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 Large-Area Resonant and Non-Resonant Optical Nanostructures 

 

Ping-Chun Li, Ph. D. 
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Supervisor:  Edward T. Yu 

 

Manipulation of light via subwavelength nanostructures is currently a subject of 

intense research interest, and is enabling the development of nanostructured photonic 

crystal, metamaterials and metasurfaces that provide a variety of new optical and 

electromagnetic functionalities, or that enable existing functionalities to be realized in 

new and often extremely compact form factors. This dissertation will include wide-angle 

wavelength-selective metasurface, omnidirectional enhancement in photovoltaic 

performance via subwavelength gradient anti-reflection coating, and applications of 

birefringent nanocylinders for single-molecule spectroscopy.  

In wide-angle wavelength-selective metasurface, high and broad reflectance 

(~95%) with low absorption (<5%) are shown to be achieved with multilayer metasurface 

structures. These characteristics are shown to be independent of interlayer misalignment 

and defects within individual layers. Interactions between different metasurface layers 

due to Fabry-Perot resonance are also examined with analytical models and numerical 

simulations.  Wavelenth-selective focusing at optical wavelengths which is enabled by 

large-area nanosphere lithography on a flexible substrate is demonstrated. In 

omnidirectional enhancement in photovoltaic performance via subwavelength gradient 

anti-reflection coating, large-area "moth-eye" structure fabricated on a flexible substrate 
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is shown to have high transmittance (>85%) at large angle of incidences (>70o) and 

insensitivity to polarizations. Integration of the "moth-eye" anti-reflection coating 

together with nanostructured gradient Al2O3/TiO2 on a GaAs solar cell shows significant 

improvements on external quantum efficiency (EQE) and short circuit current over all 

angle of incidences compared with conventional thin film anti-reflection coating. 

Detailed design, simulation, and fabrication of these nanostructured anti-reflection 

coating for reducing the discontinuity in refractive index profile will also be discussed.  

In application of birefringent nanocylinders for single-molecule spectroscopy, the 

design and fabrication method for large quantity of subwavelength birefringent 

nanoparticle are also discussed. These birefringent nanoparticles are shown to be stably 

trapped in an optical torque wrench setup, and enable observation of the dynamical 

response of a double-stranded DNA under torsional and extensional forces. 



ix 
 

Table of Contents 

List of Figures ....................................................................................................... xii 

Chapter 1: Introduction ............................................................................................1 

Chapter 2: Flexible, Large-Area, Wide-Angle, Wavelength-Selective Metasurface for 
Solar Energy Harvesting .................................................................................4 

2.1 Motivation .................................................................................................4 

2.2 Single-layer Metasurface ..........................................................................6 

2.2.1 The concept of metasurface ..........................................................6 

2.2.2 Metasurface resonance ..................................................................7 

2.2.3 Surface plasmon resonance and Wood's anomaly ......................10 

2.2.4 Conclusion ..................................................................................14 

2.3 Double-layer metasurface .......................................................................15 

2.3.1 Fabrication process of multilayer metasurface via e-beam 
lithography ..................................................................................15 

2.3.2 Metasurface resonance ................................................................16 

2.3.3 Fabry-Perot resonance ................................................................20 

2.3.4 Robustness against interlayer misalignment ...............................25 

2.3.5 Conclusion ..................................................................................26 

2.4 Flexible, large-area, low-loss multilayer metasurface ............................28 

2.4.1 Transfer matrix method for modeling multilayer metasurface ...28 

2.4.1.1 Assumptions and derivations ..........................................28 

2.4.1.2 Analytical solutions of multilayer metasurface under Bragg 
condition ............................................................................30 

2.4.1.3 Photonic bandgap ............................................................34 

2.4.1.4 Fabry-Perot resonance ....................................................34 

2.4.2 Fabrication process of multilayer metasurface via nanosphere 
lithography ..................................................................................34 

2.4.3 Bragg resonance ..........................................................................36 

2.4.4 Fabry-Perot resonance ................................................................42 



x 
 

2.4.5 Wavelength-selective focusing ...................................................46 

2.4.6 Conclusion ..................................................................................47 

2.5 Photovoltaic-Thermal Hybrid System integrated with flexible plasmonic 
filter ......................................................................................................49 

Chapter 3: Omnidirectional Antireflection Coating on Low-Index Materials 
Integrated with Solar Cells ............................................................................52 

3.1 Motivation ...............................................................................................52 

3.2 Optimization and realization of omnidirectional antireflection coating on 
low-index materials ..............................................................................53 

3.2.1 Fabrication process .....................................................................53 

3.2.2 Optimization and simulation of "nanopillar" structures on low-index 
substrate ......................................................................................55 

3.2.3 Characterization and measurement of "nanopillar" structure on low-
index substrate ............................................................................61 

3.2.4 Conclusion ..................................................................................63 

3.3 Optimization and realization of antireflection coating integrated with GaAs 
solar cell ...............................................................................................64 

3.3.1 Fabrication process .....................................................................65 

3.3.2 Optimization of "moth-eye" nanostructures on PET substrate ...66 

3.3.3 Optimization of "nanoisland" structures on bilayer antireflection 
coating .........................................................................................69 

3.3.4 Realization and measurement of omnidirectional antireflection 
coating integrated with GaAs solar cell ......................................70 

3.3.5 Conclusion ..................................................................................72 

Chapter 4: Fabrication of birefringent nanocylinders for single-molecule force and 
torque measurement ......................................................................................73 

4.1 Motivation ...............................................................................................73 

4.2 Fabrication process and statistical distribution of fabricated birefringent 
nanocylinders .......................................................................................76 

4.3 Analytical modeling ................................................................................81 

4.3.1 Phase transition theory of DNA ..................................................81 



xi 
 

4.3.1.1 Free energies of stretched, plectonemic, and denatured states
............................................................................................82 

4.3.1.2 Extension curve ...............................................................84 

4.3.1.3 Table of constants ...........................................................85 

4.4 Measurement of DNA extension measurement under stretching and 
torsional forces .....................................................................................86 

Chapter 5: Conclusions and Future Work ..............................................................91 

References ..............................................................................................................93 

  

  



xii 
 

List of Figures 

Figure 2.1 (a) Schematic diagram of a photovoltaic-thermal hybrid system. (b) 

Spectral distributions of PV and thermal absorber from an AM 1.5 solar 

spectrum. .............................................................................................5 

Figure 2.2: Schematic diagram of a metasurface consisting of arbitrary shape scatters 

on a surface. The rough size of the scatter is denoted as W, and the 

incident wavelength is λ. .....................................................................7 

Figure 2.3: (a) Schematic diagram of the metasurface structure on an ITO coated 

glass substrate under illumination with TE and TM polarization 

respectively. The inset shows a scanning electron micrograph of a L = 

200 nm, W = 100nm device. (b)(c) Optical microscope image of E-beam 

lithography fabricated square array metallic patches as function of W 

and L with different deposited metal, Ag, and Au, respectively. The 

square size is ~100 μm x 100 μm........................................................8 

Figure 2.4: Transmission spectra of device shown schematically in Figure 2.3(a) 

illustrated schematically in Figure 2.3(a) with L = 200 nm, W = 100 nm 

for (a) TE, (b) TM polarization. Solid and dashed lines represent the 

measured and simulated spectra, respectively. ...................................9 



xiii 
 

Figure 2.5: Transmission spectra of a L = 400 nm, W = 200 nm device for different 

incident angles with (a) TE and (b) TM polarization. Solid and dashed 

lines represent measured and simulated spectra, respectively. 

Transmission spectra at different incident angles have been offset 

vertically by 35% each for clarity. Different colored arrows indicate 

different SPP-coupled modes: green, (±1,0) and (0,±1); orange, (±1,0); 

brown, (0,-1). Different colors of circles indicate different orders of 

Wood’s anomalies: green, (±1,0) and (0,±1); orange, (±1,0); brown, (0,-

1). ......................................................................................................11 

Figure 2.6: Band diagrams extracted from theoretical and measured spectral feature 

for SPP-coupled grating modes (SPP), Wood’s anomaly (W), and 

metasurface resonances: (a) TE, L  = 400 nm, W  = 200 nm, (b) TM, L = 

400 nm, W = 200 nm. ........................................................................13 

Figure 2.7: Key fabrication process of a multilayer metasurface. .........................16 

Figure 2.8: A schematic diagram of the multilayer metasurface structure on a glass 

substrate under (a) TE and (b) TM polarized illumination respectively. 

L1, W1 and L2, W2 indicate the periodicity of the array and size of the 

individual metallic nanostructures for the bottom and top metasurface 

layers, respectively.  The translational alignment parameters Sx and Sy 

are indicated in (b). The insets show the scanning electron micrographs 

of an aligned (Sx = Sy = 0), and shifted (Sx = Sy = 100 nm). The scale bars 

are 100 nm.........................................................................................17 



xiv 
 

Figure 2.9: (a)(b)(c)(d) Measured transmission spectra for L1 = 200 nm, W1 = 100 nm, 

and L2 = 300 nm, W2 = 170 nm single layer metasurfaces under TE and 

TM polarized illumination, respectively. (e)(f)(g)(h) Measured (solid 

lines) and simulated (dashed lines) transmission spectra for an aligned 

multilayer metasurface structure, L1 = 200 nm, W1 = 100 nm, L2 = 300 

nm, W2 = 170 nm, D = 350 nm, and Sx = Sy = 0 under TE and TM 

polarized light respectively. ..............................................................19 

Figure 2.10: Simulated transmittance spectra, as function of wavelength and dielectric 

layer thickness D for a multilayer metasurface structure with L1 = 200 

nm, W1 = 100 nm, L2 = 300 nm, W2 = 170 nm, and Sx = Sy = 0 for (a) θi = 

0o, (b) θi = 30o, and (c) θi = 60o under TE polarized light. The solid and 

dashed lines represent Fabry-Perot resonance wavelengths as given by 

Eq. (3) with and without, respectively, inclusion of the metasurface 

phase shift given by Eq. (2-8). ..........................................................21 

Figure 2.11: (a) Simulated transmittance spectra for θi = 0o and θi = 60o under TE 

polarization. Dashed, solid, and dotted lines correspond to dielectric 

layer thicknesses D=300nm, 350nm, and 380nm, respectively.  (b)(c) 

Measured transmittance spectra for multilayer metasurface structures 

with L1 = 200 nm, W1 = 100 nm, L2 = 300 nm, W2 = 170 nm, Sx = Sy = 0 

and D = 300 nm, 350 nm, and 380 nm, following the same plot scheme 

as in (a), under TE or TM polarization, respectively. In parts (b) and (c), 

transmittance spectra at different incident angles have been offset 

vertically by 50% each for clarity. ....................................................23 



xv 
 

Figure 2.12: Measured and simulated  transmission spectra for a multilayer 

metasurface structure with L1 = 200 nm, W1 = 100 nm, L2 = 300 nm, W2 = 

170 nm, D = 380 nm, and Sx = Sy = 100 nm or Sx = Sy = 0 for different θi 

under (a) TE or (b) TM polarization. Transmittance  spectra at different 

incident angles have been offset vertically by 50% each for clarity. 26 

Figure 2.13: The schematic of the multilayer metasurface structure. The position of 

Nth layer metasurface is denoted as Nz , and the amplitude of the 

reflected and transmitted electric field on the left hand side are denoted 

as L+, and L-. .....................................................................................29 

Figure 2.14: The calculated reflectance, transmittance, and absorption under normal 

incidence based on transfer matrix of (a) single layer, (b) double layer 

(c) triple layer. (d) The reflectance comparison between single, double, 

and triple layer. .................................................................................32 



xvi 
 

Figure 2.15: (a) Schematic diagram of the multilayer metasurface structure on a PET 

substrate under TE and TM polarized illumination. P, D, and d indicate 

the periodicity of the array, size, and thickness of the individual metallic 

nanostructure. The thickness of SU-8 and SiO2 are denoted as H and h, 

respectively.  The inset shows a scanning electron micrograph of a 

fabricated sample with P = 200 nm, D = 160 nm, d = 40 nm, h = 10 nm 

and H = 185 nm. (b)(c)(d) Schematic diagram of the fabrication process 

flow and scanning electron micrograph at each step: (b) A PET substrate 

is covered with 10nm SiO2/100 nm LOR/10 nm SiO2, followed by NSL 

using D = 200 nm PS nanospheres. (c) After deposition of 20nm of Cr 

and lift-off process of PS, the substrate is etched by RIE to create a 

hexagonal hole array structure. (d) The hexagonal hole array patterned 

PET substrate is deposited with 5 nm Ge/40 nm Ag, and the LOR is 

removed by lift-off process. (e) Large-area (6 x 16 μm2) scanning 

electron micrograph image to show representative defects which can 

result from NSL. ...............................................................................36 



xvii 
 

Figure 2.16: (a)(b) Measured, simulated, and modelled reflectance (R), transmittance 

(T), and absorption (A) spectra for a single layer metasurface with P = 

200 nm, D = 160 nm, d = 40 nm, and h = 10 nm for θi = 0o under TE and 

TM polarized illumination, respectively. (c)(d) Normalized electric field 

distribution of the metasurface structure at resonant wavelength (λ = 605 

nm) for θi = 0o under TE and TM polarized illumination, respectively. 

(e)(f) Measured refletance (R), transmittance (T), and absorption (A) 

spectra for a single layer metasurface with P = 200 nm, D = 160 nm, d = 

40 nm, and h = 10 nm for θi = 15o, 30o, 45o, and 60o under TE and TM 

polarized illumination, respectively. .................................................38 

Figure 2.17: (a)(b) Measured, simulated, and modelled reflectance, transmittance, 

absorption spectra for a double layer metasurface with P =200 nm, D = 

160 nm, d = 40 nm, h = 10 nm, and H = 185 nm for θi = 0o, 15o, 30o, 45o, 

and 60o under TE and TM polarized illumination. ...........................40 

Figure 2.18: (a)(b) Simulated transmittance spectra as a function of wavelength and 

dielectric layer thickness, H, for θi = 15o and 60o. The solid curves 

represent the Fabry-Perot resonance given by Eq. (6). The dashed lines 

are indicated for double layer samples with H = 360 nm, 185 nm, 107 

nm, respectively. (c) Measured reflectance (solid lines) and absorption 

(filled lines) for a double layer metasurface with P = 200 nm, D = 160 

nm, d = 40 nm and h = 10 nm with different dielectric layer thickness, 

H, under TE polarized illumination. .................................................44 



xviii 
 

Figure 2.19: (a)(b)(c) Photo taken for samples (P = 200 nm, D = 160 nm, d = 40 nm, 

h = 10 nm and H = 185 nm) held flat, or bent to different curvatures 

under illumination from a solar simulator  to show wavelength-selective 

focusing by the fabricated multilayer metasurface. (d)(e) Measured 

transmittance for a curved double layer metasurface under TE and TM 

polarized illumination with sample length 25 mm; the end-to-end length 

is bent to 20 mm. The measurement is taken at different positions of the 

sample starting from the center to around the edge of the sample, with 

increment of 1 mm which is roughly the beam size. ........................47 

Figure 2.20: (a)(b) Theoretical efficiencies of photovoltaic and thermal absorber, 

respectively. (c) Side view of the proposed architecture of PV-T system. 

(d) Block diagram of final output of a proposed PV-T system. ........51 



xix 
 

Figure 3.1: (a) Schematic diagram of a dielectric hexagonal lattice structure on a 

quartz substrate with periodicity (P), diameter (D), height (h), and of 

simulation and measurement geometry for TE or TM polarization. (b) 

Photo taken at shallow angle, showing that the anti-reflection coated 

quartz (left, P = 200 nm, D = 90 nm, and h = 350 nm) is less reflective 

compared with the non-treated substrate (right). (c) Scanning electron 

micrograph of a fabricated P = 200 nm, D = 100 nm, and h = 350 nm 

structure. (d) Schematic diagram of the fabrication process flow and 

scanning electron micrograph at each step: (1) A quartz substrate is 

cleaned, covered with 60 nm Cr/10 nm SiO2, followed by NSL using D 

= 200 nm polystyrene nanospheres. (2) A series of dry etching processes 

is used to transfer the hexagonal lattice pattern to the underlying Cr 

layer. (3) Cylindrical nanopillars formed by SiO2 dry etching using Cr 

hard mask (4) Wet etch to remove Cr. ..............................................54 

Figure 3.2: Simulated transmittance spectra of a dielectric hexagonal lattice structure: 

(a) Transmittance contour map with h = 350 nm, λ = 500 nm, θ = 85o 

under 45o polarization. (b) Transmittance contour map with P = 200 nm, 

λ = 500 nm, θ = 85o under 45o polarization. (c) Transmittance spectra 

comparison between D = 70 nm cylindrical nanopillar structure, and 

linearly "moth eye" structure with tapered D from 70-0 nm with same P 

= 200 nm, h = 350 nm, under 45o polarization. ................................59 



xx 
 

Figure 3.3: (a) Simulated transmittance spectra of tapered "moth eye" structures at λ = 

500 nm, θ = 85o,  as a function of height (h) with P = 200 nm and D = 50 

nm, 100 nm, 150 nm, 200 nm under 45o polarization. The horizontal 

gray dashed line corresponds to the optimized cylindrical nanopillar 

structure with P = 200 nm, D = 70 nm, h = 380 nm, and the vertical 

dashed line indicates h = 380 nm for comparison. The inset shows a 

schematic diagram of the tapered "moth eye" structures for which the 

simulations were performed. (b) Simulated transmittance spectra of 

tapered pillar structures with P = 200 nm and D = 70 nm at λ = 500 nm, 

θ = 85o,  as a function of top diameter (W) under 45o polarization. The 

inset shows a schematic diagram of the tapered pillar structures for 

which the simulations were performed. ............................................61 

Figure 3.4: (a) Measured transmittance spectra of quartz, and cylindrical nanopillar 

structures with P = 200nm, h = 350nm, and D = 50, 90, or 100 nm. (b) 

Measured (solid lines) and simulated (dashed lines) transmittances at λ = 

500 nm, as functions of angle of incidence (θ) for quartz substrate and 

structures with P = 200 nm, h = 350 nm, and D = 50, 90, or 100 nm 

under TE polarization. ......................................................................62 

Figure 3.5: (a) Measured transmittance spectra of quartz, and cylindrical nanopillar 

structures with P = 200nm, h = 350nm, and D = 50, 90, or 100 nm. (b) 

Measured (solid lines) and simulated (dashed lines) transmittances at λ = 

500 nm, as functions of angle of incidence (θ), for quartz substrate and 

structures with P = 200 nm, h = 350 nm, and D = 50, 90, or 100 nm 

under TM polarization. .....................................................................64 



xxi 
 

Figure 3.6: (a) Schematic diagram of "motheye" and "nanoisland" antireflection 

nanostructure integrated with GaAs solar cell. (b)-(d) Key steps in 

fabrication process of "motheye" structures on PET (e) SEM image of a 

"motheye" nanostructure on PET substrate. (f)-(h) Key steps in 

fabrication process of "nanoisland structure" (i) SEM image of a 

"nanoisland" structure on Al2O3/TiO2 bilayer antireflection coating.66 

Figure 3.7: (a) Measured transmittance spectra of PET (dashed line) and "motheye" 

patterned PET with H1=300nm, 400nm, 500nm, and 600nm (solid lines) 

under TE illumination. (b) Measured transmittance spectra at 075θ =  

for PET and "motheye" patterned PET. ............................................67 

Figure 3.8: (a) Measured transmittance spectra of PET (dashed line) and "motheye" 

patterned PET with H1=300nm, 400nm, 500nm, and 600nm (solid lines) 

under TM illumination. (b) Measured transmittance spectra at 075θ =  

for PET and "motheye" patterned PET under TM illumination. ......68 

Figure 3.9: (a) Schematic diagram of (i) "nanoisland" on Al2O3/TiO2 on GaAs solar 

cell and (ii) bilayer antireflection coating on GaAs solar cell. (b) 

Simulated absorption as functions of wavelengths and D2 at 0oθ =  and 

80oθ = . The inset shows the simulated transmittance as functions of D2 

and wavelengths of an Al2O3 "nanoisland" on Al2O3 bulk. (c) Measured 

external quantum efficiency of structures (i) (solid lines) and (ii) (dashed 

lines) under different angle of incidences. ........................................70 



xxii 
 

Figure 3.10: (a) Schematic diagrams of (i) "moth-eye" and "nanoisland" integrated 

with bilayer antireflection coating, (ii) "moth-eye" with bilayer 

antireflection coating, (iii) plane PET on "nanoisland" integrated with 

bilayer antireflection coating, and (iv) PET on bilayer antireflection 

coating. (b) Measured external quantum efficiencies as functions of 

wavelength and angle of incidences for structures (i)-(iv). (c)(d) 

Measured short circuit current and ratio as a function of angle of 

incidence for structure (i)-(iv). ..........................................................71 

Figure 4.1: (a) Schematic diagram of a birefringent particle whose extraordinary axis 

is misaligned to the external electric field (E). Torque is generated when 

the induced polarization (P) is not aligned to the electric field (E). The 

angle between electric field and extraordinary axis (χe) is denoted as θ. 

(b) Schematic diagram of the torque detection in OTW. The torque 

signal is measured by detecting the imbalance of left- and right-circular 

polarized components of the scattered beam. PBS: polarizing beam 

splitter. (c) Schematic of OTW setup using fabricated quartz cylinders 

for single molecule experiments. The force and torque exerted on the 

bio-molecule are controlled by adjusting the polarization state of laser 

and the surface position. ...................................................................75 



xxiii 
 

Figure 4.2: Schematic diagram of the fabrication process flow and scanning electron 

micrograph at each step: (a) A single crystal quartz substrate is covered 

with 10 nm Cr/100 nm SiO2, followed by NSL using 2 μm diameter PS 

nanospheres. (b) A series of dry etching processes is used to reduce the 

sphere size and transfer the hexagonal lattice pattern to the underlying 

Cr layer. (c) Nanocylinders formed from single crystal quartz by dry 

etching using Cr mask which is later removed by wet etch process. (d) 

Nanocylinder buried in PMMA with only the top surface exposed for 

amino-group functionalization. (e) Single quartz cylinder after 

mechanical removal. .........................................................................78 

Figure 4.3: (a)(b) Distribution and box chart of nanocylinder diameter and height 

collected as a function of position from wafer center. The top and 

bottom of the box are the first and third quartiles. The median and mean 

are shown as the band and square symbol inside the box.  The top and 

bottom whiskers stand for the standard deviation coefficient (SDC) 

equal to 1. (c)(d) Distributions of nanocylinder diameter and height 

fitted with normal distribution. .........................................................81 

Figure 4.4. (a) Measured power spectra of torque signal for birefringent 

nanocylinders and polystyrene spheres with diameter of 820nm. The 

solid line indicates the Lorentzian fit for birefringent nanocylinders. (b) 

Torque signal of a fixed birefringent nanocylinder scanned by a rotating 

polarization vector. (c) Measured rotation-extension curve for a double-

stranded DNA at different fixed forces. Gray dashed line indicates 

model prediction for low force limit. ................................................89 



 1 

Chapter 1: Introduction 

Manipulation of light via subwavelength nanostructures is currently a subject of 

intense research interest, and is enabling the development of nanostructured photonic 

crystal, metamaterials and metasurfaces that provide a variety of new optical and 

electromagnetic functionalities, or that enable existing functionalities to be realized in 

new and often extremely compact form factors[1-4]. Most such concepts involve 

structures fabricated in a rigid, single-layer, planar geometry[5-11]. However, three-

dimensional plasmonic nanostructures have been shown to enable additional possibilities 

for engineering optical chirality[12], negative refractive indices[13], and molecular 

sensing behavior[14]. Furthermore, interest in highly nonplanar geometries and 

fabrication on flexible or stretchable substrates[15-18] has been fueled by applications 

such as transformation optics[19], cloaking[20-21], and imaging[22]. The ability to 

fabricate plasmonic nanostructures with multiple plasmonic layers, over large areas, and 

on flexible substrates could enable the realization of additional new optical 

functionalities, and the application of plasmonic nanostructures in a broad range of new 

settings in which structural flexibility, conformation to curved or irregular surfaces, large 

areas, and/ or low cost are required.  

Chapter 2 summarizes the experimental demonstration, numerical simulation and 

theoretical modeling of optical resonant nanostructures. In these results, we focus on the 

optical properties and performance of multilayer metasurfaces. For a single layer 

metasurface structure, the main metasurface resonance is shown to be independent of 

polarizations and incident angle, and sensitive only to the material composition, size and 

periodicity of a single element. Higher order resonance associated with surface plasmon 

polariton coupling and Wood's anomaly are sensitive to angle of incidence, and less 
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pronounced compared with the metasurface resonance. For multilayer metasurface 

structures, high and broad reflectance with low absorption are shown to be achieved by 

arranging each layer under Bragg criteria. Interaction between different metasurfaces is 

dominated by Fabry-Perot resonance. Fabry-Perot modes which reside between two 

metasurfaces with different distances are also demonstrated in experiments and 

confirmed with an analytical model and numerical simulations. A non-conventional m=0 

resonance is also supported due to the wavelength-dependent phase-shift from the 

metasurface. These characteristics are also shown to be insensitive to the interlayer 

misalignment and defects within individual layers, and enable possibilities of using rapid, 

large-area, nanoscale nanosphere lithography to fabricate these devices. An experimental 

demonstration via the advantages of robust properties robust to interlayer misalignment, 

insensitivity to angle of incidence, and large-area nanosphere lithography fabrication 

method on flexible substrate enables the wavelength-selective focusing at optical 

wavelengths. Finally, optimization of a proposed photovoltaic-thermal system based on a 

flexible wavelength-selective metasurface is discussed. 

Chapter 3 summarizes the experimental demonstration, numerical simulation and 

theoretical modeling of subwavelength anti-reflection coating. In these results, we first 

focus on optimization and realization of an antireflection coating nanostructure on glass. 

Simulations and experiments reveal that an optimized nanopillar structure can achieve 

transmittance >85% for angles of incidence in excess of 70o at visible wavelengths and 

shown to be superior to tapered "moth-eye" structures with low dimensions. We then 

improved our fabrication process to realize a "moth-eye" nanostructure with significant 

height to provide a subwavelength graded-index profile on a flexible polymer substrate 

for packaging. The demonstrated transmittance is ~85% at 75o which is ~2x improvement 

over unpatterned polymer substrate. Further improvements and optimizations via 
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"nanoisland" structures enabled by nanosphere lithography on interfaces between 

conventional bilayer antiflection coating and packaging materials show much better 

performance at large angles of incidence. Finally, we integrated the "moth-eye" structure 

on polymer together with a "nanoisland" structure on a bilayer antiflection coating 

integrated with GaAs solar cells. The measured external quantum efficiency and short 

circuit current show enhancement ~1.06x (at 0o) and 1.67x (at 80o). 

Chapter 4 summarizes the experimental demonstration and theoretical modeling 

of torsional and extensional dynamics of single DNA molecules via optical tweezers. 

First, we demonstrated a low-cost, large throughput fabrication method via nanosphere 

lithography for birefringent nanocylinders. These birefringent nanocylinders have been 

shown to be stably trapped in the optical torque wrench setup and provide a suitable 

platform for studying single-molecule dynamics. 

Part of section 2.2 was published in Applied Physics Letters 2011, P.-C. Li, Y. 

Zhao, A. Alu, and E. T. Yu [23]. Part of section 2.3 was published in Journal of 

American Society B 2013, P.-C. Li, and E. T. Yu [24]. Part of section 2.4 was published 

in Journal of Applied Physics 2013 [25]. Part of section 3.2 was published in Journal of 

American Society B 2013, P.-C. Li and E. T. Yu [26]. Part of section 3.3 is now under 

preparation for publication. Part of chapter 4 has been accepted by Nanotechnology. 
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Chapter 2: Flexible, Large-Area, Wide-Angle, Wavelength-Selective 
Metasurface for Solar Energy Harvesting 

2.1 MOTIVATION 

Concentrating solar power (CSP) systems employing parabolic trough collectors 

and thermal absorbers represent a well-established and relatively mature technology that 

has delivered proven performance over multiple decades of real-world operation. CSP 

systems also possess the important advantage of providing energy storage in the form of 

heat. Photovoltaic (PV) conversion of solar power to electricity represents a similarly 

established technology offer great in promise for continued reductions in cost and 

increases in efficiency, but does not by itself provide energy storage. A hybrid system 

incorporating both PV and thermal conversion could enable major improvements in 

performance combined with the provision of both variable electricity and dispatchable 

heat. However, CSP rely on photothermal processes which convert solar energy to heat 

with efficiency which is relatively constant over the entire solar spectrum, depending on 

the optical loss of the coating on the thermal absorber. The efficiency can be increased by 

raising the thermal absorber's operating temperature due to Carnot cycle limit; however, 

for temperature > 600oC there is high technical risk due to stability of pumping and 

storing these high temperature fluids. On the other hand, photovoltaic (PV) processes are 

wavelength dependent and efficiency is closely related to the bandgap energy of the 

absorbing material. Photon energy below the bandgap cannot be absorbed and is often 

dissipated as heat within the cell; photon energy larger than the bandgap can only be 

partly converted into electricity, and the remainder is dissipated as heat. Therefore, the 

optimal way to utilize solar energy is to spectrally split the optical wavelength portion (

on offλ λ λ< < ) into PV converter, which has higher efficiency in this region, and the 

remainder ( onλ λ<  and offλ λ> ) to a thermal converter as shown in Figure 2.1. 
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Figure 2.1 (a) Schematic diagram of a photovoltaic-thermal hybrid system. (b) Spectral 
distributions of PV and thermal absorber from an AM 1.5 solar spectrum.  

A key requirement for efficiently combining PV and thermal conversion is the 

ability to direct the portions of the solar spectrum most efficiently converted to electric 

power via PV – typically the visible and near-infrared portions of the spectrum – to a 

high performance PV cell, and those less amenable to photovoltaic conversion – typically 

ultraviolet (UV) and infrared (IR) light – to a thermal absorber. Conventional optical 

components such as dichroic reflectors provide very good capability for wavelength-

selective transmittance and reflectance, but have constraints on bandwidth and a 

substantial dependence of transmittance and reflectance on angle of incidence. Because 

the optical concentrator structures in CSP systems inevitably yield reflected light 

propagating over a range of angles, new optical components that can achieve wavelength-

selective optical transmittance and reflectance independent of the direction and 

polarization of incident light are required. Furthermore, advanced optical designs are 

essential to maximize optical concentration factors, thereby reducing cost and increasing 

efficiency.  
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2.2 SINGLE-LAYER METASURFACE 

In section 2.2, we discuss the modeling, fabrication and characterization of a 

single layer plasmonic metasurface with subwavelength features, whose dominant 

resonance is independent of incident angle and polarization, and is sensitive only to the 

material composition and geometry of a single element. Higher-order resonances, 

associated with surface plasmon polariton (SPP) coupling and higher diffraction orders, 

are sensitive to the incident angle and the array periodicity, and less pronounced 

compared with the metasurface resonance. Numerical simulations and theoretical 

analyses highlight a clear physical difference between SPP resonances and the dominant 

metasurface collective resonance, whose properties may be of great interest for plasmonic 

solar cells and subwavelength color filters. 

2.2.1 The concept of metasurface 

Our results can be understood by the concept of a metasurface, a periodic array of 

scattering elements whose dimensions and periods are small compared with the operating 

wavelength. These features allow for characterization in terms of dipolar polarizabilities 

of each scatterer. Imposition of the generalized sheet transition conditions[23-24] 

(GSTCs) for average electromagnetic fields across the surface allows the boundary-value 

problem to be solved for the dominant diffraction order. The subwavelength period of the 

metasurface ensures that all higher-order diffraction terms are evanescent, implying that 

the collective resonance of the array is weakly dependent on the angle of incidence. 

Under this assumption, we can characterize the metasurfaces using generalized dyadic 

polarizabilities, which describe the level of averaged electric and magnetic polarization 

for applied electric and magnetic fields. We assume them to be diagonal in a suitable 

reference system, due to the symmetries of the metasurface elements: 

 
xx yy zz

ES ES ES ESxx y y zzα α α α= + +
   

, (2-1) 



 7 

 
xx yy zz

MS MS MS MSxx y y zzα α α α= + +
   

. (2-2) 

Under this definition, the generalized polarizabilities include the coupling effects 

among the elements in the surface. In the limit of small periods, the polarizabilities do not 

depend on the angle of incidence and are dominated by the individual element response, 

but for larger periods spatial dispersion effects may arise. For the simple shapes 

considered here (patches), in the subwavelength limit electric effects are expected to 

dominate the magnetic ones. The reflection and transmission coefficients can then be 

derived as a function of the electric and magnetic generalized polarizabilities. The 

resonance conditions leading to total reflection in the limit of zero losses may be obtained 

as a function of incident angle and polarization as[25] 

 
2 2
0 ( sin ) 4xx yy zz

MS ES MSk α α α θ− = for TE, (2-3) 

 
2 2
0 ( sin ) 4xx yy zz

ES MS ESk α α α θ− = for TM, (2-4) 

where k0 is the free-space wave vector, and TE and TM stand for transverse 

electric and transverse magnetic polarization, respectively. 

 

Figure 2.2: Schematic diagram of a metasurface consisting of arbitrary shape scatters on a 
surface. The rough size of the scatter is denoted as W, and the incident 
wavelength is λ. 

2.2.2 Metasurface resonance 

For these studies in section 2.1, 1×1 mm2 areas on a glass substrate coated with 

150 nm indium tin-oxide (ITO) were patterned with two dimensional arrays of square 
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patches using electron beam lithography. The array side length and periodicity of each 

patch are denoted by W and L, respectively. A 30nm-thick Au layer is deposited by 

electron beam evaporation, followed by a standard lift-off process to create the Au patch 

structure. A schematic diagram of the sample structure and experimental geometry, and a 

scanning electron micrograph of an Au patch array, are shown in Figure 2.3(a). Figure 

2.3(b)(c) shows a series of optical microscope images of fabricated square patches array 

(~100μm x 100μm for each) as functions of W, L, and materials. For Ag metasurfaces, we 

observe the reflected color changes from blue (W~60nm), green (W~80nm) to yellow 

(W~120nm); on the other hand, the reflected colors of different dimension of Au 

metasurface are all yellow. 

 

Figure 2.3: (a) Schematic diagram of the metasurface structure on an ITO coated glass 
substrate under illumination with TE and TM polarization respectively. The inset shows a 
scanning electron micrograph of a L = 200 nm, W = 100nm device. (b)(c) Optical 
microscope image of E-beam lithography fabricated square array metallic patches as 
function of W and L with different deposited metal, Ag, and Au, respectively. The square 
size is ~100 μm x 100 μm. 

Optical transmittance measurements in these studies were performed using 

collimated light from a halogen lamp spectrally resolved by a monochromator. The 

monochromatic light is linearly polarized by a Glan-Thompson polarizer before it reaches 

the device. The device is mounted on a rotating stage, so that measurements can be 

performed at different incident angles θi. Numerical simulations of the field distribution 
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in these structures are based on Rigorous Coupled Wave Analysis (RCWA)[26-27] and 

enhanced with Modal Transmission Line (MTL) theory.[28] The material dispersion of 

Au and glass are modeled using the Lorentz-Drude model with published material 

parameters,[29] which fit well with experimental measurements.[30] The optical 

properties of ITO can vary due to different deposition methods, so we fit its dielectric 

constant from our measurements, and we neglect here its weak frequency dispersion in 

the optical regime. 

The Au structures analyzed here have typical dimensions W, L of 100-400 nm, 

and thickness of 30 nm, ensuring that the transverse components of the electric 

polarizability dominate the ones in the normal direction ( 0zz
ESα ≈ ). For oblique TM 

incidence, a normal magnetic dipole moment may in principle be induced on the 

metasurface, even in the limit of zero thickness, but due to the simple shape of our 

structures, this magnetic response is expected to be negligible in the subwavelength 

regime. These considerations enable resonant conditions to be achieved that are weakly 

dependent on the incidence angle, as 2sinyy zz
ES MSα α θ>>  and 2sinyy zz

MS ESα α θ>>  in Eqs. 

(2-3) and (2-4). 

 

Figure 2.4: Transmission spectra of device shown schematically in Figure 2.3(a) 
illustrated schematically in Figure 2.3(a) with L = 200 nm, W = 100 nm for 
(a) TE, (b) TM polarization. Solid and dashed lines represent the measured 
and simulated spectra, respectively. 



 10 

2.2.3 Surface plasmon resonance and Wood's anomaly 

Similar experiments have been conducted with larger Au patches, L = 400 nm, W 

= 200 nm, as shown in Figure 2.5. From both the experimental data and simulations, we 

notice that the main metasurface resonant dip (~900 nm) remains unchanged under 

different polarization and incident angles, but is shifted to longer wavelengths compared 

with the L = 200 nm, W = 100 nm device (~680 nm), as expected due to the larger size of 

the individual metasurface elements.[31] In this case, the array period is still substantially 

smaller than the wavelength, and the polarizability model holds, yielding essentially no 

dependence on the incidence angle. 
  



 11 

 

 

Figure 2.5: Transmission spectra of a L = 400 nm, W = 200 nm device for different 
incident angles with (a) TE and (b) TM polarization. Solid and dashed lines 
represent measured and simulated spectra, respectively. Transmission 
spectra at different incident angles have been offset vertically by 35% each 
for clarity. Different colored arrows indicate different SPP-coupled modes: 
green, (±1,0) and (0,±1); orange, (±1,0); brown, (0,-1). Different colors of 
circles indicate different orders of Wood’s anomalies: green, (±1,0) and 
(0,±1); orange, (±1,0); brown, (0,-1). 

In addition to the main metasurface resonance, we notice a local minimum 

appearing at ~600 nm (indicated by a green arrow) for both TE and TM polarization 

when 0o
iθ =  in Figure 2.5. As θi increases, this local minimum starts to split into two 

smaller dips (indicated by orange and brown arrows) which gradually shift away from 

each other. This effect is associated with the coupling of incident light with an SPP 
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supported by the grating. Conservation of momentum imposes the following condition 

for SPP coupling: [32] 
 

1 2SPP in x yk k m G m G= + +
   

, (2-5) 

where (2 ) ( ) / ( ( ))SPP ITO Au ITO Auk π λ ε ε λ ε ε λ= +  and (2 )sinin ik π λ θ=  are the parallel 

components of the wave vector of the SPP and the incident plane wave, respectively.  

1 (2 )G L xπ=


  and 2 (2 )G L yπ=


   represent the 2D reciprocal lattice grating basis 

vectors, mx and my are integers corresponding to different diffraction orders. Eq. (2-5) can 

be simplified to obtain 
  

2 2( ) sin1 ( ) ( )
( )

yITO Au x i

ITO Au

mm
L L

ε ε λ θ
λ ε ε λ λ

= + +
+

, (2-6) 

where λ is the wavelength of incident light and εITO  is the dielectric constant of ITO. TM 

polarization supports the same resonant wavelengths, due to the symmetries of our 

geometry. We have assumed the dielectric constant of ITO to be ~1.91ε0, which is its 

bulk permittivity in the optical regime. We have also used experimental data for the Au 

permittivity.[30] To interpret our results, we examine the case of normal incidence in 

Figure 2.5(a)(b), where the local minimum originates from the grating modes (±1,0) and 

(0,±1). Since they are four-fold degenerate, this resonance is more pronounced compared 

with oblique incidence. As the incident angle becomes larger, mode (±1,0) (orange 

arrows) and (0,-1) (brown arrows) are no longer degenerate, so they gradually shift apart 

as predicted by Eq. (2-6). At large incident angles (θi > 40o), the SPP resonant dip 

remains fixed at 700 nm, due to the anti-crossing of the SPP resonance with the dominant 

metasurface resonance, which is not affected by the incidence angle. 

Further inspection of the SPP resonances in Figure 2.5 (a)(b) reveals that they are 

always accompanied by sharp transmission peaks, indicated by orange and brown circles. 
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These are associated with Wood's anomalies,[33] and can be described by replacing SPPk  

with /subn λ  in Eq.(2-6), where subn  is the effective refractive index of the substrate. Our 

numerical and experimental results indicate that subn ~1.6, which is slightly higher than 

the refractive index of the bare ITO ( ~ 1.4ITO ITOn ε= ), due to the influence of the Au 

layer. Similar to SPP-coupled grating modes, we observe a sharper Wood’s anomaly peak 

at θi = 0o, caused by four-fold mode degeneracy compared with the spectra under non-

normal incident light. The peak splits into two minor ones and they gradually move away 

from each other as we increase θi; anti-crossing behavior is observed when  θi > 40o. 

 

 

Figure 2.6: Band diagrams extracted from theoretical and measured spectral feature for 
SPP-coupled grating modes (SPP), Wood’s anomaly (W), and metasurface 
resonances: (a) TE, L  = 400 nm, W  = 200 nm, (b) TM, L = 400 nm, W = 
200 nm. 

We summarize the behavior of the SPP-coupled grating modes, Wood's anomalies 

and metasurface resonances in the band diagrams shown in Figure 2.6. Generally, the 
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theory and experimental data are in excellent agreement for θi < 40o. In the range θi > 40o, 

the anti-crossing among the different bands shows some expected detuning, due to the 

dominant response of the metasurface resonance. As expected, the metasurface resonance 

shows a flat angular response, dominated by the metasurface element resonances, 

consistent with Eq. (2-6) and the previous discussions. 

2.2.4 Conclusion 

In conclusion, we have modeled, fabricated and characterized the optical 

transmission spectra of two-dimensional Au patch arrays. We have examined different 

periodicities, which determine the properties of the metasurface resonance and of SPP-

coupled grating modes. The major difference between these two resonant phenomena 

consists in their sensitivity to the incident angle, due to the different underlying 

phenomena: the collective metasurfaces resonance is based on the plasmonic resonance 

of an individual metasurface element, and only weakly affected by the array coupling, 

whereas the SPP-coupled grating modes are lattice effects that are very sensitive to the 

incidence angle. High tolerance of incident angles and polarization in transmission and 

reflection of the metasurface resonance can be potentially useful for broad-angle energy 

harvesting applications such as plasmonic solar cell and for other devices, such as 

subwavelength plasmonic color filters.  
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2.3 DOUBLE-LAYER METASURFACE 

In section 2.3, we discuss the design, experimental demonstration, and analysis of 

structures consisting of multiple layers of two-dimensional plasmonic arrays, with each 

individual layer constituting a subwavelength-scale metasurface.[14, 34] These structures 

are shown to provide high reflectivity and low transmittance at optical wavelengths 

across a bandwidth of ~100 nm that remains fixed under variations in angle of incidence 

from 0° to 30°.  In this respect, these structures provide new functionality compared to 

more conventional optical components such as dichroic mirrors, which provide high 

reflectivity over a specific range of wavelengths but are highly sensitive to variations in 

angle of incidence.[4] Designs are demonstrated that provide either polarization-

independent or polarization-sensitive optical behavior, as well as robustness to large 

variations in vertical alignment between metasurface layers.  These behaviors are shown 

to be a consequence of plasmonic resonances in metal nanostructures that constitute the 

individual metasurface layers, interference effects between metasurface layers, scattering 

phase shifts at each metasurface, and the interplay among these phenomena. 

 

2.3.1 Fabrication process of multilayer metasurface via e-beam lithography 

Figure 2.7 shows the key fabrication processes of a multilayer metasuface 

structure. (a) A set of alignment marks with Cr (5 nm)/Au (30 nm) were defined via 

electron-beam lithography. (b) The first layer of metasurface was created by electron-

beam lithography and followed by deposition of Ge (2 nm)/Ag (30 nm) using electron-

beam evaporation. (c) The first layer of metasurface was planarized by spin-on glass with 

different dilution to control the thickness. The entire structure is then baked for 2 hours to 

remove solvents from spin-on glass. (d) The second layer of metasurface is defined by 

electron-beam lithography with reference to the alignment marks of the first layer. 
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Figure 2.7: Key fabrication process of a multilayer metasurface. 

2.3.2 Metasurface resonance 

Figure 2.8 shows schematic diagrams and scanning electron micrographs of the 

multilayer metasurface structures employed in these studies, along with the measurement 

geometries for transverse electric (TE) and transverse magnetic (TM) polarizations. All 

structures were fabricated on 0.5 mm thick glass substrates (CoreSix) polished to yield a 

surface roughness of 0.5 nm. The individual Ag elements consist of 30 nm high square 

patches of side length W, and for each metasurface layer these are arranged in a square 

array of period L. Between individual metasurface layers, the sample structure is 

planarized using a spin-on glass whose thickness, D, is controlled via dilution of the spin-

on-glass solution and spin coating speed.  For a structure containing two metasurface 

layers with structure (side length and array period) given by W1, L1 and W2, L2, 

respectively, the alignment between the individual metasurfaces is characterized by Sx, 
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and Sy, as indicated in Figure 2.8. Since the periods of each metasurface layer are related 

by a rational multiple N/M, i.e., NL1 = ML2, we define the translational offsets in the 

plane of the metasurface, Sx, and Sy, to be the minimum distances in the x- and y-

directions, respectively, that one metasurface layer would have to be shifted such that the 

centers of individual array elements spaced by NL1 = ML2 are perfectly aligned. 

 

 

Figure 2.8: A schematic diagram of the multilayer metasurface structure on a glass 
substrate under (a) TE and (b) TM polarized illumination respectively. L1, 
W1 and L2, W2 indicate the periodicity of the array and size of the individual 
metallic nanostructures for the bottom and top metasurface layers, 
respectively.  The translational alignment parameters Sx and Sy are indicated 
in (b). The insets show the scanning electron micrographs of an aligned (Sx = 
Sy = 0), and shifted (Sx = Sy = 100 nm). The scale bars are 100 nm. 

Previous work has shown that a single-layer plasmonic metasurface structure can 

provide low optical transmittance, due to the excitation of plasmonic resonances within 

individual metasurface elements, over a narrow range of wavelengths that remains fixed 

over angles of incidence ranging from 0° to approximately 60° off normal.[35] Figure 2.8 

(a)(b) shows optical transmittance measured for a single-layer metasurface structure 
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consisting of 100 nm × 100 nm × 30 nm Ag patches (i.e., W = 100 nm) arranged in a 

square array with period L=200nm, as a function of wavelength, angle of incidence, and 

polarization of incident light.  Figure 2.8(c)(d) shows the same quantities for a second 

single-layer metasurface structure consisting of a square array of 30nm high Ag patches 

with W = 170 nm and L = 300 nm.  As illustrated in the figures, the single-layer 

metasurfaces produce a minimum in transmittance coinciding approximately with the 

plasmonic resonance wavelengths in the individual Ag patches.  For the metasurface with 

W = 100 nm and L = 100 nm [Figure 2.9 (a)(b)], the transmittance is very weakly 

dependent on incident angle θi over the range θi = 0°-60°.  For the structure with W = 170 

nm and L = 300 nm [Figure 2.9 (c)(d)], the minimum in transmittance is shifted to 

slightly longer wavelengths due to the larger size of the individual Ag structures, and 

local peaks in transmittance appear at wavelengths near the plasmonic resonance 

wavelength due to Wood’s anomaly and coupling to surface plasmon modes.[35] 
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Figure 2.9: (a)(b)(c)(d) Measured transmission spectra for L1 = 200 nm, W1 = 100 nm, and 
L2 = 300 nm, W2 = 170 nm single layer metasurfaces under TE and TM 
polarized illumination, respectively. (e)(f)(g)(h) Measured (solid lines) and 
simulated (dashed lines) transmission spectra for an aligned multilayer 
metasurface structure, L1 = 200 nm, W1 = 100 nm, L2 = 300 nm, W2 = 170 
nm, D = 350 nm, and Sx = Sy = 0 under TE and TM polarized light 
respectively. 

Figure 2.9 (e)(h) shows measured and numerically simulated optical transmittance 

spectra for an aligned (Sx = Sy = 0) multilayer structure consisting of a lower metasurface 

with W1 = 100 nm and L1 = 200 nm, an upper metasurface with W2 = 170 nm and L2 = 300 

nm, and a spin-on glass layer of thickness D=350nm separating the two metasurface 

layers. The measured and numerically simulated transmittance spectra are in excellent 

agreement, and demonstrate that the multilayer structure is able to produce a deep, broad 
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minimum in transmittance – transmittance < 1% over wavelengths from 550 nm to 650 

nm – for both TE and TM polarizations and for angles of incidence θi from 0° to 30°.  For 

angles of incidence from 0° to 20°, the transition to high optical transmittance (30-50% or 

greater) occurs over a narrow wavelength range – ~30-50 nm – at both shorter and longer 

wavelengths.  For incident angles of 30° or greater, a local maximum in transmittance 

begins to appear at ~650 nm, and becomes more prominent as θi increases. Simulated 

reflectance, transmittance, and absorption spectra as functions of wavelength, 

polarization, and incident angle indicate that reflectance within the low transmittance 

band is > 75%. 

2.3.3 Fabry-Perot resonance 

Detailed numerical simulations provide insight into the origin of these behaviors, 

and into opportunities to engineer specific optical properties and realize designs that are 

robust to variations and imperfections that are most likely to arise in practical 

manufacturing processes. Figure 2.10 shows numerically simulated transmittance spectra 

under TE-polarized illumination for a multilayer structure containing two metasurfaces 

with W1 = 100 nm, L1 = 200 nm and W2 = 170 nm, L2 = 300 nm, separated by a spin-on 

glass dielectric layer with thickness D ranging from 40 nm to 600 nm.  The layers are 

vertically aligned.  In Figure 2.10 (a), corresponding to normally incident illumination (θi 

= 0o), we observe that there is a deep minimum in transmittance extending approximately 

from 550 nm to 650nm that is present for all values of D.  The wavelength boundaries of 

this region are modulated due to the presence of local peaks in transmittance, 

corresponding approximately to the solid lines in the figure, that occur at specific 

wavelengths for a given value of metasurface layer separation D. These transmittance 

peaks can be interpreted as arising from Fabry-Perot resonances created by the 
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reflectance and transmittance properties of each metasurface, appropriately modified to 

account for the wavelength-dependent phase shift produced by each. 

 

 

Figure 2.10: Simulated transmittance spectra, as function of wavelength and dielectric 
layer thickness D for a multilayer metasurface structure with L1 = 200 nm, 
W1 = 100 nm, L2 = 300 nm, W2 = 170 nm, and Sx = Sy = 0 for (a) θi = 0o, (b) θi 
= 30o, and (c) θi = 60o under TE polarized light. The solid and dashed lines 
represent Fabry-Perot resonance wavelengths as given by Eq. (3) with and 
without, respectively, inclusion of the metasurface phase shift given by Eq. 
(2-8). 

For conventional Fabry-Perot resonances, the wavelengths at which peaks in 

optical transmittance through a dielectric cavity of thickness D would occur are given by 

 
2 dn D
m

λ = ,    (2-7) 

where m is a positive integer corresponding to different cavity modes, nd is the refractive 

index of the dielectric material, and λ is the wavelength in free space.  The Fabry-Perot 

resonant wavelengths given by Eq. (2-7) with nd and D taken to be the refractive index 

and thickness, respectively, of the spin-on glass, are indicated by the dashed lines in 

Figure 2.10 (a), revealing that this expression provides at best a very approximate 

estimate of the wavelengths at which such resonances occur in the multilayer metasurface 
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structure.  Much better agreement is obtained by accounting for the wavelength-

dependent phase shift incurred upon interaction of light with the metasurface layers.[36-

37] Specifically, the total wavelength-dependent phase shift produced by the two 

metasurfaces is given approximately by[37] 

 ( ) 1 2 1 1tan
r

cπϕ λ
γ λ λ

−   
≈ −  

  
, (2-8) 

where γ is a phenomenological damping constant obtained by fitting to 

transmittance or reflectance spectra, and λr is the resonance wavelength in the multilayer 

metasurface structure.  Given this phase shift, and following a recently developed 

approach for analysis of refraction in the presence of phase shifts,[34] the Fabry-Perot 

resonance condition is modified from that given by Eq. (2-7) to become 

 
( )

2 22 sind in
D

m
θ

λ
ϕ λ π
−

=
−

,    (2-9) 

where φ(λ) is given by Eq. (2-8).  The solid lines in Figure 2.10 (a) are the Fabry-

Perot resonant wavelengths given by Eq. (2-9) with nd and D taken to be the refractive 

index and thickness, respectively, of the spin-on glass, and with γ = 3×105 s-1 and λr = 

650 nm determined by fitting to the computed transmittance spectra.  We see that 

agreement between the Fabry-Perot resonant wavelengths computed using Eq. (2-9) and 

the transmittance peaks present in Figure 2.10 (a) is excellent. Figure 2.10 (b) and (c) 

show numerically simulated transmittance spectra and Fabry-Perot resonant wavelengths 

computed using Eq. (2-9) for incident angles of 30° and 60°.  Once again, excellent 

agreement is observed between the resonant wavelengths computed using Eq. (2-9) and 

the peaks observed in the numerically simulated transmittance spectra, providing clear 

evidence of the role of metasurface phase shifts in influencing optical transmittance in 

these structures. 



 23 

 

Figure 2.11: (a) Simulated transmittance spectra for θi = 0o and θi = 60o under TE 
polarization. Dashed, solid, and dotted lines correspond to dielectric layer 
thicknesses D=300nm, 350nm, and 380nm, respectively.  (b)(c) Measured 
transmittance spectra for multilayer metasurface structures with L1 = 200 
nm, W1 = 100 nm, L2 = 300 nm, W2 = 170 nm, Sx = Sy = 0 and D = 300 nm, 
350 nm, and 380 nm, following the same plot scheme as in (a), under TE or 
TM polarization, respectively. In parts (b) and (c), transmittance spectra at 
different incident angles have been offset vertically by 50% each for clarity. 

The existence of transmittance peaks associated with phase-dependent Fabry-

Perot resonances in multilayer metasurface structures offers an opportunity to optimize 

the wavelength sensitivity of transmittance via judicious selection of the thickness D of 

the spin-on glass layer. Figure 2.11 (a) shows numerically simulated transmittance 

spectra for multilayer metasurface structures with W1 = 100 nm, L1 = 200 nm, W2 = 170 

nm, L2 = 300 nm, D = 250-450 nm, and Sx = Sy = 0, for light incident with TE 

polarization. While a broad transmittance minimum is present over the entire range of 



 24 

values of D shown, the positioning of the Fabry-Perot resonance transmission peaks at 

the edges of this transmittance minimum for D ≈ 300-380 nm allows D to be used a 

tuning parameter to produce (a) higher-contrast transitions with wavelength between low 

and high transmittance, and (b) moderate shifts in the center wavelength of the 

transmittance minimum.  These trends are confirmed in experimental measurements. 

Figure 2.11 (b) and (c) show measured transmittance spectra for multilayer metasurface 

structures with W1 = 100 nm, L1 = 200 nm, W2 = 170 nm, L2 = 300 nm, and D = 300 nm, 

350 nm, and 380 nm.  The layers are vertically aligned, with Sx = Sy = 0.  Measurements 

for angles of incidence of 0° and 30°, and for both TE and TM polarization, are shown.  

The positioning of the Fabry-Perot transmittance peak at ~700nm for D = 350 nm and D 

= 380 nm leads to a substantial increase in contrast between the low- and high-

transmittance regions of the measured spectra on either side of the transmittance peak.  

Furthermore, the shift in position of the Fabry-Perot transmittance peak between D = 350 

nm and D = 380 nm allows the center wavelength of the transmittance minimum to be 

shifted by ~50 nm while maintaining a fixed bandwidth of ~100 nm.  

The existence of transmittance peaks associated with phase-dependent Fabry-

Perot resonances in multilayer metasurface structures offers an opportunity to optimize 

the wavelength sensitivity of transmittance via judicious selection of the thickness D of 

the spin-on glass layer. Figure 2.11 (a) shows numerically simulated transmittance 

spectra for multilayer metasurface structures with W1 = 100 nm, L1 = 200 nm, W2 = 170 

nm, L2 = 300 nm, D = 250-450 nm, and Sx = Sy = 0, for light incident with TE 

polarization. While a broad transmittance minimum is present over the entire range of 

values of D shown, the positioning of the Fabry-Perot resonance transmission peaks at 

the edges of this transmittance minimum for D ≈ 300-380 nm allows D to be used a 

tuning parameter to produce (a) higher-contrast transitions with wavelength between low 
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and high transmittance, and (b) moderate shifts in the center wavelength of the 

transmittance minimum.  These trends are confirmed in experimental measurements. 

Figure 2.11 (b) and (c) show measured transmittance spectra for multilayer metasurface 

structures with W1 = 100 nm, L1 = 200 nm, W2 = 170 nm, L2 = 300 nm, and D = 300 nm, 

350 nm, and 380 nm.  The layers are vertically aligned, with Sx = Sy = 0.  Measurements 

for angles of incidence of 0° and 30°, and for both TE and TM polarization, are shown.  

The positioning of the Fabry-Perot transmittance peak at ~700 nm for D = 350 nm and D 

= 380 nm leads to a substantial increase in contrast between the low- and high-

transmittance regions of the measured spectra on either side of the transmittance peak.  

Furthermore, the shift in position of the Fabry-Perot transmittance peak between D = 350 

nm and D = 380 nm allows the center wavelength of the transmittance minimum to be 

shifted by ~50nm while maintaining a fixed bandwidth of ~100 nm.  

2.3.4 Robustness against interlayer misalignment 

Vertical alignment of nanoscale features is often a key concern in design and 

fabrication of multilayer or three-dimensional nanostructures.  For applications requiring 

fabrication at low cost or over large areas, it would be highly desirable to design 

structures whose performance characteristics are robust to variations in vertical 

alignment.  Because their properties depend primarily on plasmonic resonant phenomena 

in individual metallic nanostructures, and because interactions between these individual 

elements in the vertical direction do not play a significant role, the multilayer metasurface 

structures presented here are extremely robust to even large variations in vertical 

alignment, i.e., values of Sx and Sy that are substantial fractions of W or L for the 

individual metasurface layers. Figure 2.12 shows numerically simulated and measured 

optical transmittance spectra for a multilayer metasurface structure with W1 = 100 nm, L1 
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= 200 nm, W2 = 170 nm, L2 = 300 nm, D = 380 nm, and Sx = Sy = 100 nm.  We note that 

this is the maximum translational misalignment, relative to Sx = Sy = 0, that can occur for 

this structure.  Despite this misalignment, the measured optical transmittance spectra are 

nearly identical to those of the corresponding structure with Sx = Sy = 0 shown in Figure 

2.11 (b) and (c). Further simulations for translation misalignments (Sx = Sy = 0 to 100 nm) 

also confirm our experimental results. 

 

 

Figure 2.12: Measured and simulated  transmission spectra for a multilayer metasurface 
structure with L1 = 200 nm, W1 = 100 nm, L2 = 300 nm, W2 = 170 nm, D = 
380 nm, and Sx = Sy = 100 nm or Sx = Sy = 0 for different θi under (a) TE or 
(b) TM polarization. Transmittance  spectra at different incident angles have 
been offset vertically by 50% each for clarity. 

2.3.5 Conclusion 

In summary, we have designed, experimentally demonstrated, and analyzed both 

numerically and analytically a series of multilayer plasmonic metasurface structures that 

provide wide-angle, wavelength-selective, polarization-independent optical transmittance 
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and reflectance with performance that is robust to even severe vertical misalignment 

between individual plasmonic metasurface arrays constituting the complete multilayer 

structure. These characteristics are shown to be a consequence of high reflectivity 

associated with plasmonic resonances in each metasurface layer, phase shifts induced by 

interaction of light with the metasurfaces, and phase-dependent Fabry-Perot resonances 

associated with the multilayer stack. The insensitivity of the wavelength-dependent 

optical reflectance and transmittance to polarization and angle of incidence suggest 

potential use of these types of structures for a broad range of applications. Robustness to 

severe vertical misalignment between individual layers in a multilayer structure suggests 

that these structures can be highly amenable to low-cost, high-throughput fabrication 

processes. 
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2.4 FLEXIBLE, LARGE-AREA, LOW-LOSS MULTILAYER METASURFACE 

In section 2.4, flexible, low-loss, large-area multilayer plasmonic optical 

metasurfaces are demonstrated and analyzed that provide wavelength-selective 

reflectance > 95% and transmittance < 1% with low absorption and robustness to 

variation in angle of incidence and polarization. These characteristics are shown to be 

insensitive to vertical misalignment between layers, and defects within individual layers. 

Analysis based on analytical modeling and numerical simulations provides physical 

insights into reflectance, loss, and bandwidth of these multilayer metasurface structures. 

Fabry-Perot resonances associated with phase shifts from each individual metasurface are 

also examined, and evidence of m = 0 resonance due to the nonzero, wavelength 

dependent phase shift from the metasurface cavity is demonstrated and explained. 

Finally, fabrication on flexible substrates via rapid, large-area nanosphere lithography 

and the robustness of optical properties of interlayer misalignment together enable the 

demonstration of  wavelength-selective focusing at optical frequencies. 

2.4.1 Transfer matrix method for modeling multilayer metasurface 

2.4.1.1 Assumptions and derivations 

The inhomogenous wave equation can be derived from Maxwell's equations 

as[38-40]     

 
2 2

2
02 2 2

0

1 1[ ] ( , ) ( , ) ( ( , ))E r t P r t P r t
c t t

µ
ε

∂ ∂
∇ − = − ∇ ∇⋅

∂ ∂

  

, (2-10) 

where meta dP P P= +
  

 consists of the polarization of the metasurface, metaP


and the dielectric 

layer, dP


.Typical dielectric layers we used for stacking multilayer structures are non-

resonant and homogenous at the wavelengths of interest, so that dP


 can be simplified as

( , ) ( , )d dP r t E r tχ=
 

, where the susceptibility can be described with the refractive index of 

the dielectric layer, 2
01d dn χ ε= + . 
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Figure 2.13: The schematic of the multilayer metasurface structure. The position of Nth 
layer metasurface is denoted as Nz , and the amplitude of the reflected and 
transmitted electric field on the left hand side are denoted as L+, and L-. 

The second term of Eq. (2-10) on the right hand side is related to the longitudinal 

part of the field. Here, we are only interested in light propagating orthogonally to the 

multilayer structure, and Eq. (2-10) can then be simplified to  

 
22 2 2

02 2 2 2[ ] ( , ) ( , )d
meta

n E r t P r t
z c t t

µ∂ ∂ ∂
− =

∂ ∂ ∂

 

. (2-11) 

Since the metasurface is optically thin (λ >> d with d typically ~40 nm), so that we 

simply assume 1 1( ) ( , ) ( )metaP E z z zχ ω ω δ= −
 

 is localized to the position of the 

metasurface, z1. Eq. (2-11) can then be simplified as: 

 
2 22

2
0 1 12 2[ ] ( , ) ( ) ( , ) ( )dn E z E z z z

z c
ω ω µ ω χ ω ω δ∂

+ = − −
∂

, (2-12) 

The typical homogenous solution for the electric field on either side of the metasurface 

can be written as, 

 ( , ) d dikn z ikn z
LE z L e L eω −

+ −= + , for z<z1 (2-13) 

 ( , ) d dikn z ikn z
RE z R e R eω −

+ −= + , for z>z1. (2-14) 

Using proper boundary conditions appropriate for the metasurface represented as a Dirac 

delta function, we obtain 

 1 1( , ) ( , )L RE z E zω ω= , (2-15) 

 
' '

1 1( , ) ( , )L RE z I E zω ω+ = , (2-16) 
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where 2
0 1( ) ( , )I E zµ ω χ ω ω= − . The transfer matrix of a metasurface, ˆ

metaM ,can be 

derived by connecting coefficients, 

 ˆ
meta

R L
M

R L
+ +

− −

   
=   

   
. (2-17) 

For a single layer metasurface, ˆ
metaM  can be written as, 

 
1

1

2

2

1ˆ
1

d

d

ikn z

meta ikn z

X Xe
M

Xe X

− +
=  − 

, (2-18) 

with 0( 2 ) ( )dX i k nε χ ω= . The transmission and reflection coefficient, t R L+ += and 

r L L− += , can be derived by solving, 

 
1ˆ

0 meta

t
M

r
   

=   
   

, (2-19) 

 and that leads to 

 1221

22 1
dikn zM Xr e

M X
= − =

−
, (2-20) 

 11 22 12 21

22

1
1

M M M Mt
M X
−

= =
−

. (2-21) 

For a multilayer metasurface structure as shown in Figure 2.13, Eq. (2-19) can be 

expressed as,  

 1 2 1 1ˆ ˆ ˆ ˆ...
0

N N
meta meta meta meta

t
M M M M

r
−   

= ⋅ ⋅   
   

, (2-22) 

where ˆ N
metaM is the transfer matrix for the Nth metasurface. The corresponding r and t can 

be calculated based on Eq. (2-20) and (2-21). 

2.4.1.2 Analytical solutions of multilayer metasurface under Bragg condition  

The effective susceptibility for a single metasurface layer can be modeled as[38, 

41]  

 
( )( ) r

rhc hc i
λ λχ λ

λ λ γ
Γ

= −
− +

, (2-23) 
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where h is Planck's constant, c is the speed of light, Γ is the radiative linewidth, γ is the 

nonradiative linewidth, and λr is the resonant wavelength (~605nm). Γ and γ are 

determined from the experimental full width half maximum (FWHM) and reflectance of 

the single layer structure. γ is usually small and can be ignored. Γ is associated with the 

strength and linewidth of the oscillator, higher Γ is usually accompanied with higher 

bandwidth and oscillation amplitude. 

The reflectance and transmittance can be derived from Eq. (2-20) and (2-21): 

 
2

2
2 2| |

( ) ( )r

R r
hc hcλ λ γ

Γ
= =

− + +Γ
, (2-24) 
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2
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r

r

hc hcT t
hc hc

λ λ γ
λ λ γ

− +
= =

− + +Γ
, (2-25) 

and Γ and γ can be fitted by, 

 max2
FWHM RΓ = , (2-26) 

 max[1 ]
2

FWHM Rγ = − . (2-27) 

For a structure with P = 200 nm, D = 160 nm, d = 40 nm, h = 10 nm, the experimental 

results yield Γ = 0.513 eV, and γ =0.0794 eV. Figure 2.14 (a) shows analytical results 

demonstrating that the resonant peaks in reflectance and absorption coincide with the dip 

in transmittance. The absorption at the resonant wavelength (~605nm) is ~25%. 
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Figure 2.14: The calculated reflectance, transmittance, and absorption under normal 
incidence based on transfer matrix of (a) single layer, (b) double layer (c) 
triple layer. (d) The reflectance comparison between single, double, and 
triple layer. 

The transfer matrix for a double layer metasurface structure, M(2), can be 

calculated by, 

 
1 2

1 2

2 2
(2)

2 2

1 1
1 1

d d

d d

ikn z ikn z

ikn z ikn z

X Xe X Xe
M

Xe X Xe X

− −   + +
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, (2-28) 

where 1 2r dz nλ=  and 2 r dz nλ= are the positions of the metasurface layers and the 

thickness of the interlayer dielectric is 2r dH h nλ+ = . The matrix elements can be 

calculated as 

 11

2 ( )(2) 2 2(1 )
riM X X e
λπ λ−= + − , (2-29) 

 
2 ( ) 4 ( )(2)

12 (1 ) (1 )
r ri iM X Xe X Xe
λ λπ πλ λ− −= + + − , (2-30) 

 
4 ( ) 2 ( )(2)

21 (1 ) (1 )
r ri iM X Xe X Xe
λ λπ πλ λ= − + − − , (2-31) 

 
2 ( )(2) 2 2

22 (1 )
riM X e X
λπ λ= − + − , (2-32) 

and the reflectance and transmittance, R and T, can be calculated, respectively. Figure 

2.14 (b) shows the analytical results for reflectance, transmittance, and absorption. The 
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reflectance is significantly broadened compared with that for a single layer, and a small 

additional peak is superimposed at 605 nm due to Bragg criterion. 

The transfer matrix, M(3), can be calculated by 
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d d d
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, (2-33) 

 

and the corresponding matrix elements with 1 2r dz nλ= , 2 r dz nλ= , 3 3 2r dz nλ= , and 

2r dH h nλ+ = can be shown as, 
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and the reflectance and transmittance, R, and T, can be calculated from Eqs. (2-24)(2-25). 

Figure 2.14 (c) shows the analytical results for reflectance, transmittance and absorption. 

The FWHM remains relatively unchanged compared to the double-layer structure, 

suggesting that the optimum or near-optimum performance can be achieved with N as 

small as two. The local peak at 605 nm also becomes more prominent compared with 

double layer. 

The position of Nth metasurface can be expressed as ( 2 )N r dz N nλ= , and if the 

resonance of the metasurface is narrow. The reflectance and transmittance near the λr can 

be simplified as,  
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Eq. (2-38) and (2-39) suggest that the peak reflectance can be enhanced by stacking 

multiple layers at Bragg criterion, therefore reducing the absorption. 

2.4.1.3 Photonic bandgap  

As N increases, the FWHM behavior of the multilayer structure will approach that 

of a 1D photonic crystal with unity reflectance within the photonic bandgap, and it can be 

estimated using the transfer matrix approach as [42] 

 2 2r r
r r

E EE E E
π π
Γ Γ

− < < + , (2-40) 

which can be rearranged as 
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(2-41) 

2.4.1.4 Fabry-Perot resonance  

Fabry-Perot resonance will occur between the individual metasurface layers due 

to constructive interference of waves, and the resonance condition can be calculated by 

[37, 43]  
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where the phase shift, ( )φ λ , resulting from the metasurface is given by 

 1 1 (1 1 )Im( )( ) tan ( ) tan [ ]
Re( )

rr hc
r

λ λφ λ
γ

− − −
= =

Γ +
. (2-43) 

2.4.2 Fabrication process of multilayer metasurface via nanosphere lithography 

Figure 2.15 (a) shows a schematic diagram of a two-layer metasurface structure, 

the measurement geometry employed for transverse electric (TE) and transverse magnetic 

(TM) polarizations, and a scanning electron microscope (SEM) image of a completed 

structure.  As indicated in the figure, individual metallic elements of diameter D and 
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thickness d that constitute each metasurface layer are arranged in a hexagonal array with 

center-to-center spacing P between adjacent elements.  A SiO2 layer of thickness h is 

present below each hexagonal array layer, and an SU-8 layer of thickness H is present 

between successive metasurface layers.  All structures were fabricated on polyethylene 

terephthalate (PET) films (Dupont Melinex 454).  Key steps in the fabrication process for 

each metasurface layer are shown in Figure 2.15 (b)-(d).  First, 10nm SiO2/100 nm liftoff 

resist (LOR)/10nm SiO2 are deposited. The two layers of SiO2 were deposited in separate 

e-beam evaporation processes. A self-assembled monolayer of 200 nm-diameter 

polystyrene (PS) spheres is then deposited on the SiO2 surface using the Langmuir-

Blodgett method,[44-45] as shown in Figure 2.15 (b).  Reactive ion etching (RIE) is then 

used to etch the PS spheres, thereby reducing their diameter to ~160nm, after which 20 

nm Cr is deposited by e-beam evaporation.  The nanospheres are then removed by a lift-

off process in toluene, resulting in formation of a Cr hard mask consisting of a hexagonal 

array of holes, within which the underlying LOR/SiO2 layers are removed by RIE, 

resulting in the structure shown in Figure 2.15 (c).  Finally, 5 nm Ge/40 nm Ag 

metallization is deposited by e-beam evaporation, followed by liftoff to create a 

hexagonal array of Ag disks as shown in Figure 2.15 (d).  Between successive 

metasurface layers, an SU-8 dielectric layer is deposited by spin-coating, which also 

serves to planarize the surface for fabrication of the subsequent metasurface layer. Figure 

2.15 (e) shows a large-area SEM image of a completed structure, in which a number of 

individual and clustered point defects in the hexagonal array are present.  At larger length 

scales, well-ordered hexagonal grains with a typical lateral dimension of ~100 µm 

become evident. 
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Figure 2.15: (a) Schematic diagram of the multilayer metasurface structure on a PET 
substrate under TE and TM polarized illumination. P, D, and d indicate the 
periodicity of the array, size, and thickness of the individual metallic 
nanostructure. The thickness of SU-8 and SiO2 are denoted as H and h, 
respectively.  The inset shows a scanning electron micrograph of a 
fabricated sample with P = 200 nm, D = 160 nm, d = 40 nm, h = 10 nm and 
H = 185 nm. (b)(c)(d) Schematic diagram of the fabrication process flow 
and scanning electron micrograph at each step: (b) A PET substrate is 
covered with 10nm SiO2/100 nm LOR/10 nm SiO2, followed by NSL using 
D = 200 nm PS nanospheres. (c) After deposition of 20nm of Cr and lift-off 
process of PS, the substrate is etched by RIE to create a hexagonal hole 
array structure. (d) The hexagonal hole array patterned PET substrate is 
deposited with 5 nm Ge/40 nm Ag, and the LOR is removed by lift-off 
process. (e) Large-area (6 x 16 μm2) scanning electron micrograph image to 
show representative defects which can result from NSL. 

2.4.3Bragg resonance 

Previous work has shown [35, 43] that single- and double-layer metasurface 

structures consisting of square arrays of nanoscale metallic elements on glass substrate 

can provide wavelength-selective transmittance and reflectance at optical wavelengths 

that are insensitive to polarization and angle of incidence, with a double-layer 

metasurface able to provide low (<1%) transmittance and high (>75%) reflectance over a 
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bandwidth of ~100nm.  As shown here, a large increase in bandwidth can be achieved 

with hexagonal rather than square arrays. Figure 2.16 (a)(b) shows experimentally 

measured transmittance T and reflectance R, along with the implied absorption A = 1 – R 

– T, for a single-layer metasurface with D = 160 nm, P = 200 nm, d = 40 nm, and h = 

10nm for normal incidence.  A minimum in transmittance (maximum in reflectance) is 

observed at ~605 nm with a full-width half-maximum (FWHM) bandwidth of ~300nm. 

Because this behavior is associated with the dipolar plasmonic resonance in an individual 

Ag disc as confirmed by numerical simulations shown in Figure 2.16 (c)(d), it is very 

weakly dependent on polarization of the incident light,[23, 25, 36] and also insensitive to 

defects in the hexagonal array associated with the nanosphere lithography patterning 

process.  These features are similar to those observed in a single-layer square plasmonic 

metasurface array with similar dimensions,[35] for which a transmittance minimum was 

observed centered at ~650 nm with a bandwidth of ~200nm.  As described below, we 

attribute the increase in bandwidth for the hexagonal array compared to the square array 

to stronger coupling among individual Ag plasmonic elements associated with a higher 

geometrical fill factor in the former. Figure 2.16 (e)(f) shows the measured transmittance, 

reflectance, and absorption as a function of θi from 15° to 60° under TE and TM 

polarized illumination. The resonance at 605 nm shows very weak dependence on angle 

of incidence consistent with our previous work.[43] 
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Figure 2.16: (a)(b) Measured, simulated, and modelled reflectance (R), transmittance (T), 
and absorption (A) spectra for a single layer metasurface with P = 200 nm, 
D = 160 nm, d = 40 nm, and h = 10 nm for θi = 0o under TE and TM 
polarized illumination, respectively. (c)(d) Normalized electric field 
distribution of the metasurface structure at resonant wavelength (λ = 605 
nm) for θi = 0o under TE and TM polarized illumination, respectively. (e)(f) 
Measured refletance (R), transmittance (T), and absorption (A) spectra for a 
single layer metasurface with P = 200 nm, D = 160 nm, d = 40 nm, and h = 
10 nm for θi = 15o, 30o, 45o, and 60o under TE and TM polarized 
illumination, respectively. 

Analytical modeling of the optical response of a single-layer metasurface as an 

optically thin, polarization-independent homogeneous planar resonator can provide 

physical insight into the behavior of such structures, and a basis for rapid design and 

approximate modeling of multilayer metasurfaces.[38] Briefly, an effective susceptibility 

χ(λ) of the metasurface layer is defined, and assumed to be given by a Lorentzian 

lineshape function,[37-38, 41]  
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where h is Planck’s constant, c is the speed of light in vacuum, Γ is a radiative linewidth, 

γ is a nonradiative linewidth, and λr is the resonant wavelength.  From Eq. (2-44), we see 

that Γ is associated with the amplitude and broadening of the susceptibility at the 

resonant wavelength, consistent with the correlation between increased geometric fill 

factor and resonance bandwidth described above.  The corresponding amplitudes of 

electromagnetic plane waves reflected by and transmitted across a single metasurface 

layer at normal incidence, r(λ) and t(λ), respectively, can be computed using a standard 

transfer matrix approach and are then given by 
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The reflectance R and transmittance T are then given by R = |r|2 and T = |t|2, 

respectively.  Fitting these functions to the experimentally measured transmittance at 

normal incidence, shown in Figure 2.16, yields λr = 605 nm, Γ = 0.513 eV, and γ = 

0.0794 eV, and the resulting modeled transmittance is seen to be in good agreement with 

the experimentally measured results. 
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Figure 2.17: (a)(b) Measured, simulated, and modelled reflectance, transmittance, 
absorption spectra for a double layer metasurface with P =200 nm, D = 160 
nm, d = 40 nm, h = 10 nm, and H = 185 nm for θi = 0o, 15o, 30o, 45o, and 60o 
under TE and TM polarized illumination. 

This analytical model can be extended in a straightforward manner[38] to the 

design and analysis of multilayer metasurface structures. Figure 2.17 shows measured 

transmittance, analytically modeled transmittance and reflectance, and numerically 

simulated transmittance, reflectance, and absorption, at normal incidence with TE or TM 

polarization, for a multilayer structure containing two Ag metasurface layers, each with P 

= 200 nm, D = 160 nm, d = 40 nm, and h = 10 nm, separated by an SU-8 dielectric layer 

with H = 185 nm.  Also shown are measured transmittance and reflectance, along with 

implied absorption, as a function of angle of incidence θi from 0° (normal incidence) to 

60°.  A very high, broad reflectance band is observed with peak reflectance near 650 nm 
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of ~90% or higher  for angles of incidence ranging from 0° to 45° and for both TE and 

TM polarization.  Bandwidth (FWHM) of ~400nm centered at ~650 nm is maintained for 

the measured high-reflectance band for both polarizations and over angles of incidence 

ranging from 0° to 45°.  

The high, broad reflectance feature observed experimentally can be explained as a 

consequence of Bragg reflection by the multilayer metasurface structure using the 

analytical model described above.  In general, the Bragg reflection criterion will be 

satisfied, and high reflectance will be observed, when the electromagnetic waves 

reflected by each individual metasurface layer are in phase with each other.  According to 

Eq. (2-44), the wave component reflected from each metasurface layer will in general 

include a phase shift φ(λ) given by 
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rr hc
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λ λ
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− −   −
= =     + Γ  

. (2-47) 

At the resonance wavelength λr = 605 nm, however, this phase shift vanishes, so 

that the Bragg criterion will be satisfied for H + h = λ/2nd ≈ 190 nm, where nd = 1.6 is the 

refractive index of the dielectric separating the metasurface layers.  For the two-layer 

metasurface structure of Figure 2.17, H + h = 185 nm + 10 nm = 195 nm, allowing 

constructive interference due to Bragg reflection at and near the resonance wavelength to 

increase the peak reflectance, and broaden the reflectance peak, compared to that for a 

single-layer structure.[38] The performance of multilayer metasurface is superior than 

conventional thin film Bragg reflectors[40, 46] which have very limited angle of 

incidence acceptance and usually require many dielectric layers to achieve high 

reflectance. These characteristics of traditional Bragg reflectors will also restrict the use 

of thin film Bragg reflectors on curved surfaces.  



 42 

We also observe that the width of the high-reflectance peak is close to its photonic 

bandgap, reached in the limit of an infinite periodic metasurface/dielectric stack, given 

by[38]  
 1 1

1 2 1 2min max

r r r rhc hc

λ λ λ

λ π λ λ π λ

= < < =
Γ Γ

+ −
, 

(2-48) 

where λmax – λmin is the FWHM bandwidth of the reflectance peak.  For the single-layer 

metasurface parameters λr = 605 nm and Γ = 0.513 eV, derived from Eq. (2-46) and the 

data in Figure 2.17, we obtain λmin = 432nm, λmax = 1006 nm, corresponding to a FWHM 

bandwidth λmax – λmin = 564 nm.  The measured FWHM of the reflectance peaks for 

angles of incidence up to 30° is ~550 nm, close to the theoretical limit estimated from our 

analytical model and suggesting that bandwidth close to the photonic bandgap for a 

periodic multilayer metasurface structure can be achieved with as few as two metasurface 

layers.  A detailed analysis employing the multilayer metasurface analytical model[38] is 

also consistent with this observation. 
 

2.4.4 Fabry-Perot resonance 

Phase shifts associated with reflectance by each metasurface layer also influence 

the nature of Fabry-Perot resonances and associated increases in absorption in multilayer 

metasurface structures. Figure 2.18 (a)(b) show numerically simulated reflectance, for TE 

polarized light, of a multilayer structure with two metasurface layers separated by an SU-

8 dielectric layer, as a function of wavelength and dielectric thickness H, for angles of 

incidence of 15° and 60°.  Each metasurface layer consists of a hexagonal array of Ag 

discs with P = 200nm, D = 160nm, and d = 40nm, atop a SiO2 layer of thickness h = 

10nm.  For a given H, the numerically simulated reflectance exhibits local minima as a 

function of wavelength that can be attributed to Fabry-Perot resonances created by 
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reflection from each metasurface layer.  Accounting for the wavelength-dependent phase 

shift introduced upon each reflection from a metasurface layer, the wavelengths for 

which Fabry-Perot resonances occur are given by[37, 43] 
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λ
ϕ λ π
−

= +
−

, (2-49) 

where m is a non-negative integer corresponding to different Fabry-Perot modes, nd and 

H are the refractive index and thickness, respectively, of the SU-8 dielectric spacer layer, 

and φ(λ) is given by Eq. (2-47). The Fabry-Perot resonance wavelengths given by Eq. 

(2-49) are shown as solid red lines in Figure 2.18 (a)(b), and show excellent agreement 

with numerically simulated results for angles of incidence of both 15° and 60°.  Because 

of the nonzero phase shift associated with reflection from the metasurface layer, a Fabry-

Perot mode exists even for m = 0, in contrast to conventional resonant cavities but 

consistent with recent studies of enhancement in absorption by a semiconductor 

deposited on a metal film, for which a nonzero phase is also introduced upon 

reflection.[47] 
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Figure 2.18: (a)(b) Simulated transmittance spectra as a function of wavelength and 
dielectric layer thickness, H, for θi = 15o and 60o. The solid curves represent 
the Fabry-Perot resonance given by Eq. (6). The dashed lines are indicated 
for double layer samples with H = 360 nm, 185 nm, 107 nm, respectively. 
(c) Measured reflectance (solid lines) and absorption (filled lines) for a 
double layer metasurface with P = 200 nm, D = 160 nm, d = 40 nm and h = 
10 nm with different dielectric layer thickness, H, under TE polarized 
illumination. 

These features are evident in the reflectance and absorption data shown in Figure 

2.18 (c), measured at an angle of incidence of 15° for multilayer metasurface structures 

with SU-8 dielectric layer thickness H ranging from 107 nm to 360 nm.  A dip in 

reflectance, and corresponding peak in absorption, are observed for the m = 1 Fabry-Perot 

resonance at wavelengths in reasonable agreement with those predicted by Eq. (2-49) for 

all values of H shown.  For larger values of H, similar dips in reflectance and peaks in 
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absorption are observed for the m = 2 and, for H = 360 nm, the m = 3 Fabry-Perot 

resonances as well.  For H = 107 nm and H = 121 nm, elevated absorption at wavelengths 

of ~1000nm is observed, corresponding to the m = 0 Fabry-Perot resonance that arises as 

a consequence of the nonzero phase shift associated with reflection from each 

metasurface layer. These Fabry-Perot resonances can be beneficial if increased 

absorption in the dielectric layer is desired, but are detrimental to maximizing reflectivity.  

In this regard, we note that the reduction in reflectance, and corresponding increase in 

absorption, is minimized for Fabry-Perot resonances that coincide in wavelength with the 

Bragg reflection condition.  This is most evident in the structure with H = 185 nm, for 

which we see that the reflectance dip and absorption peak associated with the m = 1 

Fabry-Perot resonance are strongly suppressed. On this basis, we observe that a broad, 

high reflectance band is most effectively achieved with a multilayer metasurface structure 

for which the metasurface plasmonic resonance wavelength λr coincides with a Bragg 

reflection condition. We also emphasize that our multilayer metasurface structure is very 

robust to variations in vertical layer-to-layer alignment in these discussed characteristics 

since large variations in vertical alignment are expected over the typical beam size (~1 

mm) in our measurements. This is because the reflection and transmittance properties and 

Fabry-Perot resonances depend on plasmonic resonance in each individual metasurface 

layer. Near field coupling between elements in each layer will not play a significant role, 

when the vertical distance, H + h, is large enough, and this is also consistent with 

previously reported results.[43, 48] 
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2.4.5 Wavelength-selective focusing 

Wavelength-dependent focusing by a flexible, multilayer metasurface structure is 

shown explicitly in Figure 2.19 (a) shows reflection of a distant, broadband illumination 

source by a ~2 x 2.5 cm2 flat multilayer metasurface structure consisting of two 

metasurface layers with P = 200 nm, D = 160 nm, d = 40 nm, and h = 10 nm separated by 

an SU-8 dielectric layer with H = 185 nm, fabricated on a flexible PET substrate.  Short-

wavelength blue light (along with infrared light, not visible in the photograph) is 

transmitted, while light at longer visible wavelengths is reflected. Figure 2.19 (b)(c) show 

light transmitted and reflected by the same multilayer metasurface structure bend to 

different curvatures.  The reflected light is observed to be focused onto different 

locations, depending on the degree of curvature of the multilayer metasurface, while the 

transmitted light remains collimated and largely unchanged in spectral content.  The 

spectral distribution of the transmitted light at different locations x across a curved 

multilayer metasurface structure is shown in Figure 2.19 (d)(e), for TE and TM 

polarization, respectively.  As shown in the inset to Figure 2.19 (d), these locations 

correspond to local angles of incidence ranging from 0° at x = 0 mm, corresponding to 

the midpoint of the curved surface, to ~60° at x = 7 mm, where x is the lateral distance 

from the midpoint of the curved surface.  The transmitted spectra at all locations 

measured are very similar, differing primarily in that there is a slight decrease in 

transmittance at short wavelengths as x, and correspondingly the local angle of incidence, 

is increased.  Based on simulations, analytical modeling, and measurements as shown in 

Figure 2.18, we attribute this decrease to the development of a Fabry-Perot resonance at 

shorter wavelengths as the local angle of incidence is increased.  The results shown in 

Figure 2.19 provide direct confirmation of the ability to perform wavelength-selective 

imaging and focusing via flexible multilayer metasurface structures, uniformity of optical 
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properties over large (~5 cm2) areas, and independence of optical properties to vertical 

alignment between individual features in adjacent metasurface layers for separations H + 

h in the range studied here (~120 nm and larger). 

 

Figure 2.19: (a)(b)(c) Photo taken for samples (P = 200 nm, D = 160 nm, d = 40 nm, h = 
10 nm and H = 185 nm) held flat, or bent to different curvatures under 
illumination from a solar simulator  to show wavelength-selective focusing 
by the fabricated multilayer metasurface. (d)(e) Measured transmittance for 
a curved double layer metasurface under TE and TM polarized illumination 
with sample length 25 mm; the end-to-end length is bent to 20 mm. The 
measurement is taken at different positions of the sample starting from the 
center to around the edge of the sample, with increment of 1 mm which is 
roughly the beam size. 

2.4.6 Conclusion 

In summary, we have designed, experimentally demonstrated, and analyzed both 

numerically and analytically a series of flexible, large area, multilayer plasmonic 

metasurface structures fabricated via nanosphere lithography that provide low loss, 

wavelength-selective, polarization-independent optical transmittance, reflectance, and 
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focusing of incident light. These characteristics are shown to be robust to vertical 

misalignment between layers and variations within an individual metasurface layer. The 

high broad reflectance and low absorption can be understood as the consequence of the 

constructive Bragg reflection by the multilayer metasurface. Phase shifts associated with 

each individual metasurface are also examined both experimentally and numerically to 

show the influence of Fabry-Perot resonance. Finally, wavelength-selective focusing of 

visible light is also demonstrated. 
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2.5 PHOTOVOLTAIC-THERMAL HYBRID SYSTEM INTEGRATED WITH FLEXIBLE 
PLASMONIC FILTER 

 
 Concepts for optimizing the utilization of sun light, in particular, the combination 

of concentrating photovoltaic (CPV) and thermal absorbers which can provide higher 

efficiency than purely photovoltaic or thermal approaches are under intense study. 

However, such hybrid system is currently limited by the optical components such as 

dichroic filters which are highly sensitive to the angle of incidences. As an example, 

Figure 1(a) shows the schematic diagram of a new-type photovoltaic-thermal (PV-T) 

hybrid system, integrated with the flexible plasmonic metasurface. The optimized 

utilization of full solar spectrum is achieved by directing visible portions into PV; and 

ultraviolet and infrared light into thermal absorber.  

 The total efficiency of PV-T system, PV Tη −  , can be expressed as, 

 ( , , , , ) ( , , , ) ( , , )PV T low g PV c th PV on g PV c T off g thC T T C T Tη λ λ η λ λ η λ λ− = + , (2-50) 

, where PVη  is the efficiency of the PV component, and Tη  is the efficiency of the 

thermal converter, onλ  and offλ  cut-on and cut-off wavelengths, PVC  and THC   

concentration factors of PV and thermal converter, respectively, PVT  cell temperature, 

and THT  operating temperature as shown in Figure 2.20 (c). Figure 2.20 (a) shows the 

theoretical efficiency of PV, PVη , modeled by Shockley-Queisser limit. For one sun 

illumination ( 1PVC = ), the maximum efficiency is ~33% at 1100off nmλ =  which 

correspond to the bandgap energy of silicon. As we start to increase PVC  to 100, overall 

efficiencies are increased, and the peak efficiency is ~38%. For even higher PVC , the 

maximum efficiency  starts to saturate ~40%. Therefore if we consider a reasonable size 
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of lens employed in concentrated system within these limitations, 100PVC =  is a 

reasonable choice. Figure 2.20 (b) shows the theoretical efficiencies of thermal converter 

based on thermodynamics. The black line is the Carnot cycle limit as a function of THT , 

which can be expressed as , 

 01
TH

T
T

− . (2-51) 

The Carnot cycle limit monotonically increase with THT , which is ideal for adiabatic 

process. However, if we consider the radiation from the absorber and possible loss 

involved in realistic situations, we can then further model the efficiency as, 
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, (2-52) 

where σ  is the Stefan's constant, and S  is defined as solar constant for one sun. Based 

on Eq. ((2-52), instead of monotonic increment as observed from Carnot cycle limit, the 

efficiency has an optimum point from each different THC , and the maximum efficiency 

can be increased as we increase THC . The most reasonable choice in consideration of 

optical limitation and operating temperature is 100THC = . Figure 2.20 (d) shows the 

optimized electricity output and efficiency of a proposed photovoltaic-thermal system. 

The theoretical efficiency can be achieved η ~58.7% which is higher than individual PV 

or thermal system. 
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Figure 2.20: (a)(b) Theoretical efficiencies of photovoltaic and thermal absorber, 
respectively. (c) Side view of the proposed architecture of PV-T system. (d) 
Block diagram of final output of a proposed PV-T system. 
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Chapter 3: Omnidirectional Antireflection Coating on Low-Index 
Materials Integrated with Solar Cells 

3.1 MOTIVATION 

Coatings for reducing optical reflections from surfaces have attracted broad 

interest for applications ranging from photovoltaics to displays. The typical approaches 

for realizing anti-reflective surfaces can be grouped into two general categories[49]--

homogeneous and inhomogeneous anti-reflection coatings. Homogeneous anti-reflection 

coatings typically use quarter-wave stacks of optical thin films to achieve admittance 

matching in both magnitude and phase;[50] however, implementations are often limited 

by the refractive indices of materials available in nature, although nanostructured material 

can expand the range of available refractive indices.[51-54] Inhomogeneous anti-

reflection coatings can provide greater flexibility in effective refractive indices but often 

require the use of challenging nanofabrication processes. These have included top-down 

approaches such as self-masked dry etching,[55] wet etching,[56-59] electron beam 

lithography,[60] interference lithography,[61-62] and roll-to-roll nanoimprinting;[63] and 

bottom up approaches such as anodic alumina oxide nanoporous films,[64-65] 

nanosphere lithography (NSL),[66] and carbon nanotubes.[67] In nearly all cases, 

minimizing surface reflectivity for normally incident light has been emphasized. The 

challenge of reducing shallow-angle (angle of incidence > 60o) reflection on low-index 

materials has not been well addressed, in terms of both the optimization of the anti-

reflection surface and practical limitations in fabrication over large areas. In many 

applications, low-index materials such as polymer and glass have been widely used as 

packaging material; reduced reflectivity from such surfaces at large angles of incidence 

can have a major practical impact, e.g., by reducing glare from a flat display monitor, or 

increasing total efficiency of a solar panel module. 
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3.2 OPTIMIZATION AND REALIZATION OF OMNIDIRECTIONAL ANTIREFLECTION 
COATING ON LOW-INDEX MATERIALS 

3.2.1Fabrication process 

Figure 3.1 (a) shows a schematic diagram, photograph, and scanning electron 

micrograph of representative omnidirectional anti-reflection coatings described in this 

section, along with the measurement geometries for TE and TM polarizations. The 

nanostructures were fabricated on 1.1mm thick double side polished fused quartz 

substrates (Delta Technology). The structure of a unit cell can be specified by the 

hexagonal array periodicity (P), and the diameter (D) and height (h) of the constituent 

cylindrical dielectric pillars. Figure 3.1 (b) shows a photo taken at shallow angle to 

demonstrate that the reflection from an anti-reflection treated substrate (left, P = 200nm, 

D = 90nm, and h = 350nm) is lower than an untreated quartz substrate (right). Figure 3.1 

(c) shows the scanning electron micrograph of a fabricated structure with P = 200nm, D 

= 100nm, and h = 350nm. 

Figure 3.1 (d) shows key steps in the fabrication process for the omnidirectional 

anti-reflection nanostructure. The quartz substrate (1 square inch) is coated with 60 nm 

Cr/10 nm SiO2 using e-beam evaporation. On top of the SiO2 layer, a self-assembled 

ordered monolayer of 200nm diameter polystyrene (PS) nanospheres is deposited by the 

Langmuir-Blodgett method.[44-45] For our implementation of this process, defect-free 

hexagonally close packed regions of nanospheres typically extend over distances of 

~20μm, separated by cracks between boundaries and a few vacancies. The diameters of 

the nanospheres are then reduced by reactive-ion etching (RIE) resulting in nanospheres 

with diameters of 50 nm to 150 nm, depending on etch time. These nanospheres then 

serve as an etch mask to transfer the hexagonal pattern to the underlying Cr, which acts 

as a hard mask during the subsequent quartz reactive ion etching process to achieve the 
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desired high aspect ratio cylindrical pillar structure. Finally, the Cr mask is removed by a 

standard wet etch process. While the structures presented here were fabricated from 

quartz, the general procedure just described can be applied to various substrates to create 

hexagonal arrays of submicron to nanometer-scale high aspect ratio pillars rapidly, at low 

cost, and over large areas. 

 

Figure 3.1: (a) Schematic diagram of a dielectric hexagonal lattice structure on a quartz 
substrate with periodicity (P), diameter (D), height (h), and of simulation 
and measurement geometry for TE or TM polarization. (b) Photo taken at 
shallow angle, showing that the anti-reflection coated quartz (left, P = 200 
nm, D = 90 nm, and h = 350 nm) is less reflective compared with the non-
treated substrate (right). (c) Scanning electron micrograph of a fabricated P 
= 200 nm, D = 100 nm, and h = 350 nm structure. (d) Schematic diagram of 
the fabrication process flow and scanning electron micrograph at each step: 
(1) A quartz substrate is cleaned, covered with 60 nm Cr/10 nm SiO2, 
followed by NSL using D = 200 nm polystyrene nanospheres. (2) A series 
of dry etching processes is used to transfer the hexagonal lattice pattern to 
the underlying Cr layer. (3) Cylindrical nanopillars formed by SiO2 dry 
etching using Cr hard mask (4) Wet etch to remove Cr. 

Optical transmittance measurements were performed on these structures using 

collimated light from a halogen lamp spectrally resolved by a monochromator. The 
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monochromatic light was linearly polarized by a Glan-Thompson polarizer before 

reaching the device. Devices were mounted on a rotating stage, allowing measurements 

to be performed at angles of incidence, θ, ranging from 0o to 72o.  Numerical simulations 

of the optical behavior of these structures were performed using rigorous coupled wave 

analysis (RCWA).[26] In these simulations, the refractive index of the quartz was taken 

to be 1.46, independent of wavelength. 

3.2.2 Optimization and simulation of "nanopillar" structures on low-index substrate 

To achieve a wide-angle, broadband anti-reflection coating, theoretically an 

optimal graded-index profile should yield the best results;[68-73] however, such a 

structure would require sufficiently large depth to produce low reflectivity at large angles 

of incidence. As discussed below, the required depths result in structures that are highly 

impractical to fabricate. We have therefore focused on nanopillar structures which are 

physically attainable and provide wide-angle broadband anti-reflection properties. 

Theoretical calculations for single layer anti-reflection coatings with incident wavelength 

λ = 500 nm and θ = 85o can provide insight in the design of a shallow angle anti-

reflection coating. The reflectance for such a structure, based on Fresnel's equation, can 

be expressed as2 
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where 2 22 sinarc
dnδ π θ λ= − ; n0, nsub and narc, are the refractive indices of air, the 

dielectric substrate, and the anti-reflection coating layer, respectively; and d is the 

thickness of the anti-reflection coating. For a quartz substrate with nsub = 1.46, the optimal 

narc can then be calculated from Eq. (3-1) to be 1.05 and 1.02 for TE and TM 

polarization, respectively, and the optimal thickness, d, can be calculated by setting 𝛿 = 
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π/2, yielding d ~ 376 nm. Materials with n < 1.3 do not exist in nature but we can 

synthesize them by fabricating a subwavelength nanostructure such as the hexagonal 

lattice nanopillar array illustrated in Figure 3.1. We note that the effective index of a two 

dimensional structure such as the nanopillar array cannot be given by an analytical closed 

form using effective medium theory due to difficulties in descriptions of fields along all 

directions. Thus, it is necessary to determine the effective refractive index via 

simulations. In this retrieval process, we assume the subwavelength nanopillar structure 

behaves like a homogeneous medium with effective refractive index neff if P << λ, and we 

compare the simulated transmittances for nanopillar structures with different D/P ratios 

and a thin film with variable index neff for the same height under various angles of 

incidence to determine the effective refractive index at normal incidence. This process 

yields 

 
20.4( / ) 1effn D P≈ + . (3-2) 

The previously calculated narc can then be converted into a D/P ratio based on Eq. (2), 

yielding optimal values for D/P of ~0.35 and 0.22 for TE and TM polarizations 

respectively. Because the transmittance for TM polarization is already very high, while 

transmittance for TE polarization decreases rapidly with increasing angle of incidence, 

we choose D/P = 0.35 as our starting point for design and fabrication of our anti-

reflection surfaces. 

Figure 3.2 (a) shows the numerically simulated transmittance as a function of D 

and P under 45o polarization with h = 350nm, θ = 85o, and λ = 500nm. These simulations 

indicate that the transmittance can be raised to ~85%, compared to 40% for a bare quartz 

surface, with D/P=0.35 (neff ~ 1.05). The optimal ratio D/P under 45o polarization is close 

to the previously calculated TE optimal value, since the transmittance of TE polarized 

light varies much more strongly than that of TM polarized light at large angles of 
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incidence. The predicted low surface reflectance is also very robust to variations in the 

detailed nanopillar structure: for D/P varying from 0.12 to 0.55, or equivalently, neff 

varying from 1.006 to 1.12, one can still achieve ~20% (~1.5x) transmittance 

enhancement. In this respect, these designs are expected to be very robust to fabrication-

induced variations in structure. The simulations shown in Figure 3.2 (a) also indicate that 

P can be increased to values larger than λ while maintaining high transmittance at 

shallow angles of incidence. However, for P ≳ λ, the high transmittance will result in part 

from higher-order diffraction peaks, and the direction of light transmittance will therefore 

differ from the incident direction. If the application requires only overall high 

transmittance regardless of diffraction, non-subwavelength values of P can be chosen; 

otherwise, subwavelength periodicities are still preferred for enhancing zero-order 

transmission.  
 

Figure 3.2 (b) illustrates the simulated dependence of transmittance on D and h 

for P fixed at 200 nm; with θ = 85o and λ = 500 nm, the maximum transmittance can be 

raised to ~87.7% with P = 200 nm, D = 70 nm, and h = 350 nm, under 45o polarization. 

Away from the region of maximum transmittance, a ripple pattern associated with Fabry-

Perot interferences across different values of D and h is observed: as h increases, we 

observe an increase in Fabry-Perot modes within the nanopillars between different D, 

resulting in several locally optimal points; however, these points have less tolerance to 

variations in the value of D/h compared with the global optimum, therefore they are less 

favored from a fabrication perspective. The overall transmittance decreases when D 

increases regardless of h, since neff increases and there is a greater mismatch between the 

relative refractive indices of air and substrate. The periodicity and magnitude of the 
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Fabry-Perot interferences observed in simulation agree well with these predicted by Eq. 

(3-1). 
 

Figure 3.2 (c) shows a comparison of simulated transmittance spectra for angles 

of incidence from 0o to 85o between a tapered “moth eye” structure (for which D is 

linearly tapered from 70 nm to 0 nm) and the cylindrical nanopillar (D = 70 nm) 

structure, with the same period P = 200 nm and height h = 350 nm for both, under 45o 

polarization. The "moth eye" and cylindrical nanopillar structures have similar 

transmittance response (~95%) for θ = 0o-60o; however, the transmittance of the "moth 

eye" structure starts to decrease quickly beyond θ = 60o while the cylindrical nanopillar 

structure maintains high transmittance to θ=75o for all wavelengths, and transmittances 

~80% or higher to θ = 80o in wavelength range of 500 to 650 nm. Our simulations can be 

compared with earlier experimental work of a tapered "moth-eye" structure (for which D 

is linearly tapered from 140 nm to 60 nm) with P = 150 nm and h = 150 nm on glass, we 

note that the transmittance of "moth-eye" structure with insufficient height decreases 

significantly when θ > 75o which is consistent with our simulations. 
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Figure 3.2: Simulated transmittance spectra of a dielectric hexagonal lattice structure: (a) 
Transmittance contour map with h = 350 nm, λ = 500 nm, θ = 85o under 45o 
polarization. (b) Transmittance contour map with P = 200 nm, λ = 500 nm, θ 
= 85o under 45o polarization. (c) Transmittance spectra comparison between 
D = 70 nm cylindrical nanopillar structure, and linearly "moth eye" structure 
with tapered D from 70-0 nm with same P = 200 nm, h = 350 nm, under 45o 
polarization. 

Perfect antireflection structures have been discussed theoretically using different 

tapered "moth eye" geometries[69-74]; however, the geometries of these structures need 

to match perfectly to form the optimally graded-index profile, and the height of the 

structure needs to be large enough to ensure a sufficiently smooth transition from air to 

substrate to avoid reflection. Therefore, both total height and potential profile 

imperfections are key concerns in design and fabrication of "moth eye" antireflection 

coatings. Figure 3.3 (a) shows simulated transmittance spectra as a function of height (h) 

at λ = 500 nm and θ = 85o for an optimized cylindrical pillar structure (D = 70 nm, P = 

200 nm, h = 380 nm) and tapered "moth eye" structures with different base diameters 

(D). For height h limited to 380 nm or less, the cylindrical nanopillar structure with h = 

380 nm clearly outperforms any tapered "moth eye" structure. As the allowable height is 
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increased to ~1 μm, certain "moth eye" structures can yield transmittance slightly higher 

than the cylindrical nanopillar structures but only within narrow ranges of height and 

base diameter. The "moth eye" structures are superior only for heights of ~1.5 μm or 

greater, and such structures would be both highly impractical to fabricate and very fragile 

in actual use. Figure 3.3 (b) shows simulated transmittance spectra as a function of top 

diameter (W). The transmittance monotically decreases as the structure starts to taper. 

The pillar structure will lose its benefits compared to "moth-eye" in similar dimensions 

when the top diameter is decreased to 35 nm or less. We note the superiority of the pillar 

structure is also robust to tapering due to manufacturing errors. Thus, in situations 

requiring very low reflectance over a broad range of angles and moderate range of 

wavelengths, the cylindrical nanopillar structures demonstrated here are expected to be 

superior to any practical "moth eye" structure.  
  



 61 

 

Figure 3.3: (a) Simulated transmittance spectra of tapered "moth eye" structures at λ = 
500 nm, θ = 85o,  as a function of height (h) with P = 200 nm and D = 50 
nm, 100 nm, 150 nm, 200 nm under 45o polarization. The horizontal gray 
dashed line corresponds to the optimized cylindrical nanopillar structure 
with P = 200 nm, D = 70 nm, h = 380 nm, and the vertical dashed line 
indicates h = 380 nm for comparison. The inset shows a schematic diagram 
of the tapered "moth eye" structures for which the simulations were 
performed. (b) Simulated transmittance spectra of tapered pillar structures 
with P = 200 nm and D = 70 nm at λ = 500 nm, θ = 85o,  as a function of top 
diameter (W) under 45o polarization. The inset shows a schematic diagram 
of the tapered pillar structures for which the simulations were performed. 

3.2.3 Characterization and measurement of "nanopillar" structure on low-index 
substrate 

Figure 3.4 (a) shows the measured transmittance spectra for nanopillar structures 

with P = 200 nm, h = 350 nm, and D = 50, 90, or 100 nm, along with transmittance for an 

unpatterned quartz substrate, for θ = 0o-72o and λ = 450-1050 nm, under TE polarization. 

The transmittances for nanopillar structures with D = 50, 90, 100 nm are greatly 

enhanced compared to that for the quartz substrate for all wavelengths and angles of 

incidence. Figure 3.4 (b) shows a comparison of different transmittance spectra with λ = 

500 nm, at θ = 0o-85o. Within these structures, D = 90 nm shows the highest 
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transmittance (~87%) at θ = 72o, which is ~25% (~1.45x) enhancement in transmittance 

compared with the unpatterned quartz substrate; the transmittance spectra of structures 

with D = 50 nm and 100 nm show similar enhancement, but of slightly smaller 

magnitude than for D = 90 nm, due to the non-optimal D/P ratio.  

 

Figure 3.4: (a) Measured transmittance spectra of quartz, and cylindrical nanopillar 
structures with P = 200nm, h = 350nm, and D = 50, 90, or 100 nm. (b) 
Measured (solid lines) and simulated (dashed lines) transmittances at λ = 
500 nm, as functions of angle of incidence (θ) for quartz substrate and 
structures with P = 200 nm, h = 350 nm, and D = 50, 90, or 100 nm under 
TE polarization. 
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Figure 3.5 (a) shows the measured transmittance spectra under TM polarization. 

The transmittances of the cylindrical nanopillar structures with D = 50 nm and 100 nm 

are ~92%, which is similar to that of the unpatterned quartz substrate for θ = 0-50o, and 

reaches ~95%, which is higher than that for the unpatterned surface, when θ > 50o. 

Transmittance for D = 90 nm is close to that of the unpatterned substrate since the 

admittance is slightly less optimized at TM polarization, but given the large TE 

transmittance this structure exhibits at shallow angles, the overall transmittance for the D 

= 90 nm structure averaged over all incident polarizations will be the highest. The 

simulations are generally in good agreement with experimental data except for a small 

offset, which we attribute to fabrication imperfections and differences in dispersion 

relations between the actual quartz substrate and the values assumed in our simulation. 

3.2.4Conclusion 

In summary, we have designed, demonstrated, and analyzed a series of 

subwavelength dielectric nanostructures that provide very high transmittance over visible 

wavelengths for different polarizations and over the entire range of angle of incidence. 

Detailed analysis based on simulations and theory reveal the optimal choices of feature 

size, periodicity, and height of subwavelength nanopillar structures associated with 

matching of phase and magnitude at large angle of incidence. The performance of an 

optimal nanopillar structure is shown to be superior to that of "moth eye" structures 

within realistic fabrication limits on low-index substrates. The nanopillar structures 

fabricated via NSL are tunable, and may be applicable to different substrates, and can be 

used for a broad range of practical applications. 
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Figure 3.5: (a) Measured transmittance spectra of quartz, and cylindrical nanopillar 
structures with P = 200nm, h = 350nm, and D = 50, 90, or 100 nm. (b) 
Measured (solid lines) and simulated (dashed lines) transmittances at λ = 
500 nm, as functions of angle of incidence (θ), for quartz substrate and 
structures with P = 200 nm, h = 350 nm, and D = 50, 90, or 100 nm under 
TM polarization. 

3.3OPTIMIZATION AND REALIZATION OF ANTIREFLECTION COATING INTEGRATED WITH 
GAAS SOLAR CELL 
 

 III/V solar cells play a key role in photovoltaic energy harvesting for various 

space and terrestrial applications, and are strong candidates for concentrating 

photovoltaic and next-generation solar cell concepts. [75-78] Furthermore, recent 

advances in epitaxial growth and processing of III/V, thin-film solar cells, including 
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approaches for separation of active device layers from epitaxial growth substrates, has 

made III/V solar cells increasingly attractive for electricity generation strategies such as 

concentrated photovoltaic (CPV) systems [79] and mobile solar devices [80] that require 

very high energy conversion efficiency and/or reduced material usage. [81-87] However, 

in these photovoltaic applications, Fresnel reflection particularly at large angles of 

incidence becomes the primary factor in limiting the overall energy conversion 

efficiency. Conventional planar thin-film antireflection coating [50] are designed to 

provide excellent antireflection performance within a narrow band of wavelengths  in the 

solar spectrum. Furthermore, the limitation of the number of materials with different 

refractive indices that exist in nature acts as the bottleneck for further improving the 

photovoltaic performance of such approach. [51, 88-90] 

3.3.1 Fabrication process 

Figure 3.6 (a) shows the schematic diagram of a complete packaged solar cell 

structure with polyethylene terephthalate (PET) "moth-eye" and Al2O3 "nanoisland" 

nanostructures integrated with standard Al2O3/TiO2 bilayer antireflection coating and 

GaAs solar cell. Figure 3.6 (b)-(d) shows the key steps in fabrication process of "moth-

eye" on a PET films (Dupont Melinex 454, 100µm). A self-assembled monolayer of 

D1=200nm polystyrene (PS) sphere is deposited via Langmuir-Blodgett method as shown 

in Figure 3.6 (b). In the subsequent reactive ion etching (RIE) process, the PS spheres 

mask and PET substrate are etched simultaneously under O2 plasma to complete the 

"motheye" structures as shown in Figure 3.6 (d). The finalized "motheye" structures have 

the same diameter D1 and different heights, H1 depending on total etching time as shown 

in Figure 3.6 (d). Similar process can be employed for fabricating “nanoisland” structure 
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as shown in Figure 3.6 (f)-(h). The NSL was employed with D2=1000nm PS spheres as 

shown in Figure 3.6 (f). 500nm Al2O3 was deposited by electron beam evaporation and 

followed by standard lift-off process to remove the PS spheres. 

 

 

Figure 3.6: (a) Schematic diagram of "motheye" and "nanoisland" antireflection 
nanostructure integrated with GaAs solar cell. (b)-(d) Key steps in 
fabrication process of "motheye" structures on PET (e) SEM image of a 
"motheye" nanostructure on PET substrate. (f)-(h) Key steps in fabrication 
process of "nanoisland structure" (i) SEM image of a "nanoisland" structure 
on Al2O3/TiO2 bilayer antireflection coating. 

 

3.3.2 Optimization of "moth-eye" nanostructures on PET substrate 

Figure 3.7 (a) shows the measured transmittance spectra for "motheye" structures 

on PET with H1= 300, 400, 500, and 600nm along with transmittance for an unpatterned 

PET substrate for θ=0-75o and λ=400-1100nm under TE polarization. The transmittances 

for "motheye" structures are greatly enhanced compared to that for the PET substrate for 

all wavelengths and angles of incidence. Figure 3.7 (b) shows a comparison of different 

transmittance spectra at θ=75o. Within these structures, H1=400nm shows the highest 

transmittance which is ~40% (~2x) enhancement in transmittance compared with the 
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unpatterend PET substrate. The transmittance spectra of structures with H1=300, 500, and 

600nm shows similar enhancement but of less magnitude than for H1=400nm, suggesting 

that the transmittance saturates at a certain height of the motheye structure which is 

different with simulations possibly due to fabrication limitations of perfect shape of 

pyramidal structure at this height.  

 

 

Figure 3.7: (a) Measured transmittance spectra of PET (dashed line) and "motheye" 
patterned PET with H1=300nm, 400nm, 500nm, and 600nm (solid lines) 
under TE illumination. (b) Measured transmittance spectra at 075θ =  for 
PET and "motheye" patterned PET. 
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Figure 3.8 (a) shows the measured transmittance spectra under TM polarization. 

The transmittances of all motheye structures are similar to that of the unpatterned PET 

substrate for θ=0-60o, and performs ~5% worse than unpatterned PET when θ > 60o 

because the structure is optimized primarily for the TE polarization which can contribute 

to a greater improvement of transmittance. 

 

 

Figure 3.8: (a) Measured transmittance spectra of PET (dashed line) and "motheye" 
patterned PET with H1=300nm, 400nm, 500nm, and 600nm (solid lines) 
under TM illumination. (b) Measured transmittance spectra at 075θ =  for 
PET and "motheye" patterned PET under TM illumination. 
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3.3.3 Optimization of "nanoisland" structures on bilayer antireflection coating 

Figure 3.9 (a) shows the schematic diagrams of (i) "nanoisland" Al2O3/TiO2 

nanostructure, and (ii) conventional Al2O3/TiO2 antireflection coating on GaAs solar cell. 

These structures are measured under unpolarized illumination with different angle of 

incidences (θ). Figure 3.9 (b) shows the simulated absorption of structure (i) as functions 

of wavelength, and periodicities (D2) for θ=0o and 80o. The height of the "nanoisland," 

H2, is assumed to be D2/2 for an ideal structure. For θ=0o, we observe that there are two 

minimums in absorption from 310nm to 330nm and 370nm to 420nm which are present 

for all values of D2. These absorption dips are resulted from the underlying bilayer 

antireflection coating, and they play less significant role in photovoltaic performance 

since the quantum efficiencies of GaAs at these wavelengths are low. For large angle of 

incidences, i.e. θ=80o, the influence of the "nanoisland" dielectric structures become more 

prominent. The maximized absorption can be found at D2>500nm due to the enhanced 

transmittance from the graded-index profile of "nanoisland" with sufficient height. Inside 

the optimum band, the previously observed absorption minimum dips at θ=0o, are 

modulated with the optimum band boundaries at 80o which occur at specific periodicities, 

D2, (or heights which are H2=D2/2). In addition to absorption dips (from 310nm to 330nm 

and 370nm to 420nm) resulting from bilayer antireflection coating, we observe 

interference lines in the simulated contour map. Further inspection from simulation of 

Al2O3 "nanoisland" on bulk Al2O3 (as shown in the inset) reveal the physical origin of the 

interference at 80oθ = is from the Fabry-Perot resonances of the "nanoisland" structure at 

certain combination of heights and wavelengths. Figure 3.9 (c) shows the measured 

external quantum efficiency (E.Q.E.) of structure (i) with D2=1000nm and H2=150nm 

(dashed lines), and structure (ii) (solid lines) at different θ. For θ=0o to 60o, the measured 

E.Q.E. of structures (i) and (ii) are similar because bilayer antireflection coating can 
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provide reasonably good performance for θ<60o. For θ=80o, the measured E.Q.E. of 

structure (ii) is higher than (i) but less significant compared with previous simulated 

results due to the fabrication limitation of H2. 

 

 

Figure 3.9: (a) Schematic diagram of (i) "nanoisland" on Al2O3/TiO2 on GaAs solar cell 
and (ii) bilayer antireflection coating on GaAs solar cell. (b) Simulated 
absorption as functions of wavelengths and D2 at 0oθ =  and 80oθ = . The 
inset shows the simulated transmittance as functions of D2 and wavelengths 
of an Al2O3 "nanoisland" on Al2O3 bulk. (c) Measured external quantum 
efficiency of structures (i) (solid lines) and (ii) (dashed lines) under different 
angle of incidences. 

3.3.4 Realization and measurement of omnidirectional antireflection coating 
integrated with GaAs solar cell 

Figure 3.10 (a) shows the schematic diagrams of (i) "moth-eye" and "nanoisland" 

integrated with bilayer antireflection coating, (ii) "moth-eye" with bilayer antireflection 

coating, (iii) plane PET on "nanoisland" integrated with bilayer antireflection coating, 

and (iv) PET on bilayer antireflection coating. Figure 3.10 (b) shows the measured 
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external quantum efficiency as a function of wavelengths and angle of incidence for 

structure (i)-(iv). Significant improvement of E.Q.E can be observed for >60o as the 

graded-index at the interfaces of air to PET and epoxy to Al2O3 employed. Figure 3.10 

(c)(d) shows the measured short circuit current and ratio as a function of angle of 

incidence. Structure (i) shows the best overall performance for all angle of incidence, the 

Jsc ratio is ~1.06x at θ=0o and 1.67x at θ=80o. Structure (ii) also shows significant 

improvement in Jsc but less when θ>40o. Structure (iii) has the similar performance with 

(iv) at smaller θ, and more significant improvement at larger θ due to the graded-index 

profile from "nanoisland" structure.  

 

Figure 3.10: (a) Schematic diagrams of (i) "moth-eye" and "nanoisland" integrated with 
bilayer antireflection coating, (ii) "moth-eye" with bilayer antireflection 
coating, (iii) plane PET on "nanoisland" integrated with bilayer 
antireflection coating, and (iv) PET on bilayer antireflection coating. (b) 
Measured external quantum efficiencies as functions of wavelength and 
angle of incidences for structures (i)-(iv). (c)(d) Measured short circuit 
current and ratio as a function of angle of incidence for structure (i)-(iv).  
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3.3.5Conclusion 

We have demonstrated an omnidirectional antireflection approach for solar cells 

integrated with polymer packaging based on creating “moth-eye” textures on polymer 

(PET) packaging sheets, which shows significant transmittance enhancement across the 

solar spectrum under normal and off-normal incident conditions compared to unpatterned 

polymer packaging sheet using a low-cost, high-throughput nanosphere lithography 

process. Also, utilizing the same lithography process, we fabricated Al2O3 dielectric 

“nanoisland” structure on the surface of conventional Al2O3/TiO2 bilayer antireflection 

coating, which showed substantially reduced reflection loss from the interface between 

the Al2O3/TiO2 bilayer antireflection coating and the space-grade encapsulant which was 

used to attach the PET packaging sheet to the cell, particularly at large incident angles. 

Numerical simulations were performed to elucidate the physics of this antireflection 

approach and to optimize optical nanostructures for such strategy. Finally, external 

quantum efficiency (E.Q.E.) measurements of the cell with Al2O3 “nanoislands” 

integrated with “moth-eye” textured PET packaging sheet and control cells with different 

light-trapping configurations were performed. The combination of these approaches 

yields increases in Jsc based on measurements of E.Q.E. combined with the AM1.5G 

solar spectrum, of ~1.1x at normal incidence, increasing to 1.67x at an incident angle of 

80o. 
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Chapter 4: Fabrication of birefringent nanocylinders for single-
molecule force and torque measurement 

4.1 MOTIVATION 

Techniques such as optical tweezers[91-93], magnetic tweezers[94], atomic force 

microscopy[95], and fluorescence microscopy [96] have been developed to manipulate 

and observe single bio-molecules, enabling rare and transient events to be observed by 

avoiding the averaging that occurs in traditional ensemble measurements. Optical 

tweezers have been used to characterize various bio-molecules and biological processes 

in measurements of force and displacement in picoNewton and sub-nanometer regime. 

Examples of such studies include measuring mechanical properties of biopolymers, 

reconstructing energy landscapes for folding or unfolding secondary structure of nucleic 

acids and directly following the dynamics of motor proteins translocating on their 

tracks[97-101]. While most experiments characterize force and displacement, torque and 

angular motion play significant roles in biological phenomena such as DNA replication 

and transcription[102], ATP synthesis [103] and bacteria propulsion[104-105]. However, 

there have been relatively few reports on torque and angular measurements of bio-

molecules due to the limited availability of methods to directly manipulate and detect 

such quantities. Here, we present a method to fabricate large quantities of birefringent 

cylinders rapidly at low cost using nanosphere lithography (NSL) [44-45, 106], and 

demonstrate their use for single-molecule experiments using an optical torque wrench 

(OTW) measurement. Key design considerations are described and compared with other 

methods. Nanocylinders of diameter ~500 nm and height ~800 nm were shown to 

provide stable angular trapping in OTW. Finally, the force and torque generated using the 

cylinders were calibrated, and linear and angular manipulations of twist-stretched DNA 

were demonstrated and are discussed. 
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The optical torque wrench [107] was developed for angular manipulation and 

precise detection of torque via trapping an optically anisotropic particle in a laser beam. 

Figure 4.1 (a) shows a birefringent particle whose ordinary axis (χo) and extraordinary 

axis (χe) are misaligned relative to an external electric field. As a consequence, a restoring 

torque (τ) from the cross product of the induced polarization (P) and external electric 

field (E) tends to align the extraordinary axis with the external electric field. The 

resulting torque can be expressed as 

 0 0
1| | ( ) Esin 2 sin 2
2 eP Eτ χ χ θ τ θ= × = − =

 

, (4-1) 

where is θ the angle between electric field and extraordinary axis, and τ0 is the maximum 

magnitude of torque which can be exerted on the particle. The torque signal can be 

determined by measuring the spin angular momentum transfer of the photon, i.e. 

imbalance of left- and right-circular components of the transmitted beam as shown in 

Figure 4.1 (b). Figure 4.1 (c) shows a typical OTW setup for single-molecule 

experiments. One end of the target bio-molecule is attached to the glass slide and the 

other end to a birefringent particle, which can be trapped by a tightly focused Gaussian 

beam. Controlling the position of the surface and the state of the input laser beam allows 

simultaneous stretching and rotating of the molecule. The multiple attachments make the 

torsion added to the molecule possible. The force and torque response can be detected by 

monitoring the position and polarization state of the transmitted trap beam. 
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Figure 4.1: (a) Schematic diagram of a birefringent particle whose extraordinary axis is 
misaligned to the external electric field (E). Torque is generated when the 
induced polarization (P) is not aligned to the electric field (E). The angle 
between electric field and extraordinary axis (χe) is denoted as θ. (b) 
Schematic diagram of the torque detection in OTW. The torque signal is 
measured by detecting the imbalance of left- and right-circular polarized 
components of the scattered beam. PBS: polarizing beam splitter. (c) 
Schematic of OTW setup using fabricated quartz cylinders for single 
molecule experiments. The force and torque exerted on the bio-molecule are 
controlled by adjusting the polarization state of laser and the surface 
position. 

A number of studies have reported on the design and fabrication of optimal 

particles for OTW[108-113]. The requirement of optical anisotropy can be obtained from 

shape properties or intrinsic material properties. In the case of form birefringence, the 

difference in dimensions and resulting anisotropy of polarizability make angular trapping 

possible, as reported for oblate particles[110]. However, it is difficult to obtain the 

uniformity of size and shape which is necessary for precise calibration in single-molecule 

experiments. In an alternate approach, birefringent quartz cylinders have been designed 

and fabricated for use in OTW, and these offer several advantages. First, the fabrication 

processes makes them easy to produce in large quantity and with high uniformity. 

Second, the elongated shape allows the symmetric axis of the cylinder to align with the 

propagation direction of the incident light, leaving only the rotational degree of freedom 
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to be controlled by the external field. Finally, for use in single-molecule experiments, the 

cylinder can be selectively functionalized only on the top surface, increasing the 

efficiency of achieving the appropriate geometry for measurement. In previous reports, 

fabrication of such cylinders was achieved by optical [111-112] or electron beam 

lithography[113]. However, these fabrication methods are either restricted in minimum 

feature size due to diffraction limits or are extremely time-consuming, and generally very 

expensive to carry out. Here, we implement a fabrication process for quartz cylinders 

suitable for OTW experiments using NSL. NSL has been previously developed and 

applied in production of anti-reflection coatings, sensing, and solar energy harvesting 

structure [66, 114-117]. We adapt the NSL technique to fabricate quartz nanocylinders 

with tunable sizes. 

4.2 FABRICATION PROCESS AND STATISTICAL DISTRIBUTION OF FABRICATED 
BIREFRINGENT NANOCYLINDERS 

The size of nanocylinders must be optimized for the specific application. For 

example, larger nanocylinders can provide larger torque under the same laser intensity 

and are suitable for experiments such as bacterial flagellar motors which are capable of 

generating torque up to 4000 pN.nm[118]. On the other hand, smaller nanocylinders offer 

faster response time and can be applied to molecular motors that do not generate large 

torque such as ATPase or RNA polymerase[102-103]. NSL readily provides the 

flexibility to produce a range of sizes of birefringent nanocylindersW. Figure 4.2 shows 

the key steps in the fabrication process for the birefringent nanocylinders. Starting from a 

4" single crystal quartz (X-cut) substrate, 90nm Cr/10nm SiO2 were deposited by e-beam 

evaporation. A self-assembled monolayer of 2μm diameter polystyrene (PS) nanospheres 

(with standard deviation of 200nm) were then deposited on the SiO2 surface using the 

Langmuir-Blodgett method [45, 106] as shown in Figure 4.2 (a). Reactive ion etching 
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(RIE) was used to etch the PS spheres to reduce the diameter to 1-1.5 μm. These 

nanospheres then served as an etch mask to transfer the hexagonal pattern to the 

underlying Cr, which acts as a hard mask containing Cr discs with diameter ~500nm as 

shown in Figure 4.2 (b). The quartz substrate with Cr hard mask on top then underwent 

RIE to yield quartz pillars ~800 nm in height as shown in Figure 4.2 (c). The Cr mask 

and residual polymer resulting from the dry etch were removed by a standard wet etch 

process. The diameter of the nanocylinders ranged from 50 nm to 1 μm depending on the 

size of the spheres and total etching time, and the height of the nanocylinders ranged 

from 500 nm to 2 μm, depending on the thickness of Cr mask. We note that the torque in 

OTW experiment is proportional to the volume of the nanocylinder since the signal 

strength depends on by the total angular momentum transfer of the nanocylinder. The 

aspect ratio of the nanocylinder should be also large enough to enable the alignment of 

the long axis of the nanocylinder with the laser beam. With these considerations, 

birefringent quartz nanocylinders with diameter 510 nm (with standard deviation of 20.35 

nm) and height 800 nm (with standard deviation of 22.42 nm) were found to be suitable 

for single-molecule experiment in OTW[108].  



 78 

 

Figure 4.2: Schematic diagram of the fabrication process flow and scanning electron 
micrograph at each step: (a) A single crystal quartz substrate is covered with 
10 nm Cr/100 nm SiO2, followed by NSL using 2 μm diameter PS 
nanospheres. (b) A series of dry etching processes is used to reduce the 
sphere size and transfer the hexagonal lattice pattern to the underlying Cr 
layer. (c) Nanocylinders formed from single crystal quartz by dry etching 
using Cr mask which is later removed by wet etch process. (d) Nanocylinder 
buried in PMMA with only the top surface exposed for amino-group 
functionalization. (e) Single quartz cylinder after mechanical removal. 

As shown in Figure 4.2 (d), the patterned substrate was spun coated with PMMA, 

and the excess PMMA etched away so that only the top surfaces of the nanocylinders 

were exposed. For application in single-molecule experiments, only the top surface was 

selectively functionalized with an amino group which is necessary for further avidin 
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coating. The excess PMMA was then etched away. Next, the wafer was incubated in 1% 

Vectabond reagent (Vector Laboratories, Inc.) for 5 minutes and then transferred to 

acetone for 30 minutes to remove the PMMA. The wafer was air-dried and cylinders are 

collected using a microtome blade (C.L. Sturkey, Inc.) as shown in Figure 4.2 (e).  

Finally, Avidin (Vector Laboratories, Inc.) molecules are coupled to the amino-

functionalized cylinders using a Glutaraldehyde kit (Polysciences, Inc.). We note that 

controlling the distance between each nanocylinder and the aspect ratio are crucial to 

avoid incomplete removal of the nanocylinders and undesired quartz residues. For the 

experiment measuring twist-stretched DNA, the rotationally-constrained DNA was 

ligated from three pieces made separately by the polymerase chain reaction (PCR). The 

central piece was 1351 base pairs. Two short pieces incorporate multiple digoxigenin 

(322 base pairs) and biotin (336 base pairs) labelled nucleotides, which allows for 

torsionally constrained binding to the sample chamber surface and cylinder respectively. 

The detailed protocol for sample chamber creation and DNA binding to the surface and 

cylinder is similar to methods previously described for polystyrene sphere[119]. Briefly, 

the cover slip surface was coated with anti-digoxigenin, followed by blotting with buffer 

to prevent non-specific sticking of DNA to cylinders. The DNA and nanocylinder were 

then incubated, respectively. Finally, the sample are flowed and left with experimental 

buffer solution (50 mM sodium phosphate buffer pH 7.0, 50 mM NaCl, 10 mM EDTA, 

0.02% Tween 20, and oxygen scavenger solution.)  Using this process, a 4" quartz wafer 

provided ~108 nanocylinders, which was sufficient for calibration and measurement in a 

typical single-molecule experiment. Compared with conventional lithographies, the 

approach described here provides a rapid, low-cost, large-area nanoscale patterning 

technique covering a wide range of sizes.  
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Figure 4.3 (a) shows the distribution of nanocylinder diameters collected from 

different radial positions on the 4" wafer. The overall distribution for different positions 

is uniform and consistent with a standard normal distribution except for a few outliers 

due to imperfect distribution PS nanosphere. Figure 4.3 (b) shows the overall distribution 

of nanocylinder diameter. The averaged diameter is 510 nm with standard deviation of 20 

nm. Figure 4.3 (c) shows the distribution of nanocylinder heights collected from different 

position from the 4" wafer center. The heights of the nanocylinders are overall uniform 

and more robustness to the variations of local plasma intensity. Figure 4.3 (d) shows the 

overall distribution of nanocylinder height. The averaged height is 800 nm with a 

standard deviation of 22 nm. To summarize, NSL can provide large numbers of 

birefringent nanocylinders with excellent uniformity.  
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Figure 4.3: (a)(b) Distribution and box chart of nanocylinder diameter and height 
collected as a function of position from wafer center. The top and bottom of 
the box are the first and third quartiles. The median and mean are shown as 
the band and square symbol inside the box.  The top and bottom whiskers 
stand for the standard deviation coefficient (SDC) equal to 1. (c)(d) 
Distributions of nanocylinder diameter and height fitted with normal 
distribution. 

4.3 ANALYTICAL MODELING  

4.3.1 Phase transition theory of DNA 

The phenomenological model for DNA phase transition under force and torque 

can be understood by minimization of total free energies for combinations of different 

states. For a pure state (i) of DNA, the free energy of each state can be approximated as a 

function of linking number density (σ) and force (f) [120-121],  
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where εi is the energy offset, σ0,i is the relaxed linking number, ci(f) and gi(f) are the 

torsional coefficient and stretching energies as functions of force. 

4.3.1.1 Free energies of stretched, plectonemic, and denatured states 

(a) Stretched state (i = s) 

The free energy of an extended DNA at a fixed force f can be expressed as [122-

123] 

 
2( )( )

2
s

s s
c fG g f σ

= − + , (4-3) 

where εs and σ0,s are zero since the force of interests is small (< 20 pN). The torsional 

coefficient and stretched energies in stretched state can be expressed as 
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respectively, where k is the Boltzmann constant, T is the temperature (we assume it is 

room temperature, 300 K), 1
0 2 3.6 1.85nm nmω π −= =   is the  contour-length rate of 

rotation of the relaxed double helix and A = 60 nm and C = 82 nm are the stretched and 

twist persistence length, respectively. 

(b) Plectonemic state (i = p) 

The free energy of a supercoiled DNA can be described by a quadratic model, 

 
2 2
0

2p
kTPG ω σ

= , (4-6) 

where P=18nm is the twist stiffness of the plectonemic state. 

 (c) Coexistence between stretched and plectonemic states 
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The mixed free energy of the coexistence state between stretched and plectonemic 

states can be written as 

 , ,( ) ( )s p s s s p p pG x G x Gσ σ− + += + , (4-7) 

where xs,+ is the fraction of stretched state, xp is the fraction of plectonemic state, and 

they satisfy  xs,++xp=1. These quantities can be expressed as 

 ,
,

p
s

p s

x
σ σ
σ σ+

+

−
=

−
, and ,

,

s
p

p s

x
σ σ
σ σ

+

+

−
=

−
, (4-8) 

where σs,+ and σp are values at the onset and end of the stretching to the plectoneme 

transition, which can be calculated by minimization of free energy (
,

0s p

s

G
σ

−

+

∂
=

∂
) with the 

constraint , ,s s p px xσ σ σ+ += +  . They can be calculated as 

 
2
0

, 2
0

21
1

s
s

s s

kTP g
c kTP c

ωσ
ω+ = −

, (4-9) 

and 

 
2
0

2 2
0 0

21
1

s
p

s

kTP g
kTP kTP c

ωσ
ω ω

=
−

. (4-10) 

(d) Denatured state 

We note that when the applied force is larger than 1 pN, the helix structure of 

DNA starts to denature upon negative rotations. Therefore, the corresponding denatured 

free energy needs to be modified to  

 2
0,

( )( ) ( )
2

d
d d d d

c fG g fε σ σ= − + − ,  (4-11) 

where εd is the denaturation free energy, σ0,d = -0.8 is the relaxed linking number for 

denatured DNA, cd is the twist rigidity of the denatured double helix, which is similar to 

cs, and gd is the stretched free energy for a denatured DNA which can be expressed as 

 ( ) ( )d
d

kTfg f f
A

λ= − , (4-12) 
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where Ad = 4 nm, the persistence length of a denatured DNA, and λ = 1.2 is the factor to 

describe the increased length per base pair due to denaturation. 

 (e) Coexistence state between stretched and denatured states 

The free energy for a mixed state of stretched and denatured states is therefore 

expressed as 

 , ,( ) ( )s d s s s d d dG x G x Gσ σ− − −= + , (4-13) 

where xs,- is the fraction of the stretched state in a denatured DNA, xd is the fraction of 

denatured state, and they satisfy xs,- + xd =1. These quantities can be expressed as, 

 ,
,

d
s

d s

x σ σ
σ σ−

−

−
=

−
, and ,

,

s
d

d s

x
σ σ
σ σ

−

−

−
=

−
. (4-14) 

The onset and end, σs,-, and σd, can be calculated by minimization of coexistence free 

energy (
,

0s d

s

G
σ

−

−

∂
=

∂
) with the constraint , ,s s d dx xσ σ σ− −= + . They can be calculated as 

 2
, 0, 0,

2( )( ( ))d s d
s d d s d d

s d s d

c c c g g
c c c c

σ σ σ ε−

−
= − − + + −

−
, (4-15) 

and 

 2
0, 0, 0,

2( )( ( ))s s d
d d d d s d d

s d s d

c c c g g
c c c c

σ σ σ σ ε−
= + − − + + −

−
. (4-16) 

4.3.1.2 Extension curve 

The modeled free energy (Gi) and linking number density (σ) can be converted 

into the experimentally measured quantities extension (z) and rotation turn, respectively, 

by 

 iGz
L f

∂
= −

∂
, (4-17) 

and 

 
0 /

Lk n
Lk L h

σ ∆
= = , (4-18) 
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where Lk0 is the normalized linking number of the relaxed DNA,  L = 1351 bp is the total 

length of DNA studied here, h = 10.5 bp is the contour length of a single helix, and n is 

the number of rotation turns. 

4.3.1.3 Table of constants 
 

(a) Free energy of each state 
 

States Coexistence of stretched and 
denatured states 

Stretched 
state 

Coexistence of stretched and 
plectonemic states 

Plectonemic 
state 

Region σd<σ<σs,- σs,-<σ<σs,+ σp>σ> σs,+ σ> σp 
Free 

energy , ,( ) ( )s d s s s d d dG x G x Gσ σ− − −= +  sG  , ,( ) ( )s p s s s p p pG x G x Gσ σ− + += +  pG  

Table 4.1: Free energy expressions of each state 

  
(b) Constants for each state 
 

 Denaturation (i=d) Stretching (i=s) Plectoneme (i=p) 
εi 20kT nm  0 0 

σ0,i 0.8−  0 0 

gi(f) ( )
d

kTff
A

λ −  kTff
A

−  0 

ci(f) 2
0(6 )nm kTω  2

0 (1 )
4 4
C kTCkT
A f

ω −  2
0PkTω  

 
Table 4.2: The detailed expressions of εi, σ0,i, gi(f), and ci(f) in different energy states are 
summarized in the following table. 
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(c) Global constants 
 

Parameters A P C Ad εd σ0,d λ 
This work 60nm 18nm 82nm 4nm 20kT/nm -0.8 1.2 
References 43nm 24nm 95nm 5.5nm 6.25 kT/nm -1.6 1.37 

Table 4.3: The constants we used for this paper to describe the dynamics of DNA 

is summarized in the following table and compared with parameters from other 

references. 

 

4.4MEASUREMENT OF DNA EXTENSION MEASUREMENT UNDER STRETCHING AND 
TORSIONAL FORCES 

Accurate calibration of force and torque is required to perform precise 

quantitative measurements for a trapped nanocylinder in OTW. For cylinders of the size 

discussed here, the calibration of force and position follows the standard protocol for 

polystyrene (PS) particles of similar dimensions in optical tweezer experiments[93]. 

Analogous to force, the calibration of torque and rotation can be achieved by measuring 

the power spectrum of the torque signal (intensity difference in two detectors) for a 

trapped nanocylinder.[93, 107-108] The power spectrum can be fit by a Lorentzian line 

shape due to Brownian fluctuations in rotational motion[124]. This Lorentzian 

characteristic is modelled as 2 2 2
0( ) ( )P f A f f= +  with corner frequency 0 2f α πξ= , 

and amplitude 2 2A kT π α= , where α is the stiffness of the angular trap, ξ is rotational 

drag coefficient, k is the Boltzmann constant, and T is temperature in Kelvin. In Figure 

4.4 (a) we observe that the measured power spectrum for a birefringent nanocylinder 

(solid squares) is in good agreement with the fit Lorentzian line (solid line), showing that 

the birefringent nanocylinder is angularly trapped; whereas a 820 nm diameter PS 

nanosphere (solid circles) is not trapped due to the lack of birefringence. The angular 
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sensitivity was measured by rotating the polarization on a cylinder fixed to the surface. 

Figure 4.4 (b)  shows that the torque signal modulates sinusoidally, where θ rotating at 

1.8 rad/s is the angle between the direction of the electric field and the extraordinary axis 

of the nanocylinder, as shown in Figure 4.1 (a) and V0 is the maximum torque signal 

voltage obtained at θ=45o. Using the fitted parameters 2040 =f  Hz and 52 108.9 −×=A

V2Hz from data shown in Figure 3(a) as well as 11.00 =V  V in Figure 3(b), we obtain ξ = 

2.1 pN.nm.s, 3106.2 ×=α  pN.nm/rad, and torque signal sensitivity 5102.1 ×  pN.nm/V. 

The measured torque signal can therefore be obtained by 

 0( / 2 )V Vττ αθ α= = . (4-19) 

The maximum torque which can be generated here is ~1300 pN.nm, given the nominal 

laser power ~300 mW measured before the rotational half-wave plate. We note that the 

experimentally determined rotational drag coefficient here is consistent with other 

experimental [119] and theoretical work [125] for nanocylinders with similar dimensions.  

We further demonstrate the application of the birefringent nanocylinder in single-

molecule experiments by measuring a twisted and stretched DNA undergoing structural 

transition. The twisted state of DNA is regulated in vivo by topoisomerases, which 

influences the accessibility of DNA to many motor proteins. Therefore the mechanical 

properties of DNA under tension and torsion have profound implications in many 

biological contexts. Figure 4.4 (c) shows the measured and theoretically modelled 

extension of dsDNA recorded as a function of numbers of rotations under different 

stretching forces. Positive rotation is defined as the direction to overwind dsDNA. With 

positive torsion, the extension curves remain constant at low total turns (<3) since 

dsDNA is only overtwisted slightly. Beyond this region, the extension of dsDNA starts to 

drop abruptly and monotonically as total turns are added, indicating the dsDNA buckles 

to form a plectoneme. The critical number of turns for this sharp transition increases with 
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the applied force due to the increased rigidity of dsDNA under tension. Upon negative 

rotation, the extension responses with higher force (2.5 and 3.6 pN) remain almost 

constant because dsDNA prefers to unwind rather than buckle, therefore no plectoneme is 

formed. For lower force (1 pN), the dsDNA unwinds and buckles simultaneously when 

the total applied turn increases so that the extension curve drops without a sharp 

transition. For even lower force (0.3 pN), a symmetric extension response is expected 

based on the phase transition model[120]. The force is small enough that unwinding of 

helix structure is unfavorable and only the stretched and plectonemic states are allowed. 

The characteristics we observe in these measurements are consistent with other 

measurements performed using magnetic tweezers[126-127] and OTW[121, 128-129].  
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Figure 4.4. (a) Measured power spectra of torque signal for birefringent nanocylinders 
and polystyrene spheres with diameter of 820nm. The solid line indicates 
the Lorentzian fit for birefringent nanocylinders. (b) Torque signal of a fixed 
birefringent nanocylinder scanned by a rotating polarization vector. (c) 
Measured rotation-extension curve for a double-stranded DNA at different 
fixed forces. Gray dashed line indicates model prediction for low force 
limit. 
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4.5CONCLUSION 

In conclusion, a method for fabricating large quantities of birefringent 

nanocylinders using low-cost, rapid-patterning nanosphere lithography, and their use in 

single-molecule manipulation of dsDNA with optical torque wrench, are demonstrated. 

Patterning of the cylinder structures using nanosphere lithography offers a number of 

advantages over conventional lithographies employed in previous approaches, most 

notably in enabling rapid low cost fabrication of very large numbers of dielectric 

nanocylinders as required in OTW experiments. The calibration of force and torque in 

optical torque wrench measurements using dielectric nanocylinders fabricated in this 

way, together with the measured and modelled extension curve of double-stranded DNA 

under positive and negative rotation confirm the applicability of these birefringent 

nanocylinders in optical torque wrench measurements. 
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Chapter 5: Conclusions and Future Work 

This dissertation has covered different applications of large-area subwavelength 

nanostructures including wide-angle wavelength-selective metasurface, omnidirectional 

enhancement in photovoltaic performance via subwavelength gradient anti-reflection 

coating, and applications of birefringent nanocylinders for single-molecule spectroscopy.  

Chapter 2 summarized a series of works on wide-angle wavelength-selective 

metasurface. The best optimized metasurface with reflectance (>95%) and loss (<5%) 

were shown to be achieved with multilayer metasurface structures. These characteristics 

were shown to be independent of interlayer misalignment and insensitive to defects 

within individual layers. Interactions between different metasurfaces due to Fabry-Perot 

resonance were also examined with analytical model and numerical simulations. 

Wavelength-selective focusing at optical wavelengths which is enabled by large-area 

nanosphere lithography on a flexible substrate is demonstrated. The theoretical 

calculations and optimization of a proposed photovoltaic-thermal system show efficiency 

~58.7%, which is superior to individual photovoltaics or thermal converters. Possible 

future work will emphasize 1) integrate fabrication processes with roll-to-roll 

nanoimprint lithography to achieve even larger patterned areas, 2) optimization and 

realization of a thermal absorber using low thermal emission materials such as carbon 

nanotubes to improve thermal-to-electrical energy conversion, 3) design and optimization 

of a Cassegrain reflector design for a trough mirror and a flexible metasurface to achieve 

the highest concentration factor, and 4) integration and test of a photovoltaic-thermal 

hybrid system. 

Chapter 3 summarized a series of works on optimization and realization of 

omnidirectional enhancement in photovoltaic performance via subwavelength gradient 
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anti-reflection coatings. Large-area "moth-eye" structure fabricated on a flexible substrate 

is shown to have high transmittance (>85%) at large angles of incidence (>70o) and 

insensitivity to polarizations. Integration of the "moth-eye" anti-reflection coating 

together with a nanostructured gradient Al2O3/TiO2 on a GaAs solar cell shows 

significant improvements on external quantum efficiency (EQE) and short circuit current 

over all angle of incidences compared with conventional thin film anti-reflection coating. 

Detailed design, simulation, and fabrication of these nanostructured anti-reflection 

coating for reducing the discontinuity in refractive index profile will also be discussed. 

Possible future works will emphasize 1) reducing the defects and domain size of optical 

nanosctructures via nanosphere lithography, 2) further optimization of the interface 

between the packaging material and the GaAs solar cell, and 3) Realization and 

integration of antiflection nanosctructures on epitaxial lift-off GaAs cells. 

Chapter 4 summarizes the application of birefringent nanocylinders to single-

molecule spectroscopy, the design of and fabrication method for a large quantity of 

subwavelength birefringent nanoparticles. These birefringent nanoparticles were to be 

stably trapped in an optical torque wrench setup, which enabled observation of the 

dynamical response of a double-stranded DNA under torsional and extensional forces. 

Possible future work  emphasize 1) further improvements in the resolution of the optical 

torque wrench setup, and 2) study of more complicated single-molecules such as 

nucleosomes. 
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