

Copyright

by

Cem Bagdatlioglu

2017

The Dissertation Committee for Cem Bagdatlioglu Certifies that this is

the approved version of the following dissertation:

A Hybrid Global Surrogate Modeling Software for Nuclear Reactor

Cross Section Estimation

Committee:

Sheldon Landsberger, Supervisor

Steven R Biegalski

Derek A Haas

Anthony M Scopatz

A Hybrid Global Surrogate Modeling Software for Nuclear Reactor

Cross Section Estimation

by

Cem Bagdatlioglu

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2017

Dedication

I dedicate this dissertation to my family for their unconditional love and support.

v

Acknowledgements

I am most grateful to Erich Schneider for his contributions to my work as well as

my growth and education overall. This work would not have been possible without him.

Now complete, it is so close to the original work we had envisioned.

I would like to express the deepest gratitude to Sheldon Landsberger. He has played

many crucial roles in my graduate school career. It has been a pleasure working with him

throughout rough times and worse. Without him this work may have never been completed.

I would like to give a very special thank you to Robert Flanagan, who has guided

and helped me throughout my graduate school career. Thank you, Robert, for being ready

to help whenever I needed it. You can't stop, won't stop!

Very special gratitude goes out to Anthony Scopatz, Derek Haas, Steve Biegalski,

and Paul Wilson for all their help.

I would like to thank my fellow researchers Maggie, Will, Birdy, Harry, Jose, and

Neal for their help and friendship throughout my graduate school career. Y'all are

irreplaceable friends and colleagues!

Most importantly, I want to thank and acknowledge my family. I cannot express

how grateful I am for my parents Dilek and Cemo, my sister Ece, and my wife Mel.

vi

A Hybrid Global Surrogate Modeling Software for Nuclear Reactor

Cross Section Estimation

Cem Bagdatlioglu, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Sheldon Landsberger

Nuclear fuel cycle (NFC) simulators track the amount and composition of materials

as they move through facilities such as mines, fuel fabrication plants, and nuclear reactors.

A major task of a NFC simulator is to calculate the evolution of compositions of batches

of nuclear materials as they are transmuted in reactors, decay, and are blended with other

batches to create reactor fuel or be reprocessed or disposed. Codes used for NFC simulation

that utilize intermediate data saved in databases which are calculated ahead of time are

attractive since their fidelity can be improved by investing more resources in expanding

their databases. Shifting the computational work ahead of the reactor simulation like this

allows the fidelity to be improved without sacrificing runtime computational cost. This

dissertation describes a method that attempts to maximize the fidelity increase per unit time

invested during this precomputation step. Unlike previous work in the reactor simulation

field, this methodology does not limit the number and type of runtime simulation inputs.

NUDGE (NUclear Database GEneration software) is an implementation of this

methodology. The methodology has two main steps where new data is added to databases.

First is exploration, where inputs to the database are selected to be as uniformly distributed

as possible within the problem input domain. Second step is exploitation, where output

information is utilized to inform the selection of the next point to run. An improvement to

exploitation, named Voronoi Cell Adjustment, is described in this dissertation and

implemented in NUDGE. This improvement has been shown to benefit the average fidelity

vii

increase during database building. A study of the scaling of the methodology, a comparison

of error metrics, and an exploration of optimal values for several key parameters in the

methodology are presented. NUDGE has also been used to create a global surrogate model

of a NFC simulation software (named XSgen). This model shows better performance

compared to models generated by other established methods under equal constraints.

viii

Table of Contents

List of Tables ...x

List of Figures .. xi

1. INTRODUCTION 1

2. LITERATURE REVIEW 5

2.1. Review of Methods Used to Reduce Nuclear Reactor Simulation Runtimes .6

2.2. Global Surrogate Modeling...9

2.3. Database Error Estimation ..13

2.4. Dimensionality Reduction ..14

2.5. Applications of Global Surrogate Modeling in Engineering16

2.6. Summary of Selected Methods for Surrogate Modeling Workflow18

3. METHODOLOGY 19

3.1. Overview ...19

3.2. User Inputs and Initialization ..22

3.3. Screening...23

3.3.1. Scout Runs ..23

3.3.2. Output Quantification ...24

3.4. Exploration ..26

3.5. Exploitation ...30

3.5.1. Voronoi Cell Estimation ...31

3.5.2. Sample Error Estimation ...34

3.5.3. Exploitation Methodology ..36

ix

3.6. Error Estimation ..39

3.7. Voronoi Cell Adjustment ..41

4. RESULTS 47

4.1. Comparison of Error Measures ...47

4.2. Exploitation Method Test ...49

4.3. Software Runtime and Scaling ..52

4.4. XSgen Output Behavior and Placeholder Function Generation60

4.5. Study of Database Building Parameters ...66

4.5.1. Distance Factor ...66

4.5.2. Error Weighing Factor ..72

4.5.3. Switching From Exploration to Exploitation74

4.6. Building A Global Surrogate Model of XSgen Using NUDGE77

5. CONCLUSIONS AND RECOMMENDATIONS 82

6. APPENDIX 85

6.1. XSgen Base Input for LWR ..85

6.2. XSgen Input for MOX ..86

6.3. Placeholder Functions ...88

Function F1 ...88

Function F2 ...88

Function F3 ...88

Function F4 ...88

GLOSSARY 89

REFERENCES 91

x

List of Tables

Table 1 – 2D Voronoi cell adjustment study. 67

Table 2 – 3D Voronoi cell adjustment study. 68

Table 3 – 7D Voronoi cell adjustment study. 70

Table 4 – Nuclide Fractions for XSgen MOX Global Surrogate Models. 79

Table 5 – Output Nuclide Fractions for XSgen MOX Global Surrogate Models. 80

Table 6 – XSgen Surrogate Model Errors Comparison. 81

xi

List of Figures

Figure 1 – NUDGE Workflow Overview ... 20

Figure 2 – NUDGE exploitation step workflow ... 26

Figure 3 – Next sample selection during exploration. .. 29

Figure 4 – Selection of five consecutive samples during exploration. 29

Figure 5 – Exploitation stage workflow.. 30

Figure 6 – Voronoi cells of 20 points in 2D [43] .. 32

Figure 7 – Voronoi cell size estimation. ... 33

Figure 8 – Sample error estimation workflow. ... 34

Figure 9 – Database sample selection with exploration-only (left) and exploitation of final

30 points (right) where each sampled in numbered in order of inclusion. 38

Figure 10 – Voronoi cells (arbitrary coloring) of a database where sample colors

correspond to estimated errors so that red is high error. 42

Figure 11 – Adjusted Voronoi cells using df=0.8 (arbitrary Voronoi cell colors). 44

Figure 12 – Adjusted Voronoi cell next sample shifting. ... 45

Figure 13 – Shifted next sample shown over unadjusted Voronoi cells. 46

Figure 14 – Comparison of error measures for an example database. 48

Figure 15 – Comparison of average database real errors generated using different

exploitation start times. ... 50

Figure 16 – Comparison of the four error measures for two cases. 51

Figure 17 – Exploration time per sample for different dimensions. 54

Figure 18 – Exploitation time per sample for different dimensions. 55

Figure 19 – Exploration step sample generation time vs. estimated computational cost for

different number of dimensions. ... 56

Figure 20 – Exploitation step Voronoi cell estimation time vs. estimated computational

cost for different number of dimensions. .. 57

Figure 21 – Exploitation step adjusted Voronoi cell estimation step time vs. estimated

computational cost for different number of dimensions. 58

xii

Figure 22 – XSgen Output Sensitivities on Principal Component 1. 61

Figure 23 – XSgen Output Sensitivities on Principal Component 2. 61

Figure 24 – XSgen Neutron Production, Neutron Destruction, and Burnup Output Map.63

Figure 25 – XSgen Pu-239 and U-235 Concentration Output Map. 64

Figure 26 – XSgen Software Principal Components 2D Map. ... 65

Figure 27 – 2D Case black box function. ... 67

Figure 28 – Real errors of the 3D Voronoi adjustment study (y-axis starts at 10 %). 69

Figure 29 – Real errors of the 7D Voronoi adjustment study (y-axis starts at 20 %). 70

Figure 30 – Results of Changing the Error Weighing Factor c. 73

Figure 31 – Placeholder function (F3) output map over the utilized domain. 74

Figure 32 – Comparison of Various Switching Strategies.. 75

 1

1. INTRODUCTION

Nuclear fuel cycle (NFC) simulators track the amount and composition of materials

as they move through facilities such as mines, fuel fabrication plants, and nuclear reactors.

A major task of a NFC simulator is to calculate the evolution of compositions of batches

of nuclear materials as they are transmuted in reactors, decay, and are blended with other

batches to create reactor fuel or be reprocessed or disposed. The compositions are used to

assess supply and demand of materials, feasibility, impact and infrastructure requirements

for fuel cycle facilities reactor technologies, and material accountability in the studied fuel

cycle.

The challenge of determining continuously evolving compositions is a distinct

feature of NFC simulators. While accurately calculating the material balance of a reactor

within a narrow range of possible inputs is time-intensive but straightforward, this

challenge is compounded in many NFCs. Advanced NFCs can incorporate a wide range of

novel reactor technologies, in many of which fuel is reprocessed and recycled back into

reactors. Since inputs depend on outputs in these recycling cases, the range of possible

input compositions can become very large. This reality means that simulation software and

methodologies targeted for specific reactor types with narrowly bounded inputs cannot

easily be generalized to cover arbitrary fuel cycles and reactor technology combinations.

It is straightforward to add the ability to simulate a reactor technology to a simulator

only if its space of feasible input fuel compositions and associated input to discharge

composition transformations can be easily calculated at runtime, or preferably pre-

calculated and parameterized before runtime. Since it is not tractable to model the spectral

and burnup effects of changes in initial composition comprehensively by simulating all

plausible combinations of every nuclide that may potentially be present in the input,

simulation designers must introduce approximations which give rise to the well-known

trade-off between accuracy and simulation time. As the precision of results are improved

their cost typically increases.

 2

Reactor simulation codes that utilize results or intermediate data saved in databases

which are calculated ahead of time are attractive since their fidelity can be improved by

investing more resources in expanding their databases. Shifting the computational work

ahead of the reactor simulation allows the fidelity to be improved by expanding the results

database without sacrificing runtime computational cost. This gives rise to the optimization

goal of maximizing fidelity increase per unit time invested.

One such code that utilizes databases to improve fidelity is the Bright-lite reactor

simulator [1] that is used in the NFC simulator Cyclus [2]. Bright-lite addresses the trade-

off between accuracy and cost by shifting the computational burden of simulation to the

front-end by utilizing pre-computed reactor libraries. These libraries are generated from

time dependent cross-sections and track the neutron economy, burnup, and transmutation

of input fuel nuclides as a function of fluence. The libraries are created and saved in library

databases before the NFC simulations. The input values for these libraries are determined

by defining plausible domains for the characteristics and range of inputs of reactors that

will be modeled.

During runtime, the NFC simulator provides the Bright-lite reactor the composition

and mass of all available materials that could be used to create a reactor’s next fuel reload.

Bright-lite is used during runtime to compute an appropriate blend of these materials given

user-specified performance goals and approximate fuel burnup behavior from the Bright-

lite reactor library. This method maintains quick execution with acceptable errors as long

as the input composition does not deviate far from the initial assumptions made to create

the pre-computed library [3].

If Bright-lite's available pre-computed libraries were not prepared using design

parameters and input fuel composition closely matching that of the studied reactor, hard-

to-quantify and potentially large errors may arise. To address this discrepancy, Bright-lite

can approximate a library using an interpolation method on the available libraries [4]. The

interpolation is carried out based on parameters which are generally not known until

runtime (e.g., isotopic vectors of plutonium or transuranic fuel feed stocks). These inputs

may vary between reactors of the same general type; they may also vary between fuel

 3

reloading batches for a given reactor. The neutronic effects of such variations are addressed

by interpolating on libraries in the database.

Increasing the number of precomputed libraries therefore reduces error by reducing

the average distance between the interpolating libraries and the target point in input space.

At present, though, since the libraries are generated in an ad hoc manner, it is not possible

to ascertain or even bound the error introduced by using the interpolated library versus a

library generated by carrying out a time-dependent radiation transport/burnup calculation.

Verifying each interpolated library by performing a full simulation would be too time-

intensive a step for an NFC simulator; it would also undermine the intended benefit of

moving the transport calculations to a pre-computation step.

Generation of Bright-lite’s precomputed libraries can be time consuming since it

involves coupled transport-burnup calculations on a representative reactor unit cell or

lattice. The parameters for the case to be simulated, such as the total time fuel will be

burned, can strongly affect the execution time of the model used to generate the fluence-

dependent cross sections, reaction rates, and transformation matrices that comprise the

libraries. When categorical inputs (such as reactor type and number of core regions) are

defined, there are still many (material densities, fuel cell geometry, fuel composition, fuel

power, etc.) continuous variables in the input space. This high dimensionality makes laying

a fine high-dimensional grid (i.e., each variable with many discrete values) impossible. For

example, assuming the input space contains 20 continuous variables, assigning 6 discrete

values for each of them and simulating every combination will require quadrillions of cases

to be simulated. Even if each case required only 6 seconds, this would take as long as the

half-life of U-235 (703,800,000 years) to complete.

However, this high dimensionality can be mitigated since many of these variables

might have very negligible effect on neutron energy spectra and spatial distributions, and

thus on material balances. Other inputs may have limited effects on outputs over most of

their domain, but rise to significance in one region. A methodical, brute-force sweep

considering every combination of inputs like the one described above ignores these facts.

Therefore, the process of selecting inputs for libraries to be included in the Bright-lite

 4

library database must be carefully considered to prioritize areas of the input space that

sensitively affect outputs.

The challenge of retaining much of the fidelity of costly simulations without

incurring their cost during runtime arises in many fields of science and engineering, and

motivates the work to create a surrogate model (response surface model, metamodel, or

emulator) which estimates the output of the simulation model (or full simulation, black box

model). The competing goals of the methodology are minimizing the total time it takes to

generate the database and bounding the interpolation error across the entire global domain

of inputs. Minimizing the database generation time implies limiting the number of full

simulations and concentrating expensive simulations in areas where outputs are found to

sensitively depend on inputs. In cases with limited computational time, the goal is to use

resources effectively to lower the final database error.

Unlike previous work in the reactor simulation field, this methodology does not a-

priori limit the number and type of runtime simulation inputs. Any number of inputs can

be specified and will be included in the database variable space.

The next section covers the literature in related fields including NFC simulators

and fields related to building and testing a surrogate model. It demonstrates the novelty of

the work as well as summarizing the selected methods and concepts for the methodology.

 5

2. LITERATURE REVIEW

This section summarizes fields related to the work with two goals. First is to review

approaches taken by NFC simulators to handle the challenge of modeling a large range of

reactor types, configurations, fuel forms, and fuel compositions. Many NFC simulators

assemble databases (of cross sections, material balances, or inputs to reduced-order

models) by performing full-scale transport and burnup calculation in advance rather than

runtime. This leads to a class of analogous problems in other fields. The second goal is to

review approaches to handle costly simulations, dimensionality reduction, and uncertainty

estimation in other fields.

The section is divided into six subsections. The first is a review of methods nuclear

reactor simulators use to reduce runtime. Next, the field of global surrogate modeling,

which deals with making a model of a simulation model, is introduced. Relevant concepts

and definitions are defined in this subsection. The third subsection covers ways to estimate

errors of surrogate models. Next, popular techniques for dimensionality reduction are

presented, which will be necessary to screen inputs as well as to analyze and quantify

outputs. Finally, similar applications in other fields of science and engineering are given.

 6

2.1. Review of Methods Used to Reduce Nuclear Reactor Simulation

Runtimes

This subsection will discuss methods engineers and software designers use to

overcome the long runtimes required by high precision nuclear reactor simulations while

minimizing the resulting loss of accuracy. As mentioned, the high precision simulations

are costly. The iterative nature of the calculation prevents any meaningful separation of

various parts of the workflow without significant changes to the simulation model.

Many input parameters are needed in order to accurately simulate the isotopic

transformations that take place during fuel burnup. Some of these inputs such as core

geometry, material densities, and coolant temperature are generally constant for a given

reactor. Others such as fuel composition, local fuel power densities, and cycle length may

change throughout the lifetime of the modeled reactor. A reactor simulation with very high

precision (full simulation) requires values for all of these inputs to be determined before

the calculation begins and does not make assumptions on inputs. These models require new

simulation runs to be carried out even for small changes in individual inputs. In addition,

simulations are very time consuming. Using a high fidelity reactor model within a NFC

simulator is therefore generally unfeasible since the NFC simulation may have dozens of

reactors each requiring runtimes totaling to prohibitively long simulations.

Building reactor simulation models that have sufficiently quick runtimes while

maximizing accuracy involves simplifying the workflow to reduce the inputs needed

during runtime and performing most of the costly computations prior to NFC runs. The

most extreme reduction of inputs required during runtime is utilized in recipe reactors. A

recipe reactor takes a constant input composition and always discharges the same resulting

output. All reloads to that reactor type are treated as following that recipe. This reduction

is utilized by the Code for Advanced Fuel Cycles Assessment (CAFCA) [5]. Developed by

Massachusetts Institute of Technology, CAFCA is a fuel cycle simulator that utilizes only

constant pre-computed data for its NFC material balances. Therefore, each reactor fleet in

CAFCA has an invariable flow of input-output compositions, also called recipes. These

 7

recipes (including core mass, cycle length, and capacity factor as well as compositions of

fresh and used fuel) are provided through Excel spreadsheets.

A tool that does not sacrifice all dimensions for runtime calculations by using

databases of recipes parameterized against major inputs is the Verifiable Fuel Cycle

Simulation (VISION) [6]. Developed by the Idaho National Lab, VISION software is a

tool for modeling material flows in a NFC. The software is a Powersim application,

utilizing Excel spreadsheets for input and output functionality. The outputs are generated

externally. The results of these calculations are saved as recipes to determine outputs of

reactors by adjusting inputs such as composition, initial reactor core loading, and loading

per fuel batch. VISION accounts for evolving input compositions “using interpolation

within tabulated values, correlations of recipes as a function of key input parameter (e.g.

UOX burnup) or using a perturbation method to cover the possible range of operations of

certain type of fuel” [6].

Another NFC modeling software which reduces inputs needed during runtime is

SImulation TOol for modelling the Nuclear fuel cycle (SITON) [7]. SITON uses fixed

recipes for some reactor calculations. However, for reactor types where the output is

determined to be sensitive to evolving input compositions (such as plutonium recycling) it

uses a method its authors call FITXS where polynomial functions are fit to one-group

microscopic cross-sections. The number densities of important actinides and fission

products are used as fitting parameters, allowing the changing input fuel composition to be

used to quickly estimate cross-sections during runtime.

The three main parts of the method are the selection of fitting parameters, transport

calculation runs to generate a training database, and the determination of fitting parameters.

The evaluation of the fitting parameters for the FITXS method requires several thousand

training data points in the training database. The discrete points to sample for this database

are chosen by random sampling of mass fractions after several constrains, such as ranges

for Pu and MA fraction, are imposed. The number of inputs that can affect the material

balance at runtime is determined by the chosen fitting parameters.

 8

Commelini-Sicart (COSI) [8] is a nuclear fuel cycle simulator that uses the

equivalence model for initial composition calculations and a Bateman equation solver with

cross-sections obtained from transport calculations for depletion. The equivalence model

effectively attempts to reduce the properties of isotopes in the available fuel streams into a

single dimension. The aim is to determine a blend of available fuel materials that maintain

core criticality at a given burnup. COSI comes with hard-coded equivalence model

reduction parameters for re-enriched reprocessed uranium and MOX fuel streams. These

models are generated using benchmark data and each model has an associated range for

input composition. The users are also allowed to build custom models.

Depletion calculations in COSI are done using the CESAR software [9]. CESAR

uses one-group cross-section libraries in its simplified depletion calculations. The validity

of the cross-sections determine the validity range of inputs for the software. These ranges

are given in terms of initial composition and maximum burnup. Therefore COSI effectively

reduces the runtime computation to two or three dimensions.

It has been shown that there are many approaches taken to reduce NFC simulation

runtimes while keeping error bounded within a desired range. One measure taken by most

simulators is to limit the number and range of applicable runtime inputs. While some NFC

simulators resort to recipes where the allowed inputs are reduced to a single categorical

type, others such as the SITON approach parameterize material balances or surrogate

models with respect to multiple input variables. However even the most general and

extensible approach reviewed, that taken by SITON, requires expensive training of the

database, limits to a few inputs that can be varied, cannot be easily generalized if other

inputs (especially inputs of different categories such as geometry), and applies to only one

reactor type. The aim of the work presented here is to expand the allowed inputs to dozens

or hundreds in a manner that is flexibly applicable to any reactor type. The remainder of

this section outlines methods for achieving this goal and reviews those used within

analogous applications found in the literature.

 9

2.2. Global Surrogate Modeling

Global surrogate modeling is the process of generating a model of a simulation

software. A simulation model is defined as the digital prototype of a physical model used

to emulate real world systems. A simulation model is run when system behavior at a

specific set of inputs (or dimensions, parameters, levels) is evaluated. This subsection

reviews methods to handling cases where the full simulation requires prohibitively high

runtimes to complete, and/or total runtime becomes prohibitively large because many runs

of the full simulation are expected. In these cases a fast executing global surrogate model

is generated using outputs from the full simulation. Global surrogate models are unlike

local surrogate models where only a subdomain of the problem space is approximated,

usually to guide optimization, and later thrown out when an optimum is found.

Global surrogate modeling strategies assume the full simulation is deterministic, a

black box model, and that there is no knowledge of the relationship between each input

and output, for instance whether it is linear or even continuous [10]. In addition, these

assumptions guarantee that there is no random error in the results. This implies that the

surrogate model should not smooth across data points of the simulation model and should

return the output of each input in the database exactly.

Space-filling design is a field of design of experiments which aims to spread out

inputs across the design domain as uniformly as possible [11]. Unlike physical

experiments, space-filling design does not need to have replication, blocking, or

randomization [12]. If the total number of samples (input sets that are run in the full

simulation) is determined beforehand and cannot be easily modified later it is called a one-

shot design. On the other hand, if the design points are selected in groups after some

sampling has occurred the process is named sequential design. Sequential design is

beneficial in preventing oversampling and undersampling. The former occurs when a well-

defined area of the domain is sampled without improvement to the surrogate model

whereas the latter fails to prioritize picking areas that need more samples.

A desirable space-filling design has three features. First feature is good space-

mapping properties. This means the selected samples must evaluate the space evenly,

 10

attempting to extract as much information as possible from each sample [13]. Second is

granularity, which is concerned with how samples are selected. One-shot designs have no

granularity as all the samples are selected at once. A perfectly granular design will select

samples one at a time with no upper limit on how many samples that can be generated. The

final feature is good projective properties. Also called the non-collapsing property, a space-

filling design with good projective properties ensures unique values of each variable for

every sample. In other words, no two points should overlap when a d-dimensional design

is projected on to a lower dimension.

Perhaps the simplest to implement one-shot design is a factorial experiment. It

assigns a set of discrete values (also called levels) to each variable and samples every

combination of input levels in the domain. Under most cases this design is infeasible due

to the scaling of number of samples needed as number of inputs is increased. The number

of cases scale as LD where L is the number of levels per input and D is the number of inputs.

An alternative is fractional design, which picks a subset of a factorial design and limits the

total number of samples [14]. Various strategies exist on selecting a fractional design with

good space-filling properties [15]. These strategies generally assume the outputs are

dominated by main effects and low-order interactions (known as the sparsity-of-effects

principle) to select a subset of the full factorial design. Fractional factorial designs are

usually optimized for the specific number of levels, inputs, and desired runs.

Latin hypercube sampling (LHS) [16] is one of the most popular techniques used

for computer experiments. LHS imposes additional requirements on fractional designs to

obtain beneficial properties. The 2-dimensional analogy of LHS is the Latin square, where

a square grid is laid and a sample is placed if and only if there are no other samples in the

same column and row. LHS is the arbitrary-dimension equivalent of the Latin square where

every dimension has an equal number of levels (named factors). It is important to note that

given a number of dimensions and factors, there are many ways to fulfill the sampling

requirements of LHS and therefore designs must be optimized for a relevant space-filling

criterion. LHS optimizations become increasingly difficult as the dimensions and factors

increase since the number of possible solutions scale as L!D-1 [17]. Adding granularity to

 11

LHS is also difficult but possible, such as using methods that utilize maximin distances

[18] or low granularity nested designs that embed a LHS design within a coarser one [19].

Factorial experiments, fractional designs, and LHS are all one-shot designs. In all

standard implementations of these methods the total number of samples must be decided

before any sampling takes place. However, this lack of granularity prevents any feedback

from the results of simulation runs. For example, if it is found that additional samples are

needed after analyzing the results, most one-shot designs do not have a methodology to do

so without sacrificing space filling properties. Sequential design should be used in order to

efficiently sample the simulation domain by selecting as many new points as needed [20].

Sequential design allows for the analysis of existing outputs and using this information for

the selection of next samples.

Using outputs to inform the selection of inputs is named exploitation. It is not

possible to utilize exploitation on its own however, since at the beginning there is no

information about the output space and nothing to exploit. Therefore, exploration is

initially needed to capture the broad features of the domain. Given a limited time to

generate the global surrogate model, the balance between exploration and exploitation

should be carefully considered.

Optimal sequential design methods assume that the surrogate model type is known

beforehand. This class of sequential design guides the sampling process based on the model

type and the outputs. Examples of model-specific designs can be found in [21], where

Gramacy and Lee utilize a model specific method that combines optimized one-shot

strategies with active learning, and in [22] where the authors utilize a sampling

methodology based on a multivariate rational interpolation model.

Generic sequential design methods, on the other hand, do not utilize information on

the type of surrogate model for sample selection. Instead, only the locations of the sampled

points and their outputs are used to guide sample selection. Since there could be little or no

prior information known on the simulation model behavior, choosing an appropriate

surrogate model may not be possible beforehand. Therefore, generic sequential designs are

favored when the surrogate model could be changed later as more information on the

 12

simulation model is gathered. In addition, generic sequential designs allow testing of

various surrogate models from the same dataset.

A review of generic sequential designs is given in [23]. These methods utilize one

or more criteria in the evaluation of candidate sample points. The points can be

algorithmically generated or a Monte Carlo approach can be utilized. In the case of Monte

Carlo methods, the number of candidate points generated at each iteration is scaled linearly

with the number of existing sample points. Monte Carlo methods are generally preferred

due to their computational efficiency and granularity [15]. Any number of criteria (such as

average distance, maximin distance, projection) can be used to evaluate candidates points

generated during the Monte Carlo algorithm.

As the name implies, the average distance criterion finds the average distance of

the selected point to the rest of the points in the dataset. A more useful measure is the

maximin distance, which finds the highest of the minimum distances between the selected

point and the rest of the points in the dataset [24]. This criterion ensures that the points are

selected so that the minimum distance between any two points are maximized in the

dataset. As a result, the criterion “tends to place a large proportion of points at the corners

and on the boundaries of the hypercube” that represents the dataset [25].

 13

2.3. Database Error Estimation

It is necessary to bound the error of using the surrogate model compared to running

the full simulation model for the same sample. The error can be used for the estimating the

uncertainty in the results of the surrogate model as well as assessment and improvement of

the surrogate model itself. Since there are no assumptions made about the outputs of the

full simulation, this error is expected to depend on part of the domain as well as proximity

to a sample point in the surrogate model database. Therefore the average error as well as

the maximum error across the domain are relevant quantities to consider.

The best estimate of the error can be found by generating many random samples,

running them in both the full simulation model and the surrogate, and comparing the

results. This process, given enough random points, can give the true error of the surrogate

model. However, this method requires numerous samples to be run after the surrogate

model is built. Since a starting premise in this work is that the full simulation is costly, the

error estimation method should not require any additional full simulation runs, not to

mention many additional runs. Therefore finding the true error is very expensive and

cannot be used in a practical application of the surrogate model.

One of the error estimation methods that does not require additional full simulation

runs is called split sample [26]. The method divides the simulation run data into a training

and a testing set. The training set is used in the surrogate model and the testing set is used

to estimate the error. The results from this method rely heavily on how the data is split and

the results therefore can show high variance.

An improvement on split sample for error estimation is cross-validation (also called

leave-k-out approach [27]) [26]. Instead of dividing the data in two, this scheme divides

the data into many sets of k points. Then, a surrogate model is constructed for all

combinations of the data that exclude one of the sets. This procedure results in an error

measure for each set, which are later averaged to get an estimate of the error. If k=1 the

method is named leave-one-out. It is recommended to use k=1 for surrogate models with

radial and low order polynomial functions (like the surrogate model used in this work) for

best accuracy and precision of estimating the error [27].

 14

2.4. Dimensionality Reduction

Dimensionality reduction techniques attempt to reduce the number of independent

variables in a dataset while retaining as much of the dependence of the outputs on the

variables as feasible. Dimensionality reduction is used to minimize the time and storage

space required for data, remove multicollinearity (where two or more variables are highly

correlated), and assist in data analysis and interpretation across a wide range of information

processing fields. Dimensionality reduction is necessary within the context of this work

since the output from the full simulation model consists of fluence-dependent data that total

to hundreds of values per sample. In order to analyze the outputs they need to be

quantitatively compared, which will be achieved with dimensionality reduction. Several

common dimensionality reduction techniques are introduced next.

In cases where values of a given variable (or dimension) are only weakly correlated

with outputs within the dataset, a low variance filter can be used [28]. Data that shows

minimal change does not carry much information, and can be removed. In contrast, highly

correlated variables carry very similar information. In these cases a high correlation filter

can be used to eliminate the excess variables. Both of these methods utilize the variation

in data fields to evaluate the usefulness of their carried information.

Another dimensionality reduction technique is forward feature construction. This

method starts by only including the variable that best explains the dataset behavior based

on the covariance matrix of the dataset [29]. Next, new variables are added one at a time

where each new variable is the best predictor of dataset behavior among the remaining

variables. The addition of new variables stops when the selected variables sufficiently

account for the output behavior. Backwards feature elimination utilizes the same

information but instead starts with all the variables and removes them one a time. The

methods discussed so far are geared towards very high dimensional datasets and may not

be applicable in many cases where the number of starting dimensions is low.

One of the most widely used dimensionality reduction techniques that applies to

very low dimensional as well as high dimensional datasets is principal component analysis

(PCA). This method applies orthogonal transformation to the original set of variables to

 15

generate a new set of linearly uncorrelated variables called principal components. “This is

done by finding a linear basis of reduced dimensionality for the data, in which the amount

of variance in the data is maximal” [30]. The first principal component is responsible for

the highest variance in the dataset, followed by the second one, and so on. Even though the

dimensionality is conserved, the later principal components can be discarded as they

explain the least variation in the data. The number of principal components to retain

depends on the importance of reducing dimensions in the dataset as well as the accuracy to

be maintained. The units and ranges of variables need to be normalized as the

transformation is highly sensitive to scaling.

 16

2.5. Applications of Global Surrogate Modeling in Engineering

Global surrogate design techniques, which include space-mapping methods, are

used in many fields of science and engineering. Six such applications of surrogate

modeling are discussed below.

Crevecoeur et al. describe a method to optimize the electroencephalogram (EEG)

measurement process utilizing similar methods [31]. In this work the simulation model

solves an inverse problem that finds the best fit of the source to the measurement. The

authors utilize a space-filling method to construct a “coarse” surrogate model for this

problem. This work is similar to generating a surrogate model for use during a NFC

simulation, since the surrogate model is also coarse.

Redhe and Nilsson present work on vehicle crash modeling where surrogate models

are used for structural optimization of crashworthiness [32]. The authors use space-filling

methods to construct a surrogate model and use this model during structural design

optimization. The surrogate model in this work improves the time to find the optimal

solution. It is similar to NFC optimization since the surrogate model is used to improve the

time to achieve the final solution that is found using the full simulation model.

Hintermulller and Vicente describe the utilization of space-filling methods to solve

optimal control problems for nonlinear partial differential equations [33]. These problems

present “a significant numerical challenge due to the tremendous size and possible model

difficulties (e.g. nonlinearities) of the discretized problems” [33]. The authors utilize space-

filling technique that makes it easy to utilize different surrogate models. Again, similar to

the surrogate modeling approach presented in this work, the authors use surrogate models

to estimate the results of a full simulation model.

Encica et al. use space-mapping on the optimization of a cylindrical voice coil

actuator [34] while Tu et al. use similar methods for the optimization of handset antennas

[35]. Khlissa et al. describe a space-mapping methodology to optimize a permanent magnet

machine used as an integrated starter generator, for instance for use in hybrid vehicles [36].

 17

The authors of these works use the surrogate model to optimize the design of an

engineered system and later switch to the full simulation model during the final stage of

the design process. Utilizing the surrogate model and later switching to the full model is

also used for high fidelity NFC optimization.

 18

2.6. Summary of Selected Methods for Surrogate Modeling Workflow

Several NFC simulators have been reviewed. Currently there is no nuclear reactor

simulation tool that allows the degrees of freedom during runtime as is proposed in this

work. These high degrees of freedom will be achieved by creating a surrogate model. As

discussed in the Global Surrogate Modeling subsection, the process will involve three main

parts: screening, exploration, and exploitation. Screening will be done using quick partial

runs of the full simulation to eliminate inputs with sufficiently low effects on outputs as

well as to readjust ranges of variables. The methods used for screening will be formulated

in the next section.

Exploration will use a Monte Carlo method for space-filling design along with

maximin distance and projection criteria. The Monte Carlo approach allows for linear

scaling of sample selection for any given number of inputs and sample points as well as

being fully granular (selects one sample at a time with no lower or upper limit). The

maximin distance criterion will allow for good space filling properties while the projection

criterion will enable good projective properties. The granularity and the maximin criterion

together will allow the model to be continuously evaluated during dataset generation as

well as easy inclusion of pre-existing points in the dataset.

Exploitation will utilize a local gradient estimation methodology that is detailed in

the next section. This method of selecting samples by utilizing outputs will be agnostic to

the surrogate models method for estimation from the dataset. Exploitation will be hybrid

method that considers both the space-filling criteria of the candidate sample as well as the

nonlinearity in its vicinity.

The next section formulates the methodology used for screening, exploration,

exploitation, and error estimation. The following section demonstrates the techniques with

examples and presents results.

 19

3. METHODOLOGY

3.1. Overview

The tool presented in this work is the NUclear Database GEneration software

(NUDGE). The software uses an external tool to generate reactor libraries to be included

in the reactor library database. Any number of inputs to be included in database generation

can be used in NUDGE. The goal of the software is to use computational time as efficiently

as possible to minimize the database error. The literature review shows that this can be

accomplished by dividing the database generation task into three distinct stages, which will

be covered next.

The method treats the tool used to generate reactor libraries as a black box and can

function with any software it is able to interface. This treatment also does not make any

assumptions about the computational cost of the black box simulation. Both slow (runtime

in the order of hours or even days) and fast (runtime in the order of minutes or seconds)

full simulations can be used with NUDGE.

In this work, the XSgen software is used to create reactor libraries [37]. It performs

full transport-burnup simulations that use fuel, cladding, and coolant composition and

densities, unit-cell geometry, and power as inputs to compute multi-group neutron cross-

sections, compositions, burnups, and multiplication factors as a function of neutron

fluence, the time integral of neutron flux. XSgen achieves this by coupling a neutron

transport code (such as OpenMC [38]) to determine group fluxes and multiplication with a

transmutation code (such as ORIGEN2.2 [39]) to find burnup and transmutation. Each

XSgen run is costly, requiring many hours for a standard (using a single core i7 processor,

4 GB ram, 500 GB hard drive) computer.

Figure 1 visually summarizes the steps taken by NUDGE to generate a database.

The three main steps of the workflow are separated by color. The first step shown on the

left side of the figure is screening. No points are added to the final database at this stage

since the goal is to reduce, if possible, the complexity of the problem before full

simulations. This step is used with the black box model runs set to provide fast results,

 20

even at the expense of accuracy. This step intends to identify sensitivities and correlations

between inputs and the results. Therefore, speed is more important at this stage provided

that the model still responds to inputs the same way. The goal of screening is to avoid

performing redundant or unnecessary work during the later stages.

Figure 1 – NUDGE Workflow Overview

Next step is exploration, where inputs are selected to be as uniformly distributed as

possible within the problem domain. The error of the database decreases with every

additional point, as shown by the plot in the bottom of the figure. The plotted error is the

average deviation from the full simulation incurred by using the database. This error

depends on the interpolation method being used, as discussed in Section 3.5. An illustrative

1-dimensional output curve depicting the true behavior of the underlying function being

computed by the black box tool, and the locations of sampled points are depicted inside the

database boxes. At this stage, the simulation results are not yet fed back to inform the

selection of the next point to run; instead, points are selected to be as far away from each

 21

other as possible. The goal of this stage is to explore the output space and find important

regions in the domain (Section 3.3).

The last step, as also depicted in Figure 1, is exploitation. It can be seen that the

new points are focused near the sharp peak of the output. Focusing new points at this region

improves the error reduction rate, as shown by the error plot at the bottom of the figure.

Finding an appropriate allocation of time between screening, exploration, and exploitation

is a key objective of the research. It depends on the runtime of the black box model,

topology of the function being approximated, number of dimensions, and much more. For

example, a function with constant first derivatives (a slanted plane) can be best identified

via exploration alone. A function that is very complicated only in certain areas would

benefit from more exploitation once these features are discovered during exploration.

In this work, the d-dimensional set of inputs that are used to run the full simulation

are named points. The domain of the problem is determined by the number of varied inputs

(or dimensions) and their ranges. Once a point is selected to be in the database it is a sample.

A point is sampled by invoking the black box model to find their input-to-output

transformation. The size of the database is the number of samples within it.

This section will first cover the methodology of each stage in detail. Next, error

estimation will be presented followed by sections for proposed improvements to the

methodology.

 22

3.2. User Inputs and Initialization

There are two sets of inputs required by NUDGE methodology to begin generating

a database. First input is a base case given by the user. This is the input for the black box

full simulation software, where all inputs have an expected or “central” value. The inputs

that are not varied in the database (the categorical inputs) are defaulted to the value given

in the base case. The base case serves as a template for the XSgen inputs of all samples in

a database. The combination of input values in the base case should not produce any errors

when run in the full simulation. An example input for a LWR can be found in Appendix

6.1, and an example for a MOX reactor is given in Appendix 6.2.

Second input is the database input, used by NUDGE for database generation. It

specifies the inputs to vary during database generation as well as how much to vary each

input. In addition, database generation inputs such as tolerance values and database

creation criteria (maximum error, mean error, maximum time, maximum number of points,

etc.) are included in the database inputs.

The first step in the NUDGE workflow is to read these two sets of inputs. Once this

step is completed the screening step begins, which is discussed next.

 23

3.3. Screening

This subsection will discuss the methods used during the screening step. It is

assumed that initially there is no data in the database and nothing is known about the

relationship between the inputs and outputs. Therefore, screening is used to discover basic

behavior of the outputs for the given domain of inputs. The information from this step is

used to potentially eliminate those inputs that have sufficiently low correlation with the

outputs.

3.3.1. SCOUT RUNS

Scout (‘s’peedy and ‘c’urtailed ‘out’puts) runs make use of less expensive, lower-

fidelity executions of the black box model. In the context of this work, XSgen runs that

have very low burnup values can be scout runs as well as runs with low number of Monte

Carlo particles. Any modification to the standard costly full simulation run to significantly

reduce the output generation time while still maintaining the main effects of inputs on the

outputs can be considered a scout run.

Scout runs are used during screening to lay a grid on the problem domain much

finer than what is possible with full runs. Generating more points for the screening database

enables a better characterization of the input-output relationships. The method used to

select input values during this step is the same as the method used during the exploration

stage, which is discussed in Section 3.3.

Once scouting points are selected and run in the full simulation, a screening

database is created. This database is used for screening analysis, as described for the

remainder of Section 3.2.

 24

3.3.2. OUTPUT QUANTIFICATION

XSgen outputs are composed of several text files each containing hundreds of

values for fuel properties (listed below) at different fluences. To compare results and

quantify the differences these outputs need to be reduced to a single representative value

for each output. This subsection discusses the use of Principal Component Analysis (PCA)

to quantify outputs.

PCA is a popular linear transformation method used in numerous applications in

data analysis. It is useful in reducing a larger set of variables into a smaller subset of

principal components. The principal components are artificial variables composed of a

combination of the original variable set. In this work, the Python programming language

package matplotlib is used for PCA analysis [40].

The selection of the outputs to apply PCA can depend on the goals of the database

generation. While it is possible to use the entire output from each run to apply PCA, better

information can be extracted from the outputs if redundant and inconsequential but highly

varying data is removed beforehand. Certain use cases of the final database may dictate

that, say, only the mass of an isotope of interest should be considered in outputs. In most

use cases, however, outputs related to the neutron economy and burnup are of highest

consequence. Therefore the outputs used for output quantification, unless others are

specified by the user, are:

• Burnup at highest fluence (BU(Fmax)) [MWd/kgIHM]

• Neutron production rate at highest fluence (PR(Fmax)) [neutrons/kgIHM/s/flux]

• Neutron destruction rate at highest fluence (DR(Fmax)) [neutrons/kgIHM/s/flux]

• Masses of selected nuclides at highest fluence [g/kgIHM]

Note that the highest fluence used during screening will still be well under the

maximum fluence for a typical fuel. The isotopes are selected based on reactor type. For a

LWR database, for example, U-235 and Pu-239 masses are used. In the XSgen outputs

these values are given for each isotope present in the initial fuel loadings. In order to reduce

outputs to a single metric and to maintain consistency, the input fuel composition of the

base case is used to combine the outputs in the nuclide level to a single fuel-level output

 25

set. Next, the combined fuel-level outputs are normalized using the highest value of each

output type in the dataset. These normalized outputs are used for PCA.

PCA returns a set of principal components so that first component best explains the

variance in the data. For this reason the first principal component is selected to find the

output value of a given point in the database. Due to the nature of PCA transformations it

is not always possible to intuitively understand the meaning of the principal components

(such as when the neutron production/destruction rates are combined with output

compositions to arrive at a scalar principal component value). It can be said that it is the

output combination that shows the greatest sensitivity to the inputs. These values are used

in input elimination.

 26

3.4. Exploration

This subsection describes the exploration methodology of NUDGE. The aim of

exploration is to select points so that the domain is filled as evenly as possible. This

subsection will discuss the generation of candidate points and the selection of the next point

to sample during exploration.

Figure 2 – NUDGE exploitation step workflow

Figure 2 summarizes the steps taken by NUDGE during the exploration step. First,

an initial set of 3 input points are sampled. These initial points include the base case as well

as two samples with all inputs set to their lowest and highest values. Since the exploration

methodology selects new samples based on existing ones, at least one input is needed to

begin this stage. The base case is selected by default as it is a representative input set. The

 27

other two cases are chosen due to their simplicity and applicability for any number of

dimensions.

Once these points are run, the main loop of the exploration phase is entered and

Monte Carlo generation of candidates for the next point begins. Random points are

generated and scored according to the selection criteria discussed next. The point with the

highest score is selected as the next point to sample, and the process is repeated until

exploration is completed.

Candidate points with randomly generated input values are evaluated against two

space-filling criteria. The number of candidate random points is scaled linearly according

to the size of the database. Given database size N (number of samples in the database) and

a user-selected multiplier 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, the number of random points R is found by:

𝑅 = 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∙ 𝑁 (1)

The first criterion to evaluate candidate points is projected distance, also called the

non-collapsing property [41]. The goal of imposing this criterion is to make sure that each

point has a unique value for every dimension. For a D-dimensional candidate point input

vector r=[r1, r2, …, rd, …, rD], set of points of the database P=(p1, p2, …, pn, …, pN), points

in the database pi=[pi
1, pi

2, …, pi
d, …, pi

D], and a projection threshold 𝜖𝑝; the projected

distance criterion is:

min
𝑑∈𝐷

(|𝐩i
d − 𝐫d|) > 𝜖𝑝 for all 𝐩 ∈ 𝐏 (2)

Candidate points that score below the threshold are eliminated since in at least one

dimension the point will be too close to an already sampled value. Note that all inputs for

any given sample i (pi
d) are normalized so that they range [0, 1]. This is done by subtracting

the absolute minimum (pmin
d), then dividing the range (pmax

d - pmin
d) of each input parameter

 28

(such as fuel radius or U-235 fraction) as shown below (the max/min values are provided

by the user):

pi
d =

pi,unnormalized
d − pmin

d

pmax
d − pmin

d
 for all 𝐩 ∈ 𝐏, all d ∈ D (3)

The acceptable proximity is determined by the threshold value. The threshold needs

to be lowered as N increases. An initial value of 0.0001 is set for the threshold, and halved

each time more than half the candidates are eliminated due to the projection distance

criteria. The initial value is set to ensure that the threshold is not increased for the first few

samples. The algorithm to update the value has been set for simplicity and may be improved

later.

The second criterion is intersite distance, also called the maximin criterion [10]. It

uses Euclidean distances to maximize the distance between the closest points:

maximin = max

(

 min𝒑𝑖,𝒓

(

 √∑(𝒑𝑖
𝑑 − 𝒓𝑑)

2
𝐷

𝑑=1

𝑓𝑜𝑟 𝒑𝑖 ∈ 𝑷

)

 for all 𝐫

)

 (4)

For all random points, the closest distance between the random point and any

sample in the database is found. The random point that passes the projected distance

criterion and has the largest maximin distance is selected as the next sample. The process

is repeated for each new point until exploration ends. The duration of exploitation is

investigated in the results, and is included in future work.

Generation of the next point during the exploration stage is visualized in 2 input

dimensions in Figure 3. The figure displays a database with four existing inputs, each at

one corner of the domain, shown in blue large circles. The small green circles represent the

randomly generated points. The red point is selected as the next sample since it is furthest

away from all other existing blue points.

 29

Figure 3 – Next sample selection during exploration.

The selection of the following samples is visualized in Figure 4. The same color

scheme as the previous figure is used. The impact of the projection criterion can be

observed in this figure, as the points are selected to avoid any overlap in any of the two

dimensions (except the first 4 points which were selected beforehand). Although hard to

visualize, the same process is used for higher dimensions.

Figure 4 – Selection of five consecutive samples during exploration.

5 samples
6 samples 7 samples

8 samples 9 samples

 30

3.5. Exploitation

This subsection details the exploitation stage of NUDGE, where the topology of

the output hypersurface is exploited to inform the selection of the next sample. Exploitation

is most valuable if the hypersurface strongly varies with respect to one or more inputs in

some parts of the domain, and exploitation aims to prioritize sampling near these parts in

order to improve the error reduction rate. The cost of performing exploitation is the

computational overhead, which may result in fewer total samples in the final database

generated with a time constraint.

Figure 5 – Exploitation stage workflow.

 31

The workflow of this stage is summarized in Figure 5. At beginning the outputs are

reduced and quantified as described in Section 3.3.2. The output quantification is repeated

since now full simulation data is available and the output surface is expected to change.

However, unlike the screening stage, a different fluence can be selected. The “fluence when

the base case has a k-infinity of unity” (FB) is used (where 𝑘 =
PR(FB)

DR(FB)
). It is found by:

PR(FB) = DR(FB) (5)

In the above equation PR is the neutron production rate, and DR is the neutron

destruction rate (as introduced in Section 3.3.2). Sample selection during exploitation

begins once the outputs are quantified.

New samples are added to the database based on a sample selection method that

adds utilization of output behavior to space-filling criteria. First, the Voronoi cell sizes of

each point are calculated [42]. The Voronoi cell, as explained further in the following

subsection, is the space surrounding a point p so that anywhere within the space is closer

to point p than any other point in set P. Next, the estimated maximum error in the output

metric in the vicinity of each point is found by comparing its output value to one obtained

by interpolation to that point using other points in the database (see Section 3.4.2). The

Voronoi cell and error calculations, described next, will be used to score each point in the

database and the next sample will be selected near the point with the highest score.

3.5.1. VORONOI CELL ESTIMATION

Voronoi cell sizes are used to quantify the space around each sample point in the

database. A Voronoi diagram, as shown in Figure 6, is created by generating cells around

each point in the database so that anywhere inside a cell is closest to the point within it.

The “size” of the cell (“area” in 2D and “volume” in 3D) is found from the space it

occupies.

 32

Figure 6 – Voronoi cells of 20 points in 2D [43]

It may seem straightforward to determine Voronoi cells and their sizes in 2D, but

the problem quickly becomes computationally expensive as the number of dimensions and

points increase [10]. Therefore a Monte Carlo approach is used to estimate the Voronoi

cell sizes.

s

Figure 7 summarizes this process. Similar to the method for exploration, random

points are generated. The number of random points R is scaled similarly to the method

given in Equation (1). For each random point, the sample in the database that lies closest

to it is found and the tally of that sample is incremented by one. Once all random points

are evaluated the Voronoi cell sizes are found by dividing tallies by R.

 33

s

Figure 7 – Voronoi cell size estimation.

 34

3.5.2. SAMPLE ERROR ESTIMATION

The goal of exploitation is to focus sample selection near areas of interest,

specifically regions where database interpolation results in the highest errors. The error of

each point is found by first excluding it from the database and using the remainder of

samples to calculate by interpolation the output at the input coordinates of the excluded

point. This method of calculating error is the leave-1-out method, discussed in Section 2.3.

The true error cannot be calculated as it would require numerous repeated runs of the costly

full simulation.

Figure 8 – Sample error estimation workflow.

Figure 8 above explains this process. Each point pi is iteratively excluded from the

database. The resulting database with an excluded point pi is used to interpolate to the input

coordinates of pi. The difference between the output of pi (shown as 𝑓(𝐩i)) and the

interpolated result is saved as the non-normalized error of pi (named E*). This calculation

is given below:

𝐸∗(𝐩i) =
|𝑓(−𝑖)(𝐩i) − 𝑓(𝐩i)|

𝑓(𝐩i)
 (6)

 35

Here, 𝑓(−𝑖) is the interpolation operator that calculates results using every point in

the database except point i. This notation is adapted from [10].

Once all errors are found, they are normalized by dividing each value by the total

error of all the samples. This normalization assures that all errors sum to unity regardless

of number of samples in the database, which is the same scaling for Voronoi cell sizes.

This calculation is given below, where ∑𝐸∗ is the sum of all non-normalized errors in the

database.

𝐸(𝐩i) =
𝐸∗(𝐩i)

∑𝐸∗
 (7)

Note that this means the error measure will decrease as the number of samples

increase. Therefore, this measure represents the share of total error by each point.

 36

3.5.3. EXPLOITATION METHODOLOGY

This subsection describes the combination of Voronoi cell sizes and sample errors

to pick the next sample. As presented in Section 3.5.1, the sample selection process begins

with the calculation of Voronoi cell sizes followed by sample error estimation. Next, each

sample is scored according to the values of these two properties in the following way. For

a sample i in the database:

𝑆(𝒑𝑖) = 𝑉(𝒑𝑖) + 𝑐𝐸(𝒑𝑖) (8)

where S(pi) is the rank score, V(pi) is the normalized Voronoi cell size, and E(pi) is

the sample error of point pi. The constant c is the error weighing factor; if c is very small,

the methodology reverts to an exploration approach where only the density of points in the

vicinity is considered. If c is large, the method can in theory populate points in arbitrarily

close distance, although in practice the magnitude of the interpolation error term is not

independent of the Voronoi cell size. Value for c are investigated in Section 4.5.2.

Once each sample is scored, the next sample is selected so that it is in the Voronoi

cell of the sample with the highest score, but placed as far away from that sample as

possible. The existing sample in the database with the highest rank score is referred as the

base sample (𝑝𝑏𝑖, where i represents the number of samples in the database when the base

sample is selected) for the next sample selection. Finding the point furthest away from the

base sample within its Voronoi cell is computationally very expensive as it necessitates the

determination of cell boundaries. The computational work done in the Voronoi cell size

estimation is utilized to aid this problem. In short, during the Voronoi cell size estimation

the furthest point in each cell is saved in case that cell scores the highest. This process is

described in the listing below.

 37

The first for loop performs the sample error estimation. The second one iterates

through all random points, tallying which sample point the random point lies closest.

During this iteration if the random point is the furthest point within the cell, it is saved

(p
maxmin

(p
i
)). Once all random points are considered, the next sample is therefore

p
maxmin

(p
highest

). This process is repeated until the end of exploitation.

Figure 9 below demonstrates differing patterns of sample selection for exploration

versus exploitation. The background color gradient represents the underlying function that

is being sampled. The function, given as F1 in Appendix 6.3, peaks at a value of one and

for all p
i
 ∈ P:

 Use database P-p
i
 to find interpolated estimate of p

i

 E(p
i
) = the difference between estimate and output of p

i

for all p
rand

 ∈ P
rand

:

 for all p
i
 ∈ P:

 if ‖p
rand

 – p
i
‖ < d

min
:

 d
min

 = ‖ p
rand

 – p
i
 ‖

 p
closest

 = p
i

 if d
min

 > d
maxmin

(p
i
):

 d
maxmin

(p
i
) = d

min

 p
maxmin

(p
i
) = p

rand

 V(p
closest

) += 1 / count(P
rand

)

calculate score S(p) for all p ∈ P using E(p) and V(p)

find p
highest

 so that max(S) = S(p
highest

)

 38

the lowest point is zero. The points are numbered in order of generation. While the left

database was generated only with exploration, the database on the right switched to

exploitation after the initial 30 points. While the database on the left does not take into

account the output function values and attempts to fill the space as evenly as possible, the

database on the right has populated samples close to the area where the slope of the output

is changing quickly. Note that the specific locations of these samples will change if the

process is repeated due to the stochastic nature of sample selection.

Figure 9 – Database sample selection with exploration-only (left) and exploitation of final

30 points (right) where each sampled in numbered in order of inclusion.

 39

3.6. Error Estimation

This subsection presents two methods for error calculation. The error associated

with a database is defined as the average of differences between the outputs found by

interpolating the data in the database and the full simulation outputs for the input

coordinates.

The error found by utilizing many outputs is named the real error. The calculation

is done iteratively using R random points. The average real error is:

Errorreal =
1

𝑅
∑
|𝑓(𝐫i) − 𝑓(𝐫i)|

𝑓(𝐫i)

𝑅

𝑖=1

 (9)

where 𝑓(𝐫i) is the output of ri using the full simulation and 𝑓(𝐫i) is the interpolated

output of ri using the database. The maximum real error is the highest value in the

summation above. It is not feasible to find the real error during practical use cases where a

costly full simulation is used. However, this error measure is useful to evaluate the

workflow and assess the convergence rate of the error estimation method described in the

following paragraphs. In test cases where a placeholder full simulation with quick

execution is used, data can be generated solely for the purpose of error calculation and the

real error can be calculated.

A sufficiently high value of R depends on many factors including the complexity

of the underlying system behavior and the number of dimensions. It is found that a value

of R=4000N yields an error accurate to two significant digits for 3-dimensional systems

(where N is the number of samples in the database). This formulation of R is based on [41].

In practical use cases resources cannot be sacrificed solely for error calculation.

Instead, the available data must be utilized to estimate the error. This is done using the

leave-1-out strategy described in Section 2. Two error measures are significant: the

maximum estimated error and the average estimated error; both derived from the errors

used during exploitation (Section 3.4).

 40

The maximum error is determined by:

Errormax = max(𝐸(𝐩i)) for 𝐩i ∈ 𝐏 (10)

where average error is determined by:

Erroravg =
1

𝑁
∑𝐸(𝐩i)

𝑁

𝑖=1

 for 𝐩i ∈ 𝐏 (11)

 41

3.7. Voronoi Cell Adjustment

This subsection describes a potential improvement to the next sample selection step

during exploitation. So far, as described in Section 3.5, the input values for the next sample

are determined by using the inputs of the Monte Carlo point furthest away from the selected

base sample (𝐩b𝑁) while still being within the Voronoi cell of this base sample. The Nth

base sample is the sample with the highest rank score S in the database when the database

has N samples (as described in Section 3.5.3).

Figure 10 demonstrates the sample selection process presented in Section 3.5. The

Voronoi cells in this picture are arbitrarily colored, while the colors of the sample points

correspond to the estimated error of the points (red corresponds to high error and blue to

low). Given that the marked Base Sample is found, the algorithm will place the next sample

to the location marked ‘Next sample’ since this is still within the Voronoi cell of the base

sample while being as far away as possible from the point itself.

 42

Figure 10 – Voronoi cells (arbitrary coloring) of a database where sample colors

correspond to estimated errors so that red is high error.

The methodology described in this section adjusts the Voronoi cells based on the

estimated errors to guide the sample selection towards areas of higher error. This means

that once the base sample is selected the method attempts to shrink the Voronoi cells

associated with high error samples and expand the cells associated with low error samples.

This transformation effectively moves the location of the next sample, 𝐩i+1, closer to the

neighbor point with the highest estimated error, if it is higher than the error associated with

𝐩b𝑁.

In order to achieve this Voronoi cell adjustment, first the estimated errors (E*) of

each sample are calculated (as described in Section 3.5.2). These errors are normalized

using the estimated error of the base sample (𝐸∗(𝐩b𝑁)) as given in the following

expression:

𝐸0(𝐩i) =
𝐸∗(𝐩i)

𝐸∗(𝐩b𝑁)
− 1 (12)

 43

where 𝐩i is a sample in the database. This operation assigns positive values for all

samples with errors higher than the error of the base sample, and negative values for those

with lower errors.

Next, user specified ‘distance factor’ (df) is used. The distance factor is a value

between zero and unity where zero corresponds to no Voronoi cell adjustment and unity

corresponds to the doubling of the most adjusted distance, as will be shown next. The

values of 𝐸0(𝐩i) are checked against this factor so that none are higher than df:

If max(|𝐸0(𝐩i)|) > 𝑑𝑓:

Then:

𝐸0
∗(𝐩i) =

𝑑𝑓

max(|𝐸𝑛𝑜𝑟𝑚(𝐩i)|)
𝐸0(𝐩i)

𝐸0(𝐩i) = 𝐸0
∗(𝐩i)

(13)

where 𝐸0
𝑝𝑟𝑒𝑣(𝐩i) is equal to 𝐸0(𝐩i) before the ‘If’ statement. Finally, the Voronoi

adjustment factors 𝜃(𝐩i) are found using the following equation:

𝜃(𝐩i) = 𝐸0(𝐩i) ∙ 𝑑𝑓 + 1 (14)

These factors are used to divide the distance between the sample (𝐩i) and the

random Monte Carlo point (𝐩r) during the Voronoi cell calculation (as described in Section

3.5.1). This adjustment changes the ‘nearest sample’ for some Monte Carlo points during

this step, as a result adjusting the boundaries of each Voronoi cell.

Figure 11 shows the Voronoi cells with a 𝑑𝑓 value of 0.8. The location of the base

sample and the next sample before and after the Voronoi cell adjustment are also shown.

It can be seen that the cells of samples with low errors are bigger while the cells of samples

with high errors are smaller. Thus, the new next sample is selected closer to the samples

with higher relative error (above and upper-left of the base sample). In this case, a different

vertex becomes farthest from 𝐩b𝑁, so the direction vector pointing from 𝐩b𝑁 to

𝐩i+1undergoes a substantial change. Numerical evaluation shows that this change takes

place at 𝑑𝑓 = 0.55 for this specific example. If 𝑑𝑓 is smaller than this value, the modified

 44

𝐩i+1 remains in the vicinity of the 𝐩i+1 that would be chosen under the original method

(i.e., with 𝑑𝑓 = 0). Note these are stochastic results and may change from one trial to the

other.

Figure 11 – Adjusted Voronoi cells using df=0.8 (arbitrary Voronoi cell colors).

The final step of Voronoi cell adjusted sample selection is to shift the next sample

in order to preserve good space filling properties. This is necessary since the edges of the

adjusted Voronoi cells do not guarantee to be far from other samples. In fact, as df increases

the space filling quality of the unshifted next sample will decrease.

The following method is used to shift the next sample in arbitrary dimensions

without excess computational cost. First, the closest point to the next sample is found using

unadjusted Euclidean distances (as explained in Section 3.5.1). Second, the next sample is

shifted away from this sample iteratively using a small increment. The new closest point is

 45

found at each iteration until the next sample is closer to a new point (or at the edge of the

domain).

The shifting is demonstrated in Figure 12. The next sample is moved along the grey

line pointing away from the base sample. At each iteration the closest sample to the next

sample is determined. The next sample is shifted until there is a new closest sample.

Figure 12 – Adjusted Voronoi cell next sample shifting.

The location of the shifted next sample relative to the unadjusted Voronoi cells are

given in Figure 13. It is important to note that the shifted next sample being on the boundary

of the Voronoi cells is not a coincidence. In fact, this method guarantees that the shifted

next sample will lie on the boundary of the Voronoi cell without having to go through the

computationally expensive calculation of determining these cell surfaces.

 46

Figure 13 – Shifted next sample shown over unadjusted Voronoi cells.

 47

4. RESULTS

4.1. Comparison of Error Measures

This case is chosen to demonstrate the available error measures. The black box

model depicted in Figure 9 was used for this 2-dimensional case (given as F1 in Appendix

6.3). The results are the average errors of 40 databases with 96 samples each, where the

final 40 samples were generated using exploitation. The uncertainties of the errors were

calculated from the standard deviation of errors from the repeated databases. The values

for df, kexplore, and kexploit that were used in this section are same to the values given in

Section 4.6

There are two measures of error available during a regular database generation: the

average estimated error and the maximum estimated error. They are found by comparing

the results of the samples in the database to the interpolated estimates, as described in

Section 3.5. In addition to these errors, the real error and the maximum real error can be

found if many samples can be generated. This case presents all four types of errors. The

errors are calculated and recorded after each new sample and plotted in Figure 14.

 48

Figure 14 – Comparison of error measures for an example database.

Looking at this figure, it can be seen that the real error is consistently lower than

the estimated error. This result is expected since the estimated error is found by iteratively

removing samples from the database. Since every removed sample has good space-filling

properties, the error of estimating the full simulation output at those points should be the

higher than the average error.

The maximum errors are higher than both these measures. The switch to

exploitation can be observed from the maximum estimated error. Since exploitation

prioritizes sampling near these points, it is expected to see this behavior.

 49

4.2. Exploitation Method Test

One of the many factors affecting the reduction in error over time is when the

transition to exploitation should occur. This subsection presents results found by repeatedly

generating databases for different exploitation start points. Each database was generated

using 2 varied inputs with a total of 88 samples. A testing function for the black box model

was used. The testing function was used to have full control over the black box model and

to be able to calculate the real error. Six types of databases were generated with 30

databases for each type, totaling 180 databases. The first type is named Random: all

samples were selected randomly with no regard to the location of other points. The second

type is Explore Only, where there was no exploitation. This approach should improve on

random since exploration involves taking care to distribute sampled points evenly in the

problem domain. The remaining four database types switch to exploitation at different

times. Exploit 20 databases use exploitation on the final 20 samples whereas Exploit 80

databases use exploitation on the final 80.

The real error is plotted as a function of number of points in the database for the

average of each type. Results can be seen in Figure 15. The blue line is databases generated

using random samples. It can be clearly seen that randomly selecting samples is not

desirable.

 50

Figure 15 – Comparison of average database real errors generated using different

exploitation start times.

The green line in Figure 15 is the behavior of the error if there is no exploitation. It

can be observed that the error predictably decreases with each new sample. The remaining

lines represent databases created with exploitation. The point where exploitation begins is

clear for each case, where each sampled point leads to a greater reduction in error.

However, since all databases with exploitation end with very similar errors, it can be

concluded that there is a diminishing benefit of exploitation and the reduction of error

begins to match the exploration case. While the first samples once exploitation begins yield

significant improvements on the error, once these interesting areas are sampled the benefit

of additional samples seem to move towards that of exploration only.

Figure 16 compares the four error measures available for the Explore Only and

Exploit 40 cases. The single solid lines are the error measures for the Explore Only case.

The maximum errors are on a different axis. The figure shows the maximum estimated

error is higher than the maximum real error until exploitation starts. Since exploitation

focuses on these high error points, it forces the error to go down.

 51

Figure 16 – Comparison of the four error measures for two cases.

It is important to note that given enough samples, all errors will reach zero

regardless of the selection method. The goal is to reduce the error quickly, and exploitation

achieves this goal better than exploration alone for this black box function. If instead the

black box function is very simple, the overhead of exploitation calculations will not be

worth sacrificing adding more samples to the final database.

 52

4.3. Software Runtime and Scaling

This section analyzes the software runtime for different dimensions and samples.

Given that there is a limited time to generate a database, the total time to complete one

should be predictable in order to quantify the underlying limitations of the methodology.

This total time to complete a database can be expressed as a summation of the time taken

to complete each step:

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑐𝑟𝑒𝑒𝑛 + 𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒 + 𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡 (15)

where 𝑇𝑠𝑐𝑟𝑒𝑒𝑛 is the total time for screening, 𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒 total time for exploration, and

𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡 total time for exploitation. The limitation is that 𝑇𝑡𝑜𝑡𝑎𝑙 ≤ 𝑇𝑚𝑎𝑥 , where 𝑇𝑚𝑎𝑥 is the

maximum time allowed for database generation. The objective of the methodology is

therefore to achieve:

min(Errormax) while 𝑇𝑡𝑜𝑡𝑎𝑙 ≤ 𝑇𝑚𝑎𝑥 (16)

Given that it takes 𝑡𝑠𝑐𝑟𝑒𝑒𝑛 for a typical screening run, and 𝑡𝑓𝑢𝑙𝑙 for a full simulation

run, each of these times can be written as a function of constants and parameters described

above:

𝑇𝑠𝑐𝑟𝑒𝑒𝑛(𝑡𝑠𝑐𝑟𝑒𝑒𝑛, 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, 𝜖𝑝) = 𝑁𝑠𝑐𝑟𝑒𝑒𝑛 ∙ 𝑡𝑠𝑐𝑟𝑒𝑒𝑛 ∑ (𝐶𝑠𝑐𝑟𝑒𝑒𝑛 𝐷 𝑛)

𝑁𝑠𝑐𝑟𝑒𝑒𝑛

𝑛=1

 (17)

𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑡𝑓𝑢𝑙𝑙, 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, 𝜖𝑝) = 𝑁𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∙ 𝑡𝑓𝑢𝑙𝑙 ∑ (𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝐷 𝑛
2)

𝑁𝑒𝑥𝑝𝑙𝑜𝑟𝑒

𝑛=1

(18)

𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡(𝑡𝑓𝑢𝑙𝑙, 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡) = 𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡 ∙ 𝑡𝑓𝑢𝑙𝑙 ∑ (𝐶𝑒𝑥𝑝𝑙𝑜𝑖𝑡 𝐷 𝑛
1.5)

𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡

𝑛=1

(19)

where D is the number of dimensions, the 𝐶𝑥’s are the computation overhead

constants, and 𝑁𝑥’s are the number of samples per step. The 𝐶𝑥’s may be dependent on n

 53

and D based on the software implementation. The powers of n in these equations are

estimated based on analyzing the methodology. In addition, these equations are estimates

of the methodology runtime and do not include the additional computational cost of

increased dimensions and samples in the software architecture as well as the cost of the

sample interpolation method used during the exploitation step (Equation (19)). It can be

observed that the methodology is linearly dependent on the number of dimensions in each

step, whereas the dependence of number of samples varies.

Screening is a preliminary step that can have various implementations of data

analysis methods (Section 3.3). Most of these methods (dimensionality reduction, such as

PCA) are designed for data that is typically much larger than the scope of data in this work

and are expected to scale well beyond the limitations of the following steps of exploration

and exploitation (for example PCA is regularly applied to hundreds of dimensions and

samples). Therefore, the scaling of screening is not covered in this section.

Below, the time it takes to find a sample for the exploration and exploitation steps

are given for various numbers of dimensions. The timing results were repeated 12 times

and averaged for all plots in this section. An average uncertainty of 3.5% was measured

for all timing measurements.

Figure 17 shows the times for the exploration step with a Monte Carlo multiplier

(𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒) set to 400. This value is high enough to reduce the stochasticity of the method

to generate samples in the same vicinity (relative to other samples) when the database is

repeated for that sample. In other words, using this 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 value, when a sample is

generated again it is put in the same approximate location in the database relative to other

samples, i.e. same neighbors. 𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒 is linearly correlated to this value.

The time it takes to run the simulation to generate outputs is not considered in this

section. The output generation time depends on factors such as the simulation being used

as well as the input parameters. The NUDGE software runtime scaling is not affected by

these factors.

 54

Figure 17 – Exploration time per sample for different dimensions.

Figure 18 shows the time for exploitation steps with a 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡 value of 400. This

value is selected to match 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒. Similar to exploration, 𝐶𝑒𝑥𝑝𝑙𝑜𝑖𝑡 is a function of 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡.

Note that the minimum number of necessary exploration steps increases as dimensions are

increased, hence the starting point of each curve in this figure moves forward with

increasing dimensions. It can be observed from these two plots that finding the next sample

during exploitation is approximately an order of magnitude longer than exploration. As

noted before, these times depend on the software implementation as well the interpolation

function being used.

 55

Figure 18 – Exploitation time per sample for different dimensions.

Equation (18) shows the dependence of sample generation time in the exploration

step (Section 3.4). In order to demonstrate the accuracy of this equation, databases with

varying dimensions were created while measuring the time it takes, for each sample, to

find the inputs of the next sample. For each sample and dimension, the estimated

computational effort was found using Equation (18) (𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝐷 𝑛
2). Figure 19 below

shows the sample generation times as a function of estimated number of CPU operations.

Therefore the number of operations based on n and d are found for each sample using

equation (18), followed by plotting the time for a given sample as a function the CPU

operations.

 56

Figure 19 – Exploration step sample generation time vs. estimated computational cost for

different number of dimensions.

While there were 100 samples for 2 dimensions, the 8-dimensional curve in this

figure goes up to 50 samples. It can be seen from this figure the dependence is well

characterized and can be concluded that the estimates for the scaling of the exploration step

are accurate.

Next, the exploitation step was measured (Section 3.5). This step is comprised of

two parts: error estimation (Section 3.5.2) and Voronoi cell estimation (Section 3.5.1). The

scaling of error estimation depends on the chosen method of interpolation, where the

interpolation is repeated 𝑛 times each time a new sample is to be found. Conversely, the

Voronoi cell estimation time, as shown in Equation (19), depends on 𝑛1.5. The following

plot repeats the methodology of the previous figure (Figure 19) for execution times of the

Voronoi estimation step, again as a function of estimated computational cost.

 57

Figure 20 – Exploitation step Voronoi cell estimation time vs. estimated computational

cost for different number of dimensions.

Here in Figure 20 the 2-dimensional data goes up to 90 samples while the 8-

dimensional data goes up to 60. Databases for each dimension were repeated 12 times and

averaged. The “dips” in this data are a result of the method used to select number of Monte

Carlo points, where the floor of the square root of number of samples (floor(√𝑛)) is used

as a multiplication factor to the total number of Monte Carlo points. Each dip corresponds

to a number of samples that has an integer square root. Looking at this plot it can be

concluded that the dependence of the Voronoi cell estimation times are well characterized

in Equation (19).

Finally, the scaling of the Voronoi cell adjustment method is measured (Section

3.7). In short, this method repeats the Voronoi cell estimation and it is expected to take

 58

approximately twice as longer as a single Voronoi cell adjustment step. Results for the

timing measurements of Voronoi cell adjustment is given below in Figure 21. The number

of samples for each dimension used to create this figure is the same as Figure 20. The same

behavior as Figure 20 can be seen, except the times are about twice as long, as expected.

Figure 21 – Exploitation step adjusted Voronoi cell estimation step time vs. estimated

computational cost for different number of dimensions.

It should be emphasized that the times reported here are not the total time that the

user has to wait for a sample to be generated. The real time will depend on various other

factors such as the time to read/write files and the implementation of the software.

However, once several samples are generated and the overhead values (the 𝐶𝑥’s) can be

determined, the given equations can be used to estimate the time for later samples.

Therefore (ignoring the scaling of interpolation method and implementation used

in the software) it can be concluded that doubling the number of dimensions will double

 59

the next sample calculation time for all steps; while doubling the number of samples will

increase the next sample calculation time approximately by a factor 4 (22) for exploration

and by a factor of 2.83 (21.5) for exploitation.

 60

4.4. XSgen Output Behavior and Placeholder Function Generation

A placeholder function for the XSgen software was generated. The placeholder is

built to quickly generate output values that behave similarly to outputs from XSgen. The

placeholder function was used to test database generation strategies discussed later. This

section will first demonstrate the output behavior of XSgen, followed by describing the

methodology used to create the placeholder function.

First, the output sensitivity of eight XSgen inputs was tested. The tested input

variables were: Cell Height, Cell Pitch, Clad Density, Clad Radius, Coolant Density, Flux,

Fuel Density, Fuel Radius, and Void Radius. A base case was defined as a typical LWR

(this input file is given in Appendix 6.1). For each input variable listed above, a sample

was generated with a 10% increase of that variable. These steps were repeated with a 10%

decrease. Therefore 1+8+8=17 samples were run (1 base case and 8 for increase/decrease

of each input variable). The outputs were quantified as described in Section 3.3.2.

The behavior of the first principal component (PC1) with a 10% change in each

input is shown in Figure 22. PC1 accounts for 80.9% of the output response. It can be

observed that a 10% change from the base case in some variables, such as cell height and

clad density, has barely noticeable effects on the outputs (in this case the output is only

PC1). In the remaining input variables it’s observed that the magnitude and direction of the

change varies. Similar but more pronounced behavior can be observed for principal

component 2 (PC2) results, as shown in Figure 23. PC2, which accounts for 16.7% of the

output response, has a response similar to PC1.

 61

Figure 22 – XSgen Output Sensitivities on Principal Component 1.

Figure 23 – XSgen Output Sensitivities on Principal Component 2.

 62

Next, the output behavior of XSgen was tested in 2-dimensional space. Enrichment

(fraction of U-235 in the fuel) and Fuel Density were chosen for the two input variables to

study. Enrichment was varied between 2.5% - 7.0% with 0.5% increments, and Fuel

Density was varied between 7 [g/cc] – 14 [g/cc] with 1 [g/cc] increments. This forms an

8x8 grid and therefore requires 64 runs of XSgen, which takes several days to complete.

The outputs are tabulated as function of fluence. It was observed that the initial

behavior of the outputs (first 10 days of irradiation) were different than the final behavior

of the outputs (at 2,000 days of irradiation). Therefore the results shown in Figure 24 are

divided into two groups: the outputs from XSgen at initial fluence on the left side, and final

fluence on the right side.

Figure 24 and Figure 25 show predictable dependence on the change of inputs.

Initial values for burnup, neutron production, and neutron destruction are higher than their

final values on the right side, whereas Pu-239 slowly builds in and appears in higher

concentration for the final values. An increase in enrichment causes all these parameters to

increase due to the increase amount of fissile material in the fuel. Increasing the fuel density

seems to have a similar effect but lower in magnitude, especially for final values.

 63

Figure 24 – XSgen Neutron Production, Neutron Destruction, and Burnup Output Map.

1
4 4.56 4.92 5.15 5.45 5.61 5.86 5.94 6.14 1
4 1.91 2.00 2.12 2.26 2.43 2.62 2.80 3.07

1
3 4.17 4.52 4.77 4.99 5.15 5.26 5.48 5.51 1
3 1.92 2.03 2.15 2.34 2.51 2.74 2.93 3.11

1
2 3.89 4.14 4.38 4.57 4.80 4.86 5.04 5.11 1
2 1.92 2.05 2.21 2.39 2.55 2.78 2.98 3.17

1
1 3.66 3.87 4.11 4.24 4.37 4.39 4.60 4.64 1
1 1.93 2.06 2.24 2.44 2.62 2.84 3.02 3.20

1
0 3.41 3.68 3.80 3.87 4.10 4.18 4.27 4.38 1
0 1.94 2.08 2.25 2.46 2.65 2.81 3.00 3.17

9 3.24 3.40 3.63 3.67 3.80 3.91 3.98 4.18 9 1.93 2.10 2.29 2.46 2.62 2.79 2.96 3.08

8 3.03 3.28 3.40 3.51 3.65 3.68 3.78 3.82 8 1.94 2.09 2.27 2.43 2.61 2.78 2.92 3.08

7 2.92 3.08 3.19 3.31 3.33 3.52 3.54 3.60 7 1.93 2.10 2.28 2.42 2.59 2.74 2.90 3.04

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

1
4 10.9 11.8 12.5 13.3 13.7 14.4 14.7 15.2 1
4 5.30 5.49 5.73 6.01 6.36 6.75 7.15 7.73

1
3 10.1 11.0 11.7 12.3 12.7 13.1 13.6 13.8 1
3 5.29 5.51 5.76 6.15 6.51 7.00 7.43 7.85

1
2 9.57 10.2 10.9 11.4 12.0 12.2 12.6 12.9 1
2 5.26 5.54 5.88 6.25 6.60 7.11 7.56 8.00

1
1 9.08 9.64 10.3 10.6 11.0 11.1 11.6 11.8 1
1 5.27 5.54 5.91 6.36 6.77 7.26 7.66 8.08

1
0 8.55 9.24 9.50 9.83 10.4 10.6 10.9 11.2 1
0 5.28 5.56 5.95 6.41 6.82 7.21 7.64 8.03

9 8.18 8.62 9.21 9.35 9.70 10.0 10.2 10.7 9 5.23 5.61 6.02 6.39 6.78 7.15 7.57 7.84

8 7.73 8.35 8.68 8.98 9.34 9.46 9.73 9.83 8 5.25 5.58 5.99 6.33 6.75 7.16 7.47 7.87

7 7.47 7.90 8.21 8.52 8.62 9.07 9.16 9.32 7 5.21 5.59 5.99 6.33 6.71 7.07 7.43 7.78

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

1
4 7.40 7.80 8.07 8.41 8.61 8.91 9.00 9.26 1
4 5.62 5.75 5.88 6.04 6.21 6.42 6.62 6.94

1
3 6.92 7.30 7.59 7.84 8.04 8.15 8.42 8.48 1
3 5.51 5.66 5.75 5.97 6.13 6.36 6.60 6.79

1
2 6.56 6.83 7.10 7.32 7.58 7.66 7.88 7.96 1
2 5.40 5.54 5.70 5.88 6.03 6.28 6.51 6.70

1
1 6.26 6.48 6.76 6.89 7.07 7.06 7.31 7.35 1
1 5.31 5.42 5.61 5.83 6.01 6.25 6.43 6.63

1
0 5.94 6.25 6.33 6.42 6.68 6.78 6.90 7.01 1
0 5.23 5.35 5.45 5.72 5.95 6.12 6.32 6.50

9 5.70 5.87 6.12 6.16 6.30 6.43 6.50 6.75 9 5.11 5.29 5.50 5.66 5.82 6.00 6.20 6.31

8 5.44 5.70 5.83 5.93 6.10 6.13 6.25 6.27 8 5.06 5.20 5.40 5.53 5.75 5.93 6.06 6.25

7 5.27 5.44 5.56 5.67 5.69 5.91 5.94 5.99 7 4.96 5.15 5.34 5.47 5.66 5.81 5.97 6.14

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Incremental Burnup - Initial [MWd/kgIHM] Incremental Burnup - Final [MWd/kgIHM]

Neutron Production - Initial [neutrons/kgIHM/s/flux] Neutron Production - Final [neutrons/kgIHM/s/flux]

Neutron Destruction - Initial [neutrons/kgIHM/s/flux] Neutron Destruction - Final [neutrons/kgIHM/s/flux]

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->

 64

Figure 25 – XSgen Pu-239 and U-235 Concentration Output Map.

The principal components of these outputs are shown in Figure 26. They were

calculated as described in Section 3.3.2. Data shows that the behavior of the output is

closely captured by PC1, which accounts for 63.7% of the variation in the outputs. In

contrast, PC4 seems to behave erratically unlike any output variable in the XSgen outputs,

as it only accounts for 0.4 % of the output variation.

14 1.44 1.37 1.31 1.25 1.21 1.16 1.12 1.10 14 5.15 5.06 4.96 4.84 4.71 4.54 4.44 4.33
13 1.38 1.31 1.25 1.20 1.16 1.11 1.09 1.06 13 4.94 4.84 4.69 4.59 4.44 4.31 4.20 4.05

12 1.33 1.26 1.20 1.16 1.12 1.08 1.06 1.02 12 4.74 4.62 4.49 4.36 4.22 4.10 4.00 3.85

11 1.28 1.22 1.17 1.12 1.09 1.05 1.02 0.99 11 4.57 4.41 4.29 4.18 4.04 3.93 3.81 3.70

10 1.25 1.20 1.14 1.08 1.05 1.02 1.00 0.96 10 4.42 4.27 4.15 3.96 3.89 3.77 3.66 3.56

9 1.21 1.15 1.10 1.06 1.02 1.00 0.96 0.95 9 4.26 4.12 4.01 3.87 3.74 3.64 3.54 3.44

8 1.18 1.12 1.08 1.03 1.01 0.98 0.95 0.92 8 4.14 4.00 3.89 3.74 3.64 3.53 3.42 3.34

7 1.15 1.11 1.06 1.02 0.98 0.96 0.94 0.91 7 4.03 3.91 3.78 3.64 3.55 3.43 3.33 3.25

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

14 16.7 20.6 24.7 28.7 33.0 37.5 41.3 45.5 14 1.04 1.48 2.06 2.73 3.59 4.85 5.87 7.28

13 17.2 21.1 25.2 29.3 33.5 37.8 41.9 46.2 13 1.39 1.97 2.75 3.65 4.77 6.17 7.63 9.47

12 17.5 21.6 25.7 29.8 34.0 38.3 42.4 46.7 12 1.76 2.57 3.52 4.66 6.03 7.65 9.5 11.6

11 17.8 21.9 26.0 30.3 34.5 38.9 43.0 47.3 11 2.18 3.17 4.30 5.75 7.40 9.3 11.3 13.7

10 18.1 22.2 26.3 30.7 34.8 39.1 43.4 47.7 10 2.60 3.72 5.10 7.26 8.57 10.8 13.0 15.6

9 18.3 22.5 26.6 31.0 35.2 39.5 43.8 47.9 9 3.11 4.39 5.97 7.86 9.89 12.2 14.7 17.3

8 18.6 22.7 26.9 31.2 35.4 39.7 44.0 48.3 8 3.54 5.01 6.76 8.86 11.0 13.6 16.3 19.1

7 18.7 22.9 27.2 31.4 35.8 39.9 44.3 48.6 7 4.01 5.64 7.57 9.88 12.3 14.8 17.7 20.6

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

U-235 Concentration - Initial [g/kgIHM] U-235 Concentration - Final [g/kgIHM]

Pu-239 Concentration - Initial [g/kgIHM] Pu-239 Concentration - Final [g/kgIHM]
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

 65

Figure 26 – XSgen Software Principal Components 2D Map.

1
4 -5.35 -4.28 -3.16 -1.93 -0.62 0.899 2.22 3.991 1
4 -2.74 -3.2 -3.51 -3.93 -4.14 -4.47 -4.66 -5.15

1
3 -5.17 -4.02 -2.88 -1.46 -0.13 1.481 2.961 4.393 1
3 -1.52 -1.98 -2.21 -2.59 -2.77 -2.95 -3.34 -3.36

1
2 -5.03 -3.8 -2.48 -1.1 0.244 1.864 3.36 4.907 1
2 -0.48 -0.75 -1.06 -1.32 -1.57 -1.71 -2.03 -2.05

1
1 -4.85 -3.64 -2.24 -0.72 0.701 2.308 3.756 5.244 1
1 0.423 0.284 -0.07 -0.25 -0.42 -0.45 -0.71 -0.73

1
0 -4.71 -3.47 -1.95 -0.41 1.013 2.417 3.9 5.357 1
0 1.302 1.04 1.01 0.997 0.556 0.531 0.402 0.323

9 -4.64 -3.22 -1.71 -0.33 1.076 2.47 3.958 5.177 9 2.155 1.989 1.68 1.722 1.64 1.522 1.478 1.318

8 -4.48 -3.13 -1.68 -0.3 1.179 2.635 3.953 5.393 8 2.898 2.678 2.525 2.559 2.337 2.378 2.384 2.399

7 -4.43 -3.01 -1.53 -0.18 1.231 2.615 4.01 5.381 7 3.571 3.386 3.299 3.312 3.327 3.168 3.245 3.26

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

1
4 1.259 0.771 0.404 0.039 -0.18 -0.39 -0.46 -0.43 1
4 0.251 -0.15 -0.36 -0.56 -0.51 -0.55 -0.36 -0.01

1
3 0.929 0.477 0.107 -0.11 -0.26 -0.35 -0.35 -0.23 1
3 0.337 -0.01 -0.27 -0.22 -0.2 0.028 0.1 0.256

1
2 0.603 0.239 -0.04 -0.21 -0.36 -0.3 -0.16 -0.07 1
2 0.292 0.095 -0.01 -0.01 -0.12 0.186 0.287 0.363

1
1 0.334 0.01 -0.19 -0.25 -0.22 -0.12 -0.02 0.238 1
1 0.257 0.063 0.016 0.164 0.219 0.502 0.439 0.513

1
0 0.145 -0.12 -0.22 -0.25 -0.27 -0.1 0.136 0.407 1
0 0.267 0.036 0.05 0.182 0.226 0.229 0.309 0.251

9 -0.1 -0.27 -0.38 -0.3 -0.22 0.019 0.269 0.549 9 0.095 0.096 0.059 0.131 0.083 0.06 0.088 -0.24

8 -0.24 -0.44 -0.4 -0.37 -0.17 0.14 0.415 0.796 8 0.094 -0.11 -0.05 -0.14 -0.11 -0.06 -0.24 -0.24

7 -0.43 -0.48 -0.43 -0.32 -0.05 0.193 0.576 0.982 7 -0.11 -0.13 -0.09 -0.25 -0.18 -0.37 -0.4 -0.51

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Enrichment [%] -> Enrichment [%] ->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

Fu
el

 D
en

si
ty

 [
g/

cc
]

->
Fu

el
 D

en
si

ty
 [

g/
cc

]
->

Principal Component 1 (63.7% of the variation) Principal Component 2 (34.9% of the variation)

Principal Component 3 (00.9% of the variation) Principal Component 4 (00.4% of the variation)

 66

4.5. Study of Database Building Parameters

This section presents results of studies on optimizing the values for parameters used

in NUDGE. First, the effect of different values of the distance factor df (as described in

Section 3.7) on final errors is reported. This study is followed by a similar one on the error

weighing factor c (described in Section 3.5.3). Finally, the results from studying the effects

of when to switch from exploration to exploitation are reported.

4.5.1. DISTANCE FACTOR

This subsection presents results of the study to find a potential optimal value for

the distance factor df. This factor is defined in Section 3.7 and it controls the magnitude of

Voronoi cell adjustment. There are several parameters that can be changed to evaluate the

effectiveness of Voronoi cell adjustment under different conditions. These parameters

include the number of dimensions of the database (D), the underlying function being

modeled (the black box function), the exploitation strategy (when and how much to use

exploitation as opposed to exploration), and total number of samples in the database (N).

In addition, for each set of these parameters different values for the Voronoi adjustment

factor (𝑑𝑓) can be tried. Finally, since the database creation is a stochastic process, each

database type needs to be repeated to be able to make statistically significant conclusions.

As a result, this section aims to demonstrate that the Voronoi cell adjustment methodology

is beneficial under some conditions, while being equivalent to no Voronoi cell adjustment

when there is no benefit.

First example is a 2-dimensional database study. Each database has 50 total samples

(20 exploration followed by 30 exploitation). The function being modeled in this study is

given as Function F4 in Appendix 6.3 and shown in Figure 27. The complex behavior of

the function can be observed from this figure, plotted in the range [0, 1] on both

dimensions.

 67

Figure 27 – 2D Case black box function.

This function was used to create databases with three different 𝑑𝑓 values (including

zero). The parameters for each database study and the average errors are given in Table 1

below. The uncertainty in the error values are calculated using the standard deviation across

the repeated databases for a given type. It can be concluded that for this set of parameters,

Voronoi cell adjustment is ineffective at making a statistically significant improvement of

the final database error.

Table 1 – 2D Voronoi cell adjustment study.

Database

Type

Repeated

Databases

Voronoi

Adjuster

(df)

Samples

per

database Real Error (%)

Max Real

Error (%)

2D Furthest 18 0.00 50 0.0132 ±0.00042 0.194 ±0.0064

2D Guided 1 18 0.50 50 0.0147 ±0.00048 0.227 ±0.0069

2D Guided 2 18 0.85 50 0.0135 ±0.00039 0.191 ±0.0062

Five other 2-dimensional black box functions with various output behaviors were

tested. Next, the placeholder XSgen program was tested with several 2-input combinations.

Similar results were found for all, where the Voronoi cell adjustment did not cause a

noticeable change in final errors.

 68

3-dimensional cases were investigated next. Three types of databases were modeled

using three different 𝑑𝑓 values. The placeholder XSgen function in 3-dimensions was used

for this study with inputs Coolant Density, Fuel Density, and Fuel Radius. Each input was

varied plus/minus 20 % about their values from the base case (as given in Appendix 6.1).

The parameters used in these cases and the final errors of the databases are given

next in Table 2. For this study, each database was started with 30 exploration samples

followed by 50 exploitation samples. Note that the methodology for exploration is the same

for all database types. The notably high maximum real error values are due to the high

range of output values of the black box function.

Table 2 – 3D Voronoi cell adjustment study.

Database

Type

Repeated

Databases

Voronoi

Adjuster (df)

Samples per

database

Real

Error (%)

Max Real

Error (%)

3D Furthest 24 0.00 80 15.2 ±0.51 247 ±8.2

3D Guided 1 24 0.50 80 13.7 ±0.77 208 ±12

3D Guided 2 24 0.85 80 13.6 ±0.68 231 ±11

The values of the real error given in the previous table are visually presented next

in Figure 28. It can be concluded that there is a statistically significant benefit of using

Voronoi cell adjustment for this database type. The results indicate that the error can be

improved, on average, in the order of 10 % compared to the error of the database with no

Voronoi cell adjustment.

 69

Figure 28 – Real errors of the 3D Voronoi adjustment study (y-axis starts at 10 %).

The final database study presented here uses two 7-dimensional database types. An

8-dimensional XSgen placeholder function was used for this study. The software was

allowed to eliminate one dimension (Fuel Cell Height) during screening. The remaining

dimensions were Cell Pitch, Clad Density, Clad Radius, Coolant Density, Flux, Fuel

Density, Fuel Radius, and Void Radius. Each input was varied plus/minus 20 % from the

base value (as defined in Appendix 6.1).

Images of this function are not shown due to the difficulty of presenting a select

few 2D slices that demonstrate the behavior of a 7D function. A partial representation of

the behavior of this function in lower dimensions is given in Section 4.4.

The parameters and results of the 7D study are shown in Table 3. Each database

has 200 samples, where the first 60 are exploration samples and the remainder are found

using exploitation.

15.2

13.7 13.6

10

11

12

13

14

15

16
R

ea
l E

rr
o

r
(%

)

3D Furthest 3D Guided 3D Guided

 70

Table 3 – 7D Voronoi cell adjustment study.

Database

Type

Repeated

Databases

Voronoi

Adjuster (df)

Samples per

database

Real

Error (%)

Max Real

Error (%)

7D Furthest 42 0.00 200 34.3 ±1.3 144 ±10.0

7D Guided 42 0.60 200 29.9 ±1.1 132 ±12.3

Looking at the errors it can be concluded that this case also demonstrates the benefit

of the guided method, again in the order of 10 % improvement compared to the error of the

database with no Voronoi cell adjustment.

Figure 29 – Real errors of the 7D Voronoi adjustment study (y-axis starts at 20 %).

It has been observed that as the number of dimensions increase, the variation of the

real error across databases of the same type also increase. This could be a result of the

change in behavior of the underlying function as well. In any case, as a result of this

behavior the highest max error of the databases in 7D Guided is in fact higher than the

lowest max error of the databases in 7D Furthest. This is a natural result of the stochastic

nature of the sample selection methodology.

34.3

29.9

20

22

24

26

28

30

32

34

36

38

R
ea

l E
rr

o
r

(%
)

7D Furthest 7D Guided

 71

It should again be noted that the potential improvement from using Voronoi cell

adjustment depends highly on the parameters of the database and the features of the black

box function. For example, any method will eventually reach an error of zero given enough

samples (without collisions), albeit this number scales with number of dimensions. Also,

given a very simple black box function (such as a simple hyperplane that can be expressed

by a low order polynomial), only a few samples will be sufficient to model the behavior of

the function and the sample selection method will not matter. However, given that a starting

assumption of this work is that the black box function behavior in unknown before database

creation, potential improvement methods to the error such as Voronoi cell adjustment

should be considered.

 72

4.5.2. ERROR WEIGHING FACTOR

This subsection presents results from the study for a potential optimal value for the

error weighing factor c. This factor is used to multiply the sample error E(pi) as given in

Equation (8). If c is set to zero, then the errors of the samples are not considered during

exploitation. Five values for c were selected ranging between 0.5 and 4. For each value of

c, 36 databases were created and their real errors were averaged. Each database had 20

exploration and 30 exploitation samples totaling 50.

The placeholder XSgen function in 3-dimensions was used for this study. Several

combinations of input parameters (as discussed in Section 4.5.1) were tested with

equivalent results. The reported results here are for the inputs Coolant Density, Fuel

Density, and Fuel Radius. Each input was varied plus/minus 20 % about their values from

the base case (as given in Appendix 6.1). The real errors for each type of database (types

here are defined by their c value) are plotted as a function of samples in the database in

Figure 30.

 73

Figure 30 – Results of Changing the Error Weighing Factor c.

Note that in Figure 30 every point represents an average of 36 samples for that type

of database. The uncertainties of the errors in this figure are all under 4 %. No difference

between various values of c can be seen from this figure. Several other dimensions,

samples, and inputs were tested with similar conclusions to the one given in this figure. It

is concluded, based on the results of this placeholder function over the tested ranges, that

as long as an extreme value for c is not used (c=1 is typical) the differences in the value for

c become negligible. It should be emphasized that these conclusions heavily depend on

parameter choices, i.e. dimensions, samples, inputs.

 74

4.5.3. SWITCHING FROM EXPLORATION TO EXPLOITATION

The NUDGE methodology is defined to first perform exploration, followed by

exploitation. However, it is possible to switch back to exploration to discover more of the

output space. This section investigates various options of switching back-and-forth

between the two strategies.

The placeholder XSgen function as well as five alternative placeholder functions

were used to study the effects of switching strategies. The number of samples used varied

using engineering judgement based on the errors of the databases. The switching strategies

were tested by increasing the number of switches per database. One switch means there is

one exploration stage followed by one exploitation stage, whereas two switches means the

database was built by exploration-exploitation-exploration-exploitation. All studies ended

in exploitation. A total number of 60 samples per database was used for 2-, 3-, and 4-

dimensional cases.

Figure 31 – Placeholder function (F3) output map over the utilized domain.

 75

None of the studied options demonstrated clear benefit. The results are

demonstrated on an example 2-dimensional placeholder function (Function F3 in Appendix

6.3) given below in Figure 31. This function is chosen for the relative complexity of the

output (approximately 8 distinct peaks) which ranges between [0, 1]. It is adapted from a

function taken from the reference manual of SciPy [44].

Figure 32 – Comparison of Various Switching Strategies.

 76

Figure 32 shows maps of local errors. Each map is colored to show the real error of

each point in the domain space (differences between estimated and real value of the

function). Dark blue represents little to no difference while red represents the highest

difference between the real output and the estimated output. The color scale is the same for

all nine plots. Three examples of each strategy is presented in this figure to provide a

representative set of databases under the given switching strategy.

It can be observed from Figure 32 that a statistically significant difference in final

errors is not present (all final errors are close to 2 %). As stated previously, various

dimensions, placeholder functions, and samples were tested with similar results. It is

concluded that for a predetermined number of total samples for exploration and

exploitation, the strategy used to switch between them does not have a statistically

significant effect on the final database errors.

 77

4.6. Building A Global Surrogate Model of XSgen Using NUDGE

Material composition vectors continuously evolve in MOX NFC’s that have fuel

recycling. This makes it challenging to predict the composition of a recycled fuel ahead of

time, especially after several recycles. XSgen relies on accurate input material

compositions for its results. Therefore, building a global surrogate model of XSgen for use

in a MOX fuel cycle study can substantially decrease runtime while maintaining accuracy

(compared to using one XSgen output or an arbitrary set of XSgen outputs in the fuel cycle

study). This section presents results from a comparative study of building global surrogate

models, including using the method presented in this work and implemented in NUDGE

(this methodology is outlined in Section 3.1).

A researcher studying a MOX NFC utilizing XSgen and Cyclus has several options

to account for changes in reactor feedstock compositions. In the first option, estimates of

the input fuel compositions within the fuel cycle, if available, can be used for the XSgen

runs ahead of NFC simulation runs. The results of XSgen runs will be saved in a database,

effectively creating a surrogate model with user-provided sample input values. Since

knowledge of the reactor feedstock compositions are unavailable when a NFC is simulated

for the first time, none of the pre-computed XSgen outputs can be setup accurately for the

fuel cycle prior to studying it. Therefore, this option will allow very fast runtimes during

the fuel cycle study; however it has the highest expected uncertainty in the final results.

The second option is to provide a new XSgen run for every new input fuel

composition encountered during a NFC. In a fuel cycle with several reactors this may

require a new XSgen run for every fuel reloading. This option is expected to give the lowest

uncertainty and as a result, but typically also a prohibitively long runtime.

The final option is to run XSgen several times during a precomputation step, and

use these results to estimate XSgen outputs during NFC simulation runtime. This approach

improves final results without sacrificing computational cost during NFC simulation

runtime. As discussed in Section 2.2, there are many ways to pick the specific sets of values

to use for XSgen inputs to build a surrogate model.

 78

The benefit of using NUDGE and its methodology to build a XSgen surrogate

model will be demonstrated in this subsection. The results will show that the fidelity

increase per unit time invested during database building is highest for NUDGE compared

to a space-filling only surrogate model building methodology (i.e. using only Exploration,

Section 3.4) given the same constraints and parameters. The selection of the space-filling

method for comparison against NUDGE is explained next, followed by an explanation of

the NUDGE database building method.

SF Database: XSgen Surrogate Model Using Space-Filling (SF) Criteria

A standard and well-documented approach to building a surrogate model of a full

simulation like XSgen is using space-filling criteria to select sample points, as discussed

in Section 2.2. Space-filling criteria allows for an arbitrary number samples to be added to

the model database, and works for any number of input dimensions (scaling of the method,

as implemented for this work, is covered in Section 4.3). For these reasons, a space-filling

criteria based surrogate model (SF Database) will be used to compare against the NUDGE

XSgen database.

NUDGE Database: XSgen Surrogate Model Using NUDGE

The methodology described in this work and implemented in NUDGE software will

be used to build the second XSgen surrogate model, named the NUDGE Database. The

same base case, varied inputs and their ranges, number of dimensions, and number of

database samples will be used as SF Database (these values are presented in the following

pages).

The NUDGE Database will equally partition exploration and exploitation samples

(based on results from Section 4.5.3). Exploitation will be done with Voronoi cell

adjustment (Section 3.7). A distance factor (df) of 0.60 will be used (value chosen based

on results from Section 4.5.1). The error weighing factor c will be assigned 1 (based on

results from Section 4.5.2).

During the exploitation step of NUDGE the XSgen outputs will be quantified using

PCA (see Section 3.3.2). Specifically, for each XSgen run, the output library for each

 79

nuclide will be combined using the composition of the base case, and PCA will be applied

to the output variables listed in Section 3.3.

All results from this section will be compared to the representative MOX fuel case

taken from Burn-up credit criticality benchmark: Phase IV-B, Case A [45]. The XSgen

input given in Appendix 6.2 is built to closely match this benchmark.

Base Case and Database Inputs

Both cases will be constrained to 150 samples in the database and 6 dimensions.

Since adding one sample to the database (running XSgen once) takes well over an order of

magnitude longer than the determination of the inputs for a sample, time constraints will

not be considered. It is assumed that with basic software parallelization the sample

selection step time differences will be negligible between SF Database and NUDGE

Database (since XSgen runs take much longer than deciding what sample to run, regardless

of the method).

The base case and input ranges will be kept the same for both database building

methods (SF Database and NUDGE Database). The varied inputs will be input fuel

compositions. The varied nuclides, their base case fractions, minimum and maximum

values, and ranges are given in Table 4. Note that in this table the fraction of U-238

maintains total fuel mass. The base case for both methods is the same as the one given in

Appendix 6.2, except the compositions of the nuclides given in this table.

Table 4 – Nuclide Fractions for XSgen MOX Global Surrogate Models.

Nuclide Base Case Min Max Range

Pu-238 5.59E-05 3.73E-05 6.99E-05 1.86E-05

Pu-239 1.22E-03 8.12E-04 1.52E-03 4.06E-04

Pu-240 5.79E-04 3.86E-04 7.24E-04 1.93E-04

Pu-241 2.10E-04 1.40E-04 2.62E-04 7.00E-05

Pu-242 1.58E-04 1.06E-04 1.98E-04 5.28E-05

U-235 6.51E-05 4.34E-05 8.14E-05 2.17E-05

U-238 2.18E-02 2.13E-02 2.26E-02 1.29E-03

 80

The databases for SF Database and NUDGE Database methods were built, each

with a total of 150 samples. Next, the benchmark input composition was fed to both

database models to estimate XSgen outputs at those values. The estimation was performed

on the ‘fuel’ outputs of XSgen at the fluence specified by the benchmark. In addition,

XSgen was run directly for the benchmark inputs. The nuclide composition results these

datasets are given in Table 5. The reference input composition and the benchmark output

are taken from [45]. The fourth column (XSgen output) in this table shows the best estimate

of XSgen for this benchmark (based on the input given in Appendix 6.2). The two models

(SF Database and NUDGE Database) are considered to have zero surrogate error if they

can exactly reproduce this data. Their benchmark error (difference from the benchmark

data) are expected to be higher than their surrogate error (difference from the XSgen data).

Table 5 – Output Nuclide Fractions for XSgen MOX Global Surrogate Models.

Nuclide

Reference Input

Composition

Benchmark

Output

XSgen

Output

SF

Database

Output

NUDGE

Database

Output

U-235 5.43E-05 4.37E-05 5.09E-05 5.67E-05 5.59E-05

U-238 2.14E-02 2.12E-02 2.11E-02 2.33E-02 2.32E-02

Pu-238 4.66E-05 4.13E-05 4.46E-05 4.95E-05 4.86E-05

Pu-239 1.02E-03 7.89E-04 9.25E-04 1.02E-03 1.03E-03

Pu-240 4.83E-04 4.77E-04 4.79E-04 5.30E-04 5.24E-04

Pu-241 1.75E-04 2.16E-04 1.71E-04 1.90E-04 1.87E-04

Pu-242 1.32E-04 1.36E-04 1.24E-04 1.39E-04 1.37E-04

Looking at Table 5, it can be observed that XSgen output has comparable values

with that of the benchmark. SF Database and NUDGE Database outputs are closer to the

XSgen output, since these datasets are generated from surrogate models of XSgen. The

remaining outputs (tracked nuclides, neutron production, and neutron destruction) show

similar behavior. Since these values are not available in the benchmark study they are not

shown here.

The benefit of using NUDGE over the method of SF Database for this NFC case is

quantified in Table 6. This table is constructed by comparing the outputs of the two

 81

methods (SF Database Output and NUDGE Database Output) with the output of XSgen

(XSgen Output). The error statistics given in this table are a result of comparing the output

nuclide fractions. It can be seen that the NUDGE database has performed about 10 % better

than the SF Database. This means that using the database created by NUDGE for this fuel

cycle case and set of inputs provides approximately 10 % more accurate results compared

to the results from SF Database.

Table 6 – XSgen Surrogate Model Errors Comparison.

SF Database

Surrogate Errors

NUDGE Database

Surrogate Errors

NUDGE Database

Error Improvements

Mean Error [%] 11.0 9.94 10.5

Median Error [%] 11.0 9.92 11.2

Max Error [%] 11.8 10.8 8.65

It should be noted that these results are highly dependent on the problem and model

definition. The complexity of the simulation being used (in this case XSgen), the varied

inputs and their ranges, the number of total samples in the database, and the scheme used

to utilize the data in the database all affect the performance of the method for building a

surrogate model. It is impossible to cover the entire range of these parameters to

conclusively determine the benefit of any database building methodology due to the

prohibitively large option space.

This case was chosen to be a representative use of XSgen and Cyclus, as MOX fuel

cycles are commonly studied in industry and research (as evidence by the international

participation in the chosen benchmark). Therefore, it is concluded from these results that

there exists realistic use-cases where NUDGE provides a meaningful benefit to the

accuracy of end results. It does not show that NUDGE will always deliver this benefit,

especially for simple black box functions (as discussed in the end of 4.5.1).

 82

5. CONCLUSIONS AND RECOMMENDATIONS

The challenge of retaining much of the fidelity of costly simulations without

incurring their cost during runtime arises in many fields of science and engineering. Unlike

previous work in the nuclear reactor simulation field, the methodology presented here does

not limit the number and type of runtime simulation inputs. The method is meant to

maximize the fidelity increase per unit time invested during a NFC simulation

precomputation step. Pre-computation of data is needed in large NFC simulations due to

the high computational resources needed to complete them. This data can then be utilized

in NFC simulations without limit. Given that time will be spent and costly simulation runs

are going to be performed, this work aims to find a method to gain the most benefit from

this effort. This is achieved using NUDGE (NUclear Database GEneration software),

which is an implementation of the methodology presented in this work.

The two types of error measures in NUDGE, estimated and real errors, are

demonstrated. Various strategies for switching from exploration to exploitation are tested.

It is shown that all tested switching strategies yield similar benefits given the same

constraints.

An improvement to the exploitation step of this methodology, named Voronoi Cell

Adjustment, is described, implemented, and tested. An improvement in the order of 10 %

is demonstrated when using the Voronoi Cell Adjustment method compared to the error of

the database with no Voronoi cell adjustment.

The scaling of the software is tested for increasing dimensions and total samples. It

is concluded that doubling the number of dimensions will double the next sample

calculation time for all steps; while doubling the number of samples will increase the next

sample calculation time at most by a factor 4.

NUDGE has been used to create a global surrogate model of XSgen, based on a

MOX benchmark. The model generated using NUDGE shows better performance

compared to an alternative approach. It is concluded from these results that there exists

realistic NFC simulation use-cases where NUDGE provides a meaningful benefit to the

accuracy of end results.

 83

NUDGE aims to reduce the time and cost for a researcher studying NFCs. There

are many research questions where alternate fuel cycles and their metrics need to be

studied. Examples where many NFC cases need to be simulated and compared include

studies related to material security and nonproliferation, moving to a closed fuel cycle,

elimination of the surplus of a given nuclide or material, tracking the movement of

materials in a fuel cycle, and evaluation of the feasibility of new reactor technologies. In

these cases, NUDGE allows the researcher to improve the fidelity of NFC simulation

outputs without sacrificing additional runtime during the simulations. The impact of this

work, therefore, can manifest as a reduction of total simulations needed to find an optimal

answer.

It is recommended to further test NUDGE and its methodology for different black

box functions, samples, and dimensions. The accuracy of the surrogate model under

varying conditions can be studied to better understand the benefits and limitations of the

methodology. In addition, the methodology can be adapted to include categorical inputs as

well as a special treatment of samples near the edge of the domain. Since samples near the

edge of the input domain are surrounded by fewer samples, their estimated errors tend to

be determined to be higher.

It is predicted that the runtime of NUDGE can be significantly improved by

software parallelization and optimization. For users who want to utilize NUDGE for full

simulations other than XSgen, the software interfacing framework can be generalized for

formats other than input-output file based frameworks. The dimensionality reduction

methods available in NUDGE can replaced with a more robust, data analysis focused

toolkit. The Voronoi Adjustment Method can be further investigated, and the adjustment

of Voronoi cells potentially improved. Finally, it is recommended that new methods of

utilizing the available database (such as machine learning) be tested by replacing the

existing interpolation tool.

Surrogate models like NUDGE provide a good starting point to study NFCs. The

methodology presented here does not limit the number and type of runtime simulation

inputs, which allows users to pick inputs based on the nature of their studied problem. The

 84

surrogate model can be used to quickly run any number of NFC simulations, while

increasing the fidelity of a surrogate model can be as simple as adding more data to the

model’s database. This work provides a methodology to select the new samples to include

in any given database to maximize the gain from the new data.

 85

6. APPENDIX

6.1. XSgen Base Input for LWR

import numpy as np

from numpy import logspace

from xsgen.nuc_track import transmute

reactor = "0base"

plugins = ['xsgen.pre', 'xsgen.buk']

solver = 'openmc+origen'

formats = ('brightlite',)

burn_regions = 1

burn_time = 365*10

time_step = 100

burn_times = [0, 3]

burn_times.extend(range(100, 4001, 100))

batches = 3

fuel_cell_radius = 0.410

void_cell_radius = 0.4185

clad_cell_radius = 0.475

unit_cell_pitch = 0.65635 * 2.0

unit_cell_height = 10.0

fuel_density = 10.7 # Fuel density [g/cc]

clad_density = 5.87 # Cladding Density [g/cc]

cool_density = 0.73 # Coolant Density [g/cc]

flux = 3e14

initial_heavy_metal = { # Initial heavy metal mass fraction distribution

 922350: 0.033,

 922380: 0.967,

 }

fuel_chemical_form = { # Dictionary of initial fuel loading.

 80160: 2.0,

 "IHM": 1.0,

 }

k_particles = 1000 # Number of particles to run per kcode cycle

k_cycles = 100 # Number of kcode cycles to run

k_cycles_skip = 30 # Number of kcode cycles to run but not tally at the begining.

group_structure = [1.0e-9, 10]

openmc_group_struct = np.logspace(1, -9, 101)

temperature = 300

track_nucs = ["U235", "U238"]

 86

6.2. XSgen Input for MOX

import numpy as np

from numpy import logspace

from xsgen.nuc_track import transmute

reactor = "moxbenchmark"

plugins = ['xsgen.pre', 'xsgen.buk']

solver = 'openmc+origen'

formats = ('brightlite',)

burn_regions = 1

burn_time = 440

time_step = 20

burn_times = [0, 1, 3]

burn_times.extend(range(20, 460, 20))

batches = 3

fuel_cell_radius = 0.410

void_cell_radius = 0.4101

clad_cell_radius = 0.475

unit_cell_pitch = 1.3127

unit_cell_height = 10.0

fuel_density = 10.7 # Fuel density [g/cc]

clad_density = 5.87 # Cladding Density [g/cc]

cool_density = 0.7245 # Coolant Density [g/cc]

fuel_specific_power = 16.0 # Power garnered from fuel [W / g]

initial_heavy_metal = {

 922340: 2.5952E-7,

 922350: 5.4287E-5,

 922380: 2.1387E-2,

 942380: 4.6610E-5,

 942390: 1.0156E-3,

 942400: 4.8255E-4,

 942410: 1.7491E-4,

 942420: 1.3201E-4,

 }

fuel_chemical_form = {

 50100: 0.000200,

 50110: 0.001000,

 80160: 2.0,

 "IHM": 1.0,

 }

k_particles = 6000

k_cycles = 150

 87

k_cycles_skip = 30 # Number of kcode cycles to run but not tally at the begining.

group_structure = [1.0e-9, 10]

openmc_group_struct = np.logspace(1, -9, 101)

temperature = 600

track_nucs = ["Ac227",

 "Am241",

 "AM242",

 "BA140",

 "C14",

 "CM251",

 "CS141",

 "CS142",

 "CS147",

 "H1",

 "H3",

 "PU236",

 "PU237",

 "Pu238",

 "Pu239",

 "Pu240",

 "Pu241",

 "Th228",

 "Th229",

 "Th230",

 "Th232",

 "U230",

 "U231",

 "U232",

 "U233",

 "U234",

 "U235",

 "U236",

 "U237",

 "U238",

 "U239",

 "Zr93",

 "ZR95",

]

 88

6.3. Placeholder Functions

FUNCTION F1

def f1(x, y, z):

 x1 = 0.75 * np.exp(-0.25 * ((9 * x - 2) ** 2 + (9 * y - 2) ** 2 + (9 * z - 2) ** 2))

 x2 = 0.75 * np.exp(- (9 * x + 1) ** 2 / 49 - (9 * y + 1) ** 2 / 10 - (9 * z + 1) ** 2 / 10)

 x3 = 0.50 * np.exp(-0.25 * ((9 * x - 7) ** 2 + (9 * y - 3) ** 2 + (9 * z - 5) ** 2))

 x4 = -0.2 * np.exp(-(9 * x - 4) ** 2 - (9 * y - 7) ** 2 - (9 * z - 5) ** 2)

 return x1 + x2 + x3 + x4 + 1

FUNCTION F2

def f2(x, y, z):

 return 1 / np.sqrt(1 + 2 * np.exp(-3 * (np.sqrt(x ** 2 + y ** 2 + z ** 2) - 6.7)))

FUNCTION F3

def f3(x, y):

 return x * (1 - x) * np.cos(4 * np.pi * x) * np.sin(4 * np.pi * y ** 2) ** 2 + 1

FUNCTION F4

def f4(x, y):

 A = np.sqrt(64 - 1 * ((x - 0.5) ** 2 + (y - 0.52) ** 2 + (z - 0.47) ** 2)) / 4

 return A + f2(x, y)/10 + f1(x, y, z) / 75

 89

GLOSSARY

• BU(F): Burnup at fluence F [MWd/kgIHM]

• c: the error weighing factor

• D: number of dimensions (varied variables) in a database

• d: dimension index, ranges [1, D]

• df: The distance factor, used to determine the magnitude of Voronoi cell adjustment

• DR(F): Neutron destruction rate at fluence F [neutrons/kgIHM/s/flux]

• 𝐸(𝐩i): point pi’s share of the total estimated error

• 𝜖𝑝: projection threshold (exploration method)

• Estimated error: the error of the database (percent difference between the output of the

full simulation and the surrogate model) estimated using only the data within the

database

• F: Fluence

• FB: Fluence when the base case has a k-infinity of unity (exploitation method)

• 𝑓(𝐩i): the output of pi from the full simulation

• 𝑓(𝐩i): the interpolation operator that estimates the output of pi utilizing all the samples

in the database

• 𝑓(−𝑖)(𝐩j): the interpolation operator that estimates the output of 𝐩j using every point

in the database except point i

• Full simulation: the black box function that the surrogate model estimates

• 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒: The Monte-Carlo multiplier of the exploration method

• 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡: The Monte-Carlo multiplier of the exploitation method

• N: Database size (number of samples in the database)

• Nscreen: Number of total screening samples in a database

• Nexplore: Number of total exploration samples in a database

• Nexploit: Number of total exploitation samples in a database

• P: Set of points in a database of size N, P=(p1, p2, …, pn, …, pN)

 90

• pi: D-dimensional point in a database, pi=[pi
1, pi

2, …, pi
d, …, pi

D]

• 𝐩b𝑁: Base sample, the sample with the highest rank score S in the database when the

database has N samples

• PR(F): Neutron production rate at fluence F [neutrons/kgIHM/s/flux]

• r: D-dimensional candidate point input vector, r=[r1, r2, …, rd, …, rD]

• R: number of random points used during Monte-Carlo methods

• Real error: the error of the database (percent difference between the output of the full

simulation and the surrogate model) determined using numerous runs of the full

simulation

• 𝑆(𝒑𝑖): the rank score of point pi (exploitation method)

• 𝜃(𝐩i): the Voronoi adjustment factor of point pi

• 𝑉(𝒑𝑖): The Voronoi cell size of point pi

 91

REFERENCES

[1] C. Bagdatlioglu and E. Schneider, "Method for accounting for macroscopic

heterogeneities in reactor material balance generation in fuel cycle simulations,"

Nuclear Engineering and Design, vol. 302, pp. 37-45, 2016.

[2] CNERG Fuel Cycle Group, "Cyclus," 01 01 2014. [Online]. Available:

http://fuelcycle.org/. [Accessed 01 01 2014].

[3] C. Bagdatlioglu, R. Flanagan and E. Schneider, "Fuel Cycle Analysis Using Bright-

lite in the Cyclus Simulator," in PHYSOR, Sun Valley, 2016.

[4] R. Flanagan, Novel Methods for Generalizing Nuclear Fuel Design and Fuel

Burnup Modeling (Doctoral dissertation), University of Texas - Austin, 2015.

[5] L. Guerin, "Impact of Alternative Nuclear Fuel Cycle Options on Infrastructure and

Fuel Requirements, Actinide and Waste Inventories, and Economics.,"

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2009.

[6] J. J. Jacobson, G. E. Matthern, S. J. Piet and D. E. Shropshire, "VISION: Verifiable

Fuel Cycle Simulation Model," Idaho National Laboratory, 2009.

[7] A. Brolly, M. Szieberth, M. Hal´asz and e. al., "Development and application of

siton, a new fuel cycle simulation code," in 13th Information Exchange Meeting on

Actinide and Fission Product Partitioning and Transmutation (IEMPT13), Seoul,

Republic of Korea, 2014.

[8] L. Boucher and J.-P. Grouiller, COSI: a simulation software for a pool of reactors

and fuel cycle plants, China: Atomic Energy Press, 2005.

[9] J. Grouiller, J. Vidal, A. Launay, Y. Berthion, A. Marc and H. Toubon, "CESAR: A

Code for Nuclear Fuel and Waste Characterisation," in WM, Tucson, AZ, 2006.

[10] K. Crombecq, L. De Tommasi, D. Gorissen and T. Ghaene, "A novel sequential

design strategy for global surrogate modeling," in Winter Simulation Conference,

2009.

[11] L. Pronzato and W. Muller, "Design of computer experiments: space filling and

beyond," Statistics and Computing, vol. 22.3, pp. 681-701, 2012.

[12] R. T. Johnson, D. C. Montgomery, B. Jones and J. W. Fowler, "Comparing Designs

for Computer Simulation Experiments," in Winter Simulation Conference, Miami,

FL, 2008.

[13] F. Wahl, C. Mercadier and C. Helbert, "A standardized distance-based index to

assess the quality of space-filling designs," Statistics and Computing, pp. 1-11,

2016.

[14] G. E. Box, S. Hunter and W. G. Hunter, Statistics for experimenters: design,

innovation, and discovery, New York: Wiley-Interscience, 2005.

 92

[15] K. Crombecq, E. Laermans and T. Dhaene, "Efficient space-filling and non-

collapsing sequential design strategies for simulation-based modeling," European

Journal of Operational Research 214.3, pp. 683-696, 2011.

[16] F. A. Viana, G. Venter and V. Balabanov, "An algorithm for fast optimal Latin

hypercube design of experiments," International journal for numerical methods in

engineering, pp. 135-156, 2010.

[17] B. G. M. Husslage, "Maximin designs for computer experiments," Tilburg

University, School of Economics and Management, 2006.

[18] T. Long, D. Wu, Y. Wang and L. Liu, "A Sequential Maximin Latin Hypercube

Sampling Method and Its Application to Aircraft Design," in AIAA/ISSMO

Multidisciplinary Analysis and Optimization Conference, Dallas, TX, 2015.

[19] P. Z. G. Qian, "Nested Latin hypercube designs," Biometrika, p. asp045, 2009.

[20] T. W. Simpson, J. D. Peplinski, P. N. Koch and J. K. Allen, "Metamodels for

Computer-based Engineering Design: Survey and recommendations," Engineering

with Computers, vol. 17, pp. 129-150, 2001.

[21] R. B. Gramacy and H. K. H. Lee, "Adaptive design of supercomputer experiments,"

Dept. of Applied Math & Statistics, University of California, Santa Cruz, 2006.

[22] R. Lehmensiek and P. Meyer, "Creating accurate multivariate rational interpolation

models of microwave circuits by using efficient adaptive sampling to minimize the

number of computational electromagnetic analyses," IEEE, pp. 1419 - 1430, 2001.

[23] L. Pronzato and W. G. Muller, "Design of computer experiments: space filling and

beyond," Statistics and Computing, 2012.

[24] M. E. Johnson, L. M. Moore and D. Ylvisaker, "Minimax and maximin distance

designs," Journal of Statistical Planning and Inference, vol. 26, no. 2, pp. 131-148,

1990.

[25] R. Joseph, E. Gul and S. Ba, "Maximum projection designs for computer

experiments," Biometrika, vol. asv002, pp. 1-10, 2015.

[26] N. V. Queipo, R. Haftka, W. Shyy, T. Goel, R. Vaidyanathan and K. Tucker,

"Surrogate-based analysis and optimization," Progress in Aerospace Sciences, vol.

41, pp. 1-28, 2005.

[27] M. Meckesheimer¤ and A. J. Booker, "Computationally Inexpensive Metamodel

Assessment Strategies," AIAA Journal, vol. 40, no. 10, pp. 2053-2060, 2002.

[28] L. Van Der Maaten, E. Postma and J. Van den Herik, "Dimensionality Reduction:

A Comparative Review," J Mach Learn Res, vol. 10, pp. 66-71, 2009.

[29] A. W. K. Donald, "Heteroskedasticity and Autocorrelation Consistent Covariance

Matrix Estimation," Econometrica, vol. 59, no. 3, pp. 817-858, 1991.

[30] W. Svante, K. Esbensen and P. Geladi, "Principal component analysis,"

Chemometrics and intelligent laboratory systems, Vols. 2.1-3, pp. 37-52, 1987.

 93

[31] G. Crevecoeur, H. Hallez, P. Van Hese, L. Dupre and R. Van de Walle, "EEG

source analysis using space mapping techniques," Journal of Computational and

Applied Mathematics, 2008.

[32] M. Redhe and L. Nilsson, "Optimization of the new Saab 9-3 exposed to impact

load using a space mapping technique," Struct Multidisc Optim 27, 2004.

[33] M. Hintermuller and L. N. Vicente, "Space Mapping for Optimal Control of Partial

Differential Equations," SIAM Journal on Optimization 15.4, pp. 1002-1025, 2005.

[34] L. Encica, J. Makarovic, E. A. Lomonova and A. J. A. Vandenput, "Space Mapping

Optimization of a Cylindrical Voice Coil Actuator," Industry Applications, IEEE

Transactions on 42.6, pp. 1437-1444, 2006.

[35] S. Tu, Q. S. Cheng, Y. Zhang, J. W. Bandler and N. K. Nikolova, "Space Mapping

Optimization of Handset Antennas Exploiting Thin-Wire Models," Antennas and

Propagation, IEEE Transactions on 61.7, pp. 3797-3807, 2013.

[36] R. Khlissa, S. Vivier, L. A. Ospina Vargas and G. Friedrich, "Application of Output

Space Mapping Method for Fast Optimization Using Multi-Physical Modeling,"

IEEE, 2012.

[37] "XSgen," University of Wisconsin Computational Nuclear Engineering Research

Group, [Online]. Available: https://github.com/bright-dev/xsgen. [Accessed 2016].

[38] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, B. Forget and K. Smith,

"OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,"

Ann. Nucl. Energy, vol. 82, pp. 90-97, 2015.

[39] M. Bell, "ORIGEN: the ORNL isotope generation and depletion code," Oak Ridge

National Lab, Tenn. (USA), 1973.

[40] J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing In Science &

Engineering, vol. 9, no. 3, pp. 90-95, 2007.

[41] K. Crombecq, E. Laermans and T. Dhaene, "Efficient space-filling and non-

collapsing sequential design strategies for simulation-based modeling," European

Journal of Operational Research, vol. 3, no. 214, pp. 683-696, 2011.

[42] E. W. Weisstein, "Voronoi Cell," From MathWorld--A Wolfram Web Resource,

[Online]. Available: http://mathworld.wolfram.com/VoronoiCell.html. [Accessed

15 11 2016].

[43] B. Ertl, "File:Manhattan Voronoi Diagram.svg," Wikimedia Commons, 2 2015.

[Online]. Available:

https://commons.wikimedia.org/wiki/File:Manhattan_Voronoi_Diagram.svg.

[Accessed 15 11 2016].

[44] E. Jones, T. Oliphant and P. Peterson, "SciPy: Open source scientific tools for

Python," 2001. [Online]. Available: www.scipy.org. [Accessed 02 2017].

[45] G. J. O'Connor and Nuclear Energy Agency, Burn-up credit criticality benchmark:

Phase IV-B: results and analysis of MOX fuel depletion calculations., OECD, 2003.

