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Mechanical systems are often desired to have features that can adapt to 

changing environments. Ideally these systems have a minimum number of parts 

and consume as little power as possible. Unfortunately many adaptable systems 

either have a large number of heavy parts and/or continuous actuation of smart 

materials to provide the adaptive capabilities. For systems where both adaptability 

and power conservation are desired characteristics, adaptability can be limited by 

power consumption. 

Multistable equilibrium (MSE) systems aim to provide a type of adaptable 

system that can have multiple mechanical configurations, or states, that require no 

power to maintain each stable configuration. Power is only needed to move 

among the stable states, and a level of adaptability is maintained. The stable 

equilibrium configurations are defined by a system potential energy being at a 

minimum. The design of a MSE system is based around locally shaping a 
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potential energy curve about desired equilibrium configurations, both stable and 

unstable, such that the basic design goals of position, linearized natural frequency, 

and transition energy can be specified for the MSE system. 

By mapping the performance space from the design space in tandem with 

stochastic numerical optimization methods, the designer determines if a certain 

system topology can be designed as a MSE system. Qualitative and quantitative 

mapping procedures enable the designer to decide whether or not the desired 

design lies near the center or periphery of a performance space. The performance 

space is defined by the desired design criteria (i.e. locations of the equilibria, 

natural frequency at the equilibria, etc.) that the designer deems important. If the 

desired design lies near the periphery of the performance space, a series of 

optimization trials is performed. This series shows the tendency of the problem to 

be solved as the desired MSE system characteristics are varied within the 

performance space from a location where the solution is known to exist to the true 

desired location where the solution is not guaranteed to exist. Upon analysis of the 

resulting optimization trends, the designer is able to determine whether or not a 

feasible limit in the system performance has been reached. 
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Chapter 1: Introduction to Multistable Equilibrium Systems 

1.1 INTRODUCTION AND MOTIVATION 

In designing new products, engineers often look to improve on the existing 

product by increasing its functionality or efficiency. Oftentimes these two areas of 

improvement are conflicting. For example, to make a system respond faster and 

be more precise, more powerful parts and actuators are often needed. This can 

inherently increase the system complexity, size, and cost [Otto, K. and Wood, K., 

2001]. 

In engineering design there is a natural tendency to put as much function 

as possible into a single system or structure. Creating a replacement system with 

the same or less number of parts, but with more functionality, can give more 

options to the user. This inherently maximizes utility of a device while at the 

same time minimizing parts and assembly. Fewer parts, in turn, means less costs 

in manufacturing and maintenance while creating a design with increased 

longevity [Otto, K. and Wood, K., 2001]. 

It is often a search for minimizing the number of moving parts in a design 

which leads engineers to explore the use of adaptable structures and materials to 

do exactly that [Barrett, 1996]. Adaptive structures typically use active, or smart, 

materials such as piezoelectric materials and shape memory alloys to provide a 

small range of performance characteristics about a single operating point, but they 

require continuous power input. In certain applications, the amount of power and 

energy requirements can make them infeasible for use. At other times, the 
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actuators simply do not have the range of operation desired by the engineer, and 

therefore, there are limits on how adaptable a design can be. 

The concept of multistable equilibrium (MSE) systems bridges these gaps 

between adaptive structures and their limited range and energy inefficiency. The 

goal of MSE structures is to create a wide range of operating regimes for existing 

and novel mechanical systems, but without undue power consumption. The key 

aspect of the MSE systems is that they can act as passive structures for the vast 

majority of time, only requiring actuation to move among stable positions or 

about the current equilibrium point. Thus, MSE systems introduce a new design 

philosophy in adaptable, or reconfigurable, structures. 

Many current engineering designs have a single equilibrium passive 

structure that may be operated upon by an active, power consuming, and 

complicated control method. The idea of MSE systems is that their multiple 

passive equilibrium configurations provide the versatility in function, while the 

actuators and control stay relatively simple. The design methodology of MSE 

devices focuses on creating reliable, power efficient, and repeatable adaptive 

structures by shaping a system’s potential energy and minimizing dissipative 

effects. Since the stable configurations are dictated solely by potential energy 

storage, the reliability and repeatability of the designs can be high as long as the 

integrity of the potential energy storage devices is maintained. 

 The true spirit of MSE system design lies in making systems that focus on 

one or both of the following design areas:  
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(1) creating a range of operation exceeding that of a similar design that has 

only one stable equilibrium point while possibly using the same 

actuator(s) or system input(s),  

(2) operating under multiple conditions where each uses vastly different 

physical principles. 

 

 An example of the first MSE design area is a standard automotive 

transmission. The engine has one specific torque and speed output, but by 

connecting a transmission, the effective torque vs. speed, or force vs. speed, 

relationship of the automobile is able to be ‘tuned’ by the driver according to the 

current needs (i.e. high torque or high speed). Another example corresponds to 

MSE systems that can be reconfigured in response to uncontrollable system 

inputs, such as wind speed for a wind-powered electric generator. The blade, 

rotor, or possible gear transmission of the windmill could be tuned to a natural 

frequency relevant to the input wind speed. Thus, at multiple predetermined wind 

speeds, the system as a whole could have multiple configurations that produce 

optimum output torque for a few predetermined wind speeds, even though the 

blades may need to spin at constant speed. 

The second design area of potential interest for MSE systems can be 

exemplified by a fluid dynamics application. Imagine a robotic fish that at some 

times is shaped like a tuna to enable efficient long-range swimming and speed, 

but at other times is shaped like an eel to accentuate high mobility and agility. The 

tuna and eel swim by using different physical principles because their shape and 
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body stiffness correspond to different Reynolds numbers and tail-beat 

frequencies. Thus, a novel MSE system could be a fish that can reconfigure itself 

to optimize its performance, efficient swimming or agility, according to the 

current task. 

The concept of the two major MSE design areas is depicted by Figure 1.1. 

Figure 1.1 (a) shows that the desired operating range is much larger than the 

actual range of operation that is available due to the limiting ability of the 

actuator. Compare this scenario with that of Figure 1.1 (b), where there are four 

stable equilibrium points and an actuator associated with control about each point. 

The desired range of operation is the same, but the actual range of operation is 

increased due to the system’s multiple stable equilibrium operating points. Note 

that it is assumed that the same type of actuator is used in each case of Figures 1.1 

(a) and 1.1 (b), and that the range of operation about each stable equilibrium is of 

similar size. Thus, the control complexity is not increased dramatically as each 

operating point could be based on a local, or linearized, model. The MSE 

representation of Figure 1.1 (b) has the added complexity of actuation among the 

equilibria and the complexity of design. It is the design framework and 

methodology required for this increased complexity in design that this dissertation 

provides. 
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1.2 GENERAL CONTENT OF DISSERTATION 

Before delving into the major body of the dissertation, this section dictates 

clearly what is and is not claimed as part of the intellectual merit of this work. 

This section does not outline the limitations or feasibility of the proposed design 

methodology since that is reserved for the body of the text and conclusions in 

Chapter 6. 

 

Figure 1.1. Pictorial representation of the desired operating range versus the 
actual operating range for the case of (a) one stable equilibrium point and one 
actuator, and (b) four (multiple) stable equilibrium points using the same 
actuators. 
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The major claim of this work is the development and demonstration of a 

design methodology for the synthesis of multistable equilibrium systems. 

Specifically what is claimed is the following: 

(1) Definition and classification of MSE systems, 

(2) Development of a qualitative mapping technique to visualize solution 

space for MSE systems, 

(3) Development of a quantitative mapping technique to characterize 

solution space for MSE systems, 

(4) Quantitative method to synthesize desired solution, and 

(5) Solution of two benchmark problems with experimental verification of 

one. 

 

Although the design methodology described in the text of this dissertation 

relies on the use of numerical optimization techniques, there is no claim to have 

derived or advanced the effectiveness of any optimization algorithm. The inherent 

nature of MSE systems introduces highly nonlinear design spaces, and solving 

optimization problems upon these spaces can be more amenable using certain 

numerical optimization algorithms over others. Also, this dissertation does not 

claim to provide any new intellectual knowledge of how to choose an appropriate 

optimization algorithm as part of the design synthesis methodology.  

Although there is data relating the design methodology predictions to 

experimental models, there is no experimental verification of the benefits of MSE 

systems in terms of system performance or efficiency. Only the MSE system 
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characteristics, evaluated in terms of desired characteristics, are compared to any 

computational or experimental results. 

The inherent nature of MSE systems requires some form of actuation to 

move from one stable equilibrium to another. Though proper account for 

actuation is crucial in designing a MSE system, this dissertation only focuses on 

the design of the MSE system independent of the actuation scheme. There is 

discussion on how to incorporate some simple actuator properties into the 

synthesis of the MSE system, but it supposes that the actuators act quasi-statically 

and that their simple force and displacement relationship is known. Fully 

accounting for dynamic actuation and disturbances in MSE systems, and all 

nonlinear dynamic effects, is crucial but is left for future work. This dissertation 

provides only the foundation for MSE design synthesis. 

 

1.3 CHAPTER DESCRIPTION 

The organization of the dissertation is as follows: 

- Chapter 2 presents a background and literature review of 

applicable work relating to MSE system design, 

- Chapter 3 defines what MSE systems are and provides a general 

classification scheme for their design, 

- Chapter 4 presents the MSE design synthesis methodology,  

- Chapter 5 demonstrates the design methodology by three case 

studies (two of them by experiment), 
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- Chapter 6 ends the dissertation with conclusions and future work 

for MSE system design. 
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Chapter 2: Background and literature review of multistable and 
adaptable structures 

This chapter provides a background on current research done in the area of 

adaptive structures and MSE devices or systems. Section 2.1 provides a 

perspective on where MSE systems fit in the general category of adaptive 

structures. Section 2.2 gives a literature review of previous work done that 

specifically relates to bistable and multistable structures. Section 2.3 then 

concludes Chapter 2 by discussing the role of this dissertation in terms of the 

opportunity for engineering design synthesis that exists in the field of adaptable 

systems termed, MSE systems and structures. 

 

2.1 ADAPTIVE AND SMART STRUCTURES 

Adaptive, or smart, structures are typically defined as systems that have 

inherent sensors, actuators, and control mechanisms to sense external stimuli, 

respond to the stimuli in a predetermined manner and revert back to the original 

state with the removal of the stimuli [Suleman, 2001]. The major purpose of these 

systems is to provide better performance and control over structures with fewer 

parts, more reliability, and perhaps more efficiency. An application in which this 

benefit is being realized is in helicopter rotor design [Barrett, 1996]. The idea of 

active materials in the helicopter blades aims to change their pitch so that the 

helicopter can go from hover to forward motion. This is commonly done using 

traditional mechanical and electromechanical components. Barrett and his 
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colleagues used solid-state smart materials (Lead Zirconate Titanate, or PZT, 

piezoelectric material) to replace some of the conventional mechanical 

components such as linkages, motors, and flaps. This enabled them to reduce the 

number of parts in the helicopter rotor from 94 to 5, reduce weight by 8%, and 

reduce parasitic system drag by over 25%. 

The typical benefits envisioned when designing adaptive structures are 

exactly those of MSE systems: reduced part count, possibly higher reliability and 

efficiency, and more functionality by having the ability to respond to changing 

environmental or external disturbances. Though the goals are the same, traditional 

smart structures and MSE systems each occupy their own niche of applications. 

With that being said, smart structures could be very effectively embedded within 

MSE systems to create a highly adaptive overall system. 

There are many ways to make systems adapt to differing disturbances or 

environmental inputs. Wind turbine systems need to operate in a variety of wind 

speeds. Sometimes the wind is too low, and the power rating of the generator 

cannot be achieved. At other times, the wind is very high, and the blades of the 

windmill are pitched by a servo motor to extract less than full power from the 

wind. This keeps the generator at its maximum power rating, but not above. This 

pitch control involves the use of motors and gears where their primary function is 

not to extract energy from the wind, but to actually inhibit the energy extraction. 

Another reason for blade pitch control is to protect the turbine in very high winds 

that could cause structural damage. 
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One of the limitations on increasing wind turbine size (i.e. power rating 

and height) is logistical in terms of transporting the large and heavy parts and 

assembling them by crane. Thus, an adaptable turbine blade design has been 

proposed that does not need motors for pitch control, but can have bend-twist 

coupling as needed when the blades spin too quickly [Eisler and Veers, 1998; 

Griffin, 2002]. This causes the blades to extract less power from the wind due to 

the bending moments pitching the blade out of the wind. The reports show that 

the concept is likely cost prohibitive, due to materials and manufacturing, with 

minimal increase in functionality. Nonetheless, this shows an attempt at creating 

passive adaptable systems for a single equilibrium structure by minimizing parts 

to reduce size and weight in an application where that is a concern. Perhaps some 

novel MSE system could make the blades adaptable over a larger range such that 

their increase in functionality overcomes the cost. 

General adaptive structure and smart materials designs aim to produce 

lighter and more capable systems. This area of research is not to be confused with 

the scope of MSE system design. Current adaptive and smart systems usually 

morph about one stable equilibrium operating point. This is acceptable for many 

applications, such as the helicopter rotor design discussed earlier. MSE systems 

are focused on expanding the range of adaptability in which possible adaptive 

systems can operate by creating more than one stable equilibrium orientation. 

Thus, the MSE system concept is not a replacement strategy for smart structures 

or adaptive systems, but simply a new concept that may or may not be used in 

tandem. 
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2.2 MULTISTABLE EQUILIBRIUM STRUCTURES AND SYSTEMS 

Most of the existing literature on MSE systems is about bistable structures 

[Capanu, 2000; Hafez, 2002; Howell, 1994; Jensen, 2000; Jensen, 1998; Opdahl, 

1998; Saif, 2000; Schomburg, 1998]. The discussion usually centers on analysis 

of the equilibrium positions rather than synthesis, although Schulze performed 

early work in synthesizing actuation force for a simple bistable design [Schulze, 

1955]. Hafez et al. describe using many bistable devices in tandem to create an 

overall system with multiple configurations [Hafez, 2002]. The term ‘bistable’ is 

often used quite liberally as many of the design examples of bistable structures 

quoted in the literature are often not truly bistable at all in the sense of potential 

energy being at a minimum. Some are bistable in the sense of not requiring power 

input to maintain position, but they rely on interference fits, clamps, and friction 

to provide the two stable positions [Chironis, 1991; Hoffman, 1999]. Thus, these 

stable positions could be better characterized by hard kinematic constraints rather 

than minima in potential energy. These hard kinematic constraints often hamper 

the ability to create more stable equilibrium positions and allow for dynamic 

movement at each equilibrium configuration. 

Much bistable literature mentions designing structures on the 

microelectromechanical systems (MEMS) level. Because of the dominance of 

surface friction forces inherent at the micro scale, many MEMS devices cannot 

use hinges to allow many cycles of motion. Thus, they often rely on compliance 

to allow motion. The bistable structure is designed such that its elastic strain 
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energy provides for the stability [Jensen 1998; Jensen, 2000; Saif, 2000]. One 

design by Capanu et al. uses simple electromagnetic actuation to move a valve 

from open to closed, and vice versa, while a permanent magnet keeps the valve 

open and elastic energy keeps it closed [Capanu, 2000]. Research coordinated 

under Dubowsky has produced the design of a reconfigurable robotic arm based 

on similar physical principles [Hafez, 2002; Wingert, 2002]. Many designs 

incorporating bistability use the concept of buckling [Schomburg, 1998; Vangbo, 

1998]. Saif presents an extensive analysis of a buckled beam used as a bistable 

device while discussing the ability to tune the threshold force that moves the 

beam from one buckled state to the other [Saif, 2000].  

Jensen and Howell establish a theory to guarantee bistable behavior in a 

certain class of compliant structures, but the theory treats each energy storage 

‘spring’ independently [Jensen, 2000]. Jensen uses mechanism theory to describe 

when compliant mechanisms that closely resemble four-bar linkages can exhibit 

bistability. He limits his energy storage to strain energy and he only considers 

compliant mechanisms with one major tensional spring. Therefore, his results 

shed very little insight into the complexity of the problem when there is much 

coupling of kinematics and forces present in devices that have more range of 

motion or more than one energy storage element. Nevertheless, Jensen and 

Howell provide a good example for a beginning foray into synthesis for non-

buckling multistable systems. 

The most relevant work to MSE system design synthesis derives one-

dimensional potential functions that mimic desired dynamics for a mass moving 
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along a curved ‘roller coaster’ track in a uniform gravitational field [Gottlieb, 

1997]. Gottlieb solves both versions of the problem: 1) deriving a potential 

function for a given track shape, and 2) deriving a track shape for a desired 

potential function. He presents an example of deriving track shapes for a 

quadratic potential function, in an attempt to mimic a linear oscillator. Virgin 

describes the experimentation of this same problem of a cart on a track with a 

double potential well [Virgin, 2000]. The analysis by Virgin on the ‘roller coaster’ 

problem uses a constant track shape to discuss the dynamics that occur in a 

bistable system. He considers the effect of cyclic inputs on the system dynamics 

and covers the basic methods to describe nonlinear systems. 

 

2.3 GAPS IN MULTISTABLE SYSTEM DESIGN 

As discussed in Section 2.2, there is some literature on the design of 

bistable structures and mechanisms, but it appears to lack any discussion of 

generalizing the idea to multiple (> 2) equilibrium positions, particularly in 

systems that span multiple energy domains. Further, for a given application very 

little to no discussion is given into the restrictions and solution possibilities of the 

location of additional stable positions once the first one is specified. Other than 

the work by Gottlieb and Virgin, there is little discussion in terms of creating 

bistable or MSE systems with distinct natural frequencies or stiffnesses at each 

equilibrium position. This dissertation attempts to specifically address some of 

these opportunities for advances in design.  
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This dissertation presents a design synthesis methodology that will be a 

foundation for creating designs based on MSE systems that have multiple passive, 

but tailored, dynamic responses. Specific areas that are addressed include the 

exploration of the solution space, in terms of equilibrium positions and their 

characteristics, given the constraints of the problem. As referenced by Gottlieb, 

the basic idea of a local quadratic potential approximation is used to characterize 

MSE system equilibrium positions, both stable and unstable. Also, Gottlieb 

analyzes a specific problem (i.e. sliding mass on a track) and solves for solutions 

both explicitly and numerically depending on the problem mathematics. This 

dissertation presents a methodology to apply MSE design synthesis to a broad 

range of problems that span multiple degrees of freedom and energy domains. 

Thus, a numerical optimization approach, based on a system potential energy, is 

used to solve for unknown design variables that characterize the necessary 

geometry, materials, and orientation of the system energy storage elements. The 

goal is to make the approach general and intuitive enough to be applicable to a 

wide variety of problems. 

There exists extensive literature on the subject of nonlinear dynamics and 

of systems with multiple stable (stationary and static) equilibria. This dissertation 

does not attempt to broaden that knowledge of dynamic stability theory. The goal 

of this work is to enable someone with expertise in nonlinear dynamic systems 

theory to begin to synthesize a nonlinear system to act as desired over a range of 

many equilibrium points.  
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Chapter 3: Classification and Definition of Multistable 
Equilibrium Systems 

 

3.1 QUALITATIVE DEFINITION MULTISTABLE EQUILIBRIUM SYSTEMS 

3.1.1 General definition 

In this paper, a qualitative definition of multistable equilibrium systems is 

as follows: 

Multistable equilibrium system – a mechanical system, possibly 

composed of subsystems described by other energy domains (i.e. 

electrical, magnetic, chemical, hydraulic, pneumatic, etc.), that has more 

than one statically stable equilibrium state where each stable equilibrium 

is defined as a state in which the system has a minimum in its potential 

energy. An unstable equilibrium is defined as a state in which the system 

has a maximum in its potential energy.  

 

Note that inherent in the definition of a MSE system, dissipative forces 

can be present, but they can not be the cause of the equilibria. Also, potential 

energy is simply defined as energy that is a function of generalized displacements, 

such as mechanical translation, charge, and magnetic flux. This means that 

buckling systems are not considered in the context of this work since they change 

configuration due to an application of a generalized force, which implies a source. 
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This is more fully discussed in Section 3.1.2. Also, only smooth, or C1 

continuous, potential energy surfaces are considered. 

This definition can be described by a common analogy of a ball rolling on 

a hilly surface (See Figure 3.1).  In Figure 3.1, the MSE system is the ball, the 

hill, and a uniform gravitational field. The potential energy is solely described by 

the gravitational energy of the ball as E(x) = mgy(x), where m = mass of the ball, 

g = gravitational acceleration, and y(x) = the height of the ball as a function of the 

independent coordinate x. Since the gravitational force on the ball is always in the 

negative y-direction, and assuming no other forces exist besides rolling friction, 

the ball will tend to rest in either position S1 or S2. Note that system is not 

independently the ball or the hill, since by themselves neither have the capability 

to store potential energy. Only the combination of the two parts, along with 

gravity, has the potential to be multistable. 

 

Figure 3.1: Ball on hill analogy. 
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In terms of the definition above and depending upon the designer’s needs, 

the MSE system equilibrium states can be described by the ball position at both 

the stable (S1, S2) and unstable (U1) equilibria, the hill shape, the force-

displacement relationship of the ball at and between each equilibria, and 

approximate natural frequency at the stable equilibrium positions, S1 and S2. 

Note how many of the characteristics of an MSE system are coupled, but it 

is up to the designer to decide which ones are most important. For example, the 

shape of the hill directly dictates the equilibrium positions of the ball. Thus, it is 

hard to conceive of having interest in designing for one and not the other. On the 

other hand, there can be instances in which the terms shape and position are not of 

mutual concern.  

Again referring to the example problem in Figure 3.1, one can be 

interested in the force-displacement relationship of the ball on the hill. This can be 

interpreted in many ways with which the designer may or may not be concerned. 

One way to interpret the force-displacement relationship in the MSE system is by 

how much force is required to push the ball as small amount, δx, away from a 

stable equilibrium position. There is a small region, ±δx, determined by the shape 

of the hill at the stable equilibrium, where this force can be assumed linear. With 

this linear force we can then extract an approximate natural frequency of the ball 

at the equilibrium position. This natural frequency can then be used to get a feel 

for the speed of response of the system as higher frequencies typically result in 

faster response times. 
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Another interpretation of describing the force-displacement relationship of 

the MSE system is in terms of how to move the ball from position S1 to position 

S2 by going through position U1, and vice versa. The value of force in the x-

direction to move the ball is Fx(x) = ∂E(x)/ ∂x = mg[dy(x)/dx]. This value is in 

general not constant along the curve between S1 and S2. If there is an actuator 

pushing the system form S1 to S2, then one must make sure that it has a force-

displacement output sufficient to roll the ball over the hill. 

The designer can also characterize the force-displacement relationship as 

the change in energy, or energy input, required to move from S1 to S2, or S2 to 

S1. Note that one only needs to input energy to get to the top of the hill, point U1, 

since the energy of the system decreases beyond that point. For instance, in 

moving from S1 to S2, the required energy input needed is ES1-S2 = mg[y(U1)-

y(S1)], but to move from S2 to S1, the required energy input is ES2-S1 = 

mg[y(U1)-y(S2)]. Note that ES1-S2 < ES2-S1 since y(S2) is smaller than y(S1). This 

information can not only help design for desired actuation between the stable 

positions, but it can also prevent undesired movement between the stable 

positions. Imagine an earthquake acting on the hill and treat it as a disturbance of 

some amplitude and frequency. Depending on the characteristics of the 

earthquake, it may induce the ball to move between the stable positions. Since 

more energy is required to go from S2 to S1 than from S1 to S2, this could lead to 

general design understanding that disturbances will be more prone to dislodge the 

ball from S1 than from S2. Being able to dictate these kinds of energy 

relationships is what MSE system design is for. Of course, nonlinear dynamic 
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effects and possible resonance with the disturbance can also be major factors, but 

considering simple energy differences can be a start in design [Virgin, 2000]. 

 

3.1.2 Consideration of Actuators, or Energy Inputs, in MSE systems 

If a device is in a stable configuration, does it have to stay that way if its 

power source is shut off? If not, then is it really in a stable configuration? For the 

purposes of this dissertation, the answers to these two questions are yes and no, 

respectively. The following example demonstrates how this is interpreted. 

Consider a lever pivoting on one end and attach a linear spring to the other 

end as shown in Figure 3.2. The potential energy in the system is E(θ) = k(l(θ) – 

lo)2/2 where l(θ) is the length of the spring, k = linear spring stiffness, and lo = free 

length of spring. If in the configuration shown in Figure 3.2 the spring is at its free 

length, i.e. l(θ) = lo, then the system is at a minimum of zero potential energy. 

Note, due to symmetry about the y-axis there is also a corresponding position of 

zero potential energy when the lever is at position – Θ. Therefore, the two stable 

positions are Θ and – Θ. Since there is no power supply, there is obviously no 

power flow necessary to keep the lever in either stable position. 
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Now consider a slight variation in Figure 3.2 where a capacitor plate is 

added to the lever and another plate is on the ground (see Figure 3.3). The 

potential energy in the system can now have an electrostatic component due to the 

electric field between the plates. Assuming the plates are parallel and close 

together, this energy is approximated by E(θ) = [d(θ)/(2εoA)]q2 where εo = free 

space permitivitty, A = cross-sectional area of the plates, q = charge stored on 

capacitor, and d(θ) = gap between the plates.  If a high enough charge 

accumulates on each of the capacitor plates, the force will increase and the plates 

will approach each other due to electrostatic forces and eventually collapse on 

each other until they are in contact at the angle Θ + δθ. 

Is this new position, Θ + δθ, a stable equilibrium? The lever is definitely 

stuck in a new position, but is system potential energy at a minimum? The spring 

Θ

k, lo

y

x

 

Figure 3.2: Bistable lever mechanism. 
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energy is definitely higher, but is there any electrostatic energy between the 

plates? The answer to all three questions seems to be no since there is no gap any 

longer, and the electrostatic energy is now zero (see Figure 3.4).  

So what is the total energy in the system now? Answering this question 

depends on how the system is defined. If the system is only the link, spring, and 

electric field between the plates, then the system energy at Θ + δθ is not a 

minimum, since there is only spring energy as shown by Figure 3.4. Theoretically, 

the electrical energy goes back to zero as the gap between the plates goes to zero. 

Assume that a charge differential can instantaneously be maintained across the 

plates (i.e. for surfaces in contact no charge differential occurs). If the gap is 

increased to greater than zero by any small perturbation, the existing electric field 

in the gap will impose a force tending to snap the plates back together. 

Θ

k, lo

y

x

δθ

+ -

 

Figure 3.3: Bistable lever mechanism with capacitor plate. 
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The lever can be held in the position Θ + δθ since there is an electrical 

force applied. While applying a voltage or imposing a charge on the capacitor, 

moving the plate by any small amount from the position Θ + δθ results in an 

increase in energy and a restorative force. This is because electrical energy 

increases as the plates are separated. The only way the electrical energy does not 

increase upon separating the plates is if no electric field exists between them, i.e. 

there is not voltage or charge. 

The point of this discussion is to distinguish what one means when 

classifying an orientation or position as being a stable equilibrium point or not. 

One must decide whether or not to account for energy sources, and characterizing 

position Θ + δθ as a stable position or not is as much a matter of semantics as 

anything. In this dissertation, the situation shown in Figure 3.3 represents the 

 

Figure 3.4: Plot of potential energy vs. angle for example in Figure 3.3.  
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process of actuating or tuning the system about one of the many stable equilibria 

of an MSE system. At an appropriate voltage, the position Θ + δθ is maintained, 

but only because of an actuator and control scheme. If the power supply were 

shut off, the system would revert back to the stable equilibrium position Θ. On the 

other hand, the lever could accumulate enough charge to hold the position Θ + δθ 

even when the voltage source is removed only if the electrical circuit is opened 

and there is no charge leakage. In this case, the device that opens and closes the 

circuit (possibly a electromechanical switch) is the MSE device that enables the 

position Θ + δθ to be stable, not the input voltage source. 

Figure 3.3 does represent one of the potential benefits and driving forces 

for using MSE system design. Imagine if one were limited to electrostatic 

actuation, where the force is proportional as 22 −∝ dVF , and V is the applied 

voltage and d is the distance between capacitor plates. When limited to low 

voltage ranges the capacitor plates must be quite close, i.e. small d, to obtain 

appreciable forces. For example, let the available actuator have capability to move 

the beam ±θact. If there is only one stable equilibrium position, say at θeq = 0, then 

the operating range of the beam is just ±θact. Now if the beam is designed as part 

of a MSE system with two stable equilibria which lie at θeq = ± Θ, then the total 

range of operation could be expanded to ±2θact. Since no power is required to stay 

at each equilibrium position, only one actuator at a time, perhaps the same 

actuator, is required to move about the stable positions. In an ideal scenario, one 

actuator could simply ‘pass on’ the task of actuation to the next actuator, thus 
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effectively increasing the range of operation without increasing power 

consumption. 

 

3.2 CLASSIFICATION OF MSE SYSTEMS 

In this section MSE systems are classified according to the primary use of 

the design at the stable equilibrium configurations. Note that these classifications 

are mostly used to visualize different uses of MSE systems even though the 

design methodology will later show that the same engineering design 

considerations hold for each class. Since MSE systems can inherently incorporate 

multiple energy domains, terms such as ‘configuration’ and ‘impedance’ can have 

different meanings. For the purposes of this categorization, the categories are 

based on the mechanical properties of the design, although there may be other 

energy domains.  

An initial classification breakdown is shown in Figure 3.5, and there are 

three basic categories: 

(1) MSE for configuration or position, 

(2) MSE for impedance, and  

(3) MSE for both configuration and impedance. 
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3.2.1 MSE design for configuration or position 

Designing a MSE system for configuration or position means that transient 

responses about the equilibrium point are not important. The idea of creating a 

system that can undergo transformations from one configuration to another is 

useful when one can prescribe different shapes or positions that are desirable. 

Applications are those that require a specific point, say on a four-bar 

linkage as part of a manufacturing step, to go among several locations on its 

coupler curve and stay at each one while a machining or assembly task is 

performed. Also, a MSE antenna could be shaped or sized differently to receive 

different frequencies or transmit different shaped electromagnetic lobes. Here the 

Multistable
Equilibrium 

System (MSE)

MSE for Configuration/ 
Position

- reliable
- repeatable
- Enhanced range of use 
due to shape adaptation

MSE for Impedance
-Energy efficiency by 
tuning natural frequencies
-Enhanced operation 
range due to impedance 
matching

MSE for 
Configuration/Position 

and Impedance
- Efficient device with 
enhanced capability and 
operating range

 

Figure 3.5: Initial classification of MSE systems. 
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mechanical configuration dictates an electrical impedance. This concept has 

already been explored by researchers at the University of Colorado by using 

switches to change the conducting pattern of a microelectromechanical systems 

(MEMS) antenna [Gupta et al., 2000]. In addition, a MSE system designed for 

configuration could have an adaptable aerodynamic shape to minimize/maximize 

drag for when it experiences flow conditions at varying mach numbers. 

One previously researched application for a MSE device whose purpose is 

multiple configurations is a MEMS optical switch; although very few of the 

designs are multistable by the definition used in this dissertation. Nonetheless, 

their goal of a device that switches and needs no power to maintain the position is 

the same. An optical switch is used to position a mirror or optical fiber in one of a 

multiple number of positions that correspond to different outputs for an optical 

signal. Many designs exist for mechanical optical switching [Giles, 1999; 

Aksyuk, 2001; Hoffman, 1999]. A MSE system could create a stable equilibrium 

for each optical position [Michalicek, 2000]. There are several aspects of a MSE 

optical switch that can affect the reliability of the device: (1) because the stable 

positions make feedback control unnecessary for alignment of the optical output 

beams, the system can have both less electronics and less cost, (2) if there is ever 

a power failure in the optical switch, then a viable communications path will 

remain, and (3) because the MSE design approach concentrates on energy storage, 

the design can minimize dissipative effects such as stiction and friction to create 

structures that are especially amenable to the MEMS area where these surface 

forces dominate and any particle generation due to friction can be catastrophic. 
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MSE for 
Configuration/Position

Configuration/Shape
-Aero/Hydrodynamic 
surface,
- Antenna for different 
frequencies/lobes

Position
-Optical switch
-Manufacturing steps

 

Figure 3.6: Classification and examples of MSE systems designed for 
configuration, shape, or position.  
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3.2.2 MSE design for impedance 

Multistable equilibrium systems can be used for tuning the impedance of a 

device (see Figure 3.7).  Here, impedance is defined as the response of the MSE 

system, about a stable equilibrium point, to a control input or external 

disturbance. The input or disturbance need not be periodic or transient in nature. 

The term impedance is used here in an attempt to characterize the concept of 

frequency and transient responses by using the same term.  

The hope is that MSE systems can have different stable natural 

frequencies corresponding to each stable equilibrium configuration, and that the 

overall device is made more energy efficient or capable because of this concept. 

The damped natural frequency of a system is that frequency of a linear system at 

which the maximum output amplitude occurs for the free response [Greenwood, 

1988]. For sinusoidal inputs, maximum output occurs at the resonant frequency, 

which is often very close to the damped natural frequency. Thus, if a system is 

actuated near its resonant frequency, it takes much less input to create a large 

output. Therefore, one key aspect of MSE systems is to design devices such that 

we can create many natural frequencies. Each natural frequency can correspond to 

a desired mode of operation for the device. Battery operated devices are 

especially prone to the problem of limiting performance due to energy 

inefficiency because of their reliance on a fixed energy supply. Thus, if we could 

make these devices have stable equilibria and frequencies about positions that 

correspond to each possible operating task, we could make the entire system 

significantly more efficient. 
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An example of designing MSE systems for impedance, and in particular 

mechanical stiffness, is a Fabry-Perot sensor [Kim, 1998]. The sensed 

phenomenon is measured by the intensity of reflected light from a mirror that 

displaces as pressure changes. Here the stiffness of the mirror is tailored for a 

specific pressure range. Due to interference effects, the intensity of the reflected 

light is highly nonlinear as the mirror deflects. Thus, the range of sensing is 

usually limited to a small range where a given output can be caused by only one 

input, say below Xlimit (high stiffness) in Figure 3.8. The high stiffness of the 

membrane creates a high resolution sensor, but it limits the range to below, say 

Xlimit (high stiffness) for the given measurement. Otherwise one would not know 

if the input was X1, X2, or X3. If we want a higher range of sensor inputs, we can 
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-Tuning of system stiffness
-Increased range for 
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-Vibrational damping
-Efficient excitation

 

Figure 3.7:  Classification and examples of MSE systems designed for 
impedance characteristics. 
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reduce the stiffness of the membrane to create a new sensor characteristic where 

the input can go as high as Xlimit (low stiffness). Now the inputs X1, X2, and X3 all 

have unique outputs, albeit at a lower resolution. Thus, by accurately changing to 

one of multiple stiffnesses for the reflecting surface, an MSE system could allow 

multiple ranges and resolutions for a sensor. 
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3.2.3 MSE design for configuration/position and impedance 

Some applications combine the aspects of changing between different 

configurations and having a particular impedance that is suited for each 

configuration (see Figure 3.9). Robotics is an area that can make use of this 

combined MSE concept. Recent demands in this field are driven by a desire for 

smaller, faster and more versatile robots. The versatility and speed of a robot is 

often extremely limited by the actuators available to the engineer. Also the size 

and mass of the system can be hampered by the bulkiness of common actuators 

such as DC motors and solenoids. Smaller actuators, such as piezoelectrics and 

shape memory alloys, often lack one or more critical design needs such as 

appropriate displacement, force, or bandwidth. To combat this dilemma, one 

could use the MSE concept to add versatility and function to the mechanical 

structure itself instead of the actuation [Wingert, et al., 2002; Hafez et al., 2002]. 

One common example of a MSE system, although one may not have 

thought of it in this manner, is a manual car transmission. The driver provides the 

input to change stable among the stable configurations, in this case gears. When 

in gear, the transmission stays in place with no additional power input. The reason 

the transmission is part of the drive train is specifically so that the input 

(combustion engine) to output (wheel torque and speed) relationship can be 

altered depending on the desired performance and environment (i.e. need for 

speed, need for torque going uphill, etc.). 
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Another example is a robotic submersible vehicle used in either 

underwater reconnaissance or exploration where it is dangerous for humans or 

other trained animals to go. Possible applications are mine clearance, exploration 

of wreckages or contaminated water, and oceanic research [Jalbert, 1995]. A 

novel approach using MSE systems is to create fish-like aquatic propulsion that 

can have vastly different characteristics depending on the desired function at the 

time. Creating a MSE structure with multiple shapes and corresponding 

impedances could yield versatile and efficient adaptable robots or propulsive 

devices. This concept stems from the fact that different types of fish use vastly 

different propulsion techniques that are efficient but only suited to a specific niche 

[McHenry, 1995; Long, 1994; Weihs, 1989; Pabst, 1995; Taubes, 2000; Wardle, 

1995].  Thus, one could design a single MSE fish-like propulsion system that has 

MSE for Configuration
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- Impedance control
- haptic interface

Transient
Impedance
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sensors/actuators

- car transmission
- robotics, i.e. adaptable 
fish

-Tune shape with impedance  

Figure 3.9:  Classification and MSE examples of designing for both 
configuration and impedance. 
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equilibrium states corresponding to different niches. For enhanced agility the 

MSE system could take on the properties of an eel, and for enhanced long-range 

swimming efficiency the system could act much like a tuna. Also, if the robot is 

made somewhat flexible, changing its volume could therefore change its force of 

buoyancy for depth control. Making several stable volumes could decrease the 

power necessary for depth control. 
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Chapter 4: MSE Design Synthesis Methodology 

 

4.1 GENERAL CONTENT OF MSE DESIGN PROCESS 

The MSE design synthesis methodology presents the user with a way to 

interpret engineering factors into a mathematical form that can be used for MSE 

system design. The mathematical basis of the proposed design methodology 

focuses on how to properly shape the potential energy curve of the MSE system to 

create the desired system performance. Information from the kinetic coenergy is 

also used to approximate system dynamics. The shapes of the system energy 

curves are dictated by the design variables in the constitutive relations governing 

the potential energy storage elements in the MSE system. It is also be possible to 

shape the inertia, or effective mass, of the system to design approximate dynamic 

responses. 

The overall MSE design synthesis methodology is set up to allow a 

designer to determine if a solution to the proposed problem can be solved in an 

acceptable amount of time. Due to nonlinear constitutive laws and constraints in 

the problem, the existence of a solution for a MSE system may not be apparent. 

Given a calculable probability for a desired solution to exist, numerical 

optimization techniques are used to solve for appropriate design variables that 

govern the energy storage in the MSE system. 

An example problem formulation suitable for using the proposed design 

methodology would be to say that one wants to create a flexible robotic fish that 
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in one configuration is characterized by a tuna-like shape, with lunate tail, of high 

tail-beat frequency (2-3 Hz) for efficient long range swimming, and another 

equilibrium is characterized by a long, slender, eel-shaped body with lower 

stiffness and tail-beat frequency (0.1-0.5 Hz) for high mobility and agility. Also, a 

tuna normally swims with less than one wavelength along its body where an eel 

swims with greater than one wavelength. Thus, system natural frequency and 

shape can be coupled together in thinking of modal characteristics of the system. 

Note that although in each configuration the function of the fish robot is always to 

swim, the different stable configurations are required to take advantage of the 

entirely different physical principles involved for each mode of swimming.  

At this point, to apply the MSE design synthesis technique, one only needs 

a way to model the robot’s shape (for hydrodynamic considerations), mass, and 

stiffness (for frequency response and possible mode shape consideration) in terms 

of the unknown design variables. As this example shows, the criteria for deciding 

on the important properties of an MSE system are problem dependent and entirely 

up to the system designer to choose and model them correctly. 

The flow chart of Figure 4.1 shows a methodology process to create a 

thorough understanding of the MSE design problem. The numbers in parentheses 

in each box correspond to the three major design steps that are described in detail 

in Section 4.3. For now a rough description of the design process will hopefully 

introduce the reader to the overall philosophy of the design synthesis process. 

To start the design process, one models the system potential energy and 

kinetic coenergy. A Monte Carlo mapping is performed on the model to describe 
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the solution space both qualitatively and quantitatively.  One can then choose a 

desired MSE solution and attempt to solve it using numerical optimization. If the 

problem is not readily solved, then further analysis is performed to determine the 

feasibility of the desired solution.  

From the Monte Carlo mapping data, a probability is calculated. 

Probabilities greater than zero (P > 0) mean the solution is possible, and 

probabilities equal to zero (P = 0 case) mean more work needs to be done to 

determine solution existence. For the P = 0 cases, the desired solution is perturbed 

until P > 0, such that we can then gain a baseline understanding of how well the 

chosen optimization algorithm can solve a similar problem that is known to have 

an existing solution. A run-length distribution (RLD) is created for this baseline 

perturbed case. The RLD is used as a measure of how well the chosen 

optimization algorithm can solve the MSE design problem. As the solution is 

perturbed back to the original desired solution (i.e. with P = 0), the trend 

established by each successive RLD for each newly perturbed case tells the 

designer what likelihood there is of solving for the original desired solution. 
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4.1.1 Aspects not included in the design methodology 

From Chapter 2 it is evident that there is substantial interest in the design 

of MSE systems, and particularly at the moment, bistable systems and 

mechanisms. It is not the purpose of this design methodology to explain why one 

would want to create a MSE system, but only how one can design a MSE system. 

The philosophical issues of why to design an MSE system must be resolved 
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Figure 4.1. Flow chart of the MSE design synthesis methodology. 
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beforehand. Nonetheless, knowing why a particular MSE system is being 

considered will lead the designer to pinpoint the important characteristics of the 

MSE system (i.e. position, configuration, shape, stiffness, frequency, etc.). 

The design synthesis methodology presented here does not include any 

new descriptions or modifications of dynamical stability theory. The methodology 

only uses existing descriptors of stability theory and interprets them for use in 

MSE system design. Also, should a problem be deemed with the assumed 

topology, one could add energetic components to the system to make the desired 

solution possible. When and how to add these components, and thus change the 

system topology, is beyond the scope of this work (shaded box, (4), in Figure 

4.1). This is seen as a very necessary and fruitful area of research for future study. 

The MSE design methodology inherently assumes that all nonlinearities in 

the system are smooth and continuous even though one might not have a 

continuous description of them. These nonlinearities include those in the potential 

energy storage elements, kinematic energy storage elements, and dissipative 

elements. Thus, even though nonlinearities, such as backlash and stiction, exist in 

real systems, they are not included as effects that can affect stability positions or 

system dynamics. 

 

4.2 MATHEMATICAL FOUNDATION OF DESIGN SYNTHESIS METHODOLOGY 

To correctly design a MSE system, one needs a way to interpret 

qualitative and quantitative engineering characteristics into a meaningful 

mathematical form that can be problem independent. This chapter shows that 
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given the ability to model a system’s energy, one can create a framework about 

which a MSE system can be designed. The design methodology focuses on using 

a potential energy of the system so that multiple energy domains (i.e. mechanical, 

electrical, magnetic, etc) in any given system can all be taken into account. 

 

4.2.1 Definition of Equilibrium Position 

Consider each stable equilibrium state of an MSE system as one in which 

a combination of kinematic constraints and potential energy storage elements are 

such that, within a finite range about the local equilibrium, any incremental 

generalized displacement of the system produces a larger amount of potential 

energy in the system. Therefore, if the system is slightly disturbed from an 

equilibrium, it will tend to restore itself to the equilibrium position. As a 

consequence, a stable configuration can be maintained with no power input.  

To set up the synthesis optimization problem, we derive a performance 

index that involves descriptions of the equilibrium positions. To understand the 

derivation of the performance index, the conditions for equilibrium are first 

developed. The conditions for the ith local equilibrium can be stated using the 

following equations: 
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where q is a general displacement (for now a scalar), p is a vector of system 

design variables, E(q,p) is a system potential energy, and K is a general system 

energy ‘stiffness’ at each equilibrium [Greenwood, 1998]. Note that for stable 

equilibria K>0, and for unstable equilibria K<0. 

 

4.2.2 Relation of Equilibrium definition to Engineering Principles 

The dynamic equations and potential energy of MSE systems are 

inherently nonlinear. But to create a MSE system design approach, Equations 

(4.1) and (4.2) are related to each local equilibrium by assuming that in a small 

region, ±δq, the potential energy is quadratic with respect to the generalized 

displacement. A quadratic is the minimum order of a polynomial that can 

represent an energy curve about an equilibrium position. Assuming a second order 

curve also guarantees that no more than one extremal gets characterized in the 

region of interest. Note that the region ±δq can always be chosen small enough 

such that no more than one extremal occurs in the local region of the potential 

energy curve. Also, the quadratic energy approximation inherently represents all 

forces as linear about the equilibrium point. In other words, all force terms of 

order (δq)2 and higher are neglected. The quadratic energy approximation is used 

primarily as a tool for system design, and is not necessarily meant to fully 

characterize the system static or dynamic properties about the equilibrium point. 

Nonetheless, the desired properties of the ith local equilibrium, both stable and 

unstable, can be approximated as: 
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where ades,i, bdes,i, and cdes,i are constants which represent the ith equilibria’s 

desired position, energy value, and energy curvature, respectively (see Figure 

4.2a). Note that cdes,i>0 and cdes,i<0 for a stable and unstable equilibrium, 

respectively. 
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Figure 4.2. (a) The desired local equilibrium curve fit parameters. (b) Desired (solid) and 
candidate (dashed) quadratic curve fit approximations at the equilibrium points. 
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Since the forces are assumed linear in the region of interest, ±δq, one can 

define a natural frequency at each stable equilibrium. Approximating the MSE 

system at the ith equilibrium as a generalized mass-spring system, the governing 

linear ordinary differential equation for the undamped free response is: 

 

0)( ,,2

2

, =−+ ieqieffieff qqKdt
qdm  (4.4) 

 

where meff,i, and Keff,i are the effective inertia, and stiffness, respectively, and qeq,i 

is the local equilibrium position for the ith equilibrium. Thus, the approximate 

natural frequency, f, of the system at equilibrium i in coordinate direction q is 

given by Equation (4.5). 

 

fi = (Keff,i/meff,i)1/2 (4.5) 

 

The derivation of Keff,i and meff,i now follows. Keff,i must now be described 

in terms of the quadratic energy approximation shown in Equation (4.3). From 

Equation (4.4), the local linear generalized restoring force is F = Keff,i(q – qeq,i) so 

that the potential energy of the localized mass-spring system is approximated as: 
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where E(qeq,i) + Enom is the value of energy at the equilibrium point. Keff,i is the 

generalized spring stiffness that accounts for all mechanical forces acting on the 

system with respect to coordinate q. Equation (4.2) shows that by taking the 

second derivative of the potential energy Equations (4.3) and (4.6), one obtains 

2cdes,i and Keff,i, respectively. Thus, equate Keff,i = 2cdes,i, and the effective stiffness 

is related to the desired potential energy curvature. 

In order to describe a natural frequency, one must also derive the effective 

mass, meff,i, of Equation (4.5). To do this, one can follow the method of 

Lagrange’s equations. This requires an expression for the Lagrangian composed 

of the system kinetic coenergy (T(q,
•

q )) and potential energy (V(q)): L = T – V = 

T(q,
•

q ) – V(q). The form of the Lagrangian is as assumed in Equation (4.7), and 

the equation of motion for an undamped and unforced single degree of freedom 

system is as in Equation (4.8).  

 

)()(2
1)(),(),(

2

qVqqmqVqqTqqL eff +=+=
•••

 (4.7) 

 

q
qVq

dq
qdm

qqm

q
qVq

q
qm

q
dq

qdm
qqm

q
qVq

q
qm

qqm
dt
d

q
qqL

q

qqL
dt
d

eff
eff

effeff
eff

eff
eff

∂
∂

++=

∂
∂

+
∂

∂
−+=









∂

∂
−

∂

∂
−






=

∂
∂

−














∂

∂
=

•••

••••

••

•

•

•

)()(
2

1)(   

)()(
2

1)(
)(   

)()(
2

1)(   

),(),(0

2

22

2

 (4.8) 



 46

 

In Equations (4.7) and (4.8), 
•

q is the time derivative of the general 

displacement, q, and meff,i(q) is the generalized effective mass as function of 

position. Note that for a full nonlinear system, one must account for the inertial 

effects of the second effective mass term which is the middle term in Equation 

(4.8). But, since a quadratic form of localized potential energy is assumed, and 

therefore a linearized model, all terms of order two and higher are neglected. The 

same linearizing assumption is made for kinetic coenergy. Thus, the “
•

q 2 “ term in 

Equation (4.8) is inherently deemed negligible. Also, one can see that for a system 

with constant mass, the middle term of Equation (4.8) goes away. So for slowly 

varying and localized systems, a linearized model without the “
•

q 2“ is a 

reasonable approximation. 

Similarly to assuming a constant stiffness, Keff,i, due to small variations 

about the equilibrium of the potential energy, to estimate a natural frequency we 

assume a constant effective mass. This is a necessity for evaluating frequency as a 

desired design criterion, even though meff(q) in Equation (4.8) is generally not 

constant since q = q(t). This mass, at the ith equilibrium, is evaluated from 

Equation (4.7) or (4.8) as meff,i  = meff,i(qeq,i). Note that the assumption of constant 

mass and neglecting the second term in Equation (4.8) is not a more limiting 

simplification, since the concept of natural frequency is only defined for linear 

systems. Thus, inserting 2cdes,i for Keff,i in Equation (4.5) produces: 

 

fdes,i = (2cdes,i /meff,i(qeq,i))1/2  (4.9) 
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Derivation of how to equate the quadratic factor, cdes,i, of Equation (4.3) to 

Keff,i in Equations (4.4-4.6) has already been shown. Further equating coefficients 

of Equations (4.3) and (4.6) shows that ades,i= qeq,i and bdes,i = E(qeq,i) + Enom. Note 

from Equation (4.6) that Enom is essentially an arbitrary constant since the value of 

potential energy is a relative quantity, and not absolute. Therefore, only the 

difference of two potential energies bears meaning if both have the same arbitrary 

constant (i.e. Enom), and that is negated when they are subtracted. However, this 

does not mean that the factor bdes,i of Equation (4.3) has no use. 

The significance of bdes,i in Equation (4.3) lies in determining how much 

disturbance or actuation energy is required to move from one stable equilibrium to 

the next by going through an unstable equilibrium. For example, consider a 

system to have equilibria at qeq,1 =1.0, qeq,2 = 3.0, and qeq,3 = 5.0, where qeq,1 and 

qeq,3 are stable and qeq,2 is unstable. To actuate from position qeq,1 to qeq,3, one 

needs to use an actuator with enough actuation energy to overcome the increase in 

potential energy from qeq,1 to qeq,2, equal to ∆E12 = bdes,2 - bdes,1. As a consequence, 

sufficient system disturbances could also cause the system to transition among 

equilibrium positions.  Thus, designing ∆E12 of a sufficiently high value could 

help prevent this undesirable change of equilibrium but at the expense of a more 

capable actuator. 
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4.2.3 Creating the Performance Index 

Criteria have now been established to form a performance index. The 

values a, b, and c in Equation (4.3) have engineering significance in being the 

position, energy value, and curvature (which relates to system stiffness and 

frequency) of each equilibrium position, respectively. Thus, during each iteration 

of the optimization scheme, perform a second order least squares curve fit 

approximation in a region ±δq about each desired equilibrium point to obtain the 

candidate equation of Equation (4.3) as: 
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In essentially taking the difference between Equations (4.3) and (4.10), 

one creates a basic performance index, F, which compares the desired and 

candidate potential energy curve fitting parameters about each equilibrium:  
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where n is the number of equilibrium positions and wa,i, wb,i and wc,i are the 

weights for the curving fitting parameters a, b, and c from Equations (4.3) and 

(4.10). Depending on what the designer is interested in, he could leave out certain 

terms of Equation (4.11), weight each term to give priority to the most important 

design consideration (i.e. equilibrium location, stiffness, or energy increase for 

equilibrium transition), and include both stable and unstable equilibria.  
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4.2.3.1 Different approaches to optimizing frequency in performance index 

In Equation (4.11), the third term in the performance index uses desired 

and candidate curvature values instead of frequency, which is the true desired 

design criterion for stable equilibria. The reason is that Equation (4.11) can 

assume that the curve fit is being performed about the desired equilibrium 

position, ades,i, and not the candidate equilibrium position, acand,i. This position, 

ades,i, is fixed throughout the optimization routine, and there is a possibility that 

there will be a negative curvature calculated where a positive curvature is desired. 

If this occurs, fcand,i will be imaginary as shown by Equation (4.9) since the square 

root of ccand,i is needed. Then, when inputting this fcand,i into the performance 

index, a negative quantity is created due to act of squaring the terms. Therefore, if 

curve fitting occurs at fixed ades,i, the factor c must be used in the  performance 

index instead of the frequency, f.  

A simple modification of Equation (4.9) produces c in terms of f, as shown 

in Equation (4.12). Therefore, in the performance index, use the cdes,i from 

Equation (4.12), and whatever ccand,i is derived from the candidate energy 

equation. 

 

cdes,i =  (fdes,i)2 meff,i/2  (4.12) 

 

An alternate approach is to curve fit only at locations of equilibria, stable 

or unstable. This requires a search before curve fitting to find where the equilibria 
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occur, and one can simultaneously categorize them as stable or unstable. When 

one is curve fitting an unstable point, simply use the c factor since frequency is 

undefined. When curve fitting stable position, use Equation (4.9) with the 

candidate curvature, ccand,i, to calculate the candidate frequency fcand,i. Therefore, a 

term such as ‘(fdes,i - fcand,i)2’ can be used in the performance index since it is 

guaranteed to only be positive. This method allows the possibility that fewer 

equilibrium positions in the candidate energy curve can actually occur that 

desired. A factor can be added to the performance index to penalize for this, as 

discussed in the next section. 

 

4.2.3.2 Alternate Performance Index factors 

Equation (4.11) is a ‘basic’ performance index since the problem 

formulation allows the user to create a performance index which makes sense for 

the particular problem being solved. Thus, the formation of the performance 

index, equality constraints, and inequality constraints is problem dependent. The 

factors included and the weights given to each factor are essentially open-ended, 

and the types of factors that can be included in a performance index, or as 

constraints, are numerous. Some more examples of factors are listed below: 

 

(1) (acand,2 – acand,1 - ∆q12,des)2: where acand,2 > acand,1 and ∆q12,des is the 

desired distance between two equilibria acand,2 and acand,1. This type of 

factor specifies that the only concern for the equilibrium positions is 

that they are separated by some amount ∆q12,des. (i.e the relative 
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position of the equilibria is important, not absolute position). Each of 

the two equilibria can be stable or unstable. 

(2) -(acand,2 – acand,1): where acand,2 > acand,1. This factor maximizes the 

relative distances between equilibria (stable or unstable). 

(3) (bcand,2 – bcand,1 -  ∆E12,des)2: where bcand,2 > bcand,1 and ∆E12,des is the 

desired amount of actuation energy to move from the stable 

equilibrium position 1 to the unstable equilibrium position 2. 

(4) -(bcand,2 – bcand,1): where bcand,2 > bcand,1. This factor maximizes the 

actuation energy needed to go from stable equilibrium, with energy 

bcand,1, to the next stable position by going through the unstable 

equilibrium, with energy bcand,2. 

(5) -(ccand,stable) and (ccand,unstable) : The first factor maximizes the potential 

energy curvature (and therefore approximate natural frequency) of a 

stable equilibrium point. The second factor minimizes the potential 

energy curvature (or maximizes its magnitude) of unstable equilibrium 

points to create large ‘snap-through’ forces when traversing from one 

stable equilibrium to the next. 

(6) -abs(ccand,stable1 – ccand,stable2): This factor dictates that for two stable 

equilibrium positions, the difference in value of potential energy 

curvature (or natural frequency) is desired to be maximized. The 

usefulness of this type of factor can be in creating structures with 

natural frequencies varying over certain magnitudes, perhaps for 

damping or vibration applications.  
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(7) (xcand,i – xdes,i) if (xcand,i – xdes,i)>δxi, 0 otherwise, and (xdes,i – xcand,i) if 

(xdes,i – xcand,i)>δxi, 0 otherwise: Here, x is any design criteria of 

interest, such as equilibrium position or natural frequency. This factor 

enables the concept of a threshold range, a distance ±δxi away from 

the desired, which it is imperative that the candidate solution be 

within. When in this range, there is no added penalty to the 

performance index, and when out of this range, there is a penalty 

added. 

(8) (numstablecand - numstabledes) if (numstablecand - numstabledes) < 0: 

This factor penalizes the candidate energy solution if there are not 

enough stable positions (i.e. energy minima) in the energy curve. If 

there are at least as many stable equilibria as desired, then there is no 

penalty added to the performance index. 

 

4.2.4 Issues in creating the Performance Index 

One point regarding the formation of the performance index that warrants 

some discussion is the use of curve fitting to get local energy approximations as in 

Equation (4.10). Every time a candidate energy curve is calculated during the 

optimization routine, one needs a 2nd order curve fit about the desired (or actual) 

equilibrium point locations. The methodology uses least squares curve fitting. In 

doing so, one must choose: 1) the number of points with which to curve fit, and 2) 

the range, ±δq, to use in curve fitting (see Figure 1b). Both decisions affect how 

the optimization results compare to a real world problem.  
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In a quadratic approximation, one needs at least three data points to fit, 

and for exactly three data points, the quadratic curve fit is exact to the points. Of 

course, due to likely modeling errors and distance between energy points, this 

does not mean that the curvature, or natural frequency, approximation is exact. 

More data points are not necessarily good if the points are equally spaced, since 

the curve fit will weight each one the same. The linearization is best for locations 

near the equilibrium, thus one would prefer the points near the equilibrium remain 

dominant. 

For instance, it could make sense, that if we desire or expect the system to 

oscillate in a very narrow range, we can make δq quite small. If we desire or 

expect the system to oscillate in a wide range, we can make δq larger. The δq is a 

very system dependent parameter, possibly depending on things such as the 

magnitude of the system inertia and system disturbances. For nonlinear systems, 

the natural frequency at an equilibrium point is a linearized approximation. The 

approximation becomes more valid as displacement, potential energy curvature, 

and effective mass get smaller [Virgin, 2000]. Also, as the mass in the system 

becomes more concentrated (i.e. point-like) the natural frequency approximation 

becomes better. In general, nonlinear system ‘frequencies’ and free responses 

depend upon motion amplitude, and Virgin shows how to calculate this for a 

canonical nonlinear oscillating system. Others also show how the coordinate 

system, or independent coordinate, one chooses can affect the shape of the 

potential that acts on the system mass [Shaw and Haddow, 1992, Gottlieb, 1997]. 
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As a rough rule of thumb, an upper limit on δq is the point at which the 

energy has an inflection point or begins to have nearly constant slope. This gives 

some reasonable location at which to have an upper bound on δq since negative 

energy curvatures (for stable equilibria) definitely violate the quadratic energy 

curve assumption as they represent a softening spring effect. 

Note that MSE systems are necessarily nonlinear, and the quadratic energy 

approximation may be quite invalid. Nonetheless, the notions of the parameters a, 

b, and c in Equation (4.10) can still help in design. To quantify the accuracy of the 

curve fit, one can incorporate the concept of statistical correlation, or correlation 

coefficients.  Essentially, finding the correlation coefficient between two sets of 

data can indicate how similar the two sets are, i.e. how correlated they are. For 

identical sets of data, the correlation coefficient is one and for unrelated data the 

correlation coefficient is zero. To use this concept in the design methodology, one 

set of data is the true energy values from closed form, Equation (4.6), and the 

other data set is energy values generated by Equation (4.10) that uses the curve-

fitted energy parameters, acand, bcand, and ccand. Thus, one compares data points 

from the true energy curve, Equation (4.6), with the data derived from curve 

fitting the true energy curve, Equation (4.10). By calculating the correlation 

coefficient for these two data sets, one can measure the accuracy of the 2nd order 

approximation and have a direct way to quantify how well the local linearized 

energy approximation compares to the true nonlinear model. If the accuracy is not 

high enough, then one can simply discard that solution, add a penalty factor to the 



 55

performance index, or decrease the range, δq, of the curve fit until the correlation 

is high enough. 

 

4.2.5 Expansion of the design criteria to multiple degree of freedom systems 

When considering systems with more than one kinematic degree of 

freedom, the basic design criteria of ades, bdes, and cdes don’t relate to system 

dynamics straightforwardly as in the one degree of freedom case. Equations (4.1) 

and (4.2) hold for a multiple degree of freedom system where q is now a vector, 

and the stiffness, K, is a matrix that must be positive definite for local stability. 

Consider a two degree of freedom system in a small region about an equilibrium 

point. Following the single degree of freedom quadratic assumption, a general 

second order curve fit has the following form: 
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where x and y are the kinematic degrees of freedom. Using two independent 
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where (ax,i, ay,i) is the equilibrium position, bx,i and by,i are both the energy value at 

the equilibrium, and cx,i and cy,i are the curvatures at the equilibrium position in 

the x and y directions respectively. The problem with Equation (4.14) 

approximating Equation (4.13), is that there is no ‘xy’ term in Equation (4.14). 

Nonetheless, one can solve for the coefficients in Equation (4.14) in terms of 

Equation (4.13) as: 
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 (4.15a-4.15e) 

 

To ensure that the curve fitting is done about a point that is truly an 

equilibrium, a simple line search in each coordinate direction can be performed. A 

stable equilibrium point will thus be at a point in the line search where every 

adjacent coordinate has a larger energy value. Unstable equilibria have some 

adjacent coordinate points with smaller energy values. This should ensure that the 

stiffness matrix is positive and negative definite for stable and unstable points, 

respectively. In this two-dimensional case, K is given in Equation (4.16) by using 

the second partial derivatives of the potential energy, Equation (4.13). 
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Thus, to ensure a point is stable during any calculations, ensure that the 

matrix K > 0. The same procedure can be done to curve fit unstable points by 

requiring that K < 0. 

Looking again at Equations (4.13 – 4.15), it is clear to see that they are not 

equal. Equation (4.14) is equal to Equation (4.13) only if the coefficient e3 = 0. 

To calculate acand, bcand, and ccand for use in the performance index, the 

coefficients from Equation (4.13) can be used as shown in Equation (4.15). One 

can also use individual energies that are a function of only one coordinate, with 

the other being fixed. This becomes the case when the potential energy in the x-

direction is independent of the potential energy in the y-direction, and Ei(x, y) = 

Ex,i(x, yeq) + Ey,i(xeq, y). If one assumes this is the case, then individual quadratic 

energy approximations can be made for each coordinate direction just as in the 

single degree of freedom case. Forming an equation of the form of Equation (4.3) 

for x-direction (Ex,i) produces the coefficients ax,i, bx,i, and cx,i and likewise for the 

y-direction (Ey,i) ay,i, by,i, and cy,i. Because there is only one value of energy at a 

given equilibrium point, bx,i = by,i  at the equilibrium as shown by the last term in 

Equation (4.14) where the two b coefficients are averaged. As the candidate two 

degree of freedom energy curve becomes closer to the desired two degree of 

freedom energy curve, the two ‘b’ values approach each other. Therefore, the 
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individual energy approximations, Ex,i and Ey,i, along with their respective curve 

fitting parameters, can be used in the performance index for the optimization 

routine, just as in the single degree of freedom case. Again, this approach neglects 

the use of the ‘xy’ term in Equation (4.13), but this is considered a minimal loss in 

utility considering that putting an ‘xy’ term in the performance index means the 

user must know a desired coupling between the energies in the two directions. 

Expanding the same procedure to an N > 2 degree of freedom system 

involves similar approximations given in Equations (4.13 – 4.15). Stable and 

unstable points can be found by a line search, and thus the sign of the stiffness 

matrix can be correct. Therefore Equation (4.13) must still be calculated to so that 

the stiffness matrix can be calculated to quantify the stability of the equilibrium 

point even if all individual ‘c’ terms are positive. The equilibrium point is then 

characterized by the ‘a’ terms in Equation (4.14) and the stiffness matrix from a 

full N dimensional quadratic curve fit of Equation (4.13). 

 

4.3 STEP-BY-STEP SYNTHESIS PROCESS 

The point at which the MSE design synthesis methodology begins, 

assumes that one can calculate the system potential energy of the system in any 

desired configuration.  One also must be able to model the effective inertia of the 

system if the dynamic response of the MSE system is important.  This modeling 

can be in closed form equations or results from other analyses, such as finite 

element analysis. Once the energy and effective inertia can be calculated for the 

system as a function of the kinematic degrees of freedom, one can use the 
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proposed design methodology to solve for the allowable MSE system 

characteristics, as well as the unknown values for the design variables that are 

needed to produce the desired MSE system. 

The design method is more than simply optimization. Proper attention 

must be given to problem formulation such that the MSE system is synthesized 

correctly. As the designer, one must know what engineering factors are important 

and how to use them to phrase a problem for optimization. Because MSE systems 

must have nonlinear characteristics to create the multiple equilibria, solution 

possibilities may escape the intuition of the engineer. The emphases of the design 

steps are in problem formulation and getting insight into the solution space prior 

to and during optimization. Hopefully, the acquired problem insight will aid the 

last two steps in choosing a correct optimization algorithm, knowing how difficult 

the solution might be to obtain, and interpreting the solution results. Note that 

numbers in the boxes of Figure 4.1 refer to what step of the solution process they 

represent. 

 

Step Description 

(1) MSE problem definition: decide on desired location of equilibria 

and the important engineering characteristics (i.e. stiffness, 

frequency, energy value) of the MSE system at each equilibrium. 

Also, an acceptable range about the desired solution must be 

proposed. 
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(2) Perform Monte Carlo mapping and decide on the feasibility, by a 

probability calculation (Ptotal), of the desired solution. If Ptotal >0, 

the solution is possible and proceed with optimization with the 

expectation of finding the solution ‘easily’. If Ptotal = 0, then a 

more elaborate approach is needed to determine if the desired 

solution is possible (Step (3)). 

(3) Interpretation of resulting probability, Ptotal , and taking appropriate 

steps to solve for design variables. 

(a) If Ptotal > 0 from Step (2), create performance index and weight 

the different factors according to importance in design. Choose 

appropriate optimization algorithm (i.e. simulated annealing, 

genetic algorithm, etc.) and optimize for the unknown design 

variables such as length, spring constant, magnet coercivity, etc. 

to at least the range of accuracy from Step (1) used when 

calculating the probability in Step (2). 

(b) If Ptotal = 0 from Step (2), create a ‘perturbed’ solution from the 

desired solution so that Ptotal > 0 for the perturbed solution. Form 

an appropriate performance index that enables one to dictate 

optimization ‘success’ when all design criteria are inside their 

respective ranges specified in Step (1), and needed for the 

probability calculation. Then create run-length distributions as 

the ‘perturbed’ case is moved toward the desired case to track the 

feasibility of the desired solution. This enables the designer to 
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determine where the boundary between possible and impossible 

solutions may lie. 

(4) If at any point the desired solution is found, then quit. If  Ptotal > 0 

for the desired solution and the optimization problem is not readily 

solved, then one needs to consider changing either the optimization 

algorithm or the parameters that govern the chosen algorithm. If 

Ptotal = 0 for the desired solution, and the RLD disappears as the 

perturbed solution of Step (3)b moves back to the original desired, 

then one needs to consider that the solution is not possible with the 

current system topology. At this point, one must either quit as the 

solution is not possible to achieve, or one must change the system 

topology with respect to how it stores energy. 

  

In order to more easily facilitate the understanding of the steps involved, 

the results from an example problem are used throughout Section 4.3. Refer to 

Section 5.2 for an explanation of the example four-bar linkage problem. 

 

4.3.1 Step 1: Decide on important Engineering Characteristics of each 
Equilibrium  

This first step involves nothing more than correctly defining the problem 

to be solved. The user must ask what characteristics of the equilibrium positions 

are important. For instance, are potential energy curvatures of unstable equilibria 

of concern as well as stable equilibria? Is the natural frequency important?  
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Decide on a range for each desired design criterion. For example, if one 

desires a natural frequency of 1.0 Hz, is it acceptable to be at 0.8 Hz or 1.2 Hz? 

Putting a range about each design criterion is necessary to calculate probability in 

Step 2, discussed in the next section. However, the solution can be further refined 

after the all of the design criteria are found within their respective ranges.  
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4.3.2 Step 2: Monte Carlo mapping and probability calculation 

The Monte Carlo mapping is both a qualitative and quantitative tool to 

give the designer insight into the solution space of the problem before an 

optimized solution is attempted.  The reason this is important is that, at the 

beginning of the MSE synthesis process, the goals of the problem are already 

defined, yet the solution space can be completely unintuitive.  For example, one 

may desire two stable equilibria within two meters of each other where the first 

equilibrium produces a system natural frequency below 1 Hz and the other 

produces a natural frequency above 10 Hz.  In addition, because of certain 

disturbances to the system, specify that at least 10 J of energy must be overcome 

to move between the stable equilibria so that the system is not unexpectedly 

excited into the wrong equilibrium configuration. 

 After problem definition, the first question in MSE synthesis is: Does a 

design exist that meets all constraints of the design problem? The coupling of the 

nonlinear constraints in the problem can make answering this question very 

difficult. The Monte Carlo mapping is specifically designed to help answer the 

question of whether or not a solution is feasible so that little time is spent 

attempting to attain a solution that is unlikely.  By mapping where certain 

combinations of equilibria, stiffnesses, frequencies, and potential energy values 

can occur together, the designer can gain insight before the optimization begins. 

In creating the Monte Carlo mapping perform the following six basic 

steps:  
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(i) Set allowable ranges of the problem design variables. 

(ii) Generate random value for each design variable (usually with 

uniform distribution). 

(iii) Calculate system potential energy and effective inertia. 

(iv) Perform a line search along each coordinate direction to find all 

equilibrium positions in the potential energy curve. By curve 

fitting about the equilibria, calculate the important energy 

parameters as decided from Step 1 of design process (Section 

4.3.1) and as described in Section 4.2. 

(v) Plot energy curve parameters of Step iv) to visualize the patterns 

(qualitatively) of possible solutions, and analyze patterns to 

quantify solution space by use of a probability number. 

(vi) Repeat Steps ii)-v) for as many iterations as desired, or until a 

defined pattern emerges in the mapping to enable a decision on 

whether or not the desires solution is possible. 

 

A simple example of a meaningful mapping is one that plots the natural 

frequencies versus the relative stable equilibrium positions where they occur. 

From this one can see what frequencies are likely at certain equilibrium positions. 

Note, since the random design variables used in the Monte Carlo method can 

create energy curves with different numbers of equilibria, there needs to be a 

separate mapping for the separate cases of unistable, bistable, tristable, etc. 

designs.  
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4.3.2.1 Mapping Equilibrium positions (qualitative) 

The most basic information used for design of MSE systems is the 

locations of the stable, and unstable, equilibrium positions themselves. These can 

be plotted in a couple of manners to provide a qualitative feel for the possible 

stable position sets for a given problem. Figure 4.3 shows a qualitative phase plot, 

or plot of stable equilibrium position one and stable equilibrium two for the case 

of two equilibrium positions occurring, or a bistable design. Note that the data in 

Figure 4.3 (and all data in subsections of Section 4.3.2) comes from a problem 

involving a single degree of freedom rotating linkage in which the maximum 

position (along x-axis) is 360 degrees, or 2π radians. Therefore, all example data 

in this chapter used to describe the mapping method will have equilibrium 

positions only in the range [0, 2π] radians. See Section 5.2 for a complete 

description of the problem. 

Note in Figure 4.3, that the first stable equilibrium position is plotted in 

the form of a cumulative distribution function. Use of this concept will be 

described in Section 4.3.2.4 to quantify the feasibility of any desired solution for 

the MSE design problem. For now, one can think of the cumulative probability as 

the probability that the variable of interest (in Figure 4.3 this is equilibrium 

position one) has some value, x, or less. For instance, using Figure 4.3, 

equilibrium one has a 0.5, or 50%, probability of having a value of θeq,1 = 1.75 rad 

or less. In this case the minimum possible value is θeq,1 = 0. 
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The plot in Figure 4.3 arranges the data such that the equilibrium with the 

lowest value is always the ‘first’ equilibrium, or equilibrium one. Thus, the 

second stable equilibrium position, represented by the red ‘+’, can only be greater 

than the first equilibrium. Also, one can notice where the second equilibrium 

positions tend to be located relative to the first equilibrium position. By viewing 

where the red ‘+’ marks tend to reside for any chosen ‘first’ equilibrium point, 

one can gain an appreciation for where the second equilibrium position, 

dependent upon the first, can likely occur.  

Similar mappings can be made for systems that are tristable, quadrastable, 

etc. Figure 4.4 shows the mapping for a system with three stable equilibrium 

 

Figure 4.3. Qualitative mapping for two equilibrium positions. The first position 
is represented by blue ‘·’s, and the second by red ‘+’s. 
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positions, or a tristable system. Note how there seems to be certain bands where 

the stable equilibria can occur. Patterns such as this one will be unique for each 

system, and for simple and low degree of freedom systems graphical mappings 

can qualitatively represent the solution space quite well. 

 

4.3.2.2 Mapping natural frequencies and/or curvatures (qualitative) 

Just as done in Section 4.3.2.1, one can visualize other important design 

information, such as the natural frequency, of the desired MSE design solution. 

 

Figure 4.4. Qualitative mapping for a system with three equilibrium positions. 
The first position is represented by blue ‘·’s, the second by red ‘+’s, and the 
third by green ‘o’s. 
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By plotting the natural frequency of each stable equilibrium position versus the 

equilibrium position itself, one can begin to envision the possible frequencies 

attainable in the design. Figure 4.5 is an example plot of natural frequency and 

position for the case of two stable equilibria occurring during the Monte Carlo 

trials. Note how one can begin to visualize the range zof natural frequencies 

possible at each equilibrium position. The highest values for the first stable 

equilibrium position tend to be near zero radians and seem to get smaller as the 

first stable position gets larger. The possible natural frequencies of the second 

stable equilibrium seem to be highest near 6.2 radians with another high grouping 

around 4.2 radians. Figure 4.6 shows the natural frequency mapping for the 

tristable case. 
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Figure 4.5.  Mapping showing the range of natural frequencies versus the stable 
equilibrium positions at which they occur. This shows the corresponding data for 
the bistable MSE system represented in Figure 4.3. Blue ‘·’, and red ‘+’ represent 
the first and second equilibrium positions respectively. 
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Remember that each data point in Figures 4.5 and 4.6 represents a solution 

that occurs with a probability of one, since the Monte Carlo random trials indeed 

found this solution. Thus, one can imagine, that as the number of iterations in the 

Monte Carlo mapping increase to infinity, a complete representation of the 

solution space will unfold. As one attempts to solve for natural frequency and 

equilibrium position combinations that lie outside the ranges shown in Figures 4.5 

 

Figure 4.6.  Mapping showing the range of natural frequencies versus the 
equilibrium positions at which they occur, for the case of a tristable MSE system. 
Blue ‘·’, red ‘+’, and green ‘o’ represent the first, second, and third equilibrium 
positions respectively. 
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and 4.6, one can expect increasing difficulty and time in finding the unknown 

design variables. Again, this issue is more formally addressed in Section 4.3.2.4. 

 

4.3.2.3 Mapping energy values (qualitative) 

The third basic design information for a MSE system is the system energy 

increase required to move from one stable position to another stable position. This 

is essentially the energy difference between adjacent stable and unstable 

equilibrium positions, and it represents a threshold energy to overcome when 

changing stable equilibrium states. For the case of a bistable MSE system, this 

energy difference is plotted against the location of the stable equilibrium positions 

in Figure 4.7 (again for the same data as in Figures 4.3 and 4.5). 
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As seen in Figure 4.7, the energy threshold values seem to mostly lie in 

the range of zero to four joules, but energy differences up to 9 joules and over are 

clearly possible. There is a region near 4.5 radians for the second stable 

equilibrium where most of the energy differences are below 2 joules. This gives 

an indication that a second stable equilibrium position located near 4.5 radians 

may not be the most stable position since less energy, or disturbance, may be 

 

Figure 4.7.  Mapping showing the range of energy thresholds versus the stable 
equilibrium positions from which they occur for the case of a bistable MSE 
system. Blue ‘·’ and ‘+’ represent the energy increase required to get to the 
second equilibrium by going to the left and right respectively. The red ‘·’ and ‘+’ 
represent the same information for the second equilibrium position. 
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required to perturb the MSE system from that position. Thus, if a design criterion 

is to make the MSE stable positions very immune to system disturbances, then 

one may think about avoiding the position of 4.5 radians for the second stable 

position.  

Figure 4.8 shows the same energy threshold information for the tristable 

system represented in Figures 4.4 and 4.6. Note now how the breadth of 

possibilities has decreased as the energy thresholds are on average less than those 

 

Figure 4.8.  Mapping showing the range of energy thresholds versus the stable 
equilibrium positions from which they occur for the case of a tristable MSE 
system. Blue ‘·’ and ‘+’ represent the energy increase required to get to the 
second equilibrium by going to the left and right respectively. The red and green 
‘·’ and ‘+’ represent the same information for the second and third equilibrium 
positions respectively. 
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for the bistable case. This is to be expected since there are more extremals in the 

energy curve in the same amount of space (i.e. in range of [0, 2π] radians). Thus, 

there is less distance to travel between equilibrium positions in which to greatly 

increase or decrease the energy. 

 

4.3.2.4 Mapping interpreted as a Probability (quantitative) 

The information presented in Sections 4.3.2.1 – 4.3.2.3 shows the three 

main design criteria for MSE systems: stable equilibrium position (Section 

4.3.2.1), natural frequency of a stable position (Section 4.3.2.2), and energy 

difference necessary to overcome when escaping from an equilibrium position 

(Section 4.3.2.3). While the design engineer can gain valuable insight from the 

information represented in the figures of those sections, the same insight becomes 

more difficult to gain for systems with more stable positions and kinematic 

degrees of freedom. Also, the mappings of figures (Figures 4.3 - 4.8) are only 

general guides to design, since when one wants to design for multiple criteria 

simultaneously (i.e. stable position, frequency, and energy threshold) the coupling 

of the data becomes very unintuitive for the designer. 

This section aims to build on the following three sections by quantifying 

the Monte Carlo mapping method in a way that is not limited by the complexity 

of the problem in terms of number of stable equilibria or kinematic degrees of 

freedom. Section 4.3.2.1 hinted at the method when noting the use of a 

cumulative distribution function (CDF). To use a CDF, consider each design 

criteria as a random variable. By creating conditional CDFs for each design 
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criterion, one can take their derivatives to create conditional probability density 

functions (PDF). With a conditional PDF for each design criterion, one can 

integrate in a range about the desired values to quantify a probability, or 

likelihood, of a solution being possible. This probability is a number that can be 

related to the ease of a numerical optimization routine to solve for the unknown 

design variables.  

Keep in mind that engineering judgment is required to interpret this 

probability of finding a desired MSE system solution. Although this section 

describes quantifying the solution space for a given MSE system, the stochastic 

nature of the Monte Carlo mapping method does not allow one to describe the 

solution space with absolute certainty. Nonetheless, it helps achieve the goal of 

exploring the solution space while attempting to solve for the unknown design 

variables. The issue of how to interpret the results from the conditional PDF 

analysis is left for Section 4.3.3. 

 

4.3.2.4.1 Creating Cumulative Distribution Function (CDF) 

To describe the calculation of a probability, define the continuous CDF, 

CDFX(b), of a random variable X as follows: 

 

∫ ∞−
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for all real values b in the range -∞ ≤ b ≤ ∞ [Bowker and Lieberman, 1972]. In 

Equation (4.17), Eb
X is the event, or set of outcomes in the solution space, such 
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that the function X(ω) is less than or equal to the real number b, and PDFX(z) is 

the probability density function. Here ω is an element of the solution space, Ω, 

that represents a possible design criteria (i.e. stable equilibrium position, natural 

frequency, etc.) that has been generated during the Monte Carlo iterations. The 

notation P = {Eb
X} = P{ ω | X(ω) ≤ b} is interpreted as the probability that the 

event Eb
X will occur. Thus, as b → -∞, CDFX(b)→0, and as b → ∞, CDFX(b)→1. 

The practical approach to creating a CDFX(b) from the Monte Carlo data 

is to arrange the data by ordering a desired design criterion in a monotonically 

increasing fashion. Also, due to the problem kinematics, there may be some 

minimum and maximum values that the random variables, or design criteria, can 

attain, and the real number b in Equation (4.17) will have those same limits. 

Assume there is a total of N data sets generated during the Monte Carlo 

iterations. Some number of the N data sets, N1, have just one stable equilibrium 

position (event E1eq), some number, N2, have two stable equilibria (event E2eq), 

and so on. In designing a bistable MSE system, then consider only event E2eq with 

N2 sets of bistable data. To create the CDFX(b) for the first equilibrium position, 

pick an increment, for example 0.05 radians, which will define the resolution of 

the CDFX(b). Now cycle through each incremental range [0.0, 0.05], (0.05, 0.1], 

(0.1, 0.15], … and cumulatively count the number of sets from E2eq that have the 

first equilibrium in each range. By doing this, one can create a CDFX(b) for the 

first equilibrium position as shown in Figure 4.9. 
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4.3.2.4.2 Creating Probability Density Function (PDF) 

Once one obtains the CDFX(b) for a design criteria of interest, creating the 

PDF for that random variable is straightforward. The PDFX(z) for the continuous 

random variable, X, is the derivative of the CDFX(b) of Equation (4.17) (see 

Equation 4.18). 

 

dz
zdCDF

zPDF X
X

)(
)( =  (4.18) 

 

Figure 4.9.  Cumulative distribution function for stable equilibrium position one 
of a bistable MSE system. 
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Note that the notation PDFX(b) refers to the probability density of the random 

variable X to obtain the value z = b. To obtain a probability, one must integrate 

over some range of z values. The expression P{x2 ≤ X < x3} is the probability of 

the occurrence of the event, E2, containing ω in the Monte Carlo sample space 

such that X(ω) is greater than or equal to x2 and less than x3. In this instance, to 

obtain the probability of X being between x2 and x3, use those values as the 

integration limits of Equation (4.17) (see Equation 4.19). 
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Note that there are only two requirements for the PDFX(z) to satisfy:  

 

(i) PDFX(z) ≥ 0 for all z, and  
(ii) ∫

∞

∞−
= 1)( dzzPDFX   

 

In performing the calculations shown in Equation (4.18) on the CDFX(b) 

shown in Figure 4.9, one obtains the PDFX(z) for the first equilibrium position 

shown in Figure 4.10. Note in Figure 4.10 that there are two peaks of high 

probability density for the first equilibrium position to occur: one near 0.2 radians 

and the other near 0.9 radians. This shows how arbitrary the PDFX(z) can be for 

any given design criterion, or random variable. By performing the mapping 



 79

completely numerically, this method avoids the problem of fitting the data to any 

predetermined PDFX(z) (such as normal or exponential distributions).  

 

The usefulness of the PDF (for simplicity in notation simply say PDF = 

PDFX(z)) lies in its ability to provide a quantitative measure of the likelihood of 

being able to design the MSE system with a desired set of design criteria. In 

Figure 4.10, this desired design criterion is the location of the first equilibrium 

 

Figure 4.10.  Probability density function for stable equilibrium position one of a 
bistable MSE system. 
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position. In using a PDF, such as the one in Figure 4.10 and described in Equation 

(4.19), it is important to remember that to obtain a probability one must integrate 

the corresponding PDF over some range of desired design criterion. 

 

4.3.2.4.3 Conditional probability density functions to describe local solution 
space 

Sections 4.3.2.4.1 and 4.3.2.4.2 establish the method for creating 

probability density functions to describe the probability, or likelihood, of a design 

criterion to reside near the desired value. When one wants to describe the 

likelihood of more than one design criterion for the MSE system to occur 

simultaneously, the use of PDFs can again be used. This time each additional PDF 

is a conditional PDF. The computation of conditional probability is equivalent to 

calculating probabilities of events defined in a ‘reduced’ sample space. In other 

words, a conditional probability is defined as the occurrence of the event E2 

relative the reduced sample space defined by event E1. This is exactly the 

interpretation that will be used in this quantitative mapping method. Formally, the 

conditional probability can be represented as in Equation (4.20): 
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where P{E1}>0 must be true [Bowkers and Lieberman, 1972]. Equation (4.20) is 

read as ‘the probability of event E2 such that E1 is true.’ 
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In a similar manner, the conditional probability density function itself is 

defined. Suppose (X1, X2) represents a bivariate continuous random variable. In 

the MSE design situation, this is interpreted as if there are two design criteria of 

interest, for example (equilibrium position one, natural frequency at position one) 

= (Eeq1, f1). These two variables have a joint PDF as PDFX1,X2(u,v) and marginal 

PDFs of PDFX1(u) and PDFX2(v).  Then the conditional PDF of X2, given that X1 

= x1 (i.e. that X1 is fixed), is: 
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if PDFX1(x1) > 0, and the conditional PDF of X1, given that X2 = x2, is: 
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if PDFX2(x2) > 0. Note that Equation (4.21) can be interpreted as the “probability 

density function of variable X2 given that the event X1 = x1 has occurred.”  

 In using the Monte Carlo mapping method, explicit functional forms of the 

joint PDFX1,X2(u,v) and the marginal PDFs, PDFX1(u) and PDFX2(v), are 

unknown. Since the probabilities are calculated numerically, the accounting for 

the concept of joint PDFs is done by neglecting all Monte Carlo mapping data that 

does not satisfy the constraint of the previous random variable having already 

occurred. For example, assume there are 1000 sets of Monte Carlo data (i.e. 1000 
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equilibrium position one (Eq1) data points and the respective 1000 data points for 

the natural frequency at equilibrium one (f1)). If Eq1 = 1.0 is desired, and a range 

of ±0.2 about Eq1 is considered viable for design, then say 300 data points satisfy 

the inequality 0.8 ≤ Eq1 ≤ 1.2. To formulate the conditional PDF = 

PDFf1|Eq1=1.0(1.0,v), simply follow the methodology of Sections 4.3.2.4.1 - 

4.3.2.4.2 except using only the 300 data sets corresponding to the condition Eq1. 

 The benefit of the use of conditional PDFs described in this section is that 

the idea can be applied over and over again for each additional design criteria. For 

example, imagine an MSE system has two kinematic degrees of freedom (X, Y) 

and the goal is to have two equilibrium positions, (Xeq1, Yeq1) and (Xeq2, Yeq2), 

with a minimum energy increase to go between stable positions of ∆E12. This 

means that there are the following five design criteria [Xeq1, Yeq1, Xeq2, Yeq2, 

∆E12] to consider. Thus, one needs to have 5 - 1 = 4 conditional probability 

distributions to describe the system. This is not a problem since the design 

methodology leaves no inherent limit on the number of PDFs that can be used. 

Calculating conditional probabilities is valid as long as each one has P > 0. 

Should one eventually calculate a conditional probability of zero, there will be no 

data left for any subsequent calculations. The question of how to interpret this 

scenario is discussed fully in Section 4.3.3.2. 

 

4.3.2.5 Example use of mapping method with conditional PDFs 

 This section describes the use of the conditional PDFs to explore the 

solution space generated by the Monte Carlo iterations. The same data is used as 
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is shown in Figures 4.3, 4.5, and 4.7. This example use of the method 

demonstrates the probability calculations, and the following section, Section 

4.3.3, discusses some of the drawbacks and limitations of the probability mapping 

method. 

 The problem to explore is to find the probability: 

(i) of acquiring two stable equilibrium positions at x1 = 0.5 and x2 =  

5.0 radians, and 

(ii) for the stable equilibiria to have natural frequencies of x3 = 1.5 

rad/s and x4 = 2 rad/s for the first and second position respectively. 

 

In finding the CDFs for each design criteria, the increment to characterize 

the resolution of each CDF is 0.05 radians or rad/s. Also, the range about each 

desired design criteria for integrating each PDF is ±0.2 radians or rad/s. The 

minimum and maximum values for each equilibrium position are 0.0 radians and 

2π radians respectively (as determined by the problem geometry). Also, from 

Figure 4.5, both the first and second equilibrium natural frequencies seem to have 

an allowable range of about 0 - 13 rad/s. Thus, all of the necessary parameters are 

set to evaluate the solution space by use of the conditional PDF approach. 

The first probabilistic event, E1, to occur in the data is that there are two 

stable equilibrium positions. The probability for this is estimated as in Equation 

(4.23). 

109.049541
5413}{

 trialsCarlo Monte

equilibria 2 with trials
1 ==≈ N

NEP       (4.23) 
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The second event, E2, is the occurrence of the first equilibrium position in 

the desired range. The first PDF, generated for the first equilibrium position, is 

shown in Figure 4.11. Note that the desired equilibrium position, Eq1 = 0.5 

radians, is near a low spot in the probability density, yet clearly nonzero. A 

location of low probability density means there were relatively few data points 

generated by the Monte Carlo simulation at that location. Thus, when we perform 

the next conditional PDF calculation, there will be a relatively small amount of 

data left to analyze. This issue can result in running out of data points to use as 

more and more design criteria are analyzed, and Section 4.3.3.2 discusses this 

topic. 
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Figure 4.11.  Probability density function for the first stable equilibrium position 
the example bistable MSE system. 
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Subsequent calculation of the three additional conditional PDFs results in 

the profiles shown in Figure 4.12. Following the notation of the bivariate 

distribution shown in Equations (4.21) and (4.22), the PDF in Figure 4.11 can be 

expressed as PDFEq1 | 2eq(2eq, x1) and interpreted as ‘the probability density 

function of Eq1 given that there are two equilibria present.’ Similarly, the 

probability density of Eq2 conditioned on Eq1 = 0.5 radians is written as PDF(Eq2 | 

Eq1 = 0.5, 2eq)(2eq, 0.5, x2) and is shown in Figure 4.12(a). For the remaining design 

criteria, the PDF(f1 | Eq2=5.0, Eq1=0.5, 2eq) (2eq, 0.5, 5.0, x3) is shown by Figure 4.12(b), 

and PDF(f2 | f1=1.5, Eq2=5.0, Eq1=0.5, 2eq)(2eq, 0.5, 5.0, 1.5, x4) is shown by Figure 

4.12(c). 
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Figure 4.12 (a) Conditional probability density function for the second 
equilibrium position. 
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Figure 4.12 (b) Conditional probability density function for the natural 
frequency of the first equilibrium. 
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Note how each conditional PDF can be viewed as only a bivariate PDF, 

with the ‘first’ event, E1, being all of the previously occurring variables (or design 

criteria), and the ‘second’ event, E2, being the next random variable (design 

criterion) to be considered. In the current example, for the first PDF, shown in 

Figure 4.11, the first event is that the data contains two stable equilibrium values, 

E1 = {ω | 2eq}, and the second event is that the first equilibrium is at x1 = x1,des = 

0.5, E2 = {ω | x1 = Eq1 = x1,des, 2eq}= {ω | x1 = Eq1 = x1,des, E1}. Also, for the 

 

Figure 4.12 (c) Conditional probability density function for the natural 
frequency of the second equilibrium. 
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second PDF, shown in Figure 4.12(a), the first event is the second event of the 

previous bivariate distribution. Thus, in calculating Figure 4.12(a), the ‘first’ 

event is E2 = {ω | x1 = Eq1 = x1,des, E1}, and the ‘second’ event is E3 = {ω | x2 = 

Eq2 = x2,des, x1 = x1,des, 2eq}={ω | x2 = Eq2 = x2,des, E2, E1}. Following the same 

pattern in no0tation, for the third PDF shown in Figure 4.12(b), the first event is 

E3, and the second event is E4 = {ω | x3 = f1=x3,des, E3, E2, E1}. Again for the 

fourth PDF in Figure 4.12(c), the first event is E4, and the second event is E5 = {ω 

| x4 = f2=x4,des, E4, E3, E2, E1}. 

To find the probability for each event, Ei, integrate the respective PDF 

about the desired value for the design criterion. For example, event one, E2, is 

defined as the first equilibrium point being in the range [0.3 ≤ x1 < 0.7). This 

corresponds to P(E2) = PEq1(0.7) - PEq1(0.3). Equation (4.23) shows this 

calculation. 

 
086.0 )(}{

7.0

3.02 1
== ∫ dzzPDFEP Eq      (4.23) 

 

Similar calculations for the other conditional probabilities results in P{E3 | 

E2, E1} = 0.171, P{E4 | E3, E2, E1} = 0.153, and P{E5 | E4, E3, E2, E1} = 0.0. Thus, 

the total probability is the multiple of all probabilities from the mapping method, 

given in Equation (4.24). 
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Equation (4.24) shows a probability of zero. The reason is that a desired 

solution was chosen where none exists in the Monte Carlo data. This does not 

mean that the solution cannot occur, only that it is unlikely to be derived by 

randomly choosing design variables. Performing the same probability analysis, 

but slightly perturbing the desired set of design criteria could produce a 

probability greater than zero. In this way one can ‘probe’ the solution space to 

understand the possible solutions that can exist. This idea is more fully discussed 

in Section 4.3.3.2.  

The next section (Section 4.3.3) discusses more fully how to interpret the 

probability and PDF results from the quantitative Monte Carlo mapping method. 

Generalizations are made to predict how long one must run an optimization 

routine to obtain a desired solution, and how the designer can have confidence 

that he has put enough effort into solving the problem.  

 

4.3.3 Step 3: Interpretation of conditional PDF results 

The process of creating conditional probabilities is continued until all 

design criteria have been explored, or until one runs out of data. In reality, given 

the constraints of the problem, a solution either exists (probability of one) or it 
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does not (probability of zero). The problem is that there may not be enough 

information to make this decision. Performing slightly more statistical analysis on 

the Monte Carlo data can help make this decision, although in many cases, the 

determination of solution existence cannot be known with absolute certainty.  

There are the following possible outcomes from the mapping method that 

warrant discussion: 

 

Case 1: Ptotal > 0, and 

Case 2: Ptotal = 0. 

 

The following subsections 4.3.3.1 and 4.3.3.2 discuss how to make a 

decision on solution existence for each case of Ptotal > 0 and Ptotal = 0. Note the 

optimization results for all subsections of Section 4.3.3 result from using a genetic 

algorithm [Houck et al.]. In all cases, the parameters governing the operation of 

the genetic algorithm are kept the same in order to accurately compare the results. 

The focus here is on obtaining information gained from the mapping procedure 

and not on enhancing performance by tuning any particular optimization 

algorithm. Of course, different heuristic techniques and optimization algorithms 

may be better or worse at solving any particular problem, but performing the 

procedures outlined here are possible with the use of any algorithm with 

significant stochastic properties.  

The reason that stochastic optimization or search algorithms are needed 

for solving MSE system problems is for two main reasons: 1) the solution space is 
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inherently nonlinear making deterministic and gradient based solvers get easily 

trapped in local minima, and 2) the Monte Carlo mapping procedure is based on 

complete randomness and the more randomness in an algorithm, the more one can 

expect it to follow the Monte Carlo patterns. 

In choosing an optimization algorithm, or a heuristic search method, to 

solve an optimization problem, one can envision a continuum of optimization 

searching algorithms [Cagan et al., 2002]. Figure 4.13 shows this continuum 

representation used by Cagan in relation to packing problems, where some 

commonly used algorithms are placed in accordance to their amount of 

randomness. To the far left of the continuum are completely deterministic 

methods (GM = gradient method, HR = heuristic rule) with no randomness. To 

the far right are completely random methods (RS = random search, MC = Monte 

Carlo) with no guiding principle or intelligence. In the middle of the continuum 

are (going left to right in increasing randomness) extended pattern search (EPS) 

algorithms that have some stochastic elements into an otherwise deterministic 

search method. Hybrid methods (HB) are those that use stochastic methods early 

deterministic random

GM
HR

EPS HB GASA RS
MC

 

Figure 4.13. A continuum of search algorithms for solving optimization problems. 
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in solution to navigate the solution space and then use heuristic rules or gradient 

methods to reduce and refine the solution space. Simulated annealing (SA) 

methods and genetic algorithms (GA) incorporate a large amount of randomness 

and thus are often less efficient than methods further to the left on the continuum. 

They are also less likely to get stuck in local minimal solutions. 

Therefore, a rule of thumb in interpreting the results of the Monte Carlo 

mapping in terms of optimization algorithm performance is that the more 

randomness in the algorithm, the more one can expect the results to mimic those 

of the Monte Carlo data. This does not preclude the use of deterministic methods 

to solve MSE problems since they can be used in tandem with stochastic 

algorithms as hybrid methods. Although the choice of an appropriate optimization 

algorithm is a necessary step in the synthesis of MSE systems, this dissertation 

proposes no general method to choose a correct method. The body of literature on 

choosing correct numerical optimization algorithms for certain classes of 

problems is extensive, and any generalization on how to choose an appropriate 

algorithm for MSE systems is beyond the scope of this dissertation. 

To make the connection between the Monte Carlo data and optimization 

results, use is made of the concept of a run-length distribution (RLD) [Stützle and 

Hoos, 1999]. Here, the word ‘length’ is represented by the number of iterations 

required to solve the problem. The ‘speed’ at which a problem reaches solution is 

measured in how many iterations are needed (i.e. the fewer iterations required the 

easier and faster the problem is to solve). Either time or iterations can be used to 
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quantify how long it takes for an optimization algorithm to solve a problem, but 

iterations is used to make the discussion independent from computer capability.  

The RLD is a cumulative distribution function of the iterations required to 

solve the desired problem to within some threshold of the performance index. 

This threshold value is directly correlated with the Monte Carlo probability 

calculation. Recall that to obtain a probability it is necessary to specify a range 

about a desired design criterion. For example, if one desires an equilibrium 

position, x1,eq, we specify an acceptable range, dictated by ±δx1, for the actual 

equilibrium position. There is an associated range with each desired design 

criteria. For the purpose of creating RLDs, when each design criterion is inside its 

respective range, the solution is said to be found, and the algorithm stops iterating 

over the design variables.  

By altering the performance index of Equation (4.11), one can create a 

performance index incorporating the concept of the threshold value. To do this, 

have a term for each desired design criterion that is positive when the design 

criterion is outside of the acceptable range and is zero when it is inside the range. 

Equation (4.25) demonstrates this concept: 
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where n is the number of design criteria in the performance index, d is a generic 

design criterion, wi is the weighting of the ith design criterion, and dmax,i, dmin,i, and 
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ddes,i, are the maximum allowed, mininum allowed, and desired values for design 

criterion i. Thus, the threshold value for the performance index in Equation (4.25) 

is the minimum of all terms in Equation (4.25). If Equation (4.25) equals the 

threshold value, then it goes to zero and one is assured that all of the desired 

design criteria are within the allowed range as dictated in the probability 

calculation. Note the threshold value for the performance index in Equation (4.25) 

increases with larger ranges, ±δdi, making it easier to effectively solve the 

problem and reach zero performance index. In practice one can also incorporate 

the basic structure of Equation (4.11) to further refine the answer as much as 

possible. 

 

4.3.3.1 Step3a: Ptotal > 0 

 In this scenario, because the total probability of the mapping method is 

nonzero, there is at least one Monte Carlo data point inside the desired range for 

the design criteria. This actually means that there is a probability of one for 

obtaining the desired solution within the specified tolerance. Therefore, any 

nonzero probability means a solution does exist for the desired solution. At this 

point, one can proceed to using an optimization algorithm to solve for the 

unknown design variables. 

In calculating the probability one has already interpreted the desired 

engineering characteristics in terms of the parameters that describe the system 

potential energy about each local equilibrium. In other words, as described in 

Section 4.2, translate terms such as equilibrium position and natural frequency 
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into ades,i, bdes,i, and cdes,i of Equation (4.3). These factors can go into a 

performance index form similar to that of Equation (4.11) that may incorporate 

other factors including, but not limited to, those shown in Section 4.2.3 and its 

subsections. 

This section provides no examples of solving this case of Ptotal > 0 since 

they are inherently considered in the next section where Ptotal = 0. Refer to Section 

4.3.3.2 for the trends of solution run-length as Ptotal decreases from a positive 

number to zero. These trends present a understanding of how to interpret the 

Monte Carlo probability calculation. 

 

4.3.3.2 Step 3b: Ptotal = 0 

 Unlike the case where Ptotal > 0 guarantees that a solution exists, the 

calculation of Ptotal = 0 does not guarantee that a solution does not exist. But, by 

using an additional statistical analysis, one can gain a level of confidence in the 

existence of the desired MSE solution, and make a decision on how hard the 

problem might be to solve. 

 Recall that each conditional PDF is composed of fewer data points than 

the one before, and thus it is quite feasible that one will run out of data points 

before calculating all conditional probabilities. First of all, the problem of 

determining if there is enough data is only relevant for the case when Ptotal = 0. 

This result stems from Section 4.3.3.1 which states if Ptotal > 0, the solution does 

exist within the specified bounds, and one needs no further probability analysis to 

define solution existence. Having Ptotal = 0 essentially means that for some event, 
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Ei, the conditional probability is zero, Pi = 0, for i < n where n is the total number 

of design criteria, and all Pj > 0, for j < i. There is only one way in which Pi = 0 

occurs: the ith desired design criterion range does not include the space where any 

existing data points lie. In other words, looking at Figure 4.15 for the 3rd design 

criterion, this is as if one desires a value of 10 ± 0.2 rad/s. Since the probability 

density function is zero about 10 rad/s, this conditional probability is zero. All 

further jth probabilities, for i < j ≤ n, are also zero by definition of the conditional 

probability. 

 Note that the earlier Pi = 0 occurs (i.e. smaller ‘i’), the less information 

that exists and the less knowledge one has of the full desired solution occurring. A 

problem in using the Monte Carlo data is knowing if one has produced enough 

data points. If the probability calculation results in Ptotal = 0, one can gain a feel 

for how probable the solution is in reality, by searching the solution space with 

the mapping method until one achieves a solution with Ptotal > 0. 

It is relatively easy to ‘search’ the solution space for probable solutions by 

perturbing the desired design criteria and viewing each PDF independently as one 

calculates the probability. Suppose one wants the following bistable desired 

design criteria: x1,des = 0.3 ± 0.2 and x2,des = 4.0 ± 0.2 radians, and x3,des = 3.0 ± 0.2 

and x4,des = 2.1 ± 0.2 rad/s. The respective PDFs are shown in Figure 4.14, and the 

calculated probability of the desired solution is zero. To ensure a solution with 

probability greater than zero, the designer can do one or both of two things: 

increase the allowable range of some desired criteria or change one or more 

desired design criteria values to those where the respective probability is not zero.  
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Figure 4.15 shows a case in which the allowed range for the desired 

frequencies is increased to vary by ± 0.3 rad/s, and now the expanded range 

encompasses a mapping data point such that Ptotal > 0. Also, Figure 4.16 

represents the case where the allowed range about each data point is kept the 

same, but the desired value, x4,des, is changed to x4,des = 2.0 ± 0.2 rad/s. Again, the 

probability is now greater than zero, showing that this desired solution exists for 

these ‘perturbed’ cases. Both of the results from Figures 4.15 and 4.16 give one 

reason to believe that the original desired solution, with the PDFs in Figure 4.14, 

is actually quite close to known existing solutions from the Monte Carlo mapping 

data.  
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Figure 4.14.  Individual conditional PDFs. The total probability is zero since the 
desired value of the 4th design criterion is 2.0 rad/s is out of the range of data. 
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Figure 4.15.  Individual conditional PDFs. The total probability is now 
greater than zero since the allowed range for the 3rd and 4th design criteria are 
increased. 
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 To obtain a feel for the influence of the probability number on the ease of 

solving a problem, a series of solutions are analyzed where there is a decreasing 

probability as one of the design criteria is moved from its feasible range, as 

defined by the mapping procedure.  

Consider the example linkage problem of Chapter 5 in Section 5.2 where 

the link lengths are of a fixed length, and the springs attached to the ground are 

 

Figure 4.16.  Individual conditional PDFs. The total probability is now greater 
than zero since the desired value for the 4th design criterion is decreased slightly 
to include at least one data point. 
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also in a fixed position. There are six desired design criteria: the three equilibrium 

positions and their respective frequencies. A set of Monte Carlo mapping data is 

generated with 33892 points and 1009 of them have three equilibria. The desired 

design criteria are [θ1,eq, θ2,eq, θ3,eq, f1, f2, f3] = [0.2 ± 0.2, θ2,eq ± 0.2, 4.5 ± 0.2, 1.80 

± 0.2, 0.65 ± 0.2, 1.10 ± 0.2], where θ2,eq varies with the following desired values 

θ2,eq = [2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1]. The total probability associated with each 

of the seven trials is shown in Figure 4.17 as probability versus θ2,eq. 

The probabilities for θ2,eq = [2.5, 2.6] are nonzero. Thus, one would expect 

their solution to be relatively easy since a randomly generated set of design 

variables with no intelligence produced the desired solution in almost 34,000 

tries. The other five desired solutions have zero final probability. Figures 4.18 and 

4.19 show each successive probability value as each design criteria was 

considered with its conditional probability. Figure 4.19 is a close-up view of 

Figure 4.18. The x-axis is the cumulative number of design criteria considered, 

with the first criterion being the probability of having three stable equilibria 

anywhere (assumed = N3eq/Ntrials). The other criteria considered in order from 2-7 

are θ1,eq, θ2,eq, θ3,eq, f1, f2, and f3, respectively. 
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 From looking at Figures 4.17 – 4.19, since the second desired criterion is 

varied from a location of nonzero mapping probability to a location of zero 

mapping probability, it makes sense that at some value the solution may no longer 

be possible. The desired solution will eventually leave the locally feasible range. 

The critical value of this varying design criterion is an unknown, and it defines a 

local boundary of the possible solution space. A goal of the Monte Carlo mapping 

method is to enable the design engineer to find this boundary with some degree of 

confidence.  

 Notice in Figures 4.18 and 4.19, that as θ2,eq increases, the probability 

values at and after the third design criteria (i.e. θ2,eq) decrease. Not only do the 

 

Figure 4.17.  Total probability from the Monte Carlo mapping data as the second 
equilibrium position is varied from 2.5 radians to 3.2 radians. 
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probability values decrease, but the number of data points left for subsequent 

conditional probability analysis also decreases. This is important to note because, 

as the accumulating probability in Figures 4.18 and 4.19 decreases at a faster rate, 

the less one knows about the subsequent design criteria. This follows from the 

basic premise of the statistical law of large numbers. The more data one has, the 

more confident one becomes of any emerging pattern, or statistical measures.  
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The major result of the probability derived from the Monte Carlo mapping 

is that its probability correlates directly to the run-length required to find a desired 

solution to a problem. Figure 4.20 shows the run-length distribution (RLD) for 

solving the seven different sets of design criteria using a genetic algorithm. The 

RLD is a cumulative distribution function of the number of iterations, or run-

length, required to satisfactorily solve the optimization problem. As is easy to be 

seen from Figure 4.20, the most probable solutions (in the Monte Carlo 

probability sense) are solved most quickly and most assuredly. Figure 4.20 
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Figure 4.18.  Accumulating probability from the Monte Carlo mapping data as 
subsequent design criteria are analyzed. 
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represents 30 attempts to solve for each of the seven sets of design criteria with a 

limit of 5000 iterations each trial. The solution attempts whose RLD goes to one 

means that every attempt succeeded in finding the desired solution within the 

specified tolerances for each design criterion. These tolerances are determined by 

the ranges used to calculate the Monte Carlo probability (see Sections 4.3.2.4 and 

4.3.2.5). For instance, if the candidate solution produces all design criteria within 

their acceptable ranges of ± 0.2 about the desired value, then the candidate 

solution is considered successful. Note in Figure 4.20, only the trial with the 

second desired equilibrium as θ2,eq = 3.2 radians fails to solve the problem at all 

after 30 attempts of 5000 iterations. Also, the trial with θ2,eq = 3.1 radians solves 

the problem satisfactorily about half of the time within 5000 iterations. Thus, one 

can conclude that there is a definite tendency for problems to become less 

probable to solve as the Monte Carlo mapping probability goes further from the 

boundary where Ptotal > 0. 
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In viewing Figure 4.20, it is obvious that a result of Ptotal = 0 from the 

Monte Carlo mapping does not mean a solution does not exist. What it does mean 

is one of two things: (i) either the desired solution is not possible, or (ii) the 

solution is possible but lies very near a boundary that separates possible from 

impossible solutions. As one attempts to obtain solutions further away from those 

with Ptotal > 0, the solution takes longer and soon will become impractical, if not 

impossible, in terms of the number of iterations required to solve. 
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 The characteristic shape of RLDs of Figure 4.20 are fairly typical of 

results from solving constraint satisfaction problems (CSP) with methods called 

stochastic local search algorithms [Stützle and Hoos, 1999]. These are also often 

called Las Vegas algorithms, and their main characteristic is that if a solution 

exists, they are guaranteed to find it by searching the entire solution space. The 

CSP is a mathematical problem composed of clausal statements such as “x1 or 

not-x2 or not-x3.” Generally each variable, xi, can be true or false. There are 

several variables and clauses, and the task is to find the assignment of truth values 
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Eq2 = 2.8

Eq2 = 2.7

Eq2 = 2.9

Eq2 = 3.0

Eq2 = 3.1

Eq2 = 2.6
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Figure 4.19.  Zoomed view of Figure 4.18. 
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to the variables such that a set of clauses is satisfied. Solving these problems is 

generally accomplished by branching algorithms which are essentially heuristic 

search techniques that can search all of the solution space given enough time. 

 This connection of the CSP with the MSE design problem is not direct 

since CSPs deal with discrete (values of true or false) instead of continuous 

design variables. In the CSP, the changing value, say from true to false, of one 

variable can make a satisfiable problem suddenly unsatisfiable. Thus, a defined 

boundary separating possible from impossible problems is likely not continuous, 

but the distinction of a solvable problem is obvious: either all constraints (clauses) 

are satisfied or they or not.  

In the MSE design problem, the constraints are not necessarily so easily 

written or checked, but the concept of a distinct boundary which separates 

possible from impossible solutions is most certainly locally continuous. This is 

because MSE systems, as defined in this dissertation, are only composed of 

energy storage elements with smooth and continuous nonlinearities. So ignoring 

effects such stiction, backlash, and quantum energy levels removes any possibility 

for energy storage elements whose energy is not C1 continuous. 

The RLDs from solving ‘easy’ CSPs often follow the cumulative 

distribution function of the exponential distribution as their probability goes to 

one. Sometimes only the beginning of RLD will follow the exponential 

distribution where the RLD then has a plateau in which very few to no more 

solutions are found [Stützle and Hoos, 1999]. Other times the RLD rises faster 

than a best-fit exponential distribution. This has practical significance in choosing 
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how long to run the optimization routine, and whether or not to use a restarting 

procedure. 

A characteristic of an exponentially distributed random variable, in this 

case run-length, enables one to determine effective run-lengths to use for solving 

problems with exponential RLDs. This property is that if a given algorithm has an 

exponential RLD, then the probability of finding a solution by running the 

algorithm n times for time t is the same as when running the algorithm once for 

time nt [Stützle and Hoos, 1999]. Even if the RLD is not sufficiently 

exponentially distributed, it still gives information on the speed, or ease, at which 

the problem is solved. This information leads to coming up with a rationale for 

deciding how much effort to spend in solving a problem with Ptotal = 0. This 

determination of ‘effort’ is the most important purpose of the Monte Carlo 

mapping method, and by relating it to the Monte Carlo probability, it is algorithm 

independent (although any RLD is algorithm dependent). By using both the 

Monte Carlo probability and the RLD concept, one can characterize the boundary 

that divides existent MSE solutions from the nonexistent. 
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A safe assumption on the minimum run-length for finding the desired 

solution where Ptotal = 0, can be the run length of a nearby perturbed case where 

Ptotal > 0. This is exemplified by Figure 4.20 showing that the RLD increases 

more slowly as one gets further from the mapping region where Ptotal > 0. Thus, 

from the probability information in the Monte Carlo mapping, one creates a sort 

of baseline best-case scenario for how long it will take to solve the desired 

problem. The designer can reasonably expect the RLD of the Ptotal = 0 case to be 
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Figure 4.20.  RLD of the eight different desired solutions with probabilities 
shown in Figures 4.17 - 4.19. 
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worse than the incrementally perturbed case where Ptotal > 0. By monotonically 

changing the perturbation of the chosen desired design criteria from a solution 

space where Ptotal > 0 into the region where Ptotal = 0, one can obtain RLDs for 

each perturbed case such as in Figure 4.20. 

As one creates the RLD, one of two things will end the search for the 

solution: (i) the perturbation from the original Ptotal = 0 case will be zero and the 

problem will be solved, or (ii) for some perturbation away from the original Ptotal 

= 0 case, the RLD will become sufficiently long as to influence the designer that 

too much time is required to solve the problem with the given algorithm and 

parameters (note the limit on this time is infinity for a problem with no solution). 

For instance, from Figure 4.20, one can see that a desired solution with θ2 in the 

range [2.5, 3.1] radians is easily attained. If one desires a solution with θ2 near 3.2 

radians, one can note that a considerable amount of time (number of iterations or 

restarts) is required to solve the problem. One can also begin to expect that a 

solution does not exist and that the topology of the problem must change to 

pursue the desired solution further. But, a question may still remain as to whether 

the designer’s optimization algorithm is ineffective, or if the desired solution is 

indeed outside of the possible solution space. Because of the nature of MSE 

system design being based on energy curves, there is a way to make this 

determination. 

The difference in the use of the RLD for CSPs and MSE problems lies in 

the goal for each problem. Most of the time, the goal of analyzing CSPs is to test 

new algorithms and document their effectiveness relative to other algorithms or 
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the particular branching heuristic used. In the MSE design problem, the type of 

optimization algorithm used to solve the problem is not of tantamount importance, 

although an effective algorithm is necessary. What is important is if a desired 

solution can be achieved and how long it might take to achieve it. The 

investigation of this goal is done by looking at how the shape of the energy curve 

changes as a desired solution becomes impossible in a region of Ptotal = 0 from a 

region of Ptotal > 0. 

Consider solving for the three equilibrium positions and frequencies as 

demonstrated in Figures 4.17 – 4.20. As the second equilibrium position, θ2,eq, is 

increased, the solution eventually becomes infeasible in the sense that it takes 

more than 5000 iterations of the genetic algorithm to obtain a solution. In terms of 

the energy curve shape, what is happening? A pitchfork bifurcation diagram, 

shown in Figure 4.21, helps explain. It is often used to describe equilibria of a 

single nonlinear differential equation of one state variable. Often a single 

parameter is varied that changes the equilibrium locations for the dynamic system. 

In Figure 4.21, as the parameter λ is increased, one stable equilibrium splits into 

three equilibria, two stable and one unstable, upon reaching a critical value. In 

terms of a MSE system, the pitchfork bifurcation can describe the transformation 

of a local equilibrium (stable or unstable) point. Figure 4.21 can also be viewed 

going left or right and for the situation in which the stable and unstable locations 

are switched. 
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For a dynamic system with one state variable, the equilibria presented in 

the pitchfork bifurcation diagram are static. For systems with more than one state, 

one must consider bifurcations of dynamic equilibrium positions as well. Since 

MSE systems only design static stable positions, only the potential energy curve 

need be discussed in terms of bifurcating extremal points. This is essentially a 

limiting case of full dynamic stability where all generalized momenta of the 

system are zero. 

As the MSE system design methodology is described, only the energy of 

the system need be calculated to perform the design synthesis. Again, the reason 

for this is to simplify the mathematics for problems with large numbers of 

Stable Eq.

Stable Eq.

Stable Eq.

Unstable Eq.

Changing parameter, λ

 

Figure 4.21.  Pitchfork bifurcation diagram showing one stable equilibrium split 
into two stable and one unstable equilibria as a parameter is varied. 
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parameters, or design variables. In viewing a bifurcation scenario, the MSE 

design methodology does not look at varying design variables, but instead at 

varying a design criterion. This falls in line with the methodology’s focus on the 

desired design criteria (i.e. equilibrium position, frequency, etc.) and not design 

variables. 

Recall again the design case represented in Figures 4.17 - 4.20 that varies 

the second desired equilibrium position. Upon reaching an infeasible region in the 

solution space, one ‘far’ from the region with Ptotal > 0, the desired solution with 

θ2,eq = 3.2 seems no longer possible. As an equilibrium point moves out of a 

feasible region, this means that it essentially disappears from the energy curve. 

For visualization purposes, one scenario has three equilibria (two stable and one 

unstable) converge into one stable point. This situation is as shown in Figure 4.21 

for decreasing λ. Here, in the case of the MSE system, the incrementing 

parameter is not a single system design variable, but instead is a design criterion, 

θ2,eq. This is fundamentally different than the traditional view of bifurcation 

analysis. Instead of varying a parameter and solving for the equilibrium point, one 

can vary the equilibrium point and see if the optimization routine can solve for it 

while it varies every parameter, or design variable. 
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Figure 4.22 shows a schematic of what one might expect to happen when 

an equilibrium position becomes no longer valid as its desired value is increased 

out of its feasible range (from region of Ptotal > 0 far into a region of Ptotal = 0). 

The equilibrium, Estable,1, has its desired value incrementally increased, and the 

optimized energy curve must have a slightly different shape to accommodate this 

change. After the desired value is increased too much, constraints in the problem 

cause the three equilibria to ‘converge’ together at the new Eunstable,2. This 

phenomenon can be described by using the three main variables that have been 

the focus of the entire design method: equilibrium position (a), equilibrium energy 

value (b), and equilibrium curvature (c) (see Equations 4.3 and 4.10). 

 

Figure 4.22.  Example of equilibrium points converging (reverse bifurcation) as 
the desired value, Estable,1 is increased out of its possible range. 
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As a design criterion is varied to a value not in the solution space, the 

equilibrium positions and energy values of some adjacent unstable and stable 

equilibria must become equal as they converge. If they did not become equal, then 

by definition they could never converge to the same point in the bifurcation 

diagram. Also, the curvatures of these equilibria approach the same value as the 

bifurcation point is approached as described in LEMMA 1. 

 
LEMMA 1:  Consider the solution space limit where three adjacent equilibria, 
two stable and one unstable (two unstable and one stable) converge to one stable 
(unstable) equilibrium. As a pair, one stable and one unstable, of these three 
adjacent equilibrium points approach the bifurcation point, they also approach 
each other. Also, in the limit, they acquire both equal energy value and curvature. 

 

The proof of LEMMA 1 is done by using a cubic polynomial to describe 

the local energy about two equilibrium points, one stable and one unstable. Just as 

a quadratic polynomial is the lowest order that can describe one equilibrium 

position, a cubic polynomial is the lowest order that can describe two adjacent 

equilibria. Equation (4.26) is the cubic polynomial that describes the local energy 

about the two equilibria. Other equations of relevance are Equations (4.27 -4.29) 

which are the first derivative, second derivative (curvature), and equation of the 

equilibrium points respectively, corresponding to Equation (4.26).  
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Equation (4.29) is the solution in setting Equation (4.27) to zero, and 

solving for the displacement, q. The solution to Equation (4.29) can be two real 

numbers or a complex conjugate imaginary pair, depending on the coefficients, ei. 

This dependence is dictated by the descriminant, terms under the square root, of 

Equation (4.29). If the descriminant is negative, the solutions are imaginary, and 

if it is positive, the solutions are real. Imaginary solutions mean the equilibria do 

not exist in the energy curve, and real solutions mean that they do exist. Repeated 

roots represent a critical point where the equilibria have converged together. 

When three equilibria converge into one, as depicted in Figure 4.22, this 

essentially means that two solutions have ‘vanished’. In reality, they have not 

vanished, but their solution has become imaginary, as dictated by the 

descriminant of Equation (4.29) going from positive to negative.  

During the optimization procedure of the design methodology, one tries to 

make a candidate energy shape approach the desired energy shape. If the 

candidate energy curve can approximate the desired energy closely enough, a 

candidate version of Equation (4.29) produces two real solutions where one is a 

stable equilibrium and the other an unstable equilibrium. If not, the candidate 
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energy in the region of interest can only produce imaginary solutions, thus 

signifying that the solution is not being achieved. This transition from real 

possible solutions in a region of Ptotal > 0 to imaginary solutions in a region of 

Ptotal = 0 must occur as the two desired equilibria of Equations (4.27) and (4.29) 

approach each other. As they approach each other, by definition their location 

becomes the same, at which case Equation (4.29) has repeated roots. Since the 

two equilibria cannot have the same sign in curvature when real, when they 

become repeated roots they have equal curvature. Also, obviously the repeated 

roots have the same energy value. 

LEMMA 1 is represented in Figure 4.22 by the fact that the energy curve 

tends to a straight line in the region where the bifurcation is taking place. The 

reason that θstable,2 and θunstable,2 seem to ‘disappear’, is that their position becomes 

imaginary. The trend described in LEMMA 1 is exemplified in Figure 4.23 for the 

optimization solutions represented in Figures 4.17 – 4.22. Pay attention to the 

solutions that are less probable and have longer RLDs. For these cases the 

distance between the second stable and second unstable, (θunstable,2 - θstable,2), 

becomes smaller. Also, the energy curve becomes more flat as the energy values 

of θstable,2 and θunstable,2 approach the same value near 0.025 J. 
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Figure 4.23. Representative energy (in joules) curves that corresponding the 
RLDs of Figure 4.20 for (a) θ2,eq = 2.5, (b) θ2,eq = 2.7, (c) θ2,eq = 2.9, (d) θ2,eq = 
3.0, and (e) θ2,eq = 3.1 radians. 
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The solution trend of a cubic polynomial approximating the local energy 

of two equilibria leads to a guiding principles to decide if one is indeed trying to 

solve for a solution which is possible. As discussed previously, the equilibrium 

positions of the cubic become imaginary when there are no longer two ‘humps’ in 

the energy curve, signifying that the equilibria are non-existent in the energy 

curve. As the cubic goes from real to imaginary solutions, both the equilibrium 

positions and their energy values approach each other at the transition. Thus, one 

can use these trends to see the rate at which one is approaching an impossible 

solution space. If one plots the difference in position and energy value for all 

adjacent equilibria (i.e. stable and unstable pairs), one set will approach zero as 

the solution leaves the possible solution space. The rate at which these approach 

zero as one increments the desired solution from a position in the space with Ptotal 

> 0 to somewhere far into Ptotal = 0 can indicate the boundary between possible 

solutions and impossible solutions. Figure 4.24 shows this trend corresponding to 

the plots in Figure 4.23. 

In Figure 4.24 (a), the trends of the difference in energy values of adjacent 

equilibria, (Eunstable – Estable) = (bunstable – bstable), are plotted for each stable 

equilibrium position as the desired solution becomes less probable moving to the 

right. Note there are two values for each stable point, represented by a dot and a 

plus, since there is an unstable point both to the left and right. Figure 4.24 (b) 

shows the trend in (θunstable – θstable) = (aunstable – astable) for each stable equilibrium. 

As the arrows in Figure 4.24 (a) show, there is a revealing rate of decrease for the 
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values involving the second and third stable equilibrium. From this Figure and in 

terms of the bifurcation diagram of Figure 4.21, the three equilibria that are 

‘converging’ to one are θstable,2, θunstable,2, and θstable,3, where the unstable point is 

between the two stable points. As per the bifurcation diagram, these converge to 

leave one stable equilibrium in the local region. This is shown in Figure 4.23 as 

the final equilibrium positions go from [θstable,2, θunstable,2, θstable,3]  θstable,3 = 4.5 

radians. 
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Figure 4.25 shows the same results, except by plotting the actual energy 

and equilibrium position values. Figure 4.25(b) clearly shows the perturbed 

variable, Eqstable,2, being increased. Note how Equnstable,2 decreases to converge to 

the same location as Eqstable,2. This is precisely the data that is indicated in Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. As Eqstable,2 is increased, and thus the Monte Carlo probability 
decreases, the difference between stable and unstable energy values (a) goes to 
zero, as shown by the arrows. Also, (b) shows the tendency of the difference 
equilibrium position between adjacent equilibria goes to zero. 

increasing Eq2 position 

aunstable - astablebunstable - bstable

Eqstable,1 Eqstable,2 Eqstable,3 Eqstable,1 Eqstable,2 Eqstable,3

(a) (b)
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4.24 as the difference between the 2nd stable and unstable points, both in position 

and energy value, goes to zero. 

 

4.3.4 Mapping in multiple degree of freedom systems 

Expanding the mapping procedure to systems with more than one 

kinematic degree of freedom is straightforward by following the previously 

 

Figure 4.25. Tracking the trends in (a) equilibrium energy value and (b) 
equilibrium position, as Eqstable,2 is increased. Stable and unstable positions are 
represented by ‘⋅’ and ‘+’, respectively. 
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described approach. There is more computational effort required due to the need 

to search for equilibrium points in multidimensional spaces. Remember, the 

equilibrium points in the energy ‘surface’ must be found first before curve fitting 

and logging the second order coefficients as parameters characterizing the 

equilibrium points. Thus, more time and data storage are required as the degrees 

of freedom increase. The determination of equilibrium points is done following 

the procedure outlined earlier in Section 4.2.5. 

Now the quantitative mapping method using the conditional PDFs 

becomes even more useful. An additional degree of freedom provides no 

difficulty in analyzing the data. It simply becomes another variable in the analysis 

that can be represented by a PDF. 

 

4.4 SUMMARY OF DESIGN SYNTHESIS METHODOLOGY 

This chapter discusses all implications of synthesizing MSE systems. It 

begins with a discussion of the philosophy behind the design process. Then the 

mathematical foundation, based on mechanical stability theory, is derived and put 

into a form which is useful for numerical optimization. A Monte Carlo mapping 

method provides a way to ‘visualize’ the possible solution space. This mapping is 

discussed in both a qualitative and quantitative way, such that MSE problems of 

any size (number of design variables or degrees of freedom) can be designed 

given that the energy of all energy storage elements can be calculated. The 

chapter concluded with a discussion pertaining to determining the existence or 

nonexistence of solutions. 
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CHAPTER 5:  CASE STUDIES AND EXPERIMENTAL 
RESULTS 

 

5.1 DESCRIPTION OF CHAPTER CONTENTS 

This chapter describes results of using the design methodology of Chapter 

4, and some experimental results of example MSE systems. Section 5.2 describes 

a purely computational case study of a four-bar linkage problem. The problem is a 

great problem for study because of its high nonlinearity yet well-understood 

kinematics and energy storage. Section 5.3 discusses some experimental results 

on a problem that involves a pendulum, springs, and permanent magnets to create 

multiple stable equilibrium points. This problem is mostly concerned with 

validating the design methodology in terms of its approximations of stable 

frequency and position. The benefit of analyzing the problem in Section 5.3 is that 

it is intuitive and gives confidence for the use of the methodology. Finally, 

Section 5.4 discusses a problem that has two kinematic degrees of freedom. The 

problem is inspired by the concept of making a fish change its length and have a 

different natural frequency at each length. Thus, the two degrees of freedom are 

length and rotational angle. This problem is composed of an “x-shaped” linkage 

structure that changes length, and the stable lengths are determined by the energy 

change between permanent magnets located on the system. 
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5.2 FOUR-BAR LINKAGE CASE STUDY 

The sample synthesis problem is that of a four bar linkage with linear 

springs attached to the links of the mechanism (see Figure 5.1). The linkage is 

assumed a Grashof mechanism, or Class I linkage, throughout the entire 

discussion [Erdman, et al., 2001]. Thus the linkage is sized such that the input 

crank (link I) can fully rotate 360o. The linear translational springs are the only 

energy storage elements. Although the springs are linear, the linkage provides the 

nonlinear motion that enables multiple stable equilibria. Kinematically this is a 

one degree of freedom system described by the input crank angle, θ.  

The goal of the synthesis problem is to determine a combination of the 

following design variables: the spring constants (ki), and free lengths (loi) of the 

eight springs, the locations of anchors for the springs fixed to the ground (x1, x2, 

y1, and y2), and link lengths such that the MSE system has desired equilibrium 

properties for each equilibrium position, θ, stable or unstable. The problem is 

solved in two solution scenarios: Problem 1 of Section 5.2.1 assumes the link 

lengths and spring anchors (x1, x2, y1, and y2) are fixed, and Problem 2 of Section 

5.2.2 allows those characteristics to become design variables during optimization. 
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Figure 5.1. The case study consists of a four-bar linkage with eight linear springs 
connected as shown in the figure. 

 

More formally, a description of the synthesis problem is to design the 

MSE linkage system to meet any combination of the following objectives: 

 
1) stable equilibrium at θn,    n = 1, 2, … 
2) natural frequency ωn,n = fn at stable equilibrium θn,  n = 1, 2, … 
3) unstable equilibrium at θm,    m = 1, 2, … 
4) curvature at unstable equilibrium θm,    m = 1, 2, … 
5) certain difference in energy between equilibria,  
 ∆E = Estable,n - Eunstable,m    n, m = 1, 2, … 

 

x1

y1

y2

x2

Link I

Link II

Link III

Link IV

θ
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The potential energy of the system is the summation of the eight spring 

energies: 
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where ki and loi are the spring constant and free length for spring ‘i’ respectively, 

and li(θ) is the length of spring ‘i’ as a function of θ. Writing out the full 

expression for the energy in the system as an explicit function of θ involves many 

trigonometric functions needed to determine the link positions of a four bar 

linkage. Theoretically, one could take the full energy expression, E(θ) of Equation 

(5.1), and solve for design variables that satisfy the set of Equations (4.1) and 

(4.2). But in practice, the mathematics is unwieldy and forces one to consider the 

many imaginary as well as real solutions without the guarantee of a real solution 

existing. Because of this, we use the design synthesis methodology of Chapter 4 

that involves numerical optimization and mapping information from the system 

potential energy. 

 

5.2.1 Problem 1: Linkage link lengths are fixed 

The first example problem is now described. The subsections of this 

section correspond to the basic design steps of Section 4.3 in Chapter 4. 
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5.2.1.1 Step 1: Decide on important Engineering Characteristics of each 
Equilibrium 

Solving the linkage problem with fixed link lengths corresponds to a 

scenario in which the linkage has previously been designed to go through certain 

coupler positions or to have a desired coupler curve. Thus, changing the lengths 

of the links is not a design option, since differing link lengths would cause new 

kinematics that differ from the already desired kinematics. Since the kinematics 

are predetermined, solving for equilibrium positions (θ) is a feasible design goal 

given that one may have certain linkage orientations that need be stable. One can 

also meaningfully synthesize the frequency, curvature and energy value at each 

equilibrium. In this problem it is also assumed that the links have a fixed linear 

density (and thus mass and rotational inertia), and that the springs attached at 

positions (x1, y1) and (x2, y2) are fixed. 

Thus, the purpose of this MSE synthesis problem is defined as creating a 

desired number of stable equilibrium positions with prescribed locations and 

natural frequencies. Formally, we can describe the optimization problem as 

follows: 

 

min F(ki, loi)  i = 1, 2, …, 8 

s.t.  
1) ki , loi ≥ 0,  - spring constants and free lengths positive 
2) ki < kmax,  - spring constants below some maximum 
3) loi < lomax,  - free lengths below some maximum 
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The performance index, F(ki, loi), used for this problem is arranged as 

described in Chapter 4, Section 4.3.2.5. There is a desired set of solution criteria 

along with an acceptable range about each desired criteria. For Problem 1, the 

desired solution criteria are the (1) stable equilibrium positions, θdes,stable, (2) 

respective natural frequencies, fn,des, and (3) unstable equilibrium curvatures for 

three stable equilibria, or a tristable design. The performance index is specified in 

Equation (5.2) for the three desired stable and unstable equilibrium positions in 

this example. 
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From Equation (5.2), if F = 0, then the performance index has reached the 

minimum, and the desired solution criteria have been attained. Notice that the 

Equation (5.2) uses the energy curvature, c, and not the natural frequency. The 

reasoning for this is to keep the correct sign of the performance measure as 

discussed in Section 4.2.3.1 of Chapter 4. The conversion of desired natural 

frequency to desired curvature is shown in Equation (4.12) of that Section 4.2.3.1. 
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The performance index weightings for this problem were set equal at wa,i = wc,i = 

10. 

 

5.2.1.2 Step 2: Monte Carlo mapping and probability calculation 

For the solution demonstration, the following fixed design parameters 

were chosen: lI = 0.7, lII =0.9, lIII = 1.6, and lIV =1.7 for the link lengths and x1 = 

1.9, y1 = -0.7, x2 = 0.2, and y2 = -0.7, all in meters. The maximum values for the 

design variables are kmax = 3.0 N/m and lomax = 2.0 m, and the minimum values 

are kmin = lomin = 0.0 m. The linear density of the links is 1 kg/m, to produce the 

following link masses and mass inertias about the center of mass: mI =0.7 kg, mII 

=0.9 kg, mIII =1.6 kg, II = 0.0286 kg*m2, III = 0.0607 kg*m2, and III = 0.3413 

kg*m2.  

A Monte Carlo simulation was performed using 20,000 random iterations 

of the design variables. For all energy curve-fitting involved in this problem, the 

number of data points used is five, and the data points are equally spaced with 

respect to θ every 0.01 radians. The mapping representing the 823 tristable 

designs is shown in Figure 5.2. There were no generated energy curves that had 

more than three stable equilibria. Notice from Figure 5.2 what combinations of 

solutions are probable. For instance, in the mappings of Figure 5.2 one can notice 

the pattern of where the stable equilibria are likely to be. In Figure 5.2 the three 

equilibria are represented by a ‘•’, ‘+’, and ‘o’. As shown in Figure 5.2c, the 

stable equilibria tend to be in three basic regions of crank angle: (-0.3, .7), (0.9, 



 134

3.1), and (3.7, 5.6) radians. Notice that the θ position -0.3 rad = 5.98 rad due to 

the ability of the input crank to fully rotate 2π radians. 

 

 

Note that in producing Figure 5.2 the results were sorted to produce a 

pattern in which the lowest equilibrium value (represented by ‘•’) is 

monotonically increasing along the x-axis.  The y-axis represents the relative 

frequency of occurrence, or the cumulative probability that the lowest equilibrium 

 

Figure 5.2. Mappings represented by cumulative distribution functions showing 
the possible locations of stable equilibrium positions in terms of the input crank 
angle (x-axis).  
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value will occur. The data for the second and third stable equilibria are not 

arranged in any further order. This arrangement of the first stable equilibrium 

position is in the form of a cumulative distribution function to better visualize the 

results.  

Figure 5.3 is a mapping of the natural frequencies at each stable 

equilibrium position and energy curvatures at each unstable equilibrium for the 

same Monte Carlo data represented in Figure 5.2. Note for every data point in 

Figure 5.2, there is a corresponding positive point in Figure 5.3 that shows what 

natural frequency occurs at that equilibrium point. The first, second, and third 

stable equilibrium positions are again represented by ‘•’, ‘+’, and ‘o’ respectively. 

The unstable points are all represented by dots and distinguished by being 

negative. 
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From looking at the mappings of Figures 5.2 and 5.3, the desired design 

criteria were chosen. The goal is to choose three stable equilibria with similar 

natural frequencies, while maximizing the magnitude of the energy curvature at 

the unstable equilibria. Because the spring torque on the linkage is the first 

derivative of the energy, maximizing unstable curvature magnitude creates a 

system with maximum force necessary to move from one stable position to the 

next. The desired design criteria are specified as follows: 

 

 

Figure 5.3. Natural frequency (stable) and curvature (unstable) versus 
equilibrium position for the tristable Monte Carlo results. Note how each 
equilibrium region has a limited range of frequencies. 
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(1) stable equilibria at θdes,stable= [0.4, 2.3, 4.8]  radians,  

(2) natural frequencies fn = [1.6, 1.0, 1.5] rad/s, and  

(3) maximum curvature magnitude at unstable equilibria, J/rad2. 

 

The first set of desired design criteria (i.e. unstable curvature values with 

constant stable equilibrium properties) were chosen such that the calculated 

Monte Carlo probability was greater than zero. Then the unstable energy 

curvatures are increased until the solution is no longer possible. The goal of the 

problem is then to determine the maximum unstable curvature magnitudes where 

they are all the same value. 

In choosing the desired unstable curvature values, they were altered and 

lowered until the Monte Carlo probability was greater than zero signifying a 

solution guaranteed to exist. The curvature values were then subsequently 

perturbed in the negative direction, but increasing magnitude, and the problem 

was optimized to track the results.  

The desired solution criteria sets optimized for are shown in Table 5.1. 

The last column shows the calculated Monte Carlo probability values. Thus, one 

expects to easily solve trials 1-3 since they are guaranteed to exist. As the solution 

is perturbed further from the solution of Trial 1, the limiting pattern from the 

optimization results will show the maximum unstable curvature magnitudes that 

are possible. 
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5.2.1.3 Step 3: Optimization and interpretation of results 

This section first describes why the solution space is multi-modal and why 

a stochastic optimization approach is needed for this problem. Figure 5.4 shows 

the inherent nature of the optimization problem by plotting the length of a typical 

spring as a function of input crank angle, θ. The y-axis also can represent the free 

length of the spring, lo, increasing from zero to one. If this is the only spring in 

the system, the equilibria reside where lo is closest in length to the actual spring 

length. In other words, the energy in the system is E(θ)=(1/2)k(l(θ)-lo)2, and this 

energy is minimized/maximized when dE/dθ= k(l(θ)-lo)(dl(θ)/dθ)=0. Thus, if at 

any θ lo=l(θ), then that θ represents a stable position. If the condition lo=l(θ) is 

not met, then the equilibria lie at the θ where dl(θ)/dθ=0 which is where the 

spring reaches a minimal or maximal length. 

 

Trial set θstable (rad) fn,stable (rad/s) cunstable Ptot 
1 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.4, -0.4, -0.8] 4.2e-4 
2 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.5, -0.5, -0.8] 5.0e-4 
3 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.6, -0.6, -0.8] 4.4e-4 
4 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.7, -0.7, -0.8] 0 
5 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.8, -0.8, -0.8] 0 
6 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-0.9, -0.9, -0.9] 0 
7 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-1.0, -1.0, -1.0] 0 
8 [0.4, 2.3, 4.8]  [1.6, 1.0, 1.5] [-1.1, -1.1, -1.1] 0 

Table 5.1. Trial sets of desired design criteria with corresponding Monte Carlo 
probability. 
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In Figure 5.4, one can see that as lo increases from 0 to 1, the stable 

equilibria bifurcate from one region to the next. In Region I, lo≠l(θ), dl(θ)/dθ=0, 

and the stable equilibrium is θeq,I = 40o. Then, in Region II, since locrit,1 < lo 

<locrit,2, and the condition lo=l(θ) is met. Also, the one stable equilibrium 

becomes two and the former stable equilibrium at θeq,I = 40o, becomes unstable. 

Finally, when lo>locrit,2 in Region III, the two stable equilibria merge back into 

only one stable equilibrium at θeq,III = 185o and again dl(θ)/dθ=0. 

This bifurcating nature of the linkage problem is typical of MSE systems 

and poses inherent difficulties for gradient-based optimization methods. For 

example, in Region I, lo<locrit,1 and the derivative of the equilibrium position with 

Figure 5.4. For only one spring, a plot of the spring length versus θ shows how 
the choices of the spring free length can determine where the stable equilibria lie.  
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respect to the design variable lo (i.e. dF/dlo = d/dlo{(ades- acand)2} = 0) will be 

zero, and the optimization algorithm will have no viable information for choosing 

a search direction. 

Because of reasons mentioned regarding the bifurcation of equilibrium 

solutions and the lack of meaningful gradient information, the problem 

necessitates a stochastic optimization approach. In this section, results from both a 

genetic algorithm [Houck, et al.] and adaptive simulating annealing [Ingber, 

1989] are compared with respect to themselves and the desired solution. The 

parameters used in each optimization code are kept constant for every trial in 

Table 5.1. The values of the optimization tuning parameters are not extremely 

important for demonstrating the MSE synthesis design method. One simply needs 

a set of parameters that effectively solves an MSE problem for a solution that 

exists with probability of one. Then keeping the parameters constant as the 

solution is perturbed to those with lower probabilities gives one a baseline to 

compare the solution performance for harder solutions. 

Figures 5.5 and 5.6 show the run-length distributions (RLD) for solving 

each trial of Table 5.1 ten times using the genetic algorithm and adaptive 

simulated annealing (ASA), respectively. The maximum number of generations 

used in the genetic algorithm is 2500, and the maximum number of iterations in 

ASA is 15,000. Each of these maximum limits is two orders of magnitude more 

than the number of generations/iterations needed to solve Trial 1. 
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Figure 5.5. RLD for solving Problem 1 using a genetic algorithm. Trials 6-8 did 
not find a solution. 
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In viewing Figures 5.5 and 5.6, one can see some similarity in form 

between the two sets of RLDs even though they are generated using completely 

different algorithms. Thus, the strength of the design synthesis methodology in 

being somewhat algorithm independent (for algorithms with some stochastic 

nature) is evident here. Both Figures 5.5 and 5.6 show Trials 1-3 having very 

similar relatively short solution run-lengths. Also, both show a distinguishable 

run-length increase from Trial 3 to Trial 4, and from Trial 4 to Trial 5. Neither 

 

Figure 5.6 RLD for solving Problem 1 using adaptive simulated annealing. Trials 
6-8 did not find a solution. 
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algorithm was able to solve Trials 7-8. The only major difference is that ASA 

could successfully solve for Trial 6 whereas the genetic algorithm could not. In 

general, the RLDs lead one to believe that for the desired stable equilibrium 

locations and frequencies in Table 1, the maximum unstable curvature attainable 

for all unstable points is somewhere between –0.9 and –1.0, with the acceptable 

difference of ±0.2 J/rad2 specified in the problem statement. 

Recall from Section 4.3.3.2 of Chapter 4 that one can further investigate if 

the limiting boundary between possible and impossible solutions has indeed been 

found by tracking the trends in the equilibrium properties. In that section the 

highlighted trends were the distances between equilibrium points and the 

differences in energy value between stable and unstable points (see Figure 4.23). 

This information in Figure 4.23 was also corroborated in Figure 4.24 by plotting 

the trends of the actual equilibrium energy and position values. 

In this Problem 1, the perturbed desired quantity is the unstable 

equilibrium curvature, as its value is decreased for all unstable points in general. 

Figure 5.7 shows the equilibrium property trends as these desired properties are 

perturbed. Figure 5.7(c) shows most clearly how a boundary of feasible solutions 

has been reached. The dotted lines represent the acceptable range for the desired 

design criteria, which is ± 0.2 rad/s for the frequency and ± 0.2 J/rad2 for the 

unstable curvature. The frequencies are held constant, and thus their range has no 

slope whereas the unstable curvature range is decreased for each trial, and thus 

has a negative slope. The solid arrows in Figure 5.7 highlight the properties of the 

energy curve that reach limiting values. In Figure 5.7(b), the second stable 



 144

equilibrium position reaches its lower limiting value near 2.1 radians. In Figure 

5.7(c), both the frequencies for second and third stable positions, but most clearly 

the third position, converge to the maximum possible limit. For the third 

frequency, this value is 1.7 rad/s. Thus, if one desires the equilibrium curvatures 

to be further reduced, a likely constraint that needs to be relaxed is the upper 

bound on the frequency for the third stable position.  

Figure 5.7 confirms what the RLD of Figure 5.5 shows: that a local 

boundary in the feasible solution space has indeed been reached. Figure 5.8 shows 

the same equilibrium trends as Figure 5.7, except using the results from the ASA 

algorithm. The plots of Figure 5.7 and 5.8 look practically identical giving high 

confidence that the local boundary to the solution space has indeed been found. 
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Figure 5.7. Equilibrium trends from solving Problem 1 using the genetic 
algorithm: (a) energy values, (b) equilibrium position, and (c) stable equilibrium 
frequency and unstable equilibrium curvature. In all graphs, stable and unstable 
points are represented by ‘⋅’ and ‘+’, respectively. 
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5.2.1.4 Simulation of Linkage system to compare with optimized results  

In this section, the dynamics of the four-bar linkage system is simulated to 

compare to the predicted results solved for in the synthesis methodology [Erdman 

 

Figure 5.8. Equilibrium trends from solving Problem 1 using the genetic 
algorithm: (a) energy values, (b) equilibrium position, and (c) stable equilibrium 
frequency and unstable equilibrium curvature. In all graphs, stable and unstable 
points are represented by ‘⋅’ and ‘+’, respectively. 
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et al., 2001]. Figure 5.9 shows a typical response from simulating one of the 

solutions of Trial 5. In each simulation, the linkage started at a perturbation of 

0.02 radians from the equilibrium position. This perturbation is the same distance 

used in curve fitting the potential energy during the optimization. Figures 5.9 (a-c) 

are the velocity versus position phase plots of local responses about stable 

equilibria one through three, respectively. Figures 5.9 (d-f) show the time 

response of the input crank angle about each stable equilibrium. 

 

 

Figure 5.9. Typical local dynamic responses of the MSE linkage system of 
Problem 1: (a) & (d) show response about θeq,1, (b) & (e) show response about 
θeq,2, and (c) & (f) show response about θeq,3.
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The potential energy and effective inertia curves for the system simulated 

in Figure 5.9 are shown in Figure 5.10. Figure 5.10 (a) is the potential energy, and 

Figure 5.10 (b) is the effective linkage inertia. Note how both are quite nonlinear, 

and very unintuitive to visualize from the geometry of the linkage. For Problem 1, 

the effective inertia curve is constant. In the next section Problem 2 solves the 

linkage problem with a varying inertia curve. Recall the desired and candidate 

stable equilibrium positions are θdes = [0.40, 2.30, 4.80] and θcand = [0.20, 2.11, 

4.93] radians respectively. The potential energy minima in Figure 5.10 (a) 

demonstrate these values. 

 

 

Figure 5.10. (a) The potential energy curve and (b) effective inertia curve versus 
the input crank angle. 
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5.2.2 Problem 2: Linkage link lengths are not fixed 

5.2.2.1 Step 1: Decide on important Engineering Characteristics of each 
Equilibrium 

The problem of not having fixed link lengths corresponds to a scenario in 

which one can be interested in the frequency, curvature and energy value at each 

equilibrium, but not absolute position. Because the links can be various lengths 

during optimization, the coupler curve of the linkage is completely unknown, and 

thus must be unimportant to the design. Nonetheless, one may want to attach this 

type of MSE system to another system simply to alter its performance or make it 

have multiple stable positions with certain natural frequencies. 

Because absolute position of the linkage in Problem 2 is not fixed, a 

solution approach to the optimization of Problem 2 is specified by the relative 

positions of the equilibrium points, or ∆ades. For example, if one wants two stable 

equilibria to be two radians apart, then this idea can be incorporated into the 

performance index. The same concept can apply to actuation energy (or bdes 

values) also. The performance index can typically look like: 
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where n is the number of equilibria (stable and unstable) and ∆a and ∆b are the 

differences between the curve fitting parameters for any two equilibria of interest. 

To use this design approach, one has to line search through the energy values 

calculated for the given design variables, find where the extremals occur, and 

perform the curve fit about these points. The difference between this method and 

that described in Section 4.2 is that the point about which to curve fit is unknown 

a priori. Thus, the equilibrium points must be found each iteration. There is also 

no guarantee that the correct number of equilibria will be present for any given 

iteration. A penalty factor can be incorporated into the performance index if this 

occurs. The remainder of this subsection presents an example of using this 

approach. 
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Problem 2 uses the same design variables as for Problem 1, but with eight 

additional variables. Four of the design variables are for the four link lengths with 

lower limits of length 0.1 m and upper limits of length 2.0 m. The last four design 

variables are for the (x, y) coordinates of the anchor points for the springs 

attached to the ground. The limits of these anchor points are set to create an 

allowable space around the fixed base of links I and III, where dxmax = 0.75 m and 

dymax = 0.75 m (see Figure 5.2 and Section 4.1). The addition of these design 

variables makes the solution space much more extensive due to the effective 

inertia, and thus the kinetic coenergy, now being configurable as well as the 

potential energy. This introduces the fundamental concept in MSE systems of 

now shaping both the kinetic coenergy and potential energy curves. 

We assume the links have a fixed mass per unit length and an inertia that 

is only a function of link length (i.e. idealized one-dimensional links just as in 

Problem 1). The problem statement is stated as follows: 
 

min F(ki, loi, x1, x2, y1, y2, a, b, c, d) i = 1, 2, …, 8 (equation 5.3) 
 

s.t. 1) ki , loi ≥ 0,  - spring constants and free lengths positive 
 2) ki < kmax,  - spring constants below some maximum 
 3) loi < lomax,  - free lengths below some maximum 
 4) x1 < dxmax,  - point x1 less than some maximum 
 5) x2 < d + dxmax, - point x2 less than some maximum 
 6) x1 > -dxmax,  - point x1 greater than some minimum 
 7) x2 > d – dxmax, - point x2 less than some minimum 
 8) yi > -dymax,  - points yi greater than some minimum, i = 1,2 
 9) yi < dymax,  - points yi less than some maximum, i = 1,2 
 10) I,II,III,IV < lmax, - link lengths less than some maximum 
 11) I,II,III,IV > lmin, - link lengths greater than some minimum 
 12) I<II, I<III, I<IV, - input crank must be smallest 

13) s + l < p + q  - Grashof Criterion (s-shortest link, l-longest link, p 
and q are other two link lengths) 
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With the problem now fully defined, the specific goal for example 

Problem 2 is to obtain two stable equilibria having the same natural frequency 

while specifying the energy differences between stable and unstable equilibria.  

The positions of the stable equilibria should be separated by a maximum distance 

possible (between 3.1 and 3.2 radians for a rotational system), and the frequencies 

are the same and meant to be easily achievable. The goal will be to maximize the 

energy differences, ∆b, for one of the stable equilibria, and keep the ∆b’s for the 

other equilibria constant at a relatively small value. This will test the design 

methodology for concurrently optimizing very small and large energy thresholds. 

The Monte Carlo mapping in the next section dictates the specific values chosen 

for design, given the already discussed qualitative description. 

 

5.2.2.2 Step 2: Monte Carlo mapping and probability calculation 

The qualitative results from the Monte Carlo mapping technique, 

characterizing the situation of two stable equilibrium positions, are shown in 

Figure 5.11. There were 35,000 Monte Carlo iterations used to generate the data. 

In Figures 5.11, the stable equilibrium angle with the lowest value is represented 

by a ‘•’, and the second stable equilibrium is represented by a ‘+’. Figure 5.11 (a) 

shows what combinations stable equilibria can occur together. From this mapping 

it appears that for almost any initial stable position, the second one can lie almost 

anywhere as long as it is placed far enough away from the first one, about 1.0 – 

1.5 radians on average. Figure 5.11 (b) shows that, because of the low density of 
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data points, obtaining natural frequencies above about 15-20 rad/s may be quite 

difficult. On the other hand, there are frequencies mapped up to over 25 rad/s. 

Figures 5.11 (c) displays the energy difference, both to the ‘left’ and ‘right’ of 

stable equilibrium one, using a ‘•’ and ‘+’, respectively. Figure 5.11 (d) shows the 

same information for the second stable equilibrium. 
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From looking at Figures 5.11 (a), it seems quite feasible to design for the 

stable equilibria to be 3.2 radians apart. Because the input link rotates a full 2π 

radians, this is approximately the largest possible distance between two stable 

equilibria.  Therefore, ∆ades,1=(astable,1 – astable,2)des,1 = 3.2 rad. The desired 

frequencies are chosen as fdes,stable = [1.0, 1.0] rad/s to not be a relatively large 

problem in the design (due to a high density of points in Figure 5.11 (b) being 

 

Figure 5.11. The Monte Carlo mappings show the (a) cumulative distribution 
function for combinations of stable equilibria that occur for 2 stable equilibria, 
(b) natural frequencies at the stable equilibria, (c) energy differences about 
stable equilibrium one, and (d) energy differences about stable equilibrium two. 
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near 1 rad/s). The final design criterion is to maximize the energy difference for 

one of the equilibria (say the first one, ∆bdes,1), and keep the energy difference for 

the other stable equilibrium small, ∆bdes,2.  

The quantitative method of the Monte Carlo mapping procedure is 

performed to begin to specify the remaining desired design criteria. The expected 

result is to define the maximum energy difference for the first equilibrium, given 

all of the other desired design criteria have been met. After initial probability 

calculations, a nonzero probability of Ptot = 3.67e-5 was found for the scenario in 

which the desired characteristics are [∆ades,1, fdes,1, fdes,2, ∆bdes,1,left, ∆bdes,1,right, 

∆bdes,2,left, ∆bdes,2,right] = [3.2 ± 0.2 rad, 1.0 ± 0.2 rad/s, 1.0 ± 0.2 rad/s, 1.0 ± 0.2 J, 

1.0 ± 0.2 J, 0.25 ± .1 J, 0.25 ± 0.1 J]. The last two desired design criteria have a 

smaller range of allowed values due to the fact that their desired values are so 

close to zero. Thus, a lower limiting energy hump of ∆b = 0.25 – 0.1 J = 0.15 J  

is used to maintain a basic minimum distance from the value zero which signifies 

that an equilibrium likely does not exist (recall Section 4.3.3.2 and Equations 

(4.26 – 4.29)). 

The perturbed quantities from the Ptot > 0 to find the maximum limit are 

∆bdes,1,left, and ∆bdes,1,right. These were increased until there was high confidence 

that their limiting values had been reached. Table 5.2 shows the trials optimized, 

each ten times, in finding the solution boundary limit for the desired MSE design. 

During optimization it was found that the solution could be perturbed quite far 

from the Ptot > 0 starting case derived from the Monte Carlo probability 

calculation. The results of the optimization runs are discussed in the next section. 
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Trial ∆ades,1 fdes  [∆bdes,1,left, ∆bdes,1,right, ∆bdes,2,left, ∆bdes,2,right] Ptot 

1 3.2 [1.0, 1.0] [1.0, 1.0, 0.25, 0.25] 3.67e-5
2 3.2 [1.0, 1.0] [2.0, 2.0, 0.25, 0.25] 0 
3 3.2 [1.0, 1.0] [3.0, 3.0, 0.25, 0.25] 0 
4 3.2 [1.0, 1.0] [4.0, 4.0, 0.25, 0.25] 0 
5 3.2 [1.0, 1.0] [5.0, 5.0, 0.25, 0.25] 0 
6 3.2 [1.0, 1.0] [6.0, 6.0, 0.25, 0.25] 0 
7 3.2 [1.0, 1.0] [7.0, 7.0, 0.25, 0.25] 0 
8 3.2 [1.0, 1.0] [8.0, 8.0, 0.25, 0.25] 0 
9 3.2 [1.0, 1.0] [9.0, 9.0, 0.25, 0.25] 0 
10 3.2 [1.0, 1.0] [10.0, 10.0, 0.25, 0.25] 0 
11 3.2 [1.0, 1.0] [11.0, 11.0, 0.25, 0.25] 0 
12 3.2 [1.0, 1.0] [12.0, 12.0, 0.25, 0.25] 0 
13 3.2 [1.0, 1.0] [13.0, 13.0, 0.25, 0.25] 0 
14 3.2 [1.0, 1.0] [14.0, 14.0, 0.25, 0.25] 0 
15 3.2 [1.0, 1.0] [15.0, 15.0, 0.25, 0.25] 0 
16 3.2 [1.0, 1.0] [16.0, 16.0, 0.25, 0.25] 0 
17 3.2 [1.0, 1.0] [17.0, 17.0, 0.25, 0.25] 0 
18 3.2 [1.0, 1.0] [18.0, 18.0, 0.25, 0.25] 0 
19 3.2 [1.0, 1.0] [19.0, 19.0, 0.25, 0.25] 0 
20 3.2 [1.0, 1.0] [20.0, 20.0, 0.25, 0.25] 0 
21 3.2 [1.0, 1.0] [21.0, 21.0, 0.25, 0.25] 0 
22 3.2 [1.0, 1.0] [22.0, 22.0, 0.25, 0.25] 0 
23 3.2 [1.0, 1.0] [23.0, 23.0, 0.25, 0.25] 0 

Table 5.2. Trial sets of desired design criteria with corresponding Monte Carlo 
probability for Problem 2. 

 

5.2.2.3 Step 3: Optimization and interpretation of results 

For reasons described in Section 5.2.1.3, a stochastic algorithm is chosen 

was chosen for the optimization algorithm. In particular, the genetic algorithm, 

developed by Houck et al., is again used because of its relatively fast performance 

over the adaptive simulated annealing algorithm of Problem 1. As noted in 
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solving Problem 1, the resulting solution trends are quite similar between the two 

algorithms even though the ASA algorithm seems slightly more robust in finding 

the global minima for the linkage Problem 1 (for the parameters used in each 

algorithm). 

The RLD from solving Trials 1-23 of Problem 2 is shown in Figure 5.12. 

There seems to be four distinct regions of distributions in solving the trial 

problems of Table 5.2. Trials 1-4 get solved relatively quickly, showing that the 

baseline Ptot > 0 case is solved easily by the chosen genetic algorithm parameters. 

Trials 5-9 and 12 are solved a bit more slowly followed by Trials 10, 11, and 13-

18, although the distinction between these two groups is not entirely distinct. 

Finally, a fourth group of trials does not appear on the graph at all, Trials 19-23, 

as none of them were successfully solved by the optimization algorithm. This 

follows an expected trend of having more difficulty, or needed more 

iterations/time, in solving the optimization problem while moving further from 

the base Ptot > 0 condition of Trial 1. Note that for none of the trials did the 

optimization solve for the design variables all ten attempts. 

The unsolved problems occur after the desired energy difference about 

stable equilibrium one has reached 19.0 ± 0.2 J. Thus, one can believe this is near 

the limiting value possible considering the current desired design criteria. In the 

same manner as in Problem 1, looking at the trends of the desired design criteria 

can confirm that a solution space boundary is indeed being met during the 

optimization perturbation process. 
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Figure 5.13 plots some equilibrium trends that show a limit being reached 

during the design synthesis process. The Trial number of Table 5.2 increases 

along the horizontal axis of each graph. Data is only shown for successfully 

achieved solutions to the trials of Table 5.2. Figure 5.13 (a) plots the energy 

differences between the unstable and adjacent stable equilibria. The ‘•’ represents 

∆bcand,,left, and the ‘+’ represents ∆bcand,right. For θeq,2 the values are barely 

discernable since they are in the range 0.25 ± 0.1 J. Figure 5.13 (b) plots the stable 

equilibrium positions, ‘•’, and the unstable equilibrium positions, ‘+’. Figure 5.13 

 

Figure 5.12. RLD for using genetic algorithm to solve for design variables of 
Problem 2. 
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(c) plots the frequencies and unstable curvatures at the stable and unstable 

equilibria, respectively. 

 

Figure 5.13 (b) is the most telling in terms of information corroborating 

that a solution space boundary is indeed being reached after Trial 18. Notice that 

 

Figure 5.13. Equilibrium trends for solving Trials for Problem 2 in Table 5.2: (a) 
energy difference between adjacent unstable and stable equilibria, (b) equilibrium 
position, and (c) stable equilibrium frequency and unstable equilibrium curvature. 
Trial number increases as one moves right along the horizontal axis. 
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for ‘small’ ∆bdes,1, Trials 1-11, there are two groups of stable equilibrium 

positions. These two groups are represented by the dotted and dashed ellipses in 

Figure 5.13 (b). Recall that the design criteria for the equilibrium positions is not 

absolute position, but a relative position where there is 3.2 radians between the 

two stable equilibria. After Trial 11, the group of solutions in the dashed ellipse 

no longer exists as a viable solution. One of two possible solution space regions 

has effectively been eliminated due to the increasing constraint, ∆bdes,1. After 

Trial 10, all solutions are now encompassed in the dotted ellipse. As the trial 

number is increased, the solutions for θeq,1 converge to a value near 3.2 radians, 

and the solutions for θeq,2 converge to a value near 6.2 radians. There is a 

difference of 3.0 radians between these two values. This is the lower limit allowed 

under the constraint of the desired design criteria, ∆a1 = 3.2 ± 0.2 radians. 

Figure 5.14 plots these two groups of solutions, or energy curves, for 

Trials 1 and 10. Note for each trial there are two distinct groups of curves 

corresponding to the groups in Figure 5.13. These are correspondingly labeled as 

the ‘dashed’ and ‘dotted’ groups. As predicted from Figure 5.13, these two groups 

of curves do have distinct shapes between the two groups, but similar shapes 

within the group. Therefore, each group is its own localized solution space. For 

Trials 12-18, the ‘dashed’ solution space no longer exists. For Trials 19-23, 

neither solution space exists. Figure 5.15 plots all successful energy curves for 

Trials 12-18 confirming that only one basic shape of potential energy curve exists 

in the ‘dotted’ solution region. This characterizes the local solution space found 

by the optimization algorithm. 
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Figure 5.14. Potential energy curves for (a) Trial 1, and (b) Trial 10.  
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5.2.2.4 Simulation of Linkage system to compare with optimized results  

In this section, the dynamics of the four-bar linkage system of Problem 2 

is simulated to compare to the predicted results solved for in the synthesis 

methodology. Figure 5.16 shows a typical response from simulating one of the 

successful solutions of Trial 12. In each simulation, the linkage started at a 

perturbation of 0.02 radians from the equilibrium position. This perturbation is the 

 

Figure 5.15. Successfully solved potential energy curves for Trials 12 – 18. 
These are all solutions in the ‘dotted’ group of Figure 5.13. 
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same distance used in curve fitting the potential energy during the optimization. 

Figures 5.16 (a-b) are the velocity versus position phase plots of local responses 

about stable equilibria one and two, respectively. Figures 5.16 (c-d) show the time 

response of the input crank angle about each stable equilibrium. Figure 5.17 

shows the (a) energy curve and (b) effective inertia for the simulated case shown 

in Figure 5.16. The stable curvatures are ccand = [1.27, 3.50] J/rad2 and effective 

inertias are Jeff = [1.71, 5.72] kg*m2 to give the same approximate natural 

frequencies. The designed candidate frequencies are 1.14 and 1.08 rad/s, and the 

simulated frequencies are 1.21 and 1.09 rad/s for the first and second stable 

equilibrium, respectively. 
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Figure 5.16. Typical local dynamic responses (Trial 12 solution) of the MSE 
linkage system of Problem 1: (a) & (c) show response about θeq,1, and (b) & (d) 
show response about θeq,2. 
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5.2.3 Conclusions on Linkage Case Study 

Generally the linkage problem is an ideal case study for the design 

synthesis of MSE systems. The problem contains nonlinearities in both the 

potential energy storage elements and the kinetic coenergy storage elements, or 

effective inertia. Problem 1 solved the linkage with a nonlinear, but fixed, 

effective inertia while Problem 2 allowed this inertia curve to vary. This makes 

Problem 2, with variable linkage link lengths, have a much larger solution space. 

 

Figure 5.17. (a) The potential energy curve and (b) effective inertia curve versus 
the input crank angle for a Trial 12 solution. 
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This major difference between Problem 1 and Problem 2 is the reason why 

Problem 2 takes longer to solve. Because the location of the desired equilibria is 

unknown for Problem 2, one must search for them during each iteration, and then 

curve fit about those points. For Problem 1, one has the option of simply curve 

fitting about the known desired equilibrium positions. 

As seen by the qualitative mappings of both problems, Problem 1 has a 

much more rigidly defined solution space. This fact is made evident by more 

quickly finding the local boundary of the solution space in Problem 1 versus 

Problem 2. In Problem 2, a much larger perturbation from the initial Ptot > 0 trial 

was needed to find the limiting boundary for possible solutions. This is simply 

explained by the general observation that more design variables exist for Problem 

2. 
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5.3 PENDULUM AND MAGNET PROBLEM 

5.3.1 Problem Description 

Described here is an example problem for synthesizing MSE systems.  

The problem consists of a pendulum that has linear springs and a permanent 

magnet attached to it (see Figure 5.18).  There are three types of potential energy 

storage elements: 1) the linear translational springs which store energy only in 

extension, 2) the gravitational field acting on the rotating beam, and 3) the 

magnetic field acting between the armature and stator magnet.  In Figure 5.18, 

mcom, Lcom, and Jeff are the mass off the rotating pendulum system, the length to 

the center of mass from the pivot, and the effective inertia of the pendulum 

system, respectively.  
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Experiments were performed to obtain the change in potential energy with 

respect to displacing the two magnets (i.e the armature and stator) relative to each 

other.  The magnet data obtained is valid in a range for which the magnets are 

polarized in the same direction (i.e. no relative angle between them) that extends 

one magnet length to each side, or xrel = ±1.0len, and from a ‘gap’ of 1.0 – 3.0 

 

 

Figure 5.18. Schematic of the pendulum and magnet experiment. 
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magnet thicknesses, or relative displacements of yrel = 2.0th to yrel = 4.0th (see 

Figure 5.19). 

 

The potential energy of the system of Figure 5.18 is: 
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where ki and loi are the spring constant and free length for spring ‘i’ respectively, 

and li(θ) is the length of spring ‘i’ at the current θ. Two types of springs are used 

in the experiment: k1 = 1 lb/in, lo1 = 2 in., and k2 = 0.5 lb/in, lo2 = 2 in. If an 

increase in free length was desired, two of the same type were used in series. The 

second term in Equation (5.4) is the potential energy due to gravity, and the third 

 

Figure 5.19. Range of stator magnet relative to armature magnet for which the 
magnet model is valid. 



 170

term is the magnetic potential energy from the stator and armature magnets where 

xstat,j and ystat,j are the planar coordinates of the jth stator magnet.  

The magnetic potential energy between the armature and any stator 

magnet is only available for a certain two-dimensional space for which 

experimental data was taken.  The particular magnets used are NdFeB magnets of 

size 0.5” square and 0.210” thick (part # 5848K32 Grade 37 from McMaster 

Carr). The method for deriving the magnetic energy is explained in Section 5.3.2. 

Note the magnetic energy is derived from interpolated data. Thus, an expression 

for the magnetic energy in the system as an explicit function of θ was not derived. 

This does not matter in terms of the synthesis design problem.  The solution 

methodology involves only information from the system potential energy in 

performing the numerical optimization. 

In the case of the magnetism model in this problem, a closed-form 

solution for one or more of the energy storage elements may not exist. Also, due 

to the limited magnetic model, a restriction is imposed that the stator magnets are 

far enough apart such that they don’t influence each other appreciably. 

Nonetheless, because of the lack of closed form solution, it is still difficult to gain 

insight into writing a performance index and constraints in terms of problem 

design variables, such as spring constants and masses. The MSE design synthesis 

methodology focuses on visualizing, or quantifying, desired properties of a MSE 

system (equilibrium points, natural frequencies, and energy values) to provide a 

systematic way to approach any MSE problem no matter what energy domains or 

constraints are involved. Thus, the Monte Carlo mapping qualitative method 
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proves useful in this problem even though the design only considers one stable 

equilibrium at a time during the solution process. 

For the given mechanical system shown in Figure 5.18, the goal of the 

MSE synthesis problem is to place the stator magnets in ‘j’ positions (xstat,j,ystat,j), 

such that the rotating beam has the predetermined stable positions, θeq,j, and/or 

natural frequencies, feq,j.  Formally, the problem can be stated as follows: 

 
min F(xstat,j,ystat,j) 

s.t.  (xstat,j, ystat,j) and (xarm, yarm) are within data range for Wmag, 

 

where the performance index, F(xstat,j, ystat,j) is as defined in Equation (4.11). 

 

5.3.2 Permanent Magnet Modeling 

The data for the potential energy of the permanent magnets was obtained 

from an experiment in which the tangential force, Ft, and normal force, Fn, were 

recorded for certain relative positions, (xrel, yrel) of two magnets (see Figure 5.20).  

Thus, this data does not take into account the field from a third magnet, assumes 

that the influence of all other magnetic fields is negligible, and requires the 

magnets be polarized in the same direction with no rotational offset.  After 

undergoing initial design attempts with a certain density of magnet data points, 

force data was needed for more points than were able to be accurately obtained by 

using the physical experiment (physical limitation of the experiment did not allow 

more accurate discretization of the data points).  The Ansys finite element 
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analysis (FEA) program was then used to perform simulations of the magnets 

using tuned magnet parameters of coercivity equal to 920 kA/m and relative 

permeability of 1.062.  These two parameters provided good agreement between 

the finite element result and the physical experiment.  Due to inefficiencies of the 

finite element program for simulations involving materials with small relative 

permeabilities, the magnetic energy calculations directly available from the finite 

element routine were deemed insufficiently accurate for use by themselves.  

Thus, force data derived from the finite element program was used to calculate the 

magnetic potential energy. 

 

Using force data, the potential energy can be calculated as for any 

conservative linear system whether or not it involves magnetism. The NdFeB 

magnets used in for this experiment fit this description since they have very close 

 

Figure 5.20. Tangential force, Ft, and normal force, Fn, were measured at various 
relative x and y locations. 
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to linear B-H curves [Fitzgerald et al., 1990].  For a conservative magnetic 

system, the force due to a change in magnetic energy is given by Equation (5.5). 
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Conversely the magnetic energy from the experimentally measured 

magnetic forces is: 
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Thus, one can solve for the arbitrary function of xrel, φ(xrel), as: 
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One can now use the result of Equation (5.8) in Equation (5.6) to have the total 

magnetic energy to within an arbitrary constant. 

The magnetic forces obtained from the finite element modeling have 

normalized errors in the range of 10% - 15%.  The energy curves resulting from 

using Equations (5.5-5.8) are shown in Figure 5.21. To obtain a feel for the error 
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of the magnetic energy curves, use Equations (5.5-5.8) and the concept of 

Maxwell reciprocity for conservative linear energetic systems.  Maxwell 

reciprocity can be stated as shown in Equation (5.9). 
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Equation (5.9) can alternatively be stated as: 
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If there were no error in the finite element modeling, Equations (5.9) and 

(5.10) would be true. Therefore, using the finite element magnetic force data and 

Equation (5.10), the accuracy of the data can be checked.  Figure 5.22 shows the 

comparison of the right hand (dots) and left hand (circles) sides of Equation 

(5.10). A comparison of the data is performed by calculating the correlation 

coefficient of the two data sets for each constant yrel value.  These correlation 

coefficients are shown in Table 5.3. Note from Table 5.3 that the finite element 

results become less accurate as the magnets move apart. More highly refined 

meshes can obtain better results, but the concentration of this FEA work is simply 

to use sufficiently accurate data for MSE design synthesis. From the correlation 

 

Figure 5.21. Magnetic potential energy curves, plotted at constant yrel values, 
obtained from FEM data. 
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coefficients, the correlation of the forces at yrel = 2.0 is the best at approximately 

93 % and the worst at yrel = 4.0 at 42 %.  Even with data that has these 

inaccuracies, Section 5.3.4 shows that the magnetic energy model is sufficient for 

the design synthesis. 
 

 

 

Data Set 1 Data Set 2 yrel=2.0 yrel=2.5 yrel=3.0 yrel=3.5 yrel=4.0 
∂Fx/∂y ∂Fy/∂x 0.966 0.934 0.871 0.834 0.651 

Table 5.3.  Correlation coefficients comparing left and right sides of Equation 
(5.10). These correlation coefficients relate how accurate the FEM data is to 
itself. 
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Figure 5.22. Tangential force, Ft, and normal force, Fn, were measured at various 
relative x and y locations. 
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5.3.3  Solution Results 

Two designs were optimized using the rigid pendulum setup shown in 

Figure 5.18.  The parameters for each test are as follows: 
 

Case 1: 

- 200 g mass added to pendulum 1.5 inches from pivot point. 
- No springs added to pendulum. 

 

Case 2:  

- 200 g mass added to pendulum 1.5 inches from pivot point. 
- spring 1 - k1 = 1 lb/in., lo1 = 4 in., (xbase, ybase) = (-0.78 in., -0.05 in.), 

and attached to pendulum 5.69 in. from pivot point. 
- spring 2 - k2 = 0.5 lb/in., lo2 = 2 in., (xbase, ybase) = (4.06 in., 2.46 in.), 

and attached to pendulum 4.38 in. from pivot point. 
 

5.3.3.1 Case 1 Solution (Rigid Pendulum) 

Figure 5.23 is a Monte-Carlo mapping formed by using 2000 iterations of 

random numbers for the design variables of the problem. Note that not all of the 

iterations result in a plotted point since each iteration does not produce a 

minimum in energy. In Figure 5.23, one can notice the trend of the possible 

solution space for the problem. The possible natural frequencies attainable seem 

to lie the range from 8 – 22 Hz for any desired equilibrium position. Thus, there 

seems to be little change in solution space as the equilibrium point is changed.  
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Using Figure 5.23 as a guide, the desired equilibrium positions and natural 

frequencies were chosen as θdes = [0.3, 0.5, 0.8, 1.1] radians and fn,des = [21, 8, 16, 

10] Hz. Table 5.4 shows the results of the optimization. In testing the system, the 

yrel values were constrained to be equal to that of the predicted values. Then the 

resulting xrel values fn were measured to see how they corresponded to the desired 

synthesized values.  Taking the minimal damping of the system into account, the 

experimental natural frequencies are within 10.0% relative error and 1.4 Hz 

absolute error of the desired values. The predicted and experimental xrel values 

correspond very well leading one to believe that both the solution method and the 

model of the magnet energy have good accuracy. 

 

Figure 5.23. Monte Carlo mapping of natural frequency versus angle for case 1. 
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5.3.3.2 Case 2 Solution (Rigid Pendulum) 

The Monte-Carlo mapping for case 2 used 2000 iterations and is shown in 

Figure 5.24.  Surprisingly the springs seem to have little effect as the mapping 

looks quite similar to that for case 1. The feasible design range for the frequency 

lies between 8 and 24 Hz.  From Figure 5.24 the following design criteria are 

chosen: four equilibrium positions at θdes = [0.2, 0.4, 0.6, 0.9] radians and fn,des = 

[21, 16, 13 18] Hz.  The last optimizing point at θ = 0.9 is chosen because there 

seems to be a hole in the mapping at that point near 18 Hz on the vertical axis.  

Thus, one can examine if that is simply some sort of numerical anomaly since all 

energy storage elements have smooth and continuous energy curves.  The results 

from the optimization are shown in Table 5.5.  The results again show good 

agreement in predicting the natural frequency of the pendulum as the worst error 

is 6.2%, or 1.3 Hz in absolute error.  The optimization for 18 Hz at θ = 0.9 

radians was obtained accurately, signaling that one must use some judgment in 

interpreting the Monte-Carlo mappings correctly in that the data points most 

closely represent probabilities of a solution (i.e. where points are most densely 

populated there is a high probability of solution, and vice versa). 

θdesired 
(rad) 

yrel,predict = 
yrel,experimental 

xrel,predict xrel,experimental 
(± 0.05) 

fn,desired 
(Hz) 

fn,experimental 
(Hz) 

fn, (% 
error) 

0.3 2.11 0.04 0.05 21.0 20.8 1.0 
0.5 3.76 0.35 0.35 8.0 7.2 10.0 
0.8 2.44 0.12 0.10 16.0 17.4 8.7 
1.1 3.12 0.34 0.30 10.0 9.5 5.0 

Table 5.4.  Results of Case 1 SQP optimization synthesis of MSE system. 
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Figure 5.24. Monte Carlo mapping of natural frequency versus angle for case 2. 
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5.3.3.3 Compliant Beam Example 

The synthesis of a compliant beam was also performed to explore the use 

of the MSE design methodology for compliant structures. The beam is made of 

DuraformTM made in a Sinterstation 2000 selective laser sintering machine (see 

Figure 5.25). The pseudo-rigid-body (PRB) method was used to approximate the 

kinematics of the beam [Howell et al., 1994]. The stiffness of the beam used in 

the PRB model was approximated a constant and calculated by studying the free 

response of the beam during vibration. The same design approach used in the 

pendulum example was employed for the compliant beam.  The corresponding 

Monte-Carlo mapping in shown in Figure 5.26 and the results of the synthesis are 

in Table 5.6. 

The predicted position of the beam was quite good using the PRB method.  

All values were within one millimeter for the beam of length 175 mm.  Notice in 

Set 1 in Table 5.6 how the predictions of the natural frequency are good for the 

lower angles but are quite poor for the higher angles.  Also, the prediction for the 

xrel position of the magnets is off significantly. To test the hypothesis that the 

error in the synthesis prediction increases with angle, the beam is synthesized to 

attain the same natural frequency, 25 Hz, for increasing PRB angle values. The 

θdesired 
(rad) 

yrel,predict = 
yrel,experimental 

xrel,predict xrel,experimental 
(± 0.05) 

fn,desired 
(Hz) 

fn,experimental 
(Hz) 

fn, (% 
error) 

0.2 2.11 -0.37 -0.25 21 20.0 4.8 
0.4 2.54 -0.06 -0.05 16 15.1 5.6 
0.6 2.68 0.05 0.00 13 13.0 0.0 
0.9 2.22 0.17 0.10 18 16.9 6.1 

Table 5.5.  Results of Case 2 SQP optimization synthesis of MSE system. 
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results are shown in Set 2 of Table 5.6.  The hypothesis is proved correct as the 

error in prediction of frequency and position increases with angle.  The results 

indicate that the beam stiffness, or strain energy in the beam, is over predicted. 

Note the xrel positions are better than in Set 1, but still not accurate for large 

angles. 

 

 

Figure 5.25. Schematic of the compliant beam used in synthesizing equilibrium 
positions. 
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Figure 5.26. Monte Carlo mapping of natural frequency versus equilibrium 
position for the compliant beam. 
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Further experimentation of the beam stiffness error was performed by 

synthesizing the compliant beam position and frequency while assuming no strain 

energy in the beam.  Using the same yrel and experimental xrel values from Set 2 

of Table 5.6, the natural frequencies were then predicted in the computer model.  

As one can see in Table 5.7, the error in predicting natural frequency is now much 

better for the large angles, but slightly worse for the small angles.  The 

conclusion is that the spring constant model from the PRB is insufficient to 

account for the strain energy stored in the DuraformTM beam.  This is likely due 

to one or both of the following factors: 1) the beam material has creep occurring 

to relieve strain energy at large angles, and 2) the magnetic force on the beam 

pulls in the normal direction much harder than in the tangential direction, thus 

stretching the limits of applicability for the PRB model.  Future work in the area 

 

Table 5.6. Results from the MSE synthesis of the compliant beam in Figure 5.25. 
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of compliant structures will need to better calculate strain energy.  Nonetheless, 

this initial experimentation into the synthesis of MSE systems made of compliant 

structures shows that further refinement in accounting for strain energy has 

promise for producing good results. 

 

5.3.4 Conclusions on Pendulum and Magnet Experiment 

The goal of these beam experiments was to formally test the design 

synthesis approach for multi-stable equilibrium systems. A MSE system is a type 

of adaptive structure. By properly designing the kinematics and potential energy 

storage elements of a MSE system, one can create a structure that has multiple 

stable operating regimes. The synthesis approach of this paper was shown to be 

valid for a system involving magnetostatic, mechanical translational, and 

mechanical rotational energy domains. This section case study presents the ability 

to use lumped and field models across multiple energy domains for the synthesis 

 

Table 5.7. Results from the numerical model prediction of natural frequency 
when no strain energy is assumed in the compliant beam.  The xrel and yrel 
values were set to be equal to the experimentally measure values as shown in 
Table 5.6, Set 2. 
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of MSE systems. Although the energetic magnet model has inaccuracies and also 

limits the design possibilities due to the fact that only two interacting magnets can 

be considered at a time, this does not detract from the overall design methodology 

using the total system energy to design the entire system.  All one needs is a 

sufficiently accurate model of all the potential energy storage devices, and the 

synthesis of MSE systems is possible. 

 

5.4 X-LINK EXPERIMENT – 2 D.O.F. 

The experiment described in this section represents a two-degree of 

freedom situation. The problem involves the coupling of three energy storage 

domains: mechanical translation, mechanical rotation, and magnetic. The 

magnetic forces are treated as having field a function only of the configuration of 

the device. This means that the speed of the device in either kinematic coordinate 

has negligible impact on varying the magnetic field properties. As will be seen 

throughout this section, this assumption is not very limiting. 

The concept of the experimental linkage mechanism is inspired by the 

concept of a MSE fish changing its shape and stiffness properties. The idea is to 

have a short shape with a high natural frequency (like a tuna), and a second long 

shape with a much lower stiffness, or higher flexibility (like an eel). Keep in mind 

that only the major qualitative features of the X-link system are sought since the 

experiment is run in air while resting on a table instead of floating in water. 

Figure 5.27 shows a schematic of the experimental mechanism. The MSE 

system is essentially the ‘X-link’ shapes and the springs that connect the X-links 
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to the input links. The two degrees of freedom of the problem are the rotational 

angles θ and β. The magnets for one of the X-link pieces are shown in Figure 

5.27. There are other magnets are on the opposite X-link piece, and combining the 

two pieces creates the characteristic ‘X’ shape. The two stable positions for the X-

link mechanism are solely created by the magnetic torque between the two X-link 

pieces. The magnets have their magnetic poles aligned in the x-direction. When β 

changes, there is a magnetic potential energy change and a resulting torque from 

the relative changing magnetic configuration between the two X-link pieces. It is 

this magnetic torque that acts to keep the X-link system from rotating due to all 

other forces, or torques. See Section 5.4.1.3 for more detail on the magnetic 

configuration. 
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Figure 5.28 shows a photograph of the experimental setup used to test the 

MSE X-link mechanism. A coupler connects the input links to a linear bearing 

that slides vertically along the input shaft. The shaft is a splined shaft driven by a 

quick-return mechanism which is then in turn actuated by a DC motor (give 

model name and specs of the motor). A template attached to the shaft of the motor 

allows the selection of different maximum input angle, θin,max, magnitudes when 

actuating the X-link. 

 

 

Figure 5.27. Schematic of the X-link experimental system (motor and quick-
return driving system not shown). 
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The goal of designing the MSE X-link system is to design it such that both 

the short and the long positions have desired natural frequencies in the θ direction 

while maintaining each configuration, or β position, when desired. This 

experiment explores more of the dynamic characteristics of MSE systems, and 

how they can differ from the static characteristics and predictions. Gathering 

 

Figure 5.28. Photograph of X-link experimental setup. 
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system response data as input magnitude and frequency are varied produces 

information that can be used for deriving control strategies. By matching a 

computer model to the experimental results, one has a way to predict the dynamic 

behavior of other X-link systems that have the basic architecture but different 

parameters such as size, inertia, and spring stiffness. Thus, one can begin to use 

the model for exploration of control and design enhancements. 

Section 5.4.1 derives the model used to simulate the X-link model for 

subsequent analysis. Section 5.4.2 verifies that the model closely approximates 

reality as it compares the system model response to experimental results. Section 

5.4.3 ends the discussion of the X-link problem by using the model to explore the 

design aspects of this MSE system, and how simulation can help in design 

synthesis.  

 

5.4.1 Derivation of X-link model 

 The dynamic model of the X-link system is derived using Lagrange’s 

equations. Thus, one needs the kinetic coenergy and potential energy as functions 

of the two kinematic degrees of freedom. The kinetic coenergy and potential 

energy are shown in Equations (5.11) and (5.12), respectively. 
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The dot above each kinematic variable in Equations (5.11 and 5.12) 

denotes its time derivative. Here is a list of symbols used in Equations (5.11 and 

5.12): 

θ = kinematic variable designating rotational angle about z-axis (see 

Figure 5.27), 

β = kinematic variable designating rotational angle of X-link system about 

x-axis (this is essentially the angle from any ‘leg’ of the X shape to the 

horizontal, or x-y, plane), 

θin = rotational angle of input shaft, 

Izz(β) = mass moment of inertia of X-link about z-axis, 

Ixx = mass moment of inertia of X-link about x-axis, 

Iin_liinks,xx = mass moment of inertia of input links about x-axis, 

mX = mass of X-link including magnets, screws, and nuts holding it 

together, 

min_links = mass of input links including screws, coupling, and linear 

bearing (mass of all things that connect input shaft to X-link), 

xA = xA(θ,β) = x-location of point A, the center of the X-link, 

yA = yA(θ,β) = y-location of point A, the center of the X-link, 

zA = zA(β) = z-location of point A, the center of the X-link, 

xT = xT(θ,β) = x-location of point T, the center of the X-link, and 

yT = yT(θ,β) = y-location of point T, the center of the X-link, 
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Note that the mass moment of inertia of the X-link system is assumed 

independent of the angle θ. This is not entirely true since as θ varies, and the 

coordinate system is held fixed, the moment of inertia of the X-link with respect 

to the fixed rectilinear coordinate system will indeed change. This was a 

simplification made for modeling purposes. In later sections, the dynamic 

simulation and experimental results show good agreement even with this 

assumption. 

 Creating the Lagrangian from Equations (5.11) and (5.12) as L = T – V, 

one then performs the required derivatives to create the two second order 

differential equations governing the system motion. Equations (5.13-5.15) show 

the Lagrangian and the two differential equations that govern the X-link model. 

The derivation of each component follows. In Equations (5.14) and (5.15) the 

symbols Qθ and Qβ represent any non-conservative forces, and there is no input in 

the β direction. 
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5.4.1.1 Equation of motion in θ coordinate direction 

The derivation of Equation (5.14) is now performed. First one needs the 

partial derivative with respect to the time derivative of θ. This is shown below in 

Equation (5.16). 
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Now taking the full time derivative of Equation (5.16), one obtains equation 

(5.17).  
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The components of Equation (5.17) are now derived below in equations 

(5.18-5.21). Equations (5.18-5.20) show the x-position of the X-link center of 

mass and its velocity and acceleration. Equations (5.21-5.23) represent the same 

for the y-position of the X-link center of mass. Equations (5.24-5.26) and (5.27-

5.29) present the position, velocity, and acceleration of the point T in the x and y 

directions respectively. Equations (5.30-5.32) show the position, velocity, and 
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acceleration of the z-direction of the point A needed to account for gravitational 

effects. 
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The location of point T is the true input point to the X-link mechanism, 

and its derivation is shown below. First, the x-direction input in terms of the 

independent coordinates. 
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Now the y-direction input in terms of θ and β, 
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Finally, the z-position of the center of the X-link structure, needed to 

account for the force of gravity acting on the mechanism, is presented in 

equations (5.30-5.32). 
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 Further terms needed in Equation (5.17) are the partial derivative of the 

mass inertia about the z-axis with respect to β. Due to β changing rather slowly in 

general, I assume this quantity is negligible. This assumption is shown in  

Equation (5.33). This does not mean that Izz(β) is not a function of β. This 

quantity is still allowed to vary as the X-link changes orientation, or length. The 

rest of the terms needed in Equation (5.17) are shown in equations (5.34-5.37). 
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 Now all terms of Equation (5.17) have been obtained. The partial of the 

Lagrangian with respect to θ is needed. Equation (5.38) shows this, where k is 

combined spring constant of the springs that connect the input links to the X-link. 
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 The underived quantities of Equation (5.38) not previously derived are 

shown below in equations (5.39) and (5.40).  
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 Now every factor needed to write Equation (5.14) is known. The next 

section derives the factors needed for Equation (5.15). 

 

5.4.1.2 Equation of motion in β coordinate direction 

The derivation of Equation (5.15) is now performed. First one needs the 

partial derivative with respect to the time derivative of β. This is shown below in 
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Equation (5.41). The assumption that Ixx and Iin_links,xx are not functions of β has 

been made. 
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 Previously underived terms of Equation (5.41) are shown below in 

equations (5.42-5.44). 

 

( ) ( ))(sinsin2sin)(sin2 tltllx
ininin

A θθββθ
β

−−+−=
∂

∂
•

•

  (5.42) 

( ) ( ))(cossin2sin)(cos2 tltll
y

ininin
A θθββθ
β

−−+−=
∂

∂
•

•

 (5.43) 

β
β

cos2
lz A =

∂

∂
•

•

 (5.44) 

 

 Now taking the full time derivative of Equation (5.41), one obtains 

Equation (5.45). 
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 Previously underived quantities of Equation (5.45) are shown below in 

equations (5.46-5.48). 
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 Now one needs the partial of the Lagrangian with respect to β. This is 

shown below in Equation (5.49). The parameter g is gravitational acceleration. 
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 Previously underived factors of Equation (5.49) are now shown in 

equations (5.50-5.55). Note this derivation assumes that the partial with respect to 

of the mass inertia in the z-direction is calculated numerically, such as by forward 

differencing. Thus we do not show a functional form of this term from Equation 

(5.49). 
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5.4.1.3 Derivation of Vmag(β) 

This section derives a magnetic energy model, and associated magnetic 

torque, for the permanent magnets that create the two statically stable positions of 

the X-link model. As the X-link system is defined, the magnets are always at a 

fixed distance apart. In other words, there are magnets in each of the two pieces of 

Figure 5.29 that combine to form the ‘X’ shape, and these two pieces have 

magnets that are separated by some gap depicted in Figure 5.4.3. The larger this 

gap is, the less attraction the magnets possess, and therefore the less torque they 

impart in the β-direction. Figure 5.29 also shows that the magnets are attractive 

by specifying their magnetic North-South pole orientations. 
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 The static stable positions are primarily dictated by the fixed angle φ 

shown in Figure 5.29. Neglecting gravity, or orienting the X-link such that gravity 

acts in the same direction as the magnetic forces, the angle φ solely characterizes 

the two stable positions. In this case, each stable position occurs when two 

magnets 180o apart on the four-magnet piece align with the two magnets on the 

 

Figure 5.29. Schematic of how magnets are oriented in X-link. 
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other piece of the X-link. When gravity is acting to essentially ‘squash’ the X-

link, the stable positions are compromised. If the gap between the magnets is too 

great, then the magnetic torque is smaller than the torque due to gravitational 

forces, and the X-link system cannot maintain what would be a stable position 

without gravity.  

 In obtaining the magnet model, the X-link was assembled for different gap 

distances. The torque was then measured as a function of angular orientation, β, 

for a set X-link piece that is characterized by the angle φ shown in Figure 5.29. 

Once torque and β values are known for full motion of the X-link, then those 

values are integrated to obtain the magnetic energy curve. These curves were 

obtained for 3 different angles of φ, 30o, 45o, and 60o. Due to the symmetry of the 

magnetic orientation, the 30o case and the 60o case are sort of ‘mirror images’ of 

each other where they have the same torque values being offset by 90o.  

The magnets used in the X-link model are identical NdFeB magnets from 

McMaster-Carr, part # 5848K32 Grade 37. They are of dimension 0.5” x 0.5” x 

0.21”. The force of Figure 5.30 was obtained using a Honeywell micro switch 

force sensor, model number FSL05N2C. Figure 5.31 shows the measured torque 

values, and Figure 5.32 shows the corresponding energy curves. Again recall that 

if gravity does not affect the X-link system, then the stable β positions are at the 

locations of minimum energy. In both figures, the ‘+’, ‘•’, and ‘*’ marks represent 

φ = 30o, 45o, and 60o situations, respectively. 
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Figure 5.30. Schematic showing how magnetic torque was measured to obtain 
magnetic energy model. 
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Figure 5.31. Measured magnetic torque of X-link. The  ‘+’, ‘•’, and ‘*’ marks 
represent φ = 30o, 45o, and 60o situations, respectively. 
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Recall that the magnetic energy model used for the X-link is only a 

function of β, and not the gap between the magnets. Hence the energy values in 

Figure 5.32 at constant φ have the same maximum energy. This is not the true 

case if one were to measure the force required to increase the gap between the 

magnets. Since changing the gap distance of the X-link is not considered fixed 

once it is chosen, an energy model accounting for this variation is not needed. 

 

 

 

Figure 5.32. Magnetic energy for the X-link derived from torque measurements. 
The  ‘+’, ‘•’, and ‘*’ marks represent φ = 30o, 45o, and 60o situations, 
respectively. 
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5.4.2 Calibration of Model with Experimental Results 

In the previous section 5.4.1, the entire X-link model was developed for 

dynamic simulation. The results of this model are now compared to some 

experimental results for the case of the φ = 45o magnet configuration. The main 

criteria that will be used to compare the model with the experiment are mostly 

qualitative. The predicted magnitude at various given excitation frequency and 

input magnitudes are compared. The magnitude of the output is measured using a 

bending sensor. The sensor is made by Flexpoint. The sensor is placed in the 

center of the helical springs that provide the compliance between the input links 

and the X-link. Thus, the sensor measures the relative angle between the input 

angle, θ in(t), and absolute angle, θ , of the X-link. 

Mostly this calibration of the model to the experiment involves finding 

correct values for friction factors and the bending spring constant of the coil 

springs. In the model, there are two forms of friction added in each kinematic 

degree of freedom: coulombic and viscous friction. Equation (5.56) shows the 

basic forms of these friction models, where q is used as a generic kinematic 

variable. Both friction terms act in the direction opposite to the motion. Some 

sources of friction in the experiment are rubbing between screws and nuts used to 

attach the X-link together and to the input shaft. The sliding friction of the system 

on the table is the most dominant, mostly affecting the θ direction, but also 

significant for the β direction. FN is the normal force to surface and µ is the 

friction coefficient for coulombic friction. 
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 The input to the experiment is a quick-return mechanism, rather than a 

purely sinusoidal input. This is relatively unimportant as a sinusoidal input is not 

necessary to analyze the general nature of the device, and for small motion the 

quick-return mechanism produces very close to sinusoidal motion. One can still 

gain an appreciative feel for the output magnitude response versus input 

frequency using the quick-return mechanism. It is also easier and cheaper to 

construct than the typical sinusoidal input mechanism, the Scotch-Yoke. Given a 

model that mimics the experiment using a quick-return, one can be confident of 

the simulated results when simulating a sinusoidal input if that is needed. 

 Since the input angle, velocity, and acceleration are needed in the 

equations of motion, they are derived here for the quick-return mechanism shown 

in Figure 5.33. The input to the X-link, θin(t), is given in Equation (5.57). Using 

the location, (xQ, yQ), of the input pin given in equations (5.58) and (5.59) one can 

derive the input angle as a function of known parameters. 
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 The first and second time derivatives of Equation (5.57) provide the other 

necessary input factors needed for the equations of motion. The velocity and 

acceleration of the input angle are depicted in equations (5.60) and (5.61), 

respectively. The argument of the inverse sine function in Equation (5.57) and its 

first and second time derivative are needed. These are given by equations (5.52 - 

5.54) where the argument is represented as ‘A’. 
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Figure 5.33. Quick-return mechanism schematic showing the location of the 
input to the X-link mechanism. 
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5.4.2.1 Simulation with β fixed 

First calibration of the model is performed with one of the kinematic 

degrees of freedom, β, fixed. This allows the tweaking of the friction factors for 

the θ-direction to be done independently of the bistable nature of the design. After 

several iterations of friction factors and spring constant values, the model 

performs well with k = 0.1 Nm/rad, µθ = 0.002 Nm, bθ = 0.002 Nm-s, µβ = 1e-4 

Nm, and bβ = 0.1 Nm-s. 



 213

Here are some results are shown where the X-link is held fixed in its 

‘short’ stable position. This short position is defined by the largest stable β value 

dictated by the magnetic energy developed in the last section. This is called short 

because as β increases, the length (in y-direction) of the X-link system decreases, 

or gets shorter. Conversely, the ‘long’ X-link stable position is dictated by the 

smallest stable β value.  

Figures 5.34-5.37 below are the magnitude versus frequency plots of the 

simulated versus measured response for the X-link model for various run cases 

when φ = 45o. When φ = 45o, the short X-link configuration is at β = 67.5o. As can 

be seen, the qualitative nature of the problem is simulated well. The peaks for the 

experimental measurements are abnormally high due to the nature of the sensor 

used. The Flexpoint sensor measures bending mostly in one direction, and the 

output magnitude depends upon angle bent and radius of curvature. Thus, 

obtaining any specific numbers from the sensor is quite difficult. Nonetheless, its 

sleek design makes it appropriate for this application where the qualitative 

response is most important. 

Figures 5.34 and 5.35 are experimental cases of the X-link being in the 

short position where the maximum input angle is approximately 1.8 degrees, and 

the magnets are separated by 1.6 cm. The frequency of actuation is stepped 

incrementally past the peak magnitude response, representing a resonant 

frequency of the device. Each time the input frequency is increased, the response 

is allowed to reach steady state. Figure 5.36 shows the output angle of the X-link 

and how it goes to steady state. Each input frequency is simulated for four 
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seconds to allow steady state response to occur. Figure 5.36 is typical of many of 

the responses. 
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Figure 5.34. Simulated result of magnitude versus frequency for X-link with 
θin,max = 1.8o, and fixed in ‘short’ position. 

 

Figure 5.35. Experimental results of magnitude versus frequency for X-link with 
θin,max = 1.8o. 
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To see the effects of dissipation and friction in the response of the 

mechanism a simulation can be run with no damping. Figure 5.37 shows this case. 

The peak magnitude is shifted toward higher frequencies as expected from linear 

system theory. The ramifications for this reality are discussed later in Section 

5.4.3.  
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Figure 5.36. Simulated output angle versus time for the same case depicted in 
Figure 5.34.  
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Comparable responses for the long stable position of the X-link model are 

also shown in Figures 5.38 – 5.41. The long position for the case of φ = 45o is 

characterized by β = 22.5o. Figure 5.38 shows the simulated response with the 

proper damping, and Figure 5.39 shows the experimentally measured response for 

the same input parameters. These show the same qualitative correspondence with 

each other again verifying that the model is working well. 

 

 

Figure 5.37. Simulated magnitude versus input frequency response for same case 
as in Figure 5.34. 
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Figure 5.38. Simulated magnitude versus frequency response of X-link in the 
long position with θin,max = 1.8o. 

 

Figure 5.39. Experimental magnitude versus frequency response of the X-link 
under same circumstances as Figure 5.38 with θin,max = 1.8o. 
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5.4.2.2 Simulation with full model, β not fixed 

After the simulated frictional values were tuned to obtain responses shown 

in the experimental configuration, the β degree of freedom is allowed to vary with 

the dynamics of the problem. Now a full X-link system model is simulated, and 

the responses are compared with the experimental results. Now not only does the 

oscillation in the θ-direction need to match with experimental results, but so does 

the β-direction motion. Intuitively, one can visualize that if enough excitation is 

input to the system, the X-link will move from the short position to the long 

position. This can mainly be attributed to the centripetal ‘extending’ forces from 

the input overcoming the magnetic ‘holding’ force that enables the bistability. 

Figure 5.40 shows a simulated case where the X-link stays in its short 

position without transitioning to the long position. Figure 5.40a shows the 

magnitude versus frequency plot of the angle, θ. Figures 5.40b and 5.40c show 

the time response of β and θ, respectively. Notice how at the maximum amplitude 

for θ, there is the lowest β value of about 62o, meaning that is the longest 

configuration of the X-link. Figure 5.41 shows the corresponding experimental 

results. Again, the input has some fixed θin,max, and the input frequency is 

incrementally stepped through the resonant frequency while allowing steady state 

to be achieved before stepping to the next frequency. For Figures 5.40 and 5.41, 

the magnetic gap is approximately 1.3 cm, and θin,max = 5.1o. Note the very good 

agreement on where the peak magnitude occurs, around 4.1-4.2 Hz, for both the 

experiment and the simulation. The data points shown in Figure 5.41 are 

connected as the voltage to the input motor is increased. With no load, this will 
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cause an increasing input frequency. However, due to the nonlinear load of the X-

link imposed upon the motor, a steady increase in input frequency is not achieved. 

The frequency plotted against in all figures is indeed the input frequency and not 

the output response frequency. 

 

 

 

Figure 5.40. Simulated response of the full X-link model when input angle is 
θin,max = 5.1o, and the magnets have a gap of 1.3 cm: (a) magnitude of θ versus 
input frequency, (b) time response of β, and (c) time response of θ. 
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Now some results are shown where there is a transition from the short to 

long configuration of the X-link MSE system. Every parameter is kept the same 

as was used to produce the previous two figures, but the maximum input angle is 

increased to θin,max = 7.3o. The simulated and experimental results are shown in 

Figures 5.42 and 5.43, respectively. The transition occurs in both figures near 3.7 

- 3.8 Hz. Note the motion of the angle β once the critical excitation frequency is 

reached making β decrease to its minimum value of 22.5o. Note that the minimum 

value is not zero degrees due to the shape of the X-link system having the circular 

center that ends up resting on the table. Thus, the gravitational reaction force 

 

Figure 5.41. Experimental magnitude of θ versus input frequency for same case 
as Figure 5.40. 
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starts acting through the center of the X-link at that point, creating no more torque 

to flatten the X-link.   

 

 

 

Figure 5.42. Simulated response of the full X-link model when input angle is 
θin,max = 7.3o, and the magnets have a gap of 1.3 cm: (a) magnitude of θ versus 
input frequency, (b) time response of β, and (c) time response of θ. 
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5.4.3 Relation of Simulation to MSE Synthesis Methodology 

There is now established a valid model for predicting the dynamic 

response of the X-link MSE system. Given a valid X-link geometry, inertial 

properties, and magnetic energy model one can predict the response of the system 

and tailor the MSE X-link system design to desired specifications and 

performance. Given this valid model, the basic system response can be predicted 

as in Section 5.4.2, both locally about each stable position and in transition 

between the stable configurations. This can tie the design methodology to the 

realities of operating a MSE system and knowing what kinds of inputs will keep 

 

Figure 5.43. Experimental magnitude of θ versus input frequency for same case 
as Figure 5.42. 



 225

the system about a particular stable equilibrium position. As mentioned in Chapter 

2 of this dissertation, the scope of this work does not account for the full nonlinear 

dynamic nature which MSE systems can exhibit. It only considers localized 

dynamics that can be well approximated by linearized models. The Future Work 

section in Chapter 6 describes one possible way to extend the MSE synthesis 

methodology by incorporating nonlinear dynamic theory, in particular the 

Melnikov perturbation analysis. 

In this section, a desired system performance is proposed, and then the 

MSE design synthesis methodology is used to determine if the proposed solution 

is achievable. During the modeling, simulation, and experimentation of the X-link 

model it was observed that the resonant frequency of the system in the short 

versus the long configuration is usually near two times as large. The reason it 

cannot be higher is primarily due to the limitation in the magnetic model. In order 

to facilitate a more extensive MSE X-link design, the magnetic potential energy 

model is put into the generalized form of a sixth order polynomial in β. A sixth 

order polynomial is chosen since it can satisfactorily characterize the 

experimentally determined magnetic models used for simulation in Section 5.4.2. 

In essence, to fully solve this X-link design problem, a separate problem is left to 

the designer to determine how to create the magnet model that is determined from 

this design process. Here it is assumed that the sixth order magnetic energy can 

somehow be created, perhaps by employing the MSE design methodology with 

finite element analysis, but that is beyond the scope of this work [Limaye, et al., 

2003]. 
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The MSE solution process is used for the rest of this Section 5.4. Section 

5.4.3.1 sets up the problem, and Section 5.4.3.2 discusses the Monte Carlo 

mapping. Section 5.4.3.3 shows the results of using a genetic algorithm to solve 

for the system design variables. 

 

5.4.3.1 Step1: Problem Description and Decide on important Engineering 
Characteristics of each Equilibrium 

As mentioned earlier, the tested version of the X-link could not have a 

‘short’ natural frequency that was more than around twice that of the ‘long’ 

configuration. Thus, a feasible test of the MSE design synthesis methodology is to 

explore what is required, in terms of the design variables, to achieve two natural 

frequencies that differ by a wider margin. The desired natural frequencies are to 

be 10 Hz and 1 Hz for the short and long configurations, respectively. This makes 

them an order of magnitude apart. Not much concentration will be put on at what 

length, or β value, the X-link will be in during each configuration, but a limit of 

βmax = 85o and βmin = 4o is set. 

The design variables of the problem are set as follows: 

1. X-link mass, mX, 

2. Input link mass, minput_links, 

3. spring constant, k, 

4. length of each X-link piece (all equal), lX, 

5. Moment of inertia of each X-link piece to form total inertia, Ixx, Iyy, Izz, 

and 
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6. the seven coefficients (a0 - a6) of the magnetic model (Emag = a6β6 + 

a5β5 + a4β4 + a3β3 + a2β2 + a1β + a0). 

 

5.4.3.2 Step 2: Monte Carlo Mapping and Probability Calculation 

The mapping procedure used is a bit different than those previously 

described because of the more ambiguous nature of the assumed magnetic energy 

model. Choosing random values for the coefficients of the sixth order model can 

produce a very wide variety of curves that are of no help or interest to the X-link 

problem. Therefore, the mapping proceeds in a slightly different manner as 

described next. 

Due to the kinematics of the X-link, the potential energy at constant β is 

only a function of one design variable, k. Also, at constant θ, the potential energy 

is only composed of the magnetic and gravitational energies. Since the only 

energies that contribute to stability of the X-link in the β-direction are the 

gravitational and magnetic energy, the desired and magnetic energy curves can be 

used to solve for a reasonable magnetic curve. Therefore, in the mapping 

procedure, instead of generating random values for the magnetic energy 

coefficient design variables, random values are generated for the desired design 

criteria of the total energy in the β-direction. That is to say, at constant θ = 0, the 

magnetic energy is the desired energy minus the gravitational energy, or Emag = 

Edes – Egrav.  

Using the assumed form of the magnetic energy, one can also calculate the 

first and second derivatives of the magnetic energy with respect to β. The models 
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for Emag(β) and its derivatives are shown in Equations (5.65-5.67). Giving desired 

design criteria for the total system energy enables one to use these values to solve 

for the coefficients of the magnetic energy. First, as the Monte Carlo procedure is 

generally used, generate random values for all design variables except for the 

magnetic energy coefficients. Then generate random βeq positions for the stable 

and unstable equilibria. There is assumed to be two stable βeq and one unstable 

βeq. One also knows that at these equilibrium positions, the first derivative of the 

total energy is zero. This also means that the slope of the Emag is equal and 

opposite to the slope of Egrav, as depicted in Equation (5.68). 
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To find the seven coefficients for Emag, one can specify seven design 

criteria within the mapping procedure to solve for the Emag curve required to 

obtain the desired energy, Edes. Remember, that the desired energy curve is still 

randomly generated so that a good sample of the performance space is obtained. 
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Equation (5.69) shows the linear equation that is solved during the mapping 

procedure to obtain the Emag coefficient design variables. 

 











































−

−

−

−

−

−

−

=

























































2,
2

2
3,

2,

1,

3,

2,

1,

0

1

2

3

4

5

6

2,
2

2,
3

2,
4

2,

3,
2

3,
3

3,
4

3,
5

3,

2,
2

2,
3

2,
4

2,
5

2,

1,
2

1,
3

1,
4

1,
5

1,

3,
2

3,
3

3,
4

3,
5

3,
6

3,

2,
2

2,
3

2,
4

2,
5

2,
6

2,

1,
2

1,
3

1,
4

1,
5

1,
6

1, )(

)(

)(

0026122030
0123456
0123456
1123456
1
1
1

eq

des

eq

grav

eq

grav

eq

grav

eqgravdes

eqgravdes

eqgravdes

eqeqeqeq

eqeqeqeqeq

eqeqeqeqeq

eqeqeqeqeq

eqeqeqeqeqeq

eqeqeqeqeqeq

eqeqeqeqeqeq

d
Ed

d
dE

d
dE

d
dE

EE

EE

EE

a
a
a
a
a
a
a

β

β

β

β

ββββ
βββββ
βββββ
βββββ

ββββββ
ββββββ
ββββββ

(5.69) 

Using Equation (5.69), by providing values for the right-hand side (RHS), 

one can solve for the seven coefficients, a0 - a6. Here it is assumed that the first 

and third equilibria are stable, and the second equilibrium is unstable. The first 

three values of the RHS are generated randomly assuming arbitrarily that the 

energy has a value of zero at the unstable equilibrium, or Edes|eq,2 = 0 J. The values 

for Edes|eq,1 and Edes|eq,3 are generated randomly assuming some maximum and 

minimum energy that must be smaller than Edes|eq,2. The 4th – 6th values on the 

RHS are generated numerically from the gravitation energy that is already 

calculated with random values. The final and 7th item if the RHS vector of 

Equation (5.69) must be some negative value, since it is the curvature of the 

desired energy at the unstable equilibrium. This curvature is randomly generated 

within a certain range of values. 
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The spring constant, k, only acts to dictate the natural frequency in the θ-

direction at any constant β. Therefore, its value is not randomly generated, but 

rather its minimum and maximum values are used during each Monte Carlo trial 

to get the maximum and minimum curvatures in the θ-direction, and thus natural 

frequency.  

The maximum and minimum ranges for the design variables, and RHS 

values of Equation (5.69) are now discussed. The values for these are based 

loosely on the values from the X-link experimental example since they are 

representative of reality. As the allowed range for each design variable is 

increased for the Monte Carlo mapping, one must consider whether or not the 

values are achievable in reality due to materials and manufacturing and such. 

Also, the combinations of design variables must be considered. For example, if an 

X-link has a very small rotational inertia but a large mass, one must consider that 

such a link may not be physically realizable with known materials. These types of 

issues are not considered for this exploratory research. 

For the mX the minimum is 0.01 kg, and maximum is 0.2 kg. For minput_links 

the minimum and maximum values are 0.01 kg and 0.1 kg, respectively. The 

spring constant has values that surround the experimental value for the φ = 45o
 X-

link, kmin = 0.01 Nm/rad and kmax = 0.5 Nm/rad. For all inertias, the minimum 

value is 10-9 kgm2. The maxima for Ixx, Iyy, and Izz are 10-4, 10-5, and 10-4 kgm2, 

respectively. The X-link link length, lX, has maximum and minimum values of 0.5 

and 0.1 m, respectively. To generate the first and third values of the RHS of 

Equation (5.69), the maximum and minimum energy differences from the 



 231

unstable energy value (Edes|eq,2 = 0) are 0.2 and 0.01 J respectively. These values 

are in the ballpark of what could be expected from the NdFeB magnets used in the 

X-link experiment. Finally, minimum and maximum curvature values for the 7th 

value of the RHS of Equation (5.69) are -10 and 0 J/rad2. The equilibrium β 

values needed to evaluate the RHS of Equation (5.69) are also randomly 

generated in a range of β between 4o and 85o. They are generated such that βeq,1 > 

βeq,2 > βeq,3.  

In calculating the Monte Carlo probability, the desired design criteria are 

the frequencies in the θ-direction at the two stable positions and the location of 

the stable positions. Ranges for these desired design criteria which are considered 

acceptable are ± 1 Hz and ± 0.2 Hz for the short and long X-link configurations, 

respectively. The desired βeq,1 (short configuration) and βeq,3 (long configuration) 

were chosen as 82o and 25o, respectively, with a tolerance of ± 0.2 rad on each. 

The value desired βeq,1 represents the a value near the upper limit allowed due to 

kinematic constraints, and the desired βeq,3 value is near the lower limit from the 

experiment. The ± 0.2 rad tolerance on the β positions is quite liberal, as it 

equates to about ± 11.5o. Again, there is little emphasis on the exact equilibrium 

position. 

The Monte Carlo mapping was run for 8000 trials. A qualitative mapping 

of the long natural frequency plotted against the short frequency is shown in 

Figure 5.44. Note a seemingly distinctive line acting as an upper limit on the 

graph. This line has an approximate slope of 4/5, meaning under the assumed 

topology, one can expect that the long natural frequency cannot be much higher 
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than 0.8 times the short natural frequency. There is a less distinctive lower 

boundary on the plot at a slope near 1/9. The desired design criteria point of 10 

Hz and 1 Hz lies very near this apparent lower boundary, and thus seems to be a 

good test for whether or not this desired solution exists. 

 

The probability calculations for the four desired design criteria are shown 

in Table 5.8. Since the desired design criteria produce Ptot = 0, the high frequency 

criterion was perturbed to a few values that give Ptot > 0 for confirmation that the 

 

Figure 5.44. Qualitative mapping of the natural frequencies in the short 
and long X-link configurations. 



 233

genetic algorithm can easily solve the problems with known existence. The order 

in which the probability was calculated considers the frequency of the long 

configuration dependent upon that of the short configuration. In the trials with Ptot 

= 0, there were already no data points considering only these two criteria out of 

the four total. 

 

 

5.4.3.3 Step 3: Optimization and interpretation of results 

The run-length distribution (RLD) of solving Trials 1-10 is shown below 

in Figure 5.45. The limit on generations for the genetic algorithm was limited to 

1000. Trials 1-8 were all solved during 10 attempts for each solution, and for 

Trials 1-7 usually within 250 generations. This leads one to believe that the 

genetic algorithm is able to successfully solve the problem in a reasonable number 

Trial fdes (Hz) βeq,des (deg) Ptot 

1 [5.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 8.1e-4 
2 [6.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 5.7e-4 
3 [7.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 1.4e-4 
4 [8.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
5 [8.2 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
6 [8.4 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
7 [8.6 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
8 [8.8 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
9 [9.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 
10 [10.0 ±1.0, 1.0 ± 0.2] [82 ± 11.5, 25 ± 11.5] 0 

Table 5.8. Trial sets while calculating the Monte Carlo probability as the design 
criteria approach the true desired design criteria of Trial 10. 
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of generations. Trials 9 and 10 were not solved within the allotted number 

generations. Trials 9 and 10 were again attempted ten more times with a limit of 

2000 generations, but they still were not solved even once. Note that the RLD in 

Figure 5.45 that does not reach a final value of one is for Trial 8. Also, the RLDs 

of Trials 7 and 8 begin to show some slower response to solution than the first six 

trials. This leads one to believe that the edge of the performance space is being 

reached near Trials 8 and 9, or near a short X-link configuration frequency of 8.8 

Hz.  
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Figure 5.45. Run-length distribution for Trials 1-10 in Table 5.8. Trials 9 
and 10 did not get solved. 
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To test further whether or not a design limit is being reached in the 

performance space, Trials 4-10 were run again for 30 attempts each with the 

second desired equilibrium position now being βeq,2 =15o. This change was made 

with the intuition that the further apart the equilibrium positions are in the β-

direction, the more different the natural frequencies can be in the θ-direction. The 

RLD for the results of these trials is shown in Figure 5.46. There it is shown that 

the problem is more easily solved with the lower ‘long’ desired equilibrium 

position of βeq,2 =15o. There becomes much more difficulty in solving the problem 

when the desired short frequency is greater than 9 Hz. Thus, this critical 

performance space region is more fully explored. 

 

Figure 5.46. RLD concentrating on limit in desired performance space. Only 
the trials for fdes,1 ≤ 9.2 Hz get solved successfully. 
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In viewing Figures 5.45 and 5.46, it seems as though the desired solution 

of having one stable equilibrium with a natural frequency near 10 Hz and the 

other with a frequency of 1 Hz is not occurring. There seems to be difficulty in 

convergence upon a solution when the desired short equilibrium has a frequency 

above 9.2 Hz. 

To further check if indeed a design limit is reached, the equilibrium trends 

can be plotted to see if they converge to one limit or another of the desired design 

criteria (as in Figures 4.23-4.24). The perturbed design criterion is the natural 

frequency of the short X-link configuration. Upon inspection of the results used to 

produce Figure 5.46, there was no discernable pattern in the equilibrium trends. 

Therefore, several new attempts, 20 attempts, were tried for each perturbed short 

X-link frequency from 8 Hz to 10 Hz, but this time with very tight tolerances on 

the desired design criteria (± 0.2 Hz for the frequencies and ± 0.01 rad for the 

equilibrium positions). Figure 5.47 shows the trends of the solutions for the 

desired design criteria using a very stringent fitness threshold. Figure 5.47a plots 

the equilibrium positions, and Figure 5.47b plots the natural frequencies in the θ-

direction. 
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Figure 5.47. Equilibrium trends attempting to show some convergence of possible 
desired design criteria as the ‘short’ X-link frequency is perturbed toward the 
final desired value of 10 Hz. 
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In viewing Figure 5.47a, there appears to be very little limiting trends as 

the equilibrium positions are always in a range about the desired values of βeq,1 = 

82o
 and βeq,2 = 15o. On the other hand, Figure 5.47b does show some limiting 

behavior. As the short frequency, fdes,1 is perturbed, the long frequency, fdes,2, 

proceeds in an upward trend. Recall that the desired natural frequency for the 

short X-link configuration is 1 Hz, but as the short frequency increases, so does 

the long frequency. A lower limit for the short frequency always seems to be 

above 1 Hz, and this lower limit increases to near 1.4 Hz where the data seizes to 

exist. Note that there is only data shown for when the perturbed short frequency is 

less than 9.2 Hz. At desired frequencies above that, no optimization runs produces 

results within the desired tolerance. This leads one to draw that conclusion that 

under the current topology and constraints set for this X-link problem, the desired 

MSE system is not possible. Either the topology should be changed, or a 

relaxation of the bounds on the design variables must occur. The latter is unlikely 

given that under certain samples of design variables, none lie at either their upper 

or lower limit. 

 

5.4.4 Example X-link Simulation based on optimized results 

Given that the fully desired MSE X-link system does not seem possible, a 

situation close to the desired is simulated from the trials used earlier. An example 

solution achieved with the tighter tolerances is one with desired frequencies of 8 

and 1 Hz, and desired equilibrium positions of β = 15o and β = 82o. The tolerances 

used for the design criteria are ± 0.2 Hz for the frequencies and ± 5.7o for the 
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equilibrium positions. Figure 5.48 shows final potential energy curve. Figures 

5.49 show the localized magnitude versus input frequency response for sinusoidal 

input for both the short and long X-link position. These plots depict where the 

resonance frequency lies, which is approximately the damped natural frequency 

that is sought. 

 

Figure 5.48 shows the stable equilibrium positions to be 81.5o for the short 

configuration and 14.5o for the long X-link configuration. Figures 5.49a and 5.49b 

show the magnitude versus input frequency for the short and long configurations, 

respectively. The calculated natural frequencies from the optimizations are 7.9 Hz 

and 1.2 Hz while the peaks in the figures occur near 7.5 Hz and 1.2 Hz. 

 

Figure 5.48. Example candidate potential energy curve for the desired design 
criteria of βeq = [15o, 82o] ± 5.7o and fdes = [8, 1] ± 0.2 Hz. 
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Nonetheless, the tolerances are still within the initial desired tolerances of ± 1 Hz 

and ± 0.2 Hz, respectively. Figures 5.49c and 5.49d show the time response of the 

displacement β. Note the input magnitude for Figure 5.49 is one degree, which 

keeps the system in a local area near each stable equilibrium, as seen in Figures 

5.49c and 5.49d. 
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The candidate design variables optimized to produce the results of Figures 

5.48 and 5.49 are k = 0.126 Nm, Ixx1 = 9.6e-5, Iyy1 = 7.1e-7, Izz1 = 9.3e-5, Ixx2 = 

6.6e-5, Iyy2 = 6.3e-6, Izz2 = 8.6e-5 (all inertias in kg*m2) mX = 0.11 kg, and 

minput_links = 0.01 kg. Notice that each design variable is in between its maximum 

and minimum allowable value. Thus, no constraints are active. Figure 5.50 shows 

 

Figure 5.49. Magnitude vs. input frequency plots and transient response for 
example X-link solution using potential energy of Figure 5.48. 
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the fitness versus generation as the genetic algorithm solves for the 

aforementioned design variables. This is typical for most optimization runs. When 

the fitness increases to zero the desired design criteria are reached to within 

specified tolerance. Even for trials not solved in the RLDs of Figures 5.45-5.46, 

the fitness goes very close to zero within 200-400 generations. Then a plateau is 

reached from which the fitness increases very little in ever decreasing increments.  
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5.4.5 Conclusion on X-link Synthesis 

The synthesis of the X-link mechanism is performed well using the 

synthesis methodology demonstrated in this dissertation. The attempted desired 

solution having fdes = [1 ± 0.2, 10 ± 1.0] Hz for the long and short X-link 

configurations, respectively, was determined not possible with the current 

topology. This topology assumed a 6th order magnetic energy model. There is no 

guarantee that the derived magnetic model can indeed be achieved in reality due 

to material property constraints not considered here. In all likelihood, the 6th order 

 

Figure 5.50. Fitness versus generation showing the progress in solving 
the trial exemplified in Figures 5.48-5.49. 
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model is very liberal, and considers energy curves that are not achievable using 

realistic permanent magnets. Nonetheless, even with this assumption regarding 

the magnetic energy model, the desired design is still not achievable. A new 

topology need be found to satisfy the design requirements. That is left to future 

work mentioned in the final chapter, Chapter 6. 
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Chapter 6: Conclusions and Future Work 

 

6.1 CONCLUSIONS 

The multistable equilibrium system design synthesis methodology 

presented in this dissertation enables a designer with an energetic model of a 

nonlinear system to decide what multistable designs are possible. Starting from 

having a model for the system potential energy and kinetic coenergy, a step-by-

step design process enables one to sufficiently explore the solution space for the 

problem. 

Past work in buckling beams and mechanisms provides mostly a very 

recent history into the analysis of bistable structures. Nonetheless, there is almost 

no work on the synthesis of bistable systems much less MSE systems. Adaptive 

systems using smart materials such as shape memory alloys and piezoelectric 

materials attempt to create structures that have variable performance parameters. 

Usually this adaptive behavior is about only a single equilibrium operating point. 

This dissertation begins a design avenue for the MSE system to become a new 

type of adaptive system in which there are multiple stable operating points.  

Either or both of the static and dynamic local properties of the stable 

equilibria could be of importance to the designer. This leads to a few basic 

categorizations of MSE systems. MSE systems can generally be designed for 

static position or shape, such as for switches or aerodynamic purposes. They can 

also be designed for local dynamics with tuned natural frequencies for vibration 
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suppression or efficient excitation. Of course, sometimes the two concepts are 

directly coupled such as in the example of creating a robotic fish with different 

shapes and stiffnesses to take advantage of the different swimming niches existing 

in nature. 

The MSE design synthesis methodology consistently focuses on the 

purpose of the design: to create and tailor the equilibrium positions. Thus, 

whenever possible, design decisions and measurements are made with regard to 

the equilibrium properties and not the optimized design variables. The definition 

of the equilibrium position is based on the minimum energy principle. Descriptors 

of the equilibria are derived using a second order least squares curve fit about 

each equilibrium. From this use curve fitting the three major characteristics of the 

equilibrium are derived: position, energy value, and curvature used to calculate 

natural frequency. 

Using the three equilibrium characteristics as measurands, the solution 

space of a given problem is both qualitatively and quantitatively mapped to 

provide the designer with a comprehensive description of whether or not a chosen 

desired design is possible. The qualitative mapping helps in choosing initial 

desired design criteria, such as equilibrium positions and frequencies. To solve for 

the unknown design variables of the problem, numerical optimization algorithms 

are used. Usually stochastic algorithms are required if concurrently solving for 

more than one equilibrium at a time. The bifurcating nature of MSE systems 

creates a multimodal design space in which a stochastic optimization approach is 

usually necessary. 
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The quantitative mapping method enables the designer to determine 

solution existence, if necessary, through a series of solving perturbed desired 

designs. This solution existence determination starts with a solution of guaranteed 

existence, and perturbs it to the desired solution (if different). By tracking the 

optimization algorithm results of solving each successive perturbed solution, one 

is able to form an assessment of solution existence or a localized boundary to the 

solution space. In determining this solution space boundary, the design 

methodology makes use of the run-length distribution and the tracking of trends in 

the equilibrium solutions found during the series of optimizations. 

 

6.1.1 Brief summary of Dissertation contributions 

To sum up the contributions of this work, there was developed: 

1) a statistical solution procedure for MSE systems that allows the design 

engineer to determine if a desired solution is feasible or not for a given system 

topology and energy model, 

2) a definitive characterization of how to relate the engineering design 

characteristics of MSE systems into a problem formulation that is amenable to 

solution by stochastic optimization algorithms, 

3) a solution procedure that is amenable to any number of equilibrium 

positions, generalized coordinates, or energy domains, and 

4) a description of the major purposes for designing MSE systems. 
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6.2 FUTURE WORK 

6.2.1 System Topology 

There are many paths to follow for future work in the design of MSE 

systems. Perhaps the foremost of these, but quite complex in itself, is the 

determination of system topology that is referenced in the general design flow 

chart of Chapter 4. After completing the design synthesis process of this 

dissertation, it is entirely possible that the desired design is not possible. In this 

case one has two options: give up, or change the system topology in such a way to 

make the desired system now possible. Giving up is trivial and deserves no further 

attention, while system topology is likely quite complex. 

 Changing the system topology involves relaxing constraints on existing 

energy storage elements or adding new energy storage elements. There are a few 

anticipated difficulties in changing the system topology: type of energy storage 

element, location or connection of energy storage elements, and energetic 

modeling. First, when adding an energy storage element, one must decide exactly 

what to add to the system. There are many choices for potential energy storage 

elements such as springs, magnets, fluid tanks. One may also add kinetic energy 

storage elements to alter the transient dynamics of the system. Knowing which 

type, and possibly how many, new components to add could be very beneficial to 

the full designing of MSE systems. Knowing how to connect to, or have 

additional elements interact with, the existing MSE system can also influence the 

design. One must fully understand the consequences of each additional 

component to the system. For instance, a magnet moving laterally with respect to 
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another magnet can go from attractive to repulsive in a fraction of the length of 

the magnet depending on how it is constrained to move. 

 

6.2.2 Modeling of Vector Potential Fields 

Energetic modeling is an issue in the sense that without an effective model 

for an energy storage element, one cannot use it in the design methodology. For 

example, adding magnets to create stable positions may seem feasible, but if there 

can be large air gaps between magnets and any other magnetic materials, the 

energy storage can be difficult if not impossible to derive for arbitrary geometries. 

This modeling includes both analytical and experimental modeling of elements 

involved in the system. 

The concept of arbitrary geometries for magnetic fields leads to another 

topic that could expand the design of MSE systems. A large potential exists for 

advances in MSE system design in vector potential fields. These fields could be 

stress, electrostatic, and magnetic to name a few. It would be useful to obtain 

information about the possibilities in potential fields depending on the constrained 

the motion of the system. For example, with one piece of iron moving around one 

permanent magnet, there could theoretically be any number of equilibria greater 

than one depending on the constrained motion of the iron piece. If the iron piece 

moved in a highly oscillatory circle around the magnet, there could be a stable 

position at every trough of the path. Yet for a straight iron path, there is likely 

only one stable equilibrium. Some initial exploration into this concept using finite 

element analysis (FEA) was performed by Limaye et al., 2003. There is 
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tremendous potential to make use of computational methods, such as FEA, to 

explore possibilities for arbitrarily shaped and coupled MSE systems. The 

drawback can be largely increased computational time. In these cases different 

levels of modeling can be used together to eliminate infeasible designs early in 

the design process before very costly calculations are performed. Alexandrov and 

Lewis (2001) use an approach called first order model management. 

 

6.2.3 Design Synthesis of Nonlinear Dynamics of MSE Systems 

Another major area for future work in MSE system design is in regard to 

the prediction of nonlinear dynamic nature of MSE systems. This dissertation 

only considers locally linearized dynamics to characterize the systems. The 

general area of nonlinear dynamics is extensively studied by many [Simiu, 2002; 

Simiu and Franaszek, 1997; Thompson, 1996]. Instead of only describing MSE 

systems by their potential energy and effective inertias, expansion of the MSE 

design methodology could describe phase portraits or shapes of the Hamiltonian 

adding both potential and kinetic energy. One could design MSE systems for a 

particular shaped separatrix to help predict both dynamic as well as static 

stability. Also, for substantially harmonically excited nonlinear systems, the 

response is a function of both input magnitude and frequency [Virgin, 2001]. 

Thus, mappings could be made relating to the stability range of the equilibrium 

points in terms of the input frequencies and magnitudes, and stochastic inputs. 

The goal would be able to predict the combinations of input strength and 
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frequency for which one could expect the system to leave or stay about the current 

stable equilibrium. 

 

6.2.4 Use of Robust Optimization principles 

In solving MSE problems, it is possible to have more than one design 

solution that can satisfy the desired design criteria. In that case, which set of 

design variables should the engineer use? The answer could be determined by 

cost. If cost is not a factor, or if many solutions have the same cost, then the best 

design could be the one with the least amount of sensitivity to noise in the design 

variables. This concept is at the heart of the field of ‘robust optimization’ 

[Gunawan and Arzam, 2003].  

The robust optimization concept could also be used in the future work of 

topological design of MSE systems, mentioned in Section 6.2.1. If the current 

topology is insufficient, how does one know what kinds of new models or design 

variables to add to the system? By adding components and quantifying the design 

sensitivity when they are added may help determine the feasibility that any one 

added component will help achieve the desired MSE design. Also, one may even 

be able to determine that some components are spurious and not needed for the 

MSE system. The answer could lie in changing those variables with very low 

sensitivity relative to the potential energy curve. Maybe the robust approach could 

help determine that certain components are performing the same function, and 

therefore one can be eliminated. 
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