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Over the past several decades, there have been numerous attempts to utilize 

synthetic dsRNA to control tumor growth in animal models and clinical trials. Recently, 

it has become clear that intracellular dsRNA is more effective than extracellular dsRNA 

in promoting apoptosis and orchestrating adaptive immune response. To overcome the 

difficulty in delivering a large dose of synthetic dsRNA into tumors, while avoiding 

systemic toxicity we propose to deliver a RNA replicase-based plasmid DNA, 

hypothesizing that the dsRNA generated by the replicase-based plasmid in tumor cells 

will inhibit tumor growth.  

We evaluated the anti-tumor activity of a plasmid (pSIN-) that encodes the 

sindbis RNA replicase genes in mice with model tumors (TC-1 lung cancer cells or B16 

melanoma cells) and compared it to a traditional pCMV- plasmid.  In cell culture, 

transfection of tumor cells with pSIN- generated dsRNA. In mice with model tumors, 

pSIN- more effectively inhibited tumor growth than pCMV-, and in some cases, 

eradicated the tumors. RNA replicase-based plasmid may be exploited to generate 

intracellular dsRNA to control tumor growth.  
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The feasibility of further improving the antitumor activity of the RNA replicase-

based plasmid by targeting it into tumors cells was also evaluated. An epidermal growth 

factor (EGF)-conjugated, PEGylated cationic liposome was developed to deliver the 

RNA replicase-based plasmid, pSIN-, into EGFR-over-expressing human breast cancer 

cells (MDA-MB-468) in vitro and in vivo. Delivery of the pSIN- using the EGF 

receptor-targeted liposome more effectively controlled the growth of MDA-MB-468 

tumors in mice than using un-targeted liposome.  

Finally the potential of further improving the antitumor activity of the pSIN- 

plasmid by incorporating interleukin-2 (IL2) gene into the plasmid was investigated. The 

resultant pSIN-IL2 plasmid was delivered to mouse melanoma cells that over-express the 

sigma receptor. The pSIN-IL2 plasmid was more effective at controlling the growth of 

B16 melanoma in mice when complexed with sigma receptor targeted AA-PEG-

liposomes than with the untargeted liposomes. Importantly, the pSIN-IL2 plasmid was 

more effective than pSIN- plasmid at controlling the growth of B16 melanoma in mice, 

and B16-bearing mice that were treated with pSIN-IL2 had an elevated number of 

activated CD4
+
, CD8

+
, and natural killer cells, compared to those treated with pSIN-.  
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Chapter One: Introduction           

1.1 Background  

 Cancer is a group of diseases characterized by uncontrolled growth and metastatic 

spread of abnormal cells (Society, 2012). Cancer is a disease that is difficult to eradicate 

and the second most common cause of death in the U.S. (Society, 2012). According to 

the international agency for research on cancer (IARC) worldwide about 12.7 million 

cancer cases and 7.6 million cancer deaths occurred in 2008 (Jemal et al., 2011). 

Treatment varies depending on the type of cancer but surgery, radiation, chemotherapy, 

hormone therapy, biological therapy, and targeted therapies are often used, either in 

combination or alone. Chemotherapeutic drugs kill tumor cells, but frequently display 

unwanted toxicities as they lack tumor cell selectivity. Drug resistance is often 

developed, and ultimately limits the efficacy of chemotherapy in cancer patients due to 

reduced accumulation of drugs in tumor cells (Arias, 2011; De Palma & Lewis, 2011). 

The genetic and epigenetic heterogeneity of tumors in combination with the selection of 

anticancer drugs leads to the overgrowth of drug-resistant variants (Gottesman, 2002). 

Thus the use of therapies with multiple anti-tumor mechanisms would help circumvent 

acquired drug resistance. Additionally cancer gene therapy that focuses on using 

recombinant DNA constructs to augment existing immunotherapeutic and 

chemotherapeutic approaches seems to be promising (Roth & Cristiano, 1997).  

 

1.2 Cancer gene therapy 
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Gene therapy has the potential to treat acquired and inherited diseases. A major 

hurdle to overcome is the development of effective methods for the delivery of a 

corrective gene into cells. Over two-thirds of approved clinical gene therapy trials are for 

cancer (Brannon-Peppas, Ghosn, Roy, & Cornetta, 2007; Edelstein, Abedi, Wixon, & 

Edelstein, 2004; Roth & Cristiano, 1997). Gene therapy is very much in its infancy; 

further the limited success in clinical trials reflects the need to improve the methodology. 

Interventions would be classified as gene therapeutics, differing from gene-replacement 

therapy (Roth & Cristiano, 1997). The most common strategy against syngenic tumors 

has been to use immunotherapy using recombinant DNA constructs expressing cytokines 

and lymphokines (Roth & Cristiano, 1997). The major advantage to this approach is the 

potential to generate a systemic immune response against the tumor. Cytokines stimulate 

both adaptive and innate immunity (Daud et al., 2008). There are several approaches 

including the use of tumor infiltrating lymphocytes, tumor cells, or fibroblast that express 

cytokine genes, or simply to make tumor cells more immunogenic with expression of co-

stimulatory molecules such as B7-1 or B7-2 (Sanda et al., 1995).  

Cytokine based tumor immunotherapy or vaccination is a promising strategy for 

cancer gene therapy (F. Sakurai et al., 2003). The aim is to control or even eradicate 

tumors by intensifying the weak humoral and cellular immune response to tumor antigens 

(Edelstein, Abedi, & Wixon, 2007). Interferon (IFN) genes have been used both in 

clinical and preclinical trials. They are administered locally either intratumoral or 

intraperitoneal with the use of viral or non-viral vectors. Immunotherapy using 

recombinant DNA vectors that express cytokines such as interleukin-2 (IL2) was 
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successful with melanoma and renal cell cancer (Roth & Cristiano, 1997). In vivo 

electroporation has been used to intratumorally deliver interleukin-12 (IL-12) plasmid,  

resulting in a compete tumor regression rate of 80% (Lucas, Heller, Coppola, & Heller, 

2002).  Clinical phase I and phase II trials have shown that systemic IL-12 caused a 

significant toxicity, whereas locally delivered IL-12 is less toxic and retains its biological 

activity (Gollob et al., 2000; Younes et al., 2004) . 

Modification of the dominant oncogene or tumor suppressor may influence 

characteristics that contribute to the malignant cancer phenotype. There have been several 

studies that utilize tumor suppressor gene replacement or oncogene inactivation (Cai, 

Mukhopadhyay, Liu, Fujiwara, & Roth, 1993; Mukhopadhyay, Tainsky, Cavender, & 

Roth, 1991). The ras family of oncogenes is the most common in many human cancers. 

Transfection with K-ras siRNA or retroviral mutant K-ras was shown to reduce the 

growth rate of human lung cancers in vitro and in vivo in nude mice (Georges, 

Mukhopadhyay, Zhang, Yen, & Roth, 1993; Mukhopadhyay, et al., 1991; Zhang, 

Mukhopadhyay, Donehower, Georges, & Roth, 1993). Reintroduction of wild-type p53 

gene using a retroviral expression vector was found to suppress the growth of H358a 

human lung cancer cell line (Cai, et al., 1993). Expression of wildtype p53 tumor 

suppressor gene has been shown to cause regression of human tumor (Edelstein, et al., 

2007). More invasive cancers utilize multiple oncogenic pathways. A phase III trial using 

adenovirus p53 gene therapy against ovarian cancers was terminated early due to no 

therapeutic benefit, multiple genetic changes in cancer and epigenetic dysregulations 

probably led to aberrant silencing of genes (Zeimet & Marth, 2003). It may be impossible 
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to correct for all genetic abnormalities since many are not characterized. Additionally 

there has been much work evaluation mixtures of siRNA against several oncogenes like 

MDM2, c-myc, and vascular endothelial growth factor (VEGF) (S. D. Li, Chono, & 

Huang, 2008). Evaluation of gene therapy constructs aimed for oncogenes or tumor 

suppressor genes in combination with chemotherapeutic drugs is an important area for 

future research (S. H. Chen et al., 1995; Fujiwara et al., 1994). 

Another modality is gene directed enzyme pro-drug therapy (GDEPT) which 

relies on vectors that express an enzyme that converts nontoxic prodrug into its toxic 

metabolite (Pandha et al., 1999). Cells that are transfected with cytosine deaminase (CD) 

are able to convert the nontoxic pro-drug fluorocytosine (5-FC) to the toxic metabolite 

fluorouracil (5-FU) (Pandha, et al., 1999). The herpes simplex virus expressing thymidine 

kinase is used to convert the non-toxic pro-drug ganciclovir into the cytotoxic 

triphosphate ganciclovir (Edelstein, et al., 2007). This allows non-toxic pro-drugs to be 

administered at high doses with no side effects as conversion to toxic metabolite would 

occur only in tumor or tumor microenvironment (Edelstein, et al., 2007). 

 

1.2.1 Viral and non-viral vectors 

Vehicles for gene delivery are divided into two major groups; viral and non-viral 

vectors (Roth & Cristiano, 1997). Viral vectors rely on viruses as efficient gene transfer 

vehicles. They include retrovirus, adenovirus, adeno-associated virus, herpes simplex 

virus among others (Hunt, Vorburger, & Swisher, 2007; Roth & Cristiano, 1997). Viral 
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vectors have high tranduction efficiency and are frequently used as vectors because of 

ease of large-scale clinical grade production (Hunt, et al., 2007).  

Viral vectors dominate clinical gene therapy trials (Xu & Anchordoquy, 2011). 

Viral vectors integrate into host chromatin leading to long-term gene expression (S. D. Li 

& Huang, 2007). Since 2007, there have been 1339 gene therapy trials, of which only 

25% utilize non-viral vectors (Edelstein, et al., 2007). Limitations of viral vectors include 

their small capacity for therapeutic DNA and safety issues have stimulated the 

development of synthetic vectors (Edelstein, et al., 2007). It is generally agreed upon that 

non-viral vectors are preferable due to less safety concerns, and have become more 

common (Xu & Anchordoquy, 2011). There are significant safety issues associated with 

viral vectors including insertional mutagenesis and carcinogenesis (Niidome & Huang, 

2002). It has been found that repeated administration of a viral vector leads to an immune 

response that eliminates the transgene (Niidome & Huang, 2002). Considering these 

serious limitations non-viral vectors alone or complexed to a cationic carrier are an 

attractive alternative.  

DNA vectors or non-viral vectors are delivered by a physical method or with a 

chemical carrier such as cationic polymers or lipids to achieve high gene expression 

levels (Niidome & Huang, 2002). Physical methods such as direct injection, 

electroporation, bio-ballistic-gene gun, ultrasound, and hydrodynamic techniques have 

been used to improve transfection efficiency (Niidome & Huang, 2002). Chemical 

carriers condense the non-viral vectors to protect them from nuclease degradation and 

improve their delivery to the cytosol and nucleus (Niidome & Huang, 2002). Gene 
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delivery based on liposomes is one of the most common techniques used.  DNA vectors 

bind to cationic liposomes via electrostatic interaction between the anionic 

phosphodiester backbones and the positively charged cationic lipids in the liposomes (Xu 

& Anchordoquy, 2011).  The vector bound liposome is referred to as the lipoplex; a 

particle with a diameter around 100 nm (Guo & Huang, 2012).  

A major disadvantage of non-viral vectors complexed to cationic delivery 

vehicles is that strong interaction with blood components, which tend to lower 

transfection efficiencies (Xu & Anchordoquy, 2011). Serum proteins bind to charged 

particles, leading to structural reorganization, aggregation and ultimately dissociation of 

the delivery vehicle (Yang & Huang, 1998). Nucleases in the serum are known to 

degrade nucleic acids, which result in a significant decrease in biological activity (Xu & 

Anchordoquy, 2011). PEGylation offers a solution to overcome serum protein binding. 

Incorporation of DSPE-PEG into the liposome allows for a delivery vehicle that is 

sterically shielded from blood components (Torchilin et al., 1994). PEGylation increases 

circulation time after intravenous administration and is commonly used in animal models 

(Xu & Anchordoquy, 2011). PEGylated lipid such as DSPE-PEG are conjugated through 

cationic ethanolamine head groups so the zwitterionic phospholipid is converted to an 

anionic lipid. Incorporation of DSPE-PEG into a cationic lipid formulation causes a 

reduction in zeta potential via charge neutralization, this is attributed to the steric 

stabilization of PEG (Xu & Anchordoquy, 2011).  

In conclusion, viral vectors are more efficient and have much higher gene 

expression in vivo compared to non-viral vectors. But safety is an important factor and 
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clinical trial regulations limit the use of viral vectors because of adverse side effects. It is 

important to understand the gene delivery barriers to design a more rational delivery 

carrier for non-viral vectors (S. D. Li & Huang, 2007).  

 

1.2.2 Gene therapy clinical trials in the U.S. 

The delivery of non-viral vectors has the potential to develop potent vaccines and 

novel therapeutics to cure many diseases (Xu & Anchordoquy, 2011). The use of gene 

therapy in phase I clinical trials have been limited to advanced incurable cancers. 

Intralesional injections of gene based agents hold potential to prevent local recurrence 

after surgery. Much remains to be done including safety, efficacy studies, and clinical 

trials with patients in earlier stages of diseases. Response rates in phase 1 clinical trials 

utilizing combination therapy appear comparable to single agent chemotherapy (Roth & 

Cristiano, 1997). Cancer gene therapy has been used to augment existing therapeutic 

approaches so the limitations in response rate may be a function of the limitations of the 

existing approaches instead of the gene therapy (Roth & Cristiano, 1997).  

Low gene expression and lack of efficacy accompanied with unrealistic 

expectations regarding gene therapy have caused many biotechnology companies to drop 

their gene therapy endeavors. However it is important to note that problems still exist in 

gene therapy including vector design, clinical trial design, delivery mechanisms, and 

should be kept in perspective. As cancer biology advances in the understanding of 

mechanisms underlying carcinogenesis so will the advance in gene therapy in the 

development of novel delivery mechanisms (Roth & Cristiano, 1997).  
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Currently, there are 26 active and completed clinical trials involving siRNA 

technology and 42 clinical trials of plasmid DNA based therapeutics in cancer, most of 

which focused on vaccine therapy (www.clinicaltrials.gov). Non-viral vectors that 

express cytokines such as IL-12 and IL-2 are the most common vectors found for 

treatment of cutaneous lymphoma, malignant melanoma, stage II or stage III prostate 

cancer, and ovarian cancer. Delivery is either intratumoral injection followed by 

electroporation or intratumoral delivery of complexed vector with DMRIE/DOPE 

liposomes or PEI polymers.  

The most successful lipoplex to reach phase III clinical trials is allovectin 

marketed by Vical (Daud, et al., 2008; Doukas & Rolland, 2012). Allovectin is a 

bicistronic plasmid encoding two transgene proteins HLA-B7 and β2M. It is complexed 

to a cationic liposome composed of DMRIE/ DOPE (Daud, et al., 2008; Doukas & 

Rolland, 2012). Results from a stage III and stage IVa/IVb melanoma clinical trial 

showed good safety profile after treatment and a response rate of 11.8% with a median 

survival of 18.8 months (Bedikian et al., 2010).  

 The majorities of gene therapy clinical trials to date are phase I or phase I/II. In 

the last eight years there is in increase in the number of trial advancing to phase III, 

which potentiate the idea that gene therapy may be moving closer to clinical applications 

(Edelstein, et al., 2007). 

 Overall response rate for cancer patients has been less than 20% which is an 

improvement over the previously evaluated non-viral vectors (Anklesaria, 2000). This is 

http://www.clinicaltrials.gov/
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largely attributed to host immune response to both vectors and transgenes (Harvey et al., 

1999).  

 

1.2.3 Route of administration                                

Systemic administration is useful for the treatment of metastatic tumors (Tada et 

al., 2001). The extracellular environment is the major obstacle to systemic administration 

of non-viral vectors complexed to liposomes. Intravenous injection, intra-tracheal 

instillation, and intra-tissue injection have been investigated (Jenkins et al., 2000; 

Templeton et al., 1997). It has been found that when lipoplexes are administered 

intravenously the clearance by the RES and the large amounts of serum nucleases reduce 

the chance for the plasmid to reach the target (Niidome & Huang, 2002). Generally the 

lung has the highest transfection efficiency when lipoplexes are administered 

intravenously (Tandia, Lonez, Vandenbranden, Ruysschaert, & Elouahabi, 2005). Studies 

have shown that intravenous administration of lipoplexes has high gene expression of up 

to 10-10,000-fold increase in the lungs compared to other organs (F. Sakurai, et al., 

2003).  

Several studies have been carried out that assess the use of lipoplexes as systemic 

delivery vehicles for therapeutic genes (p53, and IL12) for the treatment of malignant 

tumors. It was found that the antitumor activities were attributed to nonspecific induction 

of cytokines instead of expression of therapeutic transgenes (F. Sakurai, et al., 2003). 

Dow et. al. has reported that intravenous administration of lipoplexes containing 

noncoding plasmid DNA can inhibit growth of lung tumors, but it could not inhibit 
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growth of late metastatic lung tumors (Dow et al., 1999). Nonspecific pro-inflammatory 

cytokine production probably suppressed early events in tumor metastasis.  

The most challenges aspect of gene therapy is the issue of delivery (Zhang, 

Satterlee, & Huang, 2012). It is important to understand the mechanism of biophysical 

interaction, which will allow for further optimization of non-viral vectors for systemic 

gene delivery (Niidome & Huang, 2002). If the lung is not the target, local delivery can 

avoid the RES uptake, reduce systemic toxicity, and help the delivery system reach the 

target cells. Intratumoral administration of plasmid DNA allows for transfected cells in 

the area to express the gene of interest and has been the initial route of delivery in several 

clinical protocols (Sobol R, 1995).  

Systemic delivery is the ultimate goal for metastasizing cancer cells. Based on 

gene therapy trials it is also the route that induces the highest immune response and 

potential toxicity. An approach based on gradual increase of systemic exposure has been 

proposed only after safety with localized delivery is shown (Kirn, Martuza, & Zwiebel, 

2001).  Once biological activity and safety is demonstrated by the intratumoral route the 

intra-peritoneal, intra-arterial and finally intravenous administration can be evaluated 

(Hunt, et al., 2007; Kirn, et al., 2001). Surface visible tumors like such head-and-neck 

carcinomas and melanomas allow for direct intratumoral administration and is the best 

route for treatment (Dass, 2002). Ultrasound guided intratumoral administration has been 

applied to liver, kidney, ovarian, and prostate cancers.  

 

1.2.4 Regulation of transcription with non-viral vectors 
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 Gene expression at the transcriptional level is difficult to regulate. The design of 

the expression plasmid is critical in determining the level of transgene expressed. 

Improvement in the design of expression vectors and liposome carriers can ultimately 

produce more efficient expression for transferred genes and thus a more effective 

treatment.  

A promoter provides that attachment sequence for RNA polymerase to bind and 

initiate transcription. The selection of a promoter which drives transgene expression in 

plasmid DNA is critical for effective transfection efficiency in eukaryotic cells. Insertion 

of different promoters can be screened and validated at the in vitro level, however the 

regulation of the promoter is more difficult to predict in vivo. The most commonly used 

promoter, the cytomegalovirus promoter (CMV) is one of the strongest identified thus far 

and found to lead to high yields (F. Sakurai, et al., 2003). Various promoters have been 

constructed and were found to have superior gene expression levels compared to the 

CMV promoter including human papovavirus (BKV) promoter, the Rous sarcoma virus 

(RSV) promoter, and the human T-cell leukemia virus (EF-1α/HTLV) promoter  (Thierry 

et al., 1995).  These promoters increase steady state transcription and increase translation 

efficiency through mRNA stabilization. It may be necessary to utilize promoters for 

specific cancers. Lu et. al. has shown that the glyceraldehyde-3-phosphte dehydrogenase 

(GAPDH) promoter  is highly active in breast cancers, and that compared to the CMV 

promoter showed up to 70 fold increase gene expression in vivo (Lu, Zhang, Roberts, 

Osborne, & Templeton, 2002). Gene delivery systems may require plasmid modifications 

dependent on the types of tumor.  
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Tissue specific promoter would allow for expression of heterologous gene in vivo 

and restrict the expression of the gene to the tumor. Melanoma cells synthesizes melanin 

primarily by malanocytes (Vile & Hart, 1993). The rate-limiting step in the synthesis of 

melanin is the hydroxylation of tyrosine catalyzed by the enzyme tyrosinase (Parvez et 

al., 2006). Melanocyte-specific transcription of proteins associated with melanogenesis 

have been identified as tyrosine related protein (TRP-1) (Jackson, Chambers, Budd, & 

Johnson, 1991) and TRP-2 (Tsukamoto, Jackson, Urabe, Montague, & Hearing, 1992). 

Vile et. al. demonstrated that the 5’ flanking regions of both tyrosinase and TRP-1 genes 

can direct expression of a heterologous gene in human and murine melanoma cells, while 

not permitting expression in other cells (Vile & Hart, 1993). The combination of tissue 

specific promoter such as TRP-1 or tyrosine in melanoma and direct injection of plasmid 

DNA into tumors can provide new opportunities for targeting gene therapy to specific 

tumor types (Vile & Hart, 1993). Other tumor specific promoters include 

carcinoembryonic antigen (CEA) gene in pancreatic carcinoma cells (DiMaio et al., 

1994) and human surfactant protein A (HSPA) for non-small cell lung cancers (Smith, 

Rousculp, Goldsmith, Curiel, & Garver, 1994). 

Other components of the vector are also important such as transcription regulatory 

elements, polyadenylation signal sequence, and enhancers (F. Sakurai, et al., 2003). The 

different viral promoters and intron sequences within the expression vector was found to 

affect the efficiency of the liposome-mediated systemic gene expression. Previously it 

has been reported that cDNA expressed significantly higher levels of transgene when the 

transgene incorporates a heterologous intron 5’ to the coding region (M. T. Huang & 
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Gorman, 1990). It was also found that analogous transgenes lacking an intron or with a 3’ 

intron are expressed at similar levels (Liu et al., 1995). Additionally it was found that the 

CMV promoter element is more active than the adenovirus, SV40, and TK promoters in 

all tissues analyzed (Liu, et al., 1995). In order to make lipoplex-mediated gene therapy 

more efficient more effort needs to be made in optimizing the transgene expression 

cassette (F. Sakurai, et al., 2003).  

 

1.2.5 Toxicity  

There have not been any treatment related deaths reported with cancer patients in 

gene therapy clinical trials (Hunt, et al., 2007). Although treatment related severe adverse 

effects have been reported in clinical studies in other diseases. The fatal cases have 

prompted investigators to be more cautious in designing and participating in gene therapy 

trials (Raper et al., 2003). Current preclinical models are inadequate in predicting type, 

frequency, and severity of toxicity (Hunt, et al., 2007).  

Lipoplexes have been shown to be nontoxic in several phase I and phase II 

clinical trials (Dass, 2002). Tumors are the ultimate target for non-viral vectors; however 

it is possible that the plasmid DNA can inadvertently circulating throughout the body 

after direct intra-tumor injection (Lew et al., 1995). Direct DNA injections into tumors 

for cancer immunotherapy trial in patients with stage IV melanoma appeared to be safe 

(Lew, et al., 1995). Transgene expression was found to be localized to the site of 

injection and tumor regression was observed in 1 of 5 patients with stage IV melanoma 

(Nabel et al., 1993). It was found that plasmid DNA (pVCL-1005) injected intravenously 
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persisted for at least 6 months post injection with no detectable protein expression in 

tissues retaining the highest amount of plasmid (Lew, et al., 1995).  

The human HLA-B7 gene was introduced into subcutaneous melanoma tumors 

with the use of DNA-liposome complexes in a human clinical study (Nabel, et al., 1993). 

The gene was expressed and localized to the site of injection and no apparent toxicity or 

anti-DNA antibodies were detected (Nabel, et al., 1993). It was found that one patient 

responded to this treatment with both local and distant tumor regression, more studies 

need to be done in order to conclude that this treatment is consistently therapeutic (Nabel, 

et al., 1993).  

Toxicity is dependent on the mode of administration. Intra-tracheal administration 

of lipoplexes has induced acute systemic inflammatory response and causes macrophage 

and neutrophil infiltration into the lungs of mice (Freimark et al., 1998). The lipoplexes 

were found to be highly toxic when orally administered resulting in dramatic 

hypothermia in mice (Filion & Phillips, 1997). Large aggregate formation caused 

mycocardial damage and tissue ischaemia in the intra-venous route (Dass, 2002). In terms 

of lung expression by the intravenous route, gene expression was transient and decreased 

by 1 1og per week (S. Li, Wu, et al., 1999). This may be due to neutralizing antibody 

production, cytokine-mediated promoter shutdown, or apoptosis of expressing cells 

(Dass, 2002). 

 

1.3 Double-stranded RNA therapy  



 15 

Double-stranded RNA (dsRNA) is produced by most viruses during their 

replication cycle and has a molecular pattern related to viral infection. Ds-RNA may be 

produced as a replicative intermediate or as an overlapping bi-directional transcript 

(Karpala, Doran, & Bean, 2005). Ds-RNA of natural origin, isolated from fungal viruses, 

or synthetically prepared polyinosine-cytosine, poly (I:C), mimic the biological actions of 

viruses with high interferon induction (Parr, Wheeler, & Alexander, 1973). 

 

1.3.1 Anti-tumor mechanism 

DsRNA triggers a number of antiviral responses that ultimately alter the program 

of the cell. They include intracellular mechanisms like dsRNA-associated protein kinase 

(PKR) and oligoadenylate synthetase (OAS) which shut down protein translation and 

lead to apoptosis (Karpala, et al., 2005). Induction by dsRNA also upregulated IFN-

stimulated genes and inflammatory elements (Karpala, et al., 2005). Ds-RNA has both 

intracellular recognition proteins and extracellular antiviral mechanisms (Karpala, et al., 

2005). Extracellular exposure to dsRNA is mediated by TLR3, a pattern recognition 

receptor. Ds-RNA bound to TLR3 induce the expression of cytokines IFN-β, IL-6, IL-12, 

and TNF-α (Karpala, et al., 2005). The interaction of dsRNA and TLR3 plays an 

important role in the immunostimulatory activity of dsRNA (Cui, Le, Qiu, & Shaker, 

2007). 

Ds-RNA has indirect anti-tumor mechanism related to induction of type I IFN, 

IFN α/β (Chawla-Sarkar et al., 2003). Type I IFNs are known to be induced by viruses 

directly (Karpala, et al., 2005). IFNs interfere with viral replication by modulating PKR 
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and OAS pathway which hinder cellular transcription (Karpala, et al., 2005). Many of the 

dsRNA stimulated genes can by induced by type I IFNs (Karpala, et al., 2005; Sen & 

Sarkar, 2005). Four families of transcription factors are known to be activated by dsRNA 

they include NF-кB, IRF-3, c-Jun, and ATF-2 (Sen & Sarkar, 2005). These transcription 

factors induce transcription of genes like IFN-β and immune response initiators (Sen & 

Sarkar, 2005). 

Huang et. al. investigated poly (I:C) treated human peripheral blood mononuclear 

cells in terms of global pathway activation (C. C. Huang et al., 2006).  Poly (I:C) 

challenge was found to elicit gene expression changes, similar to acute viral infection (C. 

C. Huang, et al., 2006). Gene regulation patterns reveal distinct immediate early, early-to-

late, and late clustering. Early responses were found to be for innate immune responses 

involving TLR-3, NF-кB dependent pathway, and IFN-stimulated pathway (C. C. Huang, 

et al., 2006).   

                                                                                                                                                                                                                                 

1.3.2 Clinical trials 

 The IFN-inducing activity of dsRNA in the form of poly (I:C) has been exploited 

in many pre-clinical and clinical tumor therapy trials (Le, Yanasarn, Lohr, Fischer, & 

Cui, 2008). Poly (I:C) was able to inhibit the growth of transplantable rodent tumors 

(Levy, Law, & Rabson, 1969). Poly (I:C) was found to decrease tumor size and increase 

survival time of mice bearing various tumor including reticulum cell sarcoma, lymphatic 

lymphoma, fibrosarcoma, or a human adenovirus 12-induced tumor model (Levy, et al., 

1969). However many reports have shown that there is lack of correlation between 
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interferon induction by poly (I:C) and antitumor effects (M. Sakurai et al., 1990; 

Weinstein, Gazdar, Sims, & Levy, 1971). 

One of the earliest poly (I:C) clinical trials reported by Robinson et. al. showed 

the poly (I:C) administered in multiple doses was not effective in the treatment of patients 

with large tumor burdens (Robinson et al., 1976). The lack of efficacy of poly (I:C) was 

due to rapid degradation in human serum by nucleases (Robinson, et al., 1976). There 

have been several attempts at stabilizing poly (I:C) including addition of poly-L-lysine, 

which did not lead to any objective response in phase I efficacy studies (Stevenson et al., 

1985). Further addition of carboxymethylcellulose (CMC) to poly (I:C) poly-L-lysine 

was found to resist hydrolysis by primate serum (Levine, Sivulich, Wiernik, & Levy, 

1979). Nonetheless poly (ICLC) induced high titers of interferon in the serum of humans 

(Levine, et al., 1979). It was found that 66% of patients receiving CMC stabilized poly 

(ICLC) showed regression or stabilization of tumor size (Salazar et al., 1996). The effects 

of systemic poly (I:C) treatment are inconsistent and higher doses lead to adverse side 

effects (Le, et al., 2008). Currently poly (I:C) is being used as an adjuvant in many 

clinical trials for DNA vaccines as well in combination therapy.  

 

1.3.3 Methods to improve poly (I:C) 

It is apparent that poly (I:C) needs to be stabilized to ensure cell exposure in vivo. 

Various methods to protect poly (I:C) have been utilized. Poly (I:C) stabilized with poly-

L-lysine and CMC were found to decrease tumor protein synthesis in vivo. This stabilized 

poly (I:C) appeared to resist hydrolysis by serum nuclease and was found to be 8 to 10 
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times more resistant to hydrolysis by pancreatic RNase than poly (I:C) alone (Levy et al., 

1975).  

Poly (I:C) complexed to cationic liposomes was found to inhibit the growth of 

tumor cells (Hirabayashi et al., 1999). The therapeutic effect of intravenous delivery of 

lipoplexes containing poly (I:C), was evaluated in a murine lung metastasis model. A low 

level of TNFα and undetectable IFN-γ production were reported (F. Sakurai, et al., 2003). 

Interestingly the anti-metastatic effect of poly (I:C) lipoplexes were due to the IFN-β 

induction. A single administration of lipoplexes containing either a plasmid that 

expresses IFN-β or poly (I:C) showed a significant therapeutic effect on tumor metastasis 

and prolongation of survival time in tumor-bearing mice (F. Sakurai, et al., 2003). Shir et. 

al. have shown that targeting poly (I:C) to breast cancer cells led to regression of pre-

established tumors (Shir, Ogris, Wagner, & Levitzki, 2006). Poly (I:C) has been found to 

enhance tumor response to radiation therapy synergistically as compared to single 

treatment modalities (Le, Kaurin, Sloat, Yanasarn, & Cui, 2009). 

  

1.4 Replicase-based plasmid (pSIN-)  

Sindbis virus is an alpha virus that contains a single positive stranded RNA 

encoding its own RNA replicase (Scheiblhofer, Weiss, Gabler, Leitner, & Thalhamer, 

2006; Strauss & Strauss, 1994). An anti-sense RNA is transcribed, and it functions as a 

template for the synthesis of sense RNA. RNA-dependent RNA polymerase activity was 

found on the nonstructural protein (nsP4) (M. L. Li & Stollar, 2004; Rubach et al., 2009). 

Sindbis viral vectors deficient in replication genes have been shown to efficiently target 
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and kill tumor cells in vivo (Lundstrom, 2001; Tseng et al., 2004; Venticinque & 

Meruelo, 2010). However, concerns regarding uncontrolled vector propagation and 

toxicity suggest that non-viral based vectors may offer a safer alternative (S. D. Li & 

Huang, 2007). Previously, the replicase genes (nsp1-4) from sindbis virus have been 

cloned into a plasmid and placed under the control of cytomegalovirus (CMV) promoter, 

hence referred to as the pSIN- plasmid (Scheiblhofer, et al., 2006). When transfected 

into cells, the replicase genes are expressed, and the resultant replicase complex allows 

the formation of intracellular dsRNA (Diebold et al., 2009; Scheiblhofer, et al., 2006).  

The pSIN- plasmid was originally designed as a new generation vaccine in 

which antigen expression was controlled by an alphaviral replicase-enzyme complex with 

the goal of amplifying RNA production and to obtain high levels of antigen expression 

(Driver et al., 1998; Leitner, Bergmann-Leitner, Hwang, & Restifo, 2006). The replicase 

acts as an RNA polymerase amplifying mRNA (Leitner, et al., 2006). It was found that 

the replicase-based constructs were very immunogenic (Leitner, Ying, Driver, Dubensky, 

& Restifo, 2000). The generation of dsRNA species from the RNA amplification triggers 

anti-viral defense pathways in transfected cells mimicking the effects of a viral infection 

(Leitner, et al., 2006). DsRNA activates the PKR pathway which results in the apoptotic 

death of the cell (Leitner et al., 2003). Type I interferons are involved in innate immune 

response against viral infections (Leitner, et al., 2006). IFN / are produced in response 

to dsRNA in cells (Leitner, et al., 2006).  

 

1.5 Liposomes as plasmid delivery vehicles 
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The first nanoscale drug delivery systems developed were lipid vesicles later 

described as liposomes (Bangham, Standish, & Watkins, 1965). They form vesicles 

through self-assembly of amphiphilic lipids and excipients. The bilayer of lipids are 

based on hydrophobic interactions in parallel packing with the hydrophilic head groups 

positioned towards the aqueous environment (Alexis, Pridgen, Langer, & Farokhzad, 

2010).  Liposomes are not rigid. They are fluid-like particles that form complex 

supramolecular assemblies (Balazs & Godbey, 2011). The physiochemical properties can 

be controlled based on the lipids that are included in the formulation. Properties such as 

surface charge and size can be controlled by mixing various lipids.  

 

1.5.1 Formulation 

Various lipids are included to impart the cationic characteristics that are necessary 

for efficient non-viral plasmid delivery. Liposome are generally prepared with FDA 

approved distearoylphosphatidylethanolamine (DSPE), HSPC, Egg PC, or DSPC (Alexis, 

et al., 2010). Cationic lipids used include [1,2-bis(oleoyloxy)-3-

(trimethylammonio)propane (DOTAP), N-[1-(2,3-dioleyloxy)propyl]-N,N,N-

trimethylammonium chloride (DOTMA), 3β[N-(N’,N’-dimethylaminoethane)-

carbamoyl] cholesterol (DC-Chol), 2,3-dioleyloxy-N-[2(sperminecarboxamido)ethyl]-

N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), and 

diooctadecylamidoglycylspermine (DOGS) (Balazs & Godbey, 2011). These cationic 

lipids impart distinct characteristics to the lipoplex complex, which will affect the 

association with the cell, uptake, and disassociation from the endosome (Balazs & 
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Godbey, 2011). Improvements to these cationic lipids include modification with 

polyethylene glycol (PEG) for in vivo protection.  

PEGyated lipoplexes are protected from degradation in vivo (Immordino, Dosio, 

& Cattel, 2006). PEGylation was shown to have steric hindrance which reduces the 

clearance of lipoplexes due to macrophage uptake and improves stability and longer 

circulation times in the blood (Alexis, et al., 2010). Attachment of PEG to lipoplex can be 

done by adsorption onto the liposome surface or covalently attaching PEG to a neutral 

lipid like DOPE, or DSPE (Alexis, et al., 2010).  

A cationic liposome used as a gene carrier typically requires a neutral helper lipid 

to facilitate the release of the nucleic acid from the lipoplex (Guo & Huang, 2012). 

Disassociation of the lipoplex occurs because of the ion-pairs destabilizing with the 

formation of the inverted hexagonal phase and ultimate release of plasmids to the 

cytoplasm (Hafez, Maurer, & Cullis, 2001). The helper lipid promotes fusion with the 

endosomal membrane and it facilitates mixing with anionic lipids that allow DNA to be 

released from the delivery vehicle within the cells (Xu & Anchordoquy, 2011). Helper 

lipids are also required to stabilize the cationic liposome suspension as cationic lipids 

repel each other. Liposomes formulated without helper lipids have lower rates of 

transfection (Dass, 2002). Membrane destabilization hexagonal conformation is brought 

about in acidic pH (Alexis, et al., 2010). 

Typically dioleoylphosphatidylethanolamine (DOPE) is used, but it was found 

that using cholesterol instead increased the amount of gene expression (Liu et al., 1997). 

It has been shown that incorporation of cholesterol into the liposome can promote 



 22 

efficient in vivo gene delivery (Liu, et al., 1997). When DOPE is used the activity of 

vectors decreases by 100 to 1000 fold, while including cholesterol significantly enhances 

the in vivo activity (Liu, et al., 1997). Cholesterol is more commonly used as a helper 

lipid compared to DOPE because DOPE promotes fusion with erythrocytes in blood, 

which would accelerate the removal of lipoplexes from circulation (Xu & Anchordoquy, 

2011). Cholesterol is a more efficient neutral lipid for systemic DNA delivery. High 

cholesterol content increases the stability of the liposomes by stabilizing bilayers and 

complexes in the plasma against mechanical breakage due to adsorption of plasma 

components (Templeton, et al., 1997). 

The mechanism of transfection of lipoplexes into cells and the release of cargo is 

dependent on the liposome formulation (Tros de Ilarduya, Sun, & Duzgunes, 2010). 

Positive charged lipoplexes interact with the negatively charged cell surface components 

and enter cells by endocytosis or endocytosis-like mechanism (Tros de Ilarduya, et al., 

2010). Once inside cells the pH of the endosome drop from pH 7.0 to 5.5, which causes a 

conformational change in the lipoplexes, and plasmid bound on the lipoplexes is released 

from the early endosome into the cytosol. Once near the perinuclear region the plasmid 

enters the nucleus after nuclear membrane disintegration or by transport through nuclear 

pores (Tros de Ilarduya, et al., 2010). 

 

1.5.2 Targeting for cancer 

The understanding of cancer biology, tumor microenvironment, signaling 

pathways, and metastatic evolution have improved our understanding and paved the way 
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for better drug delivery advances. Targeted therapies are designed to recognize cancer 

specific targets and destroy or slow the growth of cancer cells while avoiding normal 

cells. In 1909 Paul Ehrlich proposed the “magic bullet concept” in which drugs would go 

straight to their intended cell-structural targets (Strebhardt & Ullrich, 2008). His 

paradigm of a rationally targeted strategy has revolutionized modern cancer research. The 

use of a magic bullet in a genetically complex situation may be difficult. In reality the 

magic bullet concept fails to explain the drug interaction with tissues, and other non-

cancer cells that lead to unacceptable side effects. The translation of cancer targeted pre-

clinical approaches to clinical trials has been poor, and this may reflect the multi-

dimensional complexity of cancer (Bae & Park, 2011). Drugs have been targeted to 

proteins such as matrix metalloproteinase inhibitors, epidermal growth factor receptors, 

transferase inhibitors, and angiogenesis growth factors to name a few (Alexis, et al., 

2010).  The idea of targeted nanoparticle therapy began with the development of 

immunoliposomes in 1980 (Alexis, et al., 2010).  It is important to note that drug 

targeting doesn’t imply the drug or delivery system actively searching for the target. It 

describes a ligand-receptor interaction occurring in close proximity ~0.5 nm (Bae & Park, 

2011). There is an increased probability of the drug delivery system to be taken up by 

cancer cells if there is a molecular interaction between the cancer cell and the drug 

delivery system. There are two general approaches to receptor-mediated targeting. One is 

to target tumor microenvironment, the other is to target tumor cell surface for 

intracellular delivery (Alexis, et al., 2010).  
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In order to increase the feasibility for tumor targeting more understanding of 

systemic delivery of liposomes is necessary. The dynamic feature of tumor spatial and 

temporal heterogeneity as well as diffusional barrier in solid tumors need to be 

determined in order to engineer drug delivery systems that can overcome the current 

limitation of liposomes (Bae & Park, 2011).  

 

1.5.3 Limitations 

Lipoplexes that have high expression efficiency in vitro rely on monolayers that 

don’t necessarily depict the in vivo situation (Xu & Anchordoquy, 2011). Lipoplexes that 

are stable in physiological media may have high tranfection rates in vitro and low 

transfection efficiencies in vivo or vice a versa. Differences between cell culture and in 

vivo gene delivery lead may lead to inefficient screening. A formulation developed for 

intra-tumoral administration may not function when used for intravenous administration 

(S. Li, Tseng, et al., 1999). An optimized liposome formulation may lead to high 

transfection efficiency in certain cell lines, but lack gene expression in others. 

Adjustments of the formulation for the liposomes should be evaluated for route of 

administration, level of experimentation i.e. in vitro, in vivo, and lipid composition. 

Improvement of the lipids, neutral lipid, targeting moieties, and shielding will allow for 

better transfection efficiencies (Alexis, et al., 2010).   

 

1.6 Objectives 
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 Double-stranded RNA has multiple anti-tumor mechanisms that can be exploited 

to control tumor growth. There is a reviving interest in taking advantage of the anti-tumor 

activity of poly (I:C)  by improving the delivery of into tumor cells (Shir, et al., 2006). 

Intracellular dsRNA was found to be more effective compared to extracellular dsRNA in 

promoting tumor cells to undergo apoptosis and orchestrating the initiation of adaptive 

immune response (Cui, et al., 2007). Several groups have shown that targeting lipoplexes 

to tumor cells improved transfection efficiency in vitro and in vivo (Shir, et al., 2006). 

Based on these results, the following hypothesis was generated:  

Intracellularly generated dsRNA may be more immunogenic than 

extracellular dsRNA. By using a plasmid DNA (pSIN-β) that generates 

dsRNA intermediates we hope to augment the anti-tumor response. 

Targeting the pSIN-β plasmid with surface conjugated liposomes will allow 

for more specific tumor cell delivery.  

The aims of this project were  

i. To determine if the replicase-based plasmid (pSIN-β) can be used to 

generated dsRNA intracellularly and inhibit tumor growth. This was 

determined by evaluating the presence of dsRNA in TC-1 transfected cells. 

The anti-tumor activity in TC-1 tumor bearing mice treated with pSIN-β 

complexed to cationic liposomes was also determined. (Chapter II) 

ii. To test the feasibility of targeting the pSIN-β plasmid into tumors that 

overexpress the epidermal growth factor receptor (EGFR). This was done 

by evaluating the targeted lipoplexes in vitro with breast adenocarcinoma cell 
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lines with varying expression levels of EGFR/cell. We also determined if the 

targeted lipoplexes have a superior anti-tumor activity in vivo compared to the 

non targeted lipoplexes (Chapter III). 

iii. To improve the replicase-based plasmid pSIN-β by cloning IL2 into the 

plasmid may have improved anti-tumor activity. We evaluated the benefit 

of IL2 in the pSIN plasmid in vivo using B16 melanoma bearing mice. We 

also compared the changes in CD4
+
, CD8

+
, and CD49

+
 peripheral blood 

lymphocyte populations with plasmid treated B16 melanoma bearing mice 

(Chapter IV). 
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Chapter Two 

Replicase-based plasmid DNA shows anti-tumor activity1 

2.1 Introduction 

Double stranded RNA has multiple anti-tumor mechanisms that may be 

potentially exploited to control tumor growth. It is known to be pro-apoptotic, anti-

proliferative, and anti-angiogenic (Absher & Stinebring, 1969; Chawla-Sarkar, et al., 

2003; Fujimura, Nakagawa, Ohtani, Ito, & Aiba, 2006). It is also a potent inducer of type 

I interferons (IFN-/) (Chawla-Sarkar, et al., 2003; Friedrich, Shir, Klein, & Levitzki, 

2004), which are pro-apoptotic and immuno-stimulatory as well (Absher & Stinebring, 

1969; Chawla-Sarkar, et al., 2003; Cui & Qiu, 2006). Intracellular dsRNA can activate 

various pathways, including anti- proliferative dsRNA dependent protein kinase (PKR), 

IFN inducible 2’-5’-adenylate synthetase/Rnase L system, and oligo A synthetase 

(Alexopoulou, Holt, Medzhitov, & Flavell, 2001; Friedrich, et al., 2004; Leitner, et al., 

2003), which can lead to apoptosis. Intracellular dsRNA is recognized primarily by 

retinoic acid-inducible gene I (RIG-1) and melanoma differentiation-associated gene 5 

(Mda5) (Kawai & Akira, 2006; Kumar, Koyama, Ishii, Kawai, & Akira, 2008; Weber, 

Wagner, Rasmussen, Hartmann, & Paludan, 2006).  Extracellular dsRNA recognition 

occurs by Toll-like receptor (TLR3) membrane bound receptor (Kawai & Akira, 2006; 

Matsumoto & Seya, 2008). 

                                                 
1 Significant portions of this chapter have been published in “BMC Cancer. 2011 Mar 

28;11:110.” 

 
2 Significant portions of this chapter have been previously published as “Nanomedicine 
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Over the past several decades, there had been numerous attempts to utilize 

synthetic dsRNA such as polyriboinosinic-polyribocytidylic acid, poly (I:C), to control 

tumors in animal models and clinical trials (Fujimura, et al., 2006; Hirabayashi, et al., 

1999; Le, et al., 2008; Pimm & Baldwin, 1976). In general, it was found that synthetic 

dsRNA only slightly delayed tumor growth (Le, et al., 2009; M. Sakurai, et al., 1990; 

Weinstein, et al., 1971). Increasing the dose of the synthetic dsRNA to improve its anti-

tumor activity is not feasible because of the dose-dependent severe adverse effects (Le, et 

al., 2009; Okada, Akbar, Horiike, & Onji, 2005; Weinstein, et al., 1971). Recently, there 

is a reviving interest in exploiting the anti-tumor activity of synthetic dsRNA by 

improving the delivery of dsRNA into tumor cells (Shir, et al., 2006). For example, Shir 

et al. (2006) reported the total regression of implanted human breast cancers or 

glioblastoma in mouse models when poly (I:C) was intratumorally injected and targeted 

into the tumor cells using epidermal growth factor as a ligand (Shir, et al., 2006). Using 

B16-F10 melanoma in a mouse model, Fujimura et al. (2006) reported the elicitation of 

tumor-specific CD8+ T lymphocyte responses by peritumoral injection of poly (I:C) 

(Fujimura, et al., 2006). Others have exploited the immuno-stimulatory activity of 

dsRNA by immunizing with tumor cells with intracellular synthetic dsRNA (Cui, et al., 

2007). It became clear that intracellular dsRNA was more effective than extracellular 

dsRNA in promoting tumor cells to undergo apoptosis and orchestrating the initiation of 

adaptive immune responses (Cui, et al., 2007; McBride, Hoebe, Georgel, & Janssen, 

2006; Schulz et al., 2005).  
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Sindbis virus is an alpha virus that contains a single positive stranded RNA 

encoding its own RNA replicase (Scheiblhofer, et al., 2006; Strauss & Strauss, 1994). An 

anti-sense RNA is transcribed, and it functions as a template for the synthesis of sense 

RNA. RNA-dependent RNA polymerase activity was found on the nonstructural protein 

(nsP4) (M. L. Li & Stollar, 2004; Rubach, et al., 2009). Sindbis viral vectors deficient in 

replication genes have been shown to efficiently target and kill tumor cells in vivo 

(Lundstrom, 2001; Tseng, et al., 2004; Venticinque & Meruelo, 2010). However, 

concerns regarding uncontrolled vector propagation and toxicity suggest that non-viral 

based plasmids may offer a safer alternative (S. D. Li & Huang, 2007). Previously, the 

replicase genes (nsp1-4) from sindbis virus have been cloned into a plasmid and placed 

under the control of cytomegalovirus (CMV) promoter (Scheiblhofer, et al., 2006). When 

transfected into cells, the replicase genes are expressed, and the resultant replicase 

complex allowed the formation of intracellular dsRNA (Diebold, et al., 2009; 

Scheiblhofer, et al., 2006). Therefore, we sought to deliver the replicase-based plasmid 

into tumor cells, hypothesizing that the RNA replicase based plasmid will generate 

dsRNA inside tumor cells and inhibit the tumor growth. This strategy is advantageous 

because it would avoid the delivery of a large dose of synthetic dsRNA in vivo, which is 

rather challenging; while there have been cases of successful delivery of DNA into tumor 

cells (S. D. Li & Huang, 2007; Pirollo et al., 2007; Tan, Whitmore, Li, Frederik, & 

Huang, 2002). Another advantage of utilizing plasmid DNA is that the unmethylated 

CpG motifs on the plasmid are also immuno-stimulatory (Gurunathan, Klinman, & Seder, 

2000; Manders & Thomas, 2000). CpG motifs were shown to have anti-tumor activity by 
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activating natural killer cells and by inducing the secretion of cytokines such as IL-6, 

TNF-, and IFN- (Gurunathan, et al., 2000).  

In the present study, a sindbis replicase-based plasmid pSIN- was used. In the 

plasmid, the sindbis nsp1-4 genes were under the control of a CMV promoter 

(Scheiblhofer, et al., 2006). Using a model mouse lung cancer cell line, TC-1, it was 

shown that when transfected into cells in culture, the pSIN- generated dsRNA, and the 

resultant dsRNA seemed to be pro-apoptotic. In mouse model, the pSIN- significantly 

inhibited the growth of the TC-1 tumors. Similar anti-tumor activity was also observed 

when the pSIN- was used to treat B16 melanoma in mice.  

 

 

 

 

 

 

 

 

 

 

2.2 Materials and Methods 
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2.2.1 Plasmids  

Plasmid pCMV- was from the American Type Culture Collection (ATCC, 

Manassas, VA). The pSIN- plasmid was constructed following a previously described 

method (Scheiblhofer, et al., 2006). The pSIN--nsp was constructed in two steps. First, 

the pSIN- was digested with Pst I (Invitro- gen, Carlsbad, CA), and the resultant 

fragment was gel extracted and purified using a PureLink Gel Extraction kit (Invitrogen). 

The DNA fragment was further digested with Hind III (Invitrogen). The correct fragment 

was gel extracted, and the adhesive ends were ligated using T4 DNA ligase (Invitrogen). 

All plasmids were amplified in E. coli DH5a under selective growth conditions.  

Plasmid DNA was methylated at CpG sites with CpG methyl transferase (M.SssI) 

(New England BioLabs, Beverly, MA). The M.SssI methylates at the carbon position 5 of 

cytosine residues within double stranded recognition sequence. Methylation reaction 

containing 2 U of methylase per g of DNA was incubated at 37°C for at least 3 h. The 

extent of methylation by the M.SssI was determined using a BstU I endonuclease assay 

(Invitrogen). Plasmid was purified from bacteria using a QIAGEN midiprep kit 

(Valencia, CA). Large scale plasmid preparation was performed by GenScript 

(Piscataway, NJ).  

 

2.2.2 Cell lines and culture  

Mouse lung tumor cells (TC-1, ATCC, CRL-2785) and mouse melanoma cells 

(B16-F10, ATCC, CRL-6475) were cultured in RPMI 1640 medium (Invitrogen) and 
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DMEM medium (Invitrogen), respectively. The media were supplemented with 10% fetal 

bovine serum (FBS, Invitrogen), 100 U/ml of penicillin (Invitrogen), and 100 µg/ml of 

streptomycin (Invitrogen).  

The ovalbumin (OVA)-expressing B16-OVA cell line was generously provided 

by Dr. Edith M. Lord and Dr. John Frelinger (University of Rochester Medical Center, 

Rochester, NY) (Brown, Fisher, Wei, Frelinger, & Lord, 2001). B16-OVA cells were 

cultured in RPMI 1640 medium supplemented with 5% FBS and 400 µg/ml of G418 

(Sigma).  

 

2.2.3 In vitro Transfection  

TC-1 cells (n = 3) were seeded in 24 or 48 well plates (20 000 cells/well) and 

incubated at 37°C, 5% CO2 for 24 h or until 60% confluency followed by transfection 

using plasmid DNA (0.15 or 0.40 µg as where mentioned) complexed with 

Lipofectamine
® 

(Invitrogen) following the manufacturer’s instruction. The transfection 

medium was replaced with fresh medium 3 h later. 

 

2.2.4 Semi quantitative RT-PCR 

Total RNA was isolated from TC-1 cells (1 x 10
7
) transfected with plasmid using 

a QIAGEN RNeasy mini kit. On-column DNase digestion was performed using RNase-

free DNase set (QIAGEN) to eliminate DNA contamination. The RNA quality was 

assessed using the OD260/OD280 ratio.  
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Reverse transcriptase reaction was performed using Invitrogen SuperScript III™ 

kits (Cat No. 11752-050 or No. 18080-093) with oligo dT primers or sindbis nsp4 gene 

specific primers (nsp4-1, p4F (5’-CCGGAATGTTCCT- CACACTT-3’) and p4R (5’-

GGAATGCTTTTGCTCT GG-3’)). Polymerase chain reaction was completed utiliz- ing 

cDNA from the reverse transcription and primer set p4F/p4R, which amplified a 501 base 

pair fragment of the nsp4 gene. Reactions were conducted using an Eppendorf 

Mastercycler (Hauppauge, NY) for 30 cycles: 94°C for 5 min, 94°C for 30 s, 55°C for 30 

s, 72°C for 30 s, and a 5 min final extension at 72°C. The nsp4 gene fragment was 

amplified using platinum taq DNA polymerase (Invitrogen). The PCR products (25 µl) 

were analyzed using agarose gel electrophoresis.  

 

2.2.5 Enzyme-linked immunosorbent assay (ELISA)  

The presence of dsRNA in TC-1 cells (n = 3) transfected with the plasmid was 

confirmed using ELISA as previously described with modification (Sloat, Shaker, Le, & 

Cui, 2008). Briefly, 96-well plates were coated at 4°C overnight with 1 µg total RNA 

diluted in PBS. Plates were washed with PBS/Tween 20 (10 mM, pH 7.4, 0.05% Tween 

20, Sigma-Aldrich, St. Louis, MO) and blocked with 4% (w/v) bovine serum albumin 

(BSA, Sigma-Aldrich) in PBS/Tween 20 for 1 h at 37°C. Plates were washed again with 

PBS/Tween 20. Monoclonal anti-dsRNA antibody J2 (English & Scientific Consulting 

Bt. Szirák, Hungary) was added to each well following the removal of the blocking 

solution. The plates were incubated for an additional 3 h at 37°C. Horseradish peroxidase 

(HRP) labeled goat anti-mouse IgG2a (5 000-fold dilution Southern Biotechnology 
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Associates, Birmingham, AL) was added to the wells, followed by 1 h of incubation at 

37°C. The presence of bound secondary antibody was detected after a 30 min incubation 

with 3,3’,5,5’-tetramethylbenzidine substrate (TMB) (Sigma-Aldrich). The reaction was 

stopped by the addition of sulfuric acid (0.2 M, Sigma).  

 

2.2.6 Determination of cell viability  

The number of viable TC-1 cells was determined using a 3-(4,5-dimethylthiazol)-

2-,5-diphenyltetrazolium bromide (MTT) kit (Sigma-Aldrich) 24, 48, and 72 h after the 

initiation of the transfection (n = 3) (Le, et al., 2008). Cells treated with sterile PBS were 

used as a control. Formula used to calculate the relative cell number (%) was: Relative 

cell number = 100 x number of live cells transfected with pCMV- (pSIN-, or pSIN--

nsp)/ number of live cells transfected with sterile PBS.  

 

2.2.7 Preparation of plasmid DNA-liposome lipoplexes  

Cationic liposomes were prepared using cholesterol (Sigma-Aldrich), egg 

phosphatidylcholine (Avanti Polar Lipids, Inc, Alabaster, AL), and 1,2,-dioleoyl-3-

trimethylamonium-propane (DOTAP, Avanti) at a molar ratio of 4.6:10.8:12.9 by thin 

film hydration method followed by membrane extrusion (1, 0.4, and 0.1 m, 

sequentially)
 
(Le & Cui, 2006). The final concentration of DOTAP in the liposome was 

10 mg/ml. The plasmid-liposome lipoplexes were prepared by mixing equal volumes of 

plasmid DNA (25 g in 25 µl) solution and liposome suspension containing 50 g of 

DOTAP liposomes. The mixture was allowed to stay at room temperature for at least 15 
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min before further use. Particle sizes were measured using a Malvern Zetasizer Nano ZS 

(Worcestershire, United Kingdom). The size of the liposomes was 110 ± 0.6 nm with a 

polydispersity index (PI) of 0.121. The pSIN--liposome lipoplexes were 255 ± 31 nm 

(PI, 0.177). The pCMV--liposome lipoplexes were 249 ± 33 nm (PI, 0.183). The sizes 

of the two lipoplexes were not statistically different (p = 0.83, t-test, n = 3).  

 

2.2.8 Animal studies  

All animal studies were carried out following the National Institutes of Health 

animal use and care guidelines. Animal protocol was approved by the Institutional 

Animal Care and Use Committee at the University of Texas at Austin. Female C57BL/6 

mice (6-8 weeks) were from Simonsen Laboratories (Gilroy, CA) or Charles River 

laboratories, Inc. (Wilmington, MA). Female athymic nude mice (6-8 weeks) were from 

Charles River laboratories. Mice were subcutaneously injected with TC-1, B16/F10, or 

B16-OVA cells (5 × 10
5
) in the right flank. When tumors reached an average diameter of 

3-4 mm, the plasmid DNA-liposome lipoplexes were injected subcutaneously 

peritumorally (s.c., p.t.) for 5 or 10 consecutive days (Le, et al., 2009; Le, et al., 2008; 

Shir, et al., 2006). The dose of the plasmid DNA was 25 g DNA per mouse per 

injection. Tumor size was measured using a digital caliper and calculated using the 

following equation (Milas et al., 2004): tumor diameter = (Length + Width)/2. To 

examine whether the nsp genes were expressed in vivo, pCMV-, pSIN-, or pSIN--

nsp (25 g) was injected into the gastrocnemius muscles in the hind legs of mice (n = 
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2). After 24 h, the injected muscle tissues were collected and homogenized using TRIzol 

reagent (Invitrogen) to isolate total RNA. RT-PCR was performed to amplify nsp4 gene 

or -gal gene using the nsp4-1 primers or the -gal primers (5’-

GACGTCTCGTTGCTGCATAA-3’; 5’-CAGCAGCAGACCATTTTCAA-3’).  

 

2.2.9 Histology  

TC-1 tumors in mice that were treated for 6 consecutive days with plasmids were 

collected, fixed in formaldehyde, embedded in paraffin, and sectioned. Immunohis- 

tochemistry was performed to detect apoptosis using the anti-ACTIVE caspase-3 

antibody (Promega, Madison, WI) according to manufacturer protocol. Fifteen random 

fields per sample at 40 × magnification were scored for cleaved caspase-3. Apoptotic 

index was determined based on the % of cleaved caspase-3 positive cells found within 

total cells counted (Le, et al., 2008).  

 

2.2.10 Quantification of IFN- in mouse serum samples 

Mice were subcutaneously injected with 125 g of plasmid DNA in lipoplexes 

(DNA/liposomes, 1:2, w/w). Ten h later, serum was collected, and the concentration of 

IFN- was determined using a mouse IFN-α (Mu-IFN-) ELISA kit (PBL Biomedical 

Laboratories, Piscataway, NJ).  

 

2.2.11 Statistical analysis  
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Statistical analyses were completed using ANOVA followed by Fisher’s protected 

least significant difference procedure. A p-value of < 0.05 (2-tail) was considered 

statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Results and discussion 
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2.3.1 Generation of dsRNA by transfecting pSIN- into tumor cells 

Shown in Figure 2.1 are maps of the plasmids used. In the pCMV-, the -

galactosidase gene is driven by the CMV promoter. In the pSIN-, the nsp1-4 genes are 

driven by a CMV promoter, while the -galactosidase gene is driven by a sindbis viral 

subgenomic promoter. The pSIN- -nsp was constructed by deleting the nsp1-3 and part 

of the nsp4 genes from the pSIN-. To confirm that the pSIN- plasmid can produce 

dsRNA when delivered into cells, TC-1 cells were transfected with pSIN-, and the total 

RNA was extracted from the cells 24 h later. The total RNA was reverse transcribed with 

either oligo dT primers or nsp4 gene specific primers (p4-F or p4-R). The cDNA was 

then amplified with nsp4-specific primers. A 501 bp nsp4 gene fragment was observed in 

all samples transfected with pSIN-, but not in cells transfected with the pCMV- 

(Figure 2.2A), indicating the presence of both sense and anti-sense RNA of the nsp4 gene 

in cells transfected with the pSIN-. The production of dsRNA in cells transfected with 

the pSIN- was further confirmed using ELISA. As shown in Figure 2.2B, TC-1 cells 

transfected with pSIN- had an elevated level of dsRNA compared to untransfected cells, 

whereas cells transfected with pCMV- and the untransfected cells had a similar level of 

dsRNA. The dsRNA generated within cells transfected with the pSIN- seemed to be 

functional because the number of live cells in samples transfected with pSIN- decreased 

gradually with the increase in incubation time, in contrast to the increase in the number of 

live cells in samples transfected with the pCMV- (Figure 2.2C). As expected, the pSIN-
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-nsp no longer caused a decrease in the number of live cells when transfected into the 

TC-1 tumor cells (Figure 2.2C), indicating the significance of the nsp1-4 genes for the 

pSIN- plasmid to be functional. This observation is in agreement with the finding by 

Leitner et al. (2004), who showed that the survival of BHK-21 cells transfected with a 

replicase-based plasmid was significantly lower than cells transfected with a conventional 

CMV promoter-driven plasmid (Leitner et al., 2004). The cell death after transfection 

with the pSIN- was likely caused by the pro-apoptotic dsRNA produced by the sindbis 

RNA replicase complex (Leitner, et al., 2004).  

 

 

 

 

 

 

 

 

 

 



 40 

 

Figure 2.1 A schematic of plasmids used in this study.  

CMV, cytomegalovirus promoter; Lac-Z, -galactosidase; nsp, sindbis virus sequences 

coding for the nonstructural proteins (nsp1-4). pSIN--nsp (8,727 bp), pSIN- (14,869 

bp), pCMV- (7,164 bp).  
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Figure 2.2 Generation of dsRNA in tumor cells transfected with pSIN-. 

(A). TC-1 cells were transfected with pCMV- (pCMV) or pSin- (pSIN), or left 

untreated (N/A). Total RNA was reverse transcribed into DNA with oligo dT primer or 

primers specific to the nsp4 gene (forward p4F or reverse p4R) before PCR amplification. 

This experiment was repeated twice with similar results. (B). ELISA confirmed the 

presence of an elevated level of dsRNA in TC-1 cells transfected with pSIN- (n = 3). 

Total dsRNA was isolated from TC-1 cells transfected with pCMV- or pSIN- and used 

to coat ELISA plate. The primary Ab was the J2 anti-dsRNA IgG2a. *, p = 0.004. (C). 

Transfection of pSIN- into TC-1 cells inhibited cell growth. TC-1 cells (20 000 

cells/well) were transfected with the same amount (0.4 g) of pCMV-, pSIN-, or 
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pSIN--nsp (n = 4). Cell numbers were quantified using MTT assay and normalized to 

cells treated with sterile PBS. Data shown are mean ± S.E.M. **, at 48 and 72 h, the 

value of the pSIN- were different from that of the pCMV- and the pSIN--nsp (p < 

0.05).  
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2.3.2 Treatment of tumor-bearing mice with pSIN- plasmid caused tumor 

regression 

Prior to carrying out tumor treatment studies, the ability of the pSIN- to express 

the nsp1-4 genes in vivo was examined. As shown in Figure 2.3 using RT-PCR, nsp4 

RNA expression was detected only in mouse muscle tissues injected with the pSIN-, not 

in the ones injected with the pCMV- or the pSIN--nsp, demonstrating that only the 

pSIN- was capable of expressing the nsp genes in vivo. The -gal mRNA was present in 

all the mouse muscle tissues since the -gal gene is endogenous (Figure 2.3).  

To evaluate the extent to which the pSIN- can control the growth of tumors pre-

established in mice, mouse TC-1 lung cancer cells were seeded in mice. When tumors 

reached 3-4 mm in diameter, mice were treated with pSIN- or pCMV- daily for 10 

days. Mice in the negative control group were not treated. As shown in Figure 2.4A, TC-

1 tumors grew significantly slower in mice that received the pSIN- plasmid than in mice 

that received the pCMV- plasmid. In fact, 25 days after cell seeding, only 20% or 40% 

of tumor-bearing mice that were left untreated or received the pCMV- plasmid, 

respectively, were alive, but all mice that received the pSIN- were still alive (Table 2.1). 

Moreover, on day 25, there was only one mouse in the group that received the pSIN- 

plasmid had a tumor of 3.1 mm in diameter, which completely regressed on day 37 

(Table 2.1). Clearly, the pSIN- plasmid was more effective in controlling the growth of 

the TC-1 tumors than the pCMV- plasmid. Finally, mice in the negative control group 

were left untreated because it was shown that repeated peritumoral injection of sterile 
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PBS or the liposomes did not have any effect on the growth of the TC-1 tumors as 

compared to mice left untreated (Figure 2.4B), demonstrating that potential 

inflammations caused by the liposomes alone or by the peritumoral injections per se were 

not responsible for the anti-tumor activity observed in Figure 2.4A.  
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Figure 2.3 In vivo expression of nsp4 gene.   

Twenty-four h after i.m. injection with PBS, pCMV-, pSIN-, or pSIN--nsp, total 

RNA was extracted from the muscle tissues and RT-PCR-amplified to detect the 

expression of nsp4 and -gal genes.  
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Figure 2.4 Treatment of mice with pSIN- caused TC-1 tumor regression.  

(A). C57BL/6 mice (n = 5) were s.c. implanted with TC-1 tumor cells (5 × 10
5
) on day 0. 

DNA-liposome lipoplexes were injected (s.c., p.t.) for 10 consecutive days, starting on 

day 5 (25 g DNA per day). (*) indicates that on days 13-15 the values of pCMV- and 

pSIN- were different from each other (p < 0.05). (B). Peritumoral injection of liposomes 

alone or sterile PBS did not affect the growth of the TC-1 tumors. Mice (n = 5) with TC-1 

tumors were injected (p.t.) with sterile PBS or liposomes in PBS (dose equivalent to that 

injected in the DNA-liposome lipoplexes) for 10 consecutive days, starting on day 4. 

Data shown were mean ± S.E.M.  
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Table 2.1 Treatment with pSIN- plasmid caused TC-1 tumor regression.  

 

 

Data shown are 25 days after tumor cell seeding into mice. 

a. Shown are number of live mice/total number of mice. 

b. On day 37, all mice that were treated with the pSIN- became tumor-free.  
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2.3.3 The anti-tumor activity from pSIN- required functional replicase genes nsp 1-

4  

To understand whether the sindbis replicase genes, nsp1-4, were related to the 

anti-tumor activity of the pSIN- plasmid, the anti-tumor activity of the pSIN--nsp 

was compared to that of the pSIN-. When used to treat the TC-1 tumors in mice, the 

pSIN--nsp was significantly less effective in controlling the growth of the tumors than 

the pSIN- in the beginning (Figure 2.5), demonstrating that the nsp1-4 genes, which 

were responsible for the dsRNA production, played a significant role in the anti-tumor 

activity of the pSIN- plasmid. It needs to be noted that the TC-1 tumor cells are strongly 

immunogenic, and it was expected the peritumoral injection of pSIN--nsp to show 

anti-tumor activity because the plasmid, with CpG motifs, can activate innate anti-tumor 

immune responses (Whitmore, Li, & Huang, 1999).  

As shown in Figure 2.6 more cells in tumors treated with the pSIN- plasmid 

underwent apoptosis than in tumors treated with the pCMV- plasmid. We suspect that 

the increased apoptosis in tumors that received the pSIN- plasmid was related to the 

plasmid’s ability to produce dsRNA in transfected cells. However, it is unclear to what 

extent the apoptosis was caused directly by dsRNA produced by the pSIN- plasmid. 

Double stranded RNA is pro-apoptotic (Chawla-Sarkar, et al., 2003), but the type I IFNs 

induced by dsRNA are pro-apoptotic as well (Chawla-Sarkar, et al., 2003). More over, 

the unmethylated CpG motifs on the plasmid, the dsRNA per se, and type I IFN are all 

known to be able to activate innate immunity such as natural killer (NK) cells, which can 
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cause tumor death (Zamai et al., 2007). In fact, it was shown that subcutaneous injection 

of the pSIN- plasmid induced an elevated level of IFN-α in mouse serum samples 

(Figure 2.7).  
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Figure 2.5 Deletion of the replicase genes (nsp1-3 and part of nsp4) from the pSIN- 

plasmid significantly decreased the anti-tumor activity of the plasmid.  

C57BL/6 mice (n = 4-5) were s.c. implanted with TC-1 tumor cells (5 × 10
5
) on day 0. 

From days 4 to 13, mice were injected (s.c., p.t.) with lipoplexes prepared with pSIN- 

(25 g) or pSIN--nsp (25 g). *, On day 8, p = 0.05, pSIN- vs. pSIN- -nsp.  
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Figure 2.6 Injection with pSIN- promoted more tumor cells to undergo apoptosis.   

 (A). Micrographs of tumors stained against anti-caspase- 3 (brown). (B). Apoptotic 

index. Data shown were mean ± S.E.M. The number of mice in each group was 3-4. (*) 

Indicates that the value of pSIN- differed from that of the others (ANOVA, p = 0.03).  
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Figure 2.7 The pSIN- plasmid induced IFN- production in mouse sera.   

IFN- levels in blood were measured 10 h after injection (n = 4). Data reported are 

means ± SEM. (*, p < 0.05, pCMV- vs. pSIN-).  
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2.3.4. Adaptive immunity contributed to the anti-tumor activity from pSIN-  

TC-1 tumor cells are highly immunogenic in C57BL/6 mice due to the human 

papillomavirus E6 an E7 genes in the TC-1 cells (Ji et al., 1998). Data from several 

recent studies have shown that tumor cells with intracellular dsRNA were more 

immunogenic than tumor cells physically mixed with dsRNA (Cui, et al., 2007; 

DiCiommo & Bremner, 1998; McBride, et al., 2006; Schulz, et al., 2005; Shir, et al., 

2006). Therefore, it was expected that adaptive immune responses have contributed, to a 

certain extent, to the anti-tumor activity from the pSIN- plasmid. To test this hypothesis, 

the same TC-1 tumors established in athymic mice were treated with pSIN- or pCMV-. 

As shown in Figure 2.8 the pSIN- was no longer more effective than the pCMV- in 

controlling the growth of the TC-1 cells, indicating that adaptive immunity contributed to 

the anti-tumor activity from the pSIN- plasmid. However, the adaptive immunity was 

not absolutely required for the pSIN- to have anti-tumor activity because recent 

preliminary data in our lab showed that in athymic mice, the pSIN- caused total 

regression of pre-established model human tumors when targeted into the tumor cells 

using a tumor-specific ligand (Rodriguez and Cui, unpublished data).  
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Figure 2.8 The pSIN- plasmid was no longer more effective than pCMV- against 

tumors in athymic mice.   

Mice (n = 6-8) were s.c. implanted with TC-1 tumor cells (5 × 10
5
) on day 0. From days 

4 to 13, mice were injected (s.c., p.t) with lipoplexes prepared with pSIN- (25 g) or 

pCMV- (25 g).  
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2.3.5 Unmethylated CpG motifs contributed to the anti-tumor activity of the pCMV-

 

The anti-tumor effect from the pCMV- plasmid was likely due to the 

unmethylated CpG motifs present on the plasmid (Whitmore, et al., 1999). As shown in 

Figure 2.9 methylation of the pCMV- depleted the plasmid’s ability to inhibit the 

growth of the TC-1 tumor cells in mice. This is in agreement with a previous report 

showing that plasmid DNA itself had anti-tumor activity because the unmethylated CpG 

motifs on the plasmid can activate innate immunity (Whitmore, et al., 1999). Therefore, it 

is possible that both dsRNA produced by the RNA replicase complex encoded by the 

nsp1-4 genes and the unmethylated CpG motifs on the pSIN- plasmid may have 

contributed to the anti-tumor activity from the pSIN-.  
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Figure 2.9 Unmethylated CpG motifs contributed to the anti-tumor activity of the 

pCMV-.  

C57BL/6 mice (n = 5-6) were implanted with TC-1 tumor cells (5 × 10
5
) on day 0. From 

days 6 to 15, mice were injected (s.c., p.t.) with lipoplexes prepared with unmethylated or 

methylated pCMV- (pCMV- or met-CMV-, 25 g). Data shown were mean ± S.E.M. 

(*) indicates that on days 11 to 15, the values of pCMV- and met-CMV- were different 

from each other (p < 0.05).  
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2.3.6 The pSIN- plasmid was effective against B16 melanoma in mice as well 

To test whether the pSIN- was effective against tumors other than the TC-1, 

mice with pre-established B16-F10 or B16-OVA tumors were treated similarly. As 

shown in Figure 2.10 the pSIN- plasmid significantly controlled the growth of both 

poorly immunogenic B16-F10 tumors (Figure 2.10A) and the more immunogenic B16-

OVA tumors (Figure 2.10B), indicating that the approach of controlling tumor growth 

with the replicase-based plasmid was not limited to the TC-1 tumors and likely not 

limited to highly immunogenic tumors as well. Again, it is not surprising that the pCMV-

 also showed anti-tumor activity against the B16 melanoma. In a previous study, 

McCray et al. (2006) showed that intratumoral injection of an empty pcDNA3.1 delayed 

the growth of B16 tumors, as compared to the injection of saline (McCray et al., 2006). It 

was also shown that intratumoral injection of the pcDNA3.1 followed by in vivo 

electroporation further improved the anti-tumor activity (McCray, et al., 2006). In the 

present study, the repeated peritumoral injection of the pCMV- complexed with cationic 

liposomes may have improved the non-specific anti-tumor activity from the plasmid.  
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Figure 2.10 pSIN- was more effective than pCMV- in controlling the growth of 

mouse B16-F10 and B16-OVA melanomas as well.  

C57BL/6 mice (n = 6-7) were implanted with B16-F10 (A) or B16-OVA (B) cells on day 

0. DNA-liposome lipoplexes were injected (s.c., p.t.) for 10 consecutive days starting on 

day 3 (25 g DNA per day). (*) indicate that on days 9-12 for B16-F10 (or days 9-11 for 

B16-OVA), the values of pCMV- and pSIN- were different from each other (p < 0.05). 

Data shown are mean ± S.E.M.  
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2.4 Conclusions 

A RNA replicase-based plasmid that did not encode any relevant functional gene 

was showed to have anti-tumor activity. The anti-tumor activity of the RNA replicase- 

encoding plasmid was likely due to its ability to allow the transfected tumor cells to 

produce dsRNA and to activate innate and adaptive immunity. In the present study, for 

proof-of-concept purpose, the RNA replicase encoding plasmid was dosed to mice by 

subcutaneous peritumoral injection. Although feasible for tumors such as head and neck 

cancers, certain non-metastasized melanomas, and brain tumors, peritumoral or 

intratumoral injection is expected to be difficult to operate for many other solid tumors. 

We are in the process of developing a liposome-based system to target the RNA replicase 

encoding plasmid into tumor cells by the intravenous route. Treatment of poorly 

immunogenic tumors such as B16-F10 melanoma in animal models is a good simulation 

of conditions observed in cancer patients (Wilcox et al., 2002), and the data in the present 

study showed that both highly immunogenic and poorly immunogenic solid tumors were 

receptive to treatment with a RNA replicase based plasmid. Our results suggested a novel 

approach to cancer molecular therapy.  
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Chapter Three 

Control of solid tumor growth in mice using EGF receptor targeted 

RNA relicase-based plasmid DNA2 

3.1 Introduction 

Cancer therapy has improved dramatically over the past few years, but 

chemotherapy remains commonly used in clinics. Traditional chemotherapeutic agents 

generally have a single tumor-killing mechanism, making it easier to develop resistance 

and requiring multiple chemotherapeutic agents for combination therapy. An ideal 

chemotherapy agent would be highly selective for cancer cells and utilize multiple killing 

mechanisms to ensure tumor cell death.   

It is known that double-stranded (dsRNA) molecules have multiple direct and 

indirect pro-apoptotic, anti-proliferative, and anti-angiogenic activities (Absher & 

Stinebring, 1969; Chawla-Sarkar, et al., 2003; Fujimura, et al., 2006). Moreover, dsRNA 

is a known agonist of Toll-like receptor 3 (TLR 3), and the interaction between dsRNA 

and TLR3 triggers both innate and adaptive immunities (Alexopoulou, et al., 2001; 

Diebold, et al., 2009; Schulz, et al., 2005). Double-stranded RNA is also a potent inducer 

of type I interferons (IFN-/), which are pro-apoptotic and anti-angiogenic as well 

(Chawla-Sarkar, et al., 2003; Friedrich, et al., 2004). For decades, synthetic dsRNA, such 

                                                 
2 Significant portions of this chapter have been previously published as “Nanomedicine 

(Lond). 2012 Apr;7(4):475-91.” 
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as polyriboinosinic-polyribocytidylic acid (poly (I:C)), had been evaluated in preclinical 

and clinical trials for cancer therapy (Absher & Stinebring, 1969; Friedrich, et al., 2004; 

Fujimura, et al., 2006; Hirabayashi, et al., 1999; Le, et al., 2009; Okada, et al., 2005; 

Pimm & Baldwin, 1976), but the severe adverse effects from high doses of systemic 

dsRNA limited its clinical application (Absher & Stinebring, 1969; Matsumoto & Seya, 

2008; Meier, Myers, & Huebner, 1970; Okada, et al., 2005; Pimm & Baldwin, 1976). 

Therefore, novel strategies are sought to more effectively take advantage of the multiple 

anti-tumor mechanisms of dsRNA, while minimizing its adverse effects.     

Data from recent studies showed that intracellular dsRNA is more effective than 

extracellular dsRNA in promoting cells to undergo apoptosis and in orchestrating 

adaptive immune responses (Cui, et al., 2007; McBride, et al., 2006; Schulz, et al., 2005). 

Previously, we proposed and demonstrated the feasibility of using an RNA replicase-

based plasmid to generate dsRNA intracellularly in the transfected cells to control tumor 

growth in culture and in mice (B. L. Rodriguez, Z. Yu, W. G. Chung, R. Weiss, & Z. Cui, 

2011). The Sindbis viral RNA replicase-based plasmid, pSIN-, contains 

cytomegalovirus promoter-driven non-structural protein genes (nsp1-4) that encode the 

Sindbis viral RNA replicase complex. The -galactosidase gene in the pSIN- is driven 

by a viral subgenomic promoter (B. L. Rodriguez, et al., 2011; Scheiblhofer, et al., 2006). 

Previous data showed that transfection of cells with a similar alphavirus RNA replicase-

based plasmid appeared to mimic cell infection by an alphavirus, because the RNA 

replicase mediated the production of dsRNA intracellularly (Diebold, et al., 2009; 

Leitner, et al., 2004). In a previous study, we showed that treatment of tumor-bearing 
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mice with the pSIN- plasmid complexed with cationic liposomes peritumorally 

significantly inhibited the growth of model mouse tumors pre-established in mice and, in 

many cases, caused complete tumor regression (B. L. Rodriguez, Z. Yu, W.-G. Chung, R. 

Weiss, & Z. Cui, 2011), suggesting the use of RNA-replicase based plasmid as a novel 

tumor molecular therapy. 

In the present study, in order to further improve the specific killing of tumor cells 

by the dsRNA produced by the pSIN- plasmid, we tested the feasibility of targeting the 

pSIN- plasmid into tumors cells that over-express EGF receptor (EGFR). EGFR is over-

expressed in many cancer cells including glioblastoma, breast cancer, colorectal, head 

and neck cancer (Ciardiello & Tortora, 2003). For example, Klign et al. found that, 

depending on the method of detection, EGFR was over-expressed in 14-90% of human 

breast cancer cells with a mean percentage of EGFR positivity of 45% (5,232 patents) 

(Klijn, Berns, Schmitz, & Foekens, 1992). EGFR consists of an extracellular ligand-

binding domain, a single transmembrane spanning region, and an intracellular region 

containing a kinase domain (Ciardiello & Tortora, 2003). EGFR over-expression is 

involved in the control of tumor cell proliferation, metastasis, and angiogenesis 

(Ciardiello & Tortora, 2003). Various EGFR targeting agents have been developed, 

including those targeting the extracellular domain (e.g., anti-EGFR MAb 225) and 

tyrosine kinase inhibitors (e.g, ZD1839 (Iressa)) (Baselga, 2000; Ranson et al., 2002). 

Clinical data of such EGFR targeting agents have been promising, but they are highly 

dependent on intact EGFR (Ciardiello & Tortora, 2003). We intended to utilize the over-

expressed EGFR as the target to more specifically deliver the pSIN- plasmid into tumor 
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cells by complexing it with cationic liposomes surface-conjugated with EGF, a known 

ligand to EGFR. Previously, it was shown that EGF conjugated onto liposomes facilitated 

the internalization of the liposomes by EGFR-over-expressing tumor cells (Kullberg, 

Nestor, & Gedda, 2003). 
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3.2 Materials and Methods 

 

3.2.1 Plasmids and cells 

Plasmid pSIN- was kindly provided by Dr. Richard Weiss (University of 

Salzburg, Salzburg, Austria). The pEGFP C1 plasmid was obtained from Addgene, Inc. 

(Cambridge, MA). Plasmids were amplified in E. coli DH5 under selective growth 

conditions and purified using a QIAGEN midiprep kit (Valencia, CA) according to the 

manufacturer’s instruction. Large scale plasmid purification was performed by GenScript 

(Piscataway, NJ). Human breast adenocarcinoma cells (MDA-MB-468, # HTB-132, 

MDA-MD-231, # HTB-26, MCF-7, # HTB-22) and human epidermoid carcinoma cells 

(A431, # CRL-1555) were from the American Type Culture Collection (ATCC) and 

cultured in DMEM medium (Invitrogen, Carlsbad, CA). EL4/PSA cells, kindly provided 

by Dr. Pavel Pisa in the Karolinska Hospital Institute (Stockholm), were cultured in 

DMEM medium as well (Invitrogen). All media was supplemented with 10% fetal bovine 

serum (FBS), 100 U/ml of penicillin and 100 µg/ml of streptomycin (all from Invitrogen). 

It was shown previously that EGFR expression was not detectable in EL-4 cells (Greta 

Garrido, 2007). The density of EGFR on MDA-MB-468, MDA-MB-231, and MCF-7 

cells was reported to be 1 x 10
6
, 1-2 x 10

5
, and 1 x 10

4
 per cell, respectively (M. Hu et al., 

2007; Reilly et al., 2000; Walker & Dearing, 1999).  

 

3.2.2 Construction of pSIN-EGFP plasmid 
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To construct pSIN-EGFP plasmid, the enhanced green florescent protein (EGFP) 

gene from the pEGFP C1 plasmid was PCR-amplified with primers EGFP F 5’-

ACAAGTTCTAGAATGGTGAGCAAGGGCGAG-3’ and EGFP R 5’-

CCTAGAGCATGCTTACTTGTACAGCTCGTC-3’. The PCR product was digested 

with XbaI and SphI, and the EGFP gene was used to replace the -galactosidase gene 

downstream of the subgenomic promoter in the pSIN-. Positive clones were screened 

for insert using restriction digestion and further confirmed by DNA sequencing (ABI 

3730XL DNA analyzer, Applied Biosystems, Foster City, CA).  

 

3.2.3 Preparation of EGF-conjugated, PEGylated liposomes (EGF-PEG-liposomes)  

Cationic liposomes were prepared using cholesterol (Sigma-Aldrich, St. Louis, 

MO), egg phosphatidylcholine (Avanti Polar Lipids, Inc, Alabaster, AL), and 1,2,-

dioleoyl-3-trimethylamonium-propane (DOTAP, Avanti) at a molar ratio of 

(4.6:10.8:12.9). Lipids were mixed in a 20-ml glass scintillation vial followed by solvent 

evaporation and the formation of a thin film by placing the vial under a constant stream 

of nitrogen gas. HEPES buffer (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (20 

mM, 150 mM NaCl, pH 7.4) was added to the film and incubated at room temperature 

with intermittent vigorous vortexing for 6-24 h. The liposome suspension was forced 

through polycarbonate filters (1.0, 0.4, and 0.1 m, sequentially) using a mini-extruder 

(Avanti) (Le & Cui, 2006). The final concentration of DOTAP in the liposomes (DOTAP 

liposomes) was 10 mg/ml. 
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Recombinant murine EGF was from Peprotech Inc. (Rocky Hill, New Jersey). 

Prior to the conjugation, EGF was thiolated with 2-iminothiolane (Traut’s reagent, 

Sigma-Aldrich). Protein was diluted in PBS (0.01 M with 2.5 mM EDTA, pH 8.0), 

followed by the addition of Traut’s reagent (20 X molar excess). The mixture was 

incubated for 1 h at room temperature. The protein was purified/desalted using a PD10 

column (GE Biosciences, Piscataway, NJ). Thiolated EGF (0.5 mg) was mixed with 1,2-

distearoyl-sn-glycero-3-phophoethanonamine-N-[maleimide(polyethylene glycol) 2000] 

(DSPE-PEG(2000)-maleimide micelles) (Avanti) at a molar ratio of 8.3:568 in PBS (0.1 

M, pH 7.4). The mixture was stirred under nitrogen gas for 24 h at room temperature, 

mixed with an equal volume of DOTAP liposomes, and incubated at 60 C for 1 h. Un-

conjugated proteins were removed by gel permeation chromatography (GPC, Sepharose
®
 

4B, 5 x 135 mm). The EGF protein concentration in the final EGF-conjugated, 

PEGylated liposomal preparation (EGF-PEG-liposomes) was determined using a 

CBQCA Protein Quantitation Kit (Invitrogen). DOTAP concentration in the liposomes 

was determined following a previously reported method (Wang & Langley, 1977). 

Briefly, in the presence of chloroform, methyl orange (Fisher Scientific, Pittsburgh, PA) 

reacts with DOTAP, a cationic lipid, to form chloroform-soluble, yellow colored 

complexes. The intensity of the yellow color in chloroform is proportional to the 

concentration of methyl orange/cationic lipid complexes measured 

spectrophotometrically at 415 nm (Wang & Langley, 1977). EGF-free PEGylated 

liposomes (PEG-liposomes) were prepared similarly by mixing the equivalent amount of 

DSPE-PEG(2000)-maleimide micelles with preformed DOTAP liposomes.  
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The particle size and zeta potential of the cationic liposomes, PEG-liposomes, and 

EGF-PEG-liposomes were measured using a Malvern Zetasizer
®
 Nano ZS (Westborough, 

MA).   

 

3.2.4 Preparation of plasmid-liposome complexes (lipoplexes) and their sensitivity to 

DNase I  

The plasmid-liposome complexes (lipoplexes) were prepared by mixing equal 

volumes of plasmid DNA (25 g) in solution and various amounts of liposomes in 

suspension (B. L. Rodriguez, et al., 2011). The mixture was incubated at room 

temperature for at least 15 min before further use. To evaluate the extent to which the 

plasmid DNA was protected from DNase digestion by complexing with the liposomes, 

the lipoplexes were incubated with 2 U/g of DNase I (Fermentas, Glenn Burnie, MD) in 

a total volume of 400 l in Tris-HCl buffer (pH 7.5, 10 mM) containing MgCl2 (2.5 mM). 

Samples were placed at 37 C for 1 h, and the reaction was stopped by 10 min of 

incubation at 60 C in the presence of EDTA (5 mM). The DNA and liposomes were 

disassociated from each other by incubation (2 h) at room temperature in the presence of 

NaCl (2 M). DNA was extracted using phenol/chloroform and analyzed by 

electrophoresis using 1% agarose gel stained with ethidium bromide (Cui & Mumper, 

2002). Band intensities were quantified using the GeneSnap software from Syngene G-

box (Syngene, Frederick, MD). 
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3.2.5 Plasmid DNA uptake assay  

Cells (1 x 10
5
) were seeded in 24-well plates (n = 6-12) and incubated at 37 C, 

5% CO2 for 24 h or until 60% confluency. The pSIN- plasmid was labeled using a Label 

IT


 fluorescein nucleic acid labeling kit (Mirus, Madison, WI) according to the 

manufacturer’s instruction. Freshly labeled pSIN- (0.75 g) was complexed with the 

EGF-PEG-liposomes or the PEG-liposomes (DOTAP, 12.9 g) and incubated for at least 

15 min at room temperature. The resultant lipoplexes were added to each well and 

incubated for 1 h at 37 C, 5% CO2. Cells were washed with PBS and lysed using Triton 

X-100 (0.5% in 20 mM Tris, 100 mM NaCl, and 1 mM EDTA) following by incubation 

at -80 C for 1 h. The fluorescence intensity was measured at 492/518 nm in a black 

bottom plate using a BioTek Synergy
®

 Multi-Mode Microplate Reader (Winooski, CT). 

To understand whether the uptake of the lipoplexes was mediated by the EGF-EGFR 

interaction, cells were pre-incubated with free EGF (0.1 mg/ml) at 37 C, 5% CO2 for 1 h 

before the addition of the lipoplexes.  

 

3.2.6 Plasmid DNA uptake detected by fluorescence microscopy 

MDA-MB-468 or MCF-7 cells (2 x 10
6
) were seeded on poly-D-lysine-coated 

glass coverslips and incubated in 6-well plates at 37 C, 5% CO2 for 24 h. Cells were 

further incubated in the presence of fluorescein-labeled pSIN-/EGF-PEG-liposome 

lipoplexes or PEG-liposome lipoplexes (DNA:DOTAP, 3.75 : 64.7 g) in reduced 

growth medium for 1 h at 37 C. After the incubation, cells were washed twice with PBS 
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and fixed in 3% paraformaldehyde for 20 min at room temperature. Cells were washed 

with PBS three times, and coverslips were mounted on slides using a mounting medium 

(vectashield H-1200 with 4’,6-diamidino-2-phenylindole (DAPI)) from Vector 

laboratories (Burlingame, CA). Cells were viewed using an Olympus BX60 Microscope 

(Olympus America, Inc., Center Valley, PA).  

 

3.2.7 In vitro cell transfection and apoptosis assay 

MDA-MB-468 cells (10 x 10
6
) were seeded and incubated at 37 C, 5% CO2 for 

24 h or until 60% confluency followed by transfection using pEGFP C1 or pSIN-EGFP 

(40 g) complexed with Lipofectamine
 

(Invitrogen). After 24 h incubation at 37 
o
C, 5% 

CO2, cells were detached using 0.05% trypsin/EDTA and re-suspended in PBS with 2% 

FBS. GFP positive cells were sorted using a FACSAria II Cell Sorter (BD Biosciences, 

San Jose, CA), re-suspended in fresh medium, and seeded into a 96-well plate (5,000 

cells per well). As a control, untransfected cells were also passed through the cell sorter. 

Cells were stained 0 and 72 h later using a Guava Nexin kit, which contained annexin V 

and 7-amino actinomycin D (7-AAD), according to the manufacturer’s instruction and 

analyzed using a Guava Easycyte 8HT Flow Cytometry System (Millipore, Hayward, 

CA). GFP positive cells were gated and analyzed for annexin V and 7-AAD staining. 

Analysis was performed using the FlowJo Flow Cytometry Analysis Software (Ashland, 

OR).  

 

3.2.8 Animal studies  
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All animal studies were carried out following National Institutes of Health 

guidelines for animal care and use. Animal protocol was approved by the Institutional 

Animal Care and Use Committee at the University of Texas at Austin. Female athymic 

nu/nu mice (6–8 weeks) were from Charles River laboratories, Inc. (Wilmington, MA). 

Mice were subcutaneously injected in the right flank with MDA-MB-468 or A431 cells 

(1 x 10
7
) admixed with BD Matrigel

TM
. When tumors reached an average diameter of 5 

mm for the MDA-MB-468 cells and 6.5-7 mm for the A431 cells, the pSIN-/EGF-PEG-

liposome lipoplexes or the pSIN-/PEG-liposome lipoplexes (DNA:DOTAP, 25:431 g) 

were injected subcutaneously peritumorally (s.c., p.t.) for 14 consecutive days (B. L. 

Rodriguez, et al., 2011). Tumor size was measured using a digital caliper, and tumor 

diameter was calculated using the following equation: tumor diameter = (length + 

width)/2.  

 

3.2.9 Hematoxylin and eosin (H&E) staining 

Tumors were fixed in formalin and embedded in paraffin prior to sectioning. 

Sections of 7 m were cut and stained with H&E.  

 

3.2.10 Immunohistochemical staining for EGFR, CD31, Ki67 and TUNEL assay 

MDA-MB-468 tumors were harvested from mice that had been treated for 10 d 

with the pSIN-/EGF-PEG-liposome or pSIN-/PEG-liposome lipoplexes. Tumors were 

fixed in formalin, embedded in paraffin, and sectioned. After deparaffinization, section 

was subjected to antigen retrieval by microwaving in sodium citrate (10 mM, pH 6.0) for 
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20 min, washed in PBS with 0.2% Triton-X 100, and incubated with PBS with 0.1% 

Tween 20, 5% horse serum albumin (HSA) for 1 h. Slides were incubated for 1 h at 37 

C with anti-EGFR-Alexa fluor 488 (Millipore, diluted 1/1,000) in 5% HSA in PBS. 

After incubation, slides were washed with PBS. Terminal deoxynucleotidyltransferase 

dUTP nick end-labeling (TUNEL) analysis was performed with an in situ cell death 

detection kit from Roche Diagnostics (Indianapolis, IN). Briefly, the TUNEL reaction 

mix (50 l) was placed on the sections and incubated for 60 min at 37 C. Sections were 

washed with PBS three times, mounted using the vectashield H-1200 mounting medium, 

and analyzed using an Olympus BX60 Microscope. Moreover, tumor sections were also 

stained with antibodies against Ki67 and CD31 as markers of cell proliferation and 

angiogenesis, respectively, in the Histology Core at the University of Texas M.D. 

Anderson Center Science Park Research Division (Smithville, TX). Slides were 

examined under a bright-field microscope. The number of blood vessels per 14.6 mm
2
 (n 

= 13-37 per treatment) and the percent of Ki67 positive cells in an area of 0.04 mm
2
 (n = 

9 per treatment) were determined.   

 

3.2.11 Statistical analysis  

 Statistical analyses were completed using ANOVA followed by the 

Fisher’s protected least significant difference procedure. Mouse survival curves were 

compared using the Kaplan–Meier survival analysis (GraphPad Prism
®
, La Jolla, CA). A 

p-value of < 0.05 (two-tail) was considered statistically significant. 
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3.3 Results  

 

3.3.1 Preparation and characterization of pSIN-/EGF-PEG-liposome lipoplexes 

EGF-conjugated, PEGylated cationic liposomes (EGF-PEG-liposomes) were 

prepared by mixing cationic DOTAP liposomes with EGF-conjugated DSPE-PEG(2000) 

micelles followed by 1 h of incubation at 60 
o
C. After the removal of the un-conjugated 

EGF, the concentration of the EGF and DOTAP in the EGF-PEG-liposomes were 

determined to be 1.94 ± 0.08 g/ml and 6.9 ± 2.0 mg/ml, respectively. The EGF-free, 

PEGylated cationic liposomes (PEG-liposomes) were prepared similarly except that an 

equivalent amount of DSPE-PEG(2000) micelles were not conjugated with EGF before 

they were mixed with the preformed cationic DOTAP liposomes. The diameter and zeta 

potential of the EGF-PEG-liposomes were 143 ± 1 nm and 2.2 ± 0.1 mV. The PEG-

liposomes were 134 ± 2 nm, with a zeta potential of 13.3 ± 0.7 mV. The liposomes were 

then complexed with the pSIN- plasmid to form lipoplexes.  

The following experiments were completed to identify the optimal ratio of pSIN-

 to liposomes in the lipoplexes. Various amounts of EGF-PEG-liposomes were 

complexed with a fixed amount of pSIN- to form different pSIN-/EGF-PEG-liposome 

lipoplexes. The particle diameters and the zeta potentials of the resultant lipoplexes are 

shown in Fig. 3.1A. At the ratio of 8.63:1 (DOTAP vs. pSIN-, w/w), the lipoplexes 

appeared unstable and aggregated (Fig. 3.1A), whereas lipoplexes prepared at other ratios 
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had a smaller size of around 200 nm (Fig. 3.1A). The zeta potential of the lipoplexes 

peaked at the DOTAP lipid to DNA ratio of 8.63:1 as well (Fig. 3.1A). 

The fraction of undigested (intact) pSIN- plasmid when complexed with 

increasing amount of EGF-PEG-liposomes, and then digested with DNase I is shown in 

figure 3.1B. As expected, increasing the ratio of the liposomes to plasmid DNA protected 

more DNA from DNase I digestion. At the ratio of 17.25:1 (DOTAP vs. pSIN-), about 

70% of the pSIN- was protected from the DNase I digestion (Fig. 3.1B). At the ratios of 

34.5:1 and 86.25:1, almost 100% of the pSIN- was protected from DNase I digestion. 

In order to identify the liposomes (or DOTAP lipid) to DNA ratio that was 

optimal for transfecting the pSIN- into tumor cells, the uptake of the pSIN- in various 

lipoplexes by the MDA-MB-468 cells was evaluated, and the ratio of 17.25:1 was found 

optimal based on the highest level of cellular uptake of the fluorescein-labeled pSIN- at 

that ratio (Fig. 3.1C). The 17.25:1 ratio was the optimal ratio for the PEG-liposomes as 

well (Fig.3.1C). Therefore, the lipoplexes prepared at the DOTAP to pSIN- ratio of 

17.25:1 (w/w) were used for further studies. Shown in Fig. 3.1D are the diameters and 

zeta potentials of the PEG-liposomes and the EGF-PEG-liposomes, before and after 

complexing with the pSIN- plasmid at the DOTAP to DNA ratio of 17.25:1 (w/w). For 

comparison, the diameter and zeta potential of the un-PEGylated DOTAP liposomes are 

also included (Fig. 3.1D). 
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Figure 3.1 Physicochemical parameters of the pSIN-/EGF-PEG-liposome 

lipoplexes.  

(A). Mean diameter and zeta potential of pSIN-/EGF-PEG-liposome lipoplexes at 

various plasmid to liposome ratios. Equal volumes of DNA (25 g) and EGF-PEG-

liposomes were mixed and allowed to incubate at room temperature for at least 15 min. 

(B). Complexation of the pSIN- with liposomes protected it from DNase I. pSIN-
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/EGF-PEG-liposome lipoplexes prepared at various plasmid to liposome ratios were 

incubated with DNase I. DNA was extracted and analyzed using 1 % agarose gel stained 

with ethidium bromide. Weight ratios of DOTAP lipid to pSIN- for the DNA bands in 

the inset are 1.73 (lane 1), 3.45 (lane 2), 8.63 (lane 3), 17.25 (lane 3), 34.5 (lane 5), and 

86.25 (lane 6). The experiment was repeated twice with similar results.  (C). The uptake 

of pSIN- by MDA-MB-468 cells in culture. Cells (1 x 10
5
/well) were incubated with 

fluorescein-labeled pSIN- complexed with EGF-PEG-liposomes or PEG-liposomes at 

various ratios for 1 h at 37 C, washed, and lysed before measuring the fluorescence 

intensity (492/518 nm). (D). Mean diameter and zeta potential of PEG-liposomes or 

EGF-PEG-liposomes before and after complexation with pSIN- at the ratio of 17.25:1 

(w/w, pSIN-, 25 g). Except in B, data shown are from at least 3 independent 

determinations. S.E.M. was not included in (C) for clarity.  

(LP, liposomes; DNA, pSIN-; LP-PEG, PEG-liposomes; LP-PEG-EGF, EGF-PEG-

liposomes). 
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3.3.2 In vitro uptake of the pSIN- in lipoplexes by cells expressing different levels of 

EGFR 

The uptake of fluorescein-labeled pSIN- by cells expressing different levels of 

EGFR was evaluated after the cells were incubated for 1 h with lipoplexes prepared with 

the EGF-PEG-liposomes or the PEG-liposomes. The extent to which the pSIN- was 

taken up by the EL-4 cells was not dependent on whether the pSIN- was in the 

lipoplexes prepared with EGF-PEG-liposomes or with the EGF-free PEG-liposomes, as 

indicated by the ratio of 1 in Fig. 3.2A. It was previously reported that EGFR expression 

was not detected in EL-4 cells (Greta Garrido, 2007). However, in the cells that express 

various levels of EGFR, the ratio of the uptake of the pSIN- in the EGF-PEG-liposome 

lipoplexes over that in the PEG-liposome lipoplexes was correlated to the EGFR density 

on the cells. The ratio was the largest in the MDA-MB-468 cells, followed by the MDA-

MB-231 cells, and then by the MCF-7 cells (Fig. 3.2A). It is known, and our RT-PCR 

data also confirmed, that the relative expression of the EGFR in the cell lines was MDA-

MB-468 > MDA-MB 231 > MCF-7 (data not shown).  

To further investigate whether the uptake of the pSIN-/EGF-PEG-liposome 

lipoplexes was mediated by the binding of the EGF on the lipoplexes to the EGFR on cell 

surface, cells were incubated with free EGF for 1 h prior to the addition of the lipoplexes. 

The uptake of the pSIN- in the EGF-PEG-liposome lipoplexes was significantly 

inhibited in the MDA-MB-468 cells (Fig. 3.2B), but not in the MCF-7 cells (Fig. 3.2C). 

Moreover, the uptake of the pSIN- in the PEG-liposome lipoplexes by both MDA-MB-
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468 cells and MCF-7 cells was not significantly affected by pre-incubation of the cells 

with free EGF (Fig. 3.3C).  

Finally, the fluorescent microscopic images in Figure 3.3 showed that after 1 h of 

incubation, the uptake of the fluorescein-labeled pSIN- in the EGF-PEG-liposome 

lipoplexes by the MDA-MB-468 cells was more extensive than by the MCF-7 cells. 

However, the uptake of pSIN- was significantly less in both cell lines when it was 

complexed with the EGF-free PEG-liposomes (Fig. 3.3).  
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Figure 3.2 In vitro uptake of the pSIN- in EGF-PEG-liposome lipoplexes or PEG-

liposome lipoplexes by tumor cells expressing different levels of EGFR.  
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(A). Cells (1 x 10
5
/well) were incubated with fluorescein-labeled pSIN- (0.75 g) 

complexed with EGF-PEG-liposomes (LP-EGF) or PEG-liposomes (LP) (12.9 g) for 1 

h at 37 C, washed with PBS, and lysed with Triton X-100 to measure fluorescence 

intensity. Data shown are the fluorescence intensity in cells incubated with pSIN-β/LP-

EGF divided by that in cells incubated with pSIN/LP. (B, C). Pre-incubation of cells (1 x 

10
5
/well) with free EGF inhibited the uptake of the pSIN-β/EGF-PEG-liposome 

lipoplexes by the MDA-MB-468 cells (B), but not by the MCF-7 cells (C). Cells were 

pre-incubated with EGF (0.1 mg/ml) at 37 C for 1 h before the addition of the 

lipoplexes. Data shown are mean ± S.E.M. (n = 6-12).  
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Figure 3.3 Fluorescent images of cells incubated with fluorescein-labeled pSIN--

liposome lipoplexes.  
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MDA-MB-468 or MCF-7 cells (2 x 10
6
) were incubated with fluorescein-labeled pSIN- 

complexed with EGF-PEG-liposomes (LP-PEG-EGF) or PEG-liposomes (LP-PEG) for 1 

h at 37 C. After incubation, cells were washed twice with PBS, fixed in 3 % 

paraformaldehyde, washed again, and mounted using vectashield medium. Cell nucleus 

was stained with DAPI (blue) (bar = 50 mm).  
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3.3.3 The pSIN- plasmid was more effective at controlling the growth of MDA-MB-

468 tumors in mice when complexed with the EGF-PEG-liposomes than with the 

EGF-free, PEG-liposomes 

The anti-tumor activities of the pSIN- complexed with the EGF-PEG-liposomes 

or the EGF-free, PEG-liposomes against MDA-MB-468 tumors were evaluated in vivo. 

As shown in Fig. 3.4, the pSIN-/EGF-PEG-liposome lipoplexes were more effective 

than the pSIN-/PEG-liposome lipoplexes at controlling the tumor growth. Starting on 

day 15, tumors in mice that were treated with the pSIN-/EGF-PEG-liposome lipoplexes 

became significantly smaller than in mice that were treated with the pSIN-/PEG-

liposome lipoplexes (Fig. 3.4A). On day 76, tumors in all mice that were treated with the 

pSIN-/EGF-PEG-liposome lipoplexes regressed completely. No tumor mass was visible 

or palpable thereafter. Tumors in mice that were treated with the pSIN-/PEG-liposome 

lipoplexes partially regressed. The median survival time for mice treated with sterile PBS 

was 57 d, 161 d for mice that were treated with the pSIN-/PEG-liposome lipoplexes 

(Fig. 3.4B).  
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Figure 3.4 pSIN- was more effective at controlling the growth of MDA-MB-468 

tumors in mice when complexed with the EGF-PEG-liposomes.  

MDA-MB-468 (1 x 10
7
) cells were established in athymic mice (n = 5-8) and treated 

when tumors reached an average diameter of 5 mm with the lipoplexes for 14 consecutive 

days. (A). Tumor growth curves. Starting from day 15, the values of the pSIN/LP-PEG-

EGF and the pSIN/LP-PEG were different from each other (p < 0.05). (B). Mouse 

survival curves (p = 0.03, pSIN/LP-PEG-EGF vs. pSIN/LP-PEG).   
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3.3.4 Greater pro-apoptotic, anti-proliferative, and anti-angiogenic activities were 

detected in tumors in mice that were treated with pSIN- complexed with the EGF-

PEG-liposomes than with the PEG-liposomes   

MDA-MB-468 tumors in mice were treated for 10 d with pSIN-/EGF-PEG-

liposome lipoplexes or PEG-liposome lipoplexes; tumors were harvested 24 h after the 

last treatment for histological assays. Extensive apoptosis (i.e., TUNEL positive staining) 

was detected in tumors in mice that were treated with the pSIN-/EGF-PEG-liposome 

lipoplexes, and the apoptotic cells were co-localized with EGFR positive cells (Fig. 3.5). 

By contrast, significantly fewer apoptotic cells were detected in tumors in mice that were 

treated with the pSIN-/PEG-liposome lipoplexes or with sterile PBS (Fig. 3.5). Data in 

Fig. 3.6 showed that the pSIN- also induced apoptosis when transfected into MDA-MB-

468 cells in culture. The pSIN-EGFP, instead of pSIN-, was used because the EGFP 

gene in the pSIN-EGFP allowed the sorting and gating of the transfected cells based on 

the expression of the EGFP gene. Cells were transfected with pEGFP C1 or pSIN-EGFP 

plasmids. Twenty-four hours later, GFP positive cells were sorted and cultured for 72 

hours. Cells were stained with annexin V and 7-AAD to determine the extent of apoptosis 

at 0 and 72 h. At 0 h, the percent of viable cells, cells in the early apoptotic stage, or in 

the late apoptotic stage were not different regardless of the plasmid used for transfection. 

However after 72 h, all GFP positive cells transfected with the pSIN-EGFP plasmid were 

in the late apoptotic stage, whereas the percent of viable GFP positive cells that were 

transfected with the pEGFP C1 plasmid increased by almost three-fold (Fig. 3.6B).  
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Typical H&E images of MDA-MB-468 tumors after treatment with PBS, pSIN- 

complexed with PEG-liposomes, or pSIN- complexed with EGF-PEG-liposomes were 

shown in Fig. 3.7A (H&E). A moderate regression of tumors was observed in mice that 

were treated with pSIN- complexed with the PEG-liposomes, while a significant 

regression of tumors was observed in mice that were treated with pSIN- complexed with 

the EGF-PEG-liposomes (Fig. 3.7A, H&E). Tumors in mice that were treated with PBS 

exhibited a high level of Ki67 positive staining, a marker of cell proliferation (Fig. 3.7A); 

and a lower percent of Ki67 positive cells was detected in tumors in mice that were 

treated with pSIN- complexed with the PEG-liposomes. However, the percent of Ki67 

positive cells in tumors in mice that were treated with pSIN- complexed with the EGF-

PEG-liposomes was significantly lower (> 50%) than that in mice that were treated with 

pSIN- complexed with the PEG-liposomes (p < 0.001) (Figs. 3.7A, B). CD31 is a 

marker of endothelial cells. Anti-CD31 staining revealed extensive vascularization in 

tumors in mice that were treated with PBS (Fig. 3.7A). The extent of CD31 positive 

staining was decreased in tumors in mice that were treated with the pSIN-/PEG-

liposome lipoplexes, relative to that in mice that received PBS (p = 0.003) (Fig. 3.7C). 

Finally, a significantly lower extent of CD31 positive staining was detected in tumors in 

mice that were treated with pSIN- complexed with the EGF-PEG-liposomes than with 

the PEG-liposomes (p < 0.001) (Figs. 3.7A, C).  
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Figure 3.5 pSIN- induced more apoptosis in MDA-MB-468 tumors in mice when 

complexed with the EGF-PEG-liposomes than with the PEG-liposomes.  

MDA-MB-468 tumors in nude mice (n = 4) were treated with pSIN- complexed with 

EGF-PEG-liposomes (LP-PEG-EGF) or PEG-liposomes (LP-PEG) for 10 consecutive 

days. Tumors were fixed in formalin, embedded in paraffin, sectioned, and stained 

against EGFR with anti-EGFR alexa fluor 488 (green) and apoptosis using an in situ cell 

death detection kit based on TUNEL analysis (red). Cell nucleus was stained with DAPI 

(blue), (bar = 50 mm). 
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Figure 3.6 pSIN-EGFP induced MDA-MB-468 cells to undergo apoptosis in culture.  

Cells (1 x 10
7
) were transfected with pSIN-EGFP (40 g) or pEGFP C1 (40 g) and 

sorted for GFP positive cells 24 h later. The sorted cells were staining with Annexin V-

PE and 7-AAD 0 and 72 h after sorting. (A). Flow cytometry graphs of cells after annexin 

V and 7-AAD staining. Analysis was performed on GFP positive cells only. Upper right 
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quadrant represents cells in late apoptotic stage; lower right, cells in early apoptotic stage; 

lower left, viable cells. Cells in the PBS group were passed through the cell sorter, but 

not GFP-gated. (B). A comparison of the % of GFP positive cells that were in the late 

apoptotic stage, early apoptotic stage, or were viable 0 or 72 h after cell sorting. Data 

shown are mean ± S.D. from three replicates. 
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Figure 3.7 Greater anti-proliferative and anti-angiogenic activities were detected in 

tumors in mice that were treated with pSIN- complexed with the EGF-PEG-

liposomes than with the PEG-liposomes.  

(A). Images of MDA-MB-468 tumor tissues after H&E staining or staining with anti-

Ki67 or anti-CD31. MDA-MB-468 tumors in nude mice were treated with pSIN- 
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complexed with EGF-PEG-liposomes (LP-PEG-EGF) or PEG-liposomes (LP-PEG) for 

10 consecutive days before they were harvested, fixed in formalin, embedded in paraffin, 

sectioned, and stained. (B). The % of Ki67 positive cells in tumors in mice that received 

different treatments. % of Ki67 positive cells was calculated based on the total number of 

brown cells divided by the total number of cells. An area of 0.04 mm
2
 was analyzed (n = 

9). (C).  The average number of blood vessels per 14.6 mm
2
 (n = 13-37 per treatment). 
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3.3.5 The pSIN- plasmid was more effective against the A431 tumors in mice when 

complexed with the EGF-PEG-liposomes than with the EGF-free PEG-liposomes  

It was reported that A431 cells over-express EGFR as well (1-3 x 10
6
 per cell) 

(Carpenter & Cohen, 1990). When left untreated, A431 tumors grew aggressively in nude 

mice, with a median mouse survival time of 17 days (Fig. 3.8). A431 tumor-bearing mice 

that were treated with the pSIN-/PEG-liposome lipoplexes had a median survival time 

of 15 days (Fig. 3.8). However, the median survival time for A431 tumor-bearing mice 

that were treated with the pSIN-/EGF-PEG-liposome lipoplexes was 28 days, 

significantly longer than the median survival time of mice that were treated with the 

pSIN-/PEG-liposome lipoplexes (p = 0.017) (Fig. 3.8). 
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Figure 3.8 A431 tumor-bearing mice survived longer when treated with the pSIN-

/EGF-PEG-liposome lipoplexes than with the pSIN-/PEG-liposome lipoplexes. 

Nude mice (n = 6-7) were implanted with A431 cells (1 x 10
7
). When tumors reached an 

average diameter of 6.5-7 mm, treatment with pSIN-/EGF-PEG-liposome lipoplexes or 

pSIN-/PEG-liposome lipoplexes was initiated and continued for 14 consecutive days 

(pSIN/LP-PEG-EGF vs. pSIN/LP-PEG, p = 0.017). 
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3.4 Discussion 

Previously, it was shown that pSIN-, a plasmid DNA that encodes the Sindbis 

viral RNA replicase complex (non-structure proteins 1-4) had anti-tumor activity, 

probably due to the pro-apoptotic dsRNA generated by the RNA replicase complex 

expressed in tumor cells transfected with the plasmid (B. L. Rodriguez, et al., 2011). The 

ability of the dsRNA and the CpG motifs on the plasmid to activate innate immunity 

likely also contributed to the observed anti-tumor activity (McCray, et al., 2006; B. L. 

Rodriguez, et al., 2011; Whitmore, et al., 1999). In the present study, the hypothesis that 

actively targeting the RNA replicase-based plasmid into tumor cells will further improve 

the anti-tumor activity of the plasmid was tested. It was shown that targeting the pSIN- 

plasmid into tumors that over-express the EGFR significantly improved its anti-tumor 

activity, probably because the targeted pSIN- induced more tumor cell to undergo 

apoptosis and exhibited enhanced anti-proliferative and anti-angiogenic activities.  

It is well documented that dsRNA has anti-tumor activities. However, data in 

clinical trials showed that the anti-tumor activity from systemically dosed synthetic 

dsRNA was weak, inconsistent, and associated with severe adverse effects (Absher & 

Stinebring, 1969; Meier, et al., 1970; Okada, et al., 2005; Pimm & Baldwin, 1976). 

Recently, interest in further exploring the anti-tumor activity of dsRNA is revived, 

largely due to the findings that when delivered intracellularly, dsRNA induced more 

extensive tumor cell death, and can more effectively activate innate immunity and 

orchestrate the induction of adaptive immune responses (Cui, et al., 2007; McBride, et 

al., 2006; Schulz, et al., 2005; Shir, et al., 2006). Instead of utilizing synthetic dsRNA, we 
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decided to deliver a plasmid DNA that encodes the Sindbis viral RNA replicase genes, 

and thus enabling the transfected cells to produce dsRNA. It is expected that dsRNA 

tumor therapy using the RNA replicase-based plasmid DNA has the following 

advantages: (i) Plasmid DNA is relatively more stable than dsRNA; (ii) Plasmid DNA 

purified from bacteria has an inherit anti-tumor activity, due to the immuno-stimulatory 

activity of the unmethylated CpG motifs on the plasmid (McCray, et al., 2006; Whitmore, 

et al., 1999); and (iii) only cells that are transfected with the RNA replicase-based 

plasmid will produce dsRNA, and thus being exposed to the dsRNA. The fact that only 

cells transfected with the RNA replicase-based plasmid will produce dsRNA is important, 

because the dsRNA is generated endogenously and is expected to be cytotoxic mainly to 

the cells with the intracellular dsRNA. In other words, delivering RNA replicase-based 

plasmid DNA into tumor cells can potentially take advantage of the potent anti-tumor 

activity of intracellular dsRNA, while minimizing the adverse effects caused by the direct 

injection of synthetic dsRNA. The present study was devised to actively target the RNA 

replicase-based plasmid into tumor cells to more specifically allow the tumor cells to take 

up the plasmid, generate intracellular dsRNA, and then undergo apoptosis by committing 

“suicide”.  

EGFR is expressed universally, but over-expressed (10-1000-fold) in many tumor 

cells (Su et al., 2001; Su et al., 2004). It has been exploited as a target to develop a 

number of novel tumor therapeutics (e.g., Gefitinib and Cetuximab) (Baselga, 2000; 

Ranson, et al., 2002). EGFR was also used as a target to facilitate the internalization of 

liposomes surface-conjugated with an EGFR ligand (such as the EGF) by tumor cells that 
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over-express EGFR (Kullberg, et al., 2003; Yarden, 2001). In the present study, EGF was 

chemically conjugated onto the cationic liposomal carrier of the pSIN- plasmid to target 

the pSIN- into EGFR-over-expressing human tumor cells in vitro and in vivo. Murine 

EGF was used because the in vivo studies in the present study were carried out in mice, 

and data from previous studies showed that murine EGF has similar biological activities 

as the human EGF (Nakagawa, Yoshida, Hirao, Kasuga, & Fuwa, 1985). Human breast 

adenocarcinoma cells MDA-MB-468, MDA-MB-231, and MCF-7 were used because 

they express different levels of EGFR (1 x 10
6
, 2 x 10

5
, and 1 x 10

4
 per cell, respectively) 

(Reilly, et al., 2000; Walker & Dearing, 1999). In vitro data showed that the EGF-

conjugated cationic liposomes more effectively delivered the pSIN- plasmid into EGFR-

expressing tumor cells than the EGF-free liposomes, and the extent to which the tumor 

cells took up the pSIN- carried by the EGF-conjugated liposomes was correlated to the 

density of the EGFR on the cell surface. The facilitated uptake of the pSIN- plasmid in 

the EGF-conjugated liposomes by the EGFR-over-expressing tumor cells was mediated 

by the EGF-EGFR interaction, because pre-incubation of the tumor cells with free EGF 

significantly inhibited the uptake of the plasmid (Fig. 3.2), whereas pre-incubation with 

free EGF did not significantly affect the uptake of the pSIN- plasmid complexed with 

the EGF-free PEG-liposomes (Figs. 3.2B, C). It was noticed that the uptakes of the pSIN-

/PEG-liposome lipoplexes by different cells were not identical. For example, a 

comparison of data in Fig. 3.2B and Fig. 3.2C revealed that the uptake of the pSIN-

/PEG-liposome lipoplexes by the MCF-7 cells was higher than the uptake of the same 
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pSIN-/PEG-liposome lipoplexes by the MDA-MB-468 cells and the MDA-MB-231 

cells (data not shown). The pSIN-/PEG-liposome lipoplexes are physically 

nanoparticles; the extent to which a specific cell line can take up them is likely 

determined mainly by the cell’s endocytosis activity.  

In athymic mice with pre-established human MDA-MB-468 tumors, treatment 

with the pSIN- carried by the EGF-conjugated liposomes more effective controlled the 

tumor growth than with the same pSIN- carried by EGF-free liposomes (Fig. 3.4). In 

fact, the EGFR-targeted pSIN- completely eliminated the MDA-MB-468 tumors in all 

mice (Fig. 3.4). When the A431 epidermoid carcinoma was used, mice that were treated 

with the pSIN- carried by the EGFR-targeted liposomes survived significantly longer 

than mice that were treated with pSIN- carried by the un-targeted liposomes (Fig. 3.8). 

The pSIN- was unable to cause the regression of the A431 tumors in the present study, 

likely because a large number of tumor cells were implanted, and the tumors grew 

aggressively, more than 1 mm a day. Moreover, the pSIN- treatment was not started 

until the tumors reached 6-7 mm in diameter.  

In vivo, the pSIN- carried by the EGFR-targeting liposomes induced 

significantly more tumor cells to undergo apoptosis than the pSIN- carried by the non-

targeted liposomes (Fig. 3.5), which may explain why the EGFR-targeted pSIN- 

generated a more potent anti-tumor activity. The enhanced anti-proliferative and anti-

angiogenic activities from the pSIN- complexed with the EGF-PEG-liposomes as shown 

in Figure 3.7 may have also contributed to the more potent anti-tumor activity from the 
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pSIN-/EGF-PEG-liposome lipoplexes. Because immuno-compromised athymic mice 

were used for the in vivo studies, it is unlikely that adaptive immune response had played 

a significant role in the anti-tumor activity from the pSIN- plasmid, although data from 

a previous study showed that in immuno-competent mice, T cell-mediated adaptive 

immune response contributed to the anti-tumor activity of the pSIN- plasmid (B. L. 

Rodriguez, et al., 2011). However, it is expected that the activation of innate immunity by 

the pSIN- plasmid, the dsRNA produced by the plasmid, and the type I interferons 

induced by the dsRNA may have contributed, to a certain extent, to the anti-tumor 

activity observed.   

In the present study, EGFR was used as the target for the delivery of the RNA 

replicase-based plasmid. EGFR is over-expressed in a variety of tumor cells, but many 

other targets such as folate receptor or integrins are also over-expressed in many tumors 

cells and may be potentially exploited to target the RNA replicase-based plasmid into 

specific tumor cells of interest. Finally, the RNA replicase-based plasmid was given by 

peritumoral injection, which is not ideal for the administration to many tumors, but 

tumors such as glioblastoma, head and neck tumors, non-metastasized melanoma and 

lung cancer are localized and may be ideal tumors for molecular therapy using the RNA 

replicase-based plasmid by intratumoral or peritumoral injection. Indeed, clinical studies 

of intratumoral injection for gene therapy have already been performed (Clayman et al., 

1998; Hersh et al., 1994; Roth et al., 1996). Tumors in the livers may also be treated by 

localized injection (Y. H. Hu et al., 2010; Lencioni et al., 2010). The feasibility of 
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treating orthotopic and spontaneous tumors in mice with the RNA replicase-based 

plasmid is currently under evaluation.  
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3.5 Conclusions 

Treatment with an RNA replicase-based plasmid that can generate dsRNA in 

tumor cells transfected with the plasmid represents a promising cancer molecular therapy. 

Targeting the RNA replicase-based plasmid more specifically into tumor cells further 

improved the anti-tumor activity of the plasmid, likely by enhancing its pro-apoptotic, 

anti-proliferative, and anti-angiogenic activities. 
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Chapter Four 

Antitumor activity of tumor-targeted RNA replicase-based plasmid that 

express interleukin-2 in murine melanoma3 

4.1 Introduction 

Advanced melanoma remains a significant problem although cancer therapy has 

improved dramatically over the past decades. Melanoma is a malignancy with the worst 

prognosis, and death rates have been rising faster than those of other cancers (Blank, 

Hooijkaas, Haanen, & Schumacher, 2011). The median survival time for patients with 

metastatic melanoma is between 6 and 10 months (Puzanov & Flaherty, 2010). Metastatic 

melanoma is one of the most resistant cancers to single agents, combination 

chemotherapy, and immunotherapy.  

IL2 therapy is clinically efficacious in patients with advanced melanoma and 

renal cell carcinoma (Foa, Guarini, & Gansbacher, 1992). IL2 is the only FDA-approved 

immunotherapeutic agents for patients with metastatic melanoma with an overall 

response rate of 13-17% (Riker, Radfar, Liu, Wang, & Khong, 2007). IL2 has no direct 

impact on cancer cells; its antitumor effects are due to its ability to modulate immune 

responses (Rosenberg, Yang, White, & Steinberg, 1998). IL2 affects cytotoxic CD8
+
 T-

cells, CD4
+
 T-cells, natural killer (NK) cells, B-cells, and macrophage cells (Ali et al., 

2009; Jackaman et al., 2003). Both CD8
+
 and CD4

+
 lymphocytes are required for tumor 

regression in multiple tumor models (Ali, et al., 2009). The short half-life of IL2 in vivo 

                                                 
3 Significant portions of this chapter are under review for publication: Rodriguez B. Leticia et. al. (2012). 
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is a major limitation of IL2 treatment, and toxic side effects are typically observed at high 

doses. Alternatives to overcome these limitations include continuous infusions (Foa, et 

al., 1992; West et al., 1987), prolonged low dose daily injection, and local regional 

injections of IL2 into the tumor area (Cortesina et al., 1988; Foa, et al., 1992).  

Introducing IL2 gene into tumor cells may also help overcome the limitation 

associated with in vivo administration of IL2, including side effects caused by high doses 

of IL2 necessary for antitumor activity (Foa, et al., 1992). Expression of IL2 in tumor 

cells has been shown to reduce tumor cell tumorgenicity in vivo and induce tumor 

specific antitumor immunity (Fearon et al., 1990; Galanis et al., 1999; Zier & 

Gansbacher, 1996). Treatment with IL2 expressing plasmid has also been shown to 

improve the efficacy of IL2 immunotherapy, while avoiding the toxicity associated with 

high doses of IL2 (Galanis, et al., 1999). Repeated intratumoral injection of IL2 plasmid 

complexed with liposomes was shown to be safe and well tolerated (Galanis, et al., 

1999). The predicted outcome is that tumor cells transfected with IL2 gene will produce 

IL2 at a level that is low enough to prevent significant side effects to the patients, but 

sufficient enough to create an antitumor response through the immune system (Foa, et al., 

1992).   

It is known that double-stranded (dsRNA) molecules have multiple direct and 

indirect pro-apoptotic, anti-proliferative, anti-angiogenic, and immunostimulatory 

activities (Absher & Stinebring, 1969; Chawla-Sarkar, et al., 2003; Fujimura, et al., 

2006). Double-stranded RNA is also a potent inducer of type I interferons (IFN-/), 

which have pro-apoptotic and anti-angiogenic effects (Chawla-Sarkar, et al., 2003; 
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Friedrich, et al., 2004). Data from recent studies showed that intracellular dsRNA is more 

effective than extracellular dsRNA in promoting cells to undergo apoptosis and in 

orchestrating innate and adaptive immune responses (Cui, et al., 2007; McBride, et al., 

2006; Schulz, et al., 2005). Previously, we proposed and demonstrated the feasibility of 

using an RNA replicase-based plasmid (pSIN-) to generate dsRNA intracellularly in the 

transfected tumor cells to control tumor growth in culture and in mice (B. L. Rodriguez, 

et al., 2011). We have shown that treatment of tumor-bearing mice with the pSIN- 

plasmid complexed with cationic liposomes by peritumoral injections significantly 

inhibited the growth of tumors pre-established in a mouse model and, in many cases, 

caused complete tumor regression, suggesting the use of RNA-replicase based plasmid as 

a novel tumor molecular therapy.  

The present study is designed to further improve the antitumor activity of the 

pSIN- plasmid by incorporating IL2 gene into the plasmid backbone. The resultant 

pSIN-IL2 plasmid was targeted to melanoma cells that over-express sigma receptors 

using cationic liposomes. We reason that the IL2 produced by the tumor cells transfected 

with the pSIN-IL2 plasmid will help improve the antitumor activity of the dsRNA 

produced by the pSIN.   

Sigma receptors are ubiquitously expressed membrane bound proteins that are 

highly conserved in mammalian systems. The presence of sigma 1 and sigma 2 receptor 

subtypes was reported in human amelanotic melanoma (Vilner, John, & Bowen, 1995). 

Anisamide, a benzamide derivative, acts as a ligand to the sigma receptor and is not 

subtype specific (Hou, Tu, Mach, Kung, & Kung, 2006). Anisamide was previously used 
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as a functional ligand to the sigma 1 receptor to successfully target liposomes to sigma 

receptor-overexpressed in melanoma cells (Banerjee, Tyagi, Li, & Huang, 2004; Y. 

Chen, Bathula, Yang, & Huang, 2010; Le & Cui, 2006).  
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4.2 Materials and Methods 

 

4.2.1 Plasmids and cells 

Plasmid pSIN- was kindly provided by Dr. Richard Weiss (University of 

Salzburg, Salzburg, Austria). Plasmid pCMV- was from the American Type Culture 

Collection (ATCC, Manassas, VA). The pORF-mIL2 plasmid was from InvivoGen. (San 

Diego, CA). Plasmids were amplified in E. coli DH5 under selective growth conditions 

and purified using a QIAGEN midiprep kit (Valencia, CA) according to the 

manufacturer’s instruction. Large-scale plasmid purification was performed by GenScript 

(Piscataway, NJ). The B16-OVA cells were kindly provided by Dr. Edith M. Lord and 

Dr. John Frelinger (University of Rochester Medical Center, Rochester, NY) and cultured 

in RPMI 1640 medium supplemented with 5% FBS and 400 g/ml of G418 (Sigma).  

 

4.2.2 Construction of pSIN-IL2 plasmid 

To construct pSIN-IL2 plasmid, the murine interleukin-2 (IL2) gene from the 

pORF-mIL2 plasmid was PCR-amplified with primers IL2 F (5’-ACA AGT TCT AGA 

CAC CGG CGA AGG AGG GCC-3’) and IL2 R (5’-CCT AGA GCA TGC ATT GAG 

GGC TTG TTG AGA-3’). The PCR product was digested with XbaI and SphI, and the 

IL2 gene was used to replace the -galactosidase gene downstream of the subgenomic 

promoter in the pSIN-. Positive clones were screened for insert using restriction 
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digestion and further confirmed by DNA sequencing (ABI 3730XL DNA analyzer, 

Applied Biosystems, Foster City, CA).  

 

4.2.3 Synthesis of DSPE-PEG-anisamide (DSPE-PEG-AA)  

 DSPE-PEG-AA was synthesized according to Bangerjee et. al. with slight 

modifications (Banerjee, et al., 2004). Briefly, -anisoyl chloride (3.412 g, 0.02 mol) in 9 

mL of benzene at 50C was added to an aqueous solution of 2-bromo ethylamine 

hydrobromide (3.73 g, 18.2 mmol) in 27 mL of water. Sodium hydroxide 5% (33.5 mL) 

was gradually added to the emulsion while shaking and cooling in running water. After 2 

h stirring, solid amide was filtered with suction and washed with 0.1 M sodium 

carbonate. After lyopholization, 
1
H NMR was taken for dried N-(2-bromoethyl)-4-

methoxybenzamide, which (50 mg, 0.4 mmol) was then reacted with DSPE-PEG-2000-

NH2 (50 mg, 23.2 mmol) in acetonitrile (2.5 mL) in the presence of N,N-

diisopropylethylamine (DIPEA) (15 μL, 0.1 mmol) at 65-70°C for 8 h. Methanol (2.5 

mL) was added to the reaction mixture followed by excess ether (25 mL), and the mixture 

was kept at -80°C for 24 h.  The precipitate was collected after centrifugation, and 

recrystallization was performed with the addition of methanol (2.5 mL) followed by ether 

(17.5 mL) at 4°C for 12 h. The overall yield on average was 46%. The product DSPE-

PEG-AA was confirmed by 
1
H NMR and ESI mass spectrometry.  

 

4.2.4 Preparation of anisamide-conjugated PEGylated liposomes (AA-PEG-LP)  
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Cationic liposomes were prepared using cholesterol (Sigma-Aldrich, St. Louis, 

MO), egg phosphatidylcholine (Avanti Polar Lipids, Inc, Alabaster, AL), 1,2,-dioleoyl-3-

trimethylamonium-propane (DOTAP, Avanti) and DSPE-PEG-(2000)-methoxy (Avanti), 

or DSPE-PEG-(2000)-AA at a molar ratio of (4.6:10.8:19.6:1.5). To fluorescently label 

the liposomes, 1,2,-dioleoyl glycerol-3-phosphoethanolamine-N-(lissamine rhodamine B 

sulfonyl) (Rho-DOPE) (Avanti 1% w/w) was included in the lipids. Lipids were mixed in 

a 20-ml glass scintillation vial followed by solvent evaporation and the formation of a 

thin film by placing the vial under a constant stream of nitrogen gas. The film was 

hydrated with phosphate buffered saline (PBS) (10 mM, pH 7.4) and sonicated for 1 h, 

followed with a 24 h hydration at room temperature with intermittent vortexing. The 

liposome suspension was forced through polycarbonate filters (1.0, 0.4, and 0.1 m, 

sequentially) using a mini-extruder (Avanti) (Le & Cui, 2006). The final concentration of 

DOTAP in the liposomes was 10 mg/ml. 

The particle size and zeta potential of the cationic liposomes, PEG-liposomes, and 

anisamide conjugated PEGylated liposomes (AA-PEG-LP) were measured using a 

Malvern Zetasizer
®
 Nano ZS (Westborough, MA). Liposomes were mixed with plasmid 

DNA at various ratios to prepare lipoplexes. The stability of the lipoplexes was 

determined in simulated biological medium. Briefly, the lipoplexes were diluted in 

normal saline with 10% FBS, and their sizes were measured immediately (0 min) and 

after 30 min of incubation at 37C.  

 

4.2.5 Plasmid DNA uptake assay  
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B16-OVA cells (1 x 10
5
) were seeded in 24-well plates (n = 6) and incubated at 

37C, 5% CO2 for 24 h or until 60% confluency. The pSIN-IL2 plasmid was labeled 

using a Label IT


 fluorescein nucleic acid labeling kit (Mirus, Madison, WI) according to 

the manufacturer’s instruction. Freshly labeled pSIN-IL2 (0.75 g) was complexed with 

the AA-PEG-liposomes or the PEG-liposomes (DOTAP, 3.75 g) and incubated for at 

least 15 min at room temperature. The resultant lipoplexes were added to each well and 

incubated for 1 h at 37C, 5% CO2. Cells were washed with PBS and lysed using Triton 

X-100 (in 0.5% in 20 mM Tris, 100 mM NaCl, and 1 mM EDTA) following by 

incubation at -80C for 1 h. The fluorescence intensity was measured at 492/518 nm in a 

black bottom plate using a BioTek Synergy
®
 Multi-Mode Microplate Reader (Winooski, 

CT).  

 

4.2.6 In vitro transfection  

B16-OVA cells (2.5 x 10
5
 cells/well) were seeded into 24-well plates (n = 3). 

After overnight incubation, the cells were incubated with pSIN-IL2 complexed with AA-

PEG-LP or PEG-LP (DNA : DOTAP, 1:10, w/w) for 10 or 24 h.  Briefly 1 g of plasmid 

was diluted in 50 l of serum free medium, and 1 l of corresponding liposome was 

diluted in 50 l of serum free medium. The diluted plasmid DNA samples were mixed 

with the diluted liposome solution and incubated at room temperature for 15 min. The 

complexes were added to B16-OVA cell containing wells. The time when the complexes 

were applied to the cell culture medium was defined as 0 h. After incubation, the 
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supernatant was collected and analyzed for IL-2 using a mouse IL-2 ELISA kit (BD 

Biosciences).  

 

4.2.7 Plasmid DNA uptake detected by fluorescence microscopy 

B16-OVA cells (2 x 10
6
) were seeded on poly-D-lysine-coated glass coverslips 

and incubated in 6-well plates at 37C, 5% CO2 for 24 h. Cells were further incubated in 

the presence of pSIN-IL2/AA-PEG-liposome lipoplexes or pSIN-IL2/PEG-liposome 

lipoplexes (DNA : DOTAP, 3.75 g : 18.75 g) in reduced growth medium for 1 h at 

37C. After the incubation, cells were washed twice with PBS and fixed in 3% 

paraformaldehyde for 20 min at room temperature. Cells were washed with PBS three 

times, and coverslips were mounted on slides using a mounting medium containing 4’,6-

diamidino-2-phenylindole (DAPI) as a nuclear counter stain (vectashield H-1200) from 

Vector laboratories (Burlingame, CA). Cells were viewed using an Olympus BX53 

Microscope with a DP72 digital camera (Olympus America, Inc., Center Valley, PA). 

Images were acquired using the CellSens dimension imaging software (Olympus 

America, Inc., Center Valley, PA). 

 

4.2.8 Intracellular trafficking of rhodamine-labeled lipoplexes determined using 

confocal microscopy  

B16-OVA cells (1 × 10
6
 cells/well) were seeded in a 35 mm glass bottom dish 

(Mattek Corporation, Ashland, MA) and incubated overnight. To study the intracellular 

localization of pSIN-IL2/Rho-AA-PEG-liposome lipoplexes or pSIN-IL2/Rho-PEG-
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liposome lipoplexes (DNA : DOTAP, 3.75 g : 18.75 g), the cells were incubated at 

37C with the lipoplexes, followed by the addition of 0.2 mM Hoechst 33342 (Ex/Em 

345/478 nm) (AnaSpec Inc. Fremont, CA). The cells were viewed live for time indicated, 

and single focus images were acquired using a Leica TCS-SP5 X Supercontinum 

confocal microscope with an oil immersion objective (63 × 1.4 NA) (Leica Microsystems 

GmbH, Mannheim, Germany). Images were processed using the NIH Image J software.   

 

4.2.9 Animal studies  

All animal studies were carried out following National Institutes of Health 

guidelines for animal care and use. The animal protocol was approved by the Institutional 

Animal Care and Use Committee at the University of Texas at Austin. Female C57BL/6 

mice (6–8 weeks) were from Charles River laboratories, Inc. (Wilmington, MA). Mice 

were subcutaneously (S.C.) injected in the right flank with B16-OVA cells (5 x 10
5
). 

When tumors reached an average diameter of 2-4 mm, the lipoplexes (DNA:DOTAP, 

25:125 g) were injected subcutaneously peritumorally (s.c., p.t.) for 5 consecutive days 

(B. L. Rodriguez, et al., 2011). Tumor size was measured using a digital caliper, and 

tumor volume was calculated using the following equation: tumor volume = (length x 

width
2
)/2.  

 

4.2.10 Immune cell profiles 

The peripheral blood from B16-OVA tumor-bearing mice after treatment with 

plasmid complexed with AA-PEG-liposomes was collected and immediately mixed with 
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125 mM EDTA. Peripheral blood lymphocytes (PBL) were isolated by density gradient 

centrifugation following manufacturer’s instruction (Lympholyte cell separation media, 

Cedar Lane, Hornby, Canada). Lymphocytes (1 x 10
6
) were blocked with anti-mouse 

CD16/CD32 for 10 min, washed and further stained with a cocktail of antibodies 

containing PE-labeled anti-mouse CD4 (Clone RM4-4, cat# 12-0043, eBioscience, San 

Diego, CA), Pe-Cy5-labeled anti-mouse CD8a (Clone 53-6.7, cat# 15-0081, 

eBioscience), FITC-labled anti-mouse CD69 (Clone H1.2F3, cat# 11-0691, eBioscience), 

and APC-labled anti-mouse CD49b (Clone DX5, cat# 17-5971, eBioscience). Stained 

cells were analyzed using flow cytometry (Guava Easycyte 8HT Flow cytometry 

System,Millipore, Hayward, CA). Data was analyzed using FlowJo flow cytometery 

analysis software (Ashland, OR).  

Splenocytes were isolated from B16-OVA tumor-bearing mice following 

treatment with lipoplexes as previously described (Cui & Qiu, 2006). Spleens were 

removed from each mouse and placed in 10 mM PBS containing 2% FBS. Spleens were 

homogenized in fresh PBS by passing through a cell strainer using a syringe plunger. Red 

blood cells were lysed by incubating the cell suspension with a red blood cell lysis buffer 

(Sigma) for 5 min. at 4C. Splenocytes were stained with the cocktail of antibodies and 

analyzed as mentioned above.  

 

4.2.11 In vivo expression of IL2 in B16-OVA tumors 

B16-OVA tumors were harvested from mice that had been treated for 5 days with 

plasmids compexed AA-PEG-liposomes. Twenty-four hours after the last treatment, 
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tumors were removed and flash frozen in liquid nitrogen and stored at -80°C until further 

analysis. Total RNA was isolated from tumors by homogenization using TRIzol reagent 

(Invitrogen) and RNeasy kit (Qiagen) according to manufacturer’s instructions. High 

capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City, CA) was 

utilized for the RT-PCR.  Real-time PCR of IL-2 gene was carried out using the Power 

SYBR Green PCR Master Mix kit (Applied Biosystems, Foster City, CA) with the 

following primers: 5’-CCT GAG CAG GAT GGA GAA TTA CA-3’ (forward) and 5’-

TCC AGA ACA TGC CGC AGA G-3’ (reverse). All samples were performed in 

triplicates, and normalized to β-actin: 5’-TGT GAT GGT GGG AAT GGG TCA GAA-3’ 

(forward) and 5’-TGC CAC AGG ATT CCA TAC CCA AGA-3’ (reverse). Data were 

analyzed using the Applied Biosystems ViiA
TM

 7 Software (Applied Biosystems).  

 

4.2.12 Hematoxylin and eosin staining 

B16 tumors in mice that were treated for 5 consecutive days with plasmids were 

collected, fixed in formalin, embedded in paraffin, and sectioned. Sections of 7 µm were 

stained with hematoxylin and eosin (H&E). Slides were scanned and images were 

acquired using the ScanScope XT (Aperio Technologies, Vista, CA).   

 

4.2.13 Statistical analysis  

Statistical analyses were performed using analysis of variance followed by 

Fisher’s protected least significant difference procedure. Mouse survival curves were 
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compared using the Kaplan–Meier survival analysis (GraphPad Prism
®
, La Jolla, CA). A 

p-value of < 0.05 (two-tail) was considered statistically significant. 

 

4.3 Results  

 

4.3.1 Preparation and characterization of pSIN-IL2/anisamide-conjugated liposome 

lipoplexes 

Anisamide conjugated, PEGylated cationic liposomes (AA-PEG-liposomes) were 

prepared by mixing cationic DOTAP liposomes with anisamide-conjugated DSPE-PEG 

(2000). The final concentration of DOTAP in the liposomes was 10 mg/ml. The 

anisamide free, PEGylated cationic liposomes (PEG-liposomes) were prepared similarly 

except that an equivalent amount of DSPE-PEG (2000) was used instead. The diameter 

and zeta potential of the AA-PEG-liposomes were 90.3 ± 0.1 nm and 31.1 ± 1.0 mV 

respectively. The AA-free, PEG-liposomes were 97.8 ± 0.2 nm, with a zeta potential of 

24.1 ± 0.4 mV (Fig. 4.1A).  

The following experiments were completed to identify the optimal ratio of pSIN-

IL2 to liposomes in the lipoplexes. Various amounts of AA-PEG-liposomes were 

complexed with a fixed amount of pSIN-IL2 to form different pSIN-IL2/liposome 

lipoplexes. The particle diameters and the zeta potentials of the resultant lipoplexes are 

reported in Fig. 4.1B. At the ratio of 1:1 and 2:1 (DOTAP vs. pSIN-IL2, w/w), the 

lipoplexes appeared unstable and aggregated, whereas lipoplexes prepared at other ratios 

had smaller sizes around 150 nm (Fig. 4.1B). 
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In order to identify the liposomes (or DOTAP lipid) to DNA ratio that is optimal 

in transfecting the pSIN-IL2 plasmid into tumor cells, the uptake of pSIN-IL2 in various 

lipoplexes by the B16-OVA cells was evaluated. The weight ratio of 5:1 to 20:1 

(DOTAP:  DNA) were found optimum based on the high levels of cellular uptake (Fig. 

4.1C). The stability of the lipoplexes at various ratios was evaluated in a simulated 

physiological medium. The lipoplexes prepared at 5:1 to 30:1 ratio were physically stable 

within the period tested (Fig. 4.1D). Therefore, the lipoplexes prepared with a DOTAP 

(in liposomes) to pSIN-IL2 ratio of 5:1 or 10:1 (w/w) were used for further studies.  
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Fig. 4.1 Physicochemical characteristics of lipoplexes prepared by complexing pSIN-

IL2 with anisamide-conjugated PEG-liposomes.  

(A). Mean diameter (black bars) and zeta potential (grey square) of liposomes, PEG-

liposomes, and AA-PEG-liposomes.  

(B). Mean diameter and zeta potential of pSIN-IL2-anisamide-PEG-liposome 

lipoplexes prepared at various ratios (DOTAP : DNA). Equal volumes of DNA (25 g) 

solution and AA-PEG-liposome suspension were mixed and allowed to incubate at room 
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temperature for at least 15 min. Data shown are mean  standard error of the mean (n = 

4).  

(C). Uptake of pSIN-IL2 in lipoplexes by B16-OVA cells in culture. Cells (1 x 

10
5
/well) were incubated with fluorescein-labeled pSIN-IL2 complexed with AA-PEG-

liposomes at various ratios for 1 h at 37C (n = 4). 

(D).  Overlay of the dynamic light scattering spectra of lipoplexes prepared by 

complexing AA-PEG-LP with pSIN-IL2 at 2:1 or 10:1 ratios (w/w), immediately after 

preparation (green) and 30 min (red) after incubation at 37C in a simulated biological 

medium. 
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4.3.2 Expression of IL2 in B16-OVA cells transfected with pSIN-IL2 

 The expression of IL2 in B16-OVA cells was determined using quantitative 

ELISA. A high level of IL2 was detected in cells transfected with pSIN-IL2, compared 

with pSIN- (Fig. 4.2B). The amount of IL2 produced by the B16-OVA cells transfected 

with pSIN-IL2 was approximately a third of that produced by the parent plasmid pIL2 

(Fig. 4.2B). pSIN-IL2 transfected cells produced IL2 in a dose dependent manner (Fig. 

4.2A). Further the level of IL2 expressed in pSIN- transfected cells was negligible even 

at high plasmid amounts (Fig. 4.2A).  
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Fig. 4.2 In vitro transfection of the pSIN-IL2 in B16-OVA cells 

B16-OVA cells (1 x 10
6
 cells/well) were seeded into six-well plates (n = 3). After 

incubation at 37C, 5% CO2 for 24 h or until 60% confluency, cells were incubated with 

4 g of plasmid complexed with Lipofectamine
® 

2000 reagent (Invitrogen) following the 

manufacturer’s instruction. Briefly 4 g of plasmid was diluted in 250 l of serum free 

medium, and 10 l of Lipofectamine 2000 was diluted in 250 l of serum free medium. 

The diluted plasmid DNA samples were mixed with the diluted Lipofectamine 2000 and 

incubated at room temperature for 15 min. As controls, cells were also treated with sterile 

PBS, Lipofectamine 2000 reagent alone, or pCMV- complexed with Lipofectamine 
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2000. After 24 h of incubation, the supernatant was collected and analyzed for IL-2 using 

a mouse IL-2 ELISA kit (BD Biosciences). (A). IL2 levels in cells treated with different 

plasmids. (B). IL2 levels in cells treated with various doses of pSIN-IL2 plasmid.  
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4.3.3 In vitro uptake of pSIN-IL2 in targeted lipoplexes by B16-OVA melanoma cells 

The uptake of fluorescein-labeled pSIN-IL2 by B16-OVA cells expressing high 

levels of sigma receptor was evaluated after the cells were incubated for 1 h with 

lipoplexes prepared with the AA-PEG-LP or PEG-LP. The uptake of the pSIN-IL2 in the 

lipoplexes prepared with AA-PEG-LP was significantly higher compared to the PEG-LP 

(Fig. 4.3A), a 50 % increase. To further investigate whether the uptake of the pSIN-IL2 

in the lipoplexes produced IL2, we incubated the lipoplexes with B16-OVA cells and 

measured IL2 expression. The expression of IL2 was significantly higher in B16-OVA 

cells transfected with AA-PEG-LP than with the PEG-LP (Fig. 4.3B). The PEG-liposome 

lipoplex had elevated amount of IL2 as compared to cells transfected with pSIN-IL2 

alone. Additionally we did not detect any difference in the viability of the cells after 

treatment with AA-PEG-LP or PEG-LP for 24 h (data not shown).  
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Fig. 4.3 In vitro uptake of pSIN-IL2 in AA-PEG-LP or PEG-LP lipoplexes by B16-

OVA tumor cells.  

(A). Cells (1 x 10
6
/well) were incubated with fluorescein-labeled pSIN-IL2 (0.75 g) 

complexed with AA-PEG-LP or PEG-LP (DOTAP, 3.75 g) for 1 h at 37C. 

Fluorescence intensity was measured at 492/518 nm (n = 6). Different letters indicate 

significant differences (p < 0.05). 

(B). Cells (2.5 x 10
5
/well) were incubated with pSIN-IL2 (1 g) complexed with AA-

PEG-LP or PEG-LP (DOTAP, 10 g) for 24 h at 37C. The supernatant was collected to 

analyze IL2 using a mouse IL2 ELISA kit (n = 3). Different letters indicate significant 

differences (p < 0.05). 
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4.3.4 Intracellular trafficking of lipoplexes in B16 melanoma cells 

The cellular distribution of the lipoplexes was examined with fluroscein-labeled 

pSIN-IL2 complexed with either rhodamine labeled AA-PEG-liposomes, or rhodamine 

labeled PEG-liposomes. We examined the distribution of pSIN-IL2, liposomes, and the 

lipoplexes by fluorescence microscopy (Fig. 4.4). The fluorescence emission from the 

fluorescein-labeled pSIN-IL2 is shown in green, rhodamine labeled liposomes shown in 

red, and the emission from the lipoplexes in yellow. Overall lipoplexes prepared with 

AA-free liposomes had less internalization compared to the lipoplexes prepared with AA-

PEG-LP (Fig. 4.4). Disassociation of pSIN-IL2 from the Rho-PEG-LP occurred at 180 

min whereas disassociation of pSIN-IL2 from the Rho-AA-PEG-LP occurred at 60 min.  
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Fig. 4.4 Fluorescence images of cells incubated with fluorescein-labeled pSIN-IL2- 

rhodamine-labeled liposome lipoplexes. B16-OVA cells (2 x 10
6
) were incubated with 
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fluorescein-labeled pSIN-IL2 complexed with rhodamine-labeled AA-PEG-LP or 

rhodamine-labeled PEG-LP (DNA: DOTAP, 3.75 g: 18.75 g) for up to 180 min at 

37C. Cell nucleus was stained with DAPI (blue) (bar = 50 µm).  
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4.3.5 Subcellular distribution of lipoplexes  

 We further evaluated the intracellular localization of the lipoplexes using confocal 

microscopy. The lipoplexes were prepared using rhodamine liposomes. The lipoplexes 

prepared with the PEG-LP were primarily located on the plasma membrane at 30 min 

(Fig. 4.5). By 180 min a large portion of the lipoplexes remained near the plasma 

membrane with some penetration into the cytoplasm. The lipoplexes prepared with AA-

PEG-LP had a significantly higher level of internalization at 30 min, compared with 

PEG-LP, with some particles remaining on the plasma membrane. However, by 180 min, 

the lipoplexes were located inside the cells, adjacent to the nucleus.  
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Fig. 4.5 Subcellular distribution of rhodamine-labeled lipoplexes. B16-OVA cells (1 

x 10
6
) were incubated with pSIN-IL2 complexed with rhodamine-labeled AA-PEG-LP or 

rhodamine-labeled PEG-LP (DNA : DOTAP, 3.75 g : 18.75 g) for up to 180 min at 

37C. The image in the white box is shown at a higher magnification in adjacent image 

on the right. Cell nucleus was stained with Hoechst (blue).  
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4.3.6 The pSIN-IL2 plasmid was more effective at controlling the growth of B16-

OVA tumor cells in mice when complexed with the AA-PEG-LP than with the PEG-

LP 

The anti-tumor activity of the pSIN-IL2 complexed with the AA-PEG-LP or 

PEG-LP were evaluated against B16-OVA tumors in vivo. The pSIN-IL2/AA-PEG-

liposome lipoplexes were more effective than the pSIN-IL2/PEG-liposome lipoplexes at 

controlling the growth of the tumors (Fig. 4.6A). Starting on day 13, tumors in mice that 

were treated with the pSIN-IL2/AA-PEG-liposome lipoplexes became significantly 

smaller than those treated with the pSIN-IL2/PEG-liposome lipoplexes (Fig. 4.6A). The 

median survival time for mice treated with sterile PBS was 18 d, 22 d for mice treated 

with the pSIN-IL2/PEG-liposomes lipoplexes, and 27 d for mice treated with the pSIN-

IL2/AA-PEG-liposome lipoplexes (Fig. 4.6B). Toxicity was not observed in terms of 

body weight loss after treatment with the lipoplexes (data not shown).  
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Fig. 4.6. pSIN-IL2 was more effective at controlling the growth of B16-OVA tumors 

in mice when complexed with the AA-PEG-liposomes.  

(A). B16-OVA (5 x 10
5
) cells were established in female C57BL/6 mice on day 0 (n = 

5-7). Starting on day 3, mice were peritumorally injected with PBS, pSIN-IL2/AA-PEG-

LP or pSIN-IL2/PEG-LP for 5 consecutive days. (*) Starting from day 13, the values of 

the pSIN-IL2/AA-PEG-LP and pSIN-IL2/PEG-LP are different from each other (p < 

0.05).  

 (B). Mouse survival curve. (p = 0.04, pSIN-IL2/AA-PEG-LP vs. pSIN-IL2/PEG-LP, 

Gehan-Breslow-Wilcoxon test).  
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4.3.7 The pSIN-IL2 plasmid was more effective at controlling the growth of B16-

OVA tumor cells in mice than the pSIN- plasmid 

To evaluate the extent at which incorporating IL2 gene into the pSIN- plasmid 

will improve the anti-tumor activity of the pSIN- plasmid, B16-OVA tumor cells were 

seeded in mice. When tumors reached an average of 3 mm, mice were treated with pSIN-

IL2 or pSIN- plasmid complexed with the AA-PEG-LP daily for five days. Tumors 

grew significantly slower in mice treated with the pSIN-IL2 than in mice treated with the 

pSIN- plasmid or the pIL2 plasmid (Fig. 4.7). Mice treated with the pSIN-IL2 plasmid 

also survived significantly longer than those treated with pSIN-β or pIL2 (Fig. 4.7B). The 

antitumor activites of the pSIN-β and pIL2 were not different from each other, but were 

significantly different from the sterile PBS as a vehicle control (Fig. 4.7A).   

 

 

 

 

 

 

 

 

 

 



 129 

 

  

   

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 The pSIN-IL2 plasmid was more effective than the pSIN- plasmid at 

controlling the growth of B16-OVA tumor cells in mice.  

(A). B16-OVA (5 x 10
5
) cells were established in female C57BL/6 mice (n = 5-8) on 

day 0. Starting on day 3, mice were peritumorally injected with pSIN-IL2, pSIN-

pIL2, all complexed with AA-PEG-LP for 5 consecutive days. Starting on day 15, all live 

mice were treated for an additional 4 consecutive days. Starting from day 7, the values of 

the pSIN-IL2/AA-PEG-LP and pSIN-/AA-PEG-LP or pIL2/AA-PEG-LP are different 

from each other (p < 0.05). The values of pSIN-/AA-PEG-LP and pIL2/AA-PEG-LP are 

not different from each other on any day (p > 0.50) 
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(B). Mouse survival curve (p = 0.005, pSIN-IL2 vs. pSIN-, p = 0.03, pSIN-IL2 vs. 

pIL2, Log-rank Mantel-Cox test).  

 

4.3.8 Histology 

B16-OVA tumors in mice that were treated with sterile PBS had a homogenous 

epithelial-like cellular appearance (Fig. 4.8). Well-defined blood vessels were present, 

necrosis was rare, hemorrhage was observed. Further infiltration by inflammatory cells 

was minimal. Tumors from mice treated with pSIN- have necrotic areas mainly on the 

periphery of the tumors, and inflammatory cells were found surrounding the mass. 

Tumors from mice injected with pIL2 plasmid showed extensive haemorrhagic regions 

and severe necrosis, and inflammatory cells including neutrophils and T-cells were found 

on the periphery of the tumors with minor infiltration into the mass. Tumors in mice that 

were treated with pSIN-IL2 showed extensive central necrotic regions and were highly 

haemorrhagic. Severe inflammatory cell infiltration was found in both the center and the 

periphery of the tumors (Fig. 4.8). 
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Fig. 4.8 H & E micrographs 

H & E micrographs. In pSIN-β, (a) indicates necrotic areas. In pIL2, (a) indicates necrotic 

areas; (b) indicates hemorrhagic regions; and area within the dotted line indicates severe 

necrosis. In pSIN-IL2, (a) in dotted line indicates extensive central necrotic regions. 

Tumors were highly hemorrhagic (all red lacunas; note: despite the appearance in the low 

magnification picture, red blood cells were not contained by vessels), and there is a 

poorly defined border between connective tissue (CT) and the tumor per se. 

Images were taken at 4X and 40X magnification.  
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4.3.9 Treatment with pSIN-IL2 plasmid increases activated CD4
+
 T cells, CD8

+
 T 

cells, and NK cells in the peripheral blood and spleen of B16-OVA-tumor bearing 

mice  

Peripheral blood and spleens were collected from B16-OVA tumor-bearing mice 

after 5 treatments with plasmids. Isolated lymphocytes and splenocytes were stained with 

a cocktail of antibodies containing anti-mouse CD4, anti-mouse CD8a, anti-mouse CD69, 

and anti-mouse CD49b. CD49 is a marker for cell activation (Ziegler, Ramsdell, & 

Alderson, 1994). The percentage of CD49
+
/CD69

+
 cells in the PBL of mice treated with 

the pSIN-IL2 was 8.6 times higher than in mice treated with PBS, and 2.1 times higher 

than in the mice treated with pSIN- (Fig. 4.9A). The percentage of CD4
+
/CD69

+
 and 

CD8
+
/CD69

+
 cells in PBL of mice treated with pSIN-IL2 was 1.6-fold, and 3-fold higher 

than in the pSIN- treated mice, respectively (Fig. 4.9A). The percentage of 

CD4
+
/CD69

+
, CD8

+
/CD69

+
, and CD49

+
/CD69

+
 cells in PBL in mice treated with pSIN-

IL2 was not significantly different than from that in mice treated with the pIL2 plasmid 

(Fig.4.9A). A similar trend was observed for the CD4
+
/CD69

+
, CD8

+
/CD69

+
, and 

CD49
+
/CD69

+
 cells in the splenocytes of the treated mice (Fig.4.9C, D). Finally, the total 

CD4
+
, CD8

+
, and CD49

+
 cells were not different among each treatment groups in the 

PBL and splenocyte samples (data not shown).  
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Fig. 4.9 Activation of CD8
+ 

T cells, CD4
+
 T cells, and NK cells in the peripheral 

blood and spleens of tumor-bearing mice after treatment with pSIN-IL2 complexed 

with AA-PEG-LP. 

(A). Percentage of CD4
+
 CD69

+
, CD8

+
 CD69

+
, and CD49

+
 CD69

+
 lymphocytes in the 

PBL of mice treated with PBS, pSIN-, pIL2, or pSIN-IL2. All plasmids were complexed 

with AA-PEG-LP. (*) the values of the pSIN-IL2 and pSIN- are different from each 

other (p < 0.05). 

(B).  Relative representative dot plots indicating the percentages of activated 

lymphocytes in PBL of mice treated with PBS, pSIN-, pIL2, or pSIN-IL2. Square 

frames represent the gated region based on negative controls. 

(C). Percentage of CD4
+
 CD69

+
, CD8

+
 CD69

+
, and CD49

+
 CD69

+
 splenocytes of mice 

treated with PBS, pSIN-, pIL2, or pSIN-IL2. (*) the values of the pSIN-IL2 and pSIN- 

are different from each other (p < 0.05). 

(D).  Relative representative dot plots indicating percentage of activated splenocytes of 

mice treated with PBS, pSIN-, pIL2, or pSIN-IL2. Square frames represent the gated 

region based on negative controls. In A and C, data shown are mean  standard error of 

the mean (n = 4-5). 

 

 

 

 

 



 135 

4.3.10 In vivo expression of IL2 in B16-OVA tumors 

As shown in Fig. 4.10, a significant amount of IL2 mRNA was detected in the 

B16-OVA tumors treated with pSIN-IL2, but not in tumors treated with pSIN-. A 

similar trend for IL2 protein was observed in blood, although not statistically different, 

likely due to the smaller sample size (data not shown).  
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Fig. 4.10 In vivo expression of IL2 in B16-OVA tumors 

In vivo expression of IL2 in B16-OVA tumors. Twenty hours after the last treatment with 

PBS, pSIN-, pIL2, or pSIN-IL2, tumors were collected. Total RNA was extracted from 

tumor tissues to quantify IL2 expression using qRT-PCR. Data shown are mean  

standard error of the mean (n = 3-4). Different letters indicate significant differences (p < 

0.05). 
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4.4 Discussion 

We have previously reported that the replicase-based plasmid, pSIN-, has a 

strong antitumor activity by enabling tumor cells transfected with it to produce dsRNA, 

which is pro-apoptotic and activates innate immunity (Absher & Stinebring, 1969; B. L. 

Rodriguez, et al., 2011).  The pSIN-IL2 multigene plasmid construct used in the present 

study represents an improvement over the pSIN- plasmid for melanoma treatment. In 

order to improve the antitumor activity of the pSIN-, we cloned mouse IL2 into it. A 

high level of IL2 was detected in cells transfected with pSIN-IL2 (Fig. 4.2), and the level 

of IL2 produced by the pSIN-IL2 transfected cells was dependent on the dose of the 

pSIN-IL2 used (Fig. 4.2B).  The inclusion of the IL2 gene in the pSIN- plasmid enabled 

the plasmid to effectively activate T cells and NK cells in mice (Fig. 4.9), which may 

explain the significantly stronger antitumor activity of the pSIN-IL2 plasmid in B16-

OVA tumor-bearing mice, compared to the pSIN- (Fig. 4.7)  

The antitumor activity of dsRNA have been well documented (Absher & 

Stinebring, 1969; Friedrich, et al., 2004; Hirabayashi, et al., 1999; Le, et al., 2009; Le, et 

al., 2008). Polyriboinosinic-polyribocytidylic acid (poly I:C), a synthetic dsRNA, has 

been used as the standard to evaluate the effect of dsRNA in many animal models as well 

as in clinical trials (Absher & Stinebring, 1969; Fujimura, et al., 2006; Le, et al., 2009; 

Okada, et al., 2005). Poly (I:C) was found to slightly delay tumor growth, and it is not 

practical to increase its antitumor activity by increasing its dose because of the dose-

limiting adverse effects (Meier, et al., 1970; Okada, et al., 2005; Pimm & Baldwin, 
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1976). We have previously reported that the dsRNA-producing pSIN- plasmid 

significantly inhibits tumor cell growth both in vitro and in vivo(B. L. Rodriguez, et al., 

2011), likely due to the production of the pro-apoptotic and immunostimulatory dsRNA 

by tumor cells transfected with the pSIN- plasmid (B. L. Rodriguez, et al., 2011).  

IL2 is approved for use in the treatment of advanced melanoma due to its ability 

to modulate immune response and stimulate the activation and proliferation of T-cells 

and NK cells (Riker, et al., 2007). In the present study, we tested whether including IL2 

gene into the pSIN- plasmid will improve the resultant antitumor activity. We found that 

treatment of tumor-bearing mice with the pSIN-IL2 plasmid significantly increased the 

percentages of activated CD4
+ 

T cells, CD8
+
 T cells, and CD49

+
 NK cells in peripheral 

blood and splenocytes of the mice, as compared to treatment with the pSIN- plasmid 

(Fig. 4.9A, C), indicating that the IL2 gene in the pSIN-IL2 plasmid had helped to incite 

the activation of circulating T cells and NK cells (Fig. 4.9). H&E micrographs also 

showed that the pSIN-IL2 plasmid induced an elevated number of infiltrating immune 

cells both in the center and in the periphery of the tumors, as compared to pIL2 or pSIN- 

(Fig. 4.8). The activation of the T cells and NK cells by the IL2 may explain the 

enhanced antitumor activity from the pSIN-IL2 (Fig. 4.7). It is known that IL2 regulates 

the Treg lymphocyte balance, which suppresses antitumor immune responses (Shimizu, 

Yamazaki, & Sakaguchi, 1999; Tanaka, Tanaka, Kjaergaard, & Shu, 2002). Yao and 

colleagues showed that treatment of mice with an IL2-expressing plasmid led to a 

reduction of Foxp3
+
 Tregs populations in peripheral blood (Yao et al., 2011). We found 
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high levels of IL6, a proinflammatory cytokine, in the serum samples of mice that were 

treated with pSIN-IL2 (data not shown). It was shown that IL6 decrease Foxp3 

expression and down-regulates Tregs in vitro and in vivo (Korn et al., 2008; Lal et al., 

2009), which may also explain the pSIN-IL2 plasmid’s ability to activate T cells and NK 

cells.   

The present study is also designed to actively target the RNA replicase-based IL2-

expressing plasmid into tumor cells more specifically, therefore allowing the tumor cells 

to preferentially take up the plasmid, generate intracellular dsRNA and IL2, and then 

undergo apoptosis by committing “suicide”. We chose to target the sigma receptor 

because it is overexpressed in many tumor cells (Bem et al., 1991; Vilner, et al., 1995). 

Radiolabeled sigma-receptor ligands have been extensively used as imaging agents in 

melanoma (John et al., 1993), breast cancer (Caveliers, Everaert, John, Lahoutte, & 

Bossuyt, 2002), and prostate cancer (John, Vilner, Geyer, Moody, & Bowen, 1999; 

Kashiwagi et al., 2007). In the present study, anisamide was chemically conjugated onto 

the cationic liposomal carrier, which was then complexed with the pSIN-IL2 plasmid to 

target it into sigma receptor-overexpressing murine tumor cells in vitro and in vivo. Data 

from previous in vitro and in vivo studies showed that anisamide has the similar binding 

affinity to sigma receptors as 4-Iodobenzamide (I123-IDAB), a radiolabeled benzamide, 

used to visualize sigma receptors in vivo (Everaert, Flamen, Franken, Verhaeghe, & 

Bossuyt, 1997; Megalizzi, Le Mercier, & Decaestecker, 2012). B16-OVA cells were 

derived from the highly aggressive B16-F10 mouse melanoma cells (Brown, et al., 2001). 

They express high level of sigma receptors (S. D. Li, et al., 2008). Our in vitro data 
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showed that the anisamide-conjugated cationic liposomes more effectively delivered the 

pSIN-IL2 plasmid into the B16-OVA tumor cells than the anisamide-free liposomes (Fig. 

4.3). Importantly, pSIN-IL2 complexed with the anisamide-conjugated liposomes also 

more effectively controlled B16-OVA tumor growth in mice than pSIN-IL2 complexed 

with the anisamide-free liposomes (Fig. 4.6), confirming the feasibility of using 

anisamide or similar sigma receptor ligands for future targeted gene therapy of 

melanoma. 

Understanding the uptake mechanism and intracellular distribution of plasmid 

liposome complexes is important in order to design optimal gene delivery systems. The 

uptake of pSIN-IL2/Rho-AA-PEG-LP complexes were much higher than pSIN-IL2/Rho-

PEG-LP after incubation at 30 min (Fig. 4.5). The pSIN-IL2/Rho-PEG-LP complexes 

appear on the cell surface; with minor internalization at 180 min. The anisamide 

conjugated on the surface of the liposomes increased the interaction of the lipoplexes 

with cell membrane as well as the total amount of the lipoplexes entering the cytosol. 

There is strong correlation between the cellular uptake of complexes and the transfection 

efficiency of the pSIN-IL2/AA-PEG-LP complexes (Fig. 4.5). Interestingly, we observed 

that the dissociation of pSIN-IL2 from the pSIN-IL2/Rho-AA-PEG-LP lipoplexes 

occurred as early as 60 min after the addition of the lipoplexes into the cell culture, 

whereas the dissociation of pSIN-IL2 from the pSIN-IL2/Rho-PEG-LP lipoplexes did not 

occur until around 180 min later (Fig. 4.4). Dissociation of the plasmid from the 

lipoplexes is critical for nuclear translocation of the plasmid. The anisamide on the 
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lipoplexes facilitated the uptake of the lipoplexes by the B16-OVA cells and thereby 

increased the expression of the IL2 gene (Fig. 4.3).  
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4.5 Conclusions 

In conclusion, we reported a novel strategy to further improve the antitumor 

activity the RNA replicase-based pSIN-β plasmid by including an IL2 gene in the 

plasmid to boost antitumor immunity by activating T cells and NK cells. We also 

confirmed the sigma receptor as a potential target for future targeted gene therapy of 

melanoma.  
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Chapter Five  

General Conclusions  

The present work represents a departure from the conventional paradigm in tumor 

dsRNA therapy. Instead of dosing with synthetic dsRNA directly, an RNA replicase-

based plasmid was actively targeted into tumor cells, enabling the cells to produce their 

own dsRNA and then commit ‘suicide’. The replicase based plasmid stimulates both 

innate and adaptive immune response and induces both local regional and systemic anti-

tumor effects.  The response due to the pSIN-IL2 plasmid can be grouped as transgene 

related (IL2 and nsp4) and pDNA/LP related. The mechanism of action of this plasmid is 

expected to be by three ways: the generation of dsRNA that is known to have multiple 

direct and indirect pro-apoptotic, anti-proliferative, anti-angiogenic, and 

immunostimulatory activities; IL2 expression that promotes the proliferation of cytotoxic 

CD8
+
 T-cells, CD4

+
 T-cells, and natural killer (NK) cells, and unmethylated CpG motifs 

that activate innate immunity.  

Intracellular dsRNA is more effective than extracellular dsRNA in promoting 

tumor cells to undergo apoptosis and orchestrate the initiation of adaptive immune 

responses. We proposed and validated an alternative, indirect dsRNA delivery approach, 

which involved the delivery of plasmid DNA (pSIN-β) into tumors. The pSIN-β plasmid 

encodes a replicase complex that generated dsRNA inside tumor cells. We established 

that dsRNA was produced inside the tumor cells, and further found it to have antitumor 

activity when administered peritumorally in TC-1 tumor bearing mice. The anti-tumor 
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activity from the pSIN-β plasmid required functional replicase genes nsp1-4. We also 

found that unmethylated CpG motifs contributed to the anti-tumor activity of the pCMV-

β plasmid.  

We further improved the pSIN-β plasmid by targeting it to epidermal growth 

factor receptor (EGFR) overexpressing cancer cells. We utilized the overexpressed EGFR 

as the target to more specifically deliver the pSIN- β plasmid into tumor cells by 

complexing it with cationic liposomes surface-conjugated with EGF, a known EGFR 

ligand.  We evaluated EGF-PEG liposomes and pSIN- β plasmid at various weight per 

weight ratios in terms of particle size/zeta potential, DNase protection, and MDA-MB-

468 uptake. In vitro uptake of the pSIN- β lipoplexes by human breast adenocarcinoma 

cells with varying expression levels of EGFR indicated a direct correlation to reported 

EGFR density of the cells. We further investigated the effect of pre-incubation with free 

ligand and found the uptake was inhibited on the cells with the highest amount of EGFR 

expressed. The pSIN-β plasmid complexed with EGF-PEG liposomes was more effective 

at controlling the growth of MDA-MB-468 tumors in mice compared to the EGF-free 

PEG liposomes. We found that that mice treated with the EGF-PEG liposome complexed 

with pSIN-β had greater pro-apoptotic, anti-proliferative, and anti-angiogenic activities 

compared to tumor in mice treated with the EGF free lipoplex.  

Lastly we improved the pSIN-β plasmid by incorporating interleukin-2 (IL2) into 

the plasmid. The pSIN-IL2 plasmid was then targeted to melanoma cells that over-

express sigma receptors using anisamide conjugated cationic liposomes. In vitro uptake 

was significantly higher with the anisamide conjugated lipoplexes compared to the PEG-
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LP alone. The pSIN-IL2 plasmid was more effective in controlling the growth of B16-

OVA tumor cells in mice when complexed to the AA-PEG-LP than with the PEG-LP. 

The cellular distribution of the lipoplexes revealed earlier disassociation of the pSIN-IL2 

complexed with the AA-PEG-LP than with the PEG-LP.  The intracellular localization of 

the lipoplex revealed that lipoplexes prepared with AA-PEG-LP had higher levels of 

internalization compared to the PEG-LP lipoplexes. The pSIN-IL2 plasmid was more 

effective in controlling the growth of B16 melanoma in mice compared to pSIN-β or 

pIL2 plasmid. Treatment with pSIN-IL2 plasmid increased activated CD4
+
 T cells, CD8

+
 

T cells, and NK cells in the peripheral blood and spleen of B16 melanoma-bearing mice.  

In conclusion, we reported a novel strategy to generate intracellular dsRNA to 

control tumor growth; additionally by targeting the plasmid more specifically to tumor 

cells we further improved the antitumor activity of the plasmid. Incorporation of IL2 gene 

in the plasmid was found to boost antitumor activity likely by activating T cells and NK 

cells. The sigma receptor was also confirmed to be a potential target for future targeted 

gene therapy for melanoma.   

Various aspects of the pSIN-IL2 plasmid may be improved upon including the 

insertion of a tumor specific promoter, cloning of an IRES site in between the replicase 

complex and IL2 which would allow for both genes to be transcribed by the same 

promoter making it bicistronic.  

There are a considerable amount of parameters that should be taken into account 

when using a lipoplex system including serum stability, targeting, biodistribution, dose, 

number of administrations, and mixing parameters. A significant amount of work needs 
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to be done for scale-up and commercial development. The present work should be viewed 

in terms of efficacy against specific tumor models.  Future work should focus on 

understanding the mechanism for the delivery system of plasmid DNA, engineering a 

delivery vehicle that is able to protect plasmid DNA from degradation and prevent 

interactions with blood components for systemic delivery of plasmid DNA. A targeted 

lipoplex with sufficient stability until it reaches site of action remains a daunting task. 

More work is needed for in vivo systems and parameters that affect release of plasmid in 

tumor microenvironment. In the next 5-10 years, we expect more studies further 

validating and improving the efficacy of this plasmid DNA-based tumor dsRNA therapy, 

which will provide the underpinnings for future translational studies of this approach. 
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