y coordinates as

sensory input. A solution that a rover finds during a gridworld training phase

is unlikely to apply to a real world application since the coordinates of objects

will have changed. Algorithms based on naturally episodic domains, such as
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the Gridworld Problem, are difficult to apply to a real-world problem, such as

controlling rovers on Mars. A rover on Mars is unlikely to move in an episodic

manner, and the rover will have to generalize from the learning done before it

was deployed to its current situation on Mars.

To address these issue, this chapter will introduce the Continuous Rover

Problem. In this problem, there is a set of rovers on a two dimensional plane,

which are trying to observe points of interests (POIs). A POI has a fixed

position on the plane and has a value associated with it. The observation

information from observing a POI is inversely proportional to the square of

the distance the rover is from the POI. In this chapter the distance metric will

be the squared euclidean norm, bounded by a minimum distance:

δ(x, y) = min{‖x− y‖2, d2} (9.1)

where d is the minimum distance1. While any rover can observe any POI, in

this chapter it will be assumed that an observation will contribute no additional

information than the closest observation. Therefore as far as the global utility

is concerned, only the closest observation counts 2. The global utility for a

single time step is as follows:

R =
∑

i

Vi

δ(Li, Lc(i))
(9.2)

1The square euclidean norm is appropriate for many natural phenomenon, such as light
and signal attenuation. However any other type of distance metric could also be used as
required by the problem domain. The minimum distance is included to prevent singularities
when a rover is very close to a POI

2Similar utilities could also be made where there are many different levels of information
gain depending on the position of the rover. For example 3-D imaging may utilize different
images of the same object, taken by two different rovers.
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where c(i) = argminηδ(Li, Lη). The global utility for the episode is the sum

of rewards.

The rovers see the world through eight continuous sensors. From a

rover’s point of view, the world is divided up into four quadrants relative to

the rover’s orientation, with two sensors per quadrant (see Figure 9.1). For

each quadrant, the first sensor returns a function of the POIs in the quadrant.

Specifically the first sensor for quadrant q returns the sum of the values of the

POIs in its quadrant divided by their squared distance to the rover:

s1,q,η =
∑
i∈Iq

Vi

δ(Li, Lη)
(9.3)

where Iq is the set of POIs in quadrant q. The second sensor is similar except

that it returns the sum of square distances from a rover to all the other rovers

in the quadrant:

s2,q,η =
∑

η′∈Nq

1

δ(Lη′ , Lη)
(9.4)

where Nq is the set of rovers in quadrant q. The sensor space is broken down

into four regions, since it is fairly easy for a multi-layer perceptron to map

inputs from four regions into a two-dimensional output action. In addition

there is a trade-off between the granularity of the regions and the dimension-

ality of the input space. In some domains the tradeoffs may be such that it

is preferable to have more or less than four sensor regions. Also, even though

this paper assumes that there are actually two sensors present in each region

at all times, in real problems there may be only two sensors on the rover, and
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they do a sensor sweep at 90 degree increments at the beginning of every time

step.

Rover Sensor

POI Sensor

Figure 9.1: Diagram of a rover’s sensor inputs. The world is broken up into
four quadrants relative to rover’s position. In each quadrant one sensor, senses
points of interests, while the other sensor senses other rovers.

With four quadrants and two sensors per quadrant, there are a total of

eight continuous inputs. This eight dimensional sensor vector constitutes the

state space for a rover. At each time step the rover uses its state to compute

a two dimensional action. The action represents an x,y movement relative to

the rover’s location and orientation (see Figure 9.2). The mapping from state

to action is done with a multi-layer-perceptron (MLP), with 8 input units, 10

hidden units and 2 output units. The MLP uses a sigmoid activation function,
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therefore the outputs are limited to the range (0, 1). The actions, dx and dy,

are determined from substracing 0.5 from the input and multiplying by the

maximum distance the rover can move in one time step:

dx = D(o1 − 0.5)

dy = D(o2 − 0.5)

where D is the maximum distance the rover can move in one time step, o1

is the value of the first output unit, and o2 is the value of the second output

unit.

dx

dy

Figure 9.2: A rover moves a dx amount and a dy amount along a coordinate
plane relative to the rovers orientation.
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The MLP for a rover is chosen by an evolutionary algorithm. In this

algorithm each rover has a population of MLPs. At the beginning of each

episode step, an MLP for a rover is copied from its population using an ε-greedy

selector. The copied MLP is then mutated and used for the entire episode.

When the episode is complete, the MLP is evaluated by the rover’s utility

function and inserted into the population. The worst performing member of

the population is then deleted.

9.1 Results

The Continuous Rover Problem was tested in three different scenarios.

In each scenario, an episode consisted of 15 time steps, and each rover had a

population of MLPs of size 10. The world was 100 units tall and 115 units

wide. All of the rovers started an episode 65 units from the left boundary

and 50 units from the top boundary. The maximum distance the rovers could

move in one direction during a time step, D, was equal to 10. The rovers could

not move beyond the bounds of the world. The minimum distance, d, used to

compute δ was equal to 5. Note that since the rovers were learning through

sensors, non-episodic scenarios could also have be created, where the envi-

ronment changed through time. For simplicity however this chapter focused

on episodic scenarios. In addition other forms of continuous reinforcement

learners could have been used instead of the evolutionary neural networks.

In each of the three scenarios there were ten rovers and three different
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reward functions were tested. The first reward was the global reward (R):

R =
∑

i

Vi

δ(Li, Lc(i))
(9.5)

The second reward was the selfish reward (SR):

SRη =
∑

i

Vi

δ(Li, Lη)
(9.6)

Note that the selfish reward is equivalent to the global reward when there is

only one rover. The final reward was the WL reward:

WLRη =
∑

i

Vi

δ(Li, Lc(i))
−

∑
i

Vi

δ(Li, LcCLη (i))

=
∑

i

Ii,η(z)
Vi

δ(Li, Lη)

where cCLη(i) = argminη′ 6=ηδ(Li, Lη′) and Ii,η(z) is an indicator function, re-

turning one if and only if η is the closest rover to Li. The second term of the

WLR is equal to the value of all the information collected if rover η were not

there. Note that for all POIs where η is not the closest, the subtraction leaves

zero. The WLU can be computed easily as long as η knows the position and

distance of the closest rover to each POI it can see. If η cannot see a POI then

it is not the closest rover to it.

The first experiment was performed using a set of POIs that remained

fixed for all episodes (see Figure 9.3). Results from Figure 9.3 show that the

rovers using the WLR rewards performed the best, by a wide margin. Early in

training, rovers using SR performed better than rovers using R. However since

the learning curve of these rovers using SR remained flat, while the ones using

124



R increased, the rovers using R eventually overtook the ones using SR. This

phenomenon can be explained with factoredness and learnability. The selfish

reward tends to be highly learnable since it is only effected by the moves of a

single rover. This high learnability enables the rover to learn basic tasks very

quickly, such as moving towards a POI. However since the SR is not factored,

it is unable to do more, since maximizing its own reward occasionally causes

the rover to take actions that hurt the global reward. In contrast rovers using

R learn slowly, since the global reward is effected by the actions of all the

other rovers. With time, however, rovers using the global reward slowly learn

to maximize to global utility.
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Figure 9.3: World where points of interests are at fixed locations for every
episode. Diagram (left). Results for three different utilities (right).

The second experiment was similar to the first on except that the value

of a POI went down each time it was observed. This was a harder problem

than the previous one, since the state of the entire world changed more at

every time step. Figure 9.4 shows that rovers using WLR, still performed

best in this problem, but not by as wide as margin. The performance gap was
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probably not as large because the problem was more difficult, with more noise.

In this type of problem, it was harder to do better than a greedy solution or

even a random solution.
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Figure 9.4: Results of rovers in world with fixed POIs where their value is
decreasing as they are observed.

In the last experiment, the locations and values of ten POIs were set

randomly at the beginning of each episode (see Figure 9.5). The locations

were chosen from a uniform distribution, within the boundary of the scene.

The changing of locations at each episode forced the rovers to create a general

solution, based on their sensor inputs. Figure 9.5 shows that rovers using WLR

still performed better than the other utilities, but this time there was an even

smaller margin between their performance and that of rovers using SR. The
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results could come from this being a more difficult problem, even in the single

agent case, making it harder to beat a greedy solution. Also since the POIs are

more uniformly distributed in this problem, there may simply not be as much

agent interaction as in the previous problem, allowing the greedy solution to

perform well.
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Figure 9.5: World where POIs are placed at random locations at the beginning
of each episode. Diagram (left). Results for three different utilities (right).

9.2 Discussion

This chapter has shown that the theory of collectives can be applied

to more realistic domains that are continuous in their state and action space.

To this end, the chapter has also shown that the theory of collectives can

be used with a much broader class of learners than table based reinforcement

learners. In simple continuos problems, the neural network based system using

utilities derived from the theory of collectives was able to show much better

performance than a similar system using a selfish utility. In more difficult

domains, the performance gap narrowed, but a performance gain was still
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achieved when one used alternate utilities to the selfish utility. It is likely that

on difficult problems with increased agent interaction that the performance

gap would again widen.
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Chapter 10

Increasing Collective PageRank

The ranking of a page can be very important for the owner of that

page. Since many pages are found through search engines, often only the

highest ranked pages are read since they tend to be at the top of the list after

a search engine query. The popular Google search engine uses an algorithm

to rank pages called “PageRank,” which assigns a rank to each page, based

on the topology of the web, i.e. its link structure [47]. Perturbation analysis

shows that PageRank is robust against changes made to the directed web graph

[46]. The robustness come from the fact that the PageRank algorithm uses

information about the inlinks to a page to determine its rank. Since a page’s

owner cannot normally change the inlinks to a page, he cannot manipulate the

page to increase its rank. However, if a group of domains work together, the

average PageRank for pages within the group can be increased significantly

by changing the link structure within the group. Since PageRank only counts

links between different network domains, this chapter will discuss links between

domains instead of individual pages.
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10.1 Reinforcement Learning Approach to PageRank
Maximization

For this problem a collective learning approach can be implemented

where each domain has its own reinforcement learning algorithm that learns

which links to add to increase page rank, under a set of constraints. The

reinforcement learners “learn,” by first doing exploration, where they try a

series of actions, consisting of adding links to various domains within the

group. After each action, the reinforcement learner receives a reward based

on how good the action was. The learner can then exploit the information it

has gathered, and choose the actions that will result in the highest expected

value of the objective function.

Traditional methods of increasing PageRank involve specific agreements

between owners of domains on how to link their domains together. Often

domain owners pay other domains to link to their domains. Alternatively

some domains establish mutual linking agreements. Reinforcement learning

has some significant advantages over traditional methods. First of all it can

learn arbitrary objective functions. This property becomes very useful when

the page owners want to put some soft constraints in the form of nonlinear

penalties added to the ranking objective. Another advantage of using re-

inforcement learners is that they provide more robustness in this naturally

distributed system. Since each domain has its own learner, it can adapt to

problems caused by other domains. This ability to adapt is important since

numerous problems could arise when a diverse set of domain owners is try-
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ing to work together. These problems could range from issues such as an

owner neglecting to implement the algorithm correctly, or difficulties outside

the owners’ control such as a failure in a hosting service.

10.2 Experiments

Three experiments were conducted to determine how effective reinforce-

ment learning is in increasing PageRank for a group of domains. The experi-

ments were performed using artificial data with 50 domains where the number

of outlinks of a domain was uniformly distributed in the range 0 to 25. In

all three experiments, 10 random domains were chosen to comprise the set of

cooperating domains. All links from a domain within this set to a domain

outside of the set were removed. This was done to simulate the practice of

many companies of avoiding linking to any page that is not within their own

domain or a domain of a closely associated parter. Each of the 10 domains was

given a simple immediate-reward reinforcement learner. The actions of the re-

inforcement learners was to choose how many links to add to domains within

the set. These links were then made randomly since experiments showed that

the exact target of the links did not influence PageRank significantly.

In each of the experiments, the overall goal was to maximize a global

utility, G(z), where z contains the link structure. An agent set the values of zη,

which were the additional links made by the agent. The experiment in Section

10.2.1 used a simple social welfare utility as the global utility. The experiments

in Sections 10.2.2 and 10.2.3 used a more complex global utility that took into

131



account a penalty for additional links. In the experiments, the agents tried to

maximize their private utility. To test the performance of different types of

private utilities, in each experiment three types of private utilities, gη(z), where

used. The first utility was the Team Game (TG) utility where gη(z) = G(z).

The second utility used was the Selfish Utility (SU), where a learner’s reward

was equal to its domain’s PageRank. The final utility was the Wolderful Life

Utility (WLU). Due to the nature of PageRank, the Selfish Utility is degenerate

in many cased. An agent typically has very little control over the value of the

SU, and in some cases it has no control at all. This causes the selfish utility

to be nearly unlearnable, while retaining the property of not being factored.

Due to its poor properties, it is reasonable that in many cases, a self interested

agent may be willing to except an alternative to the SU as its private utility,

even though in the end it wants to maximize its SU. A small external incentive

mechanism such as reputation effect may be enough for an agent to accept an

alternative to the SU. In the experiments it was just assumed that each agent

would try to maximize the private utility given to them.

10.2.1 Social Welfare Objective

In this experiment the global utility, G(z), is simply the average page

rank, without any penalty on the number of links added:

G(z) =
∑
i∈S

ri(z) (10.1)

The global utility here is a simple social welfare function with no “fairness”

assumption. For this global utility, the optimal solutions was to trivially add
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as many links as possible. Despite having a staightforward solution, Figure

10.1 shows that learners using TG utilities and SU utilities could not achieve

high values of the objective function. The TG utility failed because it was

difficult for an individual learner to observe the influence of its action, among

all the actions of the other learners. Even if a learner took an action that was

good, some of the other learners may have taken bad actions at the same time,

resulting in a local utility that had too small a value. The second utility tried

was the Selfish Utility:

SU(z) = rη(z) (10.2)

This private utility was simply the rank of η’s domain. The SU utility also

failed, because a domain cannot change its own rank significantly by altering

its links. Even if an agent could add inlinks and therefore significantly increase

its SU, doing so would not necessarily lead to a higher global utility since the

two utilities are not aligned. The next utility tested was the WLU, which can

be expressed as follows:

WLUη(z) =
∑
i∈S

ri(z)−
∑
i∈S

ri(z η̂) (10.3)

The second term was computed by evaluating global utility when no links are

added by η. The reinforcement learners using the WLU were able to learn

to achieve high values for G(z) very quickly. This is because the WLU was

very learnable since an agent’s choice of how many links to add significantly

influenced the value of its utility. At the same time, the links added by the

other agents did not influence the an agent’s WLU as much as it influenced G.
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In addition the WLU was factored so that when an agent tried to maximize

its WLU, it tended to maximize G.
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Figure 10.1: Performance of utilities, when there is no penalty for adding links

10.2.2 Link Penalties

To test reinforcement learning in a more interesting problem, the ob-

jective was modified to penalize the number of links added:

G(z) = (
∑
i∈S

ri(z))(1− a
∑
i∈S

eli(z)) (10.4)

where li is the number of links added from domain i in set S, a is a scaling

factor, S is the set of domains, and ri is the rank of domain i. Note also that

this new objective was nonlinear and difficult to solve analytically. However
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the WLU could still be calculated in a similar manner as it was done in Section

10.2.1:

WLUη(z) = (
∑
i∈S

ri(z))(1− a
∑
i∈S

eli(z))− (
∑
i∈S

ri(z η̂))(1− a
∑
i∈S

eli(z η̂)) (10.5)

The results in Figure 10.2 show that reinforcement learners using the WLU

were also able to learn the new objective function quickly.
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Figure 10.2: Performance of utilities, when there is a penalty for adding links

The solution formed by these learners was non-trivial with different

domains choosing to add different numbers of links. Figure 10.3 shows outcome

of one of the trials. The number of links chosen depends the PageRank of the

domain as well as the initial link structure. For example, since the PageRank
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conferred to a target is divided by the number outlinks from the origin, one

would expect that a domain with few outlinks would be more likely to add new

links, since each new link would be more valuable to the target’s PageRank.

This is confirmed by the domain on the upper right of the figure, which started

out with no outlinks, but added a large number of new links.

Figure 10.3: Final link structure when using WLU. Thick lines are the original
links.
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10.2.3 Noisy Agents

As a final experiment, how the reinforcement learners were able to learn

when not all the domains cooperated well was tested. In this experiment, the

same non-linear objective function was used, but this time 20% of the time the

learners would not take any action. This would simulate a situation where a

domain owner withdraws from the system unannounced, or neglects to modify

his domain. Figure 10.4 shows that again the learners using WLU are able to

achieve high values of the objective function, even when not every domain is

cooperating.
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Figure 10.4: Performance when not all domains cooperate. Reinforcement
learning approach is able to recover from misbehaving agents.
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10.3 Discussion

Google proclaims that an individual page cannot significantly change

its own PageRank value by adding selected keywords or outlinks. Previous

perturbation analysis has supported this claim which helps Google to be ro-

bust against manipulation by individual commercial interests. However, it is

possible that a set of domains “working together” can significantly improve

their average PageRank, but this is a highly complicated problem involving

distributed learning. This chapter presents a method, based on collective re-

inforcement learning, where a collection of domains can increase their average

PageRank, under a wide set of constraints even while being subject to unreli-

able cooperation.
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Chapter 11

Cluster Ensembles

Often there is a need to combine multiple clusterings, formed from

different aspects of the same data set, into a single unified clustering. A

system that does this is known as a cluster ensemble. Cluster ensembles are

most useful when all of the original data points are not available to create a

clustering, but separate clusterings of the data still exist. This situation could

occur when some of the data points come from proprietary sources, where

the data owners are willing to reveal their clustering of the data, but not the

data itself. This situation can also occur if the original data points are simply

lost, or have been thrown away, but the much smaller summery cluster data is

saved. In addition even if all of the original data is available, it may be too big

to store in one site of computation. In this case, it may be desirable to make

separate clusterings of different parts of the data and combine them later.

Currently the best algorithms for cluster ensembles are graph-based

methods. While these methods have shown to have good results on certain

information theoretic measure, they tend to be inflexible. The graph-based

methods require the cluster combining to happen on a single node of com-

putation, creating a single point of failure. This makes them inappropriate
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for domains where there is high component failure such as in space-based op-

erations. Instead of graph-based cluster ensemble methods, this chapter will

propose using agents to solve the cluster ensemble problem. This agent-based

method does not have a single point of failure. Instead the performance of the

system will gracefully degrade with the number of failures. In addition the

agent-based system is more flexible, allowing the cluster-combining computa-

tion to stop, when the solution is good enough for a particular task.

This chapter will first give a formal description of the cluster ensemble

problem as well as a brief overview of a graph-based solution to the cluster

ensemble problem. It will then describe a simple greedy approach, followed

by the agent-based approach. Finally the chapter will show results for the

performance of agent-based cluster ensemble methods, and how they are robust

against agent failure.

11.1 Cluster Ensemble Problem

Suppose that there is a set of n data points. A clustering can be seen as

a partition of the data, forming k subsets called clusters. This partition of the

data will be referred to as a clustering. In general there can be many partitions

of the same set, therefore the same data can lead to many different clusterings.

To compare two clusterings, one can use information theoretic measures based

on the sizes of the clusters within the clusterings (a formal justification for

this is presented in [59]). First, the mutual information between clusterings X
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and Y can be defined as:

I(X, Y ) =
∑
x∈X

∑
y∈Y

|x ∩ y|
n

log2

(
n|x ∩ y|
|x||y|

)
(11.1)

where | · | and ∩ are the set cardinality and intersection operators respectively.

Next the entropy of a clustering, X, can be defined as:

H(X) = −
∑
x∈X

|x|
n

log2

(
|x|
n

)
(11.2)

Now one can define the normalized mutual information (NMI) between two

clusters, X and Y as:

NMI(X, Y ) =
I(X, Y )

H(X)H(Y )
(11.3)

which has the desirable property of being bounded by [0, 1] and having

NMI(X, X) = 1. In addition a clustering X can be compared to a set of

clusterings Y using average normalized mutual information (ANMI):

ANMI(Y ,X) =
1

|Y |

∑
Y ∈Y

NMI(X, Y ) (11.4)

The goal of the cluster ensemble problem is to create a clustering that is as

close as possible to the hidden “true” clustering in terms of NMI. In this

chapter the problem will be approached by trying to find the clustering, X∗,

that maximizes the ANMI between X∗ and the set of available clusterings Y .

11.2 Graph-based Approaches

The graph-based approaches to the cluster ensemble problem involve

representing the data points as nodes in a hypergraph, and the clusters as
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undirected hyperedges of the hypergraph. This chapter will compare cluster

ensemble performance with three of these algorithms, which are described in

detail in [60]. The first algorithm called CSPA (Cluster-based Similarity Par-

titioning Algorithm) provides moderate performance, but has a computational

complexity proportional to the square of the number of data points. CSPA

works by creating a similarity measure between data points. Within a cluster-

ing, all data points in the same cluster have a similarity of 1, and data points

from different clusters have a similarity of 0. If the similarities between data

points are averaged over different clusterings, a new single clustering can be

made with a similarity based clustering algorithm, such as METIS [37].

The second clustering algorithm is called HGPA (HyperGraph Parti-

tioning Algorithm) and provides generally improved performance over CSPA

and has a lower computational complexity, which is almost linear in the num-

ber of data points. This method creates the final combined clustering for the

ensemble by using HMETIS [38] to perform hypergraph partitioning on the

hypergraph that represents the clusterings. The objective of this method is to

create clusters that break the least number of hyperedges. The final method,

called MCLA (Meta-CLustering Algorithm), provides similar performance to

HPGA and retains its low computational complexity. This algorithm works

by collapsing a group of related hyperedges into a single hyperedge. This can

be seen as clustering clusters.
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11.3 Simple Greedy Optimization

Simple greedy optimization approaches have been applied to the cluster

ensemble problem in [60]. In this method, one starts with a single representa-

tive clustering, X, which is usually the clustering that has the highest ANMI

with respect to all the other clusterings:

X = argmaxX′∈Y ANMI(Y \X ′, X ′) (11.5)

where Y is the set of clusterings, and \ is the set difference operator. For each

data point, a new clustering is created from the previous clustering by moving

the data point to a new cluster at random. If this new clustering has a higher

ANMI than the previous one, then it is preserved, otherwise it is thrown away.

The algorithm is repeated for each data point. When it has gone through all

the data points, the algorithm stops if all of the new clusterings where thrown

away. Otherwise it repeats through all the data points. This algorithm can

be seen as a form of serial simulated annealing with zero exploration or as a

Stackelberg game [28]. Since the exploration is zero, the system will only reach

a local maximum. Also since for each loop, the ANMI has to be computed for

every data point, the computational complexity is very high when there are

many data points.

11.4 Collective-based Approach

The cluster ensemble problem can be approached by assigning one or

more agents to each cluster in the original set of clusterings. If m agents are
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assigned to each cluster, then a collective for r clusterings with k clusters each

would have mrk agents. The action of an agent is to vote on which cluster in

the combined clustering, the data points in its assigned cluster should belong

to. A data point will then belong to final cluster that got the most votes from

agents that were assigned to a cluster containing the data point. The global

utility of the system is the ANMI of the combined clustering with respect to

the original clusterings. Agents can then try to maximize the ANMI, by using

their private utilities to help them choose the best actions.

Formally the votes by the agents for a combined clustering Z can be

represented by a two dimensional array of sets indexed by agents and clusters.

If agent η chooses cluster z ∈ Z, then Vη,z equals the set of data points in

agent η’s assigned cluster. If agent η did not choose z then Vη,z equals the

empty set. The number of votes for data point p to be put in cluster z can be

formulated as follows:

Np,z =
∑

η

Ip∈Vη,z (11.6)

where I is an indicator function. The assignments of data points to a cluster

in the combined clustering can now be expressed as:

z = {p|Np,z = maxz′Np,z′} (11.7)

The global utility can then be defined as the ANMI between Z and the initial

set of clusterings Y :

G(Y , V ) = ANMI(Y , Z(V )) (11.8)
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Finally the WLU can be defined as:

WLU(Y , V ) = ANMI(Y , Z(V ))− ANMI(Y , Z(V ′)) (11.9)

where V ′ is the same as V , except that all of the elements of V ′ that are

indexed by η are equal to the empty set.

11.5 Results

The performance of the collective approach to cluster ensembles relative

to other methods was tested with three data sets. The first data set was ar-

tificial, while the other two came from real-world problems. The experiments

showed that the collective approach achieved superior performance in some

domains, but was inferior in others. However they also showed that the col-

lective approach was able to recover from a number of types of agent failures.

The cluster ensemble using this framework benefited from robustness, not nec-

essarily performance. In addition it also provided decentralization, allowing

for great flexibility in how this computation could have been performed.

All agents learned with a simple single-time-step reinforcement learner.

This learner was equivalent to a Q-learner with γ equal to zero. At every time

step, each agent would choose one of k clusters based on its estimates for the

utility payback for that choice. These estimates were stored in a utility table

of size k. After all the agents chose their cluster, each agent would compute

their private utility and use it to modify the payback estimate in the utility

table.
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11.5.1 Noisy Ensembles

In the first experiment, four hundred data points where randomly

placed into ten clusters to form an initial clustering. This initial clustering

was duplicated eight times. In each duplicate clustering, random noise was

added by moving a random subset of the data points to new clusters (for each

data point in the subset, the cluster it was moved to was chosen independently

over a uniform distribution over all the clusters). The amount of random noise

was specified by B, the fraction of all the data points contained in the subset.

These duplicate clusterings were used as the ensemble clusterings and exper-

iments were performed with B ranging from 0.0 to 1.0. The performance of

the algorithms were determined by the NMI between the clustering produced

by the algorithm and the initial clustering. Figure 11.1 shows the results for

agents using WLU as their utility along with results obtained from the graph-

based methods and the simple greedy method.

The results show that the agent-based method performs about the same

as the simple greedy method. However this performance was achieved with

much less computation. The greedy method was reported to take an hour

on a 1Ghz PC. The agent-based method took only 45 seconds on a simi-

lar computer. The agent-based method performed slightly worse than the

best graph-based method, MCLA, but performed considerably better than the

worst graph based method, CSPA. It also performed about about the same as

HGPA (not shown in graph).
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Figure 11.1: Results of ensemble methods with noisy clusterings.

11.5.2 Yahoo Data Set

In this experiment a processed version of the Yahoo! data set was used.

This data set has also been used in [61] and [12]. The data set contained

2340 data points, with each data point having 2903 features. Each data point

represented a document and the features were a pruned set of word frequencies

contained in the document. The data set was clustered into twenty clusters,

based on which Yahoo! news category they were originally placed in. The

data set was then broken down into twenty separate data sets. Each new data

set contained all of the 2340 data points, but each data point only had a 128

element subset of the original features. Each new data set was then clustered
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using METIS, forming twenty clusterings. These new clusterings were then

used for the ensemble in the experiment. The output of the ensemble algorithm

was then compared to the original Yahoo! clustering using NMI. Figure 11.2

shows the results between an agent-based method using WLU as its utility,

an agent-based method using G as its utility and the graph-based method,

MCLA.
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Figure 11.2: Results of ensemble methods for the Yahoo data set.

The results show that agents using the global utility were unable to

produce an adequate clustering. This is not surprising since there were 400

agents in the system. In this case, the learnabity of the global utility was

very poor since an agent cannot easily see the contribution of its action on
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the global utility, amongst the 399 actions of the other agents. In contrast the

agents using WLU were able to do much better. However these agents were

not able to do as well as the MCLA algorithm, even after running for 200 time

steps 1.

11.5.3 Pendig Data Set

The Pendig data set contained one thousand data points, with each

data point having sixteen features. Each data point represented a processed

handwritten digit. The data points were clustered into ten clusters, with each

cluster representing a digit from ‘0’ to ‘9.’ Similar to the Yahoo data set,

the Pendig data set was broken down into ten data sets. Each point in the

new data sets contained four features sampled from the original sixteen. Ten

clusterings were then produced by clustering each of the new data sets with

METIS. Using these clustering for the ensemble, the performance of MCLA

was compared to an agent-based system using WLU. In this experiment three

agents were used for every cluster to provide redundancy. This redundancy

was tested under three failure scenarios. In the first scenario 50% of the

agents were “broken.” These broken agents (called “random agents”) chose

a random cluster at every time step. In the second scenario 50% percent

1Note that the results for MCLA presented here for the Yahoo data set or the Pendig
data set cannot be directly compared to similar results shown in [59, 60], since the ensemble
clusterings are different. Because the METIS algorithm used to create the clusterings is
random, different sets of clusterings can be created from the same data set. Higher perfor-
mance was shown in [59, 60] for MCLA since in some sense the clusterings that were created
for those papers happened to be “easier” to combine.
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of the agents (called “fixed random agents”) chose a random cluster at the

beginning of a trial and kept making the same choice throughout the trail.

In the final scenario 10% of the agents always chose the first cluster (these

are called “0” agents). The results shown in Figure 11.3, reveal that agent-

based cluster ensembles can perform well in a number of adverse conditions.

The agent-based system where none of the agents were broken was able to

perform significantly better than the best graph-based cluster ensemble. In

addition, even when half of the agents were broken, the system could still

out-perform the graph-based methods. Note that the agent-based system in

the first scenario performed worse than the one in the second scenario, even

though the same number of agents were broken. This can be explained by

the adaptively of the agents. In the second scenario the broken agents always

took the same wrong move, so the working agents could adapt to overcome the

adversity. In the first scenario, the broken agents simply added random noise

to the system, which could not be easily adapted to. Despite the inherent

failure tolerance of the collective, there was still a possibility of catastrophic

failure if too many of the agents failed in the same way. While the system was

able to recover when 10% of the agents choose the same wrong cluster, the

performance drops to zero if 50% percent of the agents choose the same wrong

cluster. This failure is caused by the voting scheme, since when 50% percent

of the agents vote for the same cluster, that cluster will always win. In this

case, the final clustering will always have just one cluster.
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Figure 11.3: Results of ensemble methods for the Pendig data set.

11.6 Discussion

Using the WL Utility, agent-based cluster ensembles showed that they

could perform comparably to the best existing cluster ensemble methods. In

addition they were able to achieve this level of performance with relatively little

computation as compared to simple greedy optimization methods. Also the

agent-based cluster ensembles were able to show a high level of fault tolerance.

This property allows them to be used in domains that have a high component

failure rate, such as in space-based systems. In addition the agent-based cluster

ensembles have the flexibility to be stopped early in domains where a fixed

level of performance is needed. This ability can save computational costs, even
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when the difficulty of the ensemble problem is not known ahead of time.
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Chapter 12

Visualization of a Collective

For collectives where agents have complex interactions, such as in the

continuous rover problem, visualization can be essential to understanding how

the system behaves. Proper visualization provides far more information than

summary utility values, and is necessary for debugging and for designing high

performance utilities. For domains with physical agents, one of the most im-

portant forms of visualization is simply the animation of the agents interacting

in the environment through time. Snapshots of this type of visualization for

the continuous rover problem have already been provided in this chapter, such

as in Figure 9.5. This form of visualization is essential in determining how well

the agents are coordinating. In addition it shows the agent designer how well

the collective is accomplishing its task, which is especially important when

the highest value of global utility that the collective can expect to reach is un-

known. Domain animation also shows how well the agents are learning through

time, and often suggest areas in which their learning can be improved. Lastly

domain animation provides a sanity check to ensure to the collective designer,

that the system is operating as expected.

While useful, domain animation has a number of deficiencies. Fore-

153



most, visualization often has to be presented in a static form. While single

time snapshots of domain animation can be used, they may convey very little

information or may even be misleading. Furthermore, additional information

may need to be visualized that is not present in domain animation, such as

utility values. Many forms of agent visualization have been researched, but

they range from being too domain specific [16] to being too general [55] to

give useful information about the collective. This chapter will focus on two

related forms of visualization, specific to domains where agents move on a

two-dimensional surface. The first one will involve direct utility visualization,

and the second one will involve intelligence visualization.

12.1 Reward Visualization

One method of visualizing rewards is to plot the values of the rewards

received at the locations where they were received. For example if a rover were

in location (x, y) and received a reward value of r, then the value of r would be

plotted at location (x, y) (after the appropriate affine transformation to put it

in screen coordinates). If very few rewards were received then the value of the

reward may simply be printed as text. However, usually there will be too many

utilities values computed to do this. For example a typical experiment in the

Continuous Rover Problem has 10 rovers, a 15 step episode and a 5000 episode

learning period. This experiment would result in 750,000 reward values that

need to be plotted. Even if there were very few reward values that need to be

plotted, they may have been computed at nearby locations, and text printing
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of reward values will overlap.

In most situation it is preferable to plot the reward value as a light

intensity instead of printing out its value as text. The first issue that needs

to be addressed is the mapping of the continuous domain coordinates to the

discrete pixel coordinates in the visualization. For a pixel size of p let the set

of all reward values associated with that pixel be:

Ux,y =

{
ui :

∥∥∥∥Li −
[

x
y

]∥∥∥∥
1

<
p

2

}
(12.1)

where ‖ · ‖1 is the L1 norm and Li is the location of rover i when it received

reward ui. The reward plot can now be made by assigning the pixel value at

each point VU(x, y) the average values of the utilities received at that point:

VU(x, y) =

∑
u∈Ux,y

u

|Ux,y|
(12.2)

where |Ux,y| is the number of elements of the set Ux,y. Since visual displays

have a maximum range of intensity, the reward values need to be normalized.

However this normalization can cause difficulties. If the maximum and min-

imum reward values are not known ahead of time, real-time plotting of data

may force the image to be re-normalized in real-time, causing disturbing visual

effects. In addition even if the maximum and minimums are known, reward

normalization may produce an unacceptable image if there are outliers or ex-

tremes in the data. For example if a single data point had a much higher value

than all the other data points, that single data point would appear white, while

the rest of the image would appear black. Often the normalization will have
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to be done on a case by case bases, using appropriate monotonic transforms.

Often simple smoothing and a change of the pixel size can be used as an al-

ternative to non-linear scaling of utilities. Increasing the pixel size will tend

to smooth over extreme values. In addition it can be helpful when comparing

two visualizations as shown in Section 12.2.

Using simple affine normalization with a large pixel size, the global

reward for the Continuous Rover Problem can be plotted as shown in Figure

12.1. This visualization is not very useful since it shows that high reward

values are received throughout the space. This happens because the global

reward is plotted, which is the same for each rover. In some ways this graph

shows little more then the distribution of agent locations. However it also

shows that this reward is hard to learn from due to the credit assignment

problem inherent in the global reward. At each location that the rover is in,

it receives about the same reward, which is dominated by the noise of other

agents.

As an alternative to the global reward, the selfish reward (SR) for each

rover can be plotted instead as shown in Figure 12.2. This visualization shows

a more local picture of the rewards received throughout the landscape. As

expected, the visualization shows that high rewards are received close to POIs.

Less expected is that high rewards are also received in locations fairly far from

a POI. This happens because a rover still receives information from a POI

when it is far away. However no additional information is gained over rovers

that are closer to the POI. Since rovers far away from a POI are unlikely
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Figure 12.1: The values of the global reward received by the rovers are vi-
sualized on the right from the domain shown on the left. The global reward
visualization is not very useful, because of the credit assignment problem.

to contribute to the global reward, this diagram shows that the rovers are

receiving rewards that are not factored in practice (it was already known that

the selfish reward is not factored in principle). The diagram reveals that using

the SR, rovers may be encouraged to explore regions that are useless with

respect to reward. In contrast to the selfish reward, the WLR values match

closely with the locations of the POIs as shown in Figure 12.3.

12.2 Intelligence Visualization

Reward visualization imposes a number of problems related to how to

interpret the scale of reward values. Reward values are not only hard to draw,

but also hard to compare. For example if the collective designer wants to see

how well the rovers are learning to maximize their rewards at specific locations,

he may want to perform a reward visualization. However some rewards, such
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Figure 12.2: The values of the selfish rewards received by the rovers are vi-
sualized on the right from the domain shown on the left. The visualization
shows how the selfish reward is not very factored, since high reward values are
received far from POIs, where rovers are unlikely to contribute to the global
reward.

as the upscaled global reward, will tend to give higher values than the WLU.

In addition it may be hard to scale the rewards appropriately.

An alternative to rewards are intelligences, which were introduced in

Chapter 3. Since intelligences measure a percentile rank of how good an action

is compared to all other actions, it is invariant to scaling the reward. The

intelligence of an agent’s action at a particular location can be approximated

through sampling actions at the agents location. For example for a rover η,

the estimate for the intelligence of its action can be computed as follows:

ε =

∑
z′η∈A Θ(U(z)− U((z η̂, z

′
η)))

|A|
(12.3)

where A is a random set of actions that rover η could have taken. Note that

intelligence values are bounded between zero and one, making them possible

to visualize without scaling.
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Figure 12.3: WLR values overlaid on the diagram of the domain. The reward
values closely match areas in which one would expect a rover to be able to
contribute to global reward.

Once the intelligences are computed, they can be mapped to pixels in

the same way that rewards are. Figure 12.4 shows the intelligence visual-

izations of three rewards in the Continuous Rover Problem. Notice that the

intelligence visualization for the WLR is nearly the same as for the global

reward. This similarity occurs since the intelligence of actions with respect

to factored rewards are the same, and WLR is factored with respect to the

global reward. The differences arise due to the sampling error in the estimate
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the intelligences. The intelligence visualization of the selfish reward however

is much different. This visualization tells the collective designer that while the

agents have done well at maximizing their selfish rewards, in many locations

they are not acting intelligently with respect to the global reward.

Figure 12.4: From left to right the intelligence visualizations for global reward,
WLR and selfish reward. With perfect estimation, intelligence visualizations
of factored rewards should be identical. For approximations they are still close
such as in the left and middle figure. The right figure is very different showing
that the selfish reward is not aligned with the global reward in many places.

By subtracting the intelligence visualization of the global reward, from

the intelligence visualization of the reward the rovers are using, it is possible

to get a picture of the locations where the reward used is not well aligned

with the global reward. This chapter will call this a Difference Visualization

of reward U , where each point of the difference visualization is equal to the

absolute value of the difference between the intelligence with respect to U and

intelligence with respect to G:

Vdiff (x, y) = |VεU (x,y) − VεG
(x, y)| (12.4)

Figure 12.5 shows the results of the difference visualization for the WLR and
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the SR. As expected visualization for WLR does not show much of a difference.

The small difference that exists are uniformly distributed across the domain,

which is consistent with the differences being caused by random sampling error.

In contrast the difference visualization for the SR shows that there are many

areas in which the SR is not aligned with the global reward. Furthermore, the

areas of misalignment are localized to certain regions. This information can

tell the collective designer in what parts of the domain the selfish reward may

be appropriate, and in which parts it should be changed.

Figure 12.5: In both figures the intelligence diagram for the global reward
is subtracted from the intelligence diagram of WLU (left) or selfish reward
(right). Areas in which the rewards are not aligned with the global reward
show up as brighter.

Figure 12.6 gives more insight into the misalignment between the selfish

reward and the global reward. The left figure shows that most of the misalign-

ment occurs near the POI that has a large value. This is expected since it is

an attractive target for rovers, yet having many rovers in that area will not

help the global reward. The figure also shows that the selfish reward is satis-

161



factorily aligned in areas where there are more POIs than rovers. This suggest

that in domains where there are many POIs of uniform value, that the selfish

reward should work well enough. The graph on the right gives a little more

insight into how the selfish reward is misaligned. In areas to the top/right side

of the domain, the selfish reward consistently causes the rover to over-predict

the intelligence of their actions with respect to global reward. This happens

since the selfish reward will return high values when the rovers head towards

the large POI, even though it is not a useful action as far as the global reward

is concerned. More towards the center of the graph, the selfish reward causes

the rovers to under-predict their intelligence with respect to global reward.

This happen when rovers occasionally move away from the large POI towards

many of the small POIs. The selfish reward returns low values for this type of

action, when in reality it is a very good action with respect to global reward.

Figure 12.6: The left figure shows a high resolution version of the difference
visualization for the selfish reward, overlaid on the diagram of the domain.
The figure on the left shows “+” or “-” symbols for areas where the selfish
reward causes intelligence over-prediction or under-prediction respectively.
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12.3 Discussion

This chapter introduced a visualization method applicable to domains

similar to the Continuous Rover Problem in Chapter 9, where the location a

reward was received has some significance. In this problem, the locations were

directly visualizable on a two dimensional surface; however, the same visu-

alization technique could be used in higher dimensions with the appropriate

projection. In the Continuous Rover Problem, the visualization showed in a

spacial manner, what parts of the rover domain were causing the most diffi-

culties. Also the intelligence visualization was able to show how well rovers

using different private utilities where able to act towards the global objective.

Intelligence visualization may also be used to visualize other large collective

systems as well. Since intelligence values are bounded between zero and one,

their visualization can be easily interpreted even if agents are not naturally em-

bedded in a two dimensional domain. Intelligence visualization is most useful

when there are so many agents that it is difficult to analyze agent performances

individually. In addition intelligence visualization could be used to visualize

traditional systems such as MLPs and RBFs that have been decomposed into

agents as shown in Chapter 7. These intelligence visualization may provide

alternatives to existing visualization methods for RBFs [1, 3] and MLPs [34].
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Chapter 13

Conclusions and Future Work

This dissertation greatly expands the scope, power and flexibility of

the theory of collectives, while offering increased interpretability. These con-

tributions make collectives easier to use and makes the theory of collectives a

more valuable tool in the solution to many real-world multi-agent problems.

Collectives can now be used in a myriad of domains, including ones with any

combination of missing information, time-extended rewards and continuous

state/action spaces. In addition these problems can be tackled using a vari-

ety of tools, ranging from standard reinforcement learners to complex genetic

algorithms to very simple evolutionary computation.

The initial contribution of this dissertation was to show how missing

information can be handled while preserving the best properties of factordness

and learnability. New utilities were created that were shown to preserve good

performance characteristics under adverse communication conditions. These

utilities were then leveraged to show how the structural credit assignment

problem in collectives was related to the temporal credit assignment problem

in reinforcement learning. Later solutions were provided for multi-agent time-

extended domains, which contain both types of credit assignment problems.
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The utilities in these solutions were shown to be factored structurally and

across time. In addition the relationship was shown between the types of

problems genetic algorithms and collectives can solve. These were important

continuous problems, that were often well solved by neural evolution. It was

shown that a complicated single-agent genetic algorithm problem could be

better addressed by a multi-agent collective with simple evolutionary learner,

using improved utilities. It was also shown that neuro-evolution could also be

effectively leveraged in complex, continuous multi-agent problems.

Despite these improvements, there are still additions that can be made

to the theory of collectives. In domains with complex communication restric-

tion issues, a number of concepts used in this dissertation can be pushed

further. Team formation may be a powerful tool in handling missing informa-

tion and may be able to leverage such principles as small world structures to

greatly increase the amount of information available while needed very little

communication infrastructure. Dynamic team formation may even be able to

optimize local communication networks, through learning. In addition to new

methods in handling missing information, many new utilities can be made

to deal with time-extended domains. This dissertation provided one solution

to this problem, but many alternatives are possible. Time-extended utilities

can differ in terms of bias, depending on how much local interaction there

is in the collective and how distant through time rewards are dependent on

earlier actions. Also some utilities may be able to use different informations

depending how much is known about the structure of the environment and
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the global utility. With improvements in communication methods and an in-

creasing assortment of utilities, collectives will become an even more valuable

in multi-agent domains.
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