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Abstract

Background: Assembling genomic sequences from a set of overlapping reads is one of the most fundamental
problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories -
based on the data structures which they employ. The first class uses an overlap/string graph and the second type
uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph
based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn
graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time
parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of
processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up
generating Θ(nΣ) messages (Σ being the size of the alphabet).

Results: In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal
to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it

even to the out-of-core model and in this case it has an optimal I/O complexity of Θ( )log( / )
log( / )

n n B
B M B (M being the

main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm
on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is
faster - both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm
by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments
reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms
VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem.

Conclusions: The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program
based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel
and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs.
Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better
than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the
existing graph construction algorithm in VELVET.

Background
Sequencing genomes is one of the most fundamental
problems in modern Biology and has immense impact
on biomedical research. De novo sequencing is computa-
tionally more challenging when compared to sequencing
with a reference genome. On the other hand the existing
sequencing technology is not mature enough to identify/

read the entire sequence of the genome - especially for
complex organisms like the mammals. However small
fragments of the genome can be read with acceptable
accuracy. The shotgun sequencing employed in many
sequencing projects breaks the genome randomly at
many places and generates a large number of small frag-
ments (reads) of the genome. The problem of reassem-
bling all the fragmented reads into a small sequence
close to the original sequence is known as the Sequence
Assembly (SA) problem.
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Although the SA problem seems similar to the Short-
est Common Super string (SCS) problem, there are in
fact some fundamental differences. Firstly, the genome
sequence might contain several repeating regions. How-
ever, in any optimal solution to the SCS problem we
will not be able to find repeating regions - because we
want to minimize the length of the solution string. In
addition to the repeats, there are other issues such as
errors in reads and double strandedness of the reads
which make the reduction to SCS problem very
complex.
Existing algorithms to address the SA problem can be

classified into two broad categories. The first class of
algorithms model a read as a vertex in a directed graph
- known as the overlap graph [1]. The second class of
algorithms model every substring of length k (i.e., a
k-mer) in a read as a vertex in a (subgraph of) a
de Bruijn graph [2].
In an overlap graph, for every pair of overlapping

reads, directed edges are introduced consistent with the
orientation of the overlap. Since the transitive edges in
the overlap graph are redundant for the assembly pro-
cess they are removed and the resultant graph is called
the string graph [1]. The edges of the string graph are
classified into optional, required and exact. The SA pro-
blem is reduced to the identification of a shortest walk
in the string graph which includes all the required and
exact constraints on the edges. Identifying such a walk -
minimum S-walk, on the string graph is known to be
NP-hard [3].
In the de Bruijn graph model every substring of length

k in a read acts as a vertex [2]. A directed edge is intro-
duced between two k-mers if there exists some read in
which these two k-mers overlap by exactly k - 1 sym-
bols. Thus every read in the input is mapped to some
path in the de Bruijn graph. The SA problem is reduced
to a Chinese Postman Problem (CPP) on the de Bruijn
graph, subject to the constraint that the resultant CPP
tour include all the paths corresponding to the reads.
This problem (Shortest Super Walk) is also known to be
NP-hard. Thus solving the SA problem exactly on both
of these graph models is intractable.
Overlap graph based algorithms were found to per-

form better (see [4-7]) with Sanger based read methods.
Sanger methods produce reads typically around 1000
base pairs long and are very reliable. Unfortunately San-
ger based methods are very expensive. To overcome the
issues with Sanger reads, new read technologies such as
sequencing by synthesis (Solexa) and pyrosequencing
(454 sequencing) have emerged. These rapidly emerging
read technologies are collectively termed as the Next
Generation Sequencing (NGS) technologies. These NGS
technologies can produce shorter genome fragments
(anywhere from 25 to 500 base-pairs long). NGS

technologies have drastically reduced the sequencing
cost per base-pair when compared to Sanger technology.
The reliability of NGS technology is acceptable,
although it is relatively lower than the Sanger technol-
ogy. In the recent past, the sequencing community has
witnessed an exponential growth in the adoption of
these NGS technologies.
On the other hand these NGS technologies can

increase the number of reads in the SA problem by a
large magnitude. The computational cost of building an
overlap graph on these short reads is much higher than
that of building a de Bruijn graph. De Bruijn graph
based algorithms handle short reads very efficiently (see
[8]) in practice compared to the overlap graph based
algorithms. However the major bottleneck in using de
Bruijn graph based assemblers is that they require a
large amount of memory to build the de Bruijn graph.
This limits the applicability of these methods to large

scale SA problems. In this paper we address this issue
and present algorithms to construct large de Bruijn
graphs very efficiently. Our algorithm is optimal in the
sequential, parallel, and out-of-core models. A recent
work by Jackson and Aluru [9] yielded parallel algo-
rithms to build these de Bruijn graphs efficiently. They
present a parallel algorithm that runs in O(n/p) time
using p processors (assuming that n is a constant-degree
polynomial in p). The message complexity of their algo-
rithm is Θ(nΣ). By message complexity we mean the
total number of messages (i.e., k-mers) communicated
by all the processors in the entire algorithm. The dis-
tributed de Bruijn graph building algorithm in ABySS
[10] is similar to the algorithm of [9].
One of the major contributions of our work is to show

that we can build a bi-directed de Bruijn graph in Θ(n/p)
time with a message complexity of Θ(n). An experimental
comparison of these two algorithms on an SGI Altix
machine shows that our algorithm is considerably faster.
In addition, our algorithm works optimally in an out-
of-core setting. In particular, our algorithm requires only

Θ( )log( / )
log( / )

n n B
B M B

I/O operations.

Methods
Preliminaries
Let s ÎΣn be a string of length n. Any substring sj (i.e., s[j]
s[j + 1] . . . s[j + k - 1], n - k + 1 ≥ j ≥ 1) of length k is
called a k-mer of s. The set of all k-mers of a given string
s is called the k-spectrum of s and is denoted by  (s, k).
Given a k-mer sj , s j denotes the reverse complement of
sj (e.g., if sj = AAGTA then s TACTTj = ). Let ≤ be the
partial ordering among the strings of equal length such
that si ≤ sj indicates that the string si is lexicographically
smaller than sj . Given any k-mer si, let ŝ i be the

Kundeti et al. BMC Bioinformatics 2010, 11:560
http://www.biomedcentral.com/1471-2105/11/560

Page 2 of 14



lexicographically smaller string between si and s j . We
call ŝ i the canonical k-mer of si. In other words, if
s si i≤ then ŝ si i= otherwise ŝ si i= . A k-molecule of a
given k-mer si is a tuple ( , )s si i consisting of the canoni-
cal k-mer of si and the reverse complement of the cano-
nical k-mer. We refer to the reverse compliment of the
canonical k-mer as non-canonical k-mer.
A bi-directed graph is a generalized version of a stan-

dard directed graph. In a directed graph every edge has
only one arrow head (-▷ or ◁-). On the other hand in a
bi-directed graph every edge has two arrow heads
attached to it (◁-▷,◁-◁,▷-◁, or ▷-▷). Let V be the set of
vertices and E = {(vi, vj , o1, o2)|vi, vj ÎV Λ o1, o2 Î{◁, ▷}}
be the set of bi-directed edges in a bi-directed graph G(V,
E). For any edge e = (vi, vu, o1, o2) ÎE, o1 = e[o+] and o2 =
e[o-] refer to the orientations of the arrow heads on the
vertices vi and vj , respectively. A walk W (vi, vj ) between
two nodes vi, vj ÎV of a bi-directed graph G(V, E) is a
sequence v e v e v v e vi i i i i i i jm m

, , , , , , , ,
1 1 2 2 1


+ , such that for

every intermediate vertex vi l
, 1 ≤ l ≤ m the orientation

of the arrow head on the incoming edge adjacent on vi l

should match the orientation of the arrow head on the
outgoing edge. To make this clearer, let e v ei i il l l

, ,
+1

be
a sub-sequence in the walk W (vi, vj ). If
e v v o oi i il l l

=
−

( , , , )
1 1  2 and e v v o oi i il l l+ +

= ′ ′
1 1 1 2( , , , )

then for the walk to be valid it should be the case that
o o2 = ′1 . Figure 1(a) illustrates an example of a bi-
directed graph. Figure 1(b) shows a simple bi-directed
walk between the nodes A and E. A bi-directed walk
between two nodes may not be simple. Figure 1(c) shows
a bi-directed walk between A and E which is not simple -
because B repeats twice.
A de Bruijn graph Dk(s) of order k on a given string s is

defined as follows. The vertex set V of Dk(s) is defined as
the k-spectrum of s (i.e., V s k= ( ) ,  ). We use the nota-
tion suf(vi, l) (pre(vi, l), respectively) to denote the suffix
(prefix, respectively) of length l in the string vi. Let the
symbol ◦ denote the concatenation operation between
two strings. The set of directed edges E of Dk(s) is defined
as follows:
E = {(vi, vj )| suf(vi, k - 1) = pre(vj , k - 1) Λ vi[1] ◦ suf(vi,

k - 1) ◦ vj [k] Î  (s, k + 1)}. We can also define de Bruijn
graphs for sets of strings as follows. If S = {s1, s2 . . . sn} is
any set of strings, a de Bruijn graph Bk(S) of order k on S
has V s ki

n
i= ∪ =1( , ) and E = {(vi, vj )| suf(vi, k - 1) = pre

(vj , k - 1) Λ ∃ l : vi[1] ◦ suf(vi, k - 1) ◦ vj [k] Î  (sl, k +
1)}. To model the double strandedness of the DNA mole-
cules we should also consider the reverse complements
( S s s sn= { , , , }1 2  ) while we build the de Bruijn graph.
To address this a bi-directed de Bruijn graph

BD S Sk( )∪ has been suggested in [3]. The set of
vertices V of BD S Sk( )∪ consists of all possible
k-molecules from S ∪ S . The set of bi- directed edges
for BD S Sk( )∪ is defined as follows. Let x, y be two k-

mers which are next to each other in some input string
z S S∈ ∪( ) . Then an edge is introduced between the
k- molecules vi and vj corresponding to x and y, respectively.
Please note that two consecutive k-mers in some input string
always overlap by k - 1 symbols. The converse need not be

Figure 1 This figure illustrates bi-directed between two nodes
in a bi-directed graph. (a) Shows a bi-directed graph with five
nodes {A, B, C, D, E}. (b) The alternating green, red edges show a
path between node A and E. (c) Shows two valid bi-directed walks
from node A to E, the first path is {A, B, E} and the second path is
{A, B, C, D, B, E}, this also shows that the bi-directed path may not
be simple and can contain repeating nodes - in this case node B.
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true. The orientations of the arrow heads on the edges are
chosen as follows. If the canonical k-mers of nodes vi and vj
overlap then an edge (vi, vj ▷, ▷) is introduced. If the canoni-
cal k-mer of vi overlaps with the non-canonical k-mer of vj
then an edge (vi, vj , ▷, ◁) is introduced. Finally if the non-
canonical k-mer of vi overlaps with canonical k-mer of vj
then an edge (vi, vj ◁, ▷) is introduced.
Figure 2 illustrates a simple example of the bi-directed

de Bruijn graph of order k = 3 from a set of reads
ATGG, CCAT, GGAC, GTTC, TGGA and TGGT
observed from a DNA sequence ATGGACCAT and its
reverse complement ATGGTCCAT. Consider two
3-molecules v1 = (GGA, TCC) and v2 = (GAC, GTC).
Because the canonical k-mer x = GGA in v1 overlaps
with the canonical k-mer y = GAC in v2 by string GA,
an edge (v1, v2, ▷, ▷) is introduced. Note that the non-
canonical k-mer GTC in v2 also overlaps with the non-
canonical k-mer T CC in v2 by string T C, so the two
overlapping strings GA and TC are drawn above
the edge (v1, v2, ▷, ▷) in Figure 2. A bi-directed walk on
the example bi-directed de Bruijn graph as illustrated by
the dashed line corresponds to the original DNA
sequence with the first letter omitted TGGACCAT. We
would like to remark that the parameter k is always cho-
sen to be odd to ensure that the forward and reverse
complements of a k-mer are not the same.

Results
Our algorithm to construct bi-directed de Bruijn graphs
In this section we describe our algorithm BiConstruct to
construct a bi-directed de Bruijn graph on a given set of
reads. The following are the main steps in our algorithm
to build the bi-directed de Bruijn graph. Let Rf = {r1, r2 .

. . rn}, ri ÎΣ
r be the input set of reads. R r r rf n= { , ... }1 2

is a set of reverse complements. Let R R Rf f*  = ∪

and R r kk
r R

+
∈= +( )1 1,*  . Rk+1 is the set of all (k + 1)-

mers from the input reads and their reverse complements.

• [STEP-1] Generate canonical edges: Let (x, y) =
(z[1 . . . k], z[2 . . . k + 1]) be the k-mers correspond-
ing to a (k + 1)-mer z[1 . . . k + 1] Î Rk+1. Recall
that x̂ and ŷ are the canonical k- mers of x and y,
respectively. Create a canonical bi-directed edge
( , , , )v v o oi j 1 2 for each (k + 1)-mer as follows.

( , , , )

( , , , ) ,

( , , , ) ,

^ ^ ^ ^ ^

^ ^
^ ^

v v

x

i j o o

x y x y y
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• [STEP-2] Reduce multiplicity: Sort all the bi-
directed edges in [STEP-1], using radix sort. Since
the parameter k is always odd this guarantees that a
pair of canonical k-mers has exactly one orientation.
Remove the duplicates and record the multiplicities
of each canonical edge. Gather all the unique cano-
nical edges into an edge list ℰ.
• [STEP-3] Collect bi-directed vertices: For each
canonical bi-directed edge ( , , , )^ ^v v o oi j 1 2 ∈  , collect

Figure 2 A simple example of the bi-directed de Bruijn graph
of order k = 3 from a set of reads ATGG,CCAT,GGAC,GTTC,
TGGA and TGGT observed from a DNA sequence ATGGACCAT
and its reverse complement ATGGTCCAT. The dashed line shows
one bi-directed walk which can reconstruct the original fragment.
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the canonical k-mers v̂ i , v̂ j into list  . Sort the list
 and remove duplicates, such that  contains
only the unique canonical k-mers.
• [STEP-4] Adjacency list representation: The list ℰ
is the collection of all the edges in the bi-directed
graph and the list  is the collection of all the nodes
in the bi-directed graph. It is now easy to use ℰ and
generate the adjacency lists representation for the bi-
directed graph. This may require one extra radix sort-
ing step.

Analysis of the algorithm BiConstruct
Theorem 1. Algorithm BiConstruct builds a bi-directed
de Bruijn graph of order k in Θ(n) time. Here n is num-
ber of characters/symbols in the input.
Proof. Without loss of generality assume that all the

reads are of the same size r. Let N be the number of
reads in the input. This generates a total of (r - k)N (k +
1)-mers in [STEP-1]. The radix sort needs to be applied
in at most 2k log(|Σ|) passes, resulting in 2k log(|Σ|)(r -
k)N operations. Since n = Nr is the total number of
characters/symbols in the input, the radix sort takes
Θ(kn log(|Σ|)) operations assuming that in each pass of
sorting only a constant number of symbols are used. If
k log(|Σ|) = O(log N ), the sorting takes only O(n) time.
In practice since N is very large in relation to k and |Σ|,
the above condition readily holds. Since the time for
this step dominates that of all the other steps, the run-
time of the algorithm BiConstruct is Θ(n).

A parallel algorithm for building bi-directed
de Bruijn graphs
In this section we illustrate a parallel implementation of
our algorithm. Let p be the number of processors avail-
able. We first distribute N/p reads for each processor.
All the processors can execute [STEP-1] in parallel. In
[STEP-2] we need to perform parallel sorting on the list
ℰ. Parallel radix/bucket sort -which does not use any
all-to-all communications- can be employed to accom-
plish this. For example, the integer sorting algorithm of

Kruskal, Rudolph and Snir takes O n
p

n
n p

log
log( / )( ) time.

This will be O(n/p) if n is a constant degree polynomial
in p. In other words, for coarse-grain parallelism the
run time is asymptotically optimal - which means
optimality within a constant. In practice coarse-grain
parallelism is what we have. Here n = N (r - k + 1). We
call this algorithm Par-BiConstruct.
Theorem 2. Algorithm Par-BiConstruct builds a bi-

directed de Bruijn graph in time O(n/p). The message
complexity is O(n).

The algorithm of Jackson and Aluru [9] first identifies
the vertices of the bi-directed graph - which they call
representative nodes. Then for every representative node
|Σ| many-to-many messages are generated. These mes-
sages correspond to potential bi-directed edges which
can be adjacent on that representative node. A bi-direc-
ted edge is successfully created if both the representa-
tives of the generated message exist in some processor,
otherwise the edge is dropped. This results in generating
a total of Θ(n|Σ|) many-to-many messages. The authors
in the same paper demonstrate that communicating
many-to-many messages is a major bottleneck and does
not scale well. We remark that the algorithm BiCon-
struct does not involve any many-to-many communica-
tions and does not have any scaling bottlenecks.
The algorithm presented in [9] can potentially gener-

ate spurious bi-directed edges. According to the defini-
tion [3] of the bi-directed de Bruijn graph in the context
of SA problem, a bi-directed edge between two k-mers/
vertices exists if and only if there exists some read in
which these two k-mers are adjacent. We illustrate this
by a simple example. Consider a read ri = AATGCATC.
If we wish to build a bi-directed graph of order 3, then
AAT, ATG, TGC, GCA, CAT , and ATC form a subset
of the vertices of the bi-directed graph. In this example
we see that the k-mers AAT and ATC overlap by exactly
2 symbols. However there cannot be any bi-directed
edge between them according to the definition - because
they are not adjacent. On the other hand the algorithm
presented in [9] generates the following edges with
respect to the k-mer AAT : {(AAT, ATA), (AAT, ATG),
(AAT, ATT ), (AAT, ATC)}. The edges (AAT, ATA) and
(AAT, ATC) are purged since the k-mers ATA and ATC
are missing. However bi-directed edges with corre-
sponding orientations are established between ATG and
ATC. Unfortunately (AAT, ATC) is a spurious edge and
can potentially generate wrong assembly solutions. In
contrast to their algorithm [9] our algorithm does not
use all-to-all communications - although we use point-
to-point communications.

Out of core algorithms for building bi-directed
de Bruijn graphs
Theorem 3. There exists an out-of-core algorithm to
construct a bi-directed de Bruijn graph using an optimal
number of I/O’s.
Proof. Replace the radix sorting with an external

R-way merge sort which takes only Θ( )log( / )
log( / )

n n B
B M B

I/O’s.

Here M is the main memory size, n is the sum of the
lengths of all reads, and B is the block size of the disk.
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Simplified bi-directed de Bruijn graphs
The bi-directed de Bruijn graph constructed in the pre-
vious section may contain several linear chains. These
chains have to be compacted to save space as well as
time. The graph that results after this compaction step
is referred to as the simplified bi-directed graph. A linear
chain of bi-directed edges between nodes u and v can be
compacted only if we can find a valid bi-directed walk
connecting u and v. All the k-mers/vertices in a com-
pactable chain can be merged into a single node, and
relabelled with the corresponding forward and reverse
complementary strings. In Figure 3 we can see that the
nodes X1 and X3 can be connected with a valid bi-direc-
ted walk and hence these nodes are merged into a single
node. In practice the compaction of chains plays a very
crucial role. It has been reported that merging the linear
chains can reduce the number of nodes in the graph by
up to 30% [8].
Although the bi-directed chain compaction problem

seems like a list ranking problem there are some

fundamental differences. Firstly, a bi-directed edge can
be traversed in both the directions. As a result, applying
pointer jumping directly on a bi-directed graph can lead
to cycles and cannot compact the bi-directed chains
correctly. Figure 4 illustrates the first phase of pointer
jumping. Pointer jumping is an operation on a directed
chain/linked list which changes the neighbour of a list
node to its neighbour’s neighbour. As we can see, the
green arcs indicate valid pointer jumps from the starting
nodes. However since the orientation of the node Y4 is
reverse relative to the direction of pointer jumping a
cycle results. In contrast, a valid bi-directed chain com-
paction would merge all the nodes between Y1 and Y5

since there is a valid bi-directed walk between Y1 and
Y5. On the other hand, bi-directed chain compaction
may result in changing the orientation of some bi-direc-
ted edges and these edges should be recognised and
updated accordingly. Consider a bi-directed chain in
Figure 3(a). This chain contains two possible bi-directed
walks - Y2 to Y3 and X1 to X3, see Figure 3(b). The walk

Figure 3 The red nodes in Figure 3(b) indicate the nodes in the set V’ (STEP-1), similar red colored edges indicate the edges in E’.
After list ranking (STEP-3) we will have four maximal chains as follows, ( , ), ( , ), ( , , )( , , )Y Y Y Y X X X X X X2 3 3 2 1 2 3 3 2 1

− + − + − + − + − + . Now if we stick to the
convention described in STEP-5 we renumber the new node corresponding to the chains ( , ), ( , )Y Y Y Y2 3 3 2

− + − + as Y2. As a result the edges
( , )Y Y3 4

+ − and ( , )Y Y4 3
+ − are updated (shown in green in Figure 3(c)) as ( , )Y Y2 4

− − and ( , )Y Y4 2
+ + Finally the directed edges are replaced with

bi-directed edges in Figure 3(d).
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from Y3 to Y2 (Y2 to Y3) spells out a label TAGG(CCTA)
after compaction. Once we perform this compaction
(see Figure 3(c)) the orientation of the edge between Y3

and Y4 in the original graph is no longer valid, because
the label CCTA on the newly compacted node cannot
overlap with the label GGT on the node Y4. However
the label TAGG on the newly compacted node overlaps
with label GGT on the Y4 and hence its orientation
should be updated. On the other hand after the edge
between X1 and Y1 does not need any update after com-
pacting the nodes X1, X2 and X3, see Figure 3(b) and
Figure 3(c).
Since bi-directed chain compaction has a lot of practi-

cal importance, efficient and correct algorithms are
essential. We now provide algorithms for the bi-directed
chain compaction problem. Our key idea here is to
transform a bi-directed graph into a directed graph and
then apply list ranking. We define the ListRanking-
Transform as an operation which replaces every bi-
directed edge with a pair of directed edges with some
orientation - see Figure 5 for these orientations.
Given a list of candidate canonical bi-directed edges,

we apply a ListRankingTransform (see Figure 5) which
introduces two new nodes v+, v- for every node v in the
original graph. Directed edges corresponding to the
orientation are introduced. See Figure 5.
Lemma 1. Let BG(V, E) be a bi-directed graph; let BGt

(Vt, Et) be the directed graph after applying ListRanking-
Transform. Two nodes u, v ÎV are connected by a bi-
directed path iff u+ ÎVt (u- ÎVt) is connected to one of v
+(v-) or v-(v+) by a directed path.
Proof. We first prove the forward direction by induc-

tion on the number of nodes in the bi- directed graph.
Consider the basis of induction when |V | = 2, let v0, v1
ÎV. Clearly we are only interested when v0 and v1 are
connected by a bi-directed edge. By the definition of
ListRankingTransform the Lemma in this case is trivially
true. Now consider a bi-directed graph with |V | = n +

1 nodes, if the path between vi, i < n and vj , j < n does
not involve node vn the lemma still holds by induction
on the sub bi-directed graph BG(V - {vn}, E). Now
assume that vi . . . vp, vn, vq . . . vj is the bi-directed path
between vi and vj involving the node vn. (See Figure 6
(a)). Figure 6(a) shows what the transformed directed
graph looks like. Observe the colors of bi-directed edges
and the corresponding directed edges. By the induction
hypothesis on the sub bi-directed paths vi . . . vp, vn and
vn, vq . . . vj we have the following. v i

+ is connected to
v n

+ or vn
− by some directed path P1 (See Figure 6(b));

v n
+ is connected to v j

+ or v j
− by some directed path

P2. We examine three possible cases depending on how
the directed edge from P1 and P2 is incident on v n

+ In
CASE-1 we have both P1 and P2 pointing into node v n

+ .
This implies that the orientation of the bi-directed
edges in the original graph is according to Figure 6(b).
In this case we cannot have a bi-directed walk involving
the node vn, which contradicts our original assumption.
Similarly CASE-2 (Figure 6(c)) would also lead to a
similar contradiction. Only CASE-3 would let node vn
be involved in a bi-directed walk. In this case v i

+ will
be connected to either v j

+ or v j
− by concatenation of

the paths P1 and P2. We can make a similar argument
to prove the reverse direction.
Algorithm for bi-directed chain compaction
Given a bi-directed graph we now give an outline of the
algorithm which compacts all the valid bi-directed
chains.

• STEP-1: Apply the ListRankingTransform for each
bi-directed edge. Let the resultant directed graph be
G(V, E).
• STEP-2: Identify a subset of nodes V’ = {v : v ÎV ,
(din(v) >1 or dout(v) >1)} and a subset of edges E’ =
{(u, v) : (u, v) ÎE, (u ÎV’ or v ÎV’)}.
• STEP-3: Apply pointer jumping on the directed
graph G(V - V’, E - E’).

Figure 4 An example illustrating problems with pointer jumping on bi-directed chains. The green colored arcs indicate valid pointer
jumps, however the red colored arcs create cyclic loops and will create problems in the next pointer jumping operation.

Kundeti et al. BMC Bioinformatics 2010, 11:560
http://www.biomedcentral.com/1471-2105/11/560

Page 7 of 14



• STEP-4: Now let ( , , )v vi j
+ − be a maximal chain

obtained after pointer jumping. Due to the symmetry
in the graph there exists a corresponding comple-
mentary chain ( , , )v vj i

+ − . Each chain is replaced
with a single node and its label is the concatenation
of all the labels in the chain. We should stick to
some convention while we give a new number to the
newly created node. For example, we can choose
min{vi, vj } as the new number for the newly created
node. In our example if vi = min{vi, vj } then we
replace the chain ( , , )v vi j

+ − with node v i
+ and

relabel it with the concatenated label. Similarly, the
chain ( , , )v vj i

+ − will be replaced with the node vi
−

and relabeled accordingly.
• STEP-5: Finally, to maintain the connectivity we
need to update the edges in E’ to reflect the changes
during compaction. Coming back to our example,
we have replaced the chain ( , , )v vi j

+ − with the
node v i

+ . As a result we need to replace any edge
( , )x Ev j

− ∈ with the edge ( , )x v i
+ . Similarly we also

need to update any edges adjacent on v j
+ .

Note that all of the above steps can be accomplished
with some constant number of radix sorting operations.
Figure 3 illustrates the compaction algorithm on a bi-

directed graph. The red nodes in Figure 3 indicate the
nodes in the set V’. Red colored edges indicate the edges in
E’. After list ranking we will have four maximal chains as
follows: ( , ), ( , ), ( , , )( , , )Y Y Y Y X X X X X X2 3 3 2 1 2 3 3 2 1

− + − + − + − + − + . Now if
we stick to the convention described in STEP-5 we renum-
ber the new node corresponding to the chains
( , ), ( , )Y Y Y Y2 3 3 2

− + − + as Y2. As a result the edges ( , )Y Y3 4
+ − and

( , )Y Y4 3
+ − are updated (shown in green in Figure 3(c)) as

( , )Y Y2 4
− − and ( , )Y Y4 2

+ + . Finally the directed edges are replaced
with bi-directed edges in Figure 3(d).
Analysis of bi-directed compaction on parallel and out-of-
core models
Let ℰl be the list of candidate edges for compaction. To
do compaction in parallel, we can use a Segmented Paral-
lel Prefix [11] on p processors to accomplish this in time
O p pl(| | / log( ))2 + . List ranking can also be done out-
of-core as follows. Without loss of generality we can treat
the input for the list ranking problem as a set S of
ordered tuples of the form (x, y). Given S we create a
copy and call it S’. We now perform an external sort of S
and S’ with respect to y (i.e., using the y value of tuple
(x, y) as the key) and x, respectively. The two sorted lists
are scanned linearly to identify tuples (x, y) Î S, (x’,y’)
ÎS’ such that y =x’. These two tuples are merged into a
single tuple (x, y’) and is added to a list l′ . This process

Figure 5 An illustration of the ListRankingTransform which replaces every bi-directed edge with a pair of directed edges as shown
here.

Kundeti et al. BMC Bioinformatics 2010, 11:560
http://www.biomedcentral.com/1471-2105/11/560

Page 8 of 14



Figure 6 Proof that ListRankingTransform preserves bi-directed walk in the original graph.
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is now repeated on l′ . Note that if the underlying graph
induced by ℰl does not have any cycles then
| | | | /’� l l≤ 2 ; which means that the size of l′ geometri-
cally decreases after every iteration. The I/O complexity
of each iteration is dominated by the external sorting and
hence bi-directed compaction can be accomplished out-

of-core with Θ(log ( ) log ( ))| | | |
2 C l

B M
B

l
B

 
I/O operations, where

C is the length of the longest chain. Care should be taken
to deal with cycles. The sort-merge algorithm mentioned
above will run forever in the presence of cycles. To
address this we can maintain what is known as join count
in every sort-merge phase. Given any S the join count of a
tuple (x, y) Î S is an indicator variable J(x, y) = 1, if ∃(y, z)
Î S; else 0. Finally J(S) = Σ(x, y)ÎS J(x, y). Notice that the
function J(S) strictly decreases in every sort and merge
phase and finally becomes zero when there are no cycles.
However in the presence of cycles the function J(S)
decreases and then remains constant. Thus if the function
J(S) remains constant in any two consecutive sort-merge
phases we can stop iterating and report that there are
some cycles. Once we stop the list ranking we can easily
detect the edges in the cycles. Our implementation of this

out-of-core list ranking based on this idea is available at
http://trinity.engr.uconn.edu/~vamsik/ex-list-rank.

Improving the construction of the bi-directed de Bruijn
graph in some practical assemblers
In this section we briefly describe how our algorithms
can be used to speedup some of the existing SA pro-
grams. As an example, we consider VELVET [8]. VEL-
VET is a suite of programs - velveth and velvetg, which
has recently gained acclamation in assembling short
reads. The VELVET program builds a simplified bi-
directed graph from a set of reads. We now briefly
describe the algorithm used in VELVET to build this
graph. The VELVET program puts all the k-mers from
the input into a hash table and then identifies the
k-mers which are present in at least 2 reads - this infor-
mation is called the roadmap in VELVET’s terminology.
The program then builds a de Bruijn graph using these
k-mers. Finally it takes every read and threads it on
these k-mers. The worst case time complexity is O(n log
(n)) - assuming that the implementation of hash table is
based on a balanced search tree. However VELVET uses
a Splay tree so this would be the amortized runtime

Figure 7 This figure illustrates the subtle differences between internal graph representation of velvet and the bi-directed graph. (a) de
Bruijn graph representation in velvet for the read fragment above, note velvet keeps track of only the first amino-acid symbol from the forward
and reverse compliments. (b) bi-directed graph representation for the same read fragment.
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rather than the worst case. Since VELVET builds this
graph entirely in-memory, this has some serious scal-
ability problems especially on large scale assembly pro-
jects. However VELVET has some very good assembly
heuristics to remove errors and identify redundant
assembly paths, etc. Our out-of-core algorithm can act
as a replacement to the code in VELVET that performs
in-memory graph construction. The internal de Bruijn
graph of VELVET is slightly different from the bi-
directed graph our algorithm builds. It is easy to see the
equivalence between these two representations. (See
Figure 7). We have implemented an out-of-core algo-
rithm that takes in a file with reads and the value of
k and generates the graph for VELVET program. To be

more precise, VELVET program creates a file with the
name Graph in the directory when we run the velvetg
program. We have modified the code in the VELVET
program by adding an option which quits after it builds
the Graph file without any simplification. This gives us a
chance to compare the VELVET’s algorithm which can
build the Graph file with our algorithm. The results and
more details about the program are in the results section.

Discussion
Before we go into the discussion we briefly describe our
experimental setting. We used a SGI-Altix 64-bit, 64
node supercomputer with a RAM of 2 GB per node for
our parallel algorithm experiments. For our sequential

Table 1 Comparison of runtime between the JA algorithm and our algorithm on an input with 8 million reads from a
plant genome

JA ALGO ParBiConstruct

P k U(sec) S(sec) R(mm:ss) U(sec) speedup S(sec) speedup R(mm:ss) Speedup

8 21 6388.08 21.54 13:26.42 1028.61 6.21 8.08 2.67 2:10.77 6.17

8 27 2220.41 14.85 5:47.71 500.22 4.44 3.72 3.99 1:04.12 5.42

8 33 1662.14 6.63 3:29.89 288.14 5.77 2.47 2.68 0:37.46 5.60

8 35 496.89 3.81 1:03.77 159.59 3.11 1.03 3.70 0:21.19 3.01

12 21 9116.72 20.31 12:43.14 985.97 9.25 6.91 2.94 1:23.95 9.09

12 27 2626.30 13.94 3:59.85 479.10 5.48 3.20 4.36 0:41.32 5.80

12 33 2320.07 6.14 3:15.15 317.08 7.32 2.35 2.61 0:27.76 7.03

12 35 561.02 3.47 0:48.19 166.06 3.38 1.13 3.07 0:15.04 3.20

16 21 11943.18 19.91 12:29.49 1044.31 11.44 7.42 2.68 1:06.91 11.20

16 27 2889.32 12.95 3:50.81 498.36 5.80 3.42 3.79 0:32.48 7.11

16 33 2971.37 6.49 3:07.41 357.63 8.31 2.53 2.57 0:23.64 7.93

16 35 580.08 3.67 0:37.63 170.56 3.40 1.33 2.76 0:11.85 3.18

24 21 17744.55 20.26 12:21.94 1205.51 14.72 8.00 2.53 0:51.74 14.34

24 27 3399.06 15.24 2:39.02 658.02 5.17 4.00 3.81 0:28.72 5.54

24 33 4981.96 7.89 6:25.41 652.80 7.63 3.69 2.14 0:51.65 7.46

24 35 750.26 5.57 0:37.30 295.58 2.54 2.23 2.50 0:14.19 2.63

32 21 23119.80 20.95 12:04.89 1070.31 21.60 8.40 2.49 0:34.90 20.77

32 27 3897.63 15.20 2:12.96 464.24 8.40 5.21 2.92 0:15.81 8.41

32 33 5132.44 9.33 3:11.64 534.38 9.60 4.84 1.93 0:21.01 9.12

32 35 973.78 5.35 0:37.30 324.23 3.00 3.35 1.60 0:13.16 2.83

48 21 37116.65 26.37 13:03.67 2422.83 15.32 13.46 1.96 0:55.33 14.16

48 27 4932.47 21.70 1:48.76 1112.72 4.43 10.51 2.06 0:26.11 4.17

48 33 6658.10 13.72 3:11.84 1157.33 5.75 9.41 1.46 0:34.33 5.59

48 35 1020.88 10.95 0:30.47 447.84 2.28 8.18 1.34 0:14.08 2.16

64 21 51443.09 35.46 16:25.33 1938.25 26.54 25.05 1.42 0:39.57 24.90

64 27 6304.66 33.49 2:05.96 1029.89 6.12 21.80 1.54 0:21.64 5.82

64 33 15314.25 23.95 5:57.82 673.55 22.74 21.31 1.12 0:17.08 20.95

64 35 1048.56 20.71 0:25.93 358.62 2.92 18.86 1.10 0:09.87 2.63

Input Reads: 8388608 short reads, each of size 36 base pairs

Average User time speed up = 8.310X

Average System time speed up = 2.490X

Average Real time speed up = 8.079X
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out-of-core experiments we used a 32-bit x86 machine
with 1 GB of RAM. All our algorithms are implemented
in C under Linux environment.
We have compared the performance of our algorithm

and that of Jackson and Aluru [9]. We refer to the later
algorithm as JA. To make this comparison fair, we have
implemented the JA algorithm (because their implemen-
tation is unavailable) also on the same platform that our
algorithm runs on. We have used the SGI/Altix IA-64
machine for all of our experiments. Our implementation
uses MPI for communication between the processors.
We used a test set of 8 million un-paired reads obtained
from sequencing a plant genome at CSHL. The perfor-
mance of both the algorithms is measured with various
values of k (the de Bruijn graph parameter) on multiple

processors. Both the algorithms (JA and ParBiConstruct)
use the same underlying parallel sorting routines.
Table 1 shows the user and system times for both our

algorithm and the JA algorithm. We can clearly see that
the system time (communication time) is consistently
higher for the JA algorithm. Also notice that as we
increase the value of k keeping the number of proces-
sors fixed both the algorithms become faster. On the
other hand ParBiConstruct is consistently superior than
the JA algorithm for all the parameters. Also notice the
speedup (time taken by the JA algorithm divided by the
time taken by ParBiConstruct) of ParBiConstruct in
Table 1. We obtain a maximum speedup of 24.9X on
the real time when k = 21 and p = 64. This is clearly
because the communication cost is very high and the JA

Table 2 Comparison of memory between the JA algorithm and our algorithm on an input with 8 million reads from a
plant genome.

JA ALGO ParBiConstruct

P k RES.MEM(Mb) SHR.MEM(Mb) RES.MEM(Mb) efficiency SHR.MEM(Mb) efficiency

8 21 903.714 3.690 244.603 3.695 3.328 1.109

8 27 675.516 3.638 146.750 4.603 3.232 1.126

8 33 289.787 3.588 62.580 4.631 3.007 1.193

8 35 116.938 7.527 14.625 7.996 2.397 3.140

12 21 681.664 4.782 156.875 4.345 4.256 1.124

12 27 265.304 6.882 91.219 2.908 3.889 1.769

12 33 241.630 4.721 46.805 5.163 3.675 1.285

12 35 94.548 7.518 12.276 7.702 2.771 2.713

16 21 501.175 5.726 152.995 3.276 5.175 1.107

16 27 333.487 11.730 77.523 4.302 4.823 2.432

16 33 166.395 5.714 42.746 3.893 4.628 1.235

16 35 68.851 8.172 13.578 5.071 3.443 2.374

24 21 344.888 8.081 105.723 3.262 7.133 1.133

24 27 214.681 16.271 61.674 3.481 6.690 2.432

24 33 115.630 7.830 34.583 3.344 5.959 1.314

24 35 52.110 10.082 15.990 3.259 4.472 2.254

32 21 260.063 10.413 86.157 3.018 9.070 1.148

32 27 179.657 20.550 49.737 3.612 8.096 2.538

32 33 95.790 9.968 34.180 2.803 7.495 1.330

32 35 47.602 11.290 15.289 3.113 4.905 2.302

48 21 186.225 14.109 71.073 2.620 12.405 1.137

48 27 112.237 19.623 47.596 2.358 11.255 1.744

48 33 75.059 11.996 30.929 2.427 9.070 1.323

48 35 37.500 10.643 19.576 1.916 6.764 1.573

64 21 150.324 17.311 63.449 2.369 14.640 1.182

64 27 105.692 23.570 43.590 2.425 12.975 1.817

64 33 66.095 14.168 31.853 2.075 10.653 1.330

64 35 38.823 12.159 22.275 1.743 8.096 1.502

Input Reads: 8388608 short reads, each of size 36 base pairs

Average Efficiency of RESident memory across all processors = 3.622

Average Efficiency of SHaRed memory across all processors 1.667
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algorithm enumerates all the possible overlaps. Finally,
over all the settings for k and p ParBiConstruct is
around 8X faster than the JA algorithm with a maxi-
mum speedup of 25X when k = 21, p = 64.
The user time of our algorithm is also consistently

superior compared to the user time of JA. This clearly is
because we do much less local computations. In con-
trast, JA needs to do a lot of local processing, which
arises from processing all the received edges, removing
redundant ones, and collecting the necessary edges to
perform many-to-many communications.
We also compare the memory used by both the algo-

rithms. We briefly describe how we obtained the

memory reports in our experiments. Since the memory
used by each processor is different during execution at
any given instance we add-up the memory used by each
processor and divide by the number of processors and
we report this number in our experiments. We obtained
the resident memory and shared memory from the top
command and averaged it over the number of memory
probe samples obtained by top. Table 2 gives details of
the memory usage of both the algorithms. From these
results it is clear that our approach is also efficient com-
pared to the JA algorithm. ParBiConstruct uses upto 4X
less resident memory compared to the JA algorithm.
Since JA takes a significant amount of time for inputs

larger than 8 million, we have compared these algo-
rithms only for input sizes up to 8 million. The experi-
mental results reported in [9] start with at least 64
processors. We however show the scalablity of our algo-
rithm for up to 128 million (randomly generated) reads
in Table 3. Table 3 clearly demonstrates the scalability
of our algorithm. We make our implementations and all
the details of test cases used available at http://trinity.
engr.uconn.edu/~vamsik/ParBiDirected.

Out-of-core algorithm versus VELVET graph building
algorithm
Our aim is to study the computational efficiency of the
current VELVET’s algorithm to build the de Bruijn graph
and our algorithm. To accomplish this we have modified
the code of VELVET to stop once it completes building
the graph from the reads. This is done as follows. Firstly
we run the velveth program to complete the building of
RoadMaps. The code of velvetg is modified such that the
program dumps out the Graph file after threading of the
reads. Our out-of-core algorithm generates Graph file
directly by taking the reads file and the value of k. We
have used a low end desktop 32-bit machine with 1 GB
RAM to demonstrate the scalability of our out-of-core
algorithm. Our results indicate that the VELVET algo-
rithm starts virtual memory trashing [12] for around 4
million reads with k = 21. This trashing leads to massive
increase in the page-faults and stalls the program from
progressing further. Thus the VELVET algorithm cannot
build large bi-directed graphs. In contrast to VELVET

Table 3 Scalability of our algorithm for up to 128 million
reads. Since our test dataset contained only 8 million
reads, we generated these reads randomly, each read
was of size 35 and k = 33 was used

reads p user time
(ticks)

sys time
(ticks)

wall time
(min:sec)

16777216 2 37147 259 1:14.02

33554432 2 148070 1219 2:42.66

67108864 2 340653 2348 6:18.77

134217728 2 770922 5560 15:00.42

16777216 4 37254 85 0:38.95

33554432 4 99067 677 1:48.60

67108864 4 240861 1931 4:14.57

134217728 4 471196 4272 8:29.62

16777216 8 20217 57 0:21.90

33554432 8 47319 322 0:55.41

67108864 8 153782 1781 2:39.18

134217728 8 314281 3456 5:17.65

16777216 16 16951 55 0:19.73

33554432 16 17936 135 0:25.64

67108864 16 64408 804 1:10.91

134217728 16 135562 2148 2:21.83

16777216 32 12901 40 0:16.38

33554432 32 9973 191 0:17.55

67108864 32 46659 486 0:53.32

134217728 32 82414 950 1:28.87

Table 4 Comparison of our algorithm with VELVET on a 32-bit machine with 1 GB of RAM

OUT OF CORE VELVET

reads initial
edges

edges after
multiplicity reduction and canonicalization

page faults time
hrs:min:sec

page faults Time
hrs:min:sec

2097152 31457280 21387750 5593 00:10:31 82 00:4:31

4194304 62914560 32443128 23084 00:22:40 2419455 07:50:02*

6291456 94371840 39460652 40920 00:34:09 1255816 04:22:28*

8388608 125829120 44840055 45716 00:38:13 1064952 03:50:02*

* Indicates that VELVET program did not complete and the program was stopped after this time.
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our algorithm works with a constant (user specified)
amount of memory and scales well for building large
amounts of reads - which we demonstrate in Table 4.
The program is available at http://trinity.engr.uconn.

edu/~vamsik/ex-build-vgraph/.

Conclusions
In this paper we have presented an efficient algorithm to
build a bi-directed de Bruijn graph, which is a funda-
mental data structure for any sequence assembly pro-
gram - based on an Eulerian approach. Our algorithm is
also efficient in parallel and out of core settings. These
algorithms can be used in building large scale bi-
directed de Bruijn graphs. Also, our algorithm does not
employ any all-to-all communications in a parallel set-
ting and performs better than that of [9]. Finally, our
out-of-core algorithm can build these graphs with a
constant amount of RAM, and hence can act as a repla-
cement for the graph construction algorithm employed
by VELVET [8].
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