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Topological states in (quasi) two-dimensional systems have attracted

a lot of attention, both theoretically and experimentally, since the discov-

ery of quantum Hall effect. In this thesis, we first introduce the ruby lattice

which is able to host an extremely flat topologically non-trivial band. This

helps to realize integer and fractional quantum Hall effect in lattices. We then

study the thin films of pyrochlore iridates grown along the [111] direction. We

first investigate a semi-empirical model described by a multi-band Hubbard

model. Using Hartree-Fock approximation, our phase diagrams predict that

the bilayer and triangular-Kagome-triangular trilayer structures are the most

favorable for topological phases. We then check those structures with first-

principles calculations, and find they are able to support the Z2 topological

metallic phase and Chern metallic phase. We study in detail the extended
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nature of 5d orbitals. As a consequence, the charge-density wave caused by

nearest-neighbor interaction may serve as a possible way to turn these topo-

logical metallic phases into their insulating counterparts.
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Chapter 1

Introduction

1.1 Quantum spin Hall effect and quantum anomalous
Hall effect

More than one hundred years ago, when the young Edwin Herbert

Hall[1] was reading Maxwell’s A Treatise on Electricity and Magnetism (Vol.2),

he was puzzled by one statement:

“It must be carefully remembered, that the mechanical force which

urges a conductor carrying a current across the lines of magnetic force, acts,

not on the electric current, but on the conductor whiclh carries it.”

He began to question that statement. No one would likely to anticipate

that one hundred years later, Hall’s questioning will bring a storm to the

community of physics.

In 1980[2] and 1983[3], the studies of two-dimensional electron gases

led to the discovery of the integer and fraction quantum Hall effects (QHE).

In those phenomena, the Hall conductivity is quantized as

σxy = ν
e2

h
. (1.1)

Here ν is an integer or fractional number.

1



Using Kubo’s formula and the TKNN[4] formula, one can confirm that

for the integer QHE, the quantization number satisifies

n =
1

2π

∫
d2kF, (1.2)

where F = ∇×A is the Berry curvature, and A is the Berry connection.

This relationship reveals some fundamental aspects of the ground state

of quantum Hall systems. Unlike the states in Landau’s second order phase

transition theory, these phases are not classified by their symmetries, but by

their intrinsic topological properties. The topologically different quantum Hall

state and vaccum state are separated by edge states at the boundary. When the

electron flows through the edge, the resistivty is zero since no back scattering

occurs. However, this dissipationless currents can not be used in the real

electronic systems, because the realization of the quantum Hall effect requires

very strong magnetic fields and very low temperatures.

In 1988, Duncane Haldane[5] proposed a model residing on a honey-

comb lattice. With the periodic magnetic flux across the lattice, it is possible

to realize the quantum Hall effect without the external magnetic field.

Haldane’s model is given by:

H(k) = 2t2 cosφ

(∑
i

cos(k · bi)

)
I + t1

(∑
i

[cos(k · ai)σ1+

sin(k · ai)σ2]
)

+

[
M − 2t2 sinφ

(∑
i

sin(k · bi)

)]
σ3, (1.3)

where t1 and t2, φ , and M are some parameters. σ are the Pauli matrices. a

2



and b are basis vectors. In the half-filling case, Haldane calculated the Chern

number of the system, and found it was non-zero.

Haldane’s model opened the way toward quantum anomalous Hall effect

(QAHE), the quantum Hall effect without external magnetic fields. However,

it is very hard to be realized.

In 2005, after the discovery of graphene[6], Kane and Mele constructed

another model[7] like the following:

H =
∑
〈ij〉α

tc†iαcjα +
∑
〈〈ij〉〉,αβ

it2νijs
z
αβc
†
iαcjβ. (1.4)

In graphene, the Fermi surface crossed the Dirac points. Due to the sensitivity

of the system to perturbations, even a small spin-orbit coupling can act as

“effective magnetic fields” and gap out the system. For different spin species,

the effective magnetic field takes opposite directions. Therefore, the Kane-

Mele model can be regarded as two-spin copies of the Haldane model.

Through a stripe geometry calculation, they proved the system has

robust edge modes, similar to the edge states in quantum Hall effects. The

robust edge states originate from the topological difference between the k-

space structure of the model and vaccum. Kane and Mele introduce a Z2

topological number[8], which is be equal to mod ((C↑−C↓)/2, 2), to describe

the difference between the topological state and normal trivial insulating state.

The special phenomenon they discovered is called the quantum spin Hall effect

(QSHE).
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Although the Kane-Mele model was first introduced for graphene, the

spin-orbit coupling strength in graphene is too weak to experimentally realize

the QSHE. The QSHE was first realized in the CdTe/HgTe/CdTe quantum

wells[9] composed of heavy elements.

The structure of the quantum well is the following: The HgTe film is

sandwiched between CdTe substrates. The system can be described by a quasi

two dimensional model with four bands. Compared to CdTe, bulk HgTe has

inverted band structure due to much stronger spin-orbit coupling(SOC). In the

quantum well, the experiment[9] proves that if the width of the HgTe layer is

larger than a critical value, the band inversion in HgTe causes a topological

insulating phase in the two dimensional electron gas inside the HgTe layer. In

addition, the non-trivial edge states are further confirmed.

From that time on, other topological insulators such as Bi2Se3, Bi2Te3

[10–23] have been discovered.

The QSHE still preserves time reversal symmetry. If the system is

magnetically dopped, it is possible to polarize the electrons to suppress one

spin component, and obtain the single-spin copy of the Haldane model, that

is, the QAHE[24].

In 2013, Dr. Xue’s group finally observed the QAHE in Cr-doped

Bi2−xSbxSe3[25].
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1.2 Density functional theory and Wannier functions

1.2.1 A brief introduction to density functional theory

Density functional theory (DFT) is widely used in the study of solid

materials. It is based on the Kohn-Sham equation[26]. Here we give a simple

derivation of the Kohn-Sham equation.

For a many-body electron system with Coulumb interactions, the Hamil-

tonian can be writen as

H =
∑
i

[
− ~2

2m
∇2
i + Vext(ri)

]
+
e2

2

∑
i,j;i 6=j

1

|ri − rj|
. (1.5)

According to The Hohenberg-Kohn theorem[27], the total energy can

be defined as a functional of the density:

E[n] = T [n] +

∫
d3rn(r)Vext(r) +

e2

2

∫
d3r

∫
d3r′n(r′)

1

|r− r′|
n(r) + Exc[n].

(1.6)

Here T [n] is the kinetic energy of the corresponding non-interacting case. All

the many-body effects except the density-density interaction has been included

in the exchange-correlation energy Exc[n].

Because the total electron number is fixed, after varying the density,

one can obtain the minimum condition for the energy

δT [n]

δn(r)
+ Vxc[n] +

∫
d3r′n(r′)

1

|r− r′|
+ Vext(r) = λ, (1.7)

where Vxc[n](r) = δExc[n]
δn(r)

is the exchange-correlation potential.
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Comparing this with the single particle problem, we can introduce an

effective mean field,

Veff[n] = Vext(r) + Vxc[n](r) +

∫
d3r′n(r′)

1

|r− r′|
. (1.8)

Then it is easy to write the corresponding Schrödinger equation[
~2

2m
∇2 + Veff[n](r)

]
ψi(r) = εiψi(r). (1.9)

The eigen wave functions should be consistent with the density by

n =
N∑
i=1

|ψi(r)|2. (1.10)

This is the Kohn-Sham equation. It maps a many-body problem to a one-

body problem by introducing the exchange-correlation potential. In principle,

if one is able to learn the exact form of Vxc[n], then the solution is exact.

However, in practice, due to the complexity of the problem, one can only use

approximations of Vxc[n] such as the local density approximation (LDA) and

the generalized gradient approximation (GGA).

1.2.2 Wannier functions

In crystals with translational symmetry, due to the commutation re-

lation between the Hamiltonian and the translation operator, any translation

operation on the energy eigenstates just creates a phase factor which depends

on the wave vector and the basis vector. This is the origin of Bloch wave

functions.
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Bloch waves can be regarded as amplitude modulated plane waves,

which are characterized by the envelop function un(k) and the plane wave part

eik·r. If we can find a way for these Bloch waves to intervene with each other,

it is possible to create wave packets localized at some sites. Mathematically,

this is just a Fourier transformation from k space to real space

|Rn〉 =
V

(2π)D

∫
BZ

dke−ik·R|ψnk〉, (1.11)

Here D is the dimensionality. These are called Wannier functions.

It is easy to verify the Wannier functions are orthonormalized, so they

can be used as a basis for periodic systems. They are especially useful in

the systems with localized electronic states, such as systems whose valence

electrons are in 3d or f orbitals.

One of the basic properties of Wannier functions is nonuniqueness. For

a given set of Bloch wavefunctions, one can define a local gauge field, and the

Wannier functions become

|Rn〉 =
V

(2π)D

∫
BZ

dke−ik·R|
J∑

m=1

U (k)
mnψmk〉. (1.12)

Here U is a set of unitary transformations corresponding to the gauge field.

Wannier functions have been proposed for many years. However, it

was not widely used in first principles study until recently. One reason for

the situation is the entanglement problem[28]. The relevant bands may get

crossed with the other bands, and it is not easy to separate them. By selecting

sets of variable numbers of Bloch functions at every k-point, the entanglement

problem can be solved.
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One common way to construct Wannier functions[28] is as follows.

First, the Bloch wave functions are obtained from the DFT calculation. One

then can introduce a trial basis for the Wannier functions.

|φnk =
J∑

m=1

|ψmk〉〈ψmk|gn〉, (1.13)

here gn(r) are those trial functions.

The overlap is then calculated.

(Sk)mn = 〈φmk|φnk〉 = (A†kAk)mn, (1.14)

where (Ak)mn = 〈ψmk|gn〉.

One can then construct the Löwdin-orthonormalized Bloch-like states

|ψ̃nk〉 =
J∑

m=1

|φmk〉(S−1/2
k )mn. (1.15)

After a Fourier transformation (See Eqn.(1.11), one can obtain the

Wannier functions. We will use this method later.

1.3 The organization of this thesis

The thesis is organized as follows. To give the readers some flavor of the

QSHE and QAHE, we will introduce some models on the ruby lattice, which

can host the topological insulating and Chern insulating phases in Chap. two.

From Chap. three on, we gradually connect these states to real materials.

The third chapter is about a semi-empirical model of thin films of pyrochlore
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iridates. From Hartree-Fock studies of these systems, we find topological in-

sulating and Chern insulating phases. In the fourth chapter, starting from

a DFT study and Wannier functions, we construct realistic models of those

thin films, and further confirm the topological phases. The effectiveness of our

approach is discussed. We believe these methods are powerful and our results

could bring useful insights for experimentalists.
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Chapter 2

Topological phases in the ruby lattice

2.1 Introduction

For a long time, the fractional quantum Hall effect (FQHE) could only

be realized in two dimensional electron gas under very low temperature and

a strong external magnetic field.1 However, recently the study of nearly flat

bands with non-trivial topology has attracted a lot of attention[29–33]. In

those systems, due to the very tiny bandwidth comparing to the gap, weak

interactions can drive the system into a strongly correlated regime. If the band

is topologically nontrivial and partially filled, the FQHE can occur without an

external magnetic field or Landau levels.

In those systems, the topologically nontrivial band must be very flat.

The example of those systems includes kagome, checkerboard and so on[29–

33]. Most of those systems require models including up to the third neighbor

hopping. In those systems, it is hard to obtain a gap to bandwith ratio as

large as 50.

1This chapter is based on the published paper: Xiang Hu, Mehdi Kargarian, Gregory
A. Fiete, “Topological insulators and fractional quantum Hall effect on the ruby lattice”,
Phys. Rev. B 84, 155116 (2011). Greg Fiete conceived of the project. Mehdi Kargarian
performed some calculations. Xiang Hu did most of the calculations. Xiang Hu and Greg
Fiete wrote the paper.
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However, in this chapter, we will introduce the ruby lattice. The gap to

bandwidth ratio in this model can easily reach around 70, even only considering

the second neighbor hopping. After fine tuning the parameters, the maximal

gap to bandwidth ratio in this model can overceed 100. Among all the models

reported up to now, it is the highest. Therefore, the ruby lattice provides an

excellent platform for the study of the FQHE. In addition, if the topologically

nontrivial flat band is fully occupied, we can obtain the QAHE.

In addition to the nearly flat band, the system also reveals some other

salient features, such as a topological insulating phase, if we consider nearest

neighbor hopping and second-neighbor spin-orbit coupling.

In this chapter, we first reveal the flat band feature of ruby lattice,

with an emphasize on the large gap to bandwith ratio. We then discuss the

topological insulating phase by displaying band structures and phase diagrams

for different cases.

2.2 Structure

The structure of the ruby lattice is more complicated than the honey-

comb or kagome lattice. Basically, the two-dimensional Bravais lattice belongs

to triangular type. In other words, the unit cell basis vectors are given by

a1 = ax̂

a2 =
a

2
x̂+

√
3a

2
ŷ, (2.1)

11



t
t1

t2

t

t3

t1

t4r
t'

t1
'

HaL

HbL

HcL

HdL

G

M

K

HeL

Figure 2.1: The structure of the ruby lattice, and the terms to be used in
our models. Here t, t1 (real) and t′, t′1 (complex) are nearest neighbor hopping
parameters. The “second-neighbor” SOC strength are indicated as t2, t3. t4r
is the second neighbor hopping. All those terms are subjected to the lattice
symmetry. (a) The spin-orbit coupling within a hexagon whose strength is
t2. (b) The spin-orbit coupling within a pentagon composed of one triangle
and one square, whose strength is t3. (c) The hexagonal unit cell of the ruby
lattice. (d) The hopping parameters used to obtain a non-trivial flat band.
(e) The 1st Brillouin zone of the ruby lattice. The high symmetric paths are
also marked. (f) The unit cell as a “ruby”.

here a is the lattice constant, and the reciprocal lattice basis vectors are defined

as

b1 =
2π

a
x̂− 2π√

3a
ŷ,

b2 =
4π√
3a
ŷ. (2.2)

In each unit cell, there are six sites, with different ways to select those
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sites. Of course we can take the Wigner-Seitz unitcell. In this way, the six

sites form a hexagon, which preserves the six-fold rotational symmetry of the

lattice, as shown in Fig.2.1(c). Comparing to the honeycomb lattice, we can

see the major difference is that every vertex in the honeycomb lattice has been

extended to a triangle, either pointing upward or downward.

Another way to select the unit cell is to keep one upper triangle and

one adjacent lower triangule in one unit cell, as shown in Fig.2.1(f). In this

way, the unit cell looks like a ruby. This is the reason why the lattice is called

the ruby lattice.

2.3 Hamiltonian and band structure

To study the nearly flat band in the ruby lattice, we start with the

spin-polarized case. In this case, the time-reversal symmetry is broken, which

is similar to the case of quantum Hall effect.

We then introduce a non-interacting model with complex hopping pa-

rameters on the ruby lattice

H0 = −t′
∑

i,j∈4,σ

c†iσcjσ − t′1
∑
4→4,σ

c†iσcjσ, (2.3)

with

t′ = t+ iσzti,

t′1 = t1r + iσzt1i. (2.4)

. In this model, c†i/cj represents the creation/annihilation operator on the
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site i and j respectively. t′ refers to the hopping between the vertices of the

hexagons, and t′1 refers to the hopping between the vertices of the triangles.

tr, ti, t1r, t1i are some real parameters. The complex hopping can be intro-

ducted as the spin-orbit coupling terms, in some strongly correlated systems

[34–36]. Another way to realize the complex hopping is through Raman field

induced in optical lattices [37–39].

Then the Hamiltonian is diagonalied using standard LAPACK codes.

The diagonalization process is equivalent to a transformation of the Hamilto-

nian in k-space, as

H =
∑
k

Ψ†kH̃kΨk, (2.5)

where Ψ†k = (c†1k, c
†
2k, c

†
3k, c

†
4k, c

†
5k, c

†
6k) are defined in the six sites.

After obtaining the band structure, we then can calculate the Chern

number of the ground state, which is defined as[32]

cn =
1

2π

∫
BZ

d2kF12(k), (2.6)

where F12(k) is Berry culvature defined as

F12(k) =
∂

∂k1

A2(k)− ∂

∂k2

A1(k), (2.7)

and Aµ(k) = −i〈unk| ∂∂kµ |unk〉 is the Berry connection. Here |unk〉 are the

Bloch wavefunctions of the nth band. For the study of the ground state only,

n = 1.

In a real calculation, the above formula is fairly hard to implement.

Even if we can mesh the brillouin zone to very fine sizes, it is still very hard
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to ensure the numerical integration returns an integer. Therefore, we use the

methods introduced in Ref.[40]. The algorithm converts the intergration into

a summation in k-space by introducing some U(1) gauge transformation link

varibles.

With that method, we search through the parameter space, focusing on

those ground states with non-trivial topology. The maximal gap to bandwidth

ratio we can obtain with nearest neighbor hopping only is around 13. This

value does not satisify the very flat criterion, which usually requires a gap to

bandwidth ratio Eg/W around 50.

In order to obtain more flat band, we have to include more hopping

terms in the model. For this purpose, we add on the next nearest neighbor

hopping in the square next to the hexagons on the ruby lattice, as shown in

Fig.2.1(d). With additional term, we find there exist nearly flat band with

nontrivial topology. For example, the case when ti = 1.2t, t1r = −1.2t, t1i =

2.6t, t4r = −1.2t. The Chern number is −1 and the gap = 2.398t with

band width = 0.037t. The corepsonding gap to bandwidth ratio is Eg/W ≈

64, which is already a very high number compared to other models. The

corresponding band structure is shown in Fig. 2.2.

2.4 The exploration of maximum gap to bandwidth ra-
tio

In this section, we explore the maximum gap to bandwidth ratio our

model in the previous section can reach. We begin the exploration by searching
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Figure 2.2: The electric structure with ti = 1.2t, t1r = −1.2t, t1i = 2.6t, t4r =
−1.2t. We can see the ground state has a very flat band.

through a large scope of parameter space. Using t as the unit for any energy

related parameters, we look at the region with ti, t1r, t1i, t4r between −4t and

4t, and the step length is 0.1t. In table 2.1, we list the top 10 largest gap

to bandwidth ratios we find in the ruby lattice for the topological nontrivial

cases.

Number ti/t t1r/t t1i/t t4r/t G/W
1 3.8 0.5 -1.2 1.3 167.29
2 1.5 2.5 0.7 -1.6 116.44
3 2.9 0.6 -3.9 2.9 114.59
4 2.2 0.6 -3.2 2.2 113.86
5 3 -0.6 4 -3 112.56
6 2.9 -0.3 3.7 -2.9 111.11
7 1.8 0.6 -2.8 1.8 110.63
8 2.6 0.3 -3.4 2.6 110.61
9 1.5 2.3 0.8 -1.6 108.83
10 1.7 0.6 -2.7 1.7 107.29

Table 2.1: The top ten gap to bandwidth ratios.
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2.5 The topological insulating phase in the ruby lattice

From this section on, we focus on another topic of our study, that is,

the topological insulating phase on the ruby lattice.

The starting point of our study is the Hamiltonian

H = H0 +HSO, (2.8)

where

H0 = −t
∑

i,j∈4,σ

c†iσcjσ − t1
∑
4→4,σ

c†iσcjσ, (2.9)

and

HSO = it2
∑

�ij�,αβ

νijs
z
αβc
†
iαcjβ + it3

∑
�ij�,αβ

νijs
z
αβc
†
iαcjβ (2.10)

In these equations c†iσ/ciσ represents the creation/annihilation operator of an

electron on site i with spin σ. t and t1 are nearest neighbor hopping parame-

ters, and t2, t3 are second-neighbor hoppings. All the hopping parameters are

real numbers. The quantity νij depends on the direction the electron makes

a turn at the lattice links of the second-neighbor hopping. When the electron

makes a left turn, it is equal to 1, otherwise it is equal to -1.

Because this model preserves the time reversal symmetry and inversion

symmetry, all the bands are spin up and down degenerate. We only include

the s orbital on each site, so there are six double degenerated bands in the

final electronic structure.

We then calculate the bulk band structure without and with SOC, as

shown in Fig.2.3. Similar to the honeycomb lattice, when there is no spin-
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Figure 2.3: The energy bands without and with SOC, given by Eq.(2.8). (a)
Bulk energy bands without SOC. We can see Dirac points at K for 1/6 and 2/3
filling. We can also see the quadratic band touching points at Γ for 1/2 and
5/6 filling. (b) The energy bands with SOC turned on, where t2 = t3 = 0.1t.
The Dirac points at the K points and quadratic band touching points at the
Γ point are now gapped out.

orbit coupling, in other words, t1 = t, t2 = t3 = 0, at the Γ point and half

filling and 5/6, the systems reveals quadratic touching Dirac points, which are

unstable under perturbations. On the other hand, at the K and K ′ points,

Dirac points also occur at 1
6

filling and 2
3
. We can infer that once spin-orbit

coupling is taken into account, it creates gaps at those points. The spin-orbit

coupling can also drive band inversion, which will result in some topological

phases, and thus non-trivial edge modes.

A stripe geometry calculation verifies these results, as shown in Fig.2.4.

We can see non-trivial edge states emerge at 1
6

and 2
3

filling, at time reversal

invariant points where kx = 0 or kx = π/a. Because the Fermi surface crosses

the edge states an odd number of times we can look just at one spin component

to see if the insulating phase is in fact topological[7, 8].

That is just a special case. To understand this model more thoroughly
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Figure 2.4: The energy bands on a strip geometry with t1 = t, t2 = t3 = 0.1t.
We can see that at the filling fractions 1/6 and 2/3 odd numbers of Dirac
cones for each spin component emerge on the edge.

we explore the phase space of a large scope of parameters. First, we will discuss

how to determine the phases in a reliable and systematic way.

2.6 Phase diagrams of the model

The determination of the phase with given parameters is based on the

following: First, by checking the band structure, one can determine whether

the system is insulating or conducting. If the system is insulating, the Z2

topological number is calculated to determine whether it is topologically non-

trivial.

For a given filling fraction, whether it is conducting depends on whether

the conduction and valence bands are crossing. In other words, we check

whether the top of the valence band is as high as the bottom of the conduction

band. The search for the maximum or minimum of a given band is not that
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easy, due to the complex band structure of this model. For that purpose, we

use an optimization algorithm called the differential evolution method[41]. It

is often effective, but has some deficiencies. To double check the results, the

software Mathematica is very helpful in determining the extreme values.

The Z2 invariant is calculated using the Fu-Kane formula[42], due to

the inversion symmetry of our model. The eigenvalues of the parity operator

at the four time reversal invariant points in the k-space is defined at,

b =
n1

2
b1 +

n2

2
b2, (2.11)

where

n1, n2 = 0, 1. (2.12)

And the Z2 topological class can be calculated as[42]

(−1)ν =
4∏

a=1

δa, (2.13)

where

δa =
N∏
m=1

ξ2m(Γa). (2.14)

Here Γa is a time reversal invariant point, and ξ2m(Γa) is the eigenvalue of

the parity operator of the 2m-th occupied state at the time reversal invariant

point Γa.

Since the hopping parameters t, t1, t2, and t3 can all be tuned, a large

parameter space exists. To understand the effect of each parameter more

clearly, it is beneficial to cut through the three-dimensional parameter space

to explore the phase diagrams. In the following, we discuss different ways of

slicing.
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2.6.1 Phase diagrams for t2 = t3

In this section, we fix the second neighbor hopping values t2 = t3 = λSO

in (2.10). The spin orbit coupling λSO is the same all over the lattice. On the

other hand, the inter-triangle hopping t1 is tuned.

The different phases are represented by the different colors:

Black=Conductor, Grey=Insulator, White=Topological Insulator.

As Fig. 2.5 shown, for filling fractions 1/6, 1/3, 1/2, 2/3, and 5/6, the rich

physics is shown in those diagrams.
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Figure 2.5: Phase diagrams for different fractions from 1/6 to 5/6. In figures
(a)-(e), the filling fraction are increased by 1/6 each time. The black color
represents conductors, and grey is for trivial insulators, while white is for
topological insulators. In those figures, t2 = t3 = λSO and t1 are shown
respectively in the horizontal and vertical axes, in units of t.
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We can see some overall trends on those phase diagrams. First, all

the above phase diagrams has the symmetry about λ = 0. This is easy to

understand, because if we reverse the sign of λSO, the phase does not change.

Because the system has inversion and time reversal symmetries, the above

transformation is equivalent to spin flip, which does not change the dispersion

relation, so the phase remains the same.

Second, for 1
6

and 5
6

fillings, the topological insulating phases occupy the

widest areas on the phase digram. That is not surprising, since the quadratic

or linearly touching Dirac points has been found for those filling fraction in

the bulk energy bands with t2 = t3 = 0. For the other filling fractions, the

topological insulating phases are mostly separated stripes. Due to the lack of

Dirac cones in the bulk structure, this is expected.

Also on figure (a), (b), (c), (d), the middle and the vertical axes remain

gray or black. With λSO = 0, the middle vertical axes in these phase diagrams

are impossible to be topological insulating. This is because in our model,

only the SOC can drive band inversion and then cause the topologically non-

trivial phase. The horizontal straight line on the phase diagram represents the

conducting phase.

For 1
2

filling the phase diagram appears rather complex. Narrow regions

around λSO = ±0.7t and t1 = −2.0t are still topological insulating.
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2.6.2 Phase diagrams for fixed t1

The previous section shows the effect of spin-orbit coupling in the for-

mation of topological insulating phase. We then focus on the effects of those

two types of spin-orbit couplings, t2, t3. The hopping between triangles t1 is

fixed. We study the competetion and cooperation between the two types of

spin-orbit coupling t2 and t3.

The phase diagrams for t1 = 0 and t1 = t are shown in Figs. 2.6-2.7.

The phase diagrams illustrated in Fig. 2.6 in which t1 = 0 are a special

case. For any filling fraction with t1 = 0, the origin is a trivial insulator. That

is easy to understand since no hopping occurs in this model, which is similar

to the case of a lot of isolated atoms. For 1/6, 1/2 and 5/6 fillings, most areas

are metallic. While for 1/3 and 2/3 fillings, the metallic and insulating phases

both occupy around one half of the total region.

The phase diagrams for t1 = t reveals some salient features. The large

spread of topolgical insulating phase with filling fraction 1/6 and 5/6 is in a

contrast with the absence of a topological insulating phase with filling frac-

tions 1/3 and 2/3. We emphasize the 2/3 filling case. Although in Fig. 2.3(a),

the bands at filling fraction 2/3 both has a Dirac cone at the K-point, the

phase diagram does not show abundant region of topological insulator. There-

fore, the existence of Dirac cone without SOC is not a gurantee for topologial

insulator when SOC is turned on. The relationship between them should be

more complicated. Similar cases are found when spin-orbit coupling emerges
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Figure 2.6: Phase diagrams for t1 = 0. In figures (a)-(e), the filling fraction
are increased by 1/6 each time. The black color represents conductor, and
grey is for trivial insulator, while white is for opological Insulator. In those
figures, t2 and t3 are shown respectively in the horizontal and vertical axes, in
units of t. The origin t2 = t3 = 0 is always a trivial insulator.

from interactions.[43–47]

Another feature is the symmetry of the phase diagrams. If the signs

of any two among t1, t2, and t3 are reversed, the phase of the system remains

the same. The flip of the signs of t1 and t3 can be absorbed via a simple

gauge transformation of electron operators defined as c†(c)→ −c†(−c) for up

triangles and c†(c) → c†(c) for down triangles. Flipping the signs of t2 and

t3 can also be absorbed into the magnetic fields for different spin species, i.e.

νij → −νij, which does not change the dispersion relation and the phase.
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Figure 2.7: Phase diagrams for t1 = t. In figures (a)-(e), the filling fraction are
increased by 1/6 each time. The black color represents conductor, and grey is
for trivial insulator, while white is for topological Insulator. In those figures,
t2 and t3 are shown respectively in the horizontal and vertical axes, in units
of t.

We can also have a look at t1 = 2t case. When the filling fraction is 5
6
,

if t2 = t and t3 = 0, or t2 = 0 and t3 = 0.4t, the system is topological. If we

increase t2 to t, and keep t3 = 0.4t, the system is a metal. In this case, the two

types of spin-orbit coupling are competing against each other in driving the

topological insulating phase. However, they can support each other in some

other cases. The competetion and supporting can be explained by the fact

that the inner effective magnetic field created by those two types of spin-orbit

coupling can compete against or support each other.

25



t
2
/t

t 3/t

−4 −2 0 2 4
−4

−2

0

2

4
(a)

t
2
/t

t 3/t

−4 −2 0 2 4
−4

−2

0

2

4
(b)

t
2
/t

t 3/t

−4 −2 0 2 4
−4

−2

0

2

4
(c)

t
2
/t

t 3/t

−4 −2 0 2 4
−4

−2

0

2

4
(d)

t
2
/t

t 3/t

−4 −2 0 2 4
−4

−2

0

2

4
(e)

Figure 2.8: Phase diagrams for t1 = 2t. In figures (a)-(e), the filling fraction
are increased by 1/6 each time. The black color represents conductor, and
grey is for trivial insulator, while white is for topological Insulator. In those
figures, t2 and t3 are shown respectively in the horizontal and vertical axes, in
units of t.

2.7 Conclusion and discussion

In this charpter, we introduced the ruby lattice which can host topolog-

ically non-trivial nearly flat bands and the topological insulating states. The

large gap to bandwidth ratio indicates it is a very good model to study FQHE.

The numerical verification of the FQHE phase has been carried out by some

other groups.

The disadvantage of this model is that it lacks connection to real ma-

terials, although it is possible to realize in optical lattices [48–54]. Searching
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for the real material to realize the ruby lattice, or even its deformed version is

still an open question.
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Chapter 3

Thin films of pyrochlore iridates: a

semi-empirical model

3.1 Introduction

In the previous chapter, we discussed a tight-binding model on the ruby

lattice[55]. That is just one example of a topological phases in theoretical

models. Our goal is to find those states in real materials.1 Up to now, a bunch

of topological materials have been discovered[9–23]. However, most of those

materials suffer from large bulk conductivity and the Fermi surface shifting

over time[56]. Strictly speaking, those materials are still not really topological

“insulating”. The obvious bulk conductivity brings a lot of inconvenience both

to laboratory study and industrial application. For example, in transport

experiments, it is not very easy to differentiate the bulk contribution apart

from the contribution of surface states[57].

Therefore, the study of topological phases in oxides begin to attract

more and more attention[58–64]. The large bulk resistivity in a lot of oxides

1Chapter three is based on the published paper: Xiang Hu, Andreas Rüegg, Gregory A.
Fiete, “Topological phases in layered pyrochlore oxide thin films along the [111] direction”,
Phys. Rev. B 86, 235141 (2012), Editor’s suggestion. Greg Fiete conceived of the project.
Andreas Rüegg performed some calculations. Xiang Hu did most of the calculations. The
three authors wrote the paper.
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provides a possiblity to realize topological “insulating” phases. Most efforts

focus on transition metal oxides with perovskite or pyrochlore structure.

Band inversion caused by intrinsic or effective SOC is usually impor-

tant for the formation of topological states. In transition metal oxides with 3d

valenace electrons, the intrinsic SOC of those transition metal ions, although

small, can be magnified by strong localization effect[58, 65]. On the other

hand, effective SOC[35, 36] also emerges from interactions, as is easy to see

from a simple mean field treatment. While in transition metal oxides with

5d valence electrons, like iridates, the intrinsic SOC is comparable with cor-

relation strength. The interplay of SOC and correlation give rise to very rich

physics. Up to now, a lot of novel states such as topological insulators, Chern

insulators, Weyl semi-metals have been predicted in the iridates[59, 64, 66].

However, despite numerious experimental studies, these predictions have not

been proved by any experiment in bulk iridates[58].

The study of graphene can illuminate us a lot. After defoliating from

the bulk structure (graphites), the two dimensional stucture reavels the poten-

tial to many different topological phases[7]. If we can defoliate the transition

metal oxides into many layers, we can also possibly create some new topological

materials[35, 36, 65, 67–75].

However, in those transition metal oxides, due to the transition metal

ions residing in the center of some cages of oxygen ions, the thin film of those

materials must be sandwiched in some substrates and capping layers to create

stable heterostructures[35, 36, 67, 68, 76].
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Although the [001] direction is a natural cleavage direction of per-

ovskites, it is not the most favorable direction for the emergence of topological

states[77–85]. In thin films of perovskites grown along the [111] direction[35,

36, 67, 68, 76], band structure calculation reveals quadratic band touching at

the Γ point, which is unstable under perturbations. On the other hand, they

may host nearly flat bands, whose large density of states may also drive un-

stability. In both case, band inversion can be induced, and topological phases

may emerge. In spite of these salient features, the experimental growth of per-

ovskites along the [111] direction is still so tricky that only a few experimental

results are known[86–88].

In this chapter, we will study thin films of pyrochlore iridates. The

formula of bulk pyrochlore iridates is A2Ir2O7[59, 60, 64, 66]. Here A is some

kind of rare earth element such as Y, La, and Ce. Usually, the A ion has

little effect on the electric structure close to Fermi surface, although its size

affects the lattice parameter. The Bravais lattice of pyrochlore belongs to

face-centered cubic. In each unit cell, there are 22 ions, including four A

ions, four iridium ions, and 14 oxygen ions, with those iridium ions form a

tetrahedron. The bulk pyrchlore structure is inversion symmetric. In addition,

the [111] direction is a natural cleavage direction, which may bring convenience

to the preparation of thin films along that direction. In the following, we will

introduce the thin film structures along the [111] direction, and determine

their phases in the non-interacting and interacting cases.
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3.2 Structure of the thin films along [111] direction

As Fig.3.1, shown, along the [111] direction, the pyrochlore thin films of

iridates forms alternating layers of kagome and triangular lattices. By changing

the thickness of the thin film, we can obtain different structures. Here we focus

on four different types of thin films: (i) a single kagome layer, (ii) a triangular-

kagome bilayer, (iii) a triangular-kagome-triangular trilayer (TKT), and (iv)

a kagome-triangular-kagome trilayer (KTK), as are shown in Fig. 3.2.

A2 B'2 O7

A2 B2 O7

A2 B'2 O7

(a)

G

M

KK'

(b)
(c)

Figure 3.1: (color online) (a)The A2B’2O7/A2B2O7/A2B’2O7 sandwich struc-
ture. (b) The first Brillouin zone of the thin films. (c) Pyrochlore lattice
structure. Alternating kagome and triangular lattice planes stack along the
[111] direction. The green atoms locate in the kagome planes and grey atoms
sit in the triangular planes.

As we point out previously, to stablize their structure, the thin films

have to be sandwiched in some substrate and capping layers, which are chosen

as A2B’2O7, as shown in Fig.3.1(a). Those capping layers are some trivial band
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insulators with large gaps. They created an environment similar to vaccum.

However, by changing the composition of the capping layer we can also apply

different strain on the thin films, and potentially create new phases.

In the pyrochlore lattice, each B ion inhabit in an octaheral cage of

oxygen ions. Therefore, it is under a cubic crystal field which split the 5d

orbitals into t2g and eg manifolds[89]. The t2g−eg splitting can be up to 2-3eV

in the iridates. Due to the large energy difference, we can focus on the t2g

manifolds if we consider filling number less or equal to 6 for each iridium ion.

(a) (b)

(c) (d)

Figure 3.2: Single, double, and triple layer thin films along [111] directions.
(a) Single kagome layer. (b) Bilayer. (c) Triangular-kagome-triangular (TKT)
trilayer. (d) Kagome-triangular-kagome (KTK) trilayer.

In the t2g manifold, the effective orbital angular meomentum is defined

as Pt2gLPt2g = −ll=1. Here Pt2g is the projection operation into the t2g sub-
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space. Due to the existence of the minus sign in the effective orbital angular

momentum, the onsite SOC for t2g manifold is ∼ λ(−l) · s. From that we can

see that the j = 1/2 manifold lies above the j = 3/2 manifold. The splitting

depends on the value of λ.

3.3 The non-interacting model

We start with a tight-binding model defined in the t2g manifold.

H0 =
∑
〈i,j〉,α,β

tiα,jβc
†
iαcjβ − λ

∑
i

li · si, (3.1)

where the 5d-orbital hopping is [63, 66]

tiα,jβ = tiniα,jβ + tdiriα,jβ. (3.2)

Here c†iα and ciβ are respectively the electron creation and annilation

operators on site i. α and β are state indexes which include both spin and

orbital information. t represents the hopping strength. Comparing to 3d

orbitals, the 4d and 5d orbitals are already rather extended. There are two

possible ways for the electron to jump from one site to the other. One basic

way is by hopping through the intermediate oxygen ions, which is indirect

hopping[59, 60, 90]. The other way is for the electron wave function to overlap

directly, resulting in the direct hopping terms [63, 66].

The construction of the hopping term can be established in the standard

Slater-Koster(SK)[91] way. However, as the local t2g orbits can be decompos-

ited into the linear combination of all the 5d orbitals, the SK matrix elements
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have to be constructed in the general coordinates, and then rotated to the

local coordinates.

The rotational matrices Mi are 5× 3 matrices given by

M1 =


−2/9 −5/9 2/9
−5/9 −2/9 2/9
−2/9 −2/9 5/9

2/(3
√

3) 2/(3
√

3) 4/(3
√

3)
2/3 −2/3 0

 , (3.3)

M2 =


−2/9 −2/9 5/9
2/9 5/9 −2/9
5/9 2/9 −2/9

−4/(3
√

3) 2/(3
√

3) −2/(3
√

3)
0 2/3 2/3

 , (3.4)

M3 =


5/9 2/9 −2/9
−2/9 −2/9 5/9
2/9 5/9 −2/9

2/(3
√

3) −4/(3
√

3) −2/(3
√

3)
−2/3 0 −2/3

 , (3.5)

M4 =


5/9 2/9 −2/9
2/9 2/9 −5/9
−2/9 −5/9 2/9

2/(3
√

3) −4/(3
√

3) −2/(3
√

3)
−2/3 0 −2/3

 . (3.6)

The corresponding basis is the local yz, xz, xy orbitals and yz, xz, xy, 3z2 −

r2, x2 − y2 orbitals in general coordinates.

The direct hopping between local t2g orbitals from site j to site i is

defined as

tdiriα,jβ = MT
i Sdd(êij)Mj ⊗

(
D†iDj

)
αβ
, (3.7)

where Di is the SU(2) rotational spin matrice[59, 60, 90].
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The indirect hopping terms can be obtained in a similar way. But one

has to remember it is a second order process which occurs between the 5d

orbitals of iridium ions and the 2p orbitals of oxygen ions.

We consider only the σ and π bond for the direct hopping. The corre-

sponding hopping strengths are represented by ts and tp, respectively. In all

our studies, we follow the convention[63, 66] that the tp = −2/3 ∗ ts, and the

indirect hopping strength t is set as the basic unit of energy in this charpter.

In the local t2g basis with spin (yz ↑, yz ↓, xz ↑, xz ↓, xy ↑, xy ↓), the

SOC term −λli · si has the format

λ


0 0 0.5i 0 0 −0.5
0 0 0 −0.5i 0.5 0
−0.5i 0 0 0 0 0.5i

0 0.5i 0 0 0.5i 0
0 0.5 0 −0.5i 0 0
−0.5 0 −0.5i 0 0 0


Using results that we obtained in chapter 4, we can estimate the indirect

hopping strength to be 0.2-0.4 eV, while the SOC strength is 0.4-0.5eV. In our

study, we study two cases with λ/t = 2, 4.

3.4 Non-interacting solutions

Next, we calculate the energy bands for different thin films. We deter-

mine the phase of the thin films in the following way. First, we study whether

the system is conducting or insulating. This can be determined by observing

if the bottom of the conduction band is as low as the top of the valence band.

Following this, the Z2 topological number is calculated.

35



−2

0

2

4
E

/t

Γ M K Γ

(a) t
s
=−t, λ=2.0t

−5

−2

1

4

7

E
/t

Γ M K Γ

(c) t
s
=t, λ=2.0t

−4
−2

0
2
4
6

E
/t

Γ M K Γ

(b)

t
s
=−t, λ=4.0t

−6
−3

0
3
6
9

E
/t

Γ M K Γ

(d) t
s
=t, λ=4.0t

Figure 3.3: The band structure of Eq. (3.1) of a single kagome layer. The
tuning parameters are shown on the figures. Green (light grey) lines whose
widths are equal to the corresponding indirect gaps indicate filling fractions of
t2g manifold to realize the Z2 topological insualting phase: (a) 7

9
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9
; (b) 7

9
, 8

9
;

(c) 5
9
; (d) 5

9
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9
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9
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In the single layer, TKT or KTK cases, the systems withhold inversion

symmetry. The Z2 topological number can be calculated with the Fu-Kane

formula[42]. In the bilayer case, due to the breaking of inversion symmetry,

we have to use a different algorithm based on the Fukui formula[92]. In this

formula, the wave functions in the meshed Broullion zone must abide by time

reversal symmetry. We then convert the integration to summation in the

formula.

Our main results for the band structure are shown in Figs. 3.3-3.6. In

the single layer case, the results are similar to the kagome lattice. Due to dif-
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Figure 3.4: The band structure of Eq. (3.1) of bilayer. The tuning parameters
are shown on the figures. Green (light grey) lines whose widths are equal
to the corresponding indirect gaps indicate filling fractions of t2g manifold to
realize the Z2 topological insualting phase: (a) 3

4
; (b) 3

4
; (d) 5

6
.

ferent format of hopping, the nearly flat band in the s orbital model on kagome

lattice is no longer seen. In the bilayer case, the system no longer reveals in-

version symmetry, so the energy bands are no longer spin degenerated. In the

TKT and KTK case, the bands are more complicated. In addition, we can see

that a large λ does not necessary result in the well separation between j=1/2

and j=3/2 manifold. With ts = t, they are not separated even for λ = 4t.

The filling fractions (in t2g orbitals) favorable for topological insulating

phases are shown by the green color bar in each band figure. We can see that

the only filling fraction that can be naturally realized without doping the film
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Figure 3.5: The band structure of Eq. (3.1) of a TKT trilayer. The tuning
parameters are shown on the figures. Green (light grey) lines whose widths
are equal to the corresponding indirect gaps indicate filling fractions of t2g
manifold to realize the Z2 topological insualting phase: (a) 1
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is the bilayer case with ts = t. To further study it, we search through all the

possible combinations of ts and tp and draw the phase diagrams.

3.5 Non-interacting phase diagrams

Previously, we followed the convention of previous studies and assumed

tp = −2/3 ∗ ts. In real materials, whether this assumption is correct is still

an open question, so it is necessary to study other cases. Here we show the

ts − tp phase diagrams. We can see the value of λ/t does matter. When λ/t

is equal to 4, the region of topological insulators is much larger than when it
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Figure 3.6: The band structure of Eq. (3.1) of a KTK trilayer. The tuning
parameters are shown on the figures. Green (light grey) lines whose widths
are equal to the corresponding indirect gaps indicate filling fractions of t2g
manifold to realize the Z2 topological insualting phase: (a) 17
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is 2. This can be expected since the SOC plays an important role driving the

system into topological insulating.

3.6 The interacting case

Previously, we studied the non-interacting case. In this section, we will

turn to the interacting case.

For the convenience of our study, we use the strong SOC approximation,

and our model is defined in the j = 1/2 manifold by a direct projection into

the subspace. The effectiveness of this picture has to be justfied. In the next
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Figure 3.7: Phase diagrams for the bilayer thin film at 5/6 filling in the t2g
manifold. (a) λ = 2t and (b) λ = 4t. TM represents a Z2 topological metal
(non-trivial Z2 index for bands under the direct gap), M is a metal. I represents
a trivial insulator, and TI is a topological insulator. On the black line with
tp = −2ts/3, the ∗ is (-1, 2/3) and the × is (1, -2/3), which correspond to the
two values of ts = ±1 shown in Figs. 3.3- 3.6.
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chapter we will see, even for a realistic SOC strength, the j = 1/2 and 3/2

bands do not cross directly, so the mixing between them is not significant. For

that reason, we can still use the j = 1/2 picture.

The model is established by adding a Hubbard U term to Eq. (3.1)

in the pseudospin basis of j = 1/2. As the zero-th order approximation, the

tight-binding part is obtained by projecting all the hopping terms directly into

the j = 1/2 subspace. That treatment is eqivalent to setting λ to be infinite.

The interacting term in the model is the following:

HU = U
∑

ni↑ni↓, (3.8)

where ↑, ↓ refer to the doublet in the j = 1/2 manifold. Because the filling

fraction of Ir4+ in the t2g manifold is 5/6, we consider the half-filling interacting

case.

3.7 The derivation of Hartree-Fock approximation

The multi-band Hubbard model is difficult to solve. Therefore, we

turn to an approximational method. The Hartree-Fock(HF) approximation is

one of the easiest ways to decouple the interaction term. The Hartree-Fock

approximation is derived in the following way.

For each site, the interacting part is

H i
U = Uni↑ni↓, (3.9)
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and in the particle number basis, it is

H i
U = Ud†↑d↑d

†
↓d↓, (3.10)

where d† and d represent the pseudospin creation and annihilation operators

on the i-th site.

The Hartree part is

H i,h
U = U〈d†↑d↑〉d

†
↓d↓ + Ud†↑d↑〈d

†
↓d↓〉 − U〈d

†
↑d↑〉〈d

†
↓d↓〉, (3.11)

and the Fock part is

H i,f
U = −U〈d†↓d↑〉d

†
↑d↓ − Ud

†
↓d↑〈d

†
↑d↓〉+ U〈d†↓d↑〉〈d

†
↑d↓〉. (3.12)

Defining

ji =
1

2

∑
αβ=↑,↓

d†iασαβdiβ, (3.13)

we can then substitute

〈d†↑d↑〉 =
n

2
+ jz,

〈d†↓d↓〉 =
n

2
− jz,

〈d†↑d↓〉 = jx + ijy,

〈d†↓d↑〉 = jx − ijy, (3.14)

into the approximation, and obtain

H i
U = U〈j〉2 − 1

4
Un2 + U(d†↑d

†
↓)

(
n
2
− jz −jx + ijy

−jx − ijy n
2

+ jz

)(
d↑
d↓

)
. (3.15)
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One of the major differences between the above formula and Ref.[66] is

that in their study, they neglected the difference of electron occupation num-

ber on each site. This is reasonable in the bulk case, due to the tetragonal

symmetry of the unitcell. However, in the thin film case, that symmetry no

longer exists. For the sites in the kagome plane and the one(s) in the trian-

gular plane, their occupation numbers must be different, due to the stronger

repulsion of electrons inside the kagome plane. On the other hand, if the den-

sity difference is too large, it will cause the second term in Eqn. 3.15 to raise.

Therefore, the increase of the occupation difference results in energy rising.

In the real calculation of thin films, for simplification, we also neglect

the difference of occupation number on each site. This approximation shifts

the phase boundaries but does not remove the topological phases.

3.8 The self-consistent calculation

The HF calculation is carried out in an unrestricted self-consistent way.

The self-consistent calculation starts from twenty sets of randomly generated

initial magnetic configurations 〈j〉in. The Brillouin zone is meshed to 150 by

150. The Fermi energy is calculated to make sure the model is half-filled, then

the new local magnetic moments 〈j〉out are evaluated on each site. We regard

the following criterion

|〈j〉ini,n − 〈j〉outi,n | < 10−8, (3.16)

where n = x, y, z, as the criterion for the iteraction to converge.
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The final converged configuration with the minimum total energy is

regarded as the ground state. For |〈j〉| < 0.01, we treat the phase as non-

magnetic and reset the magnetic moments to zero.

3.9 The phase diagrams

We determine the phase of the interacting case in a similar way as the

non-interacting case. However, for the magnetic insulators, the Chern number

is calculated using Fukui’s algorithm[40].

All the phase diagrams are shown in Fig.3.8.

There are a few key points in these figure to be emphasized. First we can

see the critical value of U in each structure of film agrees with the approximated

bandwidth of the j = 1/2 manifold. That is not hard to understand since the

Stoner’s criterion can be applied.

In the single, TKT and KTK cases, the weakly interacting case proves

to be metallic. As U increases, the systems first become pseudospin non-

degenerated. In that case, the film is still conducting as long as the two spin

components are not well-separated. Finally, if U is large enough, the system

becomes magnetic insulating.

In the bilayer case, the filling fraction makes it insulating for the small

U . In addition, after calculating the Z2 topological number, we can verify it

is topological insulating, which is consistent with the non-interacting case.

In all those cases, if U > 3t, the film appears magnetic insulating.
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Figure 3.8: The phases of the interacting model with(3.8). (a) ts = −t, (b)
ts = 0.25t, and (c) ts = t for 1/2 filling. On the figures, M is a metal, I
represents a trivial insulator. TI is a topological insulator. MC is a magnetic
conductor, and MI is a trivial magnetic insulator, and CI is a Chern insulator
(QAHE state).
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In the bilayer case, the case ts = t is special. For small U , it appears as a

topological insulator. While for a large enough interaction strength, the system

first becomes magnetic insulating. As U increases, two tendencies compete

with each other. On the one hand, the splitting between the upper and lower

Hubbard bands causes the gap to increase. On the other hand, the magnetic

moments created by interaction act like an onsite Zeeman field, which results

in different energy shifting for different pseudospin components. At first, the

magnetic moments increases fast as U increases, so the gap between the valence

and conduction band shrinks, cause the gap to close at around U/t = 2.5. Once

the gap reopens, due to a small perturbation of changing parameter, the system

is Chern insulating since the Chern number of the valence and conduction

bands have exchanged with each other. But the Chern insulator does not

cover a wide region. As U increases further, the valence and conduction bands

touch and separate again, turning the system into trivial magnetic insulating.

From the second time the gap closes and reopens onward, the gap always

increases because the splitting Hubband bands now plays the main role.

Although the bilayer thin film is able to host both topological insulating

and Chern insulating phases for different U values, the TKT trilayer thin film

is also attractive, since for U < t region there is a wide area of Chern insulators.

This is closely connected to the emergence of the nearly flat band for ts = −t

case.
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3.10 Magnetic configurations

It is interesting to look at the magnetic configures for different cases.

As we expected, the sign of ts has an important impact on the magnetic order,

similar to the three-dimensional studies.[66] While all the magnetic moments

are non-coplanar, and the net magentic moments in one unitcell is nonzero,

the configuration can be divided into two kinds: one reveals the C3 rotational

symmetry and the other not, as shown in Figs.3.9-3.10.

Figure 3.9: Magnetic configurations obtained within the Hartree-Fock approxi-
mation for a single kagome layer with (a) ts = −t, U = 2.5t, (b) ts = t, U = 3.0t
and a bilayer with (c) ts = −t, U = 3.0t, (d) ts = t, U = 3.0t.

3.11 Discussion and conclusions

Based on a multi-band Hubbard model, we study the different types of

thin films of pyrochlore iridates, and find that the bilayer and TKT trilayer

thin films can possibly host topological insulating or Chern insulating phases.
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Figure 3.10: Magnetic configurations for a TKT layer: (a) ts = −t, U = 3.0t,
(b) ts = t, U = 3.0t and for a KTK layer: (c) ts = −t, U = 2.5t, (d) ts =
t, U = 3.0t.

These predictions will help experimentalists search for new topological mate-

rials, including quantum anomalous Hall insulators.

Our predictions rely on the effectiveness of j = 1/2 picture in pyrochlore

iridates, and we make some assumptions about the hopping parameters. To

obtain a realistic model for the real material, and to determine the scope

of topological phases more accurately, one needs to use the first principles

calculation to determine more realistic energy bands. This is accomplished in

the next chapter.
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Since the Hartree-Fock approximation only considers the static cor-

relaton effects, the effect of quantum fluctuation also needs to be addressed

further. In a recent paper [93], the authors investigate the fluctuation effect

with dynamic mean field theory. Their results verify the existence of these

topological phases in our study, and in addition, the fluctuation enhances the

topological phases instead of destroying them.
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Chapter 4

Thin films of pyrochlore iridates: first

principles study

4.1 Introduction

Previously, we studied thin films of pyrochlore iridates grown along

the [111] direction[75]. Our study was based on a semi-empirical tight-binding

model. In this chapter1, we use a first-principles DFT calculation[64] to obtain

a realistic tight-binding model, and then carry out a Hartree-Fock calculation

based on it[94].

4.2 Bulk density functional theory calculation

Our basic strategy is the following: first we obtain a tight-binding

model for the bulk pyrochlore iridates, then we apply the tight-binding model

to the thin films by a slab-truncation. This strategy proves to be effective in

the study of a bunch of topological insulators, so we believe it also works in

the films we study here. For the purpose of further verification, at the later

1This chapter is based on the published paper: Xiang Hu, Zhicheng Zhong, Gregory
A. Fiete, “First Principles Prediction of Topological Phases in Thin Films of Pyrochlore
Iridates”, Sci. Rep. 5, 11072 (2015). Greg Fiete and Xiang Hu conceived of the project.
Zhicheng Zhong performed some calculations. Xiang Hu did most of the calculations. Greg
Fiete and Xiang Hu wrote the paper.
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part of this chapter, we also give some results based on a tight-binding model

obtained directly from the first-principles calculation of the thin film, and show

that approach yields results very similar to the slab-truncation approach.

We obtain the bulk structure of Y2Ir2O7 from Ref.[95]. In this structure,

each iridium ion is subjected to a cubic crystal field. Two parameters are

essential for the determination of the position of all ions in a pyrochlore lattice,

that is, the lattice constant a and the position parameter of some oxygen ions

x. In an ideal pyrochlore structure, the value of x = xc should be 5/16. In

that case, the B ion is under a perfect cubic crystal field. If x 6= xc, the

oxtahedral cage of oxygen ions is compressed or stretched in the local [111]

direction. That compression causes the t2g manifold to split into a1g and e′g

manifolds. In our case, in the bulk Y2Ir2O7 structure, the value x = 0.3356

which is greater than xc, so the oxygen cages are compressed.

Our density functional theory calculations are carried out in the WIEN2k[96]

package by using the all-electron full-potential augmented plane-wave method,

and in the Quantum Espresso(QE) [97] package using a norm-conserving pseu-

dopotential. In both packages, generalized gradient approximation (GGA) of

exchange-correlation density functional is used, and the SOC of each type of

ion is considered in a fully-relativistic scheme. In both band calculations, the

self-consistent part is carried out with a 10×10×10 Monkhost-Pack[98] k-grid.

In QE, the pseudopotentials are generated with the intrinsic ATOMIC package,

and the valence configuration selections are:

Y ([Kr]4d15s2) : 4s, 4p, 4d, 5s, 5p;
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Ir ([Xe]4f 145d76s2) : 5s, 5p, 5d, 6s, 6p;

O ([He]2s22p4) : 2s, 2p.

To enhance the transferability of the pseudopotentials, we include the

semi-core states, that is, 4s, 4p in Y, and 5s, 5p in Ir valence configurations.

The cutoff energy in QE calculation was selected to be 150 Rydberg (Ry) for

plane waves, and 600 Ry for charge densities. In WIEN2k, there is no need

for pseudopotentials as all orbitals are used in the calculation. The other

parameters in WIEN2k are just selected as default. Our results show that the

band structure obtained from those two different ways are very close to each

other.

4.3 The failure of the fitting method

To obtain a realistic tight-binding model, we first write the necessary

hopping terms, and then determine the hopping parameters through a fitting

to the DFT band structure. A similar strategy has been proved to be successful

in the study of 3d transition metal compounds[67, 99].

Our tight-binding model includes the direct hopping between nearest

neighbors, second neighbors and third neighbors, and indirect hopping between

nearest neighbors. All the hopping terms are generated using SK[91] integrals.

Although the model includes so many terms, the fitting to DFT results is still

poor in quality. The agreement is not too bad for the j = 1/2 part, however,

the deviation is obvious for the j = 3/2 bands.
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The failure of the fitting method reminds us that the 5d orbitals are

much more extended than 3d orbitals. To obtain a reasonable tight binding

model, one needs to include even more terms, which is not realistic by hand.

Therefore, we turn to the systematic method, that is, the Wannier projection.
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E
(e

V
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3rd N fitting
GGA

X W Γ L K X

Figure 4.1: The tight-binding fitting to a GGA calculation in WIEN2k. The
tight-binding model include up to the 3rd neighbor hopping.

4.4 Tight-binding model in the basis of Wannier func-
tions

In this section, we use the method introduced in chapter one to con-

struct a tight-binding model for bulk Y2Ir2O7 without interaction. The DFT

results are transmitted to Wannier90[100] through some message interfaces,

then a Hamiltonian is constructed in the basis of Wannier functions.

The large spin-orbit coupling has to be added to our non-interacting

model. There are two ways for the inclusion. The first way is to try a DFT
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calculation and Wannier fit without spin, and then add the onsite spin-orbit

coupling “by hand”. The strength of SOC is obtained by fitting the Wan-

nier+SOC(tuning the strength by fitting) bands to GGA+SOC bands[70, 100].

This method gives an acceptable agreement. The second way is to include the

spin directly in our Wannier functions[100]. For this purpose, one has to pay

attention to the gauge selection of those Wannier functions, and make sure the

tight-binding parameters abide by the crystalline symmetry of the pyrochlore

lattice.

The spin-dependent Wannier fitting is carried out in package Wannier90.

On each site, the trial wave functions are selected as the local t2g orbitals, and

the local coordinates of the initial basis are selected as[100]

x1 = (2/3,−1/3, 2/3),

z1 = (−2/3,−2/3, 1/3);

x2 = (2/3,−2/3, 1/3),

z2 = (1/3, 2/3, 2/3);

x3 = (1/3, 2/3,−2/3),

z3 = (2/3, 1/3, 2/3);

x4 = (1/3,−2/3, 2/3),

z4 = (2/3,−1/3,−2/3). (4.1)

All the Wannier functions are centered on the iridium ions.

The spin quantization direction is selected as the default. In order
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Figure 4.2: The two approaches to incorporate the SOC to the tight-binding
Hamiltonian. The dotted blue curves show the band structure from a spin-
resolved Wannier projection, while the solid blue curve is obtained by spinless
Wannier projection + SOC term whose strength is determined by fitting to
the GGA+SOC results (the black curves). The black curves were obtained
through WIEN2k. All the Wannier projections were done in QE+Wannier90.

to preserve the lattice symmetry, we do not select the Maximally Localized

Wannier Functions, instead, we set NUM ITER to zero (See appendix).

The results of Wannier fitting is shown in Fig.4.2. The agreement is

very well. We notice that if the cut-off magnitude of hopping term is selected

as 0.1meV, the hopping between iridium ions almost three times the lattice

constant away still needs to be considered. That is an evidence that the 5d

orbitals are very extended.
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4.5 From bulk model to film model

Having established the bulk tight-binding model, we now apply it to

thin films by slab-truncation, and then compare it with a direct DFT calcula-

tion in the superlattice of sandwich structures shown in Fig.4.3.

Figure 4.3: The structure of thin films. (a) “Sandwich” structure in real
preparations. (b) Bilayer thin film. (c) Triangular-kagome-triangular(TKT)
thin film. (d) Relaxed superstructure of bilayer thin film in DFT calculation.
(e) Relaxed superstructure of TKT thin film in DFT calculation. Only the
Ir4+ and Hf4+ ions are displayed.

The superlattice (Y2Ir2O7)n/(Y2Hf2O7)m includes n Ir4+ and m Hf4+

layers. For the n = 2,m = 2 bilayer thin film, the basis vectors of the super-

lattice are selected as

a = a3 − a1,

b = a2 − a1,

c = −2 ∗ a1,
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where

a1 = (0, a/2, a/2),

a2 = (a/2, 0, a/2),

a3 = (a/2, a/2, 0),

and a is the lattice constant. The vector c contains a component out of the

(111) plane, while a and b reside within the plane. The sandwich structure

is obtained by substituting Ir4+ ions in two adjacent layers with Hf4+ ions

(Fig.4.4).

The initial lattice constant a is equal to the average of Y2Hf2O7[101] and

Y2Ir2O7. We construct the unrelaxed trilayer film structure (n = 3,m = 3) in

a similar way.

Figure 4.4: The unrelaxed superlattice for bilayer thin film. Note only the
Ir4+ and Hf4+ ions are shown.

The pseudopotential of Hf (with atomic configuration [Xe]4f 145d26s2)

is generated with the valence configuration 5s, 5p, 5d, 6s, and 6p. We mesh the
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k-space in a 7×7×1 Monkhost-Pack grid[98].

The superlattices are then fully relaxed with scalar-relativistic pseudo-

potentials[102]. After the relaxation, their structures are calculated in a fully

relativistic basis.

The thin film tight-binding model gives band structures fairly close

to the DFT calculation, as shown in Fig.4.5. In the TKT trilayer case, the

agreement is very good. In the bilayer case, some deviation occurs. One of

the obvious differences is that in the tight-binding model, one can see some

band crossings close to the Fermi surface at K points. However, in the DFT

results, those crossings are gapped out, but they do not affect the calculation

of topological invariants if the direct gap is always open.

Figure 4.5: Comparison between bands from supercells DFT calculation and
a slab-truncation of the bulk model. (a) Bilayer case. (b) TKT trilayer case.
The DFT results are obtained from a fully relaxed GGA+SOC calculation
(solid black). The slab-truncated model (dashed blue) is the non-interacting
part of the Hartree-Fock calculation in thin films.
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4.6 Interacting model of thin films and Hartree-Fock
approximation

We then add the interaction term to the tight-binding model. The

complete expression for our model in the local t2g-like basis is

H0 =
∑
i,j,α,β

t̃iα,jβc
†
iαcjβ, (4.2)

HU =
U

2

∑
i

(∑
α

n̂iα − 5

)2

, (4.3)

where c†iα (ciα) is the creation (annihilation) operator of an electron on site i

with orbital α (α, β are orbital indexes including spin indices) in the local t2g

manifold. The SOC is included in the complex hopping amplitude t̃iα,jβ. The

interaction part follows the convention of Ref.[60].

The format of the Hubbard term is rotationally invariant (in orbital

and spin space), The calculation in the previous chapter relies on the strong

SOC approximation, and works only in the j = 1/2 subspace. In comparison,

our work here is carried out in the whole t2g manifold, which is closer to the

realistic case, since the SOC strength is finite (0.4-0.5eV). We neglect the

Hund’s coupling, because the iridium ions have low-spin configurations[64,

103].

To solve the model, we apply the Hartree-Fock approximation. The
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derivation process is as follows:

HU =
U

2

∑
i

(∑
α

n̂iα − 5

)(∑
β

n̂iβ − 5

)

=
U

2

∑
i

(∑
αβ

n̂iαn̂iβ − 10
∑
α

n̂iα + 25

)
. (4.4)

Using the condition that the total number of electrons in one unit cell is a

constant, or ∑
iα

n̂iα = constant, (4.5)

for the ground state, we can throw away the constant part, and obtain

HU =
U

2

∑
i

∑
αβ

n̂iαn̂iβ. (4.6)

Now we divide it into two parts, with α = β and α 6= β.

HU

U
2

=
∑
iα

n̂2
iα +

∑
iαβ,α6=β

n̂iαn̂iβ, (4.7)

because n̂2
iα = n̂iα for the Fermion number operator, we can throw it away,

then

HU

U
2

=
∑

iαβ,α 6=β

n̂iαn̂iβ. (4.8)

We consider the direct part and the exchange part at mean-field level.

Firstly, the direct part is

HD
U
U
2

=
∑

iαβ,α6=β

(niαn̂iβ + n̂iαniβ − niαniβ)

=
∑

iαβ,α6=β

(2niαn̂iβ − niαniβ) . (4.9)
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Secondly, the exchange part is

HE
U
U
2

=
∑

iαβ,α 6=β

[
ĉ†iαĉiα(1− ĉiβ ĉ†iβ)

]
=

∑
iαβ,α 6=β

[
n̂iα − ĉ†iαĉiαĉiβ ĉ

†
iβ)
]
. (4.10)

Throwing the constant term away, we obtain

HE
U
U
2

= −
∑

iαβ,α 6=β

[
ĉ†iαĉiαĉiβ ĉ

†
iβ

]
=

∑
iαβ,α 6=β

[
ĉ†iαĉiβ ĉiαĉ

†
iβ

]
= −

∑
iαβ,α 6=β

[
ĉ†iαĉiβ ĉ

†
iβ ĉiα

]
. (4.11)

Define m̂i
αβ = ĉ†iαĉiβ, then

HE
U
U
2

= −
∑
iαβ

(
m̂i
αβm̂

i
βα

)
= −

∑
iαβ

(mi
αβm̂

i
βα + m̂i

αβm
i
βα −mi

αβm
i
βα)

= −
∑
iαβ

(
2mi

αβm̂
i
βα − |mi

αβ|2
)
. (4.12)

Combining the direct part and the exchange part, we obtain

HU =
U

2

∑
i

∑
αβ,α 6=β

[
2niαn̂iβ − niαniβ − 2mi

αβm̂
i
βα + |mi

αβ|2
]
. (4.13)

In the bulk case, the HF study confirms the all-in/all-out[64] magnetic

configuration for U = 0.7− 1.8eV.
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4.7 Self-consistent calculation

For each site, we input 36 randomly generated real numbers as the

initial trial of mi
αβ, then the new mi

αβ is calculated from the contribution of

all the occupied states. With around 50 sets of initial inputs, we select the

converged result with the minimum total energy. The convergence criterion is

|Re(mi,in
αβ −m

i,out
αβ )| < 10−8,

|Im(mi,in
αβ −m

i,out
αβ )| < 10−8. (4.14)

Around two thirds of those calculations converge.

To calculate the local magnetic moments, we first determine the g factor

by

g〈j2〉 = 〈(−gll + gss) · j〉, (4.15)

where the total angular momentum j = −l+s is defined in the local coordinates

of t2g, and gl = 1, gs = 2. Then the total magnetic moment is calculated

m = gµB〈j〉. (4.16)

The Z2[92] and Chern numbers[40] are calculated with Fukui’s algo-

rithm.

4.8 Phase diagrams and band structures

The phase diagram we obtained is shown in Fig.4.6, and the corre-

sponding band structure is shown in Fig.4.7. The phase diagram has some
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important features. In general, it is similar to the ts = t bilayer case and

ts = −t TKT trilayer case in our previous chapter, but there is also an impor-

tant difference. The topological insulating states and Chern insulating states

are now replaced by corresponding metallic states.

0 0.25 0.5 0.75 1.00−2.00

Bilayer

TKT

U (eV)

 

 

Topo M M Mag M Mag I Chern M

Figure 4.6: Phase diagram of the bilayer and TKT thin films from HF studies.
The interaction strength is tuned in the horizontal axis. A Z2 topological
metal phase emerges in bilayer film with time reversal symmetry preserved
for small U . Chern metals are predicted in both the bilayer and TKT films
centered around U ≈ 0.6 eV and U ≈ 0.5 eV respectively. The different phases
are abbreviated as: Topo M=topological metal, M=metal, Mag M=magnetic
metal, Mag I=magnetic insulator, and Chern M = Chern Metal.

In the bilayer case, for a small U , the system is Z2 topological metallic[104].

The state reveals a negative indirect gap, but the direct gap is still open. As U

is increased, the valence and conduction bands touch each other and separate,

turning the metallic state into a trivial one. After the film turns magnetic, it

first appears as a metal. In a region around U = 0.60eV, the bilayer thin film

can still become Chern metallic. As U is increased, the system becomes trivial

metallic again, and finally magnetic insulator.
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Figure 4.7: The change of electric band structure corresponding to phases in
Fig.4.6. The interaction strength is shown on the figure. (a)-(e) The bilayer
thin film undergoes phase transitions: M→Mag M→Chern M→Mag M→Mag
I. (f)-(h) The TKT thin film undergoes phase transitions: Chern M→Mag
M→Mag I. The Fermi surfaces are reset to zero in each figure.

.
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In the TKT trilayer case, there exist nearly flat bands close to the

Fermi surface. At a large enough U , the nearly flat bands split and the bands

under the direct gap possess a Chern number which is equal to ±1, but the

indirect gap is negative. As U is increased, we can see the upper bands will

push the conduction band and cause a mixing between them, and extinguish

the topological states.

In order to turn those topological metallic states into their insulating

counterparts, the possible methods include strain or charge-density waves.

The charge-density wave approach is realistic, since the 5d orbitals are fairly

extended, the nearest neighbor interaction may have an important impact on

the band structures.

Figure 4.8: The magnetic configurations (a),(c) and electric structure (b),(d)
of the Chern metallic phase. (a)-(b) In the bilayer thin film when U = 0.60
eV. (c)-(d) In the TKT thin film when U = 0.43 eV. In (b) and (d), the dashed
lines represent the valence and conduction bands, and C = 1 represents the
total Chern number of the bands under each direct gap.

To hava a close look at the Chern metallic phase, magnified bandstruc-

ture and magnetic profiles are shown in Fig.4.8. At large U , in both the bilayer

and trilayer case, the magnetic configurations are fairly stable, and have the

patterns shown in Fig.4.9.
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Figure 4.9: The local magnetic moments at large U in bilayer and TKT trilayer
thin films. (a) The U = 1.30eV case in bilayer thin film. The three ions in
the kagome plane possess magnetic moments with the same magnitude. (b)
The U = 1.20eV case in TKT thin film. The three ions in the kagome plane
possess magnetic moments with the same magnitude.

4.9 Comparison between slab-truncation method and
superlattice projection

As we pointed out previously, the slab-truncation of the bulk tight-

binding model gives a band structure close to the superlattice DFT calculation

in the bilayer case, but the deviation is not very small, so it is beneficial to

look at the results obtained directly from the superlattice Wannier projection

and compare the result with slab truncation.

The superlattice Wannier projection is carried out with a method sim-

ilar to the bulk Wannier projection. The Monkhorst-Pack grid[98] for it is

9 × 9 × 1. The trial basis functions are selected in a way similar to the bulk

case. The projection produces a band structure which is very close to the DFT

calculation, as shown in Fig.4.10. Then we use it as a starting point of the HF

approximation calculation.

The comparison of the phase diagrams are shown in Fig.4.11. The

phase diagrams obtained from the two ways agree qualitatively, although the

66



−2

−1.5

−1

−0.5

0

0.5

E
(e

V
)

Γ M K Γ

Figure 4.10: Comparison between bands from supercells DFT calculation and
superlattice Wannier fit. The DFT results are obtained from a fully relaxed
GGA+SOC calculation (solid black). The dashed blue curves are from the
tight-binding model obtained from superlattice Wannier projection. Notice
that the fitting is much better than Fig.4.5(a).

phase boundaries shift. The region for the Z2 topological metals shrink a lot,

but the region for the Chern metal is enlarged. The comparison verified the ef-

fectiveness of the naive slab-truncation method in determining the topological

phases.

We also need to point out that the magnetic configurations obtained in

those two different ways are different. That is not hard to understand since in

the thin films the positions of the iridium ions are already changed with respect

to the ideal locations. The equivalence of the magnetic moments for the in-

plane ions in the previous calculation (See Fig.4.9) no longer exist in our new

calculation with the slab Wannier functions. For example, when U = 1.00eV,

the three in-plane magnitudes are 0.6502µB, 1.0176µB, and 0.6468µB. In our

previous method, when U = 1.00eV, those values are all 1.1176µB.
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Figure 4.11: Phase diagram of the bilayer thin films with two different ways
of constructing the non-interacting Hamiltonian. In the top one, the non-
interacting Hamiltonian is obtained from a Wannier fit in the superlattice. In
the bottom one, the non-interacting Hamiltonian is obtained from the slab-
truncation of the bulk Wannier fit.

4.10 Discussion and Conclusions

In this chapter, we reveal the extended nature of the 5d orbitals in

iridates. The hopping between iridium ions a few lattice constants away still

can still play a role. In order to establish a reasonable tight-binding model, a

lot of hopping terms must be included.

Despite the extended nature of 5d orbitals, a slab-truncation method

to obtain the tight-binding models of thin films still works well in determining

the topological states. That is due to the robustness of those states.

Although the topolgical states in real thin films appears metallic, charge-

density wave may be a realistic way to convert them into their insulating coun-

terparts. As we mentioned in the previous chapter, the dynamic fluctuation

effect may enhance instead of destroying those topological states. A dynamic
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mean-field theory calculation with charge-density wave present is still worth-

while.
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Appendix
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Appendix 1

Input file of Wannier90 for bulk Y2Ir2O7

For an explanation of this input file, please refer to Chap.4.
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num_wann=24 

 

spinors=true 

 

dis_win_min=11.1119   

dis_win_max=13.9119  

 

num_bands = 236   

 

num_iter          = 0  

 

Begin Atoms_Cart 

Bohr 

Y   9.55179600      9.55179600      9.55179600 

Y   9.55179600     14.32769400     14.32769400 

Y  14.32769400     14.32769400      9.55179600 

Y  14.32769400      9.55179600     14.32769400 

Ir  0.00000000      0.00000000      0.00000000 

Ir  0.00000000      4.77589800      4.77589800 

Ir  4.77589800      4.77589800      0.00000000 

Ir  4.77589800      0.00000000      4.77589800 

O   6.40658061      2.38794900      2.38794900 

O  12.69701139     16.71564300     16.71564300 

O  16.71564300     11.18247861      7.16384700 

O   2.38794900     17.47290939      2.38794900 
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O   2.38794900      6.40658061      2.38794900 

O  16.71564300     12.69701139     16.71564300 

O  17.47290939      2.38794900      2.38794900 

O  11.18247861      7.16384700     16.71564300 

O   7.16384700     16.71564300     11.18247861 

O   2.38794900      2.38794900     17.47290939 

O   2.38794900      2.38794900      6.40658061 

O  16.71564300     16.71564300     12.69701139 

O   7.16384700      7.16384700      7.16384700 

O  11.93974500     11.93974500     11.93974500 

End Atoms_Cart 

     

Begin Projections     

! Ir1  

  f=0, 0, 0 : l=2, mr=3 : z=-2, -2, 1 : x=2, -1, 2 : zona=0.5 

  f=0, 0, 0 : l=2, mr=2 : z=-2, -2, 1 : x=2, -1, 2 : zona=0.5 

  f=0, 0, 0 : l=2, mr=5 : z=-2, -2, 1 : x=2, -1, 2 : zona=0.5 

! Ir2  

  f=0.5, 0, 0 : l=2, mr=3 : z=1, 2, 2 : x=2, -2, 1 : zona=0.5 

  f=0.5, 0, 0 : l=2, mr=2 : z=1, 2, 2 : x=2, -2, 1 : zona=0.5 

  f=0.5, 0, 0 : l=2, mr=5 : z=1, 2, 2 : x=2, -2, 1 : zona=0.5 

! Ir3  

  f=0, 0.5, 0 : l=2, mr=3 : z=2, 1, 2 : x=1, 2, -2 : zona=0.5 

  f=0, 0.5, 0 : l=2, mr=2 : z=2, 1, 2 : x=1, 2, -2 : zona=0.5 

  f=0, 0.5, 0 : l=2, mr=5 : z=2, 1, 2 : x=1, 2, -2 : zona=0.5 
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! Ir4  

  f=0, 0, 0.5 : l=2, mr=3 : z=2,-1,-2 : x=1, -2, 2 : zona=0.5 

  f=0, 0, 0.5 : l=2, mr=2 : z=2,-1,-2 : x=1, -2, 2 : zona=0.5 

  f=0, 0, 0.5 : l=2, mr=5 : z=2,-1,-2 : x=1, -2, 2 : zona=0.5 

End Projections        

 

bands_plot = true 

bands_plot_format = gnuplot 

wannier_plot_supercell=3 

hr_plot= true 

     

begin kpoint_path 

  X 0.000  0.500  0.500   W 0.250 0.500 0.750 

  W 0.250  0.500  0.750   G 0.000 0.000 0.000 

  G 0.000  0.000  0.000   L 0.500 0.000 0.000 

  L 0.500  0.500  0.500   K 0.375 0.375 0.750 

  K 0.375  0.375  0.750   X 0.000 0.500 0.500 

end kpoint_path 

 

 

Begin Unit_Cell_Cart 

Bohr 

  0.00000000  9.55179600  9.55179600 

  9.55179600  0.00000000  9.55179600 

  9.55179600  9.55179600  0.00000000 
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End Unit_Cell_Cart 

 

 

mp_grid      = 8 8 8 

 

 

begin kpoints 

  (This part is omitted) 

end kpoints 
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80, 063603 (2009).

[53] D. Bercioux, N. Goldman, and D. F. Urban, Phys. Rev. A 83, 023609

(2011).

[54] N. Goldman, D. F. Urban, and D. Bercioux, Phys. Rev. A 83, 063601

(2011).

[55] X. Hu, M. Kargarian, and G. A. Fiete, Phys. Rev. B 84, 155116 (2011).

[56] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).

[57] D.-X. Qu, Y. S. Hor, J. Xiong, R. J. Cava, and N. P. Ong, Science 329,

821 (2010).

[58] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Ann. Rev.

Cond. Matt. Phys. 5, 57 (2014).

[59] D. Pesin and L. Balents, Nature Phys. 6, 376 (2010).

[60] M. Kargarian, J. Wen, and G. A. Fiete, Phys. Rev. B 83, 165112 (2011).

[61] M. Kargarian and G. A. Fiete, Phys. Rev. Lett. 110, 156403 (2013).

81

http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.103.080406
http://dx.doi.org/10.1103/PhysRevA.80.063603
http://dx.doi.org/10.1103/PhysRevA.80.063603
http://dx.doi.org/10.1103/PhysRevA.83.023609
http://dx.doi.org/10.1103/PhysRevA.83.023609
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevA.83.063601
http://dx.doi.org/10.1103/PhysRevB.84.155116
http://dx.doi.org/10.7566/JPSJ.82.102001
http://dx.doi.org/ 10.1126/science.1189792
http://dx.doi.org/ 10.1126/science.1189792
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125138
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125138
http://dx.doi.org/10.1038/nphys1606
http://dx.doi.org/10.1103/PhysRevB.83.165112
http://dx.doi.org/10.1103/PhysRevLett.110.156403


[62] J. Maciejko, V. Chua, and G. A. Fiete, Phys. Rev. Lett. 112, 016404

(2014).

[63] A. Go, W. Witczak-Krempa, G. S. Jeon, K. Park, and Y. B. Kim, Phys.

Rev. Lett. 109, 066401 (2012).

[64] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev.

B 83, 205101 (2011).

[65] Y. Wang, Z. Wang, Z. Fang, and X. Dai, Phys. Rev. B 91, 125139

(2015).

[66] W. Witczak-Krempa and Y. B. Kim, Phys. Rev. B 85, 045124 (2012).
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[99] A. Rüegg, C. Mitra, A. A. Demkov, and G. A. Fiete, Phys. Rev. B 88,

115146 (2013).

[100] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and

N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

[101] J. Rieken, I. Anderson, and M. Kramer, Innovative Powder Processing

of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels, Tech.

Rep. (Ames Laboratory (AMES), Ames, IA (United States), 2011).

85

http://dx.doi.org/10.1143/JPSJ.76.053702
http://arxiv.org/abs/1504.03646
http://arxiv.org/abs/1504.03646
http://dx.doi.org/10.1038/srep11072
http://dx.doi.org/10.1088/0953-8984/13/23/312
http://dx.doi.org/10.1088/0953-8984/13/23/312
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.88.115146
http://dx.doi.org/10.1103/PhysRevB.88.115146
http://dx.doi.org/ 10.1016/j.cpc.2007.11.016


[102] T. Takeda, Z. Phys. B Con. Mat. 32, 43 (1978).

[103] H. Zhang, K. Haule, and D. Vanderbilt, Phys. Rev. Lett. 111, 246402

(2013).

[104] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

86

http://dx.doi.org/10.1007/BF01322185
http://dx.doi.org/10.1103/PhysRevLett.111.246402
http://dx.doi.org/10.1103/PhysRevLett.111.246402
http://dx.doi.org/10.1103/RevModPhys.82.3045


Vita

Xiang Hu was born in Changde, Hunan province, China. He received

the Bachelor of Engineering degree from Zhengzhou University in 2002, and

the Master of Science degree in Physics from Peking University in 2005. In

August 2006, he joined the Graduate School at University of Houston. He

received the Master of Science degree in Physics from University of Houston

in 2008. He left University of Houston in July 2009, and entered the Graduate

School at the University of Texas at Austin in August 2009, to pursue a PhD

in Physics.

Permanent address: 3363 Lake Austin Blvd, Apt B
Austin, Texas 78703

This dissertation was typed by the author.

87


	Acknowledgments
	Abstract
	Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Quantum spin Hall effect and quantum anomalous Hall effect
	Density functional theory and Wannier functions
	A brief introduction to density functional theory
	Wannier functions

	The organization of this thesis

	Chapter 2. Topological phases in the ruby lattice
	Introduction
	Structure
	Hamiltonian and band structure
	The exploration of maximum gap to bandwidth ratio
	The topological insulating phase in the ruby lattice
	Phase diagrams of the model
	Phase diagrams for t2=t3
	Phase diagrams for fixed t1

	Conclusion and discussion

	Chapter 3. Thin films of pyrochlore iridates: a semi-empirical model
	Introduction
	Structure of the thin films along [111] direction
	The non-interacting model
	Non-interacting solutions
	Non-interacting phase diagrams
	The interacting case
	The derivation of Hartree-Fock approximation
	The self-consistent calculation
	The phase diagrams
	Magnetic configurations
	Discussion and conclusions

	Chapter 4. Thin films of pyrochlore iridates: first principles study
	Introduction
	Bulk density functional theory calculation
	The failure of the fitting method
	Tight-binding model in the basis of Wannier functions
	From bulk model to film model
	Interacting model of thin films and Hartree-Fock approximation
	Self-consistent calculation
	Phase diagrams and band structures
	Comparison between slab-truncation method and superlattice projection
	Discussion and Conclusions

	Appendix
	Appendix 1. Input file of Wannier90 for bulk Y2Ir2O7
	Bibliography
	Vita

