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The propagation and stability of waves in relativistic astrophysical plas-

mas is presented. Our investigation, using a relativistic two-fluid model, is dif-

ferent from previous relativistic fluid studies in that the plasma is treated fully

relativistically, both in temperature and in directed speed. Much of this study

is devoted to relativistic linear waves in pulsar pair plasmas, with a view to elu-

cidating a possible mechanism for pulsar radio wave emission. We also study

interesting nonlinear exact solutions in both relativistic and non-relativistic

plasmas.

Pulsar pair plasmas can support four transverse modes for parallel prop-

agation. Two of these are electromagnetic plasma modes, which at high tem-

perature become light waves. The remaining two are Alfvénic modes, split into

a fast and a slow mode. The slow mode, always sub-luminous, is cyclotron

(Alfvén) two-stream unstable at large wavelengths. We find that temperature

effects, within the fluid model used, do not suppress the instability in the limit
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of large (finite) magnetic field. The fast Alfvén mode can be super-luminous

only at large wavelengths; however, it is always sub-luminous at high tem-

peratures. In this incompressible approximation, only the ordinary mode is

present for perpendicular propagation.

We discuss the implications of the unstable mode for radio emission

mechanisms. For typical values, the instability is quite fast, and the waves

can grow to sizable levels, such that, the magnetic modulation could act as a

wiggler. The pulsar primary beam interacting with this wiggler, could drive a

free electron laser (FEL) effect, yielding coherent radiation. Investigation of

the FEL in this setting and demonstrating that the frequency spectral range,

and luminosities, predicted by this mechanism is well within the observed range

of radio frequency (and luminosity) emissions, is one of the principal results of

this dissertation. It is tempting to speculate, then, that an FEL-like radiation

effect could be responsible for the highly coherent radio wave emissions from

pulsars.

In the study of nonlinear exact solutions we have generalized the results

to the incompressible Hall Magnetohydrodynamics (HMHD). We find that for

cases when the plasma is weakly magnetized (VA � c) the frequencies of the

modes decrease as the wave amplitude (effective mass) increases. For very

strongly magnetized plasmas the light-like modes tend to be asymptotically

linear; the frequency is unaffected by wave amplitude.
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Chapter 1

Introduction

The present work deals with wave propagation in astrophysical plasmas.

The plasma state is categorized by the fundamental plasma parameters: den-

sity n, temperature T , magnetic field B, and the derived parameters: plasma

frequency ωp, cyclotron frequency ωc, thermal velocity vth, etc. In astrophys-

ical plasmas these parameters cover such a wide range of values that it is

difficult to establish a good definition for astrophysical plasmas.

Additionally, in some astrophysical settings, such as jets, accretion disks

surrounding compact objects and pulsar magnetospheres, the plasma is often

relativistic. A plasma is considered relativistic [1] when one or both of the

following is true. (1) The bulk velocity of the plasma V is close to the speed

of light c, that is, V ∼ c. (2) Its random energy (temperature) is of the

order (or larger) of the rest mass energy of the particles that form it, that is,

T ∼ mc2/kB.

It is well known that the plasma state is rich in the different types of

waves that it can support.

Studies of wave propagation in plasmas have been an active field ever

since plasmas were discovered. The first studies began with Langmuir in the
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1920’s, when he identified certain phenomena with wave motions in arc dis-

charges. In 1929, Tonks and Langmuir [2] presented the theory of these waves.

Their studies focused on unmagnetized plasmas. Just after their work, Hartree

in 1931 [3] and Appleton in 1932 [4] studied radio wave propagation in the

ionosphere, which led to the magnetoionic theory. In 1942, Alfvén [5], moti-

vated by astrophysical implications, studied waves in magnetized plasmas. He

modeled the plasma as a highly conductive and incompressible fluid. During

the 1940’s and 1950’s, the kinetic theory of plasmas was developed. One of

the most important aspects studied during this time was plasma instabilities,

which involves waves in some exponentially growing mode.

During these years, and after the second World War, the study of as-

trophysical phenomena was boosted, mainly, by the invention of the radar.

Astronomers were pointing radio telescopes to the sky in search for signals

that could be analyzed and identified. Among others, one of the most impor-

tant discoveries was that of radio pulses emitted by pulsars.

After the discovery of pulsars, physicists and astronomers alike em-

barked on a quest to study what a pulsar was and how the pulsar’s radio

pulses were created. It was soon realized that pulsars were neutron stars and

the pulses where being generated in the star’s atmosphere, now called the

magnetosphere.

Understanding how the magnetosphere works, and the type of waves

that it can support, was crucial in developing a theoretical model that could

explain those pulses.
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As we will explain in Chapter 3, pulsar plasmas are composed of two

main ingredients: a relativistic charged primary beam and the secondary rel-

ativistic beams. The secondary relativistic beams are basically composed of

electrons (e−) and positrons (e+). Such plasmas are sometimes called pair

plasmas.

The study of wave propagation in pulsar plasmas has, therefore, focused

on understanding the propagating modes in magnetized pair plasmas. Also,

one of the aims is to understand the instabilities generated under the pulsars’

magnetospheric conditions. The inclusion of temperature has also been one

of the biggest concerns, and one of the greatest challenges as well [6], because

many of the instabilities found were thought to be suppressed at high temper-

atures, even though the actual temperatures of pulsar pair plasmas was not

known. Until recently [7], it was shown that the e−-e+ distribution function

of such plasmas is likely to be Maxwellian with temperatures very close to

T ∼ moc
2/kB, i.e., the average random energy is of the order of the rest mass.

Therefore we face the following problem: much of the existent liter-

ature on modes (see, e.g., [6, 8, 9, 10, 11, 12], and references therein) and

instabilities employ relativistic cold fluid models (see, e.g., [9]). Even in ki-

netic theory treatments, analytically convenient particle distribution functions

(such as waterbag) were assumed to derive dispersion relations, without much

physical justifications [8, 12]. When more appropriate distributions (such as

the Maxwellian) are investigated [11], the range of temperatures is restricted

(too low, T � mc2/kB, or too high, T � mc2/kB).
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In this work, we study wave propagation and dispersion relations in

astrophysical plasmas. This work is novel because we analyze the temperature

effects, at T ∼ mc2/kB, on propagating waves in pulsar pair plasmas (see

Chapter 4). For this, we use (see Chapter 2) a fully relativistic fluid model:

relativistic in both temperature and directed speed.

We find (see Chapter 4) that even in the range of temperatures relevant

to pulsar magnetospheres, the instabilities are not suppressed. This important

result has lead us to investigate a mechanism that could possible explain the

main features of the pulsars’ radio emissions: see Chapter 5.

Last, in Chapter 6, we study nonlinear waves in cold relativistic plas-

mas. These non-linear waves, could help explain some of the properties seen

in turbulent space plasmas.

We will now briefly describe some of the physical and observational

properties of pulsars; these properties will be needed throughout this text.

1.1 Pulsars

The history of pulsars dates back to the year 1967. In that year, Jocelyn

Bell, a young graduate student, discovered a series of radio pulses [13] using

a radio antenna designed by her thesis supervisor, Antony Hewish. (For a

complete review, of this remarkable discovery see, for example, [14]). The

intensity of such radio pulses varied over a wide range in strength, but, they

had the remarkable property of being periodic. The precision of the periodicity
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of the pulses is such that it has been compared with that of atomic clocks.

Because of this, and the later identification of the phenomenon with neutron

stars, they were coined pulsars for “pulsating stars.”

The identification with neutron stars was not straightforward. Orbital

motion and rotation were among the several mechanisms proposed to explain

the pulses. The earliest studies of neutron stars, including studies by their

discoverers, speculated about dwarf stars and even planetary binary systems.

One of the main barriers for their association with neutron stars was that

neutron stars were a field of study only familiar to certain theoretical astro-

physicists, who were primarily concerned with different states of matter and

their implications to the surrounding gravitational field as precursors to black

holes.

The possibility that a pulsar was a planet (or some kind of a satellite)

orbiting a massive star was ruled out by Ostriker in 1968, due to concerns

about gravitational radiation [15]. The energy losses through this radiation

would imply a fast decrease in orbital period, something that was not in accord

with the pulse’s periodicity. Early reports showed that the basic periodicities

of pulsars were stable to a precision better than one part in 107 per year. There

was the added problem that the planet would be disrupted by tidal forces.

The short periods, from milliseconds to a few seconds, showed that the

objects producing the pulses must also be very compact compared to normal

stellar objects. Dwarf stars were obvious candidates. Rotating white dwarfs,

for example, are expected to be stable for rotation periods of a few seconds or
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more, but with shorter periods, such as the ones found in most pulsars, they

would be destroyed by centrifugal forces, as shown below.

The centrifugal force of a spinning star can be determined by assuming

that the star is spherical, has an uniform density ρ with radius r and angular

velocity w. The centrifugal force on a mass at its equator can be balanced by

the gravitational force

mw2r =
GMm

r2
(1.1)

=
Gm

r2
4π

3
ρr3.

Therefore, the density is (w = 2π/P )

ρ =
3π

GP 2
. (1.2)

For example, periods of P = 1 s require densities greater than 108g cm−3 which

is just within the density range of a white dwarf star. However, for periods as

short as 1 ms, much higher densities ∼ 1014 g cm−3, such as those of neutrons

stars, are required. The other impossibility of the dwarf star theory is that

it is made of material that will eventually form a disk-like equatorial region,

destroying the star.

Therefore, the fast-spinning neutron star model, first considered by

Pacini (1967) [16] and Gold (1968) [17], was the simplest method of obtaining

periods in the observed range. Further, some of the fast rotating pulsars are

known to coincide with supernova remnants, and it was suggested long before

that neutron stars would be formed in supernova explosions.
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Thus, it had become quite evident that the neutron star model was

superior. It was also clear that the neutron star model had to involve a type

of “lighthouse effect”, where the emission beam sweeps past our line of sight

once per rotation. However, the mechanism responsible for producing the

pulses remained, and still remains, the most difficult to understand.

As we will show in Chapter 3, the radiation beam is, probably, emitted

from the poles of the neutron star, where the conditions surrounding it, such

as its magnetosphere, play a key role. The apparent brightness temperatures

associated with the emitted radio pulses are such that the emission mechanism

must be highly coherent, as we will explain it in Chapter 5.

1.1.1 Pulsar properties

The physical conditions inside a neutron star are very different from

other types of stars. The average density is approximately∼ 1014−1015 g cm−3,

these densities are even larger than that of nuclear matter. Its composition

was first studied by Baade and Zwicky in 1934 [18] and Oppenheimer and

Volkov in 1939 [19]. It is probable (see, e.g., [20]), that the star’s surface

is composed of a solid crust made of iron nuclei and a sea of electrons with

densities ρ ∼ 106 g cm−3. Going inward, the density increases more, to a

point where protons and electrons fuse to form neutrons, creating the neutron-

rich nuclei of the inner crust. Deep into the star, the crust dissolves fully at

ρ ∼ 2× 1014 g cm−3, where the largest part of the neutron star is made up of

a sea of free, superfluid neutrons.
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Theoretical calculations of this highly compressed matter in a form of

equation of state, predict [20] a maximum neutron star mass of about 2Ms,

where Ms ≈ 2×1033 g is the solar mass. Observational measurements of binary

pulsars [21] are consistent with a typical pulsar mass of 1.5Ms [20].

The associated moment of inertia I = kMR2, where k = 2/5 for a

sphere of uniform density gives I ∼ 1045 g cm2 for a star of radius R = 10 Km

and M = 1.5Ms.

The pulsar’s pulsed periods are observed to increase with time. The

spin-down in pulsars are thought to be due to loss of rotational kinetic energy

via ejected particles and electromagnetic radiation at the rotation frequency.

The increasing rate Ṗ ≡ dP/dt can be associated to the rate of loss of rota-

tional kinetic energy by

Ė = − d

dt

(
Iw2

2

)
= −Iwẇ = 4π2IṖP−3 , (1.3)

the quantity Ė is called spin-down energy and it represents the total output

power by the neutron star. For a neutron star with I = 1045 g cm2, Eq. (1.3)

gives

Ė ≈ 4× 1031 erg s−1

(
Ṗ

10−15

)(
P

s

)−3
. (1.4)

Where, for a “normal” pulsar, P = 0.2 − 0.5 s and Ṗ ∼ 10−15 s s−1. For

“millisecond” pulsars, however, P ∼ 3 ms and Ṗ ∼ 10−20 s s−1.

The estimates for age and magnetic field of pulsars are based on the

assumption that the neutron star is in a vacuum. This is, as we will show in

8



Chapter 3, very unlikely. Therefore, the following numerical estimates should

be interpreted with some care.

The radiation power emitted by a rotating magnetic dipole with mo-

ment |m| is given by [22]

Pr =
2

3c3
|m|2ω4 sin2 θ, (1.5)

where θ is the angle between the magnetic moment and the spin axis. By

equating Pr, with Eq. (1.3), one can derive the rotational frequency evolution

ẇ = −
(

2|m|2 sin2 θ

3c3I

)
w3 , (1.6)

or it can also be expressed as a power law (w = 2π/P )

Ṗ = KP 2−n, (1.7)

where n = 3 is for a pure magnetic dipole and K is taken to be a constant.

Values of n, for typical pulsars vary from n = 1.4 to n = 2.9 [21].

The pulsar’s magnetic field strength (B) can be estimated from Eq.

(1.6), since the magnetic moment is related to B = |m|/r3, so

Bo ≡ Br=R =

(
3c3IṖP

8π2R6 sin2 θ

)1/2

, (1.8)

Bo ≈ 1012 G

(
Ṗ

10−15

)1/2(
P

s

)1/2

(1.9)

where R = 10 km, sin θ = 1 and I = 1045 g cm2. Last, the characteristic age of

the pulsar can be estimated to be [23]

tc =
P

2Ṗ
∼ 16 Myr

(
Ṗ

10−15

)−1(
P

s

)
. (1.10)
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1.1.2 Observational features

Forty three years later, the observational characteristics of pulsars are

now well established. However, the mechanism that produces the radio pulses

is still not understood, despite much work and effort to explain it.

Here we will summarize the most important aspects. For a complete

review, see, for example, [14]. At present roughly 1600 pulsars are known.

Figure 1.1 demonstrates the basic pulsar signal, where intensity is plotted

as a function of time. As we have seen above, the standard interpretation

is that these pulses are produced by a lighthouse effect. Regardless of the

pulse intensity, the basic timing of pulses is periodic. If the resolution time

is reduced to the order of milliseconds, a more complex pulse structure is

revealed. Individual pulses are found to consist of two or more subpulses;

despite this, the shape of the integrated profile is quite stable. An integrated

pulse profile is the addition of many hundreds of pulses together, a process

known as folding, see Fig. 1.2.

Although the majority of pulsars discovered emit in the radio frequency

band, they have also been detected in the optical, X-ray and gamma-ray fre-

quencies. In general the radio-frequency flux density is given by the following

power law

F ∝ να (1.11)

where F is the flux density (see Chapter 5), ν is the frequency and α is the

spectral index. The observed range of spectral indices is broad (−4 . α . 0)
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Figure 1.1: A 22 s time series from the Arecibo radio telescope showing single
pulses from a typical pulsar. Insets show expanded views of selected pulses.
Taken from “Handbook of Pulsar Astronomy”.
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Figure 1.2: Integrated pulse profiles from a sample of nine pulsars. Taken from
“Handbook of Pulsar Astronomy”.
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with a mean of −1.8 ± 0.2, see Fig. 1.3. For a pulsar at distance d, the

luminosity is given by [21]

L ∼ 1027 erg s−1
(
F1400

mJy

)(
d

kpc

)2

, (1.12)

where F1400 is the mean flux density at 1.4 GHz. Typical pulsar luminosities

vary from 1025 to 1028 erg s−1. The brightness temperatures, corresponding to

these fluxes and luminosities, are extremely large. The brightness temperature

(see Chapter 5) corresponds to the temperature of a black body radiating the

same observed radio intensity. Typical values are in the range of 1023 to 1031 K.

Therefore any radio emission theory must be capable of explaining ra-

dio broadband emission, at both radio and optical frequencies, and the high

brightness temperatures associated with the corresponding luminosities. As

we will show in Chapter 5, our proposed model gives the correct expected

frequencies and luminosities.
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Figure 1.3: Sample flux density spectra for two pulsars showing different types
of spectral behavior. Taken from “Handbook of Pulsar Astronomy”.
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Chapter 2

Model

In this chapter we will introduce the relativistic fluid model to be used.

This fluid model is derived by assuming that the particles’ distribution function

(f) is a local relativistic Maxwellian, that is

fs =
nRzs

4πK2(zs)
exp[−Es/Ts], (2.1)

where E =
√
m2c4 + P 2c2 and T are, respectively, the energy and temperature

of the species s. In our units, the Boltzmann’s constant (kB) is set to one (kB =

1). Then the dynamics of such particles are described by the following (see,

e.g.,[24, 25, 26, 27]) relativistic fluid equations coupled to the electromagnetic

field via:

∂µT
µν
(s) = F ναjα(s) , (2.2)

where

T µν(s) = hsU
µ
(s)U

ν
(s) + psη

µν (2.3)

and

F µν = ∂µAν − ∂νAµ (2.4)

are, respectively, the energy-momentum tensor of the fluid species s and the

electromagnetic field tensor. Greek indices run from 0 to 3. With the following
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definitions: Uµ
s = {γs, γsVs/c} is the fluid four-velocity, γ = (1− V 2/c2)−1/2 is

the Lorentz factor, Aµ = {φ,A} is the four vector potential, ηµν = (−1, 1, 1, 1)

is the Minkowski tensor, jµ(s) = qsnR(s)U
µ
(s) is the four current, ps is the pressure

and hs is the enthalpy density per unit volume given by [24]

hs = nRmsc
2K3(zs)

K2(zs)
≡ nRmsc

2G(zs) , (2.5)

where Kj is the modified Bessel function of j kind, with argument zs =

msc
2/Ts; qs, ms, nR and Ts are respectively the invariants: charge, rest mass,

rest density and temperature for the species s. The relativistic equations of

motion (2.2) can be broken down into their zero and three components. The

three or vector component gives (the zero component would not be used):

ns
d

dt
(msGsγsVs) +∇ps = qsns [E + (Vs ×B)/c] (2.6)

where d/dt ≡ ∂/∂t + Vs · ∇. Equation (2.6) shows that when temperature

effects are properly included the effective momentum of the charged fluid s,

becomes P = mGγV . Note that G(zs) is a function of temperature only. To

proceed, we assume that our system is a two-fluid system. That is, the system

is composed of two types of particles. The particles’ masses could greatly differ

(or be equal) but their charges are equal and opposite, namely: positive (+)

and negative (−). Then the equation of motion (2.6) can be cast in a vortex

dynamical form by taking its curl1

∂Ω±
∂t

= ∇× (V± ×Ω±) , (2.7)

1The term ∇ × (n−1∇p) 6= 0 even for barotropic pressure, that is p = p(n), because of
the γ factor that is a function of space and time (n = γnR). However one can write it out
as ∇× (n−1∇p) ∝ ∇T ×∇σ = 0 for homogeneous entropy σ. Where ∇h = T∇σ+ n−1∇p.
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where

Ω± ≡ B ± µ±∇× γ±V± (2.8)

is the generalized vorticity. Here, velocities have already been normalized

to the speed of light c, lengths to c/ω̄c, time to ω̄c and magnetic field to an

uniform ambient field Bo. With the following definitions: γ± = (1−|V±|2)−1/2 ,

µ± ≡ m̄±/(m̄+ + m̄−), ω̄c = eBo/c(m̄+ + m̄−), ω̄2
p = 4πnoe

2/(m̄+ + m̄−),

n+ = n− ≡ no; where e is the electron’s charge magnitude and no is the

uniform density in each fluid’s rest frame.

Notice that µ is a reduced mass and m̄± = moG(z±) should be viewed

as and “effective mass” that depends on the temperature through the func-

tion G(z±) = K3(z±)/K2(z±) with argument z± = mo/T±; mo represents the

rest (bare) mass for each species. For example, for ion-electron plasmas it is

different for each species.

• For low temperatures T± � mo , the large argument expansion (z± � 1)

of G(z±) gives G(z±) ≈ 1 + (5/2)T±/mo, therefore

m̄± ≈ mo +
5

2
T± . (2.9)

Thus, the effective mass is composed of the rest (bare) mass and a small

temperature contribution. Buy using this limit in Eq. (2.5), one immediately

recognizes the familiar expression for the enthalpy of a perfect non-quantum

gas of point particles. That is,

h± = nomoc
2 +

5

2
noT± . (2.10)
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In a cold plasma, of course, m̄± = mo.

• For ultra-relativistic temperatures T± � mo (z± � 1), then G(z±) ≈

4T±/mo, leading to

m̄± ≈ 4T± . (2.11)

Equation (2.7) represents a system of two equations with three un-

knowns. The system is completed by using the curl of Ampere’s Law, which

in our normalizations becomes:

∇× (∇×B) +
∂2B

∂t2
=

c2

V̄ 2
A

∇× [γ+V+ − γ−V−] , (2.12)

where V̄A = Bo/
√

4πno(m̄+ + m̄−) . Note that in Eq. (2.12) the explicit

expression for the current, j = eno(γ+V+ − γ−V−), has been used; which

makes it valid in any frame. From now on, we assume that the equilibrium

species temperatures are equal (T+ = T− = T ) and we call G(z) simply G(T ).

It is important to mention that this fluid model, composed of equa-

tions (2.7) and (2.12), is fully relativistic, both in directed speed as well as in

temperature. One can see from Eq. (2.11), for example, that for high rela-

tivistic temperatures, the fluid’s inertia is no longer provided by the mass, but

rather by the random motion of the particles. This is the model we will use

to study relativistic waves in astrophysical plasmas. But before that, we need

to introduce the physics of pulsar magnetospheres.
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Chapter 3

Physics of Pulsars Magnetospheres

3.1 Introduction

The pulsar’s radio emissions are thought to be generated in a region

called the pulsar magnetosphere. The magnetosphere is, as one can infer from

its name, a magnetized atmosphere, but unlike the Earth’s, it is charged. The

basic description of the magnetosphere due to Goldreich and Julian (1969,

hereafter GJ) [28] is known to be incomplete. One of the reasons is that

their model assumes that the magnetic and rotational axes are aligned, and

therefore such a model cannot account for the lighthouse effect. Nevertheless,

it was the first model to point out that pulsars have magnetospheres and it

forms the basis for almost all theoretical studies of pulsars magnetospheres.

The energetics of the emission region were pioneered by Sturrock (1971) [29]

and Ruderman and Sutherland (1975) [30] (hereafter SRS). The SRS energetic

(emission) models, which are based on the GJ model, were the first to give a

detailed explanation of the characteristics and properties of the pulsar polar

caps. For this reason, the combined model of GJ and SRS, is called the “Pulsar

Standard Model.”

In this chapter we will describe the most important aspects of this
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model. We will first show that, if the neutron star is considered as a con-

ducting magnetized sphere, then, due to induced electric fields, it cannot be

surrounded by vacuum. Assuming, then, that the star has an atmosphere, its

electrodynamics will be described.

3.2 Pulsar magnetosphere: standard model

Because neutron stars have strong gravitational fields at their surfaces,

usually 108 times larger than the Earth’s, the first studies of the pulsar mag-

netosphere assumed essentially vacuum conditions (see, for example, Pacini

(1967) [16], Gold (1968) [17]). However Goldreich and Julian (1969) showed

that this is not the case. Knowing that the conductivity of a neutron star

is extremely high (see, for example, Manchester and Taylor [23]) and can be

considered infinite, they argued that inside the star E ·B = 0, or

[E + (w × r)×B/c]in = 0, (3.1)

where w = 2π/P is the angular velocity of the star (P is the period), and E

and B are the electric and magnetic fields. A neutron star in vacuum, idealized

as a magnetized conducting sphere with (dipole) magnetic and rotation axes

parallel, the Laplace’s equation, together with boundary conditions at the

surface, gives a quadrupolar potential

φ(r, θ) = −wBoR
5

6r3c
(3 cos2 θ − 1), (3.2)

where θ is the angle from the rotation axis, R is the star’s radius and Bo is the

magnetic field strength at the surface. What Goldreich and Julian realized is,
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that the electric field, associated with the quadrupolar potential given in Eq.

(3.2), has a nonzero component along the magnetic field at the surface of the

star

(E ·B)r=R = −wRB
2
o

c
cos3 θ 6= 0. (3.3)

Thus for a pulsar with period P = 0.2 s and Bo = 1012 G the corresponding

parallel electric field strength is

E‖ ≈
wBoR

c
≈ 109 V cm−1. (3.4)

This exerts on an electron and enormous force (q = 5× 10−10 statCoul)

Fe = qE‖ ≈ 5× 10−1 dynes , (3.5)

which is 12 orders of magnitude larger than the star’s gravitational force (M =

1.5Ms)

Fg ≈ 2× 10−13 dynes. (3.6)

Hence charge particles (electrons mainly) at the star’s surface will be

ejected into its surroundings, undermining the vacuum assumption and form-

ing the magnetosphere. The energy for ripping particles off the star’s surface

comes from the electric field Eq. (3.3) induced by the rotation of the mag-

netized star. Since the energy is of rotational origin with time the pulsar’s

rotational speed must slow down, as stated in the introduction.

Since strong induced electric fields pull material to fill the star’s sur-

roundings. Suppose now that there is an ample supply of plasma (surrounding
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the star) such that

E + V ×B/c = 0. (3.7)

Since Eq. (3.7) implies that the plasma is “frozen” to the magnetic field lines

and these are anchored to the star, then the velocity of the plasma can be

taken to be V = w × r. Thus the whole magnetosphere corotates as a solid

body with the star. However, as one moves away from the star (larger radius)

the velocity increases, and corotation cannot be maintained beyond a surface,

where V ∼ c, called the light cylinder, with radius

RL = c/w ≈ 5× 109

(
P

s

)
cm (3.8)

where P is in seconds. The associated charge density to Eq. (3.7) is given by

ρ =
1

4π
∇ ·E . (3.9)

Using E = −V ×B/c, a vector identity1 and knowing that the vorticity (with

spherical symmetry) is ∇× V = 2w, we get

ρ = −2B ·w/c+ V · ∇ ×B/c . (3.10)

After using Ampere’s law on Eq. (3.10) (second term right hand side) we

finally obtain

ρGJ = −w ·B
2πc

[
1− V 2

c2

]−1
≡ −w ·B

2πc
f (3.11)

where f = 1 + O(V 2/c2) = 1 + O(w2r2/c2). Equation (3.11) is called the

Goldreich-Julian or “corotating” density. It is the minimum density necessary

1∇ · (A×B) = B · ∇ ×A−A · ∇ ×B
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to screen out the parallel electric field (E ·B = 0) in the magnetosphere. The

f factor emphasizes that the corotating density is only valid inside the light

cylinder; see Fig. 3.1.
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E⋅B≠0


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Closed field 
lines

Open field lines

Rotational axis

Figure 3.1: Pulsar magnetosphere.

On Fig. 3.1 two distinct regions are shown, the closed field lines that

do not penetrate the light cylinder and the open filed lines that leave the star
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and penetrate the light cylinder. The open field line region defines the polar

cap which is centered on the star’s magnetic pole.

3.2.1 Polar cap model

The neutron star’s polar cap is defined by the “last open field line”.

However, in order to make numerical estimates of its size, we will use the “last

closed field line”, that is, the magnetic field line tangential to the light cylinder

surface. The equation for a (dipole) magnetic field line (in polar coordinates)

is

r = ro sin2 θ, (3.12)

for the last closed field line we have that ro = RL. Furthermore, as we can see

on Fig. 3.2, θp is the angle, from the magnetic axis to the last closed magnetic

field line. At this angle (r = R)

R = RL sin2 θp, (3.13)

or

sin θp =

√
2πR

cP
(3.14)

where we have used RL = c/w. Therefore we can estimate the size of the polar

cap radius

Rp ' R sin θp =

√
R32π

cP
≈ 1.5× 104 cm

( s
P

)1/2
(3.15)

for R = 10 km = 106 cm. With magnetic and rotational axes parallel, the

potential, at the center of the pole, will be negative with respect to the stellar
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Figure 3.2: Polar Cap Region.

environment, therefore electrons will stream along these lines from the star (or

equivalently one can find the electric field [Eq. (3.3)], at the center of the pole,

to be negative). The potential drop from the center of the pole to the edge of

the polar cap, can be estimated, from Eqs. (3.2) and (3.15), to be

∆φ ≈ 1

2
RBo

(
wR

c

)2

∼ 1011 − 1012 V. (3.16)

Consequently, particles with energies

E = q∆φ ∼ 1012 − 1014 eV (3.17)
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are expected. The Lorentz factor associated with these energies is

γ =
E

mec2
∼ 107, (3.18)

these particles constitute the primary particles in the SRS model [30].

3.2.2 Pair (e−, e+) plasmas

According to the SRS model, the high energetic charged primary parti-

cles will move along the open magnetic field lines. Their distribution becomes

one dimensional in momentum space, after they loose their perpendicular mo-

mentum through synchrotron radiation. The synchrotron radiation energizes

the stellar environment (nebula) surrounding the pulsar. As the primary par-

ticles keep streaming along B, they emit curvature radiation photons since the

magnetic lines are curved. The frequency of the “curvature photons” is

ωcur ≈ γ3
c

rc
∼ 1023 s−1, (3.19)

that is, the radiation would be in γ-rays; rc = 108 cm is the radius of curvature

and γ = 107. The curvature photons, constrained to move along field lines, will

eventually (since lines are curved) interact with the magnetic field producing

pairs γ + B → e− + e+, see Fig. 3.3. These pairs are so energetic that

they may radiate and go on to produce further pairs, creating an avalanche

of secondary particles. The secondary particles may be born into an excited

Landau level with energies E2/m2c4 = 1 + p2‖/m
2c2 + (2n+ 1± s)B/Bcr where

p‖ is the momentum along B; Bcr = m2c3/e~ ∼ 4.4 × 1013 G is the critical

magnetic field, the spin s can be ±1 and n is a nonnegative integer specifying
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the Landau level [7, 31]. After rapid synchrotron emission, the newly created

pairs that emit in these strong fields will be in the ground state, n = 0 and

1 ± s = 0, constrained to move along B. The “gap” (E · B 6= 0) or the

  E⋅B=0

E⋅B=0

E⋅B≠0

e e− e−

e−
e

e

e−





Bo

Figure 3.3: Pair production at the poles of neutron stars.

region where the above processes occur will eventually stop growing, after the

population of secondary pairs increases dramatically, such that, the condition

E ·B = 0 is achieved. It is in this region (where there is an ample supply of

pair plasma) that the observed radio emissions are produced. According to the

SRS model, the density of the pair plasma is n± = ΓnGJ , where Γ ∼ 103− 106

is a multiplication factor, nGJ = −w ·B/2πec ≈ 1011 cm−3 is the “corotating”

or GJ density. The energy of the pair plasma is γ± = (nb/n±)γb ≈ 103, where
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nb ∼ nGJ and γb ∼ 107 are, respectively, the density and Lorentz factor of the

primary beam.

Another property of the pair plasma is the relative streaming between

components. The possibility of streaming of this secondary plasma comes

from the requirement that the total charge density of the three components

(primary beam plus electrons and positrons) must be equal to the corotating

charge density, that is

ρb + ρ+ + ρ− = ρGJ , (3.20)

such that the parallel electric field is zero (E ·B = 0). Now, in the absence of

further pair creation or recombination, the three currents must be conserved

(constants), that is, ∇ · ji = 0, where i = 1, 2, 3. Therefore, for the primary

beam ∇ · jb = 0 implying jb = enbc = κB, where κ = constant. From this

we obtain that nb ∝ B. For the secondary plasma components j± = ρ±v± =

±jp = const. Since the pair plasma is neutral, then at the discharge region

(pair formation front) Eq. (3.20) implies

ρb = ρGJ , (3.21)

thus, the initial charge density must be supplied by the primary charged beam.

The situation changes as the flow propagates along B, because nGJ ∝ B cos θ

(θ is the angle between w and B), while nb ∝ B. Thus a deviation develops

between the two. Consequently, one type of secondary particles will be ac-

celerated (say, electrons) and the other (positrons) will be decelerated, such
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that

ρb + jp

(
1

v+
− 1

v−

)
= ρGJ (3.22)

holds at every point, screening out the electric field that could result from that

deviation. In the comoving center of momentum (CM) frame, i.e., the frame

that moves with the speed at which the pair was created, the positive and

negative streams move in opposite directions [32]. Therefore a streaming (also

called counter-streaming) effect will be produced.

Another important property is their temperature and, more impor-

tantly, their distribution function. The distribution function is critical in de-

termining the exact properties of waves in e−, e+ plasmas. Many of the existing

calculations in the literature have assumed analytically convenient distribution

functions without physical justification. However, recently, Arendt and Eilek

(2002) [7] have demonstrated that the distribution function of these plasmas

is very likely Maxwellian with temperatures very close to T ∼ moc
2. There-

fore, it is very important to determine the exact properties of waves in these

plasmas at such temperatures. For this, we investigate the relativistic fluid

model introduced in Chapter 2 to study propagation of waves in streaming

magnetized pair plasmas.
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Chapter 4

Relativistic Waves in Pulsar Plasmas

4.1 Introduction

We begin our study of relativistic waves in pulsar plasmas. Such

plasmas, as we mentioned above, are composed of the secondary relativis-

tic electron-positron (e−-e+) beams that stream along the magnetic field lines

coming from the poles of neutron stars. In such a scenario, we study rela-

tivistic linear waves using the relativistic fluid model introduced in Chapter

2.

First, we give a brief introduction to the analysis of linear waves in

plasmas. Then, we proceed to study waves at three angles of propagation:

parallel, perpendicular and oblique. For parallel propagation we find four

modes. One of them is unstable at short k. We analyze the implications

of relativistic temperatures in all the modes found. We find the slow Alfvén

mode to be two-stream unstable at long wave lengths and we show that this

instability is not suppressed at temperatures of T ∼ mc2. We also analyze

dispersion relations in the non-streaming limit.

We also calculate dispersion relations in a super strong magnetic field

and show that as temperature increases the cutoffs decreases. Last, we give
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numerical estimates of the growth rate (unstable mode) using the pulsar’s

constraints, and comment on the results and their implications for theories of

radio wave emissions. In this chapter we will follow Ref. [33].

4.1.1 Basic concepts

In the study of a dynamical system, linear analysis provides the simplest

and non-trivial, self-consistent method for solving any set of partial differential

equations that describes the physics or dynamics of a system. If, for example,

χ(x, t) and ζ(x, t) represent the dependent variables, that describes physi-

cal quantities in the dynamical system, and if the system allows a physical

perturbation, such as εχ1, where ε� 1 is a small quantity, then

χ = χo + εχ1 , (4.1)

here χo is the “zero order” or equilibrium variable and ε|χ1| � |χo| for all x and

t. The system of differential equations makes the other variables dependent

on χ, for example,

ζ = ζ(χ) = ζ(χo + εχ1). (4.2)

Since the dependence of ζ on χ is not linear in general, Taylor expanding ζ

gives

ζ = ζo + εζ1 + ε2ζ2 + ... (4.3)
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The ε’s will be, from now on, considered implicit and so the dependent variables

are written as

χ = χo + χ1 (4.4)

ζ = ζo + ζ1 + ζ2 + ... (4.5)

The essence of linearization consists, after substitution of the dependent vari-

ables’ expansions in the differential equations, in keeping terms of order one

only, that is, eliminating terms of higher order such as ζ2, and products χ1ζ1,

etc. What remains are linearized differential equations.

One method for solving the now linearized equations is by assuming

that all the perturbed quantities (dependent variables) are of the form ∼

exp(ik · x− iωt), that is, plane wave solutions.

In the study of linear waves in plasmas, one is interested on the relation

between frequency ω and wavelength k = 2π/λ. This relation is called dis-

persion relation. Among other things, the dispersion relation tells us at what

speed waves propagate in a medium. For example, the dispersion relation for

an electromagnetic wave in vacuum is ω = kc. Therefore the velocity at which

this wave propagates is given by vg = dω/dk = c, that is, the speed of light. In

a plasma, or any dispersive medium, the situation is usually not that simple

since the speed will depend on the wavelength of the wave itself ω = c(λ)k;

that is, different waves will travel at different speeds.
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4.2 Linear waves in pulsars

We investigate linear waves in a region far from the surface of the

neutron star, such that the magnetic field B is still strong, but less than the

critical value Bcr = (m2
ec

3/e~) ≈ 4.4 × 1013 G, so that all quantum effects

can be ignored. We also neglect the curvature of the pulsar magnetic field,

this can be justified for wave lengths satisfying λ � B/(∂B/∂r), that is,

when the wavelength is much less than the scale length of the magnetic field

inhomogeneity. Such a system could be studied in Cartesian coordinates. One,

must make sure that the e−-e+ plasmas are sufficiently long lived for collective

effects to be observed. It has been shown in Refs. [34, 35] that annihilation

rates for electron-positrons (or positronium bound state formations) are much

longer than the characteristic scale times for collective oscillations, typical

plasma frequencies (at densities of interest), such that the pair plasma will

live sufficiently long for many collective oscillations to take place. Dissipation

effects induced by Coulomb collisions can also be neglected due to the smallness

of the e−-e+ (or e−-e−) scattering cross section σ ∼ (e2/E)2 ∼ 10−30cm2 (at

relativistic energies in the range γ ∼ 10 − 102). It should be pointed out

different terminologies used in the literature to describe waves in e-p plasmas

can create confusion see, e.g., [36]. Here we will use the conventional language

used to describe the electron-ion plasmas.

To proceed we’ll use the index α to represent the particle species, which

in our case takes only two values: positive or negative. Using a standard vector
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identity 1 we can write Eq. (2.7) as

∂tΩα = −Ωα(∇ · Vα) + (Ωα · ∇)Vα − (Vα · ∇)Ωα . (4.6)

(∇ ·Ωα = 0). We take, the equilibrium magnetic field

B = Boẑ ,

along the ẑ axis and the equilibrium fluid velocities in the CM frame (the

frame at which the pair was born), or equivalently in a frame in which they

are equal, to be

V+ = −Vo , V− = Vo ,

where (Vo = constant)

Vo = Voẑ .

Thus electrons (positrons) move with positive (negative) velocity along ẑ. To

study linear waves, we expand

Vα = −αVo + vα , (4.7)

B = ẑ + b (4.8)

where vα and b are the fluctuating quantities and ẑ is a normalized (to Bo)

equilibrium field. Although we are linearly expanding Vα, we faced the problem

of the inherent nonlinearity introduced by the γα factor. However, we can

1∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B
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expand it as follows

γα =
(
1− V 2

α

)−1/2
=
[
1− (−αVo + vα)2

]−1/2
(4.9a)

=
(
1− V 2

o

)−1/2 [
1 + 2α

Vo · vα
(1− V 2

o )
+O(v2α)

]−1/2
, (4.9b)

which for sufficiently small vα, Eq. (4.9b) gives

γα ' γo − αγ3oVo · vα (4.10)

where γo = (1− V 2
o )−1/2 = constant. Using Eqs. (4.7), (4.8) and (4.10) in Eq.

(2.8) we find

Ωα = ẑ + Ω
′

α (4.11)

where

Ω
′

α = b +
α

2
∇× [γovα + γ3o(Vo · vα)Vo] (4.12)

is the perturbed vorticity. Then using Eqs. (4.7) and (4.12) and ∇ · vα = 0,

we can linearize Eq. (4.6) to get

(∂t − αVo · ∇) Ω
′

α = (ẑ · ∇)vα. (4.13)

The system is closed with (2.12) which, after linearization, becomes

−∇2b + ∂2t b =
1

d2

∑
α

α∇× [γovα + γ3o(Vo · vα)Vo] , (4.14)

where d ≡ V̄A/c = ω̄c/ω̄p = ωc/[
√
Gωp].

We solve the system of linearized equations by assuming that the fluc-

tuating quantities, b, vα vary like ei(k·r−ωt). We use Cartesian coordinates
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with the ẑ axis along the ambient magnetic field and the wave vector k =

k(sin θ, 0, cos θ) in the x̂-ẑ plane. We also drop the primes from the perturbed

vorticities to simplify the notation. With these assumptions Eqs. (4.13) and

(4.14) become

(ω + αVok cos θ)Ωα
x = −k cos θvαx (4.15a)

(ω + αVok cos θ)Ωα
y = −k cos θvαy (4.15b)

(ω + αVok cos θ)Ωα
z = −k cos θvαz , (4.15c)

(k2 − ω2)bx =
1

d2
[−iγok cos θ(v+y − v−y )] (4.16a)

(k2 − ω2)by =
1

d2
[iγok cos θ(v+x − v−x )

− iγ3ok sin θ(v+z − v−z )] (4.16b)

(k2 − ω2)bz =
1

d2
[iγok sin θ(v+y − v−y )] , (4.16c)

where

Ωα
x = bx +

α

2
[−iγok cos θvαy ] (4.17)

Ωα
y = by +

α

2
[iγok cos θvαx − iγ3ok sin θvαz ] (4.18)

Ωα
z = bz +

α

2
[iγok sin θvαy ] . (4.19)

The system of Eqs. (4.15)-(4.16) consists of 9 equations and 9 unknowns.

However, they are not independent since we have used ∇ · v = 0 (together

with ∇ · b = 0). In fact it’s not difficult to see that the set of equations
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(4.15a), (4.15b) and (4.16a), (4.16b) represent all the independent equations.

This set is reducible to the matrix
1
ω+
D

0 −iγoP iγo
L

0 1
ω−D

−iγo
L

iγoP

iγo[cos2 θ + γ2o sin2 θ]P −iγo
L

[cos2 θ + γ2o sin2 θ] cos2 θ
ω+
D

0

iγo
L

[cos2 θ + γ2o sin2 θ] −iγo[cos2 θ + γ2o sin2 θ]P 0 cos2 θ
ω−D




v+x
v−x
v+y
v−y

 = 0

(4.20)

where we have used the following abbreviations to simplify the notation: L ≡

d2(k2 − ω2), P ≡ 1/L+ 1/2, ω±D ≡ ω ± Vok cos θ.

4.2.1 Waves propagating parallel (k ‖ ẑ)

When wave propagation is along the magnetic field (θ = 0), the deter-

minant of Eq. (4.20) gives the dispersion relation

0 = 1 +
2γ2o
L2

(ω2 − k2V 2
o )− 2γ2o(ω

2 + k2V 2
o )

(
1

2
+

1

L

)2

+ γ4o(ω − kVo)2(ω + kVo)
2

[(
1

2
+

1

L

)2

− 1

L2

]2
. (4.21)

Equation (4.21) gives us four transverse modes. The frequencies of the

first two transverse modes are

ω(1
2)

=

[
2

d2
+

2

γ2o
∓ 2Vok

γo
+
(
1 + V 2

o

) k2
2

+
1

2γ2od
2

{[
4γ2o + 4d2 ∓ 4γoVod

2k

+ γ2od
2(1 + V 2

o )k2
]2 − 4γ2od

2Υ∓

}1/2
]1/2

. (4.22)
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Where

Υ∓ = ∓8γoVok + 4(γ2oV
2
o + d2)k2 ∓ 4γoVod

2k3 + γ2oV
2
o d

2k4.

These frequencies are electromagnetic plasma (EMP) modes (see Fig.

4.1), becoming asymptotic to kc at large k. Both modes are superluminous

(Vφ = ω/k > c); however solution one, corresponding to the upper signs, is

slower than solution two. Both modes have cutoff (k → 0 limit) at

ω2 =
4

d2
+

4

γ2o
=

4ω̄2
p

ω̄2
c

+
4

γ2o
(4.23)

or in physical units:

ω2 = 4
ω2
p

G(T )
+ 4

ω2
c

γ2oG(T )2
(4.24)

the hybrid frequency. We have made the temperature explicit in (4.24). Note

that ω̄2
p = ω2

p/G where ω2
p = (4πnoe

2/2mo); likewise ω̄c = ωc/G where

ωc = (eBo/c2mo). Equation (4.24) is our first important result. Note how

the temperature affects the cutoff; for example, for ultra relativistic high tem-

peratures (T � mo) the cutoff decreases. Since T � mo implies G ≈ 4T/mo,

then the effective mass becomes m̄ ≈ 4T � mo. Therefore the fluid inertia is

primarily provided by the random thermal motion of the particles. If, on the

other hand, T � mo, G(T ) ≈ 1, we recover the cold plasma cutoff [6]

ω2 = 4ω2
p + 4

ω2
c

γ2o
. (4.25)

In the large k limit, however, these EMP waves [Eqs. (4.22)] become

ω ≈
[
∓2Vok

γo
+ (1 + V 2

o )
k2

2
+
k2

2
(1− V 2

o )± 2Vok

γo

]1/2
≈ k , (4.26)
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the vacuum dispersion relation. In physical units Eq. (4.26) is

ω

ω̄c
≈ k

c

ω̄c
⇒ ω = kc . (4.27)

Thus in this large k limit temperature effects are negligible. Therefore these

modes are affected by temperature for long wavelengths only. As you go from

cold to hot plasma the modes go from EMP to light waves; see Figs. 4.2 and

4.3. Particularly for secondary plasmas in pulsars T ∼ mo [G(1) ≈ 4.37] the

two EMP modes are still present, see Fig. 4.2.

1 2 3 4 5 6!c"Ωc#k$
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Ω
"Ω c

Figure 4.1: Dispersion curves for exactly parallel propagation (T � mo).
There are four modes, the intermediate-dashed line is the vacuum dispersion
ω = kc. For the slow Alfvén mode (thick solid line) k < 2/Voγo denotes the
region of the cyclotron two-stream instability. The EMP modes (long and

short dashed lines) have cutoff at ω =
√

4ω2
p/G+ 4ω2

c/G
2γ2o . The point k >

2
√
γ2o − 1 is where the fast Alfvén mode (continues line) becomes subluminous.

The numerical parameters γo = 1.3, d = 1.5 where chosen for the sake of
graphical clarity.
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Figure 4.2: Dispersion curves for parallel propagation, for temperatures T =
mo (G = 4.37). The labeling is the same used in Fig. 4.1. Note that, at short
k, the degeneracy of the EMP modes is still present, and the slow Alfvén wave
is still unstable.

The other two transverse modes are

ω(3
4)

=
1√
2

[
4

γ2o
+

4

d2
∓ 4Vok

γo
+ k2(1 + V 2

o )

− 1

γ2od
2

{[
4γ2o + 4d2 ∓ 4γoVod

2k

+ γ2od
2(1 + V 2

o )k2
]2 − 4γ2od

2Υ∓

}1/2
]1/2

. (4.28)

Solution three, corresponding to the upper signs, will be called (see

Sec. 4.2.1.2) the slow Alfvén wave; solution number four will be called the

fast Alfvén wave (see Fig. 4.1). Of the two Alfvén waves, the fast mode

is superluminous (for small wave vectors) becoming subluminous at kc >

2(ωc/G)
√
γ2o − 1. The slow mode is always subluminous and is cyclotron two-

stream unstable for small wave vectors. In fact there are two unstable regions
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for this slow wave. The frequency vanishes at

k± =
1

γoVoG
± 1

γoVoG

(
1− 4

γ2oV
2
o Gω

2
p

ω2
c

)1/2

(4.29)

and

kc =
2

γoVo
. (4.30)

Thus the wave is unstable in the regions 0 < k < k− and k+ < k < kc, (see

Fig. 4.4). If G ≈ 1 we recover the cold limit result for k± [6]. Depending

on the ratio (4γ2oV
2
o Gω

2
p/ω

2
c ), k− and k+ can merge to form a sole region of

instability 0 < k < kc (see Fig. 4.1).
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Figure 4.3: Dispersion curves for parallel propagation, for still higher temper-
atures T > mo. The labeling is the same used in Fig. 4.1. Note that the EMP
modes have virtually become light waves.

To understand better the critical wave vector kc we find an approximate

analytical expression by taking the small k limit of Eq. (4.28). After some
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Figure 4.4: Dispersion curves for exactly parallel propagation with ratio
4γ2oV

2
o /d

2 < 1. Note that, as explained in text, the slow Alfvén wave
(thick solid line) is unstable in two regions: 0 < k < k− ≈ 0.53 and
k+ ≈ 1.87 < k < kc ≈ 2.41. The labeling for the rest of the curves is the
same used in Fig. 4.1. The numerical parameters γo = 1.3, d = 2 where
chosen for the sake of graphical clarity.

algebra we find

ω(3
4)
≈

√
∓2Voγok + k2(d2/γ2o + γ2oV

2
o )

γ2o + d2
. (4.31)

Clearly solution three, the slow Alfvén wave, becomes unstable for

k <
2Voγo

(γ2oV
2
o + d2/γ2o)

. (4.32)

Which for γ2oV
2
o � d2/γ2o reduces to

k <
2

γoVo
,

giving in physical units

kVo < 2
ω̄c
γo

= 2
ωc

G(T )γo
. (4.33)
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Note how the temperature is manifested. For low temperatures G(T ) ≈ 1 we

recover the cold relativistic limit kVo < 2ωc/γo [6]. The general condition, Eq.

(4.33), gives the criterion for a relativistic temperature-dependent cyclotron

or Alfvénic two-stream instability.

On the other hand, if d2/γ2o � V 2
o γ

2
o , which is a more appropriate limit

for pulsar plasmas, Eq. (4.32) gives

kc < 2
Vo
c
γ3o
ω̄2
p

ω̄c

[
1− γ4oV

2
o

d2
G(T )

]
≈ 2

Vo
c
γ3o
ω2
p

ωc
. (4.34)

Therefore in this particular limit the instability is not suppress even at

T ∼ mc2 → G(T ) ≈ 4.37. The maximum growth rate for this instability (in

the limit d2/γ2o � V 2
o γ

2
o) is

Im(ω)max ≈
Vo
c
γ2o
ω2
p

ωc
. (4.35)

Thus the growth rate is not suppressed by temperature effects (see Fig. 4.5).

At large k, the Alfvénic modes, Eqs. (4.28) are asymptotic to

ω ≈ kVo ∓
2

γo
, (4.36)

see Figs. 4.1-4.3, or in physical units to

ω ≈ kVo ∓
2ωc

G(T )γo
. (4.37)

Revealing temperature modifications to the cold limit result. We may call

these relativistic temperature-dependent cyclotron waves.
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Figure 4.5: Numerical growth rate curves of the slow Alfvén mode, for various
temperatures. Limit d2/γ2o � V 2

o γ
2
o . Note that, as explained in the text,

for temperatures of the order of T ∼ mo the instability is not completely
suppressed. With numerical parameters γo = 1.3, d = 4.

4.2.1.1 Free energy source

At this point, it is important to comment on the energy source and

type of instability. For an instability to be present, there has to be a “free”

energy source that can drive it. As we have said above, the instability comes

from the fact that we have an imaginary mode (the imaginary mode makes

the factor −iωt positive and real, and, therefore, the amplitude ∝ e−iωt grows

exponentially).

To track the origin of the unstable mode Eq. (4.35), we take a closer

look at Eq. (4.31). There we see that that if Vo → 0, the mode is positive and

real, suppressing any possibility for a complex (or imaginary) mode. Therefore,

the obvious source for the instability is the relative streaming between beams.
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Although their velocities are equal and opposite, the total kinetic energy is

not zero, that is

KE =
1

2
m+V

2
+ +

1

2
m−V

2
− (4.38)

=
1

2
mo(−Vo)2 +

1

2
mo(+Vo)

2 (4.39)

= moV
2
o 6= 0 . (4.40)

This kinetic energy is the available free energy that transforms into

wave excitation (see Sec. 5.4.1). Ultimately, as we have seen in Chapter 3,

the relative streaming comes from the charge density deviations to screen the

parallel electric field.

4.2.1.2 Zero streaming limit (Vo → 0)

If we go to the limit of no streaming (see Fig. 4.6), then the two EMP

modes disappear, resulting in only one. Equations (4.24) and (4.27) remain

valid but with γo → 1. Note that the temperature effects still can bring down

the cutoff as shown in Fig. 4.6.

On the other hand, for the Alfvénic modes, we find from Eq. (4.31)

ω ≈ kd

(1 + d2)1/2
(4.41)

or in physical units

ω ≈ kV̄A
(1 + V̄ 2

A/c
2)1/2

(4.42)

the standard Alfvénic dispersion. This is why we called solutions three and

four slow and fast Alfvénic modes. Note that in this limit the degeneracy
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is lost. Yet temperature effects (in the limit V̄A < c) can bring down the

frequency, [remember V̄A = VA/
√
G(T )]; see Fig. 4.6.

In the large k limit, these Alfvénic modes [see Eq. (4.36)], are asymp-

totic to

ω = ∓2ω̄c = ∓2
ωc

G(T )
(4.43)

the cyclotron frequency branch (see Fig. 4.6).
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Figure 4.6: Dispersion curves for zero streaming (γo = 1, d = 1). For tem-
peratures: T � mo (continues lines) and T = mo (dashed lines). Notice the
lowered cutoff of the EMP modes, and the frequency drop for the Alfvénic
mode at T = mo.

4.2.2 Waves propagating perpendicular (k ⊥ ẑ)

For propagation perpendicular to the magnetic field (θ = π/2), Eq.

(4.20) gives the dispersion relation(
1

2
+

1

L

)2

− 1

L2
= 0 (4.44)
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for L = d2(k2 − ω2) 6= 0. Its solution is

ω2 = k2 +
4

d2
(4.45)

or in physical units

ω2 = k2c2 +
4ω2

p

G(T )

the ordinary mode. Note that as the temperature increases the ordinary mode

becomes a light wave (see Fig. 4.7). The fact that only the ordinary mode is

present for θ = π/2, is explained by looking at Eq. (4.13). It becomes

ωΩ
′

α = 0⇒ Ω
′

α = 0 (4.46)

therefore b = −(α/2)∇⊥ × [γovα + γ3o(Vo · vα)Vo], which, after substitution in

Eq. (4.14) gives

(−∇2
⊥ + ∂2t )b = − 4

d2
b ⇒ ω2 = k2 +

4

d2
(4.47)

after Fourier transform. The fact the perturbed vorticity is zero Ω
′
α = 0 makes

the magnetic field antiparallel with the sum of the vorticities (the curl of the

current). Therefore the particles do not feel the ambient magnetic field.
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Figure 4.7: Dispersion curves for perpendicular propagation (θ = π/2, d = 1).
Note how the increasing of temperature lowers the plasma cutoff until it reaches
the asymptotic kc limit.

4.2.3 Waves propagating oblique (θ = π/4)

For oblique propagation the determinant of Eq. (4.20) gives the dis-

persion relation

0 =

{
P 4γ8o

4
− P 2γ8o

2L2
+

γ8o
4L4

+
P 4γ6o

2
− P 2γ6o

L2
+

γ6o
2L4

+
P 4γ4o

4
− P 2γ4o

2L2

+
γ4o

2L2(ω − Vok cos θ)(ω + Vok cos θ)
− P 2γ4o

4(ω − Vok cos θ)2
− P 2γ4o

4(ω + Vok cos θ)2

+
γ4o

4L4
+

γ2o
2L2(ω − Vok cos θ)(ω + Vok cos θ)

− P 2γ2o
4(ω − Vok cos θ)2

− P 2γ2o
4(ω + Vok cos θ)2

+
1

4(ω − Vok cos θ)2(ω + Vok cos θ)2

}
. (4.48)

Its solutions (four) are cumbersome, however the modes are similar to the

parallel propagation case. We will describe them qualitatively with the help of

Fig. 4.8. There we see four curves, two of them are EMP waves (degenerate)
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just like in the parallel propagation case but with closer phase velocity. The

other two are Alfvénic (or cyclotron in the large k region) modes that split

into a fast and slow mode. The fast mode becomes subluminous at

0 2 4 6 8 10!c"Ωc#k
0
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4

6
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10
Ω
"Ω c

Figure 4.8: Dispersion curves for oblique propagation. Here we have four
modes, two of them are EMP modes (short and long dashed lines). The slow
branches (continues and thick lines) are the fast and slow Alfvénic modes
respectively. Cold plasma (T � mo), γo = 1.3, d = 2.

kc > 2(ωc/G)
√

2(γ2o − 1)/(1 + γ2o)
3,

which happens faster than in the parallel propagation case. The slow Alfvénic

mode is cyclotron two-stream unstable at large wavelengths, just like in the

parallel case. As temperature increases to T > mo then we see that in fact the

frequency decreases similarly to the parallel propagation case (see Fig. 4.9).
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Figure 4.9: Dispersion curves for oblique propagation, for high temperatures
T > mo (γo = 1.3, d = 1.5). Labeling same as in Fig. 4.8.

4.2.4 Super strong magnetic field

It is always interesting to study propagating waves in the presence of

super strong magnetic fields. Mathematically a super strong magnetic field

is defined literally by B → ∞, but as we have pointed out above, when the

magnetic field is larger that Bcr, quantum effects play a major role. However

we will take the approximation d → ∞ (d ≡ ωc/ωp) to analyze dispersion

relations, keeping in mind that our study can only be applicable for B <

Bcr. We, therefore, proceed to study dispersion relations for two angles of

propagation, parallel and oblique.

For strong magnetic fields and mildly relativistic velocities (γo = 4) the

parallel curves (θ = 0) are shown in Figs. 4.10-4.12. The modes appear as

straight lines. To understand this, we take the d → ∞ limit of Eq. (4.22),
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the EMP modes. After some algebra we find

ω(1
2)

=
1

G

[
4

γ2o
∓ 4Vo

γo
Gk + V 2

o G
2k2
]1/2

. (4.49)

Where G(T ) has been written explicitly. It is not difficult to see that for small

or large k, ω2 always gives

ω2 ≈
2

γoG
+ Vok . (4.50)

For low temperatures (G ≈ 1) the cutoff (with the numerical values given to

the plot) is at 2/γo = 0.5, as shown in Fig. 4.10. Solution one on the other

hand gives in the small k limit

ω1 ≈
2

γoG
− Vok (4.51)

i.e., same cutoff but negative slope (see Fig. 4.10). For large k it gives ω1 ≈

Vok. The other two transverse modes Eq. (4.28) (Alfvénic) have the following

limits: solution four gives ω4 ≈ k (for large and small k) and solution three

(the slow Alfvénic) gives

ω3 ≈


k if k . 0.25

2
γoG
− Vok if 0.25 < k . 0.5

− 2
γoG

+ Vok if k & 0.5
(4.52)

Note that temperature effects, for all four modes in a strong magnetic

field, are manifested trough the terms ±2/[γoG(T )]. Thus as temperature

rises both cutoffs (negative and positive) approach zero. Therefore the modes

approach k (see Figs. 4.11 and 4.12). If G ≈ 1 we recover the cold plasma

limit [6], as shown in Fig. 4.10. Note that the line along k (kc in physical

units) is thus various lines very close together.
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Figure 4.10: Dispersion curves for Parallel propagation. Super strong B field,
cold plasma. The fast EMP mode (short dashed line) have dispersion ω ≈
2/γo+Vok. The slow Alfvén mode (thick solid line) is divided in three regions.
The slow EMP (long dashed line) and fast Alfvén modes (continues line) have
dispersion relations as described in the text. The numerical parameters γo =
4, d = 105 were chosen for the sake of graphical clarity.

The case of oblique propagation with, γo = 10 and strong magnetic field

is shown in Fig. 4.13. There we see that the two EMP modes have become

light waves and the Alfvén waves have become asymptotic to

ω ≈ 1√
2
kc
√

2− (Vo/c)2. (4.53)

Note first that temperature effects are negligible in this particular limit. Sec-

ondly these waves do not reach the asymptotic limit of kc contrary to what

happens for parallel propagation. The asymptotic value ω ≈ kc/
√

2 (when

Vo → c) is a geometric effect.
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Figure 4.11: Dispersion curves for Parallel propagation. Strong B field. For
T = mo, γo = 4, d = 105. Notice the increase of temperature manifested
through the decreasing cutoffs, making the curves approach the line kc. La-
beling same as in Fig. 4.10.

4.3 Numerical estimates

To make numerical estimates, we will follow Refs. [11, 33] with the full

realization that parameters at the polar caps are model dependent -there are

several models, for example, for the generation of secondary pairs, leading to

considerable uncertainties in the estimates of plasma density.

Our reference plasma is created outside a pulsar with a period P =

0.2 s, and magnetic (dipole) field strength Bo = 1012 G; the corresponding

density of corotation and cyclotron frequency are: nGJ = 3.5 × 1011 cm−3,

ωc = 1.75 × 1019 s−1. The pair plasma (in the pulsar frame) has a density of

the order of n± = ΓnGJ where Γ ≈ 103 − 106 is the multiplicity factor [11].

Note that the multiplicity factor is uncertain (see, e.g., [7]). The primary beam
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Figure 4.12: Dispersion for parallel propagation, for still higher temperatures
T > mo. Strong B field. Still γo = 4, d = 105. Here the cutoffs ±2/[γoG(T )],
have become approximately zero and the curves have become virtually the line
k. Labeling same as in Fig. 4.10.

has a density nb equal to nGJ at the time of pair creation [32], and flows along

the open magnetic lines with energies γb ∼ 107. The energy of the pair plasma

particles is in the range γp ∼ 10− 103.

The pair plasma rest frame densities (in each plasma beam) are related

to the density nGJ (measured in the pulsar frame) via the multiplicity factor

Γ and two Lorentz transformations: from the pulsar frame to the CM frame

(with γp) and from the CM to each component’s rest frame (with γo) that is

no = ΓnGJ/γpγo [11]. The corresponding plasma frequency (square of it) is

ω2
p = 1.11× 1021 − 1026 s−2.

For an instability to be a good candidate as a possible source of coherent

radio emission generation, its growth rate [Im(w)], evaluated at the pulsar
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Figure 4.13: Dispersion curves for Oblique propagation. Strong B field. The
EMP modes (long dashed line) have become asymptoted to kc. The Alfvénic
modes (continues and thick lines) have become asymptoted to kc/

√
2 (short

dashed line). With γo = 10, d = 105.

frame, should be much larger than the pulsar rotational frequency w = 2π/T ≈

31.4 s−1, that is

Im(ω)

γp
� w (4.54)

where Im(ω) = (Vo/c)γ
2
o(ω

2
p/ωc). We can then calculate the growth rate of this

instability by assuming typical relative streaming energies γo. (i) For mildly

relativistic streaming γo = 10, and the numerical parameters given above, we

find the maximum growth rate to be

Im(ω) ≈ 6.2× 103 − 108 s−1 . (4.55)
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(ii) For large relativistic streaming γo = 100 we find

Im(ω) ≈ 6.3× 105 − 1010 s−1 . (4.56)

Therefore for case (i) and using γp = 103, we find

Im(ω)

γp
≈ 6.2− 105 s−1 , (4.57)

whereas for (ii)

Im(ω)

γp
≈ 6.3× 102 − 107 s−1 � 31.4 s−1 (4.58)

We see from the above that, for case (i), lower limit only, the instability is not

fast enough. The second case is more attractive of course, since it is evident

that the instability has the potential of being a good candidate for exciting

waves or particles that could eventually help a nonlinear process to produce

coherent emission.

4.4 Summary and conclusions

We have considered propagation of relativistic waves in streaming mag-

netized plasmas. For parallel propagation we have four modes.

(1) For finite temperature and finite magnetic field the stable fast Alfvén

wave is superluminous for large wavelengths only, becoming subluminous at

k > 2(ωc/c)
√
γ2o − 1. At large temperatures, however, it is always sublumi-

nous. In the super strong magnetic field case it has the vacuum dispersion

relation.
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(2) The slow Alfvén wave is cyclotron two-stream unstable for large wave-

lengths and always subluminous. For temperatures of the order of T ∼ mo

(and limit γ2oV
2
o � d2/γ2o) it is unstable. For ultra high temperatures it can be

stabilized. However in the limit d2/γ2o � V 2
o γ

2
o it is always unstable regardless

of temperature. For strong magnetic field case it splits into three regions, with

the dispersion relation ω = −2/(γoG) + Vok in the large k region.

(3) The other two modes are degenerate electromagnetic plasmas waves which

at high temperature become light waves.

For oblique propagation with strong magnetic field our dispersion rela-

tion is unaffected by temperature: it is valid in both cold and/or hot magne-

tized plasmas.

Because our model is incompressible, we find only the ordinary mode

for perpendicular propagation; neither the pure streaming instability nor the

compressional wave are permitted. Most relevant to radio emission theories

is our result that the slow Alfvén wave is unstable, and is not fully stabilized

even at temperatures of the order of T ∼ mo. In addition, for typical pulsar

parameters, the calculated values show that the instability is quite fast and

the waves can grow to such levels that the magnetic modulation could act as

a wiggler. The pulsar’s primary beam could interact with this wiggler and

simulate a FEL (free electron laser) like effect, yielding coherent radiation.

Detailed description of this is presented in the next chapter.
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Chapter 5

Free Electron Lasers in Pulsar

Magnetospheres

5.1 Introduction

The high brightness temperature associated with the radio emissions

from pulsars signifies, as we will show, that the radiation mechanism must be

coherent. Examples of coherent radiation can be found, for example, in lasers,

where radiation is amplified by stimulated emission. Lasers are well known for

their high intensity. The process responsible of such intensities is non-thermal.

Unlike lasers, a free electron laser (FEL) uses unbounded electrons to

achieved the lasing effect. These free electrons, in the form of a beam, move

through a periodic but static magnetic field, emitting synchrotron radiation.

The synchronized interaction of these photons with the electrons gives rise

to coherent radiation; the electrons give energy (feed) to the radiation field

(photons).

Because of the FEL’s large operation range, we will propose that, a

FEL-like effect exists in pulsars. We will first describe the properties of the

pulsar radio emissions, and then the basic concepts of FELs. Then we show

that the interaction of the wiggler (the Alfvén wave) and the pulsar primary
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beam may simulate a FEL effect and this could explain some of the charac-

teristics of the pulsars radio emissions.

5.2 Pulsar’s radiation

The radio flux density of pulsars (observed at 1.4 GHz) lies in the range

20 µ Jy to 5 Jy. A Jansky (1 Jy≡ 10−23erg s−1 cm−2 Hz−1) is the standard flux

density measure by radio telescopes. These radio emission fluxes are weak,

however the associated intensities are not, as we will show it. This is because

they are emitted from very small regions and at such low frequencies; the

distances from which they are emitted, however, are not very far, relatively

speaking (all pulsars detected reside in our own galaxy).

For example, suppose a pulsar is a sphere of radius R and it is at a

distance d from us (the observer), see Fig. 5.1. Then the flux (F ) is given by

[37]

F = πI

(
R

d

)2

, (5.1)

where I is the intensity or brightness. If the source were a black body radiator,

then the intensity is given by

I =
2hν3/c2

ehν/kBT − 1
, (5.2)

where h, ν, T are, respectively, the Planck’s constant, emitted frequency and

temperature. At low frequencies (hν � kBT ) Eq. (5.2) reduces to

I ≈ ν2

c2
kBT, (5.3)
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Figure 5.1: Sphere of radius R, at a distance d

the Rayleigh-Jeans limit. Substitution of Eq. (5.3) into Eq. (5.1) gives us the

brightness temperature of the source (in degrees Kelvin)

T =
Fc2

πkB

d2

ν2R2
≈ 2× 1036 Fd

2

ν2R2
K, (5.4)

where we have used kB = 1.38 × 10−16 erg K−1 for the Boltzmann’s constant.

Thus, for a neutron star of radius R = 10km = 106cm, at a distance d =

5Kpc ∼ 15× 1021cm, with flux F = 5Jy and radio frequency ν = 1.4 GHz we

obtain

T = 1028 K. (5.5)
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For comparison, the temperature of the Sun’s surface is ∼ 6 × 103 K and the

temperature of a Tokamak fusion device is ∼ 108 K. The energy, in electron

volts (eV, where 1eV = 104K) associated with this temperature is 1024 eV.

In fact, we would have to go to the early epochs of the universe to reach

such temperatures. For example, in the first 10−35 s after the Big Bang, the

temperature of the universe was 1028 K (energies of 1015GeV). Therefore, as

we can see from the above examples, this temperature is, clearly, just too high.

This implies that the mechanism involved in the production of this

radio emissions has to be a coherent effect; it cannot be a thermal source.

5.2.1 Coherence

Let us briefly recall the phenomenon of coherence. In a coherent pro-

cess, the resulting radiation intensity is larger than the sum of the individual

emitters’ intensity. What we mean is, that normally when there is a random

distribution of emitting particles, the total intensity is basically

I =
N∑
i=1

Ii (5.6)

= I1 + I2 + I3 + ... (5.7)

the sum of the N individual intensities (at a fixed frequency). The intensity is

I ∝ E2, proportional to the square of the field amplitudes (E). However, in a

coherent radiative process, the size of the distribution of particles (also called

bunches) is much smaller than the emitted wavelength. Then the individual
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fields can add up

I =

(
N∑
i=1

Ei

)2

(5.8)

= (E1 + E2 + E3 + ...)2 , (5.9)

increasing I dramatically [38]. Therefore in a spatial coherent process the

fields, rather than the intensities, add. If N is the number of particles per

bunch, then the resultant intensity is I ≈ N2Ii. This coherent process is at

the heart of the free electron laser’s operation.

5.3 Free electron lasers

5.3.1 Operating principle

After the success of conventional lasers, a new type of coherent source

appeared: the free electron laser or FEL. This new type of laser appeared

from the beginning to be very promising, due to the peculiarity of its operating

principles. Unlike conventional lasers, in a FEL the active medium is not made

of atoms or molecules but, a beam of “free” electrons propagating at relativistic

speeds through a static but periodic magnetic field called the undulator or

wiggler. Where electrons experience a Lorentz force, they execute transverse

oscillations and emit synchrotron radiation in the forward direction, see Fig.

5.2. Then, the synchronized interaction of the emitted radiation and electrons

produces coherent radiation.

There are two basic types of FELs. On one of them, the photons

emitted along the passage through the undulator are trapped in an optical
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Figure 5.2: Free electron laser. The electron motion is on a plane perpendicular
to the magnetic field lines.

cavity and then they interact again with a fresh electron beam. If the gain

associated with this process is larger than the cavity losses, the laser action

occurs. In full analogy with conventional lasers, when saturation is reached,

highly coherent radiation can be extracted from the optical cavity, see Fig. 5.3

The other type, self-amplified spontaneous emission (SASE), is based

on a different operation scheme, see Fig. 5.4. It is based on a single passage,

which is possible if the electron beam “brightness”’ is good enough (high peak

63



  

Electron beam

Optical cavity Coherent radiation

Figure 5.3: FEL, Optical cavity.

current) to have very high gain. In this operation mode, the electron beam

interacts with its own spontaneous radiation producing coherent emission. It

is this last operating scheme that we are interested in.

5.3.2 Electron motion in an undulator

In this section we will show the basics of an electron moving in the

undulator. We will derive, for a given configuration, the condition for the

resonant interaction between electrons and their emitted photons. On Fig. 5.5
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Figure 5.4: FEL SASE

we see a schematic picture of an electron moving through a static magnetic

field. The electrons move in the z direction and the magnetic field varies with

the spatial period λw in the longitudinal direction z. The magnetic field is

By = Bw cos kwz, kw = 2π/λw . (5.10)

The electron moving at relativistic speeds, along the z direction, undergoes

an undulating motion (oscillations) around the z-axis with the same spatial

period as the transverse static magnetic field and perpendicular to it. Every

time the orbit of the electron is bent, by the magnetic field, it emits synchrotron
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radiation in the forward direction.

  

X

Z

B y

A B

wcos

w

Electron trajectory

Figure 5.5: Schematic picture: electron motion in undulator

As seen on Fig. 5.5, suppose that the electron emits a pulse at point A,

at time zero. The second pulse at point B, is emitted at time tw = λw/v̄z, where

v̄z is the electron’s average velocity along z. For the two pulses to interfere

constructively, the difference in the transit distance for the two pulses must

be an integral multiple of the wavelength. Therefore

c
λw
v̄z
− λw cos θ = nλFEL, n = 1, 2, 3... (5.11)
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where θ is the angle between the direction of the pulse propagation and the

z-axis. In order to calculate the electron velocity v̄z, we need, first, to calculate

the transverse velocity vx. The equation of motion for a relativistic particle

(electron) moving in a transverse magnetic field is,

mγ
dvx
dt

= −e(vz ×By)/c = e(vz/c)Bw cos kwz x̂ , (5.12)

where γ = 1/
√

1− v2/c2 and v =
√
v2z + v2x is the magnitude of the electron’s

total velocity. Using vz = dz/dt we can write Eq. (5.12) as

dvx
dt

=
eBw

γmoc

dz

dt
cos kwz , (5.13)

which after integration becomes

vx =
eBw

γmockw
sin kwz . (5.14)

Therefore vz becomes

vz =
√
v2 − v2x

=

[
v2 −

(
eBw

γmockw

)2

sin2 kwz

]1/2

≈ c

{
1− 1

2γ2

[
1 +

(
eBw

moc2kw

)2

sin2 kwz

]}
.

Where we have used the fact that γ � 1. Averaging vz with respect to z over

one spatial period we get

v̄z = c

[
1− 1

2γ2

(
1 +

1

2
a2
)]

(5.15)
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where

a =

(
eBw

moc2kw

)
. (5.16)

If a � 1 the undulator is called a wiggler. Substituting Eq. (5.15) in Eq.

(5.11) we get (for the special case, n = 1) in the limit θ � 1

λFEL ≈
λw
2γ2

(
1 +

1

2
a2
)
, (5.17)

the corresponding frequency is

ωFEL =
2γ2ωw(
1 + 1

2
a2
) , ωw = v̄zkw. (5.18)

Equation (5.18) is the radiation frequency associated if two emitted

pulses were to interfere constructively. We have called it FEL frequency, be-

cause it is exactly the frequency at which the resonant electrons will give

energy to the plane wave formed by the synchrotron photons; the photons are

polarized in the same plane as the plane motion of the electrons, they can be

considered to form a plane wave. For example, the plane wave will be polarized

(electric field) in the x-plane, and since the transverse velocity of the electrons

is vx, there can be exchanged of energy between the two as will be seen.

5.3.3 Energy exchange and condition for resonant interaction

A plane electromagnetic (EM) wave, traveling along z, may be written

as

Ex = Eo sin(ωt− kz + ψ) (5.19)

By = Bo sin(ωt− kz + ψ) , (5.20)
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where ψ (Eo) denote a constant phase (amplitude) of the electric field. The

energy transfer from an electron to the light wave is given by

dKE

dt
=

d

dt
[moc

2(γ − 1)] = −evxEx , (5.21)

which, after using, Eq. (5.14) becomes

dKE

dt
= −e

2BwEo
γmockw

sin kwz sin(ωt− kz + ψ)

= −e
2BwEo
γmockw

{cos[ωt− (k + kw)z + ψ]− cos[ωt− (k − kw)z + ψ]}

≡ −ec aEo
γ

(cosφ+ cosχ) , (5.22)

where we have used the definition of a, and introduced the following notation

φ = [ωt− (k + kw)z + ψ], χ = [ωt− (k − kw)z + ψ]. (5.23)

φ is called the ponderomotive phase, and χ is a rapidly oscillating phase that

averages to zero.

The condition for continuous energy transfer from electron to the elec-

tromagnetic wave is

dKE

dt
< 0 =⇒ φ = constant, (5.24)

with optimum value φ = 0. The condition φ = constant can only be fulfilled

for a certain wavelength

φ(t) = ωt− (k + kw)v̄zt+ ψ = const.⇒
dφ

dt
= ω − (k + kw)v̄z = 0 , (5.25)
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where we have used the approximation vz ≈ v̄z. Therefore

ω

k + kw
=

kc

k + kw
= v̄z, (5.26)

is the resonant condition necessary for energy exchange from the electrons to

the EM wave. In words, the interaction of the plane EM wave with the static

magnetic field has created a beat wave with same frequency but with wave

number equal to the sum of the EM wave and the static magnetic field, making

the beat wave’s phase velocity smaller than c and therefore the electrons (that

move at speeds less than c) can interact with it. From Eq. (5.26) and using

Eq. (5.15) we arrive at

λ =
λw
2γ2

(
1 +

1

2
a2
)
, (5.27)

which is the precisely the condition for two emitted pulses to interfere con-

structively. What about χ? well, it can be written as cosχ = cos(φ− 2kwz) ∝

cos(2kwz) which averages to zero (φ = constant). Therefore the lasing process

in the undulator is started by an electromagnetic wave of wavelength λl and

resonant electrons with energy ER = γRmoc
2 defined by

λl =
λw
2γ2R

(
1 +

a2

2

)
, (5.28)

or

γR =

√
λu
2λl

(
1 +

a2

2

)
. (5.29)

Therefore, electrons with energy E = ER (γ = γR) emit radiation with wave-

length λ = λl.
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5.3.4 Gain and electron beam requirements

Because of our obvious physical constraints, we are interested, as ex-

plained above, in the FEL SASE.

SASE is possible if the electron beam has a high peak current. The

gain, which characterizes the device, is given by [38]

g ∼ j a2

γ3Iak2w
, (5.30)

where j is the electron beam current density, γ is the Lorentz factor for the

electrons, kw = 2π/λw and Ia is a constant current, Ia = (mec/µoe) ≈ 103 A =

1012 statAmps. The radiation intensity I initially grows exponentially along

the undulator,

I = Io exp[z/Lg] , (5.31)

until it saturates. Io is the starting intensity and Lg is the gain length given

by

Lg =
λw

4π
√

3ρ
. (5.32)

The FEL parameter, ρ, is the key dimensionless parameter that characterizes

the performance of a SASE device [38]

ρ = g1/3 ∼ j1/3a2/3

104γk
2/3
w

. (5.33)

The number of undulator periods is given by Nw = Lg/λw. In laboratory

experiments, unlike our case, to reduce the overall undulator length, the gain

length Lg must be made as short as possible.
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During the FEL amplification region, energy is transferred from the

electron beam to the radiation field. The amplification stops when the device

has reached saturation. The FEL depends linearly, as we have seen above, on

the input power Io during the exponential regime. However, saturation power

is independent of the input power

Psat = ρPbeam , (5.34)

that is, it only depends on the beam power (see Fig. 5.6). The saturation

length is approximately

Lsat ≈ λw/ρ = Lg. (5.35)

5.4 FEL in pulsar magnetospheres

We have shown in Sec. 4.2.1, that under well-defined conditions a

cyclotron (or Alfvénic) two-stream instability exists at pulsar polar cap plas-

mas. Since a highly energetic charged (the primary) beam penetrates those

plasmas, the interaction of this with the unstable mode could simulate an

FEL-like effect. First, we will calculate the frequency range radiated from

the FEL, and then we compare the obtained results with the observed fre-

quencies. Second, we will calculate the power emitted and compare it to the

observed luminosities from the pulsar radiation. All of the above will be carry

out doing numerical estimates only. For example, we do not know the exact

polarization of the Alfvénic mode or its magnitude, however we know that it

is a shear (transverse polarized) Alfvénic mode propagating along the mag-
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Figure 5.6: FEL saturation. The power depends linearly on the input power
(exponential regime). However the saturation power is independent on the
input power. Taken from “FEL Theory for Pedestrians” by Peter Schmuser.

netic field lines (z−direction). The primary beam also propagates along z.

Although the condition E · B 6= 0 exists near the surface of the pulsar, the

pulsar standard model assumes that in the pair plasma region E ·B = 0, as we

explained in Sec. 3.2.2. In what follows below, we work in the plasma frame,

and only the final results will be transformed to the pulsar frame.

We will use the following reference pulsar parameters: ω2
p = 1022s−2

[plasma frequency (square of it)]. ωc = 1019s−1 (cyclotron frequency). γb = 107

(primary beam Lorentz factor). γP = 103 [plasma Lorentz factor (CM)]. γo =

102 [pair’s beams Lorentz factor (w.r.t. CM)]. nGJ = 3.5×1011cm−3 (corotating
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density). n± = ΓnGJ/γpγo (pair plasma density). Γ = 106 (multiplication

factor). γ
′

b ∼ γb/γp = 104 (primary beam Lorentz factor measure in the

plasma frame).

5.4.1 Frequency

The FEL (emitted) frequency is given by

ωFEL =
2γ
′2
b kwc(

1 + a2

2

) , (5.36)

where the dimensionless parameter

a =
eBw

moc

1

kwc
=

ωw
kwc

depends on the wiggler amplitude Bw and the wiggler wave vector kw. More

explicitly, the emission frequency (ν = ω/2π) is

νFEL = 5.6× 1024 k
2
w

B2
w

Hz, (5.37)

where we have used the fact a � 1. To calculate the frequency we must

estimate the relevant Bw and kw.

In the linear theory the instability is driven by the relative streaming

between positrons and electrons (see Sec. 4.2.1.1). Bw the perturbed am-

plitude or magnetic modulation, is not known. Therefore, a rough estimate

for Bw may be made by equating the streaming free energy to the magnetic

energy. We find (σ = 0.1)

σn±mec
2(γo − 1) =

B2
w

8π
⇒ Bw ≈ 2.7× 104G. (5.38)
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Where σ is a numerical constant that parametrizes the energy conversion for-

mula, for example, for a full conversion (σ = 1) Bw ≈ 8.5× 104G.

To estimate kw, we have the ∆k region given by Eq. (4.34), where the

wave is unstable,

kw ≤ ∆k = 2
Vo
c2
γ3o
ω2
p

ωc
= 0.066 cm−1. (5.39)

Substituting the numerical values of Eqs. (5.38)-(5.39) in Eq. (5.37), we get

for the frequency (at the pulsar frame)

νpFEL =
νFEL
γp
≤ 3.36× 1010 Hz = 33.6 GHz, (5.40)

this limit does correspond to the typical observed frequencies of pulsar ra-

dio emissions. Since, in principle, ∆k can go to zero, therefore setting the

lower frequency limit to Eq. (5.40) will eventually depend on: the saturation

length Lsat, the maximum streaming energy transfer to magnetic modulation

or ultimately by the pulsar observational frequency constraints. We can, for

example, calculate the corresponding FEL frequency when the growth rate

(instability) is maximum [see Eq. (4.35)], that is, kw = kmax = ∆k/2

νpFEL = 8.4 GHz, (5.41)

which is in good agreement with pulsar’s emission frequencies .

5.4.2 Power

As we mentioned in the introduction, the observed pulsar luminosities

lie in the range 1022 − 1028 erg s−1. In order to calculate power emitted by
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FEL, we will assume that it has reached the saturation state. As we have

explained earlier, the saturation power does not depend on the input power,

but only on the beam power and the saturation parameter. That is,

PT = ρ× Pbeam . (5.42)

Where ρ is the saturation parameter and

Pbeam = Anbcγbmc
2 (5.43)

is the beam power. Where nb ≈ nGJ , γb = 107 and A is the beam area or cross

section. Assuming typical parameters, [see Eq. (3.15) and Fig. 3.2], we get

A ∼ 108 cm2,

that is, a fraction of the pulsar’s polar area. Combining the primary beam

power

Pbeam = 1030 erg s−1. (5.44)

and the saturation parameter (for kw = ∆k/2 = 0.033 cm−1)

ρ =
j
1/3
b a2/3

104γ
′
bk

2/3
w

∼ 0.01

the total power emitted is

PT ∼ 1028 erg s−1 . (5.45)

Which is very much in the observed luminosities range. Note that, the power

at the plasma and pulsar frame is the same since power is an invariant. The

value used for kw, is the value at which the growth rate (instability), Eq.

(4.35), is maximum.
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5.5 Discussion

As we have seen above, the estimated values for the frequency and

power emitted are within the range of the expected values for a typical pulsar.

Of course there are still open questions. For example, is the saturation mech-

anism for the FEL achievable in these magnetospheric circumstances? How

much does the primary beam need to travel before reaching saturation? And

how does that compare with the dimensions of the pulsar magnetospheres?

We can only answer some of these questions. For example, we can

estimate the saturation length of the primary beam using Eq. (5.35), which

for kw = 0.033 cm−1 yields

Lsat = λw/ρ ≈ 1.8× 104 cm. (5.46)

Lsat is a short enough distance for the primary beam to achieve saturation

before, for example, reaching the light cylinder surface [see Eq. (3.8)]. A

reasonable saturation mechanism can also be imagined: when the amplitude

of the wave increases, the particles will eventually get trapped by the wave.

The energy is pumped back and forth between particles and the wave reaching

saturation. We have not yet found, within the pulsar context, an analytical

explanation for this but it is something that we will work on in the future.
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Chapter 6

Exact solutions: nonlinear waves

6.1 Introduction

In this final chapter we will study an interesting property of the rela-

tivistic fluid model introduced in Chapter 2. This property allows for exact

solutions. The essence of these solutions lie in the arbitrary amplitudes of the

perturbed fluctuating fields. In previous chapters, when studying dispersion

relations, we have assumed that the fluctuating quantities are smaller than the

system’s equilibrium.

It is well known (see Appendix) that the exact solution to the incom-

pressible ideal magnetohydrodynamics (MHD), the non-linear Alfvén wave has

found use in all studies of Alfvénic turbulence in astrophysical situations. The

essence of this solution lies in the arbitrary amplitudes of the perturbed fluc-

tuating fields with the requirement v = ±αb, where α = VA/Bo. In fact

spacecraft measurements [39], such as the ones obtained by the Mariner-II

in the year 1962, indicate that in the interplanetary medium a high degree

of correlation exists between the fluctuating plasma fluid velocity v and the

fluctuating magnetic field b.

Recently it has been found [40] that the Hall MHD allows for exact
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solutions too. In fact the Hall MHD solutions are a set of one-parameter,

three-dimensional, time-dependent states. These states, with the appearance

of propagating plane waves, are exact nonlinear solutions that subsume, in the

long wave limit, the Alfvénic states of MHD.

Here we generalized these modes by relaxing the Hall MHD assump-

tions, that is, the masses are now arbitrary forming a two fluid relativistic

system. We find that the dispersion relation is amplitude dependent and we

proceed onto analyzing its consequences.

6.2 Relativistic nonlinear two-fluid waves

Let us re-write here, Eqs. (2.7) and (2.12)

∂Ω±
∂t

= ∇× (V± ×Ω±) , (6.1)

∇× (∇×B) +
∂2B

∂t2
=

c2

V̄ 2
A

∇× [γ+V+ − γ−V−] , (6.2)

where, as usual

Ω± ≡ B ± µ±∇× γ±V± (6.3)

is the generalized vorticity. The normalizations are the same as those used in

Chapter 2. To look for waves we, as usual, decompose

B = ês + b (6.4a)

V± = v± , (6.4b)
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where ês is the unit vector along the ambient field Bo. Note that there is not

an ambient flow and v and b are fluctuating quantities of arbitrary magnitude.

Equations (6.4a) and (6.4b) will convert Eqs. (6.1) and (6.3) to

∂

∂t
ω± = ∇× (v± × ês) +∇× (v± × ω±) , (6.5)

where

ω± = b± µ±∇× γ±v±. (6.6)

Since v and b are not assumed to be small quantities, then, to find (exact)

solutions to Eq. (6.5) we use

v± = α±ω±

= α± (b± µ±∇× γ±v±) , (6.7)

with α± as separation constants. Therefore Eq. (6.5) becomes

∂

∂t
v± = α±∇× (v± × ês) = α±(ês · ∇)v± , (6.8)

where we have used ∇ · v± = 0.

Equation (6.7) was obtained to remove the nonlinear terms from Eq.

(6.5). However, one immediately notices that, the system of Eqs. (6.7)-(6.8)

is not quite yet linear because the inherent nonlinearity introduced by the γ

factor. The original nonlinear system, thus, is not broken into a series of linear

equations.

Fortunately, we can analytically solve the nonlinear system embodied

in Eqs. (6.7)-(6.8); the properties associated with circular-polarization are the
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basic ingredients which allow a solution [40]. To proceed, let us assume that

α+ = α− = α, then Eq. (6.8) allows the wave-like solution

v±(r,t) = v̂±exp[i(k · r + αês · kt)] , (6.9)

where v̂± are constant vectors. However, if for arbitrary v̂±, we try to calculate

γ± = (1− |v±|2)−1/2, it will be a function of space and time, and in that case

Eq. (6.9) cannot be a simultaneously solution of Eq. (6.7). There is one

special case when Eq. (6.9) can be, when

v̂± = A±[êx + iêy] , (6.10)

or some equivalent circular polarization. If Eq. (6.10) is valid, it is straight-

forward to show that

γ± =
1

(1− |v±|2)1/2
=

1

(1− A2
±)1/2

, (6.11)

which is independent of space time. We are still not through since,

∇× γv ∼ A

(1− A2)1/2
∇× [êx + iêy]e

ik·r =
Aeik·r

(1− A2)1/2
ik × [êx + iêy]

will be proportional to [êx + iêy] if and only if k = kêz, that is the wave

propagates along z while the fluctuations are circularly polarized in the plane

perpendicular to propagation. With this realization, we then find that our

problem is fully solved with:

v± = A±[êx + iêy]e
i(kz+αês·êzkt) (6.12)

b = q[êx + iêy]e
i(kz+αês·êzkt) , (6.13)
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where A± and q are related through Eqs. (6.7) and (6.2) which become three

algebraic equations

A+

α
= q + µ+

kA+(
1− A2

+

)1/2 (6.14a)

A−
α

= q − µ−
kA−(

1− A2
−
)1/2 (6.14b)

k2
[
1− α2(ês · êz)2

]
q =

k

d2

[
A+(

1− A2
+

)1/2 − A−(
1− A2

−
)1/2

]
. (6.14c)

where d ≡ VA/c. The system of Eqs. (6.14a)-(6.14c) is nonlinear. In the

nonrelativistic limit (A2
± � 1) the system becomes linear, and we get the

following dispersion relation which does not depend on the field amplitudes

[
1− α2(ês · êz)2

]
(1− αkµ+)(1 + αkµ−) = α2/d2 . (6.15)

Equation (6.15) can be solved for α = α(k), remembering that, the frequency is

ω = −αk(ês · êz). For the relativistic case, however, an amplitude-independent

dispersion relation is not possible.

6.3 Solution to the nonlinear equations

The relativistic system embodied in Eqs. (6.14a)-(6.14c) is numerically

solved, by finding ω as a function of k and only one of the amplitudes (A+),

i.e., ω = ω(k,A+). We have investigated two cases: plasma with different

species and plasma with same species (pair plasma). The results are shown

in Figs. 6.1-6.7. In what follows we explain the numerical results physically

and, whenever possible, analytically. We restrict ourselves to the cold plasma
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case only, G(z±) ≈ 1 ⇒ m̄± ≈ mo, and to (anti) parallel ês · êz = (−) + 1

propagation only.

6.3.1 Different species µ+ → 1 , µ− → 0

6.3.1.1 Non-relativistic case (A2
± � 1)

The numerical results for this case are shown in Fig. 6.1. There we see

two plots. One is the Whistler mode (light-blue color) and the other (light-red

color) is the cyclotron branch. Of course, both modes, become the Alfvénic

wave at sufficiently small k. These modes can be easily understood from Eq.

(6.15) which in the above limits reduces to [(ês · êz)2 = 1]

(1− α2)(1− αk) ≈ α2/d2 . (6.16)

For small k it gives

1− α2 ≈ α2/d2 , (6.17)

or

α = ± d√
1 + d2

. (6.18)

After using ω = −αk(ês · êz) we find

ω = ± d√
1 + d2

k = ± VA/c√
1 + (VA/c)2

k(ês · êz) (6.19)

reproducing the MHD Alfvénic relationship for both the parallel and antipar-

allel propagating waves. If VA < c then Eq. (6.19) gives (in physical units)

ω

ωc
=
VA
c

(
c

ωc

)
k ⇒ ω = VAk(ês · êz) . (6.20)
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Likewise if VA > c Eq. (6.19) gives

ω = ck(ês · êz). (6.21)

In the large k limit Eq. (6.16) gives us

(1− αk) ≈ α2/d2 ⇒ α ≈ −kd2 (6.22)

for d� 1, and

(1− αk) ≈ 0⇒ α =
1

k
(6.23)

for d ∼ 1. These limits correspond to the Whistler

ω = d2k2(ês · êz)⇒ ω = (V 2
A/ωc)k

2(ês · êz) , (6.24)

and the cyclotron mode

ω = −1(ês · êz)⇒ ω = −ωc(ês · êz) , (6.25)

respectively. These results represent the exact solutions of the incompress-

ible HMHD [40]. In this limit the amplitudes [related trough equations Eqs.

(6.14a)-(6.14c)], become

A+ ≈
α

1− αk
q ; A− = αq . (6.26)

Therefore the respective relationships for the fluctuating fields, at small k, are

v+ = ± d√
1 + d2

b = v− . (6.27)

At large k, however, the amplitudes for the Whistler mode (α = −kd2) are

v+ ≈ −b/k → 0 ; v− = −kd2 b . (6.28)

They still remain aligned reflecting the nature of the exact solutions, but their

magnitudes differ.
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Figure 6.1: Dispersion curves: non-relativistic case (VA � c). Note the cy-
clotron branch (large k) asymptotic to 1, or ωc in physical units.

6.3.1.2 Relativistic case (A2
+ . 1)

The relativistic version of Fig. 6.1 is shown on shown in Figs. 6.2-

6.3. Figure 6.2 shows the frequency of the shear Alfvén mode (asymptoted

to the cyclotron branch) as a function of the fluid velocity’s amplitude (A+);

the frequency decreases as the amplitude increases. We can understand this

analytically by going to the large k regime, but first let us rewrite Eqs. (6.14a)-

(6.14c) using ω = −αk(ês · êz)

−A+(ês · êz)k
ω

= q + kA+γ+ (6.29a)

−A−(ês · êz)k
ω

= q (6.29b)

k2
(

1− ω2

k2

)
q =

k

d2
[A+γ+ − A−γ−] . (6.29c)
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Figure 6.2: Dispersion curves: relativistic case. Alfvénic modes, for various
amplitudes A+, with ês · êz = −1.

In the large k limit we get from Eq. (6.29b) A− → 0 and from Eq. (6.29a)

−A+(ês · êz)
ω

= A+γ+ , (6.30)

or

ω = −
√

1− A2
+(ês · êz) . (6.31)

This result explains Fig. 6.2, it tells us that, frequency decreases as the

amplitude of the fluid velocity increases, Eq. (6.31) is the relativistic version

of Eq. (6.25). For antiparallel propagation Eq. (6.31) becomes (in physical

units)

ω = ωc

√
1− A2

+ , (6.32)

thus for small amplitudes and small k the wave behaves Alfvénically, as A+

increases it brings down the frequency. This behavior is what in fact permeates
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Figure 6.3: Whistler mode for various amplitudes A−.

the whole physics of this solutions; there are some exceptions. In general the

relativistic nonlinearity in Eq. (6.31) (the γ−1+ factor), boost up the effective

mass bringing down the frequency.

Figure 6.3 is another numerical result of Eqs. (6.14a)-(6.14c) and shows

that for sufficiently small amplitudes the frequency behaves like the Whistler

mode, but as the amplitude is increased, the frequency decreases. To explain

this, we note that the Whistler mode is found only in the v+ → 0 limit of

HMHD equations [see Eq. (6.28)]. Therefore to see it we need to set A+ → 0.

Equations. (6.29b) and (6.29c) become

−A−(ês · êz)k
ω

= q (6.33a)

k2
(

1− 2
ω2

k2

)
q = − k

d2
A−γ− . (6.33b)

Solving for A− from Eq. (6.33b) and substituting it on Eq. (6.33a) we find,
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in the large k limit,

ω = k2d2
√

1− A2
−(ês · êz) , (6.34)

the relativistic version of Eq. (6.24). Figure 6.3 shows the plots for the

Whistler modes as a function of the amplitude A−, with (ês · êz) = 1 (parallel

propagation).

6.3.1.3 VA � c

Another important case is when VA � c, which we have not studied

before. This special case when the Alfvén speed is larger than the speed of

light implies a very strong magnetic field. Plots in Fig. 6.4 corresponding

to this interesting limit, indicate that the mode is light-like the frequency is

essentially independent of the amplitude A+, provided that VA be sufficiently

large. In the non-relativistic limit (A2
+ � 1), it is easy to see this behavior. If

we use Eq. (6.16), with d� 1 and small k, we obtain

[1− α2(ês · êz)2] ≈ 0 , (6.35)

or

α2 ≈ 1

(ês · êz)2
. (6.36)

This result corresponds to the vacuum dispersion relation since

ω2 = α2k2(ês · êz)2 ⇒ ω2 = c2k2. (6.37)

Note, that in this case, the dispersion relation is independent of the product

ês · êz. Therefore this result is valid for any direction of propagation, parallel,

antiparallel, perpendicular or oblique.
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Figure 6.4: Vacuum dispersion relations for different velocity amplitudes
(VA � c).

In the relativistic limit, Eq. (6.37), still applies according to Fig. 6.4.

This is easy to understand, if we take the limit d2 → ∞ of Eq. (6.29c) we

obtain

k2
(

1− ω2

k2

)
q = 0⇒ ω2 = k2 . (6.38)

Reproducing again the vacuum dispersion relation.

6.3.2 Same species µ+ = µ− → 1/2

The case when the plasma have species with equal masses and same

absolute charges could represent, for example, an electron-positron (e−e+)

plasma. Indeed, e−e+ are an example of a larger class of equal mass plasmas

or Pair plasmas. Theoretical studies in e−e+ plasmas have focused, largely,

on the relativistic regime (see Chapter 4). However, here we treat the pair
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Figure 6.5: Alfvénic modes in pair plasmas, note the asymptotic limit of 2, at
large k.

plasma in the non-relativistic regime as well as in the relativistic regime.

6.3.2.1 Non-relativistic case (A2
+ � 1)

Figure 6.5 (top curve) shows the results for this case, this is the shear

Alfvén mode. The difference, between this and the different species case, is

that the asymptotic frequency is 2ωc, twice as large as the frequency in plasmas

where the mass of one species is negligible (electron-ion). This fact may be

seen from Eq. (6.15) written in the pair plasma limit

(1− α2)

(
1− α2k2

4

)
=
α2

d2
(6.39)

In the small k limit, Eq. (6.39) gives

α = ± d√
1 + d2

, (6.40)
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which, after using ω = −αk(ês · êz), gives

ω = ± VA/c√
1 + (VA/c)2

k(ês · êz) (6.41)

reproducing the Alfénic dispersion relation. On the other hand, in the large k

and large d limit, Eq. (6.39) gives

α2 =
4

k2
⇒ α = ±2

k
, (6.42)

or

ω = ∓2ωc(ês · êz) (6.43)

the cyclotron frequency branch. Note that in this large k limit, due to the

equality in masses, the Whistler mode is not present.

Equation (6.39) also allows the solution, in the limits: large k and small d

−1

4
(1− α2) ≈ 1

d2k2
⇒ α2 =

4

d2k2
+ 1 , (6.44)

or

ω2 =
4

d2
+ k2 ⇒ ω2 = 4ω2

p + k2c2 (6.45)

the plasma electromagnetic mode, see Fig. 6.6.

6.3.2.2 Relativistic case (A2
+ . 1)

As shown in Fig. 6.5 we expect the decreasing of frequency with the

increasing in amplitude. The analytical expression, derived with the help of

Eq. (6.14a) and ω = −αk(ês · êz), explicitly displays this behavior

A+(ês · êz)k
ω

= q +
1

2
kA+γ+ , (6.46)

91



0 2 4 6 8 10
k

2

4

6

8

10

Ω

A"#0.9

A"#0.6

A"#0.3

A"#.01

Figure 6.6: Electromagnetic plasma modes for various velocity amplitudes.

which, in the large k, limit gives the usual resonance frequency (see Fig. 6.5)

ω = −2ωc
γ+

(ês · êz) (6.47)

which decreases with increasing γ+.

6.3.2.3 Case VA >> c

In this case, the dispersion relation obtained is that of vacuum, as seen

in Fig. 6.7. The explanation can be seen from Eq. (6.29c), that still applies

in this pair plasma limit,

k2
(

1− ω2

k2

)
q =

k

d2
[A+γ+ − A−γ−] , (6.48)

which after taking the d→∞ yields

ω2 = k2c2. (6.49)
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Figure 6.7: Vacuum dispersion relation in pair plasma, limit VA � c. Note
that the curve is unaffected by the increasing amplitude A+.

6.4 Conclusions

Our results show that in most cases the frequency of the modes de-

creases as the fluid becomes relativistic. However, despite the decreasing in

frequency nonlinear wave properties up to relativistic speeds, for example,

∼ 0.95 c. The decreasing frequency behavior confirms previous results [41],

although in Ref. [41] the analysis is limited on VA ∼ c; therefore in this work

the result is generalized.

Only when the Alfvén speed is much larger than the speed of light

(strong magnetized plasma), the modes are not totally affected,behaving light-

like even in the ultra-relativistic limit.

The relationship between the amplitudes, v± and b, is given by Eqs.

(6.14a)-(6.14c). They are always aligned, however, only in few cases it is

93



possible to derive the exact relationship between them, see Eq. (6.26).

In the pair plasma case our results show that there is no Whistler mode.

This result, owing to the vanishing of the Hall current, is consistent with earlier

work ([34]-[35]).

Exact solutions provide a basis for quantitative models of turbulence,

we just hope that these solutions could offer a starting point further in the

investigations of turbulent fluctuations.
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Chapter 7

Summary

In this work we have studied the propagation and stability of waves in

astrophysical plasmas. The motivation for the first part, composed of Chapters

3-5, has been:

• To understand the temperature effects on the propagation and stability

of waves in pulsar pair plasmas, particularly, the possible stabilization

of the two-stream unstable Alfvén wave by relativistic temperatures.

• Explain some of the properties of the radio pulses emanating from pulsars

such as frequency and luminosity.

The first task of this dissertation, as we have explain in the introduction,

is the study of relativistic waves in pulsar pair plasmas at temperatures of the

order of T ∼ mc2/kB. At this large temperatures the plasma supports: four

modes for parallel propagation, one for perpendicular propagation and four

modes for oblique propagation. The modes propagating along the magnetic

field lines (parallel propagation) are obviously the most important candidates

for explaining the radio emission properties from pulsars, since the emitted

radiation is contained in a small narrow region above the polar caps of neutron

stars.
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Of the four parallel propagating modes, two are electromagnetic plas-

mas modes and the other two are Alfvénic modes. At large relativistic temper-

atures, the electromagnetic plasmas modes are affected in the long wavelength

region only.

Of the Alfvénic modes, the fast mode is super-luminous for large wave-

lengths (short k), becoming sub-luminous at large k. In the case of high

relativistic temperatures, the super-luminous region reduces to even shorter

k. The slow Alfvén mode, on the other hand, is unstable at large wavelengths

and remains so in the case of large relativistic temperatures. This last result is

crucial for the free electron laser (FEL) mechanism emphasized in this work.

We have shown that the Alfvénic two-stream instability is unaffected

as the temperature rises to levels of T ∼ mc2/kB. We have also shown that,

for typical values, this instability is faster than the rotational period of the

pulsar and therefore has the potential to be a candidate as a possible source

of a nonlinear secondary process that could generate coherent radiation.

We, then, go on to show that the interaction of the Alfvénic two-stream

instability with the pulsar primary beam could simulate an FEL-like effect

given coherent radiation. The predicted range of radiated frequencies and the

associated power luminosities are within the range of the observational values

obtained from real pulsars. This agreement lends evidence to the dissertation

that an FEL-like radiation effect could be responsible for the radio wave pulses

emanating from pulsars.
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We expect that the specific problems studied in this work, should give

a better understanding for the theory of propagating waves in pulsars plasmas

and on the radiation mechanisms that produce the pulses. Still more detailed

work needs to be done before one can claim that an FEL mechanism is really

responsible for the pulsar emissions.

In the second part, composed of Chapter 6, we have studied nonlinear

wave solutions in plasmas with arbitrary species mass. We have carried out

studies in both the relativistic and in the non-relativistic limit. The solutions

found in the different species case are generalizations of the HMHD wave-like

solutions.

Our results indicate a decreasing in the frequencies of the Whistler and

Alfvén modes as the wave amplitude (effective mass) increases. However, the

overall shape of the predicted modes is conserved in most cases.

In the limit of super strong magnetic fields we find that the light-like

modes are unaffected by the wave amplitude (relativistic effects).
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Exact solutions to the incompressible MHD

If the dissipative effects are ignored the MHD equations that governed

the variations of u and B are:

∂B

∂t
= ∇× (u×B) , (1a)

ρ
D

Dt
u = −∇P +

1

4π
(∇×B)×B , (1b)

where D/Dt = ∂/∂t+u · ∇ is the co-moving operator. The standard proce-

dure to obtain solutions to the above equations is to expand the fields around

some equilibrium conditions where the perturbed quantities are small, i.e.

B = Bo + b , (2)

u = v , (3)

where Bo is the ambient magnetic field assumed to be uniform, there is no

ambient flow. If we do this then Eqs. (1a)-(1b) become:

∂b

∂t
= ∇× [v × (Bo + b)] , (4a)

ρ
Dv

Dt
= −∇P +

1

4π
(∇× b)× (Bo + b) , (4b)

the standard approximation is carry out by neglecting the squares and prod-

ucts of the small quantities b and v, i.e. by making them linear. Then since

Bo is uniform and ∇ · b = ∇ · v = 0, the Eqs. (4a)-(4b) reduce to:

∂

∂t
b = (Bo · ∇)v , (5a)

ρ
∂

∂t
v =

1

4π
(Bo · ∇)b , (5b)

99



where P + Bo · b/4π = const. For simplicity take the z direction parallel to

Bo then Eqs. (5a)-(5b) become:

∂b

∂t
= Bo

∂v

∂z
, (6)

ρ
∂v

∂t
=

Bo

4π

∂b

∂z
, (7)

yielding

∂2

∂t2
b = V 2

A

∂2

∂z2
v , (8a)

∂2

∂t2
v = V 2

A

∂2

∂z2
b , (8b)

where VA = Bo/
√

4πρ, as usual.

The exact solutions are derived without any approximations about

the perturbed quantities, their magnitudes can be as large as one wishes by

noting that if v and b are parallel (or antiparallel) then the term v× b in Eq.

(4a) vanishes exactly, recovering Eq. (5a). Also in Eq. (4b)

1

4π
(∇× b)× b =

1

4π
(b · ∇)b−∇ b2

8π
, (9)

therefore Eq. (4b) becomes:

ρ
∂v

∂t
+ρ(v ·∇)v =

1

4π
(Bo ·∇)b−∇(P +Bo ·b/4π)+

1

4π
(b ·∇)b−∇ b2

8π
. (10)

Now choose

v = αb ,

where α = VA/Bo. Then in Eq. (10), the term (b·∇)b/4π exactly balances the

term ρ(v · ∇)v to the left, the term −∇b2/8π can be balanced by increasing

100



the pressure, so that now P +Bo ·b/4π+b2/8π is a constant. Thus in this case

Eq. (10) reduces exactly to the form of Eq. (5b), without any approximation

being needed. Therefore it is unnecessary to suppose b and v to be small

quantities whose products are negligible. Thus waves of this type can exist in

which b is as large as the ambient field Bo.
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