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Our group has developed a Bayesian modeling technique to determine
the ages of stellar populations (in particular, open and globular clusters) using
white dwarf (WD) cooling physics. As the theory of WD cooling is both sim-
pler than, and essentially independent of, main sequence evolutionary theory,
white dwarfs provide an independent measure of the ages of Galactic popula-

tions.

We have developed a Bayesian technique that objectively incorporates
our prior knowledge of stellar evolution, star cluster properties, and data qual-
ity estimates to derive posterior probability distributions for a cluster’s age,
metallicity, distance, and line-of-sight absorption, as well as the individual
stellar parameters of mass, mass ratio (for unresolved binaries) and cluster
membership probability. The key advantage of our Bayesian method is that

we can calculate probability distributions for cluster and stellar parameters
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with reference only to known, quantifiable, objective, and repeatable quanti-
ties. In doing so, we also have more sensitivity to subtle changes in cluster

isochrones than traditional “chi-by-eye” cluster fitting methods.

As a critical test of our Bayesian modeling technique, we apply it to
Hyades U BV photometry, with membership priors based on proper motions
and radial velocities, where available. We use secular parallaxes derived from
Hipparcos proper motions via the moving cluster method to put all members
of the Hyades at a common distance. Under the assumption of a particular
set of WD cooling and atmosphere models, we estimate the age of the Hyades
based on cooling white dwarfs to be 610 £+ 110 Myr, consistent with the best
prior analysis of the cluster main-sequence turn-off age (Perryman et al., 1998).
Since the faintest white dwarfs have most likely evaporated from the Hyades,
prior work provided only a lower limit to the cluster’s white dwarf age. Our
result demonstrates the power of the bright white dwarf technique for deriving
ages (Jeffery et al., 2007) and further demonstrates complete age consistency
between white dwarf cooling and main-sequence turn-off ages for seven out of

seven clusters analyzed to date, ranging from 150 Myr to 4 Gyr.

We then turn our attention to the white dwarf luminosity function. We
use Sloan Digital Sky Survey (SDSS) data to create a white dwarf luminosity
function with nearly an order of magnitude (3,358) more spectroscopically con-
firmed white dwarfs than any previous work. We determine the completeness
of the SDSS spectroscopic white dwarf sample by comparing a proper-motion

selected sample of WDs from SDSS imaging data with a large catalog of spec-
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troscopically determined WDs. We derive a selection probability as a function
of a single color (g — ¢) and apparent magnitude (g) that covers the range
—1.0<g—1<0.2and 15 < g < 19.5. We address the observed upturn in log
g for white dwarfs with T.g < 12,000K and offer arguments that the problem
is limited to the line profiles and is not present in the continuum. We offer
an empirical method of removing the upturn, recovering a reasonable mass

function for white dwarfs with T.g < 12,000K.

Finally, we outline several other current and future applications of our
method and our code to determine not only ages of Galactic stellar popula-
tions, but helium abundances of clusters, ages of individual field WDs, and

the initial (main sequence) to final (WD) mass relation.
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Chapter 1

Introduction

1.1 A Brief History Of The White Dwarfs

A star like the Sun spends most of its 10 billion year life slowly and
stably fusing hydrogen into helium and radiating the energy thus produced out
into space. During this phase of its life, the energy produced in the center of
the star nearly exactly balances the energy it radiates away. The production of
energy—and thus heat—in the core also keeps the star from collapsing under
its own immense weight. The pressure of the hot gas pushing outward and the
pull of gravity inward are perfectly balanced at each layer in the star. Thus,
while the star continues to stably burn hydrogen on what is known as the

“main sequence” (MS), it undergoes remarkably little change.

A star’s supply of nuclear fuel, however, is finite, and after its alloted
time on the main-sequence (10 billion years in the case of the Sun, shorter
for more massive stars—which burn their fuel more quickly—longer for less
massive stars), its central fire goes out. As the star cools, its core begins to

collapse.

What happens next depends mostly on the mass of the star. If the

star is massive enough, then the contracting core will eventually become hot



enough and dense enough to begin burning helium into heavier elements. As
it does so, the star’s envelope expands greatly and the outer layers of the star
cool—the star becomes a red giant. This phase lasts only a small fraction
of the main-sequence lifetime, since helium burns at a much faster pace than
hydrogen, and there is far less of it. Eventually, as with hydrogen, the helium

fuel is exhausted and again the core begins to collapse.

Very massive stars will then begin to burn heavier and heavier elements
in a similar manner, until eventually exploding violently in a supernova and
leaving behind a black hole or a neutron star. Stars of low or intermediate
mass (up to about 8 or 9 times the mass of the sun), will be unable to generate
enough heat and pressure in their cores to burn the carbon and oxygen created

by the earlier burning of helium.

Through processes still not entirely understood, the outer layers of the
star are shed, often forming a planetary nebula. The ultra-hot, ultra-dense core
continues to collapse until the particles of which it is composed (specifically the
electrons) become so tightly packed that they cannot move any closer together.
The laws of quantum mechanics are such that no two particles of the same
type can occupy the same space with the same energy. In the collapsed core
of a low mass star, the matter is packed so tightly that the electrons begin to
fill up all of the lowest possible energy states and are said to be “degenerate”.
The fact that the electrons are barred by the laws of physics from moving
any closer together is now the only thing holding the star up against its own

gravity.



What remains is a stellar ember a little more than half the mass of
the Sun, with a core composed of some combination of carbon and oxygen
surrounded by thin layers of helium and hydrogen. This is what we call a
white dwarf (WD).

Because a white dwarf is no longer replenishing the energy it radiates
away, its luminosity decreases monotonically with time. If we know the rate
at which it cools, we can determine how long it has been cooling, and by
extension, how old it is, just as we could determine from the remains of a
campfire approximately at what time the fire went out by the temperature
of the embers. Thus, WD cooling can provide a valuable “cosmic clock” to
determine the ages of many Galactic populations, including the disk (Winget
et al. 1987; Liebert, Dahn & Monet 1988), and open and globular clusters (von
Hippel, Gilmore, & Jones 1995; von Hippel et al. 2006; Jeffery et al. 2006).
With more accurate models of the cooling physics of white dwarfs, heavily
constrained by empirical evidence, it will be possible to determine absolute

ages with greater precision than using main-sequence evolution theory.

In addition to astronomical considerations, white dwarfs also provide
our only means of studying the physics of compact degenerate matter. The
temperatures and densities that occur inside white dwarfs are not only com-
pletely impossible to duplicate on Earth, but they will likely remain so for a

very long time.



1.2 White Dwarf Cooling And The Ages Of Galactic
Populations

Ages are fundamental in understanding astrophysical processes from
the formation of planets to the formation of the Universe. Yet, at present, we
have precise ages for only the Solar System (4.566 + 0.002 Gyr; Allegre et al.,
1995) and the Universe as a whole (13.7 £+ 0.2 Gyr; Spergel et al., 2003, 2007).
For the ages of the Milky Way and its components, we rely on two techniques
that typically yield substantially less (<20%) age precision, even with excellent
datasets. These two techniques, based on the luminosity and/or color of the
main-sequence turn-off (MSTO) and the luminosity of white dwarfs, are based
upon mature theories, though considerable technical difficulties remain in both

theory and observation.

1.3 Limitations Of Current Methods

The methods employed to determine cluster ages cover a wide range
in their statistical sophistication. On one end of the spectrum lie methods
that first fix the distance, metallicity, and reddening at previously determined
values, then estimate the magnitude or color (or, in the “advanced” version,
both) of the MSTO in the data, and finally pick an isochrone that has those
same value(s), with no reference at all to the shape of the sequence. On the
other end are methods that divide the CMD into regions and use counting
statistics and Monte Carlo simulations to determine marginalized probability

distributions for cluster parameters (e.g., Hansen et al., 2004).



Traditionally, however, most methods for determining ages from either
the MSTO or the WD cooling sequence involve some version of “chi-by-eye”.
The parameters of a model are tweaked until the authors create an isochrone
that looks like it fits the data. But as Figure 1.1 shows, a single set of data can
often be fit by several (or many) different values of the parameters. The “best
fit” choice is often made in a very inexact and subjective manner, and the
many subtle trade-offs that must be made in order to fit the data as a whole
are ignored or treated very roughly. Often degeneracies make it is necessary to
assume several of the cluster parameters (e.g., distance and [Fe/H]) in order
to derive others, and the method provides only the most crude determinations

of error bars.

This lack of precision and repeatability motivated us to search for
a more objective method. Fortunately, advances in computing power have
opened up possibilities for new statistical methods that were impossible just

a few decades ago.

We have developed a Bayesian technique that objectively incorporates
our prior knowledge of stellar evolution, star cluster properties, and data qual-
ity estimates to derive posterior probability distributions for a cluster’s age,
metallicity, distance, and line-of-sight absorption, as well as the individual
stellar parameters of mass, mass ratio (for unresolved binaries) and cluster

membership probability.

The key advantage of our Bayesian method is that we can calculate

probability distributions for cluster and stellar parameters with reference only
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Figure 1.1: Fits of isochrones to the same set of data using different values
for cluster parameters, demonstrating the inherent limits of the “chi-by-eye”
method. Despite the wide range of ages, metallicities, etc., used in the fits,
it is nearly impossible to choose any one fit over the others based on a visual
inspection alone. [Taken from VandenBerg & Stetson (2004).]
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Figure 1.2: A histogram representing a posterior probability distribution for
log(age) for a particular cluster analyzed with our method. By simulating
draws from the posterior distributions, rather than simply calculating a single
number with errors, we are able to more accurately determine the true distri-
bution of values for the parameters, even in cases, like the above, where the
distributions are non-Gaussian and/or multi-modal.

to known, quantifiable, objective, and repeatable quantities. Any biases in our
analysis, including our choices for how to include prior information on cluster

parameters, are completely transparent.

Our method also has more sensitivity to subtle changes in cluster

isochrones than traditional “chi-by-eye” cluster fitting methods. The method



not only allows us to determine cluster parameters and error estimates with
a precision not available to the human eye, it also provides highly accurate
estimates of the complete marginal probability distributions for each of the
parameters of our model. In other words, the outputs of our method are not
simply values with some sort of half-assedly propagated error bars, but entire
probability distributions for each parameter, as in Figure 1.2. When these
distributions are non-Gaussian or multi-modal (and in a problem in many
hundreds or thousands of dimensions, this is often the case), we can see it.
In any case, we can use the probability distributions to calculate quantities of

interest, such as confidence intervals, moments, etc..

Our eventual goal is to improve the age precision of both the MSTO
and WD techniques to ~5%. Many investigators have collected high quality
datasets, yet this 5% age precision is generally beyond reach. Until the next
generation of space-based trigonometric parallaxes from satellites such as SIM
and GATA, we expect no qualitative advances in precision of absolute photom-
etry, stellar abundances, or cluster distances. In our judgment, the greatest
gains we can currently make in age precision will come from improved mod-
eling techniques (see also Tosi et al., 1991, 2007; Hernandez & Valls-Gabaud,
2008). Any such modeling technique should both fully leverage the data we
can collect today and provide a pathway to fully exploit the higher quality

data we expect in the future.



1.4 Prior Work
1.4.1 von Hippel, et al. (2006)

We introduced our modeling technique in von Hippel et al. (2006).
Briefly, in that paper, we simulated artificial data with a set of oft-used stellar
evolution models and realistic photometric error, then recovered the posterior
probability distributions of the cluster parameters as well as the masses for
each star. We found that our technique yielded high precision for even modest
numbers of cluster stars. For clusters with 50 to 400 members and one to a few
dozen white dwarfs, we found typical internal errors of o([Fe/H]) < 0.03 dex,
o((m — My)) < 0.02 mag, and o(Ay) < 0.01 mag. We derived cluster white
dwarf ages with internal errors of typically only 0.04 dex (10%) for clusters
with only three white dwarfs and almost always < 0.02 dex (< 5%) with ten

white dwarfs.

1.4.2 Jeffery, et al. (2007)

In Jeffery et al. (2007), we demonstrated the theoretical feasibility of
determining white dwarf ages from the brighter white dwarfs alone. Briefly,
because stars evolve off the main sequence in order of descending mass, the
bright WDs in young clusters come from higher mass progenitors than the
bright WDs in older clusters. If the initial-final mass relation is universal and
single-valued, then the bright WDs in young clusters will themselves also have
higher masses than their counterparts in older clusters. Through the WD

mass-radius relation and the Stefan-Boltzmann law, the mass of a WD affects



its position in the CMD relative to the MS.

Figure 1.3 shows the subtle differences in slope and position of the

10

11
|

My
12

8.812

13

I I I I I I
-0.2 -0.1 0.0 0.1 0.2 0.3

B-V

Figure 1.3: The WD portion of the Hyades color-magnitude diagram showing
the subtle differences in slope and position of the WD cooling sequences relative
to the fixed MS (not plotted) for clusters of different ages. The isochrones are
plotted in intervals of ~0.3 dex in log(age), with the center isochrone (red) at
the age we derive for the Hyades for the particular model set shown.

10



WD cooling sequences relative to the MS for clusters of different ages. The
isochrones are plotted in ~ 0.3 dex intervals in log(age), with the center
isochrone (in red) at the age we derive for the Hyades for the particular set of

models shown.

We noted in Jeffery et al. (2007) that the absolute ages derived by this
technique are only as convincing as the IFMR used in the analysis. However,
under the generally accepted assumptions that the IFMR is single-valued and
the same from cluster to cluster (Weidemann, 2000; Williams, 2007; Kalirai
et al., 2008; Williams et al., 2009), the technique yields precise relative ages.
Indeed, with enough data in hand on many open clusters, we could not only
test these assumptions by inter-comparing bright WD and MSTO ages, we
could, in essence recover the IFMR. The technique requires extensive calibra-
tion before this age indicator can be used as an absolute chronometer. This

dissertation (in particular Chapter 3) is a pivotal step in such a calibration.

1.5 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 outlines the astronomical and statistical models that underly
the Bayesian analysis of open clusters and the numerical and computational
issues encountered in the implementation of the method. Portions of this
material have been published previously in DeGennaro et al. (2009). Other

portions are partially adapted from van Dyk et al. (2009).

11



Chapter 3 describes the application of our method to determine a new
WD age for the Hyades open star cluster. The Hyades, one of the most well-
studied clusters in the sky, is our benchmark for determining the precision in
the cluster parameters our model can recover, for shaking out subtleties with
the current limits of stellar evolution theory, and for beginning the process
of calibrating our bright white dwarf technique, placing it on an absolute age

scale.

We apply our technique to Hyades U BV photometry, with membership
priors based on proper motions and radial velocities, where available. We
estimate the age of the Hyades based on cooling white dwarfs to be 610 + 110
Myr, consistent with the best prior analysis of the cluster main-sequence turn-
off age by Perryman et al. (1998). Since the faintest white dwarfs have most
likely evaporated from the Hyades, prior work provided only a lower limit to
the cluster’s white dwarf age. Our result demonstrates the power of the bright
white dwarf technique for deriving ages and further demonstrates complete
age consistency between white dwarf cooling and main-sequence turn-off ages
for seven out of seven clusters analyzed to date, ranging from 150 Myr to 4
Gyr. Portions of this chapter have been published previously in DeGennaro
et al. (2009).

In Chapter 4, we turn our attention to the white-dwarf luminosity func-
tion. Using data from the Sloan Digital Sky Survey (SDSS), we present a
white dwarf luminosity function with nearly an order of magnitude (3,358)

more spectroscopically confirmed white dwarfs than any previous work. To
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accomplish this, we determine the completeness of the SDSS spectroscopic
white dwarf sample by comparing a proper-motion selected sample of WDs
from SDSS imaging data with a large catalog of spectroscopically determined
WDs. We derive a selection probability as a function of a single color (g — )
and apparent magnitude (g) that covers the range —1.0 < ¢ — ¢ < 0.2 and
15 < g < 19.5. We address the observed upturn in log ¢ for white dwarfs with
Ter < 12,000K and offer arguments that the problem is limited to the line
profiles and is not present in the continuum. We offer an empirical method of
removing the upturn, recovering a reasonable mass function for white dwarfs
with Teg < 12,000K. Most of this chapter was published previously in DeGen-

naro et al. (2009) and DeGennaro (2007).

The final chapter outlines further current and future applications of
the method and code that we have developed. These include: using JHK
photometry to determine the helium abundance of the open cluster NGC 6791
; Elizabeth Jeffery’s work on the ages of open clusters; simultaneous fitting
of cluster ages with the initial-final mass relation; fitting of single field white

dwarfs; and determining masses of binary stars in open clusters and the field.
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Chapter 2

Statistical Method

2.1 Bayes Theorem

Bayes’ theorem relates the conditional probabilities of two events. In
the context of most scientific endeavors (in particular, the subject of the cur-
rent work), those two events are a particular hypothesis and a set of data that

potentially supports or refutes the hypothesis.

If y represents a set of observed phenomena (e.g. cluster photometry)
and 6 represents a hypothesis (e.g. the values of the parameters of our stellar
models), Bayes’ theorem states that the posterior density p(f|y) on model

parameters # given data y is

p(y|0)p(0)
p(y)

Which is to say, the probability of the truth of hypothesis 8, given observed

p(Oly) = o< p(y|0)p(0). (2.1)

phenomena y is proportional to the probability that one would observe phe-
nomena ¥, tf hypothesis # were true, times the prior probability of the truth
of hypothesis §. The denominator on the right side of (2.1) is the normalizing

constant:

ply) = / p(y16)p(6)do. (2.2)
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The advantages of the Bayesian method are many. First, by inverting
the probability in this way, we can calculate the probability of our hypothesis
with reference only to other known, quantifiable, repeatable quantities: the
likelihood, p(y|#), and our prior degree of belief in the hypothesis, p(#). In
essense, the method allows us to update our belief in hypothesis 6 in the face
of new evidence y. While discussion and dissent may exist regarding the best
form of the likelihood function and our prior degree of belief, the assumptions

underlying any particular choice are transparent and quantifiable.

Second, the method allows us to objectively incorporate our prior de-
gree of belief in a systematic and repeatable way. Each new piece of evidence
or set of data adds to our picture of a phenomenon and does not merely sup-
plant all previous determinations. The prior probability provides a way to

incorporate (or choose not to incorporate) prior knowledge objectively.

The disadvantage of the Bayesian method has historically been the
inability to calculate the normalizing integral for all but the simplest of func-
tions. However, due to recent advances in computing power and computational

methods, calculating this quantity explicitly is generally not necessary.

The goal of our technique is to use information from photometry data
and from our prior knowledge to obtain posterior probability distributions on
the parameters of our model. Our prior knowledge is encoded in prior probabil-
ity distributions on the model parameters, which include cluster parameters
such as age and metallicity as well as individual stellar parameters such as

mass, cluster membership, and the masses of any unresolved binary compan-
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ions. These parameters are the inputs to our cluster evolution model, which
we use to derive predicted photometric magnitudes. The likelihood function

then compares the predicted magnitudes with the observed data.

2.2 Stellar Evolution Models

The Bayesian method relies on our ability to predict the photometry
of an individual star (or unresovled binary system) given a set of values for
model parameters. To accomplish this, we employ a set of stellar evolutionary
models that allows us to map any reasonable choice of cluster-wide parameters
(e.g., age, metallicity, distance) and individual stellar masses to a predicted

set of photometry for any (relevant) stage of stellar evolution.

For MS stellar evolution, we currently employ three sets of models: Gi-
rardi et al. (2000), Yale-Yonsei (Yi et al., 2001), and Dartmouth Stellar Evo-
lution Database (DSED; Dotter et al., 2008). For a given age (T'), metallicity
([Fe/H]), and—in the case of some of the DSED models—helium abundance
(Y), these models allow us to calculate an absolute magnitude for any star on

the main-sequence or giant branch.

Stars end their lives in one of three states': white dwarf, neutron star,
or black hole. The exact mass limit for the formation of WDs is unknown,

but Williams et al. (2009) assert that it lies between 6 and 9.5 Mg with 95%

IThere is the possibility that some ultra-massive stars end their lives in an explosion so
catastrophic that it leaves no remnant (Woosley et al., 2002). This outcome, if it happens
at all, is exceedingly rare, poorly understood, and unlikely to affect the principal results of
our work.
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confidence. We currently use a mass limit of 8.0 M. Stars with zero-age main

sequence (ZAMS) masses above this limit are assumed to form neutron stars

and black holes.

For the stars with masses below this limit that have already evolved off
of the asymptotic giant branch (AGB) for a particular set of cluster param-
eters and become WDs, we use the main-sequence + giant branch models to
calculate a main-sequence lifetime for the star. Subtracting this lifetime from

the age of the cluster gives us a cooling time for the WD formed.

We then employ an initial (MS) - final (WD) mass relation (IFMR)
to determine the mass of the resulting WD. Currently, we use the IFMR of

Weidemann (2000).

Once we know the mass and cooling age of the WD, we use a set of WD
cooling models to determine the effective temperature and radius of the WD.
Currently, we employ the cooling models of Wood (1992). We then use the
mass, radius, and effective temperature to determine the absolute magnitudes

of the WD via a set of WD atmosphere models (Bergeron et al., 1995b).?

Once we have absolute magnitudes for each star in the cluster, we
use the distance modulus and reddening to determine apparent magnitudes.
These magnitudes are our “predicted” magnitudes, which are compared with

the observed magnitudes in the likelihood.

In the implementation of our method, each model element is fully in-

http://www.astro.umontreal.ca/ bergeron/CoolingModels
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dependent, meaning that an end user can readily substitute his or her own
choice of MS model, IFMR, WD cooling model, and WD atmosphere model
based on the specific nature of the problem at hand or individual preference

for one set of models over another.

2.3 Statistical Model
2.3.1 Basic Likelihood

In more mathematical terms®, given a vector, @, of cluster-wide pa-

rameters:

e = (eTaH[Fe/H]yem—Mv70Y79Av)7 (23)

(see Table 2.1 for explanation of symbols), and a vector, M, of ZAMS masses
for each star in the cluster, we can define a function, G(M, ®) whose output

is a magnitude in each photometric band of interest for each star.

To obtain the likelihood, we assume that the errors in our measurements
are independently distributed and Gaussian with known variance. Suppose
there are N stars in the cluster and we have observed them through n different
filters. Then the observed data form an n x N matrix X with typical element
x;; representing the magnitude of star ¢ through filter . By assumption, each

observed magnitude is normally distributed:

ij ~ N(pij, 0%;). (2.4)

3To maintain consistency with previous works, I have largely adopted the mathematical
notation of van Dyk et al. (2009).
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Table 2.1: Stellar and cluster parameters

Parameter Value

Ot logio age in logyq years

Ope /] log1g metallicity relative to solar®.
Ov helium abundance

— distance modulus
04, line-of-sight absorption in the V band
M; mass of the more massive star in binary-star system 2
M; mass of the less massive star in binary-star system ¢

*We use [Fe/H] as a proxy for metallicity (7), with MS model sets each having a standard
scaling of heavy elements

For each star i through filter j, the variance ¢}; comes from our knowledge of
the precision of our observations, and the mean p;; is the predicted photometric
magnitude that we obtain from the cluster evolution model. The means and
variances also form n x N matrices, which we call g and 3. Each row of g is

the complete set of modeled photometry in all bands:

;= G(M;, ©). (2.5)

The full likelihood is then

A M 2
1 exp (_ (zij — Gi(Mi, ©)) )
o

LP(M17®|X72):H H

. . 2
=1 ]:1 27T Z]

This is the preliminary likelihood we used in von Hippel et al. (2006)

and takes neither field stars nor binaries into account.
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Note that our likelihood is constructed in terms of individual bands of
photometry and not colors. As such, the method does not operate directly
on the CMD itself (as in Figure 1.3). Rather, MCMC “sees” something more
akin to Figure 2.1. The reason for this choice has to do with the correlation of
errors in the CMD. In modern CCD astronomy, it is much more common to
measure the different bands of photometry independently rather than differen-
tially. The likelihood in (2.6) assumes that the errors in the various colors are
independent. In practice, this assumption often holds, but certain systematics
may correlate the errors. For older data sets taken via differential photometry,

we must be more careful.

This likelihood also assumes that the variances, 3, are solely a function
of the measurement errors, and that the stellar models contain no errors of
their own. In reality, this turns out to be a poor assumption, as Figure 2.2
demonstrates. The figure shows the differences among the three different MS
models for the same cluster parameters. Clearly there are systematic errors
caused by uncertainties in the underlying physics of stellar evolution and stellar

atmospheres.

Failure to take these errors into account will at best result in an un-
derestimation of the errors on the final parameters. More often, though, we
have discovered that for certain areas of parameter space, this discrepancy
between MS models (and in particular, the discrepancies between models and
data) presents critical difficulties to the numerical method we implement to

determine posterior probabilities.
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Figure 2.1: Similar to Figure 1.3 but in magnitude-magnitude space. This is a
more accurate representation of what our Bayesian MCMC method sees when
it analyzes the WDs in a cluster. The isochrones are plotted in intervals of
~0.3 dex in log(age), with the center isochrone (red) at the age we derive for
the Hyades for the particular model set shown.

We note, however, that these discrepancies will affect any method that

attempts to use these models. Fortunately, our method provides a way to take
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Figure 2.2: A comparison of isochrones for three different main-sequence model
sets at the nominal age, distance, and metallicity of the Hyades. Solid (purple)
lines=Girardi models, dotted (red) lines=Yale-Yonsei models, dashed (blue)
lines=DSED models.

these errors in the models into account. There is no particular reason why
the variances, ¥, cannot include multiple sources of error, including errors in
the models themselves. Taking account of the errors in the models can, in
the simplist sense, be accomplished by increasing the components of 3. How
much we increase them is the tricky part, as it depends on many factors—the

parameters of the particular cluster we are fitting, the masses and/or colors

and magnitudes of the individual stars. Certain parts of the models fit better
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than others, and a complete numerical description needs to take this into

account.

We are currently exploring the implications of these model discrepan-
cies. In Section 3.1, we discuss their impact specifically on our determination

of the age of the Hyades.

2.3.2 Binary Stars

Approximately one third to one half of all stars are actually binary or
multi-star systems. When the components of the binary are far enough apart
to be resolved independently, we can model each individual star. However, for
binaries too close to be resolved, the measured magnitude in a given band will
contain contributions from both components. In such a case, the measured
luminosity of the system will be the sum of the individual luminosities of the
two stars. The added luminosity of a close binary companion tends to shift
stars upwards and to the right in the CMD, often forming a secondary binary
sequence above the main sequence. Failure to take this effect into account

would introduce a bias into our posterior probabilities.

We therefore model each point of photometry as if it were a binary.
We redefine M as an N x 2 matrix with a typical row M, = (M;, M;3)
representing the masses of the two star system. We can then evolve each
star independently and combine the magnitudes by transforming to luminosity

space, summing, and transforming back to magnitudes. The mean values used
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in (2.5) and (2.6) become

p; = —2.5logyy [107GMa.@)/25 4 (-G (:2.0)/25| (2.7)

For stars with no binary companion, we simply set M ;5 = 0, and ensure

that G(0,0) = oo, in which case (2.7) reduces to (2.5).

In order to create secondary stars below the mass limits of the main-
sequence stellar evolution models, we extrapolate from the lowest two mass
entries. In the future, we plan to incorporate improved models for low mass
stars. For all but the lowest MS primaries, a secondary companion below
the mass limits (typically M < 0.4Mg) makes little or no difference to the
photometry of the system. Our extension exists only to provide the evolution
model with a means to traverse the distance between the smallest mass in the
input models and 0. This serves adequately to differentiate between binaries
and single stars, and does not affect the fundamental cluster parameters, which

are the target of this study.

Since low-mass MS companions do, however, have a measurable impact
on the photometry of the much fainter WDs, we have chosen to restrict the
binary models to MS-MS binaries only. While there may theoretically be some
age information in WD-WD or WD-MS binaries, in practice these types of sys-
tems, particularly when they are too close to be resolved, have often undergone
a much more astrophysically complicated evolutionary history due to mass ex-

change, common envelope evolution, etc. Modeling such systems would often,
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if not always, introduce a greater level of uncertainty than whatever we might

be able to gain by including them in the analysis.

2.3.3 Field Star Contamination

The cluster star model relies on the ability to pool information across
stars to leverage the data to determine cluster-wide parameters. In other
words, we assume that all of the stars in the cluster share the same age,
metallicity, distance, helium abundance, and reddening. These parameters,
along with the individual stellar masses and mass ratios, allow us to calculate
a predicted magnitude to compare with the observed magnitude in the likeli-
hood. For the field star model, we do not have enough information about an
individual star to determine a predicted magnitude, so the likelihood function

for a star in the field star model must depend only on its observed magnitude.

Currently this likelihood is taken to be uniform across the entire ob-
served CMD and normalized for each band of photometry between a minimum

and maximum determined from the photometry data:
pred( X ;) = ¢ij, for min; < z;; < max; for j =1,...,n, (2.8)

and zero elsewhere, where X; is the row of X containing the observed mag-
nitudes for star ¢, (min;, max;) is the range of values for magnitude j and

-1
n . . . .
Ci; = H]‘:1 (maxj — mmj) is a normalization constant.

In principle, a probability map could be created from e.g., an adjacent

field or a generalized map of field stars at a specific Galactic latitude, provided
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that a) the map is properly normalized, and b) the map is not created from
the data to be analyzed. We have plans to incorporate such features into
our model in the future, but our testing has so far indicated that even our
very rough approximation (i.e., uniform across the CMD) is enough for our
statistical model to arrive at reasonable answers for posterior distributions on

each star’s membership status.

We construct our final likelihood by assuming that the cluster is a
mixture of cluster stars and field stars. We introduce a new vector, Z =
(Z1,...,7n), where Z; = 1 if the star is a member of the cluster, and Z; = 0
if it 1s not. Our final likelihood is:

N n
LM, 0,7 | X, %) = [[[[[(Z)pausier( Xi) + (1 = Zi)praa( X:)]  (2.9)
i=1 j=1

with pgea(X;) as defined in (2.8) and

pcluster(Xi> =
2
1 {xij + 2.5log,, 10-Gi(M1.©)/25 i 10—G](M¢2,®)/2.5} }
exp | —
ool 202.2],

L)

(2.10)

2.3.4 Prior Distributions

The Bayesian approach allows us to quantify our degree of prior knowl-
edge in a systematic, objective, and repeatable way. In the Bayesian method,
each variable (e.g. the components of @ and M) requires a prior probability

distribution.
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For the prior on the primary mass, we choose to employ a version of

the Miller & Scalo (1979) initial mass function (IMF):

pllogao(Man)) o exp (—3 (10&0“”“) i 1‘“2) ) AT

2 0.677

truncated and normalized to the range 0.1 Mg and 8.0Mg. As stated in Section
2.2, we have chosen 8.0Mg as the largest ZAMS mass that will form a white
dwarf. Anything more massive than this is not of interest. Stars with masses
less than ~ 0.1 Mg will not undergo hydrogen fusion in their cores. The prior

on the secondary mass is flat between 0 and the primary mass.

For clusters with parallaxes, proper motions, and/or radial velocities of
individual stars, we can place individual priors on cluster membership for each
star. For less well-studied clusters, we use a single cluster-wide prior based on
an estimate of the total ratio of cluster members to field stars. In practice,
cluster membership posterior probabilities are often insensitive to the choice

of prior.

With the exception of age, the priors on the components of ® are
Gaussian distributions with parameters specific to the cluster being studied.
Often the means and variances of the distributions will be chosen based on
the most recent and/or most reliable determinations in the literature. In
practice, as with cluster membership priors, we have found that narrow prior
distributions are often unnecessary for precise results. Generally, the more
stars in the cluster, the more the posterior is driven by the likelihood rather

than the priors.
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Since one goal of this project is to compare ages derived from the MSTO
with those derived from the WDs, and to compare our method objetively
with other methods of age determination, we have chosen to place a more
generalized prior on age than on the other cluster parameters. Specifically, we
have chosen a uniform prior on 1 (the log,, of the age) between a minimum
and maximum value determined by the specific combination of model sets
being used. This is equivalent to a power law prior on age with an exponent
of -1, reflecting the fact that young clusters are more prevalent than older
clusters. In practice, we have found the difference between this prior and a

uniform (flat) prior on age to be negligible.

2.4 Statistical Computations

From a Bayesian perspective, the posterior distribution is a complete
summary of what is known about the model parameters. We can compute

means and intervals of this distribution as parameter estimates and error bars.

However, given the incredibly complex nature of stellar evolution, there
is little hope for a closed-form expression for G.. For our problem, the normal-
ization in (2.2) is an intractable integral in 3N 4 4 dimensions (or 3N + 5, if
we include helium abundance). We must turn to a numerical method for help

in evaluating the posterior probability.
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2.4.1 Markov Chain Monte Carlo

We use Markov chain Monte Carlo (MCMC— Casella & George, 1992;
Chib & Greenberg, 1995) to generate samples from the posterior distributions
of each parameter. MCMC constructs a Markov chain that upon convergence
delivers simulated values that are distributed according to the posterior dis-
tribution. The history of the chain can be regarded as a correlated random
sample from the posterior distribution. We can thus obtain quantities of in-
terest, such as sample means, quantiles, etc. without having to analytically
integrate the normalized posterior distribution. These sample quantities serve
as numerical approximations of the corresponding quantities of the posterior

distribution.

We use the Metropolis-Hastings algorithm (Chib & Greenberg, 1995)
to construct our MCMC sampler. In particular we sample one parameter at a
time, conditioning on the current values of all other parameters. For a given
single parameter, 6, at iteration ¢, the sampled parameter is generated from
a density ¢(0*]0")), where #* is a proposed new value that is accepted with

probability, a equal to:

p(0*|y)q(0D]6%)
p(0®y)q(0+]6®)’

a = min

(2.12)

If the proposal is accepted, we set (‘+1) = 6% and otherwise, set #(¢+1) = (1),
Our sample is the parameter sequence (), 00+ (9} where S is the
total number of iterations and s — 1 is the number of iterations before the

chain converges, which is referred to as the burn-in.
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In plainer language, we start with values for each of the 3N + 4 (or
3N + 5) parameters of our model (i.e., the cluster parameters, each stellar
primary and secondary mass, and values for each star’s cluster membership
variable, Z;). For each of these parameters in series, we propose a new value for
the parameter, holding all the other parameters constant (the distributions,
q(0*]0®), from which we draw the proposed values are discussed further in
Section 2.4.2). We calculate the posterior probabilities for the current value
of the parameter and for the proposed new value for the parameter. We then
construct the Metropolis-Hastings factor in (2.12), compare it to a random
variable on the interval [0,1], accept or reject the proposed value for the pa-
rameter, and then move on to the next parameter. We discard the first s — 1
iterations and treat the remaining iterations as random draws from the pos-
terior distributions for each parameter, from which we can calculate statistics

of interest.

The computational advantage of Metropolis-Hastings algorithm derives
from the fact that it allows us to generate random samples from a distribution
known only up to a normalization constant. In the case of a Bayesian cal-
culation, this obviates the need to calculate the intractable integral in (2.2),
since in the Bayesian method, the posterior distribution is proportional to the

product of the likelihood and the prior distribution, as in (2.1).

Replacing the posterior probabilities, p(8*|y) and p(8®|y) in 2.12 via

Bayes’ equation (2.1), and supressing the iteration superscripts, the Metropolis-
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Hastings factor becomes

R, [p(H*Iy)q(HIH*) 1]
p(0ly) q(6+0)’

0*) p(6* p(y|0) p(6)do q(0]0*
TR D o] 219
Since [ p(y|0*) p(6*)do* = [ p(y|0) p(#)dl, (2.13) reduces to

SR, [p(yIH*)p(H*) q(6]6%) 7 1]
p(y10) p(0) q(619)
where p(y|0) and p(f) are the likelihood and prior densities, respectively.

= min[

(2.14)

2.4.2 Sampling and Correlation

By definition, a Markov chain has the property

p(a(t—l—l)w(o), 0(1)7 o 79(16)) = p(g(t+1)|9(t))_ (2.15)

That is, the distribution of the current link of the chain depends only upon
the value of the link immediately preceding it, and not on any other previous

value. The efficiency of the sampler depends heavily on the choice of proposal

distribution ¢(8*|0™).

For most of the parameters in our problem, we use a “random walk”
sampler, i.e., a symmetrical proposal distribution centered on the current value
of the parameter. The advantages of this sampler include its simplicity and
ease of implementation. For a symmetric step, ¢(6*|0) = ¢(0|6*), and the pro-

posal distributions cancel in (2.14).

The size and shape of the steps is of critical importance, however. If

the step size is too small, the chain may take too long to adequately traverse
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parameter space. If the step size is too large, the sampler may propose values
of the parameter in areas of low probability, leading to excessive rejection of

proposed values.

For the cluster-wide parameters except age, we sample from a T-distribution
with six degrees of freedom. For age we use a uniform distribution except dur-
ing the first 100 samples, when we use a much wider Gaussian distribution to
ensure that if the initial age is grossly in error, the sampler can rapidly find

its way to an area of higher probability.

For the individual stellar parameters of primary mass and mass ratio
(a more detailed explanation of the latter follows in Section 2.4.2.1), we use
uniform distributions. The mass ratio, being confined to the interval [0,1], is
allowed to reflect at the boundaries. Proposal distributions for a star’s cluster

membership status are more complicated and are described below in Section

2.4.2.2.

2.4.2.1 Removing Linear Autocorrelations Between Variables

An additional problem arises when two (or more) parameters are highly
correlated. For example, in our problem, an increase in the age of the cluster
requires a decrease in the mass of a white dwarf to keep its modeled photometry
near the observed photometry. The two-dimensional probability cloud looks
something like Figure 2.3. A naive “random walk” sampler can take steps in
age only about as wide as the blue line before stepping into an area of low

probability. Since the parameters are updated in series, the chain must take a

32



series of small steps in mass and age (e.g., the red arrows) in order to traverse
the entire range of both parameters. The result is a highly correlated chain

that looks something like the first half of Figure 2.4.

ZAMS mass
2.755 2.756 2.757 2.758 2.759
|

2.754
|

2.753
|

2.752

T T T T T T T
8.7900 8.7905 8.7910 8.7915 8.7920 8.7925 8.7930

log(age)

Figure 2.3: The correlation between ZAMS mass and age for a particular
white dwarf. Taking steps in the x and y directions (red arrows) results in an
inefficient sampler. If instead we take steps along the direction of the green
arrows, we can potentially traverse the entire distributions of both age and
mass in any given step.

The solution to the problem involves reparameterizing so that instead
of sampling in the X-Y direction, we sample along the axis of correlation

(i.e., the green arrows in Figure 2.3). For linear correlations, such as that in
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Figure 2.4: The Markov chain for a particular cluster before and after the
process of decorrelation outlined in this section. While the chain in the first
half of the figure is drawn from the same distribution as the chain in the second
half, the latter will cover the entire range of the distribution with considerably
less computational time than the former.

Figure 2.3, this transformation is relatively simple. For the case of the WD
age-mass correlation, we introduce a new parameter, U;, and a new constant,

Br,i, defined by:
Mi(t) = B <9¥) - é\T) + Ui(t)v (2.16)

where Mi(t), Ui(t), and Hr(rt) are the mass, decorrelated mass parameter, and

logarithm of the cluster age of the ith star at the t¢th iteration, respectively,
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and é\T is the approximate mean log cluster age. Then, rather than directly
sampling mass, we sample on U; for each star. The MCMC algorithm computes
the mass at each iteration from (2.16). The results after this decorrelation
process look more like the second half of Figure 2.4, where each iteration is
largely independent of the previous iteration, and the chain is able to traverse

parameter space more freely, quickly, and completely.

Many other such autocorrelations exist. Fortunately, these correlations
are usually close enough to linear that we can remove them with successive

versions of the same process.

One exception is the correlation between the primary and secondary
masses of each star. To remove this correlation, we first define the mass ratio,
R; = M;3/M;;, and sample on R; for each star, rather than M;,.* Figure 2.5
shows the correlation between primary mass and mass ratio for one partic-
ular star. Due to the tightness and shape of the correlation, a linear fit is

insufficient. Instead, we fit the correlation with a power law:

M =U; + Br R} (2.17)

The full set of transformations, worked out using a little bit of astro-

physics, a modicum of statistical intuition, and a lot of trial and error, are

My = Ui+ BriR + b1, <9T - é\T> + Bipe/myi <9[Fe/H] - a[Fe/H])

4The reasons for this reparameterization have as much to do with the historical devel-
opment of the code than for any concrete statistical or astrophysical reason.
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Figure 2.5: The correlation between primary mass and mass ratio for a par-
ticular star. Since a linear fit (red line) is inadequate, we use a power law to
effectively sample along the blue curve.

+ Brn-My,i <9m—MV - am—My) (2.18)

Oa, = V4 YFe/m (H[Fe/H] — 9[Fe/H]) + VY- My (Hm—MV - am—MV>(-2-19)

where hats denote approximate means. These, as well as the components of 3
and = are calculated dynamically via linear regression during a series of periods
in an initial run before the main run. Ultimately, then, the actual variables

that MCMC samples on are {(Uy, R1),...,(Un, Bn), 01, OFe/m), O—nry 0y, V }.

It is important to note that we remove these correlations solely for
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reasons of comuptational efficiency. The chains in the two halves of Figure2.4
are drawing from the exact same posterior distribution. The difference is that
the chain in the first half will require considerably more samples before we can
be confident that the entire distribution is represented. Were we blessed with
an infinitely fast processor chip (or an infinite amount of time), the results of

both runs would be identical.

2.4.2.2 TField Star Calculations

The cluster star model has two parameters for each star, one that is
related to the star’s primary mass and another that is equal to the ratio of
secondary mass to primary mass. In the field star model, on the other hand,
these two parameters are insufficient, in the absence of any other information
about that star (e.g. age, metallicity, distance, absorption—none of which we
know for a field star, nor are they of direct interest) to allow our model to
predict where the star should lie in the CMD. Since the likelihood in the field
star model is not dependent on the value of the two mass variables, their prior
distributions alone inform the values they are allowed to take on when a star
is classified as a field star for multiple consecutive iterations. If we were to
leave these priors unchanged in the field star model, the variables would soon
wander to regions where a proposed jump back to the cluster star model would
be very unlikely to be accepted, and the sampler might jump between models

so rarely that the model space would not be adequately sampled.

Fortunately, since these two mass variables have no physical meaning
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in the field star model, we can place whatever priors we choose on them,
including distributions that force them to remain in areas of high probability
in the cluster star model. We accomplish this by using a section of the initial
run to calculate distributions for the decorrelated mass parameter and the
mass ratio in the cluster star model. We assume that these distributions
can be approximated by gaussians, and we calculate a mean and variance for
each. This is essentially the final step in the initial run so that we can be
confident that the cluster parameters have converged. For the actual priors,
we use distributions with wider tails than Gaussian (specifically, student T
distributions with 6 degrees of freedom), so that if our means and variances
are somewhat off, the samplers will still be able to find their way to areas of

higher probability.

At each iteration then, for each star, we sample Z;, potentially propos-
ing a jump from field star to cluster star or vice versa. We have chosen
proposal distributions to be the same as the star’s prior probability of mem-
bership. That is, if the star has a 70% prior probability of being a member
of the cluster (as input by the user), then 70% of the time, we propose it to
be a cluster member, and 30% of the time, we propose it to be a field star.
This proposal is independent of the value of Z; in the current iteration. If
the proposed status is the same as the current status, nothing changes and
no further calculation is necessary. If the proposed status is different (i.e., a
jump), then we use the fully normalized posterior probabilities and proposal

distributions of each state to construct the Metropolis-Hastings factor and ac-
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cept or reject the new state in the standard MCMC manner. Note that we use
the prior distributions to inform our proposal distributions solely because we
have found this to lead to efficient sampling. Our final results should not—and

do not—depend on the choice of proposal distribution.

In the final analysis, we can then determine the probability of each
star’s membership in the cluster by dividing the number of iterations during
which it was a cluster member by the total number of iterations in the run.
More importantly, the posterior distributions on all of the cluster parameters
are now fully marginalized over every possible combination of the other cluster
parameters, the individual stellar masses, and each star’s individual posterior
probability of being a cluster member. A star that spends very few iterations
as a cluster member will contribute minimally to the final cluster parameter
distributions. A star that spends every iteration as a cluster member will

contribute fully.

This ability to marginalize over a large number of binary variables is
one of the abilities for which MCMC is uniquely suited. Its applications extend
beyond cluster membership. Likely extensions of the principle in our work will
include WD parameters such as hydrogen (DA) vs. helium (DB) atmospheres

and carbon—oxygen VS. OXYygen-neon cores.

2.4.3 Starting Values For Parameters

In theory, the posterior should not depend on the choice of initial values.

In practice, this is usually the case, provided that the starting values do not
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put the posterior in an area of such low probability that MCMC is unable to
find its way out. However, the closer the starting values are to the eventual
posterior means, the fewer iterations we need to run to get the samplers to

“burn in”.

For all of the cluster-wide parameters except age, we start at the means
of the prior distributions. A best guess for the starting age is input by the

user at run time.

Starting values for masses can either be input by the user or calculated
by the code before the start of the run. The latter is accomplished by creating
an isochrone at the starting values for the cluster parameters and using the
observed magnitude of each star in a given band to derive the masses of the
stars from the isochrone. Starting mass ratios are trickier, as any universal
choice for all stars will either over- or underestimate the position of the MS
and binary sequence. Currently, the user must input a starting mass ratio for
each star, regardless of whether the initial primary mass is input or calculated
by the code. The starting values of each star’s cluster membership status are

also input by the user.

2.4.4 Initial Run Calculations

We start with an initial wandering period (called the “burn-in”) that
allows the parameters to find their way to an area of high posterior probability.
The length needed for this period depends highly on the choice of starting

values for the parameters. The closer they are to their eventual posterior
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mean values, the less time the sampler will need to burn in.

This initial wandering period is followed by seven (usually shorter)
periods used to calculate the various correlation factors described in Sections

2.4.2.1 and 2.4.2.2. Details on these periods are contained in Table 2.4.4

During all of these periods, the step size for proposal distributions for
each parameter that uses a symmetric step distribution (everything except for
cluster membership status) is dynamically adjusted. If the acceptance rate for
the parameter drops below 20%, or rises above 30% during the previous 200
samples, the step size is decreased or increased respectively by a factor that

scales according to the acceptance rate.

At the end of the completed initial run, all of the parameters of interest
are output to a separate file, allowing the user to re-run the cluster without

the computational overhead of running the initial run over again.
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Table 2.2: Periods in the initial run used to compute correlation-reducing

transformations.

In the initial burn-in period and in the first 6 periods of the initial run each
star’s cluster membership status is held constant. That is, the Z;’s are
not updated from the starting values input by the user.

0.
1.

2.

Burn-in period.

Compute each g, by regressing each U on R;.

Compute each 1 ; by regressing each Ui(l) on f7. During this period
OFe/m)s Oy, Om—nr,, and 04, are fixed at our best estimate of their
posterior means (as determined dynamically during period (1)).

Compute each 3,,_ar, ; by regressing each U on 0.—ar, . Compute

k3

Ym—M, by regressing V© on Oty -

Compute each [jpe/m); by regressing each UZ»(B) on Oipe/n). Compute
VFe/H]) by Tegressing V) on e /1)

. Approximate the posterior mean and variance of UZ»(S) and R; to

construct the alternative prior distributions on the masses for field
stars.

Fine tune step sizes used in the Metropolis proposals to optimize
acceptance rates.

In a second set of 7 periods, the above runs are repeated (including a second
burn-in period), but this time the cluster memberships are sampled.

Step sizes for all parameters are adjusted continuously throughout all of the

initial runs.
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Chapter 3

A New WD Age For The Hyades

More is known about the Hyades open cluster than perhaps any other
star cluster in the sky. As such, it is a natural choice to be our benchmark
for determining the precision in the cluster parameters our model can recover,
for shaking out subtleties with the current limits of stellar evolution theory,
and for beginning the process of calibrating our bright white dwarf technique,

placing it on an absolute age scale.

Moreover, prior to the publication of DeGennaro et al. (2009), the most
reliable estimate for the age of the Hyades derived primarily from WD cool-
ing physics (300 Myr; Weidemann et al., 1992) was a factor of two too small
when compared with the MSTO age (625 Myr; Perryman et al., 1998). Wei-
demann et al. (1992) suggested that this discrepancy is due to the dynamical
evaporation of stars from this cluster; the coolest WDs have been ejected. In
the absence of any data on these missing faint WDs, traditional techniques
to determine WD ages can provide at best a lower limit to the WD age. In
DeGennaro et al. (2009), our “bright white dwarf” technique allowed us to
publish a WD age for the Hyades (648 4+ 45 Myr) that was, for the first time,

consistent with the MSTO age.
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Since the publication of that paper, we have expanded on our results.
The Hyades, because of its nearness to us, not only subtends a considerable
angle on the sky, but also spans a depth (~10-20 pc) that is comparable to
its distance from us (~50 pc). As such, the nearest and furthest stars in the

cluster show a difference in distance modulus of nearly 2 magnitudes.

In this chapter we update the results of DeGennaro et al. (2009) by us-
ing secular parallaxes derived from Hipparcos proper motions to correct for the
different distances to individual members of the Hyades. This not only con-
siderably tightens the main sequence, but also puts to rest one long-standing
mystery regarding several of the white dwarfs, which have the kinematics of
cluster members and yet appear too bright or too faint to lie on the proper

WD sequence.

We derive a new WD age for the Hyades (610 + 110 Myr) which is
both more accurate and more reliable than our previous result. Though the
formal errors on this determination are larger than those we have previously
published, we believe that they more accurately reflect the true internal un-

certainty in our age determination.

3.1 The Data

The most reliable estimates for the age and the distance to the center of
the Hyades (7' = 625450 Myr and m — M = 3.334+0.01) come from Perryman
et al. (1998), who used Hipparcos astrometry to derive precise trigonometric

distances to individual cluster members. Taylor & Joner (2005) find [Fe/H]
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= +0.103 4+ 0.008, based on their re-analyses of Paulson et al. (2003), Taylor
(1998), and Taylor (1994). Their formal error, however, includes only internal
uncertainties. We adopt a more conservative estimate of error, o([Fe/H]) =
0.05, to account for systematic uncertainties. For interstellar absorption to-
ward the Hyades, we adopt the result of Taylor (1980), E(B — V') = 0.003 +
0.002, or Ay = 0.009 £ 0.006. With the exception of age, we use the above
values and their stated errors as Gaussian priors on the cluster parameters.

The age prior is flat in log(age) between the limits of our models.

The photometry data for the Hyades come from The General Catalogue
of Photometric Data (GCPD' — Mermilliod et al., 1997). For each Hyades
star in the database, they calculate weighted means and dispersions in the
V' band of photometry and the B — V and U — B color indices. Their two
step process, outlined in Mermilliod & Mermilliod (1994), combines data from
diverse sources with the first step assigning weights based on the number of
independent measurements reported in the source, and the second step slightly
shifting the weights to give lower weighting to discrepant measurements. We
use the most recent reported values in the database as of January 2008, and

use only those stars for which U — B values are reported.

The errors they report are the dispersions between sources. For stars
with three or more sources, we use the reported dispersions to calculate the

errors needed by our method. For stars with two or fewer sources, the re-

Thttp://obswww.unige.ch/gepd/gepd.html
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Table 3.1: A list of WDs in the Hyades, with cross-references.

GCPD ID Reid (1996) EGGR' Reid (1992) McCook & Sion (1999)

HG7041 H74 26 — 03524096
vA292 VRT7 36 192 04214162
vA490 VR16 37 265 04254168
vAT22 HZ7 39 330 04314125
4003 H714 42 408 04384108
— LB227 29 81 0406+169
vAG6T3 HZ79 38 308 04294176

HG7126  LP 414-120 — 102 0410+188

'"Eggen & Greenstein (1965)

ported dispersions can often be anomalously low or non-existent. Therefore,
we adopt minimum dispersions using the estimates of the average error re-
ported in Mermilliod & Mermilliod (1994), namely: ey = 0.01, eg_y = 0.0075,
eu—g = 0.011. Since our method needs errors in each band of photometry, we
take the error in the B band to be the sum of the errors in V and B — V
(i.e., the quadrature sum of the variances), and similarly the error in U to
be the sum of the errors in B and U — B. We have eliminated 4 stars with

anomalously high dispersions (o > 0.1).

We match what stars we can with the stars in Perryman et al. (1998),
and determine a prior probability on each star’s membership in the cluster on
the basis of their reported x? value (column (w) in their Table 2) and the num-
ber of degrees of freedom (3 for stars with radial velocity measurements, 2 for

those with proper motions only). Stars without reported values of membership
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probability are assigned a (somewhat arbitrary) 0.5 prior probability.

Reid (1996) lists 8 WDs as members of the Hyades. Table 3.1 shows
these WDs, along with cross identifications to other major works on Hyades
WDs. Of these, vA673 is a known WD-MS binary (Reid, 1996), and LP 414-
120 does not have available UU-band photometry. We eliminate both of these

stars from our analysis. The remaining six WDs have individual mass determi-

Figure 3.1: A comparison of isochrones for three different main-sequence model
sets at the nominal age, distance, and metallicity of the Hyades. Solid (purple)
lines=Girardi models, dotted (red) lines=Yale-Yonsei models, dashed (blue)
lines=DSED models.
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nations (Weidemann, 2000, and references therein). Two of these, LB227 and
H74, are used as photometric standards in Landolt & Uomoto (2007), and we

use their photometry rather than the (less precise) photometry from GCPD.

The complete data set is plotted in Figure 3.1, along with isochrones

for three different MS model sets.
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Figure 3.2: An expanded view of the WD portion of Figure 3.1. The two
objects in red are LB227 and HZ4, both of which are standard stars in Landolt
& Uomoto (2007), and thus have unusually small error bars. That they fail
to lie along the WD cooling sequence, despite having kinematics that strongly
suggest their membership in the Hyades, is accounted for by the fact that they
are at significantly different distances from our vantage point on Earth.
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3.1.1 Correction For Differential Distance

The precision of the error bars on the photometry for LB227 and HZ4
(shown as the red points in Figure 3.2) highlights a problem one encounters
with very few open clusters. The Hyades is close enough to the Earth that the
tidal radius of the cluster (~10 pc) is a significant fraction of the its distance
from us (~45 pc). Perryman et al. (1998) find members as far as 20 pc from
the center of mass of the cluster. A star that is 20 pc nearer to us than the
roughly 50 pc distance to the center of the cluster will appear ~1.2 magnitudes
too bright. A star 20 pc too distant will appear ~0.8 mags too faint. In this
case, our assumption that all of the stars in the cluster are at a single distance
breaks down, and we must take into account the differential distances to each

individual star.

In DeGennaro et al. (2009), we chose to address this issue by noting
that an uncertainty in the distance to an individual WD essentially translates
to an error in the apparent magnitude. For the two stars in question, we
assumed an unknown systematic error of 0.1 mag in the V' band, and used the
errors in color as quoted in Landolt & Uomoto (2007). Because the errors in
U and B are the sums of the errors in the V' band and the appropriate color
term(s), the 0.1 mag systematic added to the V band translated to similar

errors in the other two magnitudes.

However, in presenting our results at a conference, an alternative method
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was suggested to us by Eric Mamajek of the University of Rochester?.

The nearness of the Hyades itself provides a solution to the problem, as
it 1s also one of the only clusters close enough to the Earth to have measured
geometric distances to most individual members. The Hipparcos and Tycho
catalogs (Perryman & ESA, 1997) contain individual trigonometric parallaxes
for most of the brightest Hyades members. The white dwarfs and lower main
sequence stars in the Hyades are too faint for Hipparcos trigonometric paral-

laxes, but do have measured proper motions.

de Bruijne et al. (2001) used the moving cluster method to derive the
parameters for the true space velocity (and velocity dispersion) of the Hyades
from Hipparcos proper motions. With this information in hand, distances to
individual stars can be worked out from their individual proper motions. In

the simplest case, assuming negligible velocity dispersion,

A
T (3.1)

~ |v|sin)’

where v is the space motion of the cluster, y is the proper motion vector of the
star, A is the angle on the sky between the star and the cluster convergent point,
and A is a constant equal to the ratio of one astronomical unit in kilometers

to the number of seconds in a Julian year (=4.740470446 km yr s™!).

de Bruijne et al. (2001) performed a more complicated analysis, taking

the velocity dispersion of the cluster into account and simultaneously fitting

I am grateful to Dr. Mamajek not only for suggesting this line of inquiry, but also for
helping to locate the relevant papers in the literature and performing the initial calculations
of distances to the Hyades WDs.
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Table 3.2: Proper motions for the Hyades white dwarfs from various sources.
compiled by E. Mamajek (2008—private communication). The proper motion determinations come from
the USNO-B1.0 Catalog (Monet et al., 2003), the PM2000 Bordeaux Proper Motion Catalogue (Ducourant
et al., 2006), the Second U.S. Naval Observatory CCD Astrograph Catalog (Zacharias et al., 2004), and
the Lick NPM2 Catalog (Hanson et al., 2004). The symbols v and 7 refer, repectively, to motion in the
direction of, and perpendicular to, the cluster convergent point. V,.. is the velocity perpendicular to the
motion of the cluster. All of these stars show kinematics in strong agreement with the cluster as a whole.

Adapted from a table

WD Name Catalog index R.A. Dec PMv PMr OPMow OPM~ D op T O Viec oy
(deg)  (deg)  (mas/yr) (mas/yr) (mas/yr) (masfy) (pc) (pc) (mas) (mas) (kmjs) (km}s)
VRI16 PM2000_171118 67.1641354 16.9700192 100.37 -4.55 5.90 5.90 504 3.0 19.86 1.18 -1.1 1.4
USNO-B1.0.1069-0 67.1639528 16.9700361 81.22 -8.86 8.72 3.7 62.2 6.7 16.07 1.75 -2.6 1.1
VRT PM2000_167294 65.9820137 16.3542164 119.49 1.02 5.80 5.80 43.4 2.1 23.02 1.13 0.2 1.2
USNO-B1.0.1063-0 65.9820083 16.3542444 113.03 0.49 3.35 6.84 459 1.4  21.77  0.66 0.1 1.5
HZ14 PM2000_181740 70.2570179  10.9944556  89.68 -0.95 2.20 2.30 49.5 1.3 20.19 0.51 -0.2 0.5
UCAC2.35516984  70.2572331  10.9944406 91.06 -0.69 11.23 2.04 48.8 6.0 20.50 2.57 -0.2 0.5
HZ4 USNO-B1.0.0997-0 58.8416000 9.7883806  167.86 7.95 1.00 4.00 36.0 0.9 27.79 0.69 1.4 0.7
HZ7 NPM2_+12.0517 68.4375600 12.7113300 115.76 5.34 6.00 6.00 41.0 2.1 2441 1.28 1.0 1.2
PM2000_175308 68.4361821 12.7114225 104.47 0.54 0.70 0.70 45.4 0.4  22.02 0.21 0.1 0.2
UCAC2.36236653  68.4373558 12.7112153 99.14 2.23 2.70 2.60 47.8 1.3 20.90 0.59 0.5 0.6
LB227 PM2000_157579 62.3703196 17.1317700 110.33 -5.19 5.30 5.30 51.6 2.5 19.38 0.9 -1.3 1.3
USNO-B1.0_1071-0  62.3703778 17.1318222 106.73 -0.97 2.06 2.96 53.3 1.1 18.714 0.38 -0.2 0.7




the various parameters of the velocity field and convergent point. In the end,
they provide a table of likely Hyades members on the main sequence with
individual secular parallaxes they claim are ~3 times more precise than the

Hipparcos trigonometric parallaxes.

Table 3.2 shows the individual proper motion determinations for the
WDs in the Hyades, where the proper motions come from the USNO-B1.0
Catalog (Monet et al., 2003), the PM2000 Bordeaux Proper Motion Catalogue
(Ducourant et al., 2006), the Second U.S. Naval Observatory CCD Astrograph
Catalog (Zacharias et al., 2004), and the Lick NPM2 Catalog (Hanson et al.,
2004). For stars with multiple measurements, we take a weighted average of the
individual proper motion determinations for each star and use (3.1), together
with the cluster velocity and convergent point determined by de Bruijne et al.

(2001) to calculate the final secular parallax for each WD.

We match these stars up with the photometry from the GCPD and Lan-
dolt & Uomoto (2007), and use the parallax to determine absolute magnitudes
for each star. We then propagate the errors in the distance determinations and
the apparent magnitudes to determine the total error in the absolute magni-

tude in each band for each star.

Theoretically, correcting the photometry in this manner puts every star
at a distance of exactly 10 pc, with the errors in the distance determinations
incorporated into the errors in the photometry. However, the “individual”
distance determinations are not, in fact, independent at all, but rely on a

common set of parameters determined by fitting the cluster as a whole (e.g., the
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components of the velocity field and the cluster convergent point). Correcting
for the individual distances, even accounting for the errors in the proper-

motion determinations, leaves an untreated systematic error in the distance.

de Bruijne et al. (2001) find an upper limit to the systematic uncertainty
in their secular parallaxes to be ~0.3 mas. At the mean distance to the Hyades,
this translates to an error in the distance modulus of ~0.03. To account for
this systematic error, we use this value as the uncertainty on the prior on
the cluster distance. This is probably an overly conservative estimate, as the
0.3 mas figure cited is the mazimum systematic error that could hide in their
analysis without detection. Elsewhere, they show that their secular parallaxes,
as a set, agree with Hipparcos trigonometic parallaxes to within 0.1 mas. Our
own calculations comparing their fits to the cluster velocity and convergent
point with five previous fits in the literature, indicates a total systematic of
only ~0.2 mas. We choose to use the more conservative value of 0.3 mas in

our analysis, and discuss the effect of this choice in Section 3.2.1.

Figure 3.3 shows the CMD of the Hyades in absolute magnitude space
after correcting for differential distances. The main sequence is considerably
tighter, with the remaining dispersion accounted for almost entirely by binaries

and photometric scatter. There is essentially no field star contamination.

Figure 3.4 shows an expanded view of the WD portion of Figure 3.3.
Accounting for differential distances has moved the WDs in the expected di-
rections, with both 1.B227 and HZ4 (as well as the other WDs) now lying in

a much tighter sequence. While the isochrones fit the B — V' data well, the
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Figure 3.3: Color-magnitude diagram of the Hyades in absolute magnitude
space, after correction for differential distances. Three different sets of MS
models are overplotted. Solid (purple) line=Girardi models, dotted (red)
line=Yale-Yonsei models, dashed (blue) line=DSED models.

U — B isochrones clearly lie blue-ward of the actual data, which may indicate

a problem with the U band in either the data or the WD model atmospheres.

3.1.2 Problems with the Main-Sequence Models

Figure 3.3 also shows the differences among the main-sequence models
at the nominal age, metallicity, distance, and reddening of the Hyades. There

are some differences in the position of the turnoff, as well as some important
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Figure 3.4: A close up of the white dwarf region of Figure 3.3. The crosses are
the Hyades WDs, the other symbols show the positions of individual theoretical
WDs of a given mass along the WD tracks. Solid (purple) line=Girardi models,
dotted (red) line=Yale-Yonsei models, dashed (blue) line=DSED models.

differences in the shapes of the main sequence. These differences represent a
long-standing problem in stellar astrophysics (for recent discussions see von

Hippel et al., 2002; Grocholski & Sarajedini, 2003; Jeffery, 2009).

The proper functioning of our code depends on the models’ being accu-
rate. However, our goal in this paper is to derive cluster ages, in particular WD

ages, on which the MS has a limited impact. The primary function of the MS
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in our method is to help pin down the cluster parameters of distance, metallic-
ity, and absorption, yielding more precise ages from the WDs. However, as we
will shortly show, we can derive reasonable cluster parameters without using
the main-sequence stars at all. Ultimately, the lack of MS model agreement

points to a limitation inherent in the models themselves, not our method.

We note also that the differences between the various main-sequence
model predictions are a measure of the uncertainty in the theoretical underpin-
nings of the models. As such, results obtained under different sets of models
will represent the spread in cluster parameters that result from these underly-

ing theoretical uncertainties.

The WD tracks are nearly coincident for all three sets of MS models. A
closer look at the WD sequences (Figure 3.4) shows some differences, however.
Here, individual WDs for different zero-age main-sequence (ZAMS) masses
are plotted. Although the tracks are nearly coincident, individual WDs of the
same mass fall in different places along the tracks. Near the top of the cooling
sequence, where the progenitor lifetimes are a significant fraction of the white
dwarfs” ages, small differences in the MS timescales have a larger impact on
the exact position of the WD along the sequence. For the more massive WDs,
which have been cooling much longer, the MS lifetime is a smaller fraction of
the WD’s total age, and by about 5Mg, the different MS models yield nearly
identical positions. Note that these discrepancies in the upper part of the
sequence will result in different mass determinations for individual stars, but

will not meaningfully alter the derived age for the cluster (see Section 1.4.2).

36



3.2 Results

Since we are interested in a comparison between ages derived from
traditional main-sequence turn-off fitting and our technique to determine WD
ages, we remove the MS turnoff and giant stars from the data so that our code
cannot derive any age information from these stars. We cut off any stars with
My < 1.5 (shown in gray in Figure 3.3). There is still some age information
in the MS insofar as the lack of a turnoff fainter than My = 1.5 sets an upper

limit on the age. Our bright WD technique in part exploits this phenomenon.

To test the sensitivity of our results and errors on the shape of the
inaccurately modeled main sequence, we cut off the faint end of the MS at
half magnitude intervals and run each set of data separately through the code.
Each data set thus contains all of the WDs and the main sequence between

My = 1.5 and some low cutofl.

Figures 3.5 through 3.8 show the results of these runs. At each MS
cutoff, the three different MS models are slightly offset in x for clarity, with
the (purple) triangles representing the Girardi models, the (blue) squares the
DSED models, and the (red) circles two different runs with the Yale-Yonsei
models (to test the sensitivity of our results to starting values). The horizontal
lines are the most recently accepted values for the parameters and their stan-
dard errors, as discussed in Section 3.1. The first cluster of points in each figure
represents information obtained from the WDs alone, with no main-sequence

stars used in the analysis.
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All three models give very reasonable answers for all of the parameters,
and the internal precision of the method under the assumption of a specific set
of models is comparable to, and in some cases better than, the most precise

values measured to date using other methods. This is particularly surprising

8.85
|

log(age)
8.80
|
e
e

8.75
|

2 4 6 8 10
Faintest MS My

Figure 3.5: Our derived log(age) for the Hyades as a function of the faintest
magnitude main-sequence star included in the analysis. The (blue) squares are
the DSED models, the (red) circles are two different runs of the Yale-Yonsei
models (to test sensitivity to starting values), and the (purple) triangles are
the Girardi models. The horizontal lines are the mean and +1o deviations
of the most reliable estimate for the age of the Hyades as determined by MS
turn-off fitting (Perryman et al., 1998). It should be noted that for the case
of age, this information was not used as a prior to inform our analysis.
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in the case of distance. We will show below that our choice of prior does
have an effect on this result, particularly on the size of the error bars, but
that we obtain consistent results even with less restrictive priors. We also
remind the reader that while the horizontal lines in the metallicity, distance,
and absorption figures represent the means and standard deviations of the

prior probability distributions used in the analysis, the prior on log(age) is

0.20
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Figure 3.6: Our derived [Fe/H] for the Hyades as a function of the faintest
main-sequence magnitude star included in the analysis. The symbols have the
same meaning as in Figure 3.5. The metallicity value comes from Taylor &
Joner (2005) and represents the prior information used in the analysis.
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uniform between the model limits, and the horizontal lines in the log(age)
diagram merely represent the most widely accepted turn-off age for the Hyades
(Perryman et al., 1998). Thus, the excellent agreement between our WD age

and the MS turn-off age is not a function of prior information but inherent in

the data.
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Figure 3.7: Our derived distance modulus for the Hyades as a function of the
faintest magnitude main-sequence star included in the analysis. The symbols
have the same meaning as in Figure 3.5. The distance value is an estimate
of the systematic uncertainty in the distances derived via Hipparcos secular
parallaxes in de Bruijne et al. (2001) and represents the prior information used
in the analysis.
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The metallicity (Figure 3.6) is particularly influenced by the shape and
slope of the main sequence. When the WDs are run through the code by
themselves (i.e., a MS cutoff of My = 1.5 — the first point in each figure), the
code essentially has no information on metallicity except for the prior. Hence,
the first few points, with no or minimal main sequence information, agree in

value and error with our prior. As we add more main sequence, its shape and
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Figure 3.8: Our derived Ay for the Hyades as a function of the faintest mag-
nitude main-sequence star included in the analysis. The symbols have the
same meaning as in Figure 3.5. The Ay value comes from Taylor (1980) and
represents the prior information used in the analysis.
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slope contribute more and more to the likelihood, and thus the posterior.

In all of the parameters, the values show more variability in the left
half of the figures, but begin to stabilize as we include main sequence stars
fainter than My ~ 6.5. With a shorter main sequence, the method has more
wiggle-room in fitting the parameters, but as we include the lower part of the
MS, we constrain the possible values that the parameters can take on and still

adequately fit the entire sequence.

The discrepancy in the distance for the DSED models (blue) can be at
least partly understood by a closer examination of Figure 3.3, where we can
see that the DSED models tend to overestimate the B luminosity for a given
U — B color on the main sequence (the same is true to a lesser extent in the
right half of the figure as well). This discrepancy does not affect the distance
determination when we only include stars down to My ~ 5.5 because the MS
in the B vs. U — B figure is nearly vertical. But as we include the lower part
of the main sequence, the code compensates for this problem in the models
by moving the modeled cluster further away to better match the observations.
The underestimation of the distance in the case of the Yale-Yonsei models

(red) can be understood in the same way.

The slight offset in the WD sequence in the B vs. U — B diagram—
though it is probably a color effect—can also be reduced by adjusting the
cluster distance, in this case by moving the theoretical cluster closer (i.e.,
upward in the CMD). The first few points for all three model sets in Figure

3.7—where we include little or no MS information—show precisely this trend.
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Figure 3.9: Color-magnitude diagram of the Hyades in absolute magnitude
space, after correction for differential distances. Three different sets of MS
models are overplotted, this time at the values for the cluster parameters
determined by our method. Solid (purple) line=Girardi models, dotted (red)
line=Yale-Yonsei models, dashed (blue) line=DSED models.
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Figure 3.9 shows the theoretical isochrones for the three different mod-
els sets at the values determined by our method when we include the entire

MS (i.e., , the rightmost points in Figures 3.5 through 3.8).

These isochrones fit better overall than the isochrones created with the
cluster parameters fixed at their prior values. Some of the trade-offs required
to fit the stars as a whole are apparent. In particular, the lower part of the WD
cooling sequence has shifted varying amounts for the three model sets in order
to fit the coolest two WDs in both the B vs. U—B diagram and the V vs. B—V
diagram. The shape of the upper MS for the DSED models (blue) has adjusted
red-ward in the U — B diagram, causing a slight shift in the opposite direction
in the top of the MS in the B — V diagram. These subtle trade-offs highlight
the advantage our method has over traditional “chi-by-eye” fitting, which has
considerable difficulty handling such nuanced distinctions in a consistent and
repeatable way. At the same time, they also highlight the limitations in the
stellar evolution models, while also providing valuable feedback to those who

create such models.

3.2.1 Cluster-wide Parameter Determinations

Figures 3.5 through 3.8 show graphically that the choice of model and
the amount of main sequence included have a significant effect on the results
we obtain. However, as pointed out in Section 3.2 the values begin to stabilize
as we include main sequence stars fainter than My ~ 6.5, essentially flattening

out well before My = 10.0.
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We have chosen to use the final point in each figure for each model set to
determine the values for the cluster-wide parameters for the Hyades. We take
a weighted average of the three models for each parameter for the runs which
include the entire MS. In the interest of providing a conservative estimate of our
errors, we add the standard deviation of the three determinations in quadrature
to the average error of the individual determinations. This estimate of the
error bars takes into account the internal precision of the method (including
photometric errors) and the systematic errors caused by differences among the
MS models. It does not, however, include other known sources of systematic
error, most notably errors in the WD cooling or atmosphere models or in the

imprecisely known IFMR.

In fact, the overall systematic uncertainty in the WD age of the Hyades
may be dominated by uncertainties in the WD cooling models. We have not
vet explored these model systematics. Salaris et al. (2009) provide a detailed
analysis of systematic uncertainties in WD cooling for various parameters (e.g.
core composition and surface layer masses) and we refer the interested reader
to their paper. For clusters, rather than individual WDs, the possible effect
of systematic errors in the models is complicated since different WDs in the

same cluster can pull the age solution in opposite directions.

We derive a WD age for the Hyades of 610 + 110 Myr (loglage] =
8.78 £0.07), an [Fe/H] of 0.061 £+ 0.051, and an absorption in the visual band
of 0.014 £ 0.007, all of which are consistent with the best previous results.

Of these, only the age really provides much new information of astrophysical
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interest, as the other quantities (for the Hyades, at least) have been measured

elsewhere by more accurate methods.

The systematic offset in the posterior distribution for the distance mod-
ulus (0.0340.08), is consistent with the claims of de Bruijne et al. (2001) that

the distances derived via secular parallax can be considered absolute.

The age we derive here is closer to the accepted value of the MSTO
age derived by Perryman et al. (1998) than the value (648 + 45 Myr) we
previously published in DeGennaro et al. (2009), though with a larger formal
error. This larger error is due at least in part to the slightly larger variance on
the prior on the cluster distance. In fact, when we repeat the analysis with a

less conservative, but probably more realistic systematic distance error of 0.01

dex, we derive an age of 602 + 75 Myr.

3.2.2 The Bright White Dwarf Age Of The Hyades

Previous studies to determine the WD age of the Hyades cluster have
produced a result (300 Myr; Weidemann et al., 1992) that is about half the
measured MSTO age (625 Myr; Perryman et al., 1998). Weidemann et al.
(1992) suggested that this discrepancy is due to the dynamical evaporation of
stars from this cluster; the coolest WDs have been ejected. In the absence of
any data on these missing faint WDs, traditional techniques to determine WD

ages can provide at best a lower limit to the WD age.

As summarized in Section 1.4.2, in Jeffery et al. (2007) we demonstrated

the possibility of determining cluster WD ages from just the bright WDs, when

66



the coolest WDs are not observed. Because the coolest WDs are missing from
the Hyades, we require the bright WD technique to measure the true WD age
(rather than a lower limit, as was done previously). Our Hyades results provide

empirical evidence that the bright WD technique yields reasonable and precise
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Figure 3.10: MSTO versus WD ages for seven clusters, adapted and updated
from von Hippel (2005). The age we derive from the white dwarfs in the
Hyades using our “bright white dwarf” technique brings the WD age of the
Hyades into agreement with the main-sequence turn-off age for the first time
(solid red triangle). The solid line shows a one-to-one correspondence between
WD and MSTO ages and the gray point shows the lower limit of the most
reliable WD age for the Hyades (Weidemann et al., 1992) prior to our results
in DeGennaro et al. (2009).
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ages for real data, as well as providing an important step in calibrating the

technique.

Figure 3.10 is an updated version of Figure 1 from von Hippel (2005),
plotting WD age vs. MSTO age for open clusters up to 4 Gyr. Our results, a
measure of the bright WD age of the Hyades, bring the WD age of this cluster
into agreement with the MSTO age for the first time. The solid line shows a
one-to-one correspondence between WD and MSTO ages and the gray point
shows the results of the most reliable WD age for the Hyades (Weidemann

et al., 1992) prior to our results in DeGennaro et al. (2009).

3.2.3 White Dwarf Mass Determinations

Figure 3.11 shows the individual WD mass determinations for the var-
ious runs, with the plotting symbols the same as in Figures 3.5 through 3.8.
In this case, the horizontal lines represent mass determinations from various
authors as quoted in Weidemann (2000). For the most part, our mass determi-
nations lie well within the range of possible masses for the WDs, as determined

by other methods, including gravitational redshifts and spectroscopic gravities.

3.2.4 Main Sequence Mass Determinations

Bender & Simon (2008) undertook a survey of Hyades stars to look
for low-mass binary companions via infrared and optical spectroscopy. Using
spectra, they derived dynamical masses for the binaries, then used Hipparcos

distances, 2MASS photometry, and a set of main-sequence models to derive
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Figure 3.11: Our mass determinations for the Hyades white dwarfs as a func-
tion of the faintest MS magnitude included in the analysis for three sets of
models: Yale-Yonsei (red circles), Girardi (purple triangles), and DSED (blue
squares). The horizontal lines are previous mass determinations as compiled

by Weidemann (2000).
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Figure 3.12: A comparison of our results for the masses of twelve MS-MS bi-
naries with mass determinations from Bender & Simon (2008). The colored
points are the individual MCMC samples for one run of our code (which in-
cluded the entire MS down to My = 10.0) for each of the three MS model
sets. The black points with error bars are the mass determinations of Bender
& Simon (2008) based on infrared and optical spectroscopy combined with
2MASS photometry, Hipparcos parallaxes, and an assumed mass-luminosity
relationship from theoretical isochrones.
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individual masses for the two components of the binary. Twelve of the stars

in their sample overlap with stars we fit in our analysis.

Figure 3.12, shows a comparison of our results with theirs for these
twelve stars. The colored points are the inidividual MCMC samples for one
run of our code (which included the entire MS down to My = 10.0) for each
of the three MS model sets. The black points with error bars are the primary

and secondary masses determined by Bender & Simon (2008).

The shape of the correlation between primary and secondary mass for
most of these stars in our results is due to the insensitivity of the photometry
to binaries with mass ratios less than ~0.5. Because of the steep relationship
between mass and luminosity on the main sequence, companions with less than
half the mass of their primaries tend to get lost in the glare of their brighter
hosts, especially in the bluer bands used in our analysis of the Hyades (U,
B, and V). As such, our method is essentially unable to distinguish a star
without a companion from a star with a low-mass companion. This accounts
for the essentially vertical portion of the MCMC “curves”. As the mass of
the secondary becomes comparable to that of the primary, the mass of the
primary must decrease to keep the modeled photometry at the same color and
luminosity as the observed photometry, which accounts for the hook-shaped

portion of the correlation structure.

Because Bender & Simon (2008) were specifically searching for low mass
companions via infrared spectroscopy, most of their results lie in the region

where our method is insensitive to the secondary masses. The primary masses
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we derive, however, are each individually consistent with the results of Bender
& Simon (2008). In aggregate, they show a small systematic offset from the
spectroscopic masses, with our masses tending to be smaller. However, spec-
troscopy can only provide masses up to an inclination angle. Bender & Simon
(2008) couple this information with main sequence models, trigonometric par-
allaxes, and 2MASS photometry to derive the masses of the two components.
In doing so, they rely on a theoretical mass-luminosity relation derived from
a single set of main-sequence models (different than any of the models sets
we used), at a single age and metallicity. These model-dependent factors may
account for the small systematic difference we see between their masses and

ours.

Peterson & Solensky (1988) also used radial velocity measurements
to derive dynamical mass ratios for several Hyades binaries. Of these, one
system (vB022) is an eclipsing binary, and using the inclination angle de-
rived by Schiller & Milone (1987), they were able to derive essentially model-
independent primary and secondary masses for the system. Figure 3.13 com-
pares their results with ours. Our secondary mass is consistent with their
result, but the primary mass is ~5% lower than the more reliable external

estimate.

3.2.5 Effect of Less Restrictive Priors

In order to quantify the effects of the prior variances on our derived

values for the cluster parameters, we re-analyzed our data using less restric-
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Figure 3.13: Similar to Figure 3.12 for the star vB022. In this case, the black
point is the mass determined dynamically from radial velocity measurements
combined with an inclination angle derived from eclipse light curves (Peterson

& Solensky, 1988).

tive priors on distance, metallicity, and reddening. The values we used for the
standard deviations of the Gaussian priors—0.3, 0.2, and 0.1 dex for the metal-
licity, distance modulus, and absorption, respectively—are similar to what we

might know for a more typical open cluster.

Figures 3.14 through 3.17 show the results of these runs. While all of

the values now lie further away from the prior mean value, two of the model
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sets remain well within the errors of the new, less restrictive priors (gray
horizontal lines), indicating that for these models the posterior is dominated
by the likelihood and not the prior. The third model set (DSED, in blue),
which fit the data most poorly on visual inspection, may be relying slightly

more on the prior to constrain the fit.
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Figure 3.14: Similar to Figure 3.5. For these runs, the variances on the prior
probability distributions for the cluster-wide parameters except log(age) have
been increased to values that are more in line with what we might be able to
obtain for a typical cluster. We note again that the prior on log(age) is flat.
The horizontal lines in this figure merely represent the most reliable age for

the Hyades based on the MSTO(Perryman et al., 1998).
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The age we derive with these less restrictive priors is 560 + 105 Myr
(log(age) = 8.7540.08), which is consistent with both the MSTO age and our
own WD age from Section 3.2.1. Interestingly, increasing the variances on the
priors on distance, metallicity, and reddening appears to have had no effect on

the uncertainty in the age.
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Figure 3.15: Similar to Figure 3.6, except that the errors on the prior probabil-
ity distributions for the cluster-wide parameters (except log(age)) have been
increased to values that are more in line with what we might be able to obtain
for a typical cluster. The dark horizontal lines are the same as in Figure 3.6.
The gray horizontal lines are the +10 deviations of the new, less restrictive
prior.
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Figure 3.16: Similar to Figure 3.7, except that the errors on the prior probabil-
ity distributions for the cluster-wide parameters (except log(age)) have been
increased to values that are more in line with what we might be able to obtain
for a typical cluster. The dark horizontal lines are the same as in Figure 3.7.
The gray horizontal lines are the +10 deviations of the new, less restrictive
prior.
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Figure 3.17: Similar to Figure 3.8, except that the errors on the prior probabil-
ity distributions for the cluster-wide parameters (except log(age)) have been
increased to values that are more in line with what we might be able to obtain
for a typical cluster. The dark horizontal lines are the same as in Figure 3.8.
The gray horizontal lines are the +10 deviations of the new, less restrictive
prior.

7



Chapter 4

White Dwarf Luminosity and Mass Functions
from Sloan Digital Sky Survey Spectra

4.1 Introduction

In addition to the open and globular clusters, white dwarfs have long
been used as age indicators for other Galactic populations. The same cooling
physics applies equally to stars in the thin disk, thick disk, and halo of the
Galaxy, and while the specific methods employed to determine the ages of
these populations vary, one fact remains constant: the ages we determine are
ultimately only as accurate as the WD cooling models themselves, which in

turn are only as good as the physics underlying those models.

The history of the development of WD models, as with much in astro-
physics, involves a sort of leap-frog process: theoretical considerations yield
testable predictions; observations, in turn, illuminate limitations in theory and
suggest new avenues of theoretical exploration. At the heart of any astrophys-
ical model is a set of self-consistent physical laws, but given the complexity of
the universe, new or more precise observations almost invariably lead to new

physics, or at least new treatments of old physics.

In the case of the white dwarfs, one of the oldest and most useful ob-
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servational tools for constraining the theoretical models is the white dwarf
luminosity function (WDLF). Attempts at an empirical luminosity function
(LF) for white dwarfs date as far back as Luyten (1958) and Weidemann
(1967). The low-luminosity shortfall, discovered by Liebert et al. (1979), and
attributed by Winget et al. (1987) to the finite age of the Galactic disk, was
confirmed and explored more fully when a greater volume of reliable data
on low-luminosity WDs became available (Liebert et al., 1988; Wood, 1992).
More recently, photometric data from the Sloan Digital Sky Survey (SDSS—
York et al., 2000) have been used to provide a much more detailed luminosity
function with more than an order of magnitude more white dwarfs than pre-
viously attempted (Harris et al., 2006), as well as a new LF of a large sample

of spectroscopically confirmed WDs (Hu et al., 2007)".

To date, however, empirical WD luminosity functions, especially those
derived from stars with spectra, have been hampered by a limited volume of
reliable data. This has forced a trade-off between the number of stars included
in a sample and their homogeneity; either a broad range of temperatures,
masses, and spectral types must be used, or else the sample population of

stars would be so small as to render reliable conclusions difficult.

In 2004, at the commencement of my Master’s project, our hope was
that this situation had changed. Data from the Fourth Data Release (DR4) of

SDSS had yielded nearly 10,000 white dwarf spectra. All of these spectra had

Hu et al. (2007), based on spectra from the First Data Release of SDSS, suffered from
methodological flaws serious enough to render their conclusions virtually meaningless.
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been fitted with model atmospheres to determine their effective temperatures
and surface gravities (Kleinman et al., 2004; Krzesiniski et al., 2004; Eisenstein

et al., 2006; Hiigelmeyer et al., 2006; Kepler et al., 2007).

With this massive quantity of data in hand, we hoped that for the
first time, we could begin to disentangle the many disparate factors that make
up the WDLF by focusing solely on a single type of white dwarf (hydrogen
atmosphere, or DA), and moreover, by creating for the first time separate
well-populated WD luminosity functions for two or more different ranges of
mass. Theoretical work had been done in this area (Wood, 1992; Fontaine
et al., 2001), but to that date (and, indeed, to this one), attempts at creating
an empirical LF to explore the effects of mass have relied on limited sample

sizes (Liebert et al., 2005; Catalan et al., 2008).

In addition to helping unlock the physics of white dwarfs, creating lu-
minosity functions for several mass ranges would also help to disentangle the
effects of changes in cooling rates from changes in star formation rates. A
burst or dip in star formation at a given instant in Galactic history should
be recorded in all of the luminosity functions, regardless of mass, and could
be confirmed by its position across the various mass bins. For example, a
short burst of increased star formation would be seen as a bump in each lu-
minosity function, occurring at cooler temperatures in the higher mass LF
(these stars, with shorter MS lifetimes, have had longer to cool). On the other
hand, features intrinsic to the cooling physics of the white dwarfs themselves

should be seen in places that correspond with the underlying physics, which
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may be earlier, later, or nearly concurrent across mass bins. These effects
include neutrino cooling, crystallization, phase separation, the onset of con-
vective coupling (Fontaine et al., 2001), and Debye cooling (Althaus et al.,
2007).

Ultimately, we discovered that the data available to us was of insuffi-
cient quality to allow us to complete this ambitious project in full. Despite
these limitations, however, in DeGennaro et al. (2008) we published the first
WDLF for spectroscopically determined WDs in the SDSS and the first white
dwarf mass function corrected for selection effects. Most of the remainder of

this chapter is derived and updated from that paper.

In Section 4.2, we introduce the data, examining the methods used
to classify spectra and derive quantities of interest (dominant atmospheric
element, Teg, and log g). We also address the observed upturn in log ¢ for
DAs below Teg ~ 12,000K. We present several lines of reasoning that the
upturn is an artifact of the line fitting procedure, and propose an empirical
method for correcting the problem. Section 4.3 outlines the methods used to

construct the luminosity and mass function and determine error bars.

In Section 4.4, we present an analysis of the completeness of our data
sample. We use a well-defined sample of proper-motion selected, photomet-
rically determined white dwarfs in SDSS (Harris et al., 2006) to determine
our completeness and derive a correction as a function of ¢ — ¢ color and ¢
magnitude. Finally, in Section 4.5, we present our best luminosity and mass

functions for the entire DA spectroscopic sample and discuss the impact of
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both our empirical log g correction and our completeness correction.

4.2 The Data

Our white dwarf data come mainly from Eisenstein et al. (2006), a cat-
alog of spectroscopically identified white dwarfs from the Fourth Data Release
(DR4) of the Sloan Digital Sky Survey (York et al., 2000). The SDSS is a
survey of ~8,000 square degrees of sky at high Galactic latitudes. It is, first
and foremost, a redshift survey of galaxies and quasars. Large “stripes” of sky
are imaged in 5 bands (u,g,r,i,z) and objects are selected, on the basis of color
and morphology, to be followed up with spectroscopy, accomplished by means
of twin fiber-fed spectrographs, each with separate red and blue channels with
a combined wavelength coverage of about 3800 to 9200A and a resolution of
1800. Objects are assigned fibers based on their priority in accomplishing
SDSS science objectives, with high redshift galaxies, “bright red galaxies” and
quasars receiving the highest priority. Stars are assigned fibers for spectropho-
tometric calibration, and other classes of objects are only assigned fibers that
are left over on each plate. More detailed descriptions of the target selection
and tiling algorithms can be found in Stoughton et al. (2002) and Blanton
et al. (2003).

Though white dwarfs are given their own (low priority) category in the
spectroscopic selection algorithms, very few white dwarfs are targeted in this
way. Rather, most of the white dwarfs in SDSS obtain spectra only through the

“back door,” most often when the imaging pipeline mistakes them for quasars.
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Kleinman et al. (2004) list the various algorithms that target objects ultimately
determined to be white dwarfs in DR1 (their Table 1). White dwarfs are most
commonly targeted by the QSO and SERENDIPITY _BLUE algorithms, with
significant contributions also from HOT_STANDARD (standard stars targeted
for spectrophotometric calibration) and SERENDIPITY_DISTANT. Of the 5
significant contributors, the STAR_-WHITE_DWARF category contributes the

least to the population of WD spectra.

The SDSS Data Release 4 contains nearly 850,000 spectra. Several
groups have already attempted to sort through them to find white dwarfs:
Harris et al. (2003) for the Early Data Release, Kleinman et al. (2004) for
Data Release 1 (DR1), and most recently, Eisenstein et al. (2006) for the
DRA4, from which the majority of our data sample derives, though a handful of
stars from DR1 omitted by Eisenstein have been re-included from Kleinman
et al. (2004). Most recently, Kepler et al. (2007) have refit the DA and DB
stars from Eisenstein et al. (2006) with an expanded grid of models. A com-
plete analysis of the methods by which candidate objects are chosen, spectra
fitted, and quantities of interest are calculated can be found in Kleinman et al.
(2004), Eisenstein et al. (2006), and Kepler et al. (2007). We put forth a brief
outline here, with special attention paid to those aspects important to our own

analysis.

Objects in the SDSS spectroscopic database were put through several
cuts in color designed to separate the WDs from the main stellar locus. Figure

1 in Eisenstein et al. (2006) shows the location of these cuts. The chief failing
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of their particular choices of cuts, as noted by the authors, is that WDs with
temperatures below ~8,000K begin to overlap in color-color space with the
far more numerous A and F stars. The SDSS spectroscopic pipeline calcu-
lates a redshift for each object by looking for prominent lines in the spectrum.
Objects with redshifts higher than z=0.003 were eliminated, unless the ob-
ject had a proper motion from USNO-A greater than 0.3” per year. Because
the spectroscopic pipeline is fully automated, occasionally DC white dwarfs
show weak noise features that can be misinterpreted as low-confidence red-
shifts. Other types of WD, particularly magnetic WDs, can fool the pipeline
as well. In the present work we are concerned chiefly with DA white dwarfs,
so this incompleteness is of importance only insofar as we use the entire set of
white dwarf spectral types to derive our completeness correction, as outlined

in Section 4.4. We explore the implications of this more fully in that section.

Eisenstein et al. (2006) then used a x? minimization technique to fit
the spectra and photometry of the candidate objects with separate model
atmospheres of pure hydrogen and pure helium (Finley et al., 1997; Koester
et al., 2001) to determine the dominant element, effective temperature, surface
gravity, and associated errors. As their Figure 2 demonstrates, they recovered
a remarkably complete and uncontaminated sample of the candidate stars.
They believe that they recovered nearly all of the DA white dwarfs hotter

than 10,000K with SDSS spectra.

These stars form the core of our data sample. Their final table lists

data on 10,088 white dwarfs. Of these, 7,755 are classified as single, non-
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magnetic DAs. Kepler et al. (2007) re-fit the spectra for these stars using
the same autofit method and Koester model atmospheres, but with a denser
grid which also included models up to log g of 10.0. Where they differ from
Eisenstein’s, we use these newer fits in our analysis. Of these 7,755 entries,
~600 are actually duplicate spectra of the same star. For our analysis we take
an average of the values derived from each individual spectra weighted by the
quoted errors. Our final sample contains 7,128 single, non-magnetic DA white

dwarfs.

4.2.1 Issues With Model Spectra

As noted by Kleinman et al. (2004) and others, the surface gravities
determined from Sloan spectra show a suspicious upturn below temperatures
of about 12,000K which increases at cooler temperatures, as shown in Figure

4.1.

A number of separate pieces of evidence argue that this upturn in
log g—and thus mass—is an artifact of the models and not a real effect. Not
least among these is that no one has yet provided any satisfactory mechanism
by which WDs could gain enough mass or shrink enough in radius as they cool
to account for the magnitude of the effect. We do expect a slight increase in
mass at cooler temperatures because in a galaxy of finite age, the cooler white
dwarfs must come from higher mass progenitors. This is the reason for the
upward slope of the blue dashed line in Figure 4.1. However, this effect is far

smaller and more gradual than the upturn observed in the actual data.
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Figure 4.1: log g v. log Teg for the white dwarfs in our sample. At temperatures
below ~12,500K, the log ¢ values begin to rise to an extent unexplained by
current theory. The solid line is a function empirically fit to the real data.
The dashed line is the modest rise predicted by theory. The excess at a given
Teq 1s subtracted from the measured log g value for some of our luminosity
functions.

Furthermore, Engelbrecht & Koester (2007), and Kepler et al. (2007)
demonstrated that the masses derived solely from the colors do not show an
increase in mass for cooler stars, which indicates that the problem is not
physical, but a result of either the line fitting procedure or the line profiles

themselves.

Figure 4.2 further illustrates the above point. The upper panel shows
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Figure 4.2: A comparison of the theoretical colors of the SDSS WDs, derived
from the atmospheric fits (black triangles), with the observed colors, as mea-
sured by the SDSS photometry (open blue circles). In the upper panel, the
colors of the model atmospheres do not agree with the observed colors at low
temperatures, indicating a problem with the line fitting for stars cooler than
~ 12,500K. In the lower panel, where the excess log g has been removed, the
colors agree much better.
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the colors derived from the synthetic spectra at the values of Teg and log g
quoted by Kepler et al. (2007) (i.e., the values in Figure 4.1), overlaid on the
actual SDSS photometry for the same objects. Contrast this with the lower
panel, which instead shows the colors derived from the synthetic spectra when
the excess log g has been removed (in a manner described below; the resulting
values are shown in Figure 4.3). The colors in the latter figure agree much

better with the measured colors of the objects.

Furthermore, Kepler et al. (2007) found a similar increase in mean mass
for the SDSS DB white dwarfs below Teg ~ 16,000K. They conclude that since
a) the problem only shows up in the line profiles and not the continuum, and
b) the onset of the effect in both hydrogen (DA) and helium (DB) atmosphere
WDs occurs at just the effective temperature where the neutral species of
the atmospheric element begins to dominate, then the problem lies in the
treatment of line broadening by neutral particles. This is supported further
by the fact that as the species continues to become more neutral (i.e., as the

temperature drops), the problem grows worse.

However, more recent model calculations indicate that neutral broaden-
ing is not important in the DA white dwarfs at temperatures down to at least
8,500K. Koester et al. (2009) consider a number of other possible mechanisms,
drawing no hard conclusions but favoring the hypothesis that the observed
effect is caused by a flawed or incomplete treatment of convection, leading
to errors in the temperature structure of the outer layers of the WD mod-

els. They specifically reject the conclusions of Bergeron et al. (2007) (see also
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Bergeron et al., 1990, 1995a), that the convective mixing of helium from a
lower layer in the atmosphere leads to a higher pressure, mimicking the effect
of a higher surface gravity, as this would require a hydrogen layer much thin-
ner than any seismologically determined in a DA so far (Bradley, 1998, 2001,
2006; Castanheira & Kepler, 2008).
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Figure 4.3: log g v. log Tes with the upturn in log g removed.

The lack of resolution to the problem of the model atmospheres is one
of the chief stumbling blocks to our analysis. Until the problem is resolved,
the best we can do is to empirically remove the log g upturn. For a given T,

we subtract the excess in the measured mean value (as fit by the red solid lines
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in Figure 4.1) over the theoretically expected mean (blue dashed line). Figure
4.3 shows the resulting values used. In fitting out the upturn this way, we
make two implicit assumptions. First, that the excess log ¢ is a function only
of Teg; for most of the candidate solutions to the problem, we would expect
only a weak dependence on log g. Second, we assume that the problem affects
only the log ¢ determination and not T.g. This latter assumption is unlikely
to be true, as the two parameters are correlated. In Section 4.5 we explore
more fully the impact of this fitting procedure on the luminosity and mass

functions.

4.3 Constructing The Luminosity And Mass Functions

Since we are dealing with a magnitude-limited sample, the most lu-
minous stars in our sample can be seen to much further distances than the
intrinsically fainter stars. We thus expect more of them, proportionally, than
we would in a purely volume-limited sample, and must make a correction
for the different observing volumes. As shown by Wood & Oswalt (1998) and
Geijo et al. (2006), the 1/Viuax method of Schmidt (1968) (described more fully
in, e.g. Green, 1980; Fleming et al., 1986) provides an unbiased and reliable

characterization of the WDLF.

In the 1/Viax method, each star’s contribution to the total space density
is weighted in inverse proportion to the total volume over which it would still be
included in the magnitude limited sample. Since the stars are not spherically

distributed, but lie preferentially in the plane of the Galaxy, an additional
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correction for the scale height of the Galactic disk must be included. For the

purposes of comparison with previous work, we adopt a scale height of 250 pc.

To determine the absolute magnitude of each WD, we use the effective
temperatures and log ¢g values provided by Kepler et al. (2007)—as corrected
in Section 4.2—and fit each WD with an evolutionary model to determine
the mass and radius. For 7.0 < log ¢ < 9.0, we use the mixed C/O models
of Wood (1995) and Fontaine et al. (2001), as calculated by Bergeron et al.
(1995b). For 9.0 < log ¢ < 10.0, we use the models of Althaus et al. (2005)
with O/Ne cores, including additional sequences for masses larger than 1.3
Mg calculated specifically for Kepler et al. (2007). Once we know the radius,
we can calculate the absolute magnitude in each Sloan band by convolving the
synthetic WD atmospheres of Koester (Finley et al., 1997; Koester et al., 2001)
with the Sloan filter curves. We apply bolometric corrections from Bergeron
et al. (1995b) to determine the bolometric magnitude. For the handful of stars
(~80-100) with log ¢ values outside the range covered by Bergeron’s tables,

we use a simple linear extrapolation.

We then determine photometric distances to each star from the ob-
served SDSS ¢ magnitude. SDSS, being concerned mostly with extragalactic
objects, reports the total interstellar absorption along each line of sight from
the reddening maps of Schlegel et al. (1998). Since the objects in our sam-
ple lie within the Galaxy, and most of them within a few hundred parsecs,
they are affected by only a fraction of this reddening. Following Harris et al.

(2006), we therefore assume: 1) that objects within 100 pc are not affected
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by reddening, 2) objects with Galactic height |z| > 250 pc are reddened by
the full amount, and 3) that the reddening varies linearly between these two
values. The distances and reddening are then fit iteratively from the observed
and calculated absolute ¢ magnitude. In practice, the reddening correction
makes very little difference to the final LF (typical A, values range from 0.01
to 0.05).

We calculate error bars on the luminosity function using a Monte-Carlo
simulation, drawing random deviates in T.g, log ¢, and each band of photom-
etry from Gaussian distributions centered around the measured value. The
standard deviations in Teg and log ¢ we use for this scattering are 1.2 times
the formal errors quoted in Eisenstein et al. (2006) (their own analysis, based
on repeated autofit measurements on duplicate spectra of the same stars, sug-
gests that the formal errors derived by their method are ~20% too small). The
photometry errors come directly from the SDSS database. After scattering the
parameters in this way, we recalculate the LF. We then add in quadrature the
standard deviation of each LF bin after 200 iterations and the counting error
for each bin (the errors for each individual star—taken to be of the order of

the star’s 1/Viayx statistical weight—summed in quadrature).

At a S/N of 16—the mean for the stars in our sample brighter than
g = 19.5—formal errors in T.g and log ¢ are of order 1.5%. When propagated
through our code, the mean errors in My, and mass are 0.35 dex and 9% (0.05
Mg) respectively. For the stars brighter than ¢ = 19.0 used to compile our

mass functions the average S/N is 19.5, leading to errors in M,,; and mass of
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0.35 dex and 7% (0.04 Mg).

4.4 Completeness Corrections

Aside from the problems with the model spectra, the chief difficulty
we have encountered in deriving our luminosity functions is unraveling the
complicated way in which SDSS objects are assigned spectral fibers. SDSS
is foremost a survey of extragalactic objects and rarely targets white dwarfs
for follow-up spectroscopy explicitly. Most of the objects in our sample are
targeted by some other algorithm. In particular, there is considerable overlap

in color between the white dwarfs and many QSOs.

A completeness correction could, in theory, be built from “first princi-
ples.” For each object in the SDSS spectroscopic database, we know by which
algorithm(s) it was targeted (or rejected) for spectroscopy, and by which al-
gorithm it was ultimately assigned a fiber. And for each algorithm, we know
which objects were targeted, which were ultimately assigned a fiber, and which,
of the targeted objects, turned out to be WDs. However, the selection process
is a multi-variate function of 5 apparent magnitudes, and colors in spaces of as
many as 4 dimensions (which vary based on the algorithm), as well as the com-
plex tiling algorithm. Furthermore, these algorithms are also time-dependent.
The QSO-targeting algorithm, for instance, “improved” as SDSS progressed,
rejecting more non-QSO objects (e.g., white dwarfs) in the later stages of the

survey.

We believe unraveling this complicated process to be unnecessary. In-
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stead we have chosen to compare our sample with the stars used to derive the
WDLF of Harris et al. (2006). Given certain assumptions about completeness
and contamination in both data sets, we derive a completeness correction as

a function of a single color index (¢ — ¢) and ¢ magnitude.

The Harris et al. (2006) sample comes from photometric data in the
SDSS Data Release 3. They selected objects by using the reduced proper
motion diagram to separate WDs from more luminous subdwarfs of the same
color. Briefly, they used color and proper motion (from USNO-B Munn et al.,
2004) to determine WD candidates from SDSS imaging data. They then fit
candidates with WD model atmosphere colors to determine temperatures and
absolute magnitudes, from which they derived photometric distances and—
together with proper motion—tangential velocities. In order to minimize con-
tamination, they adopted a tangential velocity cutoff of 30 km/s and rejected
all stars below this limit. The remaining 6,000 objects are, with a high and

well-defined degree of certainty (~ 98 —99%), likely to be white dwarfs.

If the database of SDSS spectra were complete, all of these objects
would (eventually) have spectra, and all but the 1-2% of contaminating objects
would be confirmed to be WDs. Furthermore, all of the WDs that did not make
it into the Harris et al. sample—because they were either missing from the
Munn et al. (2004) proper motion catalog, or had a tangential velocity below
30 km/s—would also all have spectra. In such a perfect world, of course, no
completeness correction would be necessary. However, since SDSS does not

obtain a spectrum of every object in its photometric database, a significant
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percentage of the objects in Harris et al. will not have spectra, or else will be
dropped at some later point by Eisenstein et al. and thus not make it into
our spectroscopic sample. Qur goal, then, is to look at all of the WDs in the
Harris et al. sample that potentially could have made it into our sample, and
determine which ones in fact did. If we assume that the WDs not in Harris et
al. follow the same distribution (an assumption we discuss more fully below),
then we can take this as a measure of the overall detection probability and

invert it to get a completeness correction.

The imaging area of the DR3, from which Harris et al. derive their
sample, is not the same as the spectroscopic area in the DR4. Therefore, for
the purposes of this comparison, we removed all stars not found in the area
of sky common to the two data sets from their respective samples. This left
5,340 objects classified as white dwarfs by Harris et al. that could potentially
have been recovered by Fisenstein et al. Of these, 2,572 were assigned spectral
fibers in DR4, and 2,346 were ultimately confirmed by Eisenstein et al. to be

white dwarfs.

Since we wish to restrict our analysis to single (i.e., non-binary) DA
white dwarfs, we removed all stars classified as DA+M stars in either catalog.
Unfortunately, given that the Harris catalog contains no further information
as to the type of WD, we were unable to remove the non DA stars and simply
compare what remains with the Eisenstein sample. Instead, we compute the
completeness for all of the WDs, under the assumption—explored more fully

below—that DAs, as the largest component of the WD population, dominate
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Figure 4.4: Color-color plot of the white dwarfs in the two samples used to
derive our completeness correction. Open symbols are WDs from the Harris
et al. (2006) sample that a) were in the area of sky covered by spectroscopy
in DR4, b) had Vi,, > 30 km/s, and ¢) were not determined by i- and z-band
excess to be WD + main-sequence binaries. The filled circles are the stars
for which SDSS obtained spectra and Eisenstein et al. (2006) confirmed to
be WDs. The dashed box shows a two-dimensional projection of the QSO
targeting algorithm’s exclusion region. The open gray squares are the WDs
from Harris et al. that lie outside Eisenstein et al.’s color-color cuts. For clarity,
only half of the points have been plotted.

the selection function.

Figure 4.4 shows a comparison of the two samples. The open symbols

are the complete Harris et al. sample (excluding those, as mentioned above,
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Figure 4.5: A map of our completeness correction. Darker areas indicate more
complete regions of the figure, with black being 100% complete. The overall
completeness is of order ~50%.

with Vi, < 30 km/s, those not in the region of sky covered by spectroscopy,
and the DA+M stars). The gray squares lie outside the cuts in color-color
space imposed by Fisenstein et al. They may have spectra in SDSS, but they
were not fit by Eisenstein et al., and therefore will not have made it into our
sample. The filled circles are the stars that are in Eisenstein et al. In other

words, if the SDSS spectral coverage of WDs were complete, and Eisenstein

et al. recovered every WD spectra in SDSS, then all of the open circles would
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be filled. The inside of the dashed box is the exclusion region for SDSS’s
QSO targeting algorithm (Richards et al., 2002), specifically implemented to
eliminate WDs from their sample. Note that our sample is more complete for

the stars outside this region.

Figure 4.5 shows the discovery probability as a function of ¢ — ¢ color
and ¢g magnitude. Darker areas mean a higher probability of discovery, with
black indicating that all the WDs in the Harris et al. sample in that area of
color-magnitude space made it into our sample. We have performed a box

smoothing to eliminate small scale fluctuations.

There is a drop off in discovery probability for stars bluer than g — ¢ ~ —0.2
at all apparent magnitudes. This corresponds to the red edge of the exclu-
sion region of the QSO targeting algorithm, as noted above. The QSO al-
gorithm is also itself a function of apparent magnitude, which accounts for
the general decrease at fainter magnitudes in the red half of the diagram,
and the much steeper drop off between g ~ 19 and ¢ ~ 19.5. The bluer
stars (g —¢ < —0.2), most of which are targeted by the HOT_STANDARD
or SERENDIPITY _BLUE algorithms, show the opposite: a slight increase at

fainter magnitudes.

To give a better sense of the order of magnitude of our completeness,
Figure 4.6 shows a histogram of the values in Figure 4.5. For most of the cells
that end up in the bins for 0, 1, and 0.5, the Harris et al. sample contains only

one or two stars. The mean completeness for the whole sample is ~ 51%.
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Figure 4.6: A histogram of the completeness values in Figure 4.5. Most of the
0, 1, and 0.5 values come from color-magnitude regions in which there are only
one or two stars in the Harris et al. sample available for comparison.

To derive our final completeness correction, we must further consider
the incompleteness and contamination in the Harris et al. sample itself. As-
suming that the SDSS photometric database is essentially complete down to
g = 19.5, then the incompleteness in Harris et al. comes mainly from two
sources: 1) the incompleteness in the Munn et al. (2004) proper motion cat-

alog, and 2) the tangential velocity limit of 30 km/s imposed, which results

in some low tangential velocity WDs being dropped from the sample. How-
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ever, with one negligible exception, none of the criteria used to target objects
for spectroscopy in SDSS, nor those used by FEisenstein et al. to select white
dwarf candidates, depends explicitly on proper motion or tangential veloc-
ity. Thus we assume that the low-velocity stars—dropped from the Harris et
al. sample—will be recovered by Eisenstein with the same probability as the

high-velocity stars—i.e., the stars in Figure 4.4.

Contamination poses a bit more challenging problem. At first glance,
it would seem that the reverse of the above process could be applied, whereby
those objects in Harris et al. which did get spectral fibers—but were ultimately
rejected as WDs by Eisenstein et al.—could be removed from the sample, and
those that did not get spectra could be assumed to follow the same distribu-
tion. This latter assumption, however, is unlikely to be true. SDSS gives very
low priority to targeting white dwarfs specifically, and we would thus expect
a larger fraction of the objects that get spectral fibers to turn out to be con-
taminating objects (in particular QSOs, of which we found 13 in the Harris
et al. sample) than if the fibers were assigned purely randomly. Furthermore,
many of the 225 objects which have spectra in DR4 but are not included in
the Fisenstein catalog may actually be white dwarfs which Eisenstein’s al-
gorithms dropped for some other reason, e.g. they lie outside the color and
magnitude ranges used for initial candidate selection, or there is a problem
(low S/N, bad pixels) with the spectrum. Approximately 100 appear to be
DC white dwarfs to which the SDSS spectroscopic pipeline assigned erroneous

redshifts on the basis of weak noise features. Ultimately, we have chosen to
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Figure 4.7: Luminosity functions for three different limiting magnitudes. We
take the good agreement between the curves to indicate that our completeness
correction (and the 1/Vjax correction) are working properly.

adopt the contamination fraction of Harris et al. (2%) for the whole sample,
and have reduced our final completeness correction accordingly. This choice
has a negligible effect on the small scale structure of the WDLF in which we

are interested.

Finally, we note that the Harris et al. sample has an apparent mag-
nitude limit of g = 19.5, whereas the spectroscopic sample contains objects

down to g >~ 20.5. Given that the SDSS targeting algorithms are themselves
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Figure 4.8: Mass functions for three different limiting magnitudes. Because
of the essentially fixed integration time for SDSS spectra, objects with fainter
apparent magnitudes generally have lower signal to noise, which translates
directly into larger uncertainties in the derived parameters (T, log ¢, and
mass). Hence, as we include stars with fainter apparent magnitudes, more
stars scatter out of the peak, broadening the mass function.

functions of apparent magnitude, our completeness correction is as well. An
extrapolation of our discovery probability is problematic in this area, though,
because thisis just the apparent magnitude where the QSO targeting algorithm
drops off rapidly. We have decided to impose a magnitude cutoff of ¢ = 19.5

in our sample. This reduces our sample by nearly a half, with a corresponding

increase in counting error. However, because SDSS spectra have a small range

102



of exposure times (45-60min), fainter apparent magnitude translates directly

into lower S/N and larger errors in derived parameters.

Figure 4.7 shows the luminosity functions we derive for different choices
of limiting magnitude. We take the generally good agreement between the
curves to indicate that our completeness correction is doing its job correctly

in the g magnitude direction.

Figure 4.8 similarly shows the mass functions we derive for different
choices of limiting magnitude. In the case of the mass function, the S/N of
the spectra becomes a much bigger factor. As a consequence of the essentially
constant exposure times of SDSS spectra, the parameters (Teg and log ¢)
determined from the spectra of fainter objects have larger errors, which causes
a larger error in mass. Thus, the MF is broadened when stars with ¢ > 19.0
are included. For this reason, Kepler et al. (2007) limited their mass functions
to stars with ¢ < 19.0, and we follow their lead for the remaining MFs in the

current paper.

4.5 Luminosity Functions And Discussion
4.5.1 White Dwarf Mass Functions

Figure 4.9 shows the WD mass function we derive for all stars with
Teg > 12,000K and ¢ < 19.0. The red dashed line is the MF corrected only by
1/Vinax —i.€., before we apply our completeness correction. It generally shows
good agreement with the MF derived in Kepler et al. (2007) (blue points), not

surprising considering we use nearly the same data set and very similar WD
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models. The small differences are due to our use of slightly different sets of
data and models, as well as differing treatment of duplicate spectra, and can
largely be considered statistical fluctuations. We refer the interested reader to

their paper for a more in-depth analysis of the WDMF.
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Figure 4.9: The white dwarf mass function for all WDs with T > 12,000K
and g < 19.0. The dashed line in the upper panel is the MF corrected only for
1/Vinax, without our completeness correction applied. It agrees very well with
Kepler et al. (2007—dots). The solid line is with our completeness correction
applied, and represents the true local space density of white dwarfs. The
bottom panel shows the ratio of our two mass functions—i.e., the cumulative
completeness correction for each bin. The small variation indicates that the
completeness correction, while changing the overall normalization by roughly
a factor of 2.2, has little effect on the shape of the MF.
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The solid black line in the upper panel shows our MF after correcting for
the completeness of the spectroscopic sample. This curve represents the true
local space density of WDs per cubic parsec per My, interval. The bottom panel
shows the total weight of each bin above the uncorrected MF—essentially the
final completeness correction for each bin. There is little small scale variation
from bin to bin, and our completeness correction mainly has the effect of raising
the normalization of the whole MF by a factor of ~ 2.2. In other words, the

shape of the MF is not strongly affected by the completeness correction.
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Figure 4.10: White dwarf mass functions for WDs with T.g > 8,000K and
g < 19.0 both with and without the upturn in log ¢ for cooler stars removed.
The solid line is the MF from Figure 4.9 renormalized for comparison purposes.
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Figure 4.10 is the WDMF for all stars down to 8,000K. The dashed red
line is for the data as reported by Kepler et al. (2007), the dotted blue line is
after our correction for the upturn in log g. The solid black line is the WDMF
for only those stars above 12,000K (i.e., the same as Figure 4.9) renormalized
to the same scale for comparison purposes. There are more high mass stars in
general, and one spuriously large bin, but on the whole, our log ¢ correction

recovers a reasonable mass distribution for stars cooler than 12,000K.
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Figure 4.11: LFs derived in this paper. Removing the log ¢ upturn makes each
affected star less massive, and therefore larger and brighter, pushing it to a
more leftward Ms, bin. The results of Harris et al. (2006) and Liebert et al.

(2005) are shown for comparison.
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4.5.2 White Dwarf Luminosity Functions

Figure 4.11 shows the luminosity function we derive for all of the DA
stars in our sample down to 7,000K for all stars with ¢ < 19.5. In red is the
LF for the data as reported; in black is the LF for the data with the increase
in log ¢ at low temperature removed. The process of removing the excess log ¢
pushes stars to lower masses, making them larger and therefore brighter for
the same T.g. In the range plotted, the black curve contains a total of 3,358
WDs, while the red contains 2,940.

The lack of agreement between our best LF (black) and the Harris et al.
(2006) luminosity function (blue) can be attributed, at least in part, to the
differing assumptions used in creating the two LFs. Harris et al. derived their
temperatures by fitting Bergeron models to the photometry assuming a log ¢ of
8.0 for every star, a poor assumption for more than 30% of WDs (Liebert et al.,
2005; Kepler et al., 2007). The temperatures they derive are systematically
different from the spectroscopic temperatures; Figure 4.12 shows the fractional
difference between the spectroscopically and photometrically derived effective
temperatures. When we use the photometrically derived temperatures and set

log g = 8.0, we recover the Harris et al. LF fairly well.

It should also be noted that the Harris et al. luminosity function is for
WDs of all types, whereas ours is comprised only of the DAs. For each bin in
the Harris et al. LF, we have used the full Eisenstein et al. (2006) catalog to
determine a rough DA fraction, and reduced the LF of Harris et al. accordingly.

This DA fraction—shown in Table 4.5.2—is in generally good agreement with
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Figure 4.12: A comparison of the spectroscopically and photometrically de-
rived temperatures for the WDs common to the Harris et al. (2006) and Eisen-
stein et al. (2006) samples.

previous works (Fleming et al., 1986), but we have made no attempt to address

selection biases in the Eisenstein et al. catalog.

One other source of the discrepancy between our results and Harris
et al. is due to our assumption that whatever causes the observed upturn in
log g in the cooler stars affects only the log ¢ determination and does not
alter the spectroscopically derived T.g. As the effects of the two parameters

on the line profiles are interdependent, this assumption is probably not valid.
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Table 4.1: The fraction of stars in Eisen-
stein et al. (2006) listed as DA or DA _auto.
Though they generally agree with previous
results, they should be used with much cau-
tion, as they were calculated crudely and we
have taken no care to correct for biases in the
sample. We have employed them here simply
to compare our DA-only luminosity function
to previous work.

Mo DA Fraction
7.25 0.9338
7.75 0.9243
8.25 0.9246
8.75 0.8980
9.25 0.8433
9.75 0.8146
10.25 0.7958
10.75 0.8158
11.25 0.7957
11.75 0.7721
12.25 0.7985
12.75 0.7976
13.25 0.8173
13.75 0.8009
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The curves in Figure 4.11 suggest that in addition to the excess log ¢, the
temperatures determined by line fitting for the cooler stars are probably too
high. Ultimately, this area of the spectroscopic WDLF will remain uncertain

until the problems with the model atmospheres have been resolved.

The LF of Liebert et al. (2005) shown in green in figure 4.11 was com-
piled from a small dataset (348 DA white dwarfs) based on a survey done
on photographic plates over 20 years ago on a 0.5m telescope. In addition
to low number statistics, the dataset suffers from a very difficult-to-quantify
incompleteness at the faint end, which is probably responsible for the lack of

agreement below My, ~ 9.5.

4.6 Conclusions

Our initial goal with this phase of the project was to take advantage
of the tremendous number of WDs spectroscopically observed by SDSS and
studied by Eisenstein et al. (2006) and others to create separate WD luminosity
functions for two or more different ranges of mass. Should we one day be
successful in this endeavor, we will effectively add a third dimension, currently

unexplored, to observational WD luminosity functions.

In order to carry out this analysis, we needed to more fully understand
the manner in which white dwarfs were selected to receive spectra in SDSS. By
comparing the proper-motion selected sample of Harris et al. (2006) with the
spectroscopically determined WDs of Kleinman et al. (2004) and Eisenstein

et al. (2006), we derived a WD selection probability over a range of parameters
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that included nearly the entire useful range of ¢ — ¢ color (—1.0 < g —7 < 0.2)

and apparent g magnitude (15 < g < 19.5).

We also presented additional arguments that the observed upturn in
log ¢ is an artifact of the model atmosphere line-fitting procedure, or—more
likely—a problem with the line profiles themselves. Since it may be some
time before this problem is fully understood and addressed, we implemented
a procedure to remove the excess log ¢ empirically and showed that the mass
function recovered for the stars cooler than 12,000K reasonably agrees with

the MF for the hotter stars, which in turn agrees well with previous work.

Finally, we presented the first WDLF for spectroscopically determined
WDs in the Fourth Data Release of the SDSS. In addition to addressing the
issues of completeness and the observed log g upturn in a more systematic
manner than previously attempted, our LF contained the largest sample of
spectroscopically determined WDs to date (3,358), more than six times the
531 presented in Hu et al. (2007), and more than an order of magnitude more

than the 298 stars included in the LF of Liebert et al. (2005).

Ultimately, however, we have determined that the quality of the data
is insufficient to attain our goal of separate high- and low-mass luminosity
functions. In particular, the problems with the model spectra render any
discussion of masses for WDs with T < 12,000K highly suspect. The WDs
that remain cover an insufficient temperature range to adequately study the
features in the WDLF that would allow us to explore new physics or confirm

features long-predicted on theoretical grounds.
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Chapter 5

Current and Future Applications of the
Bayesian Method

As of this writing, our group has several projects in various states of
completion that utilize the methods we have developed in this dissertation.
Some of these applications are the natural extension of our work here—using
the method to find white dwarf (and main sequence) ages for open clusters.
But other applications of the method are meant to extend its capabilities into

new frontiers.

5.1 Analysis of Open (and Globular) Clusters

For her doctoral dissertation at University of Texas in 2009, Elizabeth
Jeffery used our method to analyze data from four new open clusters (NGC
2360, NGC 2660, NGC 3960, NGC 188) and analyzed new data for two that
had previous age determinations (NGC 2420, NGC 2477). Using ground-
based photometry for the main-sequence, she determined MSTO ages for these
clusters in the absence of WDs. Then, using a combination of the ground-based
data and HST data, she re-analyzed the same clusters using the white dwarfs

and main sequence without the turn-off.
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Figure 5.1: An updated version of Figure 3.10 including new and reanalyzed
clusters from Jeffery (2009). The solid points show new results. The line
represents the one-to-one correspondence between the two ages. [Adapted

from Jeffery (2009).]

Figure 5.1 is an updated version of Dr. Jeffery’s Figure 7.1, showing
all of the clusters to date with both MSTO and WD ages. This version of the

figure includes the new WD age for the Hyades derived in this work.

The MSTO and WD ages show considerable agreement across the entire
range of ages considered. For the only major outlier, NGC 2660, the WD data
did not extend to the terminus of the sequence, and the S/N of the brighter

white dwarfs was too low to determine a reliable bright WD age. The value
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plotted is the lower limit estimated by Dr. Jeffery based on her completeness on
the faint end of the WD sequence. Dr. Jeffery also considers her determination
for WD age of the cluster NGC 188 to be a lower limit as well, though in this
case, the age she derives does come from the bright white dwarfs via our

Bayesian method and may therefore be reliable.

These results give us confidence that the ages we obtain using our
Bayesian method show very little systematic error, at least in this age range.
One of the fundamental goals of Dr. Jeffery’s ongoing project is to extend
the reliability of WD ages (and in particular, the bright WD technique) to
older ages. The WD sequences of several globular clusters have already been
imaged with HST (Hansen et al., 2004, 2007), and these rich datasets are ripe
for analysis with our methods. The successful extension of the bright WD
technique to older clusters will allow us to find ages for more distant clusters,
even in the absence of photometry data down to the terminus of the WD

sequence.

5.2 Initial-Final Mass Relation

Considerable work has gone into refining the initial-final mass relation
(IFMR) in recent years (see, e.g., Kalirai et al., 2008; Williams et al., 2009).
The method most often employed to determine the IFMR involves in some
sense the reverse of what we do in our Bayesian calculation. First, main-
sequence turn-off fitting gives a cluster age. Spectroscopy of the WDs in

the cluster give Teg and log g. WD cooling models turn those parameters
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into a cooling age for the white dwarf. Subtracting the cooling age from the
cluster age gives a precursor lifetime, from which one can determine (via MS

evolutionary models) a precursor mass. Repeat as needed.

1-"“’1 I I | I ) ] I I I I I T T

1.2

b
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0,4 4 L | 1 1 1 | 1 i | | i : .
Initial Mass (M,)

Figure 5.2: The empirical initial-final mass relation. Different colors represents
points from different clusters. [Taken from Ferrario et al. (2005)]

Care must be taken, therefore, to avoid circularity in inverting these
same model sets to then determine the WD age of the cluster. Partly this
circularity is alleviated by the use of many (and ideally different) clusters to

determine the IFMR. A single cluster, at any rate, rarely has white dwarfs that
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span enough of a mass range to meaningfully comment on the entire IFMR.

Only by analyzing many clusters do we obtain a broadly applicable IFMR.

Our Bayesian MCMC method assumes an initial-final mass relation
in order to derive predicted photometry to compare with the observed pho-
tometry. To date, we have exclusively used the IFMR of Weidemann (2000).
However, there is no reason, in principle, that we cannot parameterize the

IFMR and fit those parameters simultaneously with the cluster age, distance,

etc., and the ZAMS masses of the WDs.

Fitting both parameters simultaneously has several benefits. First, we
avoid the potential circularity in using the ages and masses of the WDs to
derive the IFMR, then using the IFMR to derive the ages and masses of the
WDs. Second, we obtain the parameters of the IFMR marginalized over the
possible ages of the cluster, and vice versa. As the IFMR is currently one of
our largest sources systematic uncertainty in our WD age determinations, the
errors on those determinations (as well as on all of the other parameters of the
model, including WD masses) will more accurately reflect the true uncertainty
in the parameters. Furthermore, as Williams et al. (2009) showed, systematic
errors in the turn-off age of the cluster can have a significant effect on the
parameters of the IFMR. By marginalizing over these uncertainties, we get a
better picture of the true probability distributions of all the parameters of our

model.

In general, we believe we can accomplish this analysis with a simple two

parameter model of the IFMR. Though there is some evidence of non-linearity
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in the IFMR, particularly on the low-mass end, a quick glance at Figure 5.2
shows that the WDs in any individual cluster span a small enough mass range
for the IFMR to be considered linear. By fitting multiple clusters of different
ages 1n this manner, we can eventually build a more detailed and accurate
picture of the true initial-final mass relation for the open clusters, and derive

age fits for the clusters that are less model-dependent.

5.3 Analysis of Single Field White Dwarfs

Currently, the only reliable method for determining WD ages for non-
cluster Galactic populations (i.e., , the thin and thick disks and halo) is via
the white dwarf luminosity function. Members of our collaboration are cur-
rently working to increase the number of stars in the coolest bins of the disk
luminosity function to provide a better age, but the method is extremely ob-
servation intensive and time consuming. Luminosity functions for the less
well-populated thick disk and halo will need at least one order of magnitude
(and perhaps several) more stars in the observational sample to determine a

reliable age.

Dating these populations accurately will have a profound effect not only
on the study of WDs, but also on our understanding of the age and evolution
of the Galaxy. If we could apply our code reliably to single field white dwarfs,
it would open an entirely new avenue for determining the ages of the Galactic

thin disk, thick disk, and halo.

The traditional stumbling block to this type of analysis is the multi-
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way degeneracy between age, distance, and WD mass. Because our method
provides complete marginalized probability distributions for these parameters,
we can begin to analyze single WDs and explore the true effects of this degen-
eracy in a more sophisticated manner than simply assuming a distance and
then determining a distance-dependent age. At the same time, the Bayesian
nature of our method allows us to include prior information on an object. If
we can pin down the distance to an individual WD via parallax (or some other
method), we can place a prior on the distance that reflects our confidence
in that distance determination, rather than simply assuming a single value
and attempting to propagate the errors through in a way that assumes our

distributions are Gaussian when they clearly are not.

One member of our collaboration (Ted von Hippel) has already begun
work in this area. Figures 5.3 through 5.5 show some of his early results and

highlight some of the difficulties we have yet to overcome.

Figures 5.3 and 5.4 are runs for simulated WDs of different masses at
an age of ~8 Gyr. The blue points are the individual draws from the posterior
distributions in MCMC with standard errors on the prior on distance of £10 pc
(10%), consistent with what we might be able to obtain via parallax on a
nearby WD. The derived parameters are consistent with the “true” values

(red circles) used to create the simulated star.

The complicated, multi-dimensional nature of the age-mass-distance
correlation is apparent in the shapes of the 2-D projections presented here.

The two branches in the age-mass correlation in the lower left panel of Fig-
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Figure 5.3: Mass-age-distance-metallicity correlations for a single (simulated)
white dwarf of ~8 Gyr in the field. The blue points are the individual samples
from the Markov chain with a Gaussian prior on the distance with a standard
error of 10 pc (10%). All of the parameters are consistent with the “true”
values (red circles) used to create this simulated star. [Taken from von Hippel
(2009—private communication).]

ure 5.3 correspond to the same two branches seen in the upper right panel.
The same is true of the banana-shaped correlations seen in the corresponding
panels in Figure 5.4. Here, having access to the entire posterior probabil-
ity distribution is essential to understanding the complex interaction between

these three parameters.
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Figure 5.4: Same as Figure 5.3 for a simulated star of lower mass. [Taken from
von Hippel (2009—private communication).]

Figure 5.5 shows the results for the real white dwarf WD02434-026.
Again, the bottom two panels show the bifurcated correlations among mass,

age, and distance. Here, the green points are for a run which included only

BV photometry in the analysis. The red points are for a run which included
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Figure 5.5: Similar to Figure 5.3 for the real white dwarf WD02434-026.
Again, the bottom two panels show the bifurcated correlations among mass,
age, and distance. Here, the green points are for a run which included only
BV photometry in the analysis. The red points are for a run with included
BVRIJHK. [Taken from von Hippel (2009—private communication).]
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5.4 MCMC Analysis of Binary Stars
5.4.1 Binaries in the Field

One possible way to achieve errors in the 5-10% range is to look at
WDs that are part of wide binary systems in the field. In essence, a non-
interacting binary system is an open cluster containing exactly two stars. The
main-sequence companion can, through spectroscopy, help to pin down the
metallicity of the system. It can also, via precise photometry, constrain the
distance to the system. Most important, though, is the possibility of using
radial velocity and/or astrometric data to determine dynamical masses for
both stars. As Figures 5.3 through 5.5 show, because of the correlation between

mass and age, constraining the mass of the WD will yield a more precise age.

5.4.2 Binaries in Open Clusters

Figures 3.12 and 3.13 in Chapter 3 show the results of individual mass
determinations for unresolved binaries in the Hyades. As we pointed out in
that chapter, there appears to be a systematic offset between our mass de-
terminations and those derived by other methods. This is likely to indicate
a problem somewhere in the main-sequence models, either in the translation
from Teg and L to broadband colors (i.e., the model atmospheres), or in the

underlying stellar evolution models.

Ted von Hippel and the WIYN Open Cluster Study (WOCS— von Hip-
pel & Sarajedini, 1998; Sarajedini et al., 1999) currently have plans to use our

method to determine masses of individual binary systems in the open cluster
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NGC 188 and other open clusters, and compare these results with dynamical
masses obtained via radial velocities. The goals of the project are three-fold:
first, a large volume of data on stars with both photometric and dynamical
masses will help refine stellar evolution and/or atmosphere models consider-
ably. Second, this data will provide a means of determining the distribution
of binaries and mass ratios in open clusters, which has implications in such
diverse studies as planet formation and dynamical simulations. Finally, there
is a possibility that this work will uncover binaries in unusual and scientifically

interesting states.

5.5 Helium Abundance of NGC 6791

NGC 6791, a rare well-populated, old (~8 Gyr, Chaboyer et al., 1999),
and metal-rich ([Fe/H]=40.4, Peterson & Green, 1998) open cluster, is a natu-
ral object of study to learn about chemical enrichment processes in the Galaxy.
In particular, this cluster provides a valuable tool for determining the rela-
tionship between [Fe/H] and helium abundance. Evidence suggests that this
relationship is linear (Pagel & Portinari, 1998; Chaboyer et al., 1999), but the
slope of the correlation is not well constrained. A better determination of this
relationship will not only enable us to improve stellar evolution models, but
also has a significant impact on several broader areas of astronomy. These
include a more complete picture of the chemical enrichment of the Galaxy
(and by extension, the Universe), more accurate pictures of star formation

and death processes, and age determinations of galactic bulges and elliptical
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Figure 5.6: Color-magnitude diagram showing the effect of helium abundance
on the shape of the main-sequence turn-off region. The data were simulated
using values for cluster parameters similar to NGC 6791 and scattered photo-
metrically. The curves show the effect of helium abundance on the shape and
position of the isochrones for Y = 0.27 to Y = 0.39 in intervals of AY = 0.03,
with the red curve representing the isochrone used to simulate the data.
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galaxies (e.g., Charlot et al., 1996).

Unfortunately, due to its advanced age, NGC 6791 no longer contains
any stars hot enough to show helium lines. Thus, spectroscopy is unable to help
us. Recently obtained JK photometry of NGC 6791 may provide a solution.
Figure 5.6 shows the effect of changes in helium abundance on the shape and
position of the main sequence and MSTO. Our Bayesian method is a natural
fit for the analysis of this data, and with minimal extension of our models to
include sampling on the helium abundance of the cluster (a feature that we
have already added to the code, but have not extensively tested), we should be
able to determine the helium abundance of the cluster from the photometry

alone.
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Vita

Steven DeGennaro is the 17th of 128 children born to a couple of really
poor immigrants from the planet Gleep-Glop B. He was raised in the wild
by a pack of ravenous wolves until discovered in the early 30’s by a group
of Zoroastrian missionaries, who adopted him and taught him how to read,
write, and bathe himself. After murdering the missionaries, burning down the
mission, and collecting the insurance money, he set out on his own to travel the
world, ultimately ending up in Burma (now Myanmar), where he quickly rose
through the ranks of the ruling military junta. Unfortunately, a mistimed burst
of flatulence led to a diplomatic nightmare at the UN and he was sentenced
to death by firing squad. Having had the presence of mind to wear his Kevlar
vest on the day the sentence was carried out, he was spared the worst of it. He
took his really, really sore ribs and his internet poker winnings and escaped
the country on a raft made from the bones of dead revolutionaries bound
together with VHS tape from his formerly extensive collection of homemade
pornography. He emigrated to the United States, was granted asylum (after a
hefty bribe which included the last of both his internet poker winnings and his
increasingly less-extensive collection of homemade pornography), and enrolled
at the University of Texas at Austin in the doctoral program in Astronomy.

These days, he can often be found drinking from the turtle pond on campus.
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