
Copyright

by

Sriram Narayanamoorthy

2012



The Thesis Committee for Sriram Narayanamoorthy

Certifies that this is the approved version of the following thesis:

On Accommodating Spatial Dependence in Bicycle

and Pedestrian Injury Counts by Severity Level

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor:
Chandra R. Bhat

Stephen D. Boyles



On Accommodating Spatial Dependence in Bicycle

and Pedestrian Injury Counts by Severity Level

by

Sriram Narayanamoorthy, B.Tech

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

December 2012



In loving memory of my grandmother

N. N. Rugmani



Acknowledgments

First and foremost, I must express appreciation to Dr. Chandra Bhat, with whom it

has been a pleasure and a privilege to work. I thank him for his insights and advice as

also for the stimulus and motivation to dig deep into research. I am grateful to him

for showing me how to make sense of mathematical models and for instilling in me the

notion that writing should be simple, direct, logical, and tight. His invaluable ideas

and the high standards that he sets for himself and his students form the backbone of

this thesis.

Thanks also to Dr. Stephen Boyles - not only for the valuable inputs on this thesis but

also for the highly engaging and immensely useful courses. Thank you to the faculty

at UT Austin who have made my stay here as a graduate student a memorable and

intellectually satisfying experience. Special thanks to Dr. Jason Abrevaya, Dr. David

Kendrick and Dr. Stephen Donald - the way they orchestrate classroom learning of

Economics and Econometrics is pedagogy at its finest. Thanks to all the administrative

staff, especially Lisa Macias who provides immeasurable assistance to the students in

her care.

To all my friends and colleagues at UT Austin - I have relished the inimitable sense

of camaraderie and fellowship. In particular, Rajesh for the delightful conversations,

intense debates and for the inspiration as a friend and a mentor. Jassu, for his culinary

skills. Chrissy, for all the conversations and the fun. Ravi, for providing endless

entertainment and much needed distractions. Palvinder and Subodh, who kept me

company during those long hours in basement. Tarun for his refreshing approach to

research. Raghu, for all his help and the long football discussions. Marisol, for the

flexibility she afforded me on the projects. Gaurav, for the debugging sessions over

the web. Moby, for many a rides around Austin. Prasad, for his assistance in finding

a fourth roommate on four different occasions and for sharing with me his hilarious

v



adventures. Thanks much to Chinmoy, Rudra, Harish, Yoganand, Ranjith and Aria.

Finally, thanks to my amazing family, who has been extremely supportive of me

throughout my life. My deepest appreciation for my parents and my sister who have

been unwavering in their love and encouragement and I owe all of my success and

achievements to them.

This thesis is dedicated to the memory my grandmother who was my closest confidant.

vi



On Accommodating Spatial Dependence in Bicycle and

Pedestrian Injury Counts by Severity Level
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This thesis proposes a new spatial multivariate count model to jointly analyze the traffic

crash-related counts of pedestrians and bicyclists by injury severity. The modeling

framework is applied to predict injury counts at a Census tract level, based on crash

data from Manhattan, New York. The results highlight the need to use a multivariate

modeling system for the analysis of injury counts by road-user type and injury severity

level, while also accommodating spatial dependence effects in injury counts.
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Chapter 1

Introduction

The continued dependence of individuals on motorized automobiles for transportation,

along with rapid population growth, has led to increasing traffic congestion in most

urban areas in the U.S. (see Schrank et al., 2011). While several strategies are being

considered to alleviate the increasing urban traffic congestion, many metropolitan

planning organizations (MPOs) have started to invest in non-motorized mode infras-

tructure to promote the use of walking and bicycling modes (Pucher et al., 1999,

Metropolitan Transportation Commission, 2009, Southern California Association of

Governments, 2012). In addition to reducing traffic congestion, the promotion of

these transportation modes can also offer ancillary benefits to society in terms of

improved health, better air quality, energy independence, and enhanced quality of

life (see Pucher et al., 2010 and Gotschi and Mills, 2008). However, even as MPOs

look to the promotion of non-motorized modes of travel, it is illustrative to note that,

according to the 2009 National Household Travel Survey (NHTS), non-motorized

modes accounted for only 11.9% of all weekday trips, and 0.9% of total weekday person

travel mileage. On the other hand, many cities in Europe and other nations boast

substantially higher non-motorized shares in terms of trips and mileage (Bassett et

al., 2008).

The higher non-motorized mode shares in Europe and other nations may be attributable

to many factors, including higher built environment density, expensive gas and auto

ownership costs, and better land-use mix. But another important factor in travel mode

choice decisions is safety from traffic crashes. In fact, studies have now established that

safety from traffic crashes is a key determinant of a person’s mode choice decision (see
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Winters et al., 2010 and Sener et al., 2009). In this context, Beck et al. (2007) have

found that, relative to passenger vehicle occupants, bicyclists and pedestrians in the

U.S. are 2.3 and 1.5 times, respectively, more likely to be fatally injured on a given trip.

In cross-country comparisons, Pucher and Dijkstra (2003) found that, after controlling

for travel exposure in terms of mileage, U.S. pedestrians (bicyclists) are about 3 times

(2 times) as likely to get killed in traffic accidents as German pedestrians (bicyclists)

and over 6 times (3 times) as likely to be killed as Dutch pedestrians (bicyclists). In

another more recent study at a metropolitan area level (rather than a national level

that can mask risk variation within countries), McAndrews (2011) observed that the

risk of a fatal traffic crash injury for pedestrians in San Francisco is 4.1 times higher

than for pedestrians in Stockholm, while the corresponding figure is 1.7 for bicyclists.

Overall, these studies clearly reveal the under-performance of the U.S. in terms of

pedestrian and bicyclist safety relative to other advanced economies. At an absolute

level, about 4280 pedestrians and 618 bicyclists were killed in traffic accidents in the

year 2010 in the U.S., constituting 15% of all fatalities that year (National Highway

Traffic Safety Administration or NHTSA, 2012) while non-motorized mode mileage

comprises only 0.9% of total travel mileage.

To summarize, the promotion of non-motorized modes of transportation should involve,

as one essential element, an understanding of the risk factors associated with pedestrians

and bicyclist-related injuries. This can allow the identification of high risk crash

environmental settings and inform the design of appropriate transportation policy

countermeasures. Accordingly, there have been several efforts in the past that focus

on modeling the frequency of non-motorized crashes as a function of relevant built

environment and socio-economic indicators. In this research, we contribute to this

literature by formulating a multivariate model to jointly analyze, at a “neighborhood”

level, the count of pedestrians and bicyclists involved in traffic crashes by injury

severity sustained. While a “neighborhood” may be defined variously as a roadway
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street segment (see Kim et al., 2007), or an intersection (Carter and Council, 2007),

or a geographic area (a Census block, or a Census block group, or a Census tract;

see, for example, Wier et al., 2009 and Siddiqui et al., 2012), the spatial unit we use

to characterize a “neighborhood” is the Census tract. We do so because the more

disaggregate spatial units (roadway street segment, intersection, Census block, and

Census block group) can routinely experience zero pedestrian and bicyclist-related

crashes for multiple years at a stretch, which reduces the variability of the count

variables across such disaggregate spatial units and decreases our ability to tease out

the risk factors associated with pedestrian and bicyclist crash involvement. The use of

the more aggregate Census tract level avoids these problems, while also representing

a reasonably homogeneous spatial unit of an urban area (see Delmelle et al., 2011).

Besides, the Census directly provides socio-economic data at the level of the Census

tract, facilitating analysis at this spatial scale.1

Two important issues are of significance in the current research. First, the reason for

our emphasis on the count of pedestrians and bicyclists injured by severity level is to

acknowledge that accident costs vary substantially by severity level (see Wang et al.,

2011). For example, a tract with four pedestrian fatalities over a given time period

should be considered more hazardous than a tract where four pedestrians are injured

in a non-incapacitating manner over the same time period. In terms of site ranking for

improvement or effective informational campaign strategies, it is important to identify

the risk factors of the first tract that make it particularly vulnerable to fatal pedestrian

and bicyclist injuries. Second, the multivariate model proposed in this study recognizes

many econometric issues at once: (a) It acknowledges the count nature of the number

of injuries, (b) it conveniently addresses excess zeros (or any other excess count value

1Note also that the count variable used in our model corresponds to the number of pedestrian and
bicyclist injuries by injury severity level within a Census tract, not the number of crashes within a
Census tract by the most severe level of injury incurred by a pedestrian or bicyclist in the crash. The
latter approach would not appropriately consider situations where multiple non-motorized individuals
are injured (and to different levels) in a single crash.
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for that matter) within a multivariate count setting, (c) it accommodates the potential

presence of unobserved Census tract factors that can lead to dependence, within the

Census tract, in the risk propensities for the different road-user type-injury severity

combinations (road-user, in our analysis, may be pedestrians or bicyclists), and (d) it

considers spatial dependence effects across Census tracts that are likely to be present

because of the spatial nature of the analysis.

The rest of this thesis is structured as follows. Chapter 2 presents an overview of

the relevant earlier literature and positions the current study. Chapter 3 presents

the model structure and estimation procedure. Chapter 4 describes the study area,

data source and important sample characteristics. Chapter 5 presents the empirical

estimation results and their implications for reducing non-motorized user injury severity

in crashes. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Literature Review

Several methodological challenges arise when modeling crash frequency-related data

(see Lord and Mannering, 2010 for a good review). The focus of the current study is

on addressing two specific methodological challenges that lead to the proposed spatial

multivariate count model.

2.1 Modeling Count Data by Type

Crash data include information on the individuals who are hurt and the level of injury

sustained by each individual (typically in such categories as no injury, possible injury,

non-incapacitating injury, incapacitating injury, and fatal injury). At an aggregate

level of a Census tract, one can then obtain, over a specific time period, the number

of pedestrians and bicyclists involved in traffic crashes by injury severity level. This

leads to a multivariate count system within each Census tract because of the presence

of unobserved Census tract factors that (1) influence the risk propensity for a specific

injury severity level across both pedestrian and bicyclist injuries (for instance, motorists

within a certain Census tract may have an unaccommodating attitude toward sharing

the road with non-motorists, which may increase the risk of fatal injuries for both

pedestrians and bicyclists - for future reference, we will label such unobserved factors

as type a unobserved factors), (2) intrinsically increase or decrease the propensity for

pedestrian injuries across all injury levels (for example, the absence of sidewalks in a

Census tract may lead to a general increase in risk propensity for pedestrians across all

injury levels), (3) intrinsically increase or decrease the propensity for bicyclist injuries

across all injury levels (for example, discontinuous bicycle paths in a Census tract

may lead to a generic increase in risk propensity for bicyclists that permeates across
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all injury levels; we will label the unobserved factors corresponding to (2) and (3) as

type b unobserved factors), and (4) impact the overall propensity of non-motorized

injuries (for instance, because of a generally high propensity to use non-motorized

modes in a Census tract; we will label the unobserved factors corresponding to (4) as

type c unobserved factors).

There have been several efforts in the literature to formulate and estimate multivariate

count data models. One common approach has been to use multivariate versions of

the Poisson or negative binomial discrete distributions (see, for example, Ladrón de

Guevara et al., 2004, Buck et al., 2009, and Bermúdez and Karlis, 2011 for applications

of these methods). Such multivariate count models have the advantage of a closed form,

but they become cumbersome as the number of correlated counts increases and they

also can accommodate only a positive correlation in the counts. A second common

approach is to use a mixing structure, in which one or more (typically) normally

distributed random terms are introduced in the parameterization of the expected

value of the discrete distribution (so that the expected value is not only a function of

exogenous variables, but also includes one or more additive random terms within the

exponentiation). If the same error term enters in the means of multiple count variables,

this generates correlation (see Chib and Winkelmann, 2001, Lee et al., 2006, Park and

Lord, 2007, Aguero-Valverde and Jovanis, 2009, and El-Basyouny and Sayed, 2009 for

examples of such an approach). A similar, but slightly different mixing approach, has

been used recently by Chiou and Fu (2012), who developed a multinomial-generalized

Poisson model for the joint analysis of crash frequency and injury severity. Essentially,

they use a generalized Poisson distribution for the marginal probability of total counts,

and a conditional multinomial distribution for the conditional frequency of each severity

level. The total count and injury severity level sub-models are then stitched together by

allowing common unobserved components in a manner similar to the mixing approach

for different counts. The advantage of all these mixing approaches is that they permit
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both positive and negative dependency between the counts by severity type. However,

it is difficult in these mixing approaches to account for excess zeros through use of

techniques such as zero inflation and hurdle count models (see Lee et al. 2006, Alfò

and Maruotti, 2010, Herriges et al., 2008). Furthermore, these mixing approaches

require rather cumbersome and time consuming simulation approaches for estimation

(see Müller and Czado, 2005, Aguero-Valverde and Jovanis, 2006, and Ver Hoef and

Jansen, 2007 for discussions). A third approach is to analyze crash rates (for example,

number of crashes per 100 million vehicle miles of travel) by injury severity level, which

translates the dependent variable vector from a multivariate count to a multivariate

continuous variable. To address the preponderance of zero values, Anastasopoulos et al.

(2012) developed a multivariate Tobit-regression model to analyze crash rates by injury

severity level. However, the likelihood estimation approach again becomes cumbersome

and presents a computational challenge when there are many tobit regressions in the

multivariate set-up, such as when focusing on counts by injury severity as well as

road-user type (pedestrian versus bicyclist injury).

Another important point is that the approaches discussed above to accommodate

multivariate counts or multivariate crash rates are already so computationally difficult

that extending the approaches to accommodate spatial dependency structures becomes

impractical, if not literally infeasible. This is evident from the fact that none of the

multivariate models of counts discussed above accommodate spatial dependence.

2.2 Spatial Dependency Effects

Spatial dependency is important to recognize because of the mapping of crash locations

to spatial units of analysis, such as Census tracts in the current study. In particular,

observed factors at a particular Census tract, such as population density (a proxy

measure of non-motorized travel exposure) or retail intensity, may not only have an

impact on non-motorized injury risk at that Census tract, but may also have a spatial
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spillover effect on non-motorized risk propensity in proximally located Census tracts.

Similarly, there may be common unobserved (to the analyst) location factors such as

discontinuous pedestrian and bicycle paths that can generate a “spatial correlation”

effect in the stochastic terms of risk propensity at proximally located Census tracts

(Lord and Mannering, 2010). Ignoring such spatial dependencies will, in general,

result in inconsistent and inefficient parameter estimation in non-linear models (see

LeSage and Pace, 2009 and Franzese and Hays, 2008). On a substantive note, such

inconsistent estimates can lead to misinformed policy actions and countermeasures,

and a sub-optimal allocation of scarce resources, to reduce the frequency and severity

of traffic crash-attributable pedestrian and bicyclist injuries.

In the spatial analysis literature, the two workhorse specifications to capture spatial

dependencies are the spatial lag and the spatial error specifications (Anselin, 1988). The

spatial lag specification allows spatial dependence through both spatial spillover effects

as well as spatial error correlation effects. The spatial error specification, on the other

hand, assumes that spatial dependence is only due to spatial error correlation effects

and not due to spatial spillover effects. The spatial error specification is somewhat

simpler in formulation and estimation than the spatial lag model. While these spatial

specifications have been used primarily in the case of a continuous dependent variable,

the past decade has seen increasing use of these spatial specifications for non-linear

discrete choice models. The specifications are similar to the linear models, except that

they are now applied to the latent continuous propensity variables underlying the

observed discrete variable. However, the spatial lag and spatial error specifications

saw little use in the context of count models until Castro, Paleti, and Bhat (2012)

(CPB for short in the rest of this thesis), who showed that even count models can

be recast in the form of an underlying latent continuous variable framework (so that

the spatial specifications can again be applied to the latent continuous propensity

variables). Before CPB, a common approach was to map the count variable into
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an approximate continuous variable (typically also applying a log-transformation to

ensure positive predictions, and sometimes also normalizing by an exposure measure

to obtain crash rates or taking ratios of different types of crashes), and then apply

well-established estimation methods developed for continuous models. Examples of

such efforts in the safety literature include LaScala et al. (2000), Quddus (2008), Ha

and Thill (2011), and Delmelle et al. (2011). While useful, these efforts may be viewed

as approximations, since they generate “continuous” variables from underlying count

data. Especially as the focus shifts from modeling total crashes to total crashes by

injury severity type and/or road-user type, the count data will show less variation

(and a preponderance of zero counts), rendering the approximation in the translation

to a continuous variable more inappropriate. It is therefore, no surprise, that none of

the studies listed above that use this “continuous” transformation method consider

crashes by type, instead focusing on total crashes. Another alternative approach

to incorporate spatial dependency in count models in the past has been to use a

conditional autoregressive (CAR) or a joint prior on a spatial random effect term

that is introduced multiplicatively in exponential form in the parameterization of

the expected value of the discrete distribution for the count variable. The resulting

model is estimated using Bayesian hierarchical methods. Examples of such efforts

include Miaou and Song, 2005, Aguero-Valverde and Jovanis, 2006, 2010, Mitra, 2009,

Wang et al., 2011, Siddiqui et al., 2012). Unfortunately, this approach (which is

essentially a mixing approach of the type discussed in the previous section, except

with the mixing undertaken over space) can be difficult as the number of spatial

units increases, and extending the approach to modeling crashes by type is extremely

challenging (if not impractical). This is because the Bayesian MCMC methods used

in the approach are particularly cumbersome for high dimensional problems, owing to

the non-standard form of the conditional posterior distributions of model unknowns in

the count case. As a result, obtaining realizations from the joint posterior distribution

requires the use of the combination of numerical optimization methods combined
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with time-consuming and multiple Metropolis-Hastings steps (see Herriges et al., 2008

and Chib and Winkelmann, 2001). Besides, this approach considers spatial error

correlation effects, but not spatial spillover effects.

Overall, earlier efforts in the safety literature that incorporate spatial dependence

focus almost exclusively on total counts (Miaou and Song, 2005 is the only exception).

Further, all of these studies (except LaScala et al., 2000) adopt a spatial error structure,

because estimating a spatial lag dependency structure is not straightforward in the

methods used (LaScala et al. simply treat crash counts as a continuous variable to

avoid methodological complexities associated with modeling spatial dependencies using

non-linear count modeling frameworks). But spatial lag dependency captures, in an

efficient and intuitive manner, both spatial spillover and spatial error correlation effects,

and is much easier to justify when accommodating spatial dependency (see McMillen,

2010 and Sidharthan and Bhat, 2012 for discussions).

2.3 The Current Research

In the current study, we recognize and retain the count nature of the number of

pedestrian and bicyclist injuries by injury severity level. In doing so, we address

the multivariate nature of the counts within a Census tract. In addition, we also

simultaneously recognize spatial lag dependency effects across Census tracts. To

our knowledge, this study is the first to develop such a spatial multivariate count

model in the literature. The approach we use is based on recasting the basic count

model as a special case of a generalized ordered-response (GOR) model, as proposed

by CPB. Then, the spatial lag specification is imposed on the underlying latent

variable determining the counts. The GOR recasting also immediately enables the

accommodation of excess zeros (or excess counts of any value) in a straightforward

manner within the spatial multivariate count setting. The likelihood function for the

resulting model is analytically intractable, and simulation approaches are of little
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use. To overcome this issue, we use a composite marginal likelihood (CML) inference

approach that is simple to implement and is based on evaluating lower-dimensional

marginal probability expressions. The CML estimator is consistent and asymptotically

normally distributed, under the usual regularity conditions that make the maximum

likelihood estimator consistent and asymptotically normally distributed.

The proposed model is applied to examine, at the spatial level of a Census tract, the

number of pedestrian and bicyclist injuries by injury severity level. The data for

the analysis is drawn from a bicyclist and pedestrian crash database maintained by

New York City (see Chapter 4 for details on how the data was assembled). Several

groups of Census tract-based risk factors are considered in our analysis based on

earlier research, including (1) socio-demographic characteristics (such as population

density, proportions of the population by age, income, and race), (2) land-use and

road network characteristics (such as proportion of retail and commercial land-use,

proportion of roads by functional type), (3) activity intensity characteristics (such

as retail intensity, and number of schools and universities), and (4) commute mode

shares and transit supply characteristics (such as shares of commute trips by mode

and number of bus stops).
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Chapter 3

Methodology

3.1 Model Formulation

Let q (q = 1, 2,. . . , Q), j (j = 1, 2,. . . , J), and s (s = 1, 2,. . . , S) be indices for

observation units (Census tracts in our analysis), type of non-motorized user injured

(pedestrian or bicyclist), and injury severity level sustained by the non-motorized

road-user, respectively, where Q is the total number of observation units in the sample,

J is the total number of types of non-motorist road-users (J=2 in our empirical

analysis, with j=1 representing pedestrians and j=2 representing bicyclists), and S is

the number of injury severity levels.1 Let mqjs be the observed count of road-users of

type j injured at severity level s within the qth observational unit over a predefined

time period (we considered a time period of one year for the empirical analysis in

this research; note also that mqjs may take a value in the range from 0 to ∞). Next

define a latent risk propensity for injury at severity level s for road-user type j in

observation unit q as y∗qjs. Then, consider the following structure for y∗qjs in the GOR

representation for count models (see CPB):

y∗qjs = δ

Q∑
q′=1

wqq′y
∗
q′js+ b

′
jsxq + ωqs + uqj + vq + εqjs

yqjs = mqjs if Ψqjs,mqjs−1 < y∗qjs < Ψqjs,mqjs
,

(3.1)

Where wqq′ is the usual distance-based spatial weight corresponding to spatial units

1The number of severity levels may vary across different non-motorized road-user types. However,
for notation simplicity, we assume the same number of severity levels across both pedestrian and
bicyclists.
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q and q′ (with wqq = 0 and
∑
q′
wqq′ = 1) for each (and all) q, δ(0 < δ < 1) is the

spatial autoregressive parameter, xq is a (K x 1) column vector of exogenous variables

(excluding a constant), and bjs is a corresponding (K x 1) column vector capturing the

effects of the exogenous vector xq on the latent risk propensity y∗qjs.
2 The error terms

in Equation (3.1) are as follows: (1) the ωqs captures unobserved spatial unit-specific

factors that affect the propensity of injury of severity level s for all road-users (bicyclists

and pedestrians; these are the type a factors discussed in Section 2.1); ωqs is assumed

to be a realization from a univariate normal distribution with variance π2
s , (2) the uqj

term captures unobserved spatial unit-specific factors that impact the propensity of

injury for road-user type j (corresponding to the type b factors in Section 2.1); uqj is

assumed to be a realization from a univariate normal distribution with variance τ 2j ,

(3) the νq term captures unobserved factors specific to spatial unit q that impact the

overall propensity of non-motorized injuries (corresponding to the type c factors in

Section 2.1); νq is assumed to be a realization from a univariate normal distribution

with variance σ2, and (4) the εqjs captures unobserved spatial unit-specific factors that

influence the propensity of injuries of type s for road-user type j; this term is assumed

to be independent and identically standard normal distributed across road-user types,

severity levels, and spatial units.3

The thresholds in Equation (3.1) takes the form:

Ψqjs,mqjs
= Φ−1

(
e−λqjs

mqjs∑
l=0

λlqjs
l!

)
+ αjs,mqjs

, λqjs = eγ
′
jszq (3.2)

α0 = 0, αjs,mqjs
= αjs,Ljs

if mqjs > Ljs,

where Φ−1 is the inverse function of the univariate cumulative standard normal,

2Some explanatory variables may not be important for specific road-user and/or severity levels.
This situation is accommodated within our notation system by letting the corresponding elements in
the vector bjs be equal to zero.

3The scale of the εqjs term is normalized to one for identification.
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Ψqjs,−1 = -∞ ∀ q, j and s. (this restriction is needed for identification, given the

parameterization of the thresholds; see CPB), zq is a vector of exogenous variables

(including a constant) associated with observation unit q (there can be common

variables in zq and xq ), γjs is a corresponding coefficient vector to be estimated for

road-user type j and severity level s, and Ljs is an appropriate count level that may be

determined based on the empirical context under consideration and empirical testing.

Of course, as in the typical ordered-response framework, the values of αjs,mqjs
should be

such that the ordering condition on the thresholds (−∞ < Ψjs,0 < Ψjs,1 < Ψjs,2 < . . . )

is satisfied. The presence of the αjs,mqjs
term provides flexibility to accommodate high

or low probability masses for specific count outcomes without the need for cumbersome

treatment using hurdle or zero-inflated mechanisms.

The GOR framework for count models, as just discussed, not only provides important

computational benefits to accommodate statistical, econometric, and spatial consid-

erations, but may also be motivated from an intuitive standpoint for count data in

a manner similar to that for ordinal data. For example, in our empirical context,

consider the count of pedestrian fatalities (the following discussion is applicable to all

road-user type-injury severity level combinations, but we focus on pedestrian fatalities

simply for illustration). The interpretation of the GOR framework is that there is a

latent “long-term” (and constant over a certain time period) risk propensity y∗q14 of a

pedestrian (j=1) in Census tract q being involved in a crash leading to death (s=4,

since the pedestrian injury severity categories in our empirical analysis are “possible”

injury, “non-incapacitating injury”, “incapacitating injury”, and “fatal” injury). This

“long-term” propensity may be impacted by such Census tract-specific variables as

population density (a higher population density can be viewed as a surrogate measure

of pedestrian street exposure, as well as high traffic levels, leading to higher pedes-

trian fatalities) and commute mode share of pedestrians (for similar reasons as the

effects of population density). These variables would then get manifested in the xq
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vector. On the other hand, there may be some specific Census tract characteristics

(embedded in zq) that may dictate the likelihood of a pedestrian being fatally injured

in a crash at any given instant of time for a given long-term crash propensity y∗q14.

For instance, a high proportion of commercial or residential land-use in a tract may

lead to higher levels of distraction and/or pre-occupation among drivers around these

land-uses (relative to around open and recreational land-uses). In this situation, the

effect of the high proportion of commercial or residential land-use is to increase the

“instantaneous” likelihood of a crash resulting in a pedestrian being fatally injured.

This risk-to-outcome translation effect (which we will also refer to as the “threshold”

effect) is relatively localized, and separate and different from the effects that these

same variables may have to increase the long-term risk propensity of pedestrian injuries

(due to higher pedestrian activity and exposure in and around areas with high levels

of commercial or residential development). Further, the GOR framework in Equation

(3.1) accommodates spatial dependency in counts through spatial lag (“spillover”)

effects and spatial correlation effects in the “long-term” latent crash propensity, not

through the elements that affect the localized and “instantaneous” translation of the

propensity to whether or not a pedestrian injury occurs at any given time (and, there-

fore, not the threshold elements that affect the mapping of the latent propensity to

the observed count outcome). Our expectation is that Census tract factors associated

with socio-demographic, land-use and road network, activity intensity, and commute

mode share variables are all likely to affect “long-term” latent injury risk propensity

and will have a bearing on the “spillover” effects at other neighboring tracts. On the

other hand, land-use variables are likely to also load (more so than other variables)

on the thresholds that affect the translation of the risk propensity to observed injury

outcomes.

The GOR framework of Equations (3.1) and (3.2) nests several other count modeling

structures. Thus, if the variances of all the error terms in Equation (3.1), except the
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εqjs term, are set to zero, and if bjs = 0 ∀ j, s, if δ = 0 and if αjs,mqjs
= 0 for all

values of mqjs for all j and s, the result is independent Poisson count models for each

road-user type and severity level (see CPB). If the restriction that the variance of

each of the error terms (ωqs, uqj, vq) is zero is relaxed, one gets a specific version of a

mixed multivariate Poisson model. In addition, if the restriction that δ = 0 is relaxed,

the result is a spatial mixed multivariate Poisson model that still does not provide

adequate flexibility in treating situations with excess zeros. On the other hand, if

the variances of all the error terms in Equation (3.1), except the εqjs term, are set to

zero, and if δ = 0, the result is independent flexible count models for each road-user

type and severity level. If the restriction that the variance of each of the error terms

(ωqs, uqj, vq) is zero is relaxed, one gets the joint flexible count (JFC) model for injuries

of all combinations of road-user type and severity level. In addition, if the restriction

that δ = 0 is lifted, the result is our proposed spatial joint flexible count (SJFC) model

that allows spatial dependency across all Census tracts.

3.2 Model Estimation

To proceed forward, we first write the equation system in (3.1) compactly. To do so, de-

fine the following (S x 1) vectors of vertically stacked propensities, count outcome indices,

observed count outcomes, and combined error terms
[
η∗qj (= vq + uqj + ωqs + εqjs)

]
;

y∗qj = (y∗qj1, y
∗
qj2, . . . , y

∗
qjS)′, yqj = (yqj1, yqj2, . . . , yqjS)′, mqj = (mqj1, mqj2, . . . , mqjS)′,

and η∗qj = (η∗qj1, η
∗
qj2, . . . , η

∗
qjS)′.

Also, define additional vectors and matrices:

y∗q = [(y∗q1)
′, (y∗q2)

′, (y∗q3)
′, . . . , (y∗qJ)

′]′, mq = (m′q1,m
′
q2,m

′
q3, . . . ,m

′
qJ)
′

yq = [(yq1)
′, (yq2)

′, (yq3)
′, . . . , (yqJ)

′]′, ηq = (η′q1, η
′
q2, η

′
q3, . . . , η

′
qJ)
′

 (JS x 1 vectors)

y∗ = [(y∗1)
′, (y∗2)

′, (y∗3)
′, . . . , (y∗Q)′]′, m = (m′1,m

′
2,m

′
3, . . . ,m

′
Q)′

y = [(y1)
′, (y2)

′, (y3)
′, . . . , (yQ)′]′, η = (η′1, η

′
2, η

′
3, . . . , η

′
Q)′

 (QJS x 1 vectors)
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bj = (b′j1, b
′
j2, b

′
j3, . . . , b

′
jS)′ (SK x 1 vector), b = (b′1, b

′
2, b

′
3, . . . , b

′
J)′ (JSK x 1

vector), x̃q = IJS ⊗ x′q (JS x JSK matrix; IJS is an identity matrix of size JS) and

x̃ = (x̃′1, x̃
′
2, x̃

′
3, . . . x̃

′
Q)′ (QJS x JSK matrix). Collect all the weights wqq′ into a

row-normalized spatial weight matrix W . With these definitions, Equation (3.1) may be

re-written as:

y∗ = δ(W ⊗ IJS)y∗ + x̃b+ η, (3.3)

After further matrix manipulation to write y∗ in reduced form, we obtain:

y∗ = Cx̃b+Cη,where C = [IQJS − δ (W ⊗ IJS)]−1. (3.4)

The expected value and variance of y∗ may be obtained from the above equation after

developing the covariance matrix for the error vector η. To do so, note that the error

vector η is distributed multivariate normal with a mean vector of zero and covariance

matrix IQ⊗Λ (of size QSJ x QSJ), where Λ is the covariance matrix implied by the

common error components in the elements of the error vector η. Finally, we obtain

y∗ ∼MVNQT (B,Σ), where

B = Cx̃b and Σ = C [IQ ⊗Λ]C′. (3.5)

The parameter vector to be estimated in the model is θ = (b′, δ,γ′,α′,µ′)′ where α

is a column vector obtained by the vertical stacking of the αjs,r (r = 0, 1, 2, . . . Lqs)

parameters across severity levels and road-user types, and µ is a column vector obtained

by vertically stacking the elements σ, τ1, τ2, . . . , τJ , π1, π2, . . . , and πS. The likelihood

function for the model is:

L (θ) = P (y = m) =

∫
Dy∗

φQJS(y∗|B,Σ)dy∗, (3.6)
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where

Dy∗ = {y∗ : Ψ(qjs,mqjs−1) < y∗qjs < Ψqjs,mqjs
,∀q = 1,2, . . . ,Q, j = 1,2, . . . , J, s = 1,2, . . . ,S}

and φQJS(·|B,Σ ) is the multivariate normal density function of dimension QJS

(with mean B and covariance matrix Σ), m is a QJS x 1 - vector of observed

count outcomes. The integration domain Dy∗ is simply the multivariate region of the

elements of the y∗ vector determined by the observed vector of count outcomes. The

dimensionality of the rectangular integral in the likelihood function is QSJ . Existing

estimation methods including the Maximum Simulated Likelihood (MSL) method

and the Bayesian Inference method become cumbersome and encounter convergence

problems even for moderately sized Q, J , and S (Bhat et al., 2010). The alternative

is to use the composite marginal likelihood (CML) approach. In the current study, we

use the pairwise composite marginal likelihood method based on the product of the

likelihood contributions from pairs of count observations across all combinations of

spatial units, road-user types, and severity levels. To write this function, define the

following vectors:

ϕqj = (Ψqj1,mqj1−1,Ψqj2,mqj2−1 ,...,ΨqjS,mqjS−1), ϕq = (ϕq1,ϕq2 ,...,ϕqJ), and ϕ= (ϕ1,ϕ2 ,...,ϕQ)

and ϑqj = (Ψqj1,mqj1,Ψqj2,mqj2, ,...,ΨqjS,mqjS
),ϑq = (ϑq1 ,ϑq2 ,...,ϑqJ) and ϑ= (ϑ1 ,ϑ2 ,..., ϑQ).

Let g be an index that can takes the values from 1 to QJS. Then,

LCML (θ) =

(
QSJ−1∏
g=1

QSJ∏
g′=g+1

P
(
[y]g = [m]g,[y]g′ = [m]g′

))

=

(
QSJ−1∏
g=1

QSJ∏
g′=g+1

[
Φ2(̃ϑg,ϑ̃g′,νgg′)−Φ2(̃ϑg,ϕ̃g′,νgg′)

−Φ2(ϕ̃g,ϑ̃g′,νgg′)+Φ2(ϕ̃g,ϕ̃g′,νgg′)

])
,

(3.7)

where, ϑ̃g =
[ϑ]g − [B]g√

[Σ ]gg

, ϕ̃g =
[ϕ]g − [B]g√

[Σ ]gg

, νgg′ =
[Σ ]gg′√

[Σ ]gg

√
[Σ ]g′g′

.

In the above expression, [ϑ]g represents the gth element of the column vector ϑ, and

similarly for other vectors. [Σ ]gg′ represents the ggth element of the matrix Σ . The
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CML estimator is obtained by maximizing the logarithm of the function in Equation

(3.7).

Under usual regularity assumptions, the CML estimator of θ is consistent and asymp-

totically normally distributed with asymptotic mean θ and covariance matrix given

by the inverse of Godambe’s (1960) sandwich information matrix (see Zhao and Joe,

2005):

VCML(θ̂) = [G(θ)]−1 = [H(θ)]−1J(θ)[H(θ)]−1 (3.8)

where,

H(θ) = E

[
−∂

2 logLCML(θ)

∂θ∂θ′

]
and J(θ) = E

[(
∂ logLCML(θ)

∂θ

)(
∂ logLCML(θ)

∂θ′

)]

The reader is referred to Bhat (2011) for complete details regarding the estimation of

the matrices H(θ) and J(θ) in Equation (3.8) above. To ensure the constraints on the

autoregressive term δ, we parameterize it as δ = 1/
[
1 + exp

(
δ̃
)]

. Once estimated,

the δ̃ estimate can be translated back to an estimate of δ.

3.3 Model Selection

For the purpose of comparing two nested models estimated using the CML approach,

one can use the adjusted composite likelihood ratio test (ADCLRT) statistic, which

is asymptotically chi-squared distributed similar to the likelihood ratio test statistic

for the maximum likelihood approach. The reader is referred to Bhat (2011) for details

regarding the computation of the ADCLRT test statistic).
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Chapter 4

Study Area Description and Data

The crash data used in this research has been obtained from the CrashStat website,

which is the result of a project undertaken by the New York Citys (NYC) Transportation

Alternatives organization. The CrashStat website maintains geo-coded data for crashes

involving bicyclists and pedestrians over several years, with the latest year being 2009.

The data was compiled using crash reports from local reporting agencies, including the

New York Police Department and the New York State Department of Motor Vehicles

(for details on how the data was compiled and processed, please refer to the CrashStat

Documentation). The crash database collected detailed information on every reported

crash involving bicyclists and pedestrians in NYC, including crash factors (such as

weather, road surface condition, and pedestrian/bicyclist action prior to the crash),

bicyclist/pedestrian and vehicle driver details, and the details of the vehicles involved

in the crash (such as vehicle age, vehicle type, and body type).

In addition to the CrashStat data, we used other data sources to obtain the land-use,

demographic, and network information of the Census tracts (which is the spatial unit

of analysis used in this study). Specifically, we obtained (a) the socio-demographic

information from the 2010 Census data and the American Community Survey five-

year estimates, (b) the land-use and road network variables from the 2009 zoning

district maps and the street network map of the NYC Department of City Planning

(NYC-DCP) for the Manhattan region, (c) the activity intensity variables from the

tax lot details and the selected facilities and program sites data of NYC-DCP and (d)

the commute mode shares and transit supply variables from the American Community

Survey five-year estimates and the New York Metropolitan Transportation Council

20

http://crashstat.org/sites/default/files/about/CrashStat3 GIS Documentation.pdf
http://crashstat.org/sites/default/files/about/CrashStat3 GIS Documentation.pdf


(NYMTC) data. The 2010 TigerLine shape files were used to aggregate the data from

these data sources to the Census tract level. All the geographic data processing was

accomplished using ArcGIS 10.0 and the open source Geospatial Modeling Environment

(see: http://www.spatialecology.com/gme/).

4.1 Sample Formation and Description

Bicycle and pedestrian crashes that occurred in the year 2009 in Manhattan constitute

the sample used for the analysis in this study. The injury severity of each non-motorized

road-user in a crash was recorded on a four point ordinal scale: (C) possible injury,

(B) non-incapacitating injury, (A) incapacitating injury and (K) fatal injury. For our

analysis, all crashes in 2009 involving non-motorized road-users within the limits of

Manhattan were extracted from the CrashStat database, and were mapped to one

of 285 Census tracts.1 The counts of pedestrians and bicyclists injured per crash by

severity level were next aggregated up to the Census tract level, to obtain the count

of bicyclists and pedestrians injured by severity level in each of the 285 Census tracts.

Across all Census tracts, the sample included a total of 2512 injured pedestrians

and 845 injured bicyclists (the term “injured” as used here includes fatally injured

individuals), indicating about 3 times more pedestrians injured relative to bicyclists.

In the entire nation, on the other hand, the statistics for the year 2009 indicate a

ratio of about 1.25 times more pedestrians injured relative to bicyclists (NHTSA,

2012). Clearly, these figures show a much higher proportion of injuries sustained

by pedestrians (as a fraction of non-motorized road-users) in Manhattan relative to

the nation as a whole, a reflection of the substantially higher density of pedestrian

movement compared to bicyclist movement in Manhattan.

1Manhattan is divided into 288 Census tracts. However, we excluded three Census tracts from
the analysis, corresponding to Liberty Island, Governors Island, and Randalls and Wards Islands. Of
these, the first two tracts are primarily tourist attractions and recorded zero residential populations.
Randalls and Wards Islands, which together constitute one Census tract, predominantly consist
of parks and public facilities (such as the Manhattan Psychiatric Center and the Kirby Forensic
Psychiatric Center), with limited public access and residential populations. Also, all these three
Census tracts recorded zero bicycle and pedestrian crashes in 2009.
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The distribution of the number of injured non-motorists by injury severity level (across

all Census tracts in Manhattan) is presented in Table 4.1. For both pedestrians and

bicyclists, the dominant injury types are “possible” and “non-incapacitating” injuries,

with a lower share of “possible” injuries and higher share of “non-incapacitating”

injuries for bicyclists relative to pedestrians. This is to be expected because of the

speed of travel of bicyclists. In the category of “fatal” injuries, Table 4.1 reveals that

there were no fatal injuries recorded amongst crash-involved bicyclists in Manhattan

in 2009. However, there were 39 pedestrians killed in roadway crashes during the

same period, reinforcing the higher density of pedestrian movement in Manhattan

(in the nation as a whole, the number of bicyclist fatalities in roadway crashes was

15% of the number of pedestrian fatalities; see NHTSA, 2012). Overall, 1.2% of

non-motorized users involved in a roadway crash were fatally injured in Manhattan,

according to the CrashStat database (see Table 4.1, last column and penultimate row).

In comparison, 4% of non-motorized users involved in a roadway crash were fatally

injured in the nation as a whole, according to the NHTSA. The general skew toward

less serious injury severity levels for both bicyclists and pedestrians in Manhattan

may be attributed to high traffic congestion levels and consequent low motorized

vehicle speeds. For example, according to the New York City (NYC) Department of

Transportation, the speed of an average taxicab is 7.7 mph for the Midtown area of

Manhattan (NYCDOT, 2010). Also, Manhattan has a high number of pedestrians and

bicyclists due to its dense development. So, it is possible that a “safety in numbers”

situation is at play, wherein the injury severity risk faced by pedestrians or bicyclists

decreases as the number of pedestrians or cyclists increases (see Bhatia and Wier,

2011, Elvik, 2009, and Jacobson, 2003).
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Table 4.1: Distribution of Number of Injured Non-Motorists by Injury Severity Level

 
 
 
 
 
 
 

Table 1: Distribution of Number of Injured Non-Motorists by Injury Severity Level 
 

Injury Severity  Pedestrian Bicyclist All Non-Motorists 

Possible injury 1700 67.7% 502 59.4% 2202 65.6% 

Non-Incapacitating injury 523 20.8% 259 30.7% 782 23.3% 

Incapacitating injury 250 10.0% 84 9.9% 334 9.9% 

Fatal injury 39 1.5% 0 0.0% 39 1.2% 

Total 2512 100.0% 845 100.0% 3357 100.0% 
  



We next examine the sample distributions of non-motorized injuries by Census tract.

The total number of non-motorized individuals injured during the year in traffic crashes

per Census tract in Manhattan varied between 0 and 48, with an average of about

12 injuries per Census tract. Figures 4.1a - 4.1d present the distribution (across

Census tracts) of the count of pedestrian injuries alongside that of bicyclist injuries for

different injury severity levels in the study area for the year 2009. Several observations

may be made from the figures. First, and as expected, there is a preponderance of

Census tracts with zero count values for each road-user type-injury severity level. The

percentage of tracts with zero values steadily increases from about 9% for pedestrians

with possible injury (27% for bicyclists with possible injury) to 90% for pedestrians

with fatal injury (100% for bicyclists with fatal injury). Further, for the possible

injury severity level in particular, we also observe local spikes at non-zero count

values. Such count accumulations (or inflations) in discrete probability mass are easily

accommodated in our proposed model using the threshold parameters α. Second, it is

clear from the figures that the count range and the distribution pattern of injuries

across Census tracts varies substantially by road-user type as well as severity level,

confirming the need to study injury counts by road-user type and severity level rather

than pooling all injuries together.

Figure 4.2 is a thematic map displaying the total number of non-motorized injuries in

each Census tract. While we have developed the map for each road-user type-injury

severity level combination separately, the essential visual result that there is geographic

clustering in count values holds for all the combinations. Thus, to economize on space,

we are showing only the map for total number of pedestrian and bicyclist non-motorized

injuries. The obvious spatial clustering in Figure 4.2 in the number of non-motorized

injuries reinforces the notion that spatial dependency effects are likely to be at play

when modeling injury counts at the Census tract level (or at any other unit of space).
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Figure 4.1a: Distribution of percentage of Census tracts associated with each count
of possible pedestrian injuries alongside possible bicyclist injuries
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Figure 4.1b: Distribution of percentage of Census tracts associated with each count
of non-incapacitating pedestrian injuries alongside non-incapacitating bicyclist injuries
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Figure 4.1c: Distribution of percentage of Census tracts associated with each count of
incapacitating pedestrian injuries alongside incapacitating bicyclist injuries

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4

PE
R

C
EN

TA
G

E

NUMBER OF NON-MOTORIZED ROAD USER CRASH VICTIMS

FATAL INJURY
Pedestrian Bicyclist

Figure 4.1d: Distribution of percentage of Census tracts associated with each count
of fatal pedestrian injuries alongside fatal bicyclist injuries
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Table 4.2 presents the sample characteristics of the 285 Census tracts.2 The average

area of a Census tract is 19.7 x 104 sq. meters, though Table 4.2 indicates a wide

variation, which also manifests itself in the population density variable. On average,

the percentage of the residential population in a Census tract is 48% non-Hispanic

White, 15% non-Hispanic Black, 12% non-Hispanic Asian, and 23% Hispanic (including

Latino and of any race), with 2% being other race/ethnicity combinations (including

American Indian, mixed races (not Hispanic), and other non-Hispanic races). The

corresponding percentages in the US population as a whole are 64% non-Hispanic

White, 12% non-Hispanic Black, 5% non-Hispanic Asian, 16% Hispanic, and 3%

other (Humes et al., 2011). A comparison clearly reveals the higher race/ethnicity

diversity in the Manhattan population compared to the US population.3 However,

the descriptive statistics in Table 4.2 also indicate evidence of strong racial clustering

within Manhattan, with some Census tracts being completely Hispanic in terms of

residential population, and some tracts being dominated by White, Black or Asian

populations. The percentage of the population below poverty level varies substantially

across Census tracts in Manhattan, with a mean (across Census tracts) of 18% (this

is higher than the corresponding percentage in 2009 of 14.3% in the US population

(DeNavas-Walt et al., 2010)).4

2 Many variables in Table 4.2 did not turn out to be statistically significant in our final empirical
model; however, these variables are included in Table 4.2 to provide a sense of the variables considered
in our analysis as well as for completeness in characterizing the study area.

3 Technically speaking, a more appropriate comparison with the US racial profile would be to
compute the overall race proportions in the entire Manhattan population (as opposed to computing
the proportions by race in each Census tract in Manhattan and then taking the average of these
proportions across Census tracts, as we have done here). However, the intent here is to provide a
general picture of the Manhattan study area, while retaining the disaggregation by Census tracts
(which is the unit of spatial analysis in the current study). Overall, however, the Census tract-based
mean racial proportions computed for Manhattan (as we have done) is close to the racial proportions
for the entire Manhattan area population (48% non-Hispanic White, 12.9% non-Hispanic Black,
11.2% non-Hispanic Asian, 25.4% Hispanic, and 2.5% other; as per the American Community Survey
data, U.S. Census Bureau). The point of this footnote also applies to some other comparisons
undertaken in this section, but we will not belabor over this technicality in the rest of this section.

4 The U.S. Census Bureau employs a set of money income thresholds that differ across family size and
composition to determine poverty level. If a family’s total income is less than the corresponding threshold, then
that family and every individual in it is considered to be in poverty. For further details on poverty measurement
the reader is referred to: http://www.census.gov/hhes/www/poverty/about/overview/measure.html
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Table 4.2: Descriptive Statistics of Census Tracts (285 Observations)

1 

Table 2: Descriptive Statistics of Census Tracts (285 Observations) 

Variable Minimum Maximum Mean Std. Dev.
Socio-Demographic Variables     

Total area in square meters (scaled by 10000) 4.13 293.99 19.70 19.67 
Population density (population per sq-meter) 0.00* 0.08 0.03 0.02 

Race/Ethnicity Variables     
Proportion of non-Hispanic White population 0.00 0.91 0.48 0.30 
Proportion of non-Hispanic Black and African American population 0.00 0.81 0.15 0.20 
Proportion of non-Hispanic Asian population 0.00 0.88 0.12 0.13 
Proportion of Hispanic population  0.00 1.00 0.23 0.23 
Proportion of all other non-Hispanic population 0.00 0.05 0.02 0.01 
Percent below poverty level 0.00 0.54 0.18 0.13 

Age Distribution     
Proportion of population aged 14 years and below 0.00 0.24 0.12 0.05 
Proportion of population aged 15-19 years 0.00 0.50 0.05 0.05 
Proportion of population aged 20-29 years 0.00 0.67 0.21 0.10 
Proportion of population aged 30-64 years 0.15 0.82 0.49 0.07 
Proportion of population aged 65 years and above 0.00 0.37 0.13 0.07 

Educational Attainment Distribution     
Proportion of population 18 years and above without high school degree 0.00 0.51 0.15 0.15 
Proportion of population 18 years and above with high school degree 0.00 0.44 0.14 0.09 
Proportion of population 18 years and above with some college or associate's 
degree 0.00 0.63 0.17 0.07 

Proportion of population 18 years and above with Bachelor's degree or 
higher 0.05 1.00 0.54 0.26 

Median household income (scaled by $10,000) 0.98 23.28 7.28 4.21 

* All Census tracts had a non-zero value of population density. But the value of this variable for some Census tracts is very low (of 
the order 0.001 or lower), and so the minimum is listed as 0.0 
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Table 4.2: Descriptive Statistics of Census Tracts (285 Observations) [continued]

2 

 
Variable Minimum Maximum Mean Std. Dev.

Land-use and Road Network Variables     
Land-use type Distribution     

Proportion of commercial land-use 0.00 1.00 0.30 0.32 
Proportion of industrial land-use 0.00 0.96 0.07 0.17 
Proportion of residential land-use 0.00 1.00 0.57 0.35 
Proportion of other land-uses (vacant lots, open space, recreational etc.) 0.00 0.95 0.06 0.15 

Roadway Type Distribution     
Proportion of highways  0.00 0.78 0.02 0.07 
Proportion of local neighborhood roads and city streets 0.22 1.00 0.91 0.14 
Proportion of bicycle lanes and trails 0.00 0.40 0.03 0.07 
Proportion of other road types (alleys, driveways etc.) 0.00 0.45 0.04 0.11 

Activity Intensity Variables     
Number of schools 0.00 10.00 1.81 1.94 
Number of universities 0.00 5.00 0.15 0.50 
Park area in US Acres 0.00 7.06 0.06 0.44 
Intensity of office activity 0.00 9.57 0.79 1.72 
Intensity of retail activity 0.00 1.62 0.18 0.24 

Commute Mode Shares and Transit Supply     
Mode Share Distribution     

Drive alone 0.00 0.23 0.07 0.04 
Shared ride 0.00 0.17 0.02 0.02 
Transit 0.00 0.91 0.57 0.15 
Walk 0.00 1.00 0.22 0.15 
Telecommuting 0.00 0.38 0.06 0.04 
Other modes (taxicab, motorcyclist etc.) 0.00 0.39 0.06 0.04 

Transit Supply     
Number of bus stops 0.00 60.00 8.03 5.95 
Number of subway stops 0.00 6.00 0.49 0.81 

Distance between Centroids of Census Tracts (miles) 0.09 13.15 3.78 2.52 



The mean proportions (across Census tracts) of the population in different age groups

indicates a sizeable proportion (70%) in the age group of 20 to 64 years (the percentage

of this age group in the overall US population is about 64%) and a relatively high

proportion (13%) of the population over 65 years (the corresponding percentage in

the US population is 9%).5 The remaining socio-demographic variables in Table 4.2

pertain to education levels and household income, and indicate that, on average, more

than half the adult population (18 years or over) in a Census tract have a Bachelors

degree or higher while the median earnings of the households in Manhattan is $72, 800.

On the other hand, as per the American Community Survey data of the U.S. Census

Bureau, the corresponding national statistics for the percentage of the adult population

with a Bachelors degree and the household median earnings are 27.75% and $51, 914,

respectively. Overall, the descriptive statistics for the socio-demographic variables in

the study area indicate a more racially diverse, relatively affluent and highly educated

population in Manhattan relative to the country as a whole, though there is a huge

variation in the population characteristics across tracts within Manhattan.

Among the land-use and road network variables, the proportion of land-use in a specific

type of development is computed as the ratio of the tract land area in that specific

type to the total tract land area. The New York City zoning regulations govern these

designations of permitted land-use. The statistics for the land-use variables in Table 4.2

show that the land-use in the Census tracts of Manhattan is predominantly residential

(an average proportion of 0.57) and commercial (an average proportion of 0.30), with

some tracts being completely invested in residential or commercial land-uses. The

road network variables are constructed as the ratio of the total length of a specific

road type in the Census tract to the total length of the road carriageway (including

bicycle lanes and trails) in that Census tract. As can be observed from Table 4.2, the

5The zero values in Table 4.2 for the minimum value of percentage of population in certain age
groups is because of the fact that some of the Census tracts in Manhattan have very small total
resident populations.
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Manhattan Census tracts have a very high proportion of local neighborhood roads

and city streets.

The activity intensity variables are included to proxy the intensity of non-motorized

travel in the Census tracts. The number of schools in the Census tract refers to the

total number of elementary, middle and high schools (both public and private) present

in the tract. The number of Universities is the number of post-secondary degree

granting institutions in the Census tract. The park area shows substantial variation

across counties. The last two variables in this category of variables, the intensity of

office activity and the intensity of retail activity, are computed as the ratio of total

floor space allocated for office use and retail use, respectively, to the total land area of

the Census tract. This serves as a measure of the extent to which office and retail

activities are concentrated in a Census tract.6 There is clear evidence of high office

activity in the Manhattan Census tracts, which is to be expected as Manhattan is the

nerve center for many financial institutions. The intensity of retail activity is modest

in comparison.

The commute mode share and transit supply variables toward the end of Table 4.2

reveal the high transit and walk mode shares in the region. The final statistic in

Table 4.2 provides information on the Euclidean distance between centroids of Census

tracts, which is used as the metric to characterize spatial proximity when constructing

spatial weight matrices. The average inter-Census tract distance is 3.78 miles, with

a minimum of 0.09 miles and a maximum of 13.15 miles (the maximum distance

corresponds roughly to the length of the line from Battery Park at the southern tip of

Manhattan to the Marble Hill neighborhood at the northernmost end of Manhattan;

see Figure 4.2).

6In cities such as Manhattan, the net floor area in, for example, office activity in a Census tract
can be more than the land area of the Census tract (because of the vertical build-up). Thus, the
intensity measures can be higher than 1 (the land-use measures previously discussed, however, are
confined to the 0-1 range).
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Chapter 5

Empirical Analysis

5.1 Variables Considered

We considered all the variables listed in Table 4.2 for the analysis, and several vari-

able specifications and functional forms for the variables, in the process of arriving

at the final model specification. Many of the Census tract variables (such as age

and race/ethnicity distribution, educational attainment, land-use type distribution,

roadway type distribution, and commute mode share) were introduced as categorical

variables. Several other Census tract variables (total area, median household income,

population density, area of parks, and intensity of office and retail activity) were

introduced in a continuous form (for the total area, population density and median

household income, we also considered a logarithmic transformation; such a transfor-

mation could not be considered for the other continuous variables because these other

variables did take the value of zero for some Census tracts. In addition, spline effects

of the continuous variables as well as dummy variables created from the continuous

variables were considered to introduce non-linearities. Other variables (number of

schools and universities, number of bus stops, and number of subway stops) were

introduced as is, in the form of exogenous count variables. All the above variables

were introduced in both the latent variable and threshold specifications.

The variables retained in the final model specification are based on their statistical

significance and intuitive explanatory power. Overall, the results suggest that there are

substantial differences in the factors that impact the number of injured non-motorists

across road-users as well as across injury severity levels.
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5.2 Estimation Results

We estimated three different model formulations (1) A set of seven independent

models one for each combination of non-motorized road-user type and injury severity;

we will refer to this model as the independent flexible count (FC) model, (2) A joint

model allowing for cross-correlation effects among the count variables based on the

error components in Equation (3.1), but no spatial correlation; this is the joint flexible

count (JFC) model referenced in Section 3.1, and (3) A spatial joint model allowing

auto-regressive spatial dependency as well as cross-correlation effects; this is the spatial

joint flexible count (SJFC) model referenced in Section 3.1. To keep the discussion

focused and compendious, we present only the estimation results for the SFJC model

here, though we will discuss data fit issues of all the three models in a later section.

Table 5.1 presents the estimation results. We first discuss, in the next section, the

variable effects on the long-term (injury) risk propensity and on the thresholds (that

affect the “instantaneous” translation of the propensity to the count outcome) for

the pedestrian sub-component of the model. Section 5.2.2 presents the corresponding

results for the bicycle sub-component of the model.1 Section 5.2.3 summarizes the

main findings and discusses implications. Section 5.2.4 presents the results of cross-

correlation and spatial effects in the proposed spatial multivariate count model, and

Section 5.2.5 provides data fit measures.

5.2.1 Pedestrian Injury Model Component

5.2.1.1 Long Term Injury Risk Propensity

The variable effects in Table 5.1a reveal that Census tracts with a high population

density have a high risk propensity for fatal pedestrian injuries. This is a manifestation

1In these sections, the base categories for the categorical explanatory variables correspond to those
not listed in the tables (for example, if the only race/ethnicity proportion variable appearing in the
specification is the “proportion of Hispanic population”, it implies that all the other race/ethnicity
categories listed in Table 4.2 together constitute the base category).
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of a pedestrian exposure effect on the street network. In particular, regions with

high residential population density are known to be, in general, areas of low income

and relatively good transit service, leading to a substantial fraction of walk trips. In

addition to an exposure effect, this result could also be a result of a social deprivation

effect due to relatively poor cross-walk and pedestrian facilities. Several earlier studies

have found a similar effect of population density on total pedestrian crashes (see,

for example, Cottrill and Thakuriah, 2010, Ha and Thill, 2011, Wier et al., 2009).

However, our study, which partitions injuries by severity level, indicates that this

effect of population density is particularly disturbing, because of the loading on fatal

pedestrian injuries (with no impact on the number of pedestrian injuries at lower

severity levels). There is a suggestion that the quality and availability of pedestrian

facilities, and more generally, access facilities, in dense urban areas have to be reviewed

and evaluated carefully, both from a traffic safety standpoint and from an environmental

justice standpoint (for example, Lyons et al., 2008 identify the lack of secure play space,

jobs-housing balance issues, little separation between dwelling units and busy streets,

and hazardous routes from home to school as being mobility problems associated

with the urban poor). The result above is reinforced by the next finding that tracts

with a large proportion of Hispanic population appear to be particularly at risk for

pedestrian injuries at all severity levels except for fatal injuries (where it has no

effect) (see also Loukaitou-Sideris et al., 2007 and Cottrill and Thakuriah, 2010).2

The socio-demographic variable effects in Table 5.1a also indicate that tracts with a

high proportion of the population 14 years of age or below have a lower long term risk

propensity of experiencing pedestrian injuries at the non-incapacitating and fatal injury

severity levels (as also observed by LaScala et al., 2000). Further, a high proportion

2There was multicollineraity among the Census tract-level socio-demographic variables of pop-
ulation density, proportion of minority populations, median household income, and percent below
poverty level. At the end, the best specification was achieved with the first two variables in the long
term risk propensity, and the median household income in the threshold effects discussed in the next
section. The “percent below poverty level” variable turned out to be statistically insignificant after
accommodating the other three variables.
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of teenagers in the age group of 15-19 years decreases the long term risk propensity of

pedestrian injuries at all severity levels except the incapacitating injury level. These

effects may be related to an exposure effect, where tracts with a high share of children

and teenagers generate fewer walking trips and walking mileage (presumably related

to the general reluctance of parents to allow children to walk due to safety and security

concerns; see Sidharthan et al., 2011; McMillan, 2007 and Prezza et al., 2005). Finally,

within the set of socio-demographic variables, Table 5.1a reveals the strong impacts

of education level on pedestrian risk propensity. While education levels have seldom

been included in earlier studies (but see LaScala et al., 2000), our results indicate a

lower risk propensity of fatal pedestrian injuries, and “possible” pedestrian injuries in

tracts with a high proportion of adults (age 18 years and above) with a Bachelor’s

degree or higher. These education-related effects may be capturing another dimension

of exposure (for instance, individuals with low education are more likely to be blue

collared field workers, who are then exposed more to roadway hazards), or may be a

reflection of higher safety awareness and consciousness levels among highly educated

individuals. While the reasons for the influence of education, as provided above, are

admittedly speculative, they do suggest the importance of the education dimension

in the 4Es of safety - engineering, enforcement, education and emergency medical

services - as identified by the Federal Highway Administration (FHWA, 2006) and

highlight the need for conducting educational campaigns to promote safe pedestrian

and roadway practices across the region and particularly in areas with low education

levels.

Among the land-use and road network variables, four variables turned out to be

statistically significant (at the 0.1 level or lower). Interestingly, each of these variables

had an impact on injury risk propensity for only one of the four possible injury severity

levels, strongly supporting the count analysis of pedestrian injuries by injury severity

level (as opposed to modeling the count of total pedestrian injuries regardless of severity
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level). Table 5.1a shows a high risk propensity of non-incapacitating pedestrian injuries

in tracts with a high proportion of commercial land-use, presumably a reflection of

higher levels of walking in and around commercial land-uses (this is also consistent with

the results of Loukaitou-Sideris et al., 2007). The road network variable effects indicate

the lower risk propensity for non-incapacitating pedestrian injuries in tracts with a

high proportion of highways and local neighborhood roads/city streets, relative to

tracts with a high proportion of other road-way types (driveways, alleys, etc.) (perhaps

capturing the heightened pedestrian alertness levels on roadways with high automobile

volumes), though there are no effects of these network variables on pedestrian injuries

for other severity levels. The effect of the final network variable, “proportion of bicycle

lanes and trails”, indicates the benefits of providing exclusive non-motorized mode

use facilities to reduce pedestrian injuries.

The influence of the activity intensity and the “walk commute mode share” variables

are all as expected, and indicate the heightened long term risk propensity for injuries

of various severity levels caused by increased pedestrian activity.

5.2.1.2 Threshold Parameters

The threshold parameters include the threshold specific constants ( αjs,1, αjs,2, ...αjs,Ljs

values), as well as the parameters associated with the γ vector (see Equation (3.2)).

The threshold specific constants do not have any substantive interpretations. However,

their presence provides flexibility in the count model to accommodate high or low

probability masses for specific outcomes (after controlling for the effect of other

exogenous variables). In the pedestrian models, our analysis indicated no need for

these flexibility terms for all injury severity categories except for the possible injury

category (consistent with the initial observations from Figure 4.1a). The elements in

the γ vector are presented next in Table 5.1a. The constants within the γ vector for

the four injury severity levels do not have any particular interpretation. For the other
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variables, a positive coefficient shifts all the thresholds toward the left of the injury

propensity scale, which has the effect of reducing the probability of the zero injury

outcome (increasing the overall probability of the non-zero outcome). A negative

coefficient, on the other hand, shifts all thresholds toward the right of the injury

propensity scale, which has the effect of increasing the probability of the zero injury

outcome (decreasing the overall probability of the non-zero outcome; see CPB). The

results in Table 5.1a indicate that high median household income Census tracts tend

to have a higher observed level of non-zero pedestrian non-incapacitating injuries

than other Census tracts, for the same level of long-term risk propensity of such

injuries, an observation that needs more research to tease out the precise relationship

between income levels and pedestrian injuries by severity level. High proportions of

commercial, industrial, and residential land-uses (relative to open and recreational

land-uses) in a tract also lead to an increase in non-zero count values for incapacitating

pedestrian injuries, perhaps for the reasons identified in Section 3.1. Finally, the effects

of the remaining variables reflect the higher likelihood of non-zero “non-incapacitating”

injuries in tracts with many schools, a reduction in incapacitating injuries in tracts

with a high transit commute mode share (perhaps due to the consequent reduction of

motorized vehicle trips), and an increase in the count of non-zero “possible” injuries

in tracts with a high walk commute mode share.
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Table 5.1a: Model Estimation Results for Pedestrian Injuries
(Weight Matrix: inverse of distance, Distance Band: 5 miles)

Table 3a: Model Estimation Results for Pedestrian Injuries 

(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

Injury Severity Possible Non-
Incapacitating Incapacitating Fatal 

Parameters Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

 Long Term Risk Propensity              

Socio-Demographic Variables              

Population density (logarithmic)          0.152 8.45 

Proportion of Hispanic population  1.552 14.21 1.788 9.15 0.745 4.26     

Proportion of population aged 14 and below  -4.283 -4.93     -1.956 -12.47 

Proportion of population between ages 15-19 -0.035 -12.26 -0.044 -8.38     -0.083 -9.36 
Proportion of population 18 years and above with 
Bachelor's degree or higher -2.782 -12.04         -2.271 -21.79 

Land-use and Road Network Variables              

Proportion of commercial land-use  1.099 7.78         

Proportion  of highways  -3.305 -6.03         

Proportion local neighborhood roads and city streets  -0.944 -4.99         

Proportion of bicycle lanes and trails      -2.741 -3.28     

Activity Intensity Variable              

Intensity of office activity      0.136 3.28     

Number of schools 1.143 11.12             

Number of universities  0.181 2.87         

Commute Mode Shares and Transit Supply              

Walk commute mode share  1.169 3.50     2.275 26.79 
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Table 5.1a: Model Estimation Results for Pedestrian Injuries
(Weight Matrix: inverse of distance, Distance Band: 5 miles) [continued]

Table 3a: Model Estimation Results for Pedestrian Injuries 

(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

Injury Severity Possible Non-
Incapacitating Incapacitating Fatal 

Parameters Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Threshold Parameters        

Threshold Specific Constants              

α4 -0.075 -4.87             

α5 -0.245 -11.66             

α11 -0.255 -9.13             

 γ Vector               

Constant 1.238 20.19 0.990 4.26 -1.223 -3.88 1.043 7.28 

Socio-Demographic Variables              

Median household income  0.030 5.12         

Land-use and Road Network Variables              

Proportion of commercial land-use 0.781 22.04     1.073 3.11     

Proportion of industrial land-use      1.668 4.35     

Proportion of residential land-use      1.112 3.41     

Activity Intensity Variable              

 Number of Schools  0.421 5.93         

Commute Behaviors and Transit Supply              

Transit commute mode share      -0.972 -2.88     

Walk commute mode share 1.065 13.23             

 
 



5.2.2 Bicyclist Injury Model Component

For the bicyclist injury component of the model system, only three severity levels are

considered: possible injury, non-incapacitating injury, and incapacitating injury. This

is because, as discussed in Section 4.1, there were no bicyclist fatalities in any of the

Census tracts in Manhattan in the year 2009.

5.2.2.1 Long Term Injury Risk Propensity

Among the socio-demographic variables, Census tracts with a high proportion of

teenage populations aged 15 to 19 years of age have a low long term risk propensity for

non-incapacitating and incapacitating injuries. This is similar to the result found for

the case of pedestrian injuries. This reduction in non-incapacitating and incapacitating

injuries may be attributable to the New York State law that requires NYC bicyclists

under 13 years of age to wear a state approved helmet (Lee et al., 2005, Kim et al.,

2007). Because of the helmet law enforcement at a young age, it is possible that

teenage bicyclists continue to use a helmet and bicycle more safely. However, a more

in-depth causal analysis needs to be undertaken before a definitive connection can be

drawn between helmet use and the fewer number of bicyclist injuries.

The effects of the land-use and road network variables in Table 5.1b reveal a high risk

propensity of non-incapacitating bicyclist injuries in tracts with a high proportion of

commercial and industrial land-use, likely attributable to the higher levels of bicycling

in and around commercial and industrial land-uses. Also, the presence of bicycling

lanes and trails greatly decreases the long-term risk propensity of incapacitating

bicyclist injuries. This is intuitive, because of the resulting separation of motorized

and bicycle traffic. Interestingly, however, the presence of bicycling lanes and trails

does not affect the risk propensity for injuries at other severity levels. The results also

indicate the exposure-related positive effects of the number of schools, office intensity,

and park area in the tract on the long term risk propensity for “possible” injuries.
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In the group of the commute mode share and transit supply variables, there is a

heightened long term risk propensity for non-incapacitating bicyclist injuries in tracts

with a high walk commute mode share, presumably caused by generally higher bicyclist

activity in zones with high walk commute mode share (the bicycling commute mode

share, which would have been a more direct measure, was almost zero in the Census

tracts in Manhattan; however, the walk commute mode share can be viewed as a

surrogate measure of overall bicycling activity). Finally, Census tracts with a high

percentage of workers who telecommute have a high risk propensity for “possible” and

“non-incapacitating” bicyclist injuries. There is some evidence in the literature that

telecommuting generates new short distance non-motorized trips during the middle

parts of the day and in the evening (Andreev et al., 2010). Such non-motorized trips

would lead to an exposure-triggered higher bicyclist risk propensity.

5.2.2.2 Threshold Parameters

Among the effects of the land-use and road network variables, two turned out to be

statistically significant. High proportions of commercial and industrial land-uses, and

high retail intensity, in a Census tract lead to an increase in non-zero count values for

the “possible” bicyclist injury category.
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Table 5.1b: Model Estimation Results for Bicyclist Injuries
(Weight Matrix: inverse of distance, Distance Band: 5 miles)

1 

Table 3b: Model Estimation Results for Bicyclist Injuries 
(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

 

 

Injury Severity Possible Non-Incapacitating Incapacitating 

Parameter Estimate t-stat Estimate t-stat Estimate t-stat 

Long Term Risk Propensity       
Socio-Demographic Variables       

Proportion of population between ages 15-19   -0.044 -4.87 -0.023 -1.81 
Land-use and Road Network Variables       

Proportion of commercial land-use   0.591 2.19   
Proportion of industrial land-use   0.872 3.25   
Proportion of bike lanes and trails     -4.228 -3.48 

Activity Intensity Variable       
Number of schools 1.515 3.74     
Intensity of office activity 0.128 2.50     
Park area in US acres 0.655 18.85     

Commute Behaviors and Transit Supply       
Walk Commute mode share   1.148 1.73   
Telecommuting share 7.074 6.77 2.755 1.74   
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Table 5.1b: Model Estimation Results for Bicyclist Injuries
(Weight Matrix: inverse of distance, Distance Band: 5 miles) [continued]

2 

Table 3b: Model Estimation Results for Bicyclist Injuries 
(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

 

 

Injury Severity Possible Non-Incapacitating Incapacitating 

Parameter Estimate t-stat Estimate t-stat Estimate t-stat 

Threshold Parameters       
Threshold Specific Constants       

α2     -0.219 -3.79 
α3     -0.433 -6.08 
α4   -0.486 -4.78   
α5   -0.877 -4.79   

γ Vector        
Constant -1.693 -26.79 -1.239 -2.81 -0.908 -3.99 

Land-use and Road Network Variables       
Proportion of commercial land-use 1.121 5.21     
Proportion of industrial land-use 1.901 8.59     

Activity Intensity Variable       
Retail Intensity     0.507 2.59 

 



5.2.3 A Summary of Results and Implications

The results in the previous few sections provide several important general planning

insights. First, socio-demographics appear to be much more of an influencing factor

for the count of pedestrian injuries of all severity levels than for the count of bicyclist

injuries. This is intuitive, since socio-demographics may be viewed, in part, as being

proxy measures of exposure. In this context, pedestrian travel is generally dictated by

the lack of availability of other modes of travel (which is related to demographics),

while bicycle travel is more associated with a choice-based decision mechanism wherein

bicycling is pursued for exercise and recreation (Xing et al., 2010, Coogan et al., 2007)

Overall, Census tracts with a high population density, high proportion of Hispanic

residents, high proportion of the population over 19 years of age, and with low education

levels are particularly vulnerable to pedestrian injuries. As indicated earlier, this could

be an exposure result, but could also be related to discrimination across neighborhoods

in the level of non-motorized mode facility planning and investment. There is a

clear need to continue to emphasize environmental justice considerations in traffic

engineering and project planning/prioritization. Second, as anticipated in Section 3.1,

the results for both pedestrian and bicyclist injuries indicate the particularly strong

influence of land-use variables through the threshold effects, reinforcing the notion

that distraction and pre-occupation among motorized drivers around commercial,

industrial, and residential land-uses (relative to open and recreational land-uses) are

issues of concern. At the same time, Census tracts with high built-up commercial

and industrial land-use have a high long-term risk propensity of non-motorized injury

(due to an exposure effect caused by higher pedestrian and bicycling activity). A

similar situation applies to Census tracts with high office and retail intensity. Overall,

there appears to be a situation of “dangerous convergence” where distraction and pre-

occupation combine with high non-motorized mode activity, suggesting the institution

of information campaigns (and enforcement mechanisms) to ensure that motorized

vehicle drivers, and non-motorized mode users, are particularly vigilant and avoid cell
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phone use and related distraction activities in densely built-up areas. Third, the results

unequivocally underscore the need to invest in non-motorized mode infrastructure as a

precursor to any actions directed toward increasing the share of non-motorized modes

for the commute. That is, transportation policy actions that attempt to increase non-

motorized mode use through mixed land-use development or road pricing strategies,

without concurrent investment in improved non-motorized mode facilities, are likely to

be unsuccessful on three counts: (a) safety is a consideration in mode choice decisions

(see Chapter 1), and there will be less traction in increasing non-motorized mode use

without a clear information campaign on the safety investments being made to reduce

non-motorized user safety risk, (b) any increase in non-motorized mode use in response

to mixed land-use or pricing actions (notwithstanding the earlier comment) will lead

to a higher count of non-motorized mode user injuries in general, and fatal pedestrian

injuries in particular, if the status quo is maintained in terms of non-motorized mode

infrastructure (as per our estimation results), and (c) those “financially-challenged”

segments of the population who may turn to non-motorized modes to avoid additional

financial burden (in response to actions such as road pricing, even without investment

in non-motorized facilities) become more exposed to injury risk, reinforcing what

already appears to be environmental justice problems in the planning process. On the

other hand, investment in non-motorized mode facilities, such as investment in bicycle

lanes and trails, when undertaken in concert with other demand management actions,

addresses the three obstacles just identified. More generally, our results underscore the

need to carefully consider safety issues when exploring demand management actions,

even those demand management actions that may appear to be innocuous from a

safety standpoint. For example, our estimation results suggest an increase in bicyclist

injuries as the telecommuting share increases. Finally, the presence of schools and

universities increases the long term risk propensity of injuries, even though limited

to only the less severe injury categories, emphasizing the need for the continuation

of federal programs such as the Safe Routes to School program (U.S. Department of
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Transportation or USDOT, 2005).

5.2.4 Cross-Correlation and Spatial Effects

Table 5.1c provides the estimates of the cross-correlation and spatial parameters.

Among the parameters πs of the error terms ωqs (see Sections 2.1 and 3.1), only π1

turned out to be statistically significant, suggesting the presence of Census tract-specific

unobserved factors that impact the long-term risk propensity of the “possible injury”

severity level for both pedestrians and bicyclists. In the set of τs parameters, only τ2

of error term uq2 appears in the final specification, indicating Census tract-specific

unobserved factors impacting pedestrian injury risk at all severity levels. The standard

deviation σ of the error term νq is positive and statistically significant, reflecting

the presence of common Census tract-specific unobserved factors that affect the risk

propensity for all types of injuries at all severity levels. Overall, the results demonstrate

the importance of considering a multivariate count modeling approach rather than

estimating independent and univariate count models for each road-user type-injury

severity level combination.

The spatial autoregressive parameter δ in the final spatial lag formulation is also

highly statistically significant, with a positive value of 0.486. This result supports the

hypothesis that the number of non-motorized injuries in a Census tract is not just

a function of its characteristics, but is also influenced by the observed factors (such

as retail intensity, land-use type, and road network characteristics) and unobserved

factors (such as county regulations, unobserved design features, and driving attitudes

of the people in the neighborhood) of spatially proximate Census tracts. As we will

demonstrate in Section 5.3, ignoring these spatial effects can substantially bias the

estimated effects of exogenous variables on the count of injuries.
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Table 5.1c: SJFC Model: Additional Parameters and Summary Statistics
(Weight Matrix: inverse of distance, Distance Band: 5 miles)

1 

 
 
 
 
 

Table 3c: SJFC Model: Additional Parameters and Summary Statistics 
(Weight Matrix: Inverse of distance, Distance Band: 5 miles) 

 

 Estimate t-stat 

Cross model correlation   

π1 – S.E. of error linked with “possible injury” injuries in a Census tract 1.041 21.31 

τ2 – S.E. of error linked with pedestrian injuries in a Census tract 0.421 2.45 

σ – S.E. of error linked with individual Census tract 0.597 5.67 

δ – (spatial correlation parameter) 0.486 8.01 

Number of observations 285 

Number of parameters estimated 59 

Log-composite likelihood at convergence -1694396.25 
 

 



5.2.5 Model Selection and Data Fit

The spatial joint flexible count model (SJFC) is superior to both the joint flexible

count model (JFC) model and the independent flexible count model (FC), as should

be evident from the statistically significant spatial lag autoregressive parameter and

other error components in Table 5.1c. This may also be observed by computing the

adjusted composite likelihood ratio test (ADCLRT) for testing the SJFC model with

the other two models. To do so, we first provide the composite log-likelihood (CLL)

values for the three models: the SJFC model (CLL value of -1694396.25 with 59

parameters), the JFC model (CLL value of -1695251.25 with 58 parameters), and the

FC model (CLL value of -1749546.60 with 55 parameter). The ADCLRT statistic

for the comparison between the SJFC and JFC models is 7.07, which is greater than

the critical chi-squared value corresponding to one degree of freedom even at the 0.01

level of significance.3 Similarly, the ADCLRT statistic for the comparison between

the SJFC model and the FC model is 427.29, which is higher than the critical chi-

squared table value corresponding to four degrees of freedom at any reasonable level

of significance. For completeness, the ADCLRT value for the test between the JFC

and FC models is 404.16, which is higher than the corresponding chi-squared table

value with three degrees of freedom at any reasonable significance level.

5.3 Aggregate Elasticity Effects

The estimated model parameters in Table 5.1, and discussed in Section 5.2, do not

directly provide the magnitude of impact of variables on injury frequency. In this

section, we compute the aggregate-level “elasticity effects” from the SJFC models for

selected variables (we focus only on the SJFC model, and only on selected variables,

to focus the presentation and conserve on space). The variables selected are based

3 Unlike in the case of maximum likelihood, the CLRT statistic computed as twice the difference
of the CLL values is not chi-squared distributed. An adjustment needs to be made to the CLRT
statistic to obtain the ADCLRT statistic that is chi-squared distributed (see Bhat, 2011 and Pace
et al., 2011).
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on the discussion in Section 5.2.3, and include the following: (1) population density,

(2) proportion of Hispanic population, (3) proportion of commercial land-use, and (4)

proportion of bicycle lanes and trails. For each variable, the “elasticity” computed is a

measure of the percentage change in total injury count (for each road-user type-injury

severity level combination) across the entire study region (see Appendix for details).

To compute the aggregate level “elasticity effect” of population density, we increase

the population density of each tract by 20%. For the remaining variables, we increase

the proportion by 0.2 for each Census tract.4

The elasticity effects for the SJFC model (along with their t-statistics) are presented in

Table 5.2. The first entry in the second row of the table indicates that an increase in

the proportion of the Hispanic population by 0.2 in a tract would, on average, result in

about a 24.9% increase in the tract in the annual count of “possible injury” pedestrian

injuries, while the second entry in the same row indicates a 54.3% increase in the annual

count of “non-incapacitating” pedestrian injuries. Other entries may be similarly

interpreted. The results indicate the statistical significance of all the implied elasticity

effects. Further, three other important observations may be made. First, it is obvious

that each variable can have quite different impacts on the counts of injuries based on

road-user type and injury severity level, highlighting the potential pitfalls of using an

aggregated total non-motorized injury count as the dependent variable. Second, the

elasticity effects combine the effects of variables on both the long-term risk propensity

as well as the threshold parameters. Thus, the effect of commercial land-use on the

expected number of “possible” and “incapacitating” pedestrian injuries originates from

the threshold effect, while its effect on the expected number of “non-incapacitating”

4Strictly speaking, we should modify other proportions within appropriate groups of variables. For
example, the sum of all land-use proportions after increasing the proportion of commercial land-use by
0.2 should continue to remain at 1.0 for each tract; this may be easily achieved by drawing away from
each non-commercial land-use in direct proportion to the current distribution of each non-commercial
land-use share in the tract. However, doing so makes it difficult to isolate the impacts of the variables
under study because of the changes in other variables too. So, we follow a more straightforward
approach to assess the impact of each proportion variable by simply increasing its value by 0.2.
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injuries originates from the long-term risk propensity effect. The implied elasticity

effects of the variables (including for the proportion of commercial land-use) in Table

5.2 are consistent with the discussion in Section 5.2, but these elasticity effects are more

tangible because they provide an estimate of the overall impact of each variable on the

expected count. Third, we also computed the elasticity effects for the simple FC model

that ignores the jointness of counts (in the number of injuries by road-user type and

severity level) and spatial dependence. In general, the elasticity effects from the SJFC

model are higher in magnitude than those from the FC model, a consequence of the

“spillover” effects in the SJFC model that causes a spatial multiplier effect.5 Specifically,

a change in a variable in one Census tract influences the injury count in other Census

tracts that then has a circular ripple impact back on the initial Census tract. The FC

model ignores such spatial “multiplier” effects because it considers the injury count in

one Census tract to be independent of injury counts in other Census tracts. The result

can be quite different estimates of variable effects. For instance, a 0.2 increase in the

proportion of bicycle lanes and trails in a tract, as per the FC model, would result in

only a 38% (67%) decrease in pedestrian (bicycle) non-incapacitating injury counts.

In contrast, the SJFC model in Table 5.2 indicates a 62% (89%) decrease in pedestrian

(bicycle) non-incapacitating injury counts. This, and other similar results for other

variables, underscores the potentially misinformed investments in crash-related injury

reduction countermeasures if jointness across counts of different types and/or spatial

dependencies are ignored. In the particular case of bicycle lanes and trails, the FC

model underestimates the benefits that would accrue from investing in more bicycle

lanes and trails.

5For the few cases where the FC model has a higher elasticity magnitude, the corresponding
variable effect is through the thresholds and not through the long-term risk propensity variable
that contributes to the spillover effect. Population density is the only exception, and the higher FC
elasticity for this variable is because of the logarithmic transformation used for this variable.
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Table 5.2a: Aggregate-Level Elasticity Effects of SJFC Model (Pedestrian)

1 

Table 4a: Aggregate-Level Elasticity Effects of SJFC Pedestrian Model  

Variable 
Pedestrian 

Possible Non-Incapacitating Incapacitating Fatal 
Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat

Population density 0.00 - 0.00 - 0.00 - 8.68 2.98 

Proportion of Hispanic population 24.85 6.31 54.33 3.54 24.76 3.82 0.00 - 

Proportion of commercial land-use 16.33 17.37 32.19 3.70 17.33 2.72 0.00 - 

Proportion of bicycle lanes and trails 0.00 - 0.00 - -61.66 -4.12 0.00 - 

 

Table 4b: Aggregate-Level Elasticity Effects of SJFC Bicyclist Model  

Variable 
Bicyclist 

Possible Non-Incapacitating Incapacitating 
Elasticity t-stat Elasticity t-stat Elasticity t-stat

Population density 0.00 - 0.00 - 0.00 - 

Proportion of Hispanic population 0.00 - 0.00 - 0.00 - 

Proportion of commercial land-use 11.83 4.07 18.92 0.53 0.00 - 

Proportion of bicycle lanes and trails 0.00 - 0.00 - -89.41 -6.97 

Table 5.2b: Aggregate-Level Elasticity Effects of SJFC Model (Bicyclist)

1 

Table 4a: Aggregate-Level Elasticity Effects of SJFC Pedestrian Model  

Variable 
Pedestrian 

Possible Non-Incapacitating Incapacitating Fatal 
Elasticity t-stat Elasticity t-stat Elasticity t-stat Elasticity t-stat

Population density 0.00 - 0.00 - 0.00 - 8.68 2.98 

Proportion of Hispanic population 24.85 6.31 54.33 3.54 24.76 3.82 0.00 - 

Proportion of commercial land-use 16.33 17.37 32.19 3.70 17.33 2.72 0.00 - 

Proportion of bicycle lanes and trails 0.00 - 0.00 - -61.66 -4.12 0.00 - 

 

Table 4b: Aggregate-Level Elasticity Effects of SJFC Bicyclist Model  

Variable 
Bicyclist 

Possible Non-Incapacitating Incapacitating 
Elasticity t-stat Elasticity t-stat Elasticity t-stat

Population density 0.00 - 0.00 - 0.00 - 

Proportion of Hispanic population 0.00 - 0.00 - 0.00 - 

Proportion of commercial land-use 11.83 4.07 18.92 0.53 0.00 - 

Proportion of bicycle lanes and trails 0.00 - 0.00 - -89.41 -6.97 



Chapter 6

Conclusions

This thesis has proposed a new econometric approach to specify and estimate a model

of non-motorized injury frequency. It is based on the recasting of count models

as a special case of a generalized ordered-response (GOR) framework, which then

conveniently allows for the accommodation of zero inflation, cross-correlation, and

spatial dependency in spatial multivariate count model systems. A composite marginal

likelihood inference approach is used to estimate the model parameters. To our

knowledge, this is the first such formulation of a spatial multivariate count model in

the literature.

The thesis has modeled the number of pedestrian and bicycle injuries by injury severity

level in the Census tracts within Manhattan, New York. The empirical results highlight

the need to (1) differentiate injury counts by road-user type as well as injury severity

level, (2) use a multivariate modeling system for the analysis of injury counts by road-

user type and injury severity level, rather than estimating independent univariate count

models for each road-user type-injury severity level combination, and (3) accommodate

a spatial lag structure to accommodate dependence effects in injury counts across

space. Accommodating these important econometric considerations is not simply an

esoteric scholarly issue, but has very real implications for accurately capturing variable

effects, for predictive ability, and for informed decision-making.

From a substantive standpoint, Census tracts with a high population density, minority

population groups, low education levels, and high built-up density are particularly

vulnerable to pedestrian and bicycle injuries. This suggests a need to examine
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environmental justice considerations in non-motorized mode facility provision, as well as

consider information campaigns (and enforcement mechanisms) to encourage motorized

vehicle drivers, and non-motorized mode users, to exercise particular caution and

avoid distraction when driving in densely built-up areas. Our results also underscore

the need to invest in non-motorized mode infrastructure and improve non-motorized

road-user safety as a precursor to implementing travel demand management actions

(such as mixed land-use development and road pricing) directed toward promoting

non-auto mode use.

54



Appendix

Procedure to Predict the Expected Count

Values for each Census Tract

The expected value of injury count in Census tract q for each road-user type j and

injury severity level s may be written as:

E(yqjs) =
∞∑
k=0

P (yqjs = k) · k, (A.1)

where P (yqjs = k) is the probability of occurrence of k injuries of type j and injury

severity level s in Census tract q. Although the summation in the equation above

extends until infinity in our count model, we consider counts only up to k = 25 in

our prediction procedure (this value represents the maximum count of injuries across

Census tracts and across combinations of road-user type and injury severity level in the

estimation sample, corresponding to the possible injury severity level for pedestrian

injuries; see Figure 4.1a). Beyond the count value of 25, the probabilities are very

close to zero and hence do not have any significant impact on the predicted value. The

expected value in Equation (A.1) is a function of the (QSJ x 1) matrix of exogenous

variables for all Q Census tracts, x = (x1,x2,x3, ...,xQ)′, as well as a function of the

variable vector zq embedded in the thresholds in Equation (3.2).

The estimate of P (yqjs = k) in Equation (A.1) for the FC model is obtained from

Equation (3.1) in a fairly straightforward manner. For the JFC model, we need to

accommodate the effects of the error covariances across different severity levels and

road-user types within a Census tract, and, for the SJFC model, we also need to

consider the spatial dependency effects across Census tracts. To estimate P (yqjs = k)
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in these models, we simulate the QSJ x 1 vector y∗, from Equation (3.4), five hundred

times using the estimated values of δ, b, and the QSJ x 1 vector η. Subsequently,

we compare each of the 500 draws of the qth element of y∗ with the corresponding

thresholds for the qth element from Equation (3.2), and assign the count value for

each of the 500 draws based on this comparison. The share of each count prediction is

taken across the 500 draws to estimate P (yqjs = k).1

1The predictions were not sensitive to the number of draws beyond about 400 draws, and so we
settled on 500 draws.
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