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Collapsar Accretion and the Gamma-Ray Burst X-Ray

Light Curve

Christopher Carl Lindner, M.A.

The University of Texas at Austin, 2010

Supervisor: Miloš Milosavljević

We present axisymmetric hydrodynamical simulations of the long-term

accretion of a rotating gamma-ray burst progenitor star, a “collapsar,” onto

the central compact object, which we take to be a black hole. The simulations

were carried out with the adaptive mesh refinement code FLASH in two spatial

dimensions and with an explicit shear viscosity. The evolution of the central

accretion rate exhibits phases reminiscent of the long GRB γ-ray and X-ray

light curve, which lends support to the proposal by Kumar et al. (2008a,b)

that the luminosity is modulated by the central accretion rate. In the first

“prompt” phase, the black hole acquires most of its final mass through super-

sonic quasiradial accretion occurring at a steady rate of ∼ 0.2 M⊙ s−1. After a

few tens of seconds, an accretion shock sweeps outward through the star. The

formation and outward expansion of the accretion shock is accompanied with

a sudden and rapid power-law decline in the central accretion rate Ṁ ∝ t−2.8,

which resembles the LX ∝ t−3 decline observed in the X-ray light curves. The
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collapsed, shock-heated stellar envelope settles into a thick, low-mass equato-

rial disk embedded within a massive, pressure-supported atmosphere. After a

few hundred seconds, the inflow of low-angular-momentum material in the ax-

ial funnel reverses into an outflow from the thick disk. Meanwhile, the rapid

decline of the accretion rate slows down, which is potentially suggestive of

the “plateau” phase in the X-ray light curve. We complement our adiabatic

simulations with an analytical model that takes into account the cooling by

neutrino emission and estimate that the duration of the prompt phase can be

∼ 20 s. The model suggests that the steep decline in GRB X-ray light curves is

triggered by the circularization of the infalling stellar envelope at radii where

the virial temperature is below 1010 K, such that neutrino cooling is inefficient

and an outward expansion of the accretion shock becomes imminent; GRBs

with longer prompt γ-ray emission should have more slowly rotating envelopes.
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Chapter 1

Introduction

Observations of long gamma-ray bursts (GRBs) carried out with the

NASA Swift satellite have shown that the γ-ray prompt emission ceases after

about a minute in the observer frame, corresponding to tens of seconds in

the rest frame of the progenitor star. The γ-ray light curve, converted to

a fiducial X-ray spectral band, smoothly joins the X-ray light curve, which

declines rapidly, (t−3 or faster) lasting for about 80 to 300 s (Tagliaferri et al.,

2005; Nousek et al., 2006; O’Brien et al., 2006). The rapid decline is often

followed by a phase, from about ∼ 103 to 104 s, during which the X-ray flux

is roughly constant or declines more slowly with time. The X-ray light curves

of some GRBs exhibit “flares” where the flux increases suddenly by a factor

of ≤ 102 and drops precipitously, with the rise and decline associated with the

flare occurring on a time scale much shorter than the age of the burst (see,

e.g., Burrows et al., 2005; Falcone et al., 2006). Following about ∼ 103−104 s,

a more rapid decline of the luminosity resumes (see, e.g., Zhang et al., 2006,

and references therein), and occasionally steepens further at ∼ 104 − 105 s

(e.g., Vaughan et al., 2006).

The goal of the present work is to utilize two-dimensional hydrodynamic
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simulations to test the hypothesis (Kumar et al., 2008a,b) that this character-

istic structure of the X-ray light curve, which was summarized by Zhang et

al. (2006), reflects a modulation in the rate of central accretion of a rotating

progenitor star onto a black hole or a neutron star, as in the collapsar model of

GRBs (Woosley, 1993; MacFadyen & Woosley, 1999; MacFadyen et al., 2001;

Woosley & Bloom, 2006). We do not attempt to explore the implications of

the potential presence of a magnetosphere, as in the magnetar model for GRBs

(e.g., Duncan & Thompson, 1992; Wheeler et al., 2000; Zhang & Mészáros,

2001; Thompson et al., 2004; Komissarov & Barkov, 2007; Bucciantini et al.,

2007, 2009). We will attempt to gain insight in the origin of the steady γ-ray

luminosity (the prompt phase which we will refer to as “Phase 0”), the rapid

decline in the X-ray light curve (Phase I in the nomenclature of Zhang et al.

2006), and phase of quasi-steady luminosity or slow decline (Phase II). We will

briefly attempt to extrapolate the results of our simulations to the subsequent

steeper decline phases (Phases III and IV).

Kumar et al. (2008a,b) obtained the key features of the γ-ray and X-ray

light curve by estimating central accretion rate resulting from the free (i.e.,

ballistic) infall of a rotating progenitor star. In this picture, the material that

has sufficient initial angular momentum to circularize outside of the innermost

stable circular orbit (ISCO) of the black hole, forms a disk in the equatorial

plane, and subsequently accretes via disk accretion (Narayan et al., 2001).

Disk accretion across the ISCO powers an electromagnetic jet that launches

from the black hole magnetosphere and pierces the overlying stellar layers.
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Once outside the star, the electromagnetic and the bulk kinetic energies of the

jet dissipate (the precise dissipation mechanism remains poorly understood)

and produce the observed emission. Relativistic hydrodynamical simulations

(see, e.g., Zhang et al., 2003, 2004; Zhang & MacFadyen, 2006; Morsony et al.,

2007; Wang et al., 2008) suggest that a powerful jet might be able to pierce the

star. A less powerful jet that could be present after few hundred seconds can

escape the star only if the axial funnel is kept open by the centrifugal barrier.

This seems to be the case in our axisymmetric simulations; three-dimensional

simulations would be necessary to check that the nonaxisymmetric instabilities

do not perturb the rotationally supported fluid along the funnel wall. With

this in mind, our interpretation of the observations and the simulations is

contingent on the validity of the assumption that the jet can indeed escape.

If the luminosity is then proportional to the central accretion rate, and

if the distance of the γ-ray or X-ray emitting region from the center of the

star is assumed to be approximately independent of time on time scales 10−

105 s, an accretion model directly translates into a synthetic light curve that

can be compared with an observed light curve. Kumar et al. (2008a,b) have

shown that with the simplest accretion model involving ballistic infall onto

the midplane (assumption also made by Janiuk & Proga 2008 and Cannizzo

& Gehrels 2009) and subsequent disk accretion, the mapping of the mass

accretion history onto the light curve provides a powerful insight into the

stratification and angular momentum structure of the progenitor star.

In their ballistic infall model, Kumar et al. (2008a,b) were not able to
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discriminate between models in which the quasi-steady activity in Phase II

arose from disk accretion, or from late-time accretion from an extended stellar

envelope. Departures from ballistic infall are expected if the infalling material

passes through an accretion shock (see, e.g., MacFadyen & Woosley, 1999;

Lee & Ramirez-Ruiz, 2006; Nagataki et al., 2007; Lopez-Camara et al., 2009),

or if the disk launches a thermal (MacFadyen, 2003a,b; Kohri et al., 2005)

or magnetohydrodynamic (e.g., Proga et al., 2003) outflow (“wind”) that can

interfere with the infall. The existence of the outflow is particularly interesting

because of the potential for nucleosynthesis in the free neutron-rich outflow

launched from the inner part of the disk (see, e.g., Pruet et al., 2003; Surman

et al., 2006; Fujimoto et al., 2007; Nagataki et al., 2007; Maeda & Tominaga,

2009) and because of the potential that the outflow can deplete the accreting

stellar envelope and limit the envelope mass that is accreted onto the central

black hole.

During the first ∼ 102 s following the formation of the central black hole

when the accretion rate is Ṁ ≫ 10−3M⊙ s−1 (the precise condition depends

on the black hole spin and shear stress-to-pressure ratio α in the disk), the

inner accretion disk cools by neutrino emission and nuclear disintegration and

accretes in a radiatively efficient fashion, except for in the very inner, optically

thick region (e.g., Popham et al., 1999; Narayan et al., 2001; Di Matteo et al.,

2002; Chen & Beloborodov, 2007). Instabilities in the thin disk have been

cited as a candidate class of mechanisms that could produce the observed X-

ray flares (Perna et al., 2006; Lazzati & Perna, 2007; Lazzati et al., 2008) and
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could also produce detectable gravitational radiation (Piro & Pfahl, 2007).

Our global axisymmetric models are the necessary stepping stone toward the

substantially more computationally demanding three-dimensional simulations

that will be required to pin down any nonaxisymmetric instabilities in the

accreting collapsar (see, e.g., Rockefeller et al., 2006).

We employ two-dimensional unmagnetized hydrodynamic simulations

of the collapse, circularization, and accretion of a stellar envelope onto a central

point mass, which we assume to be a black hole; relativistic corrections to the

gravitational potential are ignored in our simulations since the innermost grid

point lies at over 20 Schwarzschild radii in the simulation extending to the

smallest radius from the black hole. The torque and dissipation arising from

the R− φ component of the magnetic stress is emulated with a Navier-Stokes

term parameterized by an α-viscosity prescription. For comparison with the

X-ray light curve, we measure the central accretion rate. We track the flow of

mass and energy at spherical radii 108 cm ≤ r ≤ 1011 cm and interpret the

results in view of the existing knowledge on radiatively-inefficient accretion

flows. We observe an outflow and measure the rate at which the accreting

stellar envelope is lost to the outflow. The mechanics of post-core-collapse

accretion and outflows is key to estimating the final mass of the black hole

and the nucleosynthetic composition of the ejected matter (e.g., Zhang et

al., 2008, and references therein). The method that we develop here can in

future be utilized to estimate the masses of the black holes resulting from the

collapse of massive, initially metal-poor “Population III” stars as well as from
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the collapse of the even more massive, hypothetical “supermassive stars,” in

the presence of rotation.

In this work we do not simulate the neutrino-cooled disk, and in the

simulations simply impose that the mass that crosses the innermost cylindri-

cal radius of our simulation, Rmin = (0.5 − 2) × 108 cm, is instantaneously

incorporated inside the black hole and does not provide any further energetic

feedback while at radii R < Rmin. This very rough assumption is bound to

fail in general; it is most compatible with the regime in which the transition

from efficient to inefficient cooling occurs at R ≥ Rmin. Since the transi-

tional radius for efficient neutrino cooling recedes inward with the increasing

stress-to-pressure ratio α for a given accretion rate (Chen & Beloborodov,

2007), the assumption that cooling is efficient within ≤ 108 cm is valid for

α ≤ 0.01. We also ignore nuclear disintegration when temperature rises above

∼ (5− 10)× 109 K; in reality, the onset of disintegration allows for some heat-

ing via the capture by free nucleons of the neutrinos emitted in the inner disk

(Nagataki et al., 2007), which we do not model. However, we do incorporate

neutrino cooling in a simple analytical model for the evolution of the accretion

shock at the radii that we do not resolve, ≤ 5× 107 cm. In combination with

the simulations, the model provides a theory for the duration of the prompt

emission phase observed in the γ-rays.

Cannizzo & Gehrels (2009) speculate that a cool, thin disk may form at

large radii (R ∼ 1011 cm) at the onset of Phase II, and attribute the structure

of the X-ray light curve to the long-term evolution and slow central accretion
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of this extended disk. We will see that the formation of the extended thin

disk cannot be taken for granted due to the presence of a massive pressure-

supported convective atmosphere around the inner disk.

This work is organized as follows. In Chapter 2, we discuss our nu-

merical algorithm. In Chapter 3, we present the results our simulations. In

Chapter 4, we present an analytical model for the neutrino-cooled central ac-

cretion that we do not resolve in the simulations, and provide a theory for the

duration of the prompt accretion phase and the triggering of the steep decline

of the X-ray light curve. We also attempt to extrapolate the evolution of the

accretion rate beyond the duration of the simulations. Finally, in Chapter 5,

we summarize our conclusions.
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Chapter 2

Numerical Algorithm

The simulations were carried out with the piecewise-parabolic solver in

the adaptive-mesh-refinement code FLASH (Fryxell et al., 2000), version 2.5,

in two spatial dimensions using cylindrical coordinates (R, z). FLASH does not

support angular momentum advection and viscous transport in this regime. In

Chapter 2.0.1, we describe our implementation of angular momentum trans-

port. In Chapter 2.0.2, we discuss our initial model and boundary conditions.

In Chapter 2.0.3, we provide a test of angular momentum conservation.

2.0.1 Angular Momentum Transport

The specific angular momentum ℓ = Rvφ, where vφ is the azimuthal

velocity, was treated as a mass scalar quantity that was transported according

to (see, e.g., Pringle, 1981)

∂(ρℓ)

∂t
+

1

R

∂(RvRρℓ)

∂R
+

∂(vzρℓ)

∂z

−
1

R

∂

∂R

[

R3νρ
∂

∂R

(

ℓ

R2

)]

= 0, (2.1)

where ν is a shear viscosity to be specified below. Equation (2.1), combined

with the equation of continuity, is equivalent to the azimuthal axisymmetric
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Navier-Stokes equation

∂vφ
∂t

+ vR
∂vφ
∂R

+
vRvφ
R

+ vz
∂vφ
∂z

−
1

R2ρ

∂(R2νρσ)

∂R
= 0, (2.2)

where

σ = R
∂

∂R

(vφ
R

)

(2.3)

is the R − φ component of the shear tensor. In FLASH, the calculation of

the first three terms in equation (2.1) is carried out through the mass scalar

advection capability; the fourth, parabolic term is included explicitly in the

calculation of the radial ρℓ-flux in the code for the diffusion of mass scalars.

The energy dissipated through shear viscosity was accounted for by

including the specific heating rate (see, e.g., Landau & Lifshitz, 1959)

ǫ̇visc = ν

[

R
∂

∂R

(

ℓ

R2

)]2

= νσ2. (2.4)

Since we do not simulate the magnetic field of the fluid, we utilize a

local definition of the shear viscosity to emulate the magnetic stress arising

from the intrinsically nonlocal magnetorotational instability (MRI; Balbus &

Hawley 1998 and references therein). It should be kept in mind, however,

that the effects of MRI are in some respects very different from those of the

viscous stress. For example, the thick disk surrounding our collapsar black hole

is convective; in unmagnetized accretion flows convection transports angular

momentum inward, toward the center of rotation (Ryu & Goodman, 1992;

Stone & Balbus, 1996; Igumenshchev et al., 2000), whereas in magnetized

flows, convection can also transport angular momentum outward (Balbus &
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Hawley, 2002; Igumenshchev, 2002; Igumenshchev et al., 2003; Christodoulou

et al., 2003). Thus our results must be interpreted with caution.

Our definition of the local viscous stress emulating the MRI must be

valid under rotationally supported, pressure supported, and freely falling con-

ditions. Thompson et al. (2005) suggest that since the wavenumber of the

fastest growing MRI mode, which is given by the dispersion relation vAk ∼ Ω

where vA is the Alfvén velocity and Ω = vφ/R is the angular velocity, should in

the saturated quasi-state state be about the gas pressure scale height, k ∝ H−1,

the Maxwell ρv2A and viscous νρΩ stresses (up to factors in |d ln Ω/d lnR| that

we neglect) can be equated if the viscosity is given by

νMRI = αH2Ω, (2.5)

where α is a dimensionless parameter. If the pressure scale height is defined

locally,

H = |~∇ lnP |−1, (2.6)

the viscosity defined in equation (2.5) suffers from divergences at pressure

extrema. To alleviate this problem, we define a second viscosity according to

the Shakura & Sunyaev (1973) prescription

νSS = α
P

ρ
Ω−1. (2.7)

Shakura-Sunyaev viscosity overestimates the magnetic stress in stratified hy-

drostatic atmospheres. We thus set the viscosity in equations (2.1) and (2.4)

to equal the harmonic mean of the above two viscosities

ν =
2 νMRI νSS
νMRI + νSS

, (2.8)
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where the pressure gradient in equation (2.6) is calculated by the finite dif-

ferencing of pressure in neighboring fluid cells in the horizontal and vertical

directions.

Our choice for the stress-to-total pressure ratio is α = 0.01, consistent

with the ratio of the time-averaged stress to the time-averaged total pressure

in the stratified, radiation-dominated disks in the simulations of Hirose et al.

(2009). Hirose et al. found, however, that the fluctuations in the stress and

the pressure (total or fluid) are not temporally coincident; this underscores the

limitations of our assumed direct proportionality of the viscous stress with the

total pressure. In the limits νMRI ≫ νSS or νMRI ≪ νSS, the effective value of

the viscosity parameter implied by equation (2.8) is twice the nominal value,

αeff ≈ 0.02.

Because FLASH employs an explicit method for the diffusion of mass

scalars, numerical stability of the above viscous transport prescription places

a stringent upper limit on the time step

∆t <
∆R2

2ν
, (2.9)

where ∆R is the grid resolution. For α ≫ 0.01, the viscous time step in our

simulations becomes prohibitively shorter than the Courant time step. In our

test simulations with a γ-law equation of state (EOS), we find that while not

implying an outright instability, a choice of ∆t that saturates the limit in

equation (2.9) results in weak stationary staggered perturbations in the fluid

variables. We ignore this complication and allow our time step to be set by
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the limit in equation (2.9) of the cell with the smallest viscous diffusion time

across the cell.

The centrifugal force is included in the calculation of the gravitational

acceleration via

~agrav = −
GMBH

r3
~r − ~∇Φfl +

ℓ2

R4
~R (2.10)

where r = (R2 + z2)1/2, MBH is the mass of the central compact object which

we take to be a black hole, and Φfl(r) is the spherically symmetric component

of the gravitational potential of the fluid within the computational grid. The

latter is calculated with the multipole Poisson solver in FLASH via

Φfl(r) = −

∫

r<r′

Gρ(R′, z′)

r′
2πR′dR′dz′

−

∫

r>r′

Gρ(R′, z′)

r
2πR′dR′dz′, (2.11)

where r′ ≡ (R′2 + z′2)1/2. While the distribution of mass at small radii be-

comes highly flattened, the gravitational potential there is dominated by the

central point mass, and thus, the neglect of all but the spherical multipole is

an acceptable approximation. At the radii and densities that we resolve in the

simulations, relativistic effects are weak; we thus treat the gravitational po-

tential as Newtonian. In Chapter 2.0.3 below, we present a test of the angular

momentum transport code.

2.0.2 Initial Model and Boundary Conditions

The initial model is the rotating ≈ 14 M⊙ Wolf-Rayet star 16TI of

Woosley & Heger (2006), evolved to pre-core-collapse from a 16 M⊙ main
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sequence progentior.1 To prepare the model 16TI, Woosley & Heger assumed

that the rapidly rotating progenitor, which is near breakup at its surface at

r ≈ 4×1010 cm, had low metallicity, 0.01 Z⊙, on the main sequence and became

a WR star shortly after central H depletion, which implied an unusually small

amount of mass loss. For illustration, the specific angular momentum at the

three-quarters mass radius was ℓ3/4 ∼ 8×1017 cm2 s−1, implying circularization

around a 10 M⊙ black hole at R ∼ 5×108 cm. The circularization radii of the

outermost layers of the star are in the range 109 − 1010 cm. Woosley & Heger

provide a radius-dependent angular momentum profile ℓ(r); we endowed this

with a dependence on the polar angle θ ≡ cos−1(z/r) via

ℓ(r, θ) = ℓ(r) sin2(θ), (2.12)

such that the star rotates rigidly on spherical shells. In Figure 3.3 below,

we show the density, temperature, pressure, specific angular momentum, and

mean atomic number of the initial model (black line).

We placed the center of the star at the origin, (R, z) = (0, 0). Pseudo-

logarithmic gridding was achieved by capping the adaptive resolution at radius

r with ∆R, ∆z > 1
8
ηr, where we choose η = 0.05; this prevents use of exces-

sive resolution far from the center of the star. Beyond the outer edge of the

star at rstar = 4 × 1010 cm we placed a cold (104 K) low-density stellar-wind

like medium with density profile ρ(r) = 3× 10−7 (r/rstar)
−2 g cm−3. Since the

1Lopez-Camara et al. (2009) carried out SPH simulations of neutrino-cooled accretion
during the first 0.5 s of the collapse and Morsony et al. (2007) simulated the propagation of
a relativistic jet using the same model star.
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model 16TI of Woosley & Heger (2006) was not constructed to be in hydro-

static equilibrium in the presence or rotation, we ignored rotation and set the

initial density distribution to be spherically symmetric at the beginning of the

simulations. This is a poor approximation in the very outer layers of the star,

as is evident from the ellipsoidal distortion that sets in at the beginning of the

simulation.

For the equation of state we chose the Helmholtz EOS provided with

the FLASH distribution (Timmes & Swesty, 2000), which contains contribu-

tions to pressure and internal energy from radiation, ions, electrons, positrons,

and Coulomb effects. We passively advected the abundances of seven nuclear

species represented in the model including 4He, 12C, 16O, 20Ne, 24Mg, 28Si,

and 56Fe. The local nuclear composition was passed to the Helmholtz EOS

as input. We do not simulate nuclear reactions, nuclear disintegration, and

neutrino emission and absorption. These processes are certainly important

in the hot inner accretion disk around the collapsar black hole, but since we

simulate only the outer, cooler disk with temperatures T < 1010 K, the neglect

of nuclear and neutrino processes is a reasonable approximation.
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Table 2.1. Summary of Simulation Parameters and Key Measurements

Run Number Rmin (cm) a (R, z)max (cm) b ∆(R, z)min (cm) c MBH,i (M⊙) d tmax (s) e tdecl (s) f MBH,d (M⊙) g (d ln Ṁ/d ln t)decl
h

1 5 × 107 5 × 1011 1.9 × 106 0.51 102 37 7.35 −2.8

2 108 1011 6.1 × 106 1.26 103 47 8.97 −2.7 i

3 2 × 108 5 × 1011 7.6 × 106 2.05 2 × 103 52 10.44 −2.3 j

aThe minimum cylindrical radius.

aThe maximum cylindrical radius and absolute vertical latitude.

cThe minimum resolution element size.

dInitial black hole mass.

eDuration of the simulation.

fTime of the beginning of the steep decline of the accretion rate.

gBlack hole mass at the beginning of the steep decline of the accretion rate.

hLogarithmic slope of the decline of the accretion rate.

iFor 50 s ≤ t ≤ 500 s.

jFor 52 s ≤ t ≤ 200 s.
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The simulation was carried out in the annular cylindrical domainRmin <

R < Rmax and −zmax < z < zmax. Because the impact of time-step limitations

(eq. [2.9]) on the computational cost, and to avoid dealing with the fluid hot

enough to be susceptible to efficient neutrino cooling, the smallest inner ra-

dius Rmin that we could simulate was Rmin ∼ 5× 107 cm. We placed the outer

boundaries well outside the star Rmax = zmax = (1−5)×1011 cm. In Table 2.1,

we summarize the main parameters of our simulations, and also present some

of the key measurements, defined in Chapter 3, characterizing the outcome

of each simulation. Each simulation was run for ∼ 106 hydrodynamic time

steps and consumed ∼ 20, 000 CPU hours on the Texas Advanced Computing

Center’s clusters Lonestar and Ranger.

The boundary condition at Rmin was unidirectional outflow that al-

lowed free flow from larger to smaller radii (off the grid) and disallowed flow

from smaller to larger radii (onto the grid) by imposing a reflecting bound-

ary condition at Rmin whenever vR was positive in the leftmost grid cell. We

imposed the torque-free boundary condition2 via

∂

∂R

(

ℓ

R2

)

R=Rmin

= 0. (2.13)

As in other Eulerian codes, the boundary conditions in FLASH are imposed

by assigning values to fluid variables in rows of “guard” cells just outside the

boundary of the simulated domain. At any given value of z on the computa-

tional grid, let R1/2 denote the leftmost cell within the simulated domain, and

2A motivation of the torque-free boundary condition can be found in Zimmerman et al.
(2005).
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let Rg where g = (−7
2
,−5

2
,−3

2
,−1

2
) be the four guard cells to the left of R1/2

such that the grid separation corresponds to ∆g = 1. The torque-free bound-

ary condition, if assumed to apply for R ≤ Rmin, implies ℓg/R
2
g = ℓ1/2/R

2
1/2.

We fixed the guard-cell velocity perpendicular to the left vertical boundary

to vR,g = −|vR,1/2|R1/2/Rg, which, with the assumption of uniform density

ρg = ρ1/2, ensures mass continuity in the guard cells and the vanishing of the

mass flux across R = Rmin if vR,1/2 > 0. All other fluid variables X were simply

copied into the guard cells, Xg = X1/2, and were subsequently rendered ther-

modynamically consistent. This simple prescription approximates free inflow

(toward smaller R) across Rmin, but of course, the guard cell values violate

energy and momentum conservation at R < Rmin.

The mass of the black hole MBH was initialized with the stellar mass

initially located outside the grid, at R < Rmin. The black hole mass was

evolved by summing mass flux crossing the boundary at R = Rmin,

dMBH

dt
= −2πRmin

∫ zmax

−zmax

vR(Rmin, z)ρ(Rmin, z)dz. (2.14)

2.0.3 Test of the Code

To test our implementation of angular momentum transport, we per-

formed a one-dimensional (∂/∂z = 0) simulation of an initially uniform tem-

perature and density fluid with the γ = 5
3
equation of state orbiting in a

Keplerian potential. We use a uniform radial grid with Rmax = 100 Rmin and

grid spacing ∆R = 0.06 Rmin. The initial temperature was chosen such that

the sound speed was about 16% of the Keplerian velocity at the inner radial

17



boundary, and 1.6 times the Keplerian velocity at the outer radial boundary.

The time step was limited by ∆t ≤ 1
4
∆R2/ν, which is a factor of two more

stringent than the stability condition in equation (2.9). We found that re-

ducing the time step to a half of the value required for stability substantially

reduces, but does not entirely eliminate, the noise in the error estimator that

we are about to discuss. We evaluate the nonzero terms in equation (2.1) di-

rectly from the numerical data. Let the τ1, τ2, and τ3 denote the first, second,

and fourth term in equation (2.1)

τ1 ≡
∂(ρℓ)

∂t
,

τ2 ≡
1

R

∂(RvRρℓ)

∂R
,

τ3 ≡ −
1

R

∂

∂R

[

R3νρ
∂

∂R

(

ℓ

R2

)]

. (2.15)

Correct angular momentum transport requires

|τ1 + τ2 + τ3| ≪ max(|τ1|, |τ2|, |τ3|). (2.16)

In Figure 2.1, we plot |τ1|, |τ2|, |τ3|, and |τ1 + τ2 + τ3| over the entire

range of radii after ∼ 1,000 Keplerian orbital periods at Rmin, which corre-

sponds to ∼ 1 orbital period at Rmax. Radial derivatives were computed by

3-point Lagrangian interpolation with the IDL routine DERIV. In computing

the derivative at inner boundary, we included guard cells in manner equivalent

with the boundary condition prescription used in our 2D simulations, as de-

scribed in Chapter 2.0.2 above. Some violation of the transport equation (2.1)

is expected at the two leftmost grid cells at R ≈ (1.03, 1.09)×Rmin because the
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Figure 2.1 A test of angular momentum transport, showing the magnitude of
the Eulerian time derivative (τ1, red curve), advection (τ2, green curve), and
viscous transport (τ3, blue curve) terms in the one-dimensional (∂/∂z = 0)
version of the angular momentum conservation relation in equation (2.1). The
terms are expressed in the units of ρℓ/t. We also show the sum |τ1 + τ2 + τ3|
(black curve), which should be much smaller than the largest of the three
terms. The violation of angular momentum conservation near the left radial
boundary is associated with the conservation-violating nature of the torque-
free boundary condition that we have imposed.

torque-free boundary condition does not conserve angular momentum. Apart

from the leftmost cells, the angular momentum is conserved at the 10% level

or better at all radii. The spatial derivative in the viscous transport term (τ3)

is partially responsible for the noise evident at large radii. The noise at small

radii seems to be correlated with the viscous time step limiter, which suggests

that it is related to the explicit nature of our viscous diffusion scheme.
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Chapter 3

Results

Since the evolution of the central accretion rate seems to fall into three

distinct phases (see Figure 3.1) that appear to correspond to the phases iden-

tified in the GRB γ-ray and X-ray light curve (e.g., Zhang et al., 2006), we

divide our description of the results of the simulations into three parts. In

Chapter 3.0.4, we describe Phase 0 that concludes with the appearance of an

accretion shock. We also discuss the limitations of our method in this regime,

and set the stage for an analytic model that we develop further below in

Chapter 4.0.7 to take into account the physics left out the our simulations. In

Chapter 3.0.5, we describe Phase I that is characterized by a steep, power-law

decline of the central accretion rate and a rapid hydrodynamic readjustment

of the accreting stellar envelope. In Chapter 3.0.6, we describe Phase II, in

which the central accretion rate steadies. The corresponding “plateau” phase

in GRB X-ray light curves eventually ends and gives way to a renewed steeper

decline. Because of computational cost limitations, we do not extend our runs

to ∼ 104 s, where, based on the observed light curves, one would expect the re-

newed steeper decline to occur, but further below, in Chapter 4.0.8, we briefly

speculate about the long-term evolution of the light curve.
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Figure 3.1 (a) Stellar mass that remains in the simulation as a function of
time in Run 1 (blue, dot-dashed line), Run 2 (red, dashed-line), and Run 3
(black, solid-line). The drop at t ≈ 400 s in Run 2 is an artifact of fluid
escape from the box through the boundaries at R = Rmax and z = ±zmax.
(b) Mass of the black hole. (c) The rate at which fluid mass accretes across
the boundary at R = Rmin and is added to the mass of the black hole. The
sharp drop at t ≈ 37−52 s coincides with the formation of the accretion shock
and the onset of convection in the rotationally and hydrostatically supported
fluid. The flattening at t ∼ 500 s in Run 2 coincides with the cessation of the
accretion of low angular momentum fluid through the axial funnel. The power-
law accretion rate decline in Run 3 exhibits a shallowing of the logarithmic
slope at t ∼ 200 s.
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3.0.4 Phase 0: Quasiradial Accretion

At the radii R > Rmin that we resolve in the simulations, the stellar

collapse proceeds quasiradially for a number of seconds until an accretion

shock appears at the innermost simulated point at (R, z) = (Rmin, 0). The

appearance of an accretion shock coincides with the emergence of a rotationally

supported flow in the zones at the smallest radii. In Figure 3.2, left panel,

we show the density distribution, temperature contours, and velocity field

during the quasiradial accretion phase, at t = 37 s, just prior to the formation

of the accretion shock, in the simulation with Rmin = 5 × 107 cm (Run 1,

see Table 2.1). The maximum density and temperature in this snapshot are

2.6× 107 g cm−3 and T = 7.5× 109 K. Since the simulation does not allow for

nuclear disintegration, the temperature in the innermost cells in the simulation

is an overestimate.

The existence of a quasiradial accretion phase and the late formation

of an accretion shock are clearly artifacts of the choice not to simulate the

innermost 5× 107 cm from the central axis. This innermost resolved radius is

still ∼ 100 times larger than the gravitational radius of the nascent black hole.

Simulations that resolved the innermost radii at or near the ISCO (MacFadyen

& Woosley, 1999; Proga et al., 2003; Lee & Ramirez-Ruiz, 2006; Nagataki et

al., 2007; Barkov & Komissarov, 2008; Komissarov & Barkov, 2009; Lopez-

Camara et al., 2009), but were run much shorter than ours, saw accretion

shock formation much earlier, during the first second of the collapse. Some

of the material falling quasiradially during the initial phase has enough an-
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Figure 3.2 The innermost accretion flow, composed mostly of oxygen and neon,
shortly prior (left panel) and shortly following (right panel) the formation of an
accretion shock at t ≈ 37 s in Run 1 with Rmin = 5×107 cm. The color scale de-
notes the fluid density, which in this region ranges between 105−107.5 g cm−3.
The black contours show the T = (4, 5, 6, 7)× 109 K isotemperature contours.
The arrows show the meridional component of the fluid velocity; the longest
arrows correspond to (v2R + v2z)

1/2 = 5× 109 cm s−1 and Mach numbers ∼ 10.
Following shock formation, supersonic inflow resumes along the axial funnel.
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gular momentum to circularize at radii that we do not resolve, but that are

still larger than the ISCO. Indeed, our accretion shock forms earlier in runs

with smaller Rmin (see Table 2.1 and Figure 3.1), consistent with the obser-

vation that circularization triggers shock formation. Therefore, in general,

the accretion shock forms when the orbital pericenter of the material crossing

the equatorial plane becomes larger than the ISCO, or the innermost resolved

radius Rmin in the simulations in which the ISCO is unresolved.

In Chapter 4.0.7, we will analyze differences between the inner accretion

flow in our adiabatic simulations and that in the realistic GRBs progenitors,

and suggest that the steep decline of the accretion rate in realistic GRB progen-

itors is triggered by the onset of circularization of the infalling stellar material

at radii where the post-accretion-shock temperature is too low to allow for

efficient cooling by neutrino emission. We will conclude that the decline seems

to be associated with the onset of outward expansion of the accretion shock.

The outward expansion is distinct from and could occur much later than the

first occurrence of the shock. In Chapter 4.0.7 we will present a crude analytic

model in which we estimate that the triggering of the steep decline should

occur at tdecl ∼ 20 s in stars with density and angular momentum stratifica-

tion as in 16TI. This estimate is somewhat shorter than the shortest interval

tdecl ∼ 37 s observed in the highest-resolution simulation, Run 1.
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3.0.5 Phase I: Funnel and Thick Disk Accretion

At t ∼ 37 − 52 s where the shortest time scale corresponds to the

simulations that resolve the smallest radii, an accretion shock forms along the

equator near the inner boundary (Figure 3.2) and travels outward. Figure 3.3

shows equatorial profiles of the density, temperature, pressure, specific angular

momentum, mean atomic mass, and vertical pressure scale height, at times

t = (38, 100, 1,000) s. The shock travels from r ≈ 2× 108 cm at t = 38 s to

r ≈ 1010 cm at t = 100 s and escapes the star in the next ∼ 100 s. In the same

period, the shock velocity increases from∼ 5×107 cm s−1 to∼ 1.5×108 cm s−1.

The shocked fluid at polar angles |θ−π/2| ≤ 75◦ is rotationally supported, but

the large equatorial vertical pressure scale height h ≡ [r2P/(ρ dΦ/dr)]1/2 ∼

(0.4 − 0.5)r, where Φ(r) is the gravitational potential, indicates that this is

a thick disk. Figure 3.4, left panel, shows that the isodensity contours of

this rotationally supported fluid are roughly circular; the vertical and the

cylindrically radial pressure scale heights are comparable. The shocked fluid

is turbulent and apparently convective (in two spatial dimensions, long-lived

vortices form in the shock; the persistence of the vortices is an artifact of the

assumed axisymmetry). The near-uniformity of specific angular momentum

and mean mass is indicative of rapid mixing. The maximum temperature in

the post shock fluid is 9.3× 109 K; this is a temperature at which the nuclear

and neutrino physics that we ignore is marginally important; our neglect of

disintegration cooling implies an overestimate of the temperature in the inner

thick disk, r ≤ 108 cm. The shocked fluid in the |θ − π/2| ≥ 75◦ cone around
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the vertical axis continues to infall supersonically.

Figure 4.1 shows the quantity p/ργ, which is approximately related to

the specific entropy, where γ ≡ (d ln p/d ln ρ)s=const at t = 70 s and t = 100 s in

the highest resolution run, Run 1. Entropy appears to be generated throughout

the thick disk. The high-entropy fluid exhibits a flow morphology suggestive

of a “disk wind.” The strongest outflow tracked by the highest entropy fluid

is along the interface of the turbulent thick equatorial disk and the supersonic

axial inflow. Prior to the cessation of the axial inflow, the wind streamlines do

not terminate at infinity, but rather bend back toward the equatorial plane,

suggesting a closed meridional circulation pattern that transports the energy

generated in the thick disk. Ohsuga et al. (2005) and Lee & Ramirez-Ruiz

(2006) have previously observed such a large-scale circulation pattern in their

simulations. The high entropy fluid appears to accumulate at the interface of

the thick, rotationally-supported disk and the pressure-supported atmosphere,

and to mix convectively in the atmosphere.

The appearance of the accretion shock is accompanied by a sudden

rapid power-law decline of the central accretion rate. The times of shock

formation and the onset of decline in different simulations are provided in Table

2.1. Evolution of the black hole mass, the residual stellar fluid mass, and the

accretion rate, is shown in Figure 3.1. The steep decline of the accretion rate

resembles the rapid decline ubiquitous in the observed GRB X-ray light curves.

In the simulations, the decline starts at∼ 37−52 s and lasts until∼ 200−500 s.

The logarithmic derivative of the central accretion rate during the decline is
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Figure 3.3 The density ρ, temperature T , pressure P , specific angular momen-
tum ℓ, mean atomic mass Ā, and the vertical pressure scale height-to-radius
ratio h/r in the equatorial (z = 0) plane. Shown is the initial model (black
line), in Run 1 shortly following accretion shock formation at t = 38 s (red
line), in Run 1 at t = 100 s (green line), and in Run 2 at t = 1,000 s (blue line).
As usual, the mean atomic mass was calculated via Ā−1 =

∑

i A
−1
i Xi, where Ai

and Xi are the atomic masses and mass fractions of the seven nuclear species.
The pressure scale height was estimated via h = [r2P/(ρ dΦ/dr)]1/2, where Φ is
the gravitational potential. The outgoing shock is visible at r ≈ 2.3× 108 cm
at t = 38 s and at r ≈ 9 × 109 s at t = 100 s. The profiles can be com-
pared with the corresponding profiles in Popham et al. (1999), MacFadyen &
Woosley (1999), and Chen & Beloborodov (2007).

27



d ln Ṁ/d ln t ≈ −2.3− (−2.8), with the steepest decline corresponding to Run

1, the simulation that resolves the smallest radii.

There does not seem to be a single explanation for the steepness of the

decline of the accretion rate. We have been able to identify three processes

that seem to contribute. We focus on Run 2, the run with the highest central

resolution that we have run long enough to witness the end of the decline.

First, the Eulerian density within the thick disk decreases by a factor of

∼ 50− 100 from t = 50 s to 500 s. The density drop occurs concurrently with

the accretion shock expansion, and may be associated with the draining of the

inner disk into the black hole and with a simultaneous readjustiment of the

pressure-supported atmosphere of the disk toward near-adiabatic stratification

in the presence of convection or large scale circulation. This decline in disk

density can explain d ln Ṁ/d ln t ≈ −2 but perhaps not steeper.

Second, there is a very gradual decrease, by a factor of ≤ 2, of the

vertical pressure scale height of the rotationally supported disk during the

period of the steep decline. The decrease can be seen in a comparison of the

left panel of Figure 3.4, showing the density distribution at t = 100 s, with the

right panel of the same figure, showing the density at t = 1,000 s. Since in the

rotationally supported flow the viscosity is proportional to the square of the

scale height, the scale height decrease implies a factor of ≤ 4 decrease of the

viscosity ν, and with it also of the disk accretion rate Ṁdisk. Consistent with

the disk scale height decrease, the midplane temperature of the disk decreases

gradually and steadily. E.g., in Run 2 at the innermost resolved radius of
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108 cm, the temperature drops from 5× 109 K at the onset of circularization

to 2× 109 K at the end of Phase I.

Figure 3.4 The fluid density at t = 100 s (left panel, logarithmic rendering)
and t = 1,000 s (right panel, linear rendering) in Run 2. At early times, the
fluid accreting supersonically through the axial funnel traverses multiple weak
standing accretion shocks before it joins the disk or passes the boundary at
R = Rmin.

Third, there is a rapid decline of the rate at which the low angular

momentum fluid accretes through the axial funnel. Funnel accretion dominates

the net accretion rate immediately following accretion shock formation but

then drops to zero at the end of the steep decline at t ∼ 500 s when the

funnel inflow reverses into an outflow. Our simulations may overestimate the

funnel accretion rate if the funnel material is additionally heated by a narrow

relativistic axial jet, presumably launched from the black hole magnetosphere

and responsible for the γ-ray and X-ray emission, that we do not simulate, but
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which must pierce the funnel region (see, e.g., Ramirez-Ruiz et al., 2002; Zhang

et al., 2003, 2004; Zhang & MacFadyen, 2006; Morsony et al., 2007; Wang et

al., 2008). The effect of the heating of the funnel fluid by the relativistic

jet might be to further steepen the decline of the accretion rate. Further

magnetic outflow could develop from the corona of the inner accretion disk,

which could shut off funnel accretion more effectively than the outflow driven

thermally by the resistive (or, in our approximation, viscous) dissipation in

the disk (Proga & Begelman, 2003; Proga et al., 2003). These effects could

clearly make the central accretion rate decline, which is already rapid in our

simulations, become even more rapid.

One also expects that the accretion rate decline is accompanied by an

inward recession of the boundary separating the radiatively-efficient, neutrino-

dominated accretion flow (NDAF) and the radiatively-inefficent, advection or

convection dominated accretion flow (RIAF) (see, e.g., Chen & Beloborodov,

2007). The evolution of an NDAF into an RIAF at radii r ≤ 108 cm over the

course of a few hundred seconds is a process that may further accelerate the

accretion rate decline in real GRB progenitors. The physics of the transition

from NDAF to RIAF and the onset of the outward propagation of the accretion

shock are closely linked—both are controlled by neutrino cooling. We will

argue in Chapter 4.0.7 below that the two operating together, starting at

about the same time, is the most likely reason for the rather steep decline of

the accretion rate between several tens of seconds and several hundred seconds.

The rapid decline of the central accretion rate in our simulations is dis-

30



tinct in origin from the less rapid decline seen in the simulations of MacFadyen

et al. (2001). MacFadyen et al. simulated the fallback of the stellar envelope

following the failure of the shockwave resulting from the core bounce to unbind

the star. Placing their inner numerical boundary at rmin,MHW = 109 cm, they

found that the radial fallback rate through the inner boundary declines at the

rate Ṁ(rmin,MHW) ∝ t−5/3. Since the boundary was place outside the radii of

the infalling envelope encounters the centrifugal barrier, MacFadyen et al. did

not simulate the accretion disk and thus did not observe the formation and

outward propagation of the accretion shock. In our simulations, the accretion

shock is aided by the viscous energy deposition in the rotationally-supported

disk. The post-circularization shock seems to be responsible for the much

more rapid central accretion rate decline in our simulations than in those of

MacFadyen et al.

The rapid temporal central accretion rate variability evident in Fig-

ure 3.1c is an outcome of hydrodynamical instabilities, such as the convective

instability, near the innermost simulated radius Rmin (see, also, MacFadyen

& Woosley 1999, who observed similar variability in Phase 0) and should not

translate into any potential variability of the electromagnetic jet launched from

radii R ≪ Rmin. The nature of the variability in the inward-directed mass flux

Ṁ should also be affected by the fluctuations of the magnetic stresses (e.g.,

Proga & Begelman, 2003; Proga et al., 2003) and by the complex interplay of

the processes associated with nuclear reactions and neutrino transport in the

accretion flow (e.g., MacFadyen & Woosley, 1999; Proga et al., 2003; Nagataki
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et al., 2007; Lopez-Camara et al., 2009). Therefore, we caution against ascrib-

ing phenomenological significance to the accretion rate variability in Figure

3.1c.

3.0.6 Phase II: Funnel Outflow, Thick Disk Accretion

The steep decline of the accretion rate seems to diminish at ∼ 200 −

500 s. This behavior is suggestive of a transition into the “plateau” phase, or

Phase II, of the GRB X-ray light curve, although we do not observe a robust

signature of a genuine plateau in Ṁ(t) across all simulations. The simulated

accretion flow appears to settle in a quasi-steady state, characterized by an

axial outflow and thick equatorial disk accretion. We proceed to characterize

the quasi-steady accretion flow. Figure 3.5, which shows the magnitudes of the

various terms in the spherically-averaged Euler equation and the net residual

acceleration implied by the radial Euler equation, indicates that bulk of the

fluid mass is rotationally supported at r ≤ 3×109 cm and is pressure supported

at r ≥ 4×109 cm. The relative contribution of pressure support at radii where

rotational support dominates is still substantial, ∼ 50− 75%, consistent with

the thick disk morphology with vertical scale height h/R ∼ tan 30◦ (Figure

3.4, right panel). Thus, our post-core-collapse accretion flow never resembles

a thin disk. The pressure-supported atmosphere is nearly isentropic, p ∝ ργ .

In Figure 3.6, we show the inward-directed, the outward directed, and

the net mass flux flowing through spherical shells with radii r. After ∼ 500 s,

the net mass flux in the central ∼ 109 cm is approximately independent
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Figure 3.5 Gravitational field −∂Φ/∂r (red short dashed line), the pressure ac-
celeration −ρ−1∂p/∂r (green dot-dashed line), centrifugal acceleration in the
radial direction v2φR̂ · r̂/r (blue long-dashed line), and the sum of the gravita-
tional, pressure, and centrifugal acceleration (black solid line) in Run 2 with
Rmin = 108 cm. The flow is rotationally supported at r ≤ 3 × 109 cm and
pressure supported at r ≥ 4 × 109 cm. We utilized the averages of p and ρ
on spherical shells of radius r, and the mass-weighted averages of Φ and vφ on
spherical shells. Furthermore, time-averaging was carried out in the interval
t = 600− 1,000 s.

of radius, which reflects a quasi-steady accretion in the inner part of the

rotationally-supported disk at the rate Ṁdisk ≈ 5 × 10−5 M⊙ s−1. This disk

accreting in a quasi-steady state contains only Mdisk ∼ 0.01 M⊙, which is

less than 1% of the mass that remains bound to the black hole in the shock-

heated, pressure-supported atmosphere atop the rotationally-supported disk.

The outflow and the inflow have linearly rising accretion rates Ṁin,out ∝ r and

nearly cancel over the range of radii belonging to the atmosphere, just as was

found in the simulated radiatively inefficient accretion flow with convection of

Abramowicz et al. (2002). The structure described by a massive convective

atmosphere surrounding a thick, nonradiative disk resembles the “quasistar”
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Figure 3.6 The rate of mass inflow (red dashed line), mass outflow (green dot-

dashed line), and absolute net mass flow (black solid line) crossing a sphere
of radius r centered on the black hole, in Run 2. The rates were averaged
over the time interval t = 600 − 1,000 s. The outflow and the inflow nearly
cancel over a range of radii. At the radii of the rotationally-supported disk
r ≤ 109 cm, there is net inflow at the rate Ṁ ∼ 5× 10−5 M⊙ s−1.

of Begelman et al. (2008), who envisioned the limit in which the mass of the

pressure supported envelope exceeds the mass of the black hole by a large

factor.

The accretion time of the inner disk during Phase II, tacc ∼ Mdisk/Ṁdisk ∼

200 s, is shorter than duration of this phase (we end our simulation prior to

the end of Phase II), hence a continuous replenishment of the inner disk must

operate. The time scale on which the entire fluid mass bound to the black hole

(∼ 2M⊙) would accrete through the thick disk is ∼ 4×104 s, though of course,

not all of the mass bound at the beginning of Phase II must ultimately accrete;

a large fraction could become unbound and leave in an outflow. Because of

computational limitations we do not extend the simulations long enough to
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observe the inevitable depletion of the massive atmosphere through inner disk

accretion, but in Chapter 4.0.8, we speculatively extrapolate our results into

that regime.

In Figure 3.7, we show a large-scale (∼ 1011 cm) view of the density

and the meridional Mach number MR−z ≡ (v2R + v2z)
1/2/cs, where cs is the

adiabatic sound speed at t = 2,000 s in the lowest-resolution simulation, Run

3. Meridional motions in the pressure-supported atmosphere are subsonic,

confirming that large-scale infall has ceased. Because a vast fraction of the

unaccreted mass is in this atmosphere, we neither observe nor anticipate the

tendency of the inner disk to spread outward in the way in which an isolated

thin disk would spread and how Cannizzo & Gehrels (2009) envision. At the

quasi-steady disk radii, the inner and outward-directed mass fluxes increase

outward according to Ṁin(r), Ṁout(r) ∝ r1.0−r1.2, which reflects the convective

or circulatory nature of the flow. The pressure-supported atmosphere at radii

5 × 109 cm ≤ r ≤ 1010 cm contains about 0.5 M⊙ and exhibits a net inflow

at the rate ≈ 5 × 10−4 M⊙ s−1, larger than in the inner disk; the lack of a

true steady state opens the prospect for a late-time, high-amplitude central

accretion rate variability. On the other hand, the outer atmosphere r ≥ 2 ×

1010 cm containing ∼ 2 M⊙ has a net outward-directed mass flux at the rate

Ṁout ∼ (0.5−1.5)×10−3M⊙ s−1, though most of the outflowing mass remains

gravitationally bound to the black hole.
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Figure 3.8 shows the radial energy flow rate

Ė(r) =

∫ π

0

ρ

[

vr

(

v2

2
+

γ

γ − 1

P

ρ
+ Φ

)

− vφνσ sin θ

]

2πr2 sin θdθ, (3.1)

where vr = (RvR + zvz)/r, v = (v2R + v2z + v2φ)
1/2, vφ = ℓ/R, and R = r sin θ.

The last term in brackets is the projection onto the r-direction of the specific

energy flux carried by the viscous torque. The entire rotationally supported

region 2 × 108 cm ≤ r ≤ 5 × 109 cm exhibits a net outward-directed energy

flux

Ė(r) ∼ 1047 erg s−1

(

r

2× 109 cm

)0.4

, (3.2)

which in the steady state disk, r ≤ 109 cm, implies a mass conversion efficiency

of Ė/(Ṁc2) ∼ 7× 10−4. In the innermost cells r ∼ 108 cm, however, there is

a hint of an energy inflow.

To search for the presence of potentially unbound flows, in Figure 3.9,

we plot the Bernoulli function, defined as the sum of the specific kinetic energy,

enthalpy, and potential energy of the accretion flow (e.g., Narayan & Yi, 1994,

1995; Stone et al., 1999; Igumenshchev & Abramowicz, 1999, 2000; Blandford

& Begelman, 1999, 2004)1

Be ≡
1

2
(v2R + v2z + v2φ) +

γ

(γ − 1)

p

ρ
+ Φ, (3.3)

where Φ is the total, negative gravitational potential. The structure at small

radii bears only a coarse-grained resemblance to the Bernoulli function profile

1Some authors also define the Bernoulli constant b to equal the Bernoulli function divided
by the Keplerian velocity, b ≡ Be/v2

K
(Narayan & Yi, 1994, 1995).
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in the simulations of Stone et al. (1999). The entire axial funnel region, plus

scattered domains within the equatorial rotationally supported and pressure

supported region, as well as the high-latitude fluid, |z| ≥ 7 × 1010 cm, ex-

hibit a positive Bernoulli function, Be > 0, which indicates the potential for

an unbound flow and an escape to infinity. The positivity of the Bernoulli

function does not always necessitate escape, as such fluid elements can be

buried within the massive quasi-hydrostatic envelope where they can do work

on other fluid elements and mix with the Be < 0 fluid. The vertically outflow-

ing fluid above and below the rotationally supported disk, within an angle of

∼ 20◦ − 25◦ from the vertical axis, however, seems entirely unbound, in clear

indication of the presence of mass loss carried by a thermally-driven disk wind.

Indeed, the axial outflow becomes supersonic as it propagates upward through

the envelope (see Fig. 3.7). Therefore, the system spontaneously develops an

advection-dominated inflow-outflow solution (ADIOS; Blandford & Begelman

1999, 2004). In the realistic, nonadiabatic collapsar ADIOS, the relation of

the capacity to escape to the Bernoulli function is modified by the cooling due

to neutrino emission and the endothermic nuclear disintegration, which could

subvert escape, and by the heating due to the exothermic nuclear recombina-

tion in the outflow (Pruet et al., 2003; Surman et al., 2006; Fujimoto et al.,

2007; Nagataki et al., 2007; Maeda & Tominaga, 2009), which could promote

escape.
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Figure 3.7 The large-scale density distribution (left panel) and meridional
Mach number MR−z ≡ (v2R + v2z)

1/2/cs, where cs is the adiabatic sound speed
(right panel) at t = 2,000 s in the lowest-resolution simulation, Run 3. Merid-
ional motions in the pressure-supported atmosphere that contains most of the
unaccreted mass are subsonic, indicating that large-scale infall has ceased.
The supersonic fluid has positive Bernoulli constant and is unbound (see Fig-
ure 3.9).
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Figure 3.8 The rate of energy inflow (red short dashed line), energy outflow
(green dot-dashed line), and absolute net energy flow (black solid line) crossing
a sphere of radius r centered on the black hole in Run 2. The energy flux carried
by viscosity ρνσvφR̂ was included in each case. The rates were averaged over
the time interval t = 600 − 1,000 s. Energy outflow dominates inflow at all
radii. The black long dashed line shows the product of pressure and the sound
speed to which the maximum energy that can be transported by convection is
proportional.
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Figure 3.9 Value of the Bernoulli function Be ≡ Ek + Ep + [γ/(γ − 1)] p/ρ,
where Ek and EP denote, respectively, the specific kinetic and the potential
energy, in the simulation (left panel) and in the central 1010 cm (right panel)
at t = 1,000 s in Run 2. The material with positive values of the Bernoulli
function (red color) has enough energy to escape from the system.
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Chapter 4

Discussion

The primary limitations of the numerical model presented here include:

(i.) the lack of simulation coverage of the hot inner disk, r ≤ 5×107 cm, where

neutrino and nuclear physics influence the thermodynamics of the flow, (ii.)

the limited adequacy of the Navier-Stokes viscous fluid dynamics to approxi-

mate the dynamics of a realistic magnetized, radiation dominated fluid, (iii.)

the lack of modeling of the axial relativistic jet and its enveloping cocoon,

and (iv.) the lack of coverage of the very late evolution, t ≥ 104 s, when the

GRB X-ray light curve exhibits single or multiple breaks with the tendency

toward a steepening of the luminosity decline. We defer an exploration of the

limitations (ii.) and (iii.) for future work, and here briefly and speculatively

address limitations (i.) and (iv.). In Chapter 4.0.7, we crudely take into ac-

count the energy loss to neutrino emission in the accretion-shock-heated flow

and estimate the time at which the central accretion rate commences to decline

steeply (the transition from Phase 0 to Phase I). In Chapter 4.0.8, we discuss

the implications of mass loss for the long-term evolution of accretion rate.
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4.0.7 Triggering of the Steep Decline in GRBs

The composite γ-ray and X-ray GRB light curve starts declining abruptly

and steeply after an initial period of steady luminosity that lasts for tens of

seconds. Here, we attempt to shed light on the transition from the quasi-steady

activity of the central engine to the steeply declining regime. Continuing to

work within the paradigm in which the luminosity is proportional to the central

accretion rate, we suggest that the steep decline is triggered by a rapid out-

ward expansion of an accretion shock through the infalling material that feeds

a convective, rotationally-supported thick accretion disk. This is consistent

with the conclusion of Barniol Duran & Kumar (2008), who ruled out mecha-

nisms for powering the rapid decline that are intrinsic to a single emitting and

cooling element, and by elimination inferred that the central engine (e.g., an

accreting black hole) remains active during the steeply declining phase (but

see Genet & Granot 2008, who showed that the high latitude emission from a

sequence of such elements, or “pulses,” could fit the decline). Because in our

adiabatic simulations we do not resolve the innermost radii r ≤ 5×107 cm and

do not simulate the nuclear disintegration, neutrino emission, neutrino capture

on nucleons, and neutrino annihilation, that occur in the hot (T ≥ 1010 K)

plasma at these radii, some of the forthcoming conclusions will be obtained

with the aid of a simple analytical model for the thermodynamic evolution of

the inner neutrino-cooling region (see, also, Beloborodov, 2008).

We have seen that in the adiabatic simulations, the accretion shock

appears when the infalling material has enough angular momentum to be
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rotationally supported at the innermost resolved radius. From there on, the

accretion shock expands outward rapidly and sweeps through the star. The

shocked fluid is additionally heated as a result of the viscous dissipation in

the thick disk. The energy produced during the accretion of the thick disk is

advected or convected radially outward by the disk “wind” (Figure 4.1) which

distributes it throughout the mostly pressure supported torus of shocked fluid.

In the adiabatic regime, after the gravitational potential becomes dominated

by the black hole while the mass infall rate declines rapidly, it seems that

an outward expansion of the hot torus bounded by the accretion shock is

inevitable immediately following shock formation. In the nonadiabatic regime,

the expansion of the shock may be delayed by losses associated with nuclear

disintegration and neutrino emission. If indeed, in general, a sudden and rapid

drop in the central accretion rate accompanies the shock expansion, then to

estimate the onset of the steep decline, one must identify the instance at which

the losses become inefficient and the accretion shock, aided by the viscous

energy injection, can start traveling outward.

Consider a fluid element with specific angular momentum ℓ = 1017 ℓ17 cm
2 s−1;

its circularization radius around the black hole of mass MBH = 10 M1 M⊙ is

rcirc ∼
ℓ2

GMBH

. (4.1)

If the material with density ρ = 108 ρ8 g cm−3 arrives at the shock from a free

fall from infinity and the gravitational energy density GMBHρ/rcirc is converted

into the energy density in radiation aT 4, where a is the radiation constant,
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Figure 4.1 The quantity p/ργ, which is approximately related to the specific
entropy of the fluid, where γ ≡ (d ln p/d ln ρ)s=const at constant entropy, of
the fluid at t = 70 s (left panel) and t = 100 s (right panel) in the center of
the star, in Run 1 with Rmin = 5 × 107 cm. The high entropy fluid tracks
the outflow from the disk. The low-entropy fluid accreting through the axial
funnel traverses multiple weak standing accretion shocks before it joints the
disk or passes the boundary at R = Rmin. The primary, outward propagating
accretion shock is visible along the right edge of the left panel.

the post-shock temperature is given by

Tshock ∼

(

GMBH

ℓ

)1/2 (
7 ρ

a

)1/4

∼ 6.4× 1010 K
M

1/2
1 ρ

1/4
8

ℓ
1/2
17

, (4.2)

where we have taken the density jump across the shock to be∼ 7, appropriate if

the fluid velocity is Newtonian and the post-shock fluid is radiation-dominated.

The latter in particular is a crude approximation; Chen & Beloborodov (2007)

44



show that the pressure due to baryons and electrons and positrons can be

comparable to and larger than the radiation pressure in the disk midplane.

Nagataki et al. (2007) find that almost all of the energy emitted by

neutrinos in the hot, rotationally-supported torus, comes from pair capture on

free nucleons (the Urca process),1 for which the approximate cooling rate is

(Qian & Woosley, 1996; Popham et al., 1999, and references therein)

qeN = 9× 1025 ρ8 T 6
10 Xnuc erg cm−3 s−1, (4.3)

where T = 1010 T10 K is the plasma temperature, and Xnuc is the free nucleon

fraction in nuclear statistical equilibrium (NSE), which is approximated via

Xnuc ≈ min[1, 8.7 ρ
−3/4
8 T

9/8
10 exp(−6.1/T10)]. (4.4)

As long as the cooling time

tcool =
aT 4

q
, (4.5)

where q is the net energy loss rate, which includes the pair capture term qeN

and other contributions, is shorter than the age of the collapse t, the accretion

shock is confined near the black hole, the flow crossing the shock is highly

supersonic, and rapid accretion onto the central object is possible.

When the cooling time exceeds the age of the collapse, tcool > t, the

accretion shock expands outward. It seems that in the specific case of the

1In the calculation of Lopez-Camara et al. (2009), the cooling due to neutrino emission
from pair annihilation dominates at early times t = 0.2 s and radii R ≤ 2 × 107 cm on
the equatorial plane; at later times, the cooling from pair annihilation is comparable to the
cooling from pair capture.
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collapse of a 16TI-model star, the pair capture neutrino emission indeed dom-

inates losses until the cooling is no longer able to prevent outward expansion of

the shock. When the post-shock temperature drops below ∼ 9× 109 K, which

happens due to the decrease in the free nucleon abundance under NSE condi-

tions that are still satisfied until the temperature drops to Tmin,NSE ∼ 4×109 K,

the losses from nuclear disintegration and from neutrino emission from pair

annihilation exceed those from pair capture, but they are not able to prevent

shock expansion.

Consider an initial stellar density profile of the form ρ ∝ r−τ in which

the gravity is dominated by the mass closer to the center, and let

M(r) = M0

(

r

r0

)3−τ

(4.6)

denote the pre-collapse mass profile, where M0 and r0 denote the stellar mass

and radius, respectively (we ignore the departure of the density profile from a

single power law near the stellar surface). The free fall time from radius r is

given by tff(r) ∼ [r3/GM(r)]1/2. This relation can be inverted to obtain the

radius, defined via tff(rff) = t, from which the freely falling material is reaching

the center at time t,

rff(t) = (GM0t
2rτ−3

0 )1/τ . (4.7)

The mass of the black hole grows in time and approximately equals

MBH(t) ∼ M [rff(t)]

∼ G3/τ−1 M
3/τ
0 r

3(1−3/τ)
0 t2(3/τ−1). (4.8)
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Assuming that rcirc ≪ rff , the pre-shock density of infalling fluid at rcirc at

time t since the beginning of the explosion approximately equals the mass

infall rate ∼ M [rff(t)]/t divided by the shock area ∼ 4πr2circ and multiplied by

the infall velocity ∼ (GMBH/rcirc)
1/2,

ρ(t) ∼
M [rff(t)]

4π[GMBH(t) r3circ]
1/2t

∼
G1−6/τ M

6/τ
0 r

6(1−3/τ)
0 t12/τ−5

4π ℓ(t)3
. (4.9)

We further assume that

ℓ(r) ∼ ℓ0

[

M(r)

M0

]η

cm2 s−1, (4.10)

implying that

ℓ(t) ∼ ℓ0 (GM0)
(3/τ−1)η r

3(1−3/τ)η
0 t2(3/τ−1)η. (4.11)

Kumar et al. (2008b) find that τ ≈ 2.5 throughout the bulk of the star

for the model 16TI of Woosley & Heger (2006) that we utilize and we adopt

this value. We further find that η ≈ 2.5 is consistent with the rotational profile

of the model 16TI in the range 4 M⊙ ≤ M(r) ≤ 10 M⊙. We set r0 = 1010 cm,

and M0 = 10 M⊙ and ℓ0 = 1017.8 cm2 s−1, which approximate the mass and

angular profile of the model 16TI, and substitute r = r(t) in equation (4.10)

and substitute ℓ[r(t)] in equation (4.9) to obtain

ρ ∼
M

9/10
0 r

33/10
0

4π G1/10ℓ30 t16/5

∼ 1010 t−16/5 g cm−3, (4.12)
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where in the last expression, t is given in seconds.

Combining equations (4.2), (4.3), (4.4), (4.5), and (4.12), the ratio of

the cooling time for pair capture only, q = qeN , to the age of the collapse reads

tcool
t

∼
2× 10−6 t22/5

min[1, 17.5 t93/80 exp(−0.27 t11/10)]
. (4.13)

The ratio rises rapidly in time and becomes unity tcool/t ∼ 1 at

tdecl ≈ 20 s. (4.14)

At this point, the material circularizing at rcirc is no longer able to cool by neu-

trino emission. Therefore, we expect that in a realistic star corresponding to

the model 16TI, the accretion rate starts to decline steeply at tdecl ∼ 20 s after

the explosion, when the mass of the black hole is ∼ 9 M⊙ and post-shock tem-

perature is ≤ 1010 K. Since the initial mass of the black hole, if taken to equal

the mass of the iron core, is MBH,init ∼ 1.5 M⊙, the implied average accretion

rate preceding the decline, 〈Ṁ〉 = [MBH(tdecl)−MBH,init]/tdecl ∼ 0.4 M⊙ s−1, is

larger than the accretion rate ∼ (0.1−0.2) M⊙ s−1 observed in our simulations

and those of MacFadyen & Woosley (1999) and Nagataki et al. (2007), though

it is consistent with the accretion rate in the first 0.3 s in the simulation of

Proga et al. (2003) and in the first 0.4 s in the simulation of Lopez-Camara

et al. (2009). Our analytical model possibly overestimates the infall rate as it

does not take into account the initial hydrostatic pressure gradients that delay

the collapse in the simulations and in real GRB progenitors.

If this model for the triggering of the steep decline of the central accre-

tion rate is correct, and if the onset of the steep decline of the accretion rate
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implies a termination of the observable prompt γ-ray emission, then the du-

ration of the prompt emission in long GRBs produced by black hole-forming

core collapse events should be anti-correlated with the angular momentum

of the progenitor envelope. High angular momentum envelopes circularize at

large radii where low virial temperatures imply post-shock adiabaticity and an

earlier heating of the infalling envelope by the outward expanding accretion

shock and disk outflows. Low angular momentum envelopes may circularize at

radii where the high virial temperatures imply rapid cooling over several tens

of seconds after the initial collapse. The cooling allows the accretion shock

to remain confined longer at radii where the free-fall velocity of the infalling

envelope is highly supersonic and a high central accretion rate is possible, bar-

ring, of course, another process, such the electromagnetically-driven outflow

observed in, e.g., Proga et al. (2003), Nagataki et al. (2007), and Komissarov

& Barkov (2009), that could suppress central accretion.

4.0.8 The Long-Term Evolution

The period of quasi-steady or gradually declining luminosity in GRB

X-ray light curves lasts for ∼ 103− 104 s (Phase II). At the end of this period,

a steeper decline resumes (Phase III), but with the shallower slope LX ∝

t−1.2 than in the steeply declining regime of Phase I. Occasionally, at t ∼

104 − 105 s, an even steeper decline LX ∝ t−2 takes over (Phase IV in the

nomenclature of Zhang et al. 2006). If the steepening of the light curve reflects

an underlying decline of the central accretion rate, what process is responsible
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for this decline? Possibilities include a transformation of the character of the

accretion flow due to an internal redistribution of material inside the accreting

envelope and a depletion of the mass reservoir that feeds the central accretion.

At the densities of the accreting, pressure-supported envelope, which

are > 10−3 g cm−3 at the outer boundary of the simulation box at the end of

each run, the radiation is effectively trapped and internal radiation transfer in

the disk and the envelope is not important on the time scales on which X-ray

light curve data are available. It also seems that given the near-hydrodynamic

equilibrium state at t ∼ 103 s, any longer-term internal hydrodynamic redistri-

bution of material between the disk and the envelope should be very gradual,

so such a hydrodynamic redistribution is probably not a candidate for the

steepening that marks the transition from Phase II to Phase III or that which

marks the transition from Phase III to Phase IV. Depletion of the reservoir

consisting of the rotationally supported disk and the pressure supported at-

mosphere could occur due to the accretion of the fluid into the black hole

(“draining”), due to a hydrodynamic outflow launched from the surface of the

thick disk and escaping through the axial funnel region (“venting”), and due to

a radiatively-driven mass loss in the photosphere of the envelope (“blowoff”).

In the absence of mass loss to unbound flows, the time scale on which

the gravitationally bound envelope drains into the black hole, estimated from

the bound envelope mass (Menv ∼ 2 M⊙) and the accretion rate (Ṁ ∼ 5 ×
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10−5 M⊙ s−1, see Chapter 3.0.6) at t = 600− 1,000 s in Run 2 is

tacc ∼
Menv

Ṁ
∼ 4× 104 s. (4.15)

This time scale is somewhat longer but within uncertainties consistent with

the time scale of the initial steepening of the light curve at the transition from

Phase II to Phase III. If the evolution of the envelope under draining is self-

similar Ṁ ∝ Menv, one might expect an exponential decline of the accretion

rate; such a self-similarity, however, is not necessarily expected.

The positive Bernoulli function of the fluid in the region of the axial

funnel in Figure 3.9 and the mass influx and outflux that increases with ra-

dius in Figure 3.6 suggest the possibility that the dominant depletion may

not be to accretion into the black hole, but instead to the loss exacted by the

wind launched thermally from the surface of the thick, convective, rotationally

supported disk. The peak net outflow rate at r ∼ 3 × 1010 cm in Run 2 is

Ṁout ∼ 10−3 M⊙ s−1, which implies a short depletion time scale of tloss ∼ 500 s.

This time scale, however, is almost certainly an overestimate given that the

high outflow rate may be a transient associated with the incomplete readjust-

ment to the passage and breakout of the primary accretion shock. It seems

evident, however, that the draining into the black hole and the mass loss to

hydrodynamically and thermally driven outflows from the surface of the thick

disk and the massive envelope can provide explanations of the termination of

quasi-steady accretion marking the Phase II to Phase III transition.

Convective energy transport in the massive, pressure-supported enve-
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lope can continue out to some critical radius where the convective motions

become supersonic, resulting in shocks, or where radiation diffusion across the

convective cells thwarts the convective instability. Outside of this radius, en-

ergy is transported either radiatively or by non-convective bulk motions. Since

the energy flux is a factor of 107 − 108 above the Eddington limit, radiation

pressure accelerates the fluid outward, resulting in a supersonic wind (see,

e.g., Shaviv, 2001; Owocki et al., 2004; van Marle et al., 2008). The wind

mass loss rate is limited by energy conservation 1
2
Ṁwindv

2
esc ≤ L, and if the

wind driving is radiative, momentum conservation, Ṁwindv∞ ≤ L/c, where

vesc is the escape velocity from the critical radius, and v∞ is the velocity of

the wind at infinity. To our best knowledge, the mechanics of mass loss in

this extremely super-Eddington regime have not been explored. There is the

possibility that the atmospheric mass loss occurs on a time scale compatible

with the final steepening of the GRB X-ray light curve, at the Phase III to

Phase IV transition. Alternatively, as we have argued above, the Phase II to

Phase III transition, and the Phase III to Phase IV transition, could both be

caused by non-radiative losses (the draining into the black hole and venting

in the axial funnel), but longer-term simulations are required to check this

possibility.
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Chapter 5

Conclusions

We have conducted hydrodynamic simulations of the viscous post-core-

collapse accretion of a rapidly rotating ∼ 14 M⊙ Wolf-Rayet star of Woosley &

Heger (2006) onto the central black hole. The axially-symmetric simulations

were carried out for up to 2,000 s and resolved the radii down to 5 × 107 cm

where the collapsing stellar material circularizes around the black hole. The

evolution of the central accretion rate in the simulations resembles the evo-

lution of the observed GRB X-ray luminosity, which lends support to the

hypothesis (Kumar et al., 2008a,b) that the X-ray luminosity is proportional

to the rate with which stellar material accretes onto the black hole. We have

identified three phases in the evolution of the accretion rate in our simula-

tions, which appear to correspond to Phases 0 (the prompt phase), Phase I,

and Phase II in the nomenclature of Zhang et al. (2006).

In the initial phase that in the simulations lasts 37−52 s, the accretion

of low-angular-momentum material is quasiradial for r > 5×107 cm and occurs

at quasi-constant rate of ∼ 0.2 M⊙ s−1. The end of this phase is marked by

the formation of an accretion shock at the smallest resolved radii. The shock

immediately propagates radially outwards through the supersonically infalling
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stellar envelope. Simultaneously with the formation and the outer movement

of the accretion shock, the accretion rate drops suddenly and precipitously.

We argue that the somewhat late onset of the accretion shock is an artifact of

our not resolving the innermost two decades in radius outside the black hole’s

gravitational radius.

We supplement the simulations with an analytical model of the in-

nermost accretion disk not resolved in the simulations, and suggest that the

accretion shock forms early, within a fraction of the first second of the for-

mation of the black hole, as several published simulations of the innermost

neutrino-cooled region have shown, but only starts to propagate outward after

20 s, when the material that is reaching the equatorial plane has enough an-

gular momentum to circularize at radii where the virial temperature is below

∼ 1010 K and the cooling by neutrino emission is suppressed.

During the second phase characterized by a steep decline ∝ t−2.7 of

the accretion rate that lasts ∼ 500 s, the accretion shock sweeps through

the star, but a supersonic accretion of the shocked fluid in the axial funnel

region proceeds unabated, at least in our simulations where the funnel has

not been heated to high temperatures by the relativistic jet. The thick disk

containing rotationally-supported and pressure-supported fluid is convective; a

high-entropy outflow from the inner, rotationally-supported region follows the

accretion shock on its traversal through the star but remains bound within the

star and appears to form a large-scale circulation pattern. The steepness of the

accretion rate decline seems to be the consequence of a rapid hydrodynamic
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readjustment of the shocked, convective, and circulating stellar envelope.

The steep decline of the accretion rate slows down or stalls after∼ 600 s,

which appears to reflect the settling of a fraction of the stellar envelope in the

state of near-hydrostatic equilibrium. The inner, rotationally supported thick

disk contains ∼ 1% of the mass of the unaccreted envelope and extends to

∼ 3×109 cm. The thick disk is surrounded by a much more massive, pressure-

supported atmosphere, which acts as a mass supply to the thick disk. At no

point do we find evidence for the extended thin disk envisioned by Cannizzo &

Gehrels (2009). The fluid above and below the thick disk is mostly unbound

and the simulations thus exhibit a form of a “disk wind.”

We speculate that depletion of the envelope through accretion onto the

black hole or mass loss in thermal outflows or winds could be responsible for

the renewed steepening of the GRB X-ray light curve after 103 − 104 s. More

speculatively, the additional steepening of the light curve occasionally observed

after 104−105 s could be due to a pervasive thermal or radiatively-driven mass

loss in the outer layers of the atmosphere.
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