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Nuclear fuel cycle (NFC) simulators track the amount and composition of materials 

as they move through facilities such as mines, fuel fabrication plants, and nuclear reactors. 

A major task of a NFC simulator is to calculate the evolution of compositions of batches 

of nuclear materials as they are transmuted in reactors, decay, and are blended with other 

batches to create reactor fuel or be reprocessed or disposed. Codes used for NFC simulation 

that utilize intermediate data saved in databases which are calculated ahead of time are 

attractive since their fidelity can be improved by investing more resources in expanding 

their databases. Shifting the computational work ahead of the reactor simulation like this 

allows the fidelity to be improved without sacrificing runtime computational cost. This 

dissertation describes a method that attempts to maximize the fidelity increase per unit time 

invested during this precomputation step. Unlike previous work in the reactor simulation 

field, this methodology does not limit the number and type of runtime simulation inputs. 

NUDGE (NUclear Database GEneration software) is an implementation of this 

methodology. The methodology has two main steps where new data is added to databases. 

First is exploration, where inputs to the database are selected to be as uniformly distributed 

as possible within the problem input domain. Second step is exploitation, where output 

information is utilized to inform the selection of the next point to run. An improvement to 

exploitation, named Voronoi Cell Adjustment, is described in this dissertation and 

implemented in NUDGE. This improvement has been shown to benefit the average fidelity 



vii 

 

increase during database building. A study of the scaling of the methodology, a comparison 

of error metrics, and an exploration of optimal values for several key parameters in the 

methodology are presented. NUDGE has also been used to create a global surrogate model 

of a NFC simulation software (named XSgen). This model shows better performance 

compared to models generated by other established methods under equal constraints. 
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1. INTRODUCTION 

Nuclear fuel cycle (NFC) simulators track the amount and composition of materials 

as they move through facilities such as mines, fuel fabrication plants, and nuclear reactors. 

A major task of a NFC simulator is to calculate the evolution of compositions of batches 

of nuclear materials as they are transmuted in reactors, decay, and are blended with other 

batches to create reactor fuel or be reprocessed or disposed. The compositions are used to 

assess supply and demand of materials, feasibility, impact and infrastructure requirements 

for fuel cycle facilities reactor technologies, and material accountability in the studied fuel 

cycle. 

The challenge of determining continuously evolving compositions is a distinct 

feature of NFC simulators. While accurately calculating the material balance of a reactor 

within a narrow range of possible inputs is time-intensive but straightforward, this 

challenge is compounded in many NFCs. Advanced NFCs can incorporate a wide range of 

novel reactor technologies, in many of which fuel is reprocessed and recycled back into 

reactors. Since inputs depend on outputs in these recycling cases, the range of possible 

input compositions can become very large. This reality means that simulation software and 

methodologies targeted for specific reactor types with narrowly bounded inputs cannot 

easily be generalized to cover arbitrary fuel cycles and reactor technology combinations. 

It is straightforward to add the ability to simulate a reactor technology to a simulator 

only if its space of feasible input fuel compositions and associated input to discharge 

composition transformations can be easily calculated at runtime, or preferably pre-

calculated and parameterized before runtime. Since it is not tractable to model the spectral 

and burnup effects of changes in initial composition comprehensively by simulating all 

plausible combinations of every nuclide that may potentially be present in the input, 

simulation designers must introduce approximations which give rise to the well-known 

trade-off between accuracy and simulation time. As the precision of results are improved 

their cost typically increases. 
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Reactor simulation codes that utilize results or intermediate data saved in databases 

which are calculated ahead of time are attractive since their fidelity can be improved by 

investing more resources in expanding their databases. Shifting the computational work 

ahead of the reactor simulation allows the fidelity to be improved by expanding the results 

database without sacrificing runtime computational cost. This gives rise to the optimization 

goal of maximizing fidelity increase per unit time invested. 

One such code that utilizes databases to improve fidelity is the Bright-lite reactor 

simulator [1] that is used in the NFC simulator Cyclus [2]. Bright-lite addresses the trade-

off between accuracy and cost by shifting the computational burden of simulation to the 

front-end by utilizing pre-computed reactor libraries. These libraries are generated from 

time dependent cross-sections and track the neutron economy, burnup, and transmutation 

of input fuel nuclides as a function of fluence. The libraries are created and saved in library 

databases before the NFC simulations. The input values for these libraries are determined 

by defining plausible domains for the characteristics and range of inputs of reactors that 

will be modeled. 

During runtime, the NFC simulator provides the Bright-lite reactor the composition 

and mass of all available materials that could be used to create a reactor’s next fuel reload. 

Bright-lite is used during runtime to compute an appropriate blend of these materials given 

user-specified performance goals and approximate fuel burnup behavior from the Bright-

lite reactor library. This method maintains quick execution with acceptable errors as long 

as the input composition does not deviate far from the initial assumptions made to create 

the pre-computed library [3].  

If Bright-lite's available pre-computed libraries were not prepared using design 

parameters and input fuel composition closely matching that of the studied reactor, hard-

to-quantify and potentially large errors may arise. To address this discrepancy, Bright-lite 

can approximate a library using an interpolation method on the available libraries [4]. The 

interpolation is carried out based on parameters which are generally not known until 

runtime (e.g., isotopic vectors of plutonium or transuranic fuel feed stocks). These inputs 

may vary between reactors of the same general type; they may also vary between fuel 
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reloading batches for a given reactor. The neutronic effects of such variations are addressed 

by interpolating on libraries in the database. 

Increasing the number of precomputed libraries therefore reduces error by reducing 

the average distance between the interpolating libraries and the target point in input space. 

At present, though, since the libraries are generated in an ad hoc manner, it is not possible 

to ascertain or even bound the error introduced by using the interpolated library versus a 

library generated by carrying out a time-dependent radiation transport/burnup calculation. 

Verifying each interpolated library by performing a full simulation would be too time-

intensive a step for an NFC simulator; it would also undermine the intended benefit of 

moving the transport calculations to a pre-computation step.  

Generation of Bright-lite’s precomputed libraries can be time consuming since it 

involves coupled transport-burnup calculations on a representative reactor unit cell or 

lattice. The parameters for the case to be simulated, such as the total time fuel will be 

burned, can strongly affect the execution time of the model used to generate the fluence-

dependent cross sections, reaction rates, and transformation matrices that comprise the 

libraries. When categorical inputs (such as reactor type and number of core regions) are 

defined, there are still many (material densities, fuel cell geometry, fuel composition, fuel 

power, etc.) continuous variables in the input space. This high dimensionality makes laying 

a fine high-dimensional grid (i.e., each variable with many discrete values) impossible. For 

example, assuming the input space contains 20 continuous variables, assigning 6 discrete 

values for each of them and simulating every combination will require quadrillions of cases 

to be simulated. Even if each case required only 6 seconds, this would take as long as the 

half-life of U-235 (703,800,000 years) to complete. 

However, this high dimensionality can be mitigated since many of these variables 

might have very negligible effect on neutron energy spectra and spatial distributions, and 

thus on material balances. Other inputs may have limited effects on outputs over most of 

their domain, but rise to significance in one region. A methodical, brute-force sweep 

considering every combination of inputs like the one described above ignores these facts. 

Therefore, the process of selecting inputs for libraries to be included in the Bright-lite 
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library database must be carefully considered to prioritize areas of the input space that 

sensitively affect outputs. 

The challenge of retaining much of the fidelity of costly simulations without 

incurring their cost during runtime arises in many fields of science and engineering, and 

motivates the work to create a surrogate model (response surface model, metamodel, or 

emulator) which estimates the output of the simulation model (or full simulation, black box 

model). The competing goals of the methodology are minimizing the total time it takes to 

generate the database and bounding the interpolation error across the entire global domain 

of inputs. Minimizing the database generation time implies limiting the number of full 

simulations and concentrating expensive simulations in areas where outputs are found to 

sensitively depend on inputs. In cases with limited computational time, the goal is to use 

resources effectively to lower the final database error. 

Unlike previous work in the reactor simulation field, this methodology does not a-

priori limit the number and type of runtime simulation inputs. Any number of inputs can 

be specified and will be included in the database variable space. 

The next section covers the literature in related fields including NFC simulators 

and fields related to building and testing a surrogate model. It demonstrates the novelty of 

the work as well as summarizing the selected methods and concepts for the methodology. 
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2. LITERATURE REVIEW 

This section summarizes fields related to the work with two goals. First is to review 

approaches taken by NFC simulators to handle the challenge of modeling a large range of 

reactor types, configurations, fuel forms, and fuel compositions. Many NFC simulators 

assemble databases (of cross sections, material balances, or inputs to reduced-order 

models) by performing full-scale transport and burnup calculation in advance rather than 

runtime. This leads to a class of analogous problems in other fields. The second goal is to 

review approaches to handle costly simulations, dimensionality reduction, and uncertainty 

estimation in other fields. 

The section is divided into six subsections. The first is a review of methods nuclear 

reactor simulators use to reduce runtime. Next, the field of global surrogate modeling, 

which deals with making a model of a simulation model, is introduced. Relevant concepts 

and definitions are defined in this subsection. The third subsection covers ways to estimate 

errors of surrogate models. Next, popular techniques for dimensionality reduction are 

presented, which will be necessary to screen inputs as well as to analyze and quantify 

outputs. Finally, similar applications in other fields of science and engineering are given. 
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2.1. Review of Methods Used to Reduce Nuclear Reactor Simulation 

Runtimes 

This subsection will discuss methods engineers and software designers use to 

overcome the long runtimes required by high precision nuclear reactor simulations while 

minimizing the resulting loss of accuracy. As mentioned, the high precision simulations 

are costly. The iterative nature of the calculation prevents any meaningful separation of 

various parts of the workflow without significant changes to the simulation model. 

Many input parameters are needed in order to accurately simulate the isotopic 

transformations that take place during fuel burnup. Some of these inputs such as core 

geometry, material densities, and coolant temperature are generally constant for a given 

reactor. Others such as fuel composition, local fuel power densities, and cycle length may 

change throughout the lifetime of the modeled reactor. A reactor simulation with very high 

precision (full simulation) requires values for all of these inputs to be determined before 

the calculation begins and does not make assumptions on inputs. These models require new 

simulation runs to be carried out even for small changes in individual inputs. In addition, 

simulations are very time consuming. Using a high fidelity reactor model within a NFC 

simulator is therefore generally unfeasible since the NFC simulation may have dozens of 

reactors each requiring runtimes totaling to prohibitively long simulations. 

Building reactor simulation models that have sufficiently quick runtimes while 

maximizing accuracy involves simplifying the workflow to reduce the inputs needed 

during runtime and performing most of the costly computations prior to NFC runs. The 

most extreme reduction of inputs required during runtime is utilized in recipe reactors. A 

recipe reactor takes a constant input composition and always discharges the same resulting 

output. All reloads to that reactor type are treated as following that recipe. This reduction 

is utilized by the Code for Advanced Fuel Cycles Assessment (CAFCA) [5]. Developed by 

Massachusetts Institute of Technology, CAFCA is a fuel cycle simulator that utilizes only 

constant pre-computed data for its NFC material balances. Therefore, each reactor fleet in 

CAFCA has an invariable flow of input-output compositions, also called recipes. These 



 7 

recipes (including core mass, cycle length, and capacity factor as well as compositions of 

fresh and used fuel) are provided through Excel spreadsheets. 

A tool that does not sacrifice all dimensions for runtime calculations by using 

databases of recipes parameterized against major inputs is the Verifiable Fuel Cycle 

Simulation (VISION) [6]. Developed by the Idaho National Lab, VISION software is a 

tool for modeling material flows in a NFC. The software is a Powersim application, 

utilizing Excel spreadsheets for input and output functionality. The outputs are generated 

externally. The results of these calculations are saved as recipes to determine outputs of 

reactors by adjusting inputs such as composition, initial reactor core loading, and loading 

per fuel batch. VISION accounts for evolving input compositions “using interpolation 

within tabulated values, correlations of recipes as a function of key input parameter (e.g. 

UOX burnup) or using a perturbation method to cover the possible range of operations of 

certain type of fuel” [6]. 

Another NFC modeling software which reduces inputs needed during runtime is 

SImulation TOol for modelling the Nuclear fuel cycle (SITON) [7]. SITON uses fixed 

recipes for some reactor calculations. However, for reactor types where the output is 

determined to be sensitive to evolving input compositions (such as plutonium recycling) it 

uses a method its authors call FITXS where polynomial functions are fit to one-group 

microscopic cross-sections. The number densities of important actinides and fission 

products are used as fitting parameters, allowing the changing input fuel composition to be 

used to quickly estimate cross-sections during runtime. 

The three main parts of the method are the selection of fitting parameters, transport 

calculation runs to generate a training database, and the determination of fitting parameters. 

The evaluation of the fitting parameters for the FITXS method requires several thousand 

training data points in the training database. The discrete points to sample for this database 

are chosen by random sampling of mass fractions after several constrains, such as ranges 

for Pu and MA fraction, are imposed. The number of inputs that can affect the material 

balance at runtime is determined by the chosen fitting parameters. 
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Commelini-Sicart (COSI) [8] is a nuclear fuel cycle simulator that uses the 

equivalence model for initial composition calculations and a Bateman equation solver with 

cross-sections obtained from transport calculations for depletion. The equivalence model 

effectively attempts to reduce the properties of isotopes in the available fuel streams into a 

single dimension. The aim is to determine a blend of available fuel materials that maintain 

core criticality at a given burnup. COSI comes with hard-coded equivalence model 

reduction parameters for re-enriched reprocessed uranium and MOX fuel streams. These 

models are generated using benchmark data and each model has an associated range for 

input composition. The users are also allowed to build custom models. 

Depletion calculations in COSI are done using the CESAR software [9]. CESAR 

uses one-group cross-section libraries in its simplified depletion calculations. The validity 

of the cross-sections determine the validity range of inputs for the software. These ranges 

are given in terms of initial composition and maximum burnup. Therefore COSI effectively 

reduces the runtime computation to two or three dimensions. 

It has been shown that there are many approaches taken to reduce NFC simulation 

runtimes while keeping error bounded within a desired range. One measure taken by most 

simulators is to limit the number and range of applicable runtime inputs. While some NFC 

simulators resort to recipes where the allowed inputs are reduced to a single categorical 

type, others such as the SITON approach parameterize material balances or surrogate 

models with respect to multiple input variables. However even the most general and 

extensible approach reviewed, that taken by SITON, requires expensive training of the 

database, limits to a few inputs that can be varied, cannot be easily generalized if other 

inputs (especially inputs of different categories such as geometry), and applies to only one 

reactor type. The aim of the work presented here is to expand the allowed inputs to dozens 

or hundreds in a manner that is flexibly applicable to any reactor type. The remainder of 

this section outlines methods for achieving this goal and reviews those used within 

analogous applications found in the literature. 
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2.2. Global Surrogate Modeling  

Global surrogate modeling is the process of generating a model of a simulation 

software. A simulation model is defined as the digital prototype of a physical model used 

to emulate real world systems. A simulation model is run when system behavior at a 

specific set of inputs (or dimensions, parameters, levels) is evaluated. This subsection 

reviews methods to handling cases where the full simulation requires prohibitively high 

runtimes to complete, and/or total runtime becomes prohibitively large because many runs 

of the full simulation are expected. In these cases a fast executing global surrogate model 

is generated using outputs from the full simulation. Global surrogate models are unlike 

local surrogate models where only a subdomain of the problem space is approximated, 

usually to guide optimization, and later thrown out when an optimum is found. 

Global surrogate modeling strategies assume the full simulation is deterministic, a 

black box model, and that there is no knowledge of the relationship between each input 

and output, for instance whether it is linear or even continuous [10]. In addition, these 

assumptions guarantee that there is no random error in the results. This implies that the 

surrogate model should not smooth across data points of the simulation model and should 

return the output of each input in the database exactly. 

Space-filling design is a field of design of experiments which aims to spread out 

inputs across the design domain as uniformly as possible [11]. Unlike physical 

experiments, space-filling design does not need to have replication, blocking, or 

randomization [12]. If the total number of samples (input sets that are run in the full 

simulation) is determined beforehand and cannot be easily modified later it is called a one-

shot design. On the other hand, if the design points are selected in groups after some 

sampling has occurred the process is named sequential design. Sequential design is 

beneficial in preventing oversampling and undersampling. The former occurs when a well-

defined area of the domain is sampled without improvement to the surrogate model 

whereas the latter fails to prioritize picking areas that need more samples. 

A desirable space-filling design has three features. First feature is good space-

mapping properties. This means the selected samples must evaluate the space evenly, 
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attempting to extract as much information as possible from each sample [13]. Second is 

granularity, which is concerned with how samples are selected. One-shot designs have no 

granularity as all the samples are selected at once. A perfectly granular design will select 

samples one at a time with no upper limit on how many samples that can be generated. The 

final feature is good projective properties. Also called the non-collapsing property, a space-

filling design with good projective properties ensures unique values of each variable for 

every sample. In other words, no two points should overlap when a d-dimensional design 

is projected on to a lower dimension. 

Perhaps the simplest to implement one-shot design is a factorial experiment. It 

assigns a set of discrete values (also called levels) to each variable and samples every 

combination of input levels in the domain. Under most cases this design is infeasible due 

to the scaling of number of samples needed as number of inputs is increased. The number 

of cases scale as LD where L is the number of levels per input and D is the number of inputs. 

An alternative is fractional design, which picks a subset of a factorial design and limits the 

total number of samples [14]. Various strategies exist on selecting a fractional design with 

good space-filling properties [15]. These strategies generally assume the outputs are 

dominated by main effects and low-order interactions (known as the sparsity-of-effects 

principle) to select a subset of the full factorial design. Fractional factorial designs are 

usually optimized for the specific number of levels, inputs, and desired runs. 

Latin hypercube sampling (LHS) [16] is one of the most popular techniques used 

for computer experiments. LHS imposes additional requirements on fractional designs to 

obtain beneficial properties. The 2-dimensional analogy of LHS is the Latin square, where 

a square grid is laid and a sample is placed if and only if there are no other samples in the 

same column and row. LHS is the arbitrary-dimension equivalent of the Latin square where 

every dimension has an equal number of levels (named factors). It is important to note that 

given a number of dimensions and factors, there are many ways to fulfill the sampling 

requirements of LHS and therefore designs must be optimized for a relevant space-filling 

criterion. LHS optimizations become increasingly difficult as the dimensions and factors 

increase since the number of possible solutions scale as L!D-1 [17]. Adding granularity to 
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LHS is also difficult but possible, such as using methods that utilize maximin distances 

[18] or low granularity nested designs that embed a LHS design within a coarser one [19]. 

Factorial experiments, fractional designs, and LHS are all one-shot designs. In all 

standard implementations of these methods the total number of samples must be decided 

before any sampling takes place. However, this lack of granularity prevents any feedback 

from the results of simulation runs. For example, if it is found that additional samples are 

needed after analyzing the results, most one-shot designs do not have a methodology to do 

so without sacrificing space filling properties. Sequential design should be used in order to 

efficiently sample the simulation domain by selecting as many new points as needed [20]. 

Sequential design allows for the analysis of existing outputs and using this information for 

the selection of next samples. 

Using outputs to inform the selection of inputs is named exploitation. It is not 

possible to utilize exploitation on its own however, since at the beginning there is no 

information about the output space and nothing to exploit. Therefore, exploration is 

initially needed to capture the broad features of the domain. Given a limited time to 

generate the global surrogate model, the balance between exploration and exploitation 

should be carefully considered. 

Optimal sequential design methods assume that the surrogate model type is known 

beforehand. This class of sequential design guides the sampling process based on the model 

type and the outputs. Examples of model-specific designs can be found in [21], where 

Gramacy and Lee utilize a model specific method that combines optimized one-shot 

strategies with active learning, and in [22] where the authors utilize a sampling 

methodology based on a multivariate rational interpolation model. 

Generic sequential design methods, on the other hand, do not utilize information on 

the type of surrogate model for sample selection. Instead, only the locations of the sampled 

points and their outputs are used to guide sample selection. Since there could be little or no 

prior information known on the simulation model behavior, choosing an appropriate 

surrogate model may not be possible beforehand. Therefore, generic sequential designs are 

favored when the surrogate model could be changed later as more information on the 
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simulation model is gathered. In addition, generic sequential designs allow testing of 

various surrogate models from the same dataset. 

A review of generic sequential designs is given in [23]. These methods utilize one 

or more criteria in the evaluation of candidate sample points. The points can be 

algorithmically generated or a Monte Carlo approach can be utilized. In the case of Monte 

Carlo methods, the number of candidate points generated at each iteration is scaled linearly 

with the number of existing sample points. Monte Carlo methods are generally preferred 

due to their computational efficiency and granularity [15]. Any number of criteria (such as 

average distance, maximin distance, projection) can be used to evaluate candidates points 

generated during the Monte Carlo algorithm. 

As the name implies, the average distance criterion finds the average distance of 

the selected point to the rest of the points in the dataset. A more useful measure is the 

maximin distance, which finds the highest of the minimum distances between the selected 

point and the rest of the points in the dataset [24]. This criterion ensures that the points are 

selected so that the minimum distance between any two points are maximized in the 

dataset. As a result, the criterion “tends to place a large proportion of points at the corners 

and on the boundaries of the hypercube” that represents the dataset [25]. 
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2.3. Database Error Estimation 

It is necessary to bound the error of using the surrogate model compared to running 

the full simulation model for the same sample. The error can be used for the estimating the 

uncertainty in the results of the surrogate model as well as assessment and improvement of 

the surrogate model itself. Since there are no assumptions made about the outputs of the 

full simulation, this error is expected to depend on part of the domain as well as proximity 

to a sample point in the surrogate model database. Therefore the average error as well as 

the maximum error across the domain are relevant quantities to consider. 

The best estimate of the error can be found by generating many random samples, 

running them in both the full simulation model and the surrogate, and comparing the 

results. This process, given enough random points, can give the true error of the surrogate 

model. However, this method requires numerous samples to be run after the surrogate 

model is built. Since a starting premise in this work is that the full simulation is costly, the 

error estimation method should not require any additional full simulation runs, not to 

mention many additional runs. Therefore finding the true error is very expensive and 

cannot be used in a practical application of the surrogate model. 

One of the error estimation methods that does not require additional full simulation 

runs is called split sample [26]. The method divides the simulation run data into a training 

and a testing set. The training set is used in the surrogate model and the testing set is used 

to estimate the error. The results from this method rely heavily on how the data is split and 

the results therefore can show high variance.  

An improvement on split sample for error estimation is cross-validation (also called 

leave-k-out approach [27]) [26]. Instead of dividing the data in two, this scheme divides 

the data into many sets of k points. Then, a surrogate model is constructed for all 

combinations of the data that exclude one of the sets. This procedure results in an error 

measure for each set, which are later averaged to get an estimate of the error. If k=1 the 

method is named leave-one-out. It is recommended to use k=1 for surrogate models with 

radial and low order polynomial functions (like the surrogate model used in this work) for 

best accuracy and precision of estimating the error [27]. 
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2.4. Dimensionality Reduction 

Dimensionality reduction techniques attempt to reduce the number of independent 

variables in a dataset while retaining as much of the dependence of the outputs on the 

variables as feasible. Dimensionality reduction is used to minimize the time and storage 

space required for data, remove multicollinearity (where two or more variables are highly 

correlated), and assist in data analysis and interpretation across a wide range of information 

processing fields. Dimensionality reduction is necessary within the context of this work 

since the output from the full simulation model consists of fluence-dependent data that total 

to hundreds of values per sample. In order to analyze the outputs they need to be 

quantitatively compared, which will be achieved with dimensionality reduction. Several 

common dimensionality reduction techniques are introduced next. 

In cases where values of a given variable (or dimension) are only weakly correlated 

with outputs within the dataset, a low variance filter can be used [28]. Data that shows 

minimal change does not carry much information, and can be removed. In contrast, highly 

correlated variables carry very similar information. In these cases a high correlation filter 

can be used to eliminate the excess variables. Both of these methods utilize the variation 

in data fields to evaluate the usefulness of their carried information. 

Another dimensionality reduction technique is forward feature construction. This 

method starts by only including the variable that best explains the dataset behavior based 

on the covariance matrix of the dataset [29]. Next, new variables are added one at a time 

where each new variable is the best predictor of dataset behavior among the remaining 

variables. The addition of new variables stops when the selected variables sufficiently 

account for the output behavior. Backwards feature elimination utilizes the same 

information but instead starts with all the variables and removes them one a time. The 

methods discussed so far are geared towards very high dimensional datasets and may not 

be applicable in many cases where the number of starting dimensions is low. 

One of the most widely used dimensionality reduction techniques that applies to 

very low dimensional as well as high dimensional datasets is principal component analysis 

(PCA). This method applies orthogonal transformation to the original set of variables to 
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generate a new set of linearly uncorrelated variables called principal components. “This is 

done by finding a linear basis of reduced dimensionality for the data, in which the amount 

of variance in the data is maximal” [30]. The first principal component is responsible for 

the highest variance in the dataset, followed by the second one, and so on. Even though the 

dimensionality is conserved, the later principal components can be discarded as they 

explain the least variation in the data. The number of principal components to retain 

depends on the importance of reducing dimensions in the dataset as well as the accuracy to 

be maintained. The units and ranges of variables need to be normalized as the 

transformation is highly sensitive to scaling. 
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2.5. Applications of Global Surrogate Modeling in Engineering 

Global surrogate design techniques, which include space-mapping methods, are 

used in many fields of science and engineering. Six such applications of surrogate 

modeling are discussed below. 

Crevecoeur et al. describe a method to optimize the electroencephalogram (EEG) 

measurement process utilizing similar methods [31]. In this work the simulation model 

solves an inverse problem that finds the best fit of the source to the measurement. The 

authors utilize a space-filling method to construct a “coarse” surrogate model for this 

problem. This work is similar to generating a surrogate model for use during a NFC 

simulation, since the surrogate model is also coarse. 

Redhe and Nilsson present work on vehicle crash modeling where surrogate models 

are used for structural optimization of crashworthiness [32]. The authors use space-filling 

methods to construct a surrogate model and use this model during structural design 

optimization. The surrogate model in this work improves the time to find the optimal 

solution. It is similar to NFC optimization since the surrogate model is used to improve the 

time to achieve the final solution that is found using the full simulation model. 

Hintermulller and Vicente describe the utilization of space-filling methods to solve 

optimal control problems for nonlinear partial differential equations [33]. These problems 

present “a significant numerical challenge due to the tremendous size and possible model 

difficulties (e.g. nonlinearities) of the discretized problems” [33]. The authors utilize space-

filling technique that makes it easy to utilize different surrogate models. Again, similar to 

the surrogate modeling approach presented in this work, the authors use surrogate models 

to estimate the results of a full simulation model. 

Encica et al. use space-mapping on the optimization of a cylindrical voice coil 

actuator [34] while Tu et al. use similar methods for the optimization of handset antennas 

[35]. Khlissa et al. describe a space-mapping methodology to optimize a permanent magnet 

machine used as an integrated starter generator, for instance for use in hybrid vehicles [36].  
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The authors of these works use the surrogate model to optimize the design of an 

engineered system and later switch to the full simulation model during the final stage of 

the design process. Utilizing the surrogate model and later switching to the full model is 

also used for high fidelity NFC optimization. 
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2.6. Summary of Selected Methods for Surrogate Modeling Workflow 

Several NFC simulators have been reviewed. Currently there is no nuclear reactor 

simulation tool that allows the degrees of freedom during runtime as is proposed in this 

work. These high degrees of freedom will be achieved by creating a surrogate model. As 

discussed in the Global Surrogate Modeling subsection, the process will involve three main 

parts: screening, exploration, and exploitation. Screening will be done using quick partial 

runs of the full simulation to eliminate inputs with sufficiently low effects on outputs as 

well as to readjust ranges of variables. The methods used for screening will be formulated 

in the next section. 

Exploration will use a Monte Carlo method for space-filling design along with 

maximin distance and projection criteria. The Monte Carlo approach allows for linear 

scaling of sample selection for any given number of inputs and sample points as well as 

being fully granular (selects one sample at a time with no lower or upper limit). The 

maximin distance criterion will allow for good space filling properties while the projection 

criterion will enable good projective properties. The granularity and the maximin criterion 

together will allow the model to be continuously evaluated during dataset generation as 

well as easy inclusion of pre-existing points in the dataset. 

Exploitation will utilize a local gradient estimation methodology that is detailed in 

the next section. This method of selecting samples by utilizing outputs will be agnostic to 

the surrogate models method for estimation from the dataset. Exploitation will be hybrid 

method that considers both the space-filling criteria of the candidate sample as well as the 

nonlinearity in its vicinity. 

The next section formulates the methodology used for screening, exploration, 

exploitation, and error estimation. The following section demonstrates the techniques with 

examples and presents results. 
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3. METHODOLOGY 

3.1. Overview 

The tool presented in this work is the NUclear Database GEneration software 

(NUDGE). The software uses an external tool to generate reactor libraries to be included 

in the reactor library database. Any number of inputs to be included in database generation 

can be used in NUDGE. The goal of the software is to use computational time as efficiently 

as possible to minimize the database error. The literature review shows that this can be 

accomplished by dividing the database generation task into three distinct stages, which will 

be covered next. 

The method treats the tool used to generate reactor libraries as a black box and can 

function with any software it is able to interface. This treatment also does not make any 

assumptions about the computational cost of the black box simulation. Both slow (runtime 

in the order of hours or even days) and fast (runtime in the order of minutes or seconds) 

full simulations can be used with NUDGE. 

In this work, the XSgen software is used to create reactor libraries [37]. It performs 

full transport-burnup simulations that use fuel, cladding, and coolant composition and 

densities, unit-cell geometry, and power as inputs to compute multi-group neutron cross-

sections, compositions, burnups, and multiplication factors as a function of neutron 

fluence, the time integral of neutron flux. XSgen achieves this by coupling a neutron 

transport code (such as OpenMC [38]) to determine group fluxes and multiplication with a 

transmutation code (such as ORIGEN2.2 [39]) to find burnup and transmutation. Each 

XSgen run is costly, requiring many hours for a standard (using a single core i7 processor, 

4 GB ram, 500 GB hard drive) computer.  

Figure 1 visually summarizes the steps taken by NUDGE to generate a database. 

The three main steps of the workflow are separated by color. The first step shown on the 

left side of the figure is screening. No points are added to the final database at this stage 

since the goal is to reduce, if possible, the complexity of the problem before full 

simulations. This step is used with the black box model runs set to provide fast results, 
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even at the expense of accuracy. This step intends to identify sensitivities and correlations 

between inputs and the results. Therefore, speed is more important at this stage provided 

that the model still responds to inputs the same way. The goal of screening is to avoid 

performing redundant or unnecessary work during the later stages. 

 

 

Figure 1 – NUDGE Workflow Overview 

Next step is exploration, where inputs are selected to be as uniformly distributed as 

possible within the problem domain. The error of the database decreases with every 

additional point, as shown by the plot in the bottom of the figure. The plotted error is the 

average deviation from the full simulation incurred by using the database. This error 

depends on the interpolation method being used, as discussed in Section 3.5. An illustrative 

1-dimensional output curve depicting the true behavior of the underlying function being 

computed by the black box tool, and the locations of sampled points are depicted inside the 

database boxes. At this stage, the simulation results are not yet fed back to inform the 

selection of the next point to run; instead, points are selected to be as far away from each 
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other as possible. The goal of this stage is to explore the output space and find important 

regions in the domain (Section 3.3). 

The last step, as also depicted in Figure 1, is exploitation. It can be seen that the 

new points are focused near the sharp peak of the output. Focusing new points at this region 

improves the error reduction rate, as shown by the error plot at the bottom of the figure. 

Finding an appropriate allocation of time between screening, exploration, and exploitation 

is a key objective of the research. It depends on the runtime of the black box model, 

topology of the function being approximated, number of dimensions, and much more. For 

example, a function with constant first derivatives (a slanted plane) can be best identified 

via exploration alone. A function that is very complicated only in certain areas would 

benefit from more exploitation once these features are discovered during exploration. 

In this work, the d-dimensional set of inputs that are used to run the full simulation 

are named points. The domain of the problem is determined by the number of varied inputs 

(or dimensions) and their ranges. Once a point is selected to be in the database it is a sample. 

A point is sampled by invoking the black box model to find their input-to-output 

transformation. The size of the database is the number of samples within it. 

This section will first cover the methodology of each stage in detail. Next, error 

estimation will be presented followed by sections for proposed improvements to the 

methodology. 
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3.2. User Inputs and Initialization 

There are two sets of inputs required by NUDGE methodology to begin generating 

a database. First input is a base case given by the user. This is the input for the black box 

full simulation software, where all inputs have an expected or “central” value. The inputs 

that are not varied in the database (the categorical inputs) are defaulted to the value given 

in the base case. The base case serves as a template for the XSgen inputs of all samples in 

a database. The combination of input values in the base case should not produce any errors 

when run in the full simulation. An example input for a LWR can be found in Appendix 

6.1, and an example for a MOX reactor is given in Appendix 6.2.  

Second input is the database input, used by NUDGE for database generation. It 

specifies the inputs to vary during database generation as well as how much to vary each 

input. In addition, database generation inputs such as tolerance values and database 

creation criteria (maximum error, mean error, maximum time, maximum number of points, 

etc.) are included in the database inputs. 

The first step in the NUDGE workflow is to read these two sets of inputs. Once this 

step is completed the screening step begins, which is discussed next. 
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3.3. Screening 

This subsection will discuss the methods used during the screening step. It is 

assumed that initially there is no data in the database and nothing is known about the 

relationship between the inputs and outputs. Therefore, screening is used to discover basic 

behavior of the outputs for the given domain of inputs. The information from this step is 

used to potentially eliminate those inputs that have sufficiently low correlation with the 

outputs. 

3.3.1. SCOUT RUNS 

Scout (‘s’peedy and ‘c’urtailed ‘out’puts) runs make use of less expensive, lower-

fidelity executions of the black box model. In the context of this work, XSgen runs that 

have very low burnup values can be scout runs as well as runs with low number of Monte 

Carlo particles. Any modification to the standard costly full simulation run to significantly 

reduce the output generation time while still maintaining the main effects of inputs on the 

outputs can be considered a scout run. 

Scout runs are used during screening to lay a grid on the problem domain much 

finer than what is possible with full runs. Generating more points for the screening database 

enables a better characterization of the input-output relationships. The method used to 

select input values during this step is the same as the method used during the exploration 

stage, which is discussed in Section 3.3. 

Once scouting points are selected and run in the full simulation, a screening 

database is created. This database is used for screening analysis, as described for the 

remainder of Section 3.2. 
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3.3.2. OUTPUT QUANTIFICATION 

XSgen outputs are composed of several text files each containing hundreds of 

values for fuel properties (listed below) at different fluences. To compare results and 

quantify the differences these outputs need to be reduced to a single representative value 

for each output. This subsection discusses the use of Principal Component Analysis (PCA) 

to quantify outputs. 

PCA is a popular linear transformation method used in numerous applications in 

data analysis. It is useful in reducing a larger set of variables into a smaller subset of 

principal components. The principal components are artificial variables composed of a 

combination of the original variable set. In this work, the Python programming language 

package matplotlib is used for PCA analysis [40]. 

The selection of the outputs to apply PCA can depend on the goals of the database 

generation. While it is possible to use the entire output from each run to apply PCA, better 

information can be extracted from the outputs if redundant and inconsequential but highly 

varying data is removed beforehand. Certain use cases of the final database may dictate 

that, say, only the mass of an isotope of interest should be considered in outputs. In most 

use cases, however, outputs related to the neutron economy and burnup are of highest 

consequence. Therefore the outputs used for output quantification, unless others are 

specified by the user, are: 

• Burnup at highest fluence (BU(Fmax)) [MWd/kgIHM] 

• Neutron production rate at highest fluence (PR(Fmax)) [neutrons/kgIHM/s/flux] 

• Neutron destruction rate at highest fluence (DR(Fmax)) [neutrons/kgIHM/s/flux] 

• Masses of selected nuclides at highest fluence [g/kgIHM] 

Note that the highest fluence used during screening will still be well under the 

maximum fluence for a typical fuel. The isotopes are selected based on reactor type. For a 

LWR database, for example, U-235 and Pu-239 masses are used. In the XSgen outputs 

these values are given for each isotope present in the initial fuel loadings. In order to reduce 

outputs to a single metric and to maintain consistency, the input fuel composition of the 

base case is used to combine the outputs in the nuclide level to a single fuel-level output 
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set. Next, the combined fuel-level outputs are normalized using the highest value of each 

output type in the dataset. These normalized outputs are used for PCA.  

PCA returns a set of principal components so that first component best explains the 

variance in the data. For this reason the first principal component is selected to find the 

output value of a given point in the database. Due to the nature of PCA transformations it 

is not always possible to intuitively understand the meaning of the principal components 

(such as when the neutron production/destruction rates are combined with output 

compositions to arrive at a scalar principal component value). It can be said that it is the 

output combination that shows the greatest sensitivity to the inputs. These values are used 

in input elimination. 
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3.4. Exploration 

This subsection describes the exploration methodology of NUDGE. The aim of 

exploration is to select points so that the domain is filled as evenly as possible. This 

subsection will discuss the generation of candidate points and the selection of the next point 

to sample during exploration. 

 

 

Figure 2 – NUDGE exploitation step workflow 

Figure 2 summarizes the steps taken by NUDGE during the exploration step. First, 

an initial set of 3 input points are sampled. These initial points include the base case as well 

as two samples with all inputs set to their lowest and highest values. Since the exploration 

methodology selects new samples based on existing ones, at least one input is needed to 

begin this stage. The base case is selected by default as it is a representative input set. The 
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other two cases are chosen due to their simplicity and applicability for any number of 

dimensions. 

Once these points are run, the main loop of the exploration phase is entered and 

Monte Carlo generation of candidates for the next point begins. Random points are 

generated and scored according to the selection criteria discussed next. The point with the 

highest score is selected as the next point to sample, and the process is repeated until 

exploration is completed.  

Candidate points with randomly generated input values are evaluated against two 

space-filling criteria. The number of candidate random points is scaled linearly according 

to the size of the database. Given database size N (number of samples in the database) and 

a user-selected multiplier 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, the number of random points R is found by: 

 

𝑅 = 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∙ 𝑁 (1) 

 

The first criterion to evaluate candidate points is projected distance, also called the 

non-collapsing property [41]. The goal of imposing this criterion is to make sure that each 

point has a unique value for every dimension. For a D-dimensional candidate point input 

vector r=[r1, r2, …, rd, …, rD], set of points of the database P=(p1, p2, …, pn, …, pN), points 

in the database pi=[pi
1, pi

2, …, pi
d, …, pi

D], and a projection threshold 𝜖𝑝; the projected 

distance criterion is: 

 

min
𝑑∈𝐷

(|𝐩i
d − 𝐫d|) > 𝜖𝑝   for all 𝐩 ∈ 𝐏 (2) 

 

Candidate points that score below the threshold are eliminated since in at least one 

dimension the point will be too close to an already sampled value. Note that all inputs for 

any given sample i (pi
d) are normalized so that they range [0, 1]. This is done by subtracting 

the absolute minimum (pmin
d), then dividing the range (pmax

d - pmin
d) of each input parameter 
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(such as fuel radius or U-235 fraction) as shown below (the max/min values are provided 

by the user):  

 

pi
d =

pi,unnormalized
d − pmin

d

pmax
d − pmin

d
   for all 𝐩 ∈ 𝐏, all d ∈ D (3) 

 

The acceptable proximity is determined by the threshold value. The threshold needs 

to be lowered as N increases. An initial value of 0.0001 is set for the threshold, and halved 

each time more than half the candidates are eliminated due to the projection distance 

criteria. The initial value is set to ensure that the threshold is not increased for the first few 

samples. The algorithm to update the value has been set for simplicity and may be improved 

later.  

The second criterion is intersite distance, also called the maximin criterion [10]. It 

uses Euclidean distances to maximize the distance between the closest points: 

 

maximin = max

(

 min𝒑𝑖,𝒓

(

 √∑(𝒑𝑖
𝑑 − 𝒓𝑑)

2
𝐷

𝑑=1

𝑓𝑜𝑟 𝒑𝑖 ∈ 𝑷

)

  for all 𝐫

)

  (4) 

 

For all random points, the closest distance between the random point and any 

sample in the database is found. The random point that passes the projected distance 

criterion and has the largest maximin distance is selected as the next sample. The process 

is repeated for each new point until exploration ends. The duration of exploitation is 

investigated in the results, and is included in future work. 

Generation of the next point during the exploration stage is visualized in 2 input 

dimensions in Figure 3. The figure displays a database with four existing inputs, each at 

one corner of the domain, shown in blue large circles. The small green circles represent the 

randomly generated points. The red point is selected as the next sample since it is furthest 

away from all other existing blue points. 



 29 

 

 

Figure 3 – Next sample selection during exploration. 

The selection of the following samples is visualized in Figure 4. The same color 

scheme as the previous figure is used. The impact of the projection criterion can be 

observed in this figure, as the points are selected to avoid any overlap in any of the two 

dimensions (except the first 4 points which were selected beforehand). Although hard to 

visualize, the same process is used for higher dimensions. 

 

 

Figure 4 – Selection of five consecutive samples during exploration. 

  

5 samples 
6 samples 7 samples 

8 samples 9 samples 
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3.5. Exploitation 

This subsection details the exploitation stage of NUDGE, where the topology of 

the output hypersurface is exploited to inform the selection of the next sample. Exploitation 

is most valuable if the hypersurface strongly varies with respect to one or more inputs in 

some parts of the domain, and exploitation aims to prioritize sampling near these parts in 

order to improve the error reduction rate. The cost of performing exploitation is the 

computational overhead, which may result in fewer total samples in the final database 

generated with a time constraint. 

 

 

Figure 5 – Exploitation stage workflow. 
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The workflow of this stage is summarized in Figure 5. At beginning the outputs are 

reduced and quantified as described in Section 3.3.2. The output quantification is repeated 

since now full simulation data is available and the output surface is expected to change. 

However, unlike the screening stage, a different fluence can be selected. The “fluence when 

the base case has a k-infinity of unity” (FB) is used (where 𝑘 =
PR(FB)

DR(FB)
 ). It is found by: 

 

PR(FB) = DR(FB) (5) 

 

In the above equation PR is the neutron production rate, and DR is the neutron 

destruction rate (as introduced in Section 3.3.2). Sample selection during exploitation 

begins once the outputs are quantified. 

New samples are added to the database based on a sample selection method that 

adds utilization of output behavior to space-filling criteria. First, the Voronoi cell sizes of 

each point are calculated [42]. The Voronoi cell, as explained further in the following 

subsection, is the space surrounding a point p so that anywhere within the space is closer 

to point p than any other point in set P. Next, the estimated maximum error in the output 

metric in the vicinity of each point is found by comparing its output value to one obtained 

by interpolation to that point using other points in the database (see Section 3.4.2). The 

Voronoi cell and error calculations, described next, will be used to score each point in the 

database and the next sample will be selected near the point with the highest score. 

3.5.1. VORONOI CELL ESTIMATION 

Voronoi cell sizes are used to quantify the space around each sample point in the 

database. A Voronoi diagram, as shown in Figure 6, is created by generating cells around 

each point in the database so that anywhere inside a cell is closest to the point within it. 

The “size” of the cell (“area” in 2D and “volume” in 3D) is found from the space it 

occupies. 
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Figure 6 – Voronoi cells of 20 points in 2D [43] 

It may seem straightforward to determine Voronoi cells and their sizes in 2D, but 

the problem quickly becomes computationally expensive as the number of dimensions and 

points increase [10]. Therefore a Monte Carlo approach is used to estimate the Voronoi 

cell sizes.  

s 

Figure 7 summarizes this process. Similar to the method for exploration, random 

points are generated. The number of random points R is scaled similarly to the method 

given in Equation (1). For each random point, the sample in the database that lies closest 

to it is found and the tally of that sample is incremented by one. Once all random points 

are evaluated the Voronoi cell sizes are found by dividing tallies by R. 
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s 

Figure 7 – Voronoi cell size estimation. 
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3.5.2. SAMPLE ERROR ESTIMATION 

The goal of exploitation is to focus sample selection near areas of interest, 

specifically regions where database interpolation results in the highest errors. The error of 

each point is found by first excluding it from the database and using the remainder of 

samples to calculate by interpolation the output at the input coordinates of the excluded 

point. This method of calculating error is the leave-1-out method, discussed in Section 2.3. 

The true error cannot be calculated as it would require numerous repeated runs of the costly 

full simulation. 

 

 

Figure 8 – Sample error estimation workflow. 

 

Figure 8 above explains this process. Each point pi is iteratively excluded from the 

database. The resulting database with an excluded point pi is used to interpolate to the input 

coordinates of pi. The difference between the output of pi (shown as 𝑓(𝐩i)) and the 

interpolated result is saved as the non-normalized error of pi (named E*). This calculation 

is given below: 

 

𝐸∗(𝐩i) =
|𝑓(−𝑖)(𝐩i) − 𝑓(𝐩i)|

𝑓(𝐩i)
 (6) 
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Here, 𝑓(−𝑖) is the interpolation operator that calculates results using every point in 

the database except point i. This notation is adapted from [10]. 

Once all errors are found, they are normalized by dividing each value by the total 

error of all the samples. This normalization assures that all errors sum to unity regardless 

of number of samples in the database, which is the same scaling for Voronoi cell sizes. 

This calculation is given below, where ∑𝐸∗ is the sum of all non-normalized errors in the 

database. 

𝐸(𝐩i) =
𝐸∗(𝐩i)

∑𝐸∗
 (7) 

 

Note that this means the error measure will decrease as the number of samples 

increase. Therefore, this measure represents the share of total error by each point. 
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3.5.3. EXPLOITATION METHODOLOGY 

This subsection describes the combination of Voronoi cell sizes and sample errors 

to pick the next sample. As presented in Section 3.5.1, the sample selection process begins 

with the calculation of Voronoi cell sizes followed by sample error estimation. Next, each 

sample is scored according to the values of these two properties in the following way. For 

a sample i in the database: 

 

𝑆(𝒑𝑖) = 𝑉(𝒑𝑖) + 𝑐𝐸(𝒑𝑖) (8) 

 

where S(pi) is the rank score, V(pi) is the normalized Voronoi cell size, and E(pi) is 

the sample error of point pi. The constant c is the error weighing factor; if c is very small, 

the methodology reverts to an exploration approach where only the density of points in the 

vicinity is considered.  If c is large, the method can in theory populate points in arbitrarily 

close distance, although in practice the magnitude of the interpolation error term is not 

independent of the Voronoi cell size. Value for c are investigated in Section 4.5.2. 

Once each sample is scored, the next sample is selected so that it is in the Voronoi 

cell of the sample with the highest score, but placed as far away from that sample as 

possible. The existing sample in the database with the highest rank score is referred as the 

base sample (𝑝𝑏𝑖, where i represents the number of samples in the database when the base 

sample is selected) for the next sample selection. Finding the point furthest away from the 

base sample within its Voronoi cell is computationally very expensive as it necessitates the 

determination of cell boundaries. The computational work done in the Voronoi cell size 

estimation is utilized to aid this problem. In short, during the Voronoi cell size estimation 

the furthest point in each cell is saved in case that cell scores the highest. This process is 

described in the listing below. 
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The first for loop performs the sample error estimation. The second one iterates 

through all random points, tallying which sample point the random point lies closest. 

During this iteration if the random point is the furthest point within the cell, it is saved 

(p
maxmin

(p
i
)). Once all random points are considered, the next sample is therefore 

p
maxmin

(p
highest

). This process is repeated until the end of exploitation. 

Figure 9 below demonstrates differing patterns of sample selection for exploration 

versus exploitation. The background color gradient represents the underlying function that 

is being sampled. The function, given as F1 in Appendix 6.3, peaks at a value of one and 

for all p
i
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the lowest point is zero. The points are numbered in order of generation. While the left 

database was generated only with exploration, the database on the right switched to 

exploitation after the initial 30 points. While the database on the left does not take into 

account the output function values and attempts to fill the space as evenly as possible, the 

database on the right has populated samples close to the area where the slope of the output 

is changing quickly. Note that the specific locations of these samples will change if the 

process is repeated due to the stochastic nature of sample selection. 

 
Figure 9 – Database sample selection with exploration-only (left) and exploitation of final 

30 points (right) where each sampled in numbered in order of inclusion. 
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3.6. Error Estimation 

This subsection presents two methods for error calculation. The error associated 

with a database is defined as the average of differences between the outputs found by 

interpolating the data in the database and the full simulation outputs for the input 

coordinates. 

The error found by utilizing many outputs is named the real error. The calculation 

is done iteratively using R random points. The average real error is: 

 

Errorreal =
1

𝑅
∑
|𝑓(𝐫i) − 𝑓(𝐫i)|

𝑓(𝐫i)

𝑅

𝑖=1

 (9) 

 

where 𝑓(𝐫i) is the output of ri using the full simulation and 𝑓(𝐫i) is the interpolated 

output of ri using the database. The maximum real error is the highest value in the 

summation above. It is not feasible to find the real error during practical use cases where a 

costly full simulation is used. However, this error measure is useful to evaluate the 

workflow and assess the convergence rate of the error estimation method described in the 

following paragraphs. In test cases where a placeholder full simulation with quick 

execution is used, data can be generated solely for the purpose of error calculation and the 

real error can be calculated. 

A sufficiently high value of R depends on many factors including the complexity 

of the underlying system behavior and the number of dimensions. It is found that a value 

of R=4000N yields an error accurate to two significant digits for 3-dimensional systems 

(where N is the number of samples in the database). This formulation of R is based on [41]. 

In practical use cases resources cannot be sacrificed solely for error calculation. 

Instead, the available data must be utilized to estimate the error. This is done using the 

leave-1-out strategy described in Section 2. Two error measures are significant: the 

maximum estimated error and the average estimated error; both derived from the errors 

used during exploitation (Section 3.4). 
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The maximum error is determined by: 

 

Errormax = max(𝐸(𝐩i))  for 𝐩i ∈ 𝐏 (10) 

 

where average error is determined by: 

 

Erroravg =
1

𝑁
∑𝐸(𝐩i)

𝑁

𝑖=1

   for 𝐩i ∈ 𝐏 (11) 
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3.7. Voronoi Cell Adjustment 

This subsection describes a potential improvement to the next sample selection step 

during exploitation. So far, as described in Section 3.5, the input values for the next sample 

are determined by using the inputs of the Monte Carlo point furthest away from the selected 

base sample (𝐩b𝑁) while still being within the Voronoi cell of this base sample. The Nth 

base sample is the sample with the highest rank score S in the database when the database 

has N samples (as described in Section 3.5.3).   

 

Figure 10 demonstrates the sample selection process presented in Section 3.5. The 

Voronoi cells in this picture are arbitrarily colored, while the colors of the sample points 

correspond to the estimated error of the points (red corresponds to high error and blue to 

low). Given that the marked Base Sample is found, the algorithm will place the next sample 

to the location marked ‘Next sample’ since this is still within the Voronoi cell of the base 

sample while being as far away as possible from the point itself. 
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Figure 10 – Voronoi cells (arbitrary coloring) of a database where sample colors 

correspond to estimated errors so that red is high error. 

The methodology described in this section adjusts the Voronoi cells based on the 

estimated errors to guide the sample selection towards areas of higher error. This means 

that once the base sample is selected the method attempts to shrink the Voronoi cells 

associated with high error samples and expand the cells associated with low error samples. 

This transformation effectively moves the location of the next sample, 𝐩i+1, closer to the 

neighbor point with the highest estimated error, if it is higher than the error associated with 

𝐩b𝑁. 

In order to achieve this Voronoi cell adjustment, first the estimated errors (E*) of 

each sample are calculated (as described in Section 3.5.2). These errors are normalized 

using the estimated error of the base sample (𝐸∗(𝐩b𝑁)) as given in the following 

expression: 

 

𝐸0(𝐩i) =
𝐸∗(𝐩i)

𝐸∗(𝐩b𝑁)
− 1 (12) 
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where 𝐩i is a sample in the database. This operation assigns positive values for all 

samples with errors higher than the error of the base sample, and negative values for those 

with lower errors. 

Next, user specified ‘distance factor’ (df) is used. The distance factor is a value 

between zero and unity where zero corresponds to no Voronoi cell adjustment and unity 

corresponds to the doubling of the most adjusted distance, as will be shown next. The 

values of 𝐸0(𝐩i) are checked against this factor so that none are higher than df: 

 

If      max(|𝐸0(𝐩i)|) > 𝑑𝑓: 

Then:                                                                  

𝐸0
∗(𝐩i) =

𝑑𝑓

max(|𝐸𝑛𝑜𝑟𝑚(𝐩i)|) 
𝐸0(𝐩i)

𝐸0(𝐩i) = 𝐸0
∗(𝐩i)

 

 

(13) 

where 𝐸0
𝑝𝑟𝑒𝑣(𝐩i) is equal to 𝐸0(𝐩i) before the ‘If’ statement. Finally, the Voronoi 

adjustment factors 𝜃(𝐩i) are found using the following equation: 

 

𝜃(𝐩i) = 𝐸0(𝐩i) ∙ 𝑑𝑓 + 1 (14) 

 

These factors are used to divide the distance between the sample (𝐩i) and the 

random Monte Carlo point (𝐩r) during the Voronoi cell calculation (as described in Section 

3.5.1). This adjustment changes the ‘nearest sample’ for some Monte Carlo points during 

this step, as a result adjusting the boundaries of each Voronoi cell. 

Figure 11 shows the Voronoi cells with a 𝑑𝑓 value of 0.8. The location of the base 

sample and the next sample before and after the Voronoi cell adjustment are also shown. 

It can be seen that the cells of samples with low errors are bigger while the cells of samples 

with high errors are smaller. Thus, the new next sample is selected closer to the samples 

with higher relative error (above and upper-left of the base sample). In this case, a different 

vertex becomes farthest from 𝐩b𝑁, so the direction vector pointing from 𝐩b𝑁 to 

𝐩i+1undergoes a substantial change. Numerical evaluation shows that this change takes 

place at 𝑑𝑓 = 0.55 for this specific example. If 𝑑𝑓 is smaller than this value, the modified 
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𝐩i+1 remains in the vicinity of the 𝐩i+1 that would be chosen under the original method 

(i.e., with 𝑑𝑓 = 0). Note these are stochastic results and may change from one trial to the 

other. 

 

 
Figure 11 – Adjusted Voronoi cells using df=0.8 (arbitrary Voronoi cell colors). 

The final step of Voronoi cell adjusted sample selection is to shift the next sample 

in order to preserve good space filling properties. This is necessary since the edges of the 

adjusted Voronoi cells do not guarantee to be far from other samples. In fact, as df increases 

the space filling quality of the unshifted next sample will decrease. 

The following method is used to shift the next sample in arbitrary dimensions 

without excess computational cost. First, the closest point to the next sample is found using 

unadjusted Euclidean distances (as explained in Section 3.5.1). Second, the next sample is 

shifted away from this sample iteratively using a small increment. The new closest point is 
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found at each iteration until the next sample is closer to a new point (or at the edge of the 

domain). 

The shifting is demonstrated in Figure 12. The next sample is moved along the grey 

line pointing away from the base sample. At each iteration the closest sample to the next 

sample is determined. The next sample is shifted until there is a new closest sample. 

 

 
Figure 12 – Adjusted Voronoi cell next sample shifting. 

The location of the shifted next sample relative to the unadjusted Voronoi cells are 

given in Figure 13. It is important to note that the shifted next sample being on the boundary 

of the Voronoi cells is not a coincidence. In fact, this method guarantees that the shifted 

next sample will lie on the boundary of the Voronoi cell without having to go through the 

computationally expensive calculation of determining these cell surfaces.  
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Figure 13 – Shifted next sample shown over unadjusted Voronoi cells. 
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4. RESULTS 

4.1. Comparison of Error Measures 

This case is chosen to demonstrate the available error measures. The black box 

model depicted in Figure 9 was used for this 2-dimensional case (given as F1 in Appendix 

6.3). The results are the average errors of 40 databases with 96 samples each, where the 

final 40 samples were generated using exploitation. The uncertainties of the errors were 

calculated from the standard deviation of errors from the repeated databases.  The values 

for df, kexplore, and kexploit that were used in this section are same to the values given in 

Section 4.6 

There are two measures of error available during a regular database generation: the 

average estimated error and the maximum estimated error. They are found by comparing 

the results of the samples in the database to the interpolated estimates, as described in 

Section 3.5. In addition to these errors, the real error and the maximum real error can be 

found if many samples can be generated. This case presents all four types of errors. The 

errors are calculated and recorded after each new sample and plotted in Figure 14.  
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Figure 14 – Comparison of error measures for an example database. 

Looking at this figure, it can be seen that the real error is consistently lower than 

the estimated error. This result is expected since the estimated error is found by iteratively 

removing samples from the database. Since every removed sample has good space-filling 

properties, the error of estimating the full simulation output at those points should be the 

higher than the average error. 

The maximum errors are higher than both these measures. The switch to 

exploitation can be observed from the maximum estimated error. Since exploitation 

prioritizes sampling near these points, it is expected to see this behavior. 
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4.2. Exploitation Method Test 

One of the many factors affecting the reduction in error over time is when the 

transition to exploitation should occur. This subsection presents results found by repeatedly 

generating databases for different exploitation start points. Each database was generated 

using 2 varied inputs with a total of 88 samples. A testing function for the black box model 

was used. The testing function was used to have full control over the black box model and 

to be able to calculate the real error. Six types of databases were generated with 30 

databases for each type, totaling 180 databases. The first type is named Random: all 

samples were selected randomly with no regard to the location of other points. The second 

type is Explore Only, where there was no exploitation.  This approach should improve on 

random since exploration involves taking care to distribute sampled points evenly in the 

problem domain. The remaining four database types switch to exploitation at different 

times. Exploit 20 databases use exploitation on the final 20 samples whereas Exploit 80 

databases use exploitation on the final 80.  

The real error is plotted as a function of number of points in the database for the 

average of each type. Results can be seen in Figure 15. The blue line is databases generated 

using random samples. It can be clearly seen that randomly selecting samples is not 

desirable.  
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Figure 15 – Comparison of average database real errors generated using different 

exploitation start times. 

The green line in Figure 15 is the behavior of the error if there is no exploitation. It 

can be observed that the error predictably decreases with each new sample. The remaining 

lines represent databases created with exploitation. The point where exploitation begins is 

clear for each case, where each sampled point leads to a greater reduction in error. 

However, since all databases with exploitation end with very similar errors, it can be 

concluded that there is a diminishing benefit of exploitation and the reduction of error 

begins to match the exploration case. While the first samples once exploitation begins yield 

significant improvements on the error, once these interesting areas are sampled the benefit 

of additional samples seem to move towards that of exploration only. 

Figure 16 compares the four error measures available for the Explore Only and 

Exploit 40 cases. The single solid lines are the error measures for the Explore Only case. 

The maximum errors are on a different axis. The figure shows the maximum estimated 

error is higher than the maximum real error until exploitation starts. Since exploitation 

focuses on these high error points, it forces the error to go down. 
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Figure 16 – Comparison of the four error measures for two cases. 

It is important to note that given enough samples, all errors will reach zero 

regardless of the selection method. The goal is to reduce the error quickly, and exploitation 

achieves this goal better than exploration alone for this black box function. If instead the 

black box function is very simple, the overhead of exploitation calculations will not be 

worth sacrificing adding more samples to the final database. 
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4.3. Software Runtime and Scaling 

This section analyzes the software runtime for different dimensions and samples. 

Given that there is a limited time to generate a database, the total time to complete one 

should be predictable in order to quantify the underlying limitations of the methodology. 

This total time to complete a database can be expressed as a summation of the time taken 

to complete each step: 

𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑐𝑟𝑒𝑒𝑛 + 𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒 + 𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡 (15) 

 

where 𝑇𝑠𝑐𝑟𝑒𝑒𝑛 is the total time for screening, 𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒 total time for exploration, and 

𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡 total time for exploitation. The limitation is that 𝑇𝑡𝑜𝑡𝑎𝑙 ≤ 𝑇𝑚𝑎𝑥  , where 𝑇𝑚𝑎𝑥 is the 

maximum time allowed for database generation. The objective of the methodology is 

therefore to achieve: 

min(Errormax)  while 𝑇𝑡𝑜𝑡𝑎𝑙 ≤ 𝑇𝑚𝑎𝑥 (16) 

 

Given that it takes 𝑡𝑠𝑐𝑟𝑒𝑒𝑛 for a typical screening run, and 𝑡𝑓𝑢𝑙𝑙 for a full simulation 

run, each of these times can be written as a function of constants and parameters described 

above: 

 

𝑇𝑠𝑐𝑟𝑒𝑒𝑛(𝑡𝑠𝑐𝑟𝑒𝑒𝑛, 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, 𝜖𝑝) = 𝑁𝑠𝑐𝑟𝑒𝑒𝑛 ∙ 𝑡𝑠𝑐𝑟𝑒𝑒𝑛 ∑ (𝐶𝑠𝑐𝑟𝑒𝑒𝑛 𝐷 𝑛)

𝑁𝑠𝑐𝑟𝑒𝑒𝑛

𝑛=1

  (17) 

 

𝑇𝑒𝑥𝑝𝑙𝑜𝑟𝑒(𝑡𝑓𝑢𝑙𝑙, 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒, 𝜖𝑝) = 𝑁𝑒𝑥𝑝𝑙𝑜𝑟𝑒 ∙ 𝑡𝑓𝑢𝑙𝑙 ∑ (𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝐷 𝑛
2)

𝑁𝑒𝑥𝑝𝑙𝑜𝑟𝑒

𝑛=1

  

 

(18) 

 

 

𝑇𝑒𝑥𝑝𝑙𝑜𝑖𝑡(𝑡𝑓𝑢𝑙𝑙, 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡) = 𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡 ∙ 𝑡𝑓𝑢𝑙𝑙 ∑ (𝐶𝑒𝑥𝑝𝑙𝑜𝑖𝑡 𝐷 𝑛
1.5)

𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡

𝑛=1

 
(19) 

 

where D is the number of dimensions, the 𝐶𝑥’s are the computation overhead 

constants, and 𝑁𝑥’s are the number of samples per step. The 𝐶𝑥’s may be dependent on n 
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and D based on the software implementation. The powers of n in these equations are 

estimated based on analyzing the methodology. In addition, these equations are estimates 

of the methodology runtime and do not include the additional computational cost of 

increased dimensions and samples in the software architecture as well as the cost of the 

sample interpolation method used during the exploitation step (Equation (19)). It can be 

observed that the methodology is linearly dependent on the number of dimensions in each 

step, whereas the dependence of number of samples varies.  

Screening is a preliminary step that can have various implementations of data 

analysis methods (Section 3.3). Most of these methods (dimensionality reduction, such as 

PCA) are designed for data that is typically much larger than the scope of data in this work 

and are expected to scale well beyond the limitations of the following steps of exploration 

and exploitation (for example PCA is regularly applied to hundreds of dimensions and 

samples). Therefore, the scaling of screening is not covered in this section. 

Below, the time it takes to find a sample for the exploration and exploitation steps 

are given for various numbers of dimensions. The timing results were repeated 12 times 

and averaged for all plots in this section. An average uncertainty of 3.5% was measured 

for all timing measurements. 

Figure 17 shows the times for the exploration step with a Monte Carlo multiplier 

(𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒) set to 400. This value is high enough to reduce the stochasticity of the method 

to generate samples in the same vicinity (relative to other samples) when the database is 

repeated for that sample. In other words, using this 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒 value, when a sample is 

generated again it is put in the same approximate location in the database relative to other 

samples, i.e. same neighbors. 𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒 is linearly correlated to this value. 

The time it takes to run the simulation to generate outputs is not considered in this 

section. The output generation time depends on factors such as the simulation being used 

as well as the input parameters. The NUDGE software runtime scaling is not affected by 

these factors. 
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Figure 17 – Exploration time per sample for different dimensions. 

 

Figure 18 shows the time for exploitation steps with a 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡 value of 400. This 

value is selected to match 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒. Similar to exploration, 𝐶𝑒𝑥𝑝𝑙𝑜𝑖𝑡 is a function of 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡. 

Note that the minimum number of necessary exploration steps increases as dimensions are 

increased, hence the starting point of each curve in this figure moves forward with 

increasing dimensions. It can be observed from these two plots that finding the next sample 

during exploitation is approximately an order of magnitude longer than exploration. As 

noted before, these times depend on the software implementation as well the interpolation 

function being used. 
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Figure 18 – Exploitation time per sample for different dimensions. 

 

Equation (18) shows the dependence of sample generation time in the exploration 

step (Section 3.4). In order to demonstrate the accuracy of this equation, databases with 

varying dimensions were created while measuring the time it takes, for each sample, to 

find the inputs of the next sample. For each sample and dimension, the estimated 

computational effort was found using Equation (18) (𝐶𝑒𝑥𝑝𝑙𝑜𝑟𝑒  𝐷 𝑛
2). Figure 19 below 

shows the sample generation times as a function of estimated number of CPU operations. 

Therefore the number of operations based on n and d are found for each sample using 

equation (18), followed by plotting the time for a given sample as a function the CPU 

operations. 
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Figure 19 – Exploration step sample generation time vs. estimated computational cost for 

different number of dimensions. 

 

While there were 100 samples for 2 dimensions, the 8-dimensional curve in this 

figure goes up to 50 samples. It can be seen from this figure the dependence is well 

characterized and can be concluded that the estimates for the scaling of the exploration step 

are accurate. 

Next, the exploitation step was measured (Section 3.5). This step is comprised of 

two parts: error estimation (Section 3.5.2) and Voronoi cell estimation (Section 3.5.1). The 

scaling of error estimation depends on the chosen method of interpolation, where the 

interpolation is repeated 𝑛 times each time a new sample is to be found. Conversely, the 

Voronoi cell estimation time, as shown in Equation (19), depends on 𝑛1.5. The following 

plot repeats the methodology of the previous figure (Figure 19) for execution times of the 

Voronoi estimation step, again as a function of estimated computational cost. 
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Figure 20 – Exploitation step Voronoi cell estimation time vs. estimated computational 

cost for different number of dimensions. 

 

Here in Figure 20 the 2-dimensional data goes up to 90 samples while the 8-

dimensional data goes up to 60. Databases for each dimension were repeated 12 times and 

averaged. The “dips” in this data are a result of the method used to select number of Monte 

Carlo points, where the floor of the square root of number of samples (floor(√𝑛)) is used 

as a multiplication factor to the total number of Monte Carlo points. Each dip corresponds 

to a number of samples that has an integer square root. Looking at this plot it can be 

concluded that the dependence of the Voronoi cell estimation times are well characterized 

in Equation (19). 

Finally, the scaling of the Voronoi cell adjustment method is measured (Section 

3.7). In short, this method repeats the Voronoi cell estimation and it is expected to take 
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approximately twice as longer as a single Voronoi cell adjustment step. Results for the 

timing measurements of Voronoi cell adjustment is given below in Figure 21. The number 

of samples for each dimension used to create this figure is the same as Figure 20. The same 

behavior as Figure 20 can be seen, except the times are about twice as long, as expected. 

 

 

Figure 21 – Exploitation step adjusted Voronoi cell estimation step time vs. estimated 

computational cost for different number of dimensions. 

It should be emphasized that the times reported here are not the total time that the 

user has to wait for a sample to be generated. The real time will depend on various other 

factors such as the time to read/write files and the implementation of the software. 

However, once several samples are generated and the overhead values (the 𝐶𝑥’s) can be 

determined, the given equations can be used to estimate the time for later samples. 

Therefore (ignoring the scaling of interpolation method and implementation used 

in the software) it can be concluded that doubling the number of dimensions will double 
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the next sample calculation time for all steps; while doubling the number of samples will 

increase the next sample calculation time approximately by a factor 4 (22) for exploration 

and by a factor of 2.83 (21.5) for exploitation. 
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4.4. XSgen Output Behavior and Placeholder Function Generation 

A placeholder function for the XSgen software was generated. The placeholder is 

built to quickly generate output values that behave similarly to outputs from XSgen. The 

placeholder function was used to test database generation strategies discussed later. This 

section will first demonstrate the output behavior of XSgen, followed by describing the 

methodology used to create the placeholder function. 

First, the output sensitivity of eight XSgen inputs was tested. The tested input 

variables were: Cell Height, Cell Pitch, Clad Density, Clad Radius, Coolant Density, Flux, 

Fuel Density, Fuel Radius, and Void Radius. A base case was defined as a typical LWR 

(this input file is given in Appendix 6.1). For each input variable listed above, a sample 

was generated with a 10% increase of that variable. These steps were repeated with a 10% 

decrease. Therefore 1+8+8=17 samples were run (1 base case and 8 for increase/decrease 

of each input variable). The outputs were quantified as described in Section 3.3.2.  

The behavior of the first principal component (PC1) with a 10% change in each 

input is shown in Figure 22. PC1 accounts for 80.9% of the output response. It can be 

observed that a 10% change from the base case in some variables, such as cell height and 

clad density, has barely noticeable effects on the outputs (in this case the output is only 

PC1). In the remaining input variables it’s observed that the magnitude and direction of the 

change varies. Similar but more pronounced behavior can be observed for principal 

component 2 (PC2) results, as shown in Figure 23. PC2, which accounts for 16.7% of the 

output response, has a response similar to PC1. 
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Figure 22 – XSgen Output Sensitivities on Principal Component 1. 

 

Figure 23 – XSgen Output Sensitivities on Principal Component 2. 
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Next, the output behavior of XSgen was tested in 2-dimensional space. Enrichment 

(fraction of U-235 in the fuel) and Fuel Density were chosen for the two input variables to 

study. Enrichment was varied between 2.5% - 7.0% with 0.5% increments, and Fuel 

Density was varied between 7 [g/cc] – 14 [g/cc] with 1 [g/cc] increments. This forms an 

8x8 grid and therefore requires 64 runs of XSgen, which takes several days to complete. 

The outputs are tabulated as function of fluence. It was observed that the initial 

behavior of the outputs (first 10 days of irradiation) were different than the final behavior 

of the outputs (at 2,000 days of irradiation). Therefore the results shown in Figure 24 are 

divided into two groups: the outputs from XSgen at initial fluence on the left side, and final 

fluence on the right side. 

Figure 24 and Figure 25 show predictable dependence on the change of inputs. 

Initial values for burnup, neutron production, and neutron destruction are higher than their 

final values on the right side, whereas Pu-239 slowly builds in and appears in higher 

concentration for the final values. An increase in enrichment causes all these parameters to 

increase due to the increase amount of fissile material in the fuel. Increasing the fuel density 

seems to have a similar effect but lower in magnitude, especially for final values. 
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Figure 24 – XSgen Neutron Production, Neutron Destruction, and Burnup Output Map. 
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Figure 25 – XSgen Pu-239 and U-235 Concentration Output Map. 

The principal components of these outputs are shown in Figure 26. They were 

calculated as described in Section 3.3.2. Data shows that the behavior of the output is 

closely captured by PC1, which accounts for 63.7% of the variation in the outputs. In 

contrast, PC4 seems to behave erratically unlike any output variable in the XSgen outputs, 

as it only accounts for 0.4 % of the output variation. 
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Figure 26 – XSgen Software Principal Components 2D Map. 
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4.5. Study of Database Building Parameters 

This section presents results of studies on optimizing the values for parameters used 

in NUDGE. First, the effect of different values of the distance factor df (as described in 

Section 3.7) on final errors is reported. This study is followed by a similar one on the error 

weighing factor c (described in Section 3.5.3). Finally, the results from studying the effects 

of when to switch from exploration to exploitation are reported. 

4.5.1. DISTANCE FACTOR 

This subsection presents results of the study to find a potential optimal value for 

the distance factor df. This factor is defined in Section 3.7 and it controls the magnitude of 

Voronoi cell adjustment. There are several parameters that can be changed to evaluate the 

effectiveness of Voronoi cell adjustment under different conditions. These parameters 

include the number of dimensions of the database (D), the underlying function being 

modeled (the black box function), the exploitation strategy (when and how much to use 

exploitation as opposed to exploration), and total number of samples in the database (N). 

In addition, for each set of these parameters different values for the Voronoi adjustment 

factor (𝑑𝑓) can be tried. Finally, since the database creation is a stochastic process, each 

database type needs to be repeated to be able to make statistically significant conclusions. 

As a result, this section aims to demonstrate that the Voronoi cell adjustment methodology 

is beneficial under some conditions, while being equivalent to no Voronoi cell adjustment 

when there is no benefit. 

First example is a 2-dimensional database study. Each database has 50 total samples 

(20 exploration followed by 30 exploitation). The function being modeled in this study is 

given as Function F4 in Appendix 6.3 and shown in Figure 27. The complex behavior of 

the function can be observed from this figure, plotted in the range [0, 1] on both 

dimensions.  
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Figure 27 – 2D Case black box function. 

This function was used to create databases with three different 𝑑𝑓 values (including 

zero). The parameters for each database study and the average errors are given in Table 1 

below. The uncertainty in the error values are calculated using the standard deviation across 

the repeated databases for a given type. It can be concluded that for this set of parameters, 

Voronoi cell adjustment is ineffective at making a statistically significant improvement of 

the final database error. 

  

Table 1 – 2D Voronoi cell adjustment study. 

Database 

Type 

Repeated 

Databases 

Voronoi 

Adjuster 

(df) 

Samples 

per 

database Real Error (%) 

Max Real 

Error (%) 

2D Furthest 18 0.00 50 0.0132 ±0.00042 0.194 ±0.0064 

2D Guided 1 18 0.50 50 0.0147 ±0.00048 0.227 ±0.0069 

2D Guided 2 18 0.85 50 0.0135 ±0.00039 0.191 ±0.0062 

 

Five other 2-dimensional black box functions with various output behaviors were 

tested. Next, the placeholder XSgen program was tested with several 2-input combinations. 

Similar results were found for all, where the Voronoi cell adjustment did not cause a 

noticeable change in final errors. 
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3-dimensional cases were investigated next. Three types of databases were modeled 

using three different 𝑑𝑓 values. The placeholder XSgen function in 3-dimensions was used 

for this study with inputs Coolant Density, Fuel Density, and Fuel Radius. Each input was 

varied plus/minus 20 % about their values from the base case (as given in Appendix 6.1). 

The parameters used in these cases and the final errors of the databases are given 

next in Table 2. For this study, each database was started with 30 exploration samples 

followed by 50 exploitation samples. Note that the methodology for exploration is the same 

for all database types. The notably high maximum real error values are due to the high 

range of output values of the black box function. 

 

Table 2 – 3D Voronoi cell adjustment study. 

Database 

Type 

Repeated 

Databases 

Voronoi 

Adjuster (df) 

Samples per 

database 

Real 

Error (%) 

Max Real 

Error (%) 

3D Furthest 24 0.00 80 15.2 ±0.51 247 ±8.2 

3D Guided 1 24 0.50 80 13.7 ±0.77 208 ±12 

3D Guided 2 24 0.85 80 13.6 ±0.68 231 ±11 

 

The values of the real error given in the previous table are visually presented next 

in Figure 28. It can be concluded that there is a statistically significant benefit of using 

Voronoi cell adjustment for this database type. The results indicate that the error can be 

improved, on average, in the order of 10 % compared to the error of the database with no 

Voronoi cell adjustment. 
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Figure 28 – Real errors of the 3D Voronoi adjustment study (y-axis starts at 10 %). 

The final database study presented here uses two 7-dimensional database types. An 

8-dimensional XSgen placeholder function was used for this study. The software was 

allowed to eliminate one dimension (Fuel Cell Height) during screening. The remaining 

dimensions were Cell Pitch, Clad Density, Clad Radius, Coolant Density, Flux, Fuel 

Density, Fuel Radius, and Void Radius. Each input was varied plus/minus 20 % from the 

base value (as defined in Appendix 6.1). 

Images of this function are not shown due to the difficulty of presenting a select 

few 2D slices that demonstrate the behavior of a 7D function. A partial representation of 

the behavior of this function in lower dimensions is given in Section 4.4. 

The parameters and results of the 7D study are shown in Table 3. Each database 

has 200 samples, where the first 60 are exploration samples and the remainder are found 

using exploitation. 
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Table 3 – 7D Voronoi cell adjustment study. 

Database 

Type 

Repeated 

Databases 

Voronoi 

Adjuster (df) 

Samples per 

database 

Real 

Error (%) 

Max Real 

Error (%) 

7D Furthest 42 0.00 200 34.3 ±1.3 144 ±10.0 

7D Guided 42 0.60 200 29.9 ±1.1 132 ±12.3 

 

Looking at the errors it can be concluded that this case also demonstrates the benefit 

of the guided method, again in the order of 10 % improvement compared to the error of the 

database with no Voronoi cell adjustment. 

 

 
Figure 29 – Real errors of the 7D Voronoi adjustment study (y-axis starts at 20 %). 

 

It has been observed that as the number of dimensions increase, the variation of the 

real error across databases of the same type also increase. This could be a result of the 

change in behavior of the underlying function as well. In any case, as a result of this 

behavior the highest max error of the databases in 7D Guided is in fact higher than the 

lowest max error of the databases in 7D Furthest. This is a natural result of the stochastic 

nature of the sample selection methodology. 
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It should again be noted that the potential improvement from using Voronoi cell 

adjustment depends highly on the parameters of the database and the features of the black 

box function. For example, any method will eventually reach an error of zero given enough 

samples (without collisions), albeit this number scales with number of dimensions. Also, 

given a very simple black box function (such as a simple hyperplane that can be expressed 

by a low order polynomial), only a few samples will be sufficient to model the behavior of 

the function and the sample selection method will not matter. However, given that a starting 

assumption of this work is that the black box function behavior in unknown before database 

creation, potential improvement methods to the error such as Voronoi cell adjustment 

should be considered.  
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4.5.2. ERROR WEIGHING FACTOR 

This subsection presents results from the study for a potential optimal value for the 

error weighing factor c. This factor is used to multiply the sample error E(pi) as given in 

Equation (8). If c is set to zero, then the errors of the samples are not considered during 

exploitation. Five values for c were selected ranging between 0.5 and 4. For each value of 

c, 36 databases were created and their real errors were averaged. Each database had 20 

exploration and 30 exploitation samples totaling 50.  

The placeholder XSgen function in 3-dimensions was used for this study. Several 

combinations of input parameters (as discussed in Section 4.5.1) were tested with 

equivalent results. The reported results here are for the inputs Coolant Density, Fuel 

Density, and Fuel Radius. Each input was varied plus/minus 20 % about their values from 

the base case (as given in Appendix 6.1). The real errors for each type of database (types 

here are defined by their c value) are plotted as a function of samples in the database in 

Figure 30. 
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Figure 30 – Results of Changing the Error Weighing Factor c. 

Note that in Figure 30 every point represents an average of 36 samples for that type 

of database. The uncertainties of the errors in this figure are all under 4 %. No difference 

between various values of c can be seen from this figure. Several other dimensions, 

samples, and inputs were tested with similar conclusions to the one given in this figure. It 

is concluded, based on the results of this placeholder function over the tested ranges, that 

as long as an extreme value for c is not used (c=1 is typical) the differences in the value for 

c become negligible. It should be emphasized that these conclusions heavily depend on 

parameter choices, i.e. dimensions, samples, inputs. 

  



 74 

4.5.3. SWITCHING FROM EXPLORATION TO EXPLOITATION 

The NUDGE methodology is defined to first perform exploration, followed by 

exploitation. However, it is possible to switch back to exploration to discover more of the 

output space. This section investigates various options of switching back-and-forth 

between the two strategies. 

The placeholder XSgen function as well as five alternative placeholder functions 

were used to study the effects of switching strategies. The number of samples used varied 

using engineering judgement based on the errors of the databases. The switching strategies 

were tested by increasing the number of switches per database. One switch means there is 

one exploration stage followed by one exploitation stage, whereas two switches means the 

database was built by exploration-exploitation-exploration-exploitation. All studies ended 

in exploitation. A total number of 60 samples per database was used for 2-, 3-, and 4-

dimensional cases. 

 

 

Figure 31 – Placeholder function (F3) output map over the utilized domain. 
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None of the studied options demonstrated clear benefit. The results are 

demonstrated on an example 2-dimensional placeholder function (Function F3 in Appendix 

6.3) given below in Figure 31. This function is chosen for the relative complexity of the 

output (approximately 8 distinct peaks) which ranges between [0, 1]. It is adapted from a 

function taken from the reference manual of SciPy [44]. 

 

 

Figure 32 – Comparison of Various Switching Strategies. 
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Figure 32 shows maps of local errors. Each map is colored to show the real error of 

each point in the domain space (differences between estimated and real value of the 

function). Dark blue represents little to no difference while red represents the highest 

difference between the real output and the estimated output. The color scale is the same for 

all nine plots. Three examples of each strategy is presented in this figure to provide a 

representative set of databases under the given switching strategy.  

It can be observed from Figure 32 that a statistically significant difference in final 

errors is not present (all final errors are close to 2 %). As stated previously, various 

dimensions, placeholder functions, and samples were tested with similar results. It is 

concluded that for a predetermined number of total samples for exploration and 

exploitation, the strategy used to switch between them does not have a statistically 

significant effect on the final database errors. 
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4.6. Building A Global Surrogate Model of XSgen Using NUDGE 

Material composition vectors continuously evolve in MOX NFC’s that have fuel 

recycling. This makes it challenging to predict the composition of a recycled fuel ahead of 

time, especially after several recycles. XSgen relies on accurate input material 

compositions for its results. Therefore, building a global surrogate model of XSgen for use 

in a MOX fuel cycle study can substantially decrease runtime while maintaining accuracy 

(compared to using one XSgen output or an arbitrary set of XSgen outputs in the fuel cycle 

study). This section presents results from a comparative study of building global surrogate 

models, including using the method presented in this work and implemented in NUDGE 

(this methodology is outlined in Section 3.1). 

A researcher studying a MOX NFC utilizing XSgen and Cyclus has several options 

to account for changes in reactor feedstock compositions. In the first option, estimates of 

the input fuel compositions within the fuel cycle, if available, can be used for the XSgen 

runs ahead of NFC simulation runs. The results of XSgen runs will be saved in a database, 

effectively creating a surrogate model with user-provided sample input values. Since 

knowledge of the reactor feedstock compositions are unavailable when a NFC is simulated 

for the first time, none of the pre-computed XSgen outputs can be setup accurately for the 

fuel cycle prior to studying it. Therefore, this option will allow very fast runtimes during 

the fuel cycle study; however it has the highest expected uncertainty in the final results. 

The second option is to provide a new XSgen run for every new input fuel 

composition encountered during a NFC. In a fuel cycle with several reactors this may 

require a new XSgen run for every fuel reloading. This option is expected to give the lowest 

uncertainty and as a result, but typically also a prohibitively long runtime. 

The final option is to run XSgen several times during a precomputation step, and 

use these results to estimate XSgen outputs during NFC simulation runtime. This approach 

improves final results without sacrificing computational cost during NFC simulation 

runtime. As discussed in Section 2.2, there are many ways to pick the specific sets of values 

to use for XSgen inputs to build a surrogate model. 
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The benefit of using NUDGE and its methodology to build a XSgen surrogate 

model will be demonstrated in this subsection. The results will show that the fidelity 

increase per unit time invested during database building is highest for NUDGE compared 

to a space-filling only surrogate model building methodology (i.e. using only Exploration, 

Section 3.4) given the same constraints and parameters. The selection of the space-filling 

method for comparison against NUDGE is explained next, followed by an explanation of 

the NUDGE database building method. 

SF Database: XSgen Surrogate Model Using Space-Filling (SF) Criteria 

A standard and well-documented approach to building a surrogate model of a full 

simulation like XSgen is using space-filling criteria to select sample points, as discussed 

in Section 2.2. Space-filling criteria allows for an arbitrary number samples to be added to 

the model database, and works for any number of input dimensions (scaling of the method, 

as implemented for this work, is covered in Section 4.3). For these reasons, a space-filling 

criteria based surrogate model (SF Database) will be used to compare against the NUDGE 

XSgen database.  

NUDGE Database: XSgen Surrogate Model Using NUDGE 

The methodology described in this work and implemented in NUDGE software will 

be used to build the second XSgen surrogate model, named the NUDGE Database. The 

same base case, varied inputs and their ranges, number of dimensions, and number of 

database samples will be used as SF Database (these values are presented in the following 

pages). 

The NUDGE Database will equally partition exploration and exploitation samples 

(based on results from Section 4.5.3). Exploitation will be done with Voronoi cell 

adjustment (Section 3.7). A distance factor (df) of 0.60 will be used (value chosen based 

on results from Section 4.5.1). The error weighing factor c will be assigned 1 (based on 

results from Section 4.5.2).  

During the exploitation step of NUDGE the XSgen outputs will be quantified using 

PCA (see Section 3.3.2). Specifically, for each XSgen run, the output library for each 
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nuclide will be combined using the composition of the base case, and PCA will be applied 

to the output variables listed in Section 3.3. 

All results from this section will be compared to the representative MOX fuel case 

taken from Burn-up credit criticality benchmark: Phase IV-B, Case A [45]. The XSgen 

input given in Appendix 6.2 is built to closely match this benchmark. 

Base Case and Database Inputs 

Both cases will be constrained to 150 samples in the database and 6 dimensions. 

Since adding one sample to the database (running XSgen once) takes well over an order of 

magnitude longer than the determination of the inputs for a sample, time constraints will 

not be considered. It is assumed that with basic software parallelization the sample 

selection step time differences will be negligible between SF Database and NUDGE 

Database (since XSgen runs take much longer than deciding what sample to run, regardless 

of the method). 

The base case and input ranges will be kept the same for both database building 

methods (SF Database and NUDGE Database). The varied inputs will be input fuel 

compositions. The varied nuclides, their base case fractions, minimum and maximum 

values, and ranges are given in Table 4. Note that in this table the fraction of U-238 

maintains total fuel mass. The base case for both methods is the same as the one given in 

Appendix 6.2, except the compositions of the nuclides given in this table.  

 

Table 4 – Nuclide Fractions for XSgen MOX Global Surrogate Models. 

Nuclide Base Case Min Max Range 

Pu-238 5.59E-05 3.73E-05 6.99E-05 1.86E-05 

Pu-239 1.22E-03 8.12E-04 1.52E-03 4.06E-04 

Pu-240 5.79E-04 3.86E-04 7.24E-04 1.93E-04 

Pu-241 2.10E-04 1.40E-04 2.62E-04 7.00E-05 

Pu-242 1.58E-04 1.06E-04 1.98E-04 5.28E-05 

U-235 6.51E-05 4.34E-05 8.14E-05 2.17E-05 

U-238 2.18E-02 2.13E-02 2.26E-02 1.29E-03 
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The databases for SF Database and NUDGE Database methods were built, each 

with a total of 150 samples. Next, the benchmark input composition was fed to both 

database models to estimate XSgen outputs at those values. The estimation was performed 

on the ‘fuel’ outputs of XSgen at the fluence specified by the benchmark. In addition, 

XSgen was run directly for the benchmark inputs. The nuclide composition results these 

datasets are given in Table 5. The reference input composition and the benchmark output 

are taken from [45]. The fourth column (XSgen output) in this table shows the best estimate 

of XSgen for this benchmark (based on the input given in Appendix 6.2). The two models 

(SF Database and NUDGE Database) are considered to have zero surrogate error if they 

can exactly reproduce this data. Their benchmark error (difference from the benchmark 

data) are expected to be higher than their surrogate error (difference from the XSgen data). 

 

Table 5 – Output Nuclide Fractions for XSgen MOX Global Surrogate Models. 

Nuclide 

Reference Input 

Composition 

Benchmark 

Output 

XSgen 

Output 

SF 

Database 

Output 

NUDGE 

Database 

Output 

U-235 5.43E-05 4.37E-05 5.09E-05 5.67E-05 5.59E-05 

U-238 2.14E-02 2.12E-02 2.11E-02 2.33E-02 2.32E-02 

Pu-238 4.66E-05 4.13E-05 4.46E-05 4.95E-05 4.86E-05 

Pu-239 1.02E-03 7.89E-04 9.25E-04 1.02E-03 1.03E-03 

Pu-240 4.83E-04 4.77E-04 4.79E-04 5.30E-04 5.24E-04 

Pu-241 1.75E-04 2.16E-04 1.71E-04 1.90E-04 1.87E-04 

Pu-242 1.32E-04 1.36E-04 1.24E-04 1.39E-04 1.37E-04 

 

Looking at Table 5, it can be observed that XSgen output has comparable values 

with that of the benchmark. SF Database and NUDGE Database outputs are closer to the 

XSgen output, since these datasets are generated from surrogate models of XSgen. The 

remaining outputs (tracked nuclides, neutron production, and neutron destruction) show 

similar behavior. Since these values are not available in the benchmark study they are not 

shown here. 

The benefit of using NUDGE over the method of SF Database for this NFC case is 

quantified in Table 6. This table is constructed by comparing the outputs of the two 
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methods (SF Database Output and NUDGE Database Output) with the output of XSgen 

(XSgen Output). The error statistics given in this table are a result of comparing the output 

nuclide fractions. It can be seen that the NUDGE database has performed about 10 % better 

than the SF Database. This means that using the database created by NUDGE for this fuel 

cycle case and set of inputs provides approximately 10 % more accurate results compared 

to the results from SF Database. 

 

Table 6 – XSgen Surrogate Model Errors Comparison. 
 

SF Database 

Surrogate Errors 

NUDGE Database 

Surrogate Errors 

NUDGE Database 

Error Improvements 

Mean Error [%] 11.0 9.94 10.5 

Median Error [%] 11.0 9.92 11.2 

Max Error [%] 11.8 10.8 8.65 

  

It should be noted that these results are highly dependent on the problem and model 

definition. The complexity of the simulation being used (in this case XSgen), the varied 

inputs and their ranges, the number of total samples in the database, and the scheme used 

to utilize the data in the database all affect the performance of the method for building a 

surrogate model. It is impossible to cover the entire range of these parameters to 

conclusively determine the benefit of any database building methodology due to the 

prohibitively large option space. 

This case was chosen to be a representative use of XSgen and Cyclus, as MOX fuel 

cycles are commonly studied in industry and research (as evidence by the international 

participation in the chosen benchmark). Therefore, it is concluded from these results that 

there exists realistic use-cases where NUDGE provides a meaningful benefit to the 

accuracy of end results. It does not show that NUDGE will always deliver this benefit, 

especially for simple black box functions (as discussed in the end of 4.5.1).  
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5. CONCLUSIONS AND RECOMMENDATIONS 

The challenge of retaining much of the fidelity of costly simulations without 

incurring their cost during runtime arises in many fields of science and engineering. Unlike 

previous work in the nuclear reactor simulation field, the methodology presented here does 

not limit the number and type of runtime simulation inputs. The method is meant to 

maximize the fidelity increase per unit time invested during a NFC simulation 

precomputation step. Pre-computation of data is needed in large NFC simulations due to 

the high computational resources needed to complete them. This data can then be utilized 

in NFC simulations without limit. Given that time will be spent and costly simulation runs 

are going to be performed, this work aims to find a method to gain the most benefit from 

this effort. This is achieved using NUDGE (NUclear Database GEneration software), 

which is an implementation of the methodology presented in this work. 

The two types of error measures in NUDGE, estimated and real errors, are 

demonstrated. Various strategies for switching from exploration to exploitation are tested. 

It is shown that all tested switching strategies yield similar benefits given the same 

constraints. 

An improvement to the exploitation step of this methodology, named Voronoi Cell 

Adjustment, is described, implemented, and tested. An improvement in the order of 10 % 

is demonstrated when using the Voronoi Cell Adjustment method compared to the error of 

the database with no Voronoi cell adjustment. 

The scaling of the software is tested for increasing dimensions and total samples. It 

is concluded that doubling the number of dimensions will double the next sample 

calculation time for all steps; while doubling the number of samples will increase the next 

sample calculation time at most by a factor 4. 

NUDGE has been used to create a global surrogate model of XSgen, based on a 

MOX benchmark. The model generated using NUDGE shows better performance 

compared to an alternative approach. It is concluded from these results that there exists 

realistic NFC simulation use-cases where NUDGE provides a meaningful benefit to the 

accuracy of end results. 
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NUDGE aims to reduce the time and cost for a researcher studying NFCs. There 

are many research questions where alternate fuel cycles and their metrics need to be 

studied. Examples where many NFC cases need to be simulated and compared include 

studies related to material security and nonproliferation, moving to a closed fuel cycle, 

elimination of the surplus of a given nuclide or material, tracking the movement of 

materials in a fuel cycle, and evaluation of the feasibility of new reactor technologies. In 

these cases, NUDGE allows the researcher to improve the fidelity of NFC simulation 

outputs without sacrificing additional runtime during the simulations. The impact of this 

work, therefore, can manifest as a reduction of total simulations needed to find an optimal 

answer. 

It is recommended to further test NUDGE and its methodology for different black 

box functions, samples, and dimensions. The accuracy of the surrogate model under 

varying conditions can be studied to better understand the benefits and limitations of the 

methodology. In addition, the methodology can be adapted to include categorical inputs as 

well as a special treatment of samples near the edge of the domain. Since samples near the 

edge of the input domain are surrounded by fewer samples, their estimated errors tend to 

be determined to be higher. 

It is predicted that the runtime of NUDGE can be significantly improved by 

software parallelization and optimization. For users who want to utilize NUDGE for full 

simulations other than XSgen, the software interfacing framework can be generalized for 

formats other than input-output file based frameworks. The dimensionality reduction 

methods available in NUDGE can replaced with a more robust, data analysis focused 

toolkit. The Voronoi Adjustment Method can be further investigated, and the adjustment 

of Voronoi cells potentially improved. Finally, it is recommended that new methods of 

utilizing the available database (such as machine learning) be tested by replacing the 

existing interpolation tool. 

Surrogate models like NUDGE provide a good starting point to study NFCs. The 

methodology presented here does not limit the number and type of runtime simulation 

inputs, which allows users to pick inputs based on the nature of their studied problem. The 
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surrogate model can be used to quickly run any number of NFC simulations, while 

increasing the fidelity of a surrogate model can be as simple as adding more data to the 

model’s database. This work provides a methodology to select the new samples to include 

in any given database to maximize the gain from the new data.  
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6. APPENDIX 

6.1. XSgen Base Input for LWR 

import numpy as np 

from numpy import logspace 

from xsgen.nuc_track import transmute 

reactor = "0base" 

plugins = ['xsgen.pre', 'xsgen.buk'] 

solver = 'openmc+origen' 

formats = ('brightlite',) 

burn_regions = 1   

burn_time = 365*10  

time_step = 100    

burn_times = [0, 3]  

burn_times.extend(range(100, 4001, 100))  

batches = 3 

fuel_cell_radius = 0.410 

void_cell_radius = 0.4185 

clad_cell_radius = 0.475 

unit_cell_pitch  = 0.65635 * 2.0 

unit_cell_height = 10.0 

fuel_density = 10.7  # Fuel density [g/cc] 

clad_density = 5.87  # Cladding Density [g/cc] 

cool_density = 0.73  # Coolant Density [g/cc] 

flux = 3e14  

initial_heavy_metal = {     # Initial heavy metal mass fraction distribution 

    922350: 0.033, 

    922380: 0.967, 

    } 

fuel_chemical_form = {                 # Dictionary of initial fuel loading. 

    80160: 2.0, 

    "IHM": 1.0, 

    } 

k_particles   = 1000       # Number of particles to run per kcode cycle 

k_cycles      = 100       # Number of kcode cycles to run 

k_cycles_skip = 30        # Number of kcode cycles to run but not tally at the begining. 

group_structure = [1.0e-9, 10] 

openmc_group_struct = np.logspace(1, -9, 101) 

temperature = 300 

track_nucs = ["U235", "U238"] 
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6.2. XSgen Input for MOX 

import numpy as np 

from numpy import logspace 

from xsgen.nuc_track import transmute 

reactor = "moxbenchmark" 

plugins = ['xsgen.pre', 'xsgen.buk'] 

solver = 'openmc+origen' 

formats = ('brightlite',) 

burn_regions = 1 

burn_time = 440 

time_step = 20  

burn_times = [0, 1, 3]  

burn_times.extend(range(20, 460, 20)) 

batches = 3 

fuel_cell_radius = 0.410 

void_cell_radius = 0.4101 

clad_cell_radius = 0.475 

unit_cell_pitch  = 1.3127 

unit_cell_height = 10.0 

fuel_density = 10.7  # Fuel density [g/cc] 

clad_density = 5.87  # Cladding Density [g/cc] 

cool_density = 0.7245  # Coolant Density [g/cc] 

fuel_specific_power = 16.0   # Power garnered from fuel [W / g] 

initial_heavy_metal = { 

    922340: 2.5952E-7, 

    922350: 5.4287E-5, 

    922380: 2.1387E-2, 

    942380: 4.6610E-5, 

    942390: 1.0156E-3, 

    942400: 4.8255E-4, 

    942410: 1.7491E-4, 

    942420: 1.3201E-4, 

    } 

fuel_chemical_form = { 

    50100: 0.000200, 

    50110: 0.001000, 

   80160: 2.0, 

    "IHM": 1.0, 

    } 

 

k_particles   = 6000 

k_cycles      = 150        
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k_cycles_skip = 30        # Number of kcode cycles to run but not tally at the begining. 

group_structure = [1.0e-9, 10] 

openmc_group_struct = np.logspace(1, -9, 101) 

temperature = 600 

 

track_nucs = ["Ac227", 

              "Am241", 

              "AM242", 

              "BA140", 

              "C14", 

              "CM251", 

              "CS141", 

              "CS142", 

              "CS147", 

              "H1", 

              "H3", 

              "PU236", 

              "PU237", 

              "Pu238", 

              "Pu239", 

              "Pu240", 

              "Pu241", 

              "Th228", 

              "Th229", 

              "Th230", 

              "Th232", 

              "U230", 

              "U231", 

              "U232", 

              "U233", 

              "U234", 

              "U235", 

              "U236", 

              "U237", 

              "U238", 

              "U239", 

              "Zr93", 

              "ZR95", 

] 
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6.3. Placeholder Functions 

FUNCTION F1 

def f1(x, y, z): 

    x1 = 0.75 * np.exp(-0.25 * ((9 * x - 2) ** 2 + (9 * y - 2) ** 2 + (9 * z - 2) ** 2)) 

    x2 = 0.75 * np.exp(- (9 * x + 1) ** 2 / 49 - (9 * y + 1) ** 2 / 10 - (9 * z + 1) ** 2 / 10) 

    x3 = 0.50 * np.exp(-0.25 * ((9 * x - 7) ** 2 + (9 * y - 3) ** 2 + (9 * z - 5) ** 2)) 

    x4 = -0.2 * np.exp(-(9 * x - 4) ** 2 - (9 * y - 7) ** 2 - (9 * z - 5) ** 2) 

    return x1 + x2 + x3 + x4 + 1 

 

FUNCTION F2 

def f2(x, y, z): 

    return 1 / np.sqrt(1 + 2 * np.exp(-3 * (np.sqrt(x ** 2 + y ** 2 + z ** 2) - 6.7))) 

 

FUNCTION F3 

def f3(x, y): 

    return x * (1 - x) * np.cos(4 * np.pi * x) * np.sin(4 * np.pi * y ** 2) ** 2 + 1 

 

FUNCTION F4 

def f4(x, y): 

    A = np.sqrt(64 - 1 * ((x - 0.5) ** 2 + (y - 0.52) ** 2 + (z - 0.47) ** 2)) / 4 

    return A + f2(x, y)/10 + f1(x, y, z) / 75 
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GLOSSARY 

• BU(F): Burnup at fluence F [MWd/kgIHM]  

• c: the error weighing factor 

• D: number of dimensions (varied variables) in a database  

• d: dimension index, ranges [1, D] 

• df: The distance factor, used to determine the magnitude of Voronoi cell adjustment 

• DR(F): Neutron destruction rate at fluence F [neutrons/kgIHM/s/flux]  

• 𝐸(𝐩i): point pi’s share of the total estimated error 

• 𝜖𝑝: projection threshold (exploration method) 

• Estimated error: the error of the database (percent difference between the output of the 

full simulation and the surrogate model) estimated using only the data within the 

database 

• F: Fluence  

• FB: Fluence when the base case has a k-infinity of unity (exploitation method) 

• 𝑓(𝐩i): the output of pi from the full simulation 

• 𝑓(𝐩i): the interpolation operator that estimates the output of pi utilizing all the samples 

in the database 

• 𝑓(−𝑖)(𝐩j): the interpolation operator that estimates the output of 𝐩j using every point 

in the database except point i 

• Full simulation: the black box function that the surrogate model estimates 

• 𝑘𝑒𝑥𝑝𝑙𝑜𝑟𝑒: The Monte-Carlo multiplier of the exploration method 

• 𝑘𝑒𝑥𝑝𝑙𝑜𝑖𝑡: The Monte-Carlo multiplier of the exploitation method 

• N: Database size (number of samples in the database)  

• Nscreen: Number of total screening samples in a database 

• Nexplore: Number of total exploration samples in a database 

• Nexploit: Number of total exploitation samples in a database  

• P: Set of points in a database of size N, P=(p1, p2, …, pn, …, pN) 
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• pi: D-dimensional point in a database, pi=[pi
1, pi

2, …, pi
d, …, pi

D] 

• 𝐩b𝑁: Base sample, the sample with the highest rank score S in the database when the 

database has N samples  

• PR(F): Neutron production rate at fluence F [neutrons/kgIHM/s/flux] 

• r: D-dimensional candidate point input vector, r=[r1, r2, …, rd, …, rD]  

• R: number of random points used during Monte-Carlo methods  

• Real error: the error of the database (percent difference between the output of the full 

simulation and the surrogate model) determined using numerous runs of the full 

simulation  

• 𝑆(𝒑𝑖): the rank score of point pi (exploitation method)  

• 𝜃(𝐩i): the Voronoi adjustment factor of point pi 

• 𝑉(𝒑𝑖): The Voronoi cell size of point pi 
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