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This thesis considers the problem of signal reconstruction in the setting

of partial observations. We consider this in three different contexts. First,

we consider the abstract problem of determining the state of a time-varying

vector at discrete time instances, in a setting where the changes are sparse

(i.e., only a few components of the vector change at each time). Given a

collection of observers, each of which is able to provide linear mixtures of a

subset of the components, the goal is to determine the vector values at certain

desired time instants. We derive conditions on the number of measurements,

observers, and their corresponding subsets that lead to exact reconstruction

(with high probability) of the signal at the desired time instants. We then

propose an iterative algorithm that can achieve such a reconstruction, and

present simulation results to demonstrate its performance. Furthermore, we

propose an `1 relaxed heuristic and simulate its performance.
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Second, we study an application of this problem in structured wireless

networks, where the overlap between pilot signals impacts channel estimation.

Channel estimation is a critical aspect of wireless communications; thus, pi-

lot contamination can significantly reduce the system capacity. We apply the

multi-observer signal recovery framework in this setting, and develop algo-

rithms for distributed channel estimation.

Third, we study an application to haplotype assembly, where the hap-

lotype is sequence of (location, nucleotide) pairs in a chromosome that vary

over the human population. Here, the underlying signal (halpotype) can be

modeled to have binary support, and does not change in time. However, the

information about signal – multiple partially overlapping fragments (each frag-

ment associated with a different virtual observer) – is noisy and incomplete.

We design fast sequence reconstruction algorithms.
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Chapter 1

Introduction

In this thesis we explore the topic of signal reconstruction from partial

information. Detection or estimation using partial measurements is a classical

problem, and it is important due to its prevalence in a wide array of appli-

cations. On the analytical side, recovery from partial information requires

developing new tools and analysis techniques.

In sensor networks, as well as a variety of other application domains,

partial and noisy measurements are a natural phenomenon. Partial measure-

ments may be the result of geographically separated sensors taking only local

measurements of a global phenomenon. Partial measurements may also be

the consequence of the measurement approach itself, as is the case in net-

work tomography, where different measurements are influenced by only parts

of the network. We consider two different measurement or sensing regimes,

with partial information: time varying system with sparse changes and par-

tial observations; and structured sparse measurements of a still signal. In

this Chapter, we first provide an overview of the two systems and outline the

objectives of the signal reconstruction for each of the two systems. We also

provide a roadmap for the rest of this document.
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Tracking and State Reconstruction with Multiple Observers: Here we

consider the recovery of a time varying signal that undergoes sparse changes

from partial observations. Tracking a signal that changes over time is also a

classical and important problem in control, signal processing and networking.

In a comparatively new development under the moniker of compressed sensing,

new results have emerged for estimating sparse signals, from very few mea-

surements. These results have proved important in statistics, signal processing

and machine learning. However, these results do not extend to time varying

signals with sparse changes. Our problem differs from compressed sensing in

three major aspects. First, in compressed sensing each measurement is a lin-

ear combination of each element of the signal, while our measurements each

measure (different) subsets of the components. Second, in compressed sens-

ing, the signal is static, and hence each measurement is a linear combination

of the same signal. Here, in contrast, subsequent measurements may measure

a different signal, since the signal itself is dynamic. If the changes in the signal

from one time step to the next were completely arbitrary, the problem would

essentially reduce to the single-shot problem, since at each time we would be

estimating from scratch. Instead, we consider a setting of a gradually chang-

ing vector, where by gradual change, we mean that our signal changes sparsely

over time. Finally, the goal of compressed sensing is to recover the complete

sparse signal – the change vector; we are interested in resynchronization at

some time step.

A few more comments about the sparse change assumption, and our
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multiple-observer regime are in order. As mentioned, the basic structural

assumption of our problem is that the signal changes in only a few coordinates

(i.e., sparsely) from one time step to the next. Except from sparsity, there

are no additional restrictions on the change process, i.e. it can affect any of

the components of the signal and it can change the values of the components

in an arbitrary way (each component of the signal is an element in R). By

a sparse change, we mean that the number of changes per time slot is much

smaller than the number of components in the signal. The signal is measured

by a collection of observers who make partial measurements. That is, a given

observer makes a scalar measurement that represents the linear combination

of only a subset of the coefficients of the signal; this subset of coefficients

may be different from the subset corresponding to the coefficients measured

by another observer.

Another way to think of these measurements, is that each observation

corresponds to a random projection of the vector corresponding to the subset

of observed components. When dealing with partial observations, the regime

of most interest is precisely the setting where it is not possible for each indi-

vidual observer to decode its part of the signal at each point in time. That is,

collaboration is required.

We characterize the conditions under which resynchronization is possi-

ble and develop low complexity algorithms that achieve this.

Next we look into a specific application of the partial and time varying

observations: the pilot contamination problem. This is an application of mul-
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tidimensional signal recovery from limited/partial observations in structured

wireless networks, where the overlap between pilot signals impacts channel es-

timation. Channel estimation is a critical aspect of wireless communications;

thus, pilot contamination [41] can significantly reduce the system capacity. In

massive MIMO systems with time division duplex, due to the channel reci-

procity the signal can efficiently be estimated only at the base station and this

estimation can be used for both uplink and downlink communication.

We look into this system from a point of view where the coherence time

of the channel varies for different users with additional assumption that for

most of the users the coherence time is long, i.e. the users channel coefficients

change slowly in time. The sparsely changing signal in our setting is the signal

of user’s channel coefficients. The observations consists of linear mixtures of

channel impaired pilot sequences from all the users within the range of the

base station.

The formulation of estimating channel coefficients in massive MIMO

TDD systems as a recovery of time varying sparsely changing signal is novel.

Furthermore, we propose the use of non-orthogonal pilot sequences that are

assigned in a random manner, as such sequences have provenly good signal

recovery properties in the compressed sensing setting. In addition, there is no

need to manage the assignment of the pilot sequence to users, as well as no

need for base station collaboration.

We develop algorithms for pilot sequence recovery and channel esti-

mation, and simulate the performance of the massive MIMO TDD system

4



with respect to system capacity, channel estimation error and the number of

admissible users.

Still signal reconstruction from structured sparse measurement: The

second system of interest consists of a static (non-dynamic) system with partial

observations. The support of the signal and measurements is binary. Each

observation consists of inverted or direct set of observed components, and

each element is potentially erroneous. This setup corresponds to the problem

of haplotype assembly [72]. A haplotype is a sequence of (location,nucleotide)

pairs in a chromosome – these locations are the ones where the nucleotide type

differs across the population (in most locations, the nucleotide is the same

for all members of the population). We are interested in single individual

haplotyping. In this case the focus is on finding a genetic variation between

chromosomes in a single individual. The partial observations here correspond

to fragments (sub-sequences) of haplotypes which are both error prone as well

as varying in length/coverage. The goal is to reassemble the entire haplotype

from these fragments.

The goodness of the reassembled haplotype is a relative term, since

for real signals the underlying true haplotype is not available for compari-

son. Therefore, in haplotype assembly usually measuring the accuracy of the

solution is usually done through proximity measurements. One such measure-

ment is MEC (minimize error correction) score where the goal is to minimize

the number of corrections for the observations that would lead to consistent

haplotype.
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Our key observation in haplotype assembly problem is that haplotype

assembly can be viewed as a decoding a noise impaired signal. This is in a

strong contrast to the usual formulation of haplotype assembly as max cut

problem. Under this formulation, the MEC score is strongly connected to the

problem of finding sparsest error vector consistent with a linear transformation

of the observations, and corresponds to the `0 norm of the error vector.

Further, we derive a bit flipping algorithm for haplotype assembly and

a belief propagation algorithm. Both of these algorithms give competitive re-

sults when compared to max cut based algorithms. In addition, we extend

out belief propagation algorithm to polyploid case, where the number of chro-

mosomes is greater than 2. Both algorithms have low time complexity, and

belief propagation algorithm can be very easily parallelized, thus leading to

potentially O(1) execution time.

1.1 Organization

We give the summary of our work on the tracking and state reconstruc-

tion problem in the next Chapter. We first discuss the system model and then

describe our results, proposed algorithms and in the end the simulations. In

Chapter 3, we present the pilot contamination problem and our contributions.

We first show the system and communication model, and build towards bene-

fits of using the non-orthogonal pilots and exploiting the time correlation, we

end the Chapter with the simulation results. Chapter 4 introduces in detail

the problem of haplotype assembly and gives the novel approach on the hap-

6



lotype assembly through the perspective of signal decoding. We introduce the

algorithms for both diploid as polyploid case, and simulate their performance

on both simulated and real datasets. Finally, in Chapter 5 we summarize the

presented work and give possible directions for the future work.
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Chapter 2

Tracking and State Reconstruction with

Multiple Observers

2.1 Introduction

We consider a (multi-dimensional) signal that changes sparsely over

time. A collection of sensors make partial measurements – partial in that a

given measurement represents the combination of only a subset of the coef-

ficients of the signal. One sensor can get multiple measurements, while each

measurements itself is a scalar value. Note that this is markedly different from

the compressed sensing setup, where each measurement is a linear combina-

tion of each element of the signal, and moreover, because the signal is static,

each measurement is a linear combination of the same signal. Here, subse-

quent measurements may be measuring a different signal; but not arbitrarily

different, rather, one that has undergone some sparse changes.

This setting presents several specific challenges not encountered in the

standard literature. For one thing, the regime of most interest is precisely

when it is not possible for each individual sensor to decode its part of the

signal at each point in time. That is, collaboration is required. Moreover, we

are interested in understanding when a signal might be fully recoverable by
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some time T , even if it is not recoverable at intermediate points.

2.1.1 Related work

Linear dynamic system are characterized with the transition matrix,

input, observation matrix and the noise in the observation system. For track-

ing, state reconstruction and estimation of such systems the classical approach

relies on the Kalman filter [44]. In the case of Kalman filtering the input to

the system needs to have known statistics, while the optimality is derived

specifically for gaussian inputs. This makes Kalman filter inappropriate for

our setting, because our dynamics vary considerably from the standard model.

When the state of the system is known to be sparse there has been interest-

ing work based on adaptation of Kalman filtering [80, 81, 75, 46], leading to

better estimation with fewer observations. In our setting, the state of the

system changes in sparse but otherwise arbitrary manner. Moreover, the issue

at hand is not filtering out additive noise, but rather coping with only few

measurements that may not be enough to recover the trajectory itself.

Recovery of a sparse vector has recently been extensively studied via

compressed sensing [23, 22, 14, 86, 29, 15, 10, 19, 16]. Very nice recent tutorial

on the subject is available in [29]. Due to the fast expansion of the field we

apologize for not including all significant work that has been done so far.

For sparse noiseless observations of a vector the fundamental limits of the

recovery via `1 minimization are given in [23, 22]. The compressed sensing

work, however, does not typically incorporate the main elements of our model:

9



random observations of a signal that changes over time, and observations that

are partial.

Partial observations for still signals have been explored in [11, 65, 88,

8, 1]. In [11] authors introduce the concept of jointly sparse signals, and

show that partially observable signals are recoverable via compressed sensing.

The partial random observations for a still signal with noisy setup has been

explored in [65, 88] with interesting results that state that even sparse sensing

matrices can be used for successful signal recovery. This results however are

applicable in our scenario since the time-varying component is missing.

There has been some work on recovery of time-varying signals, and

development of new algorithms for this (e.g., [92, 7, 91, 74, 4]) although again,

none of these consider sparse changes over time. The work in [83, 82, 46] does

consider the sparse changes in time-varying signal, however, it also considers

an overall sparse signal which is crucial for the results to follow. The work

in [32] considers sparse signal changes, but instead of looking at the overall

dynamics, it introduces the bound that is equivalent to doing sparse recovery

at each time instance.

While the idea of using partial measurements to recover a signal that

incurs sparse changes over time seems natural, we are not aware of results that

address this problem, either on the side of fundamental system requirements

for recovery, or on the algorithmic development side. This is the topic of this

chapter.
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Contributions

We consider and formally describe the problem of recovering the final

state at time T , of a dynamic multi-dimensional signal that evolves via sparse

changes from some known initial state. A collection of observers make mea-

surements of the signal; each observer collects scalar measurements that are a

linear combination of a fixed subset of the components of the unknown vector

process. This is the case, for instance, if each observer represents a node able

to collect measurements of only those objects that are within radio range. We

make the setting precise in Section 2.2. Our contributions, then, are as follows.

• We give necessary and sufficient conditions for the single-observer set-

ting, that characterize precisely when it is possible to recover the final

state of the trajectory of the vector. That is, we characterize what is

the minimal sequence of measurements needed that is able to recover

a signal’s final state, given the sequence of changes. We note, again,

that the measurements made are not of the same vector, and hence one

cannot simply appeal to results from sparse recovery.

• We then turn to the main setting of interest: multiple observers. Again

we give a necessary and sufficient condition for when multiple observers

are able to recover the vector’s final state. That is, we characterize when

a sequence of observations is able to recover the final state of a vector,

given a sequence of changes of the vector. As one would expect, this
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depends not only on the number of measurements made, but also on the

structure of the observers.

• The results mentioned above are algorithm-independent, and character-

ize the fundamental limits of what is possible. We next turn to algo-

rithms and give an algorithm that is guaranteed to recover the signal’s

final state, if any algorithm can. Our algorithm is a natural version of a

greedy local algorithm. Our simulations show that with high probability,

our algorithm is efficient.

• We cast the problem as an `0 optimization problem, and give an `1

approximation that is computationally efficient.

2.2 System Model

The mathematical setting of our problem is as follows. We assume that

there is a signal x(t) that is known at some initial time, t0. For simplicity,

and without loss of generality, we assume we have: x(0) = 0. Our goal is

to estimate x(T ) at some final time T . The signal changes at discrete time

instances t ∈ {0, 1, 2, . . .} in a sparse manner, and a collection of observers

indexed by i ∈ {1, 2, . . . , p}, makes measurements of the signal.

We now explain in detail the change model and measurement model.
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2.2.1 Change model

Components of the signal x change in time in sparse but otherwise

arbitrary fashion. Let k1, . . . , kt be the number of changes in the signal at

time t. Then, we can write:

kt = ||x(t)− x(t− 1)||0,

where || · ||0 denotes the cardinality of the support. In this setup we do not

assume any particular distribution of changes or location of changes, nor do

we impose any further restriction on the nature of the changes. Thus, the

recoverability question has to do only with the vector (k1, . . . , kT−1).

2.2.2 Measurement model

We measure the signal x(t) through a set of observers {1, 2, . . . , p}.

Observer i is associated with a subset Oi ⊆ {1, . . . , n} of the coefficients of

the signal, and receives scalar measurements that are a linear combination of

the components in its respective subset. Note that in our current setup, this

association of a user to a subset does not change. The subsets {Oi} may be

overlapping or not. The only (natural) condition that must always be imposed,

is that their union contains all coefficients (without this, recovery would be

impossible by any means). Just as there is a sequence of changes, there is also

a sequence of measurements, that specify the number of measurements each

receiver obtains at a given time t. The setting of practical interest, which we

focus on below, is when the measurement schedule is fixed, e.g., periodic with
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some period for each observer, but the change schedule is stochastic. Then we

can ask when are we guaranteed recovery with high probability.

This setup is not about high dimensional geometric conditions such

as restricted isometry, null space properties, etc. We do need to assume,

however, that the linear measurements are appropriately in general position,

thus avoiding pathological situations. To avoid technical issues that are not at

the core of the contributions here, we simply assume that measurements are

random projections of the subset of components of x.

2.2.3 Notation:

t discrete time index, t ∈ {0, 1, . . .},
T discrete time index of final time step, T <∞,

x(t) the value of signal x at time t, x(t) ∈ Rn,

xj(t) component j of the signal x at time t, xj(t) ∈ R,

δj,t the change in the component j of signal x(t), δj,t ∈ R,

δj,t = xj(t)− xj(t− 1),
kt the number of changes at time t, kt ∈ {0, 1, . . .},
p the number of different observers,

Oi the subset of components of x(t) for observer i,

Oi ⊂ {1, 2, . . . n},
xOi

(t) signal x(t) restricted to the components in Oi,

ci,t number of measurements of Oi at t, ci,t ∈ {0, 1, . . .},

Φ(i)(t) measurement matrix of Oi, at t, size ci,t × |Oi|,
y(i)(t) measured values by Oi at time t, length ci,t,

y(i)(t) = Φ(i)(t)xOi
(t).

For component j of x we will also use the notation coordinate j of x.

2.2.4 Illustrating Example

To illustrate the system model we use the following example.
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Figure 2.1: The three panels illustrate three different change and measurement
patterns using a bipartite graph model. Nodes on the left labeled (i, t) indicate
a change in coordinate i at time t. A node (j, t) on the right indicates a
measurement at time t by observer j. The edges indicate which measurements
were captured by which observer. The edges reflect both the topology of the
measurement graph, but also causality (a measurement at time 1 cannot reflect
a change at time 2). While the number of measurements is the same in all
three panels, the measurement topology is different. In the first panel, the final
state is not recoverable. In the middle panel, the final state is recoverable, but
not the entire trajectory. In the third panel, both are recoverable.
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Example 1. Consider a simple system:

1.1x1(1) + 2.7x2(1) + 0.8x3(1) = 5.4 (2.1)

−0.3x2(2) + 2.4x3(2) = 1.2 (2.2)

−0.9x1(2) + 0.2x2(2) + 3.2x3(2) = 2.8 (2.3)

Now, this system correspond to a 3-dimensional time-varying system

with two observers with a final time being T = 2. The first observer has access

to all the components of the signal (eq. (2.1) and (2.3)), while second observer

has access only to second and third component of the signal (eq. (2.2)). The

first observer gets one observation at time instant t = 1 and one more at t = 2,

while second observer gets just one observation at time t = 2. Now we can fill

the notation with the exact values of all of the parameters:

n = 3, the dimensionality of the signal,
T = 2, the last time step

p = 2, since we have two types of equations,
O1 = {1, 2, 3}, first observer observes all components,

of x(t), (2.1), (2.3)

O2 = {2, 3}, second observer observes just,
components x2(t) and x3(t),

c1,1 = 1, number of equations for O1 at t = 1,
c2,1 = 0, number of equations for O2 at t = 1,
c1,2 = 1, number of equations for O1 at t = 2,
c2,2 = 1, number of equations for O2 at t = 2,
Φ(1)(1) = [1.1 2.7 0.8],
y(1)(1) = 5.1,
Φ(2)(2) = [0.3 2.1],
y(2)(2) = 1.2
Φ(1)(2) = [0.9 0.2 3.1],
y(1)(2) = 4.3.
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Although this gives us some information about the setup, the system

is clearly underdetermined, with 3 equations and 6 unknowns. Nevertheless,

if we know that the total number of changes in the system is low, we still

might get a solution. This is different from compressed sensing in three major

ways: first, the number of measurements is comparable to the number of

changes, second, the measurements are obtained from multiple observers whose

structure is specified by the problem, and third the measurements are causal,

i.e. measurement at time t reflects just the current value of the signal. In case

of the system in this example, if we know there were at most two changes the

system is uniquely solvable. To see this consider values of x1(1) = 0,x2(1) =

2,x3(1) = 0,x1(2) = 0,x2(2) = 2,x3(2) = 0.75

2.3 Main Results and Discussion

We are interested in two categories of results: fundamental recoverabil-

ity conditions, that characterize when any algorithm (of potentially exponen-

tial complexity) is able to recover the final state of the system and then on

the other side, algorithms that accomplish this recovery.

For a total number of changes that happened in the signal we can form

an enumerable series of hypothesis each of which considers a particular pattern

of changes, i.e. which component of the signal changes and at what time step.

Given a particular hypothesis we use a bipartite graph representation of the

changes and measurements in our algorithm and in the proofs of the main

results. The bipartite graph G(U, V,E) is defined in the following manner. If
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there the component j changes its value at time t, then (j, t) ∈ U . For each

measurements that observer i makes at time t, there will be an additional node

(i, t) in V . The edges of the graph are formed in causal way; there exists an

edge if the changed component is observed by observer i at time t and no edge

otherwise. We illustrate this representation, as well as the problem and the

associated challenges, in the following example and accompanying Figure 2.1.

Example 2. Consider three different systems of changes and observations. In

Figure 2.1, the nodes on the left of the bipartite graph represent the changes

and the times when they occur, while the nodes on the right represent the

measurements made by each observer, and the time of each measurement.

The edges encode topology and causality: they indicate which changes are

reflected in each measurement of a particular observer.

The three panels in the figure have the same number of changes and

measurements, yet different recoverability. Thus they illustrate the role of

the topology of the observers and their subsets {Oi}. In the scenario in the

first panel on the left, we have a system where even the final state is not

recoverable. This is due to the fact that for equation 1 given by the observer 1

after elimination of the third unknown value we still have two unknowns one

of which is the last value of the signal in the component 1. So, although we

can find the end values of the components 2 and 3, the end value of the signal

is left unknown.

For each change, the value of the signal at this component represents

a new unknown introduced to the system. Measurements now correspond to
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a set of linear equations in these unknowns. Recovering the entire trajectory

requires finding the values of each of these unknowns. Our main goal is to

recover only a subset of these unknowns: those that correspond to the final

value of x(t).

The middle panel illustrates the scenario in which the trajectory of the

signal is not recoverable, but the end value is. In this case we can recover all the

end values of the components, but the first change in the second component

remains unknown. The system in the right figure shows a system that is

solvable for the trajectory and end value as well.

We organize our results as follows. First, we consider the signal recov-

ery problem with only a single observer. Here, all the signal components are

observed. This illustrates the challenges introduced due to the changes over

time. We provide a result that characterizes precisely when the final value is

recoverable, given a schedule of changes and measurements. Next, we turn

to the multi-observer setting, and provide an analogous result. Finally, we

provide an algorithm that is guaranteed to recover the final value of the tra-

jectory if any algorithm is able to do so. Our results in Section 2.4 illustrate

the algorithm performance.

We turn first to the single observer setting. Intuitively all the measure-

ments gathered at some time instant are interchangeable.

Definition 1 (Correct recoverability). A time varying signal x(T ) is consid-

ered to be correctly recoverable at time T if its components are uniquely

determined.
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Proposition 1 (Recoverability of the signal). Suppose x(0) is known and

T∑
i=1

ci =
T∑
i=1

ki + 1 (2.4)

with {ci, ki} being non-negative integers.

Then x(T ) is correctly recoverable if and only if

t∑
i=1

ci ≤
t∑
i=1

ki ∀t ∈ {1, 2, . . . , T − 1}. (2.5)

Notice that this characterization amounts essentially to dimension count-

ing. However, as the example given above illustrates, the setting with multiple

observers is not quite as simple. We need the bipartite graph representation

to properly generalize this counting. In the general setting, recovery amounts

to finding a matching in a subset of the bipartite graph that corresponds to

recovery of the final state x(T ).

Theorem 2.3.1. Let V = {(i, t)|δi,t 6= 0} denote the set of changes, in (coordi-

nate,time). Let Z = {(i, t)|(i, t) ∈ V, t = arg maxs≤T{(i, s)|(i, s) ∈ V }} denote

the set of last changes for each of the changing components in the signal x(t).

Let G(V, U,E) be the bipartite graph representing changes and mea-

surements, and let Γ(Y ) be the image of a set Y ⊂ U. Then x(T ) can be

recovered if and only if:

(i) ∃X ⊂ V such that Z ⊂ X
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(ii) ∃Y ⊂ U such that Γ(Y ) = X

(iii) For bipartite subgraph G(X, Y,E ′) the Hall’s conditions [37] are satisfied

Alone this theorem is not very useful, as it requires us to know the

pattern of changes in advance. However we use it, and the importance of the

matching, to characterize conditions for recoverability that do not depend on

the specific pattern of changes, but rather only depend on the characteristics

of the set of observers.

Theorem 2.3.2. Let

ĉt = min
i∈{1,2,...,n}

p∑
j=1

cj,t1{i∈Oj} (2.6)

for any t < T . For the last time step T we define ĉT differently. Consider the

collection of measurements received at time T {cj,T} from all the Observers

j = 1, . . . , p and measurement partitions (c
(1)
j,T , cj,T − c

(1)
j,T ). Let

ĉ
(1)
T (c

(1)
1,T , . . . , c

(1)
p,T ) = min

i∈{1,...,n}

p∑
j=1

c
(1)
j,T1i∈Oj

(2.7)

be a function of measurement partitions. Now ĉT is given by:

ĉT = max{
c
(1)
1,T ,...,c

(1)
p,T : ĉ

(1)
T ≥1

} min
i∈{1,...,n}

p∑
j=1

(
cj,T − c(1)

j,T

)
1i∈Oj

. (2.8)

Suppose
T∑
s=1

ks =
T∑
s=1

ĉs. (2.9)
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Then at time T signal x(T ) is correctly recoverable if and only if

t∑
s=1

ks ≥
t∑

s=1

ĉs ∀t < T. (2.10)

The key concept that drives the proofs is merging the relaxed recovery

requirement of finding only the final state, with the need for a perfect matching.

This leads to what we call a coarsening procedure which results in a smaller

bipartite graph where finding a matching is easier. Finally in Section 2.4.2,

we propose a low-complexity approximation (based on an `1 approximation)

and empirically study its performance. In particular, we show that it com-

pares favorably to a genie-aided version of the traditional compressed sensing

algorithm that has additional side-information via explicit knowledge about

changes – how many and where these changes occur (however, our proposed

`1 approximation does not have this extra information).

2.3.1 The Breadth-Search Algorithm

Having characterized the necessary and sufficient conditions for recov-

erability of the signal at the last time step, we now provide a greedy algorithm

that is guaranteed to recover the final state if any algorithm can.

Suppose that at some time T , the signal is recoverable (by some algo-

rithm, of potentially arbitrary complexity). Our algorithm is iterative, and

each iteration has two phases: Computation and Collection (communication).

The maximum number of iterations is bounded by p, the number of observers.
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The algorithm is seeded with the local measurements that each observer has

made.

A few definitions are required. We form a graph where each observer is

a node. Observers i and j are connected by an edge in this graph if Oi ∩Oj 6=

∅. That is, an observer’s one-hop neighbors are all those observers whose

measurements sense common components. For each l = {1, 2, . . . , p} and each

Observer i, this graph induced an l−hop neighborhood, denoted by Nl(i).

Algorithm 1. While some component of the signal x(T ) is not yet decoded:

• Computation in iteration l. Each observer attempts to recover the

signal using measurements obtained in the Collection Phase of iteration

(l − 1) (i.e., measurements from observers in Nl−1(i)).

• Collection in iteration l. If computation phase for observer j was un-

successful, observer j collects all measurements from observers in Nl(i).

In words, this algorithm operates as follows. Each observer tries to

decode locally, using a brute force approach. This means that the algorithm

sequentially searches all possible change patterns i.e. all possible sets of (co-

ordinate, time) tuples, for a set which has a solution that satisfies all local

measurements collected up to time slot T . If such a set does not exist, we

conclude that it is not possible to recover the signal with just local measure-

ments. The number of candidate subsets is bounded by (nT )k, where n is
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the number of coordinates being considered by the local measurements, and

k is the total number of changes. As we do not at this stage discuss concepts

like RIP ([13]), etc., this local decoding algorithm is not efficient and its in-

efficiency is addressed by `1 approximation described in 2.3.3. Moreover, as

long as the footprint of observer (i.e., the number of coordinates measured by

each observer) is small, as well as the number of changes that happened, the

complexity of this algorithm can be manageable. Any observer that succeeds

passes its information to all observers that have any overlap in their observa-

tion subsets, i.e., its one-hop neighbors. This process terminates either with

successful recovery of the final state, or with some observers having failed to do

so. In this case, these observers receive all the measurements of their one-hop

neighbors, thus effectively obtaining a larger observation set O =
⋃
j∈Ni

Oj.

The process then repeats, and if it terminates, again the sets are enlarged.

Evidently, we have the following.

Proposition 2. If the system satisfies the conditions of Theorem 2.3.1 then the

algorithm recovers the signal with probability 1.

The proof of this proposition is immediate, since in the worst case

scenario we are able to recover the signal once we include the measurements

from all the observers.

Remark 1. The interesting question is understanding when successful recovery

does not require expanding the neighborhoods too much. We now consider a

specific model for the changes, and bound the probability that a decoding

locally (i.e., without expanding neighborhoods) is possible.
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Let Xi,t be the indicator random variable that the component i has

changed at time t. We assume that collection of Xi,t is i.i.d. over compo-

nents and time and that P (Xi,t = 1) = q, and the magnitude of change is

arbitrary. With this specific model for changes in the signal, consider any

network of observers attempting to decode the signal at some fixed time T

using Algorithm 1. Recall that in iteration l of the algorithm’s operation, an

observer i has access to the measurements from it’s l−hop neighborhood. It

follows immediately from Theorem 2.3.2 (with the graph, i.e. observers and

components, restricted to the l−hop neighborhood, Nl(i), of Observer i and

the corresponding components that influence these observers’ measurements)

that a sufficient condition for Observer i to successfully recover the signal in

a fixed iteration l ∈ {1, 2, . . . , p} is the following:

(i) For each t = 1, 2, . . . , T,

T∑
s=t

∑
r∈Nl(i)

Xr,s ≤
T∑
s=t

ĉs, (2.11)

where ĉs is defined analogous to that in Theorem 2.3.2, but with the

graph restricted to the observers in Nl(i) and the corresponding signal

components that influence any of their measurements,

(ii) Xr,s = 0 is satisfied ∀s ∈ {1, 2, . . . , T} and ∀r ∈ (Γ̃(
⋃
m∈Nl(i)

Om)/ (Γ̃(
⋃
m∈Nl−1(i) Om),

where Γ̃(·) corresponds to the set of signal components that influence any

of the measurements available to the collection of observers in its domain

(·).
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The first condition essentially means that the conditions of Theorem 2

are satisfied for the network of observers restricted to the l−hop neighbor-

hood of Observer i. The second condition is one of “usefulness” of all the

measurements: The measurements from the lth−hop neighbor of Observer i

is useful if there are no changes in any of the signal components from outside

the restricted network and that affects the measurements within the restricted

network we consider.

Now coming back to the analysis of “local” l−hop recovery, the sparse

change (Bernoulli) model along with i.i.d. changes, and given any specific

network structure, we can easily compute the probability that conditions (i)

and (ii) above are satisfied (for each of the observers), thus resulting in the

probability of correct recoverability.

Interestingly, we show through simulations, that for many natural set-

tings of interest, this algorithm does not require enlarging the observation

sets significantly, and thus presents potentially significant gains over the fully

centralized algorithm.

2.3.2 Time evolution of single observer

In the case of a single observer we look at the time evolution of the

system. In particular we are interested not just when is it possible to recover

the signal but also given a constant budget of measurements that are available

at each time step will the resulting system be able to infinitely often resyn-

chronize. So for the following analysis we assume there is a single observer
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with access to all the components of the signal, and that the number of mea-

surements available at each time step is fixed at c̄. Now, we look at a specific

change process that obeys the following assumptions.

Assumption 1. Let {Ki} be a stationary discrete time process that denotes

the number of changes at time t such that:

P
(∑t

i=sKi

t− s
− k̄ > ε

)
≤ C(ε)

(t− s)2
, for all s and t

where C(ε) is a constant that is dependent only on the value of ε and is not

a function of t. Notice that the k̄ does not need to be the mean value of K,

just a value around which the process concentrates.

Given a single observer system with the constant number of measure-

ments for each time step, i.e. c(1) = c(2) = . . . = c̄ and a change process that

satisfies the assumptions 1 we can make the following claim.

Theorem 2.3.3. Let the process {Kt} satisfy the assumptions 1. Let the num-

ber of measurements c(t) be c̄ for every t. Let τ be the inter-recovery time.

Then the expected time E[τ ] that the system will be recoverable has the fol-

lowing property:

• E[τ ] < C, if c̄ > k̄,

• E[τ ] =∞, if c̄ < k̄.

where C is a bound dependent on the change process.

What this theorem says is that large burst of changes in one time step

can be compensated with small number of changes in the following time steps.
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In particular, at each time step we are not bounded by providing enough

measurements for the maximal number of changes, but with the number of

changes around which the change process concentrates. This is sharply in

contrast with the prerequisites of a stepwise compressed sensing, that at each

point needs to adjust the the number of measurements such that it would

accommodate for the maximal number of changes, i.e. c̄ = f(max{Kt}), while

in our case we have c̄ = f(k̄).

Furthermore, if the change process concentrates around k̄ but at every

time step we only observe c̄ < k̄ measurements then eventually the number of

changes will build up too much for recovery to be possible.

Only requirement for recovery with c̄ number of measurements is that

the change process concentrates around k̄, and this is significantly milder than

asking for independence or even identical distribution of random variables Kt.

Now the probability of being in the recoverable state of the system is

given by P (recovery) ≥ 1
E[τ ]

.

2.3.3 `1 Approximation

The breadth-search algorithm although having good performance still

leads to exponential computational complexity. To deal with this problem, we

look into a simple approximation with low complexity.

As we are not interested in recovering the trajectory, but just the end

value of the signal, minimization of `0 norm of the signal subject to having

consistent measurements gives unique solution in the sense of getting unique
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value of x(T ) at the time T when the recovery is possible. Therefore, we can

obtain the solution to the equation by writing the following:

min
x(1),x(2),..,x(T )

T∑
i=1

‖x(i)− x(i− 1)‖0

subject to Φ(i)(t)xOi
(t) = y(i)(t) (2.12)

x(0) = [00 . . . 0]

As this is a `0 norm minimization, it is non-convex. So, we look into

a relaxation of `0 norm by `1 norm. This leads to a different objective of the

optimization function:

min
x(1),x(2),..,x(T )

T∑
i=1

‖x(i)− x(i− 1)‖1

subject to Φ(i)(t)xOi
(t) = y(i)(t) (2.13)

x(0) = [00 . . . 0]

Notice that although this looks like a standard compressed sensing

problem, and can in fact be rewritten as one there are major differences be-

tween this formulation and compressed sensing formulation. The most impor-

tant difference is that our goal is not recovery of the whole trajectory, but the

resynchronization with the signal. Furthermore, we do not know in advance

at what time T will the system become solvable, and, unlike compressed sens-

ing each component of the signal is not roughly observed the same amount of

time. In particular the earlier changes have more chances to be observed than
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later changes, but at the same time the later changes can completely mask the

earlier change if they happened at the same component.

In a single time step system, this corresponds to a compressed sensing

noiseless setup. It immediately follows that when provided with enough mea-

surements at each time step our formulation would reduce to the sequential

compressed sensing problem. However, this reduction only happens when the

maximum number of changes per time step is bounded by some constant K,

and if at each time step we had enough measurements to recover these K

changes.

In the existing literature for `1 norm minimization in noiseless scenario

there is no closed form for the `0/`1 equivalence threshold when consider-

ing Gaussian measurements (unlike for the case of noisy measurements with

LASSO). There is, however, a curve that follows from the combinatorial ge-

ometry and can be numerically evaluated as stated in [25]. In the case of the

sub-exponential growth of the dimensionality with respect to the number of

measurements the weak and strong asymptotic have been derived. The weak

asymptotic hold for ”almost all signals”, while strong asymptotic holds for ”all

signals”. These results are summarized in [24]:

Let δ = m/n and let ρ = k/m. Then, strong asymptotic is given by:

ρ(δ) ≈ |2e log(δ
√
π)|−1

and weak asymptotic is:

ρ(δ) ≈ |2 log(δ)|−1
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In the limit as n → ∞, if we let m = βk log(n), then β for the strong

asymptotic approaches 2e from below, while for weak asymptotic β approaches

2 from below. The week asymptotic result therefore means that in the limit

the noiseless and noisy setup lead to the recovery with the same constant.

2.4 Simulation Results

In this section we consider the performance of the combinatorial dis-

tributed algorithm and the `1 approximation.

2.4.1 Breadth-Search Algorithm Simulation

In particular we are interested in comparing the computational com-

plexity of our algorithm compared to the worst-case complexity. We consider

a natural setup motivated by sensor networks, where the partial observation

subsets are given by a sensing range. Hence we can think of the observers

as information aggregators. Given a fixed area, suppose there are n = 1, 000

signal components that must be measured, and these represent measurements

of phenomena distributed throughout the fixed area. The changes occur in

the signal uniformly at random over all the components. The probability of

change per each component is 0.0105, i.e. expected 10.5 changes in one time

step over 1000 components. The p observers are also uniformly distributed,

and they collect linear measurements of those components that fall within a

given radius r of their location. We choose the radius so that each observer

on average has log(n) components within range, and choose the number of ob-
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Figure 2.2: Example of a simulation setup; blue triangles represent the ob-
servers while red dots represent the components of the signal.

servers so that each component is within the range of at least three observers,

on average. We depict a typical realization of this process in Figure 2.2.

It is clear that our breadth-search algorithm (in Section 2.3.1) can re-

cover the final signal if any algorithm can. What is of interest here, is to inves-

tigate how much the local neighborhoods must be expanded in order to allow

recovery, i.e., what is the complexity of our algorithm for this practically mo-

tivated setting. Figure 2.3 illustrates our results. On randomly generated in-

stances, for each observer we compute the neighborhood Nli(i) that is required

(given the necessary and sufficient conditions of Theorem 2.3.1) for success of

local decoding. Recall that the breadth-search algorithm in Section 2.3.1 op-

erates iteratively: For a fixed observer j, and in iteration k, the algorithm

jointly considers the measurements available at its k hop neighbors, i.e., the

observations available at observers {r ∈ Nk(j)} and attempts to decode the
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signal x(T ) using the combinatorial procedure described in Section 2.3.1. If

it fails, it then expands the observer neighborhood by an additional hop, and

proceeds to iteration (k+ 1). Thus (in the context of this sensor example), the

observer j at iteration k has measurements containing linear mixtures from

the sensors in ∪r∈Nk(j)Or.

Our numerical experiment is conducted as follows: For each run and for

each observer j, we record Rj = |∪r∈Nk∗(j)(j)Or|, i.e., the number of sensors that

participate in decoding at observer j at the iteration k∗(j) that corresponds

to the smallest iteration when observer j in succeeds in decoding. We define

support size S = maxj Rj (for each run), and plot the associated empirical

distribution in Figure 2.3. Note that the support size is a measure of the sam-

ple complexity of the breadth-search algorithm. The maximum support size

(equal to 1, 000 here) corresponds to performing the full computation having

aggregated all the information, and not attempting any local computations.

The three curves drawn show the performance of our algorithm on 1000

random instances of our problem, for different numbers of observers. Since

our algorithm always computes the correct solution, the figure of merit here

is the support size — as mentioned, a proxy for complexity. The simulations

demonstrate that the algorithm terminates far before we approach the full

support size, and thus, as one would hope, the breadth-search algorithm 2.3.1

performs well.
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Figure 2.3: Performance of breadth-search algorithm: For various numbers of
observers, we report the empirical CDF with regard to the support size (proxy
for complexity of the recovery) based on 1,000 runs.

2.4.2 `1 Approximation

The approximation that we use is simple `0/`1 norm relaxation given

by the equations:

min
x(1),x(2),..,x(T )

T∑
i=1

‖x(i)− x(i− 1)‖1

subject to Φ(i)(t)xOi
(t) = y(i)(t) (2.14)

x(0) = [00 . . . 0]

As we mentioned before, when the number of measurements at each

time step is enough to recover all the changes that happened in the system,

the `1 approximation will result in single step recovery which is equivalent to

standard compressed sensing. This implies that the improvement over com-

pressed sensing is possible only when the average number of changes is much

smaller than the maximal number of changes.
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Figure 2.4: Comparison of algorithms based on change trajectory k1 = k, k2 =
0

We look at the performance of this approximation in specific path of

changes K1 = k and K2 = 0. This is an interesting scenario since the optimiza-

tion does not know that all the changes are happening in the first time step.

Also this particular setup can be compared to “genie aided” compressed sens-

ing. In genie-aided compressed sensing, the algorithm is given side-information

via explicit knowledge about how many changes happen, and in which time

step these occur; the genie-aided algorithm can use this information to form a

compact form of measurements that all measure the same exact changes. In

our algorithm we do not use any such thing, making it blind to the fact that

there are no changes in the second time step. Then we can compare how well

we are doing with the reference point of the standard compressed sensing. In

the plots we refer to our algorithm as CT.

First we look at the single observer scenario where the measurements

are coming from a normal distribution. The location of changes of the compo-
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nents is arbitrary, and the magnitude of the change in component i at time t

is given by sign(z) + z where z is a random variable following gaussian distri-

bution. This is done in order to avoid having component values very close to

zero. The number of measurements reported m is equal to the total number

of measurements obtained. In particular, on the figure 2.4 this means that

the number of measurements is given by m = 2c where c is the number of

measurements obtained in each time step. In the figure 2.4 we see that the

l1 approximation performs statistically equivalently to the compressed sens-

ing with the same number of measurements. This is quite interesting since

the compressed sensing version of the problem has more information about

the underlying process, in particular, in the genie-aided compressed sensing

problem the algorithm is given side-information there are no changes in the

second time-step. Also, notice that if we wanted to do stepwise compressed

sensing decoding of this problem without using the information about which

time-steps have many changes and which have close to zero changes, then we

would always need to have enough measurements to recover from the maximal

number of changes.

The figure 2.4 is obtained by looking at specific value of n = 500. Each

rectangle corresponds to the probability of recovery given 100 random runs

of the problem instances. While we kept the dimensionality fixed by varying

sparsity and number of measurements we looked at the recovery probability.

In addition to this small instance of the problem, we also looked at a slightly

bigger problem with n = 4000 repeated 200 times to get the average perfor-
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Figure 2.5: Path k1 = 5, k2 = 0, n = 4000

mance, but here we kept the sparsity fixed as well, and set to k = 5 which

is represented in the figure 2.5. From this plot we can explicitly see that

while using just the measurements from the first time step most of the time

the probability of recovery is close to zero almost always, while the probabil-

ity of recovery when using our algorithm with measurements from both time

instances is close to 1.
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Chapter 3

Mitigating Pilot Contamination with

Non-orthogonal Training and by Exploiting

Time Correlation

3.1 Introduction

We focus on massive MIMO systems where the challenge of estimating

the channel coefficients poses a key bottleneck for maximizing system through-

put. In particular, in multi-cell time division duplex (TDD) systems, the

ability to accurately estimate the channel coefficients is reduced due to the in-

terference on the training signals, otherwise known as the pilot contamination

problem. We show how to mitigate the pilot contamination problem by using

non-orthogonal pilots and by exploiting time correlation.

While in SISO systems (or standard MIMO systems with small num-

ber of antennas) channel estimation is governed by noise encountered by the

signal in the system, in massive MIMO systems, due to the large number of

antennas, the noise averages out. Ideally, noise averaging out leads to the sys-

tem capacity increasing with the increase in the number of antennas used. To

estimate the channel coefficients, special training sequences called pilots are

transmitted between the user and the base station. When the pilots transmit-

ted by different users at the same time are perfectly orthogonal their effect on
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each other cancels out, leading to the expected increase in the system capacity.

However, number of perfectly orthogonal sequences is limited by the length of

the training signal. If the channel is shared among adjacent cells, orthogonal

training sequences get reused over adjacent cells. Reuse of the training se-

quence results in interference; the channel estimation is governed not by noise

that can be averaged out, but by the legitimate signal of users in adjacent

cells. If users use the same training sequence, a.k.a. pilots, then their signals

are perfectly aligned. These aligned signals are thus persistent interference

that grows linearly with the signal strength leading to a plateau in system

capacity. This problem is well known as the problem of pilot contamination.

Figure 3.1. depicts this problem.

A related issue in massive MIMO systems is the upper bound on the

number of users that the base station can serve at any instant of time. In the

massive MIMO system, ideally we would like to serve as many users as the

number of antennas at the base station. However, for successful communica-

tion within the interval of time in which the channel stays constant (coherence

time) we need to both estimate the channel and transmit the data. This means

that the maximal number of users that can be served is a function of the co-

herence time in addition to the number of antennas at the base station. In

order to maximize the number of users in a cell the coherence time is split

equally between the training and data transfer. This means that a significant

fraction of the system capacity is used for training.

There have been several approaches suggested to mitigate/bypass both
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Figure 3.1: Pilot contamination occurs when users in the neighboring cells use
the same pilot sequence. Channel estimate is inaccurate due the interference
from the same pilot signal transmission by a user in an adjacent cell. Inaccu-
rate channel estimate, in addition to amplifying the signal with increase in the
number of antennas, amplifies the interference as well. This results in plateau
effect in the system capacity.
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of these issues; however, in most cases, the overall performance has increased

by only a small linear factor.

We mitigate pilot contamination by expanding the number of training

sequences (by allowing non-orthogonal sequences) and by exploiting the time

correlation. In high dimensional systems, it has recently been observed that

random sequence have a quasi-orthogonal behavior, meaning that their inner

product is small. Such sequences are good candidates for training signals, as

they expand the set of possible pilot signals beyond standard orthogonal ones

while limiting interference between the users. In addition, if there is time cor-

relation between the two training periods, using sparse signal recovery we can

learn the training sequence in addition to the channel coefficients and recover

the signal. These key observations allows us to pack more users over time and

enjoy the benefits of the increased capacity of massive MIMO systems.

3.2 Related work

The term pilot contamination was coined in [41], where the authors ex-

plored a time division duplex (TDD) operated multi-cell system with multiple

antennas at the base station (M) and K users equipped with single antennas.

When users in different cells use the same pilot sequence and transmit the in-

formation in the same time frame, the channel estimate at the base station is

corrupted. The analysis of the system has been done under channel reciprocity

(pilot contamination in uplink dictates performance for downlink communica-

tion) and assuming that the number of antennas at the base station is larger
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than the number of users. Furthermore, work in a massive MIMO context

(M >> K) has shown that pilot contamination effect becomes the bottleneck

in the system performance under both infinite dimensional and finite dimen-

sional channel [60, 64, 35]. In this setup the effect of precoding matrix design

[42, 6] and effect of shifting the pilots [5] have been investigated. In addition

to aforementioned work, there has been some work when the user terminals

are equipped with larger number of antennas [39, 40]. On a different note,

non orthogonal sequences have been used in literature in other contexts, for

example in CDMA code selection [49, 85].

In addition, recently there has been some work on pilot decontamina-

tion for massive MIMO networks where the coordination between the base

stations is allowed [63, 90], however, in addition to the coordination required

at the base station, these works rely on nonlinear channel estimation methods

that could significantly reduce performance in real systems.

3.3 System model

We consider a time slotted, multi-cell cellular system with B base sta-

tions numbered 1, 2, . . . , B. Each base station has M antennas. Every base

station b can serve up to U users. The number of users per base station is

assumed to be always less than the number of antennas at the base station

(U < M ; this is a standard massive MIMO assumption).

The propagation model between users and base station includes path

loss, shadowing and fading effects. Path loss and shadowing effects change
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Figure 3.2: Propagation between the user u and the antenna m at the base
station b consists of antenna agnostic path loss coefficient βu,b and the antenna
specific fading coefficient hu,b,m.

slowly with time and are invariant of the specific antenna at the base station;

we model them with a factor that is a function of the user and the base

station. The fading effects change with the coherence time. The propagation

model between user u and antenna m of base station b is given by
√
βu,bhu,b,m.

Coefficients βu,b are a function of the distance between the base station and

user, while hu,b,m follow complex normal distribution CN(0, 1) and represent

fading effects. In our model we estimate both β and h coefficients. The

propagation model is given in Figure 3.2.

In time division duplex (TDD), channel reciprocity holds, meaning the

channel coefficients
√
βu,bhu,b,m are the same for downlink and uplink commu-

nication. This assumption is important since channel estimation for massive

MIMO is feasible only at the base station.

Multi-cell massive MIMO TDD systems are known to lead to pilot con-

tamination [42]. The transmission in TDD systems needs to be synchronized,

43



which in commonly deployed systems means that all users are transmitting

their pilots in the same time. Due to the multi-cell system assumption, fre-

quency band will get reused (with appropriate reuse factor), leading to the

interference on the pilot signals.

The system we consider is a time slotted system, and all the mentioned

parameters are a function of time. The time component of our system is

important, since in this work we exploit the time correlation between two

time instants. In addition, the number of users at each base station is also

time varying. We assume orthogonal frequency division multiplex (OFDM)

operation, and the granularity of time is set to the duration of one OFDM

packet.

Typically, the length of a packet is predetermined by the coherence

time of the system. The coherence time is the interval of time during which

the channel can be assume to be fixed. In our study, we assume that the

coherence time is large with the respect to a time slot. Thus, we assume

that channel coefficients h do not necessarily change from one time instant to

another, creating an opportunity to learn them and exploit that knowledge

over multiple time intervals.

Each packet contains a training signal. The training signal consists of

a sequence of S symbols. We say that the sth training symbol is at a location

s. This is represented in Figure 3.3.A user’s pilot sequence is simply a subset

of these S locations, i.e. it sends energy in the chosen locations and nothing

outside the selected subset. In order to keep the notation clean, unless it is
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Figure 3.3: The OFDM packets are exchanged between the users and base
station. Each packet has reserved space for the training, in the Figure we see
12 locations that serve as training. Note that the location of the training is
arbitrary, thou we depicted it in the beginning of the packet. The time index
shows that each time interval we are dealing with a separate OFDM packet.

necessary to the meaning of the equation we leave out the time index.

The noise is modeled as AWGN and we write wb,m,s to denote the noise

received at antenna m of base station b at training location s. Statistically,

the noise follows a complex normal distribution CN(0, σ).

We assume that the transmission is over a flat channel. This in general

is not true in real systems, however, if we restrict our analysis to a single

subcarrier, the assumption of the flat channel holds and the results can be

reproduced for each subcarrier separately.

3.4 Communication model

For uplink communication, a user first sends the pilot sequence and

then its data. The base station uses the pilot sequence to estimate the channel
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coefficients and decode the data.

Downlink communication operates in two phases: uplink channel train-

ing and downlink data transmission. During the uplink channel training phase

users transmit pilots that are subsequently used at the base station for obtain-

ing channel estimates. From the channel estimates the base station forms a

precoding matrix and sends the data back to the user. This way the need for

channel estimation at the end user is removed. The same method can be used

for uplink data transmission where the pilots are used for channel estimation

so that interference cancelation can be performed at the base station. This is

a standard setup for time division duplex massive MIMO systems [79].

3.4.1 Uplink training

At the beginning of each time interval t, all users transmit their training

sequences. The length of the sequence is given by S, and we enumerate all the

training locations s as {1, 2, . . . , S}.

Each user u chooses in a random way a set S(u), such that S(u) is a

subset of cardinality k < S from the set {1, 2, . . . , S}. Now, we can write the

received signal at the training location s at the base station b, at the antenna

m as:

yb,s,m =
∑
u∈U

√
βu,bhu,b,m1{s∈S(u)} + wb,m,s. (3.1)

If we write this in vector form aggregating over the slots we get the
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following equation:

yb,m = Ψ
√

(Db)hb,m + wb,s, (3.2)

where matrix Ψ aggregates all pilot sequences Ψs,u = 1{s∈S(u)}, matrix Db is a

diagonal matrix of path loss, Db = diag[β1,b . . . βU,b], and hb,m is the channel

coefficient vector ordered to correspond to the users.

We show in the next section how to find the sets S(u) and parameters

βu,b. For now, we assume that those parameters are known at the base station.

The high level problem is to simultaneously determine three sets of

unknowns at each base station: S(u) for each user, {βu,b} and the channel

coefficients h.

The goal is to estimate channel coefficients from a linear system cor-

rupted with Gaussian noise. As the received vector is jointly Gaussian with

the sent vector, the optimal MMSE estimator is a linear MMSE estimator

([43]):

ĥb,m =
√

DbΨ
† (ΨDbΨ† + σI

)−1
yb,m (3.3)

This follows from standard results from statistics and signal processing.

3.4.2 Downlink transmission

For downlink communication we use linear precoding. The vector qb

is a Ub long signal sent from the base station b that gets multiplied with the

precoding matrix Ab = f(ĥ) with dimensions M × Ub. The received signal at

user u is given by:
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xu =
B∑
b=1

M∑
m=1

√
βu,bhu,b,mab,mqb + zu, (3.4)

where ab,m is row m of precoding matrix Ab, and zu is Gaussian noise.

3.4.3 Achievable rates with linear precoding

In this section we derive upper bound on the achievable rates with lin-

ear precoding under pilot contamination. We restrict our attention to linear

precoding methods that satisfy the average power constraint at the base sta-

tion. Average power constraints are defined as E[qb] = 0, E[qbq
†
b ] = I and

Tr[A†bAb] = 1, i.e., the precoding should be zero mean, uncorrelated across

the antennas and the average power across all the antennas should be 1.

We derive an expression for the achievable rates, following the method

suggested in [59] and used in [42]. First we change the received signal form

into:

xu =
B∑
b=1

U(t)∑
j=1

gju,bqb,j + zu

=
B∑
b=1

E
[
guu,b
]
qb,u +

B∑
b=1

[
guu,b − E

[
guu,b
]]
qb,u +

B∑
b=1

∑
j 6=u

gju,bqb,j + zu(3.5)

where gju,b =
√
βu,bh

T
u,bab,j, and ab,j is the jth column of precoding matrix M .

We split this signal into expected signal and effective noise:

z′u =
B∑
b=1

[
guu,b − E

[
guu,b
]]
qb,u +

B∑
b=1

∑
j 6=u

gju,bqb,j + zu
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Effective noise in this term aggregates the effects of interference and

signal variance in addition to the received noise.

The effective noise term, z′u, is uncorrelated with the signal. In addition

qb,u is independent of all qi,j such that (b, u) 6= (i, j) and the signals are in-

dependent of the precoding matrix. Independent Gaussian noise is the worst

case noise distribution for uncorrelated noise [38], for which the achievable

rates are:

Ru = C

 ∑B
b=1

∣∣E [guu,b]∣∣2
σ +

∑B
b=1

(
Var{guu,b}+

∑
j 6=u E

[∣∣gju,b∣∣2])
 ,

where C(x) = log2(1 + x).

This expression allows for the signal transmission via multiple base

stations to the user, allowing for network MIMO mode of communication.

For the setting of communication of a user with a dedicated base sta-

tion, i.e., user u has a dedicated base station b(u), we rewrite the achievable

rates for user u as:

Ru = C


∣∣∣E [guu,b(u)

]∣∣∣2
σ +

(
Var{guu,b(u)}+

∑
j 6=u E

[∣∣∣gju,b(j)∣∣∣2])
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Figure 3.4: Example of pilot signal for a user. Each pilot signal consists
of sending the signal on k locations out of S possible locations, and in this
example k = 6 and S = 12. The pilot signal is fully defined by the locations
1, 2, 5, 7, 9, 12 at which the signal is transmitted. The number of different pilot
sequences for this example is 924 as compared to 12 orthogonal sequences.

3.5 Pilot Sequence Design

Traditionally pilot sequences are orthogonal; instead we look into non-

orthogonal pilot sequence design. In particular, we look into pilot sequences

such that exactly k out of possible S locations are transmitting unit power

signal. A pilot sequence is defined with the subset of the locations on which

signal is sent. Each user simply chooses k random slots out of the S possible

ones; thus for large value of S their inner product will be small. This is

presented in Figure 3.4.

Each user picks the pilot sequence without coordination. This is in

contrast with the traditional pilot sequence selection where the user through

a separate signaling channel through which a pilot sequence is assigned to the
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user.

The signal received signal at the antenna m, at base station b, at pilot

location s is:

yb,s,m =
∑
u

√
βu,bhu,b,m1{s∈S(u)} + wb,s,m.

Notice that we sum over all the users u in the system, including the

users that are assigned to different base stations.

Statistically, yb,s,m is a zero mean random variable following a gaussian

zero mean distribution with variance
∑

u=1 βu,b1{s∈S(u)} + σ.

3.6 Time varying behavior

We look at the time evolution of our system. In particular we want

to see if we can benefit from the time correlation of the channel coefficients.

Specifically, we are interested in a setting where the channel coefficients for any

fixed user changes infrequently over consecutive time slots. his corresponds to

a large coherence time with respect to an OFDM time slot.

3.6.1 Uplink training

When sending training signals, the received signal at base station b in

time slot t at pilot location s is given by:

yb,s,m(t) =
∑
u∈U(t)

√
βu,bhu,b,m(t)1{s∈S(u)}(t) + wb,m,s(t). (3.6)
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For the next time step we can write:

yb,s,m(t+ 1) =
∑
u∈U(t)

√
βu,bhu,b,m(t)1{s∈S(u)}

−
∑

u∈U−(t+1)

√
βu,bhu,b,m1{s∈S(u)}

+
∑

u∈U+(t+1)

√
βu,bhu,b,m1{s∈S(u)} + wb,m,s(t+ 1)

=
∑
u∈U(t)

√
βu,bhu,b,m1{s∈S(u)}

+
∑

u∈∆U(t+1)

√
βu,bhu,b,m1{s∈S(u)} + wb,m,s(t+ 1).

In the equation above, U−(t+1) is the set of all users who were present

in time instant t but have left the system by time t+ 1, as well as those users

whose channel coefficients changed between time t and t+ 1. Set U+(t+ 1) is

the set of new users, i.e., the users that were not present at time t, but are in

the system at time t+ 1. Finally, the set ∆U(t+ 1) is the set of all users that

changed in the system.

Now, expanding the system up to the final time T :

yb,s,m(T ) =
∑
u∈U(0)

√
βu,bhu,b1{s∈S(u)} +

T∑
t=1

∑
u∈∆U(t)

√
βu,bhu,b1{s∈S(u)} + wb,m,s(T ).

Notice that out of this representation we can write the recursive equa-

tion for the system:

yb,s,m(t+ 1) = yb,s,m(t) +
∑

u∈∆U(t+1)

√
βu,bhu,b1{s∈S(u)} + wb,m,s(t+ 1)− wb,m,s(t),
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or, more clearly:

∆yb,s,m(t+ 1) =
∑

u∈∆U(t+1)

√
βu,bhu,b1{s∈S(u)} + w′b,m,s(t+ 1),

where w′ has variance 2σ.

The uplink training signal, written in the matrix form is:

∆yb,m(t) = Ψ(t)
√

(Db(t))∆hb,m(t) + ∆wb,s(t), (3.7)

where matrix Db is the matrix diag[β1,b . . . β∆U(t),b] for all the users, Ψ(t)

is an S × ∆U(t) matrix with elements Ψs,u(t) = 1{s∈S(u)}, ∆yb,m(t) is the

difference of the received signals at time t and time t − 1 arranged by the

training locations, and ∆hb,m(t) are channel coefficients arranged by the new

users. Finally, ∆wb,s(t) is the noise vector in the system, with variance 2σ.

3.7 Algorithms

In this section, we describe three channel estimation related algorithms.

All algorithms are executed at the base station. They focus on finding the

unknowns in the system: the users u in the change set, the pilot sequence

S(u) and path loss coefficients βu,b and corresponding fading coefficients h.

The first algorithm, pilot signal recovery algorithm, jointly recovers the pilot

sequence S(u) and the path loss coefficients βu,b. The second one, channel

estimation algorithm, uses that information to recover the fading coefficients h.

The last algorithm combines the results of the first two algorithms to provide

tracking of the changes in the system as users are entering the system, leaving
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the system or their coefficients are changing. While the channel estimation

algorithm is simply the standard MMSE algorithm which is well known and

widely used for channel estimation [?], the pilot sequence recovery algorithm

and the user tracking algorithms are novel in this context.

3.7.1 Pilot signal recovery

For pilot signal recovery we focus on the signal received at the pilot

locations. The signal yb,s,m is the signal received at the antenna m of the base

station b at the pilot location s. The received signal yb,s,m is zero mean, with

the variance that is a function of the users transmitting at the pilot location s

in the system. To simplify the notation we drop the time index. The average

power of the received signal (averaged over the receive antennas) is:

γb,s =
1

M

M∑
m=1

(yb,s,m)2 =
1

M

M∑
m=1

 ∑
u∈U(t)

√
βu,bhu,b,m1{s∈S(u)} + wb,s,m

2

.

(3.8)

Signal γb,s is statistically following a scaled χ2-distribution with M degrees of

freedom. The expected value of the signal γb,s is:

E[γb,s] =

U(t)∑
u=1

βu,b1{s∈S(u)} + σ.

Further, the variance of the signal γb,s is reducing towards zero with the in-

crease in the number of antennas (follows directly from SLLN).

For each base station b, signals γb,s, received at all the pilot locations s

form the input to the pilot recovery algorithm.
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We design a simple and fast algorithm inspired by orthogonal matching

pursuit (OMP) algorithm [67]. The OMP algorithm is often used to recover

a high dimensional sparse signal x from a series of measurements y when we

know the matrix M such that Mx = y and has provenly good sparse signal

recovery properties [78, 77]. It is an iterative algorithm that at each iteration

tries to find a column of M that is most aligned with the residual signal.

Although theoretical results for this algorithm are not as tight as for the `1

norm minimization, in practice it has been observed to perform very well in

terms of time and accuracy of the solution.

For pilot signal recovery, matrix M is a matrix with columns such that

the exactly k of them are set to 1 and the rest are set to 0. In addition, values

γb,s are all positive numbers, due to the aggregation procedure. The algorithm

1 describes the signal recovery. Notice that choosing the indices of largest

k values of the signal is equivalent to finding the max inner product of the

residual signal with the columns of matrix M .

Although it seams different from the standard OMP algorithm, our

algorithm is different only in one point. Instead of doing a projection of the

signal to the selected pilots, at each iteration we define the value of the signal

as the minimum value over all the components. We do this since the path loss

coefficients are always positive and we want to maintain the positivity of all

the residual signals, which projection does not guarantee to preserve.
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Algorithm 1 Pilot signal recovery

1: procedure DetectUsers
2: Y ← Received Signal
3: γ ← Avg Power Of Y
4: Ψ0 ← []
5: β0 ← []
6: r0 ← γ Residual signal
7: i← 1
8: repeat While there are new users
9: v← Indices of the k max values of ri−1.

10: Ψi ← [Ψi−1; v] Update pilot sequences
11: βi ← [βi−1,minv(ri−1)] Update shadowing coefficients
12: ri ← y− < Iiβi Update residual value
13: i← i+ 1
14: until (i > Max Users) or ‖ri−1‖1 ≤ ε
15: end procedure

3.7.2 Channel estimation

Channel estimation is done at the base station, and channel coefficients

are used for forming a precoding matrix. For a linear system corrupted with

AWGN noise, it is well known that linear MMSE estimator is optimal [43].

The MMSE estimator uses the knowledge of exact pilot sequence as well as

shadowing coefficients. However, we only have the estimated values of D̃b and

pilot sequence, Ψ̃. The estimator that we use is:

ĥm =
√

D̃Ψ̃†
(
Ψ̃D̃Ψ̃† + σI

)−1

ym (3.9)

3.7.3 Tracking user change

In the time varying system there are three events that can happen with

users: new user can come in the system, old user can leave the system and the
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Algorithm 2 Channel estimation

1: procedure EstimateChannel
2: Ψ← Estimated pilot sequences
3: D← diag[β] Estimated shadowing coefficients
4: m← 1 For each antenna at the BS
5: repeat
6: ym ← Received training vector at antenna m

7: ĥm ←
√

DΨ†
(
ΨDΨ† + σI

)−1
ym

8: m← m+ 1
9: until m > Number of antennas

10: end procedure

user channel can change. All this changes are reflected by the pilot sequence

in the system. If a user enters a system a new pilot sequence is present, if

the user leaves the system, the pilot sequence is absent from the training, and

finally if the user’s channel changes, the pilot sequence persists with different

coefficients. We drop the index indicating the base station, as this calculation

is local for each base station. At times we also drop the index indicating the

user when the user is not changing.

In the section 3.6 we described the time varying system. To recap, we

look at the signal ∆Y(t + 1) from which we estimate the pilot sequences for

users Ψ(t), path loss coefficients β̂ and the fading coefficients h for the users

in the change set.

We identify the user through the pilot sequence. In order to do so we

use algorithm 3 at each base station. The change signal ∆Y(t) is the change

between what we would expect the signal to look like if all users and channel

coefficients stay the same (Ỹ(t− 1)) and the received signal.
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Algorithm 3 User recovery and estimation

1: procedure RecoverUsers
2: Y(0)← 0
3: Ψ(0)← []
4: β(0)← []
5: t← 1 For each time step
6: repeat
7: Y(t)← Received signal at time t
8: ∆Y(t)← Y(t)− Ỹ(t− 1)
9: ∆Ψ(t),∆β(t)← DetectUsers(∆Y(t))

10: ∆h← EstimateChannel(∆Ψ(t),∆β(t),∆Y(t))
11: u← 1 For each pilot sequence in Ψ(t− 1)
12: repeat
13: if (There is u1 such that ∆Ψu1(t) = Ψu(t− 1)) then
14: if (‖

√
∆βu1(t)∆hu1(t) +

√
βu(t− 1)hu(t− 1)‖ ≥ ε) then

15: β(t),h(t)← UpdateCoefficients(β,h,∆βu1(t),∆hu(t))
16: else
17: User is no longer present, do not update
18: end if
19: end if
20: u← u+ 1
21: until u > ‖β(t− 1)‖0

22: u← 1 For each new pilot sequence
23: repeat
24: if (There is no u1 such that ∈ Ψu1(t− 1) = ∆Ψu(t)) then
25: β(t),h(t)← AddCoefficients(β,h,∆βu(t),∆hu(t))
26: end if
27: u← u+ 1
28: until u > ‖∆β(t− 1)‖0

29: t← t+ 1 Next time interval
30: until
31: end procedure
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Whenever we detect the existing pilot sequence in the change signal,

we assume that some event has occurred for that user. There are two possible

outcomes: the user left the system, or the user’s channel coefficients changed.

We detect the event that the user has left the system when the new estimate

of the channel coefficients are canceling the known channel coefficients:

‖
√
β(t− 1)h(t− 1) +

√
∆β(t)∆h(t)‖ < ε

If the new channel coefficients are not canceling the existing coefficients,

then we need to combine them into a new estimate of the channel coefficients

for the user. As the parameter β corresponds to the average power of the

received signal, we get the new estimate of coefficient β by combining the

power of the expected signal with the change signal:

β(t) =
1

M

M∑
m=1

∥∥∥√β(t− 1)hm(t− 1) +
√

∆β(t)∆hm(t)
∥∥∥2

.

We combine the fading coefficients into a new estimate in the following

way:

hm(t) =
1√
β(t)

(√
β(t− 1)hm(t− 1) +

√
∆β(t)∆hm(t)

)
Notice that this just normalizes the resulting channel coefficients.
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If we detect a new pilot sequence in the change signal, we assume

a new user entered the system at this time step. For new users, there are

no previously known channel coefficients. The channel estimates are then

trivially set to the estimated channel coefficients corresponding to the new

pilot sequence in the change signal:

β(t) = ∆β(t), hm(t) = ∆hm(t).

3.8 Novelty of the approach

The two key novelties in the communication system that we introduce

are: (i) reusing the estimated channel coefficients when there is a strong time

correlation, and (ii) extending the number of available pilot sequences to non-

orthogonal ones.

Now, as different users have different coherence times, at each time step

we do the channel estimation on the change signal. When the user coefficients

stay same, the change signal consists of noise. When users enter, leave or

change the coefficients, the change signal contains that information in form of

the mixture of appropriate pilot sequences received at the base station.

With exploiting the time correlation, the management of the orthogonal

pilot sequence assignment to users becomes more difficult to solve. This is

due to the pilot contamination, where interfering users in neighboring cells

shouldn’t be getting the same sequence in order to avoid pilot contamination.
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Such an assignment is equivalent to graph coloring problem on the interference

graph. Here the number of pilot sequences is the number of colors, making

the pilot sequence management NP -complete problem. An advantage of our

algorithm lies in the simplification of the management by resorting to the

semi-orthogonal pilot sequences. The users pick the pilot sequence uniformly

at random, and due to the size of the set of admissible pilot sequences, the

probability of reusing the same sequence in neighboring cell is low.

3.9 Simulations results and Discussion

In this section we show experimental evidence for the communication

model described. We focus on the following properties of the system: (i) Sum

rate performance, (ii) Accuracy of the recovered channel coefficients, and (iii)

Number of users that we can pack in the system. Each of the above measures

of performance is examined in detail in separate subsections.

3.9.1 Sum rate performance

For the sum rate performance, we compare of our system with the

following systems:

• Genie aided system: The channel coefficients for each user, base sta-

tion pair are perfectly recovered at the base station.

• Orthogonal pilots: Each user picks random orthogonal pilots for trans-

mission. The orthogonal pilot sequences are constructed from the Walsh-
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Hadamard matrix [61]. The channel coefficients hu,b,m for each user, base

station pair are estimated using MMSE with known values of coefficients

βu,b.

We look at the system with 16 pilot locations. The number of base

stations is fixed to 7, the number of users in the system is in the set {4, 8, 12}.

The number of antennas at the base stations is varied by steps of 5 from 5 to

50.

Our system is denoted as the non-orthogonal pilot system. Each user

picks a pilot sequence uniformly at random over all the possible pilot sequences

with signal on exactly 4 locations out of 16.

For each combination of simulation parameters we first identify the

schedule, i.e. which users should transmit the data so that the sum rate is

optimal under the genie aided system. Next, we compare the sum rate achiev-

able by the genie aided system, the sum rate under the estimated channels

with orthogonal pilots, as well as the sum rate with the estimated channels

and non-orthogonal pilots.

We repeat the experiments 500 times for each combination of simula-

tion parameters, with different geographical placement of the users (therefore

different parameters βu,b). The reported sum rate is the average sum rate.

The results are given in Figure 3.5. As we can see under optimal scheduling,

both orthogonal and non-orthogonal pilots achieve sum rate comparable to the

genie aided system for the reported number of users. The gap is the largest
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Figure 3.5: Comparisons of the sum rate performance for three different sys-
tems: the genie aided system, the system with orthogonal pilots and the system
with non-orthogonal pilots.

when there are 12 users in the system.

3.9.2 Recovery of the non-orthogonal pilots in single time step

Both Figure 3.6 and Figure 3.7 show the probability of accurate recov-

ery of channel coefficients of the users that are changing at a single time step.

The setup of the experiment is as follows. Number of pilot locations is set to

20. Number of antennas at the base stations is fixed to 50. Number of base

stations is growing from 1 till 104. Configuration of base stations is hexagonal.

Number of users that are arriving into the system grows from 1 till 100. Users
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Figure 3.6: Percentage of users in the system, whose all channel coefficients
are recovered with less then 10% of an error. We vary the number of users
and the number of base stations. We can notice a linear trend, showing that
base stations recover for high percentage of users their corresponding channel
coefficients within the 10% error margin.

are placed uniformly at random on the unit square. The coefficients βu,b are

determined by the distance of the user from the base station, following the

path loss model. The path loss exponent is set to 3.8 which corresponds to the

path loss of lossy environment. The noise floor is set to −90dB. In the setup

users interfere with users in the immediately neighboring cells. Each new user

picks 5 pilot locations uniformly at random, and sends the uplink training.

The base station finds the coefficients γ:

γb,s =
1

M

M∑
m=1

(yb,s,m)2 =
M∑
m=1

 ∑
u∈U(t)

√
βu,bhu,b,m1{s∈S(u)} + wb,s,m

2

We use our OMP inspired algorithm, that at each step identifies 5

largest components of the residual signal as the pilot sequence and sets the
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Figure 3.7: Percentage of users in the system, whose mean channel coefficient
estimation error is less then 10%. We vary the number of users and the number
of base stations. We can notice a linear trend, showing that base stations
recover for high percentage of users their corresponding channel within mean
error less than 10% .

corresponding path loss parameter β to the smallest value of those components.

Channel estimates hu,b,m are recovered afterwards with the MMSE es-

timator.

In Figure 3.6 we plot the percentage of users whose worst channel co-

efficient (over all antennas) is within 10% of the true channel coefficient. Sim-

ilarly, in Figure 3.7 we see the percentage of users with average estimation

error within 10% of the real channel coefficients.

3.9.3 Time varying behavior of admitted users

Lastly, we look into the system that is updating the channel coefficients

for the users who are leaving the system, and new users who are entering the
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system.

In this setup we look at four different systems:

• Genie aided system: The channel coefficients for each user, base sta-

tion pair are perfectly known at the base station, therefore the arrival or

departure of a user is always recoverable.

• Random orthogonal pilots: Each user picks random orthogonal pilots

for transmission. If there is already a user at the same base station that

is using the same pilot sequence the new user cannot be admitted into

the system.

• Orthogonal aligned pilots: Each user checks if the base station has

a free orthogonal pilot sequence. If there is such sequence, user claims

it and uses it until it leaves. If there is no such sequence, the user is not

admitted into the system.

• Non-orthogonal pilots: Each user picks a random non-orthogonal

pilot sequence. The user is admitted into the system if it uses a distinct

pilot sequence from all other users in the cell, and it recovers the channel

coefficients within 10% of the real channel coefficients.

Notice, that the number of orthogonal sequences is always set to the

number of pilot locations S, while the number of non-orthogonal sequences

can be polynomial in S.
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The comparison of the systems in terms of admissible users is given in

Figure 3.8. The setup details are the following. There are 16 pilot location,

S = 16. At the initial time step all base stations have 16 users associated with

them, with users in the same cell having distinct pilot sequences. The average

change in the number of users at each time step 0.4 users per base station

(actual values are random, following Poisson distribution). On average, half

of these users are leaving system while half are entering the system. Arriving

users are places uniformly over the coverage of all base stations. There are

S2 = 256 non-orthogonal pilot sequences. We run the experiment 200 times

for each of the 300 time steps and average the results over all realizations per

each time step. What we can see is that in slowly changing system, usage of

non-orthogonal pilots helps results in higher number of admitted users.

3.10 Conclusion

In Time Division Duplex massive MIMO systems, channel estimation

is an important bottleneck for maximizing throughput of the system. In par-

ticular, the errors in the channel estimation that are a result of pilot sequence

reuse have dominant effect on the SNR of the transmitted/received signal. In

order to improve on the channel estimation we exploit the time correlation

and present a new way of using non-orthogonal pilots in order to recover the

channel coefficients.

We show empirical evidence in favor of feasibility of this communica-

tion model in terms of accurate channel estimation, increased sum rate perfor-
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Figure 3.8: The number of admissible users in the system.

mance, and the increase in the number of users that can be admitted in slowly

time varying system.
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Chapter 4

Decoding Genetic Variations:

Communications-Inspired Haplotype

Assembly

4.1 Introduction

Recent advancements in high-throughput DNA sequencing [70, 36, 58,

71] have enabled fast and affordable re-sequencing of individual genomes and

hence opened up the possibility of conducting routine tests of genetic varia-

tions. Identification and study of such variations helps reveal susceptibility

to genetic and complex diseases, and may lead to the development of person-

alized treatment plans adjusted to individual genetic codes [53, 84, 20, 30].

Majority of chromosome pairs in diploid organisms, including humans, are ho-

mologous – they carry fundamentally the same type of information and are

structurally similar but not identical. A common variation among chromo-

somes in a homologous pair is single nucleotide polymorphisms (SNPs), i.e.,

occurrence of different nucleotides in the corresponding locations on the chro-

mosomes. Variations between chromosomes are fully specified by haplotypes,

ordered sequences of SNPs associated with each of the chromosomes. 1

1The work in this chapter recently appears in [68].
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To assemble haplotypes of an individual organism, we may rely on

high-throughput DNA sequencing platforms which oversample the DNA se-

quence to create a library of overlapping reads. The reads are relatively short

– typically, on the order of hundreds of nucleotides. Paired-end reads link

genome fragments that are large distances apart (hundreds to thousands of

bases) by having inserts of approximately known lengths that separate two

reads. To provide information that can be used to assemble haplotypes, a pair

of linked reads must cover more than one SNP location. If sequencing were

not affected by errors and the subsequent SNP and genotype calling steps were

free of any uncertainties, haplotype assembly for diploid organisms would be

straightforward and could be reduced to separating reads into two subgroups

– one for each haplotype in a pair. In the realistic case of having erroneous

data, such classification necessarily results in subgroups that contain reads

with conflicting information. In literature, haplotype assembly has led to sev-

eral optimization problems, most of them attempting to minimize the number

of transformations of the data set needed to make the reads consistent with

having originated from one of the chromosomes [73]. In particular, it mo-

tivated the use of the minimum fragment removal, minimum edge removal,

minimum SNP removal, and minimum error correction (MEC) optimization

criteria. The MEC criterion, which attracted the most attention in recent

years and is known to be NP-hard [57], is considered in this chapter. Various

methods for doing haplotype assembly by optimizing the MEC criterion have

been developed. The optimal yet computationally intensive branch-and-bound
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scheme was proposed in [87]. As an alternative, several heuristic algorithms

that trade off accuracy for speed have been proposed [87, 17, 56, 55, 47, 48, 54].

More recent methods include HapCompass [3] and the widely used HapCut [9]

algorithm.

Our key observation presented in this chapter has been that the MEC

formulation of the haplotype assembly problem is identical to the task of de-

ciphering a coded message transmitted over a noisy communication channel

[21, 69]. Decoding of noisy messages has been extensively studied in commu-

nication theory over the last several decades [31, 50, 51, 52, 62]. Exploiting

the aforementioned connection, we first propose a haplotype assembly method

that relies on the bit-flipping algorithm originally developed in the context of

decoding low-density parity check codes [31]. We then design a belief propa-

gation algorithm that provides higher accuracy than the bit-flipping scheme

at the cost of a slight increase in computational complexity. When tested on

the 1000 Genomes Project and Fosmid [28] data sets, the proposed methods

compare favorably with HapCut and HapCompass while being significantly

faster.

Beside diploids, high-throughput sequencing has enabled studies of ge-

netic variations in polyploid organisms which have k > 2 chromosomes. Hap-

lotype assembly for polyploids is considerably more challenging and requires

larger coverage to enable separation of the reads. Existing prior work on hap-

lotype assembly for polyploids includes HapCompass [3] and HapTree [12]. We

extend our belief propagation algorithm to the assembly of polyploid haplo-
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types and demonstrate in simulation studies that it significantly outperform

HapCompass.

The remainder of the chapter is organized as follows. We start by

considering haplotype assembly for diploids and introduce the system model

and problem formulation in Section 4.2. In Sections 4.3 and 4, we present

the main contributions: a representation of haplotype assembly as a decoding

problem and two algorithms that rely on that representation, respectively. An

analytical bound on the performance is given in Section 4.5. Section 6 extends

the belief propagation algorithm to the polyploid case. Results and discussion

are presented in Section 4.7 while the conclusion and future work are in Section

4.8.

4.2 Notation and problem statement

Following sequencing, aligning to a reference, and SNP and genotype

calling, to facilitate haplotype assembly the data is typically organized in a

SNP fragment matrix. Segments of the reads that cover homozygous sites

provide no information about haplotypes and are hence discarded. Since the

SNP sites in diploids are typically bi-allelic, we may denote them using binary

symbols {0, 1}. The (i, j) entry of the SNP fragment matrix R indicates the

information about the jth SNP site provided by the ith read; if the ith read does

not cover the jth SNP site, the (i, j) entry of R is denoted by the symbol ×.

As an illustration, the resulting SNP fragment matrix may have the following
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form,

R=



× × 0 × × 1
× 1 × × 0 ×
× × 0 × 0 ×
0 × × 1 × ×
1 × 1 × × ×
× × 1 × 0 ×
× 0 × 0 × ×
× × × 0 × 0


.

4.2.1 Notation

Throughout this chapter, we use the following notation:

(h, h̄): an unordered pair of a haplotype and its complement, with sup-

port in {0, 1}n.

(h0,h1, . . . ,hk−1): an unordered k-touple of all the haplotypes on all the

chromosomes with support in {0, 1}n.

ri: read i, 1 ≤ i ≤ m, with support in {0, 1,×}n, where × denotes

unobserved alleles.

R: an n × m matrix whose ith row corresponds to ri and jth column

corresponds to the jth SNP site.

s: a vector indicating whether a read is associated with h0, h1,. . . or

hk−1, with support in {0, 1, . . . , k − 1}m.

c: a vector collecting numeric entries of the matrix R.

G: generator matrix of a linear block code.
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H: parity-check matrix associated with the generator matrix G.

4.2.2 Problem statement

Define a measure of distance d between two symbols in the ternary

alphabet {0, 1,×} as

d(a, b) =

{
|a− b| if a 6= × and b 6= ×,
0, otherwise.

With the adopted MEC criterion, the goal of haplotype assembly for diploid

organisms is to minimize Z over a binary vector h,

Z =
m∑
i=1

min(hd(ri,h), hd(ri, h̄)), (4.1)

where hd(·, ·) denotes the generalized Hamming distance defined as

hd(ri,h) =
n∑
j=1

d(R(i, j), hj),

where R(i, j) denotes the (i, j) entry in R. Intuitively, minimizing (4.1) leads

to finding the smallest number of binary entries (alleles) in R that should be

flipped so that the rows of R can be unambiguously associated with either h

or h̄. For convenience, we will refer to h as the reference haplotype.

The MEC objective is often used as a proxy for the switch error rate

(SWER). The switch between positions i and i+1 is defined as the event ĥi =

hi and ĥi+1 6= hi+1, or ĥi 6= hi and ĥi+1 = hi+1. Note that, unlike the MEC

score that is a function of the fragment matrix and the recovered haplotype,

SWER is calculated with respect to a (known) underlying haplotype. We will

use SWER to test the performance of the proposed algorithms in Section 7.
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4.3 Reformulating Haplotype assembly as the decoding
problem

It is beneficial to briefly consider the scenario where the SNP fragment

matrix R is error-free. In particular, let us assume that the reference haplotype

h= [0 1 0 1 0 1]

and its complement h̄ (each comprising m = 6 alleles) were sampled with

n = 8 reads, and that the origin of the reads is indicated in the following read

select vector,

s= [0 0 0 0 1 1 1 1]T .

If the value of the ith component of s is 0, that indicates the ith row of R

originated by sampling h; otherwise, it originated by sampling h̄. Then the

corresponding error-free fragment matrix is of the form

R=



× × 0 × × 1
× 1 × × 0 ×
× × 0 × 0 ×
0 × × 1 × ×
1 × 1 × × ×
× × 1 × 1 ×
× 0 × 0 × ×
× × × 0 × 0


.

Clearly, all of the variables in the previous representation of the data (h, s,

and R) have binary numerical entries. A closer inspection reveals that if the

(i, j) entry in R, Ri,j, is numerical (i.e., 0 or 1), it is obtained as the result of

an exclusive-OR (XOR) operation between the ith and jth entries of s and h,

respectively, as indicated in Table 4.1.
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si hj Ri,j

0 0 0
0 1 1
1 0 1
1 1 0

Table 4.1: Tabular representation of the known entries in the error-free frag-
ment SNP matrix as a function of the reference haplotype and read select
variables.

Interestingly, XOR functions are building blocks of error-correcting

codes in communication systems, which we briefly summarize next.

4.3.1 Communication systems

In data communication systems, the goal of point-to-point communi-

cation is to reliably transmit and receive (decode) messages that are adversely

affected by the transmission medium. The most simple communication system

consisting of a source, encoder, channel, decoder and destination is illustrated

in Fig. 4.1. The coder introduces redundancy into the message in order to

combat unknown effects of the noisy channel by adding redundancy to the

binary messages generated by the source. Output of the coder – a codeword

that belongs to a pre-defined codebook – is transmitted across the channel that

modifies it in a nondeterministic way. The task of the decoder is to reverse

the effects of the channel and map the received signal back to the “closest”

valid codeword, which is then converted back into the message and forwarded

to the destination.

A special class of codes are those where each bit in the codeword is
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c=mG

Source	   Encoder	   Channel	   Decoder	   Des1na1on	  

1-p 0

1 

0 

1 1-p 

p 
p 

Binary Symmetric Channel 
Code 
generator 
matrix 

Linear block code 

Codeword Message 

Figure 4.1: Components of a simple communication system operate as follows:
1) a message is sent by a source, 2) a coder maps messages to a codeword using
a set of linear functions, 3) the codeword is corrupted by the binary symmetric
channel, 4) a decoder maps back the corrupted codeword into a valid message,
5) the recovered message reaches the destination.

a linear function of the message bits. Such linear codes are fully described

by a code generator matrix G. Each column of G specifies the linear func-

tion used to obtain the corresponding codeword bit, and the entire codeword

is formed by simply multiplying over GF (2) the message with the code gen-

erator matrix; multiplications over GF (2) are identical to the exclusive-OR

operations illustrated in Table 4.1. We remark that a subclass of communi-

cation channels, so-called binary symmetric channels, invert each transmitted

bit independently with the same probability.

4.3.2 Decoding haplotypes

Let us define a “message” as the vector formed by concatenating the

haplotype vector h with the read select vector s, m = [h s]. Let {fk} denote

the collection of indices {(ik, jk)} identifying positions where the matrix R has

numeric entries, i.e., R(ik, jk) 6= ×, 1 ≤ k ≤ M , where M denotes the total

number of informative (binary) entries in R. Define the “code generating”

77



matrix G with the entries

G(l, k) =

{
1 if l = jk or l = ik + n, 1 ≤ k ≤M,

0, otherwise,

where n denotes the length of the haplotype. Therefore, each column of G by

construction has only two non-zero elements, one at the location (jk, k) and

the other at the location (n+ ik, k). To clarify the construction of G, we give

an example next.

Example 3. Consider the following SNP fragment matrix,

R=

[
0 1 ×
× 1 1
1 × 0

]
.

The set {fk} collects indices of the binary elements in R in a row-wise or-

der, {fk} = {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 3)}. The corresponding code

generating matrix G has the following form,

G=


1 0 0 0 1 0
0 1 1 0 0 0
0 0 0 1 0 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


Each column of G is associated with one binary entry in R, where the two

non-zero entries in the kth column of G correspond to indices (ik, jk) of the

kth (ordered row-wise) informative entry in R, R(ik, jk) 6= ×. The horizontal

line in G separates the rows of G associated with the columns ik of R (i.e.,

with the SNP position) from the rows of G associated with the rows jk of R

(i.e., with the reads).

In the absence of SNP-calling errors, it holds that

c = [h s]G, (4.2)
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where the kth entry of c is equal to the kth (ordered row-wise) numeric entry

of R, i.e., ck = R(ik, jk).

Remark: Note that any permutation of the rows or columns of G cor-

responds to the permutation of the components in the vectors h and s, or the

order in which numeric entries of matrix R occur in the codeword c. All such

generated code generator matrices are valid (and equivalent) representations

of R.

Figure 4.2: An illustration of a binary symmetric channel with crossover prob-
ability p.

Going back to the setting of Example 1 where h = [0 1 1], s = [0 0 1]

and c = [0 1 1 1 1 0], it is easy to verify (4.2). However, sequencing errors

adversely affect SNP and genotype calling and hence the SNP fragment matrix

R typically has a fraction of entries that are incorrect (flipped). This can be

modeled by thinking of the “codeword” c in (4.2) as being transmitted across

the binary symmetric channel (BSC) illustrated in Fig. 4.2, where p denotes the

probability of inverting a bit (i.e., p represents the error rate in R). Therefore,

the possibly erroneous entries in R can be represented as

y = [h s]G + e, (4.3)
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where the kth entry of y is yk = R(ik, jk), e denotes the error vector, and all

the operations are in GF (2). The goal of haplotype assembly can be restated

as follows: Given the vector y and the matrix G, both derived from the SNP-

fragment matrix R, find the most likely vector [h s].

To facilitate the decoding of [h s] and hence perform haplotype as-

sembly, we rely on the parity check matrix H. For the linear codes defined by

the encoding operation (4.2), H is orthogonal to GT , i.e., the range of GT is

the null space of H. Given G, we find H by means of the simple Gaussian

elimination. Note that

Hy = H
(
GT [h r]T + e

)
= He,

and that the vector e can be viewed as the distance between the observations y

and the closest valid codeword. The minimum distance decoding is concerned

with finding the codeword c (or, equivalently, e) that solves the minimization

problem

min
c∈C

d(c,y) = min
c∈C
‖y − c‖0 = min

c∈C,y=c+e
‖e‖0

= min
e:H(y+e)=0

‖e‖0, (4.4)

where ‖ · ‖0 denotes the l0-norm (the number of non-zero entries) of its argu-

ment. Recall that the goal of the minimum error correction (MEC) formulation

of the haplotype assembly problem is to select h minimizing the number of

entries in R that need to be flipped so that there is no conflicting information

in the SNP-fragment matrix. Therefore, its objective (4.1) can be restated as

Z = min
e:H(y+e)=0

‖e‖0.
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Comparing the two optimizations above, we see that the minimum distance

decoding also leads to minimization of the MEC score. Moreover, note that in

the absence of any prior information the minimum distance decoding coincides

with the maximum a posteriori decoding.

Based on the observed connection between communications and haplo-

type assembly, we design graphical models and utilize them for the design of

algorithms solving the latter problem.

4.3.3 Graphical models

Fig. 4.3 shows the graphical representation of the measurement model

(4.3), illustrating the interactions between elements of the read select vector

s, reference haplotype h and the observations collected in y. Both the refer-

ence haplotype and read select vector are unobserved variables in this model,

and the interactions between them are driven by the structure of the code

generating matrix G. These interactions are depicted by the square nodes in

the graph, each connected to exactly one SNP variable (a component of h),

one read select variable (a component of s) and one observation (a component

of y, connected via the codeword c). This graphical model will be the basis

for the derivation and implementation of the belief propagation algorithm for

haplotype assembly presented in the next section.

An alternative graphical model, based on the parity check matrix H,

is illustrated in Fig. 4.4. The variables in this model are associated with the

entries in the vector y. The rows of the parity check matrix define parity check
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XOR nodes 
(generator G) 

0	  

SNP/haplotype  
variables (hi) 

read select  
variables (si) 
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… 

Figure 4.3: A graphical model illustrating how the data used for haplotype
assembly is generated. The numeric entries in the SNP fragment matrix R
are collected into a vector y; due to sequencing and data processing errors,
these may differ from the true alleles. Read select variables (components of
s), SNP variables (components of the haplotype vector h), and true alleles
(components of c) are connected through check nodes (i.e., XOR functions
defined by the structure of G).

nodes illustrated in the figure. The edges in the graphical model emanating

from a parity check node connect to the variables identified by the locations

of the non-zero entries of the corresponding row of H. When the variables

connected to the parity check nodes are such that their linear combinations

(over GF(2)) at each node are zero, consistent haplotype can be recovered.

This will be exploited to design and implement the bit-flipping haplotype

assembly algorithm in the next section.
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… 
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(yi) 

true alleles 
(ci) 

parity-check 
(rows of H) 

Figure 4.4: A graphical model facilitating haplotype assembly via satisfying
conditions imposed by the parity check matrix H. The ith parity check node,
defined by the ith row of H, is connected to the variable ck if H(l, k) 6= 0.

4.4 Haplotype Assembly via Decoding of Linear Block
Codes

Motivated by the decoding algorithms that correct noise-induced errors

in communication systems, in this section we present two haplotype assembly

methods: the bit flipping algorithm and the belief propagation algorithm.

These are computationally efficient yet highly accurate heuristics for solving

the NP-hard assembly problem.

4.4.1 The bit-flipping algorithm

The bit-flipping algorithm relies on the graphical model illustrated in

Fig. 4.4. The basic idea of the algorithm is to examine each variable node of

the graph and find the number of parity check equations Hy = 0 it violates;

there exists one such variable for each numerical entry in R. The bit in y

with the largest margin of unsatisfied parity check equations versus satisfied
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Algorithm 4 Bit Flipping Haplotype Assembly

1: procedure BF
2: H← getParityCheckMatrix
3: c(0)← 1− 2c̃ set initial values of check nodes to 1 or -1
4: t← 1 iterations
5: repeat
6: v

(t)
i,j ← ci(t− 1) messages from entries to checks

7: u
(t)
j,i ←

∏
k∈Nji

v
(t)
k,j messages from checks to entries

8: δi(t)← −ci(t− 1)
(∑

j∈Ni
u

(t)
j,i

)
marginal values

9: if mini(δi(t)) < 0 then
10: k ← arg min(δi(t)) find the index of highest margin.
11: ck(t)← −ck(t− 1) flip the value of the entry.
12: ∀i 6= k : ci(t)← ci(t− 1) keep all other values same
13: end if
14: t← t+ 1
15: until (t > MAXITER) ∨ (∀i, j : ci(t) == u

(t)
j,i ) ∨ (mini(δi(t)) ≥ 0)

16: end procedure

parity check equations is flipped (i.e., the corresponding entry in y is changed

from 0 to 1 or vice versa). We proceed greedily, identifying and changing the

component of y such that the number of unsatisfied parity check equations

reduces in each step.

Intuitively, the algorithm in each step attempts to improve the objective

function of the minimum-distance decoding, which coincides with the goal of

the MEC haplotype assembly. The procedure is terminated when there are no

more alleles with a negative drift (with more unsatisfied than satisfied check

nodes) or when there are no parity check node violations. The procedure is

formalized as Algorithm 4.

There are two main sources of randomness in the bit-flipping algorithm
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– construction of the parity check matrix and breaking ties among flipping

variables. For one codebook there are many different code generator matrices

with many different orthogonal parity check matrices. We use breadth-first

search on the bi-partite graph of the haplotype and read select variables to

form a code generator matrix from a random starting point and rely on the

Gaussian elimination to obtain the parity check matrix. While performing the

bit-flipping algorithm, in case of several variables having the same number of

unsatisfied versus satisfied check nodes, we break the ties uniformly at random.

The bit-flipping algorithm was originally proposed for decoding of low-

density parity check (LDPC) codes in [31], with the difference that the algo-

rithm there flips more than one bit in each iteration. We should also point

out that the bit-flipping algorithm is related to the coordinate descent algo-

rithm for l1-norm minimization, where the goal is to reconstruct a sparse error

vector.

4.4.2 The belief propagation algorithm

Belief propagation is a message-passing scheme for inference in graph-

ical models. A node in the graph receives messages from the nodes its con-

nected to and, based on the received messages, computes and broadcasts its

belief about the associated variable. Our belief propagation algorithm works

with the code generator matrix and does not require computation of the parity

check matrix; for this reason, its computational complexity compares favorably

with bit-flipping, as shown in Section 7.

85



The algorithm takes as input four variables: the starting point sp, the

probability of error pe, the maximal number of iterations MAXITER, and the

precision ε used as a stopping criterion. In the graphical model representing

the haplotype assembly problem, the edges connecting the read nodes with

the SNP (haplotype) nodes are associated with the numeric entries in R; since

those entries are potentially erroneous, we define an auxiliary variable yi,j that

accounts for the probability of read errors,

yi,j = (1/2− pe)(2R(i, j)− 1) + 1/2. (4.5)

In fact, the variables yi,j are the beliefs propagated from the haplotype vari-

ables to the read select variables via the XOR function nodes in Fig. 4.

We use bars ¯ to denote the belief complement of a variable; in par-

ticular, for any value x, x̄ = 1 − x. We define the set of active haplotype

positions AH and the set of active reads AR to be the collection of haplotype

and read nodes which received a message on any of their edges in a given iter-

ation, respectively. The belief propagation algorithm for haplotype assembly

is formalized as Algorithm 2.

4.4.3 Complexity

Haplotype assembly concerned with optimizing the MEC criterion is

known to be NP -hard [73]. Both bit flipping and belief propagation algorithms

are heuristics, and we are interested in characterizing their complexity. Here

we provide the complexity analysis in terms of the length of the connected
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Algorithm 5 Belief Propagation Haplotype Assembly

1: procedure BP
2: sp← randomStartingPoint
3: if starting point is a read then
4: ri ← sp
5: A

(0)
R ← ri (set active reads)

6: A
(0)
H ← Γ(A

(0)
R ) (set active haplotype)

7: b
(0)
ri ← 1− pe (set initial beliefs)

8: m
(0)
ri→hj ← 1− pe (set initial messages)

9: m
(0)
hj→ri ←

1
Zhj

∏
rk∈A

(0)
R \ri

(
m

(0)
rk→hjyk,j + m̄

(0)
rk→hj ȳk,j

)
10: else
11: hj ← sp

12: A
(0)
H ← hj set active haplotype

13: b
(0)
hj
← 1− pe (set initial belief)

14: m
(0)
hj→ri ← 1− pe (set initial messages)

15: end if
16: t← 1 iterations
17: repeat
18: A

(t)
R ← Γ(A

(t−1)
H ) update the active reads

19: m
(t)
ri→hj ←

1
Zri,j

∏
hk∈A

(t−1)
H \hj

(
m

(t−1)
hk→riyi,k + m̄

(t−1)
hk→ri ȳi,k

)
20: b

(t)
ri ← 1

Zrbi

∏
hj∈A

(t−1)
H

(
m

(t−1)
hj→riyi,j + m̄

(t−1)
hj→ri ȳi,j

)
21: A

(t)
H ← Γ(A

(t)
R ) update active haplotype

22: m
(t)
hj→ri ←

1
Zhi,j

∏
rk∈A

(t)
R \ri

(
m

(t)
rk→hjyk,j + m̄

(t)
(rk→hj)ȳk,j

)
23: b

(t)
hj
← 1

Zhbj
b

(t−1)
hj

∏
ri∈A

(t)
R

(
m

(t)
ri→hjyi,j + m̄

(t)
ri→hj ȳi,j

)
24: t← t+ 1
25: until (t > MAXITER) ∨ (‖b(t)

h − b
(t−1)
h ‖2 ≤ ε)

26: end procedure
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component, i.e., a haplotype block that is connected with the reads. For

convenience, we will keep the same notation but with this slightly altered

meaning: variable n denotes the length of the connected components of the

haplotype (i.e., the length of a haplotype block) and R is the submatrix of the

SNP-fragment matrix containing information relevant to the haplotype block

under consideration. We assume that the total number of binary entries in R

is O(n), which is a reasonable assumption given the sparse structure of the

SNP-fragment matrix.

We distinguish between time and space complexity. Time complexity

characterizes the minimum time needed to obtain the output of the algorithm

and is concerned with its longest sequential path. This measure is particularly

interesting when running algorithms on distributed systems. On the other

hand, space complexity characterizes the algorithm’s memory requirements.

The bit-flipping algorithm. The time complexity for the bit-flipping al-

gorithm is O(n). To show this, we divide the procedure in two major steps:

finding the parity check matrix and running the bit flipping algorithm. The

time complexity of finding the parity check matrix from the code generator

matrix is O(n). This is lower than the standard Gaussian elimination since we

arrange the code generator matrix to have lower triangular form by following

an O(n) breadth-first search that permutes the haploype and read select vari-

ables in an appropriate fashion. In addition, each pivot has only one non-zero

value above it, and thus the time needed for the transformation to the fully

reduced form is again O(n). On the other hand, the maximal number of iter-
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ations of the bit flipping algorithm is O(n). The number of iterations is upper

bounded by the number of unsatisfied parity check nodes. Since at each itera-

tion this number is reduced by at least 1, the maximal number of iterations is

upper bounded by the number of check nodes in the parity check matrix. Now,

from the procedure used to generate parity check matrix one can observe that

the number of check nodes in the parity check matrix is strictly less than the

number of entries in R, which is again given by O(n). The space complexity

of the BF algorithm does not exceed O(n2) since the number of connections

between parity check nodes and observed alleles is at most quadratic in n.

The belief propagation algorithm. The time complexity of the belief

propagation algorithm is bounded by the number of iterations. Unlike the bit-

flipping algorithm, the belief propagation algorithm does not need the trans-

formation from the code generator matrix to the parity check matrix. The

number of iterations of the belief propagation algorithm is upper bounded by

the MAXITER variable. Note that MAXITER variable needs to be larger

than the depth of the graphical model since we want all the SNPs and read

select variables to be in the active set. Also note that in each iteration all

the values of the active nodes need to be updated, whereas in the bit flip-

ping algorithm only a single variable is updated. The space complexity of the

belief propagation algorithm is O(n) since all that is required to store is the

description of the original graphical model.

Initialization and reruns (for both algorithms). Performance of both

algorithms depends on the starting point; hence to obtain better results we
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repeat the execution of the algorithm from different starting points. We use

a random restart and keep searching for the solution as long as the MEC

score improves. The number of times we rerun the algorithms is adaptively

determined based on the incremental change in the MEC score.

4.5 Limits of performance of haplotype assembly

We find analytical expressions for the achievable accuracy of the hap-

lotype assembly problem concerned with optimization (4.4). In particular,

we compute the lower bounds on the probability of haplotype assembly and

switch errors, and the expected number of SNP and switch errors.

To start, in Fig. 4.5 we introduce a simple bipartite graph model of the

SNP fragment matrix. The nodes on the left correspond to the haplotype/SNP

values (i.e., components of h) while the nodes on the right correspond to the

read select variables (components of s). The edge between a SNP and a read

select node exists if the read covers the SNP and provides information about

its allele. Here the actual values of the observed alleles are not important since

the error probability characterizing the performance of a linear block code is

the property of a codebook, not a specific codeword. In Fig. 4.5 there are

three examples of cuts that will be of interest in our analysis. Cut C1 isolates

a single SNP node, and we define the cardinality of that cut to be equal to the

coverage of the isolated SNP. Cuts C2 and C3 partition the SNP nodes in two

non-empty sets.

The probability of error, defined as the probability that the assembled
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haplotype/SNP 
variables 

read select 
variables observations 

C1 

C2 

C3 

Figure 4.5: A sample bipartite graph representation of the fragment matrix.
The nodes on the left represent SNPs while the nodes on the right represent
read select variables. The edge between a SNP and a read select node exists
if the read covers the SNP location. Three cuts are illustrated in the figure:
C1, C2 and C3. We refer to the cut C1 as isolating cut since it contains all
the edges emanating from a single SNP, and define the cardinality of the cut
as the coverage of the corresponding SNP. We refer to the cuts C2 and C3 as
separating cuts since they partition SNPs into two non empty sets.

haplotype is different from the true one, is given by

P (ĥ 6= h) ≥ 1/2
k∑

i=bk/2c+1

(
k

i

)
pi(1− p)k−i,

where p denotes the SNP calling error rate and k is the smallest coverage over

all SNP positions (the SNP with the lowest coverage is the most error prone).

If the number of SNP calling errors is large (> bk/2c+ 1), it is likely that the

algorithms will arrive at a haplotype sequence with an erroneous SNP position.

In the bipartite graph representation in Fig. 4.5, this bound corresponds to

the errors introduces along the smallest isolating cut.

Accuracy of haplotype assembly is often expressed in terms of the
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switch probability. Switch refers to the event where a subsequence of consec-

utive errors starts at a site in the assembled haplotype; the errors essentially

imply mistaking a segment of ĥ for that of of h. In the bipartite graph rep-

resentation each separating cut potentially leads to the switch in the decoded

haplotype. Now, looking at all possible locations of switches, it is straightfor-

ward to show that the probability of a switch can be bounded by

Pswitch ≥ 1/2
s∑

i=bs/2c+1

(
s

i

)
pi(1− p)s−i,

where s denotes the minimum separating cut of the bipartite graph represen-

tation of fragment matrix. Notice that the switch probability is always greater

than the probability of an erroneous SNP, as the smallest isolating cut is just

one possible separating cut in the graph.

Next, we examine the expected number of erroneous (i.e., inverted)

SNPs. This expectation is lower bounded by the coverage errors as

E[‖ĥ− h‖0] = E[
n∑
i=1

1ĥi 6=hi ] =
n∑
i=1

P (ĥi 6= hi)

≥
n∑
i=1

1

2

ki∑
j=b ki

2
c+1

(
ki
j

)
pj(1− p)ki−j (4.6)

where ki denotes the coverage of the ith SNP. Note that on the right-hand side

in (4.6) we sum up the probabilities of each SNP being inverted due to the

errors introduced into the corresponding isolating cut. This leads to a lower

bound because all isolating cuts in the bipartite graph are independent, i.e.,

each edge of the bipartite graph appears in at most one isolating cut.
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For arbitrary separating cuts in the graph, the independence assump-

tion does not hold (for example, cuts C2 and C3 are not independent since

they share two edges). We need to take that into account when characterizing

the lower bound on the expected number of switches,

E[SWER] =
1

n

n∑
i=2

P (switch between i− 1 and i)

≥ 1

n

n∑
i=2

1

2

si∑
j=b si

2
c+1

(
si
j

)
pj(1− p)si−j.

Here si denotes the smallest cut separating the ith SNP node that is indepen-

dent of all other separating cuts sj 6= si. It readily follows that

E[SWER] ≥
n∑
i=1

1

2

ki∑
j=b ki

2
c+1

(
ki
j

)
pj(1− p)ki−j,

where ki denotes the coverage of the ith SNP.

We should point out that the lower bound on the probability of switch-

ing is always greater than the lower bound on the probability of error under

maximum a posteriori decoding. For the scenario where the data is character-

ized by long reads and low coverage (as in, e.g., Fosmid datasets), the com-

puted bounds are fairly tight; however, when the coverage is high and the reads

are relatively short (resembling reads in 1000 Genomes Project datasets), they

tend to be loose. Either way, they provide a useful insight about the achievable

accuracy of single individual haplotyping.
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4.6 Polyploid haplotype assembly

In previous sections, we focused on haplotype assembly for diploids.

We now turn our attention to the polyploid version of the haplotype as-

sembly problem. For simplicity of presentation, we constrain SNPs to be

bi-allelic; extension to the multi-allelic scenario is relatively straightforward

(albeit somewhat cumbersome) and involves replacing vectors of beliefs by

matrices. Hence, the alphabet used to denote alleles in the SNP data matrix

remains {0, 1,×}, where × marks the positions in a read not covering the

corresponding SNP sites.

The goal of polyploid haplotype assembly concerned with optimizing

the MEC criterion2 is to minimize Z over the set (h0,h1, . . . ,hk−1),

Z =
m∑
i=1

min(hd(ri,h0), hd(ri,h1), . . . , hd(ri,hk−1)), (4.7)

where k denotes the ploidy and hd(·, ·) is the generalized Hamming distance

between its arguments.

The above minimization can be rewritten using a select variable vector

s. The definition of the select variables is somewhat modified in the polyploid

case: the ith component of s, si, is the index of the haplotype that the read

is nearest to in terms of the generalized Hamming distance. This means that

2It was remarked in [12] that the MEC objective may not be suited for use in the polyploid
case due to ambiguity when phasing with reads that cover the same collection of SNP sites.
However, when the reads are long and cover diverse subsets of SNP sites, as is the case with
recent high-throughput technologies such as fosmid, the MEC objective facilitates successful
assembly as indicated by the results presented in Section 7.
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the optimization of the MEC objective can be rewritten as

min
s∈{0,...,k−1}m

m∑
i=1

k−1∑
j=0

1{si==j}hd(ri,hj). (4.8)

The graphical model that describes the data used for polyploid assem-

bly is illustrated in Fig. 4.6. Since the read select variables (i.e., components

of s) no longer take the binary values {0, 1}, the linear coding analogy does

not extend to this scenario. However, relying on the graph in Fig. 4.6, we can

still design a belief propagation algorithm for polyploid haplotype assembly.

Note that the select function nodes of the graph shown in Fig. 4.6 act as a

simple multiplexer, allowing only one of the entries {h0,h1, . . . ,hk} to “pass”

depending on the value of the select variable s.

select  
function 

0	  

h0 

read select 
variables 

true alleles 

… 

… 

observations 1	   0	   0	   1	   1	  0	  1	  1	  

… 

… h1 

hk 

haplotypes 

Figure 4.6: An illustration of the graphical model used for polyploid haplotype
assembly. This model is an extension of the model in Fig. 4.3. The modified
belief propagation algorithm is implemented on this graph.
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4.6.1 The polyploid belief propagation algorithm

To extend the belief propagation algorithm from Section 4 to the assem-

bly of haplotypes in polyploids, we need to redefine the nodes that participate

in the exchange of the beliefs as well as specify messages that are being ex-

changed. For each SNP location, we need to infer the probabilities of the

alleles for each of the k haplotypes. To this end, for the ith component of h

we define a variable p
(i)
h as the probability vector with k entries. The value of

the jth entry in this vector, p
(i)
h,j, is the probability of the jth haplotype having

a reference allele at the ith position. Similarly, for the ith component of s we

define a probability vector p
(i)
s of length k, where the jth component of p

(i)
s , p

(i)
s,j,

is the beliefs that the ith read is associated with the jth haplotype (1 ≤ j ≤ k).

Note a major distinction between the probability vectors p
(i)
h and p

(i)
s .

On one hand, an allele may occur at a particular position in multiple haplo-

type strands, and the information about an allele in one haplotype may not

help infer alleles at the same position in other haplotypes. On the other hand,

each read should eventually be associated with a single haplotype strand, thus

helping uniquely determine multiple SNP positions in the haplotype. This dif-

ference between the probability vectors motivates different ways of aggregating

messages at the graph nodes. Since SNP variables act as factors in the belief

propagation factor graphs, imposing the presence of an allele in a haplotype,

messages at the corresponding nodes are computed via sum aggregation. The

read select variables are the ones for which we want to find the most likely

configuration via marginalization, leading us to the product form.
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The auxiliary variable yi,j has the same definition as in the belief propa-

gation algorithm for diploids (see eq. (4.5)). However, we modify the notation

¯ to denote the belief complement of a vector variable; in particular, for any

probability vector x of size k, x̄ = (1− x)/(k − 1).

The starting point of the algorithm is restricted to a read, and a sepa-

rate starting point is chosen for each strand of the haplotype. A different read

will be uniquely associated with each one of the haplotype strands, as seen in

Step 22 of the polyploid belief propagation algorithm.

The algorithm is formalized as Algorithm 6.

4.7 Simulation Results and Discussion

We test the performance of the proposed algorithms on both real and

simulated data sets. The experimental data include the 1000 Genomes Project

[76] and Fosmid [28] data sets, on which we compare the MEC scores and

runtimes of bit-flipping and belief propagation algorithms with those of Hap-

CUT [9], HapCompass [3] and RefHap [26]. RefHap is part of the Single

Individual Haplotyping (SIH) package that includes DGS [54], FastHare [66],

SHRThree [18], Speedhap [33], 2d-MEC [89], and WMLF [45]. These algo-

rithms were compared against each other as well as against HapCUT [9] in

[27]. We also tested all of the aforementioned algorithms from the SIH package

on the Fosmid dataset and found that RefHap outperforms others in terms

of both speed and accuracy. On another note, simulated data mimics long

(fosmid-like) pair-end reads with varying coverages, allowing comprehensive
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Algorithm 6 Polyploid Belief Propagation Haplotype Assembly

1: procedure PBP
2: sp← randomStartingPoint
3: order ← 1
4: ri ← sp
5: A

(0)
R ← ri (set active reads)

6: b
(0)
ri ←

[
1− pe pe

k−1
. . . pe

k−1

]
(set initial beliefs)

7: m
(0)
ri→hj ←

[
1− pe pe

k−1
. . . pe

k−1

]
(set initial messages)

8: t← 1 iterations
9: repeat

10: A
(t)
H ← Γ(A

(t−1)
R ) update active haplotype

11: if order = k then
12: biasj ← vector with hj degree on largest beliefs locations
13: else
14: biasj ← [0 0 . . . 0]
15: end if
16: m

(t)
hj→ri ←

1
Zhi,j

[
biasj +

∑
rl∈A

(t)
R \ri

(
m

(t)
rl→hjyl,j + m̄

(t)
(rl→hj)ȳl,j

)]
17: b

(t)
hj
← 1

Zhbj
b

(t−1)
hj

[
biasj +

∑
ri∈A

(t)
R

(
m

(t)
ri→hjyi,j + m̄

(t)
ri→hj ȳi,j

)]
18: A

(t)
R ← Γ(A

(t−1)
H )

19: b
(t)
ri ← 1

Zrbi

∏
hj∈A

(t−1)
H

(
m

(t−1)
hj→riyi,j + m̄

(t−1)
hj→ri ȳi,j

)
20: m

(t)
ri→hj ←

1
Zri,j

∏
hl∈A

(t−1)
H \hj

(
m

(t−1)
hl→riyi,l + m̄

(t−1)
hl→ri ȳi,l

)
21: if order < k then
22: rc ← read with lowest margin of belief
23: b

(t)
rc ←

[
pe
k−1

. . . 1− pe . . . pe
k−1

]
24: m

(t)
rc→hj ←

[
pe
k−1

. . . 1− pe . . . pe
k−1

]
update messages

25: order ← order + 1
26: end if
27: t← t+ 1
28: until (t > MAXITER) ∨ (‖b(t)

h − b
(t−1)
h ‖2 ≤ ε)

29: end procedure

98



study of the algorithms’ performance in terms of switch error rates (SWER)

which we can compute due to availability of the ground truth. The algo-

rithms were run on MacBook Air with 2.13GHz Intel Core Duo processor

with 4 GB of DDR3 RAM and MacBook with 2.4GHz Intel Core i5 proces-

sor with 4 GB of DDR3 RAM. Implementation of the algorithms is available

for download from http://users.ece.utexas.edu/̃ hvikalo/DecodingBFBP.html

and http://sourceforge.net/projects/bfbp.

4.7.1 Benchmarking on 1000 Genomes Project data

For the first test of the proposed algorithms we relied on a data set from

the 1000 Genomes Project – in particular, the sample NA12787 sequenced at

high coverage using 454 sequencing platform, also considered in several recent

studies including [3]. We compared the MEC scores achieved by our algorithms

to those of the widely used HapCUT [9] and the more recent RefHap [26] and

HapCompass [2]. HapCompass, RefHap and HapCUT were called with their

default settings; for HapCUT that means using software version v.05 and run-

ning standard 100 iterations, for RefHap it means version of SIH package

1.0, while for HapCompass we ran software version 0.7.1. HapCompass pro-

cessed BAM and VCF files downloaded from the 1000 Genomes Project data

repository and its resulting fragment matrix was partitioned into connected

components. Each component was separately fed into HapCUT along with the

corresponding quality scores, ensuring that both algorithms take into account

the same SNP locations and provide a fair comparison of the MEC scores (i.e.,
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the number of SNPs, reads, alleles and blocks was the same for all the algo-

rithms). The resulting MEC scores are reported in the second super-column

of Table 4.2. As can be seen there, among all algorithms belief propagation

provides the smallest MEC score for all chromosomes. Bit-flipping (BF) is

slightly worse than belief propagation (BP), matching its performance on 4

chromosomes, but better than HapCUT on all and better than HapCompass

and RefHap on all but one chromosome. Note that RefHap does not phase all

the SNPs and discards a fraction of reads which leads to an unrealistic MEC

score that is artificially lower than those achieved by the other algorithms. To

make a fair comparison, we assigned the reads discarded by RefHap to either

h or h̄ using the phased SNPs and then phased the remaining SNPs in such a

way that the resulting total MEC score of RefHap is the lowest possible. The

computational overhead due to these additional operations is not included in

the reported RefHap runtimes; for completeness, the original RefHap MEC

scores evaluated on a reduced set of reads are reported in parenthesis.

When comparing the speed of the algorithms, we wanted to exclude

the bias due to the system calls for I/O operations; therefore, in Table 4.3 we

report the user time provided by the UNIX time command. For HapCUT,

the total time including the system calls, operations and context switches is

around an order of magnitude greater than the times reported in Table 4.3.

For HapCompass, the total time in only marginally greater than the user time

given in the table. The BP and BF algorithms also have the total time only

marginally greater than the user time. As evident from the table, RefHap is
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Table 4.2: MEC scores HapCUT (HCUT), HapCompass (HCom), bit-flipping
(BF) and belief propagation (BP) algorithms for the 1000 Genomes Project
individual NA12787.

Properties MEC score
Chr. #SNP #Read #Allele #blocks HCUT HCom. RefHap BF BP

1 122960 180199 403138 21825 12675 12390 12380 (11203) 12312 12310
2 139475 211311 475770 24836 15363 15015 14991 (13650) 14933 14916
3 117657 180572 407084 20855 13243 12970 12947 (11777) 12882 12872
4 119330 190029 437636 20802 14980 14642 14631 (13361) 14536 14532
5 112643 171881 387704 20049 12611 12266 12260 (11070) 12200 12196
6 116414 189932 463272 19579 17057 16805 16800 (15474) 16924 16769
7 94511 148305 340748 16624 11445 11174 11165 (10098) 11110 11108
8 94024 152864 34966 16571 11088 10817 10797 (9750) 10735 10732
9 71898 115722 263419 12979 8481 8319 8279 (7503) 8237 8236
10 85499 136288 310879 15001 10167 9899 9893 (9030) 9833 9828
11 81018 126027 288307 14225 9308 9104 9111 (8273) 9047 9042
12 78146 117673 265958 13849 8659 8418 8400 (7651) 8362 8361
13 63689 100081 230321 11241 7848 7695 7687 (7041) 7652 7631
14 53934 82139 185435 9598 5866 5715 5698 (5154) 5662 5661
15 46254 73559 166860 8191 5244 5137 5120 (4660) 5102 5100
16 51786 86684 201865 9043 6400 6231 6205 (5708) 6177 6175
17 38839 58363 134103 6696 4631 4550 4537 (4201) 4506 4506
18 49873 77291 175107 8821 5531 5371 5363 (4868) 5342 5340
19 31760 46397 105525 5602 3571 3421 3403 (3086) 3392 3392
20 38044 58879 134089 6831 4213 4122 4103 (3754) 4087 4086
21 24342 40107 92582 4379 3021 2987 2972 (2695) 2953 2953
22 22801 33671 77122 4076 2395 2324 2316 (2112) 2301 2301
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Table 4.3: Execution times for HapCUT (HCUT), HapCompass (HCom), bit-
flipping (BF) and belief propagation (BP) algorithms for the 1000 Genomes
Project individual NA12787.

Properties Execution time (s)
Chr. #SNP #Read #Allele #blocks HCUT HCom. RefHap BF BP

1 122960 180199 403138 21825 115 214 28 59 39
2 139475 211311 475770 24836 134 243 61 117 99
3 117657 180572 407084 20855 113 203 37 70 60
4 119330 190029 437636 20802 123 202 45 116 89
5 112643 171881 387704 20049 122 167 30 62 48
6 116414 189932 463272 19579 202 16290 987 1193 1073
7 94511 148305 340748 16624 97 164 26 96 51
8 94024 152864 34966 16571 97 133 21 60 60
9 71898 115722 263419 12979 72 149 32 140 43
10 85499 136288 310879 15001 86 122 21 61 47
11 81018 126027 288307 14225 83 131 25 64 68
12 78146 117673 265958 13849 76 131 17 40 32
13 63689 100081 230321 11241 64 108 40 80 67
14 53934 82139 185435 9598 51 84 11 33 29
15 46254 73559 166860 8191 45 77 9 25 18
16 51786 86684 201865 9043 54 83 15 36 51
17 38839 58363 134103 6696 37 84 17 69 20
18 49873 77291 175107 8821 47 75 8 34 23
19 31760 46397 105525 5602 29 54 10 15 11
20 38044 58879 134089 6831 38 61 7 19 14
21 24342 40107 92582 4379 26 40 6 14 13
22 22801 33671 77122 4076 24 37 5 11 7
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the fastest among the considered schemes but its speed comes at the cost of

reduced accuracy. On the other hand, the BP and BF algorithms are faster

than HapCUT and HapCompass except for chromosome 6 where HapCUT

incurs the least amount of runtime.

4.7.2 Fosmid data

Fosmid pool-based sequencing provides very long fragments, character-

ized by much higher ratio of the number of SNPs to the number of reads than

in standard high-throughput sequencing platforms. We consider the fosmid

sequence data for a HapMap NA12878, also studied in [28]. As an example,

chromosome 1 of this dataset has 22, 737 reads and 122, 960 SNPs.

We compared the performance of our bit-flipping (BF) and belief propa-

gation (BP) algorithms to that of HapCUT and RefHap and report the results

in Table 4.4 (we attempted running HapCompass on the same dataset but

that algorithm was running out of memory or stopping for unknown reasons).

As can be seen from Table 4.4, BF or BP outperform HapCUT on half of the

chromosomes; the MEC scores of all three algorithms are within 1% margin

for all chromosomes.

In Table 4.5 we see the execution time of tested algorithms as reported

user time in UNIX time command. Both bit-flipping and belief propagation

are significantly faster than HapCUT – the widest gap in speed is seen on

chromosome 6 where belief propagation is about 40 times faster than HapCUT.

RefHap is again the fastest among the considered schemes but its speed is
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Table 4.4: MEC scores for HapCUT, bit-flipping and belief propagation algo-
rithms on the Fosmid dataset for NA12878 individual.

Properties MEC score
Chr. #SNP #Read #Allele #blocks HapCUT RefHap BF BP

1 122960 22736 393201 1316 9555 9644 (8051) 9589 9552
2 129732 22602 413205 1519 9668 9728 (7910) 9734 9661
3 108204 18722 330763 1285 7566 7635 (6111) 7606 7554
4 107430 16027 306639 1372 6267 6317 (4880) 6262 6267
5 103442 17013 317206 1196 6922 6963 (5558) 6960 6946
6 107882 16451 332388 1072 7957 8038 (6341) 8002 7965
7 87563 14936 275308 1011 6071 6098 (4961) 6107 6078
8 86708 13733 275302 959 6260 6289 (5092) 6282 6250
9 66996 11528 224982 678 5464 5505 (4591) 5460 5462
10 79978 14064 265142 779 6446 6489 (5357) 6475 6475
11 75235 13519 246499 802 5560 5602 (4620) 5575 5567
12 72917 13377 238070 793 5666 5691 (4686) 5692 5670
13 57287 8800 168625 671 3968 4030 (3155) 3961 3967
14 50219 9030 165775 523 3979 4017 (3244) 4016 3989
15 43578 8306 149536 481 4009 4053 (3341) 4030 4003
16 49736 9655 191480 400 5087 5102 (4438) 5128 5099
17 37820 8776 146019 426 4744 4819 (4159) 4773 4740
18 46313 7704 146353 497 3448 3473 (2801) 3475 3441
19 30777 7431 119629 266 3900 3940 (3406) 4037 3902
20 36398 7447 135745 317 3811 3863 (3295) 3883 3810
21 22756 3760 73711 222 1953 1967 (1601) 1958 1953
22 22083 5567 92889 141 3261 3343 (2876) 3375 3278
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Table 4.5: Execution time for HapCUT, bit-flipping and belief propagation
algorithms on the Fosmid dataset for NA12878 individual.

Properties Execution time (s)
Chr. #SNP #Read #Allele #blocks HapCUT RefHap BF BP

1 122960 22736 393201 1316 2423 2.3 319 268
2 129732 22602 413205 1519 3089 2.22 254 282
3 108204 18722 330763 1285 2124 2.01 220 213
4 107430 16027 306639 1372 2431 1.81 159 234
5 103442 17013 317206 1196 2202 1.91 238 213
6 107882 16451 332388 1072 11260 2.02 286 283
7 87563 14936 275308 1011 2242 1.79 274 208
8 86708 13733 275302 959 2670 1.78 332 158
9 66996 11528 224982 678 2309 1.56 286 163
10 79978 14064 265142 779 2006 1.62 180 199
11 75235 13519 246499 802 1752 1.64 177 182
12 72917 13377 238070 793 1610 1.71 183 189
13 57287 8800 168625 671 1276 1.28 108 92
14 50219 9030 165775 523 1302 1.26 168 186
15 43578 8306 149536 481 1083 1.17 120 150
16 49736 9655 191480 400 2481 1.58 220 260
17 37820 8776 146019 426 1069 1.21 151 191
18 46313 7704 146353 497 1021 1.17 83 88
19 30777 7431 119629 266 773 1.07 137 136
20 36398 7447 135745 317 951 1.2 164 115
21 22756 3760 73711 222 587 0.72 48 33
22 22083 5567 92889 141 752 1.24 218 188

traded off for accuracy. As before, the reported runtimes exclude the system

calls time.

4.7.3 Simulation results: the diploid case

We simulate two scenarios, one with high coverage paired-end reads

that resemble those in 1000 Genomes Project datasets and the other with

long reads and low coverage similar to what may be available in a Fosmid

dataset.
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To emulate the short-read high-coverage scenario, we generated reads

that span 500 basis with inserts having 10k mean length and 10% deviation.

The rate of SNPs is assumed to be 1 in 300 basis as reported in [34]. We

simulate sampling of the entire genome with the paired-end reads, marking

each base as a SNP location with probability 1 in 300. This means that the

number of basis between two neighboring SNP locations is a geometrically

distributed random variable (as assumed in, e.g., [12]).

We study the dependence of the switch error rate (SWER) on cover-

age. Moreover, we are interested in understanding how haplotype assembly

depends upon the errors in the SNP fragment matrix. To this end, we consider

haplotype block lengths of 1000 and 5000, with the coverage of 10, 15, 20, 25

and 30. Fore each pair of parameters (block length and coverage), we simulate

error rates of 1%, 2% and 5% in the SNP fragment matrix. The error rate of

2% is the closest to what we observed in experimental data sets (both 1000

Genomes Project and Fosmid). Each experiment is repeated 10 times. The

mean values of SWER for the BP algorithm are reported in Fig. 4.7. As can

be seen from the figure, increase in the block length leads to the increase in the

SWER value for the same value of the erroneous data rate and coverage. In-

creasing the fraction of errors in the SNP fragment matrix causes deterioration

of the SWER performance, while increasing the coverage improves the SWER.

Note that even in the worst considered scenario (highest rate of sequencing

errors, largest block size, and smallest coverage), SWER remains below 2%.

For a comparison, we include the SWER of RefHap and HapCUT for block
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Figure 4.7: Simulated SWER rates for haplotype assembly with short reads
using the BP algorithm (diploid). Results are averaged over 10 different frag-
ment matrices, and reported with respect to varying coverage, block length
and probability of error.

lengths n = 1000 and error rate 5%. Except for the coverage c = 20, the BP

algorithms leads to lowest SWERs for the considered set of parameters.

Next, we consider the long reads, small coverage scenario (similar to the

Fosmid data). The reads are generated with lengths distributed following Pois-

son distribution with specified average read length. Within each read, a single

SNP is covered independently with probability 0.9. We study the performance

of our algorithm in terms of SWER. The parameters of the simulation are the

number of SNPs, the sequencing error rate, and the average read length. The

number of SNPs (i.e., haplotype block length) is 5,000 and 25,000. The error

rate in the SNP fragment matrix is set to 0.5%, 1% and 2%. The average read

length was set to 40, 80, and 120. The coverage was set to 8. Each experiment
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Figure 4.8: Simulated SWER rates for haplotype assembly with long reads
using the BP algorithm (diploid). Results are averaged over 10 different frag-
ment matrices, and reported with respect to varying read length, block length
and probability of error.

was repeated 10 times and the mean value and standard deviation of SWER

are shown in the Fig. 4.8. We again include the comparison with RefHap for

block lengths n = 5000 and error rate 2%. As can be seen from the figure, the

BP algorithms provides better SWERs for all coverage levels.

We see from Fig. 4.8 that, as expected, higher data error rates lead to

higher SWER. Interestingly, the blocks of length 5,000 seem to have similar

SWER to those for the blocks of length 25,000. Moreover, long reads appear to

lead to SWER similar to those provided by short reads. In order to gain further

insight, we examined the cause of the switches. As it turns out, majority of

the switches are actually single SNPs that got inverted, implying that most

of the reported errors in haplotype assembly are due to errors in the isolated
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cuts (discussed in Section 5).

4.7.4 Simulation results: the polyploid case

We implemented our belief propagation algorithm for haplotype assem-

bly of polyploids in C, and compared its performance in terms of MEC, SWER

and execution time to the polyploid version of the HapCompass algorithm [3].

[We attempted to compare its performance to HapTree [12] as well, however,

for the considered block sizes HapTree runs out of memory.] We simulated

pair-end reads with the same setup as in the diploid simulations, for haplo-

type block lengths 200 and 1000. The coverage was varied and the error rate

in the SNP fragment matrix was 1% and 2%. The plotted lines are obtained

by averaging results of 10 simulation runs.

The MEC scores obtained by applying the algorithms to the assembly

of a triploid are given in Fig. 4.9. As can be seen there, the BP algorithm

achieves significantly lower MEC scores than HapCompass. As the data error

rates increase, the MEC scores increase by approximately the same factor.

Next, we study the switch error rate (SWER) and compare the perfor-

mance of the algorithms for various polyploid orders. The results are shown

in Fig. 4.10. As we can see from the figure, increasing the coverage reduces

the SWER while as the ploidy increases the SWER deteriorates.

Finally, we study running times of the belief propagation algorithm for

haplotype assembly of polyploids and report them in Fig. 4.11. As can be

seen there, the run time increases with coverage, ploidy and block size, while
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Figure 4.9: Simulated MEC scores for haplotype assembly of a triploid (the
belief propagation algorithm and HapCompass).
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Figure 4.10: Simulated SWER rates for haplotype assembly of various poly-
ploids (the belief propagation algorithm and HapCompass). Haplotype block
length is set to 200.
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Figure 4.11: Comparison of running times for haplotype assembly of various
polyploids (the belief propagation algorithm and HapCompass). Haplotype
block length is set to 200.

it appears independent of data error rates. Moreover, the belief propagation

algorithm is significantly faster than HapCompass for the same sets of simu-

lation parameters. Note that the reported run times are obtained using the

UNIX time command (i.e., we are reporting the user time).

4.8 Conclusion and Future work

We proposed and studied formulation of the haplotype assembly prob-

lem that relies on a novel graphical representation and draws upon parallels

between haplotype assembly and decoding in data communication systems.

We proposed two algorithms, namely the bit-flipping and belief propagation

algorithm, both highly accurate and fast heuristics. The complexity of both

algorithms is only linear in the length of the haplotype block. Their accu-
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racy compares favorably with HapCUT, HapCompass and RefHap on both

simulated and experimental data. When applied to fosmid data characterized

by long fragments and small ratio between the number of reads and haplo-

type length, our proposed methods are often more than 10 times faster than

HapCUT. Moreover, we extended the belief propagation algorithm to the hap-

lotype assembly of polyploids, focusing on the bi-allelic case, and demonstrated

significant performance improvements over HapCompass.

As part of the future work, it is of interest to explore other, more so-

phisticated, decoding algorithms in the context of haplotype assembly (e.g.,

belief propagation with soft thresholding). There is also a number of poten-

tially interesting fundamental questions such as performance vs. complexity

tradeoffs and further analysis of the achievable limits of performance.

112



Chapter 5

Conclusion and Future Work

In this thesis we explore the recovery of the high-dimensional signal

from partial observations. We look into this problem from theoretical view-

point and define the necessary and sufficient conditions of resynchronization of

time varying systems with linear observations in case of both full and partial

view of the system. However, the recovery procedure in general is exponential

which makes it inefficient for real systems. As a result, we give a heuristic and

extensively simulate its performance on time varying system.

As part of the future work, it would be interesting to expanding the

existing framework with theoretical guarantees on the performance of the de-

signed heuristics. In addition, still open problem in this framework is a de-

sign of measurement schedule with multiple observers that would lead to the

most efficient signal recovery. Both of these would address in more detail

the tradeoffs between the complexity of recovery procedure with number of

measurements required and guarantees of the validity of the solution.

Next, we introduce two applications of high-dimensional signal recovery

from partial observations. First one is related to massive MIMO wireless

system where the goal is to reduce the channel contamination. The second
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application is a biomedical application with focus on recovery of the genetic

variation for both diploid and polyploid species from incomplete observations

that is known as haplotype assembly problem.

The pilot contamination problem exists in massive MIMO systems. In

this system the performance bottleneck is the ability to recovery the channel

coefficients from sent pilots. By exploiting the time correlation and using non-

orthogonal pilot sequences we can reduce the pilot contamination, as well as

allow packing of more users in the system. This is achievable without any

cooperation between the base stations, and with minimal user management.

In the future it would be useful to see if base station collaboration can

lead to better performance. In addition, it would be useful to explore how to

pack higher number of users in the system, while keeping pilot contamination

under a threshold.

Haplotype assembly problem is a problem of recovering the genetic

variation from partial and erroneous observations. We give two algorithms,

namely the bit-flipping and belief propagation algorithm, both highly accurate

and fast heuristics. The complexity of both algorithms is only linear in the

length of the haplotype block. We expand the belief propagation algorithm

for polyploid case. All of the algorithms perform favorably when compared to

the state of the art algorithms on both simulated and real data sets.

As part of the future work in the area of haplotype assembly, it is

of interest to explore other, more sophisticated, decoding algorithms in the
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context of haplotype assembly (e.g., belief propagation with soft thresholding).

There is also a number of potentially interesting fundamental questions such

as performance vs. complexity tradeoffs and further analysis of the achievable

limits of performance.
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