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Virtual Reality (VR) and its applications have attracted significant

and increasing attention. However, the requirements of much larger file sizes,

different storage formats, and immersive viewing conditions pose significant

challenges to the goals of acquiring, transmitting, compressing and displaying

high quality VR content. Towards meeting these challenges, it is important

to be able to understand the distortions that arise and that can affect the

perceived quality of displayed VR content. It is also important to develop

ways to automatically predict VR picture quality. Meeting these challenges

requires basic tools in the form of large, representative subjective VR quality

databases on which VR quality models can be developed and which can be used

to benchmark VR quality prediction algorithms. Towards making progress

in this direction, here we present the results of an immersive 3D subjective

image quality assessment study. In the study, 450 distorted images obtained

from 15 pristine 3D VR images modified by 6 types of distortion of varying

severities were evaluated by 42 subjects in a controlled VR setting. Both the
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subject ratings as well as eye tracking data were recorded and made available

as part of the new database, in hopes that the relationships between gaze

direction and perceived quality might be better understood. We evaluated

several publicly available IQA models on the new database, and also report a

statistical evaluation of the performances of the compared IQA models.

Another challenge present in VR is rendering 360 videos within the lim-

ited bandwidth. Video has become an increasingly important part of our daily

digital communication. With the development of higher resolution contents

and displays, its significant volume poses significant challenges to the goals of

acquiring, transmitting, compressing and displaying high quality video con-

tent. In this direction, we propose a new deep learning video compression

architecture that does not require motion estimation, which is the most ex-

pensive element of modern hybrid video compression codecs like H.264 and

HEVC. Our framework exploits the regularities inherent to video motion,

which we capture by using displaced frame differences as video representa-

tions to train the neural network. In addition, we propose a new space-time

reconstruction network based on both an LSTM model and an UNet model,

which we call LSTM-UNet. The combined network is able to efficiently cap-

ture both temporal and spatial video information, making it highly amenable

for our purposes. Our experimental results show that our compression model,

which we call the MOtionless VIdeo Codec (MOVI-Codec), learns how to ef-

ficiently compress videos without computing motion. Our experiments show

that MOVI-Codec outperforms the Low-Delay P (LDP) veryfast setting of the
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video coding standard H.264 and exceeds the performance of the modern global

standard HEVC codec, using the same setting, as measured by MS-SSIM, es-

pecially on higher resolution videos. In addition, our network outperforms the

latest H.266 (VVC) codec at higher bitrates, when assessed using MS-SSIM,

on high resolution videos.

Because of the high bandwidth requirements of VR, there has also been

significant interest in the use of space-variant, foveated compression protocols.

We have further integrated these techniques to create another end-to-end deep

learning video compression framework in addition to MOVI-Codec. Foveation

protocols are desirable since, unlike traditional flat-panel displays, only a small

portion of a video viewed in VR may be visible as a user gazes in any given

direction. Moreover, even within a current field of view (FOV), the resolution

of retinal neurons rapidly decreases with distance (eccentricity) from the pro-

jected point of gaze. In our learning based approach, we implement foveation

by introducing a Foveation Generator Unit (FGU) that generates foveation

masks which direct the allocation of bits, significantly increasing compression

efficiency while making it possible to retain an impression of little to no ad-

ditional visual loss given an appropriate viewing geometry. Our experiment

results reveal that our new compression model, which we call the Foveated

MOtionless VIdeo Codec (Foveated MOVI-Codec), is able to efficiently com-

press videos without computing motion, while outperforming foveated version

of both H.264 and H.265 on the widely used UVG dataset and on the HEVC

Standard Class B Test Sequences.
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Chapter 1

Introduction

1.1 Problem

Virtual Reality (VR) and its applications have evolved quickly in re-

cent years since the launches of popular head-mounted consumer displays like

the Oculus Rift, HTC Vive and PlayStation VR. Revenues from VR apps,

gaming and video reached nearly 4 billion dollars in 2017 and are expected to

soar more than fivefold by 2022 [1]. Given the recent availability of cheaper

standalone headsets, like the Oculus Quest, and the development of faster and

1Meixu Chen, Yize Jin, Todd Goodall, Xiangxu Yu, and Alan C. Bovik. Study of
3D virtual reality picture quality. IEEE Journal of Selected Topics in Signal Processing,
14(1):89–102, 2019.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Yize Jin:
Software, Investigation, Formal Analysis; Todd Goodall: Conceptualization; Xiangxu Yu:
Investigation; Alan C. Bovik: Supervision, Conceptualization, Methodology, Review and
Editing.

2Meixu Chen, Todd Goodall, Anjul Patney, and Alan C Bovik. Learning to compress
videos without computing motion. Signal Processing: Image Communication, page 116633,
2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Todd
Goodall, Anjul Patney: Conceptualization; Alan C. Bovik: Supervision, Conceptualization,
Methodology, Review and Editing.

3Meixu Chen, Richard Webb, and Alan C. Bovik, Foveation-based Deep Video Compres-
sion without Motion Search, arXiv preprint arXiv 2203.16490, 2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Richard
Webb: Conceptualization; Alan C. Bovik: Supervision, Conceptualization, Methodology,
Review and Editing.
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more reliable 5G wireless networks, the installed base of headsets is expected

to grow substantially. VR is being used in an increasing variety of consumer

applications, including gaming, 360-degree image and video viewing, and vi-

sually immersive education. Websites like Youtube, Facebook and Netflix now

support 360 image and video viewing and are offering a variety of online re-

sources, further stimulating more consumer participation in VR.

Unlike traditional viewing conditions where people watch images and

videos on flat-panel computer and mobile displays, VR offers a more immersive

viewing environment. Since the VR contents can cover the entire viewing

space, users are free to view the content in every direction. Usually, only a

small portion of the image or video is displayed as they gaze in any given

direction, so the content that a user sees is highly dependent on the spatial

distribution of content, the object being fixated on, and the spatial distribution

of visual attention. The free-viewing of high resolution, immersive VR implies

significant data volume, which leads to challenges when storing, transmitting

and rendering the content which can affect the viewing quality. Therefore,

it is important to be able to analyze and predict the perceptual quality of

immersive VR content as well as reducing the size of the immersive content.

1.2 Perceptual Quality of VR Content

Unlike traditional images, VR images are usually captured using a 360

camera equipped with multiple lenses that capture the entire 360 degrees of a

scene. For example, the Samsung Gear 360 VR Camera is a portable consumer

18



VR device with 180° dual lenses that can capture images of resolution up to

5472 × 2736. The recent Insta360 Titan is a professional 360 camera with

eight 200° fisheye lenses that can capture both 2D and 3D images of resolution

up to 11K. After the images are captured simultaneously by separate lenses,

they are stitched together to generate a spherical image. The spherical image

is usually stored in equirectangular projection format. Stereoscopic images are

usually stored in an over-under equirectangular format, where the left image is

on top and the right one is on the bottom. oth subjective and objective tools

are needed to understand and assess immersive VR images quality. Subjective

VR image quality assessment (VR-IQA) is a process whereby the quality of

VR images is rated by human subjects. The collected opinion scores supply

the gold standard ground truth on which predictive models can be designed

or tested. To our knowledge, there are only a few existing VR databases that

include subjective measurements. Most only include traditional distortions

such as image compression artifacts, Gaussian noise and Gaussian blur, but

fail to capture distortions that are unique to panoramic VR (2D and 3D)

images.

1.3 Deep learning-based Video Compression

Video traffic is predicted to reach 82 percent of all consumer Internet

traffic by 2021 [2], and to continue this rapid growth even further. The in-

creasing share of video in Internet traffic is being driven by several factors,

including the great diversity and extraordinary popularity of streaming and

social media services, the rise of video teleconferencing and online video ed-
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ucation (accelerated by the Coronavirus Crisis), and significant increases in

video resolution. Indeed, it is estimated that by 2023, two-thirds of installed

flat-panel television sets will be UHD, up from 33 percent in 2018 [3]. Given

significant strains on available bandwidth, it is crucial to continue and greatly

accelerate the evolution of video compression systems.

Traditional video compression codecs, like H.264, HEVC and the latest

VVC/H.266 process videos through a sequence of hand-designed algorithms

and modules, including block motion estimation, and local decorrelating de-

compositions like the Discrete Cosine Transform (DCT). Although the com-

ponent modules of modern hybrid codecs have been carefully designed over

several generations, the overall codecs have not been globally optimized other

than by visual examination or post-facto objective measurement of results,

typically by the highly fallible PSNR [4]. Naturally, one could expect the

performances of video codecs to be improved by collective, end-to-end opti-

mization. Because of their tremendous ability to learn efficient visual repre-

sentations, deep learning models are viewed as highly promising vehicles of

developing alternative, globally optimal video codecs, and a variety of deep

learning based image compression architectures have been proposed [5–20].

These new models have deployed Convolutional Neural Networks (CNN), Re-

current Neural Networks (RNN), autoencoders, and Generative Adverserial

Networks (GAN) yielding rate-distortion efficiencies that are reportedly com-

parable to those of traditional image compression codecs like JPEG, JPEG

2000, and BPG. Encouraged by these advances, several authors have devised
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deep video compression models that suggest the considerable promise of this

general approach. Wu et al. [21] proposed the first end-to-end trained deep

video codec, using a hierarchical frame interpolation scheme. A block-based

deep video compression codec was proposed by Chen et al. [20]. Lu et al. pro-

posed an end-to-end video compression model (DVC) [22] which replaces each

component of the traditional hybrid video codec with a deep learning model,

which are jointly trained as a global hybrid architecture against a single loss

function. Another hierarchical video compression architecture called HLVC

(Hierarchical Learned Video Compression) was proposed by Yang et al. [23].

1.4 Foveation in VR Content

One advantage of VR is that the two eyes have fixed positions, aside

from eye movements, relative to the viewing screen. Because of this, the eye

movements, and associated points of gaze on the displays can be measured.

This makes it possible to exploit the fact that the density of retinal photosen-

sors is highly non-uniform. The cone cells used in photopic viewing achieve

on peak density in the foveal region, which captures a circumscribed FOV of

about 2.5° around gaze. This includes only 0.8% of all pixels on a flat panel

display when viewed under typical conditions [24], and around 4% of pixels on

a VR display [25]. Since the density of photoreceptors falls away quite rapidly

with increased eccentricity relative the fovea, much more efficient representa-

tions of what is perceived can be obtained by judiciously removing redundant

information from peripheral regions.
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While foveal processing protocols might be useful for many aspects of

VR rendering and viewing, such as enhancement or brightening around the

point of gaze, foveated compression may offer the most significant and obvious

benefits. While this topic has been studied in the past [26–28], only recently

has there been renewed interest in foveating modern codecs [29]. The success

of foveation based processing protocols involves several factors, including dis-

tribution of retinal ganglion cells [30], cortical magnification [31], and the steep

grade of density of the photoreceptors [32]. The spacings of the photoreceptors

and the receptive fields of the neurons they feed are smallest in the fovea [33].

The fovea covers an area in the approximate range of 0.8% to 4% of the pix-

els on a display, depending on the display size, resolution, and the assumed

typical viewing distance [24, 25]. Recent advances in eye-tracking technology

and their integration into consumer VR headsets have opened the possibility

of using them to facilitate gaze-contingent video compression. Indeed, retinal

foveation when combined with ballistic saccadic eye movements to direct vi-

sual resources, is a form of biological information compression. For example,

the density of retinal ganglion cells (RGC) in the fovea is 325,000/mm2. If

the entire retina had this output density, then about 350 million RGCs would

be implied. However, the number of axons carrying signals along the optic

nerves of each eye is only around 1 million, hence foveation results in a 350-

fold compression of data passed along the retino-cortical pathway [34]. In an

analogous manner, considerable increases in digital video compression can be

obtained by removing visual redundancies (relative to fixation) in the visual
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periphery.

1.5 Contributions

We have addressed these two challenges of perceptual quality and com-

pression. Firstly, we have created a more comprehensive database that both

includes traditional image distortions as well as VR-specific stitching distor-

tions. We also include eye tracking data that was obtained during the subjec-

tive study. The new LIVE 3D VR IQA Database is made publicly available

for free to facilitate the development of 2D and 3D VR IQA models by other

research groups. Secondly, in the direction of compressing the VR content,

we have proposed two deep learning-based video compression models, MOVI-

Codec and Foveated MOVI-Codec. MOVI-Codec is a new breed of deep video

compression model that are motion computation free, statistically motivated,

and have perceptual relevance by capturing displaced frame differences from

a large database of videos, and feeding them into a deep space-time coding-

decoding network. We further reduces the complexity of compression process

by incorporating foveation into a deep video compression model to achieve

significant data reductions suitable for eye-tracked VR systems which we call

Foveated MOVI-Codec.

The rest of the paper is organized as follows. Chapter 2 introduces my

effort towards building a 3D VR image database. Chapter 3 describes details

of my motionless compression model, the MOVI-Codec model. Chapter 4

presents the details of my foveated version of the motionless deep learning-
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based model, Foveated MOVI-Codec. Chapter 5 concludes the paper with a

discussion of future research directions.
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Chapter 2

Study of 3D Virtual Reality Picture Quality

Both subjective and objective tools are needed to understand and as-

sess immersive VR images quality. Subjective VR image quality assessment

(VR-IQA) is a process whereby the quality of VR images is rated by human

subjects. The collected opinion scores supply the gold standard ground truth

on which predictive models can be designed or tested. To our knowledge,

there are only a few existing VR databases that include subjective measure-

ments. Most only include traditional distortions such as image compression

artifacts, Gaussian noise and Gaussian blur, but fail to capture distortions

that are unique to panoramic VR (2D and 3D) images. Towards advancing

progress in this direction, we have created a more comprehensive database

that both includes traditional image distortions as well as VR-specific stitch-

ing distortions. We also include eye tracking data that was obtained during

the subjective study. The new LIVE 3D VR IQA Database is made publicly

1Meixu Chen, Yize Jin, Todd Goodall, Xiangxu Yu, and Alan C. Bovik. Study of
3D virtual reality picture quality. IEEE Journal of Selected Topics in Signal Processing,
14(1):89–102, 2019.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Yize Jin:
Software, Investigation, Formal Analysis; Todd Goodall: Conceptualization; Xiangxu Yu:
Investigation; Alan C. Bovik: Supervision, Conceptualization, Methodology, Review and
Editing.
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available for free to facilitate the development of 2D and 3D VR IQA models by

other research groups. The rest of this chapter is organized as follows. Section

2.1 briefly introduces current progress on objective and subjective VR-IQA

research. Section 2.2 describes the details of the subjective study. Section 2.3

discusses data analysis of the subjective study results. Section 2.4 analyzes

the performances of a variety of objective IQA models on the new database.

2.1 Background

2.1.1 Subjective Quality Assessment

Although it dates from at least as early as the 1970’s, VR has been

a topic of considerably renewed interest since the appearance of the Oculus

Rift DK1. Viewing images in VR gives a more realistic and immersive viewing

experience arising from the large field of view, 360° free navigation and the

sense of being within a virtual environment.

However, the immersive environment incurs a significant computational

cost. VR images and videos are much larger than traditional planar images

displayed on computer or TV screens and require much higher transmission

bandwidth and significantly greater computational power. These demands are

hard to meet, often at the cost of errors in capture, transmission, coding, pro-

cessing, synthesis, and display. These errors often degrade the visual quality

by introducing blur, blocking, transmission, or stitching artifacts. Therefore,

developing algorithms for the automated quality assessment of VR images will

help enable the future development of VR technology. Developing these algo-
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rithms requires subjective data for design, testing, and benchmarking. There

are many widely used image quality databases, such as the LIVE Image Qual-

ity Assessment Database [35], the TID2013 database [36], CSIQ [37], and the

LIVE In-the-Wild Challenge Database [38]. These databases embody a wide

variety of image distortions, but they were built for the purpose of studying

traditional ”framed” 2D images and are not suitable for building or testing

algorithms designed to assess VR images.

Recently, there has been increasing interest in developing VR databases,

and progress has been made in this direction. Duan et al. [39] developed an

immersive video database, containing downsampling and MPEG-4 compres-

sion distortions. In [40], Upenik et al. introduced a mobile testbed for eval-

uating immersive images and videos and an immersive image database with

JPEG compression. Sun et al. [41] constructed the Compression VR Image

Quality Database (CVIQD), which consists of 5 reference images and corre-

sponding compressed images created using three coding technologies: JPEG,

H.264/AVC and H.265/HEVC. An omnidirectional IQA (OIQA) database es-

tablished by Duan et al. [42] includes four distortion types, JPEG compression,

JPEG2000 compression, Gaussian blur and Gaussian noise. This database also

includes head and eye tracking data that compliment the objective ratings.

Another database that both includes head and eye movement data, VQA-OV,

was proposed in [43]. This database includes impairments from both com-

pression and map projection. Xu et al. [44] also established a database with

viewing direction data on immersive videos. However, most of the available

27



VR databases only include distortions that occur in planar images, but with-

out distortions that are specific to VR, such as stitching. Moreover, newer

compression methods such as VP9 are relevant to the encoding of VR images,

and these other compression methods are likely to play a substantive role in

the future. Furthermore, amongst all the existing VR databases, to the best

of our knowledge there are no 3D VR image quality databases as of yet.

2.1.2 Objective Quality Assessment

Both MSE and PSNR were long used as the basic way to assess image

and video quality prior to the appearance of modern image objective quality

assessment (IQA) methods. These IQA methods can be classified as: full

reference (FR-IQA), reduced reference (RR-IQA) , or no reference (NR-IQA).

Full reference IQA is appropriate when an undistorted, pristine reference image

is available. Reduced reference IQA models only require partial reference

information, and no reference IQA algorithms operate without any reference

image information at all.

Popular modern FR picture quality models include the Structural Sim-

ilarity (SSIM) [45], its multiscale form, MS-SSIM [46], Visually Information

Fidelity (VIF) [47], FSIM [48], GMSD [49], VSI [50] and MDSI [51]. NR-

IQA models have also been proposed, including BRISQUE [52], NIQE [53],

BLIINDS [54], and CORNIA [55].

Several VR-specific IQA models have also been proposed over the years.

Yu et al. [56] proposed a spherical PSNR model called S-PSNR, which averages
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quality over all viewing directions. The authors of [57] introduced a craster

parabolic projection based PSNR (CPP-PSNR) VR-IQA model. Xu et al. [58]

proposed two kinds of perceptual VQA (P-VQA) methods: a non-content-

based PSNR (NCP-PSNR) algorithm and a content-based PSNR (CP-PSNR)

method. WS-PSNR [59] is yet another PSNR based VR-IQA method, which

reweights pixels according to their location in space. SSIM has also been

extended in a similar manner, as exemplified by S-SSIM [60]. Yang et al. [61]

proposed a content-aware algorithm designed specifically to assess stitched

VR images, by combining a geometric error metric with a locally-constructed

guided IQA method. A NR-IQA method designed to assess stitched panoramic

images using convolutional sparse coding and compound feature selection was

proposed in [62]. Given the explosive popularity of deep learning, many more

recent VR-IQA methods have been learned to analyze immersive images and

videos, often achieving impressive results. For example, in [63], the authors

deployed an end-to-end 3D convolutional neural network to predict the quality

of VR videos without reference. In [64] and [65], the power of adversarial

learning was utilized to successfully predict the quality of images.

2.2 Details of the Subjective Study

2.2.1 Image Capture

We used an Insta360 Pro camera [66] to capture the VR image in

our 360 image database, due to its portability, raw format availability, high

resolution (7680 × 3840), and good image quality. Instead of only capturing

colorful, highly saturated images, we collected a wide variety of natural scenes,
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including daytime/night scenes, sunny/cloudy backgrounds, indoor/outdoor

scenes, and so on. We acquired 15 high-quality immersive 3D 360° reference

images containing diverse content. Most of the scenes were captured in Austin,

Texas. For each scene, 4 to 5 raw images (.dng format) were captured to

ensure that one with the least amount of motion blur and stitching error could

be selected. For each scene, an over-under equirectangular 3D image was

generated. We selected the images to span a wide range of spatial information

and colorfulness, as shown in Figure 2.1. Spatial Information (SI) is a measure

that indicates the amount of spatial detail of a picture, and it is usually higher

for more spatially complex scenes [67]. Color information is computed using

Colorfulness (CF) as proposed in [68] which represents intensity and variety of

colors in an image. Higher values indicate more colorful images. Figure 2.1(c)

depicts a scatter plot of SI vs. CF, showing that our database includes a variety

of images considering both metrics. Examples of images in our database are

shown in Figure 2.2.

(a) (b) (c)

Figure 2.1: Plots of Spatial Information (SI) and Colorfulness (CF) of the VR
images in the LIVE VR IQA Database
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.2: Exemplar VR images in the LIVE VR IQA Database

Figure 2.3: Insta360 Pro Camera

2.2.2 Test Images

Each of the selected 15 reference VR content was subjected to 6 types of

distortion, including Gaussian noise, Gaussian blur, stitching distortion, down-
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sampling distortion, VP9 compression, and H.265 compression. The driving

goal of our study was to create a diverse and representative immersive stereo-

scopic 3D image quality database for developing, testing, and benchmarking

VR-related IQA methods. We included the traditional distortions as well as

VR-specific stitching distortions. We also included recent compression distor-

tions, including VP9 and H.265, to study and model the way they compress

and perceptually distort VR images.

The distortion levels were determined to ensure noticeable perceptual

separation between severity levels while also avoiding obvious differences be-

tween neighboring levels. All of the distortions other than stitching distortions

were applied directly to the equirectangular 3D image. The 360 images were

generated using Insta360 Stitcher. Since the resolution of the original images

was 7680 × 3840, we scaled the reference images to resolution 4096 × 2048

to match the resolution of the VR headset used in the study (as well as most

commercial models) before applying the distortions. In the following sections,

we explain the way each of the different distortions were applied to the 15

reference 3D VR images.

2.2.2.1 Gaussian Noise

Gaussian additive noise was applied to the unit normalized RGB chan-

nels with standard deviations in the range [0.002, 0.03].
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2.2.2.2 Gaussian Blur

We separated the left and right images and applied a circular-symmetric

2-D Gaussain kernel to the RGB channels using standard deviations in the

range of [0.7, 3.1] pixels. Each RGB channel in both the left and right image

was blurred with the same kernel.

2.2.2.3 Downsampling

The left and right images were separated before adding downsampling

distortion. Each original immersive image was downsampled to one of five

reduced spatial resolutions using bicubic interpolation. We used the HTC Vive

for our subjective experiments. This HMD presents a resolution of 1080×1200

and Field of View (FOV) of 110 degrees to each eye. The preferred resolution

between 3K and 4K can be found by calculating the portion of solid angle that

the FOV spans. We set the maximum total resolution to be 4096×2048, as

also suggested in [69,70], and the minimum resolution to be 820×820, thereby

covering a wide range of qualities.

2.2.2.4 Stitching Distortion

We first separated the left and right images and captured 14 perspective

views from each image using MATLAB, covering the entire spherical image to

simulate a 14-head panoramic camera placed at the center of each scene [61].

The viewing directions we used are listed in Table 2.1, where ϕ represents the

zenith angle, and θ represents the azimuth angle. The FOV was set to 110

degrees. An example of the 14 views is shown in Figure 2.4.
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After obtaining a set of images captured by the virtual lenses, we im-

ported the views into the popular stitching tool Nuke, and adjusted the ori-

entation of each stitched image to have the same orientation as its reference

image, to avoid introducing any further discomfort. Specifically, since the first

viewing direction points to the zenith, we adjusted the ZXY rotation parame-

ters in Nuke such that the first perspective view (generated by the first viewing

direction) was on the right position. This was done by searching the rotation

matrix space to find the parameters that would rotate the first view back to

the zenith.

After adjusting the orientation of the stitched image, we tuned the

stitching parameters, mainly the convergence distance, error threshold and

whether ‘refine’ or ‘reject’ was applied, to generate different levels of the dis-

tortion. An example of different levels of stitching distortion is shown in Figure

2.5. The same procedure was applied on the left and right images, and we en-

sured that the stitching distortion created was at the same location in the two

images to avoid further discomfort arising from binocular rivalry.

TABLE 2.1: Viewing Directions, where ϕ represents the zenith angle, and θ
represents the azimuth angle

θ 0 π/4 3π/4 5π/4 7π/4 0 π/2 π 3π/4 π/4 3π/4 5π/4 7π/4 0
ϕ 0 π/4 π/4 π/4 π/4 π/2 π/2 π/2 π/2 3π/4 3π/4 3π/4 3π/4 π

2.2.2.5 VP9 Compression

VP9 compression was applied using the popular public domain software

FFmpeg, using the libvpx-vp9 encoder. We varied the constant quality factor
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Figure 2.4: Example of 14 perspective views that were stitched together

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Different levels of stitching distortion. (a)-(c): Images of level 1,
3 and 5 (higher levels indicate more distortion). (d)-(e): Zoomed-in views of
(a)-(c).

over the range [50, 63], where lower values indicate better quality.
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2.2.2.6 H.265 Compression

H.265 (HEVC) compression distortion was applied using the FFmpeg

libx265 encoder with different QP values ranging from 38 to 50, where higher

values imply increased compression and worse quality.

2.2.3 Subjective Testing Design

We employed the Single Stimulus Continuous Quality evaluation meth-

ods described in the ITU-R BT 500.13 recommendation [71]. The human sub-

jects entered their quality adjustments on a continuous rating scale from 0 to

100, where 0 indicates worst quality.

Each viewing session was limited to a duration of 30 minutes and the

subjects were free to take rests at any time. The subjects were asked whether

they were prone to discomfort when participating in either a VR or 3D en-

vironment beforehand, to eliminate subjects who were not suitable for this

subjective study. The visual acuity of each subject was determined using

the Snellen test, and each subject was asked to wear their corrective lenses

to achieve normal vision when participating in the study. Each subject also

participated in a RanDot Stereo test of their stereo vision and depth percep-

tion. If any test showed impairment, the subject was recommended not to

take this test, but if the subject decided to perform the test, the results were

discarded. The range of Interpupillary Distances (IPD) of the HTC Vive is

60.3mm-73.7mm. For those subjects whose IPD was outside of this range,

a period of experimentation with the HMD was allowed. If the subject felt
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uncomfortable, then it was recommended that he/she not perform the test.

The data was also discarded when the subject did not follow instructions.

Each subject participated in three sessions separated by at least 24

hours apart. For each session, 9 contents and 60 distorted images were ran-

domly selected. The ”hidden” reference image was included in each session.

To reduce the effects of memory comparisons, images of the same content were

separated by at least five images of different content. The average viewing time

for each session was 27 minutes, with the average viewing and rating time for

each image being around 23 seconds.

2.2.4 Subjective Test Display

The subjective test was displayed on a HTC Vive VR headset with a

built-in Tobii Pro eye tracking system [72], as depicted in Figure 2.6. The

Tobii Pro Eye tracking is fully integrated into the HTC Vive HMD. It trackes

the gaze direction using the Pupil Center Corneal Reflection technique. More

specifically, it uses dark pupil eye tracking, where an illuminator is placed away

from the optical axis causing the pupil to appear darker than the iris. Tobii

Pro eye tracking has an accuracy of 0.5°, a latency of approximately 10ms, and

a sampling frequency of 120 Hz. There are several data outputs for each eye:

device and system timestamp, gaze origin, gaze direction, pupil position and

absolute pupil size. Image playback was supported by a dedicated high perfor-

mance server (Intel i7-6700, 32GB memory, 1TB hard drive, NVIDIA TITAN

X). The interface was built using Unity Game Engine. Detailed procedures of

the subjective test are described in the following sections.
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Figure 2.6: HTC Vive integrated with the Tobii Pro Eye Tracking system.

2.2.4.1 Eye tracking

Eye tracking commenced at the beginning of each session. Subjects

fixated on five red dots that flashed sequentially in the HMD at different

positions [72], as shown in Figure 2.7. These points are mapped in normalized

coordinates so that (0.0, 0.0) corresponds to the upper left corner and (1.0, 1.0)

corresponds to the lower right corner of the current viewport. Each subject was

asked to stare at each dot in succession, then after the last dot disappeared, the

system used the recorded dot fixations to calibrate the eyetracker. The process

was repeated if the calibration was not successful. If the calibration was still

not successful after five trials, the subject would be asked to participate at

another time. This situation happened twice during our experiments.

Figure 2.7: Calibration pattern.
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2.2.4.2 Viewing and Scoring

The quality scale popped up automatically after 20 seconds of viewing

to limit each subject’s time viewing the images. To avoid having the subject

view the image after the time limit, a grey canvas displayed as background of

the rating bar, as shown in Figure 2.8. The quality scale was in the center

of the subject’s field of view, wherever they moved their head. Five Likert

labels “Bad, Poor, Fair, Good, Excellent” indicated the range of ratings the

subject could apply. To rate the images, the subjects used the hand controllers

supplied with the VR headset to choose the desired score on the quality scale.

After the subject was satisfied with the score chosen, they clicked on ’Submit

and Next’ to see the next image. Once the subject submitted the score, the

name and score of the image were written to file. The submission timestamp

was also recorded to determine the correspondences between the gaze data and

the image. The subsequent image was randomly chosen from all the images

in the session, subject to the previously mentioned constraints on the display

order. Detailed gaze data was output by the Tobii Pro at the end of each

session.

Figure 2.8: Rating bar used in the subjective study
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2.2.5 Subjects and Training

All subjects were students at The University of Texas at Austin. The

subject pool was inexperienced with image quality assessment and image dis-

tortions. A total of 40 students were involved in the study, and each image

was rated by around 15 students.

Each subject was orally briefed about the goals of the study and pre-

sented with the detailed procedure in written form. A consent form was also

signed by the subject. Each subject was asked to view the image as much

as possible and score the images according to image quality only, without re-

gard to the appeal of the content. Before the actual session, each subject

viewed a training session of 10 images not included in the database. These

images were distorted in the same way as the images in the database and

spanned the same ranges of quality, to give the subject an idea of the quality

and distortions that would be seen in the actual sessions. The subjects rated

these images accordingly using the same technique as in the actual session to

familiarize themselves with the controllers and the VR headset.

2.3 Data Analysis

Subjective Difference Mean Opinion Score (DMOS) were computed ac-

cording to [73].The difference scores for reference images were 0 and were

discarded for all sessions. Then per session Z-scores were computed from the

difference scores and combined into a score matrix zij and a ”viewed” matrix

sij, where 0 indicates the image was not seen by the subject and 1 indicates
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the image was seen by the subject.

Subject rejection was performed using the ITU-R BT 500.11 [71] to

discard unreliable subjects. To proceed with subject rejection, we first de-

termined whether the scores assigned by a subject were normally distributed,

using the β2 test by calculating the kurtosis coefficient of the function:

β2,j =
m4

(m2)2
(2.1)

and

mx =

∑Mview

i=1 (zj − z̄j)
x

Mview

, (2.2)

where Mview is the number of subjects that have seen image j. We calculated

the mean score and standard deviation for each image:

z̄j =
1

Mview

Mview∑
i=1

zij (2.3)

σj =

√√√√Mview∑
i=1

(zj − z̄j)2

Mview − 1
(2.4)

If β2 fell between 2 and 4, the scores were assumed to be normally distributed.

Then:

if zj ≥ z̄j + 2σj, then Pi = Pi + 1 (2.5)

if zj ≤ z̄j − 2σj, then Qi = Qi + 1 (2.6)

If the scores were deemed to not be normally distributed, then:

if zj ≥ z̄j +
√
20σj, then Pi = Pi + 1 (2.7)
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if zj ≤ z̄j −
√
20σj, then Qi = Qi + 1 (2.8)

To reject a subject, we determined whether the following two conditions

hold:

Pi +Qi

N
> 0.5, (2.9)

where N is the number of images in the study, and∣∣∣∣Pi −Qi

Pi +Qi

∣∣∣∣ < 0.3. (2.10)

If Equation 2.9 and Equation 2.10 were both found to hold, then a subject

was rejected.

In our study, 2 out of 42 subjects were rejected. For the remaining

subjects, we mapped their Z-score to [0, 100] using equation mentioned in [73].

Finally, the DMOS of each image was obtained by computing the mean of the

rescaled Z-scores from 40 remaining subjects. A histogram of the recorded

DMOS and a plot of the correlations between each subject’s ratings and DMOS

are shown in Figure 2.9. The DMOS were found to lie in the range [24.67,

76.99].

To explore the internal consistency of the subject data, we randomly

divided the subjects into two equal size groups, and computed the Spearman’s

Rank Correlation Coefficient (SROCC) correlation between their scores. This

was done 1000 times. After 1000 splits, the range of correlations was found

to be between 0.80 and 0.90 with a median value of 0.87. Hence, there was
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(a) (b)

Figure 2.9: (a) Histogram of DMOS. (b) SROCC between subject ratings and
DMOS.

a high degree of inter-subject agreement despite the more complex immersive

viewing environment. We also calculated correlations by distortion category as

shown in Table 2.2. Clearly, stitching distortion resulted in the lowest inter-

subject correlation, which is not unexpected, since stitching distortions are

highly localized distortions and their ratings are dependent on the amount of

visual attention they received from each subject.

TABLE 2.2: Min, Max and Median SROCC between randomized subject
groups for each distortion category

GAUSSIAN BLUR GAUSSIAN NOISE DOWNSAMPLING STITCHING VP9 H.265
MIN 0.7778 0.6492 0.8640 0.5669 0.6056 0.8173
MAX 0.9316 0.8815 0.9564 0.8535 0.8793 0.9432

MEDIAN 0.8625 0.7897 0.9146 0.7184 0.7746 0.8951

Figure 2.10 plots the DMOS across all contents, where each color coded

curve corresponds to a different distortion level. As shown in the figure, for

downsampling and H.265 compression distortions, the DMOS associated with

most of the contents decreased with distortion level and the DMOS for different

distortion levels are clearly separated. Interestingly, for Gaussian noise and
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(a) Gaussian Blur (b) Gaussian Noise (c) Downsampling

(d) Stitching Distortion (e) VP9 (f) H.265

Figure 2.10: DMOS of all contents for each level of applied distortion.

VP9 distortions, the DMOS given to some of the contents were not always

monotonic with distortion level. For stitching distortions, the DMOS across

distortion levels were mostly consistent but slighly entangled.

Figure 2.11 plots the DMOS ranges against distortion level for each

distortion type. There were overlaps of the confidence intervals for Gaussian

noise, stitching and VP9 distortions. Overlaps occurred at higher distortion

levels for Gaussian noise, at lower distortion levels for VP9 and over all re-

gions for stitching distortions. This indicates that more severe Gaussian noise

distortions as were light VP9 distortions were rated similarly, while stitching

distortions were less consistently rated overall.
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(a) Gaussian Blur (b) Gaussian Noise (c) Downsampling

(d) Stitching Distortion (e) VP9 (f) H.265

Figure 2.11: Confidence intervals of DMOS over all contents for each applied
level of distortion. The blue points indicate the maximum and the minimum
DMOS for each distortion type and level. The red points indicate the mean
DMOS and the blue bars are the 95% confidence intervals.
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2.4 Objective IQA Model Comparison

When evaluating the performance of IQA methods, we computed the

IQA scores separately on the left and right images, and used the average of

these as the overall IQA score. Since BRISQUE requires training in advance,

we split the database randomly, using 80% of the data for training, and 20%

for testing. No contents were shared between training and testing. On each

distortion type, BRISQUE was trained and tested using only features extracted

on images having the corresponding distortion type, to allow measurement of

the best case median performance, since performance of BRISQUE degrades

in general when it has more distortions to measure. This process was done

1000 times and the median value was taken as the final IQA score. The IQA

scores of the other methods were processed in the same way to avoid any bias.

We tested and compared the following IQA models on our database.

1. Peak Signal-to-Noise Ratio (PSNR) is the negative logarithm of the

pixel-wise mean squared error (MSE) function plus an additive offset

between the reference and distorted images.

2. Weighted-to-Spherically-Uniform PSNR (WS-PSNR) [59] is a modifi-

cation of PSNR that measures distortions in representation space and

weights distortions according to the corresponding projection area in

observation space.

3. Structural Similarity Index (SSIM) is a widely used full reference image
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quality assessment model [45] which captures local luminance, contrast,

and structural information.

4. Multiscale SSIM (MS-SSIM) [46] is a variation of SSIM that captures

quality information across multiple spatial scales.

5. Visual Saliency-Induced Index (VSI) [50] is a full reference visual saliency-

based IQA method that also integrates gradient magnitude and chromi-

nance features.

6. Gradient Magnitude Similarity Deviation (GMSD) [49] is a simple gradient-

based IQA method. It also uses spatial deviation pooling to aggregate

the quality predictions.

7. FSIM [48] is a full reference IQA method that measures image quality

based on local measurements of phase congruency and gradient magni-

tude.

8. Mean Deviation Similarity Index (MDSI) [51] is a full reference image

quality evaluator that fuses gradient similarity, chromaticit, and devia-

tion pooling features.

9. Spherical Structural Similarity Index (S-SSIM) [60] is a weighted-to-

spherically-uniform VR-IQAmethod which scales pixels with equal mapped

spherical areas by equal factors when measuring distortion using SSIM.

10. BRISQUE [52] is a NR IQA model that uses natural scene statistics

features defined in the spatial domain.
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11. NIQE [53] is a completely blind (unsupervised) image quality assessment

model, in which the quality of a distorted image is computed in terms

of its distance from a learned NSS model.

2.4.1 Performance of Objective Methods

We tested the performance of the just-listed objective IQA models using

three metrics: the Spearman’s Rank Order Correlation Coefficient (SROCC),

the Pearson Linear Correlation Coefficient (PLCC), and the Root Mean Square

Error (RMSE). The SROCC assesses how well the relationship between an

objective model prediction and human subjective scores can be described using

a monotonic function. The PLCC measures the accuracy of prediction of

different objective models after performing a nonlinear logistic regression. We

used a five-parameter logistic function:

f(x) = β1(
1

2
− 1

1 + eβ2(x−β3)
) + β4x+ β5 (2.11)

where x are the predicted scores, f(x) is the mapped score, and βi(i =

1, 2, 3, 4, 5) are parameters to be fitted that minimize the mean squared er-

ror between the mapped scores and the subjective scores. The Root Mean

Squared Error is the standard deviation of the prediction errors. The perfor-

mances of the compared IQA models is listed in Tables 2.3, 2.4 and 2.5. In

addition, scatter plots of all of the considered objective IQA models against

DMOS are shown in Figure 2.12.
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(a) PSNR (b) WS-PSNR (c) SSIM

(d) MS-SSIM (e) S-SSIM (f) FSIM

(g) VSI (h) GMSD (i) MDSI

(j) BRISQUE (k) NIQE

Figure 2.12: Scatter plots of all pairs of objective and subjective IQA scores
using different IQA algorithms. ’gb’ refers to Gaussian blur, ’gn’ refers to
Gaussian noise, ’ds’ refers to downsampling, and ’st’ refers to stitching.

49



TABLE 2.3: SROCC of IQA Methods

OVERALL GAUSSIAN BLUR GAUSSIAN NOISE DOWNSAMPLING STITCHING VP9 H.265
PSNR 0.5755 0.7893 0.8929 0.8179 0.7321 0.5036 0.7714

WS-PSNR 0.6350 0.7911 0.8875 0.8286 0.7857 0.6304 0.8536
SSIM 0.6289 0.7821 0.9107 0.8321 0.5143 0.7643 0.7857

MS-SSIM 0.7187 0.8571 0.9107 0.8036 0.7250 0.8179 0.9250
S-SSIM 0.6420 0.8036 0.9143 0.8607 0.5857 0.7536 0.8214
FSIM 0.7007 0.9179 0.9143 0.7893 0.8179 0.8821 0.9357
VSI 0.6805 0.9143 0.9143 0.7929 0.7982 0.8464 0.9357

GMSD 0.7963 0.9000 0.9036 0.8179 0.7893 0.8429 0.9321
MDSI 0.6970 0.9179 0.9143 0.7964 0.8161 0.8714 0.9429

BRISQUE 0.7353 0.9357 0.9036 0.9500 0.4714 0.5750 0.7643
NIQE 0.4635 0.9321 0.8893 0.8714 0.1357 0.5411 0.6946

TABLE 2.4: PLCC of IQA Methods

OVERALL GAUSSIAN BLUR GAUSSIAN NOISE DOWNSAMPLING STITCHING VP9 H.265
PSNR 0.6645 0.8726 0.9200 0.8548 0.6740 0.5020 0.7370

WS-PSNR 0.6956 0.8862 0.9110 0.8412 0.8061 0.6616 0.8270
SSIM 0.7209 0.8777 0.9377 0.8758 0.5307 0.7741 0.7730

MS-SSIM 0.7692 0.8816 0.8937 0.8910 0.6887 0.8664 0.9011
S-SSIM 0.7297 0.8889 0.9395 0.8856 0.5874 0.7868 0.8087
FSIM 0.7644 0.8730 0.9365 0.8776 0.1131 0.8937 0.8834
VSI 0.7468 0.8301 0.9113 0.8951 0.0320 0.8627 0.8939

GMSD 0.8230 0.9254 0.9130 0.8912 0.7891 0.8703 0.9247
MDSI 0.7556 0.8434 0.9325 0.8906 0.0989 0.8856 0.9036

BRISQUE 0.7438 0.9385 0.9284 0.9448 0.1845 0.5998 0.7567
NIQE 0.5348 0.8976 0.8764 0.8945 0.1109 0.4752 0.6963

TABLE 2.5: RMSE of IQA Methods

OVERALL GAUSSIAN BLUR GAUSSIAN NOISE DOWNSAMPLING STITCHING VP9 H.265
PSNR 8.6283 6.3670 8.4388 7.9799 8.5940 7.5472 10.9798

WS-PSNR 8.3170 5.8372 7.5303 7.9487 9.1163 6.3785 10.9601
SSIM 7.9189 6.1000 9.0154 7.2637 7.8567 5.6369 9.9774

MS-SSIM 7.3847 6.8903 7.4371 7.1059 8.1978 4.5863 8.6862
S-SSIM 7.8286 5.7787 8.9576 7.1847 7.8860 5.5525 9.8875
FSIM 7.2500 8.1431 3.5452 6.4385 10.5177 4.9344 7.7393
VSI 7.6161 9.2142 3.9715 6.3541 10.4909 5.8952 7.8099

GMSD 6.5393 4.9666 4.7332 6.4346 8.6852 4.6751 8.2060
MDSI 7.4593 9.3216 3.5806 6.2573 10.3451 5.5139 7.6793

BRISQUE 7.6832 5.3178 4.2615 5.6837 9.9613 8.4327 8.3145
NIQE 9.6537 8.7418 8.4369 9.5101 9.0505 8.3211 12.8910
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2.4.2 Statistical Evaluation

To evaluate whether two IQA methods are significantly different, we

performed an F-test on the residuals between the IQA scores after non-linear

mapping and the DMOS [35]. The assumption is that the two sets of resid-

uals are Gaussian with zero means. Thus, to test whether they come from

the same distribution depends on whether they have the same variance. The

null hypothesis is that the residuals from one IQA come from the same distri-

bution and are statistically indistinguishable from the residuals from another

IQA. Each entry in the table consists of 6 symbols. A value of ‘1’ in the table

represents that the row algorithm is statistically superior to the column algo-

rithm, while a value of ‘0’ means the opposite. A value of ‘-’ indicates that the

row and column algorithms are statistically indistinguishable (or equivalent).

The position of the symbols corresponds to the following datasets: Gaussian

blur, Gaussian noise, downsampling, stitching, VP9, H.265, and all data. The

results are shown in Table 2.6.

2.4.3 Analysis of Eye Tracking Data

We calculated gaze maps using the eye tracking data recorded by the

Tobii Pro. To do so, we added all gaze points for the same content, treated

each as an impulse, and smoothed them by applying a Gaussian function with

standard deviation of 3.34° [74]. The computed gaze maps are plotted in Figure

2.13. We also calculated the distribution of viewing direction for all images, as

shown in Figure 2.14. To visualize the distributions of viewing direction with
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regards to the considered distortions, exemplar plots for four of the contents

are shown in Figure 2.15 and Figure 2.16. Example gaze maps on different

distortions of the same content are also shown in Figure 2.17.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2.13: Example gaze maps

(a) Longitude (x axis) (b) Latitude (y axis)

Figure 2.14: Frequency of viewing directions.
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(a) (b) (c) (d)

Figure 2.15: Example frequency plots of latitude viewing directions for four
exemplar contents.

(a) (b) (c) (d)

Figure 2.16: Example frequency plots of longitude viewing directions for four
contents.

(a) Gaussian Blur (b) Gaussian Noise (c) Downsampling

(d) Stitching Distortion (e) VP9 (f) H.265

Figure 2.17: Example gaze maps on different distorted versions of a same
content.
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2.4.4 Discussion of Results

From Table 2.3, 2.4 and 2.5, we can conclude that among all methods

tested, GMSD generally performed the best while NIQE performed the worst.

While WS-PSNR seems to perform better with respect to PLCC on stitching

distortions, from Table 2.6, we may see that GMSD provided better quality

predictions overall as compared to all other models. WS-PSNR rewards local-

ity, hence its good performance on the stitching distortions. Since stitching

distortion is highly local and it greatly affects the overall score, the deviation

pooling used in GMSD is more efficient in capturing it than methods using

average pooling. In addition, stitching distortion adds weak edges, which can

be detected using the gradient map of images. Though MDSI also uses devi-

ation pooling, it utilizes a fused gradient similarity map which is less efficient

in detecting weak edges. As a result, it did not perform as well. From the

scatter plots, it is interesting to notice that for several algorithms, the cor-

relations for stitching distortions were very poor. This might be because of

the locality property of stitching distortion that makes it more difficult. It

was also interesting that both WS-PSNR and S-SSIM performed better than

their counterparts, which means that applying a reprojection weight to modify

traditional IQA methods can help their performance on VR images. Overall,

GMSD was statistically superior to all of the other compared methods, while

NIQE was statistically inferior to almost all of the others. Training on the sub-

ject data of these 3D VR images was an important step of the NR models to

capture the unique perceptual peculiarities of the distorted VR image viewing
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experience. This is reinforced by the wide disparity in performance between

the trained BRISQUE model and the training-free NIQE model, since they

use the identical set of features!

From Figure 2.13 and 2.14 , we can also conclude that there exists an

equator bias when viewing VR images. Subjects were more likely to view the

center of the image (center bias), but this also depended on the content and

whether there were objects of interest near the center. A good example is Fig-

ure 2.13(e), where the subjects’ gaze was more attracted to the person in the

image than to the building, although it is located at the center of the image.

From Figure 2.15, we can see that on the various considered distortions, the

distributions of the latitude viewing directions all followed the equator bias.

But from Figure 2.16, it may be observed that this was not usually the case

for the longitude viewing directions. For all of the considered distortions, the

distributions tended to follow a similar trend, but on specific local distortions,

the directions of interests might shift, as shown in Figure 2.16(a). By compar-

ing the gaze maps of Figure 2.16(a) with Figure 2.17, we can see that the areas

of interests shifted when stitching distortion was present. The appearance of

stitching artifacts is much more localized as compared to other distortions.
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Chapter 3

Learning to Compress Videos without

Computing Motion

Motion estimation and compensation has occupied a significant amount

of resources in both hybrid codec and deep learning-based methods. In order to

reduce the overall computational complexity as well as increasing compression

rate, we have formulated a new breed of deep video compression algorithms

that are motion computation free, statistically motivated, and have perceptual

relevance. In this work, we innovate the use of displaced frame differences to

capture efficient representations of structures induced by motion, thus avoiding

the computational overhead of motion estimation and motion compensation.

In addition, we used a combined LTSM-UNet that efficiently captures both

spatial and temporal information and uses to recreate video frames from the

abstracted video code. The entire video compression system is collectively

jointly optimized using a single loss function.

Our results show that video compression can be efficiently accomplished

1Meixu Chen, Todd Goodall, Anjul Patney, and Alan C Bovik. Learning to compress
videos without computing motion. Signal Processing: Image Communication, page 116633,
2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Todd
Goodall, Anjul Patney: Conceptualization; Alan C. Bovik: Supervision, Conceptualization,
Methodology, Review and Editing.
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without explicitly computing motion predictions. We trained the new MOVI-

Codec architecture end-to-end on the Kinetics-600 dataset and the Vimeo-90K

dataset, using a single perceptual loss function (MS-SSIM), and tested it on

the UVG dataset, the VTL dataset, and the HEVC Standard Test Sequences

(Class B, Class C, Class D, and Class E). Our experimented results show that

our new model outperforms the widely used video codec H.264 in LDP veryfast

setting, and exceeds the performance of the latest standard video codec H.265

using the same setting. In addition, our network outperforms the latest H.266

(VVC) codec at higher bitrates, as assessed by the perceptually relevant MS-

SSIM algorithm, on high resolution videos. The rest of this chapter is organized

as follows. Section 3.1 briefly introduces current progress on learning-based

methods for image/video compression and motion estimation. Section 3.2

describes details of the architecture and training protocol of the new MOVI-

Codec model. Section 3.3 discusses the experiments we conducted and their

outcomes, along with a data analysis along several dimensions.

3.1 Background

3.1.1 Deep Image Compression

A variety of standardized image compression engines have been pro-

posed over the years to meet the needs of increasingly picture-centric technolo-

gies. JPEG algorithm [75], and later challengers JPEG 2000 [76], BPG [77],

and VP9 [78]. These methods have proven to be quite practical, and in the

case of JPEG, ubiquitous. Yet they are all handcrafted, highly modularized

without the benefit of collective optimization of all their elements. Each of
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these standards maps pixels to a less correlated representation, regardless of

the attributes of the input image. These transformed values are then non-

uniformly quantized, typically with reference to a human visual sensitivity

model.

A variety of authors have recognized the potential of deep learning

to advance progress on the image compression problem (a still timely goal

given the senectitude of the prevailing JPEG standard), and many learning-

based architectures have been devised [5–19]. Given that Convolutional Neural

Networks (CNN) [79] were the first deep learning models to obtain standout

performance on image analysis problems, it was natural that it be the first

deep architecture to be applied to learning-based image compression. Ballé

et al. [9] proposed a CNN-based image compression framework that was opti-

mized end-to-end, which was shown to outperform JPEG2000 with respect to

both MS-SSIM and PSNR image quality measures. Their framework was later

extended by incorporating a hyperprior to capture spatial dependencies in the

latent representation for entropy estimation [7]. In [15], Minnen et al. further

enhanced the entropy model, by combining autoregressive and hierarchical pri-

ors to exploit the probabilistic structure in the latents. The resulting model

was reported to outperform BPG with respect to both PSNR and MS-SSIM.

Another architecture favored for learning-based image compression are Recur-

rent Neural Networks (RNN), because of their ability to exploit representative

memories. Long Short-Term Memory (LSTM) models were proposed [80] to

address the vanishing gradient problem of RNNs. Toderici et al. [5, 6] was
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the first to deploy a deep RNN-based architecture for image compression by

utilizing a scale-additive framework. This architecture allows for variable bit

rates and only needs to be trained once. The authors also presented results

using different types of RNNs, including LSTM, associative LSTM and a hy-

brid of a Gated Recurrent Unit (GRU) [81] and a ResNet, reporting that the

performance of the model was better than JPEG. Generative Adversarial Net-

works (GAN) have been applied in several learning-based image compression

models. Early on, Rippel et al. [12] proposed a GAN-based image compression

framework that they claim outperformed all existing codecs with respect to

MS-SSIM, while being lightweight and deployable. In [13], a GAN framework

is presented to build an extreme image compression system which the authors

report as achieving state-of-the-art performance, especially at very low bit

rates, based on a user study.

3.1.2 Deep Video Compression

It is natural to also consider learning-based methods for video com-

pression [20–23,82–85]. Wu et al. [21] proposed a video compression architec-

ture based on the idea that video compression is repeated image compression.

They define two types of frames: key frames and other frames. Key frames

are compressed using an RNN-based image compression network [6], while the

other frames are interpolated in a hierarchical manner. Another hierarchical

video compression architecture, called Hierarchical Learned Video Compres-

sion (HLVC), was proposed by Yang et al. [23]. In this method, there are three

quality layers: an image compression layer, a Bi-Directional Deep Compression
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(BDDC) layer, and a Single Motion Deep Compression (SMDC) layer. In an

attempt to match the pipeline structure of hybrid codecs, Lu et al. proposed

an end-to-end video compression model (DVC) [22] that replaces each tradi-

tional hybrid component, with deep learning models, then jointly optimized

all the components against a single loss function. This work was further ex-

tended to two models, a lightweight version called DVC Lite, and an advanced

version called DVC Pro, by adjusting various components of the architecture.

Later, Habibian et al. [82] proposed a deep generative model for video compres-

sion using an autoregressive prior to conduct entropy coding. Generally, all

learning-based video compression models implement traditional block-based

motion estimation or optical flow, both of which have a high computational

overhead.

The most related work to ours is [85], whereby an interpolation loop

is used as an alternative to motion estimation/compensation. However, the

frame interpolation network still requires training, which adds to the complex-

ity of the overall method.

3.1.3 Motion Estimation and Motion Compensation

Motion estimation (ME) and motion compensation (MC) are crucial

components in modern hybrid video codecs. These are used to exploit the

temporal redundancy of video frames via inter-frame prediction. In traditional

hybrid video codecs like H.264 and H.265, video frames are first partitioned

into blocks, then motion vectors (MV) associated with each block are estimated

with respect to predictions of neighboring reference frames via expensive block
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search methods, which is the most intensive aspect of video compression. A

few deep learning methods have been proposed to solve the ME problem. For

example, Choi et al. [86] trained a CNN to measure the similarity of pairs

of image patches and used this to estimate MVs. However, this method still

requires a search process to find the best match. In [87], the authors developed

a CNN that was trained to conduct both uni- and bi-directional ME, using

separate networks so that motion information need not be transferred from the

encoder to the decoder. The CNN does require two frames from the decoded

picture buffer and their temporal indices as inputs, which it uses to produce

filter coefficients that synthesize patches of a new frame, which is then used

to predict the current frame. A drawback of this approach is that it requires

the CNN to be resident at both the encoder and the decoder, which reduces

decoding efficiency.

Another popular alternative to block matching algorithms are optical

flow routines, which seek to obtain a dense vector field mapping the movements

of pixel. A variety of deep learning based optical flow estimation methods have

been proposed to reduce the computational overhead of dense optical flow vec-

tors [88]. FlowNet [89] showed that it was possible to train a network from two

input images to predict optical flow while matching or exceeding the accuracies

of traditional methods. Later improvements introduced a stacked architecture

that included warping of the second image via intermediate optical flow es-

timates, and a sub-network specialized to predict small motions [90]. Other

approaches have tried to combine networks with traditional methods. Ranjan
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et al. [88] proposed such a network called SpyNet, which adopted a traditional

coarse-to-fine computational hierarchy using a spatial pyramid. Later, another

network competitive with FlowNet2 was proposed, called LiteFlowNet [91],

but with a significantly decreased model size. Our approach avoids even these

methods of deep flow computation, by instead feeding the network a set of

directional inter-frame residuals containing adequate information for the net-

work to seek the most efficient perceptual representation.

3.2 Proposed Method

3.2.1 Framework

Figure 4.1 exemplifies the flow of our deep video compression network.

A current frame is input to the network, along with multiple displaced frame

differences from adjoining, previously coded and then decoded frames (lower

part of figure). This is similar to the classic hybrid coding loop, which also

includes the decoder as part of the encoder loop, to reduce reconstruction er-

rors. The key components in our network is: Displacement Calculation Unit

(DCU), Displacement Compression Network (DCN), and Frame Reconstruc-

tion Network (FRN). The details of each key component in our network will

be discussed in the following sections.

The flow of our network is: Given an input video with frames x1, x2, ..., xT ,

for every frame xt, displaced frame differences between the current frame xt

and previous reconstructed frame x̂t−1 are calculated via the DCU, after which

the displaced frame differences dt are input into the DCN. The DCN com-
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Figure 3.1: The overall network architecture of MOVI-Codec, which consists
of three components: a Displacement Calculation Unit, a Displacement Com-
pression Network and a Frame Reconstruction Network.

presses the incoming displaced frame differences which are used to capture

statsitical redundancies. An illustration of displaced frame differences, i.e.

differences between spatially displaced frames, is shown in Figure 4.2. Given

a compressed output d̂t from the DCN, FRN uses the reconstructed displaced

frame differences d̂t and the reconstructed previous frame x̂t−1 to reconstruct

a current frame x̂t. Every frame is processed following this except for the first

frame. The first frame x1 is processed differently as it does not have previous

reconstructed frame. As a result, an all-zero image is chosen as its previous

reconstructed frame and it is otherwise processed the same as other frames.

Pseudo code of the flow is shown in Algorithm 1. By using this architecture,

we are able to reconstruct the videos without the use of motion.
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Algorithm 1 Flow of MOVI-Codec for an Input Video

x1 to xT : video frames.
x̂0: previous reconstructed frame for x1.
dt, d̂t: displaced frame differences and corresponding reconstructed ones, re-
spectively.
d1, d̂1: displaced frame differences between x1 and x̂0, and corresponding
reconstructed ones, respectively.

1: procedure MOVI-Codec
2: for t in 1 to T do
3: if t is 1 then
4: x̂0 = all zero frame
5: d1 ← DCU(x1, x̂0)
6: d̂1 ← DCN(d1)
7: x̂1 ← FRN(d̂1, x̂0)
8: else
9: dt ← DCU(xt, x̂t−1)
10: d̂t ← DCN(dt)
11: x̂t ← FRN(d̂t, x̂t−1)
12: end if
13: end for
14: end procedure

65



3.2.2 Displacement Calculation Unit (DCU)

In both traditional video codecs and recent deep learning-based ones,

motion estimation and compensation has occupied a significant portion of the

system resources. Motion estimation requires an expensive search process that

we avoid, by instead training the network to efficiently represent the residuals

between each current frame and a set of spatially-displaced neighboring frames.

Computing a set of frame differences, even over many displacement directions

is much cheaper than effective search processes. Moreover, while the statistics

of motion are generally not regular, the intrinsic statistics of frame differences

exhibit strong regularities [92], including those of differences between spatially

displaced frames [93]. The strong internal structure of these frame differences

makes them easier to efficiently represent in a deep architecture.

The DCU removes the need for any kind of motion vector search. In-

stead, it allows the DCU network to learn to optimally represent time-varying

images as sets of spatially displaced frame differences. Given a video with

T frames x1, x2, ..., xT of width w and height h, two directional (spatially

displaced) temporal differences are computed between each pair of adjacent

frames, as shown in Figure 4.2. In the DCU, the inputs are a current frame xt

and the reconstructed previous frame x̂t−1. Then, at each spatial coordinate

(i, j), a set of spatially displaced differences is calculated as:

dH(i, j)t = xt(i, j)− x̂t−1(i, j − s), (3.1)

dV (i, j)t = xt(i, j)− x̂t−1(i− s, j), (3.2)
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Figure 3.2: Concept of displaced frame differences, showing a frame t and
previous frame t− 1, and multiple spatially displaced versions of frame t− 1.

where s = 0,±3,±5,±7 in our experiment. The set of 13 displaced frame

differences (residuals) is then fed into the Displacement Compression Network,

which delivers as output the reconstructed set of displaced residuals d̂t. As

shown in [93], the statistics of displaced frame differences are highly regular,

and more so in the direction of local motion. This makes them good video

representations to learn to exploit space-time redundancies, while avoiding

the computational burden of motion estimation and compensation. Although

the range of motion between frames can be larger than our largest choice of

displacement, larger motions can be captured by various combinations of our

set of displacements.

3.2.3 Displacement Compression Network (DCN)

3.2.3.1 Framework

After a set of 13 displaced frames are generated from the Displacement

Calculation Unit, they are fed into the Displacement Compression Network,

where each displacement occupies three channels (RGB), hence the overall in-
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put to the DCN comprises 39 channels. The compression network comprises

four parts, displacement encoder, displacement decoder, hyper encoder, and

hyper decoder. Displacement encoder takes the displaced frame differences

calculated from DCU and generates the latent representation yt using sev-

eral convolutional layers and convolutional LSTM layers similar to other deep

learning-based compression architectures [6,21]. LSTM [94] as a special RNN

structure has proven stable and powerful for modeling long-range dependen-

cies in sequence modeling. The major innovation of LSTM is its memory cell

which keeps accumulating the state information. As a result, it helps hold the

spatio-temporal information provided by displaced frame differences generated

by DCU. The hyper autoencoder uses yt as input to generate side information,

which is then used to better compress quantized latent representation ŷt. Fi-

nally, the reconstructed d̂t is generated using ŷt. The detailed processing flow

of the hyper autoencoder is explained in later sections.

3.2.3.2 Quantizer

Traditional quantization inevitably produces zero gradients during back-

propagation (BP) which halts network training. Our network deploys BP via

stochastic gradient descent, which requires differentiability of all network ele-

ments. Hence, we implemented a modified quantizer as in [7], as follows, where

ŷ is the binarization of the latent representation of displaced frame differences,

which lie between -1 and 1, and ϵ represents quantization noise:

ŷ = y + ϵ ∈ −1, 1 (3.3)
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Figure 3.3: Flow diagram of the Displacement Compression Network. The
left side shows the displacement autoencoder architecture, and the right side
corresponds to the hyperprior autoencoder architecture. Q represents quan-
tization, and AE, AD represent arithmetic encoder and arithmetic decoder,
respectively. Conv(3,64,2) represents the convolution operation with kernel
size of 3x3, 64 output channels and a stride of 2.

ϵ ∼

{
1− y with probability 1+y

2

−y − 1 with probability 1−y
2

. (3.4)

Following quantization, the size of ŷ is H
16
× W

16
× C, where H and W are the

height and width of the frame, and C is the number of channels of the last

convolution layer in the displacement encoder. In our architecture, C = 128,

as shown in Figure 3.

3.2.3.3 Entropy Coding

To estimate the entropy of the compressed codes H(ŷ), where ŷ is the

quantized latent representation of y, we adopted the hyper-prior scheme pro-

posed by Ballé et al. [7], where they use an additional set of random variables

ẑ to capture the spatial dependencies and model the latent representations ŷ
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as Gaussian distribution as follows:

pŷ|ẑ(ŷ|ẑ) ∼ N(µ, σ), (3.5)

where pẑ(ẑ) is modeled using the factorized entropy model [9].

The hyperprior autoencoder architecture is indicated by Hyper En-

coder and Hyper Decoder in Figure 3.3, which is responsible for estimating

the parameters of the Gaussian model used for entropy coding. After the dis-

placement encoder encoded the input set of displaced frame differences dt, the

resulting latent representation yt with spatially varying standard deviations

is fed into the hyper encoder, which summarizes the distribution of standard

deviations in the latent representation zt. After quantization and arithmetic

coding, the quantized ẑt is transmitted as side information. The hyper decoder

uses the quantized ẑt as input to obtain Gaussian model parameter σ̂ (µ=0

in our implementation). During modeling training, the Gaussian model pa-

rameters can be used to calculate pŷt and then estimate H(ŷt) to guide model

optimization. While during model validation and/or testing, the Gaussian

model can be used to calculate the cumulative distribution function (CDF)

of ŷt and then guide the arithmetic encoding and decoding of ŷt, which could

further losslessly compress ŷt to bitstream.

3.2.4 Frame Reconstruction Network (FRN)

Figure 3.4 shows the structure of the Frame Reconstruction Network

(FRN). The FRN uses the reconstructed displaced frame differences d̂t and

the reconstructed previous frame x̂t−1 as the model input to reconstruct the
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current frame. The architecture of FRN incorporates Convolutional LSTM

(C-LSTM) blocks into a UNet architecture. The UNet architecture, which is

an encoder-decoder style network with skip connections, makes it possible to

extract and represent meaningful descriptors over multiple image scales. How-

ever, without modification, the UNet architecture cannot account for temporal

relationships between frames of video data, which are deeply relevant to the

efficiency of video compression. The C-LSTM is a convolutional version of

the original LSTM, which replaces the matrix multiplication operation of the

traditional LSTM with convolutions. It is quite useful for analyzing tempo-

ral image sequences, where the C-LSTM layers act as a temporal buffer and

capture the long-short dependency of previously processed displaced frame dif-

ferences. By introducing C-LSTM blocks into the UNet architecture, the FRN

is able to process evolving frame properties over multiple scales, by relating

compact representations of them in the C-LSTM memory units, leading to

better reconstructed frame quality and higher compression rates.

3.2.5 Training Strategy

We modeled the loss function considering the rate-distortion trade-off

as follows:

L = D + λR

= [D1(xt, x̂t) + βD2(dt, d̂t)] + λ[H(ŷt) +H(ẑt)],
(3.6)

where D and R represent the distortion and rate, respectively. λ controls the

trade-off between the number of bits and distortion. D1 denotes the distortion

between the input frame xt and reconstructed frame x̂t measured by MS-SSIM
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Figure 3.4: LSTM-UNet architecture used in Frame Reconstruction Network.

or MSE, and D2 denotes the distortion between displaced frame differences

dt and the reconstructed displaced frame differences d̂t measured by MSE.

β controls the trade-off between the perceptual distortion D1 and the pixel-

to-pixel distortion D2. H(·) represents the bitrates for encoding the latent

representations ŷ and ẑ estimated by the hyperprior autoencoder.

To leverage multi-frame information using our RNN-based codec struc-

ture, we update the network parameters every set of N frames during model

training, using the loss function in Equation 4.7 but modified as a sum of losses

over the kth set of the N frames indexed xtk+1, ..., xtk+N :

Lk =
1

N

N∑
n=1

[D1(xtk+n, x̂tk+n) + βD2(dtk+n, d̂tk+n)]

+ λ[H(ŷtk+n) +H(ẑtk+n)]. (3.7)
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3.3 Experiments

3.3.1 Settings

The MOVI-Codec networks were trained end-to-end on the Kinetics-

600 dataset [95, 96] and the Vimeo-90K dataset [97]. The Kinetics-600 videos

are downloaded from YouTube, each video having duration of about 10s and

various resolutions and frame rates. We used part of the testing set from

Kinetics-600, which consists of around 10,000 videos, to conduct our exper-

iments. From each video, a random 128 × 128 patch with 49 frames was

randomly selected for training, and the values of each input video were nor-

malized to [-1,1]. We randomly downsampled the original frame and extracted

a 128 × 128 patch to reduce any previously introduced compression artifacts.

The Vimeo-90K dataset consists of 4,278 videos of fixed resolution 448 × 256.

Since the Vimeo-90K dataset has 7 frames per video, we randomly selected a

patch of the same size as mentioned before with 7 frames for training. In the

Vimeo-90K dataset, the consecutive frames are selected so that the average

motion magnitude is between 1-8 pixels, whereas there is no limitation to the

motion magnitude between frames in the Kinetics-600 dataset. The mini-batch

size is set as 8 for training, and the step length N in our recurrent network

is set as 7. By training on both the Vimeo-90K and the Kinetics-600 dataset,

we are able to generalize our model to a wide range of natural motions. We

tested the MOVI-Codec on the VTL dataset [98], the JCT-VC [99] (Class B,

C, D and E) datasets, and the UVG datasets [100]. These datasets cover a

variety of resolutions as shown in Table 3.1. For fair comparison with [22,101]
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and [23], we tested our framework on the JCT-VC datasets using the first 100

frames, and tested on VTL and UVG using all frames.

TABLE 3.1: Resolutions of different datasets used for evaluation

Dataset VTL UVG JCT-VC Class B JCT-VC Class C JCT-VC Class D JCT-VC Class E
Resolution 352 × 288 1920 × 1080 1920 × 1080 832 × 480 416 × 240 1280 × 720

To evaluate the quality of the reconstructed videos, we used two quality

models: the perception-based MS-SSIM [46] and the non-perceptual PSNR.

Multiscale SSIM (MS-SSIM) is a widely used image quality assessment model

which captures local luminance, contrast, and structural information. For

each quality metric, we trained 5 models with different values of the weighting

parameter λ to cover different bitrate ranges. For the MS-SSIM model, λ was

set to 0.01, 0.05, 0.1, 0.5 and 1.0, respectively. For PSNR based models, λ was

set to 0.0005, 0.0025, 0.005, 0.025 and 0.05. We fixed β = 1, since we didn’t

observe any significant differences in model performance as it was varied over

the range 0.1 to 10.0.

We compared our method with both traditional and recent deep learn-

ing models. H.264 [102], H.265 [103] and the most recent H.266 [104] were

included as representatives of traditional hybrid compression codecs. We fol-

low [22] [23], and used the x264 and x265 “LDP very fast” mode. For H.266,

we followed [105] to implement the “faster” mode. So that we could compare

against another motion-free method, we also included the H.265 zero motion

setting, using x265 with merange set to zero, which allows exploiting temporal

redundancy using an IB prediction structure but without performing motion
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estimation. In this regard, this setting is most similar to our architecture [106].

Among recent deep learning models, DVC [22] and Wu et al. [21] are optimized

for PSNR, Habibian et al. [82] and Cheng et al. are optimized for MS-SSIM,

and HLVC [23] has both MS-SSIM optimized and PSNR optimized results.

3.3.2 Results

In this section, we compare our video compression engine against the

standards H.264, HEVC, and H.266/VVC, and with other deep learning-based

video compression architectures (Wu [21], DVC [22, 101], and Cheng [85]) on

the UVG dataset, the VTL dataset, and the HEVC Standard Test Sequences

(Class B, Class C, Class D, and Class E). When compressing videos using the

H.264 and HEVC codecs, we followed the settings in [22] and used FFmpeg

with the very fast mode1. When implementing H.266, we followed [105] using

the faster mode. We also provide visual examples of our approach against

other approaches in Figure 3.5. More exemplar reconstructed videos are in-

cluded on our project page with link given in the Abstract.

Figures 3.6, 3.7, 3.8, and 3.9 show the experimental results on the

VTL dataset, the UVG dataset, and the HEVC Standard Test Sequences

(Class B, Class C, Class D, and Class E). These results show that our net-

work outperformed both H.264 and the HEVC standard against MS-SSIM. On

1H.264: ffmpeg -pix fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N -c:v libx264 -
preset veryfast -tune zerolatency -crf Q -g GOP -bf 2 -b strategy 0 -sc threshold 0 output.mkv
H.265: ffmpeg -pix fmt yuv420p -s WxH -r FR -i Video.yuv -vframes N -c:v libx265 -preset

veryfast -tune zerolatency -x265-params “crf=Q:keyint=GOP” output.mkv
FR, N, Q, GOP represents the frame rate, the number of encoded frames, quality, GOP

size, respectively. N is set to 100 for HEVC datasets.
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Figure 3.5: Visual examples of our method as compared with H.264 and
HEVC.

datasets with higher resolution videos (UVG dataset, HEVC Class B dataset,

and HEVC Class E dataset), our network was able to outperform the latest
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H.266 codec at higher bitrates as assessed using the perceptually relevant MS-

SSIM algorithm. We also compared our model against several deep learning-

based compression models, including a frame interpolation-based model by

Wu et al. [21], DVC [101], HLVC [23] and the video compression framework

proposed by Cheng et al., which uses an added spatial energy compaction

penalty in the loss function [85]. Among these, DVC and HLVC were trained

on both PSNR and MS-SSIM, to obtain better results against each metric. In

our comparison, we include the best performance for these two methods for

each metric. It is worth noting that our model only uses one previous frame as

input, whereas in Wu’s framework, both neighboring frames are utilized when

reconstructing the middle frame. Additionally, our framework replaces the

classical motion estimation and compensation module by instead training the

network to optimally interpolate displaced frame differences. For complete-

ness, we also evaluated all models against the PSNR, where MOVI-Codec did

not always perform as well. However, this is a problem with the PSNR, which

is not perceptually relevant, and which produces significantly inferior quality

predictions than perception-based quality predictors like MS-SSIM [4]. In-

deed, the high quality of the reconstructions that we make available on the

model page (see link in Abstract) further attests to this. As has been observed

by others [9, 12, 13, 83], perceptual measures are better arbiters of deep com-

pressed video quality than absolute fidelity models like the PSNR. It is worth

noting that when comparing our model against the H.265 zero motion setting,

while both methods do not utilize motion estimation, MOVI-Codec was able to
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perform better with respect to MS-SSIM than the H.265 zero motion setting,

while delivering similar performance against PSNR.

Figure 3.6: MS-SSIM on the VTL dataset (352× 288) for different compression
codecs. Our method is competitive with the state of the art over varying bit
rates on these low-resolution videos.

Figure 3.7: PSNR and MS-SSIM on the UVG dataset (1920 × 1080) for differ-
ent compression codecs. Our method outperformed all compression methods
against the perceptually relevant MS-SSIM, while remaining highly competi-
tive against the non-perceptual PSNR.
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Figure 3.8: PSNR of HEVC test sequences for different compression codecs.
The resolution of Class B is 1920 × 1080, of Class C is 832 × 480, of Class D
is 416 × 240 and of Class E is 1280 × 720. Overall, our method is competitive
with H.265, and is particularity good at lower bit rates on lower resolution
datasets.

3.3.3 Ablation Studies

We conducted ablation studies to assess the choices we made in our

approach, specifically with respect to the choice of displaced frame differences,

and the effectiveness of the proposed LSTM-UNet. The results are shown in

Figure 3.10 and Figure 3.11.
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Figure 3.9: MS-SSIM of HEVC test sequences for different compression codecs,
where the resolution of Class B is 1920 × 1080, of Class C is 832 × 480, of
Class D is 416 × 240 and of Class E is 1280 × 720. Our method outperformed
H.265 and is competitive with other state of the art deep learning models.

3.3.3.1 Displaced Frame Difference Combination

Figure 3.10 shows the experimental results on different combinations

of displaced frame differences, where s = 0 refers to frame differences with

no displacements, which gives the worst performance of all combinations eval-

uated. This shows the value of “displaced” frame differences as a way of
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Figure 3.10: Ablation study of displaced frame difference combinations.

training the network on more diverse motion induced displacements. Includ-

ing displacements as large as s = 7 greatly increases the overall performance,

by allowing interpolation of larger motions in videos. We also tried adding

s = 9 to our choice of displacement combinations, but this new combination

did not improve the overall performance, meaning that our combination of

displacements was adequate to capture motions of various sizes. It is worth

noting that as compared with the H.265 zero motion configuration, which also

does not utilize motion estimation, our network was able to perform better as

assessed by the perceptually relevant MS-SSIM, including when s = 0.

3.3.3.2 Effectiveness of the LSTM-UNet

Figure 3.11 shows the experimental results on the HEVC Class B

dataset when using UNet and LSTM-UNet to reconstruct frames, respectively.

As shown in the example, LSTM-UNet extends the advantage of UNet for

extracting and representing spatial descriptors to include spatio-temporal de-

scriptors using C-LSTM blocks, yielding better reconstruction performance.
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Figure 3.11: Ablation study of the effectiveness of the proposed LSTM-UNet.

In addition, LSTM-UNet converges faster than the UNet counterparts, short-

ening the training time of the network.

3.3.4 Motion Vector Analysis

To verify that MOVI-Codec can capture large motions with the chosen

set of displacement combination, we calculated the optical flow of adjacent

frames in the testing datasets using a pre-trained network called SPynet [88].

To emphasize large motions, we calculated all motion vectors against adjacent

frames, and only picked the minimum and maximum motion vectors in the

x and y directions. As a result, we ended up with four values of motion

vectors for each adjacent frames. Figure 3.12 shows the distribution of the

picked motion vectors on all videos in the HEVC Class B dataset, which is the

dataset having the highest resolution videos among our testing datasets. From

the figure, we can conclude that our model produced a similar distribution as

the original frame pairs, hence our model was able to capture large motions

using a set of small displacements.
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Figure 3.12: Distributions of the maximum and minimum motion vector com-
ponents along the horizontal (left) and vertical (right) axes of the HEVC Class
B dataset.

Figure 3.13 and 3.14 illustrate the accuracy of our motion reconstruc-

tion. The test video in Figure 3.13 shows the x axis optical flow between two

adjacent frames from the Kimono video, which is a video with a moving back-

ground and slow motion, whereas Figure 3.14 shows the optical flow images of

two adjacent frames in Basketball Drive video, which has a static background

and large motions. In both videos, our model was able to reconstruct motion

accurately.

(a) Original frame (b) Reconstructed frame

Figure 3.13: Optical flow along the horizontal direction between two adjacent
frames in the Kimono video.
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(a) Original frame (b) Reconstructed frame

Figure 3.14: Optical flow along the horizontal directionbetween two adjacent
frames in the Basketball Drive video.

3.3.5 Model Analysis

To compare the computational complexity of the different codecs, we

tested two deep learning models: the one proposed by Wu et al. [21], the light

version of DVC called DVC Lite [101], and the commercial software x265 for

H.265 compression, using a server with an Intel Core i9-9940X CPU and GTX

1080Ti on video sequences of resolution 1920 × 1080. The experimental results

are provided in Figure 3.15.

The overall encoding speed of our framework is mostly invariant of bi-

trate, whereas since Wu’s framework adopts a progressive coding scheme, its

encoding speed varies with the target bitrate. In our framework, although we

adopted an RNN-based compression method on displaced frame differences, we

utilized the RNN unit to store temporal dependencies and did not use a pro-

gressive coding scheme for compression. DVC Lite is a lightweight version of

DVC with a more efficient motion estimation module and a lightweight motion

compression network, which can be twice as fast as the original DVC model in
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terms of encoding speed [101]. Our framework is faster than the lightweight

model, further justifying the use of learned interpolation of displaced frame

differences. Since the arithmetic coding at lower bitrates is faster than at

larger ones, there is a slight slope to our encoding speed curve. But overall,

the complexity of our model is invariant to bitrate, which means that our

model maintains a stable encoding speed regardless of video content or bitrate

for a given resolution.

As shown in Figure 3.15, compared with the traditional hybrid codec,

our model is faster than the latest codec HEVC with slower setting. However,

using the very fast setting on x264 and x265, the encoding speed can run at

110 fps and 30 fps, respectively. Of course, by applying model acceleration

techniques such as model distillation, model quantization, or by decreasing

the model size, it should be possible to similarly accelerate the encoding speed

of our framework.

3.3.6 Discussion

From Figures 3.6, 3.7, 3.8, 3.9, and 3.15, we can conclude that our

model delivers better compression performance than LDP veryfast setting of

traditional hybrid codecs like H.264 and HEVC in terms of MS-SSIM, at a low

computational complexity. This justifies our use of displaced frame differences

as motion information for video compression. Although our model was able to

acheive competitive performances as lower settings of traditional codec having

low computational complexity, and without the complicated motion estimation

and compensation modules other deep learning-based models use, our model
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Figure 3.15: Encoding speed of different compression codecs. H.265 refers to
the encoding speed of the x265 codec slower setting.

did not outperform all of the state-of-the-art models. Nonetheless, the perfor-

mance achieved by our model provides a new way of motion computation that

may prove quite useful for video compression. In our model, we designed the

set of spatial displacements used by our network to cover a reasonable range

of natural motions. A promising future direction is to automatically assign

displacement combinations as a function of resolution. The encoding speed

of our model is state-of-the-art among deep learning models, but has not yet

been optimized to match compute-optimized traditional codecs like HEVC or

VVC, e.g. by model acceleration methods.
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Chapter 4

Foveation-based Deep Video Compression

without Motion Search

Virtual Reality (VR) and its applications have attracted significant

and increasing attention. However, the requirements of much larger file sizes,

different storage formats, and immersive viewing conditions pose significant

challenges to the goals of acquiring, transmitting, compressing, and display-

ing high-quality VR content. At the same time, the great potential of deep

learning to advance progress on the video compression problem has driven

a significant research effort. Because of the high bandwidth requirements of

VR, there has also been significant interest in the use of space-variant, foveated

compression protocols. We have integrated these techniques to create an end-

to-end deep learning video compression framework. A feature of our new

compression model is that it dispenses with the need for expensive search-

based motion prediction computations. This is accomplished by exploiting

statistical regularities inherent in video motion expressed by displaced frame

1Meixu Chen, Richard Webb, and Alan C. Bovik, Foveation-based Deep Video Compres-
sion without Motion Search, arXiv preprint arXiv 2203.16490, 2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Richard
Webb: Conceptualization; Alan C. Bovik: Supervision, Conceptualization, Methodology,
Review and Editing.

87



differences. Foveation protocols are desirable since, unlike traditional flat-

panel displays, only a small portion of a video viewed in VR may be visible

as a user gazes in any given direction. Moreover, even within a current field

of view (FOV), the resolution of retinal neurons rapidly decreases with dis-

tance (eccentricity) from the projected point of gaze. In our learning based

approach, we implement foveation by introducing a Foveation Generator Unit

(FGU) that generates foveation masks which direct the allocation of bits, sig-

nificantly increasing compression efficiency while making it possible to retain

an impression of little to no additional visual loss given an appropriate view-

ing geometry. Our experiment results reveal that our new compression model,

which we call the Foveated MOtionless VIdeo Codec (Foveated MOVI-Codec),

is able to efficiently compress videos without computing motion, while outper-

forming foveated version of both H.264 and H.265 on the widely used UVG

dataset and on the HEVC Standard Class B Test Sequences. The rest of this

chapter is organized as follows. Section 4.1 introduces the research related to

this project. Section 4.2 details the architecture and training protocol used to

create the Foveated MOVI-Codec model. Section 4.3 explains the experiments

on algorithm performance and comparisons that we conducted.

4.1 Background

4.1.1 Foveated Video Compression

Since the turn of the millennium, there has been a slowly growing in-

terest in the use of foveation for such diverse image and video processing

tasks as quality assessment [107], segmentation [108], and watermarking [109].
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Methods of foveating visual content can be categorized into three ways: ge-

ometric transformations, space-varying filters, and space-variant multiresolu-

tion decompositions [110]. In the first of these, a foveated retinal sampling

geometry is used to either apply a foveating coordinate transformation on

an original uniform resolution image [111], or to average and map local pixel

groups into superpixels [112, 113]. Filter-based methods process images with

space-varying low-pass filter with cut-off frequencies determined by foveated

resolution-reduction protocols [114, 115]. Multiresolution methods foveation

involves decomposing images into bandpass scales, and only retaining scales

specified by a foveal fall-off function defined relative to a measured or presumed

fixation point [26, 116].

Recently, given significant advances in high resolution and immersive

displays technologies, along with concurrent increases in VR content, inter-

est of foveation as an efficient processing tool has quickened. Recent related

models include [117], where a neurobiological model of visual attention is used

to predict high saliency regions and to generate saliency maps. A guidance

map is also generated, using foveation to guide bit allocations when tuning

quantization parameters in video compression system. Li et al. [118] trained

a content-weighted CNN to conduct image compression, whereby the bitrates

allocated to different parts of an image are adapted to the local content. Their

system significantly outperforms JPEG and JEPG2000 in terms of SSIM when

operating in a low bitrate regime. Mentzer et al. [14] proposed a similar but

simpler model, by incorporating a second channel at the output of the encoder
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that is expanded into a mask which is used to modify the latent representa-

tions. DeepFovea [29] is a foveated reconstruction model, that employs a gen-

erative adversarial neural network. A peripheral video is reconstructed from

a small fraction of pixels, by finding a closest matching video to the sparse

input stream of pixels that lies on the learned manifold of natural videos. This

method is fast enough to drive gaze-contingent head-mounted displays in real

time.

4.1.2 Foveated Video Quality Assessment

When designing foveated compression systems, it is desirable to be

able to access their perceptual efficiencies using quality measurement tools

that account for the foveation. However, almost all available image quality

measurement tools, such as SSIM [45], operate on spatially uniform resolution

contents. However, there are a few foveated video quality assessment models,

which can be conveniently divided into several types. One type of foveated

VQA model uses purely static, spatial foveation, whereby measurement or

prediction of the user’s point of gaze guides the space variant measurement of

quality as a function of eccentricity. For example, the Foveated Wavelet Image

Quality Index (FWQI) utilizes wavelets to extract position-dependent spatial

quality information [27, 119]. Several factors are taken into consideration, in-

cluding the spatial contrast sensitivity function, which is used to determine

local visual cutoff frequencies, which guides modeling of human visual sensi-

tivity across the available wavelet subbands, when combined with assumption

on viewing distance and the display resolution. Lee et al. [107] proposed a
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foveal signal-to-noise ratio (FSNR) to evaluate the quality of picture or video

streams. In this method, a foveated image is obtained by a foveated coordinate

transformation on the original image(s) to be quality-accessed.

A second type of foveated VQA model is based on retinal velocity. In

addition to static foveation mechanisms, these kinds of models also take advan-

tage of the fact that the contrast sensitivity of HVS to an object in a moving

scene is influenced by the velocity of its map on the retina. Movement in a

video may cause two effects: loss of acuity of the moving objects, modifications

of perceived quality. Further, two factors can contribute to losses of acuity:

increases of retinal image velocity, and increases of eccentricity relative to the

foveal center. Based on these observations, Riomac-Drlje et al. [120] proposed

a foveated mean squared error (FMSE) that models the effects of spatial acuity

reduction due to motion. Another model called the foveation-based content

Adaptive Structural SIMilarity index (FA-SSIM), which is based on the pop-

ular IQA model SSIM [121] combines SSIM with a foveation-based sensitivity

function.

You et al. [122] proposed a full reference attention-driven foveated video

quality metric (AFViQ) that accounts for the localization of fixations in images

and videos. All of the algorithms mentioned above assume that the point of

fixation is the center of the image, which is not always true, and can lead to an

invalid foveation model. As a result, algorithms based on automatic fixation

detection have also been proposed. AFViQ attempted to solve this problem

by integrating foveation into a wavelet-based distortion visibility model.
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4.2 Proposed Method

4.2.1 Framework

Figure 4.1 illustrates the overall architecture of our network, which ex-

tends our previous MOVI-Codec [123]. The compression network is comprised

of four components: a Displacement Calculation Unit (DCU), a Displace-

ment Compression Network (DCN), a Foveation Generator Unit (FGU), and

a Frame Reconstruction Network (FRN). The DCU computes displaced frame

differences between the current frame and the previous reconstructed frame;

the FGU generates foveation masks that later direct the allocation of bits in

DCN; the DCN compresses displaced frame differences generated from DCU;

and the FRN reconstructs input frames from the previous reconstructed frame

and the reconstructed displaced frame differences.

The flow of our network is: Given an input video with frames x1, x2, ..., xT ,

for every frame xt, calculated displaced frame differences between the current

frame xt and previous reconstructed frame x̂t−1 via the DCU, after which

the displaced frame differences dt are input into the DCN. In the FGU, a

perception-based foveation map P is generated from [26,119] and used to gen-

erate a set of foveation masks M(P ). After the set of displaced frame differ-

ences dt are encoded into latent representations yt, the masks generated from

the FGU direct the allocation of bits via element-wise multiplication of yt and

M(P ), producing a masked latent representation ct, which is then quantized

(via rounding) and decoded to d̂t. Finally, the FRN reconstructs the input
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Figure 4.1: Overall network architecture of the Foveated MOVI-Codec, which
consists of four components: a Displacement Calculation Unit, a Displacement
Compression Network, a Foveation Generation Unit, and a Frame Reconstruc-
tion Network.

frame x̂t from the reconstructed displaced frame differences d̂t and the previ-

ous reconstructed frames x̂t−1. The DCN and FRN are defined identically as

in [123], so we do not further elaborate them here. We explain the DCU and

FGU in the following.

4.2.2 Displacement Calculation Unit (DCU)

The DCU removes the need for any kind of motion vector search. In-

stead, the DCU learns to optimally represent time-varying images as sets of

spatially displaced frame differences. Given a video with T frames x1, x2, ..., xT

of widthW and height H, two directional (spatially displaced) temporal differ-

ences are computed between each pair of adjacent frames, as shown in Figure
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4.2. Assume that the inputs to the DCU a current frame xt and a recon-

structed previous frame x̂t−1. Then, at each spatial coordinate (i, j), a set of

spatially displaced differences is calculated as:

dH(i, j)t = xt(i, j)− x̂t−1(i, j − s), (4.1)

dV (i, j)t = xt(i, j)− x̂t−1(i− s, j). (4.2)

In our current implementation, s = 0,±3,±5,±7. This set of 13 displaced

frame differences (residuals) is then fed into the DCU, which delivers as output

the reconstructed set of displaced residuals d̂t. As shown in [93], the statistics

of displaced frame differences are regular, and more so in the direction of local

motion. This makes them good video representations to learn to exploit space-

time redundancies, while avoiding the computational burdens of search-based

motion estimation and compensation. Although the range of motions between

frames can be larger than our largest choice of displacement, larger motions

can be captured by combinations of our set of displacements.

4.2.3 Foveation Generator Unit (FGU)

In the DCN, the encoded video data that is output from the quantizer is

still spatially invariant, and arithmetic coding is used to further compress the

code. However, the goal of the FGU is to exploit the non-uniform distribution

of ganglion cells and photoreceptors across the visual field. Our basic tool

to accomplish this is an established model of the contrast sensitivity function

(CSF) expressed in terms of eccentricity. We use this to enable increased

compression of the image in a manner such that the reconstructed frames are
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Figure 4.2: Concept of displaced frame differences, showing a frame t and a
previous frame t − 1, and multiple spatially displaced versions of frame t − 1
that can also be differenced with frame t.

indistinguishable from the original around the point of fixation, as well as with

increasing eccentricity.

A good model of the contrast threshold is given by [26]:

CT (f, e) = CT0exp(αf
e+ e2
e2

), (4.3)

where f is spatial frequency, e is retinal eccentricity, CT0 is a specialized

minimum contrast threshold, α is a spatial frequency decay constant and e2 is

the half-resolution eccentricity. We follow best fitting parameter values given

in [26] are α = 0.106, e2 = 2.3, and CT0 = 1/64 in our experiment. The CSF

is then:

CS(f, e) =
1

CT (f, e)
. (4.4)

The authors of [119] defined a foveation-based error sensitivity in terms of

viewing distance D, frequency f , and location (x, y):

Sf (D, f, x, y) ={
CS(f,e(D,x,y))

CS(f,0)
= exp(−αf e(D,x,y)

e2
) for f ≤ fm(x)

0 for f > fm(x)
,

(4.5)
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where fm is the cutoff frequency.

In our model, we fix the frequency in Equation 4.5 to be the maximum

frequency that can be presented on the display without aliasing. The FGU

uses these models to generate a foveation map that is used to guide bit allo-

cation and rate control. During training, foveation maps are generated using

Equation 4.5, assuming a fixed screen resolution, center gaze, and viewing

distance following [29] as shown in Figure 4.3. In Equation 4.5, the contrast

sensitivity decays forwards zero beyond the cutoff frequency. Our approach

to foveation is quantum; rather than changing the displayed resolutions in a

smooth and graded manner, which makes the problem more complex, it is in-

stead quantized. Quantization is applied to yield n levels of the foveation map,

and n = 16 in the current implementation. We also make sure that the con-

trast sensitivity for the last level is larger than zero to be able to reconstruct all

periperal information. Figure 4.3 shows a quantized foveation map. Since the

latent representations for the displaced frame differences dt are 128 channels,

the same mask is assigned for every 8 channels of latent representations. The

quantized map in x axis is shown in Figure 4.4. After a set of n masks M(P )

are generated, we element-wise multiply M(P ) and the encoder output yt to

obtain quantized spatially variant (foveated) codes ct which are then subjected

to entropy coding and bitrate estimation, using the same procedure as [123].

While quantized foveation maps are used to train our model, during

application (testing) we instead use isotropic 2D gaussian shaped foveation

maps, where the gaussians are defined to follow the modified fall-off of visual
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acuity. This allows for smoother perceived changes of foveation, with the

significant added benefit of making it possible to effect variable rate control by

varying the widths (σ) of the gaussians. We define this parameter as foveation

mask space constant (FMSC).

Figure 4.3: Foveation map (left) and quantized foveation map (right), where
brighter regions corresponds to larger value.

Figure 4.4: Quantized contrast sensitivity function.

4.2.4 Bit Rate Allocation

Given an input frame x, let y = E(x) ∈ Rc×h×w be the output of the

encoder network, which includes c feature maps of sizes of h × w. Also let
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p = P (x) denote a h × w non-negative foveation map to be applied. The

expand y using masks m ∈ Rc×h×w as follows:

m(i, j, k) =

{
1 if p(i, j) ≥ ⌊ k

c/L
⌋ · 1

L

0 others
, (4.6)

where c is the number of channels in the latent representations y, and L is the

number of desired compression levels across the foveation regions. In this way,

more bits are allocated to the foveal region, preserving visual details with less

sacrifice of bit rate. The sum of the foveation maps
∑

i,j pi,j naturally serves

as a continuous estimate of compression rate, and can be directly adopted as

a compression rate controller. Because of the flexibility of this foveation map

approach, it is not necessary to apply entropy rate estimation when training

the encoder and decoder, using a simple binarizer for quantization of latent

representations y.

4.2.5 Training Strategy

We are able to model the loss function considering only the distortion

as follows:

D = [D1(xt, x̂t) + βD2(dt, d̂t)], (4.7)

where D represents the distortion, and D1 is the distortion between the input

frame xt and reconstructed frame x̂t, measured by foveation-weighted SSIM as

detailed below at the end of this subsection. D2 is the distortion between the

displaced frame differences dt and the reconstructed displaced frame differences

d̂t, as measured by the MSE. The weight β controls the trade-off between the

perceptual distortion D1 and the pixel-to-pixel distortion D2.
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To leverage multi-frame information in our RNN-based codec struc-

ture, we update the network parameters every set of N frames during model

training, using the loss function in Equation 4.7, but modified to be a sum of

losses over the kth set of N frames indexed xtk+1, ..., xtk+N :

Dk =
1

N

N∑
n=1

[D1(xtk+n, x̂tk+n) + βD2(dtk+n, d̂tk+n)]. (4.8)

During training, we selected a random W×W patch from each training

video, and also randomly sampled a patch of the same size from the foveation

map, to generate foveation masks from the patch. Foveation-weighted SSIM

scores were calculated by applying a low-pass filter (Haar’s filter) on the SSIM

scores of each frame patch, then multiplying them by the foveation map patchs.

The overall workflow is shown in Figure 4.5.

Figure 4.5: Training strategy.

4.3 Experiments

4.3.1 Settings

The Foveated MOVI-Codec networks that we experimented with were

trained end-to-end on the Kinetics-600 dataset [95, 96] and on the Vimeo-

90K dataset [97]. We used part of the testing set from Kinetics-600, which
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consists of around 10,000 videos, to conduct our experiments. From each

video, a random 192 × 192 patch containing 49 frames was randomly selected

for training, and normalized the values of each input video to [-1,1]. Since

Kinetics-600 dataset consist of YouTube videos of different resolutions, we

randomly downsampled each original frames and extracted a 192× 192 patches

from the foveation maps to reduce any previously introduced compression

artifacts . We randomly sampled 192 × 192 patches from the foveation maps

to generate foveation masks for bitrate allocation. The Vimeo-90K dataset

consists of 4,278 videos of fixed resolution 448 × 256. Since the videos in this

dataset each have 7 frames, we randomly selected patches from each of the

same size as mentioned earlier (overall 7 frames) for training.

We fixed the mini-batch size to 8 for training, while the step length N

of the recurrent network was set as 7. We used Adamax optimizer for training

and set the initial learning rate to 0.0001. The whole system is implemented

based on PyTorch and using one Titan RTX GPU. By training on both the

Vimeo-90K and the Kinetics-600 datasets, we are able to generalize our model

to a wider range of natural motions. We tested the Foveated MOVI-Codec on

the JCT-VC Class B datasets [103] and the UVG datasets [100]. Both of these

testing datasets have HD resolution contents (1920 × 1080).

In order to assess the reconstruction quality of the foveation compressed

videos, we utilized the perceptually relevant FWQI foveated video quality

measurement tool follwing the same settings in [29], with screen width being

0.02 meters and display distance being 0.012 meters. We also used the foveated
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SSIM model which deploys a fixed foveation map generated from the error

sensitivity function from [119]. During testing, videos having different bitrates

were generated using gaussian shape foveation maps with different foveation

mask space constants, e.g. FMSCs of H
10
,H
8
,H
6
,H
4
,H
3
, and H

2
, where H is the

height of the input frame. Examplar 1D slices through the gaussians are shown

in Figure 4.6, while the corresponding quantized maps are shown in Figure 4.7.

We fixed β = 1.

Figure 4.6: Normalized sliced profiles of gaussian foveation masks.

4.3.2 Results

4.3.2.1 Rate-Distortion Curve

We compared our video compression engine against the standardized

hybrid codecs H.264 and H.265, and also against our previous non-foveated

model, the MOVI-Codec, on the UVG dataset and the HEVC Standard Test

Sequences Class B. In addition, we also implemented a foveated version of
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Figure 4.7: Examplar quantized gaussian foveation masks with different
foveation mask space constants σ.

the hybrid codecs using the foveation method mentioned [26]. Both testing

datasets have resolutions 1920 × 1080.

Figure 4.8 shows the results obtained on the UVG and HEVC Class

B datasets. Unsurprisingly, the foveated version of the hybrid codecs outper-

forms their foveated counterparts in terms of FWQI. These results also show

that our foveated model outperformed the non-foveated MOVI-Codec on both

datasets. Moreover, the Foveated MOVI-Codec outperformed both H.264 and

H.265, as well as their foveated counterparts, on both datasets. It is worth

noting that the measured qualities of the reconstructed videos produced by

Foveated MOVI-Codec produced did not vary much with respect to bitrate,

suggested that our model is able to maintain a high quality fovea, while de-

creasing the bitrate derived from the periphery without sacrificing perceptual

video quality. Visualizations of example frames compressed using different

levels of bitrates and qualities are shown in Figure 4.9. More exemplar re-

constructed videos are included on our project page with link given in the

Abstract. In these reconstructed frames, we selected three regions for detailed

comparison: one in the foveal region and the other two others in peripheral.
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Our model is able to reconstruct videos having higher quality foveas and pe-

ripheral regions than the compared models, both visual and in terms of FWQI.

Figure 4.8: FWQI of the compared models on the UVG dataset and HEVC B
test sequences. All video resolutions are 1920 × 1080.

4.3.2.2 Latent Representations

As mentioned in Section 4.2.3, the Foveated MOVI-Codec uses foveation

maps to mediate bit allocations as a function of eccentricity relative to visual

fixation. To visualize this process, we compared the latent representations (the

encoded outputs) yt in the Foveated MOVI-Codec against the encoded outputs

y′t of the original MOVI-Codec as shown in Figure 4.10. In the figure, the first

row corresponds to reconstructed frames under different models, where the

first column shows reconstructed frames from the MOVI-Codec, the second

column contains reconstruction from the Foveated MOVI-Codec trained with

a uniform (non-foveated) importance map with the masks of first N channels

being one and zero elsewhere, and N is a random number during training.
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(a) Basketball Drive

(b) Cactus

Figure 4.9: Visualizations of examplar foveated frames reconstructed by FOV-
MOVI-Codec, H.265, and Foveated H.265 (denoted F 265) on the videos (a)
Basketball drive and (b) Cactus.
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The remaining two columns show reconstructions from the Foveated MOVI-

Codec with foveation mask space constants FMSCs equal to H/2 and H/4,

respectively. The second row shows the corresponding accumulated feature

maps, where brighter colors correspond to larger numbers of more features.

This shows that more features are used to represent the foveal region, as the

foveation maps become narrower (smaller FMSC). The last row of Figure 4.10

shows the latent representations at each level (8 channels per level) of the re-

constructed frames. Figure 4.11 also shows the sum of latent representations of

yt and y′t (foveated and non-foveated, respectively). As shown in Figure 4.11,

the sum is roughly flat for the non-foveated compressor, whereas the sum de-

creases as with the channel number for the foveated compressor. This suggests

that the foveated network was able to learn more relevant features in the first

few channels. From Figures 4.10-4.11, we may conclude that the model learned

efficient features across channels and bit allocation, even without the masked

multiplication.

4.3.2.3 Bit Allocation

Figure 4.12 shows the reconstructed frames from the Foveated MOVI-

Codec, differenced frames between original frames and reconstructed frames,

and bits and SSIM profiles, when using different foveation space constants.

From the differenced frames, we can conclude that our model is able to re-

construct a foveal region similar to the original frame regardless of the mask

used. The third row of Figure 4.12 shows the both a bit allocation plot and

the SSIM map profile for different models. From the SSIM map profile, it may
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Figure 4.10: Latent representations generated from four models. The first row
correponds to reconstructed frames from each model, the second row shows the
cumulative latent representations, and the last row shows the latent represen-
tations at each compression level. FOV-MOVI-M1 is Foveated MOVI-Codec
with foveation mask space constant FMSC = H/2 and FOV-MOV-M2 is
Foveated MOVI-Codec with FMSC = H/4, where H is the height of the
frame.

be observed that the lower number of bits allocated to the peripheral does not

result in lower quality, since the quality of the reconstructed frames remain

similar overall.

4.3.3 Discussion

Our experiments have shown that deploying foveation masks leads to

much more efficient video compression for suitable environments, such as VR.

Our new model outperformed H.264, H.265 and their foveated counterparts

against FWQI across all testing sequences. Our model is best targeted at high

resolution, gaze contingent foveated compression applications in VR and AR.

The hierarchical masks make it possible to transmit scalably, viz., the first lev-
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(a) MOVI-Codec (b) Foveated MOVI-Codec

Figure 4.11: Sum of latent representations for each channel, where the sum is
decreasing in foveated version.

els of content when bandwidth is limited, followed by the other levels. Since

foveation masks are used in our model, the first transmitted levels correspond

to foveal regions which draw the attention, and are the most important, sup-

plying additional efficiency related to traditional hybrid codecs. Further, the

new method is faster than MOVI-Codec since it does not require arithmetic

coding. In the current model, the foveation masks are fixed with respect to

frame height. One future direction is to train sets of masks adaptive to con-

tents. Another direction is to extend the framework to generate a foveation

map based on frequency as well and use it to allocate the contents learnt in

the latent representation.
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(a) Reconstructed frame
with FMSC = H/2

(b) Reconstructed frame
with FMSC = H/4

(c) Reconstructed frame
with FMSC = H/6

(d) Differenced frames with
FMSC = H/2

(e) Differenced frames with
FMSC = H/4

(f) Differenced frames with
FMSC = H/6

(g) Bits and SSIM Profile
with FMSC = H/2

(h) Bits and SSIM Profile
with FMSC = H/4

(i) Bits and SSIM Profile
with sFMSC = H/6

Figure 4.12: Reconstructed frames, differenced frames and bit-SSIM profiles
under different foveation space constants (FMSCs).
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Chapter 5

Conclusion and Future Work

With the increasing interest and applications of VR, it is essential to

develop subjective and objective tools to understand and assessment immer-

sive VR content quality. In addition, since VR contents are much larger in size

and require higher bandwidth to transmit, it is also important to design codecs

for better compressing VR content. In this dissertation, I presented my work

towards exploring two perspectual aspects of VR: Quality and Compression.

With regard to quality aspect of VR, we’ve built a 3D VR picture database

1Meixu Chen, Yize Jin, Todd Goodall, Xiangxu Yu, and Alan C. Bovik. Study of
3D virtual reality picture quality. IEEE Journal of Selected Topics in Signal Processing,
14(1):89–102, 2019.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Yize Jin:
Software, Investigation, Formal Analysis; Todd Goodall: Conceptualization; Xiangxu Yu:
Investigation; Alan C. Bovik: Supervision, Conceptualization, Methodology, Review and
Editing.

2Meixu Chen, Todd Goodall, Anjul Patney, and Alan C Bovik. Learning to compress
videos without computing motion. Signal Processing: Image Communication, page 116633,
2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Todd
Goodall, Anjul Patney: Conceptualization; Alan C. Bovik: Supervision, Conceptualization,
Methodology, Review and Editing.

3Meixu Chen, Richard Webb, and Alan C. Bovik, Foveation-based Deep Video Compres-
sion without Motion Search, arXiv preprint arXiv 2203.16490, 2022.
Contributions: Meixu Chen: Writing, Software, Investigation, Formal Analysis; Richard
Webb: Conceptualization; Alan C. Bovik: Supervision, Conceptualization, Methodology,
Review and Editing.

109



with eye tracking and made it publicly available. Towards the compression

aspect of VR, we’ve developed a motionless deep learning based video com-

pression codec called MOVI-Codec. In addition, we developed a foveated deep

learning video compression without motion search, which we call Foveated

MOVI-Codec.

3D VR image quality assessment. The free-viewing of high resolution,

immersive VR implies significant data volume, which leads to challenges when

storing, transmitting and rendering the images which can affect the viewing

quality. Therefore, it is important to be able to analyze and predict the per-

ceptual quality of immersive VR image. Towards meeting this challenge, we

have created a comprehensive 3D immersive image database with 15 different

contents and 6 distortion categories rated by 40 subjects. This database is

the first to evaluate the gaze-tracked quality of stereoscopic 3D VR images in

an immersive environment. We also evaluated the performance evaluation of

eleven popular image quality assessment algorithms. The new LIVE 3D VR

IQA Database is being made publicly and freely available for others to develop

improved 2D and 3D VR IQA algorithms. Future work will focus on the use of

visual saliency models using the eye tracking data provided with this database,

as well as developing algorithms that target VR-specific distortions.

Deep learning-based video compression without motion. In both tra-

ditional video codecs and recent deep learning-based ones, motion estimation

and compensation has occupied a significant portion of the system resources.

Motion estimation requires an expensive search process that we avoid, by in-
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stead training the network to efficiently represent the residuals between each

current frame and a set of spatially-displaced neighboring frames. Computing

a set of frame differences, even over many displacement directions is much

cheaper than effective search processes. Moreover, while the statistics of mo-

tion are generally not regular, the intrinsic statistics of frame differences exhibit

strong regularities. Inspired by this regularies exhibit in frame differences, we

proposed an end-to-end deep learning video compression framework that ren-

ovated motion prediction. To be specific, we proposed the use of displaced

frame differences as indicators of motion information, and fed them into a

deep space-time compression network, which learns optimal between-frame in-

terpolated representations to achieve efficiency. Additionally, we proposed a

new version of UNet, called LSTM-UNet, that utilizes both spatial and tem-

poral information to conduct frame reconstruction. Our experimental results

show that our approach outperforms the LDP veryfast setting of the standard

codecs H.264 and H.265 in terms of MS-SSIM. In addition, our network was

able to outperform the latest H.266 codec at higher bitrates as assessed by

the perceptual MS-SSIM algorithm, on high resolution videos. The reduced

complexity of the framework and the avoidance of motion search could make

it easier to implement on resrouce-limited devices. In MOVI-Codec, the se-

lection of displacements between previous and current frame are hand-picked.

It is possible to utilize another network to select a variety of combinations of

displacements based on content and resolution of the frame, such that a more

reasonable range of motion is capture.
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Foveated deep learning-based video compression without motion

search One advantage of VR is that the two eyes have fixed positions, aside

from eye movements, relative to the viewing screen. Because of this, the

eye movements, and associated points of gaze on the displays can be mea-

sured. This makes it possible to exploit the fact that the density of retinal

photosensors is highly non-uniform. Since the density of photoreceptors falls

away quite rapidly with increased eccentricity relative the fovea, much more

efficient representations of what is perceived can be obtained by judiciously

removing redundant information from peripheral regions. Based on this, we

have proposed an end-to-end deep learning video compression framework that

assigns bits according to a foveation protocol, assuming known visual fixations.

We also achieve efficiency by training a deep space-time compression network

to use displaced frame differences to compute efficient motion information

by learning optimal between-frame interpolated representations. Our exper-

imental results show that our approach, which we call FOV-MOVI-Codec,

outperforms both H.264 and H.265 and foveated versions of them. The low

complexity of our model, which avoids motion search and take advantage of

the visual acuity falloff of the human visual system, could make it amenable

for implementations on gaze-contigent devices. Future directions could include

extending the current frame from generating foveation map based on a spa-

tially varying contrast sensitivity function, to generating foveation map based

on frequency as well, and use it to allocation the contents learnt in the latent

represetations.
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[81] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua

Bengio. On the properties of neural machine translation: Encoder–

decoder approaches. Syntax, Semantics and Structure in Statistical

Translation, page 103, 2014.

[82] Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and

Taco S Cohen. Video compression with rate-distortion autoencoders.

IEEE International Conference on Computer Vision, pages 7033–7042,

2019.

[83] Oren Rippel, Sanjay Nair, Carissa Lew, Steve Branson, Alexander G

Anderson, and Lubomir Bourdev. Learned video compression. IEEE

International Conference on Computer Vision, pages 3454–3463, 2019.

[84] Zhibo Chen, Tianyu He, Xin Jin, and Feng Wu. Learning for video

compression. IEEE Transactions on Circuits and Systems for Video

Technology, 30(2):566–576, 2019.

[85] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learn-

ing image and video compression through spatial-temporal energy com-

paction. pages 10071–10080, 2019.

[86] Giyong Choi, PyeongGang Heo, Se Ri Oh, and HyunWook Park. A new

motion estimation method for motion-compensated frame interpolation

using a convolutional neural network. pages 800–804, 2017.

126
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